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Titre (Français): Deconvolution hiérarchique non supervisée appliquée aux données 
d'expression génique pour élucider la complexité du micro-environment tumoral 

Résumé: Les tumeurs solides sont caractérisées par une organisation complexe de 
l’écosystème dans lequel les cellules tumorales résident et se développent, appelé le 
Micro Environment Tumoral (TME). Ce TME est la cible privilégiée de 
l’immunothérapie qui cible à impacter de manière critique la croissance d’une tumeur 
ou son potentiel invasif et métastatique. De ce fait, caractériser le contenu et l'état du 
TME d’un patient atteint du cancer et une priorité. Cependant, dû à la large variabilité 
du TME et de sa complexité cellulaire et moléculaire, il est parfois difficile d’exploiter 
les connaissances pré-existantes sur les propriétés de ses continuants, souvent 
obtenues dans des contextes différents. Pour cette raison, il devient intéressant de 
tirer profit des approches non supervisées ou exploratoires en se basant sur les 
données de cancer disponibles qui ne requièrent pas de fixer une forte connaissance 
a priori par avance. Les outils mathématiques de machine learning comme les 
différentes catégories de méthodes de factorisation matricielle ont démontré leur 
utilité dans ce but. Dans mon travail, c’est au travers de l’utilisation d’une méthode de 
factorisation matricielle nommée Analyse par Composantes Indépendantes (ICA) que 
j’ai développé une méthode computationnelle visant à disséquer l’expression des 
gènes et d’autres types de données omiques, ainsi que pour extraire les signaux liés à 
l'infiltration immunitaire dans le TME. L’ICA récupère les sources indépendantes 
venant de la variation d'expression des gènes sous la forme de poids associés à tous 
les gènes mesurés. Mais même si cette méthode à prouvé son efficacité pour la tache 
de déconvolution computationnelle ainsi que d’autres applications sur des données 
du cancer, dû à sa nature non supervisée, elle comporte certaines complications 
lorsque vient le besoin de sélectionner le nombre de signaux que nous attendons 
dans les données ou lorsqu’on veux interpréter ces signaux. Pour soulager ce 
problème de choisir une dimension spécifique pour la décomposition des données, 
une nouvelle méthode HACK (Hierarchical Analysis of Component linKs) a été 
développée pour permettre d’analyser les signaux sur un assortiment de plusieurs 
dimensions en tant qu’une hiérarchie interconnectée ainsi que de caractériser le 
transcriptome comme un groupe de métagènes persistants, reproductibles sur 
plusieurs ordres de décomposition. Cette approche permet non seulement d’avoir 
une idée sur la qualité et la reproductibilité des signaux récupérés mais aussi d’aider à 
reconstruire les relations parmi eux. Pour l’interprétation des signaux extraits, je 
proposes d’exploiter les reconstructions complètes des voies de signalisation pour 
tirer des conclusions sur le sens biologique des signatures moléculaires dérivées des 
données. Par conséquences, dans ce projet j'ai participé à la production et 
l’exploitation de plusieurs cartes moléculaires détaillées reliées à la biologie du cancer 
comme la carte du rôle du système immunitaire inné dans le cancer ou la carte sur la 
régulation de la mort cellulaire. En définitive, c’est au travers l’utilisation d’analyses de 
données non supervisées, couplées à une description détaillées des interactions 
moléculaires que nous pouvons commencer à démêler la complexité du TME, d’une 
manière complémentaire aux autres méthodes. 

Mots clefs: Micro-environment tumoral, Factorisation matricielle, Données 
d’expression de cancer, Deconvolution non-supervisée, Analyse par Composantes 
Indépendantes, Voies de signalisation, Biologie des systèmes  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Title (English): Unsupervised hierarchical deconvolution of gene expression data to 
unravel the tumor micro-environment complexity 

Abstract: Solid tumours are characterised by a complex organisation of the cellular 
ecosystem, in which the tumor cells reside and progress, called tumor 
microenvironment (TME). This TME is the primary target of immunotherapy that aims 
to critically impact tumour growth or its invasive and metastatic potential. Thus, 
characterising a cancer patient's TME content and state becomes a priority. However, 
due to the large variability of the TME and its cellular and molecular complexity, it is 
sometimes difficult to exploit pre-existing knowledge about the properties of its 
constituents, frequently obtained in unrelated contexts. For this reason, it appears  
interesting to take advantage of unsupervised or exploratory approaches based on 
available cancer data that don't require strongly fixed a priori knowledge. 
Mathematical tools from machine learning such as various flavours of matrix 
factorisation showed to be helpful for this purpose. In our work, through the use of a 
matrix factorisation method named Independent Component Analysis (ICA) we 
developed a computational methodology aiming at dissecting the gene expression 
and other types of omics data and extracting signals related to the immune 
infiltration into TME. ICA retrieves the independent sources of gene expression 
variation in the form of weights associated with all measured genes. Although this 
method proved to be efficient for the computational deconvolution task and in other 
applications, due to its unsupervised nature, it bears some complications when it 
comes to the need to select the number of signals we expect to be in the data or 
when we want to interpret those signals. To alleviate the problem of choosing a 
specific dimension for the data decomposition, a novel method HACK (Hierarchical 
Analysis of Component linKs) was developed that allows us to analyse signals over a 
range of multiple reduced data dimensionalities as an interconnected hierarchy and 
characterise the transcriptome as a set of persistent metagenes, reproducible across 
multiple decomposition orders. This approach provides not only an idea of the quality 
and reproducibility of the retrieved signals but also can help reconstruct relations 
between them. For the interpretation of the extracted signals, I suggest exploiting 
comprehensive signalling pathway reconstructions to draw conclusions on the 
biological meaning of the molecular signatures derived from the data. Therefore, in 
this project I participated in producing and exploiting several comprehensive 
molecular maps related to cancer biology such as the map of the role of innate 
immunity in cancer and the map of the regulated cell death. In definitive, it is through 
the use of unsupervised data analyses coupled with a detailed description of 
molecular interactions that we can approach the unraveling of the complexity of the 
TME, in a way complementary to other methods. 

Keywords: Tumor micro-environement, Matrix factorisation, Cancer expression data,  
Unsupervised deconvolution, Independent Component Analysis, Signalling pathway,  
Systems biology 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I - Introduction 



1. Cancer Systems Biology applied to immunotherapy 
Before tackling any problem related to cancer, it is important to first know what is 
really meant and understood about it. For this purpose, this chapter will briefly 
introduce the historical understanding of what scientists thought cancer was and 
what the community of researchers came to understand it now. It will then describe 
the existence of its cellular environment called the Tumoral Micro-Environment (TME) 
and its importance and participation in cancer development, progression or 
regression. It will touch upon the use of our understanding about TME for curing 
therapies. It will also describe the different types of data used to better understand 
the TME content and state. Lastly, it will describe different bioinformatics approaches 
used to extract this needed information from data and interpret it biologically. 

1.1 Cancer disease, Tumor microenvironment and 
Immunotherapy 

1.1.1 A brief overview of historical evolution in cancer understanding 

Cancer can be seen as a group of cells with uncontrolled growth and division that can 
spread to other parts of the body via a phenomenon called metastasis. Cancer can be 
of many types and can appear almost anywhere in the body. Animals have had cancer 
throughout recorded history and the oldest evidence of cancer in mammals goes as 
far as the Cretaceous era where tumors were found in vertebrae of Hadrosaurs 
(Rothschild et al., 2003) which lived approximately 70 million years ago. The oldest 
human description of cancer was found in ancient Egyptian papyri written around 
1.600 B.C. and may probably be based on even older material from 2.500 B.C. The 
papyrus in question contains a description of a bulging tumor in the breast with a 
mention of possible spread and classification as a case with no possible treatment 
(Breasted, 1991). 

Different kinds of cancer have also been described by Hippocrates (460-360 B.C) who 
referred to them for the first time as karkinos, a term that is know now as carcinoma 
(Hajdu, 2011). This Greek word for crab was used to describe the appearance of solid 
malignant tumors that looked like the stretched feet of a crab because of the veins 
spreading on all sides. As a treatment, Hippocrates recommended different diets and 
if this approach didn't work, the summarised possibilities are, as mentioned in his 
Aphorism 165-6: 

“That which medicine does not heal, the knife frequently heals; 
and what the knife does not heal, cautery often heals; but when 
all these fail, the disease is incurable.” 

Aulus Cornelius Celsus (25 B.C. - 50 A.D.), a Roman physician could be considered as a 
Hippocrates successor. He described the evolution of tumors as two states: cacoethes 
for tumors capable of being removed surgically and carcinomas for later stages that 
should be left alone or else they would cause death of the patient. In his writing 
Celsus mentioned these different stages and pointed out their implications for the 
patient: 
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“It is only the cacoethes which can be removed; the other stages 
are irritated by treatment; and the more so the more vigorous it 
is. Some have used caustic medicaments, some the cautery, 
some excision with a scalpel; but no medicament has ever given 
relief; the parts cauterized are excited immediately and increase 
until they cause death. 
No one, however, except by time and experiment, can have the 
skill to distinguish a cacoethes which admits of being treated 
from a carcinoma which does not.” 

Cancer observations has continued to be expanded by physicians across the centuries 
with a constant refining of diagnosis techniques and treatments of surgical or 
chemical nature (Faguet, 2015). But it is really with the advent of molecular biology, 
helping to bridge the gap between biochemistry and genetics, that the cancer 
mechanisms could finally be described in details. The discovery of the DNA structure 
by Wilkins, Franklin, Watson, Crick and Pauling (Klug, 2004) allowed the 
establishment and the beginning of the molecular biology of cancer. 

1.1.2 Cancer as a complex disease coming from a deregulated 
machinery 

In 1958, Crick formulated what is known now as the “central dogma of molecular 
biology” (Crick, 1970). The central dogma is an explanation of the genetic information 
flow in a biological system. It states that the information contained in DNA has to 
sequentially pass through RNA and finally a protein. However, once it has passed this 
final point, it cannot get out again (Figure 1.1). 

A simple way to understand this is to consider how cellular functions are encoded and 
expressed in a simple cell. A function is encoded as a genetic information (gene) 
stored in the form of DNA, contained in the nucleus present in all cells. However, 
functions have to happen outside of the nucleus so the information contained in the 
DNA has to be transcribed into another form of nucleic acid, the RNA. Once outside 
the nucleus, with the help of ribosomes that serve as cell factories, the information is 
extracted from the RNA and converted into a chain of amino-acids, the building 
blocks of proteins. Once in this protein form, cellular functions can finally be 
expressed. These processes are constantly regulated in the cell by either gene 
expression being turned off and on or via more refined events such as modifications 
of the RNA by splicing or modifications of proteins by some post-translation 
alterations of chemical nature. 
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Figure 1.1. Schematic illustration of the central dogma of molecular biology. 
The genetic information flow contained in the DNA is transferred sequentially 
through RNA to Proteins. Adapted with permissions under the terms of the Creative 
Commons Attribution License 4.0 (CC-BY) from https://www.yourgenome.org/  (Image 
credit Genome Research Limited). 

It is when this machinery becomes deregulated, that cells can acquire a cancerous 
state. A gene which when altered can give rise to cancer is called an oncogene. 
Oncogenes override normal regulatory controls and induce a cancer state of a healthy 
cell. Many studies have been performed to find the possible actors implicated in the 
causes of cancer (Bos, 1989). These oncogenes can have many different functional 
properties and can be caused by different phenomena, as listed in (Croce, 2008). 

The possible alterations giving rise to an oncogene are the following: 

- Chromosomal rearrangement is a changing in the structure of the native 
chromosome. This type of event is caused by a break of the DNA helix at two 
locations followed by the rejoining of the broken ends, thus leading to a new 
chromosomal arrangement. 

- Mutations are modifications of the nucleic acid content in the DNA strand. A 
modification of the DNA sequence leads to a different structure of the encoded 
protein, changing its functional properties. 

- Gene amplifications is an increase in the number of gene copies. It can occur 
as a defect prior to a tumor appearance but more often happens during tumor 
progression (Albertson, 2006). An increase in gene copies leads to an increase in 
the protein level that can deregulate the balanced functions of a cell which can 
for instance increase the rate of cell divisions. 
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Once activated, oncogenes can give birth to a panel of products that can be classified 
into six groups: 

- Transcription factors participate in the regulation of DNA transcription by 
binding to specific sequences in enhancer or promotor regions. When a 
transcription factor is abnormal, it can increase the expression of several genes. 
For example, the AP1 transcription factor controls cell division and can become 
abhorrent in cancer cells (Shaulian and Karin, 2001) leading to an uncontrolled 
cellular growth. 

- Chromatin remodellers change the compaction level of chromatin and 
consequently control gene expression, replication and the repair of 
chromosome segregations. If such elements become mutated, they can harm 
the normal processes of DNA repair, leading to more anomalies with time. 

- Growth factors stimulate cells growth, participate in the control of certain cell 
cycle phases and sometimes play a role in wound healing. It can be easily seen 
that an abnormal activity of growth factors can provoke an increased cell 
proliferation. 

- Growth factor receptors are proteins located on the cell membrane which 
when activated control various cellular activities such as cell division, survival, 
differentiation and migration. Modified receptors can become active even in 
the absence of the necessary ligand and lead to cells escaping their normal 
fate. 

- Signal transducers participate in the exchange of molecular signals between 
cells and their environment. Mutated transducers can become either fully 
activated or no longer sensitive to the signal. These changes can induce 
modifications in the cells themselves by activating downstream pathways but 
also impact their environment (Juliano, 2020). 

- Apoptosis regulators help control the “cell suicide mechanisms” and are active 
in cases where a cell has heavy DNA damage or has an abnormal metabolic 
behaviour. They can also be activated in cases of cell damage or through the 
unfavourable state of the environment surrounding the cell. In cases where 
these regulators malfunction, a cell can escape the regulated death controls 
and continue to live and multiply while accumulating other oncogenic 
functions. 

Despite all these possible anomalies that a cell can be facing with, protection 
mechanisms remain to help getting rid of abnormal cells. The cellular environment 
can force an abnormal cell to pass through apoptosis. Some mutations can lead to the 
appearance of oncogenes but some mutations can be too deleterious and lead to an 
incapacity of a cell to grow further. The mechanism of telomeres shortening with each 
cell division can also help passively control the rate of uncontrolled cell divisions. 
Therefore, for a cell to become cancerous, it would have to find a way to avoid all 
these protection mechanisms. It is only after it was able to acquire a defence against 
them that a cancer cell can truly drift from the normal cell machinery and progress in 
the organism. 
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A seminal article listed the properties required for a cell to be considered as cancerous 
(Hanahan and Weinberg, 2011), called the hallmarks of cancer, that can be seen in 
Figure 1.2. These hallmarks correspond to the various capabilities a cancer cell has to 
acquire to be able to grow and provide a solid foundation for understanding the 
biology of cancers. The hallmarks’ essence can be summarised as follows: 

- Sustaining Proliferative Signaling: In a normal cell, the growth happens in a 
controlled and balanced manner and from the deregulation of this balance, 
cancer cell have to deal with the unbalance that follows. The lack of elements 
such as growth factors can lead to a premature growth stop but to mitigate 
that, cancer cells can send signals to surrounding cells that may in turn provide 
them with the necessary elements to continue growing. Or it can also be 
possible that a cancer cell becomes growth factor independent by a set of 
mutation of its regulatory elements. 

- Evading Growth Suppressors: As I mentioned before, natural and powerful 
mechanisms help to negatively regulate cell growth thanks to tumors 
suppressive genes that can trigger an apoptosis when deemed necessary. This 
control can also be performed by cell-to-cell proximity but cancer cells are 
known to abolish this "contact inhibition”. This can be done by modifying the 
state of membrane proteins that normally normally involved in in the structure 
and cell integrity. 

- Resisting Cell Death: The mechanisms of apoptosis is a natural barrier of tumor 
development. It can be triggered from sensors looking at the DNA damage 
state or environmental stress. By losing either these sensor genes or tumor 
suppressors such as TP53, cancer cell are able to circumvent the apoptotic 
machinery. 

- Enabling Replicative Immortality: To enter an “immortal” state, cells have to 
survive the two natural barriers that are the senescence and crisis phases. It is 
the constant shortening of telomere ends of the DNA after each cell division 
that often leads to the crisis state. Immortalised cells combat this by having 
specialised DNA polymerases that can add telomere repeats, thus ignoring the 
crisis phase entirely. 

- Inducing Angiogenesis: Because of their increased replication rate, tumor cells 
require much more nutrients than the surrounding environment can normally 
offer as well as evacuating metabolic wastes. These needs can be achieved by 
stimulating angiogenesis which consists in augmenting the vascularisation of 
nearby blood vessels. In fact, the angiogenic switch is almost always activated 
during tumor progression, making all surrounding vessels to sprout and sustain 
said progression. 

- Activating Invasion and Metastasis: One particularity of cancer cells is their 
capacity to detach from their environment of origin and invade other parts of 
the organism. This phenomenon happens because of modified membrane 
proteins that no longer maintain the cancer cells attached to their surrounding 
and some migration factors are turned on and help tumors to leave their 
original territory which is normally impossible for cells of their original type. 

16



- Genome Instability and Mutation: To achieve all these different characteristics 
the genome has to undergo a series of alterations all while evading the 
reparation mechanisms. The accumulation of these alterations can happen 
when “caretaker” genes that generally participate in the maintenance of a 
stable genome acquire defects. These defects can damage functions that help 
detecting DNA damage, repairing said damage or intercepting and inactivating 
mutagenic molecules. 

- Tumor-Promoting Inflammation: Tumors can sometimes be infiltrated by cells 
of the immune system. However, paradoxically, instead of of destroying cancer 
cells, the inflammatory response has the effect of enhancing the tumor growth 
and progression. Such an effect can be explained by the capacity of immune 
cells to supply tumors with molecules such as growth, survival and angiogenic 
factors. 

- Reprogramming Energy Metabolism: Because of the uncontrolled proliferation 
of cancer cells, tumors can sometimes end up in a normally unfavourable 
environment such as a very tight space with limited access to oxygen. Still, 
cancer cells manage to adapt by modifying the energy metabolism. One of the 
most famous adaptation is known as the “Warburg effect”, which corresponds 
to the capacity to limit the energy metabolism to glycolysis even in the 
presence of oxygen, leading to what could be called an “aerobic glycolysis”. 
Although being a counterintuitive phenomenon, the Warburg effect has been 
also observed in embryonic cells because of the metabolic benefits this can 
give, such as biomass production and redox regulation (Krisher and Prather, 
2012). 

- Evading Immune Destruction: The immune defence is supposed to constantly 
monitor the organism for any threats to deal with them early on. However, 
some tumors manage to avoid detection or can defend efficiently against 
immune attacks. 
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Figure 1.2. The 10 Hallmarks of cancer. 
List of the 10 different capabilities acquired by cancer cells necessary for tumor 
growth and progression. Adapted with permissions from Cell (Hanahan and 
Weinberg, 2011). 

Each of these hallmarks result from a series of of genetic alterations, with some being 
tissue specific or not (Hanahan and Weinberg, 2011). Most cancer present a 
combination of these characteristics giving them multiple ways of evading the 
protective systems put in place by the organism. But one important part always 
remains and that is the fact that tumors always evolve in an active environment and 
that this environment can be beneficial or deleterious to its growth. It is the study of 
this environment that gives us hope to better understand how tumors can form and 
how we can deal more efficiently against this. I will discuss about the implication of 
the tumoral environment more in detail in the next section. 

1.1.3 Tumor Micro-Environment: a complex ecosystem 

Solid tumors are not composed of exclusively malignant cancer cells. In reality, they 
are characterised by a complex organisation of the cellular ecosystem, in which the 
tumor cells reside and progress, called the Tumor Micro-Environment (TME). Each 
tumor has not only a unique combination of mutations and genomic alterations but 
also a unique composition of infiltrating non-tumoral cells, which depends on the 
tumor type, stage, host and other factors. Recent progress in cancer biology clearly 
showed that TME critically impacts tumor growth, invasive and metastatic potential, 
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as well as the response to treatment including both short-term and long-term disease 
outcomes (Quail and Joyce, 2013; Whiteside, 2008). 

The relations between tumors and their environment are many as there is a great 
diversity of cells composing the TME (Balkwill et al., 2012) (Figure 1.3). Cells present in 
the TME can be separated in two categories: 

- The Stroma, which is composed of the extracellular matrix, fibroblasts, 
endothelial and epithelial cells, adipocytes, mesenchymal stem cells and 
lymphatic vessels, etc. 

- The Immune cells such as T and B lymphocytes, NK and NKT cells, Dendritic 
cells, Macrophages, etc. 

 

Figure 1.3. Schematic illustration of the composition of the tumor microenvironment. 
The TME can be seen a complex system of interacting cells in an evolving 
environment. Adapted with permissions under the terms of the Creative Commons 
Attribution License 4.0 (CC-BY) from (Balkwill et al., 2012). 

The TME can have multiple faces in the presence of tumors: 

- Positive: It can defend the organism by detecting and suppressing tumors 

- Neutral: It can be oblivious to the presence of tumors and not interact 

- Negative: The TME can participate in tumor growth and promote metastases. 
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Firstly, let’s start by mentioning the positive sides. 

At the first stages of cancer development, the TME plays a barrier role for the 
organism with the help of immune cell types. The presence of T-cells and NK cells has 
been proved to be correlated with good prognostic markers (Tachibana et al., 2005) as 
well as B-cells (Milne et al., 2009). However, since tumors and immune cells are in 
perpetual interaction and can remodel the functions of each other, Dunn et al. (Dunn 
et al., 2002) considered the term of immunosurveillance inappropriate and proposed 
instead the term of immuno-editing. 

This immuno-editing being the result of three processes: Elimination, Equilibrium and 
Escape. These tree processes can be understood as the sequential order of 
interactions evolution between the TME and tumors. 

First, the elimination process takes place where developing tumors are deleted 
successfully in chronological order. In the first phase, cancer cells grow and release 
proteins alerting immune cells (Hanahan and Folkman, 1996). Then, in phase 2, tumor 
deaths start to happen by apoptosis or proliferation arrest due to the release of TNF-
gamma in their surrounding (Bromberg et al., 1996). This leads to the secretion of 
chemokines in the environment which blocks the angiogenic potential of close 
vessels, leading to more tumor cell deaths (Qin and Blankenstein, 2000). Next, 
recruited macrophages and NK cells in phase 3 can now target tumor cells (Smyth et 
al., 2000). Finally, in the last forth phase, DC and T cells destroy the remaining tumor 
with visible antigenes on their surface (Shankaran et al., 2001). 

After that comes the stage of equilibrium where only surviving tumor cells are 
capable of functioning despite the constant immune defence. New variants continue 
to appear and be destroyed following the mechanism of the Red Queen hypothesis, 
until we reach the final stage of escape where tumors acquired a resistance to 
immune detection and destruction. 

At this stage, patients are left with a defence system incapable of functioning 
correctly, leaving the existence of local tumoral spots containing remaining surviving 
variants that can now slowly continue to grow. This stage can be considered as the 
neutral moment where the TME and tumors do not interact as actively as they did 
anymore. This is probably the stage that explains why the TME effect on tumors have 
eluded researchers for so long. With such a limited amount of interactions during this 
period, TME was wrongly deemed as not playing an interesting part for the tumor 
progression. 

It is only after such respite that malignant cells can fully express and cause much 
damage. Cells that came first to the tumor site are incapable of suppression and in 
certain cases can even participate in the development of cancer cells (Quail and 
Joyce, 2013). And example can be seen in Figure 1.4 where Tregs participate in the 
immune suppression and CAFs enhance angiogenesis. 
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Figure 1.4. From elimination to tumor support. 
In the first stages, defence cells come to destroy cancerous cells. But with time, 
tumors are capable to evade the immune function and can even modify immune cell 
properties to help angiogenesis and tumor growth. Reprinted with permissions from 
Springer Nature from (Quail and Joyce, 2013). 

The presence and the amount of these TME cells can vastly vary between cancer 
types making it difficult to correctly estimate the contribution of each cell type. But 
even if a lot of mechanisms and interactions between cancer cells and their TME still 
remain unknown, I can still briefly enumerate some known cell types that promote 
the tumor growth: 

- Cancer associated Fibroblasts (CAFs) are fibroblasts present in tumors and can 
help them grow in various ways. Firstly, it was observed that CAFs can secrete 
growth factors that can be mitogenic for malignant cells (Spaeth et al., 2009). 
Different types of CAFs have been identified, with some promoting metastases 
(Pelon et al., 2020), while others have been implicated into the formation of an 
immuno-suppresive environment (Erez et al., 2010). 

- Dendritic cells have been shown to contribute to an immuno-suppresive 
environment and even promote tumor progression by becoming incapable to 
activate CD8 T cells, thus initiating their anti-tumor immunity (Fu and Jiang, 
2018). 

- Immune cells such as macrophages have been shown to promote tumor 
angiogenesis (Zumsteg and Christofori, 2009) while some myeloid cells 
(Murdoch et al., 2008) and Tregs (Campbell and Koch, 2011) have shown an 
immuno-suppressive activity by producing factors such as TGF-β or CTLA4. 

- Lymphatic endothelial cells can help the dissemination of malignant cells 
(Tamella and Alitalo, 2010) but have also demonstrated an effect of altering the 
immune response to the tumor (Swartz and Lund, 2012). 
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1.1.4 Immunotherapy: using the TME to help fighting cancer 

I have shown in the previous Section 1.1.3 that the tumoral environment plays a major 
role in the tumoral development. Interactions between cancer cells and the TME work 
both ways and cellular participants can shift sides and increase the tumorgenesis 
instead of fighting it. Many types of therapies were proposed to deal with this 
complex disease. Surgery was among the first, followed by chemical treatments and 
then radiotherapy. One way to fight against tumor proliferation without attacking 
cancer cells directly can be achieved by limiting angiogenesis which after all was the 
first characteristic observed in cancers. By limiting the growth of blood vessels, we 
can hamper the access to nutrients and oxygen to the cancer cells. Many anti-
angiogenic therapies have been developed and approved such as anti vascular 
endothelial growth factors (anti-VEGF) (El-Kenawi and El-Remessy, 2013). However, 
such therapies represent only an indirect method of fighting tumors and can be 
connected with serious side effects. 

Since immune cells in their original state are programmed and recruited to deal with 
cancer cells, it is by boosting their efficiency or by reactivating them that we can hope 
to deal with cancer in a more natural way with lesser side-effects. This type of therapy 
called Immunotherapy is aiming at stimulating the existing immune system to either 
target cancer cells more efficiently by triggering targeting mechanisms or by helping 
some parts of the machinery, blocked by cancer cell emissions, to restart. As 
interactions are many, targets are so as well and I will describe next some of the 
promising treatments and their targets. 

Adoptive T cell (ATC) therapies are therapies that introduce allogenic T cells into a 
cancer patient. Those T-cells being derived from tumors are meant to recognise 
tumor associated antigenes more efficiently (Rosenberg et al., 1994). However, such 
approach remains limited with a high treatment cost since it requires a patient 
specific tailored design. It can also show adverse reactions such as inflammatory 
responses or in certain cases even organ damages (Brudno and Kochenderfer, 2016). 

Cancer vaccines can be of two categories: prophylactic or therapeutics. Two well-
known prophylactic vaccines have already been used with great success to protect 
against hepatitis B which leads to hepatocellular carcinoma and against 
papilllomavirus which can lead to the development of cervical cancer (Guo et al., 2013). 
Therapeutic vaccines however are based on the existence of tumor associated 
antigens (TAA) found on cancer cells only (Zhang et al., 2009). By sequencing tumors 
and finding the potential target antigenes and their coded peptides, it is possible to 
inject these neoantigenes as vaccines to force an increased immune response 
targeting the cancer cells of interest. But obviously, the most troublesome drawbacks 
are the time needed to develop such treatment but also the difficulty in detecting the 
right antigenes. As tumors have a very diverse genetic variations, it is indeed really 
problematic to find neoantigens that would result in the strongest antitumor 
response. 

Immune checkpoint therapy has been proved to be a most promising approach in 
immunotherapy. The most potent examples have been targeting two immune 
checkpoint inhibitor proteins: cytotoxic T-lymphocyte 4 (CTLA4) and programmed cell 
death 1 (PD-1), which both play important roles for T cell activity (Fife and Bluestone, 
2008). CTLA4 acts as a negative regulator of T-cell activation while PD-1 activates an 
immuno-suppressive pathway, diminishing the activity of T-cells. It is by releasing 
specific anti-bodies of these two proteins that their activity can be inhibited, allowing 
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T-cells to be fully active to fight against cancer cells. But it is of course expected that 
removing a naturally occurring immune blockade can unchain powerful immune 
responses going beyond the normal boundaries of immune tolerance. Because of 
that, auto-immune responses can occur and target different organs of the patient  
(Michot et al., 2016). 

1.2 Omics data: existing types and information they contain 

Biological systems are complex and it is difficult to capture this complexity in a 
straightforward way. Cancer especially is accepted now as a supreme complex 
disease. Its phenotypes are diverse and can only be accurately described by 
integrating a multitude of interconnected elements as well as understanding the 
environment in which cells proliferate and exchange with (Knox, 2010). It is a complex 
disease that can have many precursors leading a multitude of genotypes (Forbes et 
al., 2015). It still remains unclear which anomalies in the process of genetic information 
flow causes a cell to enter a cancerous state and the task is made even more difficult 
because of the genetic state in total disarray in cancer cells (Wishart, 2015). But one 
thing is sure, cancer is more than a simple genetic disease a requires us to look at 
different levels to fully understand its way of functioning. 

The central dogma of molecular biology can be seen as a progressive transfer of a 
coded biological information that is transferred from DNA to a protein and passing 
through RNA. However, this vision can be expanded to include a step of availability of 
such information prior to its initiation and a step of the first manifestation of a 
function coming from the molecular processes of a cell (Figure 1.5). 

 

Figure 1.5. Simplified schema of genetic information flow from the chromosome to 
the activation of a function or observation of a phenotype. 
Each step on the right is accompanied by the type of omics data that can be used to 
identify the corresponding molecules. 
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This whole system can thus be described at different levels interacting with each 
other. But to have a glance at these levels, this requires the use of unique 
technologies and a corresponding strategy to analyse and measure it. Because of this, 
various technologies have been developed and all gained popularity (Figure 1.6) across 
the years. And thanks to the emergence of systems biology, scientists realised the 
need to look at a problem at different angles since the whole system is often more 
complex that the simple sum of its parts studied independently (Barillot et al., 2020). 

 

Figure 1.6. Evolution of interest in omics technologies in the 21st century. 
The number of publications related to a certain type of omics was counted for 
publications mentioning the corresponding technology in its title or abstract. 
Reprinted with permissions under the terms of the Creative Commons Attribution 
License 4.0 (CC-BY)  from (de Anda-Jáuregui and Hernández-Lemus, 2020). 

Most current omics are generated using technologies that are mainly sequence-
based, mass-spectrometry-based or array-based. In this section, I will introduce the 
different types of data at our disposition and briefly discuss about the level and type 
of understanding they can bring us to elucidate disease mechanisms and how to 
detect and treat them. 
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1.2.1 Genomics 

Genomics is one of the most mature of omics technologies and part of the most 
interdisciplinary field of biology. Contrary to genetics, which concern the study of a 
unique gene, genomics try to characterise all the genes of an organism. Genomics 
analyses focus on the structure, function, evolution mapping, modification and states 
of genomic sequences. A genomic sequence is a part of DNA, which when transcribed 
into RNA if modified into a messenger RNA (mRNA) and then translated into a protein 
that triggers a certain function in the organism. It is then possible to analyse a 
function by looking at the different states of the genomic sequence of origin by 
focusing on its variations such as insertions and deletions (INDELs) (Fan et al., 2007), 
Copy Number Variations (CNVs) (McCarroll and Altshuler, 2007), Single Nucleotide 
Polymorphism (SNPs) (Lander et al., 2001), etc. The associated technologies to retrieve 
the state of these sequence variations are genotype arrays (Ragoussis, 2009), exomes 
sequencing (Ng et al., 2009) and Next Generation Sequencing (NGS) for whole 
genome sequencing analyses (Koboldt et al., 2013) which became commonplace in 
genomic studies. 

Cancer genomics helped discover major subtypes of diseases, is now an essential part 
of clinical analyses and treatments (Lehmann-Che et al., 2017) and the analysis of 
these genomic alterations gave us a great insight at how cancers functioned and 
developed (Stratton et al., 2009). Some studies showed that even small alterations 
such as INDELs have a big impact on cancer state (Ye et al., 2016) and some where 
even found to contribute to the immunogenic phenotype (Turajlic et al., 2017). 

1.2.2 Epigenomics 

Epigenomics studies focus on the characterisation of reversible chemical changes of 
DNA and DNA associated proteins such as histones. These changes often come in the 
form of CpG island methylations and histone acetylations and are responsible for 
structure modifications of the chromatin as well as function changes of the genome 
(Bernstein et al., 2007). 

DNA methylation of a certain region can alter its transcriptional activity. Mutations in 
genes involved in epigenetic regulations have been found in multiple tumor types 
and some immune responses were found associated with the state of DNA-
methylation (Jeschke et al., 2017). The methylation state of the DNA can be measured 
using the technique of Whole-Genome Bisulfite Sequencing (WGBS) (Fan and Chi, 
2016). 

The chromatin restructuring plays a role in the expression of certain genomic regions 
by changing the physical access of the DNA sequence by making it active when open 
or inactive because inaccessible when closed (Cairns, 2007). Chromatin remodelling 
deregulations have been shown to be connected to cancer (Nair and Kumar, 2012) and 
some conformations have allowed the identification of possible pharmacological 
targets in breast cancer (Baxter et al., 2018). The chromatin accessibility state can be 
measured with techniques such as ATAC-Seq (Buenrostro et al., 2015) and the 
technique of Chromatin immunoprecipitation Sequencing (ChIP-Seq) (Johnson et al., 
2007) allows to measure the abundance of target proteins in a certain genomic 
location. 

Chromosome conformation is the 3D organisation of the whole genome. Its structure 
allows a proximity and interaction between regions distant on the genome in term of 
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sequence length and even between regions on different chromosomes. 
Chromosomes have shown to be really plastic and implicated in cancer progressions 
(Jia et al., 2017). The Hi-C technique is the most up-to-date way to detect interactions 
between all possible genomic loci pairs (van Berkum et al., 2010). 

One of the main problem of epigenomics is the limitation of sequencing types. 
Indeed, studies using WGBS are only possible for methylation and it is difficult to 
target other types of modifications. Most DNA methylation detection techniques are 
also very times consuming, may require a large amount of DNA and might be of low 
resolution by only assessing a limited number of CpD residues (Lindsey et al., 2005). 

1.2.3 Transcriptomics 

Transcriptomics is a portmanteau of the words transcripts and genomics and is 
therefore related to the measure of abundance of different types of RNA sequences 
(i.e. transcripts) in a given context. The analysis of these molecules can be quantitative 
(how much of each transcript is expressed) or qualitative (which transcripts are 
present and what are their characteristics such as their methylation state for 
example). Most analyses concentrate on the study of messenger RNA (mRNA) which 
can have a highly variable concentration compared to its resulting proteins (Wegler et 
al., 2020) and can also differer a lot depending on the tissue (Koch et al., 2002). This 
variability can come either from stochastic processes of the cell machinery or from 
upstream of the synthesis of mRNA (Satija and Shalek, 2014). Analysing the transcripts 
levels can help overcome some limitations of cancer mutation analyses and allow 
findings of new biomarker targets in cancer drug discoveries (Jeong et al., 2017). 
Technologies allowing to measure the abundance of transcripts can be either based on 
probe-microarrays (Duggan et al., 1999; Schulze and Downward, 2001) or RNA-
sequencing (Mortazavi et al., 2008; Ozsolak and Milos, 2011; Sultan et al., 2008). 

Apart from the common gene expression analysis, transcriptomics englobe also 
others molecules such as non-coding RNA (ncRNA), micro RNA (miRNA), long non-
coding RNA (lncRNA), enhancer RNA (eRNA) and others (Jiang et al., 2015; Kaikkonen 
and Adelman, 2018). While these RNA transcripts do not encode proteins, they still 
actively participate in the cell machinery. To give an example, non-coding RNA were 
shown to regulate brown adipocyte development (Alvarez-Dominguez et al., 2015) and 
can promote cancer metastasis (Gupta et al., 2010). 

There are some complications related to transcriptomics. For instance, the level of a 
transcript doesn't always correspond to the translation into a protein due to 
degradation or other post-transcriptional modifications (Gygi et al., 1999). Also, a single 
transcript can give rise to many different proteins due to alternative splicing or post-
transcriptional modifications, making it hard to ensure the correct function of a mRNA 
sequence. 

1.2.4 Proteomics 

Proteomics studies involve the quantification and identification of the protein content 
in a given organism or biological system (Aslam et al., 2017). Studying proteins directly 
allows us to get rid of the intermediate states and helps focusing directly on the 
elements from which the actual functions arise. Proteomics have been used 
intensively to investigate and identify biomarkers and therapeutic targets in cancer 
(Yakkioui et al., 2017). It has also shown promising results in breast cancer 
classification (Tyanova et al., 2016; Yanovich et al., 2018). 
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On top of identifying the protein content, a set of studies focus on the different states 
of proteins that govern their function. These states includes post-translation 
modifications such as proteolysis, glycosylation, methylation, acetylation, 
phosphorylation, nitrosylation, oxidation and ubiquitination (Mann and Jensen, 2003). 

The protein content can be measured via techniques like microarrays (Sutandy et al., 
2013) but the biggest breakthrough has been achieved through the use of Mass 
Spectrometry (MS) (Domon and Aebersold, 2006; Macklin et al., 2020). 

There are however certain limitations to proteomics. As mentioned above, many 
proteins experience post-translational modification that affect their activity. It is 
difficult to get the exact state of these modification since they are in constant 
evolution and can switch states as time progresses. Because of this, we face problems 
of reproducibility when comparing or integrating data obtained from different 
studies. It is also important to point out that most of proteomic studies are limited to 
available antibodies, thus restricting the target of a study. 

1.2.5 Metabolomics 

Metabolomics data quantifies the number of small molecules resulting from 
metabolic processes. The non-exhaustive list of these molecules contains fatty acids, 
amino-acids sugars, lipids and other metabolic products (Silva et al., 2019). Even more 
than proteomics, metabolomics can be seen as direct “functional readout of the 
physiological state of an organism” (Hollywood et al., 2006). And just as proteomics, 
metabolomics analysis techniques take advantage of Mass Spectrometry. Alterations 
of the metabolism can contribute to the development of cancer (Vazquez et al., 2016) 
as well as being correlated with the proliferation of breast cancer cells (Jerby et al., 
2012). Moreover, metabolomics paired with modelling has been used to study 
metabolite fluxes that can help diagnose certain diseases (Heirendt et al., 2019). 

With the capacity to generate high throughput profiles, the amount of data becomes 
overwhelming and it is important to keep in mind certain challenges of 
metabolomics analyses. One problem inherent to biological systems is the fact that 
the metabolome is sensitive to various genetic and environment stimuli (Johnson and 
Gonzalez, 2012). The other limitation is technical and related to liquid crystallography 
(LC)-MS-based metabolomics, making it difficult to assign an identity to biomarkers 
(Meier et al., 2017). 

1.2.6 Multi-omics 

On its own, each of the previously described omics data can be used to extract 
signatures and markers of a disease states and processes. They can be analysed 
independently and the results from different types of omics can then be compared 
between each other to see if the observations are validated across the different levels. 
Still, Hasin et al. correctly pointed that the “analysis of only one data is limited to 
correlations, mostly reflecting reactive processes rather than causative ones” (Hasin 
et al., 2017). Hence, a multi-omics approach that makes use of more than one 
biomolecular technique have emerged. 

In the case of a complex pathology such as cancer, researchers are increasingly 
adopting a systems biology approach by combining these multi-levelled analyses that 
contribute to the creation of development a malignant state (Du and Elemento, 2015). 
Such combinations can be of two sorts: (i) late or early integration when combining 
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results obtained from single omics or (ii) intermediate integration when genuinely 
combining multiomics data for a common analysis (Gligorijević and Pržulj, 2015). This 
approach is backed up by the simple argument that a biological phenomenon is not 
encompassed by a set of independent layers but of complementary mechanisms. 
Multi-omics integrations have already been been proved successful when combining 
for example somatic mutations, RNA expression, DNA methylation and ex vivo drug 
responses by finding novel markers predictive of clinical outcome (Argelaguet et al., 
2018). Many tools have since been developed with different goals in mind (Table 1) 
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Table 1. List of bioinformatics tools and machine learning methods capable of 
performing multi-omics data integrations. 
Table adapted with permissions under the terms of the Creative Commons 
Attribution License 4.0 (CC-BY) from (Menyhárt and Győrffy, 2021). 

Name Category Method 
Example 

(cancer type) 
Results of data 

integration Data type 
Programming 

Language References 

Joint NMF unsupervised 
matrix 

factorization ovarian cancer 
cancer 

subtyping Multi-data Python 
(Zhang et al., 

2012)

iCluster+ unsupervised 
matrix 

factorization
colorectal 
carcinoma 

cancer 
subtyping Multi-data R (Mo et al., 2013)

iClusterBayes unsupervised matrix 
factorization

glioblastoma, 
kidney cancer 

cancer 
subtyping, 

disease drivers 
Multi-data R (Mo et al., 2018)

moCluster unsupervised 
matrix 

factorization
colorectal 
carcinoma 

cancer 
subtyping Multi-data R 

(Meng et al., 
2016)

JIVE unsupervised 
matrix 

factorization glioblastoma 
cancer 

subtyping Multi-data MATLAB 
(Lock et al., 

2013)

MOFA unsupervised PCA
chronic 

lymphocytic 
leukemia 

novel disease 
drivers 

Multi-data R/Python (Argelaguet et 
al., 2018)

rMKL-LPP unsupervised 

multiple 
kernel 

learning, 
similarity- 

based

glioblastoma cancer 
subtyping 

Multi-data available on 
request 

(Speicher and 
Pfeifer, 2015) 

NetICS unsupervised 
network-

based 
multiple 
cancers disease drivers Multi-data MATLAB 

(Dimitrakopoul
os et al., 2018)

BCC unsupervised Bayesian breast cancer cancer 
subtyping 

EXP, MET, 
miRNA, 

proteomics 
R (Lock and 

Dunson, 2013)

MDI unsupervised Bayesian glioblastoma cancer 
subtyping 

Multi-data MATLAB 
(Kirk et al., 

2012; Savage et 
al., 2013)

PARADIGM unsupervised 
pathway 

networks, 
Bayesian 

glioblastoma, 
ovarian cancer 

cancer 
subtyping, 

therapeutic 
opportunities

Multi-data Python 
(Vaske et al., 

2010)

iBAG supervised multi-step 
analysis 

glioblastoma 
potential 

biomarkers of 
survival 

Multi-data R (Wang et al., 
2013)

SNF unsupervised 

network- 
based, 

similarity- 
based

glioblastoma 
cancer 

subtyping Multi-data R/MATLAB 
(Wang et al., 

2014)

iOmicsPASS supervised network-
based 

breast cancer 
cancer 

subtyping, 
disease drivers 

Multi-data R (Koh et al., 
2019)

NEMO
similarity- 

based 
clustering 

acute myeloid 
leukemia 

cancer 
subtyping 

Multi-data R 
(Rappoport 
and Shamir, 

2018)

PFA unsupervised 
fusion-based 
integration

clear cell 
carcinoma, 

lung 
squamous cell 

carcinoma, 
glioblastoma 

cancer 
subtyping Multi-data MATLAB (Shi et al., 2017)

CCA unsupervised 
correlation 

based 

kidney renal 
clear cell 

carcinoma 

mechanisms of 
carcinogenesis 

CNV, 
methylation, 

gene 
expression 

R 

(El-Manzalawy, 
2018; Lin et al., 
2013; Zhou et 

al., 2015)
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However, as with other methods, multi-omics integration suffers from certain 
limitations too. The first challenge to arise comes from the need to deal with omics 
obtained from different studies. Indeed, many tools require omics data to be profiled 
from the same samples and do not allow the existence of missing data points (Cantini 
et al., 2021) but hopefully, a standardisation of sample processing and data treatment 
might help alleviate this problem. Another important consideration to take into 
account is with what focus to approach the integration. In (Hasin et al., 2017), the 
authors grouped these approaches in 3 categories: “genomes first", “phenotype first” 
and "environment first” and described them as follows: 

“Thus, the genome first approach seeks to determine the mechanisms by 
which GWAS loci contribute to disease. The phenotype first approach seeks 
to understand the pathways contributing to disease without centering the 
investigation on a particular locus. And the environment first approach 
examines the environment as a primary variable, asking how it perturbs 
pathways or interacts with genetic variation.” 

This question of focus is not only a food for thought or a set of constraints applied to 
specific types of studies. As it was shown in (Cantini et al., 2021), methods that seek 
omics specific factors as a goal often showed better performances than methods 
designed to find common or mixed factors. 

1.2.7 Single-Cell omics 

We have seen that each of the previously described types of data are capable of 
retrieving a specific part of biological processes happening in an organism and each 
one of them is capable of describing a particular cellular context. However, it is known 
that in the context of tumours, the environment can be highly heterogeneous, thus 
leading to a biological heterogeneity between cells. This creates a situation where by 
analysing a sample, we end up with an aggregation of cells bringing their own cellular 
context. The resulting data can only be seen then as an averaged pool of cell. But 
there is so much to be gained by recovering the diversity inside the sample by looking 
at its different constituents individually. 

This need has led to the development of the single cell analysis technology, which 
allows to get an individual view of each cell to deal with the cell-to-cell variability (Ren 
et al., 2018) present in bulk data (Figure 1.7). Indeed, by observing the entirety of the 
cellular content as a single averaged value for each gene, the single-cell technology 
expands the possibilities to investigate the cellular heterogeneity and understand the 
cellular content of tumors with precision. Coupled with the discovery of specific cell 
type markers, techniques such as Fluorescence-activated Cell Sorting (FACS) or 
immunochemistry can be used to even further annotate single cells. 
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Figure 1.7. Difference of information availability between bulk and single cell data. 
On top: list of different cell types present at a site of interest. On the bottom: level of 
expression of 3 genes. While Single-cell data allows to differentiate between the two 
neoplastic cell as well as detecting a high expression in T-cells, Bulk data obscures this 
information where the gene highly expressed in T-cells shows a low expression 
because of the proportionally low abundance due to the average observation. 
Reprinted with permissions under the terms of the Creative Commons Attribution 
License 4.0 (CC-BY) from (Fan et al., 2020). 

However, having such level of precision comes with new challenges, as stated in (Hu 
et al., 2016). Because of the size of the elements’ sequences, this techniques requires a 
sufficient amount of DNA or RNA for gene expression analyses. During the sorting 
and separation of cells, a certain amount of material can be lost due to tubes 
absorptions. Another problem is the difficulty to replicate secondary structures of 
DNA. For proteomics studies, we are faced with a lack of amplification methods or 
high affinity probes that are needed to detect low abundance proteins because of the 
dilution happening after the lysis of cells. As for a methylation state analysis, the 
commonly used bisulfites sequencing requires a harsh treatment that fragments and 
degrades DNA, which makes the amount already available even more exacerbated. 

1.3 Quantifying and qualifying the tumoral immune 
infiltration 

1.3.1 IMMUCAN project: Integrated IMMUnoprofiling of large adaptive 
CANcer patients cohorts 

Immunotherapy treatments are at the heart of cancer research with the rising of the 
new paradigm focusing on using the intrinsic mechanisms of defence against cancer 
instead of introducing foreign killing agents. Among the existing immuno-
therapeutic treatments, immune checkpoint inhibitors (ICI) have shown great results 
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as I have talked about earlier. However, our knowledge of molecular and cellular 
components of the TME remains limited (Hui and Chen, 2015) and fails to explain why 
some treatments remain inefficient in certain patients (Roma-Rodrigues et al., 2019). It 
is to address these challenges that a European project funded for 40M€ jointly by EU 
and by industrials and pharmaceutic companies has been put in place under the 
name of IMMUCAN, standing for “Integrated IMMUnoprofiling of large adaptive 
CANcer patients cohorts”. This is a large scale project aiming at gathering more than 
3.000 patients molecular and cellular tumor profiles across multiple cancer types and 
the generated data will be shared and analysed by 29 participants among which are 
10 expert clinical centres. 

Through the joint effort of its members, this project aims to improve our 
understanding of interactions between the tumor cells and various components of 
TME on a cellular and molecular level in the presence or absence of therapeutic 
intervention (Figure 1.8). For this, patients with different types of cancer (lung, 
colorectal, head and neck, breast and renal) are recruited and followed by the 
program. Some of these patients will receive ICI treatments while others will be 
considered as non-ICI and will follow a standard of care. The project will then perform 
an in-depth immuno-profilling by analysing cancer samples from these patients 
using bulk RNA-seq, exome sequencing, immunofluorescence and imaging analyses 
cytometry. For a selection of tumors, in-depth molecular analysis such as scRNA 
sequencing or whole genome sequencing will be applied. This data will then be 
integrated and analysed by an interdisciplinary team of experts to test several 
hypotheses with the goal of finding predictive markers for immunotherapy 
treatments. These results will be integrated into a research platform that will be first 
shared among the project participants and later can be made publicly accessible for 
the research community. 

 

Figure 1.8. General workflow of the IMMUCan project. 
Patients with different types of cancer are recruited and followed. Samples are 
collected and deep immunoprofiling data is generated. This data is then analysed on 
different levels by all the members of the project to understand tumor host 
interactions in the hope to identify potential predictive markers for immuno-
therapeutic treatments. 
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It is in the specific task in the bioinformatics work package of IMMUCAN dedicated to 
unsupervised deconvolution that my PhD project fits and is funded by. This particular 
task aims at providing an in-depth analysis of whole tumor RNA-seq data with the 
goal of quantifying and qualifying the tumoral immune infiltration through the use of 
deconvolution methods. And it is the exact task that I will talk about in the next 
section of this manuscript. 

1.3.2 What is Deconvolution? 

I have explained previously in Section 1.1.3 that tumors are convoluted systems where 
a great number of different cells and cell types are constantly interplaying. I have also 
described how these interactions can be beneficial for the organism but also 
detrimental in certain cases and how various treatment types are being introduced to 
take advantage of the immune effects to cure cancer. Consequently, it is of uttermost 
importance that we understand the cellular composition of a bulk tumoral sample. 
The problem of quantifying this mixture of cell that is the TME and identifying how 
they contribute to the final measured molecular profile is called Deconvolution 
(Figure 1.9). It is believed that a detailed quantification of bulk tumoral samples can 
give us clues to the success determinants of the application of cancer therapies, as it 
sheds more light on the possible modulation of the intrinsic immune system response 
to therapies.  

 

Figure 1.9. Schematic vision of tumor deconvolution for cell proportion identification. 
On the left, the tumor seen as a bulk of different types of cells that will be sequenced 
together. The deconvolution step consists in identifying the cellular content of the 
sequenced tumor and estimate the proportions of each cells present in the bulk. Cell 
type convolution can benefit from both experimental and computational approaches. 
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1.3.3 Computational cell-type deconvolution approaches 

A similar problem of deconvolution from a mixture of signals can be seen in other 
fields such as sound processing, with the famous case of the “cocktail party problem” 
described first by Colin Cherry in 1953 (Cherry, 1953) detailed in (Bee and Micheyl, 
2008) and expanded in (Bronkhorst, 2015). In this problem, multiple people are 
gathered in the same room with music playing in the background while the sound is 
recorded by several microphones set across the room. The task is then to separate the 
voice of each people from each other as well as from the musical background. This 
problem can also be imagined in the context of an orchestra (Figure 1.10) by trying to 
separate each group of instrument from each other based on their specific sound 
spectrum even when they play the same notes (Benetos et al., 2006). 

 

Figure 1.10. Illustration of the cocktail party problem applied to orchestra 
instruments. 
During the play, individual groups of instruments can be recorded with a set of 
microphones and later recovered through deconvolution. In this illustration, I propose 
a simple case of 4 types of chord instruments but in real-life applications, the number 
of sound sources can be much larger. 

Cell-type deconvolution methods can be divided into five different categories: 
probabilistic, enrichment-based, regression, matrix factorisation and convex-hull 
(Figure 1.11). 
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Figure 1.11. Overview of the number and categories of cell-type deconvolution 
methods. 
On the left: proportions of approaches used to solve deconvolution problems, with 
supervised methods being a majority. On the right: proportions of mathematical 
approaches used by supervised and unsupervised methods, with regression 
algorithms being the most popular ones. Reprinted with permission from Urszula 
Czerwinska’s PhD thesis (Czerwińska, 2018). 

Probabilistic methods used for deconvolution are centred around the same goal: 
estimate an unknown joint density of a p-dimensional multivariate random variable. 
These methods are based on functions related to the Bayes theorem. Models built 
around this approach can be used to estimate the tumor purity with tools such as 
ISOpure (Quon et al., 2013) or cell-type proportions like the model named DSection 
(Erkkilä et al., 2010). 

Enrichment based methods are designed to quantify the activity of a set of genes by 
calculating a score based on a list of reference genes. One of the most popular 
method to compute such score is known as Gene Set Enrichment Analysis (GSEA) 
(Subramanian et al., 2005). Tools such as SPEC (Bolen et al., 2011) and xCell (Aran et al., 
2017) are based on enrichment approaches and calculate both scores directly related 
to the immune infiltration. 

Regression models are a type of predictive technique which investigates the 
relationship between dependent variables as targets and independent variables as 
predictors. In the case of cell-type estimation, methods use already estimated 
signature genes as dependent variables. There are many different types of regression 
techniques which are mostly driven by the choice of the number of independent 
variables, their type and the shape of the regression line we want to fit. To find the 
best fit to the regression, the deviation of the datapoints is minimised in accord to the 
corresponding regression fitting shape. Among the existing regression types, we can 
mention the following: linear, polynomial, stepwise, Ridge, Lasso, ElasticNet and 
Support Vector Regression (SVR). EPIC for example is a method using a regression 
approach without assuming the distribution for the gene expression when calculating 
cell fractions (Racle et al., 2017). 
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Matrix factorisation will not be detailed here and will be explained later in the 
manuscript in Section 2.1. 

Convex-hull regroup geometry-based methods that try to find sources of mixed 
signals by fitting specific markers in vertices of a complex plane (Figure 1.12). The goal 
of this method is to fit the data points into a small convex polygon with its vertices 
corresponding to the sources of signals present in the data. A convex-hull based 
approach called Complex Analysis Mixtures was proposed by Zhu et al. (Zhu et al., 
2016) and applied to cancer transcriptomics by Wang et al. (Wang et al., 2016) to 
f ind subpopulation specific marker genes in various tissues through blind source 
separation. 

 

Figure 1.12. Complex Analysis Mixtures (CAM) principle. 
Marker genes enriched in specific cell-type subpopulations are identified (here a1, a2 
and a3 genes) and then projected onto rotated scatter simplexes whose vertices have 
subpopulations specific marker genes. Adapted and reprinted with permissions 
under the terms of the Creative Commons Attribution License 4.0 (CC-BY) from 
(Wang et al., 2016). 

All these mathematical methods, be they applied for classification, clustering or 
regression purposes have an additional distinction between each other depending on 
the prior knowledge they use. Some algorithm can rely only on a single dataset such 
as patient’s gene expression profiles while other can use additional inputs to help 
guide the algorithm using a priori knowledge. It is this distinction between data 
agnostic methods called unsupervised and supervised methods requiring additional 
reference data that I will now present. 
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1.3.4 Supervised deconvolution approaches 

Supervised approach to deconvolution is a mean to predict an output using already 
known and labeled cellular reference profiles. More generally, supervised learning is 
performed in two steps. Before the learning process is initiated, the data is separated 
into 2 sets: one for training and the other for testing. Then, the model is trained in the 
first step using the training set. In the second step, the model performance is 
evaluated on the testing set. 

In the context of tumor deconvolution, models have to be trained on labeled data to 
extract cell type specific signatures. Unfortunately, there is still a lack of gold 
standards and agreed reference data by the community. But one possible way is to 
use what could be called “silver standards” by using purified single-cell sequences. 
Many supervised methods of cell type deconvolution use this approach and integrate 
RNA profiles from single cell sequencing to generate signatures matrices that can 
later be used for bulk tumor cell type estimations (Figure 1.13). Some methods like 
contamDE (Shen et al., 2016) focus on estimating the purity of tumors (percentage of 
cancer cells in the tumor) while others like CIBERSORT try to estimate the cell-type 
proportions (Newman et al., 2019). 

 

Figure 1.13. Example of a supervised deconvolution approach used by CIBERSORT to 
determine immune cell proportions. 
Cell type specific signatures are first obtained from single-cell sequencing of purified 
immune cell that are compiled in a reference signature matrix. This matrix can later 
be used to estimate the immune cell proportions from a bulk tumor by using a 
Support Vector Regression (SVR) approach. Adapted with permissions from Springer 
Nature from (Newman et al., 2015). 
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Supervised methods have a major advantage of being accompanied by insights from 
domain experts as each signature is usually verified and annotated by them. The 
obtained signature matrices can then be considered as references and used across 
other studies. However, as with any supervised learning approaches, a problem may 
arise, which is the bias of the training data. Indeed, the data used for training might 
present certain characteristics that could make the learned model unfit for other 
studies. Gregor Sturm et al. have for example analysed the various mistakes made by 
supervised models for immune cell-type estimations (Sturm et al., 2019). One of the 
mentioned problem is that learned signatures are not always specific to their 
assigned cell-type and can lead to the mislabeling of certain cell-types via what is 
called the spillover effect (Figure 1.14). The cause for this effect has been justified by 
filtering out certain genes from the signatures, which improved the classification of 
previously mislabeled types (Sturm et al., 2019). 

 

Figure 1.14. Spillover analysis of supervised deconvolution methods. 
The spillover effect consists in a method predicting erroneously the presence of a cell 
type different than actually present in the data. This effect is mainly attributed to a 
low specificity of signature genes. Reprinted with permissions under the terms of the 
Creative Commons Attribution License 4.0 (CC-BY) from (Sturm et al., 2019). 

Another problem that we have to deal with when using single-cell sequences is the 
scarcity of the data. It is often hard to account for the reason a gene is lowly expressed 
since it can be due to biological reasons or technical problems. This type of issue can 
lead to incomplete signatures and could be considered as an inductive bias since the 
model might have troubles assigning a label to a cell-type that has an expression 
profile different from the one expected from the reference signature. 

While this is not always a problem, the fact remains that some model are sensitive to 
overfitting. Most models are trained on a restricted set of data and since we saw that 
tumors can be extremely heterogenous, a certain expression pattern may not be 
reproducible in all tumors of the same cancer type. Sometimes, some models are 
trained only on a particular type of cancer and are limited to studies focused on 
similar type of data. One example can be given with the method EpiDISH which at its 

38

http://Creative%20Commons%20Attribution%20License%204.0%20(CC-BY)


release was only applicable to whole blood, generic epithelial tissue and breast tissue 
data (Teschendorff et al., 2017). Nevertheless, models trained on a particular type of 
cancer type can be seen as highly specific and often give better results than more 
general models. 

Nevertheless, sometimes surprisingly, the method can be more important than the 
reference signatures. In 2019, I have participated in the DREAM Challenge which 
proposed a challenge dedicated to the prediction of immune types (Decamps et al., 
2021). Since only the cancer type was known and the number of different cells and 
their type in the data used in the challenge were unknown in advance, supervised 
methods proved to be of limited success. Yet, the two most competitive approaches 
that gave the best results were the unsupervised method of ICA and a reference-
based method called EpiDISH (Teschendorff et al., 2017). Both methods resulted in a 
very precise estimation of the number of cell types and their proportions. While the 
type of cells detected was unknown with ICA at first, the annotation were added 
after the deconvolution step. But EpiDISH necessitated a reference matrix to be able 
to estimate the presence and proportion of cells in the tumor. Surprisingly and 
paradoxically, the best proportion estimates were achieved using a reference matrix 
intended to be used to estimate fractions of epithelial cells, fibroblasts, fat cells and 
total immune cells in breast tissue (centEpiFibFatIC.m matrix from the EpiDISH R 
package available from (Teschendorff and Zheng, 2021) ) while regressing the signals 
of fibroblasts and fat cells. This result was surprising since the true composition of 
the data used in the challenge was from Pancreatic Adenocarcinoma (PDAC) and 
contained only 5 types of cells, namely Classical and Basal tumor cells, Immune cells, 
Fibroblasts and Healthy pancreatic cells. It is indeed an illustration of the statement 
that: “If you torture data long enough, it will always confess”… 

1.3.5 Unsupervised deconvolution 

I will not develop much about unsupervised learning as the next chapter will be 
devoted to a particular set of unsupervised methods called Matrix Factorisation. I will 
however briefly present what is meant by unsupervised learning and the advantages 
it can confer by using this type of learning instead of supervised approaches. 

Unsupervised learning, contrary to supervised models does not require any prior 
knowledge to work or the knowledge is required only at the step of result 
interpretation and, therefore, have less strong impact on the data analysis itself. It is a 
model that works on its own by segmenting the data and fitting it accordingly to a 
given constraint. This approach is often used when some parts of the data are 
unknown or too difficult and expensive to label properly by the user. In this case, the 
model is required to learn the inherent latent structure and its variables. 
Unsupervised learning is then most commonly used for explanatory analyses such as 
clustering and dimensionality reduction (Gorban et al., 2008; Xu and Wunsch, 2009). 

Dimensionality reduction is used when dealing with data that is too large to be 
comprehended or visualised in an easy and straightforward way. To solve this, it is 
possible to reduce the amount of variable to a limited set that is representative of the 
whole distribution. Working in a sparser latent structure may be more interesting 
than in the original space since it may allow to eliminate redundant features and ease 
consequent data processing. 

Clustering consists in grouping together elements sharing similar characteristics into 
entities called clusters. These characteristics may not be known in advance so an 
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unsupervised approach is advised in such circumstances. This is typically done with 
the hope of obtaining clusters corresponding to different phenomena. 

Clustering however is not to be confused with dimensionality reduction. While it may 
be tempting to categorise it as a dimensionality reduction method because of the 
simplified representation of the data into a lower dimension, clustering is used to 
reveal a certain structure of the data. Dimensionality reduction, however, is often 
performed to avoid the “curse of dimensionality” and the problems coming with it 
such as computational complications or visualisation difficulties. Another important 
role of dimensionality reduction in the analysis of omics data is improving the signal/
noise ratio. 

1.4 Knowledge maps and models for formalised TME 
description 

I have discussed previously in Section 1.1 about the complex system that is cancer and 
the need to have a multi-level approach to correctly comprehend its functioning. 
Various methods and types of data are available for researchers. They can either be 
applied independently or integrated together for a larger view of possible interplaying 
functions. But even if integrations are possible, the means to detect relations and 
interactions between the different studied elements remains a challenge. To tackle 
the problem of identifying existing cross-talks and coordination between molecular 
functions and pathways or discovering the impact that a particular deregulation can 
have on other systems, new fields of cancer research have emerged. Knowledge 
scattered across the diverse publications have been gathered and regrouped in 
comprehensive and functional representations which can take the form of molecular 
maps or models (Mazein et al., 2018). I will describe here what these representations 
are, their content and how they can be used to help to describe the interplay between 
tumors and their environment. 

1.4.1 Molecular networks and maps 

Molecular maps are similar to geographical maps in the sense that they represent a 
top-down view of interacting paths following the biological processes in a living cell. 
This representation, often in the form of depicted molecular pathways, have three 
major goals: to make a resource containing a formalised summary of biological 
knowledge from many research groups, to supply a platform for sharing and 
discussing biological mechanisms and finally, to create an analytical tool for high 
throughput data integration and analysis. Organising the available knowledge in 
comprehensive and structured networks allows to capture non-trivial interactions and 
regulatory circuits between all molecular components. Networks can come in 
different types (Farber and Mesner, 2016) but I will focus here mainly on signalling and 
metabolic networks since those are the type of networks I have the most experience 
with. 

Signaling pathways are a representation of the information flow that passes through 
biochemical reactions or molecular interactions. By having access to a comprehensive 
network in a graphical form, we are able to follow the flow of signals with a clearer 
view and have a better idea of the particular contexts in situations where a  
deregulation happens. Moreover, by connecting together various elements from 
different pathways, signaling network can gain new properties that wouldn’t be 
noticeable when looking at individual components. Azeloglu and Iyengar (Azeloglu 

40



and Iyengar, 2015) have noted 4 different emerging properties which are ultra-
sensitivity (a small modification or stimulus can give rise to large change in 
downstream effectors), bi-stability (appearance of regulating feedback loops), 
redundancy and robustness (a single input can be connected to an output through 
multiple pathways) and finally oscillatory behaviour (coupling of positive and negative 
feedback loops). These properties reflect the complexity of biological processes and 
help understand the cellular machinery under a new light. 

During my research experience, before starting my PhD project, I have participated in 
the integration and update (Kondratova et al., 2018) of the most comprehensive 
cancer specific resource named Atlas of Cancer Signalling Network 2 (ACSN2). This 
atlas represents different interconnected maps of signalling, metabolic and tumor 
microenvironment networks. Each map is manually curated and covers hundreds of 
molecular reactions. Compared to the previous version of ACSN (Kuperstein et al., 
2015), 10 new maps have been added, with many of them related to immune response 
or specific immune cell types, leading to a resource composed of over 8.000 reactions 
integrating 3.000 proteins and 800 genes.  
This network is integrated on two web-based platforms, MINERVA (Gawron et al., 2016) 
and NaviCell (Bonnet et al., 2015), which allows to import and visualise heterogeneous 
omics data on top of the maps either by using the direct profiles, by using enrichment 
techniques such as GSEA or a method developed in my team, called ROMA 
(Martignetti et al., 2016). This data visualisation feature has been applied with subsets 
of melanoma with annotation on clinical stages and results of visualisations showed 
distinct patterns in cell cycle, regulated cell death and cell survival pathways as well as 
active immune response related pathways in long term survival patients (results not 
yet published). ACSN has also been used to visualise the evolution of pathway 
activities of Ewing sarcoma cell lines sequenced at different time points (Monraz 
Gomez et al., 2021). 

I have mentioned in Section 1.1.2 that metabolic reprogramming is a hallmark of 
cancer, making the analysis of metabolic pathways a major point of interest with 
recent studies such as (Gatto et al., 2020) showing that the activity of certain reactions 
are specific to certain cancers. The first most complete reconstruction of the human 
metabolism was achieved with the map of RECON (Duarte et al., 2007) and has 
allowed the discovery of alternative targets of known drugs. 
This network was later upgraded to RECON2 (Thiele et al., 2013) which doubled the 
number of metabolic reactions and incorporated almost the same amount of new 
metabolites. This new version could also be used as a predictive model using 
techniques such as Flux Balance Analysis which analyse the flow of metabolites 
through a metabolic networks and can impose specific constraints that can be 
associated to certain diseases (Orth et al., 2010). This possibility transformed a 
metabolic network into a powerful tool able to process different types of data to 
predict possible outcomes like cancer drug targets (Folger et al., 2011). 
Since then, a new version of this network was released again called RECON3D (Brunk 
et al., 2018), for which I had the chance to participate in. This map was also integrated 
into a database called Virtual Metabolic Human (VMH) which encapsulates the 
current knowledge of human metabolism interlinked resources such as “Human 
metabolism”, “Gut microbiome”, “Disease”, “Nutrition” and “ReconMaps”. One of the 
new additions to the metabolic network with this version was the inclusion of gene-
protein-reaction associations with the possibility to visualise changes in protein due to 
genetic mutations and map these changes to related metabolic function 
modifications. 
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Thanks to these two types of networks, researchers can have an easier access to a 
broader range of knowledge. Having said all that, the interplay between metabolic 
processes and signalling pathways remains poorly understood despite the existence 
of such complete molecular maps. To fill this gap in knowledge, my work before my 
PhD led me to the project of integrating the resources of ACNS and RECON2 together 
(Sompairac et al., 2019). Interconnecting these networks allowed to expand our vision 
of interactions between signalling and metabolic pathways (Figure 1.15). 

 

Figure 1.15. Crosstalk between signalling pathways of ACSN and metabolic processes 
from RECON2. 
Nodes representing ACSN pathways are coloured in Orange and RECON2 metabolic 
reactions are coloured in Light Blue. Reprinted with permission under the terms of 
the Creative Commons Attribution License 4.0 (CC-BY) from (Sompairac et al., 2019). 

Apart from such large maps, there also exist many others that focus on more specific 
aspects or a particular mechanism. One of such maps is the map of Regulated Cell 
Death (RCD) which gathers information about all known modes of mechanisms 
related (Ravel JM et al., 2020). This map has been created in my team and I have 
participated in its integration in NaviCell as well as its comparison with other similar 
pathway ressources. Its modular structure contains molecular informations on all 
major regulated death pathways, facilitating the visualisation of their cross-talks. And 
compared to other existing resources presenting RCD pathways, having such a map 
specifically designed for it makes it stand out by its higher number of recent and 
uniquely annotated elements participating in RCD. Its application examples of data 
integration and analysis showed that this resource could not only be used to see the 
deregulated RCD processes in a disease or sample but also highlight the most 
contributing players which could be the focus of future therapeutic targets. In 
particular, the map was used to study the mechanisms of molecular comorbidity 
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between lung cancer and Alzheimer disease. In addition, relying on the definition of 
ovarian cancer subtypes reported in (Bell, D et al., 2011), the analysis of ovarian cancer 
data from TCGA demonstrated the capacity of this resource to identify in greater 
detail the immunoreactive subtype through the specific up-regulations of various 
modules in the map. 

1.4.2 Models in cancer bioinformatics 

Mathematical modelling of biological processes involved in cancer is a vast topic. 
Therefore, I will only be able to skim over this complex field of study. As Robert 
Constanza stated in (Costanza et al., 1993): 

“Models are analogous to maps. Like maps, they have many 
possible purposes and uses, and no one map or model is right for 
the entire range of uses. It is inappropriate to think of models or 
maps as anything but crude, although in many cases absolutely 
essential, abstract representations of complex territory. Their 
usefulness can best be judged by their ability to help solve the 
navigational problems faced.” 

This definition applies to the field of bioinformatics, where models can be seen as 
artificial systems mimicking particular functions of an organism. They often focus on 
identifying essential elements and their interactions required to solve a distinct 
problem. 

This subject being relatively recent, we can find few successful applications of 
mathematical modelling to TME. We could mention some modelling of the 
interaction between certain immune cell-types such as macrophages and T-cells with 
the TME. 

Mahlbacher et al. in (Mahlbacher et al., 2018) created a framework capable of 
evaluating macrophage interactions with the TME and assessing how it may affect 
tumor growth. They showed that Tie2 expressing macrophages which are a target of 
immunotherapy inhibition may fail with the presence of M2 macrophages that 
continue to exert a tumor growth effect. 

Cess and Finley in (Cess and Finley, 2020) have further studied the interaction 
between macrophages and T cells in regard with tumor proliferation. Their model 
managed to capture important interactions between M1 macrophages and T-cells 
that can improve the result of multiple immunotherapies. They also observed how 
macrophages displayed an M2 phenotype when no treatment was given, leading to 
an equilibrium where T-cell are able to slow the tumor growth but are unable to 
remove the tumor. 

Finally, Li et al. in (Li et al., 2019) focused on the interaction between macrophages and 
the TME and the role it played on the transition of cancer cells to epithelial or 
mesenchymal state associated with metastasis and immune evasion. Through their 
model, they showed that treatments should focus on the maintenance of an M1 
dominated system and the inducing of mesenchymal to epithelial transition can help 
to limit tumor progression. 
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In my group, a mathematical model of immune checkpoint network was created with 
the aim of explaining the synergistic effects of combined immune checkpoint 
inhibitor therapy and the impact of cytokines in patient response (Kondratova et al., 
2020). 
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1.5 Summary 

Cancer is a very old disease that is still omnipresent in our era and touches almost 20 
million people in the world with 10 millions cases of cancer death reported in 2020 
(Sung et al., 2021). Our growing understanding of tumors led us to the discovery of the 
importance of their surrounding micro-environment and the role it plays in cancer 
progression. 

New technologies have emerged to help us study cancer at different levels and made 
possible for researchers to better understand the different states of such complex 
disease. Cancer diagnosis was thus improved and new treatments were formulated 
based on the discoveries of TME implications. 

But with the advent of these new technologies and an ever increasing sight of 
interactions between tumor and their TME, it was required to quantify and qualify 
these interactions in greater detail, not only to ensure a proper interpretation of such 
mechanisms but also to better guide treatments discovery and applications. For this, 
many bioinformatics methods were developed to help deconvoluting various signals 
contained in the TME and interpret them. 

In the next chapter I will present in detail a particular set of mathematical methods 
used to solve the problem of understanding the cellular heterogeneity of tumors and 
extracting specific signals related to functions that could be promising targets for 
TME focused therapies. 
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2. Independent Component Analysis: a matrix 
factorisation method to solve the deconvolution 
problem 

2.1 Introduction to Matrix factorisation 

2.1.1 Matrix factorisation principles 

Matrix factorisation or matrix decomposition can be seen as a way to reduce a matrix 
into its constituent parts. This approach is mainly used to approximate a matrix of full 
rank by another matrix, having a lower rank. We can use as an analogy the factoring 
of numbers, such as factoring “15” into “3 x 5”. However, just as there are various ways 
of factoring numbers, there are also various ways of decomposing matrices. 

Matrix factorisation methods are considered as unsupervised approaches for 
dimensionality reduction so when trying to compute 

  

only  is known and  and  have to be estimated simultaneously without any a priori 
knowledge. There exist a multitude of various matrix factorisation methods 
(Theodoridis, 2020) with the most representative ones being Principal component 
analysis (PCA), Canonical correlation analysis (CCA), Independent component analysis 
(ICA) and Non-negative matrix factorisation (NMF). I will now briefly introduce these 
methods in the following sections. 

2.1.2 Principal Component Analysis 

Principal Component Analysis (PCA) is the oldest and most popular method of matrix 
factorisation used for dimensionality reduction (Pearson, 1901). The goal of PCA is to 
project a dataset from many correlated coordinates onto fewer uncorrelated 
coordinates, called principal components (PCs), while still trying to retain most of the 
variability present in the data. To achieve that, PCA can be computed via the 
eigendecomposition of the covariance matrix. 

If the data is centred by subtracting the mean  from each data vector  of a matrix  
of size  of rank , the covariance matrix  is calculated by: 

 

X = A ∙ S

X A S

μ xi X
n× p r ≤ min{n, p} C

C = 1
n− 1

n

∑
i= 1

(xi − μ)(xi − μ)T = 1
n− 1 XT X
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Then, the eigenvalue decomposition of  can be obtained as follows: 

 

Where  is the diagonal matrix of eigenvectors and  the matrix containing the 
eigenvectors of . Here  is the -th PC and  is the -th eigenvalue of  and equals to 
the variance of the data along the -th PC. 

Taking this matrix , it is also possible to use another method called the Singular 
Value Decomposition (SVD) and this time factorise : 

 

Here  is an orthogonal matrix  (  , with  the identity matrix  ) 
whose columns are called left singular vectors of ;  is a diagonal matrix  whose 
diagonal elements are called singular values;  is an orthogonal matrix   
(  , with  the identity matrix  ) whose columns are called right singular 
vectors of . The columns of  are what we call Principal Components (PC) and the 
variance of these PCs is given by the square of the singular values of  divided by 

. 

PCA therefore provides an  rank matrix factorisation of  by imposing an 
orthogonality between them. There exist many different algorithms of PCA that adapt 
it to achieve modified goals to analyse different types of data. To name a few, 
Functional PCA, Simplified PCA, Robust PCA and Symbolic PCA have been used to 
analyse chemical spectroscopy, atmospheric sciences, image processing or 
histograms (Jolliffe and Cadima, 2016). 

2.1.3 Canonical Correlation Analysis 

Canonical Correlation Analysis (CCA) is a technique developed by (Hotelling, 1936) to 
analyse two datasets in a joint way. The goal behind it is to find a linear 
transformation for both datasets such that after the transformation, the pair of 
obtained variables from both datasets are maximally correlated. This allows to find 
closely related signals coming from different sources. 

C

C = VDVT =
r

∑
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λivivT
i

D V
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X
X

X = UDVT
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V p × r
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X UD

X
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r X
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Suppose we have two sets of variables  and . We can 

then define a set of linear combinations  and  such as: 

 

 
. . . 

 

 

 
. . . 

 

Thus defining  as the  canonical variate pair. 

We can then compute the variance of  with the following expression: 

 

The variance of  can be similarly computed with the following expression: 

 

The covariance between  and  is then: 

 

X = (X1, . . . , Xp) Y = (Y1, . . . , Yq)
U V

U1 = a11X1 + a12X2 + . . . + a1pXp
U2 = a21X1 + a22X2 + . . . + a2pXp

Up = bp1X1 + bp2X2 + . . . + bppXp

V1 = b11Y1 + b12Y2 + . . . + b1qYq
V2 = b21Y1 + b22Y2 + . . . + b2qYq

Vq = bq1Y1 + bq2Y2 + . . . + bqqYq

(Ui, Vi) ith

Ui

var (Ui) =
p

∑
k= 1

p

∑
l= 1

aikailcov(Xk, Xl)

Vj

var (Vj) =
q

∑
k= 1

q

∑
l= 1

ajkajlcov(Yk, Yl)

Ui Vj

cov(Ui, Vj) =
p

∑
k= 1

q

∑
l= 1

aikajlcov(Xk, Yl)
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Finally the canonical correlation for the  canonical variate pair is simply the 
correlation between  and : 

 

 is the quantity maximised by CCA algorithms by finding linear combinations of X 
and Y maximising the above correlation. 

2.1.4 Non-negative Matrix Factorisation 

Non-negative Matrix Factorisation (NMF) is a modified approach to PCA where a 
constraint is applied to guarantee the non-negativity of the elements of the resulting 
factors. This constraint is forced in applications where a negativity doesn’t make 
sense, such as imagery where pixels can’t have a negative intensity or genomics 
where a gene can’t have a negative expression. 

Given a matrix  of size , the NMF tries to find an approximate factorisation of  
such that: 

 

 is a matrix of size  and  a matrix of size  with  with all the 
matrix elements being non-negative. 

To obtain a good approximation, a common cost function called Frobenius norm can 
be used for the error matrix. For this application, the NMF task can be described as 
follows: 

 

 

Where  is the  elements of matrix  and  run across all the 
possible values. Many other algorithms have been proposed beside the Frobenius 
norm (Sra and Dhillon, 2006) but I will not enter into such details here. 

ith

Ui Vj

ρ*i =
cov(Ui, Vj)

var (Ui)var (Vi)

ρ*i

X l × m X

X ≈ AZ

A l × N Z N × m N ≤ min{l, m}

min
A,Z

∥X − AZ∥2
F :=

l

∑
i= 1

m

∑
j= 1

(X(i, j ) − [AZ ](i, j ))2,

s . t . A(i, k) ≥ 0, Z(k , j ) ≥ 0,

[AZ ](i, j ) (i, j ) AZ i, j, k
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NMF has been successfully applied in various fields such as document clustering (Xu 
et al., 2003), molecular pattern discovery (Brunet et al., 2004), image analysis (Lee and 
Seung, 1999), clustering (Szymkowiak-Have et al., 2006), music transcription 
(Smaragdis and Brown, 2003) and music instrument classification (Benetos et al., 
2006), face verification (Zafeiriou et al., 2006) as well as immune cell activation 
signature identification (Davis-Marcisak et al., 2021). 

2.1.5 Independent Component Analysis 

The Independent Component Analysis (ICA) was first formulated by (Herault and 
Jutten, 1986) and can be described by the following equation: 

 

Given a matrix  of size , this method tries to maximise the statistical 
independence and non-gaussianity of latent variables of the matrix S, called 
independent components. The matrix A is known as the mixing matrix and its 
elements as the mixing coefficients. 

Let us denote Z as the estimate of the latent variable matrix S as: 

 

With  as the latent variables, we will refer to them as independent 
components. It is possible to maximise the independence by measuring and 
minimising the mutual information  of latent variables: 

 

Where  is the associated entropy of  and  is equal to the Kullback-Leiber 
(KL) divergence. If the KL divergence, and thus the mutual information  becomes 
zero, then the independent components  become statistically independent. 

There exist multiple methods for computing ICA such as Infomax (Bell and Sejnowski, 
1995) and JADE (Rutledge and Jouan-Rimbaud Bouveresse, 2013) but among them, 
FastICA is probably the most popular (Hyvärinen and Oja, 2000). FastICA has indeed 
many interesting properties among which are a fast convergence, non-necessity for a 
prior estimation of a probability distribution function allowing it to find independent 
components directly and its capacity to estimate independent component one by 
one. 

X = S ∙ A

X l × m

Z := A−1X

Zi, i = 1,...,l

I

I(Z ) = − H(Z ) +
l

∑
i= 1

H(Zi)

H(Zi) Zi I(Z )
I(Z )

Zi
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This algorithm tries to find the direction of the column vector  that maximises 
the non-Gaussianity of  projection distribution. 

To measure this non-Gaussianity, Hyvärinen and Oja (Hyvärinen and Oja, 2000) state 
that FastICA relies on non-quadratic non-linear function , its first derivative  
and its second derivative . Several functions have been suggested for this 
purpose, each of which highlights certain aspects of non-Gaussian distributions, and 
serves as a surrogate way to estimate negentropy. For example, one of the popular 
choices for  is: 

 

The FastICA algorithm (Figure 2.1) can then be described as follows: 

Input:  Number of desired components. 
Input:  Prewhitened matrix, where each column represents an  
 N-dimensional sample, where .  
Output:  Unmixing matrix where each column projects  onto independent 
 component.  
Output:  Independent components matrix, with M columns representing a 
 sample with K dimensions. 

 

 

 

 

 

 

output  

output  

Figure 2.1. FastICA algorithm. 
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One of the most famous application examples of ICA is the classical cocktail party 
problem that I already described previously as a deconvolution problem. But ICA can 
also be used in image and video processing, even when the number of mixed signals 
is unknown (Isomura and Toyoizumi, 2016). We will see later in Section 2.3 how ICA is 
also successfully applied to various cancer omics data. 

2.2 Standard workflow applied for ICA 

While many different matrix factorisation methods have been mentioned that 
appeared to be useful in various omics data analyses, in my thesis, I will focus mainly 
on the Independent Component Analysis as a deconvolution method. ICA as a 
method can be applied in a straightforward way without any a priori knowledge and 
is known to work with many different types of omics data as we will see in the next 
section. However, I deemed necessary to briefly but explicitly describe the standard 
workflow applied to clarify all future mentions of ICA applications. 

2.2.1 Preprocessing 

One of the first and sometimes disregarded steps of deconvolution is the data pre-
processing. Apart from cleaning the data from any noise or defects, it is important to 
take into account the normalisation applied to the data prior to deconvolution. As 
observed in (Avila Cobos et al., 2020), data transformation and scaling/normalisation 
can have a big impact on the resulting analysis. Through multiple analyses using ICA 
in my team, it was observed that ICA works best in the sense that it gives more 
biologically interpretable results when the data is transformed using the  
transformation when dealing with RNA-seq data. 

The most popular implementation of ICA is fastICA (Hyvärinen and Oja, 2000) for 
reasons already mentioned before. And as stated by Hyvärinen and Oja in this article, 
to make the estimation of ICA simpler and better conditioned, we can perform a 
preprocessing by centering and whitening the data. 

Centering the data consists in removing the mean from each row of the input matrix 
 containing  columns: 

 

Whitening, also called sphering is a linear transformation where we impose a unit 
variance along each axis: 

 

Where  is the centred input matrix,  is the eigenvectors matrix and  is the 
diagonal matrix of eigenvalues. 

log (x + 1)

X N

xij ← xij − 1
N ∑

j′�
xij′�

X ← ED− 1
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2.2.2 Decomposition 

Once the data is preprocessed, comes the step of decomposition. This is the most 
crucial step where we have to select the correct algorithm, solver and parameters 
best suited for our analysis. 

To ensure the best result accuracy, a stabilisation can be applied by performing 
multiple runs to correct for possible outliers as described for the ICASSO method 
(Himberg and Hyvarinen, 2003). This stabilisation can also be accompanied by a 
bootstrapping of the data for an additional stability correction of the estimated 
independent components. 

While parameters for the stabilisation quality can be chosen “loosely”, a master 
parameter has to be chosen regarding the number of signals we want to extract using 
ICA. This is one of the most problematic steps since there exist many different 
methods to select it but no way to ensure that the chosen one is optimal. Among 
these methods, we can use Akaike information criterion (AIC) (Akaike, 1998), Bayesian 
information criterion (BIC) (Ben-Hur et al., 2002), cross validation (CV) (Wang, 2010) or 
more specifically the Most Stable Transcriptome Dimension (MSTD) (Kairov et al., 2017) 
when using transcriptomic data. 

2.2.3 Component selection and usage 

Once the decomposition has been performed, we can extract components of interest. 
To do so, we can either use the components from the matrix A or S. For an initial 
matrix X containing samples as rows and omics variables as columns each 
component of the matrix S contains a set of vectors called metagenes presented as 
weighted lists of genes usable for enrichment analyses to assign a biological function. 
It is also possible to use the mixing matrix A that contains a corresponding set of 
vectors called metasamples in the form of lists of weighted samples that can be 
statistically compared to clinical features if there are any (detailed in section 
Biological content and specificity of the components of (Cantini et al., 2019). 

Once an independent component has been identified and given a biological 
significance, it is possible to use it in various ways. 
Since ICA assigns scores to genes based on their driving quality for the component 
function, we can extract top contributing genes to use as markers of the 
corresponding functions or cell types in other analyses.  
It is also possible to use components related to a particular clinical feature to assign a 
score that would inform on the state of each patient based on the given clinical 
status. 
If components related to specific cell types are found, we can use them instead to 
quantify the cellular content of a given tumor sample (Decamps et al., 2021). After the 
extraction of components related to specific cell types, scores assigned by the 
method can be used as a basis to impute cell type proportions using the expression 
profiles observed in different samples (Figure 2.2). 
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Figure 2.2. Illustration of a cell-type estimation using ICA. 
Top: simplified illustration of how the input data is processed by ICA and what output 
is given as a result. From an initial matrix of samples containing a set of gene 
expression values, ICA is able to decompose the sources of different biological signals 
in the form of 2 matrices, the metasamples and metagenes. Bottom: a tumor can be 
visualised as a set of different cell types which contribute as sources of different 
signals in the data. Once these sources have been detected and separated, it 
becomes possible to interpret their origin and thus estimate the cellular content of 
the studied tumor. 

2.3 Article: Independent Component Analysis for Unraveling 
the Complexity of Cancer Omics Datasets 

Nicolas Sompairac, Petr V. Nazarov, Urszula Czerwinska, Laura Cantini, Anne Biton, 
Askhat Molkenov, Zhaxybay Zhumadilov, Emmanuel Barillot, Francois Radvanyi, 
Alexander Gorban, Ulykbek Kairov and Andrei Zinovyev. 

Published in the International Journal of Molecular Sciences, 7th of September 2019. 

In the previous sections 2.1 and 2.2, I have described popular matrix factorisation 
methods and detailed the workflow applied to the particular method of Independent 
Component Analysis. In this article, I will review the different applications of ICA for 
cancer omics data, among which is the unsupervised cell type deconvolution. Finally, I 
will also mention some of the strengths and limitations of ICA as an unsupervised 
deconvolution method. 
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Abstract: Independent component analysis (ICA) is a matrix factorization approach where the signals
captured by each individual matrix factors are optimized to become as mutually independent as
possible. Initially suggested for solving source blind separation problems in various fields, ICA was
shown to be successful in analyzing functional magnetic resonance imaging (fMRI) and other types
of biomedical data. In the last twenty years, ICA became a part of the standard machine learning
toolbox, together with other matrix factorization methods such as principal component analysis (PCA)
and non-negative matrix factorization (NMF). Here, we review a number of recent works where ICA
was shown to be a useful tool for unraveling the complexity of cancer biology from the analysis of
di↵erent types of omics data, mainly collected for tumoral samples. Such works highlight the use
of ICA in dimensionality reduction, deconvolution, data pre-processing, meta-analysis, and others
applied to di↵erent data types (transcriptome, methylome, proteome, single-cell data). We particularly
focus on the technical aspects of ICA application in omics studies such as using di↵erent protocols,
determining the optimal number of components, assessing and improving reproducibility of the ICA
results, and comparison with other popular matrix factorization techniques. We discuss the emerging
ICA applications to the integrative analysis of multi-level omics datasets and introduce a conceptual
view on ICA as a tool for defining functional subsystems of a complex biological system and their
interactions under various conditions. Our review is accompanied by a Jupyter notebook which
illustrates the discussed concepts and provides a practical tool for applying ICA to the analysis of
cancer omics datasets.

Keywords: independent component analysis; cancer; omics data; dimension reduction; data analysis;
data integration
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1. Introduction

Cancer research is one of the most important providers of large-scale molecular profiling data,
which help in understanding not only the state of human cells in disease but also shed light on
the normal physiological processes measurable and detectable in various kinds of omics datasets.
Determining robust and biologically meaningful ways of quantifying cellular and organismal and
normal and pathological physiology using high-throughput molecular data remains a major challenge
(making biology a quantitative science). Di↵erent kinds of biological processes leave characteristic
traces at di↵erent levels of genome-wide measurements depending on their nature and timescales:
some significantly a↵ect transcriptomes, some rather modify DNA methylation programs or mutational
spectrum, others are measurable only at the level of proteome and phosphoproteome. In order to
reliably quantify some of these biological mechanisms, one will need to design multi-omics signatures
spanning several levels of molecular data descriptions. On top of this, various technical factors
interplay with biological ones, frequently in a way which makes it di�cult to clearly distinguish both.

Rarely does molecular data “speak for themselves”: they need to be properly pre-processed,
analyzed in the light of mathematical modeling, statistical assumptions, and prior biological knowledge
and, finally, should be represented at some pre-defined level of abstraction. In this sense, one of
the simplest paradigms of linear mixture of signals plays a pivotal role in the modern molecular data
analysis. In this framework, one assumes that a measurable elementary quantity such as expression of
a single gene is a result of weighted summation of some latent, and not always directly observable,
factor activities which should have associated numerical values. The nature, the number of factors
and the way they are represented numerically can be known or unknown in advance. A toolbox of
existing mathematical approaches provides concrete scenarios in which the additive factors can be
determined and quantified, under acceptance of certain assumptions about the statistical properties of
their numerical values or the weights connecting them to the measurements.

One of the standard methods in such a toolbox is independent component analysis (ICA) having
a long standing history of application to biological data, including the analysis of molecular profiles
(mainly, transcriptomic). Formally, ICA belongs to a family of methods called matrix factorizations
(Figure 1), the most popular other representatives of which are principal component analysis (PCA) or
the very similar singular value decomposition (SVD), and non-negative matrix factorization (NMF).

The first applications of ICA in biology contrasted it to PCA and standard clustering methods and
found that the factors determined through ICA are easier to interpret biologically [1,2]. This raised
an increase in interest of ICA and its applications in various contexts, and, in particular, in cancer
biology [3,4]. The success of ICA can be connected to the nature of the statistical assumptions which
are used to define the method, that match well the underlying high-dimensional distributions of omics
datasets. The principles of ICA are briefly introduced in Section 2.1.

Independent component analysis and matrix factorization approaches are standard methods
in the rapidly growing arsenal of machine learning methods applied to the molecular biology and
medical data. At the same time, remarkable success has recently been achieved in applying deep
learning techniques in certain fields of cancer biology such as clinical imaging of various kinds [5–9].
Deep learning has been successfully used in automating the diagnosis and prognosis of several
cancer types, claiming to be competitive with human pathologists [10,11]. Successful applications of
deep learning methods to multi-omics data have been recently reported, such as in Reference [12].
One should also notice that there exists a certain level of controversy in assessing the actual success
of this rapidly growing area [13] and an important methodological discussion on the “deep” versus
“shallow” methods in real applications [14]. Reviewing any statistical method today should necessarily
take into account the existing intrinsic competition between this relatively recent trend and more
“classical” areas of machine learning, even though many of them, including ICA, are rooted in the
artificial neural network theory [15].
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Figure 1. Independent component analysis (ICA) is a standard tool for reducing the complexity of 
omics datasets in cancer biology. (a) ICA belongs to the family of matrix factorization methods, 
approximating a 2D matrix by a product of two much smaller matrices, containing metagenes and 
metasamples, in the case of omics data. (b) ICA can be considered as a rotation of PCA axes, after data 
“whitening” (i.e., orienting the Gaussian ellipsoid along the coordinate axes and scaling them to unit 
variance). (c) The major types of applications of ICA in cancer biology. (d) The number of publications 
in PubMed mentioning ICA and the number of publications simultaneously mentioning ICA and 
“tumor” or “cancer”. 
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Figure 1. Independent component analysis (ICA) is a standard tool for reducing the complexity
of omics datasets in cancer biology. (a) ICA belongs to the family of matrix factorization methods,
approximating a 2D matrix by a product of two much smaller matrices, containing metagenes and
metasamples, in the case of omics data. (b) ICA can be considered as a rotation of PCA axes, after
data “whitening” (i.e., orienting the Gaussian ellipsoid along the coordinate axes and scaling them
to unit variance). (c) The major types of applications of ICA in cancer biology. (d) The number of
publications in PubMed mentioning ICA and the number of publications simultaneously mentioning
ICA and “tumor” or “cancer”.

Over the last decade, significant experience in applying ICA to di↵erent kinds of omics data
for addressing various problems has been obtained, including data pre-processing, task of cell type
deconvolution, and meta-analysis of multiple omics datasets (Figure 1c). In this paper, we reviewed
most of the recent achievements in computational cancer biology research where ICA was used as the
main data analysis tool. We also discussed the practices of ICA applications which appeared to be
successful in various contexts.

This review is accompanied by interactive Jupyter notebook located at https://github.com/sysbio-
curie/ICA-in-Cancer-research-review-materials.

2. Methodology of ICA Application to Cancer Omics Data

2.1. Brief Introduction into Matrix Factorization Applied to Omics Data

Independent component analysis belongs to a family of matrix factorization methods. Each of
these methods takes a rectangular matrix X 2 RN

m of measurements (in su�ciently a large number
of observed samples, N, and with number of observed features, m) as an input and approximates it
as a sum of products of p pairs of vectors of size N and m. The fundamental equation for all matrix
factorization methods states (note that the product of ak and sk vectors gives a one-rank matrix of the
same dimension as X):

X ⇡
Xp

k=1
ak ⇥ sk (⇤) (1)

and the problem of matrix factorization is to find a set of ak and sk such that:

kX�
Xp

k=1
ak ⇥ skk2 ! min (⇤⇤) (2)

where k..k is a suitable matrix norm which is most frequently the sum of the Euclidean norms of the
columns of the matrix.

https://github.com/sysbio-curie/ICA-in-Cancer-research-review-materials
https://github.com/sysbio-curie/ICA-in-Cancer-research-review-materials
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Each vector pair ak and sk will be called a component throughout this review. Therefore, a
component is represented by a vector sk of size m containing weights of omics variables (genes, proteins,
CpG sites, etc.). At the same time a component is associated to a vector ak of size N, containing
contributions of the component to measured samples. We will use these notations and meaning of ak
and sk vectors throughout the whole review.

In the matrix factorization literature, various terms are used to denote the elements of the vectors
ak and sk. For example, the terms “loadings”, “activations”, “factor strength” or “sample-associated
weights” have been used to denote the elements of ak vectors. The matrix composed from the ak
vectors is sometimes called the “mixing matrix” and denoted as A. The elements of sk vectors have
been called “weights of the component” or “signals” and the matrix composed of them (denoted as S)
is sometimes called the “signal matrix”. Moreover, sk vectors themselves are frequently referred to as
“components” or “factors”.

In the context of transcriptomic data analysis, the sk vector is frequently named a metagene [16];
in the case of other data types one can use similar naming, e.g., a metaCpG for the analysis of DNA
methylation profiles. Further we will use the term metagene (or metagene weights for the individual
elements) to refer to vector sk even when describing application of ICA to various data types. Similarly,
the ak vectors are sometimes called metasamples, and we will adopt this term in the text (referring to
the individual vector elements as metasample weights), see Figure 1a.

Intuitively, a transcriptome of a biological sample is described as a combined action of p metagenes.
Each metagene abstractly represents a molecular program (called a functional subsystem further in the
text) by assigning a numerical weight to each gene of the organismal genome. The activity of metagenes
in a sample is combined additively, and each metagene acts on a sample with a sample-specific
strength or activity. Activities of the same metagene over all measured samples is called a metasample.
A metasample is the profile of the corresponding metagene activity similarly to a gene expression
profile across samples.

In the equation (*), only the X matrix is known; the ak and sk vectors are unknown. As such, the
problem of matrix factorization (**) is heavily underdetermined, and additional constraints need to be
introduced on ak and sk vectors in order to find its solution. First of all, it can be required that the all
ak vectors would have length one.

Furthermore, one can require orthogonality of the ak vectors: (ai,aj) = 0, for i , j and that the
solution of (**) should give the same result for di↵erent orders of matrix decomposition p, i.e., ak
and sk vectors computed for the order p = p’ would be the same as for the decomposition of order
p” > p’. In this case, solving (**) is equivalent to computing the singular value decomposition (SVD) of
X and gives a set of principal components. There exist several ways to introduce PCA, as reviewed in
Reference [17].

Alternatively, one can require that all elements of ak and sk vectors would be non-negative.
This constrains the problem (**) and leads to NMF. The simplest approach to solve (**) with these
constraints is to repetitively apply the non-negative least squares regression method, considering
ak as unknown at one iteration and sk as unknown at the next iteration, until convergence to a
local minimum.

When computing ICA, the resulting components are required to be as mutually independent as possible.
More precisely, the elements of vectors sk (or sometimes, vectors ak) have to represent maximally
mutually independent distributions, for di↵erent k. The perfect independence would mean that the joint
probability distribution P(s1, . . . ,sp) can be factorized as P(s1, . . . , sp) = P1(s1) ⇥ P2(s2) . . .⇥ Pp(sp).
Here, one assumes that the elements of vectors sk are i.i.d. samples of the underlying probability
distributions Pk(sk).

From the di↵erent nature of the constraints follow di↵erent properties of matrix factorization
algorithms (see Reference [18] and Figure 2a). The PCA solves a convex quadratic optimization
problem, which has a unique global minimum. The principal components are orthogonal and can be
naturally ranked by the amount of explained variance. The NMF and ICA problems are not convex;
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therefore, the algorithms used to solve the optimization problem provide solutions depending on the
component initialization. By construction, NMF and ICA do not lead to an orthogonal set of ak vectors
and the components cannot be naturally ranked. The NMF components contain only non-negative
elements, which makes the intuitive picture of the additive action of metagenes simpler to interpret,
while in PCA and ICA some metagenes can cancel the action of other metagenes if they are summed
up with di↵erent signs.

2.2. ICA Algorithms

One of the historically first and still popular practical algorithms for solving ICA problem is based
on the general Infomax (or maximum entropy) principle [19]. Indeed, the problem of ICA consists in
minimizing the mutual information among individual components (represented by finite sk vectors).
It can be shown that maximizing entropy of joint distributions of pairs of sk leads to minimizing their
mutual information.

It appeared also that under some assumptions, minimizing the mutual information is equivalent
to maximizing the non-Gaussianity of the individual sk distributions [20]. Quantification of
non-Gaussianity for continuous distributions involves negentropy (or Gibbs free energy, in physics).
Negentropy measures the departure from Gaussianity of a random vector of density P(u) by comparing
its entropy to the entropy of a normal distribution with same mean and variance. The entropy is
defined with a negative sign (S = �

R
P(u)logP(u)du) and the negentropy is, therefore, a non-negative

function reaching zero only for the standardized normal distribution. For the mathematical details,
we refer the reader to the classical works [19,20].

Since the length of the sk or ak vectors is always finite in real-life applications, one needs to
introduce the way to e↵ectively approximate it from the finite samples. For this purpose, various
surrogate functions (called non-linearity functions) have been proposed, one the most popular
of which involving the kurtosis. Empirically, kurtosis was found to be an appropriate choice of
non-linearity in the analysis of transcriptomic data. Other types of non-linearity functions have
been suggested; however, the appropriate choice of non-linearity for applying ICA to di↵erent
kinds of omics measurements remains an open question. The two most popular ICA algorithms
based on non-Gaussianity maximization are fastICA [20] and joint approximation diagonalization
of Eigen-matrices (JADE) [21]. Most of the recent applications of ICA to omics data were based on
fastICA, utilizing approximate Newton iterations to optimize a non-Gaussianity measure. However,
other approaches to computing independent components have been used such as the product density
estimation-based method (ProDenICA), claimed to have higher sensitivity to a wider range of source
distributions than fastICA [22,23].

A typical preprocessing step used before application of ICA algorithms is the so-called data
whitening or sphering (see Figure 1b). Whitening imposes unit variance along each axis. It consists
of choosing a number of significant principal components, thus defining the resulting number of
factors and then rotating the data to the basis of principal Gaussian ellipsoid axes and scaling along the
principal axes to the unit variance. In the geometrical language, the Mahalanobis metrics are introduced
into the data space instead of the usual Euclidean. Therefore, after whitening, the covariance matrix of
the reduced dataset becomes the identity matrix and PCA becomes inapplicable, since all Gaussian
signals have been erased from the data. This makes the use of higher-order moments for finding a
rotation of the orthonormal coordinate basis easier, which would maximize the non-Gaussianity of the
data point projection distributions along each axis. After such a rotation, in the whitened space, the
vectors corresponding to the new axes remain orthogonal while in the original data space they can
be strongly correlated (see Figure 2a). Because of the use of whitening as a preprocessing procedure,
ICA is frequently considered as a step on top of PCA, consisting in rotating the coordinate system,
by exploiting the information contained in higher than second moments of the multivariate data
distribution (Figure 1c).
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Various flavors of ICA have been suggested and some of them were tried on omics data. Bayesian
ICA with prior constraints have been suggested and tried on the metabolomics data [24]. The prior
constraints can be non-negativity of the ak and sk vector elements. This allows combining the nice
properties of non-negative mixture problem and the requirement for mutual independence of the
components. A kernel version of ICA have been developed [25] and sparse ICA was proposed in
Reference [26], but both have not yet found wide applications in omics data analysis (though kernel ICA
was exploited in Reference [27]). Finally, tensorial ICA was recently developed in References [28,29] and
recently applied to the joint analysis of gene expression, copy number changes, and DNA methylation
data from colon cancer with some promising results (see more in Section 3.5).

Some flavors of ICA seems interesting to explore more in biological applications, in the view
of the concept of the integration of functional subsystems (see Section 3.6), such as tree-dependent
component analysis (TCA) [30]. This variant of ICA allows clustering of the components such that
they remain independent between the clusters and dependent within them. It was tested on fMRI
data [31], but not yet on large-scale omics datasets.

2.3. Various Ways to Apply ICA to Omics Data

Besides the choice of ICA algorithm (which is frequently fastICA), there are several choices to be
made when ICA is applied to omics datasets.

The first evident but non-trivial choice concerns a necessity for data log-transformation, which
is especially important in the case of gene expression and protein expression data. On one hand,
it is strongly desirable in the case of, for example, RNA-Seq data, since empirically they are found
to be characterized by log-normal distribution. When ICA is applied to non-transformed data, the
resulting components are frequently dominated by single genes or single samples (e.g., each sample
acts as an independent component), which contradicts the initial concept of linear mixture (nothing or
almost nothing is mixed in this case). Simple log-transformation usually fixes this issue. However,
log-transformation makes the direct interpretation of the ICA model di�cult, since, formally speaking,
one deals with a multiplicative rather than an additive model of signal mixture. This is particularly
important for the applications of ICA in the field of cell type deconvolution where the linearity
assumption is explicitly made for mixing transcriptomes of di↵erent cell types (see Reference [32]
which cites a number of references studying the issue of data log transformation). Another aspect
is that log-transformation can amplify small values, sometimes creating a heavy tail of negative
values, characterized by strong non-Gaussianity and a↵ecting the ICA determination. In practice,
log-transformation can be recommended after adding a small value (e.g., 1 sequence count) to all data
matrix entries, before taking the log. This is especially true in the case of sparse single cell RNA-Seq
data, where the majority of matrix entries can equal to zero. On the other hand, choosing a threshold
for small expression values looks like an arbitrary choice, especially if the RNA-Seq data have been
normalized beforehand. Despite these di�culties, in most of the applications of ICA to RNA-Seq data
analysis, the so called “log(x+1)” transformation can be advised: empirically, it is found to lead to
more stable and biologically interpretable components. The problem of log transformation became
more relevant after introducing sequencing technologies such as RNA-Seq; for microarray-based
methods, the gene expression measurements were frequently provided in log scale, after some standard
normalizations such as robust multichip average.

Another choice in applying ICA to a matrix of omics measurements is the choice between
what distribution independence (or non-Gaussianity) is maximized [18]. One can maximize the
independence of metagenes (vectors sk) or metasamples (vectors ak). Technically, the first case
corresponds to the application of ICA algorithm to the initial matrix X containing samples as rows
and omics variables as columns, and the second case corresponds to the application of ICA to
the transposed matrix X. Surprisingly, both ways of applying ICA to omics data are wide-spread,
and sometimes it makes an e↵ort to figure out in which way ICA was applied. Some studies aim at
maximizing the non-Gaussianity of metagenes [2,33–35], while others maximize non-Gaussianity of
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metasamples [36,37]. Empirically it was shown that maximizing the non-Gaussianity of metagenes is
clearly preferable in gene expression analyses to maximizing the non-Gaussianity of metasamples [38].
This choice leads to much better reproducibility of metagenes in independent datasets as well as to
better interpretability of the components computed within the same dataset.

Furthermore, in several studies it was found that stabilized or consensus independent components
have better characteristics in terms of generalization and interpretation [34,38–41]. By stabilization one
usually means re-computing ICA using multiple random initialization with subsequent clustering of
the resulting components [40,41]. Alternatively, stabilization can be performed through sub-sampling,
i.e., computing ICA multiple times after removing a certain percentage of samples. Applying
stabilization can characterize computed independent components in terms of their stability that can
be further used for ranking them. For example, it was demonstrated that such ranking is usually
more meaningful in the case of transcriptomic data analysis compared to other methods of component
ranking (e.g., by the measure of non-Gaussianity or by the explained variance) [34]. One of the first
and most popular approaches to ICA stabilization is the icasso method, introduced by the creators of
fastICA [41]. Interestingly, in the case of transcriptomics data, the most stable independent component
frequently strongly correlates with the first principal component.
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(or deconvolute) two intersecting Gaussian distributions with coinciding means and whose principal
axes form a sharp angle; (b) 100 order ICA decomposition of the TCGA and METABRIC datasets.
Each component represented as a metagene was correlated to either immune infiltration-related or
proliferation-related meta-metagenes derived from Reference [33]. This analysis shows that only one
of the components was strongly correlated to the cell-cycle, while several can be associated with
the presence of an immune-infiltrated ICA-derived signature (this, probably, signifies the ability of
ICA to deconvolute the major immune cell types in an unsupervised manner (see, Reference [42]);
(c) correlations matrix between the metagenes of independent components extracted from the TCGA
and METABRIC separately. It shows that, for some components computed for di↵erent datasets, there
exists a strong and unique association between them, indicating the high reproducibility of the ICA
results (e.g., see Reference [38]).

Lastly, in some applications of ICA (e.g., cell-type deconvolution), it is desirable to fix the
orientation of the independent components. We remind that in PCA and ICA, the signs of the
elements in the vectors ak and sk can be inverted simultaneously without changing the definition of the
component. Some methods (such as BIODICA or DeconICA) avoid this ambiguity by assuming that the
heaviest tail of the sk distribution should correspond to positive values, which usually gives satisfactory
results. In Reference [43], each ICA component was characterized by two sets of top contributing
genes, from the negative and the positive side of the metagene weight distribution. The largest such
set was called a dominating module and the final orientation of the component was chosen to make the
weights of the dominating module positive. In other cases, labeling of samples can be used in order to
select one of the two possible signs of ak and sk. In this case, the orientation was chosen based on the
values of ak vectors. For example, in a disease study, one can require that any component would be
oriented towards aggravation of the disease condition (e.g., from normal samples to more aggressive
cancer stages). This approach was recently used for quantifying disease comorbidity using ICA [44].

2.4. Assessment and Comparison with Other Matrix Factorization Methods

In several recent studies, ICA was systematically compared with the other most used matrix
factorization methods such as PCA and NMF, using large collections of cancer omics measurements.

In Reference [38], it was tested which matrix factorization method could produce the most
reproducible (i.e., generalizable) definitions of metagenes. In order to achieve this, a notion of a
reciprocal best hit (RBH) graph was borrowed from evolutionary bioinformatics. Reciprocal best
hit between two metagenes in two ICA decompositions of di↵erent datasets defined “orthologous”
metagenes. Several criteria have been used in order to evaluate the modular structure of the RBH graphs
resulting from application of various ways of applying ICA, PCA, and NMF to the transcriptomic
data. In particular, the total number of RBH relations among the components, average clustering
coe�cient and modularity of the RBH graph, and the number and typical sizes of the identified graph
communities have been assessed. The conclusion was that the stabilized version of ICA, where the
non-Gaussianity of metagenes (and not metasamples) was maximized, is superior to other matrix
factorization methods with respect to these measurements.

Three major matrix factorization approaches were systematically discussed in a recent review for
their ability to discover functional subsystems or tissue-type specific signals [45]. The main conclusion
was that it might be advantageous to use several matrix factorizations simultaneously. The same
authors further suggested using the BioBombe approach [46], where three matrix factorization methods
(PCA, ICA, and NMF) and two autoencoder-based dimension reduction techniques were systematically
compared based on the pancancer TCGA datasets comprising 11,069 tumoral samples. Indeed, each
data decomposition method showed its own advantages with respect to di↵erent tests and tasks.
For example, the ICA method outperformed other approaches when the extracted metagenes were
tested for gene set coverage of specific gene set collections representing transcription factor targets,
Reactome pathways, and cancer modules. Higher gene set coverage in this study meant the proportion
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of gene sets in a reference collection, which could be significantly associated with one of the metagenes
in the decomposition.

2.5. Estimating the Number of Independent Components

The most important parameter in the application of any matrix factorization method is the number
of components to determine. This question is less crucial in the case of PCA due to the orthogonality
constraint and that computing higher-order components does not a↵ect the definition of the lower-order
ones. However, this is not the case with ICA and NMF: choosing the order of decomposition a↵ects
the definition of all computed components. In the case of ICA, which geometrically only rotates
the PCA axes, choosing the number of independent components can rely either on the methods
for determining the number of relevant principal components or it can use some features of the
independent components themselves in order to determine the optimal decomposition order.

In the first case, the e↵ective global dimensionality of the data can be determined through
the standard Kaiser rule, use of broken stick distribution, Horn’s parallel analysis or estimating
the conditional number of the covariance matrix [47]. One can also use more advanced methods
for determining the e↵ective data dimensionality such as the ones using concentration of measure
phenomena [48] or data point cloud linear separability statistics [49].

However, the second case appears to be more consistent in applications, even being computationally
more challenging. Thus, in Reference [24], Bayesian information criterion (BIC) was exploited to
determine the optimal number of independent components in the analysis of a metabolome dataset
comprising 1764 samples and 218 measured metabolites. The optimal number of components according
to this estimate appeared to be quite small (eight).

In Reference [34] stability indices of independent components were used in order to define
so-called maximally stable transcriptomic dimensionality (MSTD) measure, in case of transcriptomic
data. The MSTD defines an order of transcriptomic matrix decomposition such that the distribution of
stability indices for independent components is not yet dominated by highly unstable ones. It was
demonstrated that the independent components within the MSTD range are characterized by better
reproducibility and interpretability. Based on the analysis of a large volume of cancer transcriptomic
data, several observations were made. Firstly, unstable higher order components are frequently driven
by very few (frequently, only one) genes. In other words, their sk distributions are characterized by the
presence of one or few weights with exceptionally large values, separated by a significant gap from the
other values. Secondly, it was shown that a certain level of over-decomposition of transcriptomic datasets,
i.e., choosing the number of independent components several times larger than MSTD, does not
drastically change the definition of most of the components within the MSTD range. At the same
time, it was observed that increasing the number of independent components over the MSTD value
sometimes leads to biologically meaningful splitting of the components. For example, a component
within the MSTD range which was associated with the total level of immune infiltrate in tumoral
microenvironment splits into three components in higher-order decompositions which can be associated
with the presence of T-cells, B-cells, and macrophages [34,42].

In Reference [46], a range of decomposition orders have been tested using various criteria for
several matrix factorization methods. The general conclusion was that it can be advantageous to
use multiple-order decompositions if the aim is signature discovery. Just as in Reference [34], it was
shown that higher-order matrix factorizations with at least 40–50 components provide more precise
interpretation with respect to associating the components to the clinical information such as patient
gender or to the mutation status of cancer driver genes.

2.6. Methods for Interpretation of Independent Components

Assigning a meaning to the extracted independent factors remains a major problem in exploiting
ICA in biological research. Standard practice consists of applying various kinds of functional enrichment
analyses to sk vectors (e.g., applying hypergeometric test or overrepresentation analysis (Webgestalt
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2017) to the set of most contributing genes, or Gene Set Enrichment Analysis to the whole ranking
defined by sk), using large-scale collections of reference gene sets. The distribution of gene weights
from sk vectors can be projected on top of genome-wide biological network reconstructions where
the network edges represent di↵erent types of interactions or regulations between genes and/or
proteins. This can be further used for various types of network-based analyses, leading to the
determination of biological network “hotspot” areas and eliminating the need of having a reference
gene set collection [50]. The sk vectors (resulting from the analysis of transcriptomic or methylome
data) can be projected onto genome and be a subject of peak-calling analysis, which can sometimes
lead to associating a component to genomic alterations [33].

Metasample weights ak are used to associate components to sample annotations such as clinical
data (tumor stage, molecular classification, time label, sample processing data, etc.). Metasamples
can be also associated with some clinically relevant molecular data, such as mutations in known
cancer drivers for a particular cancer type. Metasamples can be also associated with known labels for
molecular tumor subtype.

In parallel to rigorous statistical testing, insightful visualizations of the results of ICA application
can be of great help. For example, gene weights from sk vector can be projected on cancer-specific
biological network maps such as the Atlas of Cancer Signaling Network (ACSN) using user-friendly
Google Maps-based online platforms such as NaviCell and MINERVA [51,52]. Functional enrichment
analysis results of ICA metagenes can be visualized using maps representing functional redundancy
between reference gene sets, such as InfoSigMap or enrichment maps [53].

There exist integrated solutions allowing the computation of ICA components for omics datasets
and containing a built-in set of tools for their interpretation. For example, in the BIODICA package
(Available online: https://github.com/LabBandSB/BIODICA), a set of tools is provided for performing
hypergeometric tests of the metagenes, automated feeding of Gene Set Enrichment Analysis with ICA
metagenes, projecting metagenes onto biological network maps, correlating computed metagenes with
a reference database of previously annotated metagenes, associating components with categorical and
numerical sample annotations, and tools for meta-analysis of ICA decompositions.

A particular interest represents joint analysis of omics profiles together with histopathological
imaging data. A simple analysis was made in Reference [33], where the independent components
computed from the transcriptomic data were used to rank the matched histopathological images
according to the contribution of the corresponding tumor sample to the component. This simple
approach was used in order to confirm the biological meaning of some of the components (see Figure 3).
Today this approach can be further elaborated and automated by applying machine learning-based
methods for extracting features from medical images and correlating them to the patterns identified
from the omics data (such as ICA metagenes), which can lead to getting new insights into cancer
biology [54].

https://github.com/LabBandSB/BIODICA
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3. Applications of ICA in Cancer Research

3.1. Applications to Data Preprocessing, Classification, Dimensionality Reduction, and Clustering

In multiple studies, ICA was shown to be e�cient in disentangling biological and technical factors
a↵ecting molecular profiles. This supports the idea to use ICA as a powerful data preprocessing and/or
feature engineering method for further application of machine learning methods. The general approach
is to apply ICA as an unsupervised machine learning method, to decide on the biological meaning
or the technical origin of individual components and then focus on a subset of them containing the
relevant signal. This can be achieved either by directly using the relevant subset of components as
features or by constructing a modified matrix of molecular measurements which would be free of the
influence of those components which are identified as non-relevant or of technical origin.

Frequently, each one-dimensional sk distribution is analyzed for determining a set of the most
contributing genes (e.g., characterized by the most extreme absolute values in sk). The simplest idea is
to select the variables (e.g., genes) bypassing the threshold in p standard deviations, with some choice
for p (typically, p � 3). A combined set of the most contributing to di↵erent ICs genes can be used to
define a subset of data for further analysis.
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Interestingly, ICA decomposition can be used to identify and disregard technical biases among
omics datasets produced by di↵erent platforms. For example, in the study of 198 bladder cancers
in Reference [33], one of the most stable components was found to be associated with a complex
time-dependent batch e↵ect. The nature of this batch was not known in advance and was only
discovered by correlating the corresponding ak vector to the dates of sample preparation. Another
component frequently identified in the analysis of transcriptomic data is related to GC-content,
which might reflect the influence of GC-content on the RNA amplification step common for both
microarray-based and sequencing-based methodologies. In Reference [39], a small dataset of three
primary melanoma tumors and two matched controls, characterized at the level of transcriptome and
miRNA, were merged together with a large reference melanoma dataset from the Cancer Genome Atlas.
The ICA decomposition was performed for the merged transcriptomic and miRNA data separately.
For both molecular data types, it was possible to identify those independent components capturing
technical di↵erences among platforms while focusing the analysis on biologically meaningful factors
whose quantification was comparable among platforms.

Interestingly, ICA-based analysis sometimes can lead to identification of the factors whose
origin is intermediate between technical and biological. For example, in Reference [33] one of the
factors reproducible in several bladder cancer datasets was strongly associated with the surgery
type (transurethral resection of the bladder tumor versus cystectomy) and at the same time was
enriched with early response genes. This suggests that di↵erent ways of tissue processing might leave
characteristic patterns in the transcriptome which can be discovered using ICA.

Some components identified through ICA could describe various cell populations present in the
sample in addition to cells of direct interest. Typically, this was the case for the stroma-related signals
in the ICA-based analysis of tumor bulk samples (see Figure 2). ICA can e�ciently deconvolute the
contribution from the cells of di↵erent types to the bulk transcriptome, which allows studying the
properties of tumor cells more directly. In the aforementioned study of bladder cancer, decomposition
of bulk tumors into 20 components allowed for the clear distinction of the signals reflecting the presence
of immune cells (with the main signal coming from the multiple types of lymphocytes, adipocytes,
fibroblasts [33].

Another frequently employed idea is to use the results of ICA decomposition in order to define a
set of variables for further application of various machine learning methods. Zhang et al. [55] were
among the first who applied ICA as a data-preprocessing step for classification of cancer patients.
They used ICA independently on normal and cancer datasets and identified top gene markers able to
discriminate between these conditions. Their approach was quite indirect but showed the ability of
ICA to prioritize genes. In a study by Huang et al. [56], ICA was followed by a penalized discriminant
method, and the authors showed high accuracy of ICA-based approach on several datasets. In both
mentioned papers, the authors segregated cancer and normal tissues, which is now considered a
trivial task, taking into account the large e↵ect of cancer on cell transcriptome. Later, Zheng et al. [57]
proposed a consensus ICA, robust to initial estimations. They showed the applicability of the approach
on three datasets, in two of which they classified subtypes of tumors. Support vector machine (SVM)
was used to predict classes based on the metasamples, and the authors needed to perform preliminary
feature selection to improve their classification accuracy.

Recently ICA was used to engineer features for further use in cancer-related classification
tasks, using naïve Bayes classifier [58]. In Reference [59], ICA was used as a data pre-processing
step in order to improve the clustering of temporal RNA-Seq data. It was suggested to use ICA in
combination with wavelet-based data transformation in order to engineer transcriptomic features at
“multiple resolution” [60] and use them to improve tumor classification and biomarker discovery.
In Reference [22], it was shown that a set of 139 features built by systematically applying ICA to a
large cohort of transcriptomic profiles, can be directly used in machine learning for classification tasks
and have advantageous characteristics in small sample studies, compared to the classical di↵erential
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expression-based feature selection. It was noticed also that using ICA-based features reduced to some
extent the batch e↵ects when clustering the transcriptomic data.

Any matrix factorization method can be used for dimensionality reduction. The specifics of ICA
are in that it is usually performed in an already reduced space and only defines a new coordinate basis
in the principal linear manifold. Therefore, ICA itself does not reduce the data dimension more that it
is done by PCA. Nevertheless, it is a frequent practice to consider the coordinate basis defined by few
independent components as a subspace to further application of various data analyses. For example,
this approach is used for a standard pipeline of single cell RNA-Seq data analysis [61]. Similar notice
can be made with respect to using ICA as a data visualization tool. Selecting a couple of independent
components with clearly identified biological meaning can lead to a biologically meaningful 2D
data display. For example, in Reference [62], visualizing a single cell dataset in the plane of two
independent components associated with proliferative genes clearly revealed the 2D dynamics of
tumor cell progression through the cell cycle. The di↵erence with PCA-based data visualization is that,
in the case of ICA, there exists no principal pair of components (such as PC1 and PC2) which can be
considered as the most representative for visualizing the multi-dimensional distances. This remark
should be taken with care since, frequently, the first PCs are a↵ected by technical artifacts and are to be
neglected in further analysis. In the case of ICA, any pair of ICs in no particular order can be used for
data visualization taking into account their tentative interpretation. Examples of contrasting PCA and
ICA approaches for data visualization can be found in References [37].

3.2. ICA for Unraveling Functional Subsystems of a Living Cell or a Cell Ecosystem

One of the strongest motivations behind applications of ICA to omics data is in that it can help
identifying functional subsystems (or functional modules and complex biological processes) which
are the building blocks determining response to perturbation of a tumoral cell or a whole cellular
ecosystem such as tumor microenvironment (TME) composed of di↵erent cell types. The underlying
principle is that genes or proteins do not react to an external stimulus individually but always integrate
into a (sub-)system with more or less defined limits. Importantly, it is biologically feasible to assume
the phenomenon of plurifunctionality, i.e., potential participation of an elementary entity (such as gene
or protein) into several functional subsystems.

The composition of a functional subsystem is defined by a matrix factorization method in the form
of the sk vector (weights associated with the omics variables) or metagene. The level of activation (or
inhibition) of an identified functional subsystem sk can be read in the corresponding metasample vector
ak. The same is relevant for an independent component associated with a technical factor intensity.

If no explicit sparsity constraint is imposed when computing the vectors, then each omics variable
(gene, protein) has a non-zero contribution (estimated by its weight in sk) to the definition of the
subsystem, which can be positive or negative. However, those variables having close to zero weights
can be neglected from the subsystem definition. An important characteristic of a metagene is the
set of the most contributing genes (see discussion in the previous section). The most contributing
genes are useful to characterize the functional subsystem and to identify if this subsystem corresponds
to an existing known one. After determination of the sets of the most contributing genes per each
metagene (functional subsystem), one can check if a gene is associated with the subsystem exclusively
or contributes to several ones. This analysis can be used to identify potential coupling between the
subsystems and their concrete mechanisms (see further discussion). Sometimes it is convenient to
distinguish two gene sets per metagene, having the largest and the smallest set of weights, from the
positive and the negative sides of the sk distribution.

We can distinguish two types of functional subsystem response. One is due to the mechanistic
downstream e↵ect of a stimulus, i.e., through an induction of a transcription factor downstream of a
signaling pathway. Another type is a more systemic one, indirect and related to a longer time scale,
caused by an adaptation of the whole system to the presence of potentially harmful factors (such
as hypoxia or active immune response) [63,64]. If a studied system’s response (e.g., a tumor cell) is
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measured in a su�ciently variable number of conditions or perturbation types, one can hope to identify
the composition of the most relevant/responsive functional subsystems by applying an appropriate
machine learning methodology.

Identification of functional subsystems (modules) from cancer omics data was first historically
approached with hierarchical clustering of genes [65]. Matrix factorization in this sense seems to
be a more suitable mathematical formalism since it naturally allows taking into account the gene
plurifunctionality. This is a simple consequence of a gene that can significantly contribute (i.e., be in
the list of the most contributing genes) to the definition of several functional subsystems. ICA is a
powerful approach here, because the requirement of maximally possible statistical independence seems
to be well suited for the task of subsystem identification. Even if the activity of a pair of functional
subsystems is correlated in the most of observed conditions, ICA can still distinguish them based
on a smaller number of conditions when they de-synchronize (see a discussion of this aspect in the
methodological part of the review). This ability of ICA is also powerful in disentangling the technical
biases from biologically relevant signals (as discussed in Section 3.1), making the identification of the
functional subsystems less prone to technical biases. Last but not least, ICA allows taking into account
the case when the activation of a functional subsystem is connected to inhibition of some of the genes
or proteins. One of the simple examples of such a situation is when a transcription factor has a role of
an activator for some genes and an inhibitor for other genes.

Functional subsystems identified by ICA can reveal an important coupling of several known
biological mechanisms and relate it to the biological phenotype such as cancer patient outcome. In the
case of breast cancer, this phenomenon was described in Reference [27] through so-called ICA-based
association networks.

One important characteristics of the weight distribution composing ak is the unimodal or bi- or
multi-modal character of the distribution. In the case of well-defined bimodality of a metasample, one
can stratify the distribution of samples into two groups, with respect to the nature of the functional
subsystem identified. A typical example of this kind is the identification of the functional subsystem of
proliferation in single-cell RNA-Seq data, where the corresponding metasamples frequently have two
modes, corresponding to proliferative and non-proliferative cell states.

Functional subsystems have been systematically identified using ICA from a large cohort of
transcriptomic profiles in Reference [43], where 298 Gene Expression Omnibus (GEO) datasets profiling
9395 human samples (from various conditions including cancer samples) were used to identify 423
“fundamental components of human biology”. As an example of their use, the authors characterized the
molecular mechanisms of parthenolide anti-cancer drug action. Recently, similar large-scale analysis
has been applied to a larger dataset, containing 2753 datasets and 97,049 samples [22]. Compared to
the earlier study, the authors improved the methodology in order to avoid redundant and correlated
transcriptional component definitions, applying Horn’s parallel analysis in order to select the optimal
number of components and systematically evaluating the components’ reproducibility after resampling.
This analysis resulted in defining 139 reproducible and informative transcriptional modules whose
value for the downstream analysis was explicitly demonstrated.

Identification of the functional subsystems and distinguishing them from potentially technology
driven factors can be strongly improved by the application of ICA analysis to multiple similar datasets
independently (without merging them). In this scenario, the ICA results from several datasets were
compared with each other in terms of the correlation or other suitable similarity measure among
metagenes (Figure 4). In the case of cancer, one of the first applications of this approach was done
in Reference [27] for 800 breast cancer samples from four independently profiled cohorts with a
conclusion that independent components matched well the underlying cancer mechanisms. This type
of meta-analysis was further upscaled in Reference [33], where 22 non-redundant cancer transcriptomic
datasets were analyzed. Some of the datasets were related to the same cancer type, i.e., eight of them
were collecting samples of bladder cancer and six were from breast cancer. Because the datasets used in
this study were produced using di↵erent technological platforms, this analysis identified the technical
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biases captured by individual components in specific datasets and not reproduced among others.
It also distinguished cancer type-specific functional subsystems (such as di↵erentiation program of
urothelial tissue) and generic and potential pancancer-wise important functional subsystems (such as
the transcriptional program of proliferation or oxphos). Interestingly, one of the bladder cancer-specific
components associated with di↵erentiation of urothelial tissue was also associated with amplification of
a genomic region, containing a particular transcription factor (PPARG). This led to a conclusion about the
role of PPARG in di↵erentiated bladder tumors which was validated experimentally. In Reference [38],
14 non-redundant colon cancer transcriptomic datasets were analyzed by ICA, and the resulting sk
vectors were matched with each other through correlation in order to reveal the functional modules
implicated in colon cancer tumor cells’ and the variability of tumoral microenvironment.
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Figure 4. Use of ICA components in meta-analysis of multiple omics datasets. (a) Pairwise comparison
of two sets of ICA metagenes led to an asymmetric correlation matrix (same as in Figure 2c) which can
be converted to a graph using some threshold and selecting the maximal correlations. If two components
are maximally correlated with each other, then such a correlation defines reciprocal best hit (RBH).
(b) Graph of maximal correlations (reciprocal and not) exceeding certain threshold among components
computed for 22 cancer transcriptomic dataset. Each node is a component, and an edge denotes a
correlation. Color reflects the cancer type (e.g., red is bladder cancer). Communities in this graph
define highly reproducible cancer type-specific and universal latent factors The figure is reproduced
with permission from Reference [33].

In the case of a very good match between ICA-based metagene definitions from several independent
datasets, one can define a consensus metagene definition from the meta-analysis (a meta-metagene).
An exemplary set of such reference metagenes was built in Reference [33] and used in other studies
to facilitate the interpretation of the ICA results. This set included (a) ICA-derived and universal for
many cancer types of proliferation-, oxphos-, immune infiltration-, interferon signaling-associated
metagenes; (b) consensus metagenes associated with the presence of non-tumor cells of several types
in TME; and (c) bladder cancer-specific transcriptional modules (such as di↵erentiation program
of urothelial tissue). A comprehensive catalogue of ICs identified in the pan-cancer TCGA dataset
containing 32 cancer types was produced in Reference [34]. It appears to be a useful e↵ort to extend the
collection of reference consensus metagenes, since they seem to be highly generalizable (reproducible
in independent datasets) [22,38].

3.3. Applications to Unsupervised Cell Type Deconvolution

In cancer biology, bulk omics data (especially transcriptome and methylome) represent heterogeneous
samples such as peripheral blood mononuclear cell (PBMC) and tumor biopsies, in which the expression
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profiles of distinct cell types are mixed in each sample at a priori unknown proportions. The tumor
microenvironment is composed of many di↵erent cells including a plethora of immune cells, stromal
cells, and blood and lymphatic vessels [66]. The quantities and the nature of the TME compartments
change with the cancer type and cancer stage. Recent works showed that immune cells could influence
tumor cells in di↵erent ways and that the immune therapies take advantage of the protective function
of the immune system and aim to activate patients’ immune defense.

Therefore, one of the major challenges for computational analysis of bulk samples is evaluating
the proportions and the properties of individual cell types composing the sample, frequently called
deconvolution problem in this context [32]. In general terms, deconvolution stands for unmixing a
mixture, which makes it close to the blind source separation methods, including ICA (Figure 5a).

Deconvolution of cancer bulk transcriptomes gained a lot of popularity in the last several years
due to the abundance of data sources. Several methods were proposed to estimate the abundance
of immune infiltration in cancers at di↵erent levels of granularity [67–70] using a pre-defined set of
genes, usually generated from pure blood cell population gene expression data [67,68], from single-cell
RNA-Seq measurements [70] or mixed [69]. They were proven to correctly estimate the cell-type
abundance in silico simulated datasets, in vitro cell mixtures, and blood or PBMC transcriptomes
coupled with fluorescence-activated cell sorting (FACS) estimations. However, it remains unclear how
many cell types or cell states can be quantified from bulk transcriptomes as each tool comes with own
definition of cell-types (e.g., T-cell) and subtypes (e.g., CD4-activated T-cell) or cell states (e.g., cytotoxic
T-cell).

In response to this problem, reference-free (also called unsupervised) approaches propose
a more data-driven way of performing the deconvolution. This group of approaches is able to
discover the cell types and their markers as well as approximate profiles of those cell types (perform
“complete deconvolution”). Di↵erent types of matrix factorization are suitable for solving this problem.
Even though these deconvolution methods are called reference-free, known reference profiles are used
to interpret and select the cell type-related components. Di↵erent possible benefits of reference-free
approaches can be listed as (a) flexibility—discovering the context-dependent cell-type markers,
(b) discovery of new cell types or cell types that are specific to a certain context, (c) determining
deconvoluted profiles of cell types that can be used to remove the immune-related signal or to better
understand the cell type features, and (d) ability to characterize biological processes (such as cell cycle
activity) simultaneously with the cell types.

The reference-free approaches were already applied for deconvolution of cell types in blood using
semi-supervised NMF [71]. They were used to study brain [72], tumoral single cells [73], and cell-cycle
in yeast [74].

In Reference [42] icasso-stabilized fastICA was applied to a set of six large breast cancer patient
cohorts profiled for gene expression. It was demonstrated that the immune-related factors, especially the
signal of T-cell, B-cell, and macrophages were highly reproducible in independent datasets (Figure 5b).
In Reference [75], the DeconICA R package (Available online: https://github.com/UrszulaCzerwinska/
DeconICA) was developed with the objective to apply ICA to the task of cell type deconvolution.
It was shown that ICA is able to e�ciently estimate the cell type proportions with better accuracy than
leading supervised algorithms even though it can identify less cell sub-types than most of the published
solutions. It suggests that ICA-based deconvolution is less prone to overfitting and enables discovery
and quantification of strong and stable signals (not necessary the most abundant but rather the most
specific). DeconICA was applied to a big corpus of data containing more than 100 transcriptomic
datasets composed of over 28,000 samples of 40 tumor types generated by di↵erent technologies
and processed independently. In addition, the ICA-derived metagenes were used as context-specific
signatures in order to study the characteristics of immune cells in di↵erent tumor types. The analysis
revealed a large diversity and plasticity of immune cells dependent and independent on tumor type.
Some conclusions of the study can be helpful in the identification of new drug targets or biomarkers
for immunotherapy of cancer.

https://github.com/UrszulaCzerwinska/DeconICA
https://github.com/UrszulaCzerwinska/DeconICA
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Figure 5. Examples of utility of ICA for unsupervised deconvolution of cell types. (a) Application of
ICA to the Sequencing Quality Control consortium (SEQC) dataset [76] containing measurements of two
references transcriptomic profiles of cell lines and their mixtures at known proportions. The first two
ICs identify the types and the e↵ect of the platform. (b) Correlation graph among selected components
from ICA applied to six non-redundant breast cancer transcriptomic datasets. Three cliques formed
in the graph correspond to major immune cell types. The thickness of the edges reflects the absolute
correlation value. “Immune” meta-metagene was defined in Reference [33] as the one associated
with the presence of immune infiltrate in a tumor. This figure was reproduced with permission from
Reference [42].

Cell-type composition can be also computed from DNA methylation data. In the EWAS (Epigenome
Wide Association Studies), the variation origination from cell types is considered as an important
confounding factor that should be removed before comparing cases and controls and defining
Di↵erentially Methylated Positions (DMPs). For example, in Reference [77] ten tools for epigenome
deconvolution were reviewed. The authors described six reference-free methods, three regression-based,
and one semi-supervised. Some of these methods use approaches close to ICA, such as independent
surrogate variable analysis (ISVA) [78], where the goal is to adjust the data for any type of confounder
(be it cell-type composition or not). Clear superiority of ICA over PCA in methylome deconvolution
has not been yet demonstrated. Most of the existing tools for unsupervised methylome deconvolution
assume cell composition as the most contributing to the methylome variability. According to
Reference [78], this assumption was not proven to hold true in solid tissues, normal or pathological. It
appears to be interesting to test di↵erent approaches to ICA coupled with improved reference profiles
to check if it cannot open new perspectives in methylome deconvolution.

3.4. ICA Applications to Single-Cell Omics Data Analysis

Statistical properties of ICA seem to be very attractive to justify its application to the emerging
wealth of single-cell omics data profiles. ICA can serve here to improve the data analysis regarding
dimensionality reduction, removing technical biases, integrating datasets. ICA also looks promising and
represents an alternative to the standard dimensionality reduction followed by clustering methodology
for identifying cell types or states, suggesting a more continuous way of considering them, with a
possibility of existence of intermediate or mixed cell populations.

Similar to bulk RNA-seq, technical biases and batch e↵ects are limiting factors for single-cell
RNA-Seq and should be either removed or taken into account. One example of ICA application to
normalize batch e↵ect was recently reported by Dirkse et al. [79]. The authors observed a strong
di↵erence between the original patient-derived cell line and its two subpopulations measured in the
second batch (all cells undergo the same protocol of cell growth and sorting, so biological di↵erences
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were excluded). The di↵erence among batches was comparable to the di↵erence among di↵erent
cell lines. The ICA identified and isolated the batch e↵ect in one of the components. By removing
this component and recalculating expression matrix, the authors corrected for this batch e↵ect
(see Figure 6a,b). A similar approach was exploited in Reference [80] in order to pre-process the
single cell data following the trans-di↵erentiation process of murine pre-B cells into macrophages
and their reprogramming into induced pluripotent stem cells. In this study, 15 out of 35 independent
components were considered to be connected with technical artifacts such as sample batch e↵ects and
cell position in the plate and filtered out from the downstream analysis.
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The ICA-based dimensionality reduction is a standard step in the most popular packages for 
analyzing single cell RNA-Seq data. In MONOCLE [61,81], ICA is optionally used for the initial step 
of dimensionality reduction to 2D, before inferring cellular trajectories. For example, this option was 
used in order to derive the cellular trajectory of individual MCF-7 breast cancer cells after stimulating 
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In Reference [85], ICA was applied in order to define subtypes of the immune-related cells 
present in the TME of melanoma (with original data from Reference [86]) and relate them to the 
mechanisms of innate immune response. ICA was used to define the continuous spectrum of 
differentiation in hematopoietic cells from scRNA-Seq data in Reference [87]; several latent factors 
were associated to the underlying biological mechanisms of differentiation. In Reference [80] three 
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Figure 6. Application of ICA in single cell data analysis of tumors (study of glioblastoma from
Reference [79]). (a) t-distributed stochastic neighbor embedding (t-SNE) visualization of the data
reveals a strong batch e↵ect. Grey and red/blue dots represent cells from the same cell line, analyzed in
two batches (batch 1—grey dots, batch 2—red and blue cells). The green dots show a cell population
from a di↵erent cell line added to the dataset for the reason of comparison. (b) t-SNE visualization of the
data after eliminating signals contained in one IC associated with batch e↵ect. (c) In ICA decomposition
of single cell scRNA-Seq data from cancer studies, usually there exist two components associated
with phases of the cell cycle (G1/S, DNA replication, and G2/M, mitosis). Here the loadings of such
two components are visualized. Black arrows show the regions when the labeled genes are highly
expressed. Yellow arrows show assumed direction of the progression through the cell cycle.

The ICA-based dimensionality reduction is a standard step in the most popular packages for
analyzing single cell RNA-Seq data. In MONOCLE [61,81], ICA is optionally used for the initial step of
dimensionality reduction to 2D, before inferring cellular trajectories. For example, this option was used
in order to derive the cellular trajectory of individual MCF-7 breast cancer cells after stimulating them
with estrogen [82]. It is also part of the popular toolbox Seurat [83] as one of the standard choices for
dimensionality reduction, data visualization, and feature selection. ICA can be exploited, together with
other low-dimensional projections, in various recently developed packages for biologically meaningful
single-cell data visualization [84].

In Reference [85], ICA was applied in order to define subtypes of the immune-related cells present
in the TME of melanoma (with original data from Reference [86]) and relate them to the mechanisms
of innate immune response. ICA was used to define the continuous spectrum of di↵erentiation in
hematopoietic cells from scRNA-Seq data in Reference [87]; several latent factors were associated
to the underlying biological mechanisms of di↵erentiation. In Reference [80] three independent
components computed for a scRNA-Seq dataset were matched with transcriptional programs specific
to B-cells, macrophages, and monocytes and used to provide an interpreTable 3D data visualization.
Interestingly, in order to establish the biological origin of these components, they were correlated to
the ICA decomposition of the transcriptomic atlas of murine cell types from which 120 independent
components were extracted.
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ICA served as a principal machine learning method for discovering functional subsystems involved
in the response of Ewing sarcoma cells to the induction of the chimeric oncogenic transcription factor
EWSR-FLI1 [62]. In this case, ICA was applied to the temporally resolved single cell RNA-Seq dataset
and revealed the existence of few tens of transcriptional programs activated or inhibited after the
controlled induction of the oncogene. Quite remarkably, one of the independent components was
clearly associated with the functional subsystem composed of the direct targets of EWSR-FLI1, and
it was distinguished from its indirect downstream e↵ects such as cell cycle induction (see Figure 6c).
Other functional subsystems reacting to the variations of the experimental conditions such as hypoxia
or regulation of glucogenesis, were recapitulated in individual ICs. Identification of the functional
subsystems from the cell line experiments were further used in order to characterize the patient-derived
xenografts (PDXs) of Ewing sarcoma, at single cell level.

In principle, ICA is the methodology able to exploit strong non-Gaussianity in the multidimensional
distributions formed by single cells in the space of omics profiles. However, in order to optimally
use this potential, one probably needs to identify the most suitable non-linearity functions, for each
particular type of single cell measurements, and take into account the nature of the multivariate
distribution of points in data space. Recently, a matrix factorization-based method ZINB-WaVE was
adapted to the single cell RNA-Seq measurements, using the model of zero-inflated negative binomial
distribution (ZINB) [88]. In principle, ICA approach can be applied on top of ZINB-WaVE instead of
PCA; however, this approach needs to be tested in practice.

3.5. Multi-Omics ICA Applications in Cancer Research

The majority of published works on applying ICA in cancer research deals with transcriptomic
data. This is connected in part to the relatively high abundance of such data type from collections of
bulk tumors, and in part to the availability of bioinformatics tools helping to interpret the obtained
components (such as Gene Set Enrichment Analysis). Yet another aspect is that transcriptomic data are
better connected so far to the clinical questions such as defining molecular subtypes of tumors.

However, applying ICA should not be limited to only one level of omics profiling, and there is a lot
of potential in applying it to several levels of molecular description. The multi-level datasets become
increasingly available in the cancer biology. The levels of molecular description can be gene copy
number profiles, binary mutation profiles, measured mutational signatures, measured total expression
of genes or spliced mRNA isoforms or non-coding genes such as microRNAs, DNA methylation or
histone mark modification profiling, protein or protein phosphoforms relative abundances or some
other less frequently used omics types. Identification of functional subsystems can be facilitated
through the use of several data types, since the adaptation process is frequently expected to span several
levels. As a good example of such a multi-omics dataset, one can cite recent work on comprehensive
characterization of medulloblastoma [89].

Ideally, several levels of omics profiling should be collected for the same and su�ciently large set
of samples. Independent components can be then computed for each data type separately and then
the identified components can be compared by computing correlations between the corresponding ak
vectors (metasamples). Such an approach was recently applied in Reference [39] to a set of melanoma
bulk samples, profiled at the level of transcriptome and microRNA expression. Similarly, in a recent
study [90], 77 breast and 84 ovarian cancer samples, profiled simultaneously at transcriptome and
proteome level, were analyzed using stabilized ICA, followed by integrating the discovered associations
with clinical data and molecular pathways.

An alternative and somewhat more powerful idea consists in stacking several matrices
corresponding to the di↵erent levels of omics profiling into a tensor (multi-dimensional array),
in order to apply the tensorial version of ICA. In this case, ICA will be able to learn and jointly optimize
the signals which can involve variables from several levels of molecular description. This requires
making at least two dimensions of the data common, while the third matrix dimension indicates the
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data type. Typically, all molecular measurements are mapped onto the genes through application of
procedures that can be non-trivial (e.g., in the case of Chip-Seq experiments).

The resulting three-dimensional measurement tensor Xijk has dimensions “number of samples
⇥ number of genes ⇥ number of data types”. For example, Xi = 4, j = 5, k = 2 element in the tensor
can indicate DNA methylation level of the promoter of the gene 5 in the sample 4. Xi = 4, j = 5, k = 1
could indicate expression of the same gene in the same sample. In the case of tensor factorization,
the resulting components represent matrices rather than vectors having dimensions “number of
genes versus number of data types” (for metagenes) and “number of data types versus number of
samples” (for metasamples). The existence of correlations among di↵erent data types within the same
matrix-component indicates coupling among several levels of molecular descriptions captured by
tensorial ICA.

Tensorial ICA was recently applied in Reference [91] to colon cancer dataset from The Cancer
Genome Atlas (TCGA) composed of a matched subset of copy-number variation (CNV), DNAm, and
RNA-seq data. A specific implementation of tensorial ICA called tWFOBI, standing for tensorial
fourth-order blind identification, accompanied by a tensorial version of whitening (W), using tensor
PCA, was used to compute 37 independent components. Most of these components can be associated
with the di↵erences between normal and cancer samples, while only four components capturing
correlations between CNV and gene expression, and one among them was also characterized by
concomitant correlation among all three data types. Of note, the tWFOBI method showed several
orders of magnitude better computational performance compared to the state-of-the-art methods
developed for multi-level omics data integration (such as iCluster).

Applications of ICA to data types other than transcriptomic or to several data types simultaneously
remain limited; however, first applications of this approach in cancer biology are rather promising [91,92].
Multiple issues still remain to be solved for how to define the best practice of ICA application to,
for example, DNA methylation profiles and how to interpret the obtained results. For example,
in Reference [93], a “spatio-temporal” version of ICA was suggested in order to take into account
certain specificity of DNA methylation profiles such as a high level of correlation among probes located
close in the genome. Also, in the case of methylation data, ICA should be carefully benchmarked with
other machine-learning methods exploiting the non-Gaussian nature of signals [94].

3.6. Correlations and Interactions among Functional Subsystems Defined by ICA

Functional subsystems identified through ICA and fixed in the form of metagenes can be studied
for their statistical relationships within a dataset, among datasets of the same kind, or among datasets
that are not closely related in terms of the nature of the biological samples profiled.

In the latter case, one can use ICA for studying disease–disease relationships. An example of such
a relation is the phenomenon of inverse comorbidity between cancer and some other diseases, in terms
of the anti-correlated activation pattern of the common functional subsystems. For example, the ICA
method was exploited in Reference [95] in order to identify inversely associated transcriptional modules
common in breast cancer and Alzheimer’s disease. In a more extensive study [44], 17 transcriptomic
datasets (11 collected for the post-mortal brain samples of patients su↵ering from Alzheimer’s disease
and six collected for the lung cancer samples) have been analyzed using ICA. The notion of reciprocal
best hit (RBH, see the methodological section of this review) was used in order to match the ICA
components and define their communities. In order to detect the anti-correlation patterns among the
matched components, a specific method was developed to assign an orientation of the components and,
hence, the weight signs in the metagene, based on the analysis of the subset of normal control samples,
in the ak vectors. This analysis confirmed previously identified comorbidity patterns based on the
analysis of individual gene expression profiles (related to the role of immune system and mitochondrial
metabolism) and suggested new molecular mechanisms of comorbidity between lung cancer and
Alzheimer’s disease such as estrogen receptor signaling pathway or the involvement of cadherins.
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Another possibility for exploiting the ICA-based definitions of modules is to study the phenomenon
of functional subsystem integration as a result of adaptation to stress or harmful conditions [63]. It was
shown in many studies that the correlations among the activation patterns of di↵erent functional
subsystems can be more informative than the patterns themselves [96]. ICA can deconvolute even
strongly correlated signals (see Figure 2A and the Section 2.2 of this review). Also, it computes
components which are as mutually independent as possible, but the level of dependence can be
di↵erent even for subsets of samples within a single dataset. For example, one can expect that in the
normal subset of samples, some of the functional subsystems will be less coupled with each other
than in stressful conditions caused by more aggressive stages of tumorigenesis. This coupling can be
caused by, for example, the shortage of essential metabolic resources making them a common limiting
factor for multiple functional subsystems. If the level of mutual information between two signals
increases above the ability of ICA to discriminate components, then these signals will be captured by
one independent component. This phenomenon of independent component splitting and merging might
depend on the order of ICA decomposition (and it was empirically studied in Reference [34]), on the
specific biases in the composition of samples, or on the number of samples.

The theoretical principles of functional subsystems integration have been developed [63,64].
However, it remains an interesting problem to verify and apply them to the concrete modules identifiable
from the (multi-)-omics profiles. Independent Component Analysis represents an interesting option
for achieving this objective.

4. Discussion

In recent decades, independent component analysis has become a standard tool for the analysis
of tables of omics measurements in cancer biology. In certain applications, it was shown to have
advantages, especially in terms of reproducibility or generalizability and biological interpretability,
compared to other popular matrix factorization methods. Despite ICA being shown to be a useful
tool, it seems to be under-appreciated partly due to the fact of historical reasons and partly due to the
presence of existing confusions in the underlying assumptions and/or interpretation of the resulting
matrix decompositions. For example, it is frequently commented that biological processes are not
perfectly independent and that they are expected to be correlated in some conditions. Even though this
is true, ICA can distinguish signals coupled to some extent by making the corresponding components
as independent as possible.

In this review, we made a comprehensive e↵ort to mention most of the recent studies in cancer
research where ICA served as the essential data analysis tool. We classified them into several
common topics: data preprocessing, data dimension reduction and visualization, identification of
functional subsystems and their correlations or interactions, deconvolution of cell types, data integration
and meta-analysis.

We also reviewed the methodological works aimed at defining the best practices of applying
ICA to concrete types of omics data. Compared to the early times of applying ICA to omics datasets,
today there exists a variety of implementations and improved methodologies allowing us to use
the valuable idea behind ICA (exploiting the concept of statistical independence and use of higher
moments of multivariate data distributions) in the best possible way. Certain progress has been made
in clarifying such important questions such as determining the optimal number of components to
retain or establishing the biological significance of the extracted components.

Most of the existing applications of ICA have been done so far for transcriptomic data even
if the interpretation of the components used other types of molecular data (such as mutations,
copy number alterations). Since recently, ICA started to be applied to other types of omics profiles,
including methylation profiles and proteomics datasets. It seems interesting to determine, using ICA,
independent sources of variance in newly emerging omics data types, such as systematic Chip-Seq
datasets mapping the state of histone modifications or mutational signature profiles. More experience,
standardization and assessment are required to use ICA in the most optimal way for the analysis of
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single-cell and multi-omics datasets. Moreover, in this review we did not even mention other fields of
ICA application in cancer biology, including the analysis of imaging data (e.g., [97]), clinical records,
and other non-omics data types, for which the ICA data model might be of interest.

Matrix factorization represents an alternative approach to the standard clustering methods,
being more flexible in terms of taking into account gene plurifunctionality and ability for unsupervised
deconvolution of factors whose activity can be correlated. It is worth noticing that some ICA algorithms
(such as fastICA) are computationally performant when properly implemented and potentially able to
deal with large amounts of molecular measurements. In this sense, ICA remains competitive vis-a-vis
many other approaches (e.g., based on likelihood maximization or representation of the data in the
form of multilayered networks).

We believe there are interesting directions to further explore and more deeply use the concepts
behind ICA in the context of cancer biology data analyses. It would be interesting to reconsider the
roots of independent component analysis into artificial neural network methodology, suggesting novel
scalable autoencoding-based techniques in order to solve the problem of blind source separation
adapted to the nature of the biological data. Assessing the value of supervised learning of the
features extracted by ICA from omics and other data types and comparing them to “hand-crafted”
or convolutional neural network-based features can lead to designing performant hybrid learning
approaches, as in Reference [98]. It appears promising to take advantage of the wealth of recently
emerged formalized knowledge on biological mechanisms of cancer and develop methods to inject
this knowledge into the component learning process. The biological factors or functional subsystems
in cells or cellular ecosystems are organized in complex hierarchies, and we need new approaches to
explicitly take this into account, in order to improve the subsystems identifiably.

To conclude, as a team of authors all having extensive experience in applying independent
component analysis as a tool in computational cancer biology, we advocate for its wider use in making
sense of the growing amount of omics data in this and other fields.

Funding: This work was partially supported by the grant research projects “Pan-cancer deconvolution of omics
data using Independent Component Analysis” (IRN: AP05135430) and “Investigation of esophageal cancer tissue
gene expression derived from Kazakhstan patients by next-generation sequencing technology” (IRN: AP05134722)
of the Ministry of Education and Science of the Republic of Kazakhstan, by the Ministry of Science and Higher
Education of the Russian Federation (Project No. 14.Y26.31.0022), the European Union’s Horizon 2020 program
(grant No. 826121, iPC project), by the European IMI IMMUCAN project, and by Luxembourg National Research
Fund (C17/BM/11664971/DEMICS).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ICA Independent Component Analysis
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3. Problems statement 
The use of unsupervised methods present certain difficulties and the method of ICA 
has also some limits associated with the deconvolution problem. During my thesis, I 
tried to clarify what those problems are and attempted to solve them. It is those 
problems that I will list explicitly in this chapter. 

3.1 Assessing relations between functional subsystems 

Once a decomposition is performed with ICA, the estimated metagenes are 
decorrelated, and, hence, we can not use their definitions directly in order to estimate 
interaction (coupling) between functional subsystems identified with the use of ICA. 

For example, components that capture the signal of specific immune cell types may 
be linked together due to the hierarchical links between their differentiation history, 
such as the case of T-cells, B-cells et NK cells coming from a common progenitor. 

The corresponding question to this problem is: How to assess hierarchical relations 
between functional subsystems represented by extracted components? 

I will try to answer this question in Chapter 4 of the results. 

3.2 Decomposition’s dimension choices 

One of the most important and problematic parameter in unsupervised matrix 
factorisations is the choice of the number of components we want the method to 
extract from the data. This parameter is a crucial step as it assumes the number of 
signals present in the data and wrongly estimating it might lead to overlooking the 
existence of some important signals if we underestimate it and when overestimated it 
could cause the disruption of previously found signals. As described previously, 
certain methods were developed to estimate this number but they can still disagree 
with each other, as shown in Figure 4 of (Bac et al., 2021). 

The corresponding question to this problem is: How to correctly estimate the amount 
of components to extract from the data such that we are sure we aren’t missing 
signals of interest? 

I propose an answer to this question in Chapter 4 of the results. 
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3.3 Limits of the deconvolution granularity level 

Unsupervised deconvolution methods cannot hope to comprehensively characterise  
such a complex system as tumors. There is a limit to the amount of details that a 
deconvolution (both supervised and unsupervised) can hope to achieve, either due to 
the quality of the data itself or due to the mathematical approaches used to extract 
the signals. When performing exploratory data analyses, it is interesting to extract as 
much details as possible but due to the unsupervised property, it is often difficult to 
ensure that the obtained signals are of good quality and correspond to real biological 
signals instead of being the data analysis artefacts. 

The corresponding question to this problem is: How can we know the limit of the 
maximal number of signals an unsupervised deconvolution method can hope to 
extract? 

I try to answer this question in Chapter 4 of the results. 

3.4 Interpretation of unsupervised components 

Signals found through unsupervised deconvolution do not offer any direct biological 
interpretation. It is therefore an important step to assign to each component the 
biological functions (cellular functional subsystems) they capture. Methods used to 
label components often use definitions of biological functions represented as a set of 
functionally related genes. But in reality, genes are known to participate in diverse 
functions, making annotation of components difficult. Moreover, assigning a function 
does not always provides information about its state (activity) or its effect for tumor 
development. 

The corresponding question to this problem is: How can we interpret unsupervised 
components to understand the function they mirror in a given context? 

A solution to this problem will be proposed in Chapter 5 of the results. 
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4. HACK: Hierarchical Analysis of Component linKs, a 
tool for multilevel latent factor exploration in omics 
data 

Nicolas Sompairac, Maria Kondratova, Nicolas Captier and Andrei Zinovyev. 

To be soon submitted to a peer-reviewed journal. 

4.1 Ideas on how to solve some limitations attached to 
unsupervised deconvolution 

4.1.1 Tree-dependent Component Analysis (TCA) 

One of the inherent strengths of ICA is its capacity to extract independent signatures 
from the data, thus allowing each component to be free of eventual noise. However, 
this is also a weakness when trying to find interactions between these signals. As a 
metaphor, if we were to analyse a symphonic orchestra, while each type of instrument 
can be extracted and analysed independently of the others, their activities are in fact 
not mutually independent. Each instrument may play its own music score, but some 
instruments still interact with each other through similar patterns. The existence of 
such interactions is also expected to be found in tumours, where groups of cells can 
interact and participate in tandem to respond to the same signal but still have 
different expression profiles. This can be observed for example in the sequential gene 
activation of the different phases during the cell cycle (Whitfield et al., 2002). While 
these clusters of genes have their own expression pattern, their activation and 
inactivation patterns are related between each other. 

To recreate such relations between independent components from ICA, (Bach and 
Jordan, 2003) proposed an algorithm that aimed to arrange components in a 
structure organised in clusters of components that are dependent within a given 
cluster but independent between clusters. The proposed method named Tree-
dependent Component Analysis (TCA) tried to achieve this by relaxing the 
independence assumption of ICA and trying to fit a tree-structured graphical model 
(Chow and Liu, 1968). 

The ICA model can be seen as: 

 

 
where we search for a linear transform W such that each of its components are as 
independent as possible. 
The TCA model is a direct equivalent but  has now to be constrained such that 
components can be modelled as a tree-structured graph. 

s = Wx = (s1, . . . , sm)T

W
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The TCA algorithm is shown in Figure 4.1 and can be simplified as follows: 
1. Initialise the W matrix using ICA 
2. Alternate minimisations: 

a. Minimising with respect to T using the Chow-Liu algorithm 
(maximum spanning tree problem) 

b. Minimising with respect to W using a steepest descent with line 
search 

 

 

 

 
 

   

    

    

 

 

Figure 4.1. TCA algorithm. 
 is the contrast function and  is the search space for . 

By alternating the minimisation steps, we can ensure that we keep a certain amount 
of independence between each component while still being able to reconstruct the 
relations between them. 

The TCA algorithm has been successfully applied to various types of data such as 
signals extraction from cosmology images (Kuruoglu, 2010) as well as genetic data 
(Kim and Choi, 2006). 

4.1.2 BIOBOMBE 

While the previously described method of TCA tried to solve the limitation of missing 
relation links between components, we were still left with the problem of finding the 
optimal number of latent dimensions k in the data. However, trying to find a single 
“optimal” dimension might not be the correct solution since it may happen that 
different biological signals can be captured at different dimensions. To test this, a 
methodology called BioBombe (Way et al., 2020) was developed and consisted in 
decomposition the data across a series of dimensions going from the order 2 up to 
200 (Figure 4.2). 

Input : d ata{x} = {x1, . . . , xN}, ∀n, xn ∈ IRm

Algor i thm :
1. Init ializat ion : W rand om
2. Wh ile G(W ) = minT F(W, T ) is d ecreasing

for i = 2 tom, for j = 1 toi − 1, W ← arg min
V∈ Lij(W )

{min
T

F(V, T )}

wh ere Lij(W ) is th e set of matr ices V ∈ M su ch th at
(a)∀k ∉ {i, j}, Vk = Wk
(b) span(Vi, Vj) = span(Wi, Wj)

3. Compu te T = arg minF(W, T )

Out put : d emi xing matr i x W, tree T

F(W, T ) M W
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Figure 4.2. Overview of the BioBombe approach. 
Step 1 consists in decomposing datasets in an increasing number of components 
using various methods. Step 2 is used to assess the quality of each component by 
filtering unstable ones and grouping similar components as a single one. Step 3 is the 
biological interpretation of found components using a pathway projection approach. 
Reprinted with permissions under the terms of the Creative Commons Attribution 
License 4.0 (CC-BY) from (Way et al., 2020). 

The conclusions of the BioBombe article were that: (i) different features were found at 
different dimensions and (ii) the optimal dimension for a given feature differed 
between decomposition methods. 

The first point is crucial because it implies that certain features can only be found at a 
given decomposition order and may be missed if choosing a dimension too high or 
too low. 
The second point implies that even if one wanted to use one of the many available 
heuristics to choose a single best dimension, this dimension wouldn’t be 
generalisable to all decomposition methods and would have to be fit specifically. 

4.2 Context behind the Hierarchical Analysis of Component 
linKs (HACK) tool 

By looking at the literature, it becomes clear that a simple decomposition for a given 
number of components might prove too limited in its scope and the user might lose 
sight of some interesting features. To avoid this, we can instead look over a range of 
dimensions but by doing so we are losing the structure between found features and 
may also end up with some redundancy. 

In the context of an immune infiltration analysis in a tumor, to make sure that a 
certain cell type is present or not is of great importance for treatment 
recommendations. Missing an immune related feature is therefore not acceptable so 
finding the right parameter for the number of signals is a priority. 
However, if we were to increase the order of decomposition, we could expect a better 
feature granularity. While this is most interesting, since we are using unsupervised 
methods, the interpretation step might prove difficult because of the lack of clear 
markers to define those specific features. This is why having an idea of the relations 
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and structure between different components might be handy when trying to 
understand their biological meaning. 

One way to achieve this is to follow the becoming of each component across the 
different decomposition order. In fact, as observed in (Nielsen et al., 2005), we can 
expect 4 different component behaviour when increasing the decomposition order 
(Figure 4.3): 

- A: a component may stay the same and continue to be reproduced with each 
increasing order. 

- B: a new component may appear when a new feature is found at a higher order 

- C: a component may be split in two. These new “daughter” components will 
therefore be related to their “mother”. 

- D: two components may be split in two. These type of behaviour is mostly 
expected in cases where we reach a limit in feature extraction and the method 
starts to create artificial new components by forcefully mixing existing ones. 

 

Figure 4.3. The 4 possible behaviours of components when increasing the 
decomposition order. 
The numbers denote the origin component and its possible change in content. 
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These types of behaviour make sense mathematically but they also make sense 
biologically. It is expected when using deconvolution methods, that by increasing the 
number of components we are increasing the granularity of found features. Therefore, 
by reconstructing such links, we are able not only to reconstruct the history of a given 
component (meaning at which decomposition order it emerges and where it 
disappears), we are also able to infer its meaning based on the component of origin. 
By focusing on the type of events happening with each increasing order, we are also 
able to judge the limit of the decomposition method. If after a certain point we don’t 
see the appearance of new components or if there is a majority of events such as the 
Figure 4.3D, we can assume that we have reached the capacity of the method to 
extract relevant features. 

It is with these intentions in mind that I have developed a method named Hierarchical 
Analysis of Components linKs (HACK). It is a “hierarchical analysis” because the 
method follows the fate of each component while increasing the decomposition order 
step by step. The mention of “components” is related to the fact that the HACK 
approach can be applied with any matrix factorisation methods. Finally, by checking 
the similarity between each component with each step, we are able to keep track of 
the “links” between them. These links, represented by a similarity score, can give more 
insight into the used decomposition method mechanics 

4.3 Manuscript 
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HACK: Hierarchical Analysis of
Component linKs, a tool for multilevel
latent factor exploration in omics data

Nicolas Sompairac, Maria Kondratova, Nicolas Captier and Andrei Zinovyev.

Introduction

Recent progress in biotechnologies allows us to characterize biological systems by molecular
(omics) profiling of increasing complexity. Multidimensional molecular profiles of biological
samples such as tumors require application of data analysis methodology aimed at reducing
data dimensionality and granularity. One common analytical tool frequently applied for this
purpose is clustering. Clustering aims at grouping the biological observations according to
their multidimensional measurements, which is standardly used for reducing the omics
dataset complexity. An alternative approach consists in identifying latent low-dimensional
representations of individual objects, such that proximity in the latent space would reflect the
similarity in high-dimensional space of complete molecular descriptors. One of the
commonly used approaches having this objective is related to matrix factorization and the
model of linear mixture of signals. Accordingly to this model, we assume that the observable
multidimensional variables are weighted sums of relatively few intrinsic factors characterized
by their activities in a given biological specimen. Clustering and matrix factorization
approaches are complementary methods since the reduced low-dimensional latent space can
embed an arbitrary number of clusters.

A tempting idea is to interpret the identified latent factors as molecular programs or
functional subsystems whose activity determines any biological systems state [1]. The nature
of these subsystems can be related to the actions of important transcription factors, systems
reacting to environmental conditions, actions of various extrinsic perturbations such as drugs,
adaptation to genome modifications, existence of heterogeneous cell types or states in a
biological specimen. In reality, the intrinsic factors can be also related to various biases, such
as batch effects, imposed by the measurement technology, adding extra dimensionality to the
latent representation.

This way of tackling the complexity and dimensionality of molecular measurements appears
to have advantages compared to clustering, establishing the most informative combinations of
initial data variables according to which the measured samples can be further grouped or
ranked [1]. To mention few successes, a list of molecular programs was established in a
large-scale analysis of transcriptomic data [2,3], or reproducible latent factors shaping the
molecular heterogeneity of certain cancer types have been identified [4,5,6,7,8,9]. Matrix
factorization was constructive in characterizing the gene expression heterogeneity of rare and
genetically stable cancer types at single cell level [10] or studying the molecular basis of
comorbidity between different diseases [11]. Matrix factorization was an insightful tool to
study the epigenetic or multi-modal heterogeneity of biological samples [12,13,14]. In a
recent large-scale study, a concept of recurrent patterns of heterogeneity (RHP) has been
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established using the large- scale single cell transcriptome data analysis in a large collection
of cancer cells, through systematic application of matrix factorization and cross-validation of
the resulting molecular program definitions [15].

In all of these studies, the most important parameter of data analysis is the number of the
molecular profiles to be identified, just as the number of clusters is the most fundamental
parameter of the clustering approach. Here one usually has to deal with finding a balance
between the level of granularity which should be adequate to represent the system complexity
and the computational robustness of the definitions of functional subsystems [16]. Since
determining the true intrinsic dimensionality of a dataset is a challenging task [17,18], one
has to rely more on the utility of the identified factors (such as prognostic value in
independent measurements) or the possibility of biological interpretation [5,6]. Various
approaches have been suggested to determine the optimal number of matrix factors, based on
various principles [18,19].

Despite all these efforts, in the practice of data analysis using matrix factorization, it has been
noticed that the most informative factors might emerge at some decomposition orders and do
not exist at others [18,1]. A typical example of such a scenario are latent linear factors related
to the presence of immune cells in the tumor microenvironment. Lower order decompositions
reveal the existence of immune infiltrate, combining many immune cells types, and allows
one to quantify its presence [5,18], while higher order decompositions give rise to the latent
factors which reflect the presence of more specific immune cell sub-populations (such as
T-cells, B-cells, myeloid cells, etc.).

Since it is not clear a priori which description granularity will appear the most useful in a
particular task, it is tempting to use several decomposition orders simultaneously. In a recent
study, BioBombe tool was suggested which exploited decomposition of a dataset across a
range of component numbers (e.g., from two to a hundred), using several matrix factorization
methods (NMF, PCA, ICA, variational autoencoders) and analyze the entire set of generated
latent factors with respect to their clinical utility or biological interpretability [20]. Even if
being pragmatic and powerful, such an approach ignores the redundancy existing across
factors identified at multiple decomposition orders and creates a problem of multiple testing
which is especially difficult since the identified factor set contains strongly dependent
components.

In the current study we suggest an approach named Hierarchical Analysis of Component
linKs (HACK) which aims at improving the selection of informative linear latent factors
resulting from application of matrix factorization at different decomposition orders. HACK
relaxes the problem of choice of the right number of components by considering multiple
levels of decompositions simultaneously and carefully reconstructing the redundancy
structure between them. As a result, HACK generates a relatively small number of so-called
persistent components which are the factors that can be reproduced across a sufficiently large
range of consecutive decomposition orders. Importantly, when applied to gene-based
molecular profiles, the persistent component represents a generalization of the metagene
notion, such that each gene in it is characterized not only by a weight but also by a built-in
uncertainty estimate. This uncertainty is quantified as a measure of the robustness of a gene
to significantly contribute to the definition of a factor despite certain variations in the
decomposition order.

HACK is packaged in Python as a user-friendly tool, accompanied by a graphical interface
such that a user can interact with the hierarchy of analyzed intrinsic factors. HACK can be
readily used with any matrix factorization method. We demonstrate the advantage, compared
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to the fixed order decompositions, of its use in applications to bulk and single cell RNASeq
profiles.

Materials and Methods

HACK workflow general outline

HACK approach performs the following sequence of data analysis steps, in order to
determine the persistent components (Figure 1).

1. Performing matrix factorizations across a range of decomposition orders
2. Construction of the graph of relations between components extracted at different

orders
3. Filtering of the full relation graph using the Mutual Nearest Neighbours algorithm
4. Selection of persistent components
5. Simplification of persistent components and splits reconstruction
6. Extraction of average persistent components
7. Performing an “uncertainty” analysis to assign “certainty” gene scores

Terminology

Component: vector obtained as output of the matrix factorisation step. In the transcriptomic
context, the matrix factorisation can be performed on genes or samples and the components
obtained will be called metagenes or metasamples and will correspond to vectors of weights
associated to each gene or sample.

Persistent component: during the hierarchical analysis, some components are found
consistently across multiple decomposition levels as shown by their high correlation
maintained with each step.

Split: event during the reconstruction of a component history when the information contained
in the previous step is separated into two new but related components.

Branch: in the graphical representation of the hierarchical analysis, a persistent component
will be called a branch due to its tree-like structure. In the graph, a branch corresponds to a
set of persistent components.

MNN: Mutual Nearest Neighbour algorithm used to find only reciprocal best common
factors. The algorithm consists in checking all corresponding correlations between two sets of
factors and keeping a given number K of links if the correlation is maximal between a factor
from the first set and another from the second set in both directions.
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Algorithm for hierarchical analysis of the multilevel matrix
decomposition

Performing matrix factorizations across a range of decomposition orders

The first step of the algorithm consists in performing multiple decompositions across a range
of dimensions using the chosen algorithm. In this study, we applied the ICA algorithm on an
increasing range of orders, going from 2 to 100 by increment of 1. ICA is used but any other
matrix factorisation method could be applied instead. To counteract the stochastic behaviour
of ICA, we used a stabilisation step where multiple runs of ICA are performed with different
initialisations and an average result is obtained by clustering the resulting components. We
used the implementation of stabilized ICA in Python
[https://github.com/sysbio-curie/Stabilized_ICA], which is based on the original MATLAB
version of ICASSO [21].

We also used PCA and NMF methods implemented in the scikit-learn Python package
[https://scikit-learn.org].

Construction of the graph of relations between components extracted at
different orders

The second step is the construction of a complete relation graph between components of
adjacent order (i.e. between order K and K+1). For this, we used the Pearson Correlation as a
relation score between each pair of components of adjacent order. As a result, we will obtain
a graph with nodes being component vectors connected by edges with the Pearson
Correlation as a score. This full graph will be the basis of further analyses.

When looking at the behaviour of components along the decompositions orders, we can
identify 4 types of states: (i) persistent high correlation with each step, (ii) appearance of a
new component, (iii) “split” of a component in two, (iv) “cross over” between two pairs of
components (behaviour mainly due to the stochasticity or ICA). Components presenting a
persistent and unique high correlation will be further addressed as “Persistent Components”.

Filtering of the full relation graph using the Mutual Nearest Neighbours
algorithm

The whole relation graph is heavily encumbered and therefore can’t be directly used for
visualisation purposes. This is why a filtering step has to be performed. Since we are
interested mainly in persistent and split behaviours, the filtering will be performed using the
Mutual Nearest Neighbours (MNN) algorithm with minimal number of outgoing edges and a
minimum value for the correlation threshold. The MNN algorithm forces kept edges to be
maximally correlated in a reciprocal manner. Also, to avoid recreating splits by keeping low
correlation edges, a MNN_Gap parameter can be used to decide if the second edge is to be
kept if it has a correlation difference of, by default, less than 1.5 times the value of the first
correlation. This step allows not only to remove most of the noise from the complete relation
graph but also to keep eventual splits between components to retrace their origin history.

4

https://github.com/sysbio-curie/Stabilized_ICA
https://scikit-learn.org


Selection of persistent components

For this step, all splits will be temporarily removed to extract only persistent components and
allow a check of their persistence.

The persistence of each set of components can be determined by the number of
decomposition orders they are found consistently across. This value can also be viewed as a
stability or reproducibility value of the set of components. To remove the least stable
components, a threshold must be set so that all components that haven't been found
consistently for that amount of decomposition orders in succession will be pruned. The user
can play with this length threshold to keep a more or less sparse graph.

Simplification of persistent components and splits reconstruction

To ease up the visualisation of the resulting graph, each persistent component is simplified by
their starting and ending component for the set they are part of. The resulting edge between
those components will have the average values between the starting and ending components.
By doing so, we can directly see if the final component hasn’t diverged too much from the
initial one.

Splits that have been previously deleted will have to be reconstructed. Just as the filtering
step, to avoid reconstructing low relevance links, parameters for the MMN algorithm such as
correlation threshold, K outgoing edges and a gap will be applied here as well. However, to
avoid adding links between persistent components that are far apart, a penalty is applied on
the number of decomposition orders separating corresponding components, thus penalising
long distance edges and favouring closer links. This penalty factor is mainly used to avoid
encumbering the graph with superfluous edges that would make the visualisation of results
more complicated.

Extraction of average persistent components

As a result of this algorithm, we obtain a forest-like graph represented by multiple trees
containing one or several branches. The whole graph can be visualised as is or it can also be
exported as a matrix of metagenes where each column will be a persistent branch and each
row will contain genes with associated scores chosen by the user. The average metagenes can
be constructed by taking the standard scores given by the decomposition method or by taking
the Z-scores. It is also possible to use the average ranks of genes by taking their absolute
position in each component of the branch and calculating the average position along the
whole branch. This matrix allows to arrange genes in a manner that makes visible genes that
are always top contributing in the corresponding signal and moving those that are fluctuating
in the middle.

Performing an “uncertainty” analysis to assign “certainty” scores
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A persistent component being a set of individual components, it becomes possible to perform
additional analyses to check how a certain gene’s score behaves along the decomposition
dimensions. When looking at how certain gene’s scores behave, we have noted that a large
portion of genes had large score variations, making them unfit to use as reference drivers of a
given component.

To leverage this behaviour, we have implemented an algorithm to take into account the erratic
variation of certain genes and assign a corresponding “confidence” score. The algorithm is as
follows:

- Take non-simplified persistent components from the filtering step of the HACK
algorithm containing a list of each intermediate component and merge them into a
single matrix per persistent component

- Transform genes scores of each intermediate component into ascending position rank
values

- Normalise ranks to values between -1 and 1
- Simplify normalised ranks based on a threshold: -1 if below the negative threshold,

+1 if above the positive threshold and 0 if between the negative and positive
threshold.

- Collapse each intermediate component into a single one. If a gene always presents
positive or negative value only, calculate the average position rank value. If not,
assign a score of 0, symbolising that the gene is uncertain.

This algorithm results in a matrix similar to the one obtained in step 8 but contains instead all
persistent components with an assigned gene value between -1 and +1. The closer a gene is to
the value of +1, the more certain we can be that this gene is a positive driver of the
component along the decompositions orders. And inversely, if a gene is close to the value of
-1, the more certain it is that he is in the negative part of the component. Each gene having a
value of 0 can be considered as uncertain and shouldn’t be used in further analyses because of
its unstable behaviour.

Parameters of the HACK algorithm

HACK algorithm contains 10 parameters having the following meaning and default values:

1) Minimum_decomposition and: minimum order of decomposition the hierarchical
analysis will be performed from. Default value is 2.

2) Maximum_decomposition: maximum order of decomposition the hierarchical
analysis will be performed from. Default value is 2.

3) MNN_K: maximum number of reciprocal components’ links to keep between two
decomposition orders for the MNN algorithm. Default value is 2.

4) MNN_Gap: maximum difference factor between kept links. If the difference in the
similarity scores is higher than the value multiplied by the gap, the link is not kept.
Default value is 1.5.

5) MNN_Correlation_Threshold: minimal correlation value between components to
keep. Default value is 0.3.

6) Minimal_Persistent_Length: minimal number of consecutive decomposition orders
a particular component is found in to be considered as persistent. Default value is 10.
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7) Split_K: maximum number of outgoing splits from a persistent component to keep.
The default value is 2.

8) Split_Gap: maximum difference factor between outgoing splits similarity scores.
Default value is 1.5.

9) Split_Correlation_Threshold: minimal correlation value between components to
keep. Default value is 0.3

10)Split_Penalty: Penalty score applied to a similarity score based on the difference of
decomposition orders that separates two persistent components to avoid distant split
reconstructions. Default value is 0.05.

HACK Python package and interactive tool

We implemented the Hack algorithm introduced above as a Python package openly available
at [https://github.com/sysbio-curie/HACK]. The package contains a Jupyter notebook with a
possibility to construct and interact with the graph of links between the persistent
components.

The data to be used in this package can be Bulk or Single-cell and can be composed of RNA
counts, microarray measurements or any other omics type.

A preprocessing is however required before it can be used in the workflow. Some basic
preprocessing functions are integrated in the package that allows to log transform the data,
mean center the rows as well as remove duplicates. These are the required preprocessing
steps for an optimal application of the HACK algorithm but other preprocessing methods can
be applied if needed.

As a result, the HACK workflow will generate decomposition matrices across a range of
decomposition orders. These matrices will be saved for further analyses during the workflow
allowing a faster and easier exploratory analysis in case the user wants to change the default
parameters. Some intermediate steps such as the fully connected and the MNN filtered
hierarchical graphs will be saved in files and if all steps are performed, the final hierarchical
graph of persistent components will be exported as a file as well. These files can be easily
opened in network visualisation applications such as Cytoscape.

For the last two steps of “Extraction of average persistent components” and “Performing an
uncertainty analysis to assign certainty scores”, matrix files will be created containing
persistent components as columns and genes as rows with their corresponding assigned
scores based on the chosen method.

Visualisation and analysis of the resulting graph of relations between
persistent components

Once the graph has been generated and filtered accordingly, it becomes possible to query it
for various biological signals. Since each branch can be viewed as a set of components, they
can be simplified by an average vector. This average vector can then be used for any required
analysis.
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The obtained graph can be visualised with the help of an interactive Jupyter Notebook. The
generated figure represents the persistent components segments from the bottom-up where
each branch is represented by the starting node located at the Y-axis corresponding to the
decomposition order this component was first found and an end node for the decomposition
order it was stably found last accordingly. Plain vertical edges correspond to persistent
components while dashed edges correspond to reconstructed splits.

With ICA, to interpret a component, it is standard procedure to compare the correlation of a
component with a reference metagene. For reference, Biton’s metagenes [5] have already
been implemented in the method and can help identify 11 different signals such as Immune
infiltration, Cellular stress or Cell cycle. The user can visualise either the Pearson correlation
of each component with the selected Biton’s metagene or can select to colour edges
accordingly to the Pearson correlation between each component. As an example, we can filter
persistent components related to Immune infiltration as seen in Figure 2C.

Another usual procedure is to extract top contributing genes of a certain component and
perform enrichment analyses. This can be done on the exported matrices from step 8 but it is
also possible to query genes directly on the graph and select branches with components
containing particular genes in their top contributing ones. Genes considered as top
contributing can be set by using a Standard Deviation threshold in a component’s score. The
nodes will be coloured accordingly to the fraction of found query genes in the top
contributing gene list of a component.

Results

Comparing HACK algorithm results for various decomposition
methods (PCA, ICA, NMF)

The proposed HACK algorithm is technically applicable to any matrix factorisation method
able to give weighted vectors (aka components) as an output. To test this, we applied the
Hierarchical Component Analysis algorithm to PCA, ICA and NMF decomposition methods
on the TCGA BRCA RNA-seq dataset.

As described previously, the first step is common to all methods and requires decomposing
the dataset in gradually increasing numbers of components. We chose decomposition orders
from 2 to 100, incrementing by 1 with each step. It is known that NMF components tend to
capture the average gene expression signal [6]. One simple and straightforward step is to
“regress-out” this signal by performing a linear regression between each component and the
average gene expression vector and then taking the residual as a “cleaned” new component.
This additional step can be performed for NMF decompositions only to get rid of the
superfluous correlations between each and every NMF component. However, this step was
ignored in our analysis because it didn’t produce any meaningful difference in the result and
the Split_K parameter of HACK was used instead to compensate for this.

To add some challenge for a PCA analysis, we removed 5% of random samples for each
decomposition order to generate some instability in principal components which would have
been deterministic otherwise. Once this decomposition step has been performed, we can then
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apply the HACK algorithm to visualise the behaviour of components obtained from different
methods.
When looking at the resulting graph in Figure 2A, we can see that PCA on resampled data
presents some instabilities in its principal components (PC) but some are still reconstructed
with the HACK algorithm. We can see that the first PCs are the most stable ones and can be
consistently found throughout the whole over-decomposition process, as we can see with two
PCs related to an Immune Infiltration. With each increasing order, new components tend to
become less stable and their link reconstruction becomes more difficult. However, certain
PCs can capture certain signals more consistently, even at higher orders of decomposition.

The ICA graph lets us see various behaviours. First, we can see that the graph is quite
furnished and contains a large number of persistent components. Also, the first components
found tend to be the most stable/persistent. Just as with the PCA, we can also find the two ICs
related to an immune infiltration as seen in Figure 2C

For the NMF, we noticed a striking difference with the previous two: the graph is much
sparser (Figure S1). This could either be explained by the instability of NMF components or
by a latent inter-correlation between components that disrupts persistency calculations during
steps 4 and 5 of the HACK algorithm. Since we expected this inter-correlation between
components to be removed by regressing the average gene expression, this shouldn’t be the
cause of such a resulting graph.
However, to test if this is true, we can play with the K parameter of the MNN in step 3 of the
HACK algorithm. By setting it to 1, we don’t allow splits to be taken into account during the
filtering of the initial full correlation graph, thus eliminating all possible inter-correlations
between components of adjacent orders. The obtained graph from this parameter change can
be seen in Figure 2B . This graph resembles much more the one we found with ICA and
contains many persistent components and behaviours common with ICA components. It is
also in this case that we are able to find the two Immune components from which one was
absent from the initially obtained graph with the parameter K=2.
This difference from the initial graph could imply that even though we removed the average
gene expression signal from each component, another signal is still present across most NMF
components. In NMF, all components relate to each other. The reciprocity constraint of the
HACK algorithm helps counter it to some extent although not entirely. But if this constraint is
relaxed, this inter-correlation feature emerges again.

Application to transcriptomic datasets

Reproducibility analysis of persistent components extracted with
HACK

To make sure that persistent components found through the HACK algorithm are robust and
reproducible across different datasets, we performed a meta-analysis in a similar fashion as
[6] using the same CRC datasets obtained from [22]. Only datasets with the number of
samples above 100 were kept, leaving us with 12 CRC datasets in total. Through this
analysis, we were able to demonstrate that not only persistent components were consistently
reproducible, they were even more so than “simple” ICA components. Indeed, as seen in
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Figure 3A, the network of persistent components is arranged in a more compact and clustered
fashion compared to networks of simple 50 and 100 components.

To confirm this in a meaningful way, we have computed persistent components across the 12
CRC datasets and have generated MNN graphs using all the persistent components from all
the datasets. We also performed a simple stabilised ICA decomposition of order 50 and 100
using these datasets and have generated MNN graphs as well. We then compared the obtained
networks.

For comparison scores, we counted the total number of reproducible components as those that
are connected to a minimum number of K other components. We will refer to this K as the
connectivity measure. To check for the strength of the reproducibility, the reciprocal
correlation value S between components was used a threshold. By looking across the range of
K and S values, we were able to observe a clear difference in reproducibility between
persistent and simple components.

In Figure 3B, we set the connectivity K to 2, thus keeping only components that were found
in at least 3 different datasets, and looked at how strong the reproducibility of those
components was for more stringent values of S. Starting from a correlation threshold of 0.3,
the number of reproducible components falls sharply but the number of reproducible
persistent components manages to stay above the other two simple reproducible components
as shown by the ratio of the number of reproducible persistent and simple components.

For the 3 MNN networks, for a set value of S of 0.6 corresponding to a strong correlation
coefficient, we computed across a range of K from 1 to 12: (i) the scores for the total number
of reproducible components, (ii) the fraction of reproducible components, (iii) the mean
reproducible score corresponding to the means correlation threshold of outgoing edges from a
single component across all components and (iv) the sum of reproducible score. As seen in
Figure 3C, persistent components have scores significatively above simple components and
can therefore be considered as more reproducible.

Meta-analysis of immune-related persistent components in colorectal
cancer bulk transcriptomes

One set of components is of particular interest, these are immune-related components. In the
context of cancer-immunotherapy the development of immune-classification methods for
tumours is an important practical task. Many supervised and unsupervised methods of
immune tumor classification focus on determining the cellular composition of the tumor
[23,24]. However, this approach has its drawbacks, since there is no unambiguous
correspondence between the leukocyte formula of the tumor and its immunogenicity. It is
known from the literature that the presence of the same cell types, for example, Th17 or
B-cells, can make both a positive and a negative contribution to the success of anti-cancer
therapy [25,26]. We believe that a hierarchical approach of ICA is capable of capturing more
complex, integral characteristics of the tumor microenvironment and can be useful for
solving this problem.

To test this hypothesis we have applied HACK methodology to the 12 colon cancer dataset
described before from [22]. Each dataset was decomposed up to 100 components,
hierarchical trees were generated and persistent components were filtered from “uncertain”
genes.
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Observing trees obtained with the HACK approach really increases the resolution of a simple
ICA methodology. For example, the low level of component deconvolution TCGA dataset
represents just one stable component enriched by immune-related genes, and when the
number of components increases we can already see several immune related components
representing different aspects of tumor immunity (Figure 4A). And if the metagene from one
immune component could provide only “one-dimensional” tumor classification (“cold” or
“hot”), then several immune related metagenes potentially give us a chance to develop
“multidimensional” immune characteristics of the tumor. Similar results - one “root” immune
component divided into several immune “branches” - were also observed in other
colon-cancer datasets.

When we project the metagenes scores extracted by HACK from bulk data (GSE39582
dataset used for the illustration) to colon-cancer related single-cell data [27], we can
demonstrate a correspondence between immune “branches” and  cell types. As we can see,
the projection of the “root” metagene highlights all immune cells in the single-cell data, and
the “branches” projection highlights particular cell type groups. For instance, projection of
branch “a” highlights mostly B-cells, branch “d” - cytotoxic  CD8+ T-cells, etc (Figure 4B).

Now we should find a way to characterise the nature of difference between these components
and propose possible biological interpretations. To do this, we have used a set of specific
knowledge based signatures representing different sides of immune response (professional
antigen presentation, cytotoxicity, phagocytosis) as well as cell type specific signatures
(T-cells, B-cells, NK, DC etc). We have applied these signatures for clustering of
top-contributing genes from “roots” and “branches” of immune components in 12
colon-cancer data-sets (Figure 4C). As expected, all “root” components have almost the same
pattern of regulation of different functional modules, then “branches” form several clusters
with different groups of functional activations. The clusters have the following functional
characteristics:

1. Rather high presence of innate immune-cells, low presence of both T-cells and
B-cells.

a. Upregulated pathways: NO-ROS production, Phagocytosis, Activated
immune-checkpoints.

b. Downregulated pathways: Cytotoxicity, Antigen presentation.

2. High presence of B-cells T-cells as well as basophils and mast cells, low presence of
the rest innate immune-cells.

a. Upregulated pathways: Inhibiting immune checkpoints.

b. Downregulated pathways: NO-ROS production, Phagocytosis, Activated
immune-checkpoints.

3. High presence of T-cells and innate immune cells,  low presence of B-cells and
basophils and mast cells.

a. Upregulated pathways: Th1, Cytotoxicity, Antigen presentation.

b. Downregulated pathways: Th17, Phagocytosis, Activated
immune-checkpoints.

4. High presence of T-cells and NK, low presence of B-cells and innate immune cells.

a. Upregulated pathways: Th1, Cytotoxicity, Antigen presentation.
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b. Downregulated pathways: Treg, NO-ROS production, Phagocytosis, Activated
immune-checkpoints.

We assume that cluster 4 corresponds to a cytotoxic immune response in tumors and cluster 2
is related to humoral immune response in tumors. The balance between these two sides of
adaptive immune response could be a predictive factor of tumor immunogenicity, but testing
this hypothesis requires additional studies. However, even these preliminary results allow us
to assert that HACK is a powerful method of tumor classification for immunological and
immunotherapeutic studies

Using HACK for meta-analysis of the single cell scRNA-Seq profiles
from Cancer Cell Line Encyclopedia

The paper of [15] showed that through a matrix factorisation such as NMF, it was possible to
extract and identify specific Recurrent Heterogeneous Programs (RHP) within multiple
cancer cell lines. We decided to test a similar approach using the HACK method to see if we
can obtain similar results.

We took the datasets used in the [15] paper and performed the HACK workflow on all cancer
cell lines containing at least 100 cells (125 cell lines were selected). The obtained persistent
components were then merged together in a MNN network and clustered using the MCL
clustering tool [28] on Cytoscape [29].

We can see in Figure 5 the obtained clusters across all cell lines. Most clusters were
composed of a mix of cancer types but some were still more enriched in certain types such as
cluster 16 being mostly composed of Head and Neck cancer cell lines and cluster 13 being
composed of only Melanoma cell lines.

To compare our finding with the RHPs, we took the 20 most significant genes of each cluster
and counted how many were in common. By taking a threshold of a minimum 50%
intersection, we found 8/10 clusters corresponding to the RHPs, with the two not found
programs being p53-dependent senescence and EMT-I (melanoma).

It is also interesting to note that compared to the 2 programs related to cell cycle found in the
reference paper, we were able to find 3 more (Clusters 1, 2, 4, 8 and 17), showing that HACK
applied with ICA is able to extract more specific signals of the cell cycle than NMF.

Discussions and Conclusions

Compared to a standard matrix factorisation method, a hierarchical approach performs
multiple decomposition of increasing order and creates a relationship graph between each
adjacent order. This graph can later be used to have additional information about independent
components such as their stability or their evolution history along increasing decomposition
orders.

While usual single-shot matrix factorisation applications focus on the selection of a single
order of decomposition, with a hierarchical analysis, multiple orders are visualised, allowing
to see which components appear or disappear after a certain dimension and can help capture
relevant signals more easily. As noted with the BioBombe approach, different signals are
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better captured in different dimensions and no single decomposition order is enough to
capture everything efficiently [20].

By applying a hierarchical approach, we are able to generate a graph in a forest fashion. This
forest consists of various trees where each branch corresponds to a series of individual
components, giving us a more detailed view and new possibilities that were impossible before
by simply looking at individual components.
For instance, we can judge the robustness of a certain signal by its length, i.e. number of
decomposition orders it was found in. By setting the length of a branch, we can ensure that
we keep only the most robust ones and exclude the noise from the graph due to eventual
stochastic behaviour of a decomposition algorithm.

By taking this over-decomposition approach, we also remove the need to select a single
“optimal” decomposition order and risk losing interesting signals. As seen in Figure 2C, if we
took a single decomposition corresponding to the earliest order we found the first immune
component, we wouldn’t have been able to find the second immune signal. And in some
other cases, if we overshot by choosing a decomposition order too high, a signal wouldn’t be
stable enough to be found reliably and would therefore be missed entirely.

Thanks to this over-decomposition view, one could also use the resulting graph as a guide to
see the limits of the extractable signals via the applied decomposition method. If after a
certain decomposition order, no new branches are observable, this means that the method has
reached its limits and probably won’t be able to extract more signals from the data, even if we
were to increase the order of decomposition.

Additionally, instead of having a single metagene related to a single component, it becomes
possible to compute an average metagene by taking into account all individual components
along the branch. This results in a cleaner metagene, corrected for eventual biased local
results. The cleaned metagene can then be used for usual post-decomposition analyses such
as interpretations, enrichments or marker extractions.

Taking a branch as a list of individual components leaves us also with the opportunity to add
an “uncertainty” score to each gene. Based on their behaviour along the persistent component
segment, genes that have a steady behaviour and stay as top contributing, can be noted as
“stable”, whereas those who can have slight variations can be marked as “unstable”. This can
help choose genes in each signal with a level of certainty without risking selecting those that
could be present only in a single order of decomposition.

Data availability

For this paper, several publicly available datasets were used:
- Breast cancer RNA-seq data is available on the TCGA portal or can be directly

downloaded from the corresponding Zenodo repository alongside all the stabilised
ICA deconvolution matrices.

- CRC RNA-seq datasets are available via the Synapse platform with the id
syn2623706.

- Raw and processed scRNA-seq data of pan-cancer cell lines are available at the Gene
Expression Omnibus (GEO) with the accession number GSE157220.
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Figures

Figure 1. Simplified overview of the applications of the Hierarchical Analysis of
Component linKs (HACK). A. Input data in the form of a preprocessed expression matrix
obtained from bulk or single-cell RNAseq. Additional annotations can be used for final
analysis steps. B. Main steps of the HACK algorithm, consisting in over-decomposing the
input data, constructing the correlation graph between components and selecting the most
stable and reproducible components, called persistent components. C. Once the tree is
obtained, we can extract the signals as weighted vectors. Since a signal in the tree consists of
multiple components, it becomes possible to add an uncertainty scoring to each feature to
extract only the most significant ones. This cleaned component can later be used for various
applications using additional annotation data.
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Figure 2. Hierarchical graphs obtained using three different types of Matrix
Factorisation methods (PCA, ICA and NMF) on TCGA BRCA RNAseq data. Persistent
components are highlighted if correlated with Biton’s Immune Infiltration signature. A.
Persistent component graph obtained using PCA with default parameters and 5% deleted
random samples for each decomposition order. B. Persistent component graph obtained using
NMF with modified default parameter of K=1 during the MNN split filtering in Step 3 of the
HACK algorithm. C. Persistent component graph obtained using Stabilised ICA with default
parameters. Top: full hierarchical graph. Bottom: Zoom on only persistent components
having a minimal Pearson correlation of 0.3 with Biton’s Immune Infiltration metagene.

19



Figure 3. Reproducibility analysis of persistent component and simple stabilised ICA
components of order 50 and 100 on 12 CRC RNA-seq datasets. A. View of a MNN
correlation graph for K=1. Each node corresponds to a single component with the width of
outgoing edges is proportional to the correlation between components. Each colour represents
a dataset from which the component was extracted. Left: MNN graph of persistent
components. Middle: MNN graph of single ICA components for a decomposition order of 50.
Right: MNN graph of single ICA components for a decomposition order 100. B. Dependency
graph between the correlation threshold S and the number of reproducible components for a
connectivity value K=2. Left Y-axis: Green, Gray and Blue curves correspond to the total
number of connected components. Right Y-axis: Yellow and Purple curves correspond to  the
ratio of the total number of connected components between Persistent and single ICA
decomposition of order 50 or 100. C. Comparison of reproducible components for a range of
connectivity from 1 to 12 with a threshold of minimum correlation of 0.6. Significance level
of difference is * is P-value < 0.005 and ** if P-value < 0.001 of a Wilcoxon test.
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Figure 4. Deconvolution of immune signal in colon-cancer data. A. Typical deconvolution
of immune signal in colon-cancer data (GSE39582) B. Activity of “root” and “branches”
metagenes projected onto immune single-cell data. C. Hierarchical clustering and functional
interpretations of immune metagenes from 12 colon-cancer datasets
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Figure 5. Meta-analysis of scRNA-Seq profiles from Cancer Cell Lines Encyclopedia
showing the Recurrent Heterogeneous Programs (RHP) obtained with the HACK
method using stabilised ICA. A. Clustered MNN graph of persistent components obtained
from 125 pan-cancer cell lines with each cluster corresponding to a specific biological
program. Each node corresponds to a persistent ICA component connected via and edges
with a width proportional to the Pearson correlation value between both components. B. List
of the 5 most significant genes extracted from the 17 biggest clusters.
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Figure S1. Hierarchical graph obtained using NMF with the default parameters of
HACK.
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4.4 Additional results and observations 

4.4.1 Over-decomposition: To boldly go where no one has gone 
before! 

As stated in the paper of (Kairov et al., 2017), although in general the expected number 
of signals in a bulk RNA-seq dataset is around 30-40, it is a common procedure to take 
a higher number of decompositions to still keep the opportunity of extracting 
additional signals. In the worse case, the additional signals will not be stable and will 
be discarded from the analysis. It is for that reason that in this paper, datasets were 
decomposed up to 100 components. By doing so and looking at the resulting 
hierarchical graph, we are able to follow the number of persistent components along 
the range of decomposition orders. 

As seen in the Figure 4.4, for the 12 CRC datasets, there is a fluctuating but constant 
increase of the total number of persistent components followed by a drop towards the 
end. Peaks for the number of persistent components differ between datasets and are 
also tied to the length of persistent components. But even if we were to increase the 
length of persistence, the trend stays the same and only the total number diminishes. 
This behaviour is expected from ICA since the amount of signals in the data is finite 
and by increasing the number of components above this amount, we are starting to 
force the appearance of artifactual signals that don’t have any biological relevance 
attached to them. However, when going for high decomposition orders, we begin to 
see the appearance of components that could be called “gene shaving components”. 
Said components often contain a very small number of significant genes and these 
genes are often “shaved” from previously found stable components.  
This is usually why we stop decompositions around the order given by the MSTD 
measure since any new signals generated after this order is expected to be either not 
stable or relevant, or it could just contain a small amount of already identified genes 
in existing stable components. 
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Figure 4.4. Evolution of the number of persistent components across decomposition 
orders for 12 CRC RNA-seq datasets. 
Each persistent component was obtained using a stabilised ICA decomposition. 

However, since it has become possible to follow the fate of each component 
individually with the HACK method, I could test this by going above the usual 100 
components. It is important to note that going above the MSTD level, I began 
encountering convergence problems of ICA algorithms. It is for this reason that the 
analysis was executed on only one dataset of TCGA CRC. 

However, instead of witnessing a stop in the growth of the number of persistent 
components or even a decline, the number continued to increase instead (Figure 4.5). 
While at first by setting a limit of 100 components, we could observe a peak of 
approximately 60 persistent components, by going beyond that, we manage to reach 
a peak around 90 persistent components. Even more surprisingly, most of these 
newly found components weren’t coming from previously existing ones and 
contained new specific groups of genes. The majority of previously found persistent 
components stayed persistent to the end and didn’t show any splitting events. 
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Figure 4.5. Evolution of the number of persistent components across decomposition 
orders for the CRC TCGA RNA-seq dataset. 
Each persistent components were obtained using a stabilised ICA decomposition. 

To answer the question if these new components were indeed resulting from gene 
shavings or not, I tried to look at their number of very stable and significant genes, i.e. 
with a Z-score above 5 standard deviation (5SD). While some persistent components 
were indeed containing a very small number of top-contributing genes, there were 
still a decent number of entirely new components. This shows that ICA is still able to 
find specific components with specific genes that have good biological associations 
at high orders of decomposition. 
To interpret those high order persistent components, I have extracted the top 50 
genes with a good stability value and a Z-score above 5SD and used them for an 
enrichment analysis with the TOPPGENE tool (Chen et al., 2009). Many of these 
enrichment returned functions that were not discovered previously in lower 
dimensions. To cite only the most significant result, a persistent component 
appearing at the order 136 and staying persistent all the way to 200, contained genes 
responsible for “Nucleosome assembly and organisation” with an enrichment P-value 
of 10*-77. These genes were almost all histones, had functions related to chromatin 
organisation or were implicated in CRC and no other component contained them 
before. Meaning that the only way of extracting this signal is to decompose the data 
into at least 136 components using ICA. 
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This observation shows us that although the average number of expected signals via 
methods such as the MSTD score makes a good reference for the minimal number of 
components, it makes total sense to go above and beyond the standard number of 
decomposition levels, especially if the analysis is focused on specific signature 
discovery. 

It is with the help of such analyses that we can hope to answer the problems stated in 
Sections 3.2 and 3.3. 

4.4.2 Variance of component weights 

With the existence of persistent components as a set of related individual 
components, it becomes now possible to compare all the components of the same 
set with a focus on the behaviour of metagene scores. By analysing the distribution of 
the genes’ Z-scores or their rank in the metagene, we can see an interesting 
information that wasn’t available before. In Figure 4.6, even if we take a really stable 
and persistent component present across 92 decomposition levels and containing 
~20.000 genes, we can still observe a heavy fluctuation of those scores between each 
component. This distribution is mainly attributed to the stochastic behaviour of ICA. In 
fact, only a small number of genes are consistently found in the top and bottom parts 
of a metagene while the rest have a large standard deviation value, making them 
unfit to be considered as significant genes. This effect is observed on short persistent 
components as well and seems to reflect the general score distribution assigned by 
ICA. 

  

Figure 4.6. Standard deviation analysis of metagene weights distribution from a 
persistent component of length 92. 
Persistent components were obtained using the BRCA TCGA RNA-seq dataset. Each 
point corresponds to a score assigned to a gene. 
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In fact, after a filtering of highly variable genes, we can on average safely consider 
only the top 50 genes with certitude as stable significant genes of a given 
component. This is important especially in cases if one wants to apply only a single 
shot ICA decomposition to extract genes from a component. 

Thanks to this observation, it gives us an additional insight on the problems of 
extracting markers from a component using an arbitrary threshold. By doing that, we 
might extract unrelated genes that were present in the top just by random chance, 
which might give wrong enrichment results afterwards. 

4.4.3 Difficulty of quantifying the biological relevance of 
unsupervised components 

One of the most difficult tasks, that remains unsolved to this day, is the justification 
that a certain component is biologically significant. When trying to relate the 
persistence of a certain component with its biological meaning or a certain 
confidence score, I was struggling to find a correct way of achieving this. In general, 
what is at our disposal are biological annotation databases that can be used to 
perform statistical tests such as enrichments to get an idea of how specific a certain 
component’s genes are to an annotated set of genes. However, such databases can 
present either huge biases or can be entirely unsuitable for certain analyses. 

Let's set aside the possibility that certain databases are biased towards certain 
diseases, pathways or biological functions and consider that we have at our disposal a 
good reference database with fully annotated genes. 

Right from the beginning I was faced with statistical limitations such as the number 
of genes used as an input for the analysis. As mentioned in the previous part, only a 
few genes in an independent component can be considered as robust and specific, 
leaving us with a poor statistical power if I were to take only those. However, if I 
increase the number of genes as inputs, there is also the problem of the size of the 
gene set of a certain biological function or pathway. By taking a large number of 
genes, we increase the chances of hitting low level biological signals. This creates a 
problem of trust in results as well as adding an additional requirement to set 
thresholds to the size of reference pathways for example. 

However, if we do obtain strong associations between our input genes and a certain 
biological function, I now have to select a score to reflect this. Usually, the P-value of 
an appropriate test is the first choice that comes to mind. However, what happens 
when a highly persistent component doesn’t have a good P-value? We would be 
confronted with the problem of reconciling a good statistical strength from a 
mathematical model with a poor biological enrichment. In other words, how can a 
robust and reproducible component not have a good biological significance as well? 
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It is also important to note the fact that methods such as ICA help extracting and 
grouping genes that have a similar expression behaviour but often don’t participate in 
a single biological mechanism. Therefore, when using such groups of genes in an 
enrichment analysis, we won’t be able to clearly see a single enriched pathway. 
Instead we will often observe various pathways poorly enriched due to the low 
number of genes matching with these specific pathways. As a simple example, it 
happened for one CRC dataset that a persistent component didn’t give any 
enrichment results at all, despite being the most persistent one. It was only by looking 
at the individual top genes that it was possible to discern that they were related to 
male specific mechanisms. Some genes were located on the Y chromosome but not 
enough to show a chromatically location enrichment. Most of them participated in 
such different pathways and functions that it wasn’t possible to hit a global meaning 
such as “Male specific function genes”. 

It was when confronted with these exact problems that I decided to prioritise 
statistical characteristics such as robustness, reproducibility and clustering capacity. 
Using enrichment analyses to assign a biological score proved impossible to do on a 
level that could be compared equally between any given set of components. 
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5. A multiscale signalling network map of innate 
immune response in cancer reveals signatures of cell 
heterogeneity and functional polarization 

Maria Kondratova, Urszula Czerwinska, Nicolas Sompairac, Sebastian D Amigorena, 
Vassili Soumelis, Emmanuel Barillot, Andrei Zinovyev, Inna Kuperstein. 

Published in Nature communications, 22nd of October 2019. 

5.1 Description 

Given the importance of TME and more particularly its immune constituents, to follow 
tumor development and its response to various therapies, the creation of TME related 
knowledge maps is essential to shed more light in this field. 

In this publication, which I am a co-author of, we propose an integrated resource of 
innate immune response related maps containing molecular mechanisms in the form 
of signalling networks. This resource is formed of multiple cell-type specific maps of 
macrophages and myeloid derived suppressor cells, DC and NK. In the first part, the 
structure and content of this new resource will be described and then a 
demonstration of data visualisation and analysis possibilities will be shown. My role in 
this article was mainly to help structure and integrate the data in NaviCell, a web-
based platform developed in my team. It is the integration of this resource in NaviCell 
which allows it to be queryable for data analysis methods. 

In this work, ICA was used to extract latent variables from single-cell RNA-seq data of 
macrophages and NK cells obtained f rom metastatic melanoma samples. 
Components that represented a diversity among these cells were selected and an 
activity score was computed. These activity scores were then projected on the innate 
immune map to visualise the functional phenotypes of these 2 groups of immune 
cells in Figure 5 of (Kondratova et al., 2019). 

Two groups of biological functions related to NK cells activity were identified this way 
with pathways from the first group showing increased functions of NK recruitment 
and activation, coinciding with tumor killing functions, while the second group 
represented resting or suppressed NK cells.  
When applied to macrophages, it was possible to identify the pro and anti-tumor 
properties of these cells. Pathways of antigen presentation, immuno-suppressive 
checkpoints and immuno-stimulatory miRNA and TF were shown to be up-regulated 
in the first group of macrophage expressing anti-tumor phenotypes. The second 
group related to pro-tumor activity could be explained by an up-regulation of 
immuno-suppressive cytokines expression. 
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These two results demonstrate that ICA applied to single cell data is capable of going 
deeper than with bulk data by differentiating the functional states of immune cell 
types and that the use of knowledge maps can greatly enhance our interpretation of 
these functional phenotypes. 

An additional study to see if this resource could be used patient survival prediction 
was performed. Several modules allowing correlating patient survival positively and 
negatively were found with a strong predominance of positively correlated genes. 

5.2 Article 
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A multiscale signalling network map of innate
immune response in cancer reveals cell
heterogeneity signatures
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The lack of integrated resources depicting the complexity of the innate immune response in

cancer represents a bottleneck for high-throughput data interpretation. To address this

challenge, we perform a systematic manual literature mining of molecular mechanisms

governing the innate immune response in cancer and represent it as a signalling network

map. The cell-type specific signalling maps of macrophages, dendritic cells, myeloid-derived

suppressor cells and natural killers are constructed and integrated into a comprehensive meta

map of the innate immune response in cancer. The meta-map contains 1466 chemical

species as nodes connected by 1084 biochemical reactions, and it is supported by infor-

mation from 820 articles. The resource helps to interpret single cell RNA-Seq data from

macrophages and natural killer cells in metastatic melanoma that reveal different anti- or pro-

tumor sub-populations within each cell type. Here, we report a new open source analytic

platform that supports data visualisation and interpretation of tumour microenvironment

activity in cancer.
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Tumors are engulfed in a complex microenvironment
(TME) that critically impacts disease progression and
response to therapy. TME includes immune and non-

immune interconnected components that exchange multiple
signals and are influenced by molecules secreted by cancer cells.
The behavior of the tumor and its TME as a whole critically
depends on the organization of these different players and their
ability to regulate each other in a dynamic manner1. The innate
immune part of the TME plays important, but sometimes
opposite roles in tumor evolution. Innate immune cells can
contribute to eliminate the tumor, e.g. through phagocytosis and
T cell priming and by induction of adaptive immune response.
However, they can also favor tumor escape from immunological
control, by a production of immunosuppressive molecules such as
transforming growth factor beta (TGFB) or interleukin 10
(IL10)2. An additional level of complexity in the TME is that
various stimuli can lead to a range of innate immune cells’ phe-
notypes. This results in very heterogeneous subpopulations
within each innate immune cell type coexisting in TME3,4.

Depending on the set of stimuli from TME and tumor,
immune cells are able to change their phenotype or polarization
status from anti-tumor to pro-tumor5,6. Such functional dichot-
omy was first evidenced for one of the components of innate
immunity in TME, the tumor-associated macrophages (TAM)
and led to a description of M1 and M2 polarized TAM classes7.
The same tendency was later documented for other components
of innate immunity as neutrophils8, dendritic cells9 and natural
killers10. Therefore, the term “polarization” can be applied for the
innate immunity system in TME in general11 that represents the
major focus of current works. The balance between anti-tumor
and pro-tumor activity of innate immune cells has an impact on
tumor growth, patient response to therapy, and survival12.

The correct evaluation of the polarization status within the
subtle innate immune cell subpopulations in TME is essential for
immunotherapy improvement. Nevertheless, the primary activa-
tion of adaptive immune response requires innate immune
players, the antigen-presenting cells (APC) such as dendritic
cells13 or macrophages14,15 Therefore, an efficient immune
checkpoint therapy depends directly on the proper innate
immune activation16. In addition, there are studies showing that
innate immunity can restrict tumor growth even when the
adaptive immune system is inactivated17. This indicates that
detailed study of potential innate immune-related targets should
be performed to identify new types of immunotherapy18 that
could function in synergy with the current T cell-targeted
therapies or act independently19,20.

There is a massive amount of information in the literature
about molecular mechanisms implicated in innate immune cells
polarization in TME. However, most of the studies are focused on
individual molecular components and pathways. They do not
integrate the complexity of multiple crosstalks between innate
immune cells and tumor cells. To create a holistic picture of the
diversity and integrity of innate immune system in TME, the
knowledge about molecular circuits should be gathered together
and systematically represented21.

To address these challenges, a systems biology approach is
needed22. Formalization of biological knowledge in a form of
comprehensive signaling maps, both at the intra- and intercellular
levels, helps to integrate information from multiple research
papers23. There are numerous public databases containing sig-
naling pathways related to innate-immune response such as
KEGG24 and REACTOME25, which are quiet comprehensive, but
contain mostly generic mechanisms. Furthermore, there are
resources dedicated to different types of innate immune cells such
as macrophages26 or dendritic cells27. Finally, there are resources
depicting the innate immune system in general as InnateDB28

and ImmuNet29, Virtually Immune30. However, these reposi-
tories are rather pathogen response-oriented than cancer-specific
and often represent a catalog of disconnected pathways. Thus,
there is a need to create an integrated resource on molecular
mechanisms of innate immune response in cancer.

To fill the gap, we construct and present here a system of cell-
type-specific maps and an integrated meta-map of innate
immune signaling in cancer based on the information retrieved
from the literature (Fig. 1). These maps together represent an
open source analytic platform for data visualization and inter-
pretation of TME activity in cancer.

Results
Principles of innate immune response in cancer. The molecular
mechanisms regulating six major innate immune cell types found
in the TME were gathered and depicted in the form of network
maps. To cope with a massive body of literature on innate
immune response in cancer we followed a systematic procedure
of literature selection, knowledge organization, and integration of
information in a visual and understandable manner (Fig. 1). The
network maps were constructed as two-dimensional maps to
facilitate the graphical representation of molecular mechanisms
that drive biological processes. The maps possess a particular
layout that reflects the accepted vision of spatial organization and
propagation of biological processes. The information about
molecular mechanisms was manually retrieved by the researchers
from the scientific literature along with the information presented
in general pathway databases or in the immune system-
specialized resources. The information was classified by specifi-
city to the cell types in cancer and organized into three cell-type-
specific signaling network maps, namely map of macrophages
and myeloid-derived suppressor cells (MDSC), dendritic cells and
natural killer (NK) cells (Fig. 2). These maps, enriched by the
information on additional cell types as neutrophils and mast cells,
were integrated into the meta-map of innate immune response in
cancer (Fig. 3).

The molecular mechanisms were depicted in the maps in the
form of biochemical reaction network using a well-established
methodology31,32. The maps were described using Systems
Biology Graphical Notation language (SBGN)33 and drawn using
the CellDesigner tool34 that ensures compatibility of the maps
with various tools for network analysis, data integration, and
network modeling (Fig. 3b). Each molecular player and reaction
in the maps was annotated in the NaviCell format. The NaviCell
annotations include PubMed references, cross-references with
other databases, and notes of the map manager. In addition,
molecular complexes and reactions were assigned with confidence
scores and tags indicating their involvement in different
biological processes on the maps. Finally, the correspondence of
each molecular player on the map to different cell types is also
indicated, indicated by cell-type-specific tags (Supplementary
Fig. 1)35. The principles and procedure for map construction are
provided in the Methods.

Content and structure of the innate immune maps. Macro-
phages are the major immune component of leukocyte infiltration
in the tumor. The anti-tumor polarization of macrophages is
related to their ability to recognize and to reject tumor cells by
phagocytosis, represent tumor antigens on the cell surface and
induce a T cell response and attract immune cells into the TME.
However, TAMs can also act as pro-tumor agents, expressing
tumor-stimulating growth factors, producing immunosuppressive
molecules induce angiogenesis and matrix remodeling in TME
and consequently facilitate metastatic process36,37.
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MDSC represent a heterogeneous population of myeloid cells.
In general, the role of MDSC in TME is similar to TAMs. MDSC
suppress T cell response and NKs’ activity in TME. In addition,
MDSCs induce EMT and angiogenesis and participate in matrix
remodeling. MDSC mostly show a pro-tumor activity; therefore,
their presence in the tumor is correlated with a poor clinical
prognosis38,39. The MDSC signaling is included into the
macrophage cell-type-specific map.

The macrophage and MDSC cell-type-specific map contains
588 objects and 7 modules representing both pro-tumor and anti-
tumor polarization of myeloid cells (Fig. 2a, Supplementary
Table 1).

The map is available at https://navicell.curie.fr/navicell/
newtest/maps/macrophages_mdsc_cells/master/index.html.

Dendritic cells are innate immune cells that can have both
myeloid and lymphoid origin. As with macrophages, dendritic

cells have phagocytic abilities and can produce inflammatory
cytokines. But the major role of dendritic cells in anti-tumor
response is antigen presentation and further T cell activation40.
The dendritic cell map contains 491 objects and 8 modules
(Fig. 2b, Supplementary Table 1).

The map is available at https://navicell.curie.fr/navicell/
newtest/maps/dendritic_cell/master/index.html.

NKs are big granular lymphocytes that can be cytotoxic to
tumor cells. The main role of NK cells in innate immunity is an
elimination of cells lacking MHC1 molecules that therefore
cannot be recognized by T cells. The activity of NK cells is
stimulated by the target cells expressing NK receptors activating
ligands and modulated by inflammatory cytokines, produced by
macrophages and dendritic cells. NK cells secrete granules
contains lytic enzymes and express the apoptosis inducers.
Presence of active NK cells in cancer is correlated with good
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prognosis. To escape NK control, tumor cells express immuno-
suppressive cytokines and downregulate NK ligands expression
that collectively inhibit cytotoxic activity of NK cells41. A pro-
tumor polarization of NK cells is not described in the literature.
However, suppressed NK cells are incapable to reject tumor cells
and, therefore, indirectly promote cancer progression. The NK
map contains 567 objects and 6 modules (Fig. 2c, Supplementary
Table 1).

The map is available at https://navicell.curie.fr/navicell/
newtest/maps/natural_killer_cell/master/index.html.

Neutrophils form a subtype of granulocytic leukocytes. The
role of neutrophils in the tumor microenvironment is not well

documented, but it is known that they can produce ROS,
inflammatory cytokines and demonstrated tumoricidal activity.
Although, in other conditions, neutrophils act as pro-tumor
agents via stimulation of matrix remodeling, angiogenesis, and
metastasis, therefore these cells have both pro- and anti-tumor
polarization potential8,42. The signaling on neutrophils is
included into the innate immune meta-map (Fig. 3, Table 1).

Mast cells resemble blood basophils and contain granules rich
in histamine and heparin. The experimental data about the
influence of mast cells on tumor microenvironment is contra-
dictory. It is known that mast cells can produce inflammatory
cytokines and secrete Chondroitin sulfate which acts as a decoy
for tumor cells and blocks the metastatic process. However, mast
cells also secrete molecules stimulating tumor growth, angiogen-
esis and local immunosuppression43,44. Probably the polarization
of mast cells in TME is context-dependent. The signaling on mast
cells is included into the innate immune meta-map (Fig. 3,
Table 1).

The aforementioned cell-type-specific maps gathered together
and enriched by additional information gave rise to the global,
seamless meta-map of innate immunity in cancer. The meta-map
contains 1466 chemical species as nodes connected by 1084
biochemical reactions, and it is supported by information from
820 cell-type specific and cancer-related articles (Table 1).

The layout design of the meta-map reflects the current
understanding of signaling propagation in cells. To cope with the
complexity of the signaling network and to make it understandable
and navigable, the meta-map has a hierarchical structure (Figs. 1
and 3). The meta-map possesses two major structuring dimen-
sions: the internal organization of the map (layers, zones, meta-
module, modules, and pathways) and the external organization
represented by zoom levels (see explanation below).

The internal organization of the meta-map is provided in a
form of three layers entitles Inducers, Core Signaling, and
Effectors (Fig. 3a, Table 1). The top part of the meta-map is the
Inducers layer that depicts inducer molecules frequently present
in TME. The inducers interact through specific receptors and
adaptor proteins that propagate the signal via limited number of
transmitters, also called hub molecules as NF-kB, PLCG, PI3K,
etc. These molecules are located in the middle parts of the meta-
map in the Core Signaling layer. The signaling is further
propagated to the Effectors layer, located in the lower part of
the meta-map, which actually executes the biological activity and
therefore defines the outcome phenotype, namely, the positive or
negative influence of the innate immunity system on the tumor
growth and invasion (Fig. 3b, Table 1).

Further, the whole meta-map is divided into multiple signaling
pathways, running through the aforementioned layers (Fig. 3b). A
signaling pathway on the meta-map represents a sequence of
molecular interaction which transforms extracellular signals into
intracellular activity or into single or multiple cell phenotypes.
For instance, the TGFB pathway in innate immune cell
upregulates the expression of immune-suppressive ligands,
inhibits expression of immune-activating molecules and NO
production, and modulates migration of immune cells (Supple-
mentary Fig. 2A).

The meta-map is composed of 98 signaling pathways, 30 of
which contain more than 10 molecules in the sequence
(Supplementary Data 2). It is worth highlighting that there are
many crosstalks between different signaling pathways (Fig. 3b).

The signaling pathways of the meta-map form together 25
functional modules. A module on the meta-map represents a
group of signaling pathways collectively executing a phenotype,
e.g. the functional module NO and ROS production contains
several signaling pathways implicated in a single biological
function (Supplementary Fig. 2B).
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These functional modules are assembled into the structures of
higher level, namely nine biological processes (meta-modules),
reflecting the major biological activities of the innate immune
system with respect to a tumor, i.e. Tumor recognition, Inhibition
of Tumor Recognition, Tumor Growth, Tumor Killing, Immune
Stimulation, Immune Suppression, Recruitment of Immune Cells,
Core Activation, and Core Inhibition.

Finally, at the highest level, all biological processes (meta-
modules) are grouped into two zones representing the concept of
innate immune system polarization into anti- or pro-tumor mode.
The Anti-Tumor zone covers the meta-modules named Tumor

Recognition, Immune Activation, Tumor Killing, and Core
Activation, whereas the Pro-Tumor zone is composed of
Inhibition of Tumor Recognition, Immune Suppression, Tumor
Growth and Core Inhibition meta-modules (Figs. 1, 3a and
Table 1). The list of map nodes per signaling pathways, modules,
biological processes (meta-modules), and zones is available in the
Supplementary Data 3 and downloadable form the resource
website (https://navicell.curie.fr/pages/maps_innateimmune.html).

The various map levels are interconnected and cross-talk
to each other. The crosstalks between the biological processes
(meta-modules) are represented as an interaction network shown
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in the Fig. 3c. The interaction network demonstrates different
types of links between meta-modules of the map, including
activation, inhibition, molecular flow. The Core Signaling meta-
module is a network “hub” where most signaling pathways
converge. In addition, it is notable that there are numerous
positive and negative crosstalks between Immune Stimulation
and Immune Suppression meta-modules on the map (Fig. 3c).

The external organization of the meta-map is reflected in the
hierarchical structure of zoom levels, similar to geographical
maps, where only limited information is displayed on each zoom
level (Fig. 3a). This hierarchical structure facilitates Google Maps-
like navigation of the map.

Access, navigation, and maintenance of the resource. The cell-
type-specific and the integrated meta-map are open source, can
be browsed online, and are available at https://navicell.curie.fr/
pages/maps_innateimmune.html. Each map is presented under
three independent platforms, namely NaviCell, MINERVA, and
NDEx. All map components are clickable, making the map
interactive. The extended annotations of map components con-
tain rich tagging system converted to links and confidence scores.

This allows tracing the involvement of molecules into different
map sub-structures as pathways, modules, and biological pro-
cesses (meta-modules) (Fig. 3). Tagging system also allows to use
the meta-map as a source of annotated signatures (Supplemen-
tary Fig. 1).

The semantic zooming feature of NaviCell35 simplifies the
navigation through large maps of molecular interactions, showing
readable amount of details at each zoom level.

Comparison of meta-map with existing pathway databases. The
meta-map content (Supplementary Fig. 3) and the coverage of
literature used to annotate the entities (Supplementary Fig. 4)
were compared to a sub-set of pathways related to the innate
immune system from the existing molecular interaction databases
(Supplementary Table 2). The InnateDB database contains a
detailed description of the innate-immune signaling, even though
more general databases as KEGG and REACTOME also include
immune pathways. A description of comparison procedure is
provided in the Methods.

We further compared the major features of innate immune
response representation in different pathway databases. The

Table 1 Hierarchical modular structure of innate immune response meta-map

Zones metamodule module Chemical species as
entities

Proteins Genes RNAs asRNAs Reactions References

Zone: Pro-tumor polarization
Inhibition of Tumor Recognition
NK inhibiting receptors 35 23 1 1 0 14 57

Immune Suppression
Immunosuppressive cytokine pathways 109 46 10 11 3 67 114
Immunosuppressive cytokine expression 55 19 14 14 0 36 75
Immunosuppressive chekpoints 8 7 0 0 0 8 13

Core Signaling Pathways
Immunosupppressive core pathways 43 23 5 5 1 25 54
MIRNA TF Immunosuppressive 77 20 23 14 12 48 62

Tumor Growth
Tumor growth 60 42 8 8 0 71 58

Zone: Anti-tumor polarization
Tumor Recogntiton
NK activating receptors 114 45 16 14 6 72 115
Danger signal pathways 60 30 2 1 0 36 66
FC receptors 18 12 0 0 0 8 37
Integrins 38 24 0 0 0 21 56

Immune Stimulation
Immunostimulatory cytokine pathways 152 74 18 18 3 92 193
Immunostimulatory cytokine expression 43 17 12 11 1 27 109
Antigen presentation and immunostimulatory
checkpoints

99 65 6 6 0 91 152

Core Signaling Pathways
Immunostimulatory core pathways 184 93 6 6 114 244
MIRNA TF immunostimulatory 50 17 12 10 5 33 60

Tumor Killing
Lytic granules exocytosis and phagocytosis 73 39 6 6 5 50 75
No ROS production 33 10 4 4 0 23 44

Cell-type specific markers
Markers
Markers macrophage 22 10 6 6 0 0 8
Markers NK 10 10 0 0 0 0 36
Markers mast 6 6 0 0 0 0 9
Markers DC 16 14 0 2 0 0 14
Markers neutrophil 11 11 0 0 0 0 15
Markers MDSC 9 9 0 0 0 0 9

Recruitment
Recruitment of immune cells
Recruitment of immune cells 103 48 17 17 0 93 83

Meta-map 1466 582 162 152 20 1084 820

Structure and content of innate immune meta-map
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innate immune response in cancer resource contains cell-type-
specific maps in contrast to other databases. The comparison
indicates that the cross-talk between the pathways is visually
represented at the maps of immune response in cancer
resource. Finally, the combination of hierarchical organization
of knowledge and possibility of navigation through the layers
of the maps thanks to semantic zooming feature makes the
innate immune resource more suitable for meaningful data
visualization. The visualization tool box is built into the
NaviCell environment which allows easy data integration and
visualization in the context of the innate immune maps (Figs. 4
and 5).

Taken together, the results of database comparisons indicate
that the innate immune response in cancer resource is topic-
specific, and describes immune-related and cancer-relevant
signaling processes based on the latest publications about innate
immune component in TME. The thoughtful layout and visual
organization of the biological knowledge on the maps makes it a
distinguished resource for data analysis and interpretation.

Application of the maps for data visualization and analysis.
The cell-type-specific maps and the meta-map were applied to
explore the heterogeneity of innate immune cell types in cancer.

b c

d e

Macrophages cell type-specific map:  anti-tumor group 1 Macrophages cell type-specific map: pro-tumor group 2

Innate immune response meta-map: anti-tumor group 1 Innate immune response meta-map: pro-tumor group 2
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SUMMARY:

Upregulated modules in anti-tumor Gr 1: 
• Antigen presentation (cell-specific and meta

map)

• Immunosuppressive checkpoints
• Danger signal modules
• Immunostimulatory MiRNA and TF

Upregulated modules in pro-tumor Gr 2: 
• Tumor growth 
• Immunosuppressive cytokine expression (cell-

specific and meta map)
• Recruitment of immune cells module
• Core signalling pathways (cell-specific map)

75

50

25 Group
Group 1
Group 2P

C
2

0

–25

–50
–40 0

PC1

0.5

0

–0.5

–1

0.2

0.4

0

–0.2

–0.4

40

Integrins

Fig. 4 Visualization of modules activity scores using expression data from melanoma macrophages. aMacrophages single cells in PC1 and PC2 coordinates
space. Two groups, the first and the fourth quartiles of distribution along the IC1 axis, are colored distinctly in blue and black. Staining of the macrophage
cell-type-specific map with modules activity scores calculated from single-cell RNAseq expression data for b Macrophages group 1 (Anti-tumor) and c
Macrophages Group 2 (pro-tumor) cells. Staining of the innate immune meta-map with modules activity scores calculated from single-cell RNAseq
expression data for d. Macrophages Group 1 (Anti-tumor) and e Macrophages Group 2 (Pro-tumor) cells. Color code: red—upregulated, green—
downregulated module activity
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The single-cell RNA-Seq data for macrophages and NK cells from
metastatic melanoma samples were used45.

A matrix factorization technique, independent components
analysis (ICA)46 allows ranking genes or samples along data-
driven axes. The independent components instead of detecting

highest variability axes as PCA, extract independent and non-
Gaussian signals called components. The most stable component
was used as a way to order the cells based on some latent process
that we aim to interpret using innate immune maps. In order to
better understand the differences in the cell ranking, the cells with

a b

Innate immune response meta-map: group 1 (tumor-killing)
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SUMMARY:

Upregulated in tumor-killing Gr 1: 

• Pathways: LFA1, CR3, STING, 2B4, FcγRII

• Modules:

• Lytic granules exocytosis (cell-specific map)

• Recruitment of immune cells

• Integrins

• Fc receptors

• Danger signal pathway

Upregulated in immuno-suppressive Gr 2:   

• Pathways: IL18, IL13

• Modules:

• Immunosuppressive MiRNA and TF
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Fig. 5 Visualization of modules activity scores using expression data from melanoma natural killers (NK). NK single cells in PC1 and PC2 coordinates space.
Two groups are colored distinctly in blue and black. aMap staining of the NK cell-type-specific map with modules activity scores calculated from single-cell
RNAseq expression data for b NK Group 1. c Heatmap of activity scores in signaling pathways of NK groups. Map staining of the innate immune response
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extreme rank values were selected, which resulted in Groups 1
and 2. When projected in the PCA space (Fig. 4a), those
macrophage cell groups are lying on the borders of the cloud of
points.

Furthermore, the activity scores were computed for each
macrophage cell group (as defined in the Methods) for functional
modules at different levels: pro- and anti-tumor general
classification, innate map modules, and macrophage-specific
map modules.

First, the analysis of potential pro- and anti-tumor properties
of the macrophage cell groups was examined in the context of the
innate immunity meta-map. Group 1 has significantly higher
anti-tumor score (t-test p value: 0.02) and Group 2 is the pro-
tumor one (t-test p value: 0.003). Second, the expression profile
differences of the cells from the two groups were interpreted in
the context of the Macrophage cell-type-specific map and the
innate immune response meta-map. The results of the enrich-
ment study for the two Macrophage groups were also represented
as heatmaps with a significance level of p value for Student's t-test
(see Methods) (Supplementary Fig. 5). The module activity values
were plotted on the maps using BiNoM plugin of Cytoscape47.

Visualization of the module activity scores in the context of
macrophage cell-type-specific demonstrates that the module
Antigen Presentation is upregulated in Macrophage Group 1
(Fig. 4b) comparing to Macrophage Group 2 (Fig. 4c). Whereas,
Macrophage Group 2 (Fig. 4c) shows upregulated modules Core
Signaling Pathways and Immunosuppressive Cytokines Pathways
comparing to Macrophage Group 1 (Fig. 4b).

Then, the module activity scores for the two Macrophage cell
groups were analyzed in the context of the meta-map that allowed
to detect several additional modules differentially regulated
between the two groups. The four modules Antigen Presentation,
Immunosuppressive Checkpoints, Danger Signal Module, and
Immunostimulatory MiRNA and TF were significantly over-
expressed in Anti-tumor Macrophage Group 1 (t-test p values,
respectively: <10−4, 0.009, <10−8, <10−5, Fig. 4d) compared to
Pro-tumor Macrophage Group 2 (Fig. 4e). On the contrary, the
three modules Recruitment of Immune Cells Module, Tumor
Growth, and Immunosuppressive Cytokine Expression were
strongly upregulated in Pro-tumor Macrophage Group 2 (t-test
p values, respectively: <10−6, <10−6, <10−5, Fig. 5d). in
comparison to Anti-tumor Macrophage Group 1 (Fig. 4d, e).

From these results, it can be concluded that the Macrophage
Group 1 has a tendency to express an anti-tumor phenotype,
because it is characterized by the expression of inflammatory
cytokines that are able to induce local adaptive immunity via
antigen presentation process. Interestingly, the most typical
modules responsible for tumor elimination as Exocytosis and
Phagocytosis and Immunostimulatory Cytokine Pathways are not
over-activated in this cell sub-set. In contrary, Macrophage Group
2 demonstrated a pro-tumor phenotype, characterized by
expression of immunosuppressive cytokines restricting local
immune response and growth factors supporting tumor growth.

Alike macrophages, NK cells were ranked along a latent variable
obtained with ICA algorithm. Due to low cell number available, the
42 single NK cells were split in half according to the ICA ranks.
Subsequently, the module activity scores were computed of each
group and then a t-test was applied to evaluate the difference in
module activity between the two NK subpopulations (Group 1
referred to as Tumor Killing and Group 2 referred to as
Immunosuppressed) (Fig. 5a, Supplementary Fig. 6).

First, the comparison and visualization of the module activity
between the two NK cells groups demonstrated the activation of
Lytic Granules Exocytosis module in NK Group 1 compared to
NK Group 2 (t-test p value: 0.006), on the NK cell-type-specific
map (Fig. 5b). The activity of this module is directly responsible

of tumor killing capacity of NK Group 1 cells that most probably
exposes stronger anti-tumor abilities compared to Group 2
(Supplementary Fig. 6A).

Next, the two NK cells groups were analyzed in the context of
the meta-map that allowed detection of five differentially
regulated modules between the two groups of NK cells (Fig. 5d).
The four modules Recruitment of Immune Cells, Integrins, Fc
Receptors, and Danger Signal Pathway were significantly
upregulated in the NK Group 1 comparing to the NK Group 2
(t-test p values, respectively: 0.0001, <10−4, 0.004, <10−5). In
contrary, the module Immunosuppressive MiRNA and TF was
inhibited in the NK Group 1 comparing to the NK Group 2 (t-test
p value: 0.001). Finally, although the activity of Phagocytosis and
Exocytosis module is not significantly different between the two
groups, this module is rather activated in the NK Group 1
compared to the NK Group 2 (Supplementary Fig. 6B).

Collectively these results demonstrate that the NK Group 1 is
characterized by upregulation of biological functions related to
NK cell recruitment and activation, coinciding with upregulation
of the mechanisms responsible for tumor killing. Thus, the NK
Group 1 can be interpreted as newly recruited, actively migrating
NKs with strong anti-tumor polarization. In contrary, most
probably, NK Group 2 contains resting or suppressed NK cells
that do not expose a well-defined phenotype.

The activation of upstream map zones and downstream effector
zones in NK Group 1 is notable (Fig. 5d). However, which
mechanisms coordinate this co-activation is not clear. The structure
of the network was analyzed to address this question and the
signaling pathways connecting the two activated zones were
retrieved. The activation state of 30 signaling pathways from the
meta-map was assessed for the cell from Group 1 and Group 2
(Fig. 5c). There are all together seven differentially regulated
pathways between the two cell groups. Five are upregulated
pathways in Group 1 (LFA1, CR3, STING, 2B4, FcγRII) and two
upregulated pathways in Group 2 (IL13, IL18) (t-test p values <0.05).

Within the pathways activated in the Group 1 there are three
pathways regulated through receptors LFA1, CR3, and FcγRII.
The key players of the pathways are presented schematically in
Fig. 5d. The meta-map described difference between NK subtypes
both on the level of functional modules and signaling pathways. It
allows us to draw the conclusion that tumor recognition via these
pathways plays an even more important role for NK-activation
than well studied activation via classical NK receptors.

Meta-map as a source of patient survival signatures. To study
whether the innate immune response meta-map can be used for
assessment of processes contributing to patient survival, the list of
genes from the map was used to find correlation with prognosis
of patient survival using data published elsewhere48 (see Meth-
ods). First, the presence of the genes on the innate immune
response meta-map correlating with the patient survival from the
aforementioned study was verified. It was detected that out of 627
proteins and protein coding genes depicted on the meta-map, 295
are significantly correlated with patient survival (z-score p value <
0.05), that represents 47% of the map content vs. 27% in the
whole genome study48 (Supplementary Data 1).

The genes enriched on the meta-map can be divided into two
groups, positively and negatively correlated with the patient
survival, which confirms the observation that innate immune
system can play a dual role in cancer disease. Interestingly, from
the whole genome analysis in the original study by Gentles et al.
(2015)48, it emerges that there is quasi equal proportion of
positively and negatively correlated genes. However, in the innate
immune response meta-map, there is a strong predominance of
genes positively correlated with patient survival (Table 2).
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In order to highlight what biological functions on the innate
immune response in cancer meta-map are associated to positive
or negative patient survival, mean values of gene z-scores per
meta-modules were calculated and visualized in the context of the
meta-map (see Methods). As a general trend, the meta-map layers
Inducers and Core Signaling are more significantly correlated
with patient survival, compared to the layer Effectors. Further-
more, the meta-modules with biological functions related to anti-
tumor activity as Immune Response Stimulation and Tumor
Recognition, Recruitment of Immune Cells, etc. are positively
correlated with patient survival. Interestingly the meta-module
Tumor Killing is also positively correlated with patient survival,
though not reaching the statistical significance (Table 2, Supple-
mentary Fig. 7). The minority of meta-modules related to pro-
tumor activity as Tumor Growth, Immunosuppressive Core
Pathways, Immunosuppressive MiRNA and TF correlated
negatively with patient survival (Table 2, Supplementary Fig. 7).
The described analysis demonstrates that the meta-map can serve
for evaluation of innate immune response signatures associated
with patient survival in cancer.

Discussion
One of the challenges of cancer biology today is understanding
the phenomena of tumor heterogeneity. It consists of two rela-
tively independent parts: first, heterogeneity of the tumor cells
themselves, as a result of their clonal divergence or action of
epigenetic mechanisms; second, heterogeneity of tumor micro-
environment (TME). Recent years discoveries have shown that
understanding how the components of this multicellular TME
system interact with each other is very important for effective
drug design. Actually, the attempt to modulate the interactions
within the tumor microenvironment lies on the basis of new anti-
cancer immune checkpoint inhibition therapy.

The analysis of large amounts of scientific information and the
creation of optimal forms of its representation, require the
development of new approaches for network map construction
and annotation. Our first goal was to preserve the natural mul-
tidimensionality of the biological knowledge available for the
different cell types in the innate component of the TME. Indeed,
different cells types in innate immune system are studied from
different angles. Some signaling pathways are described in detail
for the macrophages and others for natural killer cells and so on.
It is clear that the molecular knowledge described for one cell-
type cannot always be extrapolated to another. This motivated us
to create two complementary representations of innate immune
system in cancer, one in the form of cell-type-specific maps and
the second as an integrated meta-map of innate immune response
in cancer. To be able to trace the correspondence of molecular
entities and processes to a particular cell type, we introduced a

system of cell-type-specific tags, included into the annotation of
all entities on the maps.

Our second goal was to provide a complete and not con-
troversial picture on the processes occurring in the TME. The
generation of an integrated meta-map of innate immunity
immediately exposed a problem of map complexity. We coped
with the complexity problem by introducing the hierarchical
structure into the integrated meta-map, respecting the biological
functions. The general layout of the integrated meta-map is based
on the idea of immune cells polarization in TME, reflected in the
representation of both, pro-tumor and anti-tumor signaling
mechanisms. In accordance with the literature, all functional
modules and meta-modules on the map are grouped into pro-
tumor and anti-tumor zones. There two types of signaling modes
lead to the corresponding phenotypes. In addition, the mechan-
ism responsible for a switch in the polarization state is also
represented.

The modular hierarchical map structure and complex tagging
system of maps entities facilitated the production of geographical-
like easily browsable open source repository. Taking an advantage
of NaviCell platform, which provides Google Maps-engine and
map navigation features, the innate immune maps can be
explored in an intuitive way, allowing the shuttling between the
cell-type-specific maps to the integrated meta-map.

NaviCell-based representation of the maps facilitates visuali-
zation of various types of omics data. Analysis of data in the
context of both, cell-type-specific and integrated maps, can help
in the formalization of biological hypotheses for the processes and
interactions that are studied in some cell types, but unexplored in
others. In addition, thanks to the rich system of tags, the maps
content can be used as a source of knowledge-based gene sig-
natures of innate immune cell type. Finally, hierarchical organi-
zation of the map provides a basis for structural network analysis,
complexity reduction, and eventual transformation of the map
into executable mathematical models.

The integration of the innate immune response in cancer
resource into additional platforms allows broader exposure and
use of the valuable maps. Therefore, in addition to NaviCell
platform, the resource is also exposed in the MINERVA platform
and integrated into the NDEx repository and platform. In the
future, the resource will be also integrated into larger pathway
collections. These moves will allow a deeper involvement of the
scientific community into the maintenance and update of the
maps with the latest discoveries.

The resource of innate immune maps is useful for computing
network-based molecular signatures of innate immune cells
polarization. These signatures will help to characterize the overall
status of the signaling dictating pro-tumor and anti-tumor states
of TME in cell lines and tumoral samples. It will also help to
stratify cancer patients according to the status of the TME and

Table 2 Distribution of genes with positive (z < 0) and negative (z > 0) correlation with patient survival across functional meta-
modules in innate immune response meta-map

Innate immune map meta-module Mean z-score Positive correlation with patient survival Negative correlation with patient survival

Tumor Growth 1.3 12 26
Inhibition of Tumor Recognition −1.86 18 6
Tumor Recogntiton −1.56 67 28
Recruitment of Immune Cells −0.94 29 14
Immune Stimulation −0.53 122 87
Tumor Killing −0.5 25 29
Core Signaling Pathways −0.46 114 84
Immune Suppression −0.33 39 24

Values indicate number of genes
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potentially predict patient survival and response to immu-
notherapies. In addition, the resource might potentially provide
new immunotherapy targets, among innate immunity compo-
nents of TME in tumor infiltrates. These targets can be com-
plementary or synergistic to the well-known immune checkpoint
inhibitors.

As other studies show, similar resources are used for omics
data visualization in the context maps that can provide network-
based molecular portraits of studied cases. Comprehensive maps
are rich in molecular details carefully compiled together, therefore
structural analysis of the maps can explain particular phenotypes,
redundancies, and robustness49,50. Such analysis together with
omics data can guide to design of complex druggable interven-
tions51. Further, complex maps contain modules that correspond
to particular biological processes; therefore, the content of these
modules are used as signatures of the corresponding biological
functions52. These lists of genes are frequently used for enrich-
ment studies53.

Construction of the innate immune response map is the first
step in the attempt to build a global network describing the
molecular interactions in the TME. The next perspective is to
represent the knowledge on adaptive immune response and non-
immune components in the tumor environment, including
fibroblasts and endothelial cells. The final goal is to build a
complete map of signaling in cancer representing both intracel-
lular interactions of tumor cells and each component in the TME
and their intracellular interactions, and describing the coordina-
tion among the components of this multicellular system.

In addition, being included into a broader Disease Maps pro-
ject, the meta-map of innate immune response will be helpful,
together with maps or other diseases, in the study of disease
comorbidities and drug repositioning54,55.

Methods
Map and model. The maps sere drawn in CellDesigner diagram editor34 using
Process Description (PD) dialect of Systems Biology Graphical Notation (SBGN)
syntax which is based on the Systems Biology Markup Language (SBML)33. The
data model used includes the following molecular objects: proteins, genes, RNAs,
antisense RNAs, simple molecules, ions, drugs, phenotypes, complexes. These
objects can play the role of reactants, products, and regulators in a connected
reaction network. The objects phenotypes play a role biological process outcome or
readout (e.g. Migration, Tumor killing, ROS production, etc). Edges on the maps
represent biochemical reactions or reaction regulations of various types. Different
reaction types represent post-translational modifications, translation, transcription,
complex formation or dissociation, transport, degradation and so on. Reaction
regulations include catalysis, inhibition, modulation, trigger and physical stimu-
lation. The naming system of the maps is based on HUGO identifiers for genes,
proteins, RNAs and antisense RNAs and CAS identifiers for drugs, small mole-
cules, and ions.

Manual literature mining. The molecular interactions reported in the scientific
articles were manually curated and the information extracted from the papers was
used for reconstruction and annotation of the maps. Three types of articles were
used for map annotation: (i) experimental innate-immunity specific articles directly
or indirectly confirming molecular interactions based on mammalian experimental
data; (ii) review articles; (iii) experimental articles from non-immune cells that
helped to complement the mechanisms present in immune cells (3% of the lit-
erature used for the map). In addition, pathway databases were used to retrieve
information of the canonical pathways reported for the innate immune signaling
general pathway databases (e.g. KEGG, REACTOME, SPIKE SignaLink, EndoNET)
or in the immune system-specialized resources such as VirtuallyImmune (http://
www.virtuallyimmune.org) and InnateDB (www.innatedb.com).

Map structure and tag×ging system. The annotation of each molecular object on
the maps (protein, gene, RNA, small molecule, etc.) includes several tags indicating
participation of the object in signaling pathways (tag PATHWAY:NAME), func-
tional modules (tag MODULE:NAME), and cell-type-specific map (tag: MAP:
NAME). Each PATHWAY obtains the name of the initiating ligand or receptor, in
case when several ligands are acting through the same receptor. The tags are
converted into the links by the NaviCell factory in the process of online map
version generation. The links allow to trace participation of entities in different

cell-type-specific maps and the sub-structure of the same map (pathway, module,
biological process) and also facilitate shuttling between these structures.

Reaction and protein complex confidence scores. To provide information on the
reliability of the depicted molecular interactions, two confidence scores have been
introduced. Both scores represent integer numbers varying from 0 (undefined
confidence) to 5 (high confidence). The reference score (REF) indicates both the
number and the “weight” associated with publications found in the annotation of a
given reaction. The functional proximity score (FUNC) is computed based on the
external network of protein–protein interactions (PPI), InnateDB, which contains
both experimental and literature-based curated interaction data28. The score
reflects an average distance in the PPI graph between all proteins participating in
the reaction (reactants, products, or regulators).

Map entity annotation in NaviCell format. The annotation panel followed the
NaviCell annotation format of each entity of the maps includes sections Identifiers,
Maps_Modules, References, and Confidence as detailed in ref. 32. Identifiers section
provides standard identifiers and links to the corresponding entity descriptions in
HGNC, UniProt, Entrez, SBO, GeneCards, and cross-references in REACTOME,
KEGG, Wiki Pathways, and other databases. Maps_Modules section includes tags
of modules, meta-modules, and cell-type-specific maps in which the entity is
implicated (see above). References section contains links to related publications.
Each entity annotation is represented as a post with extended information on the
entity.

Generation of NaviCell map with NaviCell factory. CellDesigner map annotated
in the NaviCell format is converted into the NaviCell web-based front-end, which
is a set of html pages with integrated JavaScript code that can be launched in a web
browser for online use. HUGO identifiers in the annotation form allow using
NaviCell tool for visualization of omics data. A detailed guide of using the NaviCell
factory embedded in the BiNoM Cytoscape plugin47 is provided at https://navicell.
curie.fr/doc/NaviCellMapperAdminGuide.pdf.

Depositing maps at several web-based platforms. Cell-type specific maps and
the meta-map of innate immune response in cancer were made available at other
platforms such as MINERVA and NDEx. To integrate maps within NDEx, Cell-
Designer maps were first loaded in Cytoscape using the BiNoM Cytoscape plugin
and then uploaded on NDEx using the CyNDEx Cytoscape plugin.

Databases content comparison. Pathways related to the human innate immune
system were selected from the InnateDB 5.4 version, except Complement Cascade
(Human), NOD-like Receptor Signaling Pathway, Regulation of Autophagy
(Human), and RIG-I-Like Receptor Signaling Pathway (Human). The excluded
pathways represent virus and bacterial infection-specific pathways that do not
correspond to TME signaling. The innate immune-related pathways from KEGG
84.1 version were retrieved from the list 5.1-Immune System. The pathways
obtained from REACTOME 63rd version cover Class I MHC Mediated Antigen
Processing & Presentation, MHC Class II Antigen Presentation from Adaptive
Immune Branch, and all pathways from Innate Immune Branch. All together 666
gene names from InnateDB 5.4, 563 gene names from KEGG 84.1, and 2156 gene
names from REACTOME 63rd were selected. These lists were compared with the
innate immune response meta-map that contains 683 gene names. The complete
list of selected pathways with gene names is available in the Supplementary Data 2).

The selected InnateDB pathways contain altogether, nearly the same number of
objects as the innate immune response meta-map (Supplementary Data 4). The
content of selected KEGG or REACTOME pathways is richer than in the innate
immune response meta-map, due to the fact that KEGG and REACTOME are
generic databases, describing all innate immune-related interactions, whereas the
meta-maps is rather oriented to cancer signaling. The overlap between the meta-
map and the three selected databases represents 61% for InnateDB, 58% for KEGG,
and 30% for REACTOME. It is important to note that there are 188 genes that
present exclusively at the innate immune response meta-map (Supplementary
Fig. 4A, Supplementary Data 2). These unique genes are relatively homogeneously
distributed across the meta-map, indicating that the depicted processes are
described in more depth on the meta-map compared to the other three databases
(Supplementary Fig. 3A). Several modules are significantly enriched by unique
genes on the meta-map (Supplementary Fig. 3B). Thus, the modules Tumor
Growth and Immunosuppressive Checkpoints contain signaling that are very well
studied in cancer cells and therefore represented in great details on the meta-map.
Two additional modules, entitled MIRNA TF Immunostimulatory and MIRNA TF
Immunosuppressive, contain the latest information of miRNA involvement in the
innate immune system control in cancer and unique for the meta-map, compared
to other databases. It was concluded that the content of the meta-map is not
redundant with the other pathway databases and that several functional modules
directly related to TME functions are unique to the meta-map.

Databases annotation literature comparison. In addition, the sets of publica-
tions used to annotate the InnateDB resource and aforementioned preselected
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pathway from REACTOME resource were compared to the set of publications used
in the meta-map. The overlap of the literature body from the meta-map with
references from InnateDB and REACTOME databases is relatively small, because
785 papers out of 820 papers that were used to annotate the meta-map are unique
(Supplementary Fig. 4B). It confirms that the meta-map is not a mechanical
compilation of existing databases, but rather an independent resource. It formalizes
the part of biological knowledge which was not annotated before and highlights the
difference between reconstruction of generic and cell-type specific pathways in
terms of literature sources.

Although the median age of the literature references in the meta-map is only
one year-younger compared to InnateDB and REACTOME, there is a 27% of
papers dating 2010–2017 in the literature body annotating the meta-map. The
literature set in the meta-map contains more papers published after year 2010 than
in InnateDB and REACTOME, indicating that the meta-map represents the most
recent discoveries in the corresponding fields (Supplementary Fig. 4C).

Finally, the journal types represented in the three databases were also compared.
The choice of the journals used for annotating the meta-map and the other two
databases is similar; however, the distribution of the papers from different types of
journals is not even. The annotations of meta-map mainly contain papers from
immunological journals such as Journal of Immunology, Immunity, Nature
Immunology, and cancer-specific journals, such as Cancer Research and Oncogene,
comparing to the other two databases. The annotations of InnateDB and
REACTOME are rather oriented towards more generic molecular biology journals
as JBC, MCB, Nature, and PNAS (Supplementary Fig. 4C and D).

High-throughput data analytical pipeline. Normalized melanoma data sets from
GEO (GSE72056)45 were transformed into log expression levels and mean cen-
tered. The exploratory analysis and statistical testing was performed and visualized
using R packages (ggplot2, stats, pheatmap)56–58 then MATLAB ICA imple-
mentation of FastICA algorithm46 and icasso package59 to improve the stability.
Colored map images were obtained using function “Stain CellDesigner map” from
BiNoM Cytoscape plugin47 using .xml map files and the mean expression from the
analysis described below.

Analytical pipeline. The single-cell molecular profiles are characterized by high
variability that have both biological and technical origin. A common practice is to
group single cells in order to make an aggregated representative profile that
minimizes the technical biases but still represents finer level of granularity than a
bulk sample. In order to define cell groupings that would lead to functional
interpretation we used a matrix factorization technique called ICA

ICA is a matrix factorization-based technique aiming at defining statistically
independent hidden factors shaping gene expression. Stability-based analysis
revealed only one sufficiently stable independent component in the case of both
Macrophage and NK data subsets. Therefore, first independent component was
used to rank the individual cells. We grouped the NK single cells depending on the
first independent component (IC1) projection score such that Group 1 had positive
projection scores and the Group 2 has negative projection scores. For macrophage
single cells we selected the first and the last quartiles of the macrophage scores of
IC1 projection. In order to best interpret the “extreme” tendencies of the cells
placed on the opposite side of IC. The distinction of the groups plotted in first and
the second principal components space (PC1 and PC2) can be seen in Figs. 4a
and 5a.

For cell groups defined as described above, the following procedure was applied
in order to define the map module scores. For each module, 50% of most variant
genes were retained in order to select genes over the median variability. The
module score was defined as the mean of the selected genes.

Standard t-test was used to assess statistical differences between single-cell
groups for each module. The p values of the t-test were reported in the heatmaps
with the standard code of significance (***p < 0.001, **p < 0.01, *p < 0.05, <0.1).

The data on pan-cancer meta-analysis of expression signatures from ∼18,000
human tumors across 39 malignancies accompanied by survival clinical data were
used48. In total, 6323 genes with significant z-scores (p value <0.05) indicating
correlation to patient survival were retrieved48 and overlapped with the gene lists
from the innate immune response meta-map. Enrichment of the meta-map with
the genes significantly positively or negatively correlated with patient survival was
assessed using the χ2 test with p value threshold 0.001.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The cell-type-specific maps and meta-map of innate immune response in cancer are
freely available at the web page (https://navicell.curie.fr/pages/maps_innateimmune.
html). The meta-map and cell-type-specific maps are provided in three platforms,
NaviCell, MINEVRA and integrated into the repository NDEx. The maps exist and can
be downloaded in several exchange formats (CellDesigner SBML level 2 version 4,
SBGN-ML 0.2, SBML level 3 version 1, Cytoscape CX version 3.4.0). In addition, the
composition of map signaling pathways, modules, and meta-modules is provided in a
form of GMT files (Supplementary Tables 2 and 3, respectively) suitable for further

functional data analysis. A network of binary relations between proteins generated from
the meta-map and the complete list of references annotating the maps are also available.

Code availability
The documentation and the scripts for module activity calculation and generation of life
example is provided at GitHub (https://github.com/sysbio-curie/NaviCell/tree/master/
auxiliary_scripts). The step-by-step procedure on modular hierarchical maps
construction is also provided at https://github.com/sysbio-curie/NaviCell.
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III - Discussion, perspectives and conclusion



6. Discussion 
I have presented in this work a series of methods aimed at enhancing our 
understanding of cancer functions through a combination of mathematical 
approaches and biological knowledge. My team has long expertise in the construction 
and usage of unsupervised approaches; and it is in this direction that I focused my 
efforts during my PhD. And since the data analysis method of Independent 
Component Analysis had a long history among the team successful applications to 
cancer data, it was with the vision of improving our usage and understanding of ICA 
applications that I embarked on this PhD project. 

6.1 ICA vs other methods 

With the constant increase of biological data, many researchers tried to look for 
existing mathematical approaches that could help solve various biological problems 
since many foundations were already established a long time before even computers 
existed (Gauthier et al., 2019). Some focused on the usage of methods that could be 
coupled with expert knowledge to ensure a certain curation of results. Some others 
however went on an exploratory trip with the sole hope of discovering new 
unexpected phenomena. 

Although ICA wasn’t a method initially developed for biological applications, it was 
still taken and applied to various types of omics and proved successful. Being part of 
the big family of matrix factorisation methods, one might ask why I would use ICA 
above others methods such as the popular NMF. Indeed, both of the methods are 
systematically compared in numerous other fields than biology. The main argument 
for applying NMF to biological data such as gene expression is its inherent constraint 
of non-negativity, which better reflects living systems. On the other hand, ICA has the 
advantage of recovering statistically independent signals from data, which is often a 
direct assumption for source separation. However, in the field of cancer biology, while 
some argue about the effectiveness of one method above the other, others claim 
similar performances (Kim et al., 2011). Most still agree that their efficiency is highly 
context specific when it comes to blind source separation problems (Mirzal, 2017). 

6.2 The good and the bad of unsupervised deconvolution 
methods 

In Section 1.3, I have introduced the problem of quantifying and qualifying the TME 
content and state. While a majority of methods to solve the deconvolution problems 
rely on supervised approaches, unsupervised methods still present many advantages. 

While supervised methods are more precise than unsupervised ones, they still have a 
limited focus by concentrating only on the task they are made for. This eliminates the 
possibility to make new discoveries about the TME unless new knowledge is 
constantly added onto the method. Unsupervised approaches do not suffer from this 
problem and are suitable approaches to uncover new elements of the tumoral 
microcosm. In Chapter 4, I showed that through the use of HACK, I was able to find 
components related to different immune functional states. This type of information 
can give us more insight on the possible states of the TME than a simple estimation of 
cell-type proportions. 
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One other implication of unsupervised approaches is their (almost) total agnostic 
state when analysing data. As Gregor Sturm et al. (Sturm et al., 2019) compared 
supervised deconvolution methods, they realised that they all in a sort “found what 
they were looking for” even when there was nothing to be found. Unsupervised 
methods on the other hand simply cannot be susceptible to this behaviour since they 
are not told anything about the type of information expected. Nevertheless, to pay for 
that price, unsupervised approaches may fall blind and in the end miss existing 
information. Some teams, such as Shi et al. (Shi and Zhang, 2011) try to overcome 
these issues by using semi-supervised methods that help guide unsupervised 
learning in the right direction. 

However, when talking about exploratory analyses, we are always affected by the 
issue of data interpretation. Since unsupervised methods are given freedom to 
explore and present the data as they see fit, users are often left with the task to label 
the results to make sense of the information extracted. Because of that, no 
unsupervised analysis is truly so since an expert knowledge input is required at some 
step of the study. Unfortunately, with the lack of golden standards and references, this 
interpretation step remains one of the most difficult problems of unsupervised 
methods. 

One last point about unsupervised analyses is at an unknown state and could be 
considered as a possible strength or a weakness if properly analysed. I am speaking 
here about the unknown limits of signal extraction, also known as granularity, as 
stated in Section 3.3. Some authors claim to be able to distinguish dozens of cell-types 
in the TME (Aran et al., 2017) but much debate still exists in the definition of certain 
cell-types. This non agreement comes from the fact that cell-types are described 
through many different characteristics such as molecular data, morphology, 
phenotype and function and a clear definition for each distinct cell type is still lacking. 
Since I mentioned above the trouble of interpreting components resulting from an 
unsupervised analysis, it is this incertitude that creates an unknown characteristic of 
unsupervised deconvolution. I tried to alleviate this problem in Chapter 4 with the 
HACK method by offering a possibility to visualise the limits of signal extraction. This 
capacity of being able to follow how the method decompose the data with each step 
should allow to study further the limits of various decomposition methods and get an 
idea of the true amount of information contained in the data 

6.3 Validity of the HACK method 

As the main focus of my PhD work, the development of the HACK method was 
supposed to get rid of certain limitations of unsupervised deconvolution while still 
maintaining the advantages such approaches procured. It was therefore important to 
justify the hierarchical approach and the use of its new possibilities to correct for 
previously missed errors to create what I called “persistent components”. 

Because ICA is the preferred matrix factorisation method used in my team, I had at 
my disposition a panel of tests to compare with. Thanks to that, I was able to confirm 
the robustness and reproducibility of produced persistent components by performing 
pan-cancer analyses. I was also able to show how new additions to the processing of 
independent components improved their overall quality. Unfortunately, I was unable 
to justify these improvements in relation to possible improvement for biological 
interpretation. Despite my efforts, I was unable to find a good measure to use as a 
score of the biological relevance of a component. In the end, only statistical scores 
helped me confirm the advantages of the method I developed. 
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7. Perspectives 
A researcher’s work is a never ending journey and it is also the case for a PhD project. 
Although results were obtained and observations were made, there are still many 
questions that remain to be answered. I will try here to describe some ideas that could 
support future studies using the work accomplished in this PhD project. 

7.1 The future of HACK 

The HACK method is young and it would be a shame to let it in its current state 
without exploring all the opportunities it provides. I have ended Chapter 4 by 
describing some interesting observations made by "playing around” with the method. 
Among them, the one that caught my eye was the graph I obtained by trying to 
decompose the data by forcing the extraction of 200 signals from a bulk CRC RNA-
seq dataset. From my researches of the literature, decompositions applied to genetic 
data rarely go that far and some applications can even prove successful with only a 
few components as it is the case in (Quintero et al., 2020) where only 8 components 
were deemed enough to extract features specific of exactly 8 immune related cell-
types. From observations made by users of ICA in my team, it was hypothesised that 
components found after an order of decomposition corresponding the intrinsic 
dimensionalities of the data weren’t robust enough to be accepted for further 
analyses. However, by inspecting the graph obtained with HACK and looking at 
components of high order of decomposition, I realised that this initial hypothesis 
might be wrong. In fact, many components found at high orders presented a good 
number of stable genes that showed significant enrichments for specific functions. 
The next step of such analysis would be to push various decomposition methods 
towards their ultimate limit and inspect what level of decomposition is reachable and 
what precision of signals we can hope to extract. 

Another interesting point of the method is its capacity to project decomposition 
events and component relations in a graphical form that could be assimilated to a 
network. For now, graphs of this sort were only created from individual datasets. It 
would be of great interest to use this graphical representation to integrate different 
decompositions together and see how they can relate to each other and if additional 
information can be reconstructed. An example of such an integration can be seen in 
Figure 7.1. In this case, we take two persistent components that have a common origin 
function and merge them together. By doing so, we are able to enhance our 
comprehension of possible splits found by the method. And by extent, since 
components represent particular biological signals and functions, we would be able 
to discover new links between functions. 
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Figure 7.1. Illustration of the possible integration of a set of persistent component 
graphs. 
From two different sets of persistent components obtained on different datasets and 
their corresponding graphical representation, it may be possible to integrate them 
together into a composite persistent component. In this example, the integration 
corresponds to finding the common component between the two (in this case the 
grey portion) and using this as a scaffold for merging the eventual emergent 
components. In this case, the integration leads to a more detailed visualisation of the 
possible splits of an origin signal (in gray) into 3 different signals Sa (in green), Sb (in 
blue) and Sc (in yellow). 

When developing this method, I tried to answer the question raised in Section 3.1 by 
trying to take advantage of the hierarchical approach to reconstruct the functional 
links between unsupervised components. This was achieved in part as I have 
demonstrated it with components related to the immune infiltration but other 
relations were still scarce. However, the parameters for the case studies have been 
chosen to balance the amount of information displayed with the difficulty to visualise 
it. A more detailed representation could be obtained by relaxing some parameters 
and maybe by sacrificing visual interpretability, more functional links could be 
retrieved. 
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7.2 Comprehensive molecular maps and their applications 
for interpreting the data analysis results 

In this thesis, I have reviewed two types of knowledge maps, namely signalling and 
metabolic pathways networks. I have also proposed the possibility to integrate such 
networks together through common players such as genes. At the current time, such 
integrations aren’t common and most maps remain independent. But with the rising 
popularity of disease related maps and the joint effort of researcher communities 
such as the Disease Maps Project (Mazein et al., 2018), integrations of diverse 
resources are expected to increase in the following years. The integration of 
metabolism and signaling pathways is already a reality with the help of ACSN and 
RECON and since these resources are continually updated and upgraded with the 
addition of new maps, our understanding becomes more and more systemic with 
each step. 

Integrations of this sort also open entirely new possibilities with the usage of 
techniques restricted to specific types of omics that can now be applied out of their 
initial context. If we take for example the method of Flux Balance Analysis (Heirendt et 
al., 2019) that I described for metabolic networks, if target metabolic pathways 
detected through such method are connected to other maps, it becomes possible to 
export these observations onto another levels of information and impute novel 
hypothesis about existing interactions and perturbation implications. 

7.3 New omics and their interests 

My applications of deconvolution stayed limited to gene expression data but this type 
of analysis could be extended to other omics to broaden the vision of perturbations 
related to cancer and their impact on other functions. Many methods using matrix 
factorisation as a basis have been proposed to deal with multi-omics integration 
(Cantini et al., 2021) but little is known on how to deal with the inherent problem of 
integration. Indeed, when trying to group different types of data, each one of them 
presents limits for which resolution may not overlap, thus requiring an extensive 
knowledge on how to deal with them so that it wouldn't affect other types. Indeed, 
each dataset and each type of data contain their particular noise. Usually, this is taken 
into account into the protocol of their corresponding analysis. But we can easily 
imagine the underlying difficulty of compensating for every possible defect of each 
data type without these modifications cascading into other types. 

I mentioned at several occasions the lack of existing golden standards that could be 
used to either guide methods or to ensure their correctness. Hope may be brought by 
the development and improvement of single-cell technologies. Since deconvolution 
relies on the existence of specific signatures, by isolating specific cell-types, we can 
hope to extract unique signals that could be used as references for future studies. 
Although in the current state, single-cell technology is costly and presents some 
challenges related to data generation and analysis, progress continues to be made 
and computation methods are keeping up day by day. And it is through such efforts 
that we can hope to reach an immune cell census which will profit the progress of 
cancer therapies (Stubbington et al., 2017). 
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8. Conclusions 
My conclusions will be based on the opinion I have formed during my PhD work. 

During these 3 years, I have focused on the analysis of transcriptomic data using 
unsupervised methods with a main focus on ICA. I have tried to stay informed on 
other methods that could answer my problem and tried to compare them. I will not 
say that the method I ended up choosing and working on is the best but I still have a 
strong belief that unsupervised approaches are very promising in the field of cancer 
research. 

While supervised methods can excel at predicting certain outcomes based on expert 
knowledge, the only way to progress our knowledge is through unsupervised 
procedures. Research is all about expanding our knowledge and to do so, we have to 
explore and go beyond predictable behaviours to bring new and unexpected results. 
And with the emergence of new types of data and the incredible quantity of it, it 
becomes even more crucial to continue in this direction. 

However, going in blindly isn’t a good idea either so there is a need to set some rules 
and know the limits. With the method I developed during my PhD, I hoped to 
accomplish something which might give us a new way of looking at unsupervised 
deconvolution. I tried to shape mathematical results to be visualisable and 
understandable by non-experts and make this black box that is unsupervised 
deconvolution more transparent. With this, I also wanted to make more accessible the 
studies of deconvolution methods' limits, with an interest in how deep they can go 
and what level of granularity of signal extraction can be achieved. I tried to go beyond 
suspected limits and when I did so I realised that I didn’t probably even reach them 
yet. 

It is with the hope that my work has shed some light on unsupervised deconvolution 
that I end my thesis. And it is with the desire to achieve more that I will continue my 
work as a researcher in the future. 
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9. Résumé de la thèse en Français 
Les tumeurs solides sont caractérisées par une organisation complexe de 
l’écosystème cellulaire, dans lequel les cellules tumorales résident et évoluent. Cet 
écosystème est appelé le Micro-Environnement Tumoral (TME). Il est constitué de 
nombreux types de cellules qui interagissent et échangent des informations de 
manière constante. Les constituants majeurs qui jouent un rôle important dans 
l’établissement et la progression d’une tumeur sont d’ordre immunitaire. 
Cependant, bien que leur fonctions immunitaires permettent dans la majorité des cas 
de luter contre les cellules cancéreuses, il arrive parfois que les tumeurs s’adaptent et 
deviennent résistantes et dans certains cas les tumeurs peuvent même 
reprogrammer le système immunitaire en place pour le tourner à leur avantage et 
ainsi favoriser le développement du cancer. 
Le TME est donc la cible privilégiée de l'immunothérapie qui vise a impacter 
fortement la croissance de la tumeur ou son potentiel invasif et métastatique. Les 
traitement d’immunothérapie se focalisent sur un maintient ou une amélioration du 
système immunitaire qui rencontre souvent des difficultés à repérer et détruire les 
tumeurs. C'est pourquoi la caractérisation de l'état et du contenu du TME d'un patient 
atteint du cancer est une priorité. 

Mon travail doctoral s’insert dans le cadre du projet Européen IMMUCan. Ce projet 
rassemble des dizaines de partenaires pour tenter de répondre aux questions liées à 
l’immunothérapie. En effet, même si les traitements immunothérapeutiques 
démontrent une efficacité pour un grand nombre de cancers, nous observons encore 
beaucoup de situations où le traitement reste inefficace ou entraine des effets 
secondaires graves chez certains patients. Dans le but d’éclaircir ces phénomènes, 
IMMUCan propose de recruter plus de 3.000 patients atteint de divers types de 
cancers et de réaliser un suivi de ces patients qui seront traités ou non avec 
l’immunothérapie. Un grand nombre de données sera collecté avec des technologies 
de pointes telle le séquençage Single-Cell ou la cytométrie de flux. 
Ma responsabilité dans ce projet est liée à une tâche particulière qui est de réaliser la 
déconvolution des tumeurs et de leur micro-environnement afin d’en extraire les 
signaux spécifiques à chaque type cellulaire présent chez les patients. Cependant, dû 
à la forte variabilité du TME et à sa complexité moléculaire, il est difficile de choisir des 
cibles précises par avance pour une telle analyse. C'est pour cette raison qu'il devient 
raisonnable d'appliquer des approches non-supervisées qui ne requièrent pas de 
connaissances à priori. 

Pour atteindre cet objectif, c'est au travers de l'utilisation d'une méthode de 
factorisation matricielle appelée l'Analyse par Composante Indépendantes (ICA) que 
nous pouvons commencer à disséquer les données d'expression génique et extraire 
les signaux liés à l'infiltration immunitaire. ICA est la méthode de prédilection 
employée dans mon équipe et lorsqu’appliquée aux données d’expression, elle a pour 
but d'extraire des signaux biologiques indépendants entre eux sous la forme de 
vecteur de poids associés à chaque gène. Ces vecteurs, aussi appelés composantes, 
obtenus par cette méthode de factorisation matricielle sont appelés “metagènes” et 
peuvent ensuite être interprétés par des méthodes d’enrichissement pour déterminer 
à quelles fonctions biologiques ils sont assimilés. En effet, l’ICA est une méthode 
capable d’extraire de données tumorales d’expression de gènes sous forme de 
signaux biologiques correspondants à des fonctions biologiques. La capacité de cette 
méthode de pouvoir extraire des signaux biologiques sans avoir besoin connaissances 
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a priori permet son application sur un large panel de données et de cancers, 
augmentant ainsi la portée de découvertes possibles. 

Pourtant, même si cette méthode a fait ses preuves et a démontré son efficacité pour 
les taches de déconvolution, dû à son aspect non-supervisé, elle comporte tout de 
même quelques complications lorsqu'il s'agit de choisir le nombre de signaux 
attendus dans les données ou bien lors de l'étape d’interprétation de ces signaux. L’un 
des paramètres clef obligatoire de l’ICA est l’indication du nombre de signaux que l’on 
veut extraire des données. Cependant, cette information n’est jamais connue à 
l’avance et doit donc être estimée au mieux de manière mathématique. 

Pour compenser ce problème du choix d'une dimension spécifique pour la 
décomposition des données, j’ai développé lors de ma thèse une nouvelle méthode 
pour permettre de projeter les signaux sur un large champ de dimensions en 
retraçant leur évolution et comportement le long d'une l'analyse hiérarchique. Cette 
approche permet aussi d'avoir une idée sur la qualité des signaux récupérés tout en 
aidant à reconstruire les relations entre certains de ces signaux. 

J’ai nommé cette méthode “Hierarchical Analysis of Component linKs" (HACK) et son 
principe peut se résumer de la manière suivante: 

- Une méthode de décomposition des données par factorisation matricielle doit être 
choisie par l'utilisateur. Parmi les méthodes possibles, la PCA, ICA et NMF ont été 
testées avec succès. 

- Les données sont ensuite décomposées en nombre croissant de composantes. 

- Les composantes obtenues sont arrangées le long d'un axe de manière 
hiérarchique, puis des liens entre ces composantes sont calculés et ajoutés en 
utilisant un score de similarité telle la corrélation de Pearson par exemple. Ceci 
permet d’obtenir une structure organisée sous forme d'un graphe, qui donne lieu à 
la possibilité de suivre l’état des composantes individuelles au cours des 
décompositions croissantes ainsi que retracer leurs “liens de parentés”. 

- Les liens de ce graphe sont filtrés pour ne garder que les liens les plus forts en 
enlevant le bruit de fond. De cette façon, le graphe devient plus facilement 
interprétable visuellement et seules les vraies relations de parenté éventuelle sont 
conservées. 

- Pour s’assurer que seuls les signaux stables sont présents, nous devons procéder à 
l’élimination des composantes qui sont retrouvées de manière consécutive lors des 
multiples décompositions. Cette étape est cruciale car elle aide à structurer le 
graphe tout en garantissant que les composantes conservées sont robustes et 
correspondent à de vrais signaux biologiques et non du bruit. Ces composantes 
stables seront appelées des composantes persistantes. 

- Une fois les vérifications de stabilité terminées, le résultat de la méthode peut être 
visualisé sous forme d’un graphe interactif où les utilisateurs peuvent repérer les 
signaux biologiques d’intérêt en soumettant une liste de gènes correspondants. La 
méthode génère aussi une matrice contenant les composantes persistantes avec 
pour chaque composante la liste de gènes avec leurs poids associés, ainsi que leur 
score de stabilité. 
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La méthode HACK a été appliquée à 12 jeux de données RNA-seq de cancer colorectal 
pour estimer sa robustesse et reproductibilité. Les résultats de HACK ont été 
comparés aux résultats utilisant les approches standard de l’ICA. L'utilisation de 
composantes persistantes par approche hiérarchique a été démontré comme plus 
reproductible parmi les différents jeux de données comparés à l’utilisation de 
composantes d’ordre fixe.  
Une étude supplémentaire a été réalisée sur des données single-cell de RNA-seq sur 
125 lignées cellulaires représentants 22 types de cancers. Les fonctions biologiques 
extraites par les composantes de HACK ont non seulement retrouvé les fonctions 
observées à l’aide d’autres méthodes de déconvolution mais ont aussi distingué des 
fonctions plus spécifiques non observées auparavant, qui avaient notamment attrait 
au cycle cellulaire. 

Une analyse plus approfondie des signaux liés à l’infiltration immunitaire a aussi été 
réalisée. L'observation des graphes obtenus à l’aide de la méthodologie HACK a 
démontré une capacité de séparation de signaux plus détaillée qu’une méthodologie 
utilisant l’ICA avec une dimension unique fixée. Les composantes liées à l’immunité 
ont été extraites et leur fonctions biologiques étudiées plus en détail. Nous avons pu 
observer que les composantes ainsi que leur structure dans le graphe permettaient 
de repérer des fonctions liées à l’état de l’activité immunitaire. Il était de ce fait 
possible de séparer les fonctions de immunité cellulaire et de l’immunité humorale. 
Cette capacité de détection pourrait donc s’avérer extrêmement utile pour établir 
l’état du système immunitaire d’un patient atteint de cancer pour pouvoir améliorer la 
recherche du traitement le plus approprié. 

Cependant, l'une des limites de ce type d’analyse reste l’interprétation correcte des 
signaux détectés. Pour améliorer cette étape, l’une des possibilités est d'utiliser des 
reconstructions approfondies de voies de signalisation moléculaires pour tirer des 
conclusions sur leur sens biologique mais aussi pour récupérer des information 
supplémentaires sur un niveau plus systémique. Lors de mon travail de thèse, j’ai 
participé à l’élaboration d’une carte détaillée des voies de signalisation spécifiques au 
cancer du système immunitaire. Cette carte contient les réseaux d’interactions 
moléculaire de multiples types de cellulaire immunitaire telles que les macrophages, 
les cellulaires myéloïdes, les DC ainsi que les NK.  
Mon rôle a été d’intégrer ces cartes dans la plateforme de NaviCell qui permet 
d’utiliser ces réseaux comme des outils de visualisation de données en donnant un 
contexte clair et détaillé. Comme démonstration de ces capacités, une décomposition 
de données de métastases de mélanome a été réalisée à l’aide de l’ICA. Ces données 
étant annotées avec la survie des patients, il était possible de comparer nos 
observations en reliant les résultats à un pronostique de survie. Une projection des 
données d’expression des patients a en effet pu démontrer une capacité de 
prédiction de survie des patients. Ces prédictions étaient accompagnées de groupes 
de gènes d’intérêt qui corrélaient positivement ou négativement avec le taux de 
survie. De plus, en sélectionnant les composantes de l’ICA spécifiques des cellules NK 
et des macrophages, nous avons pu clairement différencier des phénotypes de ces 
cellules en rapport avec leur activités immunitaire pro ou anti tumorales. Grâce à 
cette analyse, il a été possible de repérer les voies de signalisations liées au 
recrutement et l’activation des cellules NK ainsi que celles représentant des cellules 
réprimées. L’activité des macrophages quand à elle a pu être représentée sous deux 
formes: pro-tumorale de part ses voies de cytokines immuno-réprimantes et anti-
tumorale grâce aux voies spécifiques à la présentation aux antigènes ainsi que d’une 
immuno-stimulation de miRNA et de facteurs de transcriptions. 
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Lors de ma thèse, mon travail s’est limité à l’utilisation de données d’expression mais il 
est tout à fait possible d’étendre la méthode développée à d’autres types de données. 
En ajoutant de nouveaux types de données, cela nous permettrait d'obtenir de 
nouvelles informations qui viendraient compléter les hypothèse générées.  
Qui plus est, le développement de la méthode HACK a donné l’occasion de pouvoir 
directement observer les capacités de déconvolution des méthodes non-supervisées. 
Cela ouvre donc la possibilité de réaliser des analyses plus poussées tout en suivant 
les limites des méthodes utilisées. En réalité, il est risqué de pousser les analyses non-
supervisée trop loin de peur de dégrader les signaux d’intérêt ou bien de forcer la 
méthode à générer des signaux artificiels qui risquent d’être confondus avec de vrais 
signaux biologiques. 

En définitive, c'est au travers de l'utilisation d'analyses non-supervisées, couplées à 
une description détaillée des interactions moléculaires, que nous pouvons élucider la 
complexité du micro-environnement tumoral. Les approches non supervisées 
d’analyse de données connaissant un essor dans le monde de la recherche sur le 
cancer et les possibilité exploratoires qu’elles offrent font d’elles des acteurs majeurs 
de découvertes de nouveaux traitements contre le cancer. 
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