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Résumé

La recherche en économie de la santé n’a jamais été aussi pertinente. Les problèmes

de santé publique se multiplient et menacent l’existence même de l’espèce humaine.

Au début de l’année 2020, le SRAS-CoV-2 a fait vaciller l’humanité en l’espace de

quelques jours. Cette pandémie nous a permis de constater la vulnérabilité des systèmes

de santé à travers le monde (hassan2021orchestrating). Précédemment, les pandémies

étaient relativement rares Piret and Boivin (2021). Tout indique qu’avec l’étalement

urbain, la hausse de la densité de la population et l’augmentation de la mobilité, celles-ci

seront monnaie courante à l’avenir. En l’absence d’immunité à un nouveau pathogène,

nos systèmes de santé peuvent rapidement être débordés ce qui multiplie les dommages

collatéraux.

Il est impératif de développer des politiques publiques efficaces pour y faire face

Dangerfield et al. (2022). Un des moyens pour y arriver est l’étude des modèles

épidémiologiques. Ces outils décisionnels puissants se trouvent à la frontière entre

l’épidémiologie et l’économie. Ces deux disciplines permettent de comprendre et prédire

la dynamique de leur sujet d’étude respectif.

Nos recherches portent sur les outils épidémiologiques de modélisation de la dy-

namique des infections et de leur place dans les décisions sanitaires des agents économiques.

À partir du modèle épidémiologique compartemental SIR (Suceptible - Infecté - Recov-

ered (immunisé en anglais)), nous avons étudié trois contextes différents. Nos travaux

s’inscrivent dans une littérature riche.

Depuis des décennies les chercheurs se sont intéressés aux modèles épidémiologiques.

Kermack and McKendrick (1927) ont jeté les bases des modèles épidémiologiques SIS
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(Susceptible - Infecté - Susceptible) et SIR. Ces modèles épidémiologiques sont toujours

utiles et inspirent de nombreux modèles épidémiologiques. Ces modèles sont encore

aujourd’hui utilisés pour étudier et prédire la propagation de nombreuses maladies telles

que la rougeole ( Matt J Keeling and Bryan T Grenfell (2002), L. Allen, M. Jones, and

Martin (1991)), l’hépatite (Shahdoust et al. (2015)) et la tuberculose (Azeez et al.

(2016)) .

Dans la littérature théorique, plusieurs articles ont analysé les effets des mesures de

distanciation sociale dans un contexte de contrôle optimal ( Sethi (1978), F. Chen et al.

(2011) Rowthorn and Toxvaerd (2012) ) et dans un contexte de décision stratégique

individuelle ( textcitereluga2010game, F. Chen (2012), Fenichel et al. (2011), Fenichel

(2013), Toxvaerd (2019)). La pandémie de SRAS-CoV-2 a accéléré le développement de

la littérature épi-économique. Devant cette menace infectieuse, les chercheurs se sont

penchés sur le contrôle optimal de la pandémie sous les hypothèses du modèle épidémi-

ologique SIR lorsque la population est homogène (Kruse and Strack (2020), Eichen-

baum, Rebelo, and Trabandt (2022), Alvarez, Argente, and Lippi (2020), C. Jones,

Philippon, and Venkateswaran (2021), Glover et al. (2020)) ou lorsque les risques pour

une sous-population sont plus élevés (Acemoglu et al. (2021), Rampini (2020), Bairoliya

and İmrohoroğlu (2022)). Toxvaerd (2020), Farboodi, Jarosch, and Shimer (2021) et

Brotherhood et al. (2020) ont étudié, dans le modèle SIR, les choix des individus alors

que ces derniers arbitrent les coûts et les bénéfices de l’auto-isolement. Il existe une

littérature croissante en économie qui tente d’intégrer les décisions individuelles de dis-

tanciation sociale dans les modèles épidémiologiques.

Dans le premier chapitre, Self-Isolation, nous introduisons l’aspect d’apprentissage

dans le modèle épidémiologique SIR. Nous analysons la dynamique de l’infection lorsque

les individus choisissent leur niveau de confinement selon leur perception des coûts et

bénéfices en fonction de leurs croyances subjectives. Dans le deuxième chapitre, Self-

Isolation Under Uncertainty nous modifions le modèle précédemment décrit pour y

ajouter de l’incertitude sur le paramètre épidémiologique. Cette modification nous per-

met de tirer des leçons quant au niveau d’information optimal en contexte de pandémie.

Dans le troisième chapitre, Swedish Paradox nous utilisons un modèle épidémiologique
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simplifié pour analyser l’effet des stratégies de mitigation des infections sur le rythme

d’apparition des vagues d’infections. Vous trouverez dans les prochaines pages un bref

résumé en français des contextes, méthodes et conclusions des chapitres qui composent

cette thèse.

Self-isolation

Le niveau d’immunité collective d’une maladie infectieuse est défini comme la frac-

tion de la population qui doit devenir immunisée pour que la propagation de la maladie

diminue et s’arrête. Dans le modèle le plus simple, il est égal à (R0 − 1)/R0, où R0

est le nombre de reproductions de base (Basic Reproduction Number)1 de la maladie,

qui est souvent estimé à environ 60% pour COVID-19. Ce chiffre de 60 % suppose que

la population est homogène et passive, alors qu’il est bien documenté2 entre autre par

que le nombre d’infections secondaires causées par un seul individu infectieux introduit

dans une population totalement susceptible varie entre les populations composées de

personnes ayant des comportements différents. L’objet de la littérature épi-économique

croissante est d’analyser les interactions bilatérales entre la dynamique des épidémies

et les comportements individuels.

L’une des nombreuses caractéristiques de COVID-19 est la grande diversité des

réponses à l’infection dans la population, certains individus étant totalement asymp-

tomatiques, tandis que d’autres développent des formes mortelles en quelques jours.

Comme les personnes symptomatiques, les patients asymptomatiques sont une source de

propagation de l’infection. Avant d’être infecté, il n’y a aucun moyen de savoir si l’on est

du type asymptomatique. C’est pourquoi les individus se forgent des croyances sur leur

type, qu’ils actualisent en permanence en fonction de leur degré d’exposition au virus.

Au même moment, ils décident leur niveau d’exposition au virus en tenant compte de

1Le nombre de reproductions de base est le nombre attendu de cas d’infection secondaire causés par un seul

cas infectieux typique pendant toute sa période infectieuse au sein d’une population entièrement susceptible
2Delamater et al. 2019 ou Britton, Ball, and Trapman 2020 qui montrent que, pour COVID-19, le niveau

d’immunité collective est ramené à 43% lorsque le modèle englobe la possibilité que les individus soient plus

actifs socialement dans certains groupes que dans d’autres.
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leur croyance actualisée. Par exemple, une personne qui interagit avec de nombreuses

personnes sans développer de symptômes de la COVID-19 devient plus optimiste quant

au fait d’être du type asymptomatique. Par conséquent, elle peut être tentée de ren-

contrer encore plus de personnes et d’oublier mesures de distanciation sociale. La con-

tribution de cet article à la littérature épi-économique est d’introduire l’apprentissage

dans un modèle épidémiologique et d’analyser la dynamique d’une épidémie lorsque les

individus arbitrent entre les coûts et les bénéfices de l’auto-isolement sur la base de

leurs croyances subjectives.

Pour analyser cette question, nous modifions le modèle épidémiologique classique

SIR (Susceptible - Infected - Recover) de Kermack and McKendrick 1927 de deux

manières. Dans sa version classique, le modèle SIR divise une population homogène en

trois groupes : susceptible, infecté et guéri (recovered en anglais), les individus tran-

sitant d’un groupe à l’autre à des taux exogènes donnés qui dépendent de la taille

de chaque groupe. Nous nous écartons de l’hypothèse d’homogénéité en considérant

deux types d’individus possibles dans la population : sévère et asymptomatique. Les

individus du type sévère présentent les symptômes de la maladie immédiatement après

avoir été infectés. En revanche, les individus du type asymptomatique ne présentent

aucun symptôme. Les personnes présentant des symptômes s’auto-isolent immédiate-

ment, mais les personnes asymptomatiques peuvent être contagieuses sans le savoir.

Par conséquent, la maladie se propage dans la population par les individus de types

asymptomatiques. En outre, nous supposons que les personnes ne présentant pas de

symptômes peuvent influencer le taux de transition de la catégorie susceptible à la

catégorie infectée en réduisant stratégiquement le temps qu’elles passent à l’extérieur.

Rester à la maison permet d’éviter d’être infecté, mais cela a un coût (ennui, coût

d’opportunité de ne pas travailler ou de travailler dans de moins bonnes conditions,

manque d’activité physique, etc.). Être infecté est également coûteux pour les indi-

vidus du type sévère. Par conséquent, les individus arbitrent continuellement entre le

coût de l’auto-isolement et le bénéfice escompté de l’absence de symptômes sur la base

de leur conviction d’être du type sévère. Enfin, nous supposons qu’un vaccin arrivera

à un moment connu de tous T .
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Pourquoi les individus s’engageraient-ils volontairement dans un confinement coû-

teux? Un confinement accru diminue la probabilité de souffrir des symptômes et aug-

mente la probabilité d’obtenir le gain de continuation d’un individu en bonne santé. Par

conséquent, l’auto-isolement peut valoir le coût à certaines dates, mais pas à d’autres.

Nous prouvons que les individus ne s’isolent jamais complètement à l’équilibre : si le

reste de la population reste à la maison, les chances d’être infecté sont nulles, et chaque

individu peut donc économiser le coût de l’isolement sans risquer l’infection. Intu-

itivement, lorsque l’auto-isolement est plus coûteux que l’apparition de symptômes, les

individus ne s’auto-isolent pas du tout à l’équilibre, et la dynamique de l’épidémie est

la même que dans le modèle SIR. Cependant, lorsque le coût du confinement est rel-

ativement faible, la stratégie d’équilibre n’est pas stationnaire et peut être intérieur,

c’est-à-dire que les individus s’auto-isolent partiellement à chaque date. Nous prouvons

qu’il ne peut y avoir qu’un seul équilibre intérieur symétrique.

Nous calibrons notre modèle sur les valeurs disponible au mois de mars 2020 de

l’épidémie COVID-19 afin d’illustrer l’impact des comportements d’auto-isolement sur

la dynamique de l’épidémie et de mettre en évidence les leçons politiques qui peuvent

être tirées de nos résultats. Nous nous concentrons sur l’équilibre où les individus

s’isolent partiellement à chaque date et nous simulons la dynamique de l’épidémie dans

ce cas précis. Nous constatons que la population réagit à l’annonce de l’épidémie en

s’isolant radicalement, ce qui entrâıne une baisse du pourcentage de personnes infectées

(Figure (1)). Ensuite, les individus augmentent progressivement le temps qu’ils passent

à l’extérieur, en maintenant le Re nombre de reproductions effectif (Effective Repro-

duction Number)3 en dessous de la valeur qui accélère l’épidémie. En conséquence,

la courbe épidémique est décroissante entre le moment de l’annonce de l’épidémie et

l’arrivée du vaccin, contrairement à la courbe en forme de cloche bien connue du modèle

SIR.

Nous constatons qu’une annonce tardive de l’épidémie augmente le nombre de décès,

3Le nombre de reproductions effectif est le nombre attendu de cas d’infection secondaire causés par un seul

cas infectieux typique pendant toute sa période infectieuse dans une population où certain individu ne sont

plus susceptible.
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% infecté BMM
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Figure 1: Dynamique de l’épidémie dans l’équilibre intérieur.

conformément aux résultats de Silverio et al. (2020), qui trouvent une corrélation posi-

tive entre le nombre de cas avant le confinement et le taux de mortalité en Italie. Nous

analysons également l’impact des politiques visant à atténuer la transmission du virus,

telle que la distribution de masques, la diffusion de messages sur les mesures d’hygiène,

etc. Nous constatons que les individus compensent la diminution du risque d’infection

en réduisant les distances sociales, mais pas au point d’accélérer l’épidémie. Dans

l’ensemble, nous constatons que ces politiques réduisent le nombre de décès. Nous

montrons également qu’un système de santé plus performant entrâıne moins d’auto-

isolement mais diminue globalement le nombre de décès. Enfin, les politiques de sub-

vention de l’auto-isolement aplatissent la courbe économique, mais nous ne trouvons

pas de différence substantielle lorsque l’auto-isolement est encouragé au début ou à la

fin de l’épidémie.

Self-Isolation Under Uncertainty

Il est désormais bien documenté que la dynamique d’une épidémie dépend du com-

portement de la population en termes de distanciation sociale et d’application de

mesures prophylactiques4. À l’inverse, de nombreux articles ont montré que les in-

4Delamater et al. (2019) et Britton, Ball, and Trapman (2020) montrent que le niveau d’immunité du groupe

contre COVID-19 est réduit lorsque le modèle englobe la possibilité que certains groupes sociaux d’individus
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dividus adaptent leurs comportements aux variables épidémiques (taux d’incidence,

niveau d’hospitalisation, etc.)5. Par exemple, Farboodi, Jarosch, and Shimer (2021)

montrent que la fréquentation des lieux publics a baissé dès l’annonce par l’OMS de

l’existence d’une pandémie en mars 2020, donc avant la mise en place des politiques

de confinement et de fermeture. L’objet de la littérature épi-économique stratégique

croissante est d’analyser les interactions bilatérales entre la dynamique de l’épidémie et

le comportement de la population. Dans cette littérature, les individus arbitrent entre

le coût et le bénéfice des comportements préventifs en fonction de leur évaluation du

risque d’entrer en contact avec une personne contagieuse, qui dépend naturellement du

taux de prévalence. On suppose que les individus sont capables de déduire ce taux avec

précision.

Cependant, il arrive souvent qu’il ne soit pas parfaitement observable, en particulier

lorsqu’une proportion importante de la population est asymptomatique. De plus, pour

que les individus puissent le déduire correctement, ils doivent avoir une connaissance

détaillée des caractéristiques de la maladie, telles que la contagiosité et le taux de

prévalence initial. Cette hypothèse est difficile à défendre lors de l’apparition d’un

nouveau virus ou de la réapparition d’une maladie. Ces situations sont loin d’être

anecdotiques et l’actualité récente regorge d’exemples : le COVID-19 et ses différents

mutants, la grippe qui revient chaque hiver dans les zones tempérées, l’Ebola qui est

réapparu plusieurs fois en RDC, mais aussi en Guinée en 2021, etc...

La contribution de cet article est d’analyser un modèle épidémiologique dans lequel

les individus prospectifs sont incertains de certaines caractéristiques de l’épidémie et

sont donc incapables de déduire la fraction de la population qui est infectée. Les

soient plus actifs socialement. Cowling, Chan, et al. (2009) et Aiello et al. (2010) montrent que les masques

et le lavage des mains peuvent réduire la transmission domestique des infections respiratoires dans les petites

zones. Cowling, Ali, et al. (2020) montrent que les restrictions aux frontières et les changements dans les

comportements individuels sont en partie responsables de la réduction de la transmission à Hong Kong en

février 2020.
5Par exemple, T. J. Philipson and Posner (1993) montre que la demande de vaccins contre la rougeole, les

oreillons et la rubéole augmente lorsque le nombre de cas de rougeole dans une communauté est en forte hausse.

Ahituv, Hotz, and T. Philipson (1996) montre que la demande de préservatifs augmente dans les régions où le

VIH est répandu.
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individus se forgent des croyances sur l’épidémie, qu’ils mettent continuellement à jour

en fonction de leur degré d’exposition au virus. Simultanément, ils décident de leur

degré d’exposition au virus en échangeant les coûts et les bénéfices de l’auto-isolement

sur la base de leurs croyances subjectives.

Précisément, nous modifions le modèle classique Susceptible-Infecté-Récouvert (SIR

ci-après) de Kermack and McKendrick (1927). Dans sa version classique, le modèle

SIR divise une population homogène en trois groupes : {susceptible}, {infecté} et

{récupéré}, les individus passant d’un groupe à l’autre à des taux exogènes donnés qui

dépendent de la taille de chaque groupe. Comme dans Baril-Tremblay, Marlats, and

Ménager (2021), nous considérons deux types d’individus possibles dans la population

: symptomatique et asymptomatique. Les individus du type symptomatique présentent

les symptômes de la maladie immédiatement après avoir été infectés. En revanche,

les individus du type asymptomatique ne présentent aucun symptôme. Au départ,

les individus ne connaissent pas leur type. Nous nous écartons de Baril-Tremblay,

Marlats, and Ménager (2021) en supposant que les individus sont incertains de certains

paramètres déterminant la dynamique du taux de prévalence. Ainsi, les agents, qui

n’observent pas ce taux, savent que différents niveaux de prévalence sont possibles,

mais ils ne les connaissent pas exactement.

Les individus influencent le taux de transition de {susceptible} à {infecté} en s’isolant,

c’est-à-dire en réduisant stratégiquement leur activité sociale. Comment un individu

qui n’a jamais eu de symptômes peut-il arbitrer entre le coût et le bénéfice de l’auto-

isolement ? Du côté des avantages, l’auto-isolement permet d’éviter d’être infecté en

réduisant la probabilité d’entrer en contact avec une personne contagieuse. L’aspect

coût est plus subtil. En effet, une personne qui ne présente pas de symptômes alors

qu’elle a une activité sociale devient plus optimiste à la fois sur le taux de prévalence

et sur le fait d’être du type asymptomatique. Les coûts de l’auto-isolement sont donc

doubles : il y a le coût direct de l’auto-isolement (ennui, coût d’opportunité de ne pas

travailler ou de travailler dans de moins bonnes conditions, manque d’activité physique,

etc.) et le coût d’opportunité de ne pas apprendre sur son type et sur le taux de pré-

valence.
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Nous caractérisons l’équilibre symétrique dans lequel les individus s’auto-isolent

partiellement. Dans cet équilibre, le niveau d’activité sociale est égal au rapport entre,

d’une part, le coût direct de l’auto-isolement et, d’autre part, le coût d’opportunité

attendu de l’activité sociale, qui est égal au bénéfice informationnel moins la perte de

bien-être attendue en cas d’infection.

Nous calibrons notre modèle sur le COVID-19 et nous simulons la dynamique de

l’épidémie lorsque la population a connaissance de deux épidémies possibles avec des

taux de pénétration initiaux différents. Ce paramètre est l’un des éléments déterminant

la dynamique du taux de prévalence. Ainsi, les agents, qui ont une incertitude sur ce

paramètre, sont conscients que différents niveaux de prévalence sont possibles, mais ils

ne le savent pas exactement. L’impact de l’incertitude est ambigu. Quelle que soit la

croyance préalable, les individus s’isolent fortement après l’annonce de l’épidémie, ce

qui entrâıne une baisse de la fraction infectée ; ensuite, ils augmentent progressivement

le niveau des interactions sociales. La vitesse à laquelle l’activité sociale augmente varie

en fonction de l’hypothèse selon laquelle le taux de pénétration initial de l’épidémie est

faible. Lorsque l’a priori augmente, les individus s’isolent moins au début de l’épidémie

et plus à la fin. Cette inversion s’explique notamment par le fait que les individus

pensent avoir été moins exposés à la maladie au début de l’épidémie lorsque le taux de

pénétration initial est faible. Par conséquent, ils sont moins convaincus d’être immunisés

contre la maladie et s’isolent davantage à la fin de l’épidémie.

Comme illustré dans la figure (2), dans l’épidémie la plus agressive, pour tout a

priori, les individus s’auto-isolent suffisamment pour maintenir le nombre de reproduc-

tions effectives en dessous de la valeur qui accélère l’épidémie, de sorte que la courbe

épidémique diminue continuellement jusqu’à l’arrivée du vaccin. Dans l’épidémie moins

agressive, lorsque l’a priori initial est faible, il y a une deuxième vague d’infections avec

un deuxième pic qui est d’autant plus élevé que les croyances sont erronées. Cette

deuxième vague est due au fait que, pour ces antécédents, les individus choisissent un

niveau d’activité sociale plus élevé à partir d’une certaine date.

Cela conduit à une réaction inadéquate au niveau réel de l’épidémie qui peut induire

une augmentation effective de la fraction totale des individus infectés. Par conséquent,
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la valeur sociale de l’information dépend de l’état initial de l’épidémie. Nous con-

statons dans la figure (3) que la transparence n’améliore le bien-être que dans le cas

de l’épidémie la moins agressive, à la fois en termes de fraction de décès et de gains.

Pour tous les prieurs que nous considérons, la fraction ex-ante des décès est plus petite

lorsque les individus sont incertains de l’état que sans incertitude, ce qui suggère que

l’opacité peut prévenir les décès. En termes de gains, la valeur de l’information est

négative lorsque la population est relativement confiante dans l’agressivité initiale de

l’épidémie.
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The Swedish Paradox

Le SRAS-CoV-2 s’est propagé rapidement partout sur terre, même en Antarctique.

La réduction des contacts entre individus est la clé pour ralentir la propagation de

l’infection (Bavel et al. (2020), Min W Fong et al. (2020)). Plusieurs pays ont choisi

de freiner la propagation de l’infection en adoptant une série d’interventions non phar-

maceutiques, notamment le lavage des mains, le port de masques, l’isolement, la dis-

tanciation sociale et le confinement. (Wilder-Smith and Freedman (2020)). Toutefois,

la portée et la rigueur de l’application des mesures d’atténuation des infections varient

considérablement d’un pays à l’autre, en particulier en ce qui concerne le confinement.

(Petherick, Kira, et al. (2020)).

La Suède a fait couler beaucoup d’encre au mois de mars 2020. Alors que les

pays scandinaves voisins ont adopté des mesures strictes pour ”aplanir la courbe”,

l’épidémiologiste d’état suédois a refusé d’imposer des mesures de distanciation so-

ciale (Born, Dietrich, and Müller (2021), Cho (2020) et Juranek and Zoutman (2020)).

Pourquoi, face à une menace infectieuse similaire, les gouvernements ont-ils adopté des

stratégies diamétralement opposées? Ces stratégies diamétralement opposées peuvent

être expliquées par plusieurs facteurs: risques locaux perçus, la capacité hospitalière

(Kandel et al. (2020)) ainsi que la nature des institutions et le contexte culturel du pays

(Matthews Pillemer et al. (2015)). Dans ce chapitre, nous proposerons une réponse à

partir du modèle épidémiologique SIR avec dynamique vitale close, qui repose sur le

caractère oscillatoire du système.

Dans notre article nous explorerons la nature périodique des épidémies provoquant

l’émergence de vagues successives d’infection au fil du temps et l’effet des différentes

mesures de mitigation des infections sur la longueur et l’amplitude de ces vagues.

Il est essentiel de comprendre ce phénomène et les effets des différentes stratégies

d’atténuation des infections sur ce dernier afin de prévoir et contrôler les vagues d’infections

futures.

Les données historiques épidémiologiques démontrent que les épidémies ont un car-

actère périodique, c’est-à-dire que plusieurs vagues d’infections se succèdent. La péri-
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odicité est une composante normale des épidémies et intéresse les chercheurs depuis

des décennies (Webster (1799), Soper (1929), Hethcote and Levin (1989), Baryarama,

Luboobi, and Mugisha (2005) par exemple). Les chercheurs ont proposé différents mé-

canismes, endogènes et exogènes, pour intégrer le comportement oscillatoire dans des

modèles épidémiologiques ( London and Yorke (1973), Bryan Thomas Grenfell and

Roy Malcolm Anderson (1989), Bolker and Bryan Thomas Grenfell (1993), N. M. Fer-

guson, Nokes, and Roy M Anderson (1996), Hethcote (1997) et Earn et al. (2000)). Ces

modèles permettent de tirer des conclusions intéressantes. Toutefois, ils sont mathéma-

tiquement lourds à manipuler. Earn (2008) a jeté les bases de l’apparition naturelle d’un

comportement oscillatoire au sein d’un modèle épidémiologique. Greer et al. (2020) dé-

montre formellement que des oscillations apparaissent naturellement lorsque le modèle

inclut un processus de régénération de la population, soit via la dynamique vitale des

naissances et des décès, soit via le déclin de l’immunité (Giannitsarou, Kissler, and

Toxvaerd (2021)). À l’instar de Greer et al. (2020), nous avons choisi d’adopter un

modèle simple et flexible.

Nous avons utilisé les valeurs du SRAS-CoV-2, disponible en mars 2020 pour calibrer

notre modèle et analyser deux stratégies de distanciation sociale: des mesures perma-

nentes et des mesures temporaires. Nos simulations donnent un aperçu de l’impact

des différentes stratégies d’atténuation de l’infection sur l’apparition de différentes

vagues d’infection. Nous avons concentré notre analyse sur deux types de stratégies

d’atténuation de l’infection : les mesures de distanciation sociale permanentes et tem-

poraires. Comme illustré à la figure (4), la persistance des mesures dans le temps a un

impact sur le taux d’apparition des vagues d’infection suivantes. La répercussion de la

mesure de distanciation sociale sur le schéma des vagues d’infection est assez intuitive

: plus le niveau des mesures de distanciation sociale est élevé, plus le nombre cumulé

d’individus infectés est faible. Toutefois, ce n’est pas le cas lorsque les mesures sont

temporaires.

Les mesures d’atténuation des infections nécessitent un changement fondamental du

comportement humain. Il peut être difficile pour le planificateur social de maintenir ces

mesures sur une longue période. Les mesures temporaires ont pour effet, à court terme,
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Figure 4: Illustration of the convergence of the various endemic equilibriums according to different social distancing

scenario.

de ralentir la propagation de l’infection tout en protégeant la population. Toutefois,

lorsqu’elles sont levées, la population précédemment protégée est exposée à l’infection.

Comme l’infection est alimentée par le réservoir de personnes susceptible, les vagues

d’infection surviennent plus rapidement. Ces vagues successives d’infection conduisent à

une augmentation marquée du nombre cumulé d’individus infectés. Nous observons que,

dans certaines conditions, comme observé à la figure (5), le nombre cumulé d’infections

lorsque des mesures temporaires de distanciation sociale ont été prises est plus élevé

que lorsqu’aucune mesure de distanciation sociale n’a été imposée. Le planificateur

social qui souhaite minimiser le nombre cumulé d’infections doit tenir compte de ce

phénomène, appelé le Paradoxe Suédois, et anticiper le moment probable de l’arrivée

du vaccin.

Les oscillations amorties autour de l’équilibre endémique donnent naissance à plusieurs

vagues successives d’infections. Ces vagues apparaissent au fur et à mesure que la pop-

ulation se régénère via la dynamique vitale. Puisque sous les hypothèses du modèle, la

dynamique infectieuse est plus grande que la dynamique vitale, l’épuisement du bassin

d’individus susceptibles, et donc l’amplitude des oscillations, diminue avec le temps.

Le caractère oscillatoire du système donne naissance à plusieurs phases du Paradoxe

Suédois, tel qu’illustré à la figure (6).
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Chapter 1

Self-Isolation

Dominique Baril-Tremblay1, Chantal Marlats2 and Lucie Ménager3

Abstract4

We analyze the spread of an infectious disease in a population when individuals strate-

gically choose how much time to interact with others. Individuals are either of the

severe type or of the asymptomatic type. Only severe types have symptoms when they

are infected, and the asymptomatic types can be contagious without knowing it. In the

absence of symptoms, individuals do not know their type and continuously tradeoff the

costs and benefits of self-isolation on the basis of their belief of being the severe type.

We show that all equilibria of the game involve social interaction, and we character-

ize the unique symmetric equilibrium in which individuals partially self-isolate at each

date. We calibrate our model to the COVID-19 pandemic and simulate the dynamics

of the epidemic to illustrate the impact of some public policies.

1Université Paris 1 - Panthéon Sorbonne, doumbaril@gmail.com.
2LEMMA, Université Paris 2 Panthéon-Assas, chantal.marlats@u-paris2.fr.
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anonymous referees for their very constructive suggestions that led to many new results and a more insightful

paper. This research was supported by the French National Research Agency (ANR-17-CE38-0005-01) and by

the Labex MME-DII (ANR11-LBX-0023-01).
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1.1 Introduction

The herd immunity level of an infectious disease is defined as the fraction of the

population that must become immune for the spread of the disease to decline and stop.

Under the simplest model, it is equal to (R0−1)/R0, where R0 is the basic reproduction

number5 of the disease, which is often estimated to be approximately 60% for COVID-

19. The figure of 60% assumes that the population is homogenous and passive, while it

is well-documented6 that the herd immunity level varies between populations consisting

of people with different behaviors. The object of the growing epi-economic literature is

to analyze the two-sided interactions between the dynamics of epidemics and individual

behaviors.

One of the many features of COVID-19 is the wide variety of responses to the in-

fection in the population, with some individuals completely asymptomatic, and others

developing fatal forms within a few days. As with symptomatic individuals, asymp-

tomatic patients are a source of the spread of infection7. Before being infected, there

is no way of knowing whether one is of the asymptomatic type. Therefore, individuals

form beliefs about their type, which they continuously update on the basis of how much

they might have been exposed to the virus. At the same time, they decide how much

to expose themselves to the virus in function of their updated belief. For instance, an

individual who interacts with many people without developing COVID-19 symptoms

becomes more optimistic about being the asymptomatic type. As a result, she may

be tempted to meet even more people and forget about social distancing. The con-

tribution of this paper to the epi-economic literature is to introduce learning into an

5The basic reproduction number is the average number of secondary infections caused by a single infectious

individual introduced into a completely susceptible population.
6See e.g. Delamater et al. 2019 or Britton, Ball, and Trapman 2020 who show that, for COVID-19, the

herd immunity level is reduced to 43% when the model encompasses the possibility that individuals are more

socially active in some groups than in others.
7See Nishiura et al. 2020 and Han et al. 2020, among others.
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epidemiological model, and to analyze the dynamics of an epidemic when individuals

tradeoff the costs and benefits of self-isolation on the basis of their subjective beliefs.

To analyze this question, we amend the classical Susceptible-Infected-Recovered

(SIR hereafter) model of Kermack and McKendrick 1927 in two ways. In its classical

version, the SIR model divides an homogeneous population into three groups: suscep-

tible, infected and recovered, with individuals transiting from one group to another

one at given, exogenous rates that depend on the size of each group. We depart from

the homogeneity assumption by considering two possible types of individuals in the

population: severe and asymptomatic. Individuals of the severe type experience the

symptoms of the disease immediately after being infected. In contrast, individuals of

the asymptomatic type do not have symptoms. Individuals with symptoms immedi-

ately self-isolate, but asymptomatic individuals can be contagious without knowing it.

Therefore, the disease is spread in the population by asymptomatic types. Moreover,

we assume that individuals without symptoms can influence the transition rate from

susceptible to infected by strategically reducing the fraction of time they spend out-

side. Staying home prevents one from being infected, but comes at a cost (boredom,

opportunity cost of not working, or of working in poorer conditions, lack of physical

activity, etc.). Being infected is also costly for individuals of the severe type. Therefore,

individuals continuously tradeoff the cost of self-isolation and the expected benefit of

not having the symptoms on the basis of their belief of being the severe type. Finally,

we assume that a vaccine will arrive at known time T .

Why would individuals voluntary engage in costly confinement? More confinement

decreases the probability of suffering from the symptoms and increases the probability

of getting the continuation payoff of a healthy individual. Therefore, self-isolation may

be worth the cost at some dates, but may not at some other dates. We prove that

individuals never completely self-isolate in equilibrium: if the rest of the population

stays at home, the chances of being infected are 0, thus each individual can spare the

confinement cost without risking infection. Intuitively, when self-isolating is costlier

than having symptoms, individuals do not self-isolate at all in equilibrium, and the

dynamics of the epidemic are the same as in the SIR model. When the confinement
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cost is relatively small, however, the equilibrium strategy is non-stationary and may

be interior, i.e. such that individuals partially self-isolate at each date. We prove that

there can be only one interior, symmetric equilibrium.

We calibrate our model to the COVID-19 epidemic in order to illustrate the impact

of self-isolation behaviors on the dynamics of the epidemic, and to highlight the policy

lessons that can be drawn from our findings. We focus on the equilibrium where indi-

viduals partially self-isolate at each date and we simulate the dynamics of the epidemic

in this case. We find that the population reacts to the epidemic announcement by

self-isolating drastically, which results in a drop in the percentage of infected. Then

individuals gradually increase the time they spend outside, maintaining the effective

reproduction number below the value that accelerates the epidemic. As a result, the

epidemic curve is decreasing between the time of announcement of the epidemic and

the arrival of the vaccine, contrary to the well-known bell-shaped curve of the SIR

model. We find that a later announcement of the epidemic increases the number of

deaths, in line with the results of Silverio et al. (2020), who find a positive correlation

between the number of cases before lockdown and the mortality rate in Italy. We also

analyze the impact of policies aiming at mitigating the transmission of the virus such

as mask distributions, messaging about hygiene measures, etc. We find that individuals

compensate the decrease in the risk of infection by reducing social distances, but not to

the point of accelerating the epidemic. Overall, we find that these policies reduce the

number of deaths. We also show that a more performing health system results of less

self-isolation but overall decreases the number of deaths. Finally, policies subsidizing

self-isolation flatten the economic curve, but we find no substantial difference when

self-isolation is encouraged at the beginning or at the end of the epidemic.

Related literature. Many papers have documented that individuals adapt their behav-

ior when facing a risk of infection. For instance, T. J. Philipson and Posner (1993) show

that the demand for measles, mumps and rubella vaccines increases when there is a large

increase in measles cases in a community, and Ahituv, Hotz, and T. Philipson (1996)

show that the demand for condoms increases in regions where HIV is prevalent. Some
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papers8 also prove that individual behaviors impact the spread of infectious diseases.

In the case of COVID-19, Cowling, Ali, et al. (2020) show that border restrictions and

changes in individual behavior are partly responsible for reduced transmission in Hong

Kong in February 2020.

In the theoretical literature, some models analyze the effect of social distance in SIR

or SIS epidemiological models, either in a social optimum approach (e.g. Sethi (1978),

F. Chen et al. (2011)) or also with strategic individual decisions (Reluga (2010), F.

Chen (2012), Fenichel et al. (2011) and Fenichel (2013), Toxvaerd (2019), Rowthorn and

Toxvaerd (2020)). This literature has grown considerably with the COVID-19 crisis. A

strand of papers analyze the optimal control of the epidemics in the SIR model, either in

the case of an homogenous population (Kruse and Strack (2020), Eichenbaum, Rebelo,

and Trabandt (2022), Alvarez, Argente, and Lippi (2020), C. Jones, Philippon, and

Venkateswaran (2021), Glover et al. (2020)), or when older people are more likely to

die from the disease (Acemoglu et al. (2021), Favero, Ichino, and Rustichini (2020),

Rampini (2020) and Bairoliya and İmrohoroğlu (2022)). The problem of individuals

who tradeoff the costs and benefits of self-isolation in the SIR model has been studied

notably by Toxvaerd (2020), Farboodi, Jarosch, and Shimer (2021) and Brotherhood

et al. (2020). In an infinite horizon model, Toxvaerd (2020) characterizes the exposure

level at the symmetric equilibrium and shows that self-isolation flattens the epidemic

curve. Farboodi, Jarosch, and Shimer (2021) prove that individuals do not self-isolate

enough with respect to what would be socially optimal, and Brotherhood et al. (2020)

analyze the effect of testing and age-specific policies in an heterogeneous population

with observable characteristics. Our model is one of the first in which the trade-off that

individuals face also depends on their subjective belief that they are the asymptomatic

type.

The remainder of this paper is organized as follows. Section 2 sets up the model. In

Section 3, we solve the best-response problem of a player, analyze some properties of

the equilibrium and characterize equilibria in which there is no confinement at all, or

8For instance, Cowling, Chan, et al. (2009) and Aiello et al. (2010) show that masks and hand washing can

reduce household transmission of respiratory infections in small areas.
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always partial confinement. In Section 4, we calibrate our model to fit the COVID-19

pandemic, we simulate the dynamics of the epidemic in equilibrium and provide some

policy analysis. Section 5 concludes and technical proofs are gathered in the Appendix.

1.2 An epidemiological model with voluntary confinement

The population. Time t ∈ [0,+∞) is continuous and discounted at a common rate

r > 0. There is a rampant disease in the population, against which a vaccine will arrive

at time T > 0. The population is a continuum of individuals who must continuously

decide what fraction of their time they spend outside. An individual who stays home

is protected from infection, while an individual who goes out may be infected by other

individuals, with a probability that will be described later. For simplicity, we assume

that an individual is contagious as long as she is infected. People know whether they

have been infected only if they experience the symptoms of the disease. There are two

types of individuals in the population. Individuals of type θs, the severe type, who

experience the symptoms of the disease immediately after being infected. In contrast,

individuals of type θa, the asymptomatic type, who do not have symptoms, thus never

realize that they have been infected. The proportion µ ∈ (0, 1) of asymptomatic types

in the population is common knowledge, but individuals do not know their own type,

unless they are of type θs and become infected.

We assume that an individual who gets symptoms self-isolates immediately until

the end of the symptoms, either to protect others, or simply because she is too sick to

go out. Therefore, a strategy for player i is a measurable function ki : R+ → [0, 1], with

the interpretation that ki(t) is the proportion of time spent outside at time t, absent

symptoms by time t.

Evolution of the epidemic. To model the spread of the disease, we use the SIR model

from Kermack and McKendrick (1927). At each time t, the population is divided into

three groups: susceptible S(t), infected I(t) and recovered R(t), i.e., those who died

from the disease or recovered and are now immune to it9. Accordingly, s(t) is the

9The idea is that an individual cannot be infected after being matched with an individual in R(t), either

27



fraction of the population that is healthy but susceptible to be infected at time t, i(t)

the fraction of the population that is infected at time t, and r(t) = 1− s(t)− i(t) the

fraction of the population that has died or recovered from the disease at t.

The disease is transmitted to a susceptible individual through contact with an in-

fected individual at rate β ∈ (0, 1), which measures the contagiousness of the disease.

Therefore, the mass of susceptible individuals who become infected between t and t+dt

depends on β, but also on the size of groups S(t) and I(t) and on the behavior of the

population in each group. Given a strategy profile k := ((kj)j), this mass equals

β×
∫
j∈S(t) kj(t)dj×

∫
j∈I(t) kj(t)dj, thus the group of susceptible evolves according to the

dynamics:

ṡ(t) = −βk̄S(t)s(t)k̄I(t)i(t), with s(0) = s0 ∈ (0, 1), (1.1)

where k̄I(t) :=
1

i(t)

∫
j∈I(t) kj(t)dj and k̄S(t) =

1
s(t)

∫
j∈S(t) kj(t)dj denote the average frac-

tion of time spent outside at t by infected and susceptible individuals, respectively.

When infected, asymptomatic individuals do not die and heal from the disease at rate

γa ∈ (0, 1). In contrast, individuals of the severe type die at rate ν and heal at rate γs.

We assume the same recovery rate for both types of individuals, i.e., γa = ν+γs, which

guarantees that, at each point in time, there is a fraction µ of asymptomatic among

infected people. We denote by γ := µγa + (1 − µ)γs the average healing rate in the

population. As the fraction of infected is also increased by −ṡ(t), the group of infected

evolves according to the following dynamics:10

i̇(t) = βk̄S(t)s(t)k̄I(t)i(t)− (γ + (1− µ)ν)i(t), with i(0) = i0 = 1− s0. (1.2)

Evolution of subjective beliefs. At time t, individual i holds a subjective belief pi(t)

of being type θs, with a common prior belief pi(0) = 1− µ for all individuals11. In this

because this individual has recovered from the disease and is not contagious anymore, or because this individual

is dead.
10Asymptomatic infected recover at rate γa, while severe infected recover at rate γs + ν. Therefore, the

fraction of infected decreases by µγa + (1− µ)(γs + ν), which equals γ + (1− µ)ν by definition of γ.
11The common prior belief assumption is very strong in the case of the COVID-19 epidemic for two reasons.

First, as of today the proportion of asymptomatic has yet to be precisely estimated, not to mention commonly

known. Second, even if the distribution of types in the population is still unknown, there are already evi-

dences that the probability of being asymptomatic is conditional to individual characteristics. We discuss the
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model, no news is good news: the subjective belief of being the severe type decreases as

time passes without the arrival of symptoms, and jumps to 1 the first time the symptoms

occur. Let us now describe the law of motion of pi(t). A susceptible individual i develops

symptoms in [t, t+dt) with probability 0 when she is of type θa; when she is of type θs,

she develops symptoms if she meets and is infected by some individual in I(t), which

occurs with instantaneous probability12 ki(t)× βk̄I(s)i(s)dt. By Bayes’ rule, the law of

motion of the subjective belief of individual i is thus13:

ṗi(t) = −pi(t)(1− pi(t))ki(t)βk̄I(t)i(t), with pi(0) = 1− µ. (1.3)

Payoffs Staying home prevents one from being infected, but comes at a cost (boredom,

opportunity cost of not working or working in poorer conditions, lack of physical activ-

ity, etc.). Being infected is also costly for individuals of the severe type because they

suffer from the symptoms, and, in the worst case, because they die from the disease.

Therefore, at each time t, individuals tradeoff the cost of self-isolating and the expected

benefit of not having the symptoms. We denote by cH the flow cost per unit of time

spent at home, by cI the flow cost of having symptoms and by cD the flow cost of being

dead.

Fix some strategy profile k and let us describe the expected payoff to individual i

at time t ≤ T when she plays some strategy ki, denoted by vi(t; ki). Uncertainty is

solved for individual i the first time she has symptoms. In that event, she knows that

she is the severe type, thus that she will stay at home until she recovers or passes away,

thereby incurring a total cost of
∫ min{τH ,τD}
0

e−rt(cH+cI)dt, with τH and τD standing for

the random times of healing and death, respectively. If she recovers (i.e., if τH < τD),

implications of relaxing this assumption in section 5.3.
12A possible interpretation of this probability is as follows. When she goes out, individual i is randomly

matched with another individual who also went out, according to the uniform distribution. The probability of

being matched with an infected agent at time t is thus exactly the mass of infected agents who are outside at

time t, i.e., k̄I(t)i(t). Finally, conditional on being matched with an infected individual, an individual has a

probability β of being contaminated.
13By Bayes’ rule, player i’s probability of being type θs conditionally on having no symptoms between t and

t + dt is pi(t + dt) = (1−ki(t)βk̄I (t)i(t)dt)pi(t)

(1−ki(t)βk̄I (t)i(t)dt)pi(t)+1−pi(t)
. Expression (1.3) is obtained by simplifying pi(t+dt)−pi(t)

dt

and taking dt to 0.
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she becomes immune to the disease, plays k(t) = 1 forever after, thus obtains the

continuation payoff 0. If she dies (i.e., if τD < τH), she incurs the flow cost cD forever

after, thus obtains the continuation payoff −cD/r. Therefore, the expected continuation

payoff to individual i the first time she has symptoms is14:

vI = −E
[∫ min{τH ,τD}

0

e−rt(cH + cI)dt+
cD
r
e−rτD1τD<τH

]
= − 1

r + γs + ν
(cH+cI+ν

cD
r
)

(1.4)

Conditionally on having no symptoms before s ∈ [t, T ], the instantaneous payoff to

player i at time s is vI if she has symptoms, which occurs with subjective probability

pi(s)ki(s)βk̄I(s)i(s), minus the cost cH scaled with the proportion of time spent in

isolation, 1− ki(s). At time t, the subjective probability of not having any symptoms

before s is 1 − pi(t) + pi(t)e
−

∫ s
t ki(u)βk̄I(u)i(u)du, which reduces to e−

∫ s
t pi(u)ki(u)βk̄I(u)i(u)du

after standard simplifications15. Finally, individual i is vaccinated at time T , thus plays

ki(t) = 1 for every t ≥ T and obtains the continuation payoff Vi(T ) = 0. Therefore,

vi(t; ki) =

∫ T

t

e−r(s−t)e−
∫ s
t pi(u)ki(u)βk̄I(u)i(u)du

(
pi(s)ki(s)βk̄I(s)i(s)vI − cH(1− ki(s))

)
ds,

(1.5)

where functions s(.), i(.) and pi(.) are defined by (1.1), (1.2) and (1.3).

1.3 Equilibrium analysis

Fix a strategy profile k in all possible strategy profiles K and an individual i. The

best-response problem faced by i is the optimal control problem:




max
ki∈K

vi(0; ki)

s.t. ṗi(t) = −pi(t)(1− pi(t))ki(t)βk̄I(t)i(t) ∀ t and pi(0) = 1− µ,

which we solve in the Appendix using Pontryagin’s principle. Here, we explain the

intuition of the solution with a heuristic dynamic programming argument, using the

time and the individual’s current belief p as the state variable. At time t, the optimal

14See Lemma 1 in the Appendix for the detailed calculations.
15Using the law of motion of beliefs described by (1.3), we can establish two equalities. First,

e−
∫ s
t ki(u)βk̄I (u)i(u)du = e

∫ s
t

ṗi(u)
pi(u)(1−pi(u))

du
= 1−pi(t)

pi(t)
pi(s)

1−pi(s)
. Second, e−

∫ s
t pi(u)ki(u)βk̄I (u)i(u)du =

e
∫ s
t

ṗi(u)
1−pi(u)

du
= 1−pi(t)

1−pi(s)
. Therefore, 1− pi(t) + pi(t)e

−
∫ s
t ki(u)βk̄I (u)i(u)du = 1−pi(t)

1−pi(s)
= e−

∫ s
t pi(u)ki(u)βk̄I (u)i(u)du.
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level of social interaction of an individual maximizes the sum of her current expected

payoff and of her discounted continuation payoff, should no symptoms occur in the

interval [t, t + dt). The best-response payoff to player i at time t and belief p thus

satisfies the Bellman equation:

V (t, p) = max
k∈[0,1]

{(
− (1 − k)cH + pkβk̄I(t)i(t)vI

)
dt+

(
1 − pkβk̄I(t)i(t)dt

)
e−rdtV (t+ dt, p+ dp)

}
.

After standard simplifications and the elimination of terms to the order (dt)2, the latter

expression is rewritten:

rV (t, p) = Vt(t, p) − cH + max
k∈[0,1]

k
(

cH︸︷︷︸
cost of confinement

− pβk̄I(t)i(t)(V (t, p) − vI − (1 − p)Vp(t, p))︸ ︷︷ ︸
cost of social interaction

)
dt.

(1.6)

To interpret this expression, note that two things can happen for an individual who

does not self-isolate at time t: either she develops symptoms, thus obtains the payoff

vI “today”, or she does not. In that case, she becomes more confident in being the

asymptomatic type, and she obtains“tomorrow”the continuation payoff V (t+dt, p+dp),

approximated by V (t, p) at time t. Her best response thus depends on whether the

direct cost of confinement, cH , exceeds the expected cost of social interaction, which

has two parts: pβk̄I(t)i(t)(V (t, p)− vI) is the expected cost of the jump to vI in case of

symptoms; −pβk̄I(t)i(t)(1− p)Vp(t, p) is the positive effect on the overall payoff should

the individual develop no symptom, via the negative effect on the probability of being

the severe type.

Proposition 1 (Best response). Given a strategy profile k, the best-response problem

of player i admits a solution k∗i , which is characterized by the pair of C1 functions

ψ∗
i : R+ → R and p∗i : R+ → [0, 1] such that, for all t,

k∗i (t)





= 1 if p∗i (t)βk̄I(t)i(t)(ψ
∗
i (t)− vI)− cH < 0,

∈ [0, 1] if p∗i (t)βk̄I(t)i(t)(ψ
∗
i (t)− vI)− cH = 0,

= 0 if p∗i (t)βk̄I(t)i(t)(ψ
∗
i (t)− vI)− cH > 0,

(1.7)

with

ψ̇∗
i (t)− rψ∗

i (t) = cH + k∗i (t)
(
βk̄I(t)i(t)(ψ

∗
i (t)− vI)− cH

)
, ψ∗

i (T ) = 0 (Euler condition),

ṗ∗i (t) = −p∗i (t)(1− p∗i (t))k
∗
i (t)βk̄I(t)i(t), p

∗
i (0) = 1− µ (Belief dynamics).

31



Proof. See the Appendix.

An immediate corollary of Proposition 1 is that all equilibria feature social inter-

action, in the sense that, at every time, there is a mass of individuals who do not

self-isolate. The reason is simple: if the rest of the population stays at home, each

individual can spare the confinement cost cH by going out without risking infection.

Proposition 2. Let (k∗i )i be an equilibrium. At every time t, there is a non-empty set

of individuals such that k∗i (t) > 0 for every i in this set.

Proof. Fix time t and suppose that ki(t) = 0 for all i, i.e., k̄I(t) = 0. By condition (1.7)

in Proposition 1, the best response of each individual i to k̄I(t) = 0 is to play ki(t) = 1.

This contradicts k̄I(t) = 0.

Because the expected marginal benefit of confinement depends on t in expression

(1.7), self-isolation may be worth the confinement cost at some dates, but may not at

some other dates. Intuitively, when cH is relatively large with respect to vI , going out

at every date is a dominant strategy for the population.

Proposition 3 (The no-confinement equilibrium). If (1 − µ)βµvI + cH > 0, the game

admits a unique equilibrium, where all individuals play k∗(t) = 1 for every t ∈ [0, T ].

In this equilibrium, the players’ payoff at time t is

v(t; k∗) = vI(1− µ)β

∫ T

t
e−r(u−t)i(u)e−βµ

∫ u
0 i(v)dvdu

µ+ (1− µ)e−βµ
∫ t
0 i(u)du

,

where i(.) is the unique solution of the system





i(0) = 1− s(0) = i0 and, ∀ t ∈ [0, T ],

i̇(t) = βµs(t)i(s)− (γ + (1− µ)ν)i(t),

ṡ(t) = −βµs(t)i(t).

Proof. See the Appendix.

When cH is so large that nobody self-isolates, the epidemic ends quickly but results

in a large number of deaths. As a vaccine will arrive at time T , the government

may want to implement policies to reduce the cost of confinement, in order to create

the conditions under which individuals consider self-isolation. We thus investigate the
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existence of interior equilibria, in which individuals partially self-isolate at every date.

We prove that there can exist only one symmetric and interior equilibrium.

Proposition 4 (The symmetric interior equilibrium). Let k̂ be the strategy defined for

every t ∈ [0, T ] by the system of equations:




k̂(t) =
cH

p(t)βµi(t)(ψ(t)− vI)
,

ṗ(t) = −p(t)(1− p(t))βµi(t)k̂(t)2,

ṡ(t) = −βµs(t)i(t)k̂(t)2,
i̇(t) = βµs(t)i(t)k̂(t)2 − (γ + (1− µ)ν)i(t),

ψ̇(t) = rψ(t) + cH + cH
1− p(t)

p(t)
k̂(t),

p(0) = 1− µ, i(0) = 1− s(0) = i0 and ψ(T ) = 0.

(1.8)

If k̂(t) < 1 for every t ∈ [0, T ], then the game has a unique symmetric and interior

equilibrium where all individuals play k̂.

Proof. See the Appendix.

1.4 Illustration

The purpose of this section is to illustrate the impact of self-isolation behaviors on

the dynamics of the epidemic and to highlight the policy lessons that can be drawn from

our findings. To do so, we simulate the dynamics of the epidemic when the population

plays the interior equilibrium described in Proposition 4, and we compare it with the

dynamics of the standard SIR model (referred to as the SIR model in the rest of the

section), i.e., the model described by equations (1.1) and (1.2) with k̄S(t) = k̄I(t) = 1.

We calibrate the epidemiological parameters β, γa, µ and ν to the COVID-19 pandemic

and we chose the behavioral parameters cI , cH and cD arbitrarily in such a way that

the interior equilibrium exists given the epidemiological parameters.

Throughout our simulations, we assume that individuals are not aware of the epi-

demic until some time τ ∈ (0, T ), which can be interpreted as the moment at which

the government makes the epidemic common knowledge in the population via a public

announcement. Before time τ , individuals play k(t) = 1. After time τ , they commonly
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know the epidemiological parameters as well as the current fraction of susceptible and

infected, and adapt their behavior accordingly.

The system (1.8) is well defined by initial values p(0), i(0) and s(0). However, the

algorithm we construct to simulate (1.8) also requires the specification of ψ(0), which

cannot be taken arbitrarily since ψ is determined by the terminal condition ψ(T ) = 0.

To determine ψ(0), we use an adaptation of the Simulated Annealing algorithm – a

stochastic search-based algorithm described by Lewis (2007), whose principle is to solve

(1.8) for several possible values of ψ(0) and to select the one that minimizes the distance

between ψ(T ) and 0.16

1.4.1 Calibration

We assume that initially i0 = 0.1% of the population is infected, and that individ-

uals discount time at rate r = 0.014%, in line with in Fenichel et al. (2011)17. We

also assume that the population learns on day τ = 30 that a virus has been spreading

since day 0, against which a vaccine will be available on day T = 350.

In the absence of exhaustive testing campaigns, it is very difficult to have a satis-

factory estimate of the proportion of asymptomatic in the population. In a nationwide

study of over 61 000 participants, Pollán et al. (2020) find that the proportion of asymp-

tomatic individuals in the Spanish population who developed antibodies to the SARS

CoV-2 ranges from 21.9% to 35.8%. Therefore, we set µ to the middle of this interval:

µ = 0.2885.

To calibrate the contagion rate β and the recovery rate γa, we use the estimates of

A. Remuzzi and G. Remuzzi (2020)’s, i.e., a basic reproduction number of R0 = 2.76

16Precisely, at stage 1 a value ψ(0)[1] is uniformly drawn from an interval of reasonable values and is

temporarily designed “best candidate”. The final value of ψ given ψ(0)[1], i.e., ψ(T )[1], is computed. At

stage 2, another value ψ(0)[2] is drawn at random. If the corresponding final value ψ(T )[2] is closer to 0

than ψ(T )(1), then ψ(0)[2] becomes the new best candidate. The process does on iteratively and stops after a

deterministic number of rounds N , which is large enough to guarantee that ψ(T )[N ] is almost 0 with the final

best candidate.
17Precisely, Fenichel et al. (2011) study a discrete-time model in which they set the discount rate to δ =

0.99986, which corresponds to a 5% annual discount rate. The analog of δ in a continuous-time model is

r = − ln(δ), thus we set r = − ln(0.99986).
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and an infection duration of 15 days. The infection duration directly yields: γa =

1/15. Some precautions must be taken to infer β from R0. By definition, the basic

reproduction number is the average number of secondary infections produced by a

typical case of an infection in a population where everyone is susceptible. It is affected

by the rate of contacts in the population, the probability of infection being transmitted

during contact and the duration of infectiousness. In our model, R0 = βµ/γa. Let

us explain why. As infected self-isolate when they are the severe type, a randomly

chosen infected individual contaminates a susceptible only if she is asymptomatic (which

happens with probability µ) and if the virus is transmitted during contact (which

happens with probability β). As she is infectious during a period of expected length

1/γa, the average number of new infections caused by an infected is βµ/γa. Therefore,

we set: β = 2.76γa/µ.

On March 3, 2020, the Director General of the WHO declared that approximately

3.4% of reported cases of COVID-19 died from the disease. As only patients with severe

symptoms were tested at the beginning of the outbreak, we believe that the mortality

rates measured in March 2020 are a valid estimate of the probability of death for an

individual of the severe type infected by the disease18, i.e., ν/(ν + γs). Therefore, we

set: ν/γa = 0.034.

Finally, we set the costs arbitrarily to cH = 0.0009, cI = 0.09 and cD = 9. These

values are such that the interior equilibrium exists given the COVID-19 epidemiological

parameters.

1.4.2 The dynamics of the epidemic in the interior equilibrium

We begin by analysing the impact of strategic self-isolation on the dynamics of the

epidemic, which is illustrated in Figure 1.1.

Contrary to the now well-known bell-shaped curve of the SIR model, the epidemic

curve (i.e., the graph of the percentage of infected plotted against time) continuously

18In our model, an infected of the severe type dies if the event “Death” occurs for her before the event

“Healing”. Therefore, the probability of death (conditional on being infected and the severe type) is P (τD <

τH), with τH and τD denoting the random times of healing and death, respectively. Straightforwardly, P (τD <

τH) =
∫∞
0
FτD (t)fτH (t)dt = ν/(γs + ν) since fτD (t) = νe−νt and fτH (t) = γse−γst.
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Figure 1.1: Dynamics of the epidemic in the interior equilibrium.

decreases on [τ, T ]. Therefore, the epidemic peak is reached before the population is

informed about the epidemic, while in the SIR model, the fraction of infected continues

to increase after time τ , reaching later a higher peak. The reason is that the popu-

lation reacts to the epidemic announcement by self-isolating drastically after time τ ,

which results in a rapid decline in the percentage of infected. As the probability of

being infected decreases, the marginal benefit of confinement decreases and individuals

gradually increase the time they spend outside between t = 97 and t = 203 as a result.

As k̂(t) sort of stabilizes to 0.615 after t = 203, there is no rebound of the epidemic.

One of the parameters monitored by health authorities is the effective reproduction

number, i.e., the average number of secondary cases per infectious case in a population

made up of both susceptible and recovered individuals. In the SIR model, the effective

reproduction number is RSIR
e (t) = µβs(t)/γa. As the fraction of susceptible continu-

ously decreases on [0, T ] (see equation (1.1)), the effective reproduction number in the

SIR model decreases on [0, T ] and stabilizes to RSIR
e (350) = 0.217. In the interior equi-

librium, an infected of the asymptomatic type has a “probability” k̂(t) of going out, and

when she is out, a “probability” k̂(t)s(t) of meeting a susceptible. Therefore, the effec-

tive reproduction number in the interior equilibrium equalsRBMM
e (t) = µβk̂(t)2s(t)/γa.

This explains why, contrary to the SIR model, the effective reproduction number in equi-

librium falls after the epidemic announcement, then gradually increases and stabilizes
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approximately19 to 1 once people stop self-isolating, thus after t = 210.

Finally, one can see in Figure 1.2 that the SIR model overestimates the number of

deaths compared to a model with strategic self-isolation. This should not be interpreted

in favor of strategies pursuing herd immunity, however, because even the smaller number

of cases predicted by our model may well overwhelm hospital capacity.
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Figure 1.2: Cumulative number of deaths.

1.4.3 Policy analysis

Experts are still debating which public interventions should be imposed to manage

the COVID-19 crisis. When it comes to public policies, not taking into account the

fact that people react strategically to their environment might be counter productive.

In this section, we illustrate how our results can inform some of the current debates

over policies to control COVID-19.

The timing of announcement

We begin by analysing the impact of the announcement time on the epidemic course.

As the epidemic peak is reached in τ , a later announcement mechanically increases the

proportion of infected when the population learns about the epidemic. This has two

opposite effects on the marginal benefit of confinement for an individual. On the positive

19Precisely, RBMM
e (210) = 0.999.
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side, it increases the risk of being infected, which gives her more incentives to self-isolate.

On the negative side, it increases her confidence20 in being the asymptomatic type after

she realizes that she has developed no symptoms during [0, τ ], which gives her more

incentives to go out.

These opposite effects explain the form of the graphs in Figure 1.3: when the epi-

demic announcement is delayed, the population starts deconfining later (the risk effect)

but the percentage of time spent outside stabilizes at a higher level (the confidence

effect).
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Figure 1.3: Impact of τ on the percentage of time spent outside and the subjective beliefs.

However, we find that a later announcement increases the number of deaths, as

illustrated in Figure 1.4.

This is consistent with the findings of Silverio et al. (2020), who analyze the relation-

ship between the penetration of COVID-19 at the time of lockdown and the mortality

in the different Italian regions. They find a significant, positive correlation between the

number of cases before lockdown and the mortality up to sixty days, and show that

every day of delay in containment was associated with increased mortality.

20When an individual with no symptoms learns at time τ that the epidemic has been spreading since time

0, she updates her belief of being type θs to pi(τ) = (1− µ)/(1− µ+ µeβ
∫ τ
0 i(t)dt). Therefore, the larger τ , the

smaller pi(τ).
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Figure 1.4: Impact of τ on the cumulative number of deaths.

Mitigating the transmission of the virus

The aim of lockdown policies is to flatten the economic curve by reducing the fre-

quency of contacts in the population. Another way to do so is to mitigate the probability

of transmission of the virus per contact, i.e., β. Governments can reduce β by subsi-

dizing face masks, installing hand sanitizers in public spaces, messaging about hygiene

measures such as hand washing, use of disposable tissues, etc. Governments can also

organize screening campaigns to detect infected but asymptomatic people. Formally, if

a fraction x of the population is tested for COVID-19 (and if asymptomatic people who

test positive self-isolate), then only a fraction (1−x)µ of the infected people can infect

susceptible individuals. In terms of the dynamics of the epidemic, this is equivalent to

assuming that the marginal rate of infection decreases to β(1−x)µ. Let us refer to the

policies reducing βµ as mitigating policies.

In the SIR model, mitigating policies unambiguously flatten the epidemic curve21. In

our model, however, the effect of these policies is more subtle. First, mitigating policies

have two opposite effects on the marginal benefit of confinement for an individual. On

the negative side, they decrease the risk of infection per contact, which gives her less

incentives to self-isolate. On the positive side, they slow down22 the learning process at

21The dynamics of the infected in the SIR model are i̇(t) = βµs(t)i(t)− (γ + (1− µ)ν)i(t), hence decreasing

βµ flattens the epidemic curve.
22The law of motion of an individual’s belief is ṗi(t) = −pi(t)(1 − pi(t))βµi(t)k̂(t)

2, hence decreasing βµ
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work in the model, hence decrease her confidence in being the asymptomatic type, which

gives her less incentives to go out. The risk compensating behavior can be observed in

Figure 1.5 for the three smallest values of βµ. Interestingly, a decrease from βµ = 0.276

to βµ = 0.230 make individuals deconfining earlier (the risk effect) but the percentage

of time spent outside stabilizes at a smaller level (the confidence effect).
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Figure 1.5: Impact of βµ on the percentage of time spent outside and the subjective beliefs.

This is in line with the empirical findings of Yan et al. (2020), who use SafeGraph

smart device location data to investigate the consequences of wearing face masks on self-

isolation behavior in the American population. They find evidence that masks enable

disinhibition behavior and that Americans spend 20-30 minutes less time at home and

more time in moderate to high-risk locations following orders to wear masks.

However, we find that mitigating policies are efficient in reducing the number of

deaths, as illustrated in Figure 1.6.

Improving health system performance

The COVID-19 crisis has highlighted important differences between countries in

terms of health system performance, even within the OECD group. It is reasonable

to assume that the state of the health system (intensive care beds capacity, possibility

of inter-hospital patient transfers or of setting up field hospitals, etc.) influences the

healing rate γs and the mortality rate ν/(ν + γs). We analyze the impact of the health

decreases the growth rate of pi(t) in absolute value.
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Figure 1.6: Impact of βµ on the cumulative number of deaths.

system performance on the dynamics of the epidemic by comparing our baseline system

(γa = 1/15 and ν = 0.002267) with a more performing system where γa = 0.07334 and

ν = 0.0011335.

Given a fixed percentage of time spent out by individuals, a better health system

directly flattens the epidemic curve and decreases the number of deaths. However,

with strategic self-isolation a better health system has also a perverse effect via the

increase in the continuation payoff23 in case of infection. Since the expected cost of

having symptoms decreases with the quality of the health system, the marginal benefit

of confinement decreases and individuals have less incentives to self-isolate. One can

observe this risk compensating behavior in Figure 1.7: in a more performing health

system, individuals deconfine earlier and the percentage of time spent outside stabilizes

at a higher level.

However, we find that the performance of the health system decreases the number

of deaths, as illustrated in Figure 1.8.

Subsidizing self-isolation.

The policy insight of Proposition 3 is that reducing the cost of confinement is also a

means to be considered in controlling the spread of an infectious disease. To reduce cH ,

governments can e.g. set up partial unemployment compensation schemes, subsidize the

23One can see in expression 1.4 that vI increases when γs increases or when ν decreases.
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Figure 1.7: Dynamics of k̂(.) and p(.) in a low-performing system and in a high-performing system.
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Figure 1.8: Cumulated number of deaths in a low-performing system and in a high-performing system.

purchase of computer equipment, etc. The impact of a decrease in cH on the dynamics

of the epidemic is immediate: it decreases the percentage of time spent outside, thus

the number of deaths.

Since measures encouraging self-isolation are costly, it is conceivable that the gov-

ernment may not be able to cut back cH until the vaccine arrives, but only for a certain

period of time, which raises the question of the optimal timing of subsidizing policies.

To address this question, we simulate two different scenarios that we compare to the

baseline simulation. In the first scenario (Public Policy 1 ), the confinement cost is

reduced to cH = 0.000675 only between t = 30 and t = 180. In the second scenario

(Public Policy 2 ), the confinement cost is reduced to cH = 0.000675 only between
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t = 180 and t = 350. As one can see in Figure 1.9, Policy 1 induces more self-isolation

until t = 180. At t = 180, the time individuals spend outside skyrockets, then rapidly

decreases and returns to the equilibrium level without public intervention. Right after

the implementation of Policy 2, individuals self-isolate drastically, then the time they

spend outside increases gradually until it returns to the equilibrium level without public

intervention.
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Figure 1.9: Percentage of time spent outside under Public Policy 1 and Public Policy 2.
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Figure 1.10: Cumulative number of deaths under Public Policy 1 and Public Policy 2.

Finally, these two policies only reduce the number of deaths at the margin (see Figure

1.10), because individuals already partially self-isolate in equilibrium. This should not

be interpreted as evidence of inefficiency of policies subsidizing self-isolation. On the
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contrary, these policies allow for a shift from equilibria in dominant strategies without

self-isolation to equilibria with partial self-isolation.

1.5 Concluding remarks

This paper is a first attempt to analyze the spread of an infectious disease in a

population when individuals strategically choose how much time to interact with others.

In the absence of any symptoms, individuals are not sure whether they are susceptible

or infected but asymptomatic, and they continuously tradeoff the costs and benefits

of self-isolation on the basis of their belief of being the asymptomatic type. We prove

that when the cost of confinement is small enough, there exists an equilibrium in which

the population partially self-isolates at every date. This is consistent with the findings

of Youpei Yan et al. (2021), who use smart device location data to show that people

adopted avoidance behaviors following the announcement of the pandemic.

We calibrate the parameters of our model to the COVID-19 pandemic and simulate

the impact of some public interventions on the dynamics of the epidemic. Calibration is

very delicate in the case of an emerging disease for which knowledge is increasing daily.

In particular, the choices of the proportion of asymptomatic and the basic reproduction

number are questionable. To verify the robustness of our results, we perform a sensi-

tivity analysis in the Appendix. To do so, we simulate our model with other reasonable

values of the parameters and obtain qualitatively the same results. In particular, we

show that the number of deaths increases when the population is informed later of the

epidemic, and decreases under mitigating policies.

Two subjects have been particularly debated since the beginning of the COVID-19

crisis: the application, timing and duration of lockdowns and the use of face masks in

the general population.

Most countries have implemented lockdown policies to slowdown the epidemic. As

lockdowns cause huge collateral damage in terms of economic activity, education and

access to care, some governments were tempted by strategies pursuing herd immunity

at first. The optimal timing of lockdowns is a crucial question. In a theoretical model
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where individuals do not chose how much time they interact with others, Kruse and

Strack (2020) show that if the government has the possibility to lockdown the popula-

tion during only 100 days, delaying the moment to start the lockdown might actually

decrease the total number of deaths. The reason is that delaying the lockdown in-

creases the level of herd immunity in the population, which works as a protection for

those individuals who remain susceptible after the lockdown. In contrast, we find that

the number of deaths increases with the announcement time. The reason is that, when

individuals behave strategically, they flatten the epidemic curve by self-isolating more

when the epidemic is too fast. Therefore, delaying the announcement time postpones

the moment at which the population strategically controls the epidemic course.

At present, many governments have mandated the use of face masks in public spaces,

arguing that face masks are low cost and might help prevent some transmission. At the

beginning of the outbreak, however, WHO officials did not recommend mask wearing

in the general population24, stressing that 1) masks are commonly misused, and as

a result, do not offer the intended protections, and 2) wearing a mask can provide a

false sense of security, leading some to become less vigilant in more important hygiene

measures, such as hand washing and self-isolation. Our results confirm that making

masks mandatory leads individuals to reduce social distance, which can accelerate the

epidemic. However, as individuals adapt to the level of the epidemic, this reduction is

moderate, and the negative effect of a higher level of social interaction is more than

offset by the positive effect on virus transmission, so that mandatory masks lead to a

reduction in the number of deaths.

In our model we assume an homogenous population, full immunity after healing

and no incubation period. These are strong assumptions in the case of the COVID-19

pandemic, which could be relaxed for future research.

Heterogeneous population. We assume that individuals have all the same prior belief

24On 30 March, 2020, Dr. Mike Ryan, executive director of the WHO health emergencies program declared:

“There is no specific evidence to suggest that the wearing of masks by the mass population has any potential

benefit. In fact, there’s some evidence to suggest the opposite in the misuse of wearing a mask properly or

fitting it properly.”
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of being the severe type, thus of dying from the disease. In the case of COVID-19, it

is now clear and well documented25 that the population is divided between those who

are at high risk of dying from the disease (patients with co-morbidities) and those who

are at lower risk. It is still unclear whether individuals with co-morbidities are less

likely to be asymptomatic. However, they know that, if they catch the disease and are

not asymptomatic, they will have more severe symptoms and a higher chance of dying

than people without co-morbidities. To capture this observable intrinsic heterogeneity

in the population, we can augment the model by assuming that each individual i is of

medical condition ϵi ∈ {c, c̄}, with c standing for“co-morbidities”and c̄ standing for“no

co-morbidities”. An individual knows her medical condition but not whether she is the

asymptomatic type. In the Appendix, we prove that any equilibrium features social

interaction, and that the game admits a unique equilibrium in which no individual

self-isolates when the confinement cost is large enough. The main difference is that

assuming an heterogeneous population precludes the existence of symmetric equilibria

other than the no-confinement equilibrium.

Waning immunity. In our model, individuals who recover from the disease become

perfectly immune to the virus. This is true for many infectious diseases, but likely not

for COVID-19. Antibodies to other coronaviruses are known to wane over time (12 to

52 weeks from the onset of symptoms) and homologous re-infections have been observed

(see e.g. Kellam and Barclay (2020)). SARS-CoV-2 IgM and IgG antibody levels may

remain over the course of seven weeks or at least in 80% of the cases until day 49 (see

Xiao et al. (2020) and Zeng et al. (2020)). Therefore, it is reasonable to assume that

individuals are immune immediately after recovery, but may lose their immunity after

a random period of time, probably before the vaccine arrives. One possible way to

introduce waning immunity into our model would be to assume that healed individuals

become susceptible again at some rate η ∈ (0.1). This would change the dynamics of

25Underlying medical conditions, such as obesity, hypertension (Richardson et al. (2020)), cardiovascular

disease (Sanyaolu et al. (2020)), chronic lung disease (S. Zhao et al. (2020)) and diabetes (Singh et al. (2020))

are clinical predictors of mortality and severity for SARS-CoV-2. In addition, older people are not only more

at risk of contracting the disease but have an increased risk of death among these patient groups (K. Liu et al.

(2020), B. Wang et al. (2020), F. Zhou et al. (2020)).
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the epidemic26 and also the continuation payoff in case of symptoms. Like in our model,

an individual would learn that she is the severe type the first time she has symptoms.

The difference is that she would face a new type of uncertainty after healing, as she

would not know whether she is still immune to the virus. As a result, playing k(t) = 1

forever after healing would not be a dominant strategy, and she would face a non trivial

dynamic optimization problem after healing. The technical analysis of this augmented

model is challenging and left for future research.

Incubation period. The most critical assumption of our model is the absence of incu-

bation period, which implies that the virus is spread in the population only by asymp-

tomatic individuals. In the case of COVID-19, the time from exposure to the develop-

ment of symptoms is estimated to be 5.2 days on average (see Q. Li et al. (2020)), hence

severe types can also spread the virus during the incubation period. A simple way to

introduce an incubation period in our model would be to assume that an individual

infected at time t develops symptoms only at time t + ∆, with ∆ standing for the in-

cubation period. The dynamics of the epidemic would be the same, except for the law

of motion of beliefs. Indeed, in this variant of the model the probability of developing

symptoms between t and t + dt conditional on being type θs would be the probability

of having been infected in t−∆. Therefore, the law of motion of player i’s belief would

be ṗi(t) = −pi(t)(1 − pi(t))ki(t −∆)k̄I(t −∆)i(t −∆). The best-response problem of

individuals would be an optimal control problem with time lag in the control variable,

which is very difficult to solve. However, we believe that the equilibria of the game

would be similar, as the uncertainty that people might be infected and contagious but

asymptomatic is already present in our model with the uncertainty about the type.

26In this augmented model would be governed by the system of ODE ṡ(t) = −βk̄S(t)s(t)k̄I(t)i(t) + ηr(t),

i̇(t) = βk̄S(t)s(t)k̄I(t)i(t)− (γ + (1− µ)ν)i(t) and ṙ(t) = (γs + ν)i(t)− ηr(t).
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Appendix

1.5.1 Proofs for Section 2 and Section 3

Lemma 1. Let τH and τD be independent random variables distributed according to

f(t) = γe−γt and f(t) = νe−νt, respectively. The following equality holds:

E

[∫ min{τH ,τD}

0

e−rt(cH + cI)dt+
cD
r
e−rτD1τD<τH

]
=

1

r + γ + ν
(cH + cI + ν

cD
r
).

Proof. Let g(τH , τD) :=
∫ min{τH ,τD}
0

e−rt(cH + cI)dt+
cD
r
e−rτD1τD<τH . Straightforwardly,

g(τH , τD) =
cH + cI

r
(1− e−rmin{τH ,τD}) +

cD
r
e−rτD1τD<τH .

The random variable min{τH , τD} is distributed according to f(t) = (γ + ν)e−(γ+ν)t.

Therefore,

E[e−rmin{τH ,τD}] =
γ + ν

r + γ + ν
.

Moreover,

E[e−rτD1τD<τH ] =

∫ ∞

0

(∫ τH

0

e−(r+ν)τDνdτD

)
γe−γτHdτH =

ν

r + γ + ν

Therefore,

E[g(τH , τD)] = (cH + cI)
1

r + γ + ν
+
cD
r

ν

r + γ + ν
.

Proof of Proposition 1

The best-response problem of player i is to determine the strategy ki that maximizes

her expected discounted payoff vi(0; ki), the pair of functions s(.) and i(.) being fixed

and defined by the dynamics




s(0) = 1− i(0) = s0 and, ∀ t ∈ [0, T ],

ṡ(t) = −βk̄S(t)s(t)k̄I(t)i(t),
i̇(t) = βk̄S(t)s(t)k̄I(t)i(t)− (γ + (1− µ)ν)i(t)

Formally, it is the solution of the optimal control problem:




max
ki∈K

∫ T

0
e−rte−

∫ t
0 pi(s)ki(s)βk̄I(s)i(s)ds

(
pi(t)ki(t)βk̄I(t)i(t)vI − cH(1− ki(t))

)
dt

w.r.t. ṗi(t) = −pi(t)(1− pi(t))ki(t)βk̄I(t)i(t) ∀ t and pi(0) = 1− µ.
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where K denotes the set of piecewise continuous functions from R+ into [0, 1]. Making

the change of variable x(t) := e−
∫ t
0 pi(s)ki(s)βk̄I(s)i(s)ds, player i’s problem can be rewritten

as:

P(k) :





max
k∈K

∫ +∞
0

e−rtF (t, x(t), k(t))dt

w.r.t. ẋ(t) = f(t, x(t), k(t)) and x(0) = 1.

with F (t, x(t), k(t)) := (x(t)− µ) k(t)βk̄I(t)i(t)vI−x(t)cH(1−k(t))
)
and f(t, x(t), k(t)) :=

− (x(t)− µ) k(t)βk̄I(t)i(t).

As F (t, x(t), k(t)) is negative and bounded below by vI , the objective is well defined.

Furthermore, by standard results, the problem admits at least one solution. Applying

Pontryagin’s maximum principle, the optimal control k∗ and the associated trajectory

x∗ must satisfy the following conditions:

Lemma 2 (Necessary conditions). If (x∗, k∗) is a solution of P(k), then there exists a

continuous, piecewise continuously differentiable function ψ : R+ → R such that:

(i) ψ̇(t)− rψ(t) = −Hx(t, x
∗(t), k∗(t), ψ(t)),

(ii) H(t, x∗(t), k(t), ψ(t)) ≤ H(t, x∗(t), k∗(t), ψ(t)) for every admissible control k,

(iii) ψ(T ) = 0,

where H(t, x(t), k(t), ψ(t)) := F (t, x(t), k(t)) + ψ(t)f(t, x(t), k(t)) is the (discounted27)

Hamiltonian of the problem.

Observing that

H(t, x(t), k(t), ψ(t)) = (x(t)− µ)k(t)βk̄I(t)i(t)(vI − ψ(t))− x(t)cH(1− k(t)),

the necessary conditions are rewritten as

(i) ψ̇(t)− rψ(t) = k∗(t)βk̄I(t)i(t)(ψ(t)− vI) + cH(1− k∗(t)),

(ii) (k∗(t)− k(t))
[
x∗(t)cH − (x∗(t)− µ)βk̄I(t)i(t)(ψ(t)− vI)

]
≥ 0 ∀ admissible control k.

27The Hamiltonian of the problem is Ĥ(t, x(t), k(t), v(t)) := e−rtF (t, x(t), k(t)) + v(t)f(t, x(t), k(t)). For

expositional reasons, we define ψ(t) := ertv(t) and use the discounted Hamiltonian H(t, x(t), k(t), ψ(t)) :=

ertĤ(t, x(t), k(t), v(t)). The first necessary condition is adapted from the standard condition v′(t) =

−Ĥx(t, x(t), k(t), v(t)).
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The latter condition can be more conveniently rewritten as:

(ii) (k∗(t)− k(t))
[
cH − p∗(t)βk̄I(t)i(t)(ψ(t)− vI)

]
≥ 0,

with p∗(t) = 1 − µ
x∗(t)

. Accordingly, if cH − p∗(t)βk̄I(t)i(t)(ψ(t) − vI) > 0, then k∗(t)

must be larger than every admissible control, which is true only if k∗(t) = 1. If, on

the contrary, cH − p∗(t)βk̄I(t)i(t)(ψ(t) − vI) < 0, k∗(t) must be smaller than every

admissible control, which is true only if k∗(t) = 0. Therefore, condition (ii) reduces to

(ii) k∗(t) =





1, if cH − p∗(t)βk̄I(t)i(t)(ψ(t)− vI) > 0,

0, if cH − p∗(t)βk̄I(t)i(t)(ψ(t)− vI) < 0,

∈ [0, 1], if cH − p∗(t)βk̄I(t)i(t)(ψ(t)− vI) = 0.

Finally, we prove that ψ(T ) = 0. For every belief p, at time T the best-response payoff

satisfies the Bellman equation:

V (T, p) = max
k∈[0,1]

{(
− (1 − k)cH + pkβk̄I(T )i(T )vI

)
dt+

(
1 − pkβk̄I(T )i(T )dt

)
e−rdtV (T + dt, p+ dp)

}
.

As the game stops at time T , V (T, p) = V (T+dt, p+dp) = 0, thus the latter expression

is rewritten:

0 = max
k∈[0,1]

{
−(1− k)cH + pkβk̄I(T )i(T )vI

}
,

which implies that the best-response at time T is:

k∗(T ) =





1, if cH + p∗(T )βk̄I(T )i(T )vI > 0,

0, if cH + p∗(T )βk̄I(T )i(T )vI < 0,

∈ [0, 1], if cH + p∗(T )βk̄I(T )i(T )vI = 0.

It follows that ψ(T ) = 0 by condition (ii).

Let us now prove that necessary conditions are also sufficient.

Lemma 3 (Sufficient conditions). Consider a continuous, piecewise continuously differ-

entiable function ψ : R+ → R and a pair (x∗, k∗) satisfying conditions (i), (ii) and (iii).

For any admissible pair (x, k),
∫ +∞
0

e−rtF (t, x(t), k(t)) ≤
∫ +∞
0

e−rtF (t, x∗(t), k∗(t)).
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Proof. Using the change of variable y(t) = ln
(

µ
x(t)−µ

)
, the maximization problem P(k)

is rewritten as:

P(k) :





max
k∈K

∫ +∞
0

e−rtF (t, µ(1 + e−y(t)), k(t))dt

w.r.t. y′(t) = k(t)βk̄I(t)i(t) and y(0) = ln
(

µ
1−µ

)
.

Therefore, the Hamiltonian of the problem can be rewritten as:

H(t, y, k, ψ) = µe−y(t)k(t)βk̄I(t)i(t)vI − µ(1 + e−y(t))cH(1− k(t)) + ψ(t)k(t)βk̄I(t)i(t)

Let us define the function Ĥ(y) = maxkH(t, y, k, ψ). Straightforwardly,

Ĥ(y) =





µe−yβk̄I(t)i(t)vI + ψ(t)βk̄I(t)i(t) if µe−yβk̄I(t)i(t)vI + µ(1− e−y)cH + ψ(t)βk̄I(t)i(t) > 0

−µ(1 + e−y)cH if µe−yβk̄I(t)i(t)vI + µ(1− e−y)cH + ψ(t)βk̄I(t)i(t) ≤ 0

Since vI < 0, Ĥ(y) is concave in y. Therefore, necessary conditions are also sufficient

by the Arrow-Kurz theorem (see e.g. Arrow and Kurz (1970)).

Proof of Proposition 3

Fix a player i, a date t and a value k̄I(t). We shall use the following lemma:

Lemma 4. If ψi : R ∈ R satisfies the necessary conditions of Proposition 1, then

vI < ψi(t) < 0 for every t ∈ [0, T ].

Proof. Let ψi such that

ψ̇i(t)− rψi(t) = cH + ki(t)
(
βk̄I(t)i(t)(ψi(t)− vI)− cH

)
, ψi(T ) = 0, (1.9)

with

ki(t)





= 1 if pi(t)βk̄I(t)i(t)(ψi(t)− vI)− cH < 0,

∈ [0, 1] if pi(t)βk̄I(t)i(t)(ψi(t)− vI)− cH = 0,

= 0 if pi(t)βk̄I(t)i(t)(ψi(t)− vI)− cH > 0.

1) We first prove that vI < ψi(t) for every t ∈ [0, T ]. Suppose that there exists

t′ < t′′ ≤ T such that ψi(t) ≤ vI for every t ∈ [t′, t′′]. It follows that, for every
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t ∈ [t′, t′′], pi(t)βk̄I(t)i(t)(ψi(t) − vI) − cH < 0, which further implies that ki(t) = 1.

Plugged into condition (1.9), this yields

ψ̇i(t)− rψi(t) = βk̄I(t)i(t)(ψi(t)− vI) ∀ t ∈ [t′, t′′],

thus ψ̇i(t) < 0 ∀ t ∈ [t′, t′′]. As ψi(t
′′) < vI , ψi(t) < vI in the right neighbourhood of t′′.

Therefore, the assumption that ψi(t) ≤ vI for every t ∈ [t′, t′′] implies that ψi(t) < vI

and ψ′(t) < 0 for every t ∈ [t′, T ]. However, ψi(T ) = 0, thus ψ′
i(t) < 0 on [t′, T ] implies

that ψi(t) > 0 on [t′, T ], which contradicts ψi(t) < vI on [t′, T ].

2) Now we prove that ψi(t) ≤ 0 for every t ∈ [0, T ]. Suppose that there exists t′ < t′′ ≤ T

such that ψi(t) > 0 for every t ∈ [t′, t′′]. The, as ψi(t)− vI > 0, ψ′
i(t) > 0 on [t′, t′′] by

(1.9). It follows that ψi(t
′′) > 0, thus that ψi(t) > 0 in the right neighbourhood of t′′,

thus ψi(t) is increasing in the right neighborhood of t′′. Extending this argument, this

implies that ψi(t) > 0 and ψ′
i(t) > 0 for every t ∈ [t′, T ]. This contradicts ψi(T ) = 0.

As infected individuals of the severe type completely self-isolate, k̄I(t) ≤ µ. More-

over, p∗i (t) is non increasing in t, thus p∗i (t) ≤ 1−µ. Finally, i(t) < 1 and vI ≤ ψ∗
i (t) ≤ 0

by Lemma 4. Therefore,

p∗i (t)βk̄I(t)i(t)(ψ
∗
i (t)− vI)− cH ≤ (1− µ)βµ(−vI)− cH .

As a consequence, if (1 − µ)βµvI + cH > 0, then p∗i (t)βk̄I(t)i(t)(ψ
∗
i (t) − vI) − cH < 0,

which implies that k∗i (t) = 1 is the unique best response for player i to k̄I(t) by condition

(7) in Proposition 1. Therefore, the condition (1 − µ)βµvI + cH > 0 guarantees that

the game has a unique equilibrium in dominant strategies, in which k∗i (t) = 1 for every

i, t.

We now determine the players’ payoff in the equilibrium where k∗ = 1. As a first

step, we compute the players’ belief at time t. Plugging ki(t) = 1 and k̄I(t) = µ into

the belief dynamics (3), we obtain the players’ belief function as the solution of the

ODE:

ṗ(t) = −p(t)(1− p(t))βµi(t),

with initial condition p(0) = 1− µ. Integrating between 0 and t, we obtain

ln

(
1− p(t)

p(t)

)
− ln

(
µ

1− µ

)
=

∫ t

0

βµi(u)du,
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which, after straightforward simplifications, yields:

e−
∫ s
t p(u)βµi(u)du =

1− p(t)

1− p(s)
, and

p(t) =
1− µ

1− µ+ µz(t)
,

with z(t) := eβµ
∫ t
0 i(u)du. Using the latter findings and plugging ki(t) = 1 and k̄I(t) = µ

into the payoff expression (5) then simplifying, we obtain:

v(t; k∗) = vI(1− µ)βµ

∫ T

t
e−r(s−t)e−βµ

∫ s
0 i(u)dui(s)ds

µ+ (1− µ)e−βµ
∫ t
0 i(u)du

.

□

Proof of Proposition 4

Consider an interior, symmetric strategy profile where ki(t) = k̂(t) ∈ (0, 1) ∀ i, t.
Since individuals self-isolate when they have symptoms, only susceptible and infected,

asymptomatic individuals play k̂(t) at time t. As a result, k̄S(t) = k̂(t) and k̄I(t) =

µk̂(t), which, once plugged into equations (1) and (2), yields:

ṡ(t) = −βµs(t)i(t)k̂(t)2,
i̇(t) = βµs(t)i(t)k̂(t)2 − (γ + (1− µ)ν)i(t).

Moreover, plugging ki(t) = k̂(t) and k̄I(t) = µk̂(t) into the individual belief dynamics,

we obtain pi(t) = p(t) for every i, with

ṗ(t) = −p(t)(1− p(t))βµi(t)k̂(t)2.

Plugging pi(t) = p(t) and k̄I(t) = µk̂(t) into condition (7) in Proposition 1, we obtain

ψi(t) = ψ(t) for every i, with

p(t)βµk̂(t)i(t)(ψ(t)− vI)− cH = 0 (1.10)

Finally, plugging (1.10) into the Euler condition, we obtain:

ψ̇(t)− rψ(t) = cH + cH
1− p(t)

p(t)
k̂(t).

The strategy k̂ is interior strategy if and only if k̂(t) ∈ (0, 1) for every t ∈ [0, T ].

□
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1.5.2 An extension of the model with co-morbidities

Several assumptions have been made about the effect of co-morbidities on people’s

behavior. In this section, we will explore the effect of adding co-morbidities to the pre-

viously defined model and symmetric equilibrium. We augment the model by assuming

that each individual i is of health condition ϵi ∈ {c, c̄}, with c standing for “presence of

co-morbidities” and c̄ for “absence of co-morbidities”. An individual knows her health

condition but not her type (asymptomatic or severe). For simplicity, we assume that

the probability of being the asymptomatic type is independent of the health condition.

Assuming that individuals with co-morbidities are more likely to be the severe type,

though more realistic, would not change the form of the best-responses and the nature

of our results.

All individuals of the asymptomatic type recover at rate γa when they are infected.

Individuals of the severe type with health condition ϵ ∈ {c, c̄} recover at rate γϵ and

die at rate νϵ, with γϵ + νϵ = γa ∈ (0, 1). To capture the effect of co-morbidities on

the course of the disease, we assume that individuals of the severe type without co-

morbidities recover faster: γ c̄ ≥ γc, are less likely to die: ν c̄ ≤ νc, and suffer less from

the disease: cc̄I ≤ ccI .

At each time t the population is divided into five groups: susceptible with and

without co-morbidities: Sc(t) and S c̄(t), infected with and without co-morbidities: Ic(t)

and I c̄(t), and recovered: R(t). Using the same notation as in the main model, the

dynamics of the epidemic are governed by the following equations for each ϵ ∈ {c, c̄}:

sϵ(0) = 1− iϵ(0) = sϵ0 ∈ (0, 1) and, ∀ t ∈ [0, T ],

ṡϵ(t) = −βk̄Sϵ(t)sϵ(t)k̄I(t)i(t),

i̇ϵ(t) = βk̄Sϵ(t)sϵ(t)k̄I(t)i(t)− (µγa + (1− µ)(γϵ + νϵ))iϵ(t).

where i(t) = ic(t) + ic̄(t), k̄I(t) := 1
i(t)

∫
j∈I(t) kj(t)dj and k̄Sϵ(t) = 1

sϵ(t)

∫
j∈Sϵ(t)

kj(t)dj

denote the average fraction of time spent outside at time t by infected and susceptible

people with condition ϵ, respectively. The continuation payoff of an individual with

health condition ϵ the first time she has symptoms equals:

vϵI = − 1

r + γϵ + νϵ
(cH + cϵI + νϵ

cD
r
).
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As vϵI increases with γϵ and decreases with cϵI or νϵ, it is smaller for an individual with

co-morbidities, thus vcI < vc̄I . Proposition 1 is unchanged in the case of an heterogenous

population: each individual decides what fraction of her time to spend outside after

comparing the confinement cost with her expected cost of social interaction. Therefore,

Proposition 2 and (an adapted version of) Proposition 3 remain true in the augmented

model: any equilibrium features social interaction and the game admits a unique equi-

librium in which no individual self-isolates when the confinement cost is large enough,

i.e., when cH + (1− µ)βvcI ≥ 0. Not surprisingly, given the definition used for the sym-

metric equilibrium, the only equilibrium that exists when comorbidities are added to

the model is the no self-isolation equilibrium. Unlike the case of a homogeneous popu-

lation, the unconfined equilibrium is the only symmetric equilibrium in the augmented

set, as the following proposition indicates.

Proposition 5. (1) The only symmetric equilibrium is the no-confinement equilibrium

where all individual play k(t) = 1 for every t ∈ [0, T ].

(2) The no-confinement equilibrium exists if and only if

−vcI <
cH

p(t)βµi(t)(1−H(t))
∀ t ∈ [0, T ],

where p and i are defined by the system of equations

p(0) = 1− µ, sϵ(0) = 1− iϵ(0) = sϵ0 for ϵ ∈ {c, c̄} and, ∀ t ∈ [0, T ],

ṡϵ(t) = −βµsϵ(t)i(t) for ϵ ∈ {c, c̄},
i̇ϵ(t) = βµsϵ(t)i(t)− (µγa + (1− µ)(γϵ + νϵ))iϵ(t) for ϵ ∈ {c, c̄},
i(t) = ic(t) + ic̄(t),

ṗ(t) = −p(t)(1− p(t))βµi(t),

(1.11)

and H(t) =
1− p(t)

p(t)

∫ T

t

e−r(u−t)βµi(u)
p(u)

1− p(u)
du.

Proof. (1) We work towards a contradiction. Consider a symmetric equilibrium where

all individuals play some strategy k̂. Plugging ki(t) = k̂(t) into the law of motion of

individual beliefs, we obtain pi(t) = p(t) for every i. By Proposition 1, the best response

of individual i at time t thus depends on the sign of the expression

Zi(t) := p(t)βk̄I(t)i(t)(ψi(t)− vϵiI )− cH .
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Since k̂(t) = 0 cannot be a mutual best response, in a symmetric equilibrium, either

k̂(t) ∈ (0, 1), i.e., Zi(t) = 0 for every i, or k̂(t) = 1, i.e, Zi(t) < 0 for every i. If Zi(t) = 0

on some interval [t′, t′′], then

ψi(t) = vϵiI +
cH

p(t)βk̄I(t)i(t)
∀ t ∈ [t′, t′′]. (1.12)

This implies that for any i and j and every t ∈ [t′, t′′], ψi(t) − vϵiI = ψj(t) − v
ϵj
I and

ψ′
i(t) = ψ′

j(t). Plugging this into the Euler condition in Proposition 1, we obtain

ψi(t) = ψj(t), which implies vϵiI = v
ϵj
I by (1.12). This proves that two individuals with

different health condition cannot play the same interior strategy. It follows that, in a

symmetric equilibrium, individuals play k(t) = 1 for almost every t ∈ [0, T ].

(2) Consider the no-confinement strategy profile where ki(t) = 1 ∀ i, t. Since individu-
als self-isolate when they have symptoms, only susceptible and infected, asymptomatic

individuals play 1 at time t. As a result, k̄S(t) = 1 and k̄I(t) = µ, which, once plugged

into the equations governing the population dynamics, yields:

ṡϵ(t) = −βµsϵ(t)i(t) for ϵ ∈ {c, c̄},
i̇ϵ(t) = βµsϵ(t)i(t)− (µγa + (1− µ)(γϵ + νϵ))iϵ(t) for ϵ ∈ {c, c̄},
i(t) = ic(t) + ic̄(t).

Moreover, plugging ki(t) = 1 and k̄I(t) = µ into the individual belief dynamics, we

obtain pi(t) = p(t) for every i, with

ṗ(t) = −p(t)(1− p(t))βµi(t).

By Proposition 1, ki(t) = 1 is a mutual best response in the population if and only if

cH − p(t)βµi(t)(ψi(t)− vϵiI ) > 0 ∀ i, (1.13)

where ψi is determined by the Euler condition:

ψ̇i(t)− rψi(t) = βµi(t)(ψi(t)− vϵiI ). (1.14)

Integrating (1.14) between t and T and using the terminal condition ψi(T ) = 0, we

obtain:

ψi(t) = vϵiI
1− p(t)

p(t)

∫ T

t

e−r(u−t)βµi(u)
p(u)

1− p(u)
du

︸ ︷︷ ︸
:=H(t)

.
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The best-response condition (1.13) is rewritten:

cH − p(t)βµi(t)vϵiI (H(t)− 1) > 0 ∀ i.

As vcI < vc̄I < 0, the latter condition is satisfied if and only if it is satisfied for ϵi = c.

This proves the result.

The next proposition gives conditions under which only individuals with co-morbidities

self-isolate in equilibrium.

Proposition 6. The game has an equilibrium where ki(t) = 1ϵi=c̄ ∀ t ∈ [0, T ] if and only

if

pc̄(t)vc̄I(H(t)− 1) <
cH

βµic̄(t)
< (1− µ)(−cH

r
(1− e−r(T−t))− vcI) ∀ t ∈ [0, T ],

where pc̄ and ic̄ are defined by the system of equations:





pc̄(0) = 1− µ, sc̄(0) = 1− ic̄(0) = sc̄0 and, ∀ t ∈ [0, T ],

ṡc̄(t) = −βµsc̄(t)ic̄(t),
i̇c̄(t) = −ṡc̄(t)− (µγa + (1− µ)(γ c̄ + ν c̄))ic̄(t),

ṗc̄(t) = −pc̄(t)(1− pc̄(t))βµic̄(t),

and H(t) =
1− pc̄(t)

pc̄(t)

∫ T

t

e−r(u−t)βµic̄(u)
pc̄(u)

1− pc̄(u)
du.

Proof of Proposition 6

Consider the strategy profile where ki(t) = 1ϵi=c̄ for every t ∈ [0, T ]. Given this

strategy profile, k̄I(t)i(t) = µic̄(t), k̄Sc(t) = 0 and k̄Sc̄(t) = 1, thus the population of

individuals without co-morbidities evolves as follows:

ṡc̄(t) = −βµsc̄(t)ic̄(t),
i̇c̄(t) = βµsc̄(t)ic̄(t)− (µγa + (1− µ)(γ c̄ + ν c̄)ic̄(t).

Moreover, the belief of every individual i such that ϵi = c̄ follows:

ṗc̄(t) = −pc̄(t)(1− pc̄(t))βµic̄(t).
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By Proposition 1, playing ki(t) = 1 is thus a best response to ic̄(t) for an individual i

with ϵi = c̄ if and only if

cH − pc̄(t)βµic̄(t)(ψc̄(t)− vc̄I) > 0 ∀ t ∈ [0, T ], (1.15)

where ψc̄ is determined at each t by the Euler condition:

ψ̇c̄(t)− rψc̄(t) = βµic̄(t)(ψc̄(t)− vc̄I). (1.16)

Integrating (1.16) between t and T and using the terminal condition ψc̄(T ) = 0, we

obtain:

ψc̄(t) = vc̄I
1− pc̄(t)

pc̄(t)

∫ T

t

e−r(u−t)βµic̄(u)
pc̄(u)

1− pc̄(u)
du

︸ ︷︷ ︸
:=H(t)

.

The best-response condition (1.15) is thus rewritten:

cH
βµic̄(t)

> p(t)vc̄I(H(t)− 1) ∀ t ∈ [0, T ].

As individuals with co-morbidities never get infected, they hold belief 1 − µ at each

date. By Proposition 1, playing ki(t) = 0 is a best response to ic̄(t) for an individual i

with ϵi = c if and only if

cH − (1− µ)βµic̄(t)(ψc(t)− vcI) < 0 ∀ t ∈ [0, T ], (1.17)

where ψc is determined at each t by the Euler condition:

ψ′
c(t)− rψc(t) = cH . (1.18)

Integrating (1.18) between t and T and using the terminal condition ψc(T ) = 0, we

obtain:

ψc(t) = −cH
r
(1− e−r(T−t)).

The best-response condition (1.17) is thus rewritten:

cH
βµic̄(t)

< (1− µ)(−cH
r
(1− e−r(T−t))− vcI) ∀ t ∈ [0, T ].

□
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1.5.3 Sensitivity analysis

Because epidemiological parameter measurement (β, γa, R0 and µ) is sensitive to

the context, it is natural to ask whether the main insights of the baseline simulation

are sensitive to these measures. In this section, we conduct a sensitivity analysis in

which we consider other couples (R0,µ). The first one, our upper bound, is the one of

Acemoglu et al. (2021): (2.14, 40%). The second one, our lower bound, are the values

observed by Mizumoto et al. (2020) and Sheng Zhang et al. (2020) on the Diamond

Princess: (2.28, 17.9%). In the rest of the section, we refer to the set of values A for

the values used in Acemoglu et al. (2020) and to the set of values DP for the values

observed on the Diamond Princess. Below we explain the context of study for each set

of values.

Set of values A: Acemoglu et al. (2021) have proposed a set of parameters to describe

the Covid-19 infection based on the report of N. Ferguson et al. (2020). These re-

sults, obtained in mid-March 2020 with very preliminary data, have since been strongly

criticized for the pessimistic nature of their estimates. However, several governments

(including U.K. and Canada) have based their lockdown decisions on these estimates,

hence we have chosen to use them as an upper bound.

Set of values DP : In February 2020, at the very start of the pandemic, the Diamond

Princess cruise ship, following the diagnosis of 10 of its passengers with COVID-19,

was quarantined. The 3,711 passengers and crew were tested and at least 712 of them

were diagnosed positive for Covid-19 – of this number 14 have died. This natural ex-

periment in a small environment where the population density is high, offered a unique

opportunity for researchers to study the dynamics of the infection and to determine its

key values. Mizumoto et al. (2020) determined, using statistical analysis adjusted for

infection delay, that the proportion of asymptomatic individuals aboard the Diamond

Princess as of February 20, 2020 was 17.9%. However, they did not estimated the

epidemiological parameters. We therefore turned to Sheng Zhang et al. (2020). They

estimated the value of R0 for the Diamond Princess’s crew members and passengers to

be R0 = 2.28, using the maximum likelihood method and assuming γa = 1/7.5.
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As a preliminary, we have checked that the interior strategy profile is an equilibrium

with the set of values A and DP . We first simulate the dynamics of the epidemic with

each set of values. We observe that the fraction of infected, the fraction of time spent

outside, the effective reproduction number and the fraction of deaths of the baseline

simulation is framed between the two alternative set of values, and that the curves have

the same shape (see Figure 1.11, Figure 1.12, Figure 1.13 and Figure 1.14). As R0 is

greater with the set A than with the set DP , individuals self-isolate more with the

former set than in the later. However, in all cases, individuals drastically reduce their

contacts after the announcement; when the spread of the epidemic is under control, they

gradually increase the time spent outside to a plateau, which maintains the effective

reproduction number close to 1, thus containing the spread of infection.

Next, we simulate our policy analysis with the two alternative set of values and

obtain the same qualitative results:

• Delaying the epidemic announcement accelerates the epidemic (see Figure 1.15)

and increases the number of deaths (see Figure 1.17). This is because individuals

drastically self-isolate after the announcement, then gradually reduce their level

of self-isolation to a level maintaining the effective reproduction number approxi-

mately equal to 1 (see Figure 1.16).

• We multiply the value of βµ by 0.75, 1 and 1.25 for each set of values (which

yields βµ ∈ {0.1005, 0.134, 0.1667} in set A and βµ ∈ {0.228, 0.304, 0.38} in set

DP ). We find also find that decreasing βµ induces less self-isolation and reduces

the number of deaths (see Figure 1.19 and Figure 1.20).

• We multiply the value of γa by 1.1 for each set of values and the value of ν

by 0.5 in each set of values. While the dynamics of the infection follow a very

similar trajectory in the two scenarios, the infection is stronger in set A than in

set DP (see Figure 1.21). We also find that a better health system induces less

self-isolation (Figure 1.22) but reduces the number of deaths (see Figure 1.23).
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Figure 1.11: Sensitivity analysis: fraction of infected.
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Figure 1.12: Sensitivity analysis: Effective Reproduction Number.
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Figure 1.13: Sensitivity analysis: beliefs and behaviors.
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Figure 1.14: Sensitivity analysis: deaths.
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Figure 1.15: Sensitivity analysis: effect of a variation of τ on the fraction of infected.

62



0 50 100 150 200 250 300 350

Time

0.60

0.65

0.70

0.75

0.80

S
u

b
je

ct
iv

e
b

el
ie

fs

D.P. τ =20

D.P. τ =30

D.P. τ =40

A. τ =20

A. τ =30

A. τ =40

D.P. τ =20

D.P. τ =30

D.P. τ =40

A. τ =20

A. τ =30

A. τ =40

0.0

0.2

0.4

0.6

0.8

1.0

%
ti

m
e

sp
en

t
ou

ts
id

e

Figure 1.16: Sensitivity analysis: effect of a variation of τ on behaviors and beliefs.
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Figure 1.17: Sensitivity analysis: effect of a variation of τ on deaths.
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Figure 1.18: Sensitivity analysis: effect of a variation of βµ on the fraction of infected.
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Figure 1.19: Sensitivity analysis: effect of a variation of βµ on beliefs and behaviors.

0 50 100 150 200 250 300 350

Time

0.000

0.005

0.010

0.015

0.020

D
ea

th
s

D.P. βµ =0.228

D.P. βµ =0.304

D.P. βµ =0.38

A. βµ =0.1005

A. βµ =0.134

A. βµ =0.1667

Figure 1.20: Sensitivity analysis: effect of a variation of βµ on deaths.
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Figure 1.21: Sensitivity analysis: effect of a variation of γ on the the fraction of infected.
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Figure 1.22: Sensitivity analysis: effect of a variation of γ on beliefs and behaviors.
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Figure 1.23: Sensitivity analysis: effect of a variation of γ on deaths.

65



Chapter 2

Self-Isolation Under Uncertainty

Dominique Baril-Tremblay1, Chantal Marlats2 and Lucie Ménager3

Abstract4

We analyze an epidemiological model where forward-looking individuals trade off the

costs and benefits of self-isolation while being uncertain about the dynamics of the

epidemic. We characterize the interior symmetric equilibrium and we identify necessary

conditions of the optimal solution. We calibrate our model to the COVID-19 pandemic

and simulate the dynamics of the epidemic under various scenarios to illustrate the

impact of uncertainty on self-isolation behaviors. We show that uncertainty may cause

a second wave of infection and that the average level of social activity can decrease

with uncertainty. Finally, uncertainty about the epidemic dynamics may be welfare

improving, both in terms of fraction of deaths and average payoff.
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2.1 Introduction

It is now well-documented that the dynamics of an epidemic depend on the be-

havior of the population in terms of social distancing and application of prophylactic

measures5. Conversely, many papers have documented that individuals adapt their

behaviors to epidemic variables (incidence rate, level of hospitalizations, etc)6. For

example, Farboodi, Jarosch, and Shimer (2021) show that attendance in public places

declined as soon as the WHO announced the existence of a pandemic in March 2020,

thus before the implementation of lockdown and closure policies. The object of the

growing strategic epi-economic literature is to analyze the two-sided interactions be-

tween the dynamics of epidemic and the population behavior. In this literature, indi-

viduals trade off the cost and benefit of preventive behaviors based on their assessment

of the risk of coming into contact with a contagious person, which naturally depends

on the prevalence rate7. It is assumed that individuals are able to infer this rate accu-

rately. However, it is often the case that it is not perfectly observable, especially when

a significant proportion of the population is asymptomatic. Moreover, for individuals

to be able to infer it correctly, they must have detailed knowledge of the characteristics

of the disease, such as contagiousness and initial prevalence rate. This assumption is

difficult to defend when a new virus appears or a disease resurfaces. These situations

are far from being anecdotal and recent events are full of examples: the COVID-19 and

its different mutants, influenza which returns every winter in temperate zones, ebola

which has reappeared several times in DRC, but also in Guinea in 2021, etc...

The contribution of this paper is to analyze an epidemiological model where forward-

5Delamater et al. (2019) and Britton, Ball, and Trapman (2020) show that the herd immunity level against

COVID-19 is reduced when the model encompasses the possibility that some social groups of individuals are

more socially active. Cowling, Chan, et al. (2009) and Aiello et al. (2010) show that masks and hand washing

can reduce household transmission of respiratory infections in small areas. Cowling, Ali, et al. (2020) show

that border restrictions and changes in individual behaviors are partly responsible for reduced transmission in

Hong Kong in February 2020.
6For instance, T. J. Philipson and Posner (1993) show that the demand for measles, mumps and rubella

vaccines increases when there is a large increase in measles cases in a community. Ahituv, Hotz, and T.

Philipson (1996) show that the demand for condoms increases in regions where HIV is prevalent.
7The prevalence rate is the fraction of infected individuals in the population
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looking individuals are uncertain about certain characteristics of the epidemic and are

therefore unable to infer the fraction of the population that is infected. Individuals

form beliefs about the epidemic, that they continuously update on the basis of how

much they might have been exposed to the virus. Simultaneously, they decide their

degree of exposure to the virus by trading off the costs and benefits of self-isolation on

the basis of their subjective beliefs.

Precisely, we amend the classical Susceptible-Infected-Recovered (SIR hereafter)

model of Kermack and McKendrick (1927). In its classical version, the SIR model

divides an homogeneous population into three groups: {susceptible}, {infected} and

{recovered}, with individuals transiting from one group to another one at given, ex-

ogenous rates that depend on the size of each group. As in Baril-Tremblay, Marlats,

and Ménager (2021), we consider two possible types of individuals in the population:

symptomatic and asymptomatic. Individuals of the symptomatic type experience the

symptoms of the disease immediately after being infected. In contrast, individuals

of the asymptomatic type do not have symptoms. Initially, individuals do not know

their type. We depart from Baril-Tremblay, Marlats, and Ménager (2021) by assuming

that individuals are uncertain about some parameter determining the dynamics of the

prevalence rate. Thus, the agents, who do not observe this rate, are aware that different

levels of prevalence are possible but they do not know it exactly.

Individuals influence the transition rate from {susceptible} to {infected} by self-

isolating, i.e., strategically reducing social activity. How does an individual who never

had symptoms tradeoff the cost and the benefit of self-isolation? On the benefits side,

self-isolation prevents one from being infected by reducing the likelihood of coming into

contact with a contagious person. The costs side is more subtle. Indeed, an individual

who does not get symptoms while having social activity becomes more optimistic both

on the prevalence rate and on being the asymptomatic type. The costs of self-isolation

are thus twofold: there is the direct cost of self-isolate (boredom, opportunity cost of

not working, or of working in poorer conditions, lack of physical activity, etc..) and the

opportunity cost of not learning about one’s type and about the prevalence rate.

We characterize the symmetric equilibrium in which individuals partially self-isolate.
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At this equilibrium, the level of social activity is equal to the ratio between, on the one

hand, the direct cost of self-isolation, and on the other hand, the expected opportunity

cost of the social activity, which is equal to the informational benefit minus the expected

welfare loss in case of infection.

We calibrate our model to the COVID-19 and we simulate the dynamics of the

epidemic when the population is aware of two possible epidemics with different initial

penetration rates. This parameter is one of the elements determining the dynamics of

the prevalence rate. Thus, the agents, who have uncertainty about this parameter, are

aware that different levels of prevalence are possible but they do not know it exactly.

The impact of uncertainty is ambiguous. For any prior belief, individuals self-isolate

drastically after the epidemic announcement, which results in a drop in the fraction

of infected; then, they gradually increase the level of social interactions. The rate

at which social activity increases varies with the prior that the epidemic has a low

initial penetration rate. When the prior increases, individuals self-isolate less at the

beginning of the epidemic and more at the end. One reason for this reversal is that

individuals believe they have been less exposed to the disease at the beginning of the

epidemic when the initial penetration rate is low. As a result, they are less confident

in being immune to the disease, and self-isolate more at the end of the outbreak. In

the more aggressive epidemic, for any prior, individuals self-isolate enough to maintain

the effective reproduction number below the value that accelerates the epidemic, thus

the epidemic curve continuously decreases until the arrival of the vaccine. In the less

aggressive epidemic, when the initial prior is small there is a second wave of infections

with a second peak that is higher the more erroneous the beliefs are. This second

wave arises because, for these priors, individuals choose a higher level of social activity

from some date on. This leads to an inadequate reaction to the true level of the

epidemic that may induce an effective rise of the total fraction of infected individuals.

Therefore, the social value of information depends on the initial state of the epidemic.

We find that transparency is welfare improving only in the less aggressive epidemic,

both in terms of fraction of deaths and payoffs. For all the priors we consider, the ex-

ante fraction of deaths is smaller when individuals are uncertain about the state than
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without uncertainty, suggesting that opacity can prevent deaths. In terms of payoffs,

the information value is negative when the population is relatively confident that the

epidemic is initially aggressive.

Related literature. Many papers in economics have documented that individuals adapt

their behavior when facing a risk of infection. Before COVID-19, concern was mainly

on AIDS, thus papers analyzed steady-states of Susceptible-Infected models (see for

instance Kremer (1996), T. J. Philipson and Posner (1993) and Toxvaerd (2019)).

To analyze an infectious disease like COVID-19, recent papers are based on SIR

models in continuous time with either forward-looking or myopic individuals. Carnehl,

Fukuda, and Kos (2023) analyze a SIR model with infinite horizon and myopic agents.

The infection risk is linear in the average level of social interaction and the isolation cost

are quadratic. They show that there exists a unique symmetric equilibrium and that a

second wave is impossible. Surprisingly, if the initial faction of infected individuals is

sufficiently small, an epidemic may not start if the virus is very contagious. In a com-

panion paper (Carnehl, Fukuda, and Kos (2022)), they assume non stationary isolation

cost to capture the lockdown fatigue phenomenon, and give sufficient conditions for the

existence of a second wave. Dasaratha (2020) assumes that infected individuals do not

observe their health status but know when they are recovered. The infection risk is a

quadratic function of the average level of social activity. In the main part of the paper,

agents are supposed to be myopic. The author shows that, because agents adapt their

behavior, an exogenous marginal increase of the infected individuals can have a negative

effect on the number of new cases. Phelan and Toda (2022) analyze a model in which

infected individuals can be asymptomatic with a certain probability. The population

is finite and agents ignore the effect of their choice on the infection rate. A vaccine

arrives at some random date. They show that there is a unique value function that

satisfies the Bellman Equation and that there exists a Markovian equilibrium. They

derive the optimal lockdown policy. Toxvaerd (2022) considers a model in which players

are can be of two types: asymptomatic and symptomatic. An agent’s type determines

whether he will develop symptoms or not when infected. When an individual is infected

and develops symptoms, he chooses the maximal social interaction level. When types
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are not observable, individuals can infer their type only when they develop symptoms.

The author shows that when types are not observable, the total number of infection

cases is higher but the number of infected with symptoms is lower. Consequently, the

welfare is higher when types are not observable. A comparison between the effect of

infection and the immunity tests on the dynamic of the epidemic reveals that, except

in the early stages, the latter have a higher private value. Finally, our model general-

izes Baril-Tremblay, Marlats, and Ménager (2021) by introducing uncertainty. In both

papers, we assume that each agent can be of two types, as in Matthies and Toxvaerd

(2022), the infection risk is a quadratic function of the average level of social activity,

the self-isolation costs are linear and the horizon is finite (the underlying assumption

is that a vaccine is available after some date).

Several papers compare the competitive equilibrium with the confinement effective-

ness. Farboodi, Jarosch, and Shimer (2021) assume quadratic matching and imperfect

observation of the health status. They compare the dynamics obtained at the decen-

tralized equilibrium with the one obtained under the optimal policy and show that the

competitive equilibrium is suboptimal. Brotherhood et al. (2020) assume that agents

are heterogenous with respect to age and the older people are more likely to die. Rachel

et al. (2020) considers a lockdown problem and provides analytical results.

Several papers put aside the question of individuals’ responses to an epidemic risk

and focus exclusively on optimal mitigation policies by assuming that a planner control

the transmission rate (see for instance Kruse and Strack (2020), Alvarez, Argente,

and Lippi (2020) ...). Acemoglu et al. (2021) assume that agents are heterogenous.

Giannitsarou, Kissler, and Toxvaerd (2021) analyze the dynamics of epidemics under

waning immunity.

It is well known that in SIR models without decentralized self-isolation choice and

policy intervention, a second wave cannot emerge in a closed population. In Carnehl,

Fukuda, and Kos (2022) it arrises because the self-isolation costs are not stationary.

Farboodi, Jarosch, and Shimer (2021) and Rachel et al. (2020) show that a second

wave can occur after a lockdown. Giannitsarou, Kissler, and Toxvaerd (2021) show

that waning immunity induces oscillations. In our paper, the second wave is not due
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to non stationary self-isolation costs, waning immunity or lockdown release but only to

uncertainty.

The remainder of this paper is organized as follows. Section 2 sets up the model. In

Section 3, we solve the best-response problem of a player, analyze some properties of

the equilibrium and characterize the symmetric equilibrium. In Section 4, we calibrate

our model to fit the COVID-19 pandemic, we simulate the dynamics of the epidemic

in equilibrium and investigate the impact of uncertainty. In Section 5, we analyze the

problem of a government who must decide upon the optimal isolation policy. Proofs

are gathered in the Appendix.

2.2 An epidemiological model with uncertainty

The population. Time t ∈ [0,+∞) is continuous and discounted at a common rate

r > 0. There is a rampant disease in the population, against which a vaccine will

arrive at time T > 0. The population is a continuum of individuals j ∈ [0, 1] who must

continuously choose a level of social activity, which can be interpreted as the fraction

of their time they do not spend at home. An individual who stays home is protected

from infection, while an individual who goes out may be contaminated by contact with

an infected individual.

Infection may be totally asymptomatic. Whether an individual develops symptoms

or not when she is infected is an idiosyncratic characteristic described by her type. There

are two types of individuals in the population: Individuals of type θs –the symptomatic

type– who experience the symptoms of the disease immediately after being infected, and

individuals of type θa –the asymptomatic type– who do not have symptoms in case of

infection, thus never realize when they have been infected. Individuals do not know their

type unless they are of type θs and catch the disease. There is a proportion α ∈ (0, 1)

of asymptomatic types in the population. The infection period ends by recovery at rate

γa for asymptomatic types, and by either recovery or death for symptomatic types, at

rates γs and ν. However, infection stops for both types of individuals at the same rate,

i.e., γa = ν+γs
8. Therefore, at each time there is a proportion α of infected individuals

8This is a simplifying technical assumption that can be released by adding a compartment to the model as
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who have no symptoms. Finally, individuals are contagious as long as they are infected,

and are immune to the disease after recovering.

We assume that an individual who gets symptoms self-isolates immediately until

the end of the symptoms, either to protect others, or simply because she is too sick to

go out. Therefore, a strategy for player j is a measurable function kj : R+ → [0, 1],

with the interpretation that kj(t) is the proportion of time spent outside at time t,

absent symptoms by time t9. Therefore, the disease is spread in the population by

asymptomatic infected individuals.

The epidemic. An epidemic is characterized by its initial penetration level in the pop-

ulation (s̄, ā, r̄), where s̄ ∈ [0, 1] is the proportion of individuals who are not immune to

the disease at time 0, ā ∈ [0, 1] is the proportion of individuals infected without symp-

toms at time 0 and r̄ ∈ [0, 1] the proportion of individuals who already recovered from

the disease at time 0 and are now immune to it. As the share of asymptomatic types

in the general population is α, the proportion of individuals infected with symptoms at

time 0 is ī = 1−α
α

, and the proportion of dead individuals is d̄ = 1− s̄−ā− r̄− ī ∈ [0, 1]10.

We identify an epidemic ω with the tuple {s̄, ā, r̄} and we denote by Ω the finite set of

possible epidemics.

Dynamics of the epidemic. To model the spread of epidemic ω, we use the classical

Susceptible-Infected-Recovered (SIR) model by Kermack and McKendrick (1927), that

we amend to introduce individual behaviors and uncertainty.

At each time t, the population is divided into five groups: the group of susceptible

individuals who have never been infected by the disease, denoted by S(t | ω) and of

size s(t | ω) :=
∫
j∈S(t|ω) dj; the group of symptomatic infected individuals who are

infected with symptoms at time t, denoted by I(t | ω) and of size i(t | ω) :=
∫
j∈I(t|ω) dj;

the group of asymptomatic infected individuals who are infected without symptoms at

in the previous chapter.
9The usual assumption in the literature is that infected individuals chose a constant social activity level k̄

during the symptomatic period. Assuming k̄ = 0 is without loss of generality for the purpose of this paper and

lightens the analytic expressions.
10By the law of large numbers, the initial proportion of infected individuals with symptoms represents a

share 1− α of the population of infected people, thus ī = (1− α)(̄i+ ā).
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time t, denoted by A(t | ω) and of size a(t | ω) :=
∫
j∈A(t|ω) dj; the group of recovered

individuals who already healed from the disease (with or without symptoms), denoted

by R(t | ω) and of size r(t | ω) :=
∫
j∈R(t|ω) dj and the group of dead individuals, denoted

by D(t | ω) and of size d(t | ω) = 1− s(t | ω)− i(t | ω)− a(t | ω)− r(t | ω).

The evolution of the epidemic penetration depends on the behavior of the popu-

lation. Here we explain how by using a probabilistic argument. What is the mass of

individuals who become infected in the interval [t, t+dt), in expectation? Fix some date

t, some strategy profile k := (kj)j∈[0,1] and some small dt > 0. The probability that a

susceptible individual s ∈ S(t | ω) meets and is infected by some infected asymptomatic

individual a ∈ A(t | ω) during the interval [t, t + dt) is ks(t)ka(t)βdt. Therefore, the

probability that s becomes infected in [t, t+ dt) is ks(t)
(∫

j∈A(t|ω) kj(t)dj
)
βdt, and the

expected mass of newly infected individuals is
∫
s∈S(t|ω)

(
ks(t)

∫
a∈A(t|ω) ka(t)daβdt

)
ds.

Therefore, the fraction of susceptible individuals evolves as follows:11

ṡ(t | ω) = −βk̄S(t | ω)s(t | ω)k̄A(t | ω)a(t | ω), (2.1)

where k̄S(t | ω) = 1
s(t|ω)

∫
j∈S(t|ω) kj(t)dj and k̄A(t | ω) = 1

a(t|ω)

∫
j∈A(t|ω) kj(t)dj denote the

average behavior of susceptible and asymptomatic infected individuals, respectively.

At each time t, the fraction of newly infected −ṡ(t | ω) is split between A(t | ω) and
I(t | ω), in proportions α and 1− α, respectively. The other groups of the population

thus evolve as follows:

ȧ(t | ω) = −αṡ(t | ω)− γaa(t | ω), (2.2)

i̇(t | ω) = −(1− α)ṡ(t | ω)− (γs + ν)i(t | ω), (2.3)

ṙ(t | ω) = γaa(t | ω) + γsi(t | ω), (2.4)

ḋ(t | ω) = νi(t | ω), (2.5)

with s(0 | ω) = s̄, i(0 | ω) = ī, a(0 | ω) = ā, r(0 | ω) = r̄ and d(0 | ω) = d̄. The

assumptions γa = ν + γs and ī =
1−α
α
ā guarantee that i(t | ω) = 1−α

α
a(t | ω) for every t.

11As s(t + dt | ω) − s(t | ω) = −
∫
j∈S(t|ω)

kj(t)dj ×
∫
j∈A(t|ω)

kj(t)dj × βdt. The result follows from the fact

that ṡ(t | ω) = limdt→0
s(t+dt|ω)−s(t|ω)

dt
.
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Uncertainty and beliefs. At time 0, individuals learn the existence of an epidemic, but

do not know their own type nor which epidemic they are facing. Moreover, they never

observe the current epidemic penetration, hence the only additional information they

have at time t is whether they had or did not have symptoms before t.12

We denote by pj(t) : Ω → [0, 1] the subjective belief of individual j at time t that

she is the symptomatic type, with the interpretation that pj(t | ω) is the probability of

player j being type θs conditionally on the epidemic being ω and having experienced

no symptom by time t. Individual j continuously updates her belief on the basis of

whether she is having symptoms, conditionally on the strategy profile of the population

and the dynamic system (2.1) and (2.2). Precisely, the law of motion of the subjective

belief of individual j is13

ṗj(t | ω) = −pj(t | ω)(1−pj(t | ω))kj(t)βk̄A(t | ω)a(t | ω), with pj(0 | ω) = 1−α. (2.6)

Moreover, we denote by µj(t) : Ω → [0, 1] the subjective belief of individual j at time t

over Ω, with the interpretation that µj(t, ω) is the probability at time t for individual

j that the epidemic is ω, conditional on having experienced no symptom by time t. At

time 0, individuals hold the common belief µ0 : Ω → [0, 1]. The subjective belief that

the epidemic is ω depends on the subjective belief pj(t) as follows:
14

µj(t, ω) =
µ0(ω)/(1− pj(t | ω))∑

ω′∈Ω µ
0(ω′)/(1− pj(t | ω′))

. (2.7)

Payoffs. Staying home prevents one from being infected, but comes at a cost (boredom,

opportunity cost of not working or working in poorer conditions, lack of physical activ-

ity, etc.). Being infected is also costly for individuals of the symptomatic type because

they suffer from the symptoms, and, in the worst case, die from the disease. Therefore,

at each time t, individuals tradeoff the cost of self-isolating and the expected benefit of

12In Section we describe a more general model where uncertainty pertains also to the epidemiological pa-

rameters β, α, γs, γa, ν. The analysis is similar with heavier notation.
13Fix ω ∈ Ω and a strategy profile k. A susceptible individual j develops symptoms in [t, t + dt) with

probability 0 when she is of type θa; when she is of type θs, she develops symptoms if she meets and is infected

by some asymptomatic individual, which occurs with instantaneous probability kj(t)k̄A(t | ω)a(t | ω) × βdt.

By Bayes’ rule, the law of motion of the subjective belief of individual j is thus (2.6).
14See Lemma 5 in the Appendix.
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having no symptoms. We denote by cS the flow cost of self-isolation, by cI the flow cost

of having symptoms and by cD the flow cost of being dead. The flow payoff of having

social activity and being healthy is normalized to 0.

Uncertainty about her type is solved for an individual the first time she has symp-

toms. In that event, she knows that she is the symptomatic type, thus that she

will stay at home until she heals or passes away, thereby incurring a total cost of
∫ min{τH ,τD}
0

e−rt(cS + cI)dt, with τH and τD standing for the random times of healing

and death, respectively. If she heals from the disease (i.e., if τH < τD), she becomes

immune to it, plays k(t) = 1 forever after, thus obtains the continuation payoff 0. If she

dies (i.e., if τD < τH), she incurs the flow cost cD forever after, thus obtains the con-

tinuation payoff −cD/r. Therefore, the expected continuation payoff to an individual

the first time she has symptoms is:15

vI = −E
[∫ min{τH ,τD}

0

e−rt(cS + cI)dt+
cD
r
e−rτD1τD<τH

]
= − 1

r + γs + ν
(cS+cI+ν

cD
r
)

(2.8)

Let us express the payoff increment at time t ∈ (0, T ) in epidemic ω. Conditionally

on having no symptoms before t, player j obtains the continuation payoff vI if she has

symptoms, which occurs if she is the symptomatic type and gets infected, thus with

probability pj(t | ω)kj(t)βk̄A(t | ω)a(t | ω). She also bares the confinement cost per

unit of time in self-isolation, thus cS(1 − kj(t)). After getting vaccinated at time T ,

she has a probability 0 of developing symptoms and plays kj(t) = 1 for every t ≥ T ,

which yields the continuation payoff 0. Finally, the subjective probability of having no

symptom before t ∈ [0, T ] in epidemic ω is 1−pj(0 | ω)+pj(0 | ω)e−
∫ t
0 kj(s)βk̄A(s|ω)a(s|ω)]ds,

which reduces to e−
∫ t
0 pj(s|ω)kj(s)βk̄A(s|ω)a(s|ω)ds by integrating (2.6). After simplifications,

the discounted expected payoff conditional on the epidemic being ω is:16

v(kj | ω) =

∫ T

0

e−rt e−
∫ t
0
pj(s|ω)kj(s)βk̄A(s|ω)a(s|ω)ds

︸ ︷︷ ︸
Player j’s probability to

have no symptom before t.

(
pj(t | ω)kj(t)βk̄A(t | ω)a(t | ω)vI − cS(1 − kj(t))

)
︸ ︷︷ ︸

Player j’s expected payoff increment at t con-

ditional on having no symptom before t.

dt.

(2.9)

15See Lemma 6 in the Appendix for the detailed calculations.
16See Appendix 2.5.2 for the detailed calculation.
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2.3 Equilibrium analysis

Fix a strategy profile k. Player j’s best-response problem is to maximize Eµ0 [v(kj; .)],

where the fraction of asymptomatic infected at time t is given for each ω by the system

of o.d.e. {(2.1), (2.2)}. Formally, it is the solution of the optimal control problem:





max
kj∈K

Eµ0 [v(kj | .)]

s.t. ∀ ω ∈ Ω, pj(0 | ω) = 1− α and, ∀ t ∈ [0, T ],

ṗj(t | ω) = −pj(t | ω)(1− pj(t | ω))kj(t)βk̄A(t | ω)a(t | ω),

which we solve in the Appendix using Pontryagin’s principle. Here, we explain the

intuition of the solution with a heuristic dynamic programming argument, using the

time and the player’s current belief of being the symptomatic type p as the state

variable. At time t, the optimal social activity level of an individual maximizes the

sum of her current expected payoff increment and of her discounted continuation payoff,

should no symptoms occur in the interval [t, t + dt). Given the strategy profile k, the

best-response payoff to a player at time t and belief p satisfies the Bellman equation

V (t, p) = max
k∈[0,1]

{(
− (1 − k)cS + vIP (S(t) | p)

)
dt+

(
1 − P (S(t) | p)dt

)
e−rdtV (t+ dt, p+ dp | S̄(t))

}
,

(2.10)

where S(t) stands for the event “having symptoms between t and t + dt” and S̄(t)

for the complementary event. By Bayes’ rule, the probability of developing symptoms

between t and t+ dt is linear in the individual’s action k, with

P (S(t) | p) = k
∑

ω

µ(t, ω)p(t | ω)βk̄A(t | ω)a(t | ω).

Moreover,

V (t+ dt, p+ dp | S̄(t)) = V (t, p) + Vt(t, p)dt+
∑

ω

Vp(t|ω)(t, p)ṗ(t | ω)dt.

Using (2.6), eliminating terms to the order (dt)2 and simplifying, we can rewrite the

Bellman equation (2.10) as follows:

rV (t, p) = Vt(t, p) − cS

+ max
k∈[0,1]

k
(
cS − β

∑

ω

µ(t, ω)p(t | ω)k̄A(t | ω)a(t | ω)(V (t, p) − vI +
1 − p(t | ω)

µ(t, ω)
Vp(t|ω)(t, p)

︸ ︷︷ ︸
expected net cost of social activity

)
.
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To interpret this expression, note that two things might happen for the individual at

time t: either she gets symptoms, or she does not. In the first case, she incurs a

payoff loss of V (t, p)− vI ; in the second case, she becomes more confident in being the

asymptomatic type, which increases her continuation payoff by −Vp(t|ω)(t, p). Therefore,
the marginal benefit of more social activities is the difference between the direct cost

of self-isolation, cS, and the expected cost of social activity, composed of

• the expected cost of the jump to vI in case of symptoms: β
∑

ω µ(t, ω)p(t | ω)k̄A(t |
ω)a(t | ω)(V (t, p)− vI);

• the opportunity cost in terms of payoff of not becoming more optimistic about

being the asymptomatic type in the absence of symptoms: β
∑

ω p(t | ω)(1− p(t |
ω))k̄A(t | ω)a(t | ω)Vp(t|ω)(t,p).

The next proposition gives necessary conditions for a strategy of player j to be a

best response against a strategy profile (kj′)j′ ̸=j := k−j:

Proposition 7 (Best response). If k∗j the best-response of player j against the strategy

profile k−j, then there exists functions ψj : R+ × Ω → R and pj : R+ × Ω → [0, 1], C1

in the first argument and such that, such that, for all t ≤ T :

k∗j (t)





= 1 if cS > β
∑

ω

µj(t, ω)pj(t | ω)k̄A(t | ω)a(t | ω)(ψj(t | ω)− vI),

∈ [0, 1] if cS = β
∑

ω

µj(t, ω)pj(t | ω)k̄A(t | ω)a(t | ω)(ψj(t | ω)− vI),

= 0 if cS < β
∑

ω

µj(t, ω)pj(t | ω)k̄A(t | ω)a(t | ω)(ψj(t | ω)− vI),

(2.11)

where, for all ω ∈ Ω,

ψ̇j(t | ω)− rψj(t | ω) = k∗j (t)βk̄A(t | ω)a(t | ω)(ψj(t | ω)− vI) + (1− k∗j (t))cS, ψj(T | ω) = 0,

ṗj(t | ω) = −pj(t | ω)(1− pj(t | ω))k∗j (t)βk̄A(t | ω)a(t | ω), pj(0 | ω) = 1− α,

and µj(t, ω) is defined by (2.7).

Proof. See the Appendix.
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An immediate corollary of Proposition 7 is that all equilibria feature social inter-

action, in the sense that, at every period, there is a mass of individuals who do not

self-isolate. The reason is simple: if the rest of the population stays at home, each

individual can spare the self-isolation cost cS by going out without risking infection.

Therefore, in the symmetric equilibrium, at each date individuals either partially self-

isolate or do not self-isolate at all. The strategy profile k is said to be symmetric interior

if kj(t) = kj′(t) for all players j, j′ and kj(t) ∈ (0, 1) for all t. The following lemma

gives necessary and sufficient conditions for a symmetric interior strategy profile to be

an equilibrium.

Proposition 8 (The symmetric equilibrium). Let k̂ be the symmetric strategy profile

where all individuals play k̂ defined by

k̂(t) =
cS

β
∑

ω µ(t, ω)p(t | ω)a(t | ω)(ψ(t | ω)− vI)

where




∀ t ∈ [0, T ], ∀ ω ∈ Ω,

ψ̇(t | ω)− rψ(t | ω) = k̂2(t)βa(t | ω)(ψ(t | ω)− vI) + (1− k̂(t))cS,

ṗ(t | ω) = −p(t | ω)(1− p(t | ω))βk̂2(t)a(t | ω),
ṡ(t | ω) = −βk̂2(t)s(t | ω)a(t | ω),
ȧ(t | ω) = −αṡ(t | ω)− γaa(t | ω),
µ(t, ω) = µ0(ω)/(1−p(t|ω))∑

ω′ µ0(ω′)/(1−p(t|ω′))
,

(2.12)

and ψ(T | ω) = 0.

The strategy profile k̂ is a symmetric interior equilibrium if and only if k̂(t) ∈ (0, 1) for

all t.

Proof. See the Appendix.

When the confinement cost cS is large relatively to the continuation payoff in case

of infection, individuals have less incentives to self-isolate. The next proposition gives

a sufficient condition such that there is no self-isolation at all in equilibrium.

Proposition 9 (The no-confinement equilibrium). If (1 − α)αβvI + cS > 0, the game

admits a unique equilibrium in dominant strategy, where all individuals play k̂(t) = 1
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for every t. In this equilibrium, the players’ payoff is

Eµ0 [v(k̂ | .)] = vI(1− α)β

∫ T

0

e−rt
∑

ω

µ0(ω)a(t | ω)e−
∫ t
0 βa(s|ω)dsdt,

where, for each ω, a(. | ω) is the unique solution of the system




∀ t ∈ [0, T ],

ṡ(t | ω) = −βs(t | ω)a(t | ω), s(0 | ω) = s̄,

ȧ(t | ω) = −αṡ(t | ω)− γaa(t | ω), a(0 | ω) = ā.

Proof. See the Appendix.

2.4 The effect of uncertainty

In this section we explore the role of uncertainty on the epidemic dynamics in

the simplest possible setting where the population is aware of two possible epidemics:

Ω = {ωL, ωH}, and has prior belief µ0(ωL) = 1 − µ0(ωH) = µ̄. To do so, we simulate

the dynamics of each epidemic ω for several values of µ̄ when the population plays the

symmetric equilibrium described in Proposition 8. We denote by k̂µ̄ the symmetric

interior equilibrium strategy when the prior is µ̄. We compare them with the dynamics

of each epidemic without uncertainty, i.e., when µ̄ = 1 in epidemic ωL, and µ̄ = 0

in epidemic ωH . We calibrate the epidemiological parameters β, γa, γs and ν to the

COVID-19 pandemic and we chose the behavioral parameters cI , cS and cD arbitrarily.

2.4.1 Simulation strategy and calibration

In any epidemic, the first cases go unnoticed. For SARS-COV2, the first case was

reported on December 11, 2019, whereas several phylodynamics studies date the onset

of the epidemic between late August and early December.17 Therefore, throughout our

simulations we assume that individuals are not aware of the epidemic until some time

τ ∈ (0, T ), which can be interpreted as the moment at which the government makes

the epidemic common knowledge in the population via a public announcement. Before

17See for instance Van Dorp et al. (2020).
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time τ , individuals play k(t) = 1. After time τ , they form beliefs about the epidemic

state and adapt their behavior accordingly.

The system (2.12) is well defined for each ω by initial values p(0 | ω), a(0 | ω)
and s(0 | ω). However, the algorithm we construct to simulate (2.12) also requires the

specification of ψ(0 | ω), which cannot be taken arbitrarily since ψ is determined by

the terminal condition ψ(T | ω) = 0. To determine ψ(0 | ω), we use an adaptation of

the Simulated Annealing algorithm, a stochastic search-based algorithm described by

Lewis (2007), whose principle is to solve the system (2.12) for several possible values of

ψ(0 | ω) and to select the one that minimizes the distance between ψ(T | ω) and 0 for

each ω.18

In line with Fenichel et al. (2011), we set the discount rate to r = 0.014%.19. The

epidemiological parameters are calibrated to the SARS-COV-2:

• Absent an exhaustive testing campaign, the proportion of asymptomatic types in

the population is rather difficult to estimate. In a nationwide study of over 61

000 participants, Pollán et al. (2020) find that the proportion of asymptomatic

individuals in the Spanish population who developed antibodies to the SARS

CoV-2 ranges from 21.9% to 35.8%. Therefore, we set α = 0.3.

• The recovery rate is usually estimated to two weeks, which implies γa = 1/15.20

• To calibrate the contagiousness rate of the disease β, we use the value of the basic

reproduction number R0, i.e., the average number of secondary infections produced

by a typical infected individual in a population where everyone is susceptible.

18Precisely, at stage 1 a value ψ(0 | ω)[1] is uniformly drawn from an interval of reasonable values and is

temporarily designed “best candidate”. The final value of ψ given ψ(0 | ω)[1], i.e., ψ(T | ω)[1], is computed.

At stage 2, another value ψ(0 | ω)[2] is drawn at random. If the corresponding final value ψ(T | ω)[2] is closer

to 0 than ψ(T | ω)(1), then ψ(0 | ω)[2] becomes the new best candidate. The process does on iteratively and

stops after a deterministic number of rounds N , which is large enough to guarantee that ψ(T | ω)[N ] is almost

0 with the final best candidate.
19Precisely, Fenichel et al. (2011) study a discrete-time model in which they set the discount rate to δ =

0.99986, which corresponds to a 5% annual discount rate. The analog of δ in a continuous-time model is

r = − ln(δ), thus we set r = − ln(0.99986).
20See e.g., A. Remuzzi and G. Remuzzi (2020).
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In our model, R0 = βα/γa. Indeed, as symptomatic individuals self-isolate, a

randomly chosen infected individual contaminates a susceptible individual only

if she is the asymptomatic type and if the virus is transmitted during contact,

hence with probability αβ. As the individual is contagious during a period of

expected length 1/γa, the average number of infections caused by an infected is

βα/γa. For SARS-COV-2, the estimation of R0 ranges between 2.5 and 3.5, thus

we set R0 = 3.2, and therefore set β = 3.2γa/α.

• There are various estimates of the Fatality-Infected ratio in the epidemiological

literature. For instance, Verity et al. (2020) estimate this ratio to 0.7% percent and

Gudbjartsson et al. (2020) to 0.3% We set a fatality rate ν/(ν + γs) = 0.5%.21

Finally, we arbitrarily set the costs to cS = 1, cI = 10 and cD = 100.

On day τ = 20, the population is informed that a virus has been spreading since

day 0, and that a vaccine will be available on day T = 350. Individuals do not know

whether the initial penetration of the disease is low or high, that is if the epidemic is

ωL or ωH with a(0 | ωL) = 0.1% and a(0 | ωH) = 0.5%22. They know that nobody

has died or recovered from the disease yet, thus that r(0 | ω) = d(0 | ω) = 0 and

s(0 | ω) = 1 − 1
α
a(0 | ω) for each ω ∈ {ωL, ωH}. We shall focus on the following

epidemic indicators:

Total deaths. The total fraction of deaths in epidemic ω is TDµ̄(ω) := limt→∞ d(t | ω).
21In our model, an infected of the symptomatic type dies if the event “Death” occurs for her before the event

“Healing”. Therefore, the probability of death (conditional on being infected and the symptomatic type) is

P (τD < τH), with τH and τD denoting the random times of healing and death, respectively. Straightforwardly,

P (τD < τH) =
∫∞
0
FτD (t)fτH (t)dt = ν/(γs + ν) since fτD (t) = νe−νt and fτH (t) = γse−γst.

22By definition, asymptomatic infections are difficult to detect and therefore, it is challenging to determine

their magnitude in the population. The range of estimates in the literature is very wide. N. Ferguson et al.

(2020) in a preliminary report, which has since been much criticized, estimated the percentage of asymptomatic

infection to be between 40% to 50%. Other studies estimated the number of asymptomatic infections to be

around 21.9% to 35.8% (Pollán et al. (2020)), 17.9% (Mizumoto et al. (2020)and 12.5% (Jefferson et al.

(2022)). However, recent studies suggest that these figures are high since most of the Covid-19 infections were

not persistently asymptomatic (Buitrago-Garcia et al. (2022)). Up to 50% of asymptomatic infections are in

fact presymptomatic infections (Jefferson et al. (2022)). We have therefore chosen values at the extreme end

of the spectrum of possible values for our illustration
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By equation (2.5),
∫∞
0
ḋ(t | ω)dt + d̄ = d̄ + ν 1−α

α

∫∞
0
a(t | ω)dt. For all t ≥ T ,

ṡ(t | ω) = 0, hence ȧ(t | ω) = −γaa(t | ω) and a(t | ω) = a(T | ω)e−γa(t−T ). It

follows that
∫∞
0
a(t | ω)dt =

∫ T

0
a(t | ω)dt + 1

γa
a(T | ω), thus the total fraction of

deaths in epidemic ω is

TDµ̄(ω) = d̄+ ν
1− α

α

(∫ T

0

a(t | ω)dt+ 1

γa
a(T | ω)

)
.

Average transmission rate. The transmission rate of the disease is the rate at which a

susceptible individual is contaminated. In average, the transmission rate in epi-

demic ω is TRµ̄(ω) :=
1
T

∫ T

0
βa(t | ω)k̂2µ̄(t)dt. By equation (2.1), βa(t | ω)k̂2µ̄(t) =

− ṡ(t|ω)
s(t|ω) hence

TRµ̄(ω) =
1

T
(ln(s̄)− ln(s(T | ω)) .

Effective reproduction number The effective reproduction number is the expected

proportion of the population contaminated by a randomly chosen infected in-

dividual. In our model, only asymptomatic individuals can effectively contami-

nate others, hence the effective reproduction number at time t in epidemic ω is

ERNµ̄(t | ω) = 1
γa

a(t|ω)
a(t|ω)+i(t|ω)βs(t | ω)k̂µ̄(t)2, which simplifies to ERN(t | ω) =

1
γa
αβs(t | ω)k̂µ̄(t)2.

2.4.2 The dynamics of the epidemics and behaviors without uncertainty.

As a benchmark, we simulate the dynamics of both epidemics without uncertainty.

Figure 2.1 exhibits the dynamics of the fraction of infected individuals at the equilibrium

and the equilibrium social activity level k̂µ̄(t) in when individuals know the epidemic

state ; if µ̄ = 1 then they know that epidemic is ωL and µ̄ = 0 then they know that

epidemic is ωH .

In both epidemics, the equilibrium social activity level drops to k̂1(20) = 0.042 and

k̂0(20) = 0.012 right after the announcement. Afterwards, the level of social activity

increases in both epidemics, first rapidly then at a slower pace, and remains smaller

than 1 until the arrival of the vaccine.

The initial risk of infection is larger in ωH than in ωL, this is why k̂0(t) is smaller

than k̂1(t) at the beginning of the epidemic. Interestingly, after time 90, individu-
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Figure 2.1: Dynamics of each epidemic without uncertainty.

als self-isolate more in epidemic ωL than in epidemic ωH . Let us explain why. The

subjective probability of having symptoms depends on the fraction of infected individ-

uals without symptoms a(t|ω) and the subjective belief of being the symptomatic type

p(t|ω). Individuals are more confident in being of the asymptomatic type in epidemic

ωH (p(t | ωH) < p(t | ωL)), because, at the beginning, the virus circulated more in-

tensively. Also, after date 100, the fraction of infected individuals with symptoms is

higher in ωL. Therefore, the subjective probability of having symptoms is smaller ωH

after date 90. Figure 2.2 illustrates this point.
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Figure 2.2: Dynamics of the epidemic and the subjective belief without uncertainty after date 90.
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2.4.3 The dynamics of the epidemics and behaviors under uncertainty

We now simulate the dynamics of the two epidemics when the population has prior

belief µ̄ ∈ {0, 0.25, 1} that the epidemic is ωL. As illustrated in Figure 2.3, uncertainty

has important consequences on the spread of the disease in ωL but not in ωH .
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Figure 2.3: Top right: Dynamics of the fraction of infected individuals in ωL when µ̄ ∈ {0, 0.25, 1}. Top left: Dynamics

of the fraction of infected individuals in ωH when µ̄ ∈ {0, 0.25, 1}. Below: Dynamics of the equilibrium social activity

level k̂(t).

Interestingly, there is a second wave of infection in epidemic ωL: for each prior

µ̄ ∈ {0, 0.25}, the proportion of infected decreases from t = 50 to t = 150 before

increasing again. When µ̄ = 0, the peak of the second wave is reached at t = 325

approximately. When µ̄ = 0.25, the peak has not been reached before T . This second

wave arises because, after t = 90, the social activity level is higher when µ̄ ∈ {0, 0.25}
than when individuals form correct anticipations on ωL. Note that the second wave

is particularly high when agents (mistakenly) believe that the epidemic is ωH with

probability 1 (cf. the solid line), because they continuously increase their level of social
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activity. On the other hand, when µ̄ = 0.25, agents decrease their social activity after

t = 100 because they anticipate that the fraction of cases will increase again if ω = ωL,

which results in a flattening of the curve. Surprisingly, the second wave arises only in

epidemic ωL. In epidemic ωH , uncertainty implies that individuals are more cautious

than when they know that ω = ωH for sure, because without uncertainty they would

have learned faster that they are likely to be the asymptomatic type and would thus

have self-isolate less.

This result is consistent with the dynamics of the ERN, which is interpreted as

the fraction of people an infected individual contaminates while infectious. Figure 2.4

suggests that without uncertainty individuals behave in a such a way the ERN is close

to one from date 80 to the end. For this reason, there is a single wave in this case.

Under uncertainty, the ERN is above one after date 80 when the epidemic is ωL: each

infected individual contaminates more than many individuals, which explains why the

infection cases increase after date 80. In epidemic ωH , the ERN stays below 1 under

uncertainty, which is consistant with the fact that there is a single wave for every value

of the prior µ0.
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Figure 2.4: Dynamics of the ERN and average ERN in epidemics ωL and ωH .

The average social activity level over time, defined as k̄µ̄ = 1
T

∫ T

0
k̂µ̄(t)dt can be

lower under uncertainty than when individuals are confident about the epidemic. For

instance, when µ̄ = 0.6, k̄µ̄ = 0.502 while k̄µ̄ = 0.534 and k̄µ̄ = 0.504 when µ̄ = 0 and 1

respectively (See Figure 2.5).

In epidemic ωL, the average transmission rate is TRµ̄(ωL) = 0.46 when µ̄ = 1 and
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Figure 2.5: Average social activity at the symmetric equilibrium.

TRµ̄(ωL) = 0.14 when µ̄ = 0. This means that the disease is (much) more transmitted

when the population wrongly believes that the epidemic is ωH . Figure 2.6 suggests that

there is a positive relationship between the average transmission rate and the prior in

the epidemic ωL. In contrast, in state ωH this relationship is non-monotonic in µ̄: the

average transmission rate is TRµ̄(ωH) = 0.35 when µ̄ = 0.4 and TRµ̄(ωH) = 0.38 and

TRµ̄(ωH) = 0.37 in when µ̄ = 0 and µ̄ = 1, respectively.
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Figure 2.6: Average transmission rate in epidemics ωH and ωL.

2.4.4 The value of information

In this section we investigate whether it is always a good idea for a government

to give the population all the information they have about the characteristic of an

outbreak. We focus on two possible welfare objectives: minimizing the fraction of
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deaths and maximizing payoffs.

Figure 2.7 describes the total fraction of deaths for different values of µ̄ in each

epidemic. In epidemic ωL, the fraction of deaths decreases with the prior belief µ̄ that

the state is ωL. When individuals believe that the epidemic is ωH with probability

1 (total delusion), the fraction of deaths is twice higher than when they know that

the state is ωL. In contrast, in epidemic ωH the fraction of deaths decreases with

uncertainty, since it is 0.112% when µ̄ = 0.4 and 0.12% and 0.115% when µ̄ = 0 and 1,

respectively. In Figure 2.8 one can observe the same pattern for equilibrium payoffs: in

epidemic ωL, the payoffs increase with µ̄, while in ωH , the payoffs are higher for µ̄ = 0.4

than for µ̄ ∈ {0, 1}. Therefore, transparency improves welfare - both in terms of deaths

and payoffs - when the epidemic is ωL, while it decreases welfare when ω = ωH .

What if the government has to commit to a disclosure policy before knowing the

state of the epidemic? Recall that TDµ̄(ω) is the fraction of deaths in epidemic ω when

the prior is µ̄. The information value in terms of deaths is the fraction of deaths that

can be avoided when the government disclose information. It depends on the prior µ̄

and is defined by:

IV Dµ̄ = − µ̄TD1(ωL) + (1− µ̄)TD0(ωH)︸ ︷︷ ︸
Ex-ante total fraction of deaths without uncertainty

+ µ̄TDµ̄(ωL) + (1− µ̄)TDµ̄(ωH)︸ ︷︷ ︸
Expected fraction of deaths with uncertainty

As one can see in Figure 2.7, IV Dµ̄ ≤ 0 for every µ̄ ∈ (0, 1), which suggests that, ex-

ante, the value of information is negative when the objective is to reduce the fraction

of deaths.

We now address the same question in terms of payoffs. Recall that v(k̂µ̄|ω) is the

equilibrium payoff in ω when the prior is µ̄. The information value in terms of payoffs

is ex-ante payoff gain from knowing whether the epidemic is ωL or ωH . It also depends

on the prior µ̄ and is defined by:

IV Pµ̄ = µ̄v(k̂1|ωL) + (1− µ̄)v(k̂0|ωH)︸ ︷︷ ︸
Ex-ante payoff without uncertainty

− µ̄v(k̂µ̄|ωL)− (1− µ̄)v(k̂µ̄|ωH)︸ ︷︷ ︸
Expected payoff with uncertainty

In contrast with the information value in terms of deaths, IV Pµ̄ is positive for small

values of µ̄ and negative for large values of µ̄, as depicted by Figure 2.8. Transparency
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Figure 2.7: Above: Total fraction of deaths in each epidemic. Below: information value in terms of deaths

seems to be ex-ante welfare improving for low prior probabilities but not otherwise.

2.5 The social planner problem

The problem of the social planner is to determine the level of social activity that

maximizes the average payoff in the population over the infinite horizon. As the pop-

ulation is homogenous, we restrict the attention to symmetric profiles, i.e., such that

kj(t) = k(t) for every j.

Let us determine the total average payoff of strategy k conditional on some epidemic

ω. After time T , every living individual without symptoms gets vaccinated and stops

self-isolating, thereby gets payoff 0. Sick individuals continue to bear the flow cost cS+cI

as long as they have symptoms, and dead individuals bear the cost cD. Therefore, the

average continuation payoff at T conditional on ω is
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Figure 2.8: Above: expected discounted payoff in epidemic ωL and ωH . Below: Information Value in terms of Payoffs

W (T | ω) =
∫ ∞

T

e−rt (−(cS + cI)i(t | ω)− cDd(t | ω)) dt.

After the arrival of the vaccine at time T , the contagiousness rate of the disease drops

to β = 0, hence ṡ(t | ω) = 0 ∀ t ≥ T . Plugging this into (2.3) and (2.5) and integrating

between T and t > T , we obtain:

i(t | ω) = i(T | ω)e−γa(t−T ),

d(t | ω) = d(T | ω) + ν
γa
i(T | ω)(1− e−γa(t−T )).

Plugging this into the latter expression, we obtain:

W (T | ω) = −e−rT

(
d(T | ω)cD

r
+ i(T | ω) 1

r + γa

(cD
r
ν + cS + cI

))
. (2.13)

At each time t before the arrival of the vaccine, the population can be divided into

four groups:

1. those who have never had symptoms before t, i.e., susceptible people, asymp-

tomatic infected people and asymptomatic recovered people. They represent a
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total fraction s(t | ω) + α(1 − s(t | ω)) of the population and, as they spend a

fraction 1− k(t) of their day home, bear the flow cost cS(1− k(t)).

2. those who are infected with symptoms. They represent a fraction i(t | ω) of the
population and bear the flow cost cS + cI .

3. those who had symptoms in the past and have healed from the disease before

time t. They represent a fraction (1− α)(1− s(t | ω))− i(t | ω)− d(t | ω) of the
population and bear no cost as they do not self-isolate anymore.

4. those who died from the disease before t. They represent a fraction d(t | ω) of the
population and bear the flow cost cD.

Therefore, the total average payoff conditional on ω is

W (k | ω) = W (T | ω)+
∫ T

0
e−rt (−cS(1− k(t))(α + s(t | ω)(1− α))− (cS + cI)i(t | ω)− cDd(t | ω)) dt

Proposition 10 (The optimal strategy). The problem of the social planner has a unique

symmetric solution ǩ defined by

ǩ(t) =





k̃(t) if k̃(t) ∈ (0, 1]

1, otherwise,

where

k̃(t) =
cS
2αβ

α + (1− α)
∑

ω µ
0(ω)s(t | ω)∑

ω s(t | ω)i(t | ω)
(

1
1−α

ψs(t | ω)− ψi(t | ω)
) ,

and ∀ t ∈ [0, T ], ∀ω ∈ Ω,




ṡ(t | ω) = −βǩ(t)2s(t | ω) α
1−α

i(t | ω),
i̇(t | ω) = −(1− α)ṡ(t | ω)− γai(t | ω),
ḋ(t | ω) = νi(t | ω),





ψ̇s(t | ω) − rψs(t | ω) = −ǩ(t)2αβi(t | ω)(ψi(t | ω) − 1
1−αψs(t | ω)) + µ0(ω)cS(1 − α)(1 − k(t))),

ψ̇i(t | ω) − rψi(t | ω) = −ǩ(t)2αβs(t | ω)(ψi(t | ω) − 1
1−αψs(t | ω)) + µ0(ω) (cS + cI + γaψi(t | ω) − νψd(t | ω)) ,

ψ̇d(t | ω) − rψd(t | ω) = µ0(ω)cD,
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and ψs(T | ω) = 0, ψi(T | ω) = −µ0(ω) 1
r+γa

(
cD
r
ν + cS + cI

)
, and ψd(T | ω) =

−µ0(ω) cD
r
.

Proof. See the Appendix.

2.5.1 Next steps

The algorithm we built for our simulations requires the specification of ψs(0 | ω), ψi(0 |
ω) and ψd(0 | ω). These values cannot be determined arbitrarily since HYV is deter-

mined by the terminal conditions ψs(T | ω) = 0, ψi(T | ω) = −µ0(ω) 1
r+γa

(
cD
r
ν + cS + cI

)

and ψd(T | ω) = −µ0(ω) cD
r
. ψs(0 | ω), ψi(0 | ω) and ψd(0 | ω) are related to each other.

Our search for terminal values is therefore more complex than in the previous case.

The required computing resources being considerable, we will use the servers of Calcul

Québec to search for them.
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Appendix

2.5.2 Detailed derivation of 2.9

Fix ω ∈ Ω and a strategy kj for player j. If player j gets symptoms at time τ , her

payoff is:

e−rτvI −
∫ τ

0
e−rs(1− kj(s))cSds if τ ≤ T,

−
∫ T

0
e−rs(1− kj(s))cSds if τ > T.

As τ is a random variable, player j’s expected payoff is:

v(kj | ω) = E[
(
e−rτvI − u(τ)

)
1τ≤T ]− u(T )P (τ > T ),

with u(t) :=
∫ t

0
e−rs(1− kj(s))cSds.

For t ≤ T , P (τ > t) = 1 − p0 + p0e
−

∫ t
0 kj(s)βk̄A(s|ω)a(s|ω)ds, which, by integrating (2.6),

simplifies to

P (τ > t) = e−
∫ t
0 pj(s|ω)kj(s)βk̄A(s|ω)a(s|ω)ds,

and implies that τ is distributed with density

fτ (t) = pj(t | ω)kj(t)βk̄A(t | ω)a(t | ω)P (τ > t).

Therefore,

v(kj | ω) =
∫ T

0
(e−rtvI − u(t)) fτ (t)dt− u(T )P (τ > T ),

=
∫ T

0
e−rtvIfτ (t)dt−

∫ T

0
u(t)fτ (t)dt− u(T )P (τ > T ).

Integrating by parts and simplifying, we obtain:

v(kj | ω) =
∫ T

0
e−rτvIfτ (t)dt− [u(t)P (τ ≤ t)]T0 +

∫ T

0
u′(t)P (τ ≤ t)dt− u(T )P (τ > T ),

=
∫ T

0
e−rτvIfτ (t)dt− u(T )P (τ ≤ T ) +

∫ T

0
e−rt(1− kj(t))cSP (τ ≤ t)dt− u(T )P (τ > T ),

=
∫ T

0
e−rτvIfτ (t)dt− u(T ) +

∫ T

0
e−rt(1− kj(t))cS(1− P (τ > t))dt,

=
∫ T

0
e−rτvIfτ (t)dt− u(T ) + u(T )−

∫ T

0
e−rt(1− kj(t))cSP (τ > t)dt,

=
∫ T

0
e−rτP (τ > t)

[
vIpj(t | ω)kj(t)βk̄A(t | ω)a(t | ω)− (1− kj(t))cS

]
dt.

2.5.3 Proofs for Section 2 and Section 3

Lemma 5. For every ω ∈ Ω, t ∈ R+,

µj(t, ω) =
µ0(ω)/(1− pj(t | ω))∑
ω′ µ0(ω′)/(1− pj(t | ω′))

.
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Proof. Let Sj(t) stands for the event “j has symptoms in t” and S̄j(t
−) for the event

“j never had symptoms before t”. By definition, µj(t, ω) = P (ω | S̄j(t
−)). By Bayes’s

rule,

P (ω | S̄j(t
−)) =

P (S̄j(t
−) | ω)P (ω)

P (S̄j(t−))
=

P (S̄j(t
−) | ω)µ0(ω)∑

ω′ P (S̄j(t−) | ω′)µ0(ω′)
.

As individuals of type θa never have symptoms,

P (S̄j(t
−) | ω) = 1− P (θs) + P (S̄j(t

−) | ω, θs)P (θs)

As P (θs) = 1− α and P (S̄j(t
−) | ω, θs) = e−

∫ t
0 kj(s)βk̄A(s|ω)a(s|ω)ds, we can write:

P (S̄j(t
−) | ω) = α + (1− α)e−

∫ t
0 kj(s)βk̄A(s|ω)a(s|ω)ds.

Moreover, integrating (2.6) between 0 and t, we obtain:




p(0 | ω)e−
∫ t
0 kj(s)βk̄A(s|ω)a(s|ω)ds = pj(t | ω)e−

∫ t
0 kj(s)p(s|ω)βk̄A(s|ω)a(s|ω)ds

e−
∫ t
0 kj(s)p(s|ω)βk̄A(s|ω)a(s|ω)ds = 1−p(0|ω)

1−pj(t|ω)

Using the latter identities together with p(0 | ω) = 1− α, we obtain:

P (S̄j(t
−) | ω) = α

1− pj(t | ω)
.

The result follows.

Lemma 6. Let τH and τD be independent random variables distributed according to

f(t) = γe−γt and f(t) = νe−νt, respectively. The following equality holds:

E

[∫ min{τH ,τD}

0

e−rt(cS + cI)dt+
cD
r
e−rτD1τD<τH

]
=

1

r + γ + ν
(cS + cI + ν

cD
r
).

Proof. Let g(τH , τD) :=
∫ min{τH ,τD}
0

e−rt(cS + cI)dt+
cD
r
e−rτD1τD<τH . Straightforwardly,

g(τH , τD) =
cS + cI
r

(1− e−rmin{τH ,τD}) +
cD
r
e−rτD1τD<τH .

The random variable min{τH , τD} is distributed according to f(t) = (γ + ν)e−(γ+ν)t.

Therefore,

E[e−rmin{τH ,τD}] =
γ + ν

r + γ + ν
.

Moreover,

E[e−rτD1τD<τH ] =

∫ ∞

0

(∫ τH

0

e−(r+ν)τDνdτD

)
γe−γτHdτH =

ν

r + γ + ν
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Therefore,

E[g(τH , τD)] = (cS + cI)
1

r + γ + ν
+
cD
r

ν

r + γ + ν
.

Proof of Proposition 7

The best-response problem of a player is to determine the strategy k that maximizes

her expected discounted payoff, with, for every ω ∈ Ω, the functions s(. | ω) and a(. | ω)
being fixed and defined by the dynamic system:





∀ t ∈ [0, T ],

ṡ(t | ω) = −βk̄S(t | ω)s(t | ω)k̄A(t | ω)a(t | ω), with s(0 | ω) = s̄ ∈ (0, 1),

ȧ(t | ω) = −αṡ(t | ω)− γaa(t | ω), with a(0 | ω) = ā ∈ (0, 1),

Formally, it is the solution of the optimal control problem




max
k∈K

∫ T

0
e−rt

∑

ω

µ0(ω)e−
∫ t
0
p(s|ω)k(s)βk̄A(s|ω)a(s|ω)ds

(
p(t | ω)k(t)βk̄A(t | ω)a(t | ω)vI − cS(1 − k(t))

)
dt

w.r.t. ṗ(t | ω) = −p(t | ω)(1 − p(t | ω))k(t)βk̄A(t | ω)a(t | ω) and p(0 | ω) = 1 − α ∀ ω ∈ Ω,

where K denotes the set of piecewise continuous functions from R+ into [0, 1]. Making

the change of variable x(t | ω) := µ0(ω)e−
∫ t
0 p(s|ω)k(s)βk̄A(s|ω)a(s|ω)ds, with X(t) := (x(t |

ω))ω, and observing that23

e−
∫ t
0 p(s|ω)k(s)βk̄A(s|ω)a(s|ω)ds =

α

1− p(t | ω) ,

the player’s problem can be rewritten as follows:

P(k) :





max
k∈K

∫ +∞
0

e−rtF (t,X(t), k(t))dt

w.r.t. ẋ(t | ω) = −
(
x(t | ω) − µ0(ω)α

)
k(t)βk̄A(t | ω)a(t | ω) and x(0 | ω) = µ0(ω) ∀ ω ∈ Ω.

with

F (t,X(t), k(t)) :=
∑

ω

[
(x(t | ω) − µ0(ω)α)k(t)βk̄A(t | ω)a(t | ω)vI − x(t | ω)cS(1 − k(t))

]
.

As F (t,X(t), k(t)) is negative and bounded below by vI , the objective is well defined.

Furthermore, by standard results, the problem admits at least one solution. Applying

Pontryagin’s maximum principle, the optimal control k∗ and the associated trajectory

X∗ must satisfy the following conditions:

23See the proof of Lemma 5.
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Lemma 7 (Necessary conditions). If (X∗, k∗) is a solution of P(k), then there exists a

function ψ : R+ × Ω → R, C1 in the first argument, such that:

(i) ∀ ω, ψ̇(t | ω)− rψ(t | ω) = −Hx(t|ω)(t,X
∗(t), k∗(t),Ψ(t)),

(ii) H(t,X∗(t), k(t),Ψ(t)) ≤ H(t,X∗(t), k∗(t),Ψ(t)) for every admissible control k,

(iii) ∀ ω, ψ(T | ω) = 0,

where Ψ(t) := (ψ(t | ω))ω and H(t,X(t), k(t),Ψ(t)) := F (t,X(t), k(t)) +
∑

ω ψ(t |
ω)ẋ(t | ω) is the discounted Hamiltonian of the problem.

The transversality condition (iii) comes from the fact that x(T | ω) is free for every ω.

Observing that

H(t,X(t), k(t),Ψ(t)) =

∑

ω

[
(x(t | ω)− µ0(ω)α)k(t)βk̄A(t | ω)a(t | ω)(vI − ψ(t | ω))− x(t | ω)cS(1− k(t))

]
,

the necessary conditions are rewritten as

(i) ∀ ω, ψ̇(t | ω) − rψ(t | ω) = k∗(t)βk̄A(t | ω)a(t | ω)(ψ(t | ω) − vI) + cS(1 − k∗(t)),

(ii) for every admissible control k,

(k∗(t) − k(t))
∑

ω

[
x∗(t | ω)cS − (x∗(t | ω) − µ0(ω)α)βk̄A(t | ω)a(t | ω)(ψ(t | ω) − vI)

]
≥ 0.

As x(t | ω) = µ0(ω)α/(1 − p(t | ω)), the latter condition can be more conveniently

rewritten as:

(ii) (k∗(t)−k(t))
∑

ω

µ0(ω)

1− p(t | ω)
[
cS − p∗(t | ω)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI)

]
≥ 0 ∀ k.

Dividing by
∑

ω µ
0(ω)/(1− p(t | ω)) and using the identity µ(t, ω) = µ0(ω)(1−p(t|ω))∑

ω′ µ0(ω′)(1−p(t|ω′))
,

condition (ii) reduces to:

(ii) k∗(t) =





1, if cS −
∑

ω

µ(t, ω)p∗(t | ω)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) > 0,

0, if cS −
∑

ω

µ(t, ω)p∗(t | ω)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) < 0,

∈ [0, 1], if cS −
∑

ω

µ(t, ω)p∗(t | ω)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) = 0.
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Proof of Proposition 8

For all t; consider the strategy profile in which kj′(t) = k̂(t) ∀ j′ ̸= j, t and kj(t)

is arbitrary. Suppose that k̂(t) ∈ (0, 1). Replacing k̂(t) in the Hamiltonian, we obtain:

H(t,X(t), kj(t),Ψ(t)) = −∑ω x(t | ω)cS. It is easy to see that the Hamiltonian is

concave with respect to the state variable X(t) and therefore the necessary conditions

in Proposition 7 are also sufficient (see e.g. Arrow and Kurz (1970)). Therefore, any

kj(t) ∈ (0, 1) is a best response (and in particular k̂(t) since it belongs to (0, 1)).

Consequently, k̂(t) is an equilibrium.

Proof of Proposition 9

As a preliminary, let us prove the following lemma:

Lemma 8. If ψ : R+ × Ω → R satisfies the necessary conditions of Proposition 7, then

ψ(t | ω) ≤ 0 for every t ∈ [0, T ] and ω ∈ Ω.

Proof. Let ψ : R+ × Ω → R such that, for every t and ω,

ψ̇(t | ω)− rψ(t | ω) = k(t)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) + cS(1− k(t)), (2.14)

and ψ(T | ω) = 0.

We work towards a contradiction. Fix some epidemic ω. Suppose that there exists

t′ < t′′ ≤ T such that ψ(t | ω) > 0 for every t ∈ [t′, t′′]. It follows that ψ(t | ω)− vI > 0

on [t′, t′′], thus ψ′(t | ω) > 0 on [t′, t′′] by (2.14). As a consequence, ψ(t | ω) > 0 in the

right neighborhood of t′′, which implies ψ′(t | ω) is increasing on the right neighborhood

of t′′. The argument can be extended to prove that ψ(t | ω) > 0 and ψ′(t | ω) > 0 for

every t ∈ [t′, T ]. This contradicts ψ(T | ω) = 0.

Fix a player i, a date t and a value k̄A(t | ω) for each ω. As ψ(t | ω) < 0 by Lemma

8, ψ(t | ω) − vI < −vI . Moreover, k̄A(t | ω) ≤ 1 and a(t | ω) < α. Finally, p(t | ω) is
non increasing in t, thus p(t | ω) ≤ 1− α. Therefore, for every t,

β
∑

ω

µ(t, ω)p(t | ω)k̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) <
∑

ω

µ(t, ω)p(t | ω)βk̄A(t | ω)a(t | ω)(−vI),

< (−vI)
∑

ω

µ(t, ω)(1− α)βα,

< (−vI)(1− α)βα.
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Suppose that the best response is such that, at some date t, k∗i (t) < 1. If (1 −
α)αβ(−vI) < cS then β

∑
ω µ(t, ω)p(t | ω)k̄A(t | ω)a(t | ω)(ψ(t | ω) − vI) is smaller

then cH . According to Proposition 9, k∗i (t) < 1 cannot be a best response. Thus a

contradiction. Therefore, k∗i (t) = 1 for all t is a dominant strategy. This proves the

result.

Finally, let us determine the players’ payoff in the equilibrium where k∗ = 1. Plug-

ging kj(t) = 1 and k̄A(t | ω) = 1 into the belief dynamics (3), we obtain the players’

belief function conditional on ω as the solution of the ODE:

ṗ(t | ω) = −p(t | ω)(1− p(t | ω))βa(t | ω),

with initial condition p(0 | ω) = 1− α. Integrating between 0 and t, we obtain

p(t | ω)
1− p(t | ω) =

1− α

α
e−

∫ t
0 βa(u|ω)du,

and
α

1− p(t | ω) = e−
∫ t
0 βp(u|ω)a(u|ω)du.

Using the latter findings and plugging kj(t) = 1 into the payoff expression (5) then

simplifying, we obtain:

v(k∗ | ω) = vI(1− α)β

∫ T

0

e−rta(t | ω)e−β
∫ t
0 βa(u|ω)dudt.

The result is obtained by taking the expectation of the latter expression.

2.5.4 Proofs for Section 5

Proof of Proposition 10.

The problem of the social planner is to determine the strategy that maximizes

E[W (k | .)] subject to the evolution of the epidemic. As a(t | ω) = α
1−α

i(t | ω),
the problem depends only on 3× | Ω | state variables represented by X(t) := ((s(t |
ω))ω, (i(t | ω))ω, (d(t | ω))ω). Formally, it is the solution of the optimal control problem
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PW (k) :





max
k∈K

∫ T

0
e−rtF (t,X(t), k(t))dt+ E[WT (k | .)]

w.r.t.,∀ ω ∈ Ω, ṡ(t | ω) = −βk(t)2s(t | ω) α
1−α

i(t | ω), s(0 | ω) = s̄,

i̇(t | ω) = −(1− α)ṡ(t | ω)− γai(t | ω), i(0 | ω) = ī,

ḋ(t | ω) = νi(t | ω), d(0 | ω) = d̄,

with

F (t,X(t), k(t)) :=
∑

ω

µ0(ω) [−cS(1 − k(t))(α+ (1 − α)s(t | ω)) − (cS + cI)i(t | ω) − cDd(t | ω)]

As F (t,X(t), k(t)) is negative and bounded below, the objective is well defined.

Furthermore, by standard results, the problem admits at least one solution. Applying

Pontryagin’s maximum principle, the optimal control k∗ and the associated trajectory

X∗ must satisfy the following conditions:

Lemma 9 (Necessary conditions). If (X∗, k∗) is a solution of PW (k), then there exist

functions ψs, ψi, ψd : R+ × Ω → R, C1 in the first argument, such that:

(i) ∀ ω ∈ Ω,

ψ̇s(t | ω)− rψs(t | ω) = −Hs(t|ω)(t,X
∗(t), k∗(t),Ψ(t)),

ψ̇i(t | ω)− rψi(t | ω) = −Hi(t|ω)(t,X
∗(t), k∗(t),Ψ(t)),

ψ̇d(t | ω)− rψd(t | ω) = −Hd(t|ω)(t,X
∗(t), k∗(t),Ψ(t)),

(ii) H(t,X∗(t), k(t),Ψ(t)) ≤ H(t,X∗(t), k∗(t),Ψ(t)) for every admissible control k,

(iii) ∀ ω ∈ Ω, ψs(T | ω) = ∂E[W (T |.)]
∂s(T |ω) , ψi(T | ω) = ∂E[W (T |.)]

∂i(T |ω) , ψd(T | ω) = ∂E[W (T |.)]
∂d(T |ω) ,

where Ψ(t) := ((ψs(t | ω))ω, (ψi(t | ω))ω, (ψd(t | ω))ω) and

H(t,X(t), k(t),Ψ(t)) := F (t,X(t), k(t))+
∑

ω

(
ψs(t | ω)ṡ(t | ω) + ψi(t | ω)i̇(t | ω) + ψd(t | ω)ḋ(t | ω)

)

is the discounted Hamiltonian of the problem.

After some simplifications, we observe that
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H(t,X(t), k(t),Ψ(t)) = −αcS

+k(t)2αβ
∑

ω

s(t | ω)i(t | ω)

(
ψi(t | ω) − 1

1 − α
ψs(t | ω)

)
+ k(t)cS

(
α+ (1 − α)

∑

ω

µ0(ω)s(t | ω)

)

+
∑

ω

µ0(ω) [−cS(1 − α)s(t | ω) − (cS + cI)i(t | ω) − cDd(t | ω)] + i(t | ω) [νψd(t | ω) − γaψi(t | ω)]

If Z :=
∑

ω s(t | ω)i(t | ω)
(
ψi(t | ω)− 1

1−α
ψs(t | ω)

)
> 0, then H(t,X(t), k(t),Ψ(t)) is

increasing in k(t), thus k∗(t) = 1. If Z < 0, then H(t,X(t), k(t),Ψ(t)) is concave in

k(t), hence a candidate for k∗ is the solution of ∂H(.)
∂k(t)

= 0, i.e.,

k̃(t) = −cS
α + (1− α)

∑
ω µ

0(ω)s(t | ω)
2αβZ

.

As Z < 0, k̃(t) > 0. If k̃(t) > 1, then k∗(t) = 1. If k̃(t) < 1, then k∗(t) = k̃(t).

Therefore,

k∗(t) =





k̃(t), if k̃(t) ∈ [0, 1],

1, otherwise.

Proceeding as in the proof of Proposition 8, we obtain:

ψ̇s(t | ω) − rψs(t | ω) = −k(t)2αβi(t | ω)(ψi(t | ω) − 1
1−αψs(t | ω)) + µ0(ω)cS(1 − α)(1 − k(t)))

ψ̇i(t | ω)−rψi(t | ω) = −k(t)2αβs(t | ω)(ψi(t | ω)− 1
1−αψs(t | ω))+µ0(ω) (cS + cI + γaψi(t | ω) − νψd(t | ω))

ψ̇d(t | ω) − rψd(t | ω) = µ0(ω)cD

Finally, the transversality conditions are, ∀ω ∈ Ω:

ψs(T | ω) = 0;

ψi(T | ω) = −µ0(ω)e−rT 1
r+γa

(
cD
r
ν + cS + cI

)
;

ψd(T | ω) = −µ0(ω)e−rT cD
r
.

2.6 More uncertainty

The epidemic is characterized by two features:

1) the initial epidemic penetration (s̄, ī, ā, r̄, d̄), where s̄ ∈ [0, 1] is the proportion of

individuals who are not immune to the disease at time 0, ī ∈ [0, 1] is the proportion of
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individuals infected with symptoms at time 0, ā ∈ [0, 1] is the proportion of individuals

infected without symptoms at time 0, r̄ ∈ [0, 1] is the proportion of individuals who

already recovered from the disease at time 0 and are now immune to it and d̄ =

1− s̄− ī− ā− r̄ ∈ [0, 1] the proportion of dead individuals at time 0;

2) the medical parameters of the disease (α, β, γa, γs, ν), where α ∈ (0, 1) is the propor-

tion of asymptomatic types in the population, β > 0 is the contagiousness rate, γa > 0

is the recovery rate of asymptomatic types, and γs > 0 and ν > 0 are the recovery and

death rates of symptomatic types, respectively.

The tuple ω = {s̄, ī, ā, r̄, d̄, α, β, γa, γs, ν} is the epidemic state, and we denote by Ω the

finite set of possible epidemic states.

The evolution of the epidemics is now:

ṡ(t | ω) = −βωk̄S(t | ω)s(t | ω)k̄A(t | ω)a(t | ω) (2.15)

ȧ(t | ω) = −αωṡ(t | ω)− γωa a(t | ω), (2.16)

i̇(t | ω) = −(1− αω)ṡ(t | ω)− (γωs + νω)i(t | ω), (2.17)

ṙ(t | ω) = γωa a(t | ω) + γωs i(t | ω), (2.18)

ḋ(t | ω) = νωi(t | ω), (2.19)

The discounted expected payoff conditional on the epidemic being ω is thus:

v(kj | ω) =

∫ T

0

e−rte−
∫ t
0
pj(s|ω)kj(s)β

ω k̄A(s|ω)a(s|ω)ds
(
pj(t | ω)kj(t)β

ωk̄A(t | ω)a(t | ω)vωI − cS(1 − kj(t))
)
dt.

where:

vωI = − 1

r + γωs + ν
(cS + cI + νω

cD
r
) (2.20)

The symmetric equilibrium is given by:

Proposition 11 (The symmetric equilibrium). The game has a unique symmetric equi-

librium where all individuals play k̂ defined by

k̂(t) = min

{
cS

βω
∑

ω µ(t, ω)p(t | ω)a(t | ω)(ψ(t | ω)− vI)
, 1

}
,
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where




∀ t ∈ [0, T ], ∀ ω ∈ Ω,

ψ̇(t | ω)− rψ(t | ω) = k̂2(t)βωa(t | ω)(ψ(t | ω)− vI) + (1− k̂(t))cS,

ṗ(t | ω) = −p(t | ω)(1− p(t | ω))βωk̂2(t)a(t | ω),
ṡ(t | ω) = −βωk̂2(t)s(t | ω)a(t | ω),
ȧ(t | ω) = −αωṡ(t | ω)− γωa a(t | ω),
µ(t, ω) = µ0(ω)/(1−p(t|ω))∑

ω′ µ0(ω′)/(1−p(t|ω′))
,

(2.21)

and ψ(T | ω) = 0.

102



Chapter 3

Swedish Paradox

Dominique Baril-Tremblay1

Abstract2

Epidemic spreading can be suppressed by the introduction of social distancing measures

such as hand washing, mask and lockdowns. Yet, when such measures are relaxed, new

epidemic waves and infection cycles may occur. In this paper, with a SIR epidemiolog-

ical model with vital dynamics, we analyze the effects of infection mitigation strategies

on the arising of infection waves. We use SARS-CoV-2 values to calibrate our model

and simulate different social distancing scenarios: permanent measures and temporary

measures. We show that when the measures are permanent the results are intuitive

whereas when they are temporary, for a certain period the cumulative number of in-

fected individuals is greater when temporary distancing measures have been mandated

than when none have.

Keywords: SIR model; Self-isolation; COVID-19 epidemic.

JEL codes: C73; D84, I12.

1Université Paris 1 - Panthéon Sorbonne, doumbaril@gmail.com.
2We have greatly benefited from discussions with Nicolas Klein, Flavio Toxvaerd, Chantal Marlat and Lucie

Ménager. We are particularly indebted to Jean-François Blanchette for his support in the programming process

of our simulations.
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3.1 Introduction

Since the first case reported to the World Health Organization in December 2019,

SARS-CoV-2, has spread rapidly across all continents. The key to slowing down the

spread of infection is to reduce contact between individuals (Bavel et al. (2020), Min W

Fong et al. (2020)). Several countries have chosen to curb the spread of the infection

through the adoption of a series of non-pharmaceutical interventions (NPIs), includ-

ing hand-washing, masks, isolation, social distancing and confinement (Wilder-Smith

and Freedman (2020)). However, there is considerable heterogeneity in the scope and

stringency in the application of the infection mitigation measures between countries,

especially with regard to confinement (Petherick, Kira, et al. (2020)). Sweden made

headlines in March 2020. While neighbouring countries adopted strict measures to ”flat-

ten the curve”, Sweden’s state epidemiologist categorically refused to mandate social

distancing measures (Born, Dietrich, and Müller (2021), Cho (2020) and Juranek and

Zoutman (2020)). Why faced with a similar infectious threat governments have adopted

diametrically opposed strategies? Several factors influence government’s response to a

pandemic threat, such as the local risk assessments, hospital capacity (Kandel et al.

(2020)) as well as the nature of the institutions and the cultural context of the country

(Matthews Pillemer et al. (2015)).

In this paper, we will explore the effects of different infection mitigation strategies

on the onset mechanisms of infection waves in a SIR (Susceptible - Infected - Recov-

ered) epidemiological model with vital dynamics (births and deaths). Using this simple

model, we will show that under certain conditions Sweden’s approach of not mandating

infection mitigation measures was the right one.

In our epidemiological model, individuals move from one compartment – susceptible,

infected, recovered (immune) – to another as the infection progresses. The population

regenerates through the process of births and deaths allowing the infection to become

endemic. The system exhibits an oscillatory behavior around the endemic equilibrium,

which is concretely translated by a succession of infection waves over time.

We used the SARS-CoV-2 values available in March 2020 to calibrate our model.
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Our simulations provide insights into the impact of different infection mitigation strate-

gies on the occurrence of different infection waves. We focused our analysis on two types

of infection mitigation strategies: permanent and temporary social distancing measures.

The persistence of measures over time impacts the rate at which subsequent waves of

infection occur. The repercussion of the social distancing measure on the pattern of

infection waves is quite intuitive: the higher the level of the social distancing measures,

the lower the cumulative number of infected individuals. However, this is not the case

when the measures are temporary.

The temporary measures have the effect, in the short term, of slowing the spread of

the infection and at the same time protecting the population. However, when they are

lifted the previously protected population is exposed to the infection. Since the infection

is fuelled by the pool of susceptible individuals, infection waves arise faster. These

successive waves of infection lead to a marked increase in the cumulative number of

infected individuals. We observe that under certain conditions the cumulative number

of infections when there has been temporary social distancing measures is higher than

when there were no social distancing measure mandated.

In this article, we will show that under certain specific conditions it is preferable for

the social planner not to adopt any confinement measures when facing a new infection if

his goal is to reduce the number of cases. We call this phenomenon the Swedish Paradox.

The Swedish Paradox is based on the oscillatory behavior of the SIR epidemiological

model under certain epidemiological parameters and public containment policies.

Related literature. Our epidemiological model is based on the foundations developed

by Kermack and McKendrick (1927). This simple epidemiological model is still valid

and is the inspiration for many epidemiological models. These models have been used to

study and predict the spread of many diseases such as measles (e.g. Matt J Keeling and

Bryan T Grenfell (2002), L. Allen, M. Jones, and Martin (1991)), hepatitis (Shahdoust

et al. (2015)), tuberculosis (Azeez et al. (2016)).

For several decades, researchers have developed the literature at the intersection of

economics and epidemiology. In the theoretical literature, several papers have analyzed
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the effects of social distancing measures in a context of optimal control (e.g. Sethi

(1978), F. Chen et al. (2011) Rowthorn and Toxvaerd (2012) ) or in a context of indi-

vidual strategic decision (Reluga (2010), F. Chen (2012), Fenichel et al. (2011), Fenichel

(2013), Toxvaerd (2019)). The SARS-CoV-2 pandemic accelerated the development of

literature. The authors examined in the optimal control of the pandemic under the hy-

potheses of the SIR epidemiological model when the population is homogeneous (Kruse

and Strack (2020), Eichenbaum, Rebelo, and Trabandt (2022), Alvarez, Argente, and

Lippi (2020), C. Jones, Philippon, and Venkateswaran (2021), Glover et al. (2020)) or

when the risks for a subpopulation are higher (Acemoglu et al. (2021), Rampini (2020),

Bairoliya and İmrohoroğlu (2022)). Toxvaerd (2020), Farboodi, Jarosch, and Shimer

(2021) and Brotherhood et al. (2020) studied the problem of individuals who arbitrate

the costs and benefits of self-isolation in the SIR model. Baril-Tremblay, Marlats, and

Ménager (2021) introduce learning into an SIR epidemiological model and analyze the

epidemic dynamics when individuals decide whether or not to self-isolation based on

their subjective beliefs. Building on their previous work, Baril-Tremblay, Marlats, and

Ménager (2022) introduced uncertainty into their model .

Our research centers around the periodic nature of epidemics causing successive

waves of infection to emerge over time. It is important to understand the effects of the

various infection mitigation strategies on the arising of future waves in order to predict

and control them. Focusing our attention only on getting through the first wave can

leave us exposed and unprepared for the following ones.

Periodicity is a normal component of epidemics and has interested researchers for

decades (Webster (1799), Soper (1929), Hethcote and Levin (1989), Baryarama, Lu-

boobi, and Mugisha (2005) for example). Researchers have used different mechanisms,

endogenous and exogenous, to incorporate oscillatory behavior into epidemiological

compartmental models ( London and Yorke (1973), Bryan Thomas Grenfell and Roy

Malcolm Anderson (1989), Bolker and Bryan Thomas Grenfell (1993), N. M. Ferguson,

Nokes, and Roy M Anderson (1996), Hethcote (1997) and Earn et al. (2000)). Al-

though these models allow interesting conclusions to be drawn, they are difficult and

mathematically cumbersome to manipulate. Earn (2008) is the first to have laid the
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foundations for the natural appearance of oscillatory behavior within an epidemiological

model. Greer et al. (2020) formalize the principle by demonstrating that the oscilla-

tions arise naturally from the epidemiological model when the model has a population

regeneration process either via the birth and death dynamic or via waning immunity

(Giannitsarou, Kissler, and Toxvaerd (2021)) Like Greer et al. (2020) we have chosen

to adopt a simpler and more flexible model.

In hindsight, Cho (2020) and Born, Dietrich, and Müller (2021) demonstrated that

Sweden’s state epidemiologist erred in refusing to mandate social distancing measures.

Not only could the imposition of stricter social distancing measures have reduced the

number of cases by up to 75% (Cho (2020)), a 9-week lockdown could have reduced the

death toll by 38% (Born, Dietrich, and Müller (2021)). However, hindsight is 20/20.

As we will show later in this paper, Sweden’s strategy would have been the right one if

the vaccines had arrived much later and if it had been impossible for the social planner

to impose permanent social distancing measures.

The remainder of the paper is organized as follows. Section 2 introduces economic

and epidemiological models and characterizes the properties of oscillations around en-

demic equilibrium. In section 3, we analyze the effects of temporary infection mitigation

measures and define the Swedish Paradox. In section 4, we calibrate our model to the

SARS-CoV-2 epidemiological values available at the beginning of the pandemic and

evaluate different scenarios of permanent and temporary measures.

3.2 Models

Several studies show that NPIs are effective in slowing the spread of infection and

reducing adverse health outcomes (Born, Dietrich, and Müller (2021), Cho (2020),

Flaxman et al. (2020) and Juranek and Zoutman (2020)). The choice of the social

planner to implement or not NPIs is based on economic and epidemiological constraints.
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3.2.1 Economic model

Time t ∈ [0,+∞) is continuous and discounted at rate r > 0. A disease is spreading

in an initially completely susceptible population, against which a vaccine will be intro-

duced at period T > 0. While waiting for the arrival of the vaccine, the social planner

can impose NPIs to slow down the progression of the infection.

NPIs reduce contact between individuals and can result in a decrease in social and

physical activities leading to a deterioration in the mental health of individuals, while

infections lead to a decline in the physical health. When choosing the optimal social

distancing level κt ∈ [0, 1], the social planner must balance the mental and physical

health of her population. We suppose that (κt) is the social distancing level at t, ie,

the impact of NPIs on the level of contact between individuals at each period. When

κt = 1 people double lock themselves at home and when κt = 0, they go about their

business as usual. We denote cH the cost of social distancing measures by units of time

and cI the cost of infection by a unit of time. The social planner imposes a reduction of

contacts between individuals by a constant κ proportion. Each period t ≤ T the social

planner choose κt that minimize the value function v(κt) = cHκt + cIit(κ), where it(κ)

is the proportion of the population that is infected in each period t3. In our model,

the infection-related morbidity rate is zero and the performance of the social planner in

dealing with the pandemic will only be evaluated on the number of infected individuals.

The congestion of health systems due to the SARS-CoV-2 is a real headache for the

social planner. Faced with the large number of cases, the social planner is forced to

postpone other procedures to free up the necessary resources to take care of individuals

infected with the new infection.

In order not to confuse the population, we assume that the social planner chooses

a constant social distancing level κ that will be imposed and respected between the

exogenous periods t = t and t = t, with 0 ≤ t < t ≤ T . The social planner’s response

to the pandemic is evaluated at t = T .

The choice of κ has a direct effect on the costs of social distancing measures and an

indirect effect on the costs of infection. When minimizing her value function, the social

3We will discuss this parameter in depth in Section 3.2.2
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planner must therefore take into account the effect of his choice of social distancing

level on the dynamics of the infection, described in the next section.

3.2.2 Epidemiological model with vital dynamic

To model the spread of the infection in the population is described by a compartmen-

tal Susceptible-Infected-Recovered (SIR) epidemiological model4 with stationary vital

dynamic (birth and natural deaths).

The population. The model assumes that at time t, a large population N(t) in presence

of a non-fatal disease, can be subdivided into three different groups: infected individuals

denoted I(t), healthy but susceptible to the disease individuals denoted by S(t), and

healthy individuals removed from the susceptible group because they recovered from

the disease R(t). The incubation period is neglected: in our model, individuals remain

in the S compartment until they are infectious, at which time they switch from the S

compartment to the I compartment.

N(t) = S(t) + I(t) +R(t)

Infection dynamics. We assume the population size to be constant since the time

scale for substantial changes to be observed in birth rates (decades) is usually much

longer than an epidemic (a few months). Following Kermack and McKendrick (1927)

we assume that the birth rate is equal to the natural mortality rate, µ > 0, and that

newborns are susceptible which means, there is no vertical transmission from mother

to child.

We normalize the population, 1 = st + it + rt where: st = S(t)
N(t)

, it = I(t)
N(t)

and

rt =
R(t)
N(t)

. Therefore, st is the ratio of healthy individuals on the total population, it is

the ratio of the infected individuals on the total population, and rt is the proportion of

removed individuals on the total population.

The compartmental diagram in figure 3.1 illustrates the relationship between the

different compartments within the SIR epidemiological model with stationary vital

4The SIR epidemiological model has been developed by Kermack and McKendrick in a series of paper

Kermack and McKendrick (1927).

109



Infected

it

Susceptible

st

Removed

rt

β γ

µ µ

µ

µ

Figure 3.1: Compartmental SIR model with stationary vital dynamic

dynamic framework. Boxes represent the three different compartments. Dashed arrows

represent the vital dynamics while solid arrows represent the infection dynamics.

Over time the distribution of individuals among each group varies. Under the ho-

mogenous mixing hypothesis, individuals move from the susceptible to the infected

group, at the rate β ∈ [0, 1], when a susceptible individual comes in contact with an

infected individual. Conversely, some individuals will heal, moving from the infected

group to the immunized group at the rate γ > 0, the recovery rate. The differential

equations describing the dynamics of the system under all these assumptions have the

following form:

ṡ =− βκis+ µ(1− s)

i̇ =βκis− (γ + µ)i

ṙ =γi− µr

(3.1)

where s(0) > 0, i(0) > 0, r(0) ≥ 0 and s(0) + i(0) + r(0) = 1. Individual face short

outbreak with lifelong consequences. Since at any point in time, s + i + r = 1, the

system can be summarized by :

ṡ =− βκis+ µ(1− s)

i̇ =βκis− (γ + µ)i
(3.2)

for any social distancing policy κ.

The transmission rate β = bκ embed two distinct sub-processes: the social behaviour

i.e. the number and nature of contacts between individuals κ, and the biological con-

tagion process b ∈ [0, 1] which is the probability that appropriate contact5 between two

individuals will result in an infection. By choosing a level of contact κ economic agents

5Different infections have different modes of transmission, and the nature of the contacts that can lead to

infection differs from one infection to another.
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can influence the dynamics of the infection. This choice parameter is the thread that

connects the economic model and the epidemiological model.

The previous equations describe the dynamics of a population facing an infection.

Depending on the epidemiological parameters of the model, an epidemic may spread or

die out. To determine the epidemiological importance of an infection, we will look at

the expected number of secondary infection cases caused by a single typical infective

case during his entire period of infectivity in a wholly susceptible population, the basic

reproduction number (BRN)6, denoted R0. R0 is a dimensionless threshold parameter:

if R0 > 1 the epidemics take off and if R0 < 1 the epidemic dies out. In the SIR

compartmental model with vital dynamics, in the presence of a non-fatal disease, the

basic reproduction number is expressed as:

R0 =
β

(γ + µ)
. (3.3)

This dimensionless parameter plays an important role in characterizing the equilib-

riums points of the system (3.2).

Equilibriums points. Since the equation system (3.2) is nonlinear, to further our anal-

ysis we will linearize the system around the equilibrium points. Therefore, we are going

to identify the equilibria and define the conditions for which they are asymptotically

stable. The asymptotic stability of an equilibrium means that for given initial condi-

tions, a point remains close to equilibrium following a disturbance and approaches the

equilibrium when t→ ∞. An equilibrium point is unstable if it is not stable.

The equation system (3.2) is at the equilibrium when ṡ = i̇ = 0. Rearranging the

terms of the second equation such that, i̇ = (γ+µ)i(R0κs− 1), we see that i̇ = 0 when

i = 0 or when R0κs = 1. By substituting i = 0 in the first equation of the system of

equation (3.2), we see that when i = 0, ṡ = 0, when s = 1. Naturally, when there are no

infected individuals in the population, the infection cannot spread and all individuals

remain susceptible. To find the second equilibrium, we substitute s = 1
(R0κ)

into the

first equation. We find that when s = 1
(R0κ)

, ṡ = 0, when µ
µ+γ

(1− 1
κR0

).

6The basic reproduction number was first introduced by Dietz (1975) and Hethcote (1975), see Wang et al.

(2016), Anderson and May (1992) for useful illustration of the concept.
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The system admits two equilibriums points: a disease-free equilibrium (dfe) and an

endemic equilibrium (ee).

(sdfe, idfe) =(1, 0) (3.4)

(see, iee) =(
1

κR0

,
µ

µ+ γ
(1− 1

κR0

)) (3.5)

We will use the approach proposed by Matt J. Keeling and Rohani (2008)7, and

analyze the eigenvalues to determine the stability of the balance points. A stable system

is one in which all eigenvalues have a real part less than zero.Since we are dealing with

a system with two equations we will have two eigenvalues per equilibrium.

The eigenvalues Lambda are the solutions of det(J − ΛI ) = 0 where

J =




∂ṡ(s∗,i∗)
∂s∗

∂ṡ(s∗,i∗)
∂i∗

∂i̇(s∗,i∗)
∂s∗

∂i̇(s∗,i∗)
∂i∗




=


−µ− βκi∗ −βκs∗

βκi∗ βκs∗ − (γ + µ)




(3.6)

is the Jacobian matrix of first order partial derivatives of the equation system (3.2)

around the equilibrium (s∗, i∗). To find the eigenvalues, we will replace (s∗, i∗) in J by

the equilibria (sdfe, idfe) and (see, iee) and solve the caracteristic polynomial associated.

At the disease-free equilibrium, the Jacobian matrix takes the following form:

Jdfe =


−µ −βκ

0 βκ− (µ+ γ)


 . (3.7)

The eigenvalues of the matrix (3.7) are the roots of the quadratic equation:

|Jdfe − ΛI| =

∣∣∣∣∣∣


−µ −βκ

0 βκ− (µ+ γ)


−


Λ 0

0 Λ



∣∣∣∣∣∣
= 0

(−µ− Λ)(βκ− (µ+ γ)− Λ) = 0.

(3.8)

The eigenvalues of this matrix are −µ and βκ−(µ+γ). Thus as long as βκ < (µ+γ)

i.e. R0κ = βκ
γ+µ

< 1, every real parts of the eigenvalues are negative and the disease-free

equilibrium is asymptotically stable.

7You will find the approach in chapter 2 in box 2.4
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At the endemic equilibrium, the Jacobian matrix takes the following form:

Jee =


 −µκR0 −(µ+ γ)

µ(κR0 − 1) 0


 (3.9)

The eigenvalues of the matrix (3.9) are the roots of the quadratic equation:

|Jee − ΛI| =

∣∣∣∣∣∣


 −µκR0 −(µ+ γ)

µ(κR0 − 1) 0


−


Λ 0

0 Λ



∣∣∣∣∣∣
= 0

Λ2 + µκR0Λ + µ(κR0 − 1)(µ+ γ) = 0,

(3.10)

which are:

Λ =
−µκR0 ±

√
µ2(κR0)2 − 4µ(κR0 − 1)(µ+ γ)

2
. (3.11)

Knowing that the infection period 1/γ is significantly shorter than the life ex-

pectancy 1/µ, we will neglect the quadratic terms in µ as suggested by L. J. Allen

et al. (2008). The eigenvalues of the matrix (3.9) are therefore approximately:

Λ ≈ −µκR0

2
±
√

−µ(κR0 − 1)(γ + µ). (3.12)

The eigenvalues of matrix (3.9) have a negative real part (−µ(κ)R0)/2, and an

imaginary part
√
−µ((κ)R0 − 1)(γ + µ). Therefore the endemic equilibrium exist when

R0κ > 0 and the system tends asymptotically towards the endemic equilibrium via

oscillatory dynamics. The characterization of these oscillations is the warp and woof of

our analysis of social distancing strategies.

Interestingly, the epidemiological parameterization and the level of confinement both

influence the equilibrium points asymptomatic stability. Moreover, the condition which

ensures instability of the disease-free equilibrium is the same which ensure the stability

of the endemic equilibrium, thusly the SIR epidemiological model exhibit a threshold

behavior.
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3.2.3 Oscillations

Oscillations around the endemic equilibrium create successive waves of infection over

time. From a public health policy perspective, it is essential to understand and antici-

pate these infection waves. The number of periods that elapse between two successive

waves of infection is called the pseudo-period (Taylor (2005)).

Since the real part of the eigenvalues is negative, the SIR epidemiological model

with vital dynamic at the endemic equilibrium is therefore analogous to a damped

oscillator8. Since the system has a damped oscillatory behavior, the amount of time

it takes for one complete cycle of motion is called a pseudo-period. It is denoted by

T and, following Matt J. Keeling and Rohani (2008)9, is obtained by multiplying the

inverse of the complex part of the eigenvalues by 2π:

T =
2π√

µ(κR0 − 1)(γ + µ)
. (3.13)

The pseudo-period depends only on the social distancing level and the epidemiolog-

ical parameters. When κR0 > 1, ∂T
∂κ

= − R0π√
µ(µ+γ)(κR0−1)3

< 0. The higher the social

distancing level κ, the shorter the pseudo-period T , therefore, the highere the social

distancing level, the closer the subsequent infection waves are.

Everything we have described so far assumes that the social distancing level is

constant and permanent, which means that the social distancing measures are the

same between the announcement period t < T and the introduction of a vaccine at a

period T . This type of stringent social distancing measure can be difficult for the social

planner to justify and implement.

3.3 Temporary social distancing measures

Non-pharmaceutical interventions are socially (Ferry et al. (2021)) and economically

(Kong and Prinz (2020), Sheridan et al. (2020)) unsettling. The effectiveness of these

8For more information on damped oscillators, see Goldstein, Poole, and Safko (2002)
9see Chapter 2, box 2.4
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transmission mitigation measures depends on the extent to which the population ad-

heres to them (Cho (2020), Flaxman et al. 2020, Born, Dietrich, and Müller (2021)).

Despite their importance for public health, we observe a decrease in adherence to NPIs

either because individuals have a biased infection perceived risk (Cava et al. (2005)),

strong financial pressure (Bodas and Peleg (2020), Atchison et al. (2021)) or policy-

induced fatigue (Smith et al. (2020), Petherick, Goldszmidt, et al. (2021), Di Domenico

et al. (2021), Pépin et al. (2020)). Subsequently, transmission mitigation measures can

be difficult to implement up to the vaccine arrival at period T . Hence, the social planner

may wish to impose temporary infection intigation measure for a short period.

We assume that the social planner mandate social distancing measure temporarily

between periods t and t, where 0 < t < t < T . Consider two social distancing levels:

κ0 ∈]0, 1] and κ1 ∈ [0, 1] where κ0 > κ1 and κ1R0 > κ0R0 ≥ 110. The social distancing

measures are implemented as follows:

κ(t)




k0 if t ∈ [t, t[

k1 if t ∈ [t, T [.
(3.14)

Since, as demonstrated previously in the section (3.2.2), the endemic equilibrium

is asymptotically stable for any κ, as long as κR0 > 1, we know that between the

periods t and t, the system tends towards the endemic equilibrium (see(κ0), iee(κ0)) =

( 1
κ0R0

, µ
µ+γ

(1 − 1
κ0R0

)). However, when the social distancing level changes at period t,

the endemic equilibrium shifts and the system will oscillate towards the new endemic

equilibrium (see(κ1), iee(κ1)) = ( 1
κ1R0

, µ
µ+γ

(1− 1
κ1R0

)).

The oscillatory behavior of the system is affected by two elements: the social distanc-

ing level κ and the epidemiological parameters that are assumed to be constant. Thus,

when the social distancing level changes, the pseudo-periods and the amplitude of the

oscillations shift. When the social distancing level goes from κ0 to κ1 the pseudo-periods

of the oscillations will change from T (κ0) =
2π√

µ(κ0R0−1)(γ+µ)
to T (κ1) =

2π√
µ(κ1R0−1)(γ+µ)

.

The oscillations quietly stabilize around the new endemic equilibrium and the pseudo-

period slowly adjusts. This stabilization process is at the origin of the Swedish Paradox.

10We are only interested in the case where the infection is endemic
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3.3.1 Swedish Paradox

Temporary social distancing measures are not always the strategy that minimizes

the number of infected individuals. While they reduce the number of infected indi-

viduals when implemented, they also have the effect of shortening the pseudo-period

between oscillations and thus the delay between different infection waves. Their effects

are felt long after the social distancing measures have been lifted. The rhythm and

trajectory of the oscillatory system towards the endemic equilibrium is influenced by

these temporary measures. The early arrival of infection waves means that, during cer-

tain periods, the cumulative number of infected individuals is greater when temporary

distancing measures have been imposed than when they have not. We have named this

phenomenon the Swedish Paradox.

3.4 Illustration

The purpose of this section is to illustrate the impact of different social distancing

strategies on the oscillations of the SIR epidemiological model with vital dynamics, and

to highlight the different lessons we can draw for future public policies implementation.

3.4.1 Calibration

Following Fenichel et al. (2011), we assume that individuals discount time at rate

r = 0.99986%, and that initially the population is distributed among epidemiological

compartments such as s(0) = 0.99, i(0) = 0.01 and r(0) = 0.

The social planner’s response may not occur as soon as the new infection break

out. He could take a few periods to assess the situation or the first cases may go

unnoticed (Baril-Tremblay, Marlats, and Ménager (2022)). This is very much in line

with what happened when SARS-CoV-2 first appeared. We assume that the social

planner announces the start of social distancing measures 25 days after the first case

is detected, at period t = 25 and the end of social distancing measures at period
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T = 20000 for the scenarios where social distancing measures are permanent and in

period t = 375 for the scenarios where social distancing measures are temporary.

Estimates of epidemiological parameter values today are not necessarily the same as

they were at the beginning of the SARS-CoV-2 pandemic for two main reasons. First,

as the epidemic progresses, we learn more and more about the new infection, thus

epidemiological parameter estimation become more refined. Second, variants appear.

Since our initial motivation is to understand Sweden’s decision not to impose social

distancing measures, in March 2020, we will use estimates calculated with the data

available at that time.

We will use the estimates provided by A. Remuzzi and G. Remuzzi (2020), i.e.

R0 = 2.76 and an average infection duration of 15 days. From the average infection

duration, we obtain directly γ = 1/15. The demographic dynamic is estimated by the

inverse of the discount rate which is µ = 0.00014. The transmission rate β is difficult to

estimate since it is not directly observable. We will use the estimate of R0, γ and µ to

infer it’s the value. In our model, R0 = β/(γ+µ) and therefore β = R0(γ+µ) = 0.184.

Finally, to simplify the analysis, we will arbitrarily assume that cH = 0 and cI = 1.

The social planner’s value function can be rewritten as: v(k, i(k)) = cI
∫ T

0
it(κ)dt and

to maximize the latter it simply suffices to minimize the number of infected individuals

between t = 0 and t = T .

3.4.2 Permanent social distancing

We will first assume that social distancing measures are permanent. We will focus

our attention on the case that respects the asymptotic stability condition for the en-

demic equilibrium, i.e. κR0 > 1. Given the previously defined calibration, the scenarios

of interest are those for which κ < (1− R0)/R0 = 0.6377. We have selected three sce-

narios: no measure (κ = 0), a low level of social distancing (κ = 0.25) and a medium

level of social distancing (κ = 0.50).

The endemic equilibrium associated with each scenario is: (see(κ = 0), iee(κ = 0)) =

(0.36232, 0.00134), (see(κ = 0.25), iee(κ = 0.75)) = (0.48309, 0.00108) and (see(κ =
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0.5), iee(κ = 0.5)) = (0.72464, 0.00058). As shown in figure 3.2, all three endemic

equilibriums are asymptomatically stable. The higher the social distancing level, the

higher the proportion of susceptible individuals and the lower the proportion of infected

at the endemic equilibrium.
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Figure 3.2: Asymptotic stability of equilibriums under permanent social distancing measures.

The different scenarios of social distancing lead to different oscillatory patterns. As

can be seen from the left panel of figure 3.3, the higher the initial social distancing

level, the smaller the amplitude of the first infection wave. When the level of social

distancing is high (κ = 0.5), the first wave reaches its maximum prevalence 0.12617 at

time 34, while with a low level of social distancing (κ = 0), the first wave reaches its

maximum prevalence 0.19937 at time 47.

Moreover, the right panel of figure 3.3 shows that the lower the social distancing

level, the faster the second wave of infection appends. The peak of the second wave of

infection occurs at t = 5869 when κ = 0, at t = 7700 when κ = 0.25 and at t = 14088

when κ = 0.5. Note: in the scenario where there is no social distancing measures, four

waves of infection occur before there is a second wave of infection in the scenario where

the social distancing level is high.

The system goes through a transition phase in which the pseudo-periods are longer

than predicted by the model. After this transition phase the system becomes marginally
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Figure 3.3: Proportion of the population infected each period between periods 0 and 400 (left panel) and between periods

0 and 20000 (right panel).
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Figure 3.4: Top panels: proportion of the population infected each period. Bottom panel: proportion of the population

susceptible each period. Position markers mark the maximum and minimum of each oscillation of the susceptible curve

as well as the maximum of each wave of the infected curve. Dashed lines have been added to make it easier to visually

track values from one panel to another.

stable and the pseudo-periods are T (κ = 0) = 1550, T (κ = 0.75) = 1988 and T (κ =

0.5) = 3337, which are the length predicted by the model.

As can be seen in figure 3.4, waves of infection are closely related to the process

of susceptible population growth. In the absence of infection, the pool of susceptible

individuals grows to a point where the epidemic pick up steam. After this point,

infections increase at the expense of the pool of susceptible individuals which decreases
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at a great speed. When the proportion of susceptible individuals crosses the endemic

equilibrium, the epidemic loses speed. The epidemic subsides and the pool of susceptible

individuals resumes growth until the next wave of infection.

Over time, subsequent phases of infection increase the cumulative number individual

who has been infected. When social distancing measures are permanent, as illustrated

in 3.5, these waves of infection are monotonically non-decreasing and do not intersect.

0 2500 5000 7500 10000 12500 15000 17500 20000

Time / Periods

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
u

m
u

la
ti

ve
n
u

m
b

er
of

in
fe

ct
ed

Confinement

Without

Permanent κ = 0.5

Permanent κ = 0.75

Figure 3.5: Cumulative number of infected individual.

The analysis of the effect of permanent social distancing policies on the dynamics

of the SIR epidemiological model with vital dynamics is quite straight forward. The

coordinates of the endemic equilibrium are permanently influenced by the level of social

distancing imposed by the social planner and the system tends asymptotically towards

these equilibriums. Ultimately, the higher the level of social distancing, the longer

the waves of infection are spaced out in time and the lower the cumulative number of

infected individuals.

3.4.3 Temporary social distancing measures

Temporary social distancing measures offer a more interesting analytical framework

than permanent social distancing measures for studying the effects of social distancing

policies on infection dynamics. The imposition of temporary social distancing measures
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slows down the progression of the infection for a short period. However, when these

measures are lifted, the epidemic, fueled by the pool of susceptible individuals, resumes

and the infection waves follow one another more rapidly than in the scenario without

social distancing measures or with permanent social distancing measures.

We will illustrate this mechanism, by comparing three levels of social distancing

measures. As in the section 3.4.2, we will focus our attention on the values of κ which

respect the condition κR0 > 1, thus κ < 0.6377. In the first scenario, the social planner

will choose not to implement any social distancing measures (κ = 0), while in the other

two scenarios, measures are mandated temporarily. We assume that the levels of social

distancing are respectively κ = 0.75 and κ = 0.5 between the periods t = t = 25 and

t = t = 375, then κ = 0 after the period t = t = 375 for all scenarios.
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Figure 3.6: Convergence of the various endemic equilibriums according to different social distancing scenario.

As illustrated in the left panel of figure 3.6, between periods t = t = 25 and

t = t = 375, the orange curves, representing the two scenarios where social distanc-

ing measures are temporary, begin their spiral of convergence towards their respec-

tive endemic equilibrium, i.e.: (see(κ = 0.75), iee(κ = 0.75)) = (0.48309, 0.00108) and

(see(κ = 0.5), iee(κ = 0.5)) = (0.72464, 0.00058). However, at the end of the tem-

porary social distancing measures, their course is abruptly redirected to the endemic

equilibrium (see(κ = 0), iee(κ = 0)) = (0.36232, 0.00134). Thus, in all three scenarios

the system oscillates around the same endemic equilibrium, the endemic equilibrium

without social distancing (see right panel of figure 3.6).
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Figure 3.7: Top panel: proportion of the population infected each period. Botton panel: proportion of the population

susceptible each period. The horizontal dotted line mark the endemic equilibrium position for each scenario.

The system goes through a transition phase where the pseudo-periods depend on

the level of susceptible individual with respect to the endemic equilibrium. As briefly

described previously, the infection waves feed from the pool of susceptible individuals.

Thus, the proportion of susceptible individuals at the end of the temporary social

distancing measures impacts the speed at which the epidemic will resume. As illustrated

in figure 3.7, when the social distancing level is low κ = 0.5 (the dark orange curve),

the proportion of susceptible individuals at the end of restrictions is s(t = 374, κ =

0.5) = 0.3993 and the second infection peaks at t = 609. As an indication, when the

same measures are implemented permanently, the peak of the second wave is reached

much later, at t = 14088. Similarly, when the level of social distancing is high κ = 0.75

(the light orange curve), the proportion of susceptible individuals at the end of the

social distancing measures is s(t = 374, κ = 0.25) = 0.1966 . The pool of susceptible

individuals takes longer to reach its critical level, but eventually the second wave arises

and peaks at t = 4279 whereas when these measures are permanent the second wave

peaks at t = 7700. Note that when the system tends to infinity, the pseudo-periods are

the same for the three scenarios, ie T (κ = 0) = 1550.

As figure 3.8 shows, the dynamic between the proportion of susceptible individuals
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and the wave of infection is the same when social distancing measures are temporary

as when they are permanent.
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Figure 3.8: Top panels: proportion of the population infected each period. Bottom panel: proportion of the population

susceptible each period. Position markers mark the maximum and minimum of each oscillation of the susceptible curve

as well as the maximum of each wave of the infected curve. Dashed lines have been added to make it easier to visually

track values from one panel to another.

The cumulative number of infected individuals increases in stages. When a wave

occurs, it leads to a sharp increase in the number of infected individuals. Successive

waves of infection cause the cumulative number of infected individuals to constantly

increase. As can be seen in figure 3.9, at certain periods, the curves of the different

scenarios intersect. When the orange curves pass above the blue curve the cumulative

number of infected individuals is greater when the social planner has temporarily im-

posed social distancing measures than when there have been no measures. It is this

phenomenon that we have called the Swedish Paradox.

3.4.4 Swedish Paradox

As described in the previous sections, under certain conditions, waves of infection

occur faster when temporary social distancing measures have been imposed than when
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Figure 3.9: Graphic illustration of the Swedish Paradox by comparing the cumulative number of infections without

social distancing measures (blue) to different scenarios of temporary social distancing measures (orange) for periods 0

to 12000 (right panel) and for periods 2700 to 6000 (left panel).

they have not. This results in the cumulative number of infections when temporary

social distancing measures were in place being greater than the cumulative number of

infections when social distancing measures were not in place for certain periods. We

call this phenomenon the Swedish Paradox. Given the oscillatory dynamics of the SIR

epidemiological model with vital dynamics, this phenomenon is repeated several times.

In our example shown in Figure DynaB12, it is repeated 8 times, i.e., when the periods

are colored yellow.

The social planner who wishes to minimize the number of people infected before a

vaccine arrives will need to consider the Swedish paradox when choosing the optimal

social distancing strategy. The social planner who wishes to minimize the number of

people infected before a vaccine arrives will need to consider the Swedish paradox when

choosing the optimal social distancing strategy. In the example in 3.10, if the vaccine

arrives at a time in the interval t ∈ [4251− 5880] the social planner will minimize the

number of infected individuals by not mandating any social distancing measures vs.

temporary measures. A pessimistic social planner who believes that the vaccine will

take 11.65 years and 16.11 years to reach the market, will choose not to impose social

distancing measures.
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individual without social distancing measures

4000 4500 5000 5500 6000

0.0

0.5

1.0

1.5

2.0

∫ t 0
i(
t,
κ

)

Confinement

Without

Temporary κ = 0.75

Permanent κ = 0.75

4000 4500 5000 5500 6000

Time / Periods

0.00

0.02

0.04

0.06

0.08

0.10

i(
t,
κ

)

Figure 3.11: Graphic illustration of the relationship between the cumulative proportion of infected (top panel), proportion

of infected (bottom panel) during a phase of Swedish Paradox (yellow zone).

3.5 Discussion

In this paper we considered the effects of different social distancing strategies on the

dynamics of the SIR epidemiological model with vital dynamics. We chose this model

because unlike more complex epidemiological models, this model displays an oscilla-

tory behavior without having to resort to exogenous or endogenous mechanisms. The
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damped oscillations around the endemic equilibrium generate several successive waves

of infection. These waves appear as the population regenerates via vital dynamics. Un-

der the assumptions of the model, the regeneration of the population is not large enough

to compensate for the depletion of the pool of susceptible individuals. Therefore the

amplitude of the oscillations decreases with time, without, however, being completely

wear off.

Analyzing the two social distancing strategies allows us to come to completely dif-

ferent conclusions. When the social distancing policy is permanent, the oscillations

perfectly follow the intuitions of the model. The greater the level of social distancing,

the smaller the cumulative number of infected individuals. This principle does not

necessarily apply social distancing measures are temporary.

Infection mitigation measures require a fundamental shift in human behavior. The

social planner can find it difficult to enforce them and therefore wish to lift them after

a certain number of periods. Social distancing measures slow down the infiltration

of the infection into the susceptible individuals population thereby protecting a larger

proportion of the pool of susceptible individuals. When the measures are lifted, the pool

of susceptible individuals takes only a few periods to regenerate to the level required

for the infection to resume. When temporary social distancing measures have been

mandated, subsequent waves of infection arrive faster than when no measures have

been mandated. Therefore, for certain periods, the cumulative number of infected

individuals is greater when there have been temporary social distancing measures than

when there have not been. The social planner who wishes to minimize the cumulative

number of infected individuals must take into account this phenomenon, called the

Swedish Paradox, and anticipate the expected time of arrival of the vaccine.

Other factors can influence the oscillatory dynamics of the SIR epidemiological

model, such as decreasing immunity. Our research is only a first step towards un-

derstanding the mechanisms behind the successive waves of infection and should be

deepened in the future. In order to ensure that public policy recommendations reflect

a fair and global analysis, it is essential to choose the carefully the model time range

when using an epidemiological model that displays oscillatory behaviors.
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