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Abstract

In the era of massive data acquisition and analysis, our understanding of cancer onset
and evolution has improved in light of the results derived from the analyses of the molecular
portraits of tens of thousands of tumors across the globe. The advent of next-generation
sequencing technologies in the 2000s has revolutionized how we investigate the tumor cells
of patients with cancer. These technologies were first used to characterize specific genomic
regions but have matured over time to allow for the systematic profiling of the whole exome,
transcriptome, and even whole genome of patients enrolled in clinical trials. As sequencing
technologies continued development will fuel new research areas and discoveries for many
years, a complete understanding of the different aspects of sequencing data analysis is of
utmost importance. Although high-throughput sequencing is not yet part of the standard
of care for all cancer patients, extensive molecular profiling has been offered to significant
numbers of patients participating in clinical trials and is now used in routine for an increasing
number of indications. This large quantity of data is now available to support many research
opportunities, ranging from drawing detailed molecular portraits of particular groups of
patients to deciphering the links between tumors genotypes and patients clinical outcomes
and, eventually, to advancing precision oncology.

This thesis covers many aspects involved in the retrospective analysis of a large cohort of
cancer patients, along with detailed reviews of important concepts and tools from modern
oncology. The first chapter introduces general concepts about cancer biology and classification,
which are fundamental to the immediate treatment decisions but also to research wherein
patients are organized according to clinically defined groups. The last section of this first
chapter additionally introduces the reader to considerations about the growing place of
molecular profiling and their impact on classifications and trial designs. The second chapter
extensively reviews the computing tools and databases employed to analyze sequencing data
and extract clinically meaningful information. The first two chapters serve as the laying
bricks behind the analysis of a large pan-cancer cohort of patients presented in the third
chapter. This cohort, META-PRISM, comprises 1,031 patients from two large precision
medicine trials led at Gustave Roussy in the decade 2010-2020. About a third of the enrolled
patients benefited from whole-exome and RNA sequencing technologies at trial entry and,
for a subset of them, at resistance. Compared to other analyses of large pan-cancer cohorts,
this study stands out for its focus on patients that were refractory to treatments and the
derivation of highly detailed and curated clinical histories. Notably, all patients shared the
common characteristic of being in the advanced stages of their disease, deemed incurable
by a multidisciplinary board. The comparative analyses against an international cohort of
primary untreated tumors have shed light on a few tumor-type-agnostic genetic differences
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Abstract

and multiple tumor-type-specific differences. Additionally, predictive modeling of patients
survival using molecular biomarkers has shown that even late-stage patients can benefit from
sequencing for important therapeutic decisions, particularly trial eligibility. The fourth and
last chapter focuses on the analysis of known and emerging genomic markers of treatment
resistance in the META-PRISM cohort, but also in two other cohorts from recent clinical
studies led by Gustave Roussy, one interested in a recently approved antibody-drug conjugate
for breast cancers and another in a particular class of inhibitors for bladder cancers. These
two studies demonstrated that alterations in the expression or structure of the target or
mutation-induced activation of alternative pathways are important contributors to drug
resistance.
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Preface

Context

Precision medicine is now becoming a reality in the era of extensive data collection and
analysis. Massive data acquisition has been fueled by the widespread adoption of automatized
protocols and computer systems across all services but, most importantly, by the development
of high-throughput sequencing technologies at increasingly cheap costs per sequenced sample.
Whereas the cost of establishing the first draft sequencing of the human genome during
the Human Genome Project (HGP) stood at about 300 million dollars, the current cost of
sequencing a complete genome is estimated at about 200 dollars using the latest sequencing
machine produced by Illumina, NovaSeq X, which can produce up to 20,000 genomes per year.
The dramatic improvements in sequencing technologies now permit the systematic profiling
of selected gene panels in the clinical routine of many cancer centers but also more extended
sequencing of whole exomes or genomes for patients enrolled in precision medicine trials.
The archival of the sequencing files accumulated over the years and of the clinical reports of
treated patients now holds the potential to retrospectively analyze in depth the molecular
characteristics of swathes of tumors and correlate them with the observations made in the
clinic. Many discoveries have already been delivered from the sequencing data analysis of
large cohorts of cancer patients, as done by The Cancer Genome Atlas (TCGA), International
Cancer Genome Consortium (ICGC), Hartwig Medical Foundation (HMF), and many other
teams worldwide investigating diverse tumor types. Continued analyses of the increasing
databases of sequencing data in correlation with complete clinical histories are critical for
further enhancing our understanding of cancer onset, development, and response to therapies.

The increased diversity of sequencing techniques, coupled with the quick expansion of the
current databases, has ignited the development of many computational tools for analyzing
vast amounts of data. The early 2000s saw many papers harnessing the power of gene
expression microarrays to unravel the molecular specificities of specific cancer types, such as
the studies by Golub et al. (1999) of acute leukemias, by Alizadeh et al. (2000) of diffuse
large B-cell lymphomas, by Perou et al. (2000) of breast cancers, by Louis et al. (2001)
of brain cancers. These years were also contemporary with the advent of next-generation
sequencing (NGS) that allowed the start of in-depth studies of the molecular profiles of
multiple patients within selected tumor types and the development of dedicated tools. In
the late 2000s, numerous studies utilized NGS to describe the mutations in the genome of
individual patients (Mardis et al. 2009; Shah et al. 2009; Pleasance et al. 2010) whereas a
few studies already started to investigate and compare the mutated profiles from multiple
patients as done in the landmark studies by Wood et al. (2007) of 22 breast and colorectal
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cancers and by Parsons et al. (2008) of 22 glioblastomas. In the years 2010, numerous studies
utilized NGS to analyze increasingly large cohorts of cancer patients, contributing to exploring
the clinical implications of detected alterations (Mardis 2014; Shen et al. 2015; Gagan &
Van Allen 2015) and describing the inter- and intra-tumoral genetic diversity (Gerlinger
et al. 2012). These studies have been critical in identifying driver mutations, characterizing
clonal evolution, and guiding the development of targeted therapies for various cancer types.
However, achieving each of these aims depends on the computational tools used to process
the raw sequencing files and the more or less complex statistical models and, now, artificial
intelligence models used to analyze the processed data. It is common practice to organize all
the steps involved in the processing of raw sequencing data into pipelines whose composition,
often left to the appreciation of dedicated teams of bioinformaticians, has an influential role
in the results it produces for the downstream statistical analyses and modeling. Chapter 2
presents in details modern bioinformatic and statistical tools employed to process sequencing
files from deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sequencing experiments
and analyze the resulting tables of genomic and transcriptomic alterations. An accurate
understanding of all the steps involved in processing raw data and an extensive knowledge
of standard genomic analyses and modeling practices are key ingredients for any thorough
analysis of tumors’ molecular profiles.

In the past decade, extensive studies of patients representing many cancer types, referred
to as pan-cancer studies, have been led by national or international consortiums (Hoadley
et al. 2014; Rokita et al. 2019; The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Consortium 2020; Nguyen et al. 2022; Martínez-Jiménez et al. 2023). The TCGA initiative
was a pioneering initiative in this field from its inception in 2005 to its completion in 2018.
The project resulted in the generation of an enormous amount - 2.5 petabytes - of genomic,
epigenomic, transcriptomic, and proteomic data, providing valuable insights into the genetic
basis of cancer. However, TCGA and most other currently published pan-cancer studies
are either focused on samples biopsied from primary tumors or have only scarce clinical
information available, thereby limiting the extent of the analyses of the links between the
molecular portraits of tumors and the clinical outcomes of patients. A few pan-cancer studies
of metastatic samples have recently been released and have shed light on genomic differences
with primary tumors (Robinson et al. 2017; Priestley et al. 2019; Martínez-Jiménez et al.
2023). Other tumor-type specific studies have investigated the genomes of advanced tumors
in correlation with exposure to specific treatments so as to decipher the genetic or epigenetic
mechanisms behind treatment resistance (Pao et al. 2005; Shi et al. 2014; Woyach et al. 2014;
Hyman et al. 2015; Chandrasekar et al. 2015). Putative or confirmed resistance mechanisms
are, however, lacking for the vast majority of treatment resistances observed in the clinic,
which are the main reason behind our failure to control the disease, eventually, behind patient
death. It is consequently of the utmost importance to investigate in depth the molecular
landscapes of the tumors from past and future refractory patients in correlation with their
treatment history to pursue the quest for resistance mechanisms for all observed resistances.
The integrative study presented in this thesis is a small step toward this goal and a more
significant step toward the systematic delivery of high-quality data combining detailed clinical
histories and detailed profiling of tumors.
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Outline

The first chapter is a general introduction to cancer incidence, biology, and classification.
The concepts presented in this chapter, particularly the current state and evolution of cancer
classifications, are the bricks essential for understanding the data collected and analyzed
and for guiding the analyses towards clinically relevant results. This chapter results from
an extensive literature review and the substantial expertise gathered throughout the Ph.D.
journey from the numerous interactions with biologists and clinicians while reviewing and
organizing data for the comprehensive study outlined in Chapter 3. The review study titled
Unified classification and risk-stratification in Acute Myeloid Leukemia,
published in Nature Communications in 2022, is the result of a retrospective study initiated
during my internship in Papaemmanuil’s lab. It serves as a prominent illustration of how
molecular characteristics are reshaping cancer classifications.

The second chapter delineates the various steps involved in analyzing high-throughput
sequencing data. This process starts with the processing of unaligned raw reads and
continues with the statistical analyses of the genomic alterations detected with a cho-
sen level of confidence depending on the application. It, too, results from an exten-
sive literature review but also from all the efforts invested in designing pipelines for pro-
cessing raw sequencing data and conducting downstream analyses for various transla-
tional projects I took part in. The extensive pipelines I developed during my PhD jour-
ney are structured and documented on the GitHub repositories https://github.com/

gustaveroussy/MetaPRISM_WES_Pipeline and https://github.com/gustaveroussy/

MetaPRISM_RNAseq_Pipeline.

The third chapter of the thesis delves into the genomic and transcriptomic landscapes
of tumor samples obtained from 1,031 patients with refractory or advanced cancers deemed
incurable by a multidisciplinary board prior to trial inclusion. This chapters encompasses many
different facets of such a comprehensive study, spanning from the creation, curation, and
organization of a large database housing harmonized data sourced internally and externally,
to the scrutiny of the tumors profiles and the modeling of patients survival. It is an
extended presentation of the original study titled Integrative Pan-Cancer Genomic

and Transcriptomic Analyses of Refractory Metastatic Cancer, published
in Cancer Discovery in May 2023, to which I made substantial contributions across all
stages, with the collaboration of colleagues from Gustave Roussy (Villejuif, France) and
CentraleSupélec (Gif-Sur-Yvette, France).

The fourth and final chapter widens the scope of the analyses introduced in the preceding
chapter, focusing on the specific issue of treatment resistance. It also incorporates analyses
of potential resistance mechanisms observed in patients participating in two distinct trials
assessing innovative drugs for breast and bladder cancers, respectively. The results from these
trials were presented in the original articles Trastuzumab deruxtecan in metastatic

breast cancer with variable HER2 expression: the phase 2 DAISY trial

and Resistance to selective FGFR inhibitors in FGFR-driven urothelial

cancer, published in 2023 in Nature Medicine and Cancer Discovery, respectively.
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Contributions

In this section, I have outlined the scientific contributions of my Ph.D. First, I’ve listed
the published papers, followed by oral presentations, then code contributions, and finally,
contributions related to data sharing.

Published papers

1. 2023. Facchinetti F, Hollebecque A, Braye F, Vasseur D, Pradat Y, Bahleda R, Pobel C,
Bigot L, Deas O, Florez Arango JD, Guaitoli G, Mizuta H, Combarel D, Tselikas L, Michiels
S, Nikolaev SI, Scoazec JY, Ponce-Aix S, Besse B, Olaussen KA, Loriot Y, Friboulet L.
Resistance to selective FGFR inhibitors in FGFR-driven urothelial cancer.
Cancer Discovery 13, 1998-2011. doi:10.1158/2159-8290.CD-22-1441

2. 2023. Mosele F, Deluche E, Lusque A, Le Bescond L, Filleron T, Pradat Y, Ducoulombier A,
Pistilli B, Bachelot T, Viret F, Levy C, Signolle N, Alfaro A, Tran DTN, Garberis IJ, Talbot H,
Christodoulidis S, Vakalopoulou M, Droin N, Stourm A, Kobayashi M, Kakegawa T, Lacroix L,
Saulnier P, Job B, Deloger M, Jimenez M, Mahier C, Baris V, Laplante P, Kannouche P, Marty V,
Lacroix-Triki M, Diéras V, André F. Trastuzumab deruxtecan in metastatic breast

cancer with variable HER2 expression: the phase 2 DAISY trial. Nature

Medicine 29, 2110-2120. doi:10.1038/s41591-023-02478-2

3. 2023. Pradat Y, Viot J, Yurchenko AA, Gunbin K, Cerbone L, Deloger M, Grisay G, Verlingue
L, Scott V, Padioleau I, Panunzi L, Michiels S, Hollebecque A, Jules-Clément G, Mezquita L,
Lainé A, Loriot Y, Besse B, Friboulet L, André F, Cournède PH, Gautheret D, Nikolaev SI. In-

tegrative Pan-Cancer Genomic and Transcriptomic Analyses of Refractory

Metastatic Cancer. Cancer Discovery 13, 1116-1143. doi:10.1158/2159-8290.CD-22-

0966

4. 2023. Benkirane H, Pradat Y, Michiels S, Cournède PH. CustOmics: A versatile

deep-learning based strategy for multi-omics integration. PLoS computa-

tional biology 19, e1010921. doi:10.1371/journal.pcbi.1010921

5. 2022. Tazi Y, Arango-Ossa JE, Zhou Y, Bernard E, Thomas I, Gilkes A, Freeman S, Pra-

dat Y, Johnson SJ, Hills R, Dillon R, Levine MF, Leongamornlert D, Butler A, Ganser A,
Bullinger L, Döhner K, Ottmann O, Adams R, Döhner H, Campbell PJ, Burnett AK, Den-
nis M, Russell NH, Devlin SM, Huntly BJP, Papaemmanuil E. Unified classification
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Contributions

and risk-stratification in Acute Myeloid Leukemia. Nature communications 13,
4622. doi:10.1038/s41467-022-32103-8

Oral communications

• 2023. Integrative pan-cancer genomic and transcriptomic analyses of refractory

metastatic cancer. Gustave Roussy Research open days, Gif-Sur-Yvette. Selected talk

(Recipient of Young Researcher Award)

• 2023. Efficient processing of TCGA data on cloud services. Institut Curie Seminars,
Paris. Invited talk

• 2022. Integrative genomic and transcriptomic analysis of refractory metastatic

cancers. ESHG 2022, Vienna. Selected talk

• 2021. META-PRISM: A retrospective analysis of more than a 1,000 metastatic tumor.
CBMS doctoral school PhD students day, Paris. Selected talk

Original code

The codes I have developed are all original and have been deposited on one of the following
GitHub or Gitlab accounts

• https://github.com/ypradat

• https://gitlab-research.centralesupelec.fr/mics_biomathematics

• https://github.com/gustaveroussy

The list of repositories below is organized in three categories with the code supporting the
published studies first, then the bioinformatic pipelines, and eventually miscellaneous graphic
or analysis packages, some still under development.

Studies

• https://github.com/gustaveroussy/MetaPRISM_Public

– Created, organized, and maintain the repository.
– R and python packages developed specifically for the project are available in the

code/functions folder.
– All analyses and figures in the subfolders in code/scripts. Each subfolder is

organized via a Snakemake pipeline for reproducibility.
– Development of the Snakemake whole-exome sequencing (WES) pipeline starting

from the work of a former bioinformatician. Cleaned it, completely reorganized
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the rules and added many scripts and rules to make it an end-to-end workflow
starting from FASTQ and ending with tables of filtered and annotated somatic
alterations. Available in code/pipelines/wes.

– Deposited the code on a Code Ocean capsule https://codeocean.com/capsule/

2014781/tree/v1

• https://github.com/gustaveroussy/DAISY_Public

– Created, organized, and maintain the repository.
– All analyses and figures in the subfolders of code/scripts except for the code/scripts/slides

folder which is the work of another PhD student. Each subfolder is organized via
a Snakemake pipeline for reproducibility.

• https://github.com/ypradat/TCGA_Facets

– Developed Bash scripts to interact programmatically with the Google Cloud
Engine (GCE). Starting from a list of binary alignment map (BAM) URIs on
the GDC-controlled google bucket hosting TCGA data, the Bash scripts allow
automatic spawning of VM (one for each predefined batch) with fine-tuned
resources, monitoring of the VM and handling of preemption (allowing up to 91%
reduction in computing costs), and copying of the Snakemake pipeline results to
a centralized google bucket.

– Reduced the Snakemake pipeline developed for META-PRISM to only the part
required for calling copy-number alterations (CNAs) starting from BAM files and
annotating them with OncoKB and CIViC databases.

– Received technical support from ISB-CGC team and financial support from National
Cancer Institute (NCI).

Pipelines

• https://github.com/ypradat/CivicAnnotator

– Manually curated and completed the tables of evidence from CIViC January 2022
release to allow for automatic annotation. This tool was used for all three studies
presented in this thesis.

– Developed a user-friendly python script allowing to annotate tables of mutations,
CNAs, gene fusions, and combinations of these using the CIViC database. It
mirrors the tool developed for annotating with OncoKB database at https:

//github.com/oncokb/oncokb-annotator.
• https://github.com/gustaveroussy/MetaPRISM_WES_Pipeline

– Development of the Snakemake WES pipeline for the META-PRISM project
starting from the work of a former bioinformatician. Cleaned it, completely
reorganized the rules and added many scripts and rules to make it an end-to-end
workflow starting from FASTQs and ending with tables of filtered and annotated
somatic alterations.

– This pipeline was used for the analysis of DNA sequencing experiments of all three
studies presented in this thesis.

• https://github.com/gustaveroussy/MetaPRISM_RNAseq_Pipeline
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– Development of a Snakemake RNA sequencing (RNA-seq) pipeline to allow for the
detection of gene fusion events from RNA sequencing experiments. This pipeline
will in the long-term also include the code used for quantifying gene expression.

– This pipeline was used for the analysis of RNA sequencing experiments in META-
PRISM study.

Tools

• https://github.com/ypradat/UltiSig (ongoing work)
– Developed an R package for running different methods of mutational signatures

deconvolution (see the founding paper https://doi.org/10.1016/j.celrep.

2012.12.008).
• https://github.com/ypradat/VariantNMF (ongoing work)

– Developed a Julia package implementing user-friendly functions for running the
non-negative matrix factorisation (NMF) algorithm with full control over the
objective function (via the alpha and beta divergences) to be minimized and the
methods used to perform the minimization (multiplicative updates, projection
pursuit, ALS, etc.)

• https://github.com/ypradat/tableExtra

– R package implementing a tool for producing heatmaps with double information
encoded in the shapes colors and sizes.

– Implemented a Gitlab continuous integration running on the Gitlab servers of
CentraleSupélec and making use of a docker image that I created.

– Released the package on CRAN https://cran.r-project.org/web/packages/

tableExtra/index.html.
• https://github.com/ypradat/PrettyPy

– Python package implementing useful functions for drawing high-quality figures I
often use.

Data sharing

I also invested time and effort in developing meticulously organized databases to support
our analyses, and when feasible, share them with collaborators and the broader scientific
community. Notably, standardized data tables were uploaded onto a local instance of
cBioPortal managed by Gustave Roussy using the open-source code developed by a dedicated
team at Memorial Sloan Kettering (MSK)1.

• https://cbioportal.gustaveroussy.fr/study/summary?id=metaprism_2023 (pub-
lic)

• https://mappyacts-portal.gustaveroussy.fr/study/summary?id=brca_daisy_

2023 (controlled-access)

1https://www.cbioportal.org/
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Chapter 1. Cancer characterization and classification

Abstract Chapter 1

In this chapter, we will first provide more specific details about how cancer affects the
general population and how the research and medical communities have organized
themselves to draw detailed portraits of the disease. In the second part, we shall look
more specifically at the molecular mechanisms currently described for their presumed
or confirmed role in cancer onset and growth. Eventually, we will provide a brief
overview of the existing cancer classifications and how research is currently reshaping
these classifications.

C
ancer is a highly complex medical condition that remains largely elusive to our un-
derstanding due to its heterogeneous origins, characteristics, and consequences. The

disease is caused by the uncontrolled proliferation of cells, i.e the development of a tumor,
which acquire malignant properties that enable them to invade nearby tissues and organs
and, in some instances, spread to other parts of the body through a process called metastasis.
Conversely, benign tumors are non-cancerous cell masses that do not spread to other parts
of the body and have less impact on health. Tumors can arise in any part of the body of
mammalian species with varying degrees of frequency depending on the body site. They
can remain unnoticed for the lifetime of the host or, on the contrary, disrupt the normal
functioning of other body parts and become life-threatening conditions. Though we continue
to lack a complete or even satisfying understanding of the biological mechanisms underlying
tumorigenesis, medical doctors, biologists, statisticians, and, more generally, researchers from
all backgrounds have conducted countless observational, experimental, and theoretical studies
to characterize and classify cancer, with the ultimate aim to treat patients with cancer better
and, if feasible, cure them. The accumulation of decades of work has led to radical changes
in how we approach the disease and remarkable improvements in the life expectancy and
quality of affected individuals. This progress enables present and future medical doctors to
propose therapeutic paths leading to stable remission in an increasing proportion of patients,
thereby prolonging their lifetimes.

1.1. General introduction

1.1.1. About cancer incidence

The past and future trends of cancer statistics all point towards an increased incidence of
cancer in the general population in the coming years. In its latest global incidence survey
from 2020 (Sung et al. 2021) in 185 countries, the Global Cancer Observatory (GLOBOCAN)
estimated that 19.3 million new cancer cases occurred globally and that nearly 10 million
cancer deaths were registered during the elapsed year. In the United States only, the 2023
yearly report of cancer statistics (Siegel et al. 2023) anticipated 1.95 million new cases
and 610,000 cancer-related deaths and estimates that any individual has a 41% chance of
developing invasive cancer throughout their life. Incidence greatly varies according to the
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1.1. General introduction

primary site, with breast cancer now the most frequent (11.7% worldwide, 15.3% US), followed
by lung (11.4%, 12.1%), colorectal (10.0%, 8.9%), prostate (7.3%, 14.7%), and stomach
(7.7%, 1.4%) cancers (Sung et al. 2021; Siegel et al. 2023). In France, the French National
Cancer Institute (INCA) estimated that 382 000 new cancer cases and 157,000 cancer deaths
occurred in 2018, making cancer the leading cause of premature deaths. The GLOBOCAN
2020 report projects a 47% increase in cancer incidence over the next 20 years compared to
a projected general population increase of 18%, highlighting the incoming pressure of the
disease on our societies and healthcare systems.

However, trends are not uniform across primary sites, countries, ages, or gender. In the
United States, the incidence of breast, skin, and liver cancers increases steadily, but that
of lung and colorectal cancers is slowly decreasing. In young US women, cervical cancer
has registered a dramatic 65% drop in the last decade due to widespread papillomavirus
vaccine coverage (Lei et al. 2020; Falcaro et al. 2021). The most important increase in cancer
incidence is anticipated in older adults, as a consequence of increased lifetimes, improved
screening, but also of increased numbers of people that have been exposed to one or several
risk factors throughout their life (Smith et al. 2009). Worldwide, the incidence rate was 19%
higher in men than in women in 2020. Interestingly, incidence rates correlate positively with
the human development index, with rates of about 100 per 100,000 individuals in low-index
compared to rates of 300 per 100,000 in high-index countries, and are projected to increase
substantially across all development levels but more markedly in emerging countries. Of
note also, the distribution of cancer types in emerging countries is transitioning towards
the distribution currently observed in high-income countries, reflecting lifestyle changes and
increased exposure to risk factors usually seen in the latter countries (Sung et al. 2021).

Cancer is now a worldwide leading cause of death, partly due to the increased incidence of
the disease and partly to the decreased mortality from other causes, in particular cardiovascular
diseases. Across primary sites, lung cancer is the leading cause of cancer death in 93 countries,
accounting for nearly 20% of cancer-related deaths worldwide, with country trends reflecting
the maturity of the tobacco epidemic but also increasingly the exposure to air pollution.
Colorectal and liver cancers rank second and third by the absolute number of deaths,
respectively, though, if discriminating between men and women, breast cancer ranks first
in women (Sung et al. 2021). In the United States, the 5-year survival rate for all cancers
has increased from 49% in the 70’s to 68% in the last decade, but in some cancer types,
this rate remains very low, particularly in pancreas (12%), liver (21%), and esophagus (21%)
cancers (Siegel et al. 2023). Metastatic dissemination is by far the most frequent cause of
cancer death, accounting for 90% of these (Chaffer & Weinberg 2011).

1.1.2. About cancer studies and consortiums

According to the World Health Organisation (WHO), the number of registered clinical
studies investigating malignant neoplasms has grown dramatically from 738 studies in 1999
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to 104,491 in 20211. This sharp rise in numbers reflects the incredible technological and
pharmaceutical advancements made in the last two decades, as well as the increasing public
interest in cancer research. In 2021, the United States registered one-third of all cancer
studies, while China accounted for 15%, Japan for 11%, and France and Germany for 9% each.
Each clinical study is categorized into one of four phases based on the drug development
stage, with phase II trials being the most common. Panel 1.1 presents more in detail the
categorization of cancer clinical trials.

Complementary to clinical trials, which are focused on assessing the efficacy and side
effects of one or multiple drugs, alone or in combination, scientific consortiums have emerged
over the years to gather data about individuals harboring specific medical conditions at an
unprecedented scale. In cancer research, the most prominent of these efforts was first achieved
by TCGA consortium, which started in 2005 as a joint effort between the NCI and National
Human Genome Research Institute (NHGRI) US institutes in order to explore the entire
spectrum of genomic alterations found in exonic regions of human cancer genomes. From
2006 to 2014, diagnostic samples from 11,315 patients representing 33 different cancer types
were collected across 22 countries and sequenced. A first interim analysis of glioblastomas
was published by The Cancer Genome Atlas Research Network (2008), opening the path for a
long series of tumor type-specific and pan-cancer landmark studies that have each defined or
redefined the molecular landscape and classification of cancer and pushed research far beyond
its limits. TCGA reached its peak in 2018 through its Pan-Cancer Atlas, a collection of 27
papers simultaneously published in Cell (Sanchez-Vega et al. 2018; Hoadley et al. 2018; Ding
et al. 2018), each presenting in-depth studies of the cancer genome from different aspects
and sequencing technologies. Nowadays, TCGA continues to represent the largest database
ever assembled of multimodal sequencing of human cancer, with more than 2.5 petabytes
of data made publicly available for anyone to use in the research community through the
Genomic Data Commons (GDC) data portal2.

Multiple other large-scale international consortiums ave improved our understanding of
the molecular mechanisms underlying tumorigenesis. Building upon the work of the TCGA
Pan-Cancer Atlas project, the PanCancer Analysis of Whole Genomes (PCAWG) project
jointly led by TCGA and ICGC aimed at extending the study of the nature and consequences
of genomic variations in both coding and non-coding regions through the sequencing of
more than 2,600 whole cancer genomes. The output from this project was presented to
the public through the simultaneous publication of 23 papers in the February 2020 issues of
Nature journals (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium 2020).
Mirroring the TCGA effort for the specific question of childhood cancer, NCI’s Therapeutically
Applicable Research to Generate Effective Treatments (TARGET) is yet another program
led by the NCI that aims at exploring in detail the genomic characteristics of more than
6,500 childhood cancers and is also made publicly available through the GDC data portal.
The American Association for Cancer Research (AACR)’s Genomics Evidence Neoplasia

1https://www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/

number-of-trial-registrations-by-year-location-disease-and-phase-of-development
2https://portal.gdc.cancer.gov/
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Panel 1.1: Cancer clinical trials

Clinical trials are classified into phases according to the drug development stage. There
are three main phases of clinical trials: phases I to III. Phase IV trials, often referred to as
post-market, are not as systematic as other phases and tend to be more observational. The
following definitions describe precisely each phase.

I Assesses the drug’s safety and dosage and in its first clinical use on up to 100 individuals.
II Assesses the drug side effects and efficacy on up to hundreds of individuals. Only one

drug in three moves to the next phase.
III More comprehensively assesses the drug efficacy and monitors adverse reactions over

a longer period and a larger cohort of up to 3,000 individuals. Only one drug in four
passes this phase and meets the conditions for approval.

IV Further extends the objectives of previous phases over a longer time but takes place
after the drug has been approved and is on the market.

Randomization is another important characteristic of clinical trials. A randomized controlled
trial (RCT) is a specific type of randomized trial in which there is a control group that serves
as a comparison for the group receiving the intervention or treatment under investigation. In
an RCT, participants are randomly assigned to one of two or more groups: an experimental
group (receiving the intervention being studied) and a control group (receiving a placebo or
standard treatment). The purpose of the control group is to provide a baseline for comparison,
allowing researchers to assess the true impact of the experimental intervention by minimizing
the influence of confounding variables. RCTs are considered the gold standard in clinical
research and are widely used in medical and scientific studies to evaluate the efficacy of
treatments or interventions compared to standard treatments.

The blinding of the randomization is another important characteristic of RCT to mitigate
various biases. While random allocation eliminates the primary source of bias, namely
selection bias, other potential biases may occcur and may be mitigated through simple,
double, or triple-blinding. Simple blinding, i.e the concealment of treatment allocation from
trial participants, allows to control for cognitive biases. On the other hand, double and triple
blinding, corresponding to the additional concealment of information from experimenters and
evaluators, respectively, serves to control for confirmations biases.

Nowadays, with the increasing use of biomarkers to guide treatment decisions, a novel glossary
has emerged to describe novel designs of clinical trials (Yates et al. 2018; Ravi & Kesari
2022). Cancer clinical trials have been traditionally categorized by cancer type. However,
there is a discernible shift towards trials that include two or more cancer types within their
design, with the aim of evaluating whether biomarker-driven strategies can transcend the
conventional paradigm of cancer type-centric treatment decisions. Main examples include

Basket trial a biomarker-based trial investigating a therapeutic intervention targeting a
single molecular alteration across different cancer types.

Umbrella trial a biomarker-based trial investigating different therapeutic interventions
targeting different molecular alterations in a single cancer type.

Platform trial multi-arm multi-stage trial allowing the flexible addition of new treatment
arms or subgroups to compare multiple interventions to a control arm. This type of
trial may run for a long time.
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Information Exchange (GENIE) project is another ongoing large-scale effort aiming at building
an international cancer registry of clinical and genomic data assembled through the data
sharing of 19 leading cancer centers spread worldwid. It projects to make its data accessible
through both GDC’s data portal and MSK’s cbioportal.

Some national initiatives have also successfully screened large cohorts of individuals and
established databases that are fueling research throughout the world. In the United-States,
the MSK cancer center has established a clinical assay targeting a couple hundreds of known
cancer genes, named MSK-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-
IMPACT), used in the pilot phase on 284 tumor samples (Cheng et al. 2015) and later on
extended to more than 10,000 patients (Zehir et al. 2017), leading to the first Food and
Drug Administration (FDA) approval of a tumor-profiling assay in November 2017. Even
more recently, the assay was extended to cover more genomic regions, and the database of
all profiled samples served as the basis for a landmark comparative study of 25,000 primary
and metastatic samples (Nguyen et al. 2022). All generated data, except for raw sequencing
files, has been made publicly available through MSK’s cbioportal3. In the United Kingdom,
the nationwide 100,000 Genomes Project led by Genomics England sequenced the complete
genomes of 85,000 patients with cancer or rare diseases and of their relatives to investigate
the genetic components of these conditions and, more generally, elucidate "the role of genes
in health and disease"4. The project closed for recruitment in 2018, and the data collected
is now being actively analyzed to support many research questions across diverse topics5.
Importantly, the initiative is evolving to embrace the potential of multi-modal data and
long-read sequencing technologies. Concurrently, the United Kingdom hosts the UK Biobank,
a long-term health study that has amassed data from approximately 500,000 middle-aged
individuals, primarily of European ancestry. This study has progressed to the sequencing
phase, with 200,000 genetic profiles having been made accessible to the research community
by the end of 2021 (Kaiser 2021), and the remaining data anticipated to follow soon. A
noteworthy feature of the database is the identification of incidental cancers, occurring
subsequently to enrollment, in 46,021 individuals as of June 2022, rendering the study an
invaluable resource for cancer research. The HMF serves as another prominent example of a
large-scale national initiative, operating in the Netherlands, that has effectively established an
extensive repository featuring paired sequencing data and clinical information from patients
afflicted with metastatic cancer. The foundation’s establishment in 2015 was motivated
by the goal of making cutting-edge sequencing technologies accessible to patients while
simultaneously aggregating a comprehensive database to support research. As of November
2023, the HMF’s repository encompasses sequencing and clinical data from 5,891 metastatic
patients6, representing a diverse spectrum of cancer types. This valuable resource has already
contributed to landmark pan-cancer studies (Priestley et al. 2019; Martínez-Jiménez et al.
2023) and has been featured in over 60 additional publications in esteemed scientific journals 7.

3https://www.cbioportal.org/
4https://www.genomicsengland.co.uk/initiatives/100000-genomes-project
5https://www.genomicsengland.co.uk/research/publications
6https://database.hartwigmedicalfoundation.nl/
7https://www.hartwigmedicalfoundation.nl/en/research-and-science/scientific-publications/
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Importantly, cancer study is also dependent on large-scale sequencing projects run on
general populations or populations selected for diseases unrelated to cancer. Indeed, the
output data of these projects are now commonly used in the interpretation of genomic
variation in nearly all genotype-phenotype association studies and particularly in cancer
studies. In 2009, the National Heart, Lung, and Blood Institute (NHLBI) initiated the
Exome Sequencing Project (ESP) to identify rare and putatively functional protein-coding
variants associated with heart-, lung-, and blood-related diseases through the sequencing
of the exome of 6,700 individuals of either European or African ancestry. In 2014, the
Exome Aggregation Consortium (ExAC) collected and harmonized exome sequencing data
from large-scale sequencing projects around the world. The 2016 ExAC release included
over 60,000 exomes (Exome Aggregation Consortium et al. 2016), and subsequent releases
doubled this number to 125,748 exomes from any ancestry or medical condition. ExAC
has now been merged with additional harmonized genome sequencing data resulting in the
Genome Aggregation Database (gnomAD) which, in its v3.1.2 release, spanned all 125,748
exomes from ExAC and an additional 76,156 complete genomes. In the United Kingdom, the
1000 Genomes Project (1000G), which began in 2012, combined whole-genome and targeted
exome sequencing techniques to create a detailed catalog of human genetic variation (The
1000 Genomes Project Consortium 2012). Upon completion in 2015, the project successfully
analyzed the genomes of 2,504 individuals from 26 populations (The 1000 Genomes Project
Consortium 2015) and serves today as a reference catalog of human genetic variation alongside
ESP and gnomAD. The database of Single Nucleotide Polymorphisms (dbSNP) database
is a comprehensive resource that catalogs various types of genetic variations, including
single-nucleotide polymorphisms (SNPs), insertions, deletions (i.e indels), and more, across
the human genome. All variants identified by ESP and 1000G were submitted to dbSNP,
while for gnomAD not all but the majority of the variants are also listed in dbSNP. As of
March 2023, dbSNP v155 contained variants from more than 1 billion locations, 15 million of
which have a minor allele frequency (MAF) greater than 1% in the 1000G phase 3 dataset8.
It is now common practice to report the variant frequencies in the three aforementioned
large-scale wild-type populations, namely ESP, gnomAD, and 1000G, and in the cancer
database Catalogue of Somatic Mutations In Cancer (COSMIC), in the tables of mutations
identified in samples of cancer patients. The dbSNP identifier of known variants is also now
systematically reported.

1.1.3. About the cancer community

Nowadays, the field of cancer clinical care and research is bringing together a diverse
community of passionate individuals from various backgrounds and areas of expertise, including
physicians, biologists, physicists, engineers, statisticians, and data scientists. This collaboration
is crucial for understanding cancer and developing effective treatments for all cancer patients.
Modern cancer centers provide striking examples of this collaboration between people with
different areas of expertise. Upon evaluating a patient, an oncologist establishes a clinical
profile based on history and current condition, and further investigations are conducted to

8https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=dbSnp155Composite
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determine the diagnosis and best therapeutic options. An interventional radiologist performs
minimally invasive procedures to obtain a biopsy, which is then sent to hospital laboratories
for assessment. A pathologist examines tissue slides to establish the precise diagnosis, and
laboratory tests may be conducted to identify specific markers or genomic alterations. The
tests serve as a concrete example of how research has advanced our understanding of cancer
and has translated into new clinical care. Depending on the context, tumor sequencing may
then be performed on one or multiple slides that were first carefully reviewed and selected based
on their tumor cellularity content. Prior to sequencing, wet laboratory technicians perform
the extraction of cells or nucleic acids and, more generally, all the library preparation protocols
required for the specific machine to be used (Nangalia & Campbell 2019). Bioinformaticians
then process the large files produced by the sequencer, applying quality-control, variant
detection, and variant annotation algorithms to produce reports that are intelligible to the
clinician and low-size data files meant to be analyzed by research scientists. In summary,
multiple individuals from various departments work hand-in-hand to conduct all necessary
analyses required to guide current clinical practices and to generate data that will support
future research endeavors.

The success of research heavily relies on the existence, size, and quality of databases
aggregated over the years. These databases are created and maintained by data managers
with expertise in computer science, medicine, or both, and effective coordination is crucial
for the efficient delivery and development of sound databases due to the large number and
variety of experts involved in every step of the process. The data thus generated occupies
swathes of researchers from all backgrounds who aim to decipher the molecular mechanisms
of cancer onset and growth, as well as to help clinicians identify biomarkers that predict
clinical course, particularly the response to therapies. Additionally, many other professions
are involved in providing material and support to adequately collect, prepare, and process the
ever-increasing amount of data collected from each cancer patient.

Furthermore, the community is very active through its numerous seminars, conferences,
and congresses that play a critical role in disseminating research results to experts but also
to the general public. The use of social networks have recently been shown to be very
effective at that purpose (Morgan et al. 2022). With the constant influx of new research
and emerging technologies, networks of renowned experts, such as the OncoAlert Network9,
have emerged to provide weekly summaries of essential news in oncology. Regular summaries
are also provided by long-established associations, such as the European Society of Human
Genetics (ESHG), American Society of Clinical Oncology (ASCO), European Society of
Medical Oncology (ESMO), AACR, European Association for Cancer Research (EACR),
among others.

9http://www.oncoalert360.com/
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1.2. Biological aspects

1.2.1. Central dogma of molecular biology

The cell is the building block of all multicellullar organisms. The human body is composed
of trillions of cells, and each of these cells behaves according to its intrinsic components but
also extrinsic signals it receives from neighboring and distant cells. In eukaryotic organisms,
which include humans, each cell has in its inner part a double membrane-bound organelle called
the nucleus which holds the genetic material encoding the instructions required for organizing
life. Most eukaryotic cells also carry another a class of double membrane-bound organelles
called mitochondria, which enclose complementary instructions inherited from engulfed
bacteria throughout evolution. This genetic material is stored in large DNA molecules that
each consists in two long chains of covalently-linked nucleotides, called strands, intertwined
in a double-helix structure and held together by hydrogen bonds. Each DNA molecule is
folded into a structure that we call chromosome that consists in an assemblage of DNA and
proteins that fold and pack the polynucleotide chain, thereby forming the chromatin, but also
proteins involved in the nuclear processes of the cell, particularly DNA replication, repair, and
expression (Figure 1.1). All human cells contain two copies of twenty-three chromosomes
except for gametes that each contain only a single copy and some highly specialized cells.
Chromosomes 1 to 22 are called autosomes and the last pair of chromosomes, called the sex
chromosomes, differentiates females who have two X chromosomes from males who have one
X and one Y.

Fig. 1.1.: Structure of the DNA molecule in eukaryotic cells. Created with BioRender.com
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Each human cell’s complete set of chromosomes contains about 3.2 billion nucleotide
pairs constituting the human genome. Specific DNA sequences called genes are scattered
throughout the genome and code for the different organic molecules found in cells. The
primary assembly of the latest version of the human reference genome10 lists 41,762 genes,
19,895 of which encode for proteins (protein-coding genes) while others encode for non-
coding RNA molecules (non-coding genes). While the number of protein-coding genes has
been relatively stable over time, the actual number of non-coding genes varies significnatly
according to estimates, largely due to a class of genes encoding a specific type of molecules
known as long non-coding RNA (lncRNA) (Ponting & Haerty 2022). The average gene
length is approximately 42 kilobases, but some genes can span very extensive regions, such as
RBFOX, the largest human gene currently annotated spanning 2.47 million bases.

The information required for building complex proteins is encoded in the sequence of
nucleotides of genes. More specifically, in eukaryotes only small fractions of the genes
sequences called exons actually code for the amino acids constituting proteins. The other
regions of genes, referred to as introns (Figure 1.1), have historically been described as
"junk DNA", although contemporary insights increasingly acknowledge the multifaceted roles
they play in our cells (Jo & Choi 2015). The transformation of nucleotides to amino acids
is governed by the genetic code, which maps every possible sequence of three nucleotides,
or codon, to one of the 20 standard amino acids or the stop codon. The genetic code is
redundant as 61 codons map to the 20 standard amino acids, and three codons encode
specific sequences which signals the end of the protein. In the process of gene expression, the
introns are removed through a process called splicing. Interestingly, in eukaryotic organisms,
a natural phenomenon called alternative splicing allows genes to be transcribed into different
transcripts by selectively keeping or removing exons during splicing. On average, human genes
have the capacity to generate approximately 4.24 different transcripts. Within the human
genome, introns exhibit considerably greater lengths than exons. Although initial estimates
from the first assembly of the reference genome indicated that introns accounted for 25% of
the genome and exons comprised merely 1.1% (Venter et al. 2001), these figures have since
been revised upwards due to the extensive genome annotation efforts that have followed.

In contrast to the chemical simplicity of DNA, composed of only four different subunits (A
- adenine, C - cytosine, G - guanine, T - thymine), proteins are much more complex molecules
of very heterogeneous sizes, ranging from a couple of dozen of amino acids to more than
35,000 for some isoforms of the largest known human protein (titin). At any given time, the
composition of proteins and other biomolecules in a cell reflects the expression of its genes,
both past and present. Cells express their genes by transcribing DNA into another nucleic
acid called RNA, followed by the translation of the RNA into proteins for protein-coding
genes. Transcription is a tightly regulated process triggered by proteins called transcription
factors that signal RNA polymerase proteins to start RNA synthesis. As described in the
previous paragraph, multiple RNA transcripts may be produced from one gene through
alternative splicing, and each of these transcripts may direct the synthesis of multiple identical
copies of a protein. Gene expression can be quantified in different ways, either by counting

10https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Homo_sapiens/GCF_000001405.40-RS_2023_10/
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transcripts or by counting proteins, with different quantification results. In some cases, the
final products of gene expression are the RNA transcripts themselves, serving as regulatory,
structural, and catalytic components of the cell. Examples include micro-RNAs (miRNAs)
involved in gene regulation, ribosomal RNAs (rRNAs) that are key ribosome constituents,
or transfer RNAs (tRNAs) which serve as adaptors during protein synthesis. The interested
reader is greatly encouraged to read the excellent book by Alberts et al. (2019) for clear and
detailed presentations of the molecular constituents and inner mechanisms of cells, particularly
chapters 5 and 7 for questions related to DNA, RNA, genes, and gene expression.

1.2.2. Common molecular aberrations

Cancer is, by definition, the result of abnormal cellular behavior, which itself results from
abnormalities in the instructions regulating intra- and extracellular processes. As the normal
functioning of cells is reliant on a complex balance of all their components, genetic variations
can disrupt this equilibrium by modifying directly the cells’ gene expression or the regulators
of this expression. Variations may occur at different scales, ranging from large rearrangements
of one or multiple chromosomes to single-nucleotide variants (SNVs). Genetic alterations can
have diverse consequences, particularly protein underexpression, overexpression, or disruption
which can subsequently affect other proteins and eventually provide a selective advantage
over neighboring cells. The consequences of these alterations mainly materialize either as the
altered expression of unchanged proteins or the expression of altered proteins, some of which
are known as oncoproteins due to their initiating or driving roles in tumorigenesis. Epigenetic
changes represent another class of alterations that do not modify the sequence of the DNA
itself but instead modify the state of the DNA molecule. Methylation patterns and chromatin
conformation play key roles in gene expression regulations, and modifications of these are
known to be directly involved in the transformation toward the cancerous state (P. A. Jones
& Baylin 2002).

1.2.2.1. Chromosomal alterations

Chromosomes were first described in the nineteenth century, but their role as the root
cause of medical disorders was only first evidenced by Lejeune et al. (1959) who, for the
first time, described supernumerary chromosomes 21 in individuals with Down syndrome.
Nowadays, changes in the number or structure of chromosomes are clinically recognized as
the genetic cause of many medical disorders, including cancers that are characterized by
chromosomal alterations. Structural and segmental rearrangements of chromosomes have
long been implicated for their crucial role in tumor initiation and evolution, particularly in
blood cancers where they serve as the basis of many hematological classifications. These
chromosomal changes impact tumor growth by activating oncogenes or inactivating tumor
suppressor genes (Mitelman, Johansson & Mertens 2007). Changes in chromosome structures
are either balanced if the complete set of chromosomes is present but rearranged, or imbalanced.
They are commonly classified into four categories (deletions, duplications, inversions, and
translocations), all of which have distinct consequences on the genome. The most well-known
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example is the "Philadelphia chromosome", resulting from the translocation of chromosomes
9 and 22 and was first reported by Rowley (1973). This specific translocation leads to the
formation of the BCR-ABL1 oncoprotein, a product of the gene fusion between BCR and ABL1
genes and the root cause of chronic myeloid leukemia (CML). Other common rearrangements
found in hematological malignancies include translocations t(8,21)(RUNX1-RUNX1T1 genes),
t(15,17) (PML-RARA), t(9,11) (MLLT3-KMT2A), t(6,9) (DEK-NUP214), t(1,22) (OTT-
MAL), inversions on chromosomes 16 (CBFB-MYH11) and 3 (GATA2-MECOM). Multiple
gene fusions have also been identified as recurrent in solid tumors, most notably TMPRSS2
and ETS gene fusion resulting from interstitial deletion or translocation of chromosome 21
in prostate cancers (Tomlins et al. 2005), MYB-NFIB gene fusion consequence of a t(6,9)
translocation in adenoid cystic carcinomas (Persson et al. 2009), and EML4-ALK gene fusions
caused by small inversion within chromosome 2p in about 7% of lung cancers (Soda et al.
2007). As the role of cytogenetics in carcinogenesis becomes better understood, therapeutic
approaches targeting these events are increasingly being developed. Notable examples of
this are the FDA and European Medical Agency (EMA) approval of imatinib in 2001, which
revolutionized the treatment of CML and transformed a fatal cancer into a manageable
condition (Deininger et al. 2005), or larotrectinib in November 2018 for the tissue-agnostic
treatment of pediatric and adult tumors with NTRK fusions11 - a good example of how new
therapies are being designed to target specific alterations.

In contrast to structural rearrangements, chromosomal numerical changes are not well
understood in relation to cancer. Alterations in the number of copies of very localized
regions, particularly copy gains in regions harboring oncogenes or copy losses in regions
harboring tumor suppressor genes have long been implicated in cancer. Prime examples
include the focal amplification of ERBB2 on chromosome 17 in breast cancer which can
reach hundreds of copies (Révillion et al. 1998) or the deletion of CDKN2A on chromosome
9 across multiple cancer types (Kamb et al. 1994). On a larger scale, aneuploidy, which
refers to cells with either too many or too few chromosomes compared with normal cells, is
the most common chromosomal abnormality, affecting up to 90% of solid tumors and 50%
of blood tumors (Mitelman, Johansson & Fredrik 2012; Taylor et al. 2018). Although it is
frequent in tumor cells, some consider aneuploidy to be a byproduct of their increased genome
instability, while others argue that it plays a significant role in tumor growth, development, and
adaptability (Gordon et al. 2012; Holland & Cleveland 2012). Whole-chromosome aneuploidies
are diverse across chromosomes and tumor types, contributing to the overall heterogeneity of
cancers (Taylor et al. 2018). Some aneuploidies are common across cancers, particularly gains
of chromosome 8q and losses of chromosomes 8p and 17p, while others are only recurrently
found in some tumor types, such as losses of chromosomes 5q or 7q in myeloid disorders (Jerez
et al. 2012) or losses of chromosome 3p identified recurrently in squamous cancers (Taylor
et al. 2018). In recent years, studies have focused more on chromosomal instability (CIN), a
type of genomic instability that causes chromosomes to acquire gains, losses, and structural
changes at a high rate over time and is known to originate mainly from missegregation
errors during mitosis (Bakhoum, Silkworth, et al. 2014). Defects in DNA repair pathways,

11https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions-0
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such as mutations in BRCA1 or BRCA2 genes which impair homologous recombination
(HR) (Stewart et al. 2022) are presumed causes of CIN. Investigations of CIN in cell lines
from distinct tumor types or large cancer cohorts, particularly TCGA, have demonstrated its
association with poor prognosis, tumor heterogeneity, and drug resistance (A. J. Lee et al.
2011; McGranahan et al. 2012; Bakhoum & Cantley 2018; Watkins et al. 2020; Lukow et al.
2021; Drews et al. 2022). These studies unanimously recommend evaluating CIN for risk
stratification and drug assessment in clinical trials or even propose new drug targets from
correlative analyses with CIN patterns (Drews et al. 2022). However, these recommendations
have yet to be implemented in clinical practice.

1.2.2.2. DNA sequence mutations

The completion of the human genome project in the early 2000s paved the way for
establishing the reference human genome but also for producing cancer maps drawn from
the sequencing of dozens, hundreds, and, nowadays, tens of thousands of human tumor
genomes. In one of the first exome-wise descriptions of breast and colorectal tumors, at the
cost of about $100,000 per case, the exome sequencing of tumor DNA collected from 22
patients showed how only a small number of genes were frequently mutated compared to
a large number of genes infrequently mutated (Wood et al. 2007). Simultaneous studies
on glioblastomas (Parsons et al. 2008) and pancreatic cancers (S. Jones et al. 2008) made
similar observations on the distribution of mutations but also highlighted the heterogeneity
of the mutational landscape within and across tumor types. It also emerged from these
studies that among all mutations found in tumors’ genomes, only a few contribute to tumor
initiation and growth and are drowned in an ocean of passenger mutations with no causal
relationship with the tumor. These mutations fall in genes playing key roles in cancer onset
and development and classified into either oncogenes or tumor suppressor genes depending on
their role. Oncogenes are involved in tumor circuits through mutations or amplifications that
allow the protein to gain a tumor-promoting function, whereas tumor suppressor genes which
normally protect against cancer are commonly inactivated through double-hit alterations
affecting both alleles (double mutations, mutation combined with a copy loss, or loss of the
two copies) in cancer cells.

Mutations in the DNA sequence are conveniently categorized according to the number
of nucleotides affected, the nature of the changes, but also according to their predicted
consequences. Changes in the nucleotide sequence are broadly classified either as substitutions
if the number of nucleotides remains unchanged or as insertions and deletions if nucleotides
are inserted or deleted, respectively. Substitutions on a single base, known as SNV, are
by far the most frequent type of substitution, while substitutions on multiple consecutive
bases are known as multi-nucleotide variants (MNVs). As there are only four different
nucleotides, there are 12 possible base substitutions which are further subdivided between
transversions if the substituted base is from a different family (a purine - adenine or guanine -
is replaced by a pyrimidine - cytosine or thymine, or vice versa) and transitions otherwise.
The transition/transversion ratio is generally around two along the genome but tends to be
more elevated in coding regions because transversions are more likely to result in amino acid
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changes. Insertions and deletions, commonly called indels, may be frameshift if the number
of affected bases is not a multiple of 3, thereby changing the reading frame, or inframe
otherwise.

Though genomic alterations may occur in any region of the genome, they have been
mostly studied in the protein-coding sequences (about 1.5% of the overall genome) because
of the intuitive hypothesis that changes in these regions would have the most deleterious
consequences and, therefore, the highest probability of playing crucial roles in tumorigenesis.
The effect of alterations in protein-coding regions can conveniently be predicted by the
consequences they have on the amino acid sequence of the proteins they code for. Of all
base substitutions identified in coding regions of cancer genomes, about 23% are synonymous
mutations (Y. Sharma et al. 2019) (also known as silent mutations) that do not alter the
amino acid encoded by the affected codon due to the redundancy of the genetic code. About
90% of all other non-synonymous substitutions are missense changes, 8% nonsense changes,
and 2% affect splice sites or untranslated regions adjacent to the start codon - 5’ region -
or stop codon - 3’ region (Vogelstein et al. 2013). Many missense mutations in genes that
we now refer to as oncogenes have been implicated in neoplastic processes. Mutations of
KRAS, one of the most prominent oncogenes, are present in approximately 25% of cancers
and assumed to drive 32%, 40%, and up to 90% of lung, colorectal, and pancreatic cancers,
respectively, mainly through missense mutations of its twelfth amino acid residue, glycine, as
first evidenced by the seminal study of Reddy et al. (1982). Other mutations favor tumor
onset or growth by inhibiting tumor suppressor genes, as is the case for PTEN, which is
mutated in about 13% of all cancers and has to date more than 1,993 unique mutations
listed in COSMIC database (Y.-R. Lee et al. 2018). TP53, which is the most mutated gene
in cancer with a pan-cancer mutation frequency of about 50%, has a special status because it
is classified as a tumor suppressor gene although 90% of encountered mutations are missense
and 28% of all mutations are localized in a handful of hotspot codons (Baugh et al. 2018), a
pattern that is usually characteristic of oncogenes. Frameshift indels, which have deleterious
consequences on the protein as they, with a high probability, introduce a stop coding shortly
after the site of the alteration, are also commonly encountered mechanisms through which
tumor cells inactivate genes. By contrast, inframe indels may have opposite consequences and
play an activating or facilitating role for the tumor, as is the case for the inframe deletions in
exon 19 of the epidermal growth factor receptor (EGFR) gene, which are the most common
activating mutations in non-small cell lung cancer (NSCLC) and associate with sensitivity to
tyrosine kinase inhibitor (TKI) treatments.

With the spread of whole-genome sequencing (WGS), many studies have investigated
mutations in non-coding sequences of the DNA and made it increasingly clear that mutations
falling outside exons play critical roles in the disruption of normal cell behavior (Rheinbay
et al. 2020; Gutman et al. 2021). Examples include mutations in regulatory regions, such as
promoter and enhancer regions like the well-studied TERT promoter (Huang et al. 2013),
which directly influence the transcription rate of downstream genes through the destruction
or formation of new transcription factor-binding sites (Melton et al. 2015); mutations in
untranslated regions or introns of genes which can affect splicing, gene expression, messenger
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RNA (mRNA) stability, protein folding, among other consequences (Kimchi-Sarfaty et al.
2007; Supek et al. 2014). Similarly, though many of the past and current cancer genomics
studies discard all synonymous variants from their analyses, a growing number of studies
argue that even if they do not change the amino acid sequence of the protein, synonymous
mutations matter (X. Shen et al. 2022) and may, in fact, account for 6-8% of all driver
mutations occurring due to single-base substitutions (Supek et al. 2014). Some of the latter
studies are, however, controversial, particularly (X. Shen et al. 2022) for which a fiercely
critical paper was very recently published in Nature (Kruglyak et al. 2023).

1.2.2.3. Epigenetic alterations

Epigenetics, originally defined by C.H. Waddington as the "causal interactions between
genes and their products, which bring phenotype into being", now more generally encom-
passes all heritable changes in cells that allow the regulation of their gene expression without
alterations in their DNA sequence. As epigenetic processes play a fundamental role in gene
expression modulation, dysregulations of these processes can alter the gene expression and,
in some instances, direct cells toward a neoplastic state. It has indeed been demonstrated in
many studies that DNA methylation alterations, histone modifications, nucleosome reposi-
tioning, and modified expression of non-coding RNAs, particularly miRNAs, are all enabling
characteristics that facilitate the acquisition of cancer hallmark capabilities (P. A. Jones &
Baylin 2002; S. Sharma et al. 2010).

DNA methylation is a widely studied epigenetic mechanism that plays a crucial role in
the modification of gene expression in tumor cells. Methylation, or the addition of a methyl
group to a molecule, is a frequent event in the nucleus of cells where DNA methylation
occurs naturally through the activity of specific enzymes called DNA methyltransferases.
These enzymes covalently attach methyl groups to the fifth carbon of cytosine residues within
the pyrimidine ring. This process allows cells to modulate the expression of DNA segments
without modifying their underlying sequences, particularly in gene promoter regions, where it
can function to repress gene transcription. It also is a source of mutations since methylated
cytosines followed by a guanine, called CpG dinucleotides, tend to spontaneously deaminate to
thymines resulting in C>T transitions. Interestingly, CpG dinucleotides are underrepresented
in the human genome except for regions known as CpG islands (CGIs) that are very rich in
CpGs and are normally unmethylated so that spontaneous transition from cytosine to uracil
(the consequence of the deamination of the unmethylated cytosine) gets quickly repaired by
the cell. The approximately 25,000 CGIs of the human genome are found in about half of all
gene promoters. In contrast, the other half of genes are mostly methylated and silent and
tend to be tissue-specifically expressed.

Hypermethylation of CGI, which inversely correlates with gene expression, is the secondary
mechanism by which tumor suppressor genes are inactivated and is found to be mutually
exclusive with genetic mutations (P. A. Jones & Baylin 2007). Silencing of DNA repair genes
via promoter hypermethylation is a common feature of many cancers, such as silencing of
BRCA1 in breast and ovarian cancer, VHL in clear cell renal cell carcinoma, or MGMT in
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gliomas and colorectal cancers. MLH1 mismatch repair gene is another example of a gene
for which methylation-induced decrease of its expression enables genomic instability and, in
particular, microsatellite instability (MSI) by strongly associating with hypermethylation of
other CGIs. Aside from canonical genes, methylation is also an essential regulator of non-
coding RNAs, particularly miRNAs which are critical regulators of gene expression. Examples
include epigenetic silencing of miRNA miR-127 in bladder cancers, which normally regulates
BCL6 oncogene and can successfully be reactivated by treatment with chromatin-modifying
drugs such as 5-aza-2-deoxycytidine (Saito et al. 2006); silencing of miRNA miR-124a that
activates the CDK6 -RB1 oncogenic pathway in acute lymphocytic leukemia (ALL) (Agirre et
al. 2009); or the silencing of vault RNA vtRNA1-3 which is associated with decreased survival
in myelodysplastic syndrome (MDS) patients. Although much less frequent, hypomethylation
of gene promoters is also a known mechanism through which some tumor cells upregulate
oncogenes, as is the case for ELMO3 in NSCLC patients (Su et al. 2014) or IRX1 in
osteosarcoma cell lines (Lu et al. 2015).

Over the past two decades, extensive research has delved into the role of epigenetic
alterations and epigenetic regulator changes in cancer initiation, progression, and response
to treatment. Pioneering work by Feinberg, Ohlsson, et al. (2006) has shed light on
the crucial early role of epigenetic disruption in stem or progenitor cells, mediated by
"tumor-progenitor genes", as a significant contributor to both tumor heterogeneity and
progression alongside more commonly known genetic lesions. Building upon this work and
ensuing research, the same authors expanded their framework for cancer epigenetics by
introducing two additional gene categories, termed "epigenetic modifiers" and "epigenetic
modulators" (Feinberg, Koldobskiy, et al. 2016), alongside the "tumor-progenitor genes"
which they relabelled "epigenetic mediators". As outlined by the authors, the contribution
of epigenetics in cancer is well exemplified by pediatric cancers, which often harbor little
to no mutations, suggesting that critical tumor-driving events likely arise from epigenetic
modifications. The identification of biallelic loss in the chromatin remodeler gene SMARCB1
in malignant pediatric rhabdoid tumor stands as a prominent example of a cancer driver
mechanism rooted in epigenetics. Large-scale sequencing initiatives, as previously described,
have underscored the prevalence of mutations in epigenetic modifiers in various cancer types,
impacting all levels of the epigenetic machinery from DNA methylation to histone modification
and chromatin remodeling. Conversely, epigenetic mediators are seldom mutated but are
recurrently the target of epigenetic modifications. The final category, denoted as epigenetic
modulators, is presented as genes positioned upstream in signaling pathways serving as ways
through which environmental factors exert stress on cells, pushing them toward a neoplastic
state.

The reversible nature of epigenetic changes make them attractive therapeutic targets and
have been the basis of promising therapies in multiple tumor types. Notable drugs targeting
epigenetic alterations include DNA methyltransferase inhibitors (DNMTis) azacitidine, the
first FDA and EMA-approved drug for treating high-risk MDS, and decitabine which was
approved two years later in 2006 also for treating MDS. They may also increase the sensitivity
to chemotherapies, such as for the alkylating agent temozolomide which is mostly indicated
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in the treatment of brain tumors and was found to be particularly effective in cells where the
repair gene MGMT has been silenced through methylation (Esteller et al. 2000).

1.3. Cancer classifications

1.3.1. Clinical descriptions

1.3.1.1. The primary site

It is generally observed that cancer originates from one specific location, called the primary
site, before invading nearby tissues and spreading to distant parts of the organism through
a mechanism called metastasis in the most severe cases. Though rare, some patients are
diagnosed with multiple primary sites, either synchronous or metachronous. The coexistence of
multiple primary sites should not be confounded with the metastatic spread of a single-primary
cancer and is characterized by the observation of cell masses that are histologically different
and located in distinct parts of the body. Depending on the definition used, the frequency of
multiple primary sites is estimated in the range of 2-17% (Vogt et al. 2017), with concomitant
metachronous sites three times more frequent than synchronous (Testori et al. 2015).

The primary site generally serves as the main descriptor of cancers. There is not a
single test that can diagnose cancer and the localization of its primary site. Medical doctors
assess possible tumor sites by analyzing the patient’s symptoms, clinical and family histories,
and any other information that may be relevant for guiding the tests that will help in
establishing the diagnosis. There are various imaging tests available for diagnosing cancer,
including bone scans, computerized tomography (CT) scans, magnetic resonance imaging
(MRI), positron emission tomography (PET) scans, ultrasound, and X-rays. Mammograms
are an example of X-ray imaging tests commonly used for routine surveillance in women
and which can diagnose a breast tumor at the earliest stages of its development. Any of
the 78 organs that make up the human body can be the site of a malignant tumor, and
specific organs or groups of organs usually make up distinct cancer specialties organized
in separate medical departments. The most commonly found oncology departments are
hematology which deals with all hematological malignancies; neuro-oncology, which takes
charge of brain and nervous system tumors; dermatologic oncology, which is interested in all
skin cancers; head and neck oncology, which treats all tumors arising from the oral cavity,
sinuses, salivary glands, and pharynx; thoracic oncology, which gathers all tumors from the
chest (breast excluded) such as lung, esophageal, and thymic tumors; breast oncology which
considers breast tumors exclusively; gastrointestinal oncology which considers all tumors from
the digestive system (stomach, colon, rectum, liver, gallbladder, pancreas); genitourinary
oncology which encompasses all tumors starting from the kidney, urinary tract, bladder, and
male reproductive system (prostate, testes); gynecologic oncology which considers all tumors
arising from organs of the female reproductive system (ovarian, uterine, cervical cancers). Of
note, cancer specialties are not necessarily exclusive from each other, and the anatomical
site of the neoplasm is not the determinant of some specialties, such as for pediatric cancers
or sarcomas, which consider cancer patients according to their age and the nature of the
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neoplastic tissue, respectively, rather than the specific site of their tumor.

The type of tissue from which the neoplasm grows is another essential factor for dis-
criminating between cancers and is the basis for their histological classification. From a
histological point of view, there are hundreds of cancer types defined in national or interna-
tional nomenclatures such as the French Association pour le Développment de l’Informatique
en Cytologie et Anatomie Pathologique (ADICAP)12, the WHO International Classification
of Diseases for Oncology, third edition (ICD-O-3)13, the WHO International Classification
of Diseases, tenth revision (ICD-10) and now eleventh revision (ICD-11)14, the "Clinical
Modification" of ICD-10 used by the United States to classify mortality data (ICD-10-CM)15,
or the WHO classifications of tumors16, fifth and earlier editions, which consist in reference
books on specific organs or groups of organs, known as the WHO/International Agency for
Research on Cancer (IARC) Blue Books, mirroring the current spectrum of cancer specialties.
Though tables exist for converting between the nomenclatures, many cancer types in one
classification map to none specifically or on the contrary to multiple in other classifications.
This makes the harmonization of data from different studies often difficult, although the
accurate classification of cancer patients is crucial for clinical care and research, where the
tumor type is almost invariably the primary factor for grouping patients. Broadly speaking,
cancers may be grouped into four categories according to their tissue of origin, namely
epithelial tissue, hematopoietic and lymphoid tissues, muscle and other connective tissues,
and nervous tissues.

1.3.1.2. Cancers of epithelial tissue

All cancers originating from epithelial cells are classified into the general category of
carcinomas. Based on their shape, epithelial cells are divided between between squamous,
cuboidal, and columnar. Depending on the number and organization of cell layers, epithelial
tissue is also divided into simple, stratified, and pseudostratified. Eventually, epithelial cells
are also categorized according to their specialization into keratinized, transitional, olfactory,
or glandular. The histological classification of carcinomas closely follows the classifications of
epithelial cells, and accordingly, some histological subtypes are only found in specific organs.

Glandular cells are modified epithelial cells specialized to secret products found in the
glands or the surface of certain organs as scattered unicellular glands. Adenocarcinomas are
cancers arising from the glandular epithelial tissue and are the most common type of cancer
in humans. They account for almost all prostate, colorectal, pancreatic, stomach, and breast
cancers (>90% of cancers for each organ) and a large proportion of lung cancers (40%),
among others. Other types of cancers that are not technically classified as adenocarcinomas,
although they also arise from glandular tissues, include adenoid cystic carcinomas, which are

12https://smt.esante.gouv.fr/catalogue-des-terminologies
13https://www.who.int/standards/classifications/other-classifications/international-

classification-of-diseases-for-oncology
14https://icd.who.int/en
15https://www.cdc.gov/nchs/icd/icd-10-cm.htm
16https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours
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most commonly encountered in salivary gland cancers but also in the breast, skin, prostate,
and various other areas, and sebaceous carcinomas which are a rare type of skin cancer
originating from sebaceous glands.

Squamous cells are thin and flat cells found in different body parts, either as a single layer
in blood vessels, lungs, kidneys, and the heart or as stratified layers in the skin, oral cavity,
respiratory tract, vagina, and anal canal. Cancers arising from squamous cells are classified as
squamous cell carcinomas and, although less frequent than adenocarcinomas, are often the
second most frequent cancer type of multiple organs such as lung squamous cell carcinoma
(LUSC), which represent 20% of all lung cancers, cutaneous squamous cell carcinoma (20%
of all skin cancers), or the most frequent cancer type for other areas such as head and neck
squamous cell carcinoma (HNSC), cervical squamous cell carcinoma, vulvar squamous cell
carcinoma, anal squamous cell carcinoma (>90% of cancers from each area).

Transitional epithelium is a type of epithelium found in organs able to distend. In the
human body, they are found only in certain parts of the urinary tract, namely the urethra,
bladder, ureters, and renal pelvis. Cancers arising from these cells are classified as transitional
cell carcinoma, also known as urothelial cell carcinoma, and are by far the most common type
of bladder cancer. Similarly, basal cell carcinomas is a type of cancer that starts from specific
epithelial stem cells found in the bottom layer of the epidermis and is the most common type
of skin cancer. Neuroendocrine cells are yet another specific type of epithelial cells which give
rise to malignant tumors called neuroendocrine tumors (NETs) or neuroendocrine carcinomas
(NECs) depending on their growth rate. Neuroendocrine cells are present in various organs,
including the gastrointestinal tract, lungs, liver, and pancreas, with approximately 50% and
20% of NETs initiating in the gastrointestinal tract and lungs, respectively. NECs tend to be
highly aggressive and have limited therapeutic options (Oronsky et al. 2017).

Besides the epithelium, two additional prominent types of epithelial cell layers include
the mesothelium and endothelium, which form the lining of internal organs, blood vessels,
and body cavities. These layers are also the potential origin sites for carcinomas. Specifically,
mesotheliomas are cancers that emerge from the mesothelium tissue, such as the peritoneum,
pleura, or pericardium. In contrast, endothelial cell cancers are rare neoplasms that are
generally classified as sarcomas, such as angiosarcoma, or Kaposi’s sarcoma. While many
other types of carcinomas exist and contribute to the vast diversity of cancers, they are not
described here for conciseness.

1.3.1.3. Cancers of hematopoietic and lymphoid tissues

Leukemias and lymphomas, also known as "blood cancers", are neoplastic diseases that
affect the blood and the immune system. leukemia originates from hematopoietic stem
and progenitor cells located in the bone marrow, the tissue that produces the different
blood cells (red blood cells, platelets, and white blood cells). Some leukemias infrequently
manifest themselves outside the bone marrow, such as in the lymph nodes or spleen, and are
referred to as extramedullary or aleukemic leukemias, although these are generally associated
with leukemias originating in the bone marrow. The chronic or acute nature of leukemia
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is dependent on the maturation stage of the affected cells. Chronic leukemia develops
gradually and may take a long time before causing symptoms, whereas acute leukemia is a
life-threatening condition that necessitates prompt and aggressive intervention. Leukemias
can be divided into two broad categories based on the type of stem cells from which they
arise: myeloid (or myelogenous) if they develop from myeloid progenitors or lymphoid (or
lymphoblastic, lymphocytic) if they arise from cells that will become lymphocytes. Overall,
we typically distinguish four subtypes of leukemias based on the lineage and maturity of
the affected cells: acute myeloid leukemias, chronic myeloid leukemias, acute lymphocytic
leukemias, and chronic lymphocytic leukemias (CLLs).

In contrast, lymphoma initiates in the lymphatic system’s infection-fighting cells, known
as lymphocytes, which are located in the primary lymphoid organs (bone marrow, thymus) and
secondary lymphoid organs, including lymph nodes, spleen, tonsils, or the mucosa-associated
lymphoid tissue (MALT) situated in various submucosal membranes in the body, such as
the gastrointestinal tract, nasopharynx, thyroid gland, breast, salivary glands, eyes, and skin.
Lymphomas are classified as Hodgkin’s lymphomas (which make up 11% of all lymphomas)
or non-Hodgkin’s lymphomas. Hodgkin’s lymphomas are characterized by the presence of
abnormally large and multi-nucleated lymphocytes known as Reed-Sternberg cells.

Multiple myeloma is a distinct form of cancer that falls outside the leukemias/lymphomas
classification. It represents the most common lymphoid neoplasm involving plasma cells
and is characterized by bone lesions, anemia, renal insufficiency, and hypercalcemia. Unlike
leukemia, it lacks circulating tumor cells, and it is not a lymphoma since it does not originate
from lymph node tissues. Instead, multiple myeloma arises from differentiated plasma cells in
the bone marrow, which are a type of white blood cell responsible for antibody production. In
this condition, cancerous plasma cells produce an excess of a specific type of immunoglobulins
called monoclonal proteins. The presence of elevated immunoglobulin levels in the blood
serves as one of the diagnostic indicators for myeloma.

1.3.1.4. Cancers of muscle and other connective tissues

Sarcomas are types of cancer that develop from connective tissues such as bones, cartilage,
fat, and blood vessels, as well as from muscle and nerve tissues. Although they account for
approximately 1% and 15% of all adult and childhood cancers, respectively, there are more
than 175 different subtypes of sarcomas (mondiale de la santé & international de recherche
sur le cancer 2020). They are classified based on the type of tissue from which they originate,
with a broad classification into either bone or soft tissue sarcoma and according to their
characteristics.

Bone sarcomas are a highly heterogeneous group of malignancies representing less than
0.2% of all cancers. They are thought to arise primarily from mesenchymal stem cells which
can differentiate into different mesenchymal tissues, including bones and articular cartilage.
Osteosarcoma, Ewing sarcoma, and chondrosarcoma are the three main types of bone tumors
and differ in the affected populations, locations, and biological characteristics. Osteosarcoma
is the most common malignant primary bone tumor and has a higher incidence in adolescents
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and young adults. It arises from osteoblasts which form bone tissue and usually affects the
long bones of the arm and leg. Ewing sarcoma accounts for 2% of childhood cancers and is
more predominant in males. It also affects long bones but can occasionally originate from soft
tissues. It is characterized by undifferentiated small round cells with a high nuclear-cytoplasmic
ratio when viewed under the microscope. Chondrosarcoma is the third most common bone
sarcoma and develops in cartilage cells, also known as chondrocytes.

Soft tissue sarcomas are also a diverse group of cancers that arise from the body’s soft
tissues. There are many subtypes of soft tissue sarcoma, but some of the main ones include
leiomyosarcoma which arises from smooth muscle cells and mostly occurs in the uterus and
gastrointestinal tract; rhabdomyosarcoma which arises from skeletal muscle cells that have
not fully matured and is most common in young patients; liposarcoma which arises from fat
cells and most commonly occurs in the limbs, but can also occur in the abdomen and other
locations; synovial sarcoma that arises from cells in the synovial lining of joints in the limbs,
head and neck, and other areas; malignant peripheral nerve sheath tumor (MPNST) which
arises from cells that surround nerves and can occur anywhere in the body; gastrointestinal
stromal tumor (GIST), a cancer that arises from cells in the wall of the gastrointestinal tract,
most commonly in the stomach or small intestine; undifferentiated pleomorphic sarcoma
(UPS) for which the cells have a spindle-shaped appearance and lack distinct morphological
features of specific cell types.

1.3.1.5. Cancers of nervous tissues

The nervous system is composed of two main parts: the central nervous system (CNS),
which includes the brain and the spinal cord, and the peripheral nervous system, which is
made up of nerves that extend from the spinal cord to all parts of the body. Based on this
division, nerve cell tumors are categorized as either CNS tumors or peripheral nerve tumors
depending on their primary location. The classification of nervous system cancers primarily
considers CNS tumors, as tumors arising from peripheral nerves are typically benign, such as
acoustic neuroma, neurofibroma, and schwannoma, or classified as soft tissue sarcomas for
the malignant types, particularly MPNSTs.

Malignant tumors of the brain and other parts of the CNS account for approximately 1%
of all invasive cancers in the United States, but they contribute to a much higher proportion of
cancer-related deaths due to their high fatality rate. In fact, these tumors have a low five-year
survival rate of approximately 35%, with certain subtypes, such as glioblastomas, having
even lower rates that do not exceed 7% at present (Miller et al. 2021). The epidemiology,
treatment, and prognosis of malignant brain and other CNS tumors vary significantly between
adults and children, which has resulted in different classification systems being used for adult
and pediatric patients.

Malignant tumors of the CNS are classified based on their cell type of origin and location
within the brain or spinal cord. CNS stem cells, known as neuroepithelial cells, differentiate
into intermediate progenitor cells, such as radial glial cells, which can develop into neurons or
non-neuronal cells, including glial cells that support and nourish neurons. CNS cancers are
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classified as gliomas when they arise from glial cells, neuronal tumors when they originate
from neuronal cells, and glioneuronal tumors when they consist of both glial and neuronal
components. Most CNS tumors come from glial and other non-neuronal cells. Diffuse
gliomas, which grow diffusively and invade functional tissue of the CNS, are the most common
glial tumors in adults. Based on the similarity of tumor cells with non-neoplastic glial cells,
most diffuse gliomas can be classified as astrocytomas (astrocytes), oligodendrogliomas
(oligodendrocytes), and ependymomas (ependymal cells). Gliomas are also subdivided based
on tumor grade into high-grade glioblastomas (grade IV), anaplastic gliomas (grade III), and
low-grade gliomas (LGGs, grade II). Neuronal tumors are a rare group of brain and spinal
tumors composed of abnormal neurons. These tumors may originate purely from neurons
or have mixed neuronal and glial components, which comprise a subset of glioneuronal
tumors. The 2021 WHO classification of CNS tumors includes 14 distinct tumors within this
classification (mondiale de la santé & international de recherche sur le cancer 2021). In most
patients, these tumors grow slowly, have well-defined borders, and are therefore considered
benign.

Embryonal tumors are a specific type of malignant tumors that arise from embryonal
cells left over from fetal development. While most embryonal tumors occur within the CNS,
some forms can develop outside the CNS, such as neuroblastoma, a type of cancer that
develops from immature nerve cells, called neuroblasts, and which most commonly occurs in
the adrenal glands; retinoblastoma, which develops in the retina and typically occurs in young
children; and hepatoblastoma, a type of liver cancer that arises from immature liver cells also
in young children. CNS embryonal tumors are classified into medulloblastomas and other
embryonal tumors. Medulloblastoma, the most common malignant pediatric tumor, starts
from the lower part of the brain known as the cerebellum. It is histologically classified into
classic, desmoplastic/nodular, and large cell/anaplastic based on the appearance of cells under
a microscope. Other embryonal tumors include atypical teratoid/rhabdoid tumors, embryonal
tumors with multilayered rosettes, both of which are almost exclusively seen in children aged
three years or younger, and CNS neuroblastoma, which is rare and for which only isolated
case reports are available in the literature. Other rare subtypes of CNS tumors include choroid
plexus tumors (3% of pediatric brain tumors), pineal tumors (1% of all primary brain tumors),
or pituitary tumors (very few of which are malignant), which grow in the choroid plexus,
pineal gland, and pituitary gland regions of the brain, respectively. The tumor grade is used
to distinguish additional subtypes with distinct clinical characteristics.

1.3.1.6. Other cancers and classifications

Cancers may be further subdivided according to the morphological aspect of tumor cells
as assessed by trained histopathologists. Examples of morphological descriptions of cancer
cells include tubular adenocarcinomas which describe adenocarcinomas where malignant cells
form tubular shapes, a pattern mostly seen in breast and gastrointestinal tumors; lobular and
ductal carcinomas distinguishing breast cancers with cells forming lobular or ductal structures,
respectively; papillary and follicular carcinomas which are characterized by the presence of
papillary or follicular growth patterns, respectively, and are used to describe the two most
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common forms of thyroid cancer; small cell and non-small cell carcinomas which distinguish
two major entities of lung cancer; spindle cell sarcomas which arise from a type of elongated
cells that have a characteristic shape resembling a spindle; clear cell cancer which describe
cancerous cells with a clear appearance under the microscope and are a distinct subtype in
kidney cancer known as clear-cell renal cell carcinoma; cribiform carcinomas characterized by
small holes when viewed under a microscope and representing <4% of breast cancers, 0.5% of
papillary thyroid carcinomas, but also observed in lung, stomach and colon cancers; round cell
tumors which describe a group of highly aggressive malignant tumors characterized by round
cells with increased nuclear-cytoplasmic ratio and encompasses entities such as peripheral
neuroectodermal tumor, rhabdomyosarcoma, synovial sarcoma, non-Hodgkin’s lymphoma,
neuroblastoma, hepatoblastoma, Wilms tumor, and desmoplastic small round cell tumor.

The level of differentiation of tumor cells also serves as an important cancer descriptor.
In cancer histopathology, a four-level grading system is used to describe how abnormal cancer
cells look under the microscope. Low-grade or grade I and II tumors are well-differentiated,
which means that the tumor cells are organized and look more like normal tissue, while
high-grade or grade III and IV tumor cells are poorly differentiated. Poorly differentiated
cancers are usually aggressive in nature and have an unfavorable prognosis compared to other
cancers. In prostate cancers, the Gleason score, which dates back to 1966 (Gleason 1966),
is a more elaborate grading system also used to describe the microscopic aspect of tumor
cells. It sums the four-level grade values of the two most common grades in the tissue sample
and has a value between three and seven. The Gleason score has been recently improved
to describe five different microscopic patterns and is now used to define five Gleason grades
according to the value of the updated Gleason score (from six or less for grade I to ten for
grade V; Epstein et al. (2016)).

On rarer occasions, cancers may also display characteristics of two or more usual subtypes
and are therefore considered as mixed subtypes. These malignancies are rare and typically
associated with a poorer prognosis. Examples include basaloid squamous cell carcinomas
found in the oral cavity, respiratory tract, and lungs, which display features of both squamous
and basal cell carcinomas; adenosquamous carcinomas, containing both squamous and
glandular cells, found in various body areas; mixed hepatocellular and cholangiocarcinomas;
carcinosarcomas affecting the uterus and ovaries, which are a combination of carcinoma and
sarcoma; mucoepidermoid carcinomas that can arise in the salivary or thyroid glands and other
locations and contain both squamous cells and mucin-secreting cells (whether they are distinct
from adenosquamous carcinomas or not is a topic of debate; White et al. (2022)); mixed
lobular and ductal breast cancers. It is worth noting that cancer classifications are frequently
updated as our comprehension of their genomic, histopathological, and phenotypic profiles
improve, as well as as cases and pieces of evidence accumulate, particularly for ultra-rare
cancers which are defined by incidence rates below one per million (Loskutov et al. 2022).
However, in spite of all the above considerations, some cancers still remain unclassifiable
today and are labelled cancers of unknown primary (CUPs). They represent 2% of all cancers
diagnoses in our societies17.

17https://www.cancer.org/cancer/types/cancer-unknown-primary/about/key-statistics.html

39

https://www.cancer.org/cancer/types/cancer-unknown-primary/about/key-statistics.html


Chapter 1. Cancer characterization and classification

1.3.2. Molecular descriptions

Advancements in technologies are rapidly improving our ability to profile the genome,
epigenome, transcriptome, and proteome of cancer cells, leading to a greater understanding
of the molecular specificities of cancer and refinements of the classifications used to stratify
patients in the clinic. Myeloid neoplasms serve as a prime example of how tumor classifications
have been reshaped by the inclusion of recurrent molecular aberrations in the classification
criteria. In 2001, after nearly three decades of categorization based on the French-American-
British (FAB) morphological classification proposed by Bennett et al. (1976), the 3rd edition
of the WHO/IARC Blue Books proposed a new stratification of myeloid neoplasms (Vardiman,
Harris, et al. 2002). In this new classification, the blast threshold for diagnosing acute myeloid
leukemia (AML) was reduced from 30% to 20% but, more importantly, it was advised to
classify as AML myeloid malignancies harboring clonal recurrent cytogenetic abnormalities
t(8,21), inv(16) or t(16,16), and t(15,17) regardless of the blast percentage. In the group of
AML with recurrent abnormalities, encompassing about 30% of all de novo AMLs, four distinct
entities were proposed based on four distinct genomic abnormalities. This substratification
was motivated by the strong correlation between the molecular aberrations and morphological
aspects of the cells, as well as the distinctive clinical features and more favorable response
to therapy observed in these groups, rendering them "truly distinct clinicopathologicgenetic
entities" (Vardiman, Harris, et al. 2002).

As new evidence emerged, the WHO has gradually revised its classification of myeloid
neoplasms with notable changes including the definition of new subentities of AML defined
by translocations t(9,11), t(6,9), t(3,3) (or inv(3)), or t(1,22), as well as provisional entities
with NPM1 and CEBPA mutations in the 2008 edition (Vardiman, Thiele, et al. 2009) which
became definitive entities in the 2016 revision (Arber, Orazi, R. Hasserjian, et al. 2016)
alongside two other provisional entities defined by the BCR-ABL1 gene fusion (confirmed
in 2022) or mutations in RUNX1 (eliminated in 2022). These changes were informed by
large-scale sequencing studies, such as the work of Papaemmanuil et al. (2016), which
proposed 11 classes of AML based on the co-mutation patterns observed in more than 1,500
patients. Some of the proposed classes overlapped established entities, particularly the classes
defined by gene fusions (inv(16), t(15,17), t(8,21), t(6,9)), but also new classes emerged
from specific alterations in driver genes, such as the CEBPA biallelic inactivation, IDH2
R172 hotspot mutation, NPM1 mutations, or TP53 aneuploidy. This molecularly-defined
classification was recently refined in the work of Tazi et al. (2022), to which I contributed and
which aimed at providing a unified classification of AML. The European Leukemia Net (ELN)
international consortium also established classifications of AML in 2010 (Döhner, E. H. Estey,
et al. 2010), 2017 (Döhner, E. Estey, et al. 2017), and 2022 (Döhner, Wei, et al. 2022).
Unlike the WHO, the ELN classifications are based solely on genetic alterations and divide
patients into originally four, and now three, prognostic groups. Single or combined genetic
abnormalities define risk group criteria, such NMP1 -mutations, where concomitant absence
or presence of FLT3 -ITD determines favorable or intermediate risk, respectively (Döhner, Wei,
et al. 2022). In contrast to the WHO and ELN classifications, the International Consensus
Classification (ICC) of myeloid neoplasms, established by a consortium separate from the
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WHO for lack of consensus, utilizes molecular features even more extensively as distinctive
criteria. For example, they advise considering TP53 -mutated neoplasms as a separate entity
due to their unique genetic profile, poor-risk cytogenetics, and overall dismal outcome and
argue that single or multi-hit mutations of TP53 should override morphological variants and
other classification criteria (Arber, Orazi, R. P. Hasserjian, et al. 2022).

Breast cancer serves as another example of how studies of the molecular landscape of
cancer specimens have been used to define clinical subentities. In the study of Perou et al.
(2000), variations in the expression of approximately 8,000 genes in 65 breast cancer specimens
were examined, leading to the identification of four subtypes: luminal, HER2-overexpressing,
basal-like, and normal-like. The luminal subtype expressed estrogen receptor (ER) target
genes, while epidermal growth factor 2 (HER2)-overexpressing was associated with ERBB2
gene amplification. The basal-like subtype did not express HER2 nor hormone receptors, and
normal-like specimens were similar to normal tissue and thought to reflect low-purity samples
rather than a distinct entity. Further investigation by the same authors on 85 biospecimens
revealed that the luminal subtype could be subdivided into luminal A and luminal B, and
potentially luminal C, based on the expression patterns of a short list of 427 genes (Sorlie
et al. 2001). The luminal A subtype was characterized by ER-positive/Ki67-negative tumors,
while luminal B encompassed ER-positive/Ki-67-positive tumors (Prat & Perou 2011). A
fifth intrinsic breast cancer subtype known as Claudin-low was established in the study of
human and mouse tumors Herschkowitz et al. (2007). This subtype was associated with poor
prognosis, absence of epidermal growth factor (HER2) or hormone receptors (ER, PR), and
high frequency of metaplastic or medullary differentiation. As different classifications emerged
from different studies of gene expression patterns in breast cancer samples, demonstration
of the robustness of the predicted subtypes became a crucial step for clinical use. Kapp
et al. (2006) showed that three main intrinsic subtypes of breast cancer could accurately be
predicted using only the expression of the genes encoding the HER2 (ERBB2) and ER proteins
(ESR1), resulting in the three-group classification ER-/HER2- (basal-like or triple-negative),
HER2+ (HER2-overexpressing) and ER+/HER2- (luminal A and B combined). Although
various assays have been developed to classify single samples into one of the five main intrinsic
subtypes, such as the 50-gene PAM50 predictor (Parker et al. 2009), or to risk-stratify patients
using limited gene panels (Paik et al. 2004), the three-group classification based on the
presence or absence HER2 and hormone receptors is the only molecular classification widely
used in the breast cancer clinics.

Characterizing thousands or even tens of thousands of cancer samples in large-sequencing
projects has revealed the molecular portraits of the different tumor types defined by anatomical
and histological considerations. In particular, the TCGA research network has conducted
extensive molecular analyses of each of the 33 tumor types they have studied and have defined
for many of them molecular substratifications using joint clustering methods (Vaske et al.
2010; The Cancer Genome Atlas Network 2012; R. Shen et al. 2012; Qianxing Mo 2017).
Table A.1 lists the different subtypes used or defined in the analyses of the TCGA, along with
references to the corresponding studies. These large-scale sequencing efforts have also proven
useful to help classify patients for whom the primary site of the tumor cannot be determined
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by a trained histopathologist, a condition referred to as CUPs. Such cases still represent
about 2% of all cancer diagnoses today. Recent studies leveraging the vast amount of data
collected by the TCGA or PCAWG have demonstrated that highly accurate prediction of the
primary site could be achieved via the profiling of the transcriptome (Vibert et al. 2021),
genome (Marquard et al. 2015; Jiao et al. 2020; Moon et al. 2023), or epigenome (Moran
et al. 2016) of cancer cells. It is also worth noting that some studies, such as the work
of Capper et al. (2018), have demonstrated how tumor sequencing could help clinicians
establish precise cancer diagnoses, particularly for neoplasms with many histological subtypes,
such as brain tumors or soft tissue sarcomas.
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Abstract Chapter 2

In this chapter, we will first cover the methods that have been developed to sequence
DNA, process the sequencing files, and extract variations that exist in the analyzed
genome when compared to the normal genome and reference genome. In a second
section, we will examine how the genomic contexts surrounding localized somatic
events in cancer genomes can reveal information about the mutagenic processes at
play. Eventually, we will take a closer look at how cancer cells acquire and maintain
malignant capabilities through specific genetic alterations known as driver events. All
the concepts and data analyses described in this chapter lay the bricks for the genomic
analyses presented in Chapters 3 and 4 analyzing cancer genomes from metastatic
patients.

T
he sequencing of DNA, i.e., the determination of the exact order of nucleotides that
constitute the DNA chains, is considered one of the greatest accomplishments of modern

science that has completely revolutionized life sciences and has spun the era of computational
biology. As the first essentially complete sequence of the human genome was released in
2001 ten years into the publicly funded HGP (Lander et al. 2001; Venter et al. 2001), the
achievements of this tremendous, collaborative, and international effort were beyond what
scientists thought possible in 1988. The draft releases of the human genome revealed three
critical features of human genomes: firstly, a human genome contains only 30,000 to 40,000
genes, which was considerably lower than expected; secondly, exons, which code for the amino
acids making up all the proteins found in our cells, represent a mere 1.1% of our genome;
lastly there are millions of SNPs locations and the genomes of any two individuals differ at a
rate of 1 base per 1,250 on average (Venter et al. 2001). All of these initial estimates have
been revised upwards over time as more complete genomes were assembled, many individual
genomes were sequenced, and as many more genome annotations were described, but orders
of magnitude have not changed. The HGP project cost about 3 billion dollars as a whole to
obtain a finished assembled genome, including $300 million dollars for generating the first
draft genome from April 1999 to June 2000, and lasted for 13 years1. Approximately 50% of
the project overall cost was supported by the NCI and the other half by organizations from
six countries.

The first rough draft of the human genome was released in June 2000 by the University of
California, Santa Cruz (UCSC). A more complete version, known as the National Center for
Biotechnology (NCBI) Build 33/hg15 (NCBI/UCSC versions), was released in April 2003. In
May 2006, the sequencing of human chromosome 1, the largest of all our chromosomes, was
completed (Gregory et al. 2006). Though the HGP came to an end in 2003, it is essential
to note that its aim was not to sequence all the DNA found in human cells but only the
euchromatic regions the nuclear DNA, constituting 92% of the genome. The 8% part of
the genome not sequenced by the HGP consists of scattered heterochromatic regions found
primarily in centromeres and telomeres and difficult to assemble due to their repetitive nature.

1https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
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The Genome Reference Consortium (GRC) was founded in 2007 to improve the reference
genome assemblies of human, mouse, and zebrafish. In February 2009, the GRC released the
GRCh37/hg19 reference genome. The primary assembly of GRCh37 contained about 234
megabases (Mb) of unknown sequences distributed throughout the genome in 271 sequence
gaps. This assembly was improved over time through patches until the 13th and final patch,
GRCh37.p13, which was released in June 2013. In December 2013, the GRC released the
GRCh38/hg38 version, which incorporates alternate contigs to represent common complex
variation, most notably alternate haplotypes such as the HLA loci. The current patch of
the latest genome assembly, known as GRCh38.p14, was released in February 2022 and now
has only about 151 Mb of unknown sequence in 349 sequence gaps2. In 2022 also, the
Telomere-to-Telomere Consortium published the first wholly assembled reference genome,
known as T2T-CHM13, without any gaps in the assembly (Nurk et al. 2022).

The journey for assembling the human reference genome and building annotations as
complete as possible has been a long one that has not yet reached its conclusion and is likely to
continue for many years. In all the years since the first draft of the human genome was released,
many individual genomes from healthy individuals or afflicted with a wide variety of Mendelian
disorders have been sequenced and analyzed. Progressively more subtle and complex genetic
variations have been described since the first human genome sequence as increasingly cheap
technologies delivering increasingly high amounts of data were developed. Technological
improvements have completely changed the amount and diversity of information that can be
measured about DNA molecules and other molecules downstream in the biological workflow,
namely RNAs and proteins. Exponential decreases in sequencing costs have allowed us to run
sequencing experiments on a large collection of biological samples collected from humans and
other species. The analyses of all the generated sequences have spun the building of many
databases cataloging countless variants detected in healthy and unhealthy individuals. The
low cost of sequencing, coupled with the availability of many algorithmic tools and extensive
databases, now allows us to analyze sequencing data through many different techniques
that provide quantitative and qualitative information about nucleic acid sequences. In this
chapter, we will describe all the steps involved in the generation of sequencing data up to the
extraction of biologically meaningful low-dimensional data that humans can comprehend and
use to better understand the genomic underpinnings of disorders such as cancer.

2.1. From sequencing to variant detection

2.1.1. Sequencing techniques

Sequencing techniques are conventionally categorized into two overarching groups: first-
generation sequencing techniques, which emerged in the late 1970s and remained the primary
sequencing method for over three decades, and second-generation or NGS methods, which
have been commercially accessible since 2005. Sections 2.1.1.1 and 2.1.1.2 offer brief
presentations of these two broad types of sequencing. For conciseness and because they were

2https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh38.p14
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not used in any of the project presented in this manuscript, single-cell sequencing technologies
and the more recent spatial sequencing technologies are not discussed at all.

Fig. 2.1.: History of sequencing with a non-exhaustive list of the main next-generation sequencing products that have
been developed. Created with BioRender.com

2.1.1.1. First-generation sequencing

The initial DNA sequences of specific organisms, including the preliminary blueprint of
the human genome, were determined utilizing sequencing techniques commonly referred to
as first-generation sequencing methods. In 1977, two distinct sequencing methodologies were
introduced in the same year: Maxam-Gilbert sequencing (Maxam & Gilbert 1977) and Sanger
sequencing (Sanger et al. 1977) (Figure 2.1). Both approaches rely on the fundamental idea
that by generating incomplete copies of single-stranded DNA molecules with varying sizes
starting from the first base, one can infer the nucleotide identity at each position of the
template by examining the distribution of fragments of identical lengths.

In their pioneering technique, Maxam and Gilbert formulated four experiments employing
diverse chemical treatments to modify specific bases and cleave subsequent nucleotides of
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copies of a DNA template. In each experiment and for each copy of the DNA template, a
cleavage point is designated, either selecting an A or G nucleotide (A+G), a G nucleotide
exclusively (G), a C nucleotide exclusively (C), or either a C or G nucleotide (C+G). This
generates fragment sizes that are unique to each experiment or overlapping with exactly one
other experiment. Subsequently, X-ray file autoradiography or gel electrophoresis is employed
to separate the fragments of each experiment based on their sizes. By scrutinizing the size
distribution of fragments across all four experiments, the nucleotide sequence of the original
DNA fragment can be readily determined. Due to its technical intricacy, challenges associated
with scalability, and utilization of hazardous chemicals, the Maxam-Gilbert method gradually
fell out of favor in favor of Sanger sequencing, which is presented in the next paragraph.

The method presented by Frederik Sanger from the MRC Center in Cambridge (UK)
bears some similarities to the Maxam-Gilbert method, albeit with notable distinctions. Sanger
sequencing begins with DNA extraction from a biospecimen comprising one or more cells,
each housing its own DNA molecules. Depending on the sequencing objective and context,
a DNA region of interest is chosen through the use of primers, either in close proximity
(less than 700 base pairs apart) to hybridize with denatured DNA or at random following a
process of natural or artificial DNA fragmentation to generate smaller, manageable fragments.
Once a DNA fragment is selected, amplification becomes necessary to obtain an adequate
quantity of material for sequencing. In the past, molecular cloning with bacteria served to
generate numerous replicas of a specific DNA sequence. Presently, amplification is achieved
through polymerase chain reaction (PCR). Typically, approximately 25 to 30 cycles of PCR
are performed in Sanger sequencing to acquire sufficient material. Each PCR cycle entails
three steps:

1. denaturation of the double-stranded DNA at 94�C to separate it into single strands
2. primer binding (or annealing) at 54�

3. DNA replication at 72�

Subsequent cycles utilize the material from the previous cycle. As each cycle doubles
the number of DNA chains, the theoretical number of PCR copies after n cycles is 2n. The
amplified DNA libraries are subsequently purified to isolate the PCR products. Each isolated
PCR product is extended using a process similar to PCR, but with the incorporation of chain-
terminating nucleotides or dideoxynucleotides (ddNTPs), alongside other PCR reactants.
Each ddNTP is labeled with one of four radioactive or fluorescent tags differentiating the
four types of nucleotides. The chain-terminating nature of ddTNPs allows the creation of
incomplete and labeled copies of the original DNA fragment, encompassing all possible sizes.
After approximately 20 cycles of DNA elongation, the partially elongated PCR products are
denatured and separated by size using gel electrophoresis. Determination of each nucleotide
within the DNA template of interest becomes a matter of examining the labels of copies
sharing the same size.
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2.1.1.2. Next-generation sequencing

In contrast to first-generation sequencing, the second-generation massively parallel se-
quencing techniques, also known as next-generation sequencing (NGS), offer remarkable
scalability. These methods have enabled the sequencing of extensive DNA regions at sig-
nificantly low costs per sequenced base while maintaining high confidence levels. Targeted
sequencing of DNA allows to sequence specific gene lists, representing genomic regions ranging
from a couple hundreds kilobases (kb) to about 10 Mb. WES is used to sequence all or nearly
all of the exome, covering between 30 and 50 Mb with capture kits. On the other hand, WGS
encompasses the entire genome, i.e approximately 3 gigabases (Gb) of DNA, but at lower
coverage depths than targeted sequencing or WES. While originally designed for sequencing
DNA molecules, NGS also enables the sequencing of large libraries of RNA molecules, which
are converted back into copy DNA (cDNA) through a process known as reverse transcription.
Various library preparation protocols and capture techniques allow to focus on different types
of RNAs: small RNA capture, for instance, facilitates the quantification of miRNAs and other
small non-coding RNAs; polyA-enrichment selectively targets polyadenylated RNA species,
primarily comprising mature mRNAs; probe-based depletion is employed to discard RNAs
of little interest, primarily rRNAs, which can constitute between 80% and 98% of all RNA
molecules in biological samples.

Several high-throughput sequencing techniques have been developed to enable rapid and
cost-effective large-scale DNA and RNA sequencing. In 2000, Lynx Therapeutics introduced
the massively parallel signature sequencer, considered the first NGS machine with a sequencing
capability of 20 million base pairs per run. However, it wasn’t until 2005 that the GS20
sequencer by 454 Life Sciences, later acquired by Roche, became commercially available for
independent institutions and laboratories as depicted in Figure 2.1. In 2008, the Genome
Sequencer FLX from 454 Life Sciences was used to sequence James Watson’s complete
genome (Wheeler et al. 2008). This and other individual genome sequencing projects revealed
millions of genetic variations in any human genome compared to the human reference genome.
Illumina played a significant role in advancing NGS with machines like the Genome Analyzer and
HiSeq series, improving sequencing capabilities, data output, runtime, and cost. The NovaSeq
series, launched in 2017, offers impressive sequencing capabilities, allowing parallel sequencing
of up to 48 samples and sequencing up to 16 terabytes in less than 48 hours. While Illumina
dominates the DNA sequencing market, other companies like Life Technologies, PacBio,
QIAGEN, Thermo Fisher Scientific, Hoffman-La Roche, Oxford Nanopore Technologies, and
BGI have developed comparable or complementary NGS techniques, some with potentially
lower costs, such as BGI’s claim of an $800 cost and a 10-day runtime for sequencing a
complete genome3.

The most prominent sequencing technique is the sequencing by synthesis method. In
essence, sequencing by synthesis determines the DNA sequences of interest through real-time
monitoring of inserted sequences along single-stranded DNA templates. During each cycle
of the sequencing experiment, a new base is inserted and read using various techniques.

3https://www.bgi.com/global/service/whole-genome-sequencing-rapid
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The most widely used such platforms are Illumina sequencers, which employ a reversible
terminator-based method and monitor bases as they are inserted using fluorescent signals.
Illumina devices are known for their high accuracy and throughput and are, in practice,
the most commonly used. Ion Torrent sequencing or Roche-454 pyrosequencing are other
notable methods that monitor bases inserted during DNA synthesis by detecting the release
of hydrogen ions or pyrophosphatases, respectively.

Some technologies, such as Illumina sequencing or Ion Torrent sequencing, can only
produce reads of limited sizes due to the decrease in the confidence of base calling as the
number of cycles increases. These sequencers produce reads of sizes typically not exceeding a
few hundred base pairs, known as short reads. Compared to Sanger sequencing, short-read
NGS exhibits slightly lower accuracy, generates shorter read lengths, and has longer overall
runtimes but offers significantly reduced costs and runtimes per sequenced base and much
higher output. However, other technologies, such as PacBio single molecule real-time
sequencing or Oxford Nanopore sequencing (Figure 2.1), allow the generation of reads of very
long sizes. Nanopore sequencing has historically been limited by its high error rate, reaching
up to 40% (Laver et al. 2015), and low throughput per experiment but has the advantage of
being available in portable devices and producing sequences in real time. Additionally, recent
improvements in chemistry and technology have pushed the accuracy of nanopore sequencing
up to 99.9% using duplex sequencing (still lower than the 99.999% of Illumina sequencing)
at data yields as high as 140 Gb for a single Promethion flow cell4.

With the emergence of first NGS techniques, the question of how to quantify sequencing
quality became a focal point. In 1998, Green and Ewing from the University of Washington
introduced the phred quality score as a means to quantify sequencing quality (Ewing & Green
1998), and this score has been employed ever since in all NGS experiments. The phred score is
calculated as ten times the negative logarithm of the probability of the sequenced base being
incorrect (Q = �10 log10 P ) which is determined according to the peak shape and resolution
of the base signal. Consequently, a phred score of 30 or higher indicates bases with a chance
lower than one in a thousand of being incorrect. Notably, the nucleic acid amplification
method developed by Kawashima, Farinelli, and Mayer from the Geneva Biomedical Research
Institute stands as a significant milestone in the advancement of NGS5.

Thanks to dramatic technological advances, exome, genome, and RNA sequencing costs
decreased 100-fold in between 2008 and 20146 and were reduced by an additional 20-fold
between 2014 and today. Today’s cost of WES and WGS are estimated at below $1,000
per run including the library preparation costs and sequencing reagents, with WGS poised to
become cheaper than WES and therefore likely become the new standard in incoming studies.

4https://nanoporetech.com/q20plus-chemistry
5https://patents.google.com/patent/WO1998044151A1/en
6https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
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2.1.2. Libraries preparation and target enrichment

The library preparation and capture protocols employed differ according to the sequencing
machine that will be used, the genomic regions or molecules species that investigators aim for,
and the nature of the starting material, essentially either DNA or RNA for the data analyzed
in this thesis. Although multiple NGS techniques exist as discussed in Section 2.1.1.2, this
discussion focuses on Illumina dye sequencing and its associated library preparation protocols
due to their widespread usage both in the clinical and research settings.

2.1.2.1. DNA sequencing

In targeted sequencing, the library preparation protocol shares similarities with Sanger
sequencing. However, instead of using a single pair of primers, multiple pairs of primers are
designed, spaced approximately 150 to 300 base pairs apart, according to the length of the
sequencing reads. These primers are utilized in PCR cycles to amplify the specific regions of
interest. Each primer is composed of two parts: a common sequence shared by all primers,
serving as the starting point for the sequencing experiment, and a unique sequence specific to
the region of interest. The number of PCR cycles is optimized to provide sufficient material
for sequencing, considering that the number of PCR-induced errors increases with the number
of cycles.

Fig. 2.2.: The three main applications of next-generation sequencing for DNA sequencing.

For WGS and WES, the genomic DNA is first randomly fragmented either mechanically
by ultrasonication methods, or biologically by enzymatic digestion. Subsequently, adapters are
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ligated to both ends of the DNA fragments, serving as anchoring points for the sequencing step.
In the case of WGS, no capture is required, whereas WES necessitates a target enrichment
method.

A comprehensive review article by Seaby et al. (2016), focusing on the applications
of WES, offers a comparative table of major exome capture kits. Noteworthy kits, such
as Agilents SureSelect Human All Exon, Roche-Nimblegen SeqCap EZ exome library, and
Illumina TruSeq Exome enrichment, employ hybridization with hundreds of thousands or
even millions of complementary baits to select exonic regions. In contrast, amplicon-based
methods like Thermo Fisher AmpliSeq or Agilent HaloPlex directly amplify exonic regions.
Hybridization allows the enrichment and sequencing of a larger number of targets per panel,
exhibiting superior performance in terms of uniformity and complexity. On the other hand,
amplicon sequencing is faster with higher on-target rates but at the expense of non-uniformity
and higher error rates. Presently, WES is predominantly conducted using hybridization-based
capture kits.

The retained DNA fragments undergo subsequent amplification through a minimal number
of PCR cycles. The amplified DNA is then denatured and deposited in single strands onto a flow
cell, essentially a glass slide featuring numerous attached probes called oligonucleotides. These
oligonucleotides function as anchors for the single-stranded DNA fragments. Local replication
of these fragments occurs via nearby probes in a process known as bridge amplification,
generating numerous identical copies of each fragment. This amplification organizes replicated
DNA fragments into clusters, each cluster containing approximately 1,000 copies of the original
DNA fragment from the library. Each DNA cluster contributes to the generation of one read,
either single- or paired-end. Real-time monitoring of complementary bases introduced by
engineered polymerases enables the determination of reads. More specifically, during each
cycle of the sequencing experiment, nucleotides with reversible dye-terminators are introduced
and hybridized to the incompletely elongated DNA molecules on the flow cell. Fluorescence
signals are used to read the inserted bases, after which the dye terminators are washed away
to allow DNA elongation to continue, initiating a new sequencing cycle. For more details
about Illumina dye sequencing, see their excellent tutorial video7.

2.1.2.2. RNA sequencing

RNA sequencing (RNA-seq) is a technique employed to determine the sequences of RNA
molecules within cells at a given time point. It provides a snapshot of gene activities in a given
sample and comes in various modalities. Bulk RNA-seq sequences RNA molecules across a
diverse array of cells, whereas single-cell RNA-seq achieves a resolution at the individual cell
level. Spatial transcriptomics further refines this resolution to subcellular levels while offering
information about the spatial distribution of RNAs (Stark et al. 2019). This section exclusively
deals with library preparation protocols for bulk RNA-seq, as no data from single-cell RNA-seq
or spatial transcriptomics experiments will be presented in this manuscript. Similarly, only
protocols intended for short-read sequencing, the prevalent technique in clinical settings,

7https://www.youtube.com/watch?v=fCd6B5HRaZ8&ab_channel=Illumina
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will be addressed. Long-read RNA sequencing is primarily pertinent for characterizing or
improving transcriptomes of poor characterized species, as well as for discovering novel splice
junctions or isoforms.

There is a specific algorithm assessing the results of library preparation through a score
known as RNA integrity score. RNA is extracted and right away quality is assessed through
RIN score. RIN 10, good; > 7 is good; 7-4 is mediocre quality; below 4 is not usable. Peaks
from some spectograms.

In short-read RNA sequencing, RNA nucleic acids are extracted from the sample, and
contaminating DNA is eliminated using DNAse enzymes. Subsequently, the RNA undergoes
pre-treatment to isolate the desired RNA molecules and remove unwanted ones, particularly
rRNA, which can constitute a substantial portion of cellular RNA. RNA selection typically
involves polyA-enrichment or rRNA depletion, each with its respective advantages and
drawbacks. PolyA-enrichment selects polyadenylated RNA, including mature mRNA, but fails
to capture non-polyA transcripts or partially degraded mRNAs. Conversely, rRNA-depletion
captures both polyA+ and polyA- RNAs, encompassing mature and pre-mature mRNAs with
intronic sequences as well as tRNAs (Zhao et al. 2018). 3’ mRNA sequencing is a subtle
variant of polyA-enrichment-based RNA-seq which attempts to minimize biases introduced in
quantification results by the fact that longer transcripts are sheared into more fragments than
shorter transcripts (Oshlack & Wakefield 2009). In this variant, mRNAs are not fragmented
prior to reverse transcription so that only one cDNA is generated for each transcript.

Selected RNAs are subsequently fragmented and converted back into cDNA using reverse
transcriptases. In most protocols, the RNA template used for cDNA synthesis is replaced
with a proper DNA strand synthesized by DNA polymerases, known for their lower error rates
compared to reverse transcriptases. Retaining information about the strandedness of the
original RNA molecules can be achieved by incorporating uracil bases during the synthesis
of the second DNA strand. The resulting double-stranded cDNA undergoes end-repair, and
adapters are ligated as for DNA sequencing preparation. The cDNA is then denatured for
single-stranded molecules ready for PCR amplification. To preserve strandedness information,
the strand synthesized with uracils can be washed away at this stage. Following amplification,
the library is prepared for sequencing using standard DNA sequencing methods, such as
Illumina dye sequencing outlined in the previous section.

2.1.3. Processing of sequencing data

The data generated by sequencing machines are the entry point of a long series of data
processing and transformation steps to generate tabular data of genetic variants or gene
expression that humans can comprehend. The different steps for organizing, controlling,
cleaning, and analyzing large sequencing data files are typically organized in bioinformatic
workflows executed on high-performance computing clusters. A typical NGS workflow is
depicted in Figure 2.3 and is described in more detail in the following sections.

Quality control of the sequencing data generated by sequencers is a major challenge
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in NGS analyses. Checking that the data meets all the quality requirements is crucial for
successful downstream analyses. Sometimes, bad-quality samples will fail on one or multiple
bioinformatic tools, allowing them to be identified and removed easily. However, in many
instances, samples will be successfully processed, albeit with some warnings from some tools.
The results from processing such samples will, however, contain little to no meaningful
information. Failing to identify such cases can mislead analyses and must, therefore, be
properly identified.

Fig. 2.3.: NGS workflow

Therefore, the analysis of sequencing
data necessitates quality controls at all steps
along the workflow to flag and discard low-
quality samples or, when possible, remove the
problematic sequences and flag the variants
likely to be of artefactual rather than biolog-
ical origin (Patel & Jain 2012; Conesa et al.
2016). Major quality control steps occur di-
rectly on the data produced by sequencing
machines. Subsequently, in alignment-based workflows, post-alignment quality control using
dedicated bioinformatic tools can help further identify low-quality or artefactual sequences.
Quality control is also present at the variant-calling step to minimize the number of false
positives ending up in the results tables while maintaining good sensitivity. Filtering procedures
of variants are pretty diverse and elaborate and will be detailed in Section 2.1.4.4. All quality
control steps of NGS workflows are essential, and none should be overlooked.

2.1.3.1. The FASTQ file

Sequencing machines generate data in a specific file format known as the FASTQ format.
Some devices, such as Illumina sequencing machines, go through the intermediate base call
format (BCL) representation format that is then converted to the FASTQ format to make it
easily usable by downstream processing tools. The FASTQ format is a text-based sequence
file format that stores three pieces of information for every read: a text description identifying
the read, the sequence of bases constituting the read, and the qualities of each base encoded
using ASCII characters8. It was developed at the Wellcome Trust Sanger Institute (WTSI)
but has become the de facto standard for storing the output of sequencing instruments.

After the sequencing has been performed, a series of steps is applied to control the quality
of the generated FASTQ files before extracting meaningful information. Figure 2.3 represents
a typical analysis workflow of NGS data. The most important parameters to check for in the
raw sequencing data are the base qualities distribution, the nucleotide distribution, the GC
content, and the duplication rate. Aside from these metrics that serve to flag bad samples,
corrective actions are systematically applied to clean the sequencing data by removing, or
if possible, correcting low-quality bases and removing low-quality reads. FASTQC (Andrews

8More info at https://en.wikipedia.org/wiki/FASTQ_format or https://support.illumina.com/bulletins/

2016/04/fastq-files-explained.html
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2010) and fastp (S. Chen, Zhou, et al. 2018) are now the most commonly used bioinformatic
tools for generating reports of quality control and applying corrective actions. Prior to the
release of fastp, Cutadapt (Martin 2011) used to be the standard for read trimming, while
Trimmomatic (Bolger et al. 2014) was the standard for read filtering and pruning.

Quality profiling Firstly, the distribution of base qualities, assessed using the phred quality
scores, or Q scores, as presented in Section 2.1.1.2, should be high enough (usually more
than 30 for Illumina sequencing) and relatively stable over cycles, i.e, along the reads. Visual
inspection of plots showing base qualities against base positions in reads can reveal decaying
quality at the end of reads for various reasons, such as adapter contamination or experimental
issues in the last sequencing cycles. The problem of quality deterioration in the last cycles has
been addressed through improved chemistry and, more significantly, by restricting sequencing
experiments to short reads not surpassing 2x150 base pairs. It is worth noting that MiSeq
Illumina sequencers, which are now phased out, were designed to generate reads of up to
2x300 base pairs.

Secondly, the distribution of nucleotides across sequencing cycles serves as a valuable
quality control metric for whole genomes and exomes, though it is not as pertinent for
amplicons or RNA-seq samples. In an ideal sequencing run, the distribution of the four
nucleotides across all reads should remain relatively consistent, with minor fluctuations towards
the start or end of the read. In practice, slightly uneven distribution is frequently observed in
the first 12 bases of each run due to a biased selection by random primers, which are not so
random. This problem cannot be fixed by processing and is not known to adversely affect the
analyses. Nucleotide distribution is closely linked to base quality, and both metrics can be
employed to assess the quality of raw data. Poor base quality is also often reflected in the
nucleotide distribution plot.

The GC content, measured as the percentage of G or C nucleotides in a sequence, is
another metric that is commonly looked at to assess quality. The GC content varies across
species and genomic regions. In human whole genomes, it is about 38 to 39%, while in human
exomes, it is around 49-51%. Deviation from the experiment-specific theoretical distribution
typically indicates contamination by adapters (sharp peaks) or by other species (broad peaks).

The level of duplication, i.e, the proportion of reads in a sequencing file that have at
least one duplicate, serves as another monitored metric for gauging the quality of a sample.
Depending on the nature of the sequenced biological material, a variable level of duplication
is acceptable. In RNA-seq libraries, different transcripts will be present at widely different
levels in the sample used. If deep sequencing is used to capture lowly-expressed transcripts, it
increases the likelihood that biologically highly expressed transcripts will generate large sets
of duplicates.

Lastly, the number of reads per sequenced sample in a pooled experiment is also a metric
that can be used to flag samples. It is indeed very common to pool multiple samples during
one sequencing experiment to save costs. Demultiplexing of pooled biological fragments is
made possible by the ligation of sample-specific indices prior to pooling and sequencing. A
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high variation in the number of reads across pooled libraries with similar amounts of starting
material can identify low-quality samples.

Corrective actions A certain number of corrective actions may be taken during the different
stages of the bioinformatic processing to mitigate the effects of low-quality samples. In the
initial phase, when dealing with raw sequencing data - before any subsequent processing
for variant calling or quantification, a small number of corrective measures may be applied.
Previously, these corrective actions were derived from disparate tools, resulting in inefficient
data processing. Nowadays, the fastp tool (S. Chen, Zhou, et al. 2018) consolidates the key
functionalities of various tools into a single and highly efficient program which is widely used.

Reads trimming, i.e, the removal of a certain number of consecutive bases at reads
extremities, is the main corrective action applied at this stage. It serves to remove either
contaminating adapters that should not be here, polyG tail in the reads of Illumina NextSeq
or NovaSeq series, or bases with insufficient qualities located at read tails. On top of being
versatile, fastp is quite elaborate as it implements different trimming strategies for different
sequencing technologies and can learn adapter sequences automatically. Base correction is
the second main corrective measure applicable here. In some specific scenarios, low-quality
bases (Q < 15) may be corrected by replacing them with high-quality bases (Q > 30). This
is only possible for paired-end sequencing data and only at positions overlapped by the two
reads from the same pair.

Cleaned raw sequencing files are also FASTQ files, albeit with fewer or shorter reads. They
are then ready to be further processed in different manners according to the experimental
setting. In the case of DNA sequencing for variant detection in a species with a well-
established reference genome, the next step in the processing is the alignment of reads against
the reference. Aligned reads are then compared against the reference, and a wide number of
statistics are compiled to identify deviations from the reference. In RNA sequencing, reads
may or may not be aligned, against the reference genome or transcriptome, depending on
the analysis aimed and the tool employed. Although RNA-seq may also be used to discover
genetic variants fixed in DNA, the primary purpose of performing RNA-seq is to quantify
the number of different transcripts to assess gene expression levels. Quantification of gene
expression may or may not go through an intermediate alignment step since the development
of pseudo-alignment methods, as will be described in Section 2.1.4.3.

2.1.3.2. The BAM file

The reads that stem from the sequencing of fragmented DNA molecules are then mapped
to a reference genome to identify their origin, an information needed for many downstream
analyses. This requirement also holds true for variant-discovery analyses conducted on
RNA-seq data, mostly for structural variants but also possibly for short variants usually
identified from DNA sequencing although this practice is not recommended. Alignment is
also a possible but non-mandatory step prior to quantification analyses. Some quantification
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algorithms now indeed have the capability to bypass alignment.

Alignment to the human reference genome of reads generated by DNA sequencing
experiments is commonly done through the standard Burrows-Wheeler Aligner (H. Li &
Durbin 2009) available in the program BWA-MEM since 2013 (H. Li 2013). The alignment tool
outputs files in sequencing alignment map (SAM) format from the SAMtools9 suite of tools.
The specifications for this file format may be found on the hts-specs GitHub repository of the
SAMtools project10. As aligned reads storage requires huge volumes of disk, the BAM format
- binary equivalent of SAM - is used as a more efficient format for the long-term storage of
sequencing reads. Likewise, specific tools have been developed to alignreads generated by
RNA sequencing experiments either to the reference genome using splice-aware algorithms
such as the popular STAR algorithm (Dobin et al. 2013), or the reference transcriptome.
They also return aligned reads in SAM or BAM formats.

Aligned reads offer additional opportunities for overseeing the quality of sample preparation
and sequencing processes. The parameters subject to control vary based on the nature of
the sequencing experiment. In techniques such as targeted or capture-based sequencing,
critical metrics include capture efficiency and target coverage. Capture efficiency gauges
the proportion of reads mapping to target-included regions, while target coverages quantify
the percentages of targeted regions covered by a minimum number of reads. In exome and
targeted sequencing, it is not uncommon for capture efficiency to range between 40% and
70%. While exceedingly low efficiencies warrant caution, the critical metrics are predominantly
the coverage of the target at various depths. The mean or median overall coverage serves
as the primary metric when evaluating whether variant calling should proceed with a given
sample. Coverage uniformity is another crucial quality metric. The proportions of regions
covered at different read levels naturally depend on overall sequencing depth but should
ideally fall within the range of 90% to 100% for at least one read and not exhibit significant
drops for higher read coverage. Coverage metrics can be assessed using different standard
tools such as CollectHSmetrics included in the Genome Analysis Tookit (GATK) suite 11

or mosdepth (Pedersen & Quinlan 2018). In the META-PRISM study, presented in Chapter
3, samples with an overall sequencing depth below 40 reads or a target coverage of at
least 10 reads below 60% were excluded. This exclusion criterion should be contextualized
with subsequent variant filtering rules, often necessitating a minimum number of reads
for considering putative variants. Setting a minimum threshold of 10 reads for variant
consideration in a sample with a 10X target coverage at 60% implies that 40% of targeted
regions may go unassessed for variant discovery, potentially leading to a high rate of false
negatives.

The identification and elimination of PCR duplicates represents a critical step consistently
employed in all sequencing endeavors involving a capture step - comprising all previously
mentioned sequencing experiments except for WGS which is minimally affected if at all. The
technical duplication of reads through PCR amplification introduces sequence errors as well as

9http://samtools.sourceforge.net/
10https://github.com/samtools/hts-specs/blob/master/SAMv1.pdf
11https://gatk.broadinstitute.org/hc/en-us
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potentially significant bias into variant-allele frequencies (VAFs) or copy numbers estimations,
particularly when the amplification is uneven across targeted regions. To address this concern,
it is common practice to designate reads sharing identical genomic coordinates PCR duplicates.
Nevertheless, distinguishing technical duplicates from biological ones at this stage remains
challenging. For RNA-seq, where the sequenced material inherently possesses high levels of
redundancy (given that a single gene can generate thousands of identical transcripts), the
question of whether to apply PCR duplicate removal remains unsettled. The standard tool
for marking and removing duplicates is the MarkDuplicates tool within the GATK bundle.
A faster implementation of this tool, known as sambamba12, has recently become available.

For most cancer types, aligned DNA sequencing files usually come in pairs: one file
contains DNA sequenced from healthy tissues, while the other file contains DNA sequenced
from tumor tissues. In certain cancer types, particularly blood cancers, it may be overly
complex to recover tissues not contaminated by the tumor (saliva or skin samples). In such
instances, only one FASTQ or BAM file is usually available, and the identification of genetic
variation compared to the reference genome becomes more involved and less accurate. This
also holds true for the sequencing of cell-free circulating tumor DNA (ctDNA), an experiment
that has gained a lot of attention in the recent years thanks to non invasiveness of the sample
collection procedure. Aligned DNA sequences stored in BAM files are the starting point
for many downstream analyses, most notably the detection of all kinds of genetic variants
or diverse assessments of genome instability (MSI, mismatch repair deficiency (MMRd),
homologous recombination deficiency (HRD)) as described in later Sections.

Nowadays, tremendous numbers of FASTQ and BAM files are available for download on
dedicated platforms such as the database of Genotypes and Phenotypes (dbGaP) (217K WGS,
319K WES, 201K targeted sequencing as of December 2023), the European Genome Archive
(EGA) (3.2M sequence files representing more than 13 petabytes of data as of December
2023), or the GDC data portal (34K WGS, 38K WES as of December 2023), for authorized
users and projects.

2.1.3.3. The VCF file

The variant calling format (VCF) is the standard file format used for reporting genetic
variants of all types. Variant calling algorithms analyze sequencing data from one or multiple
samples compared to a reference sequence. The comparison outputs are stored in one or
multiple VCF files which list all putative variants identified. There used to be different VCF
formats depending on the variant-calling algorithm, the date on which it was produced, and
the laboratory that produced the analysis. Even though there exist public specifications that
try to make VCF a standard file, project, team, or technology-specific VCF files continue to
exist in public databases and may not always be easily used in standard downstream analysis
tools, limiting their utility. Fortunately, recent VCF files now tend to all abide by the reference
specifications detailed on the hts-spec GitHub repository of the SAMtools project13. In this

12https://lomereiter.github.io/sambamba/
13https://github.com/samtools/hts-specs
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repository, one may find documentation specifying how this file format should be structured
for each type of variant. At the time of writing, the latest version released was VCF 4.4, but
earlier versions, particularly 4.3, 4.2, and 4.1, are still commonly used.

In short, the VCF file contains meta-information lines, a header line, and then records
containing information about a position in the genome where a putative variant was identified.
Meta-information lines generally describe the specific commands of the different tools that
have been run to generate the present file. They also provide technical information about
the reference genome used and the meaning of the different abbreviations used in the INFO

or FORMAT fields. The header line must contain the 8 following mandatory fields: CHROM,

POS, ID, REF, ALT, QUAL, FILTER, INFO and one or multiple additional fields for every
sample that was analyzed. Typical VCFs contain either a single sample field, for analyses in
tumor-only mode, or two sample fields for the tumor and normal samples if sequencing data
from both tissue types were analyzed. However, one may also find VCF files aggregating
many samples, particularly the GVCF format recently described in the GATK documentation14

and which aggregates all samples jointly genotyped and possibly all sites, whether there is
a variant call or not. For each sample column, a column FORMAT indicates how the data
is formatted. There can be multiple FORMAT columns if the format is not same from one
sample to another. This happens for instance if the VCF gathers calls produced by multiple
algorithms in which case one format field will be added for each variant-calling algorithm.
Example VCF files can be found on the legacy GDC portal15 for the TCGA breast invasive
carcinoma (BRCA) study under Data Category > Simple nucleotide variation, Data Format
> VCF and Platform > Illumina HiSeq or on the current GDC data portal where the latest
somatic variant calling workflow incorporates four different algorithms16. Examples and
detailed descriptions of the meaning of these fields can be found in the specifications of the
latest VCF 4.4 format. The number of records in a single VCF file varies greatly according to
the experiments and the number of samples that are aggregated. It can range from a dozen
records to billions for public VCF files generated by large consortia as the ones originating
from the gnomAD database with data volumes reaching hundreds of gigabytes17.

2.1.4. Genetic variants and gene expression

Human genetic variants designate variations in the genomes of individuals compared to a
reference genome and can take many forms and originate from many different sources. Of
note, the terms genomic variant and genetic variant will be used interchangeably in this
manuscript with a slight preference for using genomic in the context of variations implicating
large DNA sequences.

To categorize genetic variants, a primary distinction is made between somatic and germline
variants, discerning events acquired during an individual’s lifetime, post-fertilization, from

14https://gatk.broadinstitute.org/hc/en-us/articles/360035531812-GVCF-Genomic-Variant-Call-Format
15https://portal.gdc.cancer.gov/legacy-archive
16https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline
17https://gnomad.broadinstitute.org/downloads#v3-hgdp-1kg
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those naturally inherited from parental egg and sperm cells, respectively. In this manuscript,
there is limited discussion of germline variants, and when addressed, their germline origin
is explicitly stated. All other variants discussed are considered of somatic origin. Genetic
variants are further classified into three broad categories, distinguishing various event types:
SNVs or MNVs, which are localized changes without altering sequence size; indels, which
are also localized but result in changes in the sequence size; and structural variants (SVs),
encompassing diverse events involving one or multiple DNA segments of varying sizes,
potentially up to entire chromosomes.

Fig. 2.4.: Diversity of DNA variant types and their consequences on paired-end reads. MEI, mobile element insertions;
MNV, multi-nucleotide variants; NRS, non-reference sequences; SNV, single nucleotide variants; GRIP, gene
retrotransposition insertion polymorphisms. Reproduced with permission from authors of Zverinova & Guryev (2022).

Figure 2.4 provides a visual representation of the different genetic variant types and their
manifestations in the DNA molecule. The three aforementioned categories are depicted, with
all events being subtypes of SVs, except for those at the top - namely, SNVs, MNVs, short
insertions, and short deletions.

2.1.4.1. SNVs, MNVs, and indels

Changes in a single base are the simplest and most frequent form of genetic variant.
Extensive genetic analyses conducted by the 1000G consortium, encompassing WGS data
from over 2,500 individuals representing diverse ancestries, have elucidated that 99.9% of
germline variants manifest as SNVs or indels, with SNVs occurring approximately ten times
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more frequently than indels. Likewise, comprehensive investigations into cancer genomes have
allowed us to precisely quantify the distribution of somatic genetic variants within cancer cells.
Landmark studies led by the PCAWG consortium, involving more than 2,500 cancer patients,
have delineated a comprehensive catalog of genetic variants spanning all three types of events.
Analogous to germline variation, SNVs, MNVs, and indels - commonly referred to as mutations
- constituted 99.3% of all somatic events. SNVs were nearly 20 times more prevalent than
indels and approximately 100 times more frequent than MNVs (Rodriguez-Martin et al. 2020).

Further dissecting somatic events based on their occurrence in coding and non-coding
regions revealed that a mere 0.8% of all localized genetic variants (i.e excluding SVs) are
located in coding regions. On average, each cancer genome harbors approximately 140 coding
somatic mutations and 18,000 non-coding somatic mutations. Despite this, the predominant
focus of genetic studies on cancer genomes has historically centered on coding regions, partly
due to the historically more economical nature of sequencing targeted regions compared to
WGS, and partly to the intuitive hypothesis that genetic events influencing cellular behavior
are more likely to be situated in protein-coding regions.

As succinctly outlined in Section 1.2.2.2, SNVs, MNVs, and indels can be classified based
on their genomic localization relative to existing gene annotations. Further categorization
is employed for those impacting coding regions based on their consequences on the gene
product. Broadly speaking, mutations influencing regions beyond genes are designated as
intergenic, while those affecting genes are either intronic or exonic. Intronic mutations are
predominantly labeled as intron variants, which are generally silent except for mutations
occurring in specific positions that play a role in splicing. Mutations located at the 5’ and 3’
ends of introns, within the 2-base splice donor and acceptor sites, are denoted as splice

donor and splice acceptor variants, respectively. Mutations occurring a few bases
before or after these splice sites are categorized as splice region variants.

Exonic mutations encompass a diverse spectrum of types based on their functional
consequences. Indels in coding regions are conveniently classified as either frameshift if the
affected base number is not a multiple of 3, thereby altering the reading frame, or inframe

if otherwise. Substitutions (SNVs and MNVs) are categorized as synonymous if they do
not modify the amino acid sequence, and non-synonymous otherwise. Non-synonymous
substitutions are further subdivided into missense if they replace a codon coding for one
amino acid with another, nonsense if they replace a codon coding for an amino acid with
a stop codon, or nonstop if they replace a stop codon with a codon coding for an amino
acid. Mutations in the 5’ or 3’ untranslated regions of genes are classified separately and
their functional impact is less well understood. Additionally, mutations affecting the start or
stop codons receive dedicated classes. For more detailed definitions of all potential functional
consequences, the reader is directed to the Ensembl website page on variant consequences18.

The detection of variants from sequencing data is performed by elaborate algorithms
known as variant callers or variant-calling algorithms. Variant callers do not all have the
same detection capabilities nor are they applicable to data generated from all sequencing

18https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html
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experiments. The calling of indels and substitutions have historically been separated into
different algorithms or different running modes of the same algorithm. Likewise, the calling of
germline and somatic variants are performed using distinct callers or a single caller configured
in distinct modes given the very different nature of these two types of mutations. Table A.2
lists some of the most commonly used variant callers for detecting SNVs, MNVs, and indels
in germline or somatic settings. Some of the tools listed in this table have broader capabilities
such as VarScan2 which can detect somatic CNA, a frequently analyzed consequence of SVs,
or FreeBayes, Platypus, and VarDict which can all additionally detect complex variants.

Most variant callers use joint-genotype inference methodologies derived from Bayesian or
conventional statistical models, incorporating specific filters to deduce the most probable geno-
type from allelic counts on aligned reads. Notable examples encompass MuSE, JointSNVMix,
SomaticSniper, MuTect, LoFreq, Strelka, EBCall, and VarScan. Conversely, alternative
recent algorithms have started to transpose the transdisciplinary successes of neural networks
to calling variants from NGS data. The DeepVariant CNN-based model, for instance,
achieved the highest SNP-detection performance in the precisionFDA Truth Challenge run in
201619 and was shown to perform as good or marginally better than gold-standard germline
variant callers HaplotypeCaller and Strelka2.

Alterations supported by low VAFs observed in tumor samples arise for various biological
reasons, mostly intra-tumor heterogeneity wherein minor cellular clones with different geno-
types coexist or local copy-number variations. They may also arise from technical sources,
including tumor-normal cross-contaminations, DNA damage during sample preservation, base
errors introduced during library preparation or sequencing, or mapping errors. Some variant
callers have specialized in calling low-VAF variants, such as EBCall, which uses an empirical
Bayesian framework for sorting somatic mutations from artifactual ones, or LoFreq, which
claimed to be capable of calling variants with frequencies as low as 0.05% under optimal
conditions of very high coverage (10,000x) and high-quality data (Q40).

However, the performance of specific variant callers exhibits variability across different
datasets. Previous benchmark studies have underscored substantial divergence among the
outputs of various callers for a given dataset (O’Rawe et al. 2013; Krøigård et al. 2016). In
light of these challenges, ensemble approaches have arisen as a strategic solution, combining
prediction results from multiple somatic variant callers to generate a consensus set of calls.
This approach aims to enhance sensitivity without compromising specificity or vice versa.
The efficacy of consensus methods depends on the individual performance of each caller and,
crucially, the heterogeneity of statistical models employed. Different consensus methods have
been developed which combine predictions from three to seven callers using simple majority
voting rules (M. Wang et al. 2020) or more elaborate machine learning (S. Y. Kim et al. 2014;
Fang et al. 2015; D. E. Wood et al. 2018; Anzar et al. 2019; W. Huang et al. 2019) or deep
learning-models (Sahraeian et al. 2019) for generating consensus calls. Multi-caller approaches
have been successfully applied by international consortia, as done for the latest update of
somatic mutation calls on TCGA WES data during the MC3 project (Ellrott et al. 2018), or by

19https://precision.fda.gov/challenges/truth/results

69

https://precision.fda.gov/challenges/truth/results


Chapter 2. Analysis of high-throughput sequencing

the PCAWG consortium where a consensus script named SNV-MERGE implemented a logistic
regression model to combine SNVs and indels calls from five pipelines (The ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes Consortium 2020).

Of note, for the translational studies of WES data derived from the sequencing of tumor
samples of patients with advanced cancer, presented in Chapter 3 and Chapter 4, SNVs,
MNVs, and indels were detected using Mutect2. Specific filtering rules were subsequently
applied for various purposes as will be detailed later.

2.1.4.2. Structural variants and their consequences

Structural variants

Structural variants (SVs) are conventionally characterized as genetic variations affecting
DNA segments exceeding 50 base pairs in size. These variants encompass alterations such
as amplifications, deletions, or rearrangements across the genome, presenting as junctions
between genomic breakpoints. In essence, an SV denotes the contiguous positioning of two
DNA segments normally separated by 50 bases or more. SVs are notoriously difficult to detect
and interpret, making them an underappreciated class of genetic variants. Their diverse
manifestations range from moderately localized events to entire chromosome rearrangements,
displaying varying degrees of complexity based on their biological origins.

Historically, five canonical SV types have been identified and studied: insertions, deletions,
duplications, translocations, and inversions. Nevertheless, more intricate SV types featuring
localized or extended repeats of these canonical types have also been documented. The
mechanistic origin of SV further serves to refine their classification; for instance, duplications
are subdivided into tandem duplications (resulting from DNA replication errors), inverted
duplications (stemming from sister-chromatid or telomere-telomere fusions), segmental dupli-
cations (arising from DNA repair errors), among others. Insertions also exhibit subcategories,
including those caused by mobile elements (MEI, Figure 2.4), such as transposons, viral DNA
insertions, or DNA replication errors, among various other mechanisms.

In a seminal pan-cancer study of SVs encompassing over 2,500 whole genomes, Y. Li
et al. (2020) rely on a simple classification of SVs differentiating between unbalanced SVs,
leading to changes in DNA copy numbers, and reciprocal or balanced SVs, which are nearly
or entirely copy-neutral. Within this framework, insertions, deletions, and duplications fall
under unbalanced SVs, while inversions and translocations are subtypes of balanced SVs. Y. Li
et al. (2020) further delineated distinct SVs types characterized by complex copy-number and
breakpoint patterns. Examples include breakage-fusion-bridge events (a few clustered inverted
breakpoints with copy number changes), chromoplexy (sets of two or more SVs in which the
chromosomal ends at either side of breakpoints are shuffled and rearranged), chromotripsis (a
catastrophic one-time event characterized by the clustering of many SVs resulting in oscillating
copy numbers and rearrangements junctions on one or multiple shattered chromosomes),
and whole-genome duplication (WGD), each with unique features contributing to genomic
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instability. A recent comprehensive review by Cosenza et al. (2022) offers a unified perspective
on SVs, describing their biological origins as well as their role and prevalence in cancer. The
authors proposed a mechanistic classification of known SVs into seven classes, with the five
canonical SVs falling under the "simple events" class. Noteworthy distinctions are made for
chromosomal aneuploidies and genome doublings, considered as separate classes due to their
distinct mechanistic origins primarily rooted in mitotic segregation errors.

Explanations for the mechanistic underpinnings of SVs are notably limited and far less
abundant than those available for base substitutions. Over the past decades, extensive
characterization of both endogenous and exogenous mechanisms governing substitutions
has been achieved, primarily through the elucidation of mutational signatures (Alexandrov,
Nik-Zainal, et al. 2013; PCAWG Mutational Signatures Working Group et al. 2020). In
contrast, mechanistic explanations and signatures associated with SVs have only recently
begun to emerge (Nik-Zainal, Davies, et al. 2016; Y. Li et al. 2020). Section 2.2, in
this context, offers an in-depth exploration of mutational signatures, elucidating how their
foundational concept has been extended to derive signatures specific to somatic SVs or their
CNAs consequences (Section 2.2.4). Additionally, a recent computational approach leveraging
graph-based methodologies has surfaced and provided insights into numerous previously
undisclosed complex SVs events (Hadi et al. 2020).

Pancancer studies of whole genomes have allowed to precisely quantify the prevalence and
significance of somatic SVs in cancer. The PCAWG consortium has conducted a comprehensive
analysis across 2,583 cancer genomes and revealed 288,416 somatic SVs, averaging 111 SVs
per cancer genome (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium
2020). A parallel pan-cancer study on metastatic patients conducted by Priestley et al. (2019)
described 653,452 somatic SVs in samples from 2,399 patients, averaging 272 somatic SVs per
cancer genome. These somatic SVs coexist with germline SVs, which are known to number in
the thousands (J. Wang et al. 2008; Ahn et al. 2009; The 1000 Genomes Project Consortium
2015; Collins et al. 2020) and to influence more genomic bases than the millions of germline
SNVs and short indels (The 1000 Genomes Project Consortium 2015). These studies have
also underscored the critical role of SVs in cancer. A remarkable 55% of cancer driver events
identified by the PCAWG consortium are represented by SVs, surpassing the count of cancer
driver mutations (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium
2020). This remarkable observation highlights the pivotal role played by SVs in cancer,
particularly in amplifying oncogene expression through copy number increases or silencing
tumor suppressor genes via deletions. Another significant consequence of SVs involves the
generation of oncogenic gene fusions or the relocation of enhancers in proximity to oncogenes,
a phenomenon referred to as enhancer hijacking (Northcott et al. 2014; Weischenfeldt et al.
2017). The consequences of SVs can be therapeutically targeted as exemplified by the targeted
drugs ATRA, trastuzumab, and imatinib which inhibit the consequences of PML-RARA gene
fusion in acute promyelocytic leukemia, ERBB2 amplification in breast cancer, and BCR-ABL1
gene fusion in CML, respectively.

The evolution of our capability to detect SVs is intrinsically tied to advancements in
technology. In the early years of cancer genomics, only simple and macroscopic types of
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SV were described. Cytogenetic studies examining karyotypes outlined deletions, inversions,
duplications, and translocations with resolution limitations on the megabase scale. Notably,
these techniques precluded the detection of focal SVs that are now recognized as playing
crucial roles in cancer (Rheinbay et al. 2020; The ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium 2020). With the introduction of microarray technologies, notably CGH
arrays and SNP arrays, assessments of copy numbers at significantly smaller resolutions
became feasible. However, these methods faced limitations in detecting copy number-neutral
SVs and were effective only in identifying copy number-altering SVs supported by consecutive
probes. Consequently, SVs smaller than 50 kilobases in size remained undetected. WES has
proven particularly valuable for identifying SVs within exonic regions and is well-suited for
detecting both chromosome arm copy-number changes and focal alterations, provided they
occur within coding regions. RNA-seq has also proved to be an effective means of detecting
translocations expressed by the transcription machinery, a point that will be elaborated upon
in a next paragraph. Pancancer studies analyzing WGS profiles have, however, revealed that
a majority of SVs occur in intergenic regions, exerting oncogenic effects through alterations in
regulatory regions and other mechanisms (Quigley et al. 2018; Rheinbay et al. 2020). While
WGS does not have the same limitations as other technologies, short-read sequencing methods
pose challenges in identifying SVs in repetitive regions. Long-read sequencing technologies,
such as PacBio SMRT or Oxford Nanopore sequencing, offer new possibilities for precisely
characterizing SVs but currently face limitations due to high error rates, limiting their practical
utility compared to the gold-standard short-read sequencing techniques.

In the next two paragraphs, we shall describe tools for detecting two of the major
consequences of SVs, namely CNAs and gene fusions.

Copy-number alterations

Copy-number alterations (CNAs) refer to changes in the number of copies of large sections
of DNA, ranging from 1 kilobase to entire chromosomes. These alterations result from SVs,
as previously described. We shall use the terms copy-number variation (CNV) and CNA
interchangeably to denote changes in copy numbers of stretches of DNA larger than 1 kb.
This one kilobase limit is slightly problematic for classifying all copy-number changes resulting
from SVs affecting segments larger than 50 bases and smaller than one kilobase. Some
consider them as long indels, but considering them as CNV may be more appropriate. How
they are classified may not matter so long as these events are thoroughly considered. Several
early studies of whole genomes have indeed demonstrated how small CNVs in the range
100b-1kb outnumber larger ones (J. Wang et al. 2008; Ahn et al. 2009), a difference that
partly explains why WGS is much better equipped for detecting SVs and their associated
CNAs than microarray or targeted sequencing techniques.

Until recent years, extensive analyses by international consortia primarily viewed SVs
through the lens of their consequences, particularly focusing on CNAs and gene fusions. CNAs
indeed stand out as the most readily identifiable consequence of SVs. Pancancer studies,
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such as those by Beroukhim, Mermel, et al. (2010), S. L. Carter et al. (2012), and Zack et al.
(2013) have underscored the ubiquity of somatic CNAs in cancer. Dedicated analysis tools
like GISTIC (Beroukhim, Getz, et al. 2007; Mermel et al. 2011) have played a crucial role in
singling out genomic regions where amplification or deletion played a pivotal role in cancer
development. Notably, in their landmark pan-cancer study of somatic CNAs, Beroukhim,
Mermel, et al. (2010) observed that the most prevalent somatic CNAs in cancer were either
focal or encompassed the size of chromosome arms such p and q arms of chromosome 8
which are recurrently lost and amplified, respectively (Kou et al. 2020). Utilizing SNPs array
profiles from over 3,000 solid cancer specimens, they noted that "in a typical tumor, 25% of
the genome is affected by arm-level somatic CNAs and 10% by focal somatic CNAs, with 2%
overlap". Employing the GISTIC tool, they detected over 150 regions subject to recurrent
copy number alterations in their cohort, with 122 of these regions lacking explanation through
the presence of a known cancer driver gene.

In the 2000s and early 2010s, prior to the widespread availability of NGS technologies,
copy-number profiles of genomes were commonly analyzed using DNA microarrays. Most
notably, CGH arrays, such as the Agilent microarrays 244K, 2x415K, or 1x1M, and SNP arrays,
such as the SNP Affymetrix 6.0 array, were extensively utilized in genomic studies following the
completion of the first human genome, including by the TCGA consortium, which made use of
both technologies. CGH arrays involve labeling a test sample and a normal reference sample
with distinct fluorescence markers, which are then hybridized onto a microarray containing
tens of thousands or even millions of probes. The ability to incorporate two different DNAs
on CGH arrays was a great advantage over the single-channel SNParrays as it allowed to
control for many source of biases in copy number that are difficult to model and control for
otherwise. However, it is unable to determine the genotype of specific segments. In contrast,
SNP arrays can simultaneously identify copy-number changes and genotype information, but
only at the positions of known SNPs. In contrast to microarray technologies, DNA sequencing
of individual samples or paired tumor and normal samples presents numerous advantages for
analyzing CNAs. These advantages include the ability to accurately estimate absolute copy
numbers, compute total and allele-specific copy numbers, consider changes across the entire
genome or exome, determine the precise location of SV breakpoints, particularly via WGS,
and differentiate between somatic and germline alterations when a matched healthy tissue is
available.

Table A.3 lists some of the CNA callers commonly used to analyze germline or somatic
CNAs in samples sequenced through targeted sequencing, WES, or WGS. The table shows
that some tools were developed to run specifically on data produced from one sequencing
technology or only from paired sequencing files. FACETS (Shen & Seshan 2016) is, for
example, a tool developed by a duo of statisticians from the MSK that was designed to
analyze somatic CNAs from paired samples profiled on gene panels or the whole exome and
which we will describe more extensively in Chapter 3.

Broadly speaking, tools for calling CNAs employ various strategies to identify and precisely
characterize genomic variations of all sizes using NGS data. Different metrics and characteris-
tics of sequencing reads serve as indicators for SVs, with notable features including variations
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in read density, distances between paired reads, reads orientations, and reads mapping qual-
ities. Among these, changes in read density play a crucial role in characterizing deletions
(low-density) or amplifications (high-density), making it a prominent statistic in CNA-calling
algorithms. Accordingly, many CNA calling algorithms estimate the boundaries of CNAs
by applying segmentation algorithms to read density profiles, often utilizing hidden Markov
models or circular binary segmentation (Olshen et al. 2004). In addition to read density
changes, modified distances between paired-end reads provide valuable information regarding
extra or missing bases in the analyzed genome compared to the reference. Unmapped or
partially mapped reads, known as split reads, are useful for characterizing SVs, as the presence
of one or multiple SV breakpoints within a read may be detected from alignment ambiguities.
By performing local realignment of relevant segments within split reads, the precise location
of breakpoints can be determined.

Calling CNAs from sequencing data, especially from targeted sequencing or WES, is,
however, not without imperfections, as compared to WGS. The main reason for this disparity
lies in the uneven coverage resulting from sequencing on gene panels or exomes, primarily
due to the target capture step, which can critically mislead algorithms. Other confounding
factors that hinder the accurate determination of CNAs include overall coverage depth,
sample preservation methods (e.g., formalin-fixed, paraffin-embedded (FFPE) versus fresh
frozen), tumor purity, and the GC-content or repeat density of the investigated regions. The
work conducted by Chen and colleagues from the Somatic Mutation Working group of the
SEQC-II consortium (Y.-C. Chen et al. 2021) has notably shed light on the influence of
these confounding factors on CNA calls made by six different algorithms. The study revealed
substantial variability across experiments, particularly in low-purity samples where purities
below 50% (common in clinical settings) significantly reduce the number and concordance of
calls across callers compared to high-purity samples. Another important finding from this study
and other benchmarking investigations is the considerable heterogeneity observed in the calls
made by different algorithms on the same data, particularly for focal and low-amplitude events
which are more difficult to identify compared to chromosome arm-level CNA or amplifications
of very high amplitude (R. Tan et al. 2014; Nam et al. 2016; Zare et al. 2017; Y.-C. Chen
et al. 2021). These findings emphasize the urgent need for more robust algorithms and CNA
calling strategies that involve multiple callers to address these challenges, similarly to the
strategies that are currently emerging for calling SNVs or indels (Section 2.1.4.1).

As outlined in Chapter 3, significant efforts were directed towards standardizing the
detection of somatic CNAs across the three cohorts we analyzed and compared. This
endeavor aimed to mitigate potential sources of technical noise and enable a meaningful
comparison of CNA profiles. Specifically, we employed the FACETS CNA caller (Shen &
Seshan 2016) on the paired raw WES FASTQ or BAM files obtained from the three cohorts
of interest.
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Gene and RNA fusions

RNA fusions, also called chimeric transcripts, or fusion transcripts, or chimeric RNAs,
are RNA molecules combining exons, and sometimes introns, from different parental genes.
Upon translation, these molecules have the potential to generate chimeric proteins provided
no event impeding proper translation, such as a frameshift event, results from the fusion. On
the other hand, gene fusions refer to structural alterations at the genomic level where two
genes are connected, leading to their transcription as a single chimeric transcript. It is worth
noting that some SVs can fuse gene segments with intergenic regions or lncRNAs, which
may still undergo partial transcription. Various computational tools have been developed to
identify such events in addition to the more commonly acknowledged gene fusions but some
do not consider them at all.

Gene fusions can result from different types of SVs causing genomic repositioning, most
notably translocations, inversions, and interstitial deletions. RNA fusions, on the other hand,
can result from gene fusions but also from alternative mechanisms at the RNA level. Trans-
splicing, which involves the splicing of exons from different RNA molecules, and read-through
events, which involve the extension of transcription beyond the typical termination signals,
potentially contributing to the formation of extended transcripts, are two other important
sources of RNA fusions that cannot be detected from DNA sequencing experiments. The
PCAWG study of RNA alterations in cancer has notably revealed that 18% of fusions displayed
no evidence of genomic rearrangement (Calabrese et al. 2020). Moreover, a comprehensive
study of the RNA fusion landscape in expression data generated by TCGA and Genotype-
Tissue Expression (GTEx) consortia has revealed that mRNA-mRNA fusions make up only
30.2% of RNA fusions in cancer. In contrast, the remaining 53.7% and 16.1% of fusion
events were mRNA-lncRNA and lncRNA-lncRNA fusions, respectively (Guo et al. 2020). It is
import to exercise caution in defining RNA fusions, considering the persisting incompleteness
of genome and transcriptome annotations, despite the rapid pace of new annotations over
the past two decades. Yuan et al. (2017), for instance, have argued in favor of the exclusion
of read-through RNA transcripts from the definition of chimeric transcripts, acknowledging
the possibility that these may indeed represent normal RNAs from unannotated genes.

The recurrence of gene and RNA fusions in cancer tissues has been extensively docu-
mented (Rabbitts 1994; Heim & Mitelman 2008; Hu et al. 2018; Balamurali et al. 2019).
Chimeric transcripts associated with cancer typically arise from three principal subtypes of SVs:
translocations, inversions, and deletions. Example of translocation-induced fusions include the
BCR-ABL1 protein, a product of the t(9,22) translocation between chromosomes 9 and 22
in CMLs, the MYB-NFIB chimeric protein resulting from the t(6,9) translocation in adenoid
cystic carcinomas, and canonical chimeric transcripts frequently encountered in hematological
malignancies, such as the RUNX1-RUNX1T1 translocation t(8,21) or PML-RARA t(15,17)
translocation (Section 1.2.2.1). Inversions represent a second significant mechanism for
acquiring fusions in cancer, exemplified by the EML4-ALK fusion in lung cancers resulting
from the inversion of the 2p chromosome arm, or the CBFB-MYH11 fusion in leukemias
stemming from an inversion of chromosome 16. Deletions constitute the third most prevalent
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mechanism giving rise to gene fusions. A comprehensive review by Panagopoulos & Heim
(2021) has reported cancer-associated gene fusions occurring on most chromosomes. Notable
examples include the TPMRSS2-ERG gene fusion, identified in 40% of prostate cancers and
attributed to an approximately 3 Mb interstitial deletion on chromosome 21, as well as the
DNAJB1-PRKACA chimeric transcript observed in virtually all fibrolamellar hepatocellular
carcinomas, originating from a 400kb deletion on chromosome 19.

Research teams have undertaken the establishment of databases containing information
on fusion partners or specific fusion breakpoints, aiming to facilitate the detection, filtering,
and interpretation of RNA fusions in both disease and healthy tissues. The foundational work
by Mitelman and colleagues resulted in the creation of a reference database for cancer gene
fusions, commonly referred to as the "Mitelman database"20. Other notable contributions
include the TICdb collection, which catalogs translocation breakpoints in cancer (1,374
breakpoints in its v3.3 version) (Novo et al. 2007), the COSMIC teams’ census of cancer
gene fusions listing 305 cancer driver gene fusions as of December 202321, and the ChiTaRs
database, which, in its fifth version, documented over 23,000 cancer breakpoints. However,
it’s essential to note that not all RNA fusions inherently possess oncogenic properties, as some
have been observed in various healthy cells or tissues. Recurrent chimeric RNAs have indeed
been documented in extensive studies of healthy tissues. For instance, Babiceanu et al. (2016)
reported 291 recurrent fusions in an analysis of over 300 RNA-seq libraries. Similarly, the
GTEx consortium’s comprehensive analysis of more than 9,000 expression samples through
fusion detection tools, identified over 14,000 chimeric RNAs detected five times or more (S.
Singh et al. 2020). These findings now serve as fusion blacklists, aiding in the exclusion of
fusions unlikely to be oncogenic in studies focusing on identifying chimeric RNAs involved in
cancer, such as the comprehensive study presented in Chapter 3.

Table A.4 offers an almost exhaustive list of fusion callers utilized for detecting RNA
fusions from short-read RNA-seq experiments. Notably, the initial tools developed were
dedicated to detecting splice junctions, i.e., the exon-intron junctions where splicing occurs,
to describe previously uncharacterized isoforms or chimeric transcripts. Examples include
TopHat, SpliceMap, and MapSplice, all employing splice-aware mapping to the reference
genome to identify the localization of splice junctions. The prevalent use of mapping to
the reference genome in fusion callers can be attributed to the incomplete transcriptomes
prevalent during the early years of RNA-seq, even in extensively studied species like humans
and mice. While current reference transcriptomes are more comprehensive (Gencode v44,
released in July 2023, includes 252,835 transcripts), capturing most splice junctions in healthy
cells, the approach of mapping to the reference genome persists as a widely used technique
for characterizing novel transcripts or detecting chimeric junctions.

In fusion calling, two core characteristics of reads that serve to identify chimeric events are
the abnormal orientations of paired reads and the mapping ambiguities which can contribute
evidence for breakpoints in DNA or RNA sequencing data. RNA fusion callers in bulk RNA-seq
data heavily depend on two distinct categories of reads. The first category comprises split

20https://mitelmandatabase.isb-cgc.org/about
21https://cancer.sanger.ac.uk/cosmic/fusion
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reads, also referred to as chimeric reads, which traverse the breakpoint within their sequence.
These reads are logically identified by in reads with mapping ambiguities and most notably
soft-clipped bases. The second category, exclusive to paired-end sequencing experiments
that have largely supplanted single-end RNA-seq, consists of spanning read pairs, also known
as bridge read pairs, or discordant read pairs. These designate a pair of reads that deviate
from the expected mapping to contiguous genomic regions based on the average insert size
between mate pairs. Instead, they map to distant regions of the same chromosome or even
different chromosomes. The advent of paired-end sequencing has significantly enhanced the
precision of RNA fusion callers.

Detecting genuine novel splice junctions and chimeric transcripts from standard RNA-seq
experiments poses a formidable challenge due to factors such as the shortness of reads and
the low coverage of genes with low transcription levels, markedly reducing the probability
of detecting split or spanning reads. However, the primary challenge faced by RNA fusion
discovery methods is distinguishing authentic RNA fusions from artefactual ones. This
challenge is made evident by the disparities in the numbers of reported putative novel chimeric
RNAs across different callers and their low concordance (Carrara et al. 2013; Liu et al. 2016;
Haas et al. 2019).

Computational tools designed for detecting fusions in short-read RNA-seq data can broadly
be categorized into alignment-based methods and assembly-based methods. Alignment-based
methods utilize the output of mappers to identify discordant reads in paired-end sequencing
data and perform local alignments on putative split reads to precisely determine the breakpoint
of the junction, if present. On the other hand, assembly-based methods, exemplified by
tools like JAFFA, TrinityFusion, or novoRNAbreak, assemble reads into longer transcripts
before proceeding with fusion identification. The first category of methods is computationally
efficient, highly sensitive to detecting known fusion partners present in reference databases,
and well-suited for short-read sequencing data. However, they are less effective at identifying
entirely novel fusions and struggle with fusions involving repetitive or homologous regions
due to mapping ambiguities. In contrast, alignment-based methods excel at describing novel
or complex fusions but are computationally intensive and more sensitive to data quality. In
general, short-read RNA-seq is suitable for quantifying known fusions or describing novel
fusions involving well-characterized regions that are neither repetitive nor homologous.

Variations between alignment-based and assembly-based tools depend on the choice
of aligners or assembler algorithms and the diverse filtering criteria employed to eliminate
low-confidence or specific types of chimeric transcripts. Commonly applied filters include
the exclusion of read-through chimeric transcripts, the discarding of putative fusions lacking
support from a minimum number of spanning and split reads, the removal of fusions involving
homologous genes or regions, and the exclusion of putative junctions supported by split reads
with insufficient anchoring lengths on either side of the breakpoint (Carrara et al. 2013).
The reported number of putative fusions by callers heavily relies on the choices made by the
authors to strike a balance between sensitivity and specificity. For example, the authors of
Arriba acknowledge the use of stringent filters to minimize false positives at the cost "that
occasionally driver gene fusions are discarded and events with subtle evidence in RNA-seq
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data are lost entirely" (Uhrig et al. 2021). Conversely, SQUID authors prioritized sensitivity
over specificity, aiming to detect transcriptomic SVs beyond gene fusions, i.e non-fusion gene
events, such as events involving rearrangement of a tumor suppressor genes with an intergenic
or lncRNA region, often resulting in truncated transcripts and potential loss of function. Such
variants, not strictly classified as gene fusions, are typically overlooked by most fusion callers.

Similarly to the detection of CNAs, improvements can be achieved through technical and
technological advancements. On the technical front, employing consensus strategies that
integrate results from multiple fusion callers is a promising axis for enhancing specificity while
maintaining high sensitivity. On the technological side, the renewed interest for long-read
sequencing technologies like PacBio SMRT sequencing or Oxford Nanopore sequencing
opens new opportunities for identifying unknown isoforms, precisely characterizing common
fusions, and detecting events too intricate to be reliably delineated by short-read sequencing
techniques (Weirather et al. 2015).

In the analysis of RNA fusions from RNA-seq profiles of metastatic patients presented in
Chapter 3, we combined calls from four top-performing callers and fine-tuned our consensus
criteria for the relatively straightforward task of confidently detecting fusions with known or
putative roles in cancer. However, it is acknowledged that our consensus criteria may not be
optimal in other research contexts where prioritizing sensitivity is crucial or when investigating
unknown fusions, such as those implicating intergenic or lncRNA regions.

2.1.4.3. Gene expression quantification

RNA sequencing has significantly advanced transcriptome coverage and resolution in
comparison to prior methodologies such as microarrays and first-generation sequencing. As
detailed in Section 2.1.2.2, specific library preparation protocols enable the targeted analysis of
distinct RNA species, including miRNA, lncRNA, and total RNA, alongside the conventional
mRNA. Quantifying genes expression from NGS data involves assessing the abundance of
mRNA transcripts in a biological sample. In the early years of RNA-seq, two options existed for
gene expression quantification: relying on a reference and mapping to it, or assembling de novo
transcripts before proceeding to quantification. Similarly to fusion detection, computationally
intensive assembly-based methods are well-suited for constructing de novo a transcriptome
of an uncharacterized species or detecting novel transcripts. However, the human reference
genome and transcriptome, being extensively studied and well-annotated, are now quite
comprehensive. Consequently, de novo assembly of human RNA-seq data is now used only for
specific projects that do not aim to provide a comprehensive gene expression landscape but
rather investigate specific questions regarding the reference transcriptome or the discovery
of novel isoforms. Presently, translational research projects universally rely on the human
reference genome or transcriptome to quantify the expression of known genes or transcripts.

A contemporary RNA-seq pipeline typically beings with quality control on FASTQ files,
followed by alignment, counting, and normalization. Quality control for raw sequencing data,
presented in Section 2.1.3.1, primarily involves read trimming and the removal of low-quality
bases. The second step in the pipeline usually involves alignment to the reference genome
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or transcriptome, utilizing specific aligners. Subsequently, mapped reads are assigned to
either transcripts or genes in a process known as counting or quantification. However, a
transformative class of algorithms known as pseudo-alignment or pseudo-mapping methods
emerged a decade ago, fundamentally altering the practices of gene expression quantification
due to their significantly faster execution time. Consequently, current gene expression
quantification pipelines are broadly categorized as either alignment-based or pseudo-alignment-
based. Alignment-based methods can be further classified based on whether they map to the
reference genome, the reference transcriptome, or both. The two following paragraphs will
describe these two types of gene expression quantification methods in more detail.

Alignment-based methods require mapping RNA-seq reads, which turned out to be more
challenging than mapping reads from DNA sequencing experiments, given that many reads will
span exon-exon splice junctions that are not contiguous in the reference genome. Traditional
aligners like Bowtie and BWA are deemed unsuitable for this task, necessitating the use of
splice-aware mapping tools such as TopHat (Trapnell, Pachter, et al. 2009), MapSplice (K.
Wang et al. 2010), BowTie2 (Langmead & Salzberg 2012) on which TopHat2 (D. Kim,
G. Pertea, et al. 2013) relies, STAR (Dobin et al. 2013), or HiSat2 (D. Kim, Langmead,
et al. 2015). Alternatively, unspliced mapping to a reference transcriptome has also become
popular, employing splice-aware alignment tools like TopHat2 and STAR. The RUM aligner
is a notable hybrid tool that maps to both the genome and transcriptome for aligning
RNA-seq reads (Grant et al. 2011). Numerous comparative studies have been conducted
to evaluate the impact of employing different alignment tools on RNA-seq analysis results.
These evaluations have uncovered significant differences in alignment-related metrics and
exon junction discovery (Grant et al. 2011; Borozan et al. 2013; Engström et al. 2013). As
for the mapping step, diverse tools have been developed to quantify gene expression, such as
Cufflinks (Trapnell, Williams, et al. 2010), eXpress (Roberts & Pachter 2013), RSEM (B. Li
& Dewey 2011), HTSeq (Anders et al. 2015), or StringTie (M. Pertea et al. 2015). Once
again, benchmarking studies such as the one by Teng et al. (2016) have pointed out variable
results across quantification methods, with RSEM standing out as a superior method in this
benchmark.

Pseudo-alignment methods have completely changed how people quantify gene expression
in practice due to their high-speed execution while retaining excellent quantification accuracy.
The three main pseudo-alignment quantification methods are Sailfish (Patro, Mount,
et al. 2014), Kallisto (Bray et al. 2016), and Salmon (Patro, Duggal, et al. 2017). Of
note, the authors of Salmon have developed a novel mapping algorithm called selective
alignment that can overcome the usual mapping errors of pseudo-alignment techniques while
retaining computational efficiency (Srivastava et al. 2020). This method is now incorporated
in Salmon tool as the recommended option to improve sensitivity and used internally for
reads that cannot be confidently mapped using the pseudo-mapping method. Interestingly,
all pseudo-alignment methods accept as input aligned reads and can therefore be used only
for their quantification method, as done in the benchmark study of quantification methods
mentioned earlier (Teng et al. 2016).

Quantification results can be reported either as the direct raw count of reads that align

79



Chapter 2. Analysis of high-throughput sequencing

to the specific feature of interest, namely a transcript or a gene, or using a transformation
over raw counts. Many normalization methods have indeed been devised to counter common
biases, such as the one introduced by the fact that in short-read sequencing, more reads will
naturally align to longer transcripts or by the fact that library sizes are not uniform across
samples. The reads per kilobase per million mapped reads (RPKM) metric has been one
of the first introduced to account for library size and transcript size effects in single-end
experiments. The metric is now superseded by the fragment per kilobase per million mapped
reads (FPKM) metric which is nearly identical except that it is designed not to count twice
paired reads from paired-end sequencing experiments. Transcripts per million mapped reads
(TPM) normalization is a more recent metric that is very similar to RPKM and FPKM in that
it controls for library and feature-length effects but uses a different order of mathematical
operations to increase inter-sample comparability. Briefly, if we denote as Ri

c and Li the read
counts and length of feature i, RPKM and TPM of feature i are defined as

RPKMi =
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c ⇥ 109
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Both RPKM/FPKM and TPM are normalization methods used within a sample, with
TPM being designed for comparing expression levels across different samples by representing
them relative to one million within each sample. The upper-quartile normalization method,
introduced by Bullard et al. (2010), is another commonly used intra-sample normalization
metric and has been notably utilized by TCGA in their initial RNA-seq data release. Inter-
sample normalization methods have also been explored, including trimmed mean of m-values
(TMM) introduced by Mortazavi et al. (2008), and the relative log expression normalized by
sample size factors as developed in the DESeq2 differential expression analysis tool by Love
et al. (2014). Various benchmarking studies have explored the impact of these normalization
methods on downstream analyses (Dillies et al. 2013; Maza et al. 2013; Lin et al. 2016; Quinn
et al. 2018), with Maza et al. (2013) recommending against using FPKM or upper-quartile
normalization for downstream differential expression analysis and instead suggesting TMM
normalization.

Several benchmarking studies have explored the challenges that bioinformaticians face
when selecting specific steps in quantification analysis or entire RNA-seq pipelines. These
studies have revealed that the use of different tools can result in significant discrepancies in
results (P. Li et al. 2015; Teng et al. 2016; Srivastava et al. 2020). Other benchmarking studies
have compared entire RNA-seq pipelines to replicate real-world usage. For example, Arora
et al. (2020) compared five top-performing RNA-seq pipelines for quantifying mRNA transcript
abundances. Although 88% of protein-coding genes had comparable abundance estimates,
12% of genes showed up to 4-fold variation in abundance estimation despite using the
exact same samples and sequencing files. Various types of discrepancies were observed
in the estimations, suggesting that inter-pipeline differences play a significant role in the
uncertainty of mRNA abundance estimates. A recent comprehensive benchmarking study
by Corchete et al. (2020) compared the quantification results of 192 RNA-seq pipelines and the
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impact of pipeline selection on downstream differential expression analysis. Using orthogonal
qRT-PCR-based measures of expression of 107 housekeeping genes, a type of genes that
are consistently expressed across tissues, non-parametric measures of accuracy and precision
revealed that pseudo-alignment methods, notably Salmon with the TPM normalization,
were the top precision performers. In contrast, the top accuracy performers were mostly
alignment-based pipelines that incorporated HTSeq-Union counting and TMM normalization.
The top ten pipelines that balanced accuracy and precision all featured HTSeq-Union or
HTSeq-INTER counting and TMM normalization. The aligners in this short list were RUM,
STAR, or TopHat2 (Corchete et al. 2020).

The lack of consensus regarding the most appropriate algorithms and pipelines has led to
a common practice of reprocessing raw RNA-seq sequencing files using the same pipeline
to achieve datasets that are harmoniously processed. Notably, early harmonization efforts
were accomplished by the TCGA and GTEx consortia. TCGA initially utilized TopHat aligned
and Cufflinks for transcript assembly and expression quantification. However, with the
emergence of new algorithms that offered improved speed and accuracy, many projects,
including TCGA, transitioned towards the STAR and RSEM quantification pipeline. This
transition was performed by GDC, who additionally reanalyzed the RNA-seq data of various
other large-scale cancer studies to achieve harmonization. GTEx, on the other hand, has
applied the TOPMed pipeline22, which internally runs STAR and RSEM, on their 9,661 samples.

Several independent efforts have also reanalyzed data from large-scale projects, most
notably TCGA, with newer pipelines as they emerged. For instance, Rahman et al. (2015)
applied a pipeline utilizing Subread aligner and featureCounts quantification to generate
integer gene-level read counts, unlike the publicly released TCGA Level 3 data. Similarly, Zheng
et al. (2019) used Kallisto pseudo-aligner followed by TxImport (Soneson et al. 2016)
to generate gene-level counts on all TCGA, which they made publicly available. The gene
expression tables thus generated were utilized in our comparative analyses involving TCGA
in Chapter 3. Another notable reprocessing effort is the recount2 project (Collado-Torres
et al. 2017), wherein RNA-seq raw reads from >70,000 human samples deposited in TCGA,
GTEx, and SRA were processed uniformly using the Rail-RNA aligner, and gene expression
counts were obtained via a custom tool named recountNNLS (Fu et al. 2018). Participants
in the recount2 project have further extended their harmonization work into the recount3
project (Wilks et al. 2021), which has uniformly processed over 700,000 human and mouse
specimens through the Monorail pipeline that relies on STAR aligner and Megadepth quantifier
to generate gene-level counts.

In our transcriptomic analyses of Chapter 3, we also opted to analyze RNA-seq sequencing
files harmoniously using a single RNA-seq quantification pipeline. As quantification tables of
TCGA RNA-seq data generated by Kallisto were made publicly available by Zheng et al.
(2019), we used the exact same pipeline as the one released alongside the paper to analyze
our RNA-seq samples from metastatic patients as well as the samples from the validation
cohort.

22https://topmed.nhlbi.nih.gov/sites/default/files/TOPMed_RNAseq_pipeline_flowchart_COREyr3.pdf
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2.1.4.4. The art of variant filtering

As mentioned previously, there exist a myriad of confounding factors that make the
identification of variants (SNVs, indels, CNAs) from sequencing data a complex process for
which decisions must be made to distinguish artifactual variants from biological ones. As
there are no perfect rules for performing this task, any study analyzing molecular alterations
from sequencing data must decide on a balance between sensitivity and specificity according
to the study objectives so as to adjust the filtering criteria accordingly. Whenever a variant
is detected in sequencing data, one must always keep in mind that it may have a technical
origin. Errors introduced during the replication steps of the PCR amplification cycles or base
reading by the sequencing machine, generation of chimeric sequences during adapter ligation,
contamination by other samples, or degradation of the nucleic acids preserved in FFPE are
example sources of artifacts during the library preparation and sequencing steps. Some studies
have investigated in details specific sources of artifacts, such as the work of Costello et al.
(2013) who described how oxidative DNA damage during sample preparation can cause
C>A (G>T) transversion artifacts in targeted capture data. Similarly, Arbeithuber et al.
(2016) demonstrated that amplifiable DNA lesions, such as 8-oxoguanine and deaminated 5-
methylcytosine, can introduce error sources in ultrasensitive sequencing applications, leading to
artifactual mutations that can be indistinguishable from true mutations or variants. Haile et al.
(2019) have shown that FFPE storage can produce strand-split artifact reads due to damage
to nucleic acids during treatment with formalin and extraction. Importantly, though FFPE
preservation is known to cause fragmentation and chemical modification of the embedded
nucleic acids and make downstream molecular analyses more difficult and prone to artifacts,
comparative studies with fresh-frozen samples have demonstrated a remarkable concordance
in the variants identified to allow for the application of NGS to FFPE samples (Schweiger
et al. 2009; Oh et al. 2015). As the vast majority of tissues stored in medical biobanks are
preserved via FFPE, these important studies have opened up vast amounts of data to NGS
analysis.

On top of the putative errors introduced during the sample preparation and sequencing,
the bioinformatic processing of the sequencing files is also a potential source of artifacts.
Errors during the alignment step, one of the first steps of many bioinformatic pipelines, is
a common source of artifacts as it affects all downstream steps, particularly the variant
calling algorithms. As a consequence, quality controls steps are usually applied throughout
pipelines to mitigate the potential sources of artifacts and retain only reads of good enough
quality. The removal of all duplicate reads sharing identical boundaries after alignment is, for
instance, an effective strategy for removing PCR duplicates23, but it may remove real reads
and some argue that it actually has minimal effect on the variant calling accuracy (Alzheimers
Disease Neuroimaging Initiative et al. 2016). Careful consideration of the number of reads
supporting the variant and their sequencing and alignment qualities are key metrics considered
by most algorithms and manual curators to help identify and discard artifactual variants.
There are many other metrics that algorithms consider to decide on the status of candidate

23See Picard MarkDuplicates https://gatk.broadinstitute.org/hc/en-us/articles/360037052812-

MarkDuplicates-Picard-
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variants, such as the orientation of the reads supporting the alternative allele, the presence of
surrounding artifacts, the presence of common polymorphisms at low frequencies indicating a
possible contamination, or the presence of the alteration in a matched healthy sample or in
a panel of unmatched healthy samples indicating a variant of germline rather than somatic
origin.

For all the reasons detailed above, variant calling algorithms have developed filtering
strategies and introduced options that the user can tune in order to further adjust the filtering
stringency. Given the difficulties of accurately calling somatic CNA from exome sequencing
data, filtering on the tumor purity may be critical for dropping overly noisy samples. Ciania
and colleagues have for instance applied a minimum threshold of 20% on the estimated
purity from 8,183 primary exome samples from the TCGA in their analysis of CNA profiles
from 27 tumor types, effectively reducing the number of analyzable samples by approximately
40% (Ciani et al. 2022).

2.2. Signatures of mutational processes

2.2.1. Origin

4 nucleotides
A, G (purines)

C, T (pyrimidines)

AATCGCGTTA

TTAGCGCAAT

5’ 3’

5’3’
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TTAGCGCCAT
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Mutation T > G on + strand.
T+:A- > G+:C-
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TTAGCGCCAT

-

A-:T+ > C-:G+

Mutation A > C on - strand

=

-

+

+

-

Fig. 2.5.: Occurrence of a single-base substitution (SBS)

The concept of mutational signatures was
initially introduced in 2012 by researchers
from the WTSI. In their study, they con-
ducted a comprehensive analysis of the entire
genomes of 21 cases of breast cancer, con-
sidering the nucleotides flanking the 5’- and
3’- ends of each substituted nucleotide (Nik-
Zainal, Alexandrov, et al. 2012). The re-
searchers employed a blind-source separation
method to empirically examine their hypoth-
esis, which posited that any given mutated genome results from a relatively limited number of
mutagenic processes, each affecting specific genomic loci. The fundamental premise of their
approach involved summarizing the complete set of mutations observed within a particular
genome into a 96-category mutation profile. This categorization was achieved by classifying
mutations based on both the specific nucleotide alteration and the nucleotides flanking it.
The formulation of this hypothesis was likely influenced by well-established facts, such as
the prevalence of CC:GG > TT:AA double nucleotide substitution in mutations associated
with UV light exposure, and the preponderance of C:G > A:T transversions in individuals
with lung cancer who are smokers. The rest of this section and following sections will allow
us to delve further into the computational process behind mutational signatures and their
implications for our understanding of mutagenesis in human cancers.

To begin with, as there are precisely four different nucleotides constituting the DNA, and
as each of them may be substituted by any of the three other bases, there are theoretically
12 possible SBSs. If, additionally, we consider the nucleotides immediately upstream (5’) and
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downstream (3’) of the base under substitution in the DNA chain, a total of 16 potential
contexts emerge, thereby engendering 192 feasible SBSs in trinucleotide contexts. However,
as depicted in Figure 2.5, when we observe genomes exhibiting mutations, the original strand
(forward or reverse) upon which the lesion prompting the mutation initially occurred remains
indiscernible. This lack of distinction arises from the identical ultimate outcome, wherein one
pair is exchanged for another. As a pair is always the association of a purine with a pyrimidine,
any mutation can be codified in a way that the original base is the pyrimidine, such as T
> G, or the purine, such as A > C (Figure 2.5). Opting to represent the 12 possible SBSs
with the pyrimidine first results results into the six distinct types of SBS: C > A, C > G, C
> T, T > A, T > C, and T > G. Considering that each of these six types of substitutions
may occur across 16 trinucleotide contexts engenders the 96-categories classification. A
concrete illustration of this system can be observed in the mutation G[T>G]T showcased
in Figure 2.5. Figure 2.6 provides further illustration of a mutational profile wherein the
bars heights depicts the mutation proportion of every type. In this example genome, the
most frequently encountered mutation types manifest as C > T transitions in C[C>T]T and
C[C>T]C contexts.
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Fig. 2.6.: Example of a mutational profile derived from a mutated genome

To test the hypothesis that only a small number of common mutagenic processes contribute
distinctly and additively to the mutational catalog observed in any tumor’s genome, Nik-Zainal,
Alexandrov, et al. (2012) developed a mathematical framework using a blind-source separation
algorithm to characterize unknown mutagenic sources from any given set of mutated genomes.
After developing the method on a small set of 21 whole genomes, the authors applied it to
much larger datasets of cancer genomes aggregated by international consortia, in particular
the set of all human cancer exomes profiled by TCGA (Australian Pancreatic Cancer Genome
Initiative et al. 2013), and later on the set of more than 2,600 cancer genomes as described
in PCAWG Mutational Signatures Working Group et al. (2020). The application of the method
to such large datasets covering the most frequently observed tumor types has permitted the
extraction of a large number of mutational signatures that are now maintained and updated
in a reference database made publicly available on a dedicated page of the COSMIC portal24.
The set of extracted signatures now serves as a reference against which any mutated genome
can be analyzed individually to identify the signatures that contributed to the mutations
observed using one of the multiple projection algorithms that have been developed over the
years, as will be described in section 2.2.3.

In nowadays analyses, one may either factorize de novo a large matrix of mutational profiles

24https://cancer.sanger.ac.uk/signatures/
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or use the set of existing signatures to compute the signature activities in every analyzed
genome using projection methods. The former choice requires having a sufficiently large
dataset in order to perform meaningful analyses. As this setting is very rarely encountered in
clinical studies, researchers often resort to projection algorithms to uncover the activities of
known mutagens in their samples. If we denote by F the number of mutation types (96 for
SBS-based signatures), N the number of mutational profiles (i.e. the number of samples), K
the unknown number of mutational processes, and M 2 R+

F⇥N the matrix of all mutational
profiles. Each method, may it be a projection or de novo extraction, aims at decomposing
the matrix M into a low-approximation product of a matrix W 2 R+

F⇥K of loadings or
factors (or signatures) and a matrix H 2 R+

K⇥N of scores or weights, i.e.

M = WH =
K
X

k=1

W,kHk, (2.2)

where each W,kHk, is a rank-1 matrix resulting from the product between the kth column
of W and the kth row of H. In case one of the two matrices is already known, different
projection algorithms such as non-negative least squares (NNLS) may be used. In other
cases where both W and H need to be estimated (i.e for de novo extraction), the algorithm
used for achieving the decomposition is known as NMF. Formally, NMF solves the following
non-convex optimization problem

8

<

:

arg min
W,H2RF⇥K⇥RK⇥N

d(M|WH)

s.t. Wfk � 0, Hkn � 0, 8f, k, n
(2.3)

with d a divergence function applied and summed element-wise on the matrices. Details
about the possible cost functions, optimization algorithms, and rules for selecting an optimal
number of K are given in Annex A.2.2. A complete example is provided in the next section
which presents the original method developed at the WTSI for the discovery of mutational
signatures.

2.2.2. WTSI de novo extraction

The first algorithm developed for extracting mutational signatures was released in Matlab
in 201225 before being translated into Python and R26. The authors now discourage the
usage of the last Matlab version in favor of the Python tools (Islam et al. 2022). The
original implementation of the procedure for extracting mutational signatures is presented in
Algorithm 1, which relies on NMF to decompose the non-negative matrix M of all mutational
profiles into two non-negative matrices W and H representing the mutational signatures
(columns of W) and the activities of these signatures in each genome (columns of H).
While NMF has been previously applied in the realm of biomedical sciences, the analysis

25http://www.mathworks.com/matlabcentral/fileexchange/38724
26https://github.com/AlexandrovLab
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of mutational signatures analysis stands as one of its most successful applications. Prior
to this application, NMF found utility in the early 2000s for identifying cancer subtypes
from gene expression microarray experiments. Examples include the work of Brunet et al.
(2004), as well as Gao & Church (2005), who applied this technique to AML/ALL and CNS
tumors. Additionally, NMF was employed to extract biological features that remain invariant
to technical variations, known as "metagenes", facilitating cross-platform and cross-species
analyses (Tamayo et al. 2007). The reader is referred to (Devarajan 2008) for more examples
of early applications of NMF in biomedical research.

As is customary for any application involving NMF, a set of key choices must be made,
mainly three: the selection of the cost function, the optimization algorithm, and the cri-
teria for determining an optimal value for K. A comprehensive exploration of potential
selections for each of these fundamental components of NMF applications is presented in An-
nexes A.2.2.1, A.2.2.2, and A.2.2.3, respectively. In their original methodology for mutational
signature extraction, Alexandrov and colleagues opted for the Kullback-Leibler divergence
as the cost function, along with the straightforward multiplicative update rules introduced
by Lee and Seung in their seminal work (D. D. Lee & Seung 2001). The selection of an
optimal K value involved iteratively performing extractions for various candidate ranks and
subsequently selecting the rank that best balances between two quantitative metrics, one
assessing the stability of each factorization - SK - and another its distance to the matrix M -
EK .

Algorithm 1 delineates the process of mutational signature extraction for a specific value
of K. The algorithm may be dissected into three principal, consecutive parts: 1. the
repeated application of NMF on subtly modified instances - referred to as bootstrapped -
of the mutation count matrix; 2. the aggregation of all factorizations through a clustering
algorithm, resulting in the derivation of mean factor matrices W̄ and H̄; 3. the application
of a procedure that induces sparsity on the mean factor matrices. It is common practice to
repeat NMF, often utilizing different initial factor matrices. This repetition is motivated by
certain algorithms’ lack of robust theoretical properties, such as the update rules presented by
Lee and Seung (Chih-Jen Lin 2007), and by the non-convex nature of problem (2.3), which
complicates the search for a global minimum. In their setting, the authors opted to repeat
NMF on slightly modified versions of the original count matrix. These modifications were
sampled from a multinomial distribution, with parameters reflective of observed mutation
frequencies in each mutation type of matrix M. Upon the conclusion of all NMF iterations
- with the authors recommending a minimum of 1,000 iterations - a clustering algorithm
summarizes all factor matrices into two final mean factor matrices W̄ and H̄. As the order of
the signatures may vary from one iteration to another, the computation of these final mean
factor matrices is more complex than a mere arithmetic averaging of all factor matrices. To
achieve this, a variant of the K-means algorithm is employed, capitalizing on the distinctive
structure of matrix BW to exclusively allocate each column of the constituent matrices
W

(1), . . . ,W(I) to an individual cluster. This clustering procedure yields a partitioning
denoted as C1, . . . ,CK of the set J1,KIK with partitions of uniform size corresponding to
the number of NMF iterations. Subsequently, the silhouette index of the resulting clustering
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arrangement is calculated, serving as a metric to assess the stability of the NMF procedure
for the specific value of K currently under exploration.
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Algorithm 1: WTSI SigProfiler algorithm fixed K
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for k = 1, . . . , |K0|� 1 do
for l 2 Kcan do

Compute new weights h
l as above using NNLS on Kcan \ {l}

Compute the corresponding values for dlc and dle

Let l⇤ = arg min
l2Kcan

harmonic mean(dlc, d
l
e)

if dl
⇤

c � d0c < 1% then

H̄:,n  h
l
⇤

Kcan  Kcan \ {l⇤}

else
Break

Compute reconstruction quality EK = kM� W̄H̄k2

Postprocess Reinstate dropped count types by setting the corresponding coefficients to 0.

Output: W̄, H̄,SW,SH, SK , EK
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The last step of the algorithm, the "sparsity-enforcement" step, is actually crucial in
determining the final set of weights and, therefore, the activity of each signature in each
sample. For each profile under scrutiny, a set of candidate active signatures Kcan is identified
using the column of weights H̄:,n origination from the mean factor matrix. Subsequently,
each signature undergoes a comprehensive evaluation to ascertain its possible removal.
This assessment entails the reassignment of signature activities within the profile across all
candidate signatures, with the exception of the one currently under examination. This is
executed employing an NNLS procedure. The evaluation of the refined factorization’s quality
is undertaken by quantifying the cosine and Euclidean distances, abbreviated as dlc and dle,
respectively. The signature found to contribute least to the profile is identified by determining
the minimum harmonic mean between dlc and dle. The said signature is then eliminated from
the profile, provided that the change in cosine distance exhibits a deviation of less than 1%
relatively to the profile derived from the average matrix H̄:,n during the preceding step.

The procedure presented in 1 is repeated for multiple candidate values of K, yielding two
metrics SK and EK for every candidate. These two metrics are subsequently plotted against
K, and a visual inspection of the curves for the best trade-off between the factorization
stability and the reconstruction fidelity chooses the best value for K. Figure 2A from the
article (Alexandrov, Nik-Zainal, et al. 2013) provides example curves from simulated cancer
genomes. The overall code for the mutational signature extraction, denoted as SigProfiler,
is made available in diverse implementations including Matlab, Python, and R, as mentioned
in the introductory remarks.

Building upon this foundational framework, several research groups have developed
analogous tools aimed at performing de novo extraction, as reviewed in several recent
publications (Omichessan et al. 2019; Y.-A. Kim et al. 2021; Islam et al. 2022). One method
in particular, which relies on a Bayesian formulation of NMF allowing automatic selection
of the optimal rank of the factorization (V. Y. F. Tan & Févotte 2009), was first employed
for the extraction of mutational signatures by Kasar et al. (2015) in CLL samples. Shortly
after this first application, Kim and colleagues used it also for characterizing the signature
associated with nucleotide-excision repair (NER) disruption in urothelial cancers (J. Kim
et al. 2016). This distinct version of NMF-based signature extraction was integrated into
an algorithm termed SignatureAnalyzer27, subsequently utilized in the PCAWG reference
study involving 4,645 whole genomes PCAWG Mutational Signatures Working Group et al.
2020. The results of this novel extractor were benchmarked against outcomes produced by the
original SignatureProfiler algorithm within the same study, culminating in overall concordant
findings, albeit diverging in cases of hypermutated profiles, where SignatureAnalyzer

discerned a greater number of signatures.

More recently, a novel study has emerged, addressing the intricacies of rank selection in
the context of NMF for mutational signature extraction. A cross-validation-based approach
was proposed as an easy and robust solution (D. Lee et al. 2022). In this methodology, a
subset of mutation counts is intentionally removed from the observation matrix M, thus

27https://github.com/getzlab/SignatureAnalyzer
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generating missing values. These missing values are then concurrently imputed during the
NMF factorization process, employing an expectation/conditional maximization algorithm.
The sum of the prediction errors between observed and imputed values across the validation
splits serves as a metric for evaluating the appropriateness of the NMF for a given candidate
rank. The rank yielding the lowest prediction error is subsequently selected as the optimal
number of signatures.

2.2.3. Reference catalog and its applicability

As previously indicated, the concept of mutational signature originated from the examina-
tion of the distributions of SBSs detected in WGS of 21 breast cancer (Nik-Zainal, Alexandrov,
et al. 2012). This seminal work led to the identification of five distinct mutational processes,
each delineated by its characteristic profile of 96 mutation types. However, only one of these
signatures, namely Signature A, could be confidently attributed to a biological mechanism -
specifically, arising from the deamination of 5-methyl-cytosine at NpCpG trinucleotides. In
a subsequent publication by the same researchers introducing 1 (Alexandrov, Nik-Zainal,
et al. 2013), it was revealed that only four signatures could confidently be identified from
the 21 breast cancer samples highlighting some sensitivity of signature identification to
methodological changes.

The framework for extracting mutational signatures was then extended to thousands of
tumor samples using the high-quality data gathered by international consortia, mostly TCGA
and ICGC, but also datasets from peer-reviewed papers. The first large-scale application of the
method unveiled 21 distinct signatures through the analysis of 7,042 whole-exome-sequenced
tumors representing over 30 cancer types (Australian Pancreatic Cancer Genome Initiative
et al. 2013). Some of these signatures displayed ubiquitous presence across various cancer
types, such as signatures 1A and 1B mediated by 5-methyl-cytosine deamination. Conversely,
other signatures exhibited cancer type-specific prevalence, such as signature 3, exclusively
detected in breast, ovarian, and pancreatic cancer samples. Remarkably, this signature was
statistically associated with BRCA1/BRCA2 mutations within each of these three distinct
cancer types. However, it is important to acknowledge that while some newly identified
signatures could be tentatively linked to putative etiologies, a comprehensive understanding
of all these signatures necessitated further rigorous investigation. In response to this need,
comprehensive analyses involving 10,250 cancer genomes (Alexandrov, Jones, et al. 2015), 560
whole genomes of breast cancers (Nik-Zainal, Davies, et al. 2016), 50 cases of oral squamous
cell carcinomas (India Project Team of the International Cancer Genome Consortium et al.
2013), and cell lines from the COSMIC cell line project28 were combined to provide a general
landscape of mutational signatures. This comprehensive effort resulted in the development of
a first reference set comprising 30 mutational signatures, publicly introduced in 2015 under
version 229.

The application of SigProfiler and SignatureAnalyzer algorithms in a recent study

28https://cancer.sanger.ac.uk/cell_lines/
29https://cancer.sanger.ac.uk/signatures/signatures_v2/
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encompassing 4,645 whole genomes and 19,184 exomes, which was part of the ICGC collection
of 23 papers released in the February 2020 issue of Nature (PCAWG Mutational Signatures
Working Group et al. 2020), yielded and expanded repertoire of 67 mutational signatures.
This enhanced version, denoted as 3.0, has been incorporated into the reference database
of signatures as part of COSMIC v89 release in May 2019. In addition to single-nucleotide
signatures, this version introduced 11 double-nucleotide and 17 indel signatures. Further
details regarding the characteristics of these signatures are provided in section 2.2.4. Among
the new set of 67 signatures, 34 had a confirmed biological origin and 15 were of unknown
etiology, while speculative attributions have been posited for some. The rest of the signatures
were identified as potentially stemming from sequencing artifacts. At the time of writing, the
most recent iteration of single-nucleotide signatures stands at version 3.3, encompassing a
total of 79 signatures, with 41 of these signatures having confirmed biological origins.

The analysis of mutational signatures has now assumed a key role within cancer genome
analysis pipelines, largely facilitated by the availability of diverse computational tools catego-
rized as either de novo discovery, refitting, or hybrid discovery tools (Cortés-Ciriano et al.
2022). Refitting tools, relying on various mathematical approaches and heuristic principles, are
designed to project individual sets of mutations onto a predefined reference set of signatures.
This projection challenge is often formulated as an NNLS problem, although the suitability
of utilizing the Euclidean distance metric for this purpose warrants further investigation.
Numerous tools have been developed to address this challenge, with comprehensive evalu-
ations and comparisons presented in recent literature (Omichessan et al. 2019; Y.-A. Kim
et al. 2021; Islam et al. 2022). For instance, the R package deconstructSigs, introduced
by Rosenthal et al. (2016), employs an iterative approach to the NNLS projection problem.
Notably, this approach restricts false positives through pre-processing steps and imposes
an empirical sparsity-enforcing threshold in post-processing, which ensures that signature
contributions below a certain threshold - 6% - are disregarded. However, this approach may
lead to false negatives for signatures with low contributions. Another illustrative example
is MutationalPatterns, a tool released in 2018 (Blokzijl et al. 2018) and updated in
2022 (Manders et al. 2022). This tool incorporates a rapid implementation of an NNLS
algorithm and enables the detection of signature activities in single samples. Comparisons
with deconstructSigs showcased similar outcomes, with MutationalPatterns exhibiting
significantly faster runtimes. In their comprehensive review, Omichessan and colleagues
proposed an even faster algorithm by adopting a geometric perspective of the decomposition
problem. They formulated the problem as a projection onto a cone, with the reference
signatures defining the edges of this cone (Omichessan et al. 2019). It is important to note
that many of these tools recommend a minimum threshold of mutations, typically ranging
from 50 (Rosenthal et al. 2016) to 200 (Blokzijl et al. 2018), within the profile under scrutiny
to ensure reliable identification of signature activities. However, the applicability of this
criterion depends on the specific sequencing methodology employed (targeted, WES, or WGS)
and the particular type of cancer under investigation, potentially leading to the exclusion of
substantial numbers of samples from the analysis.

As a result of the community’s growing interest in the concept of mutational signatures
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and rapid development of refitting tools, many translational studies have included the analysis
of mutational signatures as part of their pipeline. In 2016, Nik-Zainal and colleagues
conducted extensive genomics analyses of the WGS of 560 breast cancers. They were able
to extract twelve signatures, including two novels - SBS26 and SBS30 - that have later
been incorporated in version 2 of the catalog of mutational signatures (Nik-Zainal, Davies,
et al. 2016). In 2019, two genomic studies of metastatic breast cancers (Bertucci et al.
2019; Angus et al. 2019) both drawing comparison with the genomic landscape of primary
breast cancers have observed shifts in the contributions of mutational signatures, most
notably an increase in signatures SBS2 and SBS13 - known to be associated with APOBEC-
depending mutagenesis - in the hormone receptor-positive/HER2-negative subtype among
other differences. Other works have specifically addressed the problem of characterizing new
signatures from known mutagens, validating putative biological etiologies, or describing new
mechanisms for unexplained signatures. Most notably, in 2017, an experimental study of
cancer-associated mutational signatures using CRISPR-Cas9 to inactive key genes involved
in DNA repair has allowed us to lift the veil on the origin of SBS30 (Drost et al. 2017).
Genetically-engineered experiments showed that disruption of base-excision repair (BER) by
inactivation of NTLH1 could reproduce this signature first observed in breast cancers (Nik-
Zainal, Davies, et al. 2016). In 2019, Kucab et al. (2019) set out to characterize the mutational
signatures of 79 suspected or known carcinogens using 324 WGS of human-induced pluripotent
stem cells and were able to extract characteristic signatures for 41 of them. Following a
similar line of reasoning but focusing specifically on the damages induced by antineoplastic
drugs, Pich et al. (2019) were able to characterize precisely the footprints left by six widely
used anticancer therapies and presented novel signatures, most notably the signature of
exposure to capecitabine/5-fluorouracil chemotherapies. This signature is dominated by T>G
transversions in CpTpT contexts and was first described in a landmark study of esophageal
adenocarcinoma (the Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)
Consortium et al. 2016) but without proposed origin. It is now known as SBS17b is the
reference set.

From a clinical perspective, the analysis of mutational signatures has been successfully
used to draw clinically-relevant information from NGS experiments as reviewed in (Koh et al.
2021). The accurate prediction by the HRDetect tool (Davies et al. 2017) using WGS data -
98% specificity! - of HRD caused by BRCA1/BRCA2 deficiencies in breast cancers, which is
informative of sensitivity to a specific class of treatments known as PARP inhibitors, was
one of the first and most impactful applications. Predictions of MMRd or its closely-related
condition MSI serve as other successful applications of mutational signatures in the clinic.
These conditions predominantly arise from mutations in mismatch repair (MMR) genes such
as MLH1, MSH2, MSH6, and PMS2 or hypermethylation of MLH1, causing errors in DNA
replication to go unchecked, buildup of mutations, and instability of microsatellites, and are of
particular interest for therapeutic decisions in colorectal and endometrial cancers but also for
all solid tumor types as illustrated by the 2017 FDA approval of immune checkpoint inhibitor
pembrolizumab for any MMR-deficient solid tumor. The peculiarities of the footprints left on
the genome by MMRd - see signatures SBS6,14,15,20,21,26 and 44, or MSI have allowed the
development of different predictors using NGS data such as MMRDetect (Zou et al. 2021).
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The reader is referred to the excellent review (Koh et al. 2021) and references therein for
more examples of clinical applications of mutational signatures.

2.2.4. Extension to other types of alterations

The core idea behind the extraction of mutational signatures has been extended to
larger nucleotide contexts but also to totally different classes of events, including doublet-
base substitutions (DBSs), indels, CNAs, and, more generally, structural rearrangements.
Already in one of the founding articles of mutational signatures (Australian Pancreatic Cancer
Genome Initiative et al. 2013), authors used a 192-class classification of SBS identified in
transcribed regions of well-annotated protein-coding genes by considering the transcription
status - transcribed or untranscribed - of the strand on which the mutation occurred. This
consideration highlighted a significant transcriptional strand bias in several signatures, such as
signatures SBS4 and SBS7, for which a suggested cause for this phenomenon was transcription-
coupled NER that operates predominantly on the transcribed strand of genes. This bias was
also observed in signatures SBS12 and SBS16, but the potential role of the latter mechanism
was unclear for these signatures. In this same work, authors reran the extraction of mutational
signatures by adding two classes to the 96-class classification to incorporate two types of
indels - short nucleotide repeats or with overlapping microhomology at breakpoint junctions
- and found an association of these with signatures SBS3,6 and 15. In the study of the
landscape of 560 breast cancer genomes by Nik-Zainal, Davies, et al. (2016), two indel and six
rearrangement signatures were extracted de novo, along with twelve substitution signatures.
However, the subclassification underlying indel signatures extraction is not clearly specified in
the article nor in the methods, which only mention a classification "according to whether
they were repeat-mediated, microhomology-mediated or neither."

In 2016, Aggarwala and Voight conducted a comprehensive analysis of substitutions by
extending their investigation to encompass 7-nucleotide contexts. Their findings revealed
a significant increase in the proportion of explained variation within the distributions of
SBSs occurring in intergenic non-coding regions - these regions were selected to mitigate
the effects of natural selection. The explained variation surged from 30% - a measure
derived from considering mutations solely within trinucleotide contexts, as originally done
- to an impressive 84% Aggarwala & Voight (2016). In a parallel vein, Alexandrov and his
colleagues embarked on additional exploration of substitution classifications in their recent
study involving an extensive dataset of 4,645 whole genomes and 19,184 exomes PCAWG
Mutational Signatures Working Group et al. (2020). This analysis involved the consideration
of two nucleotides upstream and downstream of each mutation, leading to the creation of a
1,536-class classification. The factorization of these extended profiles yielded signatures that
were broadly consistent with the signatures detected from trinucleotide contexts. However,
multiple signatures showed nonrandom sequence at -2 and +2 contexts. Notably, signatures
SBS2 and SBS13 appeared under two different five-nucleotide contexts that could potentially
reflect the differential activities of cytidine deaminases APOBEC3A and APOBEC3B.

In addition to the exploration of broader sequence contexts, the PCAWG Mutational
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Signatures Working Group et al. (2020) considered alternative classification schemes for
alternative events. More specifically, they formulated 78-class and 83-class classifications for
the expansive set of more than 800,000 somatic DBSs and four million somatic indels detected
across the samples they analyzed, respectively. The analysis of doublet-base signatures was
motivated by the observation that the number of detected DBSs markedly exceeded what
would be expected from the random adjacency of unrelated SBSs. This observation suggested
the involvement of specific underlying mechanisms. The application of the signature extraction
methodology revealed eleven DBS signatures. Correlative analyses of the activities of these
signatures with that of SBS signatures and clinical parameters unveiled meaningful associations
between certain DBS signatures and established mutagenic factors, such as UV-light exposure
(DBS1), tobacco smoke exposure (DBS2), and treatment with platinum compounds (DBS5).
However, despite these insightful correlations, the biological underpinnings of half of these
signatures remain enigmatic at the present time30. Turning attention to indels, an in-depth
analysis of the 83-channel profiles yielded a collection of 17 signatures. As for DBS, signatures,
some of these signatures exhibited links to known mutagens, previously associated with SBS
or DBS signatures. For instance, signature ID3 displayed a positive correlation with tobacco
smoke exposure and was detected concomitantly with tobacco-associated signatures SBS4
and DBS2. For a comprehensive and updated compilation of signatures and their proposed
etiologies, interested readers are directed to the COSMIC website31.

More recently, structural rearrangements, particularly CNAs, have also been subjected to
deconvolution techniques inspired by the framework used for deriving SBS signatures. Various
methodologies have been developed, all rooted in the utilization of NMF for the extraction
of signatures but using different classification schemes. In the notable study Nik-Zainal,
Davies, et al. (2016), the authors employed a 32-class division system of rearrangements.
This classification split events first by separating regionally-clustered events from unclustered
ones, followed by further distinctions into four primary event types: deletions, tandem
duplications, inversions, and translocations. Lastly, the size of the rearranged segment was
categorized into five possible ranges, except in the case of translocations where size was not
considered. The analysis of 560 breast cancer WGS led to the extraction of six rearrangement
signatures, revealing varying correlations with factors such as BRCA1/BRCA2 mutations
or hypermethylation of their promoter regions, as well as estrogen and hormone receptor
statuses.

Subsequently, Macintyre et al. (2018) derived a more intricate 36-class classification
system for rearrangements. This method involved modeling the distribution of six distinct
characteristics of CNAs as mixtures of Gaussian or Poisson distributions. The approach
considered breakpoint counts per 10 Mb windows, segment copy numbers, copy number
changes, breakpoint counts per chromosome arm, lengths of segments with oscillating copy
numbers, and lengths of genomic segments. Each set of these distributions, derived from
the shallow WGS data of 91 high-grade ovarian carcinomas, was treated as a mixture.
The individual components of each mixture then served to the establishment of a profile

30https://cancer.sanger.ac.uk/signatures/dbs/
31https://cancer.sanger.ac.uk/signatures
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encompassing 36 components. Applying NMF to these profiles revealed seven rearrangement
signatures, with associated mechanisms proposed, including those related to BRCA1/BRCA2 -
mediated or -non-mediated HRD, WGD due to cell cycle control failure and PI3K inactivation,
and tandem duplication arising from CDK12 inactivation. Building upon this work, S. Wang
et al. (2021) introduced a modified representation of copy numbers, resulting in an 80-
class classification that encompassed eight general characteristics. This revised method,
implemented through a practical tool named sigminer, offers biological interpretability for
each component, thus departing from hard-to-interpret and tumor type-specific mixture
components from the study of Macintyre and colleagues.

Last but not least, Steele et al. (2022) introduced a general framework for summarizing
allele-specific copy-number profiles. The framework was utilized to create a catalog of 21
copy-number signatures from the nearly 10,000 SNP Affymetrix 6.0 microarrays of TCGA.
This comprehensive framework first categorizes CNA events into three categories: homozygous
deletion, loss-of-heterozygosity (LOH), and heterozygous segments. Further sub-classifications
are established based on total copy number ranges and segment size, resulting in a set of
48-classes allele-specific copy-number profiles. The application of NMF to these profiles
generated a reference catalog of 21 signatures, with only three of them remaining of unknown
origin. This catalog was subsequently incorporated into the version 3.3 of the COSMIC
collection of mutational signatures32.

2.3. Are all alterations causing cancer?

2.3.1. Genomic heterogeneity

2.3.1.1. Germline variants

The great extent of genetic variation in the human population is the basis of the great
phenotypic diversity of between individuals but also the basis for genetic disorders including
hereditary cancer syndromes. Each human genome is made unique - except for monozygotic
twins - by the combination of the germline DNA variants they inherit from their father and
mother’s DNAs during fertilization. Large sequencing efforts like the 1000G have allowed to
quantify precisely the number and types of germline variations found in human populations
from different ancestries. In their reference study of human genetic variation, The 1000
Genomes Project Consortium (2015) estimated that a typical genome differs from the reference
human genome by 4.1 to 5 million sites and that about 20 million additional bases are affected
by SVs of all types. These estimates are approximately in line with earlier analyses of the
complete set of genetic variants detected in the genome of Craig Venter - the first published
personal genome; Levy et al. (2007) - which estimated that this particular genome departed
from the reference sequence by about 1.6% split between short indels and CNAs (1.2%),
inversions (0.3%) and SNPs (0.1%) (Pang et al. 2010).

Although about 99.9% of germline variants are SNPs or short indels, with SNP being

32https://cancer.sanger.ac.uk/signatures/cn/
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about ten times more frequent than indels, they affect less bases than the 2,100 to 2,500
SVs typically encountered in a human genome (The 1000 Genomes Project Consortium
2015). Sequencing efforts have revealed that SNPs are encountered at a rate above one in
1,000 bases meaning that any two random individuals differ by about 3 to 4 million SNPs.
However, the total number of SNPs ever encountered in the human population exceeds by
far this number and keeps increasing as more and more sequencing data becomes available.
The first draft of the human genome revealed the locations of 2.1 million SNPs, 50% of
which only were already catalogued in dbSNP, a database established in 1998 to host the
most comprehensive catalogue of SNPs found in human individuals. This database has been
continually updated as more and more data was analyzed. Most variants in dbSNP are rare
and not true polymorphisms in the sense that their frequency in the general population does
not exceed the 1% threshold generally regarded. The gnomAD database, which started as
the ExAC database before expanding to whole genomes as technologies evolved, is another
widely used resource for describing variants encountered in the general population. It now
includes in its version 3.1 about 644 million short variants passing quality filters observed in
the whole genomes of 76,156 human samples (S. Chen, Francioli, et al. 2022). Interestingly,
about 96% to 99% of the millions of SNPs observed in a typical genome are common in
the sense that the MAF exceeds 0.5% (The 1000 Genomes Project Consortium 2015). This
observation tells us that almost all SNPs of any individual genome can now be described with
the current state of the reference databases.

The analyses of large populations have also revealed that SNPs are not distributed
randomly across the genome. Indeed, the number of SNPs found in our coding DNA -
20,000 to 30,000 - is lower than what would be expected assuming a uniform distribution of
SNPs across the genome - 30,000 to 40,000. Additionally, the observed distribution of the
consequences of these SNPs does not reflect what would be expected by chance considering
the genetic code and highlights instead a bias towards under-representation of non-synonymous
variants. More specifically, we should expect non-synonymous mutations to represent 80% of
all single-base mutations given the genetic code but they only make up about half of the
about 20,000 to 30,000 SNPs found in exonic regions, indicating a bias towards mutations
that preserve the amino acid sequences. These observations put the number of SNPs affecting
proteins at about 1% of all SNPs, a figure that was already reported in the first release of the
human reference genome (Venter et al. 2001). Among these 1% protein-affecting SNPs and
the protein-affecting short indels, about 100 to 200 variants cause protein truncation (The
1000 Genomes Project Consortium 2015). They consist mostly of nonssense mutations or
frameshift indels which introduce a stop codon at the site of the variant or shortly after, but
also of splice variants which usually lead to improper intron removal and protein malfunction.
Although not all of these protein-truncating variants are associated to diseases, they are
commonly considered as the most damaging events and actually make up the majority of the
germline variants associated with predisposition to specific conditions. In their landmark study
of genetic predispositions to cancer using TCGA samples, K.-l. Huang et al. (2018) reported
pathogenic or likely pathogenic variants in about 8% of all samples with remarkable variation
across tumor types. About 87% of these variants were nonsense SNVs, frameshift indels, or
variants affecting splice sites across 99 different genes. A handful of infamous genes have
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now been known for many years to predispose to cancer, particularly TP53 (Malkin 1994),
BRCA1 (Easton et al. 1995), BRCA2 (Hopper et al. 1999), and RET (Mulligan et al. 1993).
Cancer-predisposing germline variants are mostly affecting genes involved in DNA repair
pathways namely BER, NER, MMR, HR, non-homologous end joining (NHEJ). Germline
mutations in genes involved in each of these pathways have been implicated in cancer. Notable
examples include the loss-of-function in HR-implicated BRCA1 and BRCA2 genes, which
render susceptibility to breast cancer (Easton et al. 1995; Hopper et al. 1999). Mutations in
XPC, linked to NER, are responsible for syndromes such as xeroderma pigmentosum with
a highly accrued risk of developing cancer (Cleaver 2005). Mutations in MLH1, MSH2, or
MSH6 genes, all involved in the MMR machinery, cause Lynch syndrome and are associated
with an increased risk of ovarian or endometrial cancer. Mutations in MUTYH gene, which
is implicated in BER, serve as another prime example of DNA repair defects associated with
increased cancer risk, notably colorectal cancer (Al-Tassan et al. 2002).

2.3.1.2. Somatic variants

Cancer genomes are themselves extremely heterogeneous. The cancer classifications
described in Chapter 1, though already complex and constantly evolving as knowledge and
evidence accumulate, only provide little insight into the genomic heterogeneity of cancers.
As the results of the first systematic studies of cancer organized per clinically-defined tumor
type were revealed in the late 2000s, it became clear that the set of genomic alterations
encountered in human cancers was highly variable across and within tumor types. The
TCGA series of tumor type-specific comprehensive molecular portraits has allowed to quantify
precisely this heterogeneity across the most common tumor types. This pioneering series of
studies has revealed that a few genes are commonly mutated across cancer types, pointing to
common roles in the initiation and progression towards a malignant state. To name a few
only, TP53 and CDKN2A are the most commonly altered tumor suppressor genes whereas
KRAS, EGFR, PIK3CA and CCND1 are among the most frequently mutated oncogenes.
Secondly and more importantly, these studies have allowed to grasp the wide variety of
alterations encountered and the great heterogeneity in the number of alterations detected
across individual genomes. Figure 2.7, which displays the mutational burden measured as the
number of somatic mutations - SNVs and indels - per megabase of sequenced genome in
three different cohorts, provides an illustration of the variation in the number of detected
somatic mutations across and within tumor types. While the most mutagenic tumor types,
namely skin cutaneous melanomas (SKCMs) and LUSCs, have median mutational burdens
of nearly 10 mut/Mb, the burden of the least mutagenic types, namely pheochromocytoma
and paragangliomas (PCPGs) and thyroid carcinomas (THCAs), does not exceed 1 mut/Mb
that is to say ten times less. Even more striking in this figure is the wide range of mutational
burdens observed across patients in virtually all tumor types, highlighting the diversity of
mutation landscapes encountered in cancer patients.

The molecular landscape of each cancer type is typically characterized by a long-tail
distribution of alteration frequencies. This distribution comprises a small list of frequently
altered and well-characterized genes and a long list of infrequently altered genes whose roles
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Fig. 2.7.: Mutational burden in the 32 solid tumor types represented in TCGA. Blue, red and green dots are patients
from non-metastatic TCGA, metastatic META-PRISM and metastatic (MET500) pan-cancer cohorts, respectively.

in tumorigenesis are generally not clearly understood. The frequent alterations usually involve
a few key genes encountered across most tumor types such as TP53, and a small number of
genes specific to the tumor type under investigation or to a small number of tumor types.
Prime examples of alterations encountered in a limited number of tumor types are IDH1/IDH2
mutations in gliomas and AML (Dang et al. 2010); RET rearrangements in papillary thyroid
carcinoma (PTC) and NSCLC (Parimi et al. 2023); MYB-NFIB gene fusion in adenoid cystic
carcinomas of the breast and head and neck (Persson et al. 2009); HER2 amplification in
breast and gastric cancers and, to a lesser extent, gynecological, colorectal and lung cancers;
MYCN amplification in neuroblastomas (Brodeur et al. 1984); deletion of chromosome 5q in
MDS (Heim & Mitelman 1986).

The genetic heterogeneity of tumor cells also manifests itself at the scale of individuals and
the concept of tumor clonality is absolutely essential to the understanding of this heterogeneity.
In cellular biology, a clone designates a group of identical cells sharing a common ancestor. If
no modification of the genome occurred during our lifetime in any of our cells, we would all
be a single clone deriving from one egg cell. However, our cells are constantly exposed to
endogenous or exogenous factors and natural sources of replication-associated errors that
induce somatic alterations in our cells’ genomes. This genomic plasticity fuels evolution but
also the development of genetic disorders. While it has been commonly accepted for a long
time that tumors arise from a single cell with a genetically-acquired selective advantage, this
conception has been challenged a few times in the last two decades. Most notably, Pr. B. L.
Parsons has discussed in details in her two reviews on the origin of tumor (B. Parsons 2008;
B. L. Parsons 2018) how this conception is persisting through time although evidence has
accumulated over the years in favor of the alternative hypothesis of the polyclonal origin of
tumor. Whether or not a tumor initiates from a single clone or multiple clones, it is important
to understand that cancer development is a gradual process where cells progressively acquire
malignancy through alterations. At the cellular level, cancer development involves a multistep
process of mutation and selection, leading to cells with enhanced capacity for proliferation,
survival, invasion, metastasis, and resistance to drugs. This process, known as clonal selection,
persists throughout tumor development and drives tumor evolution. The alterations acquired
in the early stages of the tumor and found across all clones are said to be clonal in contrast
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with subclonal alterations present only in one or a few clones. The existence of subclonal
alterations is of paramount importance to cancer treatment as it is the likely reason behind
most cancer treatment failures (Schmitt et al. 2016). In the late stages of the tumor evolution,
the genomic heterogeneity is exacerbated by the independent fate of cells that detached from
the primary tumor to form metastases (Yachida et al. 2010).

The genomic heterogeneity observed between patients from a same cancer type or between
tumor cells from the same individual cancer is now substantially increased by the diversity
of cancer treatments used and their effects on cells’ DNA or on the clonal composition of
the tumor. Treatment with antineoplastic drugs results in the destruction of tumor cells
sensitive to the drug but also, all too often, to the selection and expansion of the clones with
the ability to resist it. This treatment-induced selection of clones capable of evading the
effects of the treatment results in a shift in the landscape of alterations in treated tumors
compared to treatment-naive tumors. The amplification of androgen receptor (AR) gene
is, for instance, almost never encountered in treatment-naive prostate cancers but is the
most frequent alteration in recurrent prostate cancer (Visakorpi et al. 1995; Robinson et al.
2015). Mutations in estrogen receptor 1 (ESR1) gene are another example of an alteration
infrequently encountered in primary breast cancers but frequently detected after treatment
with aromatase inhibitors, a specific type of hormone therapy (Dustin et al. 2019). The
study presented in Chapter 3 will provide more insights into the genomic differences between
treatment-naive tumors and heavily-treated metastatic tumors.

2.3.2. Cancer drivers

2.3.2.1. Cancer hallmarks

The key capabilities that cancer cells acquire and the pathways they hijack for growing
out of control are summarized in the essential concepts of cancer hallmarks. In their first
conceptual work on the topic, Hanahan & Weinberg (2000) introduced a framework for
classifying the different general principles of neoplastic processes into six cancer hallmarks
thought to be shared across the majority, if not all, cancers. The six original hallmarks included
the ability to replicate indefinitely, to activate proliferative signaling independently from the
host, to be insensitive to growth suppressors, to induce angiogenesis, to resist cell death, and,
lastly, to invade tissues and metastasize. Tumor development is widely seen as an accelerated
form of Darwinian evolution in which successive genetic events confer one or another type of
growth advantage, eventually allowing tumor cells to outgrow normal cells. The malignant
abilities acquired by tumor cells are the consequence of changes in their protein contents,
which, for the majority, originate from alterations of the DNA molecule as subtle as point
mutations and as evident as changes in the number of copies or structure of chromosome
segments or entire chromosomes. Other mechanisms than mutational lesions contribute
to oncogenesis, most notably epigenetic events that are heritable from one cell to another
and whose role in cancer was appreciated early on (Laird 1997). However, Section 2.3.2 is
focused on describing genetic variants directly implicated in tumorigenesis and will therefore
not consider epigenetic events further.
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In 2011, two new cancer hallmarks were added to the original six to acknowledge the role
of novel biological mechanisms extensively described in the literature for their association
with cancer (Hanahan & Weinberg 2011). As previously mentioned in the first version
of the hallmarks, tumors are not simply a collection of tumor cells but rather complex
tissues consisting of diverse cell types that form the tumor microenvironment (TME). The
extensive literature on the role of the TME has led Hanahan and Weinberg to introduce two
additional hallmarks: escape from immune destruction and deregulation of cellular metabolism,
emphasizing the impact of the microenvironment on the tumor behavior not dictated by
genetic mutations. In 2022, two more hallmarks were added, phenotypic plasticity and cellular
senescence, bringing the total number of cancer hallmarks to ten (Hanahan 2022). Phenotypic
plasticity involves the dedifferentiation of cells, blocking the differentiation of progenitor cells,
or transdifferentiation to alternative lineage programs. Cellular senescence, which was once
viewed as a mechanism protecting against neoplasia, has been found to stimulate tumor
development and malignant progression primarily through the release of chemokines and
cytokines forming part of the senescence secretory phenotype.

2.3.2.2. Identification of somatic drivers

The genetic landscape of human cancers is known to be remarkably diverse, with a
highly variable number of somatic mutations observed across mutated genomes. It has been
established early on that only a small number of genes and mutations, referred to as cancer
driver genes and mutations, are responsible for driving oncogenesis (Balmain et al. 1993). In
a seminal study on cancer genomes, L. D. Wood et al. (2007) analyzed 11 breast and 11
colorectal cancer samples and concluded that no more than 15 somatic mutations out of
the 80 typically observed in these individual tumors were responsible for driving initiation,
progression, or maintenance of the tumor. Subsequently, Vogelstein et al. (2013) estimated
the number of driver mutations to be between two and eight, with a time span of 20 to
30 years necessary for the occurrence of the successive genetic events required to initiate
a tumor. The number of driver mutations thought to be required for driving cancer has
remained relatively stable since then, as evidenced by a recent review on the topic of cancer
drivers by Ostroverkhova et al. (2023), which puts it at between one and four depending
on the tumor type. It is widely understood that tumor cells acquire malignant capabilities
through different patterns of mutations in two categories of genes: oncogenes, which are
activated by gain-of-function missense mutations affecting recurrent amino acid positions,
and tumor suppressor genes, which are inactivated by loss-of-function mutations, mostly
nonsense and frameshift events, occurring throughout the genome. Non-driver mutations,
also known as passenger mutations, represent the majority of all somatic events detected
in any cancer genome. They have no effect on neoplastic processes and are mostly the
consequence of age-related mutagenesis or tumor-induced genomic instability. Distinguishing
passenger events from driver ones has been a long-sought question that remains incompletely
resolved today, although it has been addressed through many different angles as presented
hereafter.

Identifying driver mutations is a daunting task due to the vast heterogeneity of genotypes
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and the lack of standardized datasets for benchmarking and improvement, as noted by Ostro-
verkhova et al. (2023). The groundbreaking study by L. D. Wood et al. (2007) revealed that
cancer genomes consist of a handful of frequently mutated genes ("mountain" genes) and
a long list of rarely mutated ones ("hill" genes). As sequencing techniques improved, more
comprehensive genomic coverage and increased statistical power allowed for the discovery of
many more rare driver mutations. Algorithmic developments guided by refined understanding
of mutagenesis have also enabled increasingly precise predictions. Computational methods for
identifying driver genes fall into three broad categories: mutational burden-based, functional
bias or sequenced-based, and clustering patterns-based.

Methods assessing the mutational excess over background rates, or mutational burden-
based methods, have been introduced early on and improved over the years with increasingly
complex models to model the background mutation rates. Mutsig 1.0, which computes a
cancer mutation prevalence score of all observed somatic mutations using six nucleotide and
dinucleotide-specific background rates, stands as a pioneering method in this category (Sjoblom
et al. 2006). The analysis of 11 breast and 11 colorectal cancer samples through this method
resulted in a list of 189 genes, a number that we now know is staggering and comprises many
false positives. The method was improved years later to result in the MutSigCV algorithm,
which attempts to better capture the variability of mutation rates across and within genomes
by employing (i) patient-specific mutation frequency and spectrum and (ii) gene-specific
background mutation rate incorporating regional replication time and expression level. Whereas
Mutsig 1.0 applied to 180 LUSC samples returned 450 putatively driver genes, MutSigCV

used on the same samples lowered the list size to just eleven genes (Lawrence, Stojanov,
Polak, et al. 2013). Other popular methods for detecting driver genes based on mutation
recurrence include Music (Dees et al. 2012), which only models sequences with proper
coverage in the available data and compiles p-values from three different statistical tests of
mutation excess compared to nucleotide- and context-dependent background mutation rates,
or nonsynonymous to synonymous ratio methods based on the assumption that synonymous
mutations are less likely to be under selective pressure compared to nonsynonymous mutations.
The ratio of nonsynonymous to synonymous was explored early on in the work of Greenman
et al. (2007), who identified 119 driver genes among 578 protein kinase genes, and was
expanded later on in the dNdScv method by Martincorena et al. (2017), who identified 179
genes under positive selection in 7,664 tumors sequenced by the TCGA.

The second major category of driver gene detection methods involves the analysis of
sequence features, such as evolutionary conservation and the functional impact of mutations,
to distinguish drivers from passengers. A majority of these methods rely on bioinformatic
prediction tools that aim to quantify the functional significance of mutations through various
scores such as VEST (H. Carter et al. 2013), MutationAssessor (Reva et al. 2011),
SIFT (Ng 2003), PolyPhen2 (Adzhubei et al. 2010), and comined annotation dependent

depletion (CADD) (Kircher et al. 2014) scores. These scores are based on different metrics,
including conservation, transcript-associated information, and protein-level scores, to predict
the functional impact of missense mutations and detect genes with unusually impactful
mutations. Several methods have been developed to improve the accuracy and scope of driver
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gene detection. For instance, OncodriveFM (Gonzalez-Perez, Perez-Llamas, et al. 2013) uses
a suite of functional impact scores, including SIFT, PolyPhen2, and MutationAssessor,
to detect driver events in genomic regions. The method was later enhanced by (Mularoni
et al. 2016) to identify driver events in untranslated and non-coding regions and regions with
poor sample coverage. Similarly, the RF5 method applies the random forest approach to
predict three classes of genes (unknown function, oncogene, or tumor suppressor gene in the
pan-cancer setting and has identified several potentially new driver genes (Kumar et al. 2015).
More recently, the PertInInt method (Kobren et al. 2020) has emerged as a sequence-based
method that combines multiple tracks of protein functionality, including interaction domain
and evolutionary conservation, with a "natural variation track" to identify driverevents based
on the background mutation rate of genes. These methods have advanced our understanding
of driver genes and their underlying mechanisms and offer promising avenues for future
research.

The last major category of tools for calling driver genes uses the clustering or spatial
patterns of mutations as indicators of positive selection. The most simple of these algorithms is
probably the 20/20 rule devised by Vogelstein et al. (2013), which builds upon their experience
that driver genes are best identified through mutation patterns rather than frequency. As
oncogenes are recurrently mutated at the same amino acids, known as hotspots, whereas tumor
suppressor genes are affected throughout the gene length by nonsense or frameshift mutations
that result in loss-of-function, driver genes of each category can, according to the authors,
be easily identified by considering as oncogenes those having 20% of recurrent missense
mutations for oncogenes,and tumor suppressor genes those harboring 20% of inactivating
mutations. Applying this rule to the COSMIC database resulted in 71 tumor suppressor
genes and 54 oncogenes. The study of the positional clustering of mutations into mutational
hotspots has been modeled by OncodriveCLUST (Tamborero, Gonzalez-Perez, et al. 2013),
which identifies genes with non-silent mutations that cluster together in protein sequences
more than expected based on a background distribution of synonymous mutations. The
methodological framework was updated with a new linear clustering algorithm to detect
genomic regions with significant clustering signal, resulting in the OncodriveCLUSTL tool,
which was shown to outperform OncodriveCLUST (Arnedo-Pac et al. 2019). Other notable
methods that have harnessed the distribution of mutations inside proteins to detect signals of
selection include ActiveDriver (Reimand & Bader 2013), which tries to identify recurrently
mutated phosphorylation sites, or e-Driver, which identifies protein functional regions with
biased mutation rates using functional networks of proteins (Porta-Pardo & Godzik 2014).

Hybrid methods have also been developed to capture signals of cancer selection derived
from all three sources, namely the excess of mutation recurrence over background rates,
the functional bias of mutations, or their spatial distributions along proteins. MutSig2CV,
which combines all three signals with recurrence excess predictions from MutSigCV, analysis
of patterns of clustering by MutSigCL, and assessment for enrichment in evolutionarily
conserved sites by MutSigFN, has been applied on 4,742 samples from 21 tumor types
to build two catalogs of 254 and 219 cancer genes, respectively, one being slightly more
stringent than the other (Lawrence, Stojanov, Mermel, et al. 2014). The catalogs thus
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generated are available on an interactive portal available at http://www.tumorportal.org.
Likewise, mutpanning (Dietlein et al. 2020) identifies genes that are likely to be functionally
relevant based on their abundance of nonsynonymous mutations and their increased number of
mutations in unusual nucleotide contexts that deviate from the background mutational process.
Other hybrid methods have more data-driven approaches that employ machine learning models
to combine the outputs from different driver prediction methods, pathogenicity or functional
impact scores, and different annotations of the sequences. A notable example is the IntOGen

integrative tool (Gonzalez-Perez & Lopez-Bigas 2012; Martínez-Jiménez et al. 2020) which
combines the scores of the functional impact of SIFT, Polyphen2, and MutationAssessor

with the signals of selection predicted by OncodriveFM and OncodriveCLUST to identify
drivers in a cohort of tumor samples. The application of IntOGen pipeline on 4,623 samples
from TCGA originally uncovered a compendium of 568 cancer genes. The compendium
has been expanded upon over time using the more than 28,000 cancer exomes publicly
available (Martínez-Jiménez et al. 2020). The latest update of IntOGen portal, dating back
to May 2023, lists 619 driver genes based on the cancer exomes and genomes of more than
33,000 samples representing 73 cancer types33.

Recent research has revealed that the analysis of driver events in cancer may be better
performed through gene networks or pathways. While a diverse range of genotypes are
observed within histologically identical tumors, there are a small number of critical biological
functions that are implicated in cancer. As discussed by Vogelstein et al. (2013), driver events
function through a dozen signaling pathways that regulate three core biological processes:
cell fate determination, cell survival, and genome maintenance. The success of Singh and
colleagues’s work (Hristov & M. Singh 2017; Hristov, Chazelle, et al. 2020) in employing
protein-protein networks with and without prior knowledge of disease-associated genes has
allowed for the implication of many lowly-mutated genes in large sets of tumors profiled by
TCGA. Additionally, (Sanchez-Vega et al. 2018) extensive analysis of ten canonical pathways
in one of the 23 papers part of the PanCancer Atlas has confirmed that a few critical genes
accumulate the majority of driver events but also revealed a complex interplay of co-occurring
and mutually exclusive alterations within and across these pathways.

Although less extensively explored, computation methods have also been developed to infer
genomic segments under positive signals of selection for changes in the number of their copies,
either through loss or amplification. STAC tool (Diskin et al. 2006)) is a method developed
on data generated by CGH arrays which utilizes two complementary statistics to identify
non-random gains and losses. The GISTIC method released one year later by Beroukhim,
Mermel, et al. (2010), and its updated version GISTIC2.0 (Mermel et al. 2011) which more
finely models the background rates of CNAs according to different genomic characteristics,
stands as the method of choice for detecting chromosome arm-level or focal CNA events
under positive selection in any set of tumor samples.

33https://www.intogen.org/search
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2.3.2.3. Databases of somatic drivers

The predictions made by the different algorithms calling somatic drivers on cancer samples
have served to build reference databases of cancer driver genes and, increasingly more,
databases of cancer driver mutations. These databases often incorporate different protocols
and grading scales to quantify scientific confidence in the gene’s driving status. The first
such effort was the manually curated cancer gene census (CGC), initiated by (Futreal et al.
2004) and totaling 291 genesin its first version. The CGC aimed to include only genes with
independent and concordant reports of causal links with cancer through mutations, excluding
genes implicated in cancer only through altered expression levels or modified methylation
patterns. By 2007, the CGC had grown to 350 genes, as reported in Greenman et al.’s
study (Greenman et al. 2007). Sondka et al. (2018)’s re-evaluation of the CGC significantly
expanded the list of cancer driver genes to 719 genes, introducing the concept of tiers to
distinguish genes with documented evidence of oncogenicity (tier 1, 574 genes) from those
with strong indications of playing a role in cancer but without well-established mechanistic
evidence (tier 2, 145 genes). In addition to the classical dichotomy between oncogenes and
tumor suppressor genes, the CGC also lists genes implicated as a partner in oncogenic fusions
but not functioning as an oncogene or tumor suppressor gene alone.

Over the years, researchers have developed increasingly elaborate and accurate cancer
driver gene lists using computational tools applied to large cohorts. These in-silico lists
contribute to the pieces of evidences considered in the assessment of cancer-driving statuses
of genes or specific mutations of the curated databases presented in the next paragraph. The
Cancer5000 project identified 254 genes using MutSig2CV on 4,742 cancer exomes across
21 tumor types, as previously mentioned (Lawrence, Stojanov, Mermel, et al. 2014). The
PanCancer Atlas released a compendium of 299 cancer genes and 3,400 driver mutations by
combining the predictions of 26 computational tools on over 9,000 pan-cancer exomes (Bailey
et al. 2018). The PCAWG project’s flagship paper presented a hybrid approach to build a
compendium of 744 cancer genes and 3,719 driver SNVs out of the 22,854 SNVs affecting
these genes observed in the more than 2,500 whole genomes analyzed. This approach
combined a rank-based approach for discovering new drivers and a rule-based approach for
discovering drivers in genomic elements already implicated in cancer.

Similar to the CGC, recent efforts have focused on building high-confidence and, often,
manually-reviewed databases of cancer drivers. Unlike the CGC, such efforts have sought to
establish reference databases that specifically implicate only particular positions and amino
acid changes in known cancer genes, answering the need to lower the resolution of the driver
definition from genes to mutations as passenger events are known to occur also in cancer
genes. They have additionally aimed at providing the clinical implications that these variations
have in tumor type-specific contexts to help clinicians make the most of the current knowledge
accumulated in the literature. The most prominent of these efforts has certainly been achieved
by the MSK’s precision Oncology Knowledge Base (OncoKB) database (Chakravarty et al.
2017; Suehnholz et al. 2023), which aimed at providing a unique resource for distilling curated
knowledge about the oncogenicity as well as the clinical implications (diagnostic, prognostic,
and therapeutic) of specific mutations in specific cancer types. As knowledge is constantly
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evolving and as strong evidence sometimes only appears through the accumulation of cases or
complementary studies, OncoKB employs a grading scale to quantify the current confidence
level of the scientific community in each genotype-phenotype relationship. Likewise, Clinical
Interpretation of Variants in Cancer (CIViC) database aims to reach similar goals but relies
on the community to curate specific mutations’ functional and clinical implications (Griffith
et al. 2017). Although less rich in the total numbers of oncogenic events, CIViC contains
more detailed annotations of the clinical implications of known driver mutation and can,
therefore, be used in complement to OncoKB as we did for the study presented in Chapter 3.
More recently, efforts from the Institute for Research in Biomedicine (Spain) have resulted in
a tool called Cancer Genome Interpreter34, which can be used by anyone to automate
the interpretation of variants (Tamborero, Rubio-Perez, et al. 2018). The platform also
serves as a knowledge database of known cancer driver genes and mutations and their
therapeutic implications. It additionally provides in-silico predictions from a method named
OncodriveMUT for classifying the 88% protein-affecting mutations of unknown significance
falling into cancer genes. The in-silico predictions have recently been enriched with a machine
learning approach named boostDM that exploits the patterns of mutations in 568 cancers
across 28,000 cancer samples to classify all possible nucleotide changes along cancer genes as
either driver or passenger, an analysis known as saturation mutagenesis (Muiños et al. 2021).

34https://www.cancergenomeinterpreter.org/home
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Abstract Chapter 3

In this chapter, we will describe the integrative analyses of the genomic and tran-
scriptomic profiles of refractory metastatic patients that I have led throughout my
PhD. The work presented in this chapter relies on the concepts and tools presented in
Chapters 1 and 2. Although metastatic relapse after treatment is the leading cause
of cancer mortality, known resistance mechanisms are missing for most treatments
administered to patients. To bridge this gap, we analyzed a pan-cancer cohort - named
META-PRISM - of 1,031 refractory metastatic tumors profiled via whole-exome and
transcriptome sequencing and included in precision medicine trials led at Gustave
Roussy. META-PRISM tumors, particularly prostate, bladder, and pancreatic types,
displayed the most transformed genomes compared with primary untreated tumors.
Standard-of-care resistance biomarkers were identified only in lung and colon cancers
(i.e 9.6% of META-PRISM tumors), indicating that too few resistance mechanisms
have received clinical validation. In contrast, we verified the enrichment of multiple
investigational and hypothetical resistance mechanisms in treated compared with
untreated patients, thereby confirming their putative role in treatment resistance. The
analysis of treatment resistances will be presented in depth in Chapter 4. Additionally,
we demonstrated that molecular markers improve 6-month survival prediction, par-
ticularly in patients with advanced breast cancer. Our analysis establishes the utility
of the META-PRISM cohort for investigating resistance mechanisms and performing
predictive analyses in cancer.

P
rimary untreated tumors have been extensively studied through genomic and transcrip-
tomic profiling, yielding valuable insights into their heterogeneity (Hoadley et al. 2018;

Sanchez-Vega et al. 2018; Ding et al. 2018) and demonstrating the utility of molecular
profiling for precision oncology (Dietel et al. 2015; Yates et al. 2018; Malone et al. 2020).
Recently, several studies have further investigated the utility of molecular profiling in advanced
cancers (Karapetis et al. 2008; Le et al. 2015; Drilon et al. 2018; Le Tourneau et al. 2019;
Sicklick et al. 2019; Rothwell et al. 2019; Rodon et al. 2019) or the genomic landscapes
of pan-cancer (Zehir et al. 2017; Robinson et al. 2017; Priestley et al. 2019; Nguyen et al.
2022) or tumor type-specific (Gundem et al. 2015; Naxerova et al. 2017; Bertucci et al.
2019) metastatic cohorts and shown that genomic differences between metastatic tumors and
primary non-metastatic ones. Indeed, mutagenesis is somewhat different between advanced
tumors and primary tumors partly due to the impact of some widely used antineoplastic
treatments, such as mutagenic platinum-based drugs (Szikriszt, Póti, Pipek, et al. 2016;
Pich et al. 2019). Moreover, the therapeutic pressure imposes additional constraints that
contribute to tumor evolution and acquisition of resistance (Poon et al. 2014). Consequently,
patients who developed resistance to multiple lines of therapies have limited treatment options
and dismal prognosis. However, these patients might benefit from phase I clinical trials
aiming to find new therapeutic strategies that do not cause severe side effects. An accurate
estimation of the expected survival time is vital to determine patients eligibility for these
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clinical trials.

Over the course of the last ten years, a series of precision medicine trials have been led
at Gustave Roussy that aimed at investigating the clinical benefits of selecting treatments
according to the genomic alterations detected from sequencing experiments in patients with
advanced tumors (Massard et al. 2017; Recondo et al. 2020; Berger et al. 2022; Bayle et al.
2022). Gustave Roussy, as a leading cancer center in France and Europe, has conducted
large studies wherein systematic the exome and transcriptome were profiled either at entry
into the study or, for the most recent studies, both at entry and at resistance to one or
multiple innovative drugs. The retrospective study presented in this chapter is based on the
data derived from two large pan-cancer studies led at the institute (Massard et al. 2017;
Recondo et al. 2020) that have allowed us to establish a uniquely large and detailed database
containing the clinical and molecular profiles for more than a thousand metastatic patients.
Although a few other pan-cancer studies of comprehensive genomic profiles have been released
recently, treatment history information is often lacking, which limits the extent of the analysis
of the interplay between cancer treatments and the genomic alterations of tumors (Szikriszt,
Póti, Pipek, et al. 2016; Pich et al. 2019; Pleasance, Bohm, et al. 2022).

This work introduces META-PRISM, a pan-cancer cohort of 1,031 tumors that progressed
under at least one line of treatment or have no approved therapy options. The cohort was
analyzed to answer the following three primary objectives:

1. Delineate the genetic alterations landscape in advanced metastatic cancers that have
demonstrated resistance to treatment and compare it with treatment-naive early-stage
tumors.

2. Ascertain the utility of conducting molecular profiling to risk stratify patients and
enhance the precision of eligibility criteria for phase I clinical trials.

3. Explore established or emerging mechanisms of resistance in relation to patients’
treatment histories and potentially uncover novel ones.

Somatic variations, germline mutations, and tumor microenvironments were analyzed via
WES and RNA-seq. Identified genetic markers were compared with tumor-type matched
untreated primary tumors from TCGA (The Cancer Genome Atlas Research Network et al.
2013), focusing on functional pathogenic variants associated with resistance, and validated
using metastatic tumors from the external MET500 cohort (Robinson et al. 2017). We further
investigated the utility of genomic and transcriptomic markers to improve the prediction of
survival time from objective clinical variables in the META-PRISM cohort such as lactate
dehydrogenase (LDH) levels, serum albumin, neutrophil-to-lymphocyte ratio, or the number
of metastatic sites (Arkenau et al. 2009; Bigot et al. 2017).

3.1. The META-PRISM database

The META-PRISM project started in 2020 with the aim to retrospectively analyze the
molecular profiles of more than a thousand metastatic patients that have been enrolled in
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MOSCATO 1/2 (Massard et al. 2017) and MATCH-R (Recondo et al. 2020) precision medicine
trials at Gustave Roussy. Although the patients analyzed were included in previous studies
that have led to publications, only minimal patient and tumor information was readily available
for analysis. Therefore, the project’s first step consisted of querying databases from multiple
hospital services to aggregate the complete clinical history of the patients and exhaustive
details about the pathology and the biopsies to correlate the tumors’ genotypes with the
clinical observations as precisely as possible. The second step of the project involved a
complete reanalysis of the archived sequencing files to extract exhaustive lists of genomic
alterations and gene expression modifications and ensure the uniform processing of sequencing
data. This bioinformatic processing was not limited to the META-PRISM cohort but also
included the data from TCGA and MET500 cohorts, which were used for comparison and
validation purposes, respectively. The processing of these external cohorts is presented
in Section 3.2. The current section details how the database of META-PRISM patients
underlying this large study has been assembled, curated, processed, and structured to prepare
for the correlative and predictive analyses.

3.1.1. Data retrieval and curation

3.1.1.1. Biopsy and sequencing

The META-PRISM initiative was designed to leverage the wealth of sequencing and
clinical data accumulated over the past decade through several large precision medicine trials
conducted by Gustave Roussy. Specifically, the cohort encompassed all adult patients with
solid tumors who had been offered WES or RNA-seq as part of the concluded MOSCATO 1

trial, as well as the then ongoing MOSCATO 2 and MATCH-R trials, and who had provided
informed written consent. One of the participating medical oncologists compiled an initial list
of patients, outlining the primary characteristics of their cancer and providing minimal details
about their received treatments. This preliminary dataset comprised 1,044 patients, roughly
categorized into groups mirroring the 33-type classification employed by TCGA to facilitate
tumor-type specific comparisons. While the data included standard clinical information such
as gender and date of birth, as well as somewhat standardized descriptions of the primary
biopsy site and the site subjected to sequencing, further information was necessary to establish
links with the sequencing files stored in archival repositories, as well as to facilitate biopsy
selection for patients who had undergone multiple biopsies. To address this, I requested
supplementary data from various hospital services and received data tables in diverse formats.
As I began assimilating and aggregating these tables, I uncovered discrepancies, prompting a
more exhaustive inquiry through the implementation of automated scripts.

The systematic cross-comparison of tables prior to their integration unveiled numerous
data discrepancies and, of greater concern, recurrent inconsistencies within the chain of
identifiers linking sequencing files to clinical data. These initial findings marked the beginning
of a lengthy and labor-intensive cycle involving the solicitation of data, comparison with
existing data, documentation of discrepancies, and their resolution through manual review
with colleagues to establish a meticulously curated clinical, biopsy, and sequencing database.
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3.1. The META-PRISM database

As we delved into the various hospital databases to refine our own repository, we gathered
more comprehensive information regarding the biopsies dates and sites. Additionally, we
collected information on the performance status and blood test results obtained through
assessments conducted within one month of the biopsies whenever such records were accessible.
Concurrently, we undertook the task of compiling the complete history of antineoplastic
treatments administered to each patient. This last task proved to be highly demanding and
is expounded upon in Section 3.1.1.3.

No sequencing
(85)

Pediatric
(45)

Unusable sequencing
(5)

Not 1s list
(135)

No consent
(48) No sequencing

(5)

Unusable sequencing
(24)

1s list
(77)

Included
(1031)

RNAseq
(462)

WES
(84)

WES & RNAseq
(485)

Excluded FinalChanges

Fig. 3.1.: Changes in patient selection for the META-PRISM cohort. The final list of 1,031 patients is compared to
the first list of 1,044 patients compiled at the start of the project.

The examination of the library preparation databases preceding the sequencing phase
revealed a notable portion of sequenced samples that had not been initially included in the
study. The inclusion of new sequencing data and of more than 50 patients with pancreatic
and prostate cancers midway through the project caused shifts in the patient cohort, as
delineated in Figure 3.1. Compared to the first list, 77 patients were excluded due to the
absence of informed consent upon verification by ethics services 18 months into the project or
the absence of sequencing data meeting the required quality control. Indeed, as explained in
Chapter 2, the handling of raw sequencing data involves a succession of quality assessments.
These assessments serve to flag tumor or blood samples exhibiting poor sequencing quality,
characterized by shallow or heterogeneous coverage, an elevated count of duplicates, or sample
contamination. In infrequent instances, some samples fail processing by one or multiple
algorithms and are consequently disregarded. Subsequent to the processing of the sequencing
data, additional expert quality checks are required to discard tumor samples characterized
by excessively low tumor purity or samples from instances of patient mismatch between
the tumor and blood samples. After all the sequencing data was retrieved, processed, and
quality-controlled, a total of 1,031 patients having at least one good-quality WES (569
patients) or RNA-seq sample (937 patients) were retained and considered further (Figure 3.1).

For the study’s stated purposes, we selected and analyzed exactly one biopsy per patient.
We, therefore, established a set of rules to select one biopsy for patients who had undergone
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several. These rules depended on the type of sequencing performed, the biopsy date, and, in
case of ties, the sample tumor purity as estimated by a trained histopathologist. Given the
substantial number of discrepancies identified in the initial data, we undertook a comprehensive
review of the dates and locations of all the biopsies subjected to sequencing within the selected
trials.

Date_Match_Site_Match - 506

Manually_Reviewed - 473

No_Date_Match - 164

Site_Present - 1143

Multiple_Tumor_Biopsies - 204

Single_Tumor_Biopsy - 939

Biopsy Status Review Status Is Present

Fig. 3.2.: Review of the tumor biopsies dates and sites to allow for the selection of one biopsy per patient and enrich
analyses.

As with all other review tasks, our initial approach sought to extract the necessary data from
electronic databases in order to minimize the need for manual review. Regarding biopsy dates
and locations, the data could be partially obtained by executing an automated query within the
anatomical pathology department databases via Dr Warehouse, a digital database and query
tool recently deployed at Gustave Roussy1. The resulting table featured the patient identifier,
the date of the document extraction, the biopsy site - presented in a non-standardized French
format - and a code derived from the French ADICAP nomenclature denoting the nature of
the patient’s pathology or sample. I processed this table, translating and standardizing the
biopsy site designations into the ICD-O-3 nomenclature before cross-referencing against the
existing biopsy records also standardized into the ICD-O-3 nomenclature. A match in patient
identifier, biopsy date, and site was deemed sufficient to consider that the data could be
trusted. Nevertheless, the patient’s information was absent from the automatically retrieved
table in numerous instances, or no corresponding biopsy date or location could be identified.
All such instances necessitated manual review and represented 473 out of the 1,143 biopsies
under consideration for the study, as illustrated in Figure 3.2.

1https://www.gustaveroussy.fr/fr/recueil-et-utilisation-des-donnees-des-patients-au-sein-de-dr-

warehouse
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Once we had collected complete information about all the biopsies that were molecularly
profiled for the 1,031 patients of the study, we proceeded to apply rules for the 92 patients
who had multiple biopsies to choose from, with a median of 2 biopsies (range 2-5) per patient.
Given the richness of the genetic information that can be extracted from the availability of
WES and RNA-seq, preference was accorded to biopsies that underwent both experiments. In
cases where this scenario did not materialize, priority was given to biopsies subjected to WES
over RNA-seq (Rule 1). In the event of ties, the subsequent rules were applied: selection
of biopsies obtained during the selected trials or shortly before (Rule 2), preference for the
most recent biopsies in chronological order (Rule 3), prioritization of biopsies with the highest
estimated purity (Rule 4), and ultimately, if any ties persisted, random selection (Rule 5).
The latter occurred in instances of multi-site biopsies or single-site fractionated biopsies
collected on the same date, undergoing identical sequencing, and having identical estimated
tumor purities. The number of biopsies selected according to each of these rules is depicted
in Figure 3.3.

Rule 1 - Sample_Type - 32

Rule 2 - In_Date_Range - 4

Rule 3 - Biopsy_Date_In_Days - 47

Rule 4 - Histological_Purity - 7
Rule 5 - Random - 2

No selection - 939

Multiple_Tumor_Biopsies - 92

Single_Tumor_Biopsy - 939

Patient Selection

Fig. 3.3.: Application of rules to select biopsies in patients who have multiple biopsies available.

3.1.1.2. Cancer characteristics

The two defining characteristics, namely the primary site and histology, of the cancers
from the 1,031 META-PRISM patients were also subjected to meticulous reviews throughout
the project. As highlighted in Chapter 1 of this thesis, precise cancer classification holds
immense significance for both clinicians making treatment decisions and researchers utilizing
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it to categorize patients in their analyses.

Within the context of the META-PRISM study, the imperative for an accurate determina-
tion of primary tumor sites and histologies was exacerbated due to the planned comparison
with TCGA, where patients are categorized into 33 specific tumor types. The initial data tables
already provided a preliminary classification of each META-PRISM patient into TCGA-like
classes, which was derived from the automated processing of French descriptions of the tumor.
However, this automated process exhibited imperfections, and in rare instances, conflicting
French descriptions of the patient’s pathology coexisted. Regarding the biopsies, we embarked
on a manual review of the primary site and histology of the tumor whenever we deemed it
necessary to do so. This manual review took place over no less than 21 in-person meetings
with participating oncologists throughout the study, spanning a period of more than two years
(Figure 3.4).
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Fig. 3.4.: Timeline of all the manual reviews of patients and biopsies data performed during the course of the project.

In the study, a total of 548 patients out of the 1,031 participants underwent a thorough
manual examination of at least one of the two class-defining characteristics of their tumor.
During this manual review, all the preexisting and updated records of the primary site and
histological subtypes were translated into the ICD-O-3 topographical and morphological tables,
aligning with the reporting guidelines established by the NCI2 and mirroring the reporting
standards used by TCGA. All manual reviews were done in accordance with these guidelines.

The manual review resulted in updates to the primary site and histological information
for 180 and 315 patients, respectively (Figure 3.5). A significant number of these reviews
involved refining the site location, such as distinguishing between the bladder and upper
urothelial tract in cases where the initial designation was bladder, or designating specifically
the primary site in all patients with cancers of the oral cavity or upper digestive areas, as these
types of cancer often have loosely described sites. Similar attention was given to histologies,
particularly for the 122 patients initially labeled as having "carcinoma, not otherwise specified"
who underwent manual review to provide precise descriptions. This effort was extended to

2https://seer.cancer.gov/icd-o-3/
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Colon, NOS - 1
Bladder and upper urothelial tract - 1
Gallbladder - 1

Upper urothelial tract - 20

Bladder - 6

Urethra - 1

Rectum, NOS - 1
Breast, NOS - 1
Thigh - 1
Vertebral column - 1

Intrahepatic bile duct - 24

Adrenal gland - 12

Adrenal gland, NOS - 1

Parotid gland - 12

Oropharynx - 15

Gum - 3

Maxillary sinus - 1

Submandibular gland - 7

Nasal cavity - 4

Palate - 3

Unknown primary site - 3

Ovary, NOS - 1
Skin, NOS - 1
Orbit, NOS - 1
Small intestine, NOS - 2

Skin - 1

Urachus - 1

Main bronchus - 1

Lung, NOS - 9

Peritoneum - 1

Abdomen, NOS - 1
Kidney, NOS - 1
Unknown - 1

Cervix uteri - 10

Appendix, NOT_TCGA - 1

Bladder - 18

Bladder, NOS - 5

Colon, NOS - 1

Connective, subcutaneous and other soft tissues, NOS - 3

Extrahepatic bile duct - 2

Kidney - 1

Kidney, NOS - 17

Larynx - 1

Liver - 22

Oral cavity - 18

Other and ill-defined sites in lip, oral cavity and pharynx - 8

Ovary - 2
Overlapping lesion of lip, oral cavity and pharynx - 1

Peritoneum, NOS - 1

Pharynx, NOS - 5

Skin, NOS - 2

Small intestine, NOS - 1

Submandibular gland - 15

Testis, NOS - 1

Unknown - 3

Unknown primary site - 11

Uterus, NOS - 11

Old primary New primary

180

Adenocarcinoma with neuroendocrine differentiation - 3

Adenoid cystic carcinoma - 4

Cholangiocarcinoma - 15

High-grade serous carcinoma - 13

Infiltrating duct carcinoma, NOS - 14

Infiltrating duct mixed with other types of carcinoma - 6

Mucinous adenocarcinoma - 2

Neuroendocrine tumor, grade II - 15

Poorly differentiated adenocarcinoma - 2

Renal cell carcinoma, chromophobe type - 2

Adenocarcinoma, NOS - 83

Acinic cell carcinoma - 2

Adenocarcinoma, endocervical type - 1
Ameloblastic sarcoma - 1
Clear cell carcinoma - 2
Collecting duct carcinoma of Bellini - 2

Desmoplastic small round cell tumor - 3

Endometrioid carcinoma, NOS - 1
Follicular adenocarcinoma, NOS - 1
Hepatocellular carcinoma, NOS - 2

Hepatocellular carcinoma, fibrolamellar - 1

Large cell neuroendocrine carcinoma - 4

Lobular carcinoma, NOS - 1

Mullerian mixed tumor - 2

Myoepithelial carcinoma - 3

Myoepithelial carcinoma, NOT_TCGA - 1
NUT-type - 1
Parathyroid carcinoma - 1
Sarcomatoid carcinoma, NOT_TCGA - 2

Serous carcinoma, NOS - 3

Signet ring cell carcinoma - 1

Small cell neuroendocrine carcinoma - 14

Squamous cell carcinoma, NOS - 9

Undifferenciated carcinoma - 1
Undifferentiated carcinoma with osteoclast-like giant cells - 1
Undifferentiated sarcoma - 1
Urachal mucinous adenocarcinoma - 1

Urethral clear cell adenocarcinoma - 1

Germ cell tumor, nonseminomatous - 5

Leydig cell tumor - 2
Sertoli cell tumor - 1
Yolk sac tumor - 1

Infiltrating duct and lobular carcinoma - 1
Glioblastoma - 1

Carcinoid, NOT_TCGA - 1

Neuroendocrine tumor, grade I - 6

Papillary transitional cell carcinoma - 2

Ganglioglioma - 1

Adrenal cortical carcinoma - 13
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Fig. 3.5.: Changes in the tumors histologies and primary sites of META-PRISM patients upon manual review. The
histologies and primary sites were updated in 180 patients and 315 patients, respectively.

select tumor types, particularly sarcomas, a notably diverse subset of cancers encompassing
nearly 200 recognized histologies (Section 1.3.1.4), as well as NETs and NECs, where tumor
grade information was included whenever available in the records.

In total, the cancer type assignments, which form the basis of many of the study analyses,
were adjusted for 241 patients. Among these, 88 were determined to be unclassifiable within
any of the 33 TCGA subtypes and were consequently excluded from all tumor-type-dependent
analyses (Figure 3.6). The exclusion of these 88 patients, in addition to the previously
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Fig. 3.6.: Changes in TCGA-like tumor type assignment in 241 META-PRISM patients upon manual review. The two
left donut plots provide details about the changes in the tumor histology and primary site that motivated the changes
in group assignment for mislabelled TCGA-like sarcomas - sarcoma (SARC) - and head and neck squamous cell
carcinomas - HNSC.

identified 50 patients not falling within these classes, highlights the imperative nature of this
review process and the importance of considering precise histologies to perform clinically
meaningful group comparisons. Notable examples of cancer type assignment changes include
all adenoid cystic carcinomas of the head and neck, initially classified into the HNSC TCGA
study (Figure 3.6, bottom-left), which we considered as a separate entity, and all sarcoma
subtypes not part of the six subtypes included in the TCGA SARC study3 (Figure 3.6, top-left).

3https://www.cancer.gov/ccg/research/genome-sequencing/tcga/studied-cancers/sarcoma-study
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3.1. The META-PRISM database

3.1.1.3. Treatment history

Concurrently to the manual review of patients’ and biopsies’ core characteristics, we set
out to retrieve the complete histories of the treatments received before the biopsies so as
to correlate genomic alterations with treatment exposure and, more importantly, resistance.
Once again, we extracted automatically lists of treatments using the Dr Warehouse database
deployed at the institute. As the task of retrieving treatment histories was done concurrently
with the revision of the patient list, we performed two automatic queries in Dr Warehouse,
resulting in two tables of treatments referred to as "Trt_1" and "Trt_2" in Figure 3.7. As
the "Trt_1" data table is a strict subset of "Trt_2", it will not be discussed much further.
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Fig. 3.7.: Patient overlap between the five different sources of treatment data.

The results of these automatic extractions included treatments administered intravenously.
Depending on the extraction mode chosen, each line in the extraction tables reported
either a single treatment name (Trt_2) or an excerpt of text that contained the treatment
name(s), administration method, and dosage information (Trt_1). Although the "Trt_1"
table was not utilized in the final analyses, I developed automated scripts to process this data,
extracting detailed information, including the first and last administration dates, the number
of administrations, and the total dose received for each treatment-patient combination. This
information may prove valuable in subsequent analyses on the cohort.

While the resulting data was rich in information, it lacked crucial details about drug doses
and treatment regimens, precluding us from distinguishing cases where a drug was used over
a long period of time as a single line from cases where it was administered over short period
times in different treatment lines. Moreover, the extractions made using Dr. Warehouse did
not capture orally administered treatments or those administered outside Gustave Roussy.
Consequently, we decided to supplement this initial treatment history data with data manually
collected for the MOSCATO study (Trt_3). Unfortunately, no such data was available for the
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MATCH-R study during the META-PRISM project. Additionally, the data collection task for
the MOSCATO study aimed at listing only the last anticancer drug administered, and therefore
did not align with our desire to obtain complete treatment histories.

To complement our database of treatment histories, we also attempted to apply a compre-
hensive and flexible regex to all electronic health records stored in Dr Warehouse (Trt_4). This
regex was constructed by aggregating all encountered treatment names, including both com-
mercial names and international common denominations (DCI). Additionally, we incorporated
treatments from a table of antineoplastic drugs generously shared by a clinical collaborator.
The resulting regex is shown in Annex A.3.1. As anticipated with this approach, when we
compared the dates and the number of matches from the regex to the actual treatment
courses for intravenous treatments from the "Trt_2" table, it became apparent that there
were numerous false positives in the sense that the regex had identified the treatment on
many more occasions and over much longer timeframes than the actual treatment duration
and the number of administrations (as depicted in Figure 3.8).
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Fig. 3.8.: Comparison between the number of treatment administrations from Trt_2 table and the number of times
the treatment name was matched via a regex as reported in Trt_4 table in the 586 patients and 70 drugs common
between these two tables.

These false positives arose due to the numerous reasons for mentioning a treatment name
in a report besides the actual treatment administration, such as summarizing the treatments
received thus far or discussing potential drugs to be administered in the future. Furthermore,
this approach is susceptible to false negatives because not all electronic documents can
be subjected to regexes, especially in the case of scanned documents. To address this, an
additional effort involving the extraction of text from images, which may require the use of
one of the AI models specifically designed for this purpose, would be necessary.

Given the importance of having trustworthy treatment data for the patients, and because
we wanted to focus on the treatments for which resistance was diagnosed before or shortly
after the biopsy we analyzed, we requested help from three different medical oncologists to
manually review the accumulated treatment data. To guide this review process, we provided
the oncologists with pre-filled treatment tables, where treatment names were arranged in
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3.1. The META-PRISM database

columns, and patients in rows. For each cell within this pre-filled table, we populated it with
the first and last dates of treatment extracted from the "Trt_2" and "Trt_3" tables. In cases
where this information was not available from these tables, we included the first and last
dates of regex matches as a guide for the manual review process. The specific task assigned
to the oncologists was to add a binary indicator in cells where the patient had received the
treatment and met the resistance criteria, and to leave the cells blank or erase pre-filled dates
if the criteria weren’t met (Trt_5).

The use of these pre-filled tables significantly facilitated the oncologists’ work, enabling
them to complete the manual review for all 1,031 patients in less than two months. It’s
important to note that only the drugs listed during this manual review were utilized in the
correlative analyses against the molecular profiles of the tumors. In Table 3.1, we provide two
sample treatment histories, including details of which treatments were reported from each of
the five sources of treatment data aggregated throughout the project.
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3.1. The META-PRISM database

3.1.1.4. Summary figure

Figure 3.9, which was used as the first figure of the published paper, summarizes the
META-PRISM cohort and the main characteristics of the patients and biopsies.
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Fig. 3.9.: Clinical characteristics, sequencing data, treatment history, and outcomes of the META-PRISM cohort.
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Figure 3.9.A presents two pie charts, one for the distribution of tumor types following
TCGA classification (left), and one for the distribution of the biopsy sites according to
ICD-O-3 nomenclature (right). Tumors that could not fit into TCGA classification were
classified into tumor types suffixed by Not_TCGA and are shown as exploded slices. The
cohort included 39 cancer types, with 5 of them represented by more than 60 tumors: 192 lung
adenocarcinomas (LUADs), 98 BRCAs, 95 prostate adenocarcinomas (PRADs), 74 bladder
urothelial carcinomas (BLCAs), and 61 pancreatic adenocarcinomas (PAADs). Moreover,
138 patients harbored tumors of rare subtypes and for 23 additional patients the primary
site of the tumor was unknown. The delineation of the tumor type acronyms and the
number of corresponding META-PRISM patients are provided in Table A.5. Figure 3.9.B
shows the number tumors per tumor type with either RNA-seq only, WES only, or WES and
RNA-seq. Tumors with WES only or WES and RNA-seq were grouped together. Only tumor
types represented by at least 10 patients in META-PRISM are shown. The violin plots in
Figure 3.9.C describe the age distribution, the number of detected metastatic sites at the
time of the biopsy, the number of treatments received before the biopsy, and the survival time
from the biopsy date for each tumor type. Only treatments for which resistance was diagnosed
before or shortly after the biopsy are listed. Only the survival times of deceased patients are
used in the violins (909/1,031). The heat map in Figure 3.9.D shows the types of treatment
(rows) administered per tumor type (columns). The circle size encodes the percentage of
patients who received treatment. The circle color encodes the median number of treatments
received by these patients. Treatments are grouped by families as indicated on the left bars.
Only the treatments received by at least 25 patients or by at least half of the patients of any
of the displayed tumor type are shown. Lastly, Figure 3.9.E shows Kaplan-Meier survival
curves of the whole META-PRISM cohort and the five most represented tumor types. The
p-value was calculated using a log-rank test. As can be seen from this figure, the median
survival time for the META-PRISM cohort stands at 7.8 months with PAADs and BLCAs
having the most dismal prognosis.

3.1.1.5. Data organization

Throughout the project, all the data files and programming scripts were hosted on two
remote servers, with one dedicated to data storage and the other to code hosting. This
setup ensured easy access for the numerous project participants and enabled the automatic
synchronization of code, data tables, and results in real time. In a study of this size, a
multitude of data files were either generated internally or obtained from external sources
to support our various analyses. To maintain order, all the raw and processed files were
meticulously organized within a structured database hosted on a remote server, which was
part of the cloud solution implemented at Gustave Roussy, known as Nextcloud. The use
of a cloud-based solution proved to be highly convenient, as it allowed for the automatic
synchronization among all users connected to the server. Furthermore, all the scripts created
for tasks like data downloading, curation, processing, and analysis were synchronized with
a dedicated remote server for code versioning. This server was a GitHub repository hosted
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within the institute’s space4.

Raw files received from collaborators were consistently stored, and a record was appended
to a summary table that tracked the date of data receipt and its source. A similar tracking
system was applied to all external files acquired from sources such as published papers or
data portals like the GDC data portal. All updates and changes made to the data were stored
in separate files, which were then used by various curation scripts to generate the final tables
of curated data that supported our analyses. This systematic organization played a crucial
role in tracking the origin of each file and addressing any data errors encountered. It also
allowed us to provide feedback to the institute’s data management services when errors were
identified, thereby contributing to the correction of data sources as needed. This setup was
instrumental to the organization of the data, the analyses, and ensured the reproducibility
and integrity of our research, a point that has gained a lot of attention from the scientific
community and regulatory bodies in the recent years.

We utilized the cloud server not only for hosting various data files but also for storing the
data generated by the bioinformatic pipelines applied to the raw sequencing data. The raw
sequencing data itself is housed in sequencing archives physically located on the institute’s
premises and can be accessed through the high-performance computing cluster deployed at the
institute. All bioinformatic pipelines were executed on this computing cluster, and the results
of manageable file sizes, such as tables of gene expression, gene fusions, somatic mutations,
copy-number segments, and more, were subsequently uploaded to the Nextcloud server. The
detailed bioinformatic processing of the sequencing files for META-PRISM patients is further
elaborated upon in the following section.

3.1.2. Bioinformatic analyses

The bioinformatic processing of the files originating from the sequencing of tumor and
blood samples was split between WES and RNA-seq. Among the samples selected for the
study, 569 blood samples were subjected to WES, 485 tumor samples to WES and RNA-seq,
84 tumor samples to WES only, and 462 tumor samples to RNA-seq only. Consequently, the
WES pipeline was applied to process 569 pairs of tumor and matched blood samples, while
the RNA-seq pipeline was used for 947 tumor samples.

3.1.2.1. WES pipeline

The WES pipeline was initially constructed by building upon preexisting code developed
by a former member of Dr. Nikolaev’s team. This code was then expanded to meet the
specific requirements of the study and adhere to the best practices of the GATK5. The WES
workflow can be divided into two main parts. The first part begins with raw, unaligned reads
produced by the sequencing machines in the form of FASTQ files and concludes with filtered
and aligned reads in the form of BAM files. The second part is a collection of independent

4https://github.com/gustaveroussy
5https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows
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sub-workflows, each of which utilizes the BAM files to identify, filter, and, if applicable,
annotate, either short germline variants (SNPs and indels), short somatic variants (SNVs and
indels), somatic CNAs, or MSI.

While the study’s first bioinformatician had already implemented the steps up to the point
just before annotation with knowledge databases, the code had become overly complex and
crucial filtering and annotation components were still in the process of being developed when
he left. As a result, I took the initiative to assume responsibility for the WES pipeline. I com-
prehensively reorganized the code to align with best practices and incorporated the additional
steps required for filtering and annotating somatic alterations (short indels and CNAs). Aside
from the technical knowledge gained through this undertaking, it provided valuable insights
into the various bioinformatic processing steps. In my view, a solid understanding of these
steps is crucial for running meaningful downstream analyses and analyze them critically. The
final structure of the code and the underlying rules are the result of extensive work and a
series of rule updates, conducted in parallel to the harmonization of pipelines (Section 3.2.2)
and somatic variant annotation (Section 3.1.2.3) work.

As explained in Chapter 2, the processing of raw sequencing data invariably begins
with a series of quality control and read filtering procedures. These steps are essential to
eliminate low-quality reads and reduce sources of artifacts, such as the presence of PCR-
induced duplicate reads, which can skew estimations of VAFs and CNAs. Quality control
of paired-end reads was conducted using FastQC v0.11.8, followed by the use of Fastp

v0.20 (Chen et al. 2018) to trim adapters and polynucleotide tracts from reads exceeding 25
nucleotides in length. The resulting cleaned FASTQ files were subsequently aligned to the
reference human genome GRCh37 using BWA-MEM v0.7.17 (Li & Durbin 2009). Intermediate
BAM files underwent further processing, including read deduplication MarkDuplicates from
Picard v2.20.3, coordinate sorting using SAMtools v1.9 (Li, Handsaker, et al. 2009), and
base quality recalibration using BaseRecalibrator and ApplyBQSR. All these tools are
included in the GATK bundle v4.1.8.1 and are considered part of the best practices (DePristo
et al. 2011). Alignment quality was assessed using three different algorithms: mosdepth

v0.2.5 (Pedersen & Quinlan 2018), flagstat from SAMtools v1.9 (Li, Handsaker, et al.
2009), and CollectHsMetrics from GATK v4.1.8.1.

Germline SNVs and indels were identified using HaplotypeCaller (Poplin et al. 2017).
After the initial call, putative germline variants underwent a rigorous filtering process, in-
cluding hard thresholds for various parameters: QualByDepth (QD > 2), genotype quality
(QUAL > 30), FisherStrand (FS < 60 for SNPs, < 200 for indels), ReadPosRankSumTest

(ReadPosRankSum > -8 for SNPs, > -20 for indels), RMSMappingQuality (MQ > 40 for
SNPs only), and MappingQualityRankSumTest(> -12.5 for SNPs only), all in accordance
with the GATK best practices6. Variants that successfully passed all the filters were then
annotated using ANNOVAR (K. Wang et al. 2010).

Germline variants associated with cancer predisposition were identified within a list of 130

6https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-

variants
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genes curated from the original list of 152 genes published by Huang and colleagues (Huang
et al. 2018). Only variants with a maximum general population allele frequency of 5% in
the gnomAD v2.1.1 exome database (Q. Wang et al. 2020), and annotated as "Pathogenic,"
"Likely_pathogenic," or "Pathogenic/Likely_pathogenic" in the ClinVar database (Landrum,
Lee, et al. 2014; Landrum, Chitipiralla, et al. 2020), were retained. In total, 93 cancer-
predisposing variants were identified in 73 out of 569 META-PRISM samples with available
germline data, and these were included in the analyses.

For somatic joint mutations and small indels, Mutect2 (Cibulskis et al. 2013) was
employed. To mitigate artifacts and false positives, a panel of normal samples was created
from the blood samples and integrated into the Mutect2 calling process, following the
GATK best practices guidelines7. Putative variants then underwent an analysis for read
orientation artifact and sample contamination, which was conducted by running GATK
LearnReadOrientationModel and CalculateContamination, aligning once again with
best practices.

A set of filters was applied to the somatic variants, including:

• Not being filtered by Mutect2 (MUTECT_FILTERS).
• A minimum VAF of 5% (LOW_VAF).
• A minimum sequencing coverage of 20X in the tumor sample (LOW_COVERAGE_TU-

MOR).
• A minimum sequencing coverage of 10X in the normal sample (LOW_COVERAGE_NOR-

MAL).
• Being located inside exonic regions, as defined by the canonical transcripts used by

variant effect predictor (VEP) v104 on the GRCh37 assembly (NOT_EXONIC).
• An allele frequency of less than 0.04% across all gnomAD v2.1 exome subpopula-

tions (COMMON_VARIANT). This rule was not applied for driver mutations (Sec-
tion 3.1.2.3).

• Being within the META-PRISM target region, which is defined by the intersection of
the capture regions of all four different kits used (OFF_TARGETS_INTERSECTION).
This region spans approximately 36.6 Mb.

The impact of each filter, individually and in combination with others, is summarized
in Figure 3.10. In total, 117,747 somatic substitutions and small indels were utilized for
analysis. All mutations underwent annotation using VEP release 104 (McLaren et al. 2016)
on canonical transcripts, with additional metrics and pathogenicity scores obtained from the
dbNSFP v4.2 database integrated into the annotations through the plugin feature of VEP.

CNAs, tumor purity, and average tumor ploidy were assessed using the FACETS R package
v0.5.14 (Shen & Seshan 2016) with parameters cval_pre=25 and cval_pro=500. To minimize
the impact of segmentation errors, only gene CNAs stemming from segments spanning less
than 10 megabases were taken into account for subsequent analyses. Automated scripts were
executed to detect issues including low tumor purity, hypersegmentation, exceedingly large

7https://gatk.broadinstitute.org/hc/en-us/articles/360035890631-Panel-of-Normals-PON-
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Fig. 3.10.: Upset plot showing the number of mutations filtered out individually by each filtering criteria and in
combination with other criteria in META-PRISM WES samples. Mutations that passed all filters are described in the
PASS set.

deletions, or incorrect positioning of the tumor diploidy level in the FACETS-generated profiles.
Flagged profiles were manually reviewed and were either excluded or, if feasible, corrected.

Following this, each CNA was categorized into one of six categories (Table A.6). Only
high-level focal amplifications or homozygous focal deletions were retained in the list of
alterations used in the various analyses of the study. The presence and number of WGDs
were determined based on the lowest positive integer ‘k’ that satisfied the condition that
at least 11 autosomes had undergone ‘k’ duplications. This occurred when the major allele
ploidy was strictly greater than 1.5⇥ 2k�1 on at least half of the chromosome length. If this
condition could not be met with k = 1, it was assumed that no WGD had occurred.

MSI analysis was conducted using MANTIS v1.0.3, following the same procedure as
described in the original study (Kautto et al. 2017). To run MANTIS, a list of microsatellite
loci needs to be compiled in a 6-column BED file, including genomic coordinates, the motif,
and its count on the reference genome. In this analysis, the same BED file as used in the
TCGA study (Cortes-Ciriano et al. 2017) was employed, comprising 2,530 loci. The method
examines repetitive regions in aligned reads from both tumor and normal BAM files, one
locus at a time. Per-locus read counts for each repeat motif are calculated in both the tumor
and normal samples and are used to compute an instability score. Subsequently, the average
of all locus instability scores is calculated to generate a final score for the tumor/normal pair.
The reported scores range from 0.0, indicating complete stability, to 2.0, indicating complete
instability. Samples were classified as MSI-high if they had a final score exceeding the default
threshold of 0.4.

A summary graph of the WES pipeline workflow is provided in Figure 3.11.
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3.1.2.2. RNAseq pipelines

The processing of RNA-seq files largely relied on pre-existing pipelines developed by third
parties. Two pipelines were utilized: one for quantifying gene expression and another for
identifying, filtering, and annotating gene fusions.

In a manner similar to the WES pipeline, the processing of raw sequencing reads from
RNA-seq experiments also begins with quality control and read filtering procedures. In contrast
to WES experiments, PCR duplicates are typically retained in RNA-seq data. However, similar
to WES, control of PCR duplication is assessed through metrics and reports generated by
tools like FastQC or similar tools. In this study, quality control for paired-end reads was
systematically conducted using FastQC, and adapter sequences were removed using Trim

Galore v0.4.4.

The gene expression quantification in our study employed a pseudoalignment method,
which offers significantly faster performance compared to alignment-based quantification
methods, as detailed in Section 2.1.4.3. We chose to quantify gene expression in our
META-PRISM samples by adapting the Nextflow pipeline available at https://github.

com/gevaertlab/RNASeq_pipeline. The main reason for this choice was the public avail-
ability of the quantification tables produced by this pipeline for TCGA samples, which were
released as supplementary data to the work by Zheng et al. (2019) presenting extensive
comparative analyses of various quantification methods. Specifically, the sequencing reads
were pseudoaligned to the human transcriptome from GENCODE version 27 (58,288 genes)
using Kallisto v0.44.0 (Bray et al. 2016). Subsequently, transcript-level estimates were
aggregated to the gene level using TxImport v1.16.0 (Soneson et al. 2016), and the resulting
gene quantifications, in raw counts and TPM formats, were recorded.

Putative gene fusions were called by six different calling algorithms using the Nextflow
nf-core/rnafusion pipeline v1.2.08. This pipeline was developed by nf-core community, which
is dedicated to creating a "curated set of analysis pipelines built using Nextflow" (Ewels
et al. 2020). Calls generated by two of these algorithms were excluded from consideration.
One of these exclusions was due to the tool’s high failure rate on our RNA-seq samples
(FusionCatcher, Nicorici et al. (2014)), while the other was due to the observation that
none of the putative fusions reported by this algorithm were corroborated by the other tools
(SQUID, Ma et al. (2018)).

For the analyses presented in the paper, gene fusions were identified on the GRCh38
reference genome by applying a filtering process and consolidating the fusions predicted by
four callers, namely Arriba v1.2.0 (Uhrig et al. 2021), EricScript v0.5.5 (Benelli et al.
2012), Pizzly v0.37.3 (Melsted et al. 2017) , and STAR-Fusion v1.8.1 (Haas et al. 2019).
In total, 707,027 fusions were detected by at least one of these four fusion-calling algorithms
(Figure 3.12).

8https://github.com/nf-core/rnafusion/tree/1.2.0
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Fig. 3.12.: Upset plot showing the number of gene fusions filtered out individually by each filtering criteria and in
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Each individual caller’s set of putative gene fusions was refined by excluding fusions
previously reported in studies of normal tissues (blacklists) and retaining only those fusions
reported in studies of cancer tissues or those involving cancer driver genes (whitelists).
Additionally, only gene fusions identified by both Arriba and EricScript or both Pizzly

and STAR-Fusion, irrespective of the predicted breakpoints, were retained (a detailed rationale
for this specific combination is provided in Section 3.2.2). Following these filtering criteria,
a total of 851 gene fusions (without considering breakpoints) were identified in 445 out of
944 samples with RNA-seq data. It should be noted that three out of 947 RNA-seq samples
repeatedly failed in one or more of the fusion-calling algorithms and were consequently
excluded from analyses utilizing gene fusions.

3.1.2.3. Catalog of oncogenic events

We compiled a list of 360 cancer driver genes by intersecting the list of driver genes (Tiers
1 and 2) from COSMIC census v92 with the list of genes annotated in the OncoKB database
as of July 2021 (Chakravarty et al. 2017). Oncogenic events were identified by intersecting
somatic substitutions, indels, focal high-level gains and homozygous deletions from segments
spanning less than 10 Mb, and gene fusions with the OncoKB and CIViC (Griffith et al. 2017)
databases. OncoKB constitutes a literature- and knowledge-based database that is accessible
through an application programming interface (API) after having registered an account and
requested a token. In accordance with the type of event to be annotated, different scripts
from oncokb-annotator9 were used:

9https://github.com/oncokb/oncokb-annotator
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1. MafAnnotator.py for substitutions and indels
2. CnaAnnotator.py for CNAs
3. FusionAnnotator.py for gene fusions

CIViC is also a literature and knowledge-based database, but no annotation script was avail-
able at the time of our analyses. As a consequence, I developed in-house scripts10(Section 4.2.1.2)
to annotate substitutions, indels, gene fusions, and CNAs using the table of clinical evidence
summaries 01-Jan-2022-ClinicalEvidenceSummaries.xlsx from the January 2022 release. A
minor number of errors were manually curated from the table. Additionally, missing genomic
coordinates for mutations were manually filled where possible.

Importantly, the majority of OncoKB and CIViC annotations are tumor-type specific.
Consequently, annotation with these databases require a description of the tumor type
alongside each variant to allow for precise on-label annotations. OncoKB uses the MSK’s
oncotree nomenclature, whereas CIViC uses designations that do not follow specific rules and
have a varying degree of specificity. As a consequence, we performed a thorough work of
tumor-type matching with the help of oncologists to navigate between TCGA types, MSK’s
oncotree, and CIViC designations.

Depending on the type event, all annotated variants were retained or additional filtering
was applied. CNA and gene fusions annotated in OncoKB or CIViC databases were all retained.
However, for mutations we applied additional filtering. Firstly, only mutations annotated by
OncoKB were retained due to the fact that the manual inspection of CIViC-only events re-
vealed many false matches caused by unspecific variant descriptions in CIViC. Secondly, among
the mutations that were annotated by oncokb-annotator, events with MUTATION_EFFECT

as likely neutral, neutral, or unknown were discarded unless the ONCOGENIC field re-
ported likely oncogenic, predicted oncogenic. Lastly, only mutations that were classi-
fied as either Missense_Mutation, Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del,
In_Frame_Ins, Nonsense_Mutation, Splice_Site, or Translation_Start_Site were
retained.

3.2. Comparison and validation cohorts

3.2.1. TCGA and MET500 cohorts

The molecular profiles of the refractory advanced tumors sampled in META-PRISM
patients were compared against the profiles of treatment-naive non-metastatic tumors from
TCGA (The Cancer Genome Atlas Research Network et al. 2013). The tumor type-specific
and -agnostic comparisons were systematically repeated on the MET500 cohort (Robinson
et al. 2017) whenever sufficient numbers of patients were available so as to validate candidate
differences.

10https://github.com/ypradat/CivicAnnotator
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3.2. Comparison and validation cohorts

3.2.1.1. TCGA

The TCGA consortium and its associated data have already been described in Section 1.1.2.
It is important to note that for the purpose of this comparative study, we refined the patient
selection to exclude metastatic patients identified by a stage IV classification in the TNM
classification system, as well as patients documented with an "unacceptable history of prior
treatment" as stipulated in the accompanying notes retrieved from the GDC data portal.
This information was obtained using the R package GenomicDataCommons alongside other
clinical and biological metadata. Additional data tables were acquired from supplementary
tables included in publications released by the consortium or from the publicly accessible
PanCanAtlas page11.
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In brief, we retrieved metadata from 11,315 pa-
tient samples and 34,815 aliquots of interest for our
study, encompassing 23,346 WES and 11,469 RNA-
seq data. Considering the available data and the most
recent patient annotations, a total of 875 patients
were excluded. The reasons and numbers of patients
excluded for each reason are detailed in Figure 3.14.
A total of 10,440 patients for whom we had one or
multiple types of molecular data available and had
no reason for exclusion were considered for analysis
(Figure 3.13). Though counterintuitive, we reclassified
some TCGA patients in "Not_TCGA" types based on
the review notes of the AWG pathology review file
merged_quality_annotations.tsv12. As detailed here-
after, data from each modality (somatic mutations,
germline mutations, MSI, somatic CNAs, gene expres-
sion, and gene fusions) were limited to these 10,440 patients and further reduced in each
modality to exclude samples that did not pass exclusion criteria or quality controls.

Somatic mutations The TCGA somatic mutation catalog was taken from the controlled-
access MAF file mc3.v0.2.8.CONTROLLED.maf.gz, downloaded with permission. All filters
described in the original "FILTER" column were applied as well as the following additional
filters:

• Minimum VAF of 5% (LOW_VAF).
• Minimum sequencing coverage of 20X in the tumor sample (LOW_COVERAGE_TU-

MOR).
• Minimum sequencing coverage of 10X in the normal sample (LOW_COVERAGE_NOR-

MAL).
• Localized within the META-PRISM target region (OFF_TARGETS_INTERSECTION).

11https://gdc.cancer.gov/about-data/publications/pancanatlas
12https://gdc.cancer.gov/about-data/publications/pancanatlas
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Fig. 3.14.: TCGA patients and samples selection for each type of data considered.
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• Located inside exonic regions as defined by the set of canonical transcripts used by
VEP v104 on GRCh37 assembly (NOT_EXONIC).

• Allele frequency across all gnomAD v2.1 exome subpopulations is <0.04% (COM-
MON_VARIANT). This rule is not applied for driver mutations (Section 3.1.2.3).

• Only SNVs and multi-nucleotide variants identified by at least two of the five callers were
retained. Likewise, only indels identified by Indelocator or Varscan (INDELOCATOR
or VARSCANI tags in the "CENTERS" column from the controlled-access MAF file)
were retained (INDEL/SNP_CALLING_ALIGNMENT). The rationale for these selection
criteria is expanded upon in Section 3.2.2.

A total of 2,109,671 somatic mutations and small indels were used for analysis in the
8,688 patients for whom somatic mutation data were available and no reason for exclusion
existed. The filtering that resulted in this list of somatic calls is summarized in Figure A.1.
All PASS mutations from the refiltered mutations file were split into individual VCF files for
each tumor/normal pair and were subsequently annotated using the same annotation pipeline
as used on META-PRISM data.

Germline mutations The list of cancer-risk germline variants detected in TCGA samples
was taken from the file PCA_pathVar_ integrated_filtered_adjusted.tsv13 (Huang et al.
2018). Reducing the original list of 1,393 mutations to only mutations in the 10,440 patients
considered for analysis and excluding samples flagged as contaminated in GDC release
notes v32.0 (Figure 3.14) results in 1,342 pathogenic germline variants detected in 1,253
patients. After running the germline mutation filtering procedure described in Section 3.1.2.1,
1,082/1,253 variants were retained and used for analysis.

Microsatellite instability MSI scores were retrieved from supplementary data of Bonneville
et al. (2017). Samples flagged as contaminated in GDC release notes v32.0 were excluded,
resulting in an available MSI score for 9,298 patients among the 10,440 TCGA patients we
considered (Figure 3.14).

Somatic CNAs Somatic CNAs, WGD status, chromosome arm somatic CNAs, sample
purity, and ploidy, were derived by applying our somatic CNA pipeline to TCGA sequencing
files. The pipeline was executed on all accessible WES files from TCGA patients with known
gender (gender needs to pre-specified to the pipeline), which comprised 21,987 BAM files
originating from 10,332 patients having at least one pair of tumor/normal WES files (totaling
12,129 pairs). To ensure the reliability of the results, we excluded samples that were flagged
as contaminated in GDC release notes version 32.0, as well as those failing the FACETS

analysis or not meeting the quality control criteria for FACETS profiles. As a result of this
rigorous filtering process, somaticCNAs were available for analysis in a cohort of 9,570 patients
(Figure 3.14). This reanalysis was deemed essential to avoid substantial batch effects when

13https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Germline-AWG
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comparing data derived from distinct methodologies for assessing copy number variations, in
particular WES-based versus microarray-based CNA-calling as done initially in the project.
The execution of the pipeline was carried out via the GCE with technical support from the
Institute for Systems Biology Cancer Genomics Cloud and financial support from the NCI.
Panel 3.1 presents in more details how I achieved this computationally intensive task in a
short time and cost-effectively.

Gene expression Gene-level and transcript-level expression tables for all TCGA RNA-seq
samples were retrieved from the supplementary data of Zheng et al. (2019). This pipeline is
identical to the pipeline that we have used on META-PRISM samples, thereby minimizing
technical differences between the cohorts. Samples flagged with quality control warnings
in GDC aliquot-level notes were excluded, resulting in available RNA-seq profiles for 9,298
patients among the 10,440 TCGA patients we considered (Figure 3.14).

Gene Fusions Three independent and publicly available lists of TCGA gene fusions were
retrieved from the following sources:

PRADA X. Hu et al. (2018). Supplementary Table nar-02671-data-e-2017-File007.xlsx
StarFusion Gao et al. (2018). Supplementary Table S1
DEEPEST Dehghannasiri et al. (2019) Supplementary Table pnas.1900391115.sd01.xlsx

Different combination of these lists were assessed against different combinations of calls
from the four callers used on META-PRISM samples after applying the different filtering
steps detailed in Section 3.1.2.2. The best agreement was obtained when selecting gene
fusions reported by StarFusion or by both DEEPEST and PRADA on the side of TCGA. The
overlap between the three external lists of gene fusions detected in TCGA samples, prior
to any filtering, is shown in Figure A.2. Once again, the rationale for this combination is
elucidated in Section 3.2.2.
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Panel 3.1: Efficient processing of TCGA data on cloud services

To analyze somatic CNAs within the TCGA samples, I leveraged the availability of TCGA
BAM files hosted on GDC-controlled Google buckets. This enabled me to process the data
rapidly and cost-effectively by utilizing the Google Cloud Engine (GCE). While the use of the
GCE involves expenses, these costs can be minimized by making the most of GCE options
and optimizing the efficiency of the pipeline.

Besides cost-efficiency, employing the GCE is also highly efficient in terms of data handling
and execution time in comparison to the conventional approach of downloading and
processing TCGA BAM files locally on a high-performance cluster. The conventional method
is notably slow due to the limited transfer bandwidth relative to the extensive size of the more
than 20,000 WES BAM files produced by TCGA, amounting to over 200 terabytes. Further-
more, local storage and computational resources are often inadequate for such an undertaking.

The GCE, in contrast, allows for quick data transfers between buckets and between
buckets and virtual machines (VMs). The resources available on the GCE are substantial,
enabling a single user to execute a multitude of tasks in parallel. To enhance the
cost-efficiency of the pipeline on the GCE, I activated the preemption option, which
offered discounts of up to 91% on running costsa. However, it’s important to note
that activating the preemption option means that VMs may be terminated by the GCE
at any time. In order to handle this, I developed a set of Bash scripts to automatize
the deployment of VMs, execute the pipeline in batches across thousands of VMs, and
continuously monitor their status. This allowed for prompt reactivation or recreation
of VMs in response to preemptions or failures. To maintain precise control over the
system’s behavior, I elaborated a sophisticated logging system to address the various failure
scenarios encountered in some batches. When necessary, these batches were restarted with
increased per-job resources to ensure error-free processing. I additionally optimized the
CNA-calling sub-workflow from the WES pipeline presented in Section 3.1.2.1 and Figure 3.11.
This optimization involved designing code that could withstand unforeseen disruptions,
something I achieved by using Snakemake and saving intermediate results and log files
on Google buckets to avoid the unnecessary execution of rules already ran before the disruption.

The entirety of the code necessary for coordinating the creation of multiple VMs, overseeing
their parallel execution, and storing results and logs on Google buckets is accessible at the
GitHub repository https://github.com/ypradat/TCGA_Facets. This code can be exe-
cuted from a local machine, provided a stable internet connection is maintained. Remarkably,
the processing of over 20,000 WES BAM files generated by TCGA was successfully completed
in less than three days, incurring a cost of approximately $700. This cost represents roughly
half of the $1,500 credits allocated to me by the NCI for this project.

ahttps://cloud.google.com/compute/docs/instances/preemptible
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3.2.1.2. MET500

The cohort presented by Robinson et al. (2017) served as a validation cohort for our
project, involving 500 metastatic patients and their associated samples.
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Fig. 3.15.: Cancer types in MET500.

Metadata were sourced with permission from db-
GaP under the study identifier phs000673.v4.p1. Sup-
plementary Tables S1 and S2 from the publication were
also utilized. All relevant variables were subjected to
processing and merged into curated tables, serving as
the data source for the analyses. Particular attention
was paid to the variables defining the classification of
patients into distinct cancer types. For consistency
with META-PRISM and TCGA data, descriptors such
as primary site, biopsy site, and tumor histology were
harmonized and standardized according to the ICD-
O-3 nomenclature. These standardized values were
then employed to categorize patients into classes mir-
roring the methodology applied in the META-PRISM
cohort. The resulting distribution of cancer types in
the MET500 cohort is depicted in Figure 3.15.

Somatic mutations Raw sequencing files were downloaded with permission and processed
with our internal pipeline, as described in Section 3.1.2.1. Only samples from patients included
in the publication by Robinson et al. (2017) were considered. A total of 106,341 somatic
mutations and small indels were used for analysis after applying the filtering procedure as
done for META-PRISM samples. The filtering that resulted in this list of somatic calls
is summarized in Figure A.3. Of note, the OFF_TARGETS_INTERSECTION filter does
not appear in the figure as, for these samples, the BED file containing the positions in the
intersection of all capture kits used on META-PRISM samples was provided as input to the
intervals parameter of Mutect2.

Germline mutations Raw sequencing files were processed with our internal pipeline, and
germline mutations were called using HaplotypeCaller as done for META-PRISM samples.
A total of 71 germline cancer-predisposing variants were detected in the 500 MET500 samples
after applying the filtering procedures.

Microsatellite instability Raw sequencing files were processed with our internal pipeline
and MSI was called using MANTIS as described previously.

Somatic CNAs Raw sequencing files were processed with our internal pipeline, and somatic
CNAs, WGD status, chromosome arm somatic CNAs, purity, and ploidy were identified using
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our internal CNA pipeline based on FACETS as done for META-PRISM and TCGA samples.

Gene expression RNA-seq data files were downloaded for 497 samples. The majority of
samples had multiple files available produced from either polyA+ selection, hybridization
capture, or both. As all RNA-seq files were produced from polyA+ in META-PRISM, we
prioritized polyA+ whenever possible, resulting in 386 polyA+ and 111 hybridization capture
RNA-seq libraries. Gene expression was then quantified using the Kallisto/TxImport

pipeline as used on META-PRISM samples.

Gene fusions Raw sequencing files were processed with our internal pipeline, and gene
fusions were identified using our internal gene fusion-calling pipeline as done for META-PRISM
samples. A total of 731 gene fusions (disregarding breakpoints) were retained in 308 out of
497 samples with RNA-seq data as depicted in Figure A.4.

3.2.2. Pipelines harmonization

In any comparative study involving data originating from diverse institutions and processed
using different pipelines, it is crucial to carefully consider the potential impact of technical
disparities on the comparisons. In the META-PRISM study, we dedicated substantial efforts
to mitigating the sources of these technical differences. Given that we lack control over
technical variations that may arise prior to sequencing, our primary focus was on standardizing
the bioinformatic pipelines. However, the systematic reprocessing of raw sequencing files
is a laborious and costly solution (although cost-effective solutions exist, see Panel 3.1).
Additionally, such reprocessing may be unnecessary in some instances, especially when teams
from other institutes have already conducted high-quality bioinformatic analyses.

As described in the previous section, we opted for the utilization of identical pipelines for
analyzing somatic CNAs and quantifying gene expression across all three cohorts: META-
PRISM, MET500, and TCGA. This uniform bioinformatic processing approach extends to
other data types in the META-PRISM and MET500 cohorts but not in the case of TCGA.
The somatic mutation catalog for TCGA was derived from the data released by the TCGA-led
MC3 project (Ellrott et al. 2018), while germline mutations were sourced from the Pan-Cancer
Atlas paper by Huang et al. (2018), and gene fusions were obtained from three distinct
sources as described in Section 3.2.1.1. For somatic mutations and gene fusions, we acquired
raw sequencing data from a small subset of TCGA samples to fine-tune our filtering criteria
and achieve optimal alignment between the data processed by our pipelines and the data
released by third-party entities.

The alignment of somatic mutation calling between META-PRISM and TCGA was
performed by running our internal pipeline on a test set of 58 TCGA raw WES files downloaded
with permission from the GDC data portal. Various levels of stringency were explored,
considering common metrics such as sequencing coverage depth at mutation sites and
VAF. Moreover, given that the MC3 project incorporated five different callers for single-
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or multi-base substitutions and five other callers for indels, we treated substitutions and
indels separately. For each mutation type, we explored numerous combinations of callers and
filters in comparison to the calls generated by Mutect2 from our own pipeline. We employed
the Dice-Sorensen coefficient (DSC) to quantify the concordance between the filtered calls
reported by our internal pipeline and the filtered mutations reported by MC3.

The highest score (DSC=0.917) for substitutions was achieved by considering the variants
detected by two callers or more from the five used by the MC3, at positions covered by
at least 20 reads in both tumor and blood samples, and with a VAF no less than 10% on
both sides. However, we determined that this VAF threshold was overly stringent for our
study objectives. Consequently, we chose the best combination of filtering criteria under
the constraint of a minimal VAF of 5% in both lists. Under these conditions, the most
favorable agreement was achieved by variants detected by at least two callers on the MC3
side, occurring at positions covered by at least 20 readsin tumor samples and 10 reads in
blood samples on both sides. This configuration yielded a DSC of 0.896, as documented in
Table 3.2. The table additionally provides details on the true positive and false positive rates
(TPR and FPR, respectively), as well as the numbers of events retained from each source.
True mutations are defined as the mutations reported in the filtered MC3 mutations file.

Mutations MC3 Callers DSC TPR FPR Internal MC3

SNVs/MNVs 2 or more 0.896 0.91 0.121 5,686 5,860

Indels INDELOCATOR

or VARSCANI
0.840 0.864 0.193 228 241

Table 3.2.: Quantitative metrics for assessing the overlap between the mutation lists from the filtered MC3 table and
from the reprocessing of 58 TCGA WES files using our internal pipeline.

In a similar manner, various criteria for aligning indel calls were explored. Maintaining a
consistent VAF threshold of at least 5%, we identified the optimal agreement by applying
the same minimum coverage criteria as for substitutions and considering indels reported
by either of two specific callers on the MC3 side, namely INDELOCATOR or VARSCANI. This
configuration yielded a DSC of 0.840, as documented in Table 3.2. It is important to note
that this DSC is lower compared to substitutions, but this is expected due to the inherent
challenges associated with the accurate calling of indels. Figures A.5 and A.6 show the
alignment between the number of substitutions and indels called using our internal pipeline
and using the list of variants reported by MC3.

In order to adjust the filtering criteria and align the nf-core fusion pipeline used for META-
PRISM fusions to the three different pipelines used for the three published lists of TCGA gene
fusions (see Section 3.2.1.1), we downloaded with permission RNA-seq FASTQ files for 69
TCGA samples from the GDC data portal and analyzed them using the nf-core fusion pipeline.
All 69 samples were successfully processed by the six different callers available in the pipeline,
namely, Arriba v1.2.0 ("AR", Uhrig et al. (2021)), EricScript v0.5.5 ("ES", Benelli et al.
(2012)), FusionCatcher v1.20 ("FC", Nicorici et al. (2014)), Pizzly v0.37.3 ("PZ", Melsted
et al. (2017)), SQUID v1.5 ("SQ", Ma et al. (2018)), and STAR-Fusion v1.8.1 ("SF", Haas

152



3.2. Comparison and validation cohorts

et al. (2019)). All detected fusions were then annotated with FusionAnnotator which
connects with databases of gene fusions detected in cancer or normal tissues14.

Figure 3.16 summarizes the overlap between the fusions detected by these six algorithms.
The fusions predicted by SQUID were not corroborated by other callers and were therefore
discarded. Additionally, even though FusionCatcher was successful on all 69 TCGA samples,
it repeatedly failed on some META-PRISM samples and was therefore not considered further.
Consequently, only fusion calls from Arriba, EricScript, Pizzly, and STAR-Fusion were
used.
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Fig. 3.16.: Upset plot showing the number of fusions identified individually by each algorithm and in combination
with other algorithms. AR, ES, FC, PZ, SF, SQ stand for Arriba, EricScript, FusionCatcher, Pizzly, STAR-Fusion, and
SQUID, respectively.

As our study only aimed at describing the variations relevant to cancer, only fusions
known in cancer or involving at least one oncogenic partner (Section 3.1.2.3) were analyzed.
We therefore limited the lists of gene fusions as detailed hereafter.

Firstly, we removed all fusions that have been previously reported in studies of normal
tissues. More specifically, fusions were removed if they met any of the following criteria:

• Are in Babiceanu_Normal list (Babiceanu et al. 2016).
• Are in ChimerSeq_Normal_v4.0 list (available upon request to the authors (Jang et al.

2019)), which was established from the analysis of 1,144 TCGA normal samples and
curated in order to remove well-known fusions (e.g., TMPRSS2-ERG) sometimes seen
in normal samples.

• Are in GTEX_V6 Supplementary Table S3 (Singh et al. 2020).
• Have at least one Red Herring flag (FusionAnnotator annotations) among the follow-

ing: GTEx_recurrent_StarF2019, BodyMap, DGD_PARALOGS, HGNC_GENEFAM,

14https://github.com/FusionAnnotator
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Greger_ Normal, ConjoinG.
• One of the partners is not protein coding (Section 3.1.2.3).

Secondly, only gene fusions that met one of the following criteria were retained:

• Are in COSMIC v95 list of fusions15.
• Are in ChimerKB v4.0 list (Jang et al. 2019).
• Are in Chitars Cancer v5.0 list (Singh et al. 2020).
• Are in TIC v3.3 list16 (Novo et al. 2007).
• One of the partners is a cancer driver.

Lastly, after filtering the gene fusion calls for the 69 samples in each of the three TCGA
published lists and in each of the lists of fusions predicted by the four callers considered, we
looked for the combinations of calls that showed the best agreement. The best agreement
was obtained between the following combinations:

• For the three published TCGA lists: fusions seen by StarFusion or by both DEEPEST

and PRADA.
• For the four callers in our pipeline: fusions seen by both Arriba and EricScript or

by both Pizzly and STAR-Fusion.

Agreement results are summarized in Table 3.3. True fusions designate fusions from the
combination of the three published TCGA fusion lists. The DSC was 0.90 if fusion calls
were assessed to be concordant regardless of the breakpoint prediction and was 0.77 if the
predicted breakpoint was required to be identical. Applying the above rules, we retained tcga
fusions seen by StarFusion alone (8,194 fusions), by DEEPEST and PRADA exactly (2,604
fusions), or by all three methods (9,989 fusions) as depicted in Figure A.2.

DSC TPR FPR Internal 3 lists Use breakpoints

0.77 0.76 0.22 166 169 Yes
0.90 0.88 0.08 140 145 No

Table 3.3.: Quantitative metrics for assessing the overlap between the fusion lists from the combination and filtering
of three external fusion tables and from the reprocessing of 69 TCGA RNA-seq files using our internal pipeline.

3.3. Genomic profiles

We focused our genetic analysis on the tumor types (excluding tumors of unknown
origin) that were represented by at least 10 sequenced tumors, resulting in 10 types for WES
(META-PRISM WES, 83.8% of all DNA samples).

15https://cancer.sanger.ac.uk/cosmic/fusion
16https://genetica.unav.edu/TICdb
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3.3.1. Mutational burden and signatures

WES analysis revealed a significant increase of somatic mutations in META-PRISM versus
TCGA for 6 of 10 studied tumor types. Tumors from the MET500 cohort demonstrated a
tumor mutational burden (TMB) similar to that of META-PRISM tumors. We observed the
most significant increase of TMB in low-burden tumor types BRCA (2.1X fold in META-
PRISM, 2.7X fold in MET500), PRAD (2.1X fold in META-PRISM, 2.2X in MET500), and
PAAD (1.7X fold in META-PRISM), whereas no such increase was observed in high-burden
tumor types, namely, BLCA, LUAD, and LUSC (Figure 3.17.A).

The delineation of the signatures activities in the genomes harboring 50 somatic substitu-
tions or more was achieved by projecting onto the COSMIC v3.2 catalog of reference SBS
signatures using MutationalPatterns R package (Blokzijl et al. 2018). Signature activities
were further refined by using part of the Julia reimplementation of SigProfiler17 from Pich
et al. (2019) to run the sparsity-inducing step included in the original method.

The deconvolution of mutational signatures revealed similar signature compositions
between metastatic META-PRISM, MET500, and primary TCGA cancers in all studied tumor
types. However, a notable and consistent difference in META-PRISM versus TCGA across
tumor types was the presence of signatures associated with platinum treatments (SBS31
and SBS35), reflecting that the majority of META-PRISM tumors (691 of 1,011 with known
drug history) were pretreated with platinum compound therapies. Signatures SBS31 and
SBS35 were detected in more than 50% of tumors in six META-PRISM tumor types [LUAD,
BLCA, LUSC, HNSC, cholangiocarcinoma (CHOL), and adrenocortical carcinoma (ACC)] and
contributed significantly more mutations compared with TCGA in four of them (Figure 3.17.B).
Tumor types varied in frequency and types of received platinum drugs. For example, BRCA
and PRAD rarely received platinum treatments and concordantly demonstrated a very low
platinum-associated mutational signature.

We then investigated the association of SBS31 and SBS35 with three main platinum drugs
in our cohort: cisplatin, carboplatin, and oxaliplatin. Among these drugs, cisplatin had the
strongest association with SBS31 and had an association with SBS35 that was comparable
with carboplatin, as revealed by logistic regression (Figure 3.17.B). More specifically, among
tumors harboring at least 50 somatic substitutions and treated with cisplatin and no other
platinum compound (n = 95), 40% harbored SBS31 and 17% SBS35, whereas in patients
treated only with carboplatin (n = 80), 17% had a detectable activity of SBS35. In contrast,
these two signatures were rarely detectable in tumor types predominantly treated with
oxaliplatin (colon adenocarcinoma (COAD) and PAAD, Figure 3.17.B).

17https://bitbucket.org/bbglab/sigprofilerjulia
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Fig. 3.17.: The genomic landscape of META-PRISM tumors.18

18A, Distribution of the mutational burden for each cohort and each tumor type of the META-PRISM WES subco-
hort (red), the MET500 cohort (green), and the TCGA cohort (blue). The fold changes and the p-values from
Mann-Whitney U tests represent comparisons between mutational burdens of META-PRISM and TCGA (red), and
MET500 and TCGA (green). mut/Mb, mutations per megabase. B, Top, detection level of mutational signatures
(rows) in tumor types (columns). Colors indicate the median number of mutations contributed by the signature in
samples harboring the signature. Red frames indicate significant Mann-Whitney U tests comparing META-PRISM
with TCGA. Middle, information about the platinum drugs used in each tumor type. Bottom, log odds ratio from
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3.3.2. Somatic copy-number alterations

WGD is a frequent event in cancer involving doubling the chromosome complement.
We detected WGDs in 53.7% of META-PRISM WES tumors, which was comparable with
MET500 (50.2%) but significantly higher than in TCGA (39.9%; P < 0.001 for META-PRISM
vs TCGA and MET500 vs TCGA, Fisher-Boschloo tests). The fraction of WGDs varied
between tumor types, ranging from 25.0% in CHOL to 82.6% in LUSC in META-PRISM.
The most striking increase of WGD events in metastatic cancers compared with TCGA was
observed in PRAD (META-PRISM 48.5%, 12X fold increase, P < 0.001; MET500 38.6%,
9.4X fold increase, P < 0.001) and PAAD (META-PRISM 47.4%, 3.1X fold increase, P <
0.001; MET500 37.5%, 2.5X fold increase, not significant due to small size; Fisher-Boschloo
tests, Benjamini-Hochberg correction; Figure 3.17.C).

We next investigated the landscape of somatic CNAs in META-PRISM WES tumors
without WGD. Using FACETS (Shen & Seshan 2016), we categorized CNAs in META-PRISM,
MET500, and TCGA as copy gains and losses. Copy gains were subdivided into either
low-level (LLG), middle-level (MLG), or high-level (HLG) gains. Copy losses included LOH,
copy-neutral LOH (cn-LOH), and focal homozygous deletions (HD). LLGs, MLGs, LOH, and
cn-LOH often spanned large regions or covered full chromosome arms, whereas HDs and HLGs
were almost always focal. The fraction of the genome covered by low- to medium-level gains
or LOH was most drastically increased in metastatic PRAD tumors. Additionally, LOH events
were significantly more frequent in META-PRISM BRCA and PAAD tumors (Figure 3.17.D).
The CNA profiles of META-PRISM tumors were overall similar to that of TCGA tumors
for both the tumor type-adjusted dataset (Figure 3.17.E) and specific tumor types. The
frequency of the majority of large CNAs did not differ significantly.

In META-PRISM WES tumors without WGD, an average of 10.7% and 19.7% of the
genome were covered by copy gains and copy losses, respectively. No significant increase in
this type of instability was observed in most studied tumor types except for PRAD, which
demonstrated a dramatic increase in metastatic tumors compared with primary tumors, and for
PAAD, in which the increase was limited to copy losses (Figure 3.17.D). Three chromosome
arm gains (5p, 7p, and 8q) and seven losses (6q, 8p, 9p, 13q, 17p, 18p, and 18q) were observed
in more than 20% of the non-WGD META-PRISM cohort. However, their frequency was not
significantly different from TCGA. The majority of these chromosome regions enriched with

two logistic regression models predicting the presence or absence of SBS31 and SBS35 in all WES samples from
META-PRISM with at least 50 somatic substitutions. CI, confidence interval. C, Density plot depicting the distribu-
tion of the estimated average ploidy in META-PRISM, MET500, and TCGA tumors for samples with and without
WGD. The bar plot shows the proportion of polyploid tumors in the full cohorts and per tumor type. D, Double box
plot describing the genome fraction covered by gains (low and middle level; left) and losses (LOH or cn-LOH; right)
per tumor type, considering only tumors without WGD. Comparisons of META-PRISM vs. TCGA and MET500
vs. TCGA were performed using MannWhitney U tests (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P <
0.0001). E, Middle, fraction of tumors harboring different types of copy gains and losses across the genome. Top
and bottom, excess of copy gains and losses in META-PRISM compared with TCGA. Somatic CNAs were classified
into three types of copy gains, low, middle, and high level, and three types of copy losses, LOH, cn-LOH, and HD.
The vertical dotted lines align to the loci where selected oncogenes (above) and tumor suppressor genes (below)
are located. Only tumor types from the META-PRISM WES subcohort (10 tumor types) are represented in this
figure. All p-values were adjusted for multiple testing using the BenjaminiHochberg procedure. P-values in B were
adjusted by considering all the tests on the complete list of deconvoluted signatures.
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gains and losses events were shared between several tumor types, whereas some chromosome
regions were tumor-type specific: for instance, +16p, -16q, -22q in BRCA, +20p, +20q,
-9q, and -11p in BLCA (Figure A.7). META-PRISM tumors with WGD did not demonstrate
significant differences in arm-level copy-number losses, focal amplifications, focal deletions,
or the number of driver mutations as compared with tumors without WGD in the five main
tumor types of the WES subcohort.

High-level amplifications and homozygous deletions were rare in the META-PRISM WES
tumors, spanning an average of 0.15% and 0.05% of the genome, respectively. However,
highly amplified and homozygously deleted genes were detected on average 63 and 13 times
per tumor. The most frequent of these events included amplification of CCND1 (8.2%), AR
(4.4%), 19q13 genes (2.7%), EGFR (2.7%), MYC (2.7%), and KRAS (2.5%; Figure A.8)
and losses of CDKN2A (13%), FAM106A/LGALS9C (5.0%), Killer Ig-like receptors genes
(3.4%), RHD/RSRP1 (2.9%), and PTEN (2.7%; Figure A.8).

3.3.3. Incidence of cancer driver mutations

The discovery of significantly mutated genes with Mutpanning (Dietlein et al. 2020) con-
firmed previously reported cancer drivers (Figure A.9). Interestingly, this analysis highlighted
genes that were reported as drivers in advanced tumors but not in primary tumors, namely,
EP300 in META-PRISM LUAD, HERC2 in META-PRISM BRCA, ESR1 in META-PRISM
and MET500 BRCA, and AR in META-PRISM and MET500 PRAD. Mutations in these
drivers may have been selected by the therapies or have arisen in the late stage of tumor
evolution. We next selected a list of 360 cancer genes by intersecting COSMIC census Tier
1 and Tier 2 (v92) and OncoKB-annotated genes (Chakravarty et al. 2017) and created a
catalog of driver somatic alterations (substitutions, small indels, amplifications, and deletions)
using OncoKB annotations on these genes only. These types of driver events were observed
in 96% of the META-PRISM WES tumors. The most frequently altered driver genes in
META-PRISM were TP53 (55% of samples), KRAS (25%), CDKN2A (18%), and EGFR
(14%; Figure 3.18.A). On the whole cohort level, ten oncogenes and three tumor suppressor
genes were significantly enriched compared with TCGA; 40% and 100% of those genes,
respectively, were also enriched in MET500. Some driver genes were significantly enriched in
specific tumor types: for example, EGFR and CTNNB1 in LUAD; TP53, AR, PTEN, and
RB1 in PRAD; ESR1 and CCND1 in BRCA; TP53 and KRAS in PAAD; and FGFR3 in
BLCA (Figure 3.18.A, FisherBoschloo tests, Benjamini-Hochberg correction). The number
of WES-derived driver events (mutations and somatic CNAs) was significantly higher in
metastatic tumors as compared with primary tumors at the cohort level (means of 3.9 and
3.6 in META-PRISM and MET500 vs. 3.2 in TCGA, P < 0.0001) and for 5 of 10 tumor
types included in the META-PRISM WES cohort (Figure 3.18.B).

Major tumor suppressor genes frequently underwent biallelic inactivation. Such inactiva-
tions were observed in 92% of TP53 -hit tumors, 95% for CDKN2A, 81% for PTEN, 88%
for SMAD4, 41% for ARID1A, 78% for APC, and 92% for RB1. However, the predominant
mechanisms of biallelic inactivation differed from one gene to another: in TP53, it was muta-
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Fig. 3.18.: The landscape of cancer-associated somatic mutations, CNAs, and germline mutations in META-PRISM
tumors. A. Heat maps depicting the percentage of tumors harboring driver events (substitutions, small indels, CNAs)
in top oncogenes (top), top tumor suppressor genes (middle), and top cancer-predisposing genes (bottom). Triangle
orientations (increase - triangle points up, decrease - points down) and colors (red for META-PRISM vs. TCGA,
green for MET500 vs. TCGA) highlight significant changes in frequency. Similarly, stars next to the gene names
represent significant changes at the cohort level using the same color code as for triangles (*, P < 0.05; **, P < 0.01;
***, P < 0.001). The absolute bar plots show the percentage of tumors in META-PRISM harboring the alteration,
whereas the relative bar plots show the breakdown of these alterations into different categories. Adjusted p-values per
tumor type are from Fisher-Boschloo tests, whereas p-values across the cohort are from Cochran-Mantel-Haenszel
tests. FS indel, frameshift insertion or deletion; IF indel, inframe insertion or deletion. B. Box plot of the number of
driver events in META-PRISM, MET500, and TCGA. Adjusted p-values shown in the box plot are derived from
Mann-Whitney U tests. C. Bar plot representing the incidence of cancer-risk germline variants in META-PRISM,
MET500, and TCGA cancer patients and in ExAC European (non-Finnish) population. Stratified
Cochran-Mantel-Haenszel test is used to account for tumor-type compositions in the cohorts except for comparison
with ExAC in which the standard Fisher test is used. D. Pie charts representing the distribution of cancer-risk variants
by pathways in META-PRISM tumors. E. Pie charts representing the distribution of cancer-risk variants in DNA
repair pathways for each of the six tumor types harboring the most germline events. BER, base excision repair; FA,
Fanconi anemia; GM, genome maintenance; HR, homologous repair; MMR, mismatch repair; NER, nucleotide
excision repair. All p-values are adjusted for multiple testing using the Benjamini-Hochberg procedure. Only tumor
types represented in the META-PRISM WES subcohort are shown in this figure.
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tion followed by LOH; in CDKN2A and PTEN, it was homozygous deletion; and other genes
demonstrated a combination of mechanisms (Figure A.10). Few oncogenes also underwent
multihit events, most notably EGFR (57%), AR (12%), PIK3CA (7.7%), and KRAS (4.2%).
Multihit events in EGFR in META-PRISM were significantly more frequent than in TCGA,
likely reflecting the effect of EGFR inhibitors in LUAD (Figure A.11).

The WES of germline DNA from 569 META-PRISM patients was used to identify
pathogenic cancer-predisposing variants (substitutions and indels). We focused on the germline
variants annotated as pathogenic or likely pathogenic in the ClinVar database (Landrum,
Lee, et al. 2014; Landrum, Chitipiralla, et al. 2020) or protein-disrupting and residing in
genes strongly associated with cancer predisposition as described by Huang et al. (2018). We
identified 75 patients in META-PRISM (13.1%) harboring at least one such variant. The
fraction of patients with cancer-predisposing variants was similar to that in MET500 patients
and was 1.75 times higher than in TCGA (8 cancer types, P = 0.0012, Fisher exact test) or in
ExAC non-Finnish Europeans (OR = 1.75, P = 0.0002; Figure 3.18.C). Seventy-three percent
of variants were in DNA repair pathway genes (Figure 3.18.D). The most frequent genes
with cancer-predisposing variants in META-PRISM patients were MUTYH (1.9%), BRCA2
(1.8%), NF1 (0.9%), ERCC2 (0.9%), ERCC3 (0.9%), RAD51D (0.7%), and FANCG (0.7%;
Figure 3.18.A). Variants in MUTYH, NF1, and RAD51D were significantly more frequent
than in TCGA. We detected an increase of germline cancer-risk variants in most cancer types
in META-PRISM. However, it reached significance only for PRAD (P = 0.03) and LUSC
(P = 0.004) cancer types. Mutations in the HR pathway were the most frequent in BRCA,
PRAD, LUAD, and BLCA; BER pathway in PAAD and LUSC; and MMR pathway in COAD
(Figure 3.18.E). Thirty-seven percent of genes with germline cancer-risk variants harbored
a somatic second-hit event, including somatic mutations in 9% and LOH resulting in the
retention of the pathogenic variant in 27%.

3.4. Transcriptomic profiles

Similarly to the analyses of data from WES experiments, the analyzes of RNA-seq samples
were led on all tumor types represented by at least 10 samples in META-PRISM, which
corresponds to 20 tumor types (META-PRISM RNA-seq, 84.2% of all RNA samples).

Although we made a thorough effort of pipeline harmonization for the quantification
of gene expression across all three cohorts (Section 3.2.2), we remained concerned about
the potential impact of technical disparities on the expression profiles. We tried to measure
this technical impact by using popular dimension-reduction techniques on the profiles of all
three cohorts, restricting ourselves to the six most frequent tumor types in META-PRISM
to limit the tumor type-related heterogeneity. As depicted in Figure A.12, some technical
effects have a strong influence such as the difference between RNA samples prepared via
polyA-enrichment and those prepared using hybridization capture techniques, which were
exclusively utilized in some of the MET500 samples.
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Fig. 3.19.: landscape of tumor microenvironments and cancer-associated gene fusions. 19

19A. Heat map depicting the percentage of tumors classified in each TME subtype for each tumor type of the META-
PRISM RNA-seq subcohort (non-TCGA tumor types and SARC were excluded). B, Heat maps depicting the
percentage of tumors harboring gene fusions for known cancer gene fusions (top) or known cancer drivers (bottom).
Only known oncogenic gene fusions seen in at least four samples among META-PRISM RNA-seq tumors are shown
in the top. The bottom plot considers all known oncogenic gene fusions implicating drivers except for the fusions
shown in the top plot that are excluded. Likewise, only drivers involved in fusions of at least four samples among
META-PRISM RNA-seq tumors are shown. NT, Not_TCGA, tumor types that could not fit into TCGA classification.
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Chapter 3. The landscape of refractory metastatic tumors

We initially attempted differential gene expression analyses comparing META-PRISM
samples to TCGA samples. However, these attempts were left aside due to our inability
to adequately control for technical and biological disparities (library preparation protocols,
sequencing devices, biopsy sites) unrelated to the differences we would have liked to investigate.
Additionally, the absence in TCGA of patients with profiles comparable to META-PRISM
patients, i.e., with advanced cancer and refractory to conventional treatments, or conversely,
the absence of treatment-naive early cancers in MET500 and META-PRISM cohorts, impeded
the use of batch-effect correction methods. Despite these challenges, we hypothesized that
the impact of batch effects on the classification of TMEs could be mitigated by the use of
gene expression signatures, which aggregate signals from predefined lists of genes. However,
it is important to note that this hypothesis has not been empirically tested.

3.4.1. Immune characteristics

The TME is known to play a significant role in clinical outcomes and response to
therapy (Galon et al. 2012; Goossens et al. 2015; Sparano et al. 2018; Thorsson et al. 2018).
TMEs in META-PRISM, MET500, and TCGA patients were analyzed through the prism
of the four-class classification described by Bagaev et al. (2021). Under this classification
scheme, tumors from the tumor types considered by the authors can be categorized into
four subtypes: immune-enriched and fibrotic (IE/F), immune-enriched and nonfibrotic (IE),
fibrotic (F), and immune-depleted (D). This classification is based on the signature scores of
29 functional gene sets "representing the major functional components and immune, stromal,
and other cellular populations of the tumor" (Bagaev et al. 2021).

As this categorization of TMEs is the result of a clustering analysis on TCGA samples, we
had to build a classifier to predict classes for new samples. Briefly, we computed single-sample
gene set enrichment scores for gene expression profiles of all three cohorts starting from
the TPM tables. We then developed a classifier using the labels provided by the authors
in their GitHub repository20. To achieve a good performance, we trained various multiclass
classification models using the normalized TCGA scores, which we recalculated, as well as
the scores supplied by the authors, to ensure the robustness and consistency of our approach.
We compared the accuracy of different machine learning models trained using a 5-fold cross-

C. Fusions involving tumor suppressor genes, PTEN, TP53, and RB1, and oncogenes, FGFR2, AR, and ESR1. The
op part of each panel indicates the protein domains (amino acid numbering) and locations and recurrence of driver
somatic mutations categorized into splice site, frameshift, inframe, nonsense, and missense mutations. The bottom
part shows fusion event breakpoints on the exonic structure. Only coding exons are shown. Black arrows indicate
fusion breakpoints with the driver gene transcript located 5’ (left arrow) or 3’ (right arrow) of the breakpoint. Gray
arrows indicate secondary fusions for which a principal fusion (with higher coverage) is found in the same patient
and involves the same gene. FS indel, frameshift insertion or deletion; IF indel, inframe insertion or deletion. D.
RT-PCR validation of 18 fusions in TP53, RB1, PTEN, NF1, and AR. A and B, Triangle orientations (increase
- triangle points up, decrease - points down) and colors (red for META-PRISM vs. TCGA, green for MET500
vs. TCGA) highlight significant changes in subtype frequency. Similarly, stars next to the gene names represent
significant changes at the cohort level using the same color code as for triangles (*, P < 0.05; **, P < 0.01; ***,
P < 0.001). P-values per tumor type are from Fisher-Boschloo tests, whereas p-values across the cohort are from
Cochran-Mantel-Haenszel tests. A. P-values were not corrected for multiple testing due to the lack of independence
between the tests performed within each tumor type.

20https://github.com/BostonGene/MFP/tree/master/Cohorts/Pan_TCGA
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3.4. Transcriptomic profiles

validation procedure. The scores reported in Table 3.4 present the average of the five test
scores from the five internal cross-validation splits.

Model Scores Accuracy F1 weight Precision Recall

AdaBoostClassifier Authors 0.865 0.867 0.853 0.869
AdaBoostClassifier Recomputed 0.845 0.847 0.834 0.844
KNeighborsClassifier Authors 0.858 0.857 0.860 0.837
KNeighborsClassifier Recomputed 0.847 0.845 0.847 0.824
LogisticRegression Authors 0.917 0.916 0.911 0.907
LogisticRegression Recomputed 0.897 0.897 0.888 0.884
RandomForestClassifier Authors 0.867 0.866 0.866 0.845
RandomForestClassifier Recomputed 0.859 0.857 0.857 0.836
SVC Authors 0.938 0.938 0.936 0.931
SVC Recomputed 0.911 0.911 0.906 0.900

Table 3.4.: Cross-validation performances of models trained to reproduce the four-subtype classification of tumor
microenvironments from TCGA RNA-seq data.

Overall, we observed a marginal decrease in classification performance when substituting
the scores computed by the authors with those we recalculated. The authors, as indicated
in their GitHub repository, recommended the utilization of KNeighbors classifiers with a
parameter value of k = 35. However, it is noteworthy that, among the five distinct models
we evaluated, these KNeighbors classifiers [with best hyperparameters (tested values ranged
from 2 to 80) at k = 37 and k = 36 for scores provided by the authors and recomputed
by us, respectively], consistently yielded the poorest performance. For our analyses, we
selected predictions generated by the logistic regression model trained on the scores that we
had recalculated. It is important to note that tumor type-specific normalization parameters
learned from the full TCGA dataset are required for performing predictions. As a consequence,
only tumor types analyzed by Bagaev et al. (2021) could receive a TME subtype assignment.
Notably, the authors excluded sarcomas from their analysis, which consequently prevented
our examination of the TME within these tumors, as well as within rare tumor types.

No consistent difference in the distribution of TMEs across tumor types was observed
when comparing META-PRISM to TCGA. However, the TME subtypes in some individual
tumor types showed striking variation between the cohorts. For instance, immunosuppressive
depleted (D) and fibrotic (F) subtypes were significantly increased in PRAD and BLCA,
respectively, in META-PRISM compared with TCGA (63% vs. 41%, P < 0.001; 32% vs.
17%, P = 0.008; p-values are not adjusted due to the lack of independence; Figure 3.19.A).
Enrichment of the depleted (D) subtype in PRAD was also significant in MET500 versus
TCGA (78% vs. 41%, P < 0.001).

3.4.2. Known and novel driver gene fusions

We next investigated gene fusions in the 795 META-PRISM RNA-seq tumors successfully
processed by the gene fusion-calling pipeline and belonging to the 20 selected tumor types.
It is important to note that the identification of gene fusions was confined to two specific
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categories: known oncogenic fusions and fusions featuring a cancer driver. These categories
were prioritized as they were deemed the most pertinent in the context of cancer and could
be detected with a high degree of reliability across all three cohorts, as described in our
methodology (Section 3.1.2.2).

A total of 432 known oncogenic gene fusions [Chimer KB v4.0, Jang et al. (2019); Chitars
v5.0, Balamurali et al. (2019); COSMIC v9521; TIC v3.3, Novo et al. (2007)) were identified
in META-PRISM RNA-seq tumors (34%). As previously described, well-known oncogenic
gene fusions were often tumor-type specific - TMPRSS2-ERG 28% in PRADs, EML4-ALK
6% in LUADs, DNAJB1-PRKACA 25% in liver hepatocellular carcinoma (LIHCs), MYB-NFIB
64% in head and neck adenoid cystic carcinomas (HNACs) - and some were significantly
enriched in META-PRISM versus TCGA (Figure 3.19.B). In addition to known oncogenic
fusions, we identified 329 fusions involving cancer driver genes and promiscuous partners
(29% of META-PRISM RNA-seq tumors). Among the most recurrently fused driver genes,
we identified tumor suppressor genes PTEN (1.9%), TP53 (0.9%), and RB1 (0.8%). In
these genes, 72% of fusion breakpoints were recurrent (Figure 3.19.C). PTEN fusions were
observed in several tumor types in META-PRISM, but they were most prevalent in PRAD
(Figure 3.19.B). The oncogene most frequently involved in fusions across different tumor
types was FGFR2 (1.5%). Interestingly, ESR1 and AR, both known to be critical players
in hormone therapy resistance in BRCA and PRAD, were involved in fusions in 2.2% and
4.7% of the respective tumor types in META-PRISM (Figure 3.19.B and C). Sixteen of 18
tested fusions (89%) were experimentally validated through RT-PCR and Sanger sequencing
(Figure 3.19.D).

3.5. Improved survival predictions

The association of molecular markers with overall survival measured from the day of
diagnosis has been the subject of extensive work (Van ’T Veer et al. 2002; Paik et al. 2004;
Olivier et al. 2006; Yoshimoto et al. 2007; Goldstein et al. 2008; Cardoso et al. 2008; Riley
et al. 2009; Ihle et al. 2012), some of which has become standard of care. However, the
association of these markers with survival at the very late stage has been scarcely explored,
partly because it is not current clinical practice to systematically profile advanced tumors
and partly because the clinical value of such sequencing is still an open question. In the
context of the META-PRISM cohort, where patients were often enrolled in early-phase clinical
trials at the metastatic stage, tools for accurately assessing the risk profile of each individual
are very much needed to assist clinical decisions. The multivariate survival analysis models
built using the molecular markers described in the previous sections are an attempt to gauge
the prognostic utility of molecular profiling and, most importantly, the potential additional
value that such molecular data could contribute beyond the information provided by standard
clinical parameters. The assessment of the models prognostic capabilities were assessed at
six-month, a time horizon which used in practice to take treatment decisions.

21https://cancer.sanger.ac.uk/cosmic/fusion
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Fig. 3.20.: KaplanMeier curves for significant predictors and prediction of 6-month survival using clinical
characteristics and combinations of WES or RNA-seq features.22

22A. Kaplan-Meier survival curves of META-PRISM WES and RNA-seq tumors according to the oncogenic alterations
status of TP53 and CCND1 (top row), of LUAD tumorsaccording to SMARCA4 and STK11, of PRAD tumors
- according to ERG (middle row), of BLCA tumors with fibrotic (F) and without fibrotic (non-F) TMEs (middle

165



Chapter 3. The landscape of refractory metastatic tumors

3.5.1. Single prognostic markers

We investigated how driver genes are univariably associated with metastatic cancer patient
survival in META-PRISM WES and RNA-seq tumors. Twenty-one genes altered (CNAs,
mutations, gene fusions) in more than 5% of patients were considered for the analysis. Only
TP53 and CCND1 genes showed an association with survival [adjusted hazard ratio =
1.44; confidence interval (CI) 95%, 0.992.02 and hazard ratio = 1.82; CI 95%, 0.983.38,
respectively] after adjusting for the tumor-type composition (Figure 3.20.A, upper row).
Analyses per tumor type revealed an association of SMARCA4 and STK11 events with poor
prognosis in LUAD and of ERG events with favorable prognosis in PRAD (Figure 3.20.A,
middle row).

TME classifications, which have already been shown to be prognostic (Fridman et al. 2012;
Bagaev et al. 2021), were associated with survival in META-PRISM. Indeed, immune-cold
subtypes (F and D) had worse survival compared with immune-enriched subtypes (IE/F and
IE). Strikingly, the F subtype in BLCA and D subtype in PRAD, both enriched in META-
PRISM versus TCGA, were also associated with the poorest prognosis in the corresponding
tumor type (P = 0.002, F vs. non-F BLCA; P = 0.02, D vs. non-D in PRAD; Figure 3.20.A,
bottom row).

3.5.2. Multivariate models

Patients with advanced metastatic cancer are characterized by severe physiologic deterio-
ration as measured by LDH levels, serum albumin, or neutrophil-to-lymphocyte ratio. The
Gustave Roussy Immune score (GRIM score) (Bigot et al. 2017), which combines these physio-
logic markers, could predict six-month survival in the META-PRISM patients with an average
concordance index of 0.67 (Figure 3.20.B). We then investigated if the prediction of survival
at this stage of the disease could be improved by considering genetic markers engineered
from the previous analyses. The list of genetic markers retrieved from WES was composed of

right), of PRAD tumors with depleted (D) and without depleted (non-D) TMEs, and all META-PRISM tumors
classified into four categories as determined by the Gustave Roussy Immune Score (GRIM score; bottom row). All
p-values are computed from log-rank tests. Hazard ratios are computed by fitting univariate Cox models except
for TP53 and CCND1, in which the cancer type was included in the model. B. Averaged C-indexes on the 1,000
cross-validation subsamples for each combination of features analyzed. Cox models were fit on META-PRISM
patients with both WES and RNA-seq data and from the five most frequent tumor types or a pan-cancer cohort
composed of patients belonging to the 10 most prevalent tumor types. Asterisks indicate adjusted p-values below
0.1 (Benjamini-Hochberg correction) from one-sided Mann-Whitney U tests comparing C-indices from model M2
to C-indices from models M3 to M7bis. Bold values indicate the highest mean C-index across models for each
tumor type or combination of tumor types. M1: discrete GRIM score. M2: continuous components of GRIM score,
age, tumor type, and gender are considered. M3: variables from M2 and WES summary statistics are considered.
M4: variables from M2 and WES-derived alterations in driver genes (lasso reduction applied). M5: variables from
M2 and RNA-seq-derived fusion burden and TMEs. M6: variables from M2 and RNA-seq-derived gene expression
signatures (lasso reduction applied). M7: variables included in M3 and M5 are considered. M7bis: variables M7
without the components of the GRIM score. Nb, number. C. Distribution of the predicted risk scores from the
Cox model M7 in META-PRISM BRCA patients who had a survival time greater or lower than 6 months from the
biopsy date. One patient who was censored before 6 months was included in the "> 6m" group. D. KaplanMeier
curves for META-PRISM BRCA patients predicted to be high-risk (risk score > 0) or low-risk (risk score < 0) using
the M7 model. E. Identical to C using the M7bis model. F. KaplanMeier curves for META-PRISM BRCA (left)
and TCGA BRCA (right) patients predicted to be high-risk (risk score > 0) or low-risk (risk score < 0) using the
M7bis model.
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summary statistics, including somatic CNAs, WGD status, MSI score, TMB, and the presence
of oncogenic alterations aggregated into genes or pathways discriminating between ESMO
Scale for Clinical Actionability of molecular Targets (ESCAT) levels (see Chapter 4). The list
of markers retrieved from RNA-seq included TME subtypes and gene expression signatures
measuring the activity of immune pathways, activation of general pathways (Subramanian
et al. 2005), or main transcription factors (Garcia-Alonso et al. 2019).

In order to compare the added prognostic value from different categories of markers
to the objective clinical markers, we ran multiple Cox proportional hazard regressions on
the META-PRISM WES and RNA-seq subcohort and each of the five main tumor types
considering only the samples with both WES and RNA-seq. To provide a comparative
assessment of the added and independent value of biomarkers derived from WES or RNA-seq
as compared with clinical biomarkers (age, gender, global tumor characteristics, blood test
results, treatment history), we experimented with multiple models that incorporated different
combinations of predictors. The baseline model (M2) to be improved upon was composed
of all standard clinical variables plus the continuous components of the GRIM score (LDH,
albumin, neutrophil, and lymphocyte levels). Separate models were run for each of the five
most represented tumor types in our cohort (BLCA, BRCA, LUAD, PAAD, and PRAD) and
the META-PRISM WES and RNA-seq cohort (10 tumor types). In order to ensure a fair
comparison with more complex models, only samples with complete molecular profiles (WES
and RNA-seq) were used in the different Cox models.

For each combination of predictors and samples, we repeated the feature selection and
coefficient estimation steps 1,000 times to assess the selection procedure’s stability, if any,
and to provide robust estimates and CIs for the effect of each variable on survival. Each of the
1,000 repeats consisted of running the selection procedure, if any, and training the model on a
random 80% subsample. The remaining 20% was used to assess the model quality (C-index).
The C-index values reported in Figure 3.20.B are averages of the 1,000 estimates of the
C-index on the 20% test subsamples. Estimates of the covariates’ coefficients were computed
by averaging the coefficient fitted on each 80% subsample across the 1,000 repeats. In case a
selection procedure is active at each repeat, covariates were assigned an estimated coefficient
of zero every time the selection procedure did not retain them. CIs at the 95% level were
estimated by computing the empirical 2.5% and 97.5% quantiles from the 1,000 estimates.
A selection procedure was applied in case the number of covariates was unreasonably high
given the number of available observations. We experimented with univariate - fitting of a
univariate Cox model for each candidate predictor and selecting only predictors for which
adjusted p-values fell below a certain threshold - and multivariate selection procedures - fitting
of a Cox model with lasso penalization and selecting only predictors with nonzero coefficients
to identify a small set of predictors that, hopefully, is a superset of all important predictors.
The Cox regressions on predictors selected by the lasso were always more prognostic (higher
value of C-index) than when predictors were selected through the univariate procedure.

Each set of 1,000 repeats of Cox regressions was preceded by preprocessing steps (run
once for each combination of samples and features) in which covariates were formatted,
imputed, min-max transformed, and analyzed for redundancy. The imputation relied on the
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MICE R package (Zhang 2016), which performs multiple imputations of the same dataset
by iteratively learning a predictive model of each covariate with missing data from all other
covariates and randomly sampling from observed values through a predictive mean matching
procedure. Data tables with at least one missing value were imputed five times, and coefficient
estimates across each of the 1,000 repeats were calculated by averaging estimates across the
five imputed tables.

The C-index was estimated in two different ways, either using the C-statistic proposed
by Harrell et al. (1996) or using the inverse probability weighting estimate presented by Uno
et al. (2011) to account for the fact that the C-statistic proposed by Harrell and colleagues
depends on the censoring distribution which in practice is rarely independent of the covariates
used in the Cox regression. As survival times are subject to censoring, and because we were
mainly interested in discriminating between patients having a survival longer or shorter than
six months as it is the time horizon clinicians are interested in for making important decisions,
we used an estimate of the C-index truncated at six months by considering only pairs of
patients for which one of the two patients had a survival shorter than six months. The
estimator proposed by Uno and colleagues (see formula 2.3 from their work), as well as the
C-statistic proposed by Harrell and colleagues, were implemented in C using a truncation time
of six months. A comparison of the estimated values from both estimators showed very little
difference due to the fact that only a minority of patients were right-censored in our cohort
(<10%). Values reported in the main text use the C-statistic from Harrell and colleagues
truncated at six months.

3.5.3. Results

As expected, the models’ performances based on discrete GRIM score (M1 model) were
significantly improved by using the continuous metrics underlying it and by adding baseline
clinical variables (age, gender, tumor type, clinical subtypes; M2 model). Nevertheless, the
incorporation of WES-derived markers (M3 and M4 models), RNA-seq-derived markers (M5
and M6 models), or both (M7 model) resulted in a further increase of the C-index over the
continuous GRIM score model (M2) in all analyzed tumor types and for the whole cohort
except for LUAD, in which the discrete GRIM score classification was the most prognostic
(Figure 3.20.B).

Strikingly in META-PRISM BRCAs, for which the GRIM score alone (M1, C-index =
0.469) had no prognostic value and the GRIM score components along with clinical variables
including immunohistochemistry (IHC) subtypes was moderately prognostic (M2, C-index
= 0.620), the inclusion of genetic markers engineered from WES or RNA-seq considerably
improved the six-month survival prediction (C-index = 0.784). Analysis of the model’s
coefficients shows that multiple markers have significant prognostic value independently of
the baseline clinical variables, which include the IHC subtypes, namely: (i) the total number
of ESCAT Tier 1 alterations [log hazard ratio (LHR) 3.75; CI 95%, 1.076.53], the fraction of
the genome covered by (ii) focal deletions (LHR -4.05; CI 95%, -8.73, -0.34), by (iii) focal
amplifications (LHR 7.28; CI 95%, 2.63 - 13.55), and by (iv) middle- to low-level gains (LHR
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-3.65, CI 95%, -8.18, -1.22), and (v) the TME subtypes (LHR -3.18 for F vs. D, -2.72 for
IE vs. D, -4.80 IE/F vs. D; Figure A.13). The predicted risk scores from this model were
significantly higher in patients with a survival time greater than six months than in patients
with a survival time lower than six months from the date of the biopsy (Figure 3.20.C). By
discriminating between patients having a positive risk score (poor prognosis, 8/51) and a
negative risk score (good prognosis, 43/51), the model was able to split BRCA patients into
two groups with very different clinical outcomes (P < 0.0001 log-rank test; Figure 3.20.D).

In order to validate the survival model on an external cohort, we took advantage of
the large TCGA BRCA cohort and considered all patients with survival, mutation, gene
expression, and gene fusion data available (n = 670). Due to the unavailability in TCGA of
clinical variables underlying the GRIM score, we considered one extra model (M7bis) that was
identical to M7, except that the GRIM score components were excluded. This model was
trained on META-PRISM BRCA and validated on TCGA BRCA. It was found to be predictive
of survival in META-PRISM (C-index = 0.71, cross-validation; P < 0.0001 log-rank test)
and in TCGA (C-index = 0.65 at one year and C-index = 0.63 at six years; P = 0.0068;
Figure 3.20.E and F).

3.6. Conclusions

The META-PRISM project provides genetic and transcriptomic variation for a large cohort
of refractory tumors from 39 tumor types, 20 of which were analyzed in depth. This cohort
is characterized by a short survival time after the biopsy date and by a high proportion
of multiresistant tumors or rare tumors with no approved therapy options. Consequently,
the genomes of these tumors represent a much-advanced evolutionary stage containing the
footprints of mutagenic treatments and therapeutic pressure. To characterize the genetic
traits specific to this cohort and assess how these may inform the tumor’s aggressiveness and
resistance to therapies, we compared META-PRISM to >10,000 primary untreated tumors
from TCGA (The Cancer Genome Atlas Research Network et al. 2013) and validated all
results using an external cohort of 500 metastatic tumors (Robinson et al. 2017).

The compilation, curation, and structuring of data for the META-PRISM cohort repre-
sented a critical and labor-intensive undertaking to establish a robust database with detailed
and high-quality data. To ensure the seamless integration of data tables across the three
cohorts in our comparative analyses, we meticulously standardized the descriptions of the
tumor types, primary sites, and biopsy sites according to internationally recognized nomencla-
tures. We additionally performed a thorough effort of pipeline harmonization to minimize the
sources of technical disparities that could introduce confounding elements into our analyses.
This work entailed the reprocessing of all sequencing files from MET500 and more than
200 terabytes of TCGA sequencing of data for the description of CNAs. The high-rigor
and precision with which the data has been collected and harmoniously processed have
been instrumental to the overall success of this project. The clinico-biological tables and
the somatic alterations of META-PRISM patients have been deposited on a public por-
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tal at https://cbioportal.gustaveroussy.fr/study/summary?id=metaprism_2023

allowing any interested researcher to explore the data interactively and test new hypotheses.

Our analysis reveals that several types of genomic instability were strongly enriched in
refractory cancers, particularly the mutation rate, the frequency of WGD, and the fraction
of the genome covered by focal CNAs. These results are consistent with previous studies
that reported increased genomic instability and mutational burden in metastases of different
cancer types (Bakhoum et al. 2018; Priestley et al. 2019; Shukla et al. 2020; Z. Hu et al.
2020; Watkins et al. 2020; Nguyen et al. 2022). Correlative analyses between the mutational
profiles of tumors and the history of treatments received have shown increased activity of
signatures SBS31 and SBS35 in tumors treated with cisplatin and to a lesser extent with
carboplatin. The high mutation rate of these two signatures supports previous observations
of strong mutational footprints caused by platinum treatment in metastatic cancers (Pich
et al. 2019) and relatively low mutagenic effects of oxaliplatin (Szikriszt, Póti, Németh, et al.
2021). The driver gene fusions and somatic CNAs represented 9.4% and 18.8% of all detected
variation in driver genes, respectively, and were strongly enriched in META-PRISM tumors
compared with TCGA tumors.

Markers of physiologic deterioration, such as levels of albumin, neutrophils, lymphocytes,
and LDH, are used in objective risk scoring systems to predict patient survival, which is
essential for assessing the eligibility of these patients for phase I clinical trials (Garrido-Laguna
et al. 2012; Feng et al. 2020). This study shows that tumor genomic and transcriptomic
features can be used to improve the accuracy of predictions based on objective risk factors at
this stage of the disease. The added value of genetic markers to current prognostic scores is
currently limited at the pan-cancer level, likely due to the high heterogeneity of mechanisms
driving tumorigenesis in each tumor type. However, models incorporating genetic markers are
significantly more accurate in predicting six-month survival in refractory BRCAs, showing
that WES and RNA-seq are important for accurately establishing the individual risk profile of
patients with late-stage cancer.

This study validates the previous combined genomic and transcriptomic descriptions
from pretreated pan-cancer metastatic diseases (Pleasance, Titmuss, et al. 2020; Pleasance,
Bohm, et al. 2022). It also highlights the feasibility of precision medicine in clinical routine
in patients without standard treatments available. Benefits of molecular profiling-guided
access to new drug protocols in such patients has now been demonstrated in multiple clinical
studies (Massard et al. 2017; Rodon et al. 2019; Recondo et al. 2020; Pleasance, Bohm, et al.
2022; Andre et al. 2022). The present cohort advances translational cancer genomics by
providing a unique resource combining detailed clinical data with exome and transcriptome
profiling.
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Abstract Chapter 4
In this chapter, we will delve into the currently described drug resistance mechanisms
and explore how molecular profiling of tumors in patients contributes to our understand-
ing of the genetic resistance mechanisms against both conventional and innovative
drugs. The first section offers a brief overview of various cancer treatments and the
recognized mechanisms of drug resistance, setting the stage for the subsequent analyses
of patients data. The second section provides a detailed account of how we integrated
data from the OncoKB and CIViC knowledge databases with somatic alterations
identified through WES and RNA-seq to elucidate treatment resistances observed in
META-PRISM patients. The insights gained from this comprehensive project were
subsequently applied to uncover resistance mechanisms associated with two innovative
drugs in distinct clinical settings. The first setting involves an ongoing phase 2 clinical
trial investigating the effectiveness of the antibody-drug conjugate (ADC) trastuzumab
deruxtecan in breast cancers. The second setting leverages molecular profiles from
urothelial cancer patients who participated to three large trials conducted at Gustave
Roussy so as to decipher the mechanisms of resistance to fibroblast growth factor
receptor (FGFR) inhibitors.

H
ow tumor cells evade the effects of antineoplastic drugs is a vast question that remains
mostly elusive to our understanding although general principles and specific biomarkers

of resistance are gradually being described. Chapter 3 introduced the META-PRISM study,
providing an overview from database assembly to the identification of molecular alterations in
WES and RNA-seq data and their applicability in predicting survival outcomes. As detailed
in Section 3.1.1.3, extensive efforts were made to collect information on past treatments for
the majority of META-PRISM patients. With the exception of 20 patients, all others have
available comprehensive records of the antineoplastic drugs they received and progressed upon
prior to the biopsy we analyzed. This valuable dataset offers numerous analytical opportunities,
the first of which is the delineation of the associations between tumor genotypes and exposure
to treatments and, subsequently, resistance to these treatments.

While WES and RNA-seq provide rich information, they also have inherent limitations
that constrain the depth and breadth of our explorations into resistance mechanisms. Notably,
the limited depth of WES, with a median of 140x across the cohort, hampers the detection
of variants present in minor proportions in the tumor. This technical constraint, coupled
with the spatial heterogeneity of tumors that a single biopsy cannot fully capture (Swanton
2012; Jamal-Hanjani et al. 2017), restricts the exhaustive description of molecular alterations
explaining the observed resistances. Nevertheless, leveraging two high-quality knowledge
databases, which reports extensive drug response-molecular alterations relationships with
varying degrees of confidence, allowed us to explore the potential therapeutic implications of
WES and RNA-seq data. The expertise and technical insights gained through the META-
PRISM project has been put into practice for analyzing genotyping data from two other
translational projects, both focused on elucidating resistance mechanisms to innovative drugs
and presented in the last section of this chapter.
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4.1. Drugs and mechanisms of resistance

4.1.1. Classification of drugs

Fig. 4.1.: Timeline of FDA drug approvals for the treatment of lung
cancer as of October 2023.
Source: https://www.lungcancerresearchfoundation.org

Nowadays there is a diverse array of anti-
neoplastic drugs at our disposal for treating
cancer patients but this hasn’t always been
the case. The availability of therapeutic op-
tions is not uniform across different tumor
types; it logically tends to be higher for fre-
quently encountered cancers like lung, breast,
or prostate cancer and lower for rare tumor
types that have been less studied and are not
well understood. Figure 4.1 provides a time-
line depicting all FDA-approved drugs for the
treatment of lung cancer, starting from the
introduction of mechlorethamine hydrochloride, commonly known as nitrogen mustard, in the
1940s.

The wide diversity of cancer drugs is better understood through classification systems,
most of which group together drugs sharing similar mechanisms of action for eliminating
tumor cells or disrupting the signals they rely on. While numerous drug classification systems
exist, describing them is beyond the scope of this introduction. Instead, we will use a
simple classification that categorizes them into four overarching classes: chemotherapies,
targeted therapies, hormone therapies, and immunotherapies. It is important to note that this
classification is not rigid, as, for instance, some view hormone therapies and immunotherapies
as types of targeted therapy.

Chemotherapies have been widely used for many decades and across many cancer type (Gal-
marini et al. 2012). As the earliest drugs developed for cancer treatment, they initially stood
as the sole therapeutic option. Nowadays, they remain widely in use either in the pre-operative
setting as neoadjuvant therapy to decrease tumor burden or after surgery as adjuvant treat-
ment to eliminate residual tumor cells post-treatment with other drugs, or as non-curative
or palliative care in patients with rare or aggressive tumors or those that have exhausted all
treatment options. Additionally, they are frequently used in combination with other drugs,
such as targeted inhibitors, as reviewed by (Bashraheel et al. 2020). The mechanisms of
action of chemotherapies involve targeting rapidly dividing cells through diverse approaches,
categorizing them into five main families:

1. Alkylating agents such as busulfan, platinum-based agents, cyclophosphamide, and
temozolomide. They induce DNA damage, leading to cell cycle arrest.

2. Antimetabolites such as 5-fluorouracil, capecitabine, and pemetrexed. They prevent
DNA replication during the S-phase.

3. Topoisomerase I and II inhibitors such as irinotecan and topotecan (topoisomerase I
inhibitors) and doxorubicin and etoposide (topoisomerase II inhibitors) prevent DNA
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resealing during replication and cause DNA damage.
4. Antimitotic agents such as include docetaxel, paclitaxel, and vincristine. They disrupt

the normal dynamics of microtubules, leading to mitotic arrest.
5. Tumor antibiotics such as bleomycin, mitomycin C, and dactinomycin. They interfere

with RNA synthesis or induce DNA damage through specific binding.

Targeted therapies have a relatively recent emergence compared to chemotherapies and
constitute a diverse array of drugs comprising three main families: monoclonal antibodies,
tyrosine kinase inhibitors (TKIs), and antibody-drug conjugates (ADCs). However, targeted
therapies are more expensive than chemotherapies, particularly monoclonal antibodies, limiting
their availability (Smith & Prasad 2021). Another significant major issue of targeted agents
lies in their inability to comprehensively inhibit cancer-relevant signaling pathways, a limitation
underscored by the high relapse rates observed in the long run (Groenendijk & Bernards
2014).

1. Monoclonal antibodies are designed to specifically target and bind selected proteins
on the surface of cancer cells or other cells involved in cancer development. They
work by triggering an immune response towards cells or by blocking the connection
between cancer cells and the growth factors that these cells depend on for survival
and proliferation. The classification of monoclonal antibodies naturally aligns with
the specific targets they bind to. Notable early examples, approved by the FDA in
the late 1990s or early 2000s, include rituximab, which targets the CD20 antigen on
B cells in non-Hodgkin lymphomas and CLLs; trastuzumab, which targets HER2 in
HER2 -positive breast cancer; bevacizumab, which targets vascular endothelial growth
factors (VEGF s) in various solid cancers; and cetuximab, which binds to the EGFR
and is indicated in colorectal and head and neck cancers.

2. Tyrosine kinase inhibitors are a second main class of targeted therapies. These drugs
act by inhibiting specific enzymes called tyrosine kinases, which relay signals from and
into the cell by phosphorylating tyrosine residues on target proteins. Tyrosine kinases,
a subset of protein kinases, play critical roles in various cellular functions, including
cell growth, proliferation, and differentiation. Given the causal link between kinase
alterations and the aberrant characteristics of tumor cells (Blume-Jensen & Hunter
2001), a multitude of drugs has been developed to inhibit these enzymes. TKIs are
designed to be selective for particular tyrosine kinases or kinase families, minimizing
off-target effects, but some TKIs have broad specificities. Examples of TKIs include
imatinib, which targets BCR-ABL1 in CML; erlotinib, designed to inhibit EGFR in
NSCLC; and sunitinib, targeting VEGFRs, PDGFR, and CSFR in renal cell carcinoma.
It’s noteworthy that, for historical reasons, drugs inhibiting non-tyrosine kinases are also
commonly referred to as TKIs, although they do not specifically target tyrosine kinases.
Examples include BRAF inhibitors vemurafenib and dabrafenib in melanomas, PI3K
inhibitor alpelisib with indications across various cancer types, and PARP inhibitors
olaparib, rucaparib, and niraparib employed in breast, ovarian, pancreatic and prostate
cancers.

3. Antibody-drug conjugates represent the third major category of targeted therapies,
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presenting as an emerging class of drugs that combine the cytotoxic effectiveness of
chemotherapy with the precision inherent to standard targeted therapies. They consist
of engineered molecules composed of a monoclonal antibody, a cytotoxic payload, and
a linker. The antibody serves to selectively deliver the drug to cells harboring the
targeted antigen, such as HER2, HER3, and EGFR for trastuzumab, panitumumab,
and cetuximab antibodies, respectively. The payload,is the "warhead" that will induce
cytotoxicity when released inside recognized cells or their proximity. Currently approved
ADCs use a chemotherapeutic agent for the payload but other types of payload are
under development. Lastly, the linker plays a critical role in connecting the antibody
and payload, ensuring the stability and tolerability of the entire molecule. Gemtuzumab
ozogamicin, targeting CD33, marked the first approved ADC in 2000, while brentuximab
vedotin, targeting CD30, became the second approved ADC in 2011. As of December
2021, 14 ADCs had received EMA or FDA approval including six in solid tumors, and
more than 100 are currently under investigation in clinical trials (Z. Fu et al. 2022).

The third main class of cancer treatments encompasses hormone therapies, also known
as endocrine therapies. The history of hormone suppression in cancer management can
be traced back to the late 19th century with the seminal work of Thomas Beatson, who
demonstrated the control of breast cancer through the removal of ovaries. In 1977, tamoxifen
emerged as the first FDA-approved estrogen-inhibiting drug for breast cancer treatment,
marking a groundbreaking development that continues to have widespread applications in
managing hormone-positive breast cancers (Osborne 1998). Endocrine therapies function by
suppressing hormones essential for the growth of cancer cells, achieved either by impeding
the body’s hormone production or inhibiting hormone receptors. They are indicated for the
treatment of hormone-sensitive cancers, primarily comprising breast and prostate cancers,
and to a lesser extent, other genitourinary cancers. The three major families of approved
hormone therapies are antiestrogens, employed in breast cancer and further subdivided into
aromatase inhibitors (anastrozole, letrozole, and exemestane), selective estrogen receptor
degraders (fulvestrant, elacestrant), and selective estrogen receptor modulators (tamoxifen,
toremifene) ; antiandrogens, such as bicalutamide or enzalutamide, used in prostate cancer;
and GnRH agonists and antagonists, such as goserelin and degarelix, respectively, which act
by desensitizing or blocking hormone receptors on the pituitary gland.

Immunotherapies have been gaining a lot of attention lately due to the success stories of
long-term or complete responses achieved in clinical trials and now in clinical care. Interestingly,
immune checkpoint inhibitors were described over two decades ago in seminal papers that laid
the foundation for modern cancer immunotherapy (Kroemer & Zitvogel 2021). These papers
detailed the targeting of three critical molecules - CTLA-4 receptor (Krummel & Allison 1995),
PD-1 receptor, and PD-L1 ligand (Freeman et al. 2000), which are the only three targets
of the six currently approved immune checkpoint inhibitors (Bagchi et al. 2021) apart from
LAG3-blocking immunotherapy relatlimab which is approved in combination with nivolumab
in advanced melanomas1. The efficacy of immune checkpoint inhibitors in cancer treatment

1https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-

unresectable-or-metastatic-melanoma
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was recognized after the spectacular results of the first phase III clinical trial demonstrating
the anti-melanoma effects of anti-CTLA-4 ipilimumab, reported in 2010 (Hodi et al. 2010).
Apart from immune checkpoint inhibitors, immunotherapies include cytokine-based therapies,
adoptive T-cell therapies, oncolytic viruses, and cancer vaccines, all of which are actively being
investigated or already incorporated in the standard of care (Waldman et al. 2020; Boardman
& Salles 2023). The monoclonal antibodies we described earlier as part of targeted therapies
may also be considered a passive immunotherapy type. New cancer immunotherapies are
continuously being developed such as bispecific antibodies with combine two binding sites
targeted at two different antigens or epitopes of the same cell, or bi-specific T-cell engagers
which aim at activating the immune system against the tumor by binding T-cells and cancer
cells.

4.1.2. Mechanisms of resistance

Before cancer treatment begins, cancer cells may already have a way of resisting or escaping
the effects of therapy, in which cases the resistance is said to be intrinsic. Alternatively,
they might develop a new capability that allows them to adapt to the treatment and resist
it. However, distinguishing between acquired and intrinsic resistances is challenging due
to our inability to exhaustively genotype all cancer cells, particularly in advanced cases
where there are multiple heterogeneous clones. Intratumor heterogeneity, whether genetic,
epigenetic, or microenvironment-related, increases the likelihood of cancer cells adapting
to the therapy-induced selective pressures, surviving therapy, and ultimately driving cancer
progression (McGranahan & Swanton 2017). In heterogeneous tumors, some clones may be
sensitive to the drug, while others may already have the ability to resist it. Depending on which
clones are most prevalent when the drug is introduced, no clinical benefit may be observed
or, on the contrary, a good response may be observed initially before the therapy-induced
clonal expansion of resistant subclones drives cancer progression. The success of profiling
sequencing experiments in distinguishing acquired resistances from intrinsic ones depends on
their ability and sensitivity to determine the genotype and phenotype of minor clones pre-
and post-treatment.

The mechanisms by which cancer cells develop resistance to drugs can be roughly
categorized into six classes: changes in the drug pharmacokinetics, modifications in the target
expression or molecular structure, repair of the DNA damage induced by some therapies,
deactivation of cell death pathways or activation of pro-survival pathways, reactivation of the
targeted pathway or activation of an alternative and functionally redundant pathway, and
changes in cells phenotypes or in the TME (Gottesman 2002; Holohan et al. 2013; Housman
et al. 2014; Mansoori et al. 2017; Nussinov et al. 2021). However, it is important to note
that there are probably still unknown mechanisms of drug resistance, and therefore current
classifications remain incomplete.

The effectiveness of drugs on cells is firstly dependent on pharmacokinetic factors which
include drug efflux, influx, distribution, or metabolism. For many types of anticancer
medications, such as chemotherapies and ADCs, their ability to enter cells and deliver their
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cytotoxic agents is critical for inducing cell death. However, the presence of ATP-binding
cassette transporter proteins, particularly those labeled as multidrug resistance proteins (MRPs)
of the C family, can impact drug efflux and influx. This can lead to decreased drug effectiveness
and chemotherapy resistance in cultured cells (Sodani et al. 2012). MRPs are known to remove
various hydrophobic compounds and can bind to cytotoxic agents like taxanes or topoisomerase
inhibitors. Preclinical studies have shown that elevated levels of MRPs, including ABCB1,
ABCC1, and ABCG2, were associated with a poor response to chemotherapies (Doyle et al.
1998; Gottesman et al. 2002; Szakács et al. 2004). However, attempts to inhibit these
proteins in combination with chemotherapy have yielded unsatisfactory results in clinical
trials (Thomas & Coley 2003; Pusztai et al. 2005). In addition, the expression of certain
genes like NEK2 has been linked to drug resistance through increased drug efflux (Zhou et al.
2013). The presence or absence of specific molecules, such as GSH antioxidant or enzymes
required for converting drugs like 5-fluorouracil or irinotecan into their active forms, are yet
another mechanism employed by cancer cells to impact the drug effectiveness (T. Wilson
et al. 2006).

A secondary and primary mechanism of drug resistance involves alterations to the target.
These alterations can manifest as a significant increase in its expression levels, thereby reducing
the treatment efficacy for which doses cannot be increased because of its toxicity. Alternatively,
structural changes to the target may render the drug ineffective against cells harboring such
modifications. In prostate cancer, one recognized mechanism of resistance to androgen
receptor (AR) antagonists, like the first-generation drug bicalutamide (Visakorpi et al. 1995),
is AR amplification, leading to heightened androgen expression. The overexpression of the
AR-v7 splice variant, lacking the binding domain targeted by second- and third-generation
inhibitors enzulatamide and abiraterone, is an alternative resistance mechanisms to more
recent AR inhibitors (Antonarakis et al. 2014). Commonly encountered mechanisms of
resistance also include mutations in gatekeeper residues of oncogenic kinases. For instance,
the T315I mutation in the BCR-ABL1 fusion gene was the first mutation causally linked to
imatinib resistance in CMLs (O’Hare et al. 2005). The third-generation BCR-ABL1 inhibitor
ponatinib, FDA-approved in 2012, stands as the sole clinically available inhibitor capable of
overcoming T315I-mediated resistance. Another illustrative example is the EGFR T790M
mutation frequently observed after initial responses to first- and second-generation EGFR
inhibitors (gefitinib, erlotinib, afatinib, dacomitinib) in NSCLCs (Kobayashi et al. 2005; Pao,
Miller, et al. 2005). The second-generation inhibitor afatinib demonstrates enhanced efficacy
against various mutant forms of EGFR but is ineffective against those harboring T790M or
exon 20 insertions (Sun et al. 2013). In contrast, the third-generation inhibitor osimertinib,
which is active against T790M mutants and received FDA accelerated approval in 2015, is
compromised by mutations affecting the C797 site (notably C797S) utilized by the drug,
among other mechanisms (Papadimitrakopoulou et al. 2018).

DNA damage repair is a third mechanism employed by cancer cells to evade the effects of
certain drugs. Numerous chemotherapeutic agents operate by inducing DNA damage in cells
(Section 4.1.1), causing cell cycle arrest and ultimately resulting in either cell death through
apoptosis or cell cycle resumption after damage repair. Interestingly, tumor cells frequently
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exhibit modifications in critical repair pathways, particularly those involved in responding
to double-strand breaks, such as HR and NHEJ. The presence of these alterations renders
cancer cells heavily reliant on unaffected pathways that can, therefore, be targeted. For
instance, inhibiting PARP-dependent single-strand break repair has proven to be a highly
effective strategy in breast and ovarian cancers with HRD BRCA1/BRCA2 mutant cells,
as demonstrated by Farmer et al. (2005). However, it is noteworthy that inframe deletions
in BRCA2 mutant cells, which restore its DNA repair function, have been identified as a
mechanism of resistance to PARP inhibitors (Sakai et al. 2008). Tumor cells can also enhance
the activity of pathways repairing damages induced by alkylating chemotherapeutic agents,
the so-called bulky lesions, by for instance overexpressing ERCC1, a key gene of NER, as
evidenced by poor outcomes under cisplatin in lung cancer patients with higher expression of
this gene (Ceppi et al. 2006).

A fourth mechanism contributing to drug resistance involves the inhibition of apoptotic
pathways or activation of prosurvival pathways. Alterations in the equilibrium between
pro- and anti-apoptotic factors enable tumor cells to evade apoptosis, a common objective
of both conventional and innovative anticancer drugs. Overexpression of anti-apoptotic
proteins within the BCL2 family or their associated transcription factors, notably NF-kb and
STAT3, represents prevalent mechanisms associated with the deregulation of apoptosis and
the development of drug resistance, as discussed by Koren & Fuchs (2021). As a consequence,
inhibitors targeting anti-apoptotic proteins of the BCL2 family have been investigated, as
exemplified by navitoclax, for which approval was, however, withheld due to severe side effects,
or venetoclax, approved in 2019, for the treatment of adult patients with CLLs and older
adult patients with AML (Juárez-Salcedo et al. 2019). The inactivation of TP53, observed in
half of all cancers, or other related checkpoints, serves as a facilitator of genomic instability
and resistance to DNA-damaging agents such as cisplatin, temozolomide, or doxorubicin.
This resistance extends to targeted treatments due to the existing interactions between p53
and specific targets, such as ER for hormone therapy (e.g., tamoxifen) and EGFR for the
monoclonal antibody cetuximab, as reviewed by Hientz et al. (2017). Interestingly, although
small molecules capable of restoring the wild-type conformation of p53 have been identified,
only few have demonstrated favorable pharmacologic profiles, and none have yet reached
regulatory approval. Furthermore, the activation of autophagy, a process inherent in cells
under metabolic stress, represents another prosurvival pathway exploited by tumor cells to
resist drug-induced cell death. Most notably, the inhibition of autophagy with chloroquine
or hydroxychloroquine in combination with cytotoxic drugs has shown promising results in
preclinical models and early-phase clinical trials, as discussed in a review by Low et al. (2023).

A fifth and pivotal mechanism of resistance involves alterations that reactivate the targeted
pathway or upregulate a parallel pathway, enabling cells to bypass the consequences of inhibited
signaling. The MAPK-RAS-ERK and PI3K-AKT-mTOR signaling pathways play central roles
in the response and resistance to targeted therapies. Reactivation of the targeted pathway can
occur through various mechanisms, such as inactivating downstream phosphatases or activating
upstream or downstream kinases. In diverse cancer types, reactivation of MAPK pathway
signaling following inhibition has been documented through distinct mechanisms, including
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KRAS mutations in EGFR inhibitor-exposed lung cancers (Pao, T. Y. Wang, et al. 2005),
RAS/MEK1 mutations or amplifications in BRAF inhibitor-resistant melanomas (Nazarian
et al. 2010), squamous cell carcinomas (Su et al. 2012), and colorectal cancers (Ahronian et al.
2015), as well as RAS mutations or BRAF amplification in MEK inhibitor resistance (Caunt
et al. 2015). Supporting RAS-mediated reactivation of MAPK signaling, the synergistic effect
of the EGFR inhibitor cetuximab with irinotecan chemotherapy observed in KRAS-wild-type
colorectal cancers is absent in KRAS-mutant cases. Regarding the PI3K-AKT-mTOR pathway,
reactivation-mediated mechanisms of resistance remain less elucidated. Although loss of
PTEN has been linked to resistance to PI3K inhibitors (Juric et al. 2015), PTEN loss alone
does not induce resistance to class I PI3K inhibitors (Yang et al. 2019). Tumor cells frequently
exhibit overexpression of redundant oncogenic signaling through multiple kinases. Cross-talk
and compensatory feedback between the MAPK-RAS-ERK and PI3K-AKT-mTOR signaling
pathways counteract the therapeutic effects of inhibiting tyrosine kinases in either pathway.
Indeed, the upregulation of MAPK-RAS-ERK signaling leads to adaptive resistance to PI3K,
AKT, and mTOR inhibitors, and conversely, the upregulation of the PI3K-AKT-mTOR
pathway results in adaptive resistance to EGFR (Sergina et al. 2007), BRAF (Coffee et al.
2013), and MEK (Wee et al. 2009) inhibitors from the MAPK-ERK pathway. Inhibition
of EGFR (MAPK-RAS-ERK pathway) may for instance be circumvented by MET receptor
tyrosine kinase amplification or overexpression of its ligand HGF growth factor (Engelman
et al. 2007; Ko et al. 2017), activation of PI3K-AKT signaling through ERBB2 amplification
or activation of ERBB3 via upregulation of its ligand heregulin (Sergina et al. 2007; Yonesaka
et al. 2011), or overexpression of AXL receptor tyrosine kinase (Zhang et al. 2012), among
other bypass mechanisms (L. Huang & L. Fu 2015). These findings have prompted the
evaluation of combined inhibition of multiple kinases in both preclinical and clinical models.
While promising results have been observed (Stommel et al. 2007; Flaherty et al. 2012;
Corcoran et al. 2018), the concern over increased toxicity is substantial, and synergies between
drugs are infrequent (Jaaks et al. 2022).

Lastly, changes in cell phenotype or the composition of the TME have also been associated
with treatment resistance. Epithelial-mesenchymal transition (EMT) is a process involving
the dedifferentiation of epithelial cells toward motile states with invasive and metastatic
capabilities. This process is induced by cytokines IL8 and TGF-β, which activate downstream
signaling pathways and transcription factors from three main families: SNAIL, TWIST, and
ZEB. Associations between EMT and chemotherapy resistance have long been described
across multiple cancer types, but mechanistic explanations of this link remain elusive as
reviewed by Du & Shim (2016) and Ramesh et al. (2020). Given the association of EMT
with drug resistance, inhibition of TGF-β signaling has been described as a promising avenue
in preclinical models (S. Huang et al. 2012). Still, clinical development is progressing slowly,
and several programs have been discontinued (C.-Y. Huang et al. 2021). Likewise, inhibition
of AXL alone (Asiedu et al. 2014) or concomitantly with MEK (Konen et al. 2021) has
demonstrated restored sensitivity to chemotherapy or MEK inhibition in preclinical models,
respectively. More recently, EMT phenotype has also been associated with resistance to
immunotherapies (Horn et al. 2020). Transitioned tumor cells have the ability to impact the
TME by modulating the extracellular matrix (ECM), promoting T cell exclusion, and more
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generally, promoting an immune suppressive environment through the upregulation of immune
checkpoints PD1 and PD-L1 (Hsu et al. 2018). The TME, which in solid tumors consists of
the ECM, cancer-associated fibroblasts (CAFs), and immune and inflammatory cells, also
plays a pivotal role in drug resistance. CAFs can, for instance, promote drug resistance by
secreting EMT-inducing cytokines, particularly TGF-β (Xu et al. 2009), releasing exosomes
or modulating tumor immunity (Kalluri 2016). The targeting of CAF-mediated resistance
through depletion, phenotype reversal toward a quiescent state, inhibition of CAF-secreted
cytokines, or reduction of CAF-derived ECM proteins forming a protective barrier for the
tumor have recently been reviewed by Mhaidly & Mechta-Grigoriou (2021). The immune cells
of the TME have also been associated with drug resistance, such as cytotoxic CD8+ T-cells
and tumor-associated macrophages in chemotherapy resistance (Wu et al. 2021), or immune
suppressive cells in immunotherapy resistance (Sharma et al. 2017; Jenkins et al. 2018). The
expression of growth factors acting as ligands to receptor tyrosine kinases targeted by drugs is
another way through which cells can overcome the effects of drug-mediated inhibition. HGF,
FGF, and NGR1 were all shown to cause drug resistance in cell lines (T. R. Wilson et al.
2012). Once again, the description of all these resistance mechanisms suggests combination
strategies using inhibitors of the adaptive resistance mechanisms alongside the original drug,
but the efficacy of combination therapies needs to be balanced against their deleterious effects
on the host (Wargo et al. 2015; Labrie et al. 2022). The interactions between the TME
and therapeutic response are being continually reviewed as biological knowledge increases,
experimental evidence accumulates, and new therapeutic strategies emerge (Tredan et al.
2007; McMillin et al. 2013; Q. Wang et al. 2023).

4.2. Annotations of genetic resistances

4.2.1. Methodology of annotation

The genetic variants identified through the analyses of WES and, to a lesser extent, RNA-
seq, were compared against the contents of two widely recognized databases to describe events
associated with cancer and treatment resistance. All somatic changes in the DNA molecule,
encompassing point mutations (SNVs, MNVs, indels), focal CNAs (homozygous deletions and
high-level gains, see Section 3.1.2.1 and 3.1.2.3), and gene fusions (Section 3.1.2.2), were
included in the event list for characterizing cancer-driving and resistance-related biomarkers.
Three additional specific biomarkers with established therapeutic implications were also
considered: MSI and TMB quantified from WES, and the relative levels of the AR-v7
isoform among all AR isoforms quantified from RNA-seq. Notably, expression levels of
cancer genes were excluded from consideration due to the complexity of determining over- or
under-expression in samples derived from diverse cancer types and originating from various
tissues. The possibility of identifying gene expression outliers is explored in the concluding
section of this chapter.

188



4.2. Annotations of genetic resistances

4.2.1.1. OncoKB annotations

We first relied on the OncoKB knowledge database (Chakravarty et al. 2017; Suehnholz
et al. 2023), briefly introduced in Sections 2.3.2.3 and 3.1.2.3 where it was used to determine
the catalog of oncogenic events supporting the analyses on the META-PRISM cohort. As
described by Chakravarty et al. (2017), OncoKB aims at providing an easily accessible clinical
tool for distilling the current knowledge about the diagnostic, prognostic, and therapeutic
implications of specific somatic alterations. It also describes the known or likely biological
consequence and role in cancer for each of the alterations it includes. The database employs
grading systems to quantify confidence in the strength of each relationship based on published
evidence. Diagnostic and prognostic implications are categorized into three levels, while
grading for therapeutic consequences differs between treatment sensitivities and resistances.
Associations with treatment sensitivity have five levels of evidence, whereas associations
with resistance fall into either FDA-approved or investigational levels. In the latest data
release, v4.11, OncoKB incorporates 416 biomarker-tumor type-drug associations, with only
14% dedicated to resistance. This asymmetry highlights the disparity in our understanding
of treatment sensitivities versus resistances. The associations are continuously updated
with emerging evidence, as exemplified by the BRAF V600E mutation, previously a level-1
sensitivity marker only for anaplastic thyroid cancer, melanoma, and NSCLC before receiving
FDA approval for all solid tumors except colorectal cancer in June 2022 and being incorporated
as such in OncoKB release of September 2022.

The development and maintenance teams of OncoKB database have conveniently devel-
oped an API and Python scripts to allow anyone to add OncoKB annotations to their data
programmatically, provided it adheres to the specified format constraints. In order to alleviate
the computational burden and avoid unnecessary calculations, the list of all detected somatic
mutations and focal CNAs (high-level gains and homozygous deletions, see Section 3.3.2) were
intersected with the publicly available list of OncoKB-annotated genes2. As the annotations
of somatic events in META-PRISM samples was conducted in early 2022, the data release
from January 2022 was utilized, featuring 685 OncoKB-annotated genes. This number has
subsequently been expanded and now reaches 820 genes in the latest release from November
2023.

Annotations for the three categories of somatic events (mutations, CNAs, gene fu-
sions) were executed using dedicated Python scripts available on the GitHub repository3:
MafAnnotator.py, CnaAnnotator.py, and FusionAnnotator.py. Notably, as annota-
tions are dependent on tumor type, we supplied tumor type information for all cases in
the oncotree nomenclature, which OncoKB relies on. As mentioned in Section 3.1.2.3,
we painstakingly established tables for navigating between TCGA types, MSK’s oncotree,
and CIViC designations. These tables proved to be instrumental for running external tools
like oncokb-annotator and for sharing our data in standardized formats. The scripts
from oncokb-annotator conveniently generate data tables with constant number of rows
and additional columns for describing the biological and oncogenic functions of submitted

2https://www.oncokb.org/cancer-genes
3https://github.com/oncokb/oncokb-annotator
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alterations, as well as every level of the prognostic, diagnostic, and therapeutic grading
scales. Oncogenic roles reported by OncoKB are one of oncogenic, predicted oncogenic,
likely oncogenic, neutral, likely neutral, inconclusive, or unknown, while bio-
logical effects are categorized as gain-of-function, likely gain-of-function, loss-

of-function, likely loss-of-function, switch-of-function, likely switch-of-

function, neutral, inconclusive, or unknown. Alterations with both biological and
oncogenic roles reported as unknown or (likely) neutral were excluded. In the META-
PRISM (resp. MET500 and TCGA) cohort, OncoKB-annotated events represented 1.3%
(resp. 1.2% and 1.2%) of all somatic mutations, 0.10% of all focal gene CNAs (resp. 0.09%
and 0.16%), and 44% of all somatic cancer gene fusions (resp. 38% and 15%). Additionally,
33% (resp. 24%, 28%) of annotated mutations, 17% (resp. 17%, 16%) of annotated
CNAs, and 33% (resp. 27%, 25%) of annotated gene fusions had a therapeutic implication
in META-PRISM (resp. MET500 and TCGA). Figure 4.2 depicts the overlap between all
OncoKB annotations and the ones with therapeutic implications in each of the three types of
alteration in META-PRISM data.

874

149

137

113

META−PRISM CNAs

2164

717

1094

1068

META−PRISM mutations

844

255

226

79

OncoKB annotated

OncoKB w. Tx implications

CIViC annotated

CIViC   w. Tx implications

META−PRISM fusions

Fig. 4.2.: Overlap in META-PRISM data between OncoKB and CIViC annotations, including subsets with therapeutic
implications, for each of the three category of somatic alterations.

4.2.1.2. CIViC annotations

The CIViC database, a widely recognized knowledge resource, is the second database
we employed for annotating mechanisms of resistance in our study (Griffith et al. 2017).
Similarly to OncoKB, CIViC aims to curate a comprehensive database that aggregates
diagnostic, prognostic, and therapeutic implications of genomic alterations in cancer patients.
CIViC also employs a grading system to convey the confidence of the expert curation team
regarding the clinical significance of a variant based on evidence from published studies. While
sharing similar goals with OncoKB, CIViC differs in structure and more faithfully reflects
the complexity of current literature, where identical phenotype-genotype relationships may
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be supported or contradicted by different studies. For instance, evidence id 9774 suggests
that EGFR amplification in NSCLC does not confer sensitivity to erlotinib or gefitinib, with
a CIViC-assigned confidence level B. Conversely, evidence id 59245 supports the opposite
conclusion with an identical confidence level.

As for OncoKB, CIViC exhibits a bias toward positive therapeutic implications over
negative ones, i.e., resistance implications. This database bias was acknowledged in the
seminal publication by (Griffith et al. 2017). In January 2017, CIViC contained 1,625 curated
interpretations for 713 variants affecting 283 genes, with 70% relating to sensitivity and 30%
to resistance. By November 2023, the curated interpretations had grown to 4,198, with a
60%-40% split between sensitivity and resistance, involving 1,683 variants in 350 genes an
over two-fold increase in database size over six years.

Unlike OncoKB, CIViC lacks a tool or script for automated interaction with its API to
annotate custom variant lists. Consequently, we developed an annotator akin to the oncokb-

annotator for OncoKB. This tool, mirroring its counterpart, can annotate mutations, CNAs,
and gene fusions using data formats comparable to those provided to oncokb-annotator.
The annotator requires tumor type annotations for each submitted case to enable precise
annotations based on tumor type specific relationships curated by CIViC. Python scripts were
developed from scratch for this annotation, and close collaboration with Dr. Nikolaev was
critical for correcting some evidences when necessary and preparing the table for automatic
processing. Initial annotation rounds indeed revealed unexpected associations that were
subsequently considered errors, such as evidence id 91 associating BRAF V600E mutation
with resistance to dabrafenib, which, upon careful examination, is linked to KRAS G12D
mutation in BRAF -mutant patients according to the paper supporting the evidence (Rudin
et al. 2013). Similarly, evidence id 1775 erroneously claims that BRCA1 mutations in breast
cancer are associated with resistance to the PARP inhibitor olaparib, whereas the study only
reported that no response to olaparib was observed in breast cancer patients regardless of
BRCA1 status6.

The challenge with using CIViC also stems from the lack of standardized entries for
variant descriptions or tumor types. We addressed the tumor-type matching issue by using
our exhaustive tables to navigate between nomenclatures (Section 3.1.2.3). For variant
entries, the CivicAnnotator tool allows flexible matching of patterns, considering genomic
coordinates, variants in HGVS protein or coding formats, and accommodating partial matches
when only amino acid positions are specified. Exotic descriptions were manually reformatted,
and genomic coordinates of specific alterations were completed. Notably, the exon boundaries
of all variants describing an exon number were completed. Additionally, each genotype-
phenotype relationship was classified into either a mutation (m), a CNA (c), or a gene
fusion (f). Some relationships involve multiple alterations that may combine alterations
from different classes. We also classified these cases using combinations of the three letters
(m), (c), and (f) and gave the annotator the capability to consider such combinations of

4https://civicdb.org/evidence/977/summary
5https://civicdb.org/evidence/5924/summary
6https://civicdb.org/evidence/1775/summary
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events in the annotation process. However, the therapeutic implications supported by such
combinations were not included in the analyses of the META-PRISM study.

The CivicAnnotator tool, available on my GitHub page at https://github.com/

ypradat/CivicAnnotator, was utilized to annotate META-PRISM patients, and results
were crosschecked against OncoKB annotations. The agreement between the annotations
from the two databases was excellent, as depicted in Figure 4.2, enhancing our confidence in
the reliability of our work. Figure 4.2 also illustrates that most events annotated in CIViC
are also annotated in OncoKB, particularly mutations, but also that a significant number
of alterations are only annotated by OncoKB. However, a non-negligible number of somatic
mutations were annotated only by our annotator. Manual inspection revealed many instances
of matching arising from unspecific variant descriptions in CIViC tables. As examples are
EGFR exon 19 frameshift deletions in lung cancer patients, which are not annotated by
OncoKB (only inframe deletions are) but which were matched to the CIViC molecular profile
EGFR Exon 19 Deletion by the annotator. Due to this observation, mutations annotated
only by CIViC were not considered further in our analysis of treatment resistances.

In the META-PRISM (resp. MET500 and TCGA) cohort, CIViC-annotated events
represented 0.7% (resp. 0.5% and 0.5%) of all somatic mutations, 0.02% (resp. 0.01% and
0.02%) of all focal gene CNAs, and 9% (resp. 8%, 2%) of all somatic cancer gene fusions.
Additionally, 98% (resp. 97%, 95%), 82% (resp. 91%, 88%), and 57% (resp. 24%, 27%) of
CIViC-annotated somatic mutations, focal gene CNAs, and gene fusions had a therapeutic
implication in META-PRISM (resp. MET500 and TCGA).

4.2.1.3. ESCAT tiers and emerging markers

As mentioned previously, OncoKB classifies therapeutic implications using five-level and
two-level confidence scales for treatment sensitivities and resistances, respectively. CIViC
employs similar grading systems but uses five-level confidence scales for both directions. To
create a unified system, the grading systems of both databases were harmonized according to
ESCAT guidelines (Mateo et al. 2018). ESCAT, developed through a collaborative effort led
by ESMO, is a ranking system designed to establish a standardized vocabulary for interpreting
genomic reports and describing the clinical significance of alterations. In the United States,
a multidisciplinary working group from AMP/ASCO/CAP proposed a highly similar tier
classification system shortly before ESCAT was introduced in Europe (M. M. Li et al. 2017).

The ESCAT ranking system is the result of an ESMO-led collaborative project that aimed
at developing a harmonized vocabulary for interpreting genomic reports and describing the
clinical value of detected alterations. Since its introduction, the ESCAT classification has
gained significant attention and is now utilized to inform clinical decisions. Notably, ESCAT
scores have been incorporated over the last years into the ESMO treatment recommendations
for various cancers. Another exemplary demonstration of the impact of the ESCAT scale is
the systematic reimbursement in Italy of targeted therapies supported by genetic alterations
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with an ESCAT tier 1 level of confidence since February 2023 7.

In the META-PRISM study, sensitivity and resistance confidence scales from OncoKB
and CIViC were harmonized into the first three tiers of the ESCAT ranking.

ESCAT Tier 1 level, which includes standard-of-care biomarkers already used in clinical
practice, was used for alterations falling into one of

• CIViC Level A (proven/consensus association in human medicine)
• OncoKB Level 1 (FDA-recognized biomarker predictive of response to an FDA-approved

drug in this indication)
• OncoKB Level 2 (standard-of-care biomarker recommended by the National Compre-

hensive Cancer Center or other professional guidelines predictive of response to an
FDA-approved drug in this indication)

• OncoKB Level R1 (standard-of-care biomarker predictive of resistance to an FDA-
approved drug in this indication)

ESCAT Tier 2 level (investigational), which designates investigational targets that likely
define a patient population that benefits from a given drug but for which additional data are
needed, encompassed alterations with a therapeutic implication among

• CIViC Level B (clinical trial or other primary patient data support association)
• OncoKB Level 3A (compelling clinical evidence supports the biomarker as being

predictive of response to a drug in this indication)
• OncoKB Level R2 (compelling clinical evidence supports the biomarker as being predic-

tive of resistance to a drug)

Lastly, ESCAT Tier 3 level (hypothetical) was set to include all targets that have
demonstrated a clinical impact on other tumor types or that are supported by scarce data
(case reports). These were identified as:

• CIViC Levels C, D, and E (supported by case study, preclinical, and inferential data,
respectively)

• OncoKB Level 3B (standard-of-care or investigative biomarker predictive of response to
an FDA-approved drug in another indication)

• OncoKB Level 4 (compelling biological evidence supports the biomarker as being
predictive of response to a drug)

An additional annotation tier was introduced to our analyses to encompass biomarkers
that had not been incorporated into the two knowledge databases we relied on at the time of
the study. The annotation of drug resistances or sensitivities associated with these emerging
markers was conducted by a cancer genomics expert possessing extensive clinical experience,
providing a nuanced understanding of the intricate relationships between genomic alterations
and responses to antineoplastic drugs, particularly targeted therapies. All reported claims
regarding the associations between therapy responses and emerging biomarkers in the META-
PRISM study are supported by at least one peer-reviewed publication available in the current

7https://www.esmo.org/policy/esmo-scale-for-clinical-actionability-of-molecular-targets-escat
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literature, as detailed in supplementary table 10 accompanying the paper. Importantly, the
literature search was biased towards events observed in patients that are known to be resistant
to the treatment of interest, effectively disregarding potential emerging markers not detected
in our patients.

Of note, to maintain consistency with the analysis of oncogenic events detailed in
Chapter 3, only therapeutic implications backed by alterations involving a gene listed in the
360-genes catalog of cancer drivers from Section 3.1.2.3 were retained for the subsequent
analyses presented in the following section.

4.2.2. The current knowledge gap

We used the OncoKB and CIViC annotations harmonized against the ESCAT ranking
system to describe the frequency at which therapeutic implications, particularly indications
of treatment resistance, of each tier were encountered across the 10 tumor types of the
META-PRISM WES subcohort and in each of three cohorts analyzed.

At the patient-level, we observed at least one tier 1 resistance and one tier 1 sensitivity
biomarker in 9.6% and 47.5% of META-PRISM WES and RNA-seq tumors, respectively
(Figure 4.3 and A.14), whereas biomarkers of any level were found in 74.9% and 88.4% of
these tumors, respectively. Tier 1 resistance biomarkers were detected in only three tumor
types: LUAD (EGFR 17%), LUSC (EGFR 5%), and COAD (KRAS 65%, NRAS 6%), whereas
investigational Tier 2 and hypothetical Tier 3 biomarkers were rather frequent in the majority
of tumor types (Figure 4.3). META-PRISM WES and RNA-seq tumors harbored significantly
more resistance biomarkers of all three tiers compared with TCGA: Tier 1, common odds
ratio (cOR) 7.5 [CI 95%, 3.715.2, CochranMantelHaenszel test stratified by tumor type]; Tier
2, cOR 1.7 (CI 95%, 1.32.2); and Tier 3, cOR 2.2 (CI 95%, 1.72.8). The increase was also
replicated in MET500 for all three tiers (Tier1 cOR 4.7; CI 95%, 1.317.3; Tier2 cOR 2.2, CI
95%, 1.62.9; Tier3 cOR 3.2, CI 95%, 2.44.3). Some common sensitivity biomarkers were
frequent in META-PRISM and often enriched versus TCGA, most notably EGFR L858R/exon
19 del (first- and second-generation EGFR inhibitors), EGFR T790M (third-generation EGFR
inhibitors), and ALK oncogenic mutations or fusions (ALK inhibitors) in LUAD; PTEN fusions
or loss-of-function mutations (mTOR inhibitors) in PRAD; and FGFR3 p.R248C, p.S249C,
p.G372C, and p.Y375C mutations (FGFR inhibitors) in BLCA. On top of that, we detected
13% of hypermutated tumors (>10 mut/Mb) and 3% of MSI tumors in META-PRISM, which
are indications for treating patients with immunotherapies (Figure A.14).

At the treatment level, we described all the biomarkers that could explain the treatment
resistances diagnosed in each patient. Unfortunately, we could identify resistance mechanisms
only for a minority of treatments (Figure 4.4A-G). More specifically, standard-of-care resistance
events were detected only for first- and second-generation EGFR inhibitors in LUAD for 40%
of treated patients and EGFR antibodies in COAD for one in five treated patients (Figure 4.4A
and D). In contrast, investigational and hypothetical resistance markers substantially increase
the fraction of observed treatment resistances that may be explained. In LUAD, Tier 2
resistance alterations were identified in 8 of 28 patients treated with third-generation EGFR
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Fig. 4.3.: Known genetic markers of treatment resistance in META-PRISM, MET500, and TCGA by tumor type. Top,
fractions of tumors harboring resistance markers split by tier (only the best tier is shown for each tumor). Middle,
fractions of tumors with multiple resistance markers. Bottom, heat map showing the most frequent
resistance-associated variants. Triangle orientations (increase - triangle points up, decrease - points down) and colors
(red for META-PRISM vs. TCGA, green for MET500 vs. TCGA) highlight significant changes in prevalence.
Similarly, stars next to the gene alterations represent significant changes at the cohort level using the same color code
as for triangles (*, P < 0.05; **, P < 0.01; ***, P < 0.001). P-values per tumor type are from Fisher-Boschloo tests,
and p-values across the cohort are from Cochran-Mantel-Haenszel tests. All p-values were adjusted for multiple
testing using the Benjamini-Hochberg procedure.
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inhibitors, in 2 of 17 patients who progressed on first- or second-generation ALK inhibitors,
and in 5 of 27 patients who progressed on immunotherapies (Figure 4.4A). BRCA patients
treated with hormone therapy harbored Tier 3 resistance through ESR1 mutations in 33% of
cases (Figure 4.4B). PRAD patients treated with hormone therapy harbored Tier 2 resistance
through AR alterations in 31% of cases, 25% of which were the overexpression of AR-V7
splice isoform (Figure 4.4C). In COAD, Tier 2 resistance alterations could explain resistance
to EGFR antibodies in two of five treated patients (Figure 4.4D). In PAAD, we did not
identify any resistance markers for the drugs patients received. Additionally, we were able
to associate emerging resistance mechanisms with a considerable fraction of resist- ance to
targeted and hormonal therapies. For example, 13%, 32%, and 67% of LUAD patients treated
with first- or second-generation EGFR inhibitors, third-generation EGFR inhibitors, and
BRAF inhibitors (dabrafenib), respectively, harbored emerging resistance mechanisms with
literature support (Figure 4.4A). Interestingly, one out of the two patients who progressed on
lorlatinib (third-generation EGFR inhibitor) harbored an EML4-ALK fusion and a double ALK
mutation (p.F1174L and p.G1202R) as previously described (40). In HNSC, we associated
driver mutations in EGFR, NF1, PIK3CA, and PTEN to the EGFR inhibitor cetuximab
(Figure 4.4E). In BLCA and CHOL, we were able to associate mutations in FGFR1, FGFR2,
PIK3CA, KRAS, and TSC1 with resistance to FGFR inhibitors (Figure 4.4F and G). The
observations above show that standard-of-care resistance biomarkers were associated with only
1.6% of received treatments, whereas investigational, hypothetical, and emerging mechanisms
could further explain 2.7%, 2.3%, and 7% of resistance, respectively. Strikingly, except
for BRAF V600E mutation in COAD, no known or emerging mechanism of resistance was
observed in our cohort for chemotherapies or antiangiogenic treatments, though these two
types of treatments account for 54% of all treatments administered.

4.3. Two studies of genetic resistances to innovative drugs

4.3.1. Trastuzumab deruxtecan in breast cancers

4.3.1.1. The DAISY trial

Antibody-drug conjugates are, as mentioned in the introductive Section 4.1.1, an emerg-
ing class of antineoplastic drugs that deliver cytotoxic agents much more selectively than
conventional chemotherapies. This selectivity makes ADC a promising type of targeted
therapy and is made possible by the bioengineering of molecules linking an antibody that
serves to select specific cells to a payload that delivers the cytotoxic effect upon release in
targeted cells. Trastuzumab deruxtecan (T-DXd), also known as DS-8201a or enhertu, is an
antineoplastic drug combining the long-known HER2 -targeting trastuzumab antibody with a

8A. The left bar plot indicates the percentage of LUAD patients in the META-PRISM WES and RNA-seq subcohort
that received each treatment or group of treatments. Middle error bar plot represents the OR and 95% CI estimates
for the enrichment of resistance markers of Tier 1, Tier 2, and Tier 3 or extracted from the literature in the patients
who received the corresponding treatment. The right group of four bar plots provides details about the identity of
the markers associated with resistance in treated patients at each of the four confidence levels. Del, deletion. BG,
Same as A but for BRCA, PRAD, COAD, HNSC, BLCA and CHOL patients, respectively.
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Fig. 4.4.: Associations between treatments received and molecular markers in META-PRISM patients. 8
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new topoisomerase I inhibitor deruxtecan, a new member in the topoisomerase I inhibitors
family alongside irinotecan, topotecan, or exatecan. The trastuzumab antibody is attached to
deruxtecan payload by a tetrapeptide-based linker which is cleaved specifically by lysosomal
enzymes found in cells.

T-DXd received FDA-accelerated approval in December 2019 following the positive results
of the phase 2 multicentric DESTINY-Breast01 clinical trial in which 184 HER2 -positive,
pretreated (at least two lines of anti-HER2 therapies) and metastatic breast cancer patients
demonstrated an overall response rate of 60%. The phase 3 confirmatory trial DESTINY-

Breast03, which enrolled over 500 HER2 -positive breast cancer patients with similar inclusion
criteria, demonstrated the superiority of T-DXd over trastuzumab emtansine (T-DM1), the
first approved ADC for breast cancers, in 2013, and the then standard-of-care for second-
line therapy in metastatic HER2-positive breast cancers until that moment (Cortés et al.
2022). These results led to the FDA approval of T-DXd in the settings of the DESTINY-

Breast03 trial in May 2022 in the second line and beyond, replacing T-DM1. The results
of the complementary phase 3 study DESTINY-Breast04, comparing T-DXd to standard
chemotherapy in HER2-low - defined as IHC1+ or IHC2+/in situ hybridization (ISH)-,
unresectable or metastatic breast cancer patients, led to the FDA approval of the drug in this
hard-to-treat category of breast cancer patients in August 2022 (Modi et al. 2022).

The DAISY trial (NCT04132960) is a phase 2 French multicentric study aiming to assess
the efficacy of T-DXd across all HER2 spectrums of advanced breast cancers. Unicancer
sponsored and coordinated the study, while Gustave Roussy provided patients as one of the
21 participating centers and centralized all collected biospecimens. The study included a
total of 186 patients subdivided into three cohorts based on the expression level of HER2
on cancer cells as measured by IHC or ISH assays (Figure 4.5). Apart from the traditional
HER2 -positive and HER2 -negative (IHC 0) groups, the third group included so-called HER2-
low breast cancers as defined in the DESTINY-Breast04 study, i.e., patients classified IHC1+
or IHC2+/ISH-. Of note, the relevance of this new clinical entity of breast cancers has been
the subject of much debate recently9.

9https://www.aacr.org/blog/2023/02/01/sabcs-2022-the-uncharted-territory-of-her2-low-breast-

cancer/
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Fig. 4.5.: Overview of the patients enrolled in the DAISY-trial.

DAISY was conceptualized to explore various questions regarding the effectiveness of
T-DXd in advanced breast cancers, with a primary focus on unraveling the mechanisms of drug
sensitivity and resistance. Despite the enhanced survival outcomes associated with T-DXd
in advanced breast cancers, most of the patients inevitably face disease progression during
treatment and, ultimately, death. The search for biomarkers influencing patient responses to
the drug relied on diverse data modalities extracted from tissue and blood biopsies sampled
at baseline, on-treatment, or upon disease progression. The results from the clinical and the
investigation biomarkers were published in 2023 in Nature Medicine (Mosele et al. 2023).

Firstly, HER2 IHC assays were performed at baseline and resistance for twenty-five patients,
including five that were IHC 0 at baseline. The comparison in HER2-expressing at baseline
revealed that 13 patients exhibited a decrease in HER2 IHC status at resistance. Subsequently,
digitalized HER2 slides from FFPE tumor biopsy samples were algorithmically analyzed. Only
baseline tissue slides from patients in cohorts 1 and 2 (Figure 4.5) were included. In a nutshell,
an AI model-assisted unsupervised clustering analysis was applied to the HER2 -stained slides
to unveil spatial patterns that could distinguish between responders and non-responders. The
AI model identified eight distinct patterns, each varying in proportion across individual slides.
Analyses revealed a subtle correlation between the fraction of one of these eight clusters and
drug response, though this association was observed exclusively within cohort 1. Lastly, fresh
frozen baseline and progression tumor biopsies, as well as frozen baseline blood samples, were
subjected to WES. The results are presented in the next section.
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4.3.1.2. Drug response vs genotypes

No pre-Tx - 10

Pre-Tx - 89

Post-tx - 21

No post-Tx - 78
Blood - 85

No blood - 14

Fig. 4.6.: DAISY WES samples

Following stringent control of sequencing and sam-
ple qualities, most notably the tumor content, 110
tumor samples and 85 blood samples originating from
99 patients were included in the analysis as depicted
in Figure 4.6. Of particular interest were the 21 WES
profiles from samples collected at progression, with a
focus on the 11 cases where a matched WES profile
from the baseline biopsy was also available.

Somatic substitutions, small indels, and CNAs were detected using the end-to-end WES
pipeline described in Section 3.1.2.1. Changes were introduced in the pipeline to handle cases
never encountered in META-PRISM, most notably the unavailability of a matched blood
sample for some biopsies and the presence of longitudinal data. Most algorithms within the
pipeline have the option to run in tumor-only mode, meaning without a paired normal sample.
Mutect2, the mutation-calling algorithm, supports this mode with a note that additional
filtering is necessary due to the highly-likely inclusion of germline events in the list of putative
somatic mutations. On the other hand, FACETS does not directly allow the omission of a
normal sample. Still, the documentation offers a workaround by utilizing a "fake" normal
sample created by pooling normal samples from various unrelated patients. In this case, the
user specifies the –unmatched option, altering the log odds-ratios calculations. However, the
precise quantification of MSI is unfeasible without a matched normal sample, as it is crucial
for accurately measuring variations in the length of microsatellites.

The presence of longitudinal samples called for additional pipeline modifications so as to
carefully distinguish acquired or lost mutations from persisting ones. Specific mutation-calling
rules were consequently applied to tumor samples from patients with WES available both at
baseline and progression (11 patients). More particularly, for each baseline (and progression,
respectively) sample, SAMtools mpileup version 1.9 (H. Li et al. 2009) was run on the
positions where Mutect2 identified and retained mutations in the corresponding progression
(and baseline, respectively) sample to rule out incorrect claims of mutation acquisition or
loss caused by conservative filtering or non-detection by Mutect2. If a mutation detected
by Mutect2 in a sample at a given timepoint was also seen in the sample from the other
timepoint with sufficiently many reads supporting the alternative allele (at least one read if
coverage <100, two reads if 100  coverage < 500 and three reads if coverage >500), the
mutation was also called in the latter sample. Additionally, in patients without a matched
blood sample, any mutation identified as germline at any of the two timepoints was discarded
from both samples. After all the filtering, 20,469 somatic substitutions and small indels were
considered in the analysis of the 110 WES samples (89 at baseline, 21 at resistance).

In the quest for biomarkers predicting drug response, we examined the correlation between
tumor genotypes at baseline and clinical responses. Patients were classified between confirmed
responders if a complete or partial response was observed in one evaluation and confirmed
in the subsequent evaluation, following the Response Evaluation Criteria in Solid Tumors
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(RECIST) v1.1 guidelines; otherwise, they were considered non-responders. Figure 4.7
summarizes the landscape of known breast cancer-associated alterations in baseline samples,
displaying only genes altered in at least three patients. The left-side bar plot facilitates a
quick comparison between responders and non-responders, revealing no statistically significant
markers of drug response, except for the expected ERBB2 amplification, given the mechanism
of action of T-DXd.
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Fig. 4.7.: Oncoplot of driver mutations and CNAs identified in at least 3% of tumor biopsies at baseline (n = 89).
Blood samples were available for analyses in 84 patients. If a gene has at least one driver mutation or CNA in at least
3% of pre-treatment biopsies, any other driver alteration of the same gene is shown, regardless of its frequency.

To explore the genetic mechanisms of acquired resistance, we analyzed changes in tumor
genotypes upon progression under treatment. This analysis utilized paired pre- and post-
treatment WES profiles from 11 patients with available data. Figure 4.8 summarizes the
alterations in tumor genotypes, featuring genes that were unaltered in any of the 11 pre-
treatment samples but acquired an alteration in at least two of the post-treatment samples
at resistance (three samples in cases where all events were CNAs). None of the alterations
displayed notable biological significance. Of note, 14% of the samples obtained at resistance
to T-DXd (3 out of 21) presented an SLX4 mutation. One of these mutations was not
observed in the matched baseline sample, the second was present in the baseline biopsy, and
for the third, the baseline biopsy was not available. Two of these mutations were classified
as deleterious according to CADD and sorting intolerant from tolerant (SIFT); however, no
evidence of loss of the second allele was found.
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Fig. 4.8.: Oncoplot of acquired genetic alterations identified at resistance (n = 11). Eleven biopsies at resistance (on
the left) were matched with pret-reatment biopsies (on the right) from the same patient. Only genes that were not
altered in any of the 11 pretreatment samples and that acquired an alteration in at least two samples at resistance
(three samples in case all events were CNAs) are shown.

4.3.2. FGFR inhibitors in urothelial cancers

FGFRs inhibitors are another important class of targeted therapies, and more particularly of
TKIs, which act by blocking receptor tyrosine kinases of the four-member FGFR family: FGFR1,
FGFR2, FGFR3, and FGFR4. They have been recognized early on as important therapeutic
targets given their regulating role in fundamental cell signaling pathways and their recurrent
alteration in cancer (Turner & Grose 2010). FGFR aberrations are indeed encountered in
7.1% of all cancers, mainly through amplifications, with strong enrichment in urothelial (32%),
breast (18%), endometrial (18%), and squamous lung (13%) cancers (Helsten et al. 2016).

Erdafitinib was the first FDA-approved FGFR inhibitor following the positive results of
the phase 2 trial, which reported a 40% rate of confirmed responses (Loriot et al. 2019). The
drug was granted accelerated approval in April 2019 for treating advanced bladder cancers
harboring actionable FGFR2 or FGFR3 alterations. One year later, pemigatinib became
the second FDA-approved FGFR inhibitor for CHOLs with FGFR2 rearrangement or gene
fusion. Infigratinib and futibatinib were the third and fourth FDA-approved FGFR inhibitors,
respectively, sharing analogous indications with pemigatinib. Infigratinib has, however, been
discontinued by the manufacturer in March 2023 due to difficulties in enrolling patients for
the confirmatory trial needed to receive full FDA clearance.

In bladder and upper tract urothelial cancers, oncogenic activation of the FGFR receptors
occurs mainly through FGFR3 mutations, and in 2 to 3% of cases through gene fusions, with
TACC3 being the most frequent partner. As of 2023, a very small number of studies had
investigated the potential mechanisms of resistance to FGFR inhibitors, with the most notable
being an analysis of ctDNA in 22 patients who progressed under infigratinib. This study
reported acquired mutations in the tyrosine kinase domain of FGFR3 at progression (Pal
et al. 2018). We utilized the molecular profiles of the 47 patients successfully profiled through

202



4.3. Two studies of genetic resistances to innovative drugs

WES out of the 56 with advanced or metastatic urothelial cancer included in MOSCATO or
MATCH-R studies to draw the molecular landscape in non-localized disease, contrasting with
other molecular portraits already reported. The global landscape is depicted in Figure 4.9
and shows no significant novelty compared with what was previously described.
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Fig. 4.9.: Mutational landscape of advanced or metastatic urothelial cancers included in MATCH-R or MOSCATO
studies with WES performed.

In this context, we at Gustave Roussy undertook to investigate the genomic profiles of
FGFR-driven bladder or upper tract urothelial cancer patients who received FGFR inhibitors
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in one of three large precision medicine trials led at the institute (MOSCATO - NCT01566019,
MATCH-R - NCT02517892, and STING - NCT04932525) to identify potential mechanisms
of resistance to these novel therapeutic agents. Twenty-one patients with FGFR-driven
urothelial cancer were included in the analyses. All patients had post-treatment samples
available, analyzed either through WES (12/21), panel sequencing (3/21), or ctDNA (18/21).
Five patients had longitudinal data available, including one with pre and post-treatment
data from all three profiling techniques as well as RNA-seq. Nineteen of the 21 patients
considered harbored alterations implicating FGFR3, with eleven having FGFR3 S249C hotspot
mutation, five FGFR3::TACC3 gene fusion, and three FGFR3 Y373C hotspot mutation.
The two other patients harbored FGFR2::FAM83H-AS1 gene fusion and FGFR4 D276N
mutation, respectively. Post-treatment samples were available upon progression to erdafitinib
in fourteen cases, futibatinib in four cases, and pemigatinib for the three other cases. All
patients presented with advanced disease and most received the FGFR inhibitor as a second
line of treatment.

As discussed in Section 4.1.2, there are different categories of resistance mechanisms.
For targeted therapies, the most commonly implicated events involve alterations either in
the target itself or in proteins from the same pathway or a parallel pathway capable of
circumventing the inhibitory effects. Firstly, among the 19 patients with tumors carrying
FGFR3 alterations prior to treatment, seven showed acquired mutations in the kinase domain
of FGFR3, affecting amino acids in the kinase domain (N540, V553, V555, E589, or L608).
Secondly, activating alterations in the PI3K-AKT-mTOR pathway were identified in 11 out
of the 19 patients with FGFR3 -altered tumors upon disease progression. Among them, three
patients had pre-existing PIK3CA mutations before treatment, with one experiencing primary
resistance. Conversely, two patients acquired PIK3CA mutations, resulting in the substitution
of the amino acid glutamate (E) with lysine (K) at positions 545 and 726 in the protein
sequence. While position 545 is a known hotspot, the 726 mutation, although less frequent, is
not uncommon10. These mutations lead to a constitutively active form of the p110α protein,
causing dysregulated signaling and heightened downstream activation of the PI3K pathway.

In addition to PIK3CA, the PI3K-AKT-mTOR pathway was implicated through inactivating
mutations in TSC1, TSC2, or PTEN. Five out of the 19 patients with FGFR3 -altered tumors
demonstrated acquired nonsense or frameshift mutations in any of these three genes upon
disease progression. Both the TSC1-TSC2 protein complex and PTEN proteins act as
negative regulators of the PI3K pathway. The TSC1-TSC2 complex inhibits the mTORC1
enzyme, a promoter of protein synthesis and cell growth, while PTEN, as a phosphatase,
counteracts the activity of PI3K, primarily by dephosphorylating PIP3 protein.

Additional evidence supporting the suggested resistance mechanism outlined in the previous
paragraphs was obtained through experiments with cell lines. To validate the impact of
mutations in the tyrosine kinase domain of FGFR3, Ba/F3 cells with FGFR3::TACC3 mutation
and the same mutations as observed in patients were exposed to various concentrations of
multiple FGFR inhibitors. These experiments demonstrated that all tested FGFR3 kinase

10https://www.oncokb.org/gene/PIK3CA
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domain mutations required a substantial increase in drug dose to achieve control over cell
growth, except for the V553L mutation. Furthermore, the hypothesized role of the PIK3CA
E545K mutation in resistance was examined in a patient-derived xenograft model. This model
revealed that the combined inhibition of FGFR and PI3K was necessary to inhibit tumor
growth. Lastly, in another patient-derived xenograft model where no novel genetic aberration
was detected upon progression, hyperphosphorylation of EGFR was identified. The driving
role of EGFR was confirmed by the synergistic effect observed using a combination of FGFR
and EGFR inhibitors.

4.4. Conclusions

Cellular plasticity is a formidable tool that our cells are equipped with to to adapt
and transform into different states or phenotypes in response to environmental stresses or
changes in conditions. This adaptability is crucial for the survival and normal functioning
of cells in various physiological or pathological situations. It is, however, a double-edged
sword, as cellular plasticity is also a critical enabler of cancer progression and treatment
resistance. The first section has provided a brief overview of the variety of biological
mechanisms cancer cells mobilize to escape the effects of cytotoxic therapies. Cancer cells
demonstrate phenomenal plasticity, whether through depletion of drug-enabling enzymes,
overactivation of pro-survival, DNA repair, or antiapoptotic pathways, reactivation or bypass
of inhibited pathways, phenotypical changes, or microenvironment modifications. Intra-tumor
heterogeneity is also a critical enabler of treatment resistance as it increases the chance
that one of the many cancerous genotypes is equipped to genetically or phenotypically
escape treatment. Although already diverse, the mechanisms we described are most probably
an incomplete picture of treatment resistance. However, our understanding of resistance
mechanisms will hopefully continue to improve as research progresses.

In the META-PRISM study, we took advantage of the clinical richness of the database we
assembled to draw a detailed landscape of our current understanding of treatment resistances
across a wide range of tumor types. Due to limited cohort sizes, only nine tumor types were
investigated in depth, but many statistics encompass all the patients with complete molecular
profiles available regardless of their tumor type. Whenever available, we harnessed WES and
RNA-seq data to describe three types of somatic events fixed in DNA, namely mutations
(substitutions and indels), focal CNA, and gene fusions. Given their known therapeutic
importance, three additional specific biomarkers were also added: high TMB, MSI, and
AR-v7 isoform levels. All these somatic events were compared against the contents of two
high-quality knowledge databases, OncoKB and CIViC, in a tumor type-specific manner to
comprehensively describe the currently known therapeutic implications among all detected
alterations.

Annotated events implicating one of the 360 cancer genes we focused on represented 2066
events across the 485 META-PRISM patients with both WES and RNA-seq available. Muta-
tions represented 67.7% of events but 91.8% of alterations with drug resistance implications.
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The driver gene fusions and CNAs represented 9.4% and 18.8% of events, respectively, and
were strongly enriched in META-PRISM tumors compared with TCGA tumors. However, 0%
and 4.8% of these two types of events were associated with treatment resistance, respectively,
reflecting the scarcity of current knowledge about genetic events conferring drug resistance.

Our research also reveals that current annotations of resistance mechanisms can only
account for a small proportion of all observed treatment resistances, as resistance markers
were found in 74.9% of patients, but for patients who received a given treatment, clinically-
validated markers could explain only 1.6% of all resistance; investigational, hypothetical, and
emerging mechanisms could further explain 2.7%, 2.3%, and 7% of resistances. These low
percentages were observed even though the possibility of using innovative treatments drove
patient inclusion in MOSCATO and MATCH-R trials and even though META-PRISM represents
a cohort of uniquely aggressive tumors, more so than the tumors included in the MET500
cohort. These data highlight the unmet need for large-scale efforts that combine molecular
profiling with exhaustive clinical annotations to fill our current lack of understanding of
resistance mechanisms in cancer.

As outlined in Section 4.2.1, the exploration of known or emerging biomarkers to explain
treatment resistances observed in META-PRISM patients did not involve the individual gene
expression levels, despite the CIViC database providing evidences based on gene over- or
under-expression. A potential approach to identify gene expression outliers could be the
adoption of the comprehensive rules established by Pleasance and colleagues (Pleasance
et al. 2022). Their gene expression outlier analysis involves comparing the gene expression of
the investigated case with comparator datasets sourced from TCGA, TreeHouse11, GTEx,
TARGET, MET500, and HMF. For each case, they select a primary disease comparator for
analysis that most closely reflects the diagnosis of the case and use any additional disease
comparators that may be useful, such as a normal tissue comparator that most closely reflects
the tissue type of origin and a biopsy tissue comparator that most closely reflects the biopsy
site. Comparison methods include percentile rank, number of interquartile ranges, or Z score,
with dataset-tuned thresholds for reporting outliers. It’s noteworthy that in their assessment
of the clinical relevance of WGS and RNA-seq for treatment decisions, Pleasance et al. (2022)
found that RNA expression was the most informative data type overall, and was the sole
therapy decision guide in 25% of cases. This underscores the importance of RNA-seq in
treatment guidance. However, the role of RNA expression in explaining treatment resistance
requires further investigation. Additionally, the response to this question may be particularly
sensitive to the timing of the biopsy in relation to the treatment course, as signaling pathways
activated or deactivated by tumor cells to resist drugs may return to normal levels in the
absence of therapeutic stress.

In the last section, we delineated how tumor genotyping can serve as a crucial tool in
deciphering resistance mechanisms to novel drugs administered within clinical trials. The
DAISY study specifically focused on assessing the efficacy and mechanism of action of the ADC
trastuzumab deruxtecan in advanced breast cancers without prior selection based on HER2

11https://treehousegenomics.soe.ucsc.edu/public-data/
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expression levels. The availability of post-treatment WES profiles for 21 patients, including 11
with matched baseline WES profiles, allowed for a preliminary exploration of potential genetic
mechanisms underlying acquired resistance. While no prominent genetic mechanisms emerged
from these initial analyses, this trial, alongside initiatives like ICARUS (NCT04965766 and
NCT04940325)12, which samples tumor tissue at multiple treatment stages (pre, during, and
post) with other deruxtecan-based ADCs in 200 breast and lung cancer patients, will provide
invaluable data. The unraveling of the mechanisms of action for these innovative drugs
and the identification of predictive or prognostic biomarkers are particularly crucial given
the potential transition of cancer treatments toward this new generation of antineoplastic
drugs, eventually replacing conventional chemotherapies in cases where low tolerance to
chemotherapy toxicity prevents their use (Shastry et al. 2023).

The retrospective analysis of advanced urothelial cancers treated with FGFR inhibitors
represents another significant study, being among the first to decipher resistance mechanisms
to these newly approved drugs, with the first FDA approval occurring only in 2019. Presently,
the important secondary effects observed in patients treated with FGFR inhibitors, coupled
with nearly systematic disease progression due to drug resistance (typical for most targeted
therapy), limits their clinical utility (Kommalapati et al. 2021). However, a more profound
understanding of resistance mechanisms holds the potential to identify patients who can
derive maximum benefit from targeted therapy or formulate combination treatment strategies
effectively inhibiting both the target and the mechanisms by which cancer cells evade the
consequences of such inhibition, as demonstrated in the cell line experiments of the study.

12https://www.gustaveroussy.fr/fr/programme-innocare
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Cancer is a devastating disease that presents a significant challenge to our societies,
affecting people from all walks of life in unpredictable ways. Family histories of cancer have
provided the first indication of its genetic origins. In the 1970s, pioneering studies identified
significant changes in cancerous genomes (Knudson 1971; Stehelin et al. 1976), confirming
the genetic origin of cancer. Early studies of cancer cell lines and samples revealed the
existence of oncogenes (Cooper 1982; Land et al. 1983) and tumor suppressor genes (Lane &
Crawford 1979; Lee et al. 1987) that code for proteins that we now know play critical roles
in cellular pathways exploited by cancer cells to outcompete healthy cells and form tumors
that can be lethal if left untreated. With the advent of advanced profiling technologies, the
genome, epigenome, transcriptome, and proteome of cancer cells have been characterized
in great detail, with data collected from tens of thousands of patients with various types of
cancer. The completion of the human genome project in 2003 and the introduction of the first
next-generation sequencing devices two years later have indeed ushered in a new era of cancer
research that uses the vast amount of data generated to understand the biological mechanisms
behind cancer onset, progression, and response to treatment. Increasing molecular profiling
of the tumors of patients across many cancer types has led to the development of specialized
algorithmic tools and statistical models that have given rise to a new field of research called
computational oncology.

Realizing the promises brought by the technological improvements and the rapid decrease
in sequencing costs, international consortia have been assembled to bring these techniques
to thousands of patients with cancer and to establish comprehensive molecular landscapes.
The TCGA consortium, initiated in 2006 and completed in 2018 with the public release of
the PanCancer Atlas (Hoadley et al. 2018; Ding et al. 2018; Sanchez-Vega et al. 2018)
comprising 23 papers13, stands as a pioneering initiative. The TCGA research network has
released over the years comprehensive molecular landscapes for 33 cancer types, starting
with a first molecular portrait of glioblastomas (The Cancer Genome Atlas Research Network
2008). The analyses of the more than 2.5 petabytes of data generated have provided a
comprehensive catalog of genomic alterations in a wide range of cancer types, identified
molecular subtypes with distinct clinicopathologic characteristics, facilitated the identification
of potential therapeutic targets by uncovering genes and pathways that are frequently altered
in specific cancer types, and integrated data from multiple omics platform to provide more
comprehensive views of the molecular landscapes of several cancer types. The legacy of
TCGA continues to shape the field of cancer research and inform ongoing efforts. Other
international efforts, such as the PCAWG project co-led by ICGC and TCGA (The ICGC/TCGA

13https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
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Pan-Cancer Analysis of Whole Genomes Consortium 2020), or national programs such as the
100,000 genomes project led by Genomics England (Torjesen 2013), have delved into the poorly
characterized areas of non-coding DNA and complex structural variants using WGS technology
and uncovered many cancer-associated or cancer-driving variants. Many more ongoing efforts
are addressing specific questions and characterizing in depth the molecular landscape of
patients with cancer, such as the extensive work of the HMF in the Netherlands (Priestley et al.
2019), which has established a comprehensive database featuring whole-genome sequencing
data and detailed clinical information for thousands of metastatic patients with cancer. The
META-PRISM cohort presented in this thesis is a complementary work that also investigated
patients with cancer at the late stage of their disease but who are additionally known to
be refractory to conventional treatments. By considering in detail the complete treatment
history of these patients and the genetic variants detected in their biopsies, we were able to
draw a detailed inventory of the current knowledge of the genetic mechanisms of resistance
to standard as well as some innovative therapies.

The first chapter of this work has presented fundamental concepts about cancer, pro-
vided insights into the genetic and epigenetic mechanisms underlying the acquisition and
maintenance of malignant capabilities, and depicted the current general classification system
employed in cancer research and care. These concepts are essential knowledge that all cancer
researchers should have at their disposal to help them navigate the complex translational and
clinical research landscapes. The last section of this chapter has additionally introduced the
reader to considerations about the growing place of molecular profiling. The recent FDA
approvals of multiple tumor-agnostic drugs, currently six in number (four targeted therapies
directed against NTRK rearrangements, RET rearrangements, or BRAF V600E mutation,
and two immunotherapies indicated in highly mutagenic or unstable genomes), have spun
a new era of drug development and clinical trial designs where the histology and tissue of
origin are being superseded by molecular considerations. Consequently, new clinical trial
designs, such as basket trials and platform trials, have emerged to assess multiple therapies
across different tumor types according to specific molecular alterations with the primary
goal of demonstrating efficacy (Yates et al. 2018; Ravi & Kesari 2022). The MOSCATO
and MATCH-R trials conducted at Gustave Roussy are non-standard precision medicine
trials with some characteristics of platform trials, although they did not investigate novel
therapies. These trials ran for several years and aimed to prove the efficacy of administrating
innovative drugs according to the detectable molecular alterations, among other objectives.
While actionable alterations were detected in only a subset of patients in these trials, this
subset demonstrated prolonged survival (Massard et al. 2017; Recondo et al. 2020). This
first chapter is the result of numerous readings undertaken throughout my Ph.D., the many
interactions I had with various colleagues, and my attendance at high-quality conferences
that have described many new and promising techniques and clinical outcomes.

The second chapter provided a technical overview of the analysis of data generated by
high-throughput sequencing technologies. It includes a description of sample preparation
and sequencing experiments, as well as an overview of how bioinformatics workflows are
organized and the variety of tools available for any given task. The chapter emphasized
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the challenging decisions that bioinformaticians face in selecting methods to detect genetic
variants or quantify gene expression, and the impact of those choices on downstream analyses.
Understanding the biases and underlying hypotheses of each tool choice is essential for
interpreting the data tables generated by bioinformatic workflows. This is especially important
given the increasing availability of data-rich datasets for researchers to test hypotheses with
greater statistical power. However, technical differences in how shared data are generated
can hinder meaningful analyses, and researchers must understand and, if possible, overcome
these differences by either reprocessing raw data uniformly or using batch-effect correction
techniques. Batch-effect corrections are crucial for addressing the influences of experimental
settings in a variety of sequencing techniques, most particularly RNA expression profiles (Tung
et al. 2017). However, we still need to have calibrated tools that can adapt to the many
sources of batch effects and correct them while preserving biological signals. Ignoring the
importance of these batch effects and failing to control for them can overshadow any biological
difference and confound comparative analyses. The chapter also presented some standard
analyses that are commonly performed on high-throughput DNA sequencing data, most
notably the analysis of mutational signatures and, since the recent extensions that have been
presented, the analysis of CNA and SV signatures. The mathematical framework originally
devised by Nik-Zainal et al. (2012) is presented in detail so as to raise awareness about
methodological hypotheses that may need reassessment in light of the still significant number
of reference signatures with unknown etiology or associated with putative sequencing artifacts.

The third chapter of the thesis presents the main result of this thesis work which is
a comprehensive evaluation of the exome and transcriptome sequencing profiles of 1,031
metastatic patients who had become refractory to conventional treatments. This cohort,
named META-PRISM, was assembled by considering all adult patients with solid tumors
that benefited from whole-exome sequencing (WES) or RNA sequencing (RNA-seq) profiling
as part of the MOSCATO and MATCH-R precision medicine trials conducted at Gustave
Roussy. The primary objective of the analyses presented in this chapter was two-fold. Firstly,
to elucidate the genomic differences between the tumors of refractory metastatic patients
and tumors from treatment-naive non-metastatic patients, taken from TCGA. Secondly, to
quantify the additional clinical utility of WES and RNA-seq sequencing over standard clinical
variables for risk-stratifying patients and guiding therapeutic decisions. This chapter builds
upon the fundamental concepts and tools presented in the first two chapters and establishes a
robust database with harmonized tumor type classifications and a list of molecular alterations
detected across META-PRISM, TCGA, and MET500 cohorts, with MET500 serving as the
validation cohort (Robinson et al. 2017). Significant efforts were dedicated to reprocess raw
sequencing files from all cohorts when data tables generated by the bioinformatic pipelines
were not available, as in the case of CNA calls in TCGA. Comparative analyses of the
tumor genotypes revealed an overall enrichment in the mutational burden, driver mutation
incidence, and genomic instability in metastatic patients with specific enrichments in some
tumor types, such as whole-genome duplication events in metastatic prostate cancers. The
analysis of blood tissues additionally pointed out a significant enrichment of deleterious
mutations affecting cancer-predisposing genes, opening the possibility of germline counseling
for patients at accrued risk of developing aggressive forms of cancer. To assess the potential
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prognostic power of the genetic variants identified, survival models were run on different
combinations of biomarkers and clinical parameters and compared to the current baseline
model utilizing the GRIM score. A significant increase in risk prediction performance was
observed in patients with breast cancer for which the GRIM score was not informative at all
in this cohort. Although this model could not be validated in patients with metastatic breast
cancer from MET500 due to the unavailability of survival data, it was demonstrated to be
predictive in treatment-naive TCGA patients with breast cancer. This finding enhances our
confidence in its utility.

The fourth and last chapter provided a general introduction to the realm of cancer drugs
and the different currently known mechanisms through which cancer cells evade therapies and
described two example translational studies of resistance mechanisms to innovative targeted
therapies. To determine the therapeutic implications of genetic variants detected from WES
and RNA-seq, we used the OncoKB (Chakravarty et al. 2017; Suehnholz et al. 2023) and
CIViC (Griffith et al. 2017) databases which are the result of extensive curation efforts and
are continually expanding as more experimental evidence accumulates. The therapeutic
implications drawn from the confrontation of the variants we detected and the contents of
these knowledge databases were compared against the resistance histories of META-PRISM
patients to determine the prevalence of confirmed, investigative, and putative biomarkers
of resistance. This comparison revealed a significant gap in our current understanding of
treatment resistances and the heterogeneity of this understanding across classes of therapies,
with targeted therapies and particularly TKIs concentrating most of the known resistance
mechanisms. Two additional studies were presented to analyze putative mechanisms of
resistance to innovative drugs, the first focusing on ADC trastuzumab deruxtecan in breast
cancers using an AI model and standard WES, and the second investigating on-target and
bypass resistance mechanisms to FGFR inhibitors in urothelial cancers using various genotyping
methods. The rapid accumulation of knowledge about genotype-treatment relationships
through studies as the two presented, coupled with improvements in diagnostic testing, is
driving the current cancer care towards the era of personalized treatments that are tailored
to the specific molecular characteristics of each cancer.

The different translational projects I participated in throughout my PhD have allowed me
to interrogate data derived from whole-exome and bulk-transcriptome sequencing. However,
other sequencing technologies such as epigenomics, proteomics, and metabolomics are
available. Technological advancements have led to improvements in WES and RNA-seq, the
decrease in whole-genome sequencing costs, and the development of technologies that can
assess multiple types of omics data at single-cell (Tang et al. 2009) or even spatially-resolved
subcellular resolutions (Crosetto et al. 2015). These different methods allow us to better
understand cancer cells by profiling them in various ways. Combining the information we
gather from these different technologies may be the key to unlocking the determinants of
cancer cells’ behavior. Researchers have made headways in this direction, contributing to
various improvements in tasks like risk classification, subtype discovery, and survival prediction.
For example, I participated in a study (Benkirane et al. 2023) where we used variational
autoencoders for learning compact representations of patients profiled through multiple omics
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technologies and used this representation for predicting survival, shedding light on the promises
of deep-learning approaches. Other integrative approaches relying on standard and deep
networks, Bayesian models, factorisation techniques, and feature extraction or transformation
methods have also been explored and reviewed (Huang et al. 2017; Subramanian et al. 2020;
Nicora et al. 2020; Reel et al. 2021). The future of these approaches depends on their ability
to demonstrate better performance in different clinically relevant tasks, as well as the practical
feasibility of profiling tumors through various omic assays.

The data generated by TCGA has also shed light on the extensive heterogeneity of cancer
cells both at the intra- and inter-tumor levels. Understanding that tumor heterogeneity
plays a crucial in cancer, notably through its association with poor prognosis and poor
response to many cancer treatments, pioneering initiatives such as TracerX (Jamal-Hanjani
et al. 2014) have allowed to precisely quantify the spatial and longitudinal heterogeneity
of tumors. Although we did not present a detailed analysis of intra-tumor heterogeneity
in META-PRISM patients, this is part of the future analysis plans, mainly through a new
project that is just starting and will involve performing comprehensive comparisons of pre-
and, when available, post-treatment biopsies. This project will aim to elucidate precisely the
intricate relationships between tumor genotypes and treatment response, a question for which
intra-tumor heterogeneity will most likely be central to the analyses.

Finally, I cannot overstate how fortunate I have been to have joined Paul-Henry Cournède’s
team at a time when a remarkable collaboration between a top-tier university and a world-class
cancer center was just beginning. Since the start of my PhD journey, this partnership has
evolved into a robust and dynamic source of collaborations, fostering innovative research that
bridges the gap between basic and experimental sciences. The successes achieved through
this collaboration have been numerous, and they are poised to accelerate further, thanks
to the sustained support from funding bodies for the diverse projects undertaken by hybrid
research teams comprising dedicated scientists with complementary expertise. Being part
of an interdisciplinary project like META-PRISM has played a pivotal role in my scientific
growth. It provided a unique opportunity to establish fruitful collaborations with experts from
various disciplines, allowing me to glean insights from each of them and shaping me into the
cancer research scientist I am today.
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A.2. Annexes to chapter 2

A.2.1. Variant callers

Mutation caller Mutation type TN req. Reference

Germline

BCFtools SNVs & Indels
Release 0.1.9, 2010.
Danecek et al. GigaScience. 2021

FreeBayes SNVs & Indels Garrison & Marth. aRxiv. 2012

Haplotypecaller SNVs & Indels Poplin et al. BioRxiv. 2018

DeepVariant SNVs & Indels Poplin et al. Nat. Biotechnol. 2018

Somatic

Indelocator Indels Yes Chapman et al. Nature. 2011

SomaticSniper SNVs Yes Larson et al. Bioinformatics. 2012

deepSNV SNVs Yes Gerstung et al. Nat. Commun. 2012

JointSNVMix SNVs & Indels Yes Roth et al. Bioinformatics. 2012

Strelka SNVs & Indels Yes Saunders et al. Bioinformatics. 2012

EBCall SNVs & Indels Yes Shiraishi et al. Nucleic Acids Res. 2013

CaVEMan SNVs Yes Cancer Genome Project. Sanger. 2014

Radia SNVs Yes Radenbaugh et al. PLoS One. 2014

VarDict SNVs & Indels No Lai et al. Nucleic Acids Res. 2016

Mutect
Mutect2

SNVs & Indels
Yes
No

Cibulskis et al. Nat. Biotechnol. 2013
Benjamin et al. bioRxiv. 2019

MuSE 1.0
MuSE 2.0

SNVs
Yes
Yes

Fan et al. Genome Biol. 2016
v2.0 released in 2021

DRAGEN Somatic
Small Variant Caller

SNVs & Indels No Scheffler et al. bioRxiv. 2023

Both

VarScan
VarScan2

SNVs & Indels
No
No

Koboldt et al. Bioinformatics. 2009
Koboldt et al. Genome Res. 2012

LoFreq SNVs & Indels No Wilm et al. Nucleic Acids Res. 2012

Platypus SNVs & Indels No Rimmer et al. Nat. Gen. 2014

Pindel Indels
No
No

Ye et al. Bioinformatics. 2009
Ye et al. Nat. Med. 2015

Strelka2 SNVs & Indels Yes Kim et al. Nat. Meth. 2018

Table A.2.: List of the most commonly used variant callers for identifying SNVs, MNVs, or indels of germline or
somatic origin. SNV, single-nucleotide variant; indel, insertion or deletion; TN req., tumor-normal required by the tool
to call somatic variants.
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CNA caller Sequencing platform Reference

Germline

CONTRA Targeted, WES Li et al. Bioinformatics. 2012

CoNIFER WES Krumm et al. Genome Res. 2012

XHMM WES Fromer et al. Am J Hum Genet. 2012

GermlineCNVCaller Any NGS Released in 2020 with GATK v4.0.

Somatic

ExomeCNV Targeted, WES Sathirapongsasuti et al. Bioinformatics. 2011

cn.MOPS Any NGS Klambauer et al. Nucleic Acids Res. 2012

CoNVEX WES Amarasinghe et al. Bioinformatics. 2013

ADTEx WES Amarasinghe et al. BMC Genomics. 2014

SEQUENZA WES Favero et al. Ann Oncol. 2015

FACETS Targeted, WES Shen et al. Nucleic Acids Res. 2016

ascatNgs WGS Raine et al. Curr Protoc Bioninformatics. 2016

ACEseq WGS Kleinheinz et al. bioRxiv. 2017

CODEX
CODEX2

Targeted, WES
Jiang et al. Nucleic Acids Res. 2015
Jiang et al. Genome Biol. 2018

Both

Control-FREEC Any NGS Boeva et al. Bioinformatics. 2012

VarScan2 WES Koboldt et al. Genome Res. 2012

ExomeDepth WES Plagnol et al. Bioninformatics. 2012

PatternCNV WES Wang et al. Bioninformatics. 2014

CNVkit Targeted, WES Talevich et al. PLoS Comput Biol. 2016

EXCAVATOR2 WES DAurizio. Nucleic Acids Res. 2016

DRAGEN Any NGS Released in 2023 with GATK 4.2.

Table A.3.: Examples of popular variant callers capable of identifying CNAs from DNA-sequencing experiments
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Chapter A. Annexes

A.2.2. About non-negative matrix factorisation

NMF is an algorithmic procedure that aims at decomposing any matrix with non-negative
coefficients M 2 R+

F⇥N into a product of matrices W 2 R+
F⇥K and H 2 R+

K⇥N with a
prespecified internal dimension K. Formally, for a fixed integer K, NMF solves the following
non-convex optimization problem

8

<

:

arg min
W,H2RF⇥K⇥RK⇥N

d(M|WH)

s.t. Wfk � 0, Hkn � 0, 8f, k, n
(A.1)

with d a divergence function applied and summed element-wise on the matrices. The next
subsections provide technical details about various objective functions that may be used and
the numerical strategies that have been developed to solve (A.1). Another important point
that will be discussed is the selection of an optimal value for the number K of signatures to
be extracted.

A.2.2.1. The cost function

The first key parameter to NMF is the definition of the cost function in (A.1). Historically,
either the Kullback-Leibler divergence (Lee & Seung 2001) or the Euclidean distance (Paatero
& Tapper 1994; Lee & Seung 2001) have been used to define the objective function. However,
infinitely many objective functions may be considered using, for example, the set of all α
and β divergences. Divergences are distance-type measures used to compute the distance
between two n-dimensional probability distributions p = (p1, · · · , pn),q = (q1, · · · , qn). We

usually consider functions that are separable in the sense that D(p||q) =
n
X

i=1

d(pi|qi) and

D(p||q) = 0 () p = q. Except for particular cases, divergence functions are not metrics in
the mathematical sense as they are generally not symmetric nor do they satisfy the triangular
inequality. In its generalization of the NMF iterative updates, Kompass (2007) introduced
the α-divergence

dα(p|q)
def
=

8

<

:

ppα�qα

α
+ qα(q � p) α 2 (0, 1]

p(log(p)� log(q)) + q � p α = 0
(A.2)

This divergence encompasses the Euclidean distance for α = 1 and the Kullback-Leibler
divergence for α = 0 as specific cases. Remarkably, the author derived general multiplicative
updates formulas that match exactly the formulas given by Lee & Seung (2001) for the two
extreme values of α but, compared to the latter work, the work of the author additionally
shows that the cost function defined using the divergence (A.2) is non-increasing under the
generalized updates, thereby extending the proof of monotonicity under multiplicative updates
to all values of α in [0, 1]. The α-divergence was also considered for NMF by Cichocki,
Zdunek & Amari (2006) and Cichocki, Zdunek, Phan, et al. (2009) using, however, a slightly
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different definition of the α-divergence given by dCichocki
α+1 (p|q) = α

qα
dα(p|q). Many iterative

rules for solving NMF under the α-divergence with various constraints or for many other
classes of functions are given in their reference book on the topic Cichocki, Zdunek, Phan,
et al. 2009.

The β-divergence defined in the works of Cichocki, Zdunek, Phan, et al. (2009) or Févotte
& Idier (2011) by

dβ(p|q)
def
=

8

>

>

>

<

>

>

>

:

1
β(β�1)

�

pβ + (β � 1)qβ � βpqβ�1
�

β 2 R\{0, 1}

p log p
q
� p+ q β = 1

p
q
� log p

q
� 1 β = 0

(A.3)

is another class of functions used in the context of NMF. Similarly to the α-divergence, it
encompasses as particular cases the Euclidean distance (β = 2), Kullback-Leibler divergence
(β = 1), and Itakura-Saito distance (β = 0). Févotte & Idier (2011) demonstrated in
their work how generalized iterative updates could be defined to solve (A.1) using the β-
divergence (A.3) and extended the theoretical results of monotonicity to all values of β 2 (0, 1)
for the heuristic multiplicative updates introduced in Lee & Seung (2001) - and generalized
by Kompass (2007) later on. They additionally introduced the maximization-minimisation
iterative rules, which theoretically result in non-increasing values of the cost function for all
values of β, and coincide with the heuristic multiplicative update rules for β 2 [1, 2].

As evidenced above, the problem of non-negative factorization may be formulated via
infinitely many objective functions whose choice directly influences the resulting factorization
and ultimately the conclusions that will be drawn from the NMF-based analysis. As a
consequence, the choice of a cost function should be driven by the type of data to analyze
but, although many algorithm improvements have been proposed over the years, there is
only a scarce number of papers dedicated to the selection of a cost function according to
the application (Févotte, Bertin, et al. 2009). A possible solution for choosing an optimal
value of β for a β-divergence-formulated NMF may rely on using a non-maximum-likelihood
estimator called score matching as presented in Lu et al. (2012). This is made possible by
a Bayesian formulation of NMF that allows to link the cost function in (A.1) to specific
distributions of the coefficients of the matrix to be factorized M. See Févotte, Bertin, et al.
(2009) for proofs of how the Itakura-Saito and Kullback-Leibler divergences may be related
to statistical models that assume sums of gaussians and Poisson distributions, respectively,
for the coefficients of M.

A.2.2.2. Optimization algorithms

Multiple types of algorithms have been developed over time to solve the NMF optimization
problem (A.1) and may be classified into three general classes as done by Berry and colleagues
in their comprehensive review of NMF algorithms and applications (Berry et al. 2007):
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multiplicative updates, gradient descent, and alternating least squares (ALS). Though
most of these algorithms were developed to solve NMF in the context of one or several
particular cost functions, many subsequent works have been published that generalize these
algorithms to general classes of functions, notably α (Cichocki, Zdunek & Amari 2006;
Kompass 2007), β (Cichocki, Zdunek & Amari 2006; Févotte & Idier 2011), Bregman (Sra
& Dhillon 2005), or Csiszár (Cichocki, Zdunek & Amari 2006) divergences. Solving the
NMF problem is made difficult by the non-negativity constraints on the factor matrices but
also by the non-convexity of the formulation which means that the solution reached by any
given algorithm is never guaranteed to be the global minimum. Repeating the algorithm
with different initial conditions is a commonly used technique to alleviate this issue and
find a good minimum. Additionally, scaling and permutation cause uniqueness issues as
for any solution WH, an infinite set of additional solutions exist considering WDD

�1
H

where D is a non-negative invertible matrix. Therefore, the uniqueness of NMF may only be
considered up to scaling and permutation and the reader is referred to Laurberg et al. (2008)
for theoretical results on the uniqueness of NMF.

The multiplicative updates algorithms introduced by Lee and Seung for the Euclidean
distance and Kullback-Leibler divergences (Lee & Seung 2001) are undoubtedly the most
widely used numerical schemes in the applications of NMF. The simplicity of the update rules
and the concomitant enthusiasm of the applied sciences for NMF in applied fields at the time
Lee and Seung introduced their algorithms, particularly signal processing, engineering and
medicine, are probably key reasons explaining this popularity. However, as noted in multiple
subsequent works (see Berry et al. (2007) and references therein), there is no theoretical
guarantee of convergence to a local minimum from these update rules and it cannot even
not be proven that the algorithm converges in general to a stationary point. The only
theoretical guarantee of these rules is their continual descent property. Modified rules have
been subsequently proposed that resolve convergence issues Chih-Jen Lin (2007) but they
often involve more work and make the multiplicative update algorithms even slower than they
already were.

ALS NMF algorithms are a second class of algorithms developed to solve the NMF
optimization problem. They rely on the observation that if d is a convex function, then the
cost function function in (A.1) is not jointly convex in (W,H) but is convex in each matrix
separately when the other is held fixed (Lee & Seung 2001). This observation has allowed
for the development of various mathematical strategies that alternatively minimize between
W and H (Cichocki, Zdunek & Amari 2007; H. Kim & Park 2008; Gillis & Glineur 2012).
The majority of ALS-based algorithms iteratively repeat a combination of two steps that
start with some least squares procedure on the first factor matrix considering the other is
held fixed followed by a projection of the newly optimized matrix to set all negative elements
to 0, and then the exact same operations considering the other factor matrix as a second
step. This updates rules have the advantage of being very fast but little can be said about
global convergence in the general cases. Using directly a NNLS procedure in the alternative
minimization between the matrices W and H to avoid the projection results in update rules
with better theoretical properties but at the cost of much more work for every iteration and
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therefore much slower algorithms. For this reason, researchers have often settled for the
simple projection to ensure non-negativity in practical uses although convergence cannot be
guaranteed. More recent works have tried to improve upon the slowness of the alternative
NNLS, particularly the works of Gong & Zhang (2012) or of Huang et al. (2015) which
proposed algorithm capable of achieving fast quadratic convergence under certain conditions.
However, the latter algorithms only apply to the cost function built from using the Euclidean
distance, thereby restricting their possible applications only to data types that would be best
analyzed through this cost function.

The third and last broad class of NMF algorithms are algorithms that apply a gradient
descent of the cost function to update the factor matrices. As for every gradient descent, the
key parameter to the algorithm is the size of the step taken in the direction of the negative
gradient. In their seminal work, Paatero & Tapper (1994) described a gradient descent
algorithm that converges in "30 to 100 steps". The algorithm presented in Hoyer (2004) for
Euclidean distance-based cost function initially sets the step size to 1 and then multiply it
by one-half for every iteration. Though simple and fast, gradient descent algorithms cannot
generally guarantee non-negativity and therefore incorporate a projection step as for the
ALS algorithms to ensure that the coefficients are non-negative after every iteration. As
for ALS algorithms, little can generally be said about the convergence of gradient descent
algorithms, in particular when a projection step is included as it makes formal analysis of
convergence much more difficult. Of note, the multiplicative update rules derived by Lee
and Seung originally derive from a gradient descent algorithm in which the step sizes were
carefully selected to result in the convenient multiplicative updates.

As already mentioned earlier, many algorithmic improvements have been proposed over
the years to achieve higher efficiency, better theoretical guarantees or fine-tune the algorithms
to specific needs or constraints on the solutions. A property commonly sought in applications
is to enforce sparsity or control over the magnitude of the factor matrices coefficients using
L1- or L2-norm constraints. Mathematically, such constraints may be enforced by adding
terms to the cost function in (A.1) in the form of

arg min
W,H2RF⇥K⇥RK⇥N

d(M|WH) + αWJW (W) + αHJH(H) (A.4)

where JW and JH are usually convex functions so that theoretical guarantees of the modified
update rules may be preserved. In their reference book on NMF and its applications, Cichocki,
Zdunek, Phan, et al. (2009) present many variations of already generalized algorithms for
different families of divergences that incorporate constraints imposed by the additional terms
in (A.4). The book gathers and extends many of the authors works presented in different
articles, particularly in Cichocki, Amari, et al. (2006). The reader is also referred to their
very comprehensive matlab toolbox Cichocki, Zdunek, Choi, et al. (2003) for practical
implementations of many variants of NMF algorithms. Févotte and Idier also presented
modified rules in their work on β divergences to incorporate any constraint formalized as
in (A.4) using convex functions for JW and JH and showed that the theoretical property of
continual descent is preserved (Févotte & Idier 2011). Among other algorithmic improvements
for NMF we can mention hierarchical NMF which iteratively refactorizes the right-most
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factor starting from the first factorization W1H1 so that after L iterations the final product
WH stems from the matrices W =

QL
l=1 Wl and H = HL. Cichocki and colleagues have

found that this simple procedure combined with multi-start initialization can improve the
performance of most NMF algorithms (Cichocki & Zdunek 2006). Various efforts have also
been dedicated to improving NMF by carefully selecting initial values for the factor matrices
and have shown improved efficiency in many algorithms (Wild 2003; Boutsidis & Gallopoulos
2008).

A.2.2.3. Optimal value of K

In most applications, the number K of sources contributing additively to the observed
signals is not known a priori and must therefore be estimated somehow. In the absence of a
global statistical framework for the analysis performed that include a model over K, there
is no natural criterion to be optimized and researchers resort to heuristics instead. In one
of the first applications of NMF to genomic data, Brunet et al. (2004) used the stochastic
nature of NMF according to initial conditions to assess the robustness of the factorization for
a range of possible values of K. For each candidate rank, NMF was repeated with different
initializations and a consensus matrix assessing how often any pair of observation clusters
together was computed. In an ideal scenario, all coefficients of the consensus matrix would
be either 0 or 1. The dispersion of the values between 0 and 1, measured by the cophenetic
correlation coefficient, served as a quantitative assessment of the stability of the factorisations
of a given rank. The value of this coefficient was then plotted against the candidate values
of K and the optimal rank was chosen as the value where the magnitude of the cophenetic
correlation coefficients begins to fall. This last steps involves a subjective assessment of the
"falling point" and may be very hard or impossible to detect in cases where the curve is only
slowly changing or on the contrary displays erratic increases and decreases.

In their seminal work on mutational signatures, Alexandrov et al. (2013) iteratively ran
an NMF-based extraction model for many candidate values of K. For every candidate rank,
two quantitative metrics assessing the stability of the NMF factorization and the quality of
the reconstruction were computed using the silhouette index on repeated applications of the
NMF and the Euclidean distance between the original matrix and the product of the two
final factor matrices, respectively. These two metrics were then drawn against the candidate
factorization sizes and the best size was chosen by a subtle trade-off between these two
metrics. As for the first heuristic presented, this selection rule involves a subjective step
that may not always be easily applicable and which lacks theoretical guarantees. As other
tools were developed to perform de novo extraction of mutational signatures from positive
matrices of mutation counts, other criteria were used to choose the number of signatures.
SomaticSignatures (Gehring et al. 2015) simply uses the goodness-of-fit assessed via
the Euclidean distance-based reconstruction error, as already done years earlier by P. M.
Kim & Tidor (2003) on gene array experiments, whereas EMu (Fischer et al. 2013) and
signeR (Rosales et al. 2017) make us of the Bayesian information criterion.

In their Bayesian formulation of NMF, Tan and Févotte devised a probabilistic framework
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which allows to estimate the optimal number of components using a technique called
automatic relevance determination - a technique that was already employed for Bayesian
PCA for instance. Briefly, an NMF probabilistic model with a large number of factors - larger
than the expected number - is fitted using "precision-like parameters" on the columns of
W and rows of H. These parameters are estimated a posteriori alongside the components
of the factor matrices starting from pre-specified prior distributions. After fitting, a certain
number of these parameters are driven to a large upper bound and serve to identify irrelevant
components.

A.3. Annexes to chapter 3

A.3.1. Data retrieval and curation

The treatment histories of the META-PRISM patients were retrieved using a combination
of automatic and manual techniques including the application of a large regex over all
electronic health records stored in Dr Warehouse, as mentioned in Section 3.1.1.3. The regex
employed is the following.

QARZIBA|AZD\s*\-*_*,*?8186|ERLEADA|IPILIMUMAB|ORTERONEL|MPDL\s*\-*_*,*?3281|VITRAKVI|ORMANDYL|

ZYKADIA|ATRIANCE|VORINOSTAT|ENTRECTINIB|AGI\s*\-*_*,*?5198|TORISEL|GDC\s*\-*_*,*?0068|ATEZOLIZUMAB|

CONTRACNE|OMIPALISIB|MTOR\s*\-*_*,*?INHIBITOR|PERTUZUMAB|GLIADEL|ENASIDENIB|MK\s*\-*_*,*?2206|

AZ\s*\-*_*,*?909|ASP\s*\-*_*,*?9521|BINIMETINIB|IRESSA|NOVATREX|RO\s*\-*_*,*?5083945|

XRP\s*\-*_*,*?6258|FLUOROURACIL|GLUCOVANCE|

ANTI\s*\-*_*,*?CTLA\s*\-*_*,*?4\s*\-*_*,*?MONOCLONAL\s*\-*_*,*?ANTIBODY|AURICULARUM|ONARTUZUMAB|

EMTANSINE\s*\-*_*,*?TRASTUZUMAB|5\s*\-*_*,*?AZACYTIDINE|LORVIQUA|WZ\s*\-*_*,*?4002|KIDROLASE|

MOCETINOSTAT|G007\s*\-*_*,*?LK|IDELALISIB|VOTUBIA|OPDIVO|VECTIBIX|D791LC00001|CABOMETYX|MAXIDEX|

DETURGYLONE|TAXOTERE|GSK\s*\-*_*,*?321|SU\s*\-*_*,*?5402|XELODA|METFORMINE|AG\s*\-*_*,*?120|

ALISERTIB|GANETESPIB|FRAKIDEX|GEFITINIB|STATTIC|LEE\s*\-*_*,*?011|HKI\s*\-*_*,*?272|

BMS\s*\-*_*,*?936558|ALBUMINE|AMINOGLUTETHIMIDE|CAMPTO|MEKTOVI|STAUROSPORINE|ODOMZO|

PHA\s*\-*_*,*?848125AC|AZD\s*\-*_*,*?5363|PACLITAXEL|TANESPIMYCIN|STIVARGA|FOLFOX\s*\-*_*,*?4|

AG\s*\-*_*,*?1296|PILARALISIB|LYNPARZA|ONAPRISTONE|

7\s*\-*_*,*?ETHYL\s*\-*_*,*?10\s*\-*_*,*?HYDROXYCAMPTOTHECIN|MEDI\s*\-*_*,*?4736|WNT\s*\-*_*,*?974|

ACIDE\s*\-*_*,*?FOLIQUE|RUXOLITINIB|TRISENOX|MDPL\s*\-*_*,*?3280A|DEXAFREE|AFIMOXIFENE|

BGJ\s*\-*_*,*?389|TEMSIROLIMUS|TUCATINIB|ALBUMINE\s*\-*_*,*?PACLITAXEL|PEGASYS|SAVARINE|FEMARA|

TAE\s*\-*_*,*?684|CELLTOP|VELCADE|INIPARIB|ANTI\s*\-*_*,*?CD\s*\-*_*,*?33|NUTLIN\s*\-*_*,*?3A|

TOPOTECAN|XTANDI|FASUDIL|PERJETA|REVLIMID|ONC\s*\-*_*,*?201|ATINIB|GDC\s*\-*_*,*?0941|

ANTHRACYCLINE\s*\-*_*,*?ANTINEOPLASTIC\s*\-*_*,*?ANTIBIOTIC|CAPECITABINE|FOTEMUSTINE|

ANTI\s*\-*_*,*?VEGF\s*\-*_*,*?MONOCLONAL\s*\-*_*,*?ANTIBODY|LONAFARNIB|TANDUTINIB|DAUNORUBICINE|

BEVACIZUMAB|AZ\s*\-*_*,*?628|FASLODEX|GEMZAR|VINTAFOLIDE|BAFETINIB|AZD\s*\-*_*,*?2281|BRIGATINIB|

COSMEGEN|KANJINTI|PEGARGIMINASE|SNS\s*\-*_*,*?032|SUNITINIB|NOLVADEX|DAUNORUBICIN|VANDETANIB|

AZD\s*\-*_*,*?8055|DACOMITINIB|BRIVANIB|AEE\s*\-*_*,*?788|EUCREAS|THIOGUANINE|ONTRUZANT|

ANTI\s*\-*_*,*?EGFR\s*\-*_*,*?MONOCLONAL\s*\-*_*,*?ANTIBODY|BIRABRESIB|VINFLUNINE|

EOS\s*\-*_*,*?E\s*\-*_*,*?3810|SIROLIMUS|OICR\s*\-*_*,*?9429|JQ\s*\-*_*,*?1|EYLEA|DEXAMETHASONE|

TASONERMINE|VELBE|TIPIFARNIB|VELIPARIB|AGERAFENIB|I\s*\-*_*,*?BET\s*\-*_*,*?151|TK\s*\-*_*,*?216|

BIOSIMILAIRE\s*\-*_*,*?RITUXIMAB|GO\s*\-*_*,*?6983|LY\s*\-*_*,*?3009120|VENCLYXTO|U\s*\-*_*,*?0126|

ALPHARADIN|AROMATASE\s*\-*_*,*?INHIBITOR|KOMBOGLYZE|BUPARLISIB|CERTICAN|SELUMETINIB|

PICTILISIB\s*\-*_*,*?BISMESYLATE|VENETOCLAX|IMG\s*\-*_*,*?2005\s*\-*_*,*?5|CORTISAL|PANITUMUMAB|

NIACINAMIDE|ALECTINIB|CARMUSTINE|TRAZIMERA|NEXAVAR|CRIZOTINIB|VINCRISTINE|ALPELISIB|BORTEZOMIB|

DECTANCYL|FARYDAK|NSC\s*\-*_*,*?348884|VISTUSERTIB|COBIMETINIB|G\s*\-*_*,*?573|

GSK\s*\-*_*,*?2636771|LY\s*\-*_*,*?3039478|TASELISIB|JQ1\s*\-*_*,*?COMPOUND|ZYTIGA|ASPARAGINASE|

COAPROVEL|PONATINIB|GSK\s*\-*_*,*?1120212|WYE\s*\-*_*,*?354|AS\s*\-*_*,*?602868|DACARBAZINE|

TRETINOINE|SONIDEGIB|REFAMETINIB|TOMUDEX|ZANEA|RUCAPARIB|PD1\s*\-*_*,*?INHIBITOR|ETOPOPHOS|

MK\s*\-*_*,*?3475\s*\-*_*,*?028|DEXSOL|VEMURAFENIB|KU\s*\-*_*,*?0060648|COTELLIC|JAKAVI|TECENTRIQ|

ALKERAN|AV\s*\-*_*,*?203|GDC\s*\-*_*,*?0623|METOJECT|POLYDEXA|BOSUTINIB|ETOPOSIDE|APROVEL|VESANOID|
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CERUBIDINE|IBRUTINIB|HERZUMA|VINFLUNINE\s*\-*_*,*?JASINT|VTX\s*\-*_*,*?11E|S\s*\-*_*,*?49076|

SAR\s*\-*_*,*?125844|IMBRUVICA|PLAQUENIL|PAZOPANIB|OXALIPLATINE|OTX\s*\-*_*,*?015|QUARFLOXIN|

EMTANSINE|CAPMATINIB|IXAZOMIB|CISPLATINE|TAXANE\s*\-*_*,*?COMPOUND|ARQ\s*\-*_*,*?197|NILOTINIB|

CO\s*\-*_*,*?1886|AMRUBICIN|PURINETHOL|BELEODAQ|XOSPATA|GDC\s*\-*_*,*?0994|RAPAMYCINE|

PCB\s*\-*_*,*?COMET\s*\-*_*,*?1\s*\-*_*,*?XL184\s*\-*_*,*?307|PANOBINOSTAT|DECITABINE|ASCIMINIB|

LOMETREXOL|NUTLIN\s*\-*_*,*?3|SAVOLITINIB|ALEMTUZUMAB|ICOTINIB|DOXORUBICIN|

ARSENIC\s*\-*_*,*?TRIOXIDE|MIDOSTAURIN|ONIVYDE|LETROZOLE|AZD\s*\-*_*,*?4547|LESTAURTINIB|POZIOTINIB|

BPTES|BAYER\s*\-*_*,*?1394|CAPIVASERTIB|SALINOMYCIN|SIROCTID|

PEGINTERFERON\s*\-*_*,*?ALFA\s*\-*_*,*?2A|NDPL\s*\-*_*,*?3280|AMG\s*\-*_*,*?172|ACTINOMYCINE|

GSK\s*\-*_*,*?2256098|RO\s*\-*_*,*?5509554|TARCEVA|ROACCUTANE|ONATASERTIB|CAMPATH|OSIMERTINIB|

BIBW\s*\-*_*,*?2992|SORAFENIB|CONATUMUMAB|PREDNISONE|MK\s*\-*_*,*?8109|MVASI|PCV\s*\-*_*,*?REGIMEN|

ZELBORAF|LUMINESPIB|TRAMETINIB\s*\-*_*,*?DIMETHYL\s*\-*_*,*?SULFOXIDE|BGJ\s*\-*_*,*?398|CEDIRANIB|

BUSILVEX|PRALSETINIB|ZYDELIG|RAMUCIRUMAB|DACTOLISIB|CX\s*\-*_*,*?5461|FRAMYXONE|IMETH|VANFLYTA|

ADO\s*\-*_*,*?TRASTUZUMAB|MEN\s*\-*_*,*?1611|PROCUTA|INLYTA|TRASTUZUMAB|APITOLISIB|

BEVACIZUMAB\s*\-*_*,*?ROSIA|PEMIGATINIB|AZD\s*\-*_*,*?3463|ENDOXAN|PEMBROLIZUMAB|

ANTI\s*\-*_*,*?TIM\s*\-*_*,*?3\s*\-*_*,*?MONOCLONAL\s*\-*_*,*?ANTIBODY|XALUPRINE|RINDOPEPIMUT|

SPLICEOSTATIN\s*\-*_*,*?A|MEDI\s*\-*_*,*?0680|SB\s*\-*_*,*?202190|CYCLOPHOSPHAMIDE|ANASTROZOLE|

MUPHORAN|LIBTAYO|NELARABINE|NERATINIB|SALIRASIB|VOTRIENT|DURVALUMAB|ENZASTAURIN|KEYTRUDA|OFEV|

FEDRATINIB|PLX\s*\-*_*,*?4720|DELIPROCT|CAPRELSA|TEPOTINIB|BRAFTOVI|GIOTRIF|BICNU|CAELYX|

DINUTUXIMAB|EFFEDERM|SGX\s*\-*_*,*?523|BEROMUN|TUKYSA|RIDAFOROLIMUS|ARS\s*\-*_*,*?853|CHLORAMBUCIL|

METHYLPREDNISOLONE|PROLASTIN|RALTITREXED|VERZENIOS|ANGIOGENESIS\s*\-*_*,*?INHIBITOR|

RO\s*\-*_*,*?5520985|GSK\s*\-*_*,*?3377794|NU\s*\-*_*,*?7441|AZD\s*\-*_*,*?9496|IFIRMASTA|

UPROSERTIB|BOSULIF|OLAPARIB|LAROTRECTINIB|RITUXIMAB|PD\s*\-*_*,*?0325901|PROLIA|TRAMETINIB|

TRICHOSTATIN\s*\-*_*,*?A|METHOTREXATE|FISOGATINIB|RO\s*\-*_*,*?4987655|ZIRABEV|GLIVEC|JAVLOR|

IMFINZI|ALUNBRIG|PD\s*\-*_*,*?180970|IRINOTECAN|ONCOVIN|SOTRASTAURIN\s*\-*_*,*?ACETATE|

VALPROIC\s*\-*_*,*?ACID|DETICENE|MM\s*\-*_*,*?141|LORLATINIB|AFLIBERCEPT|CYRAMZA|AZD\s*\-*_*,*?1480|

IDARUBICIN|IFOSFAMIDE|ARIMIDEX|KETREL|EFUDIX|GF109203X|CUSTIRSEN|IMATINIB|BICALUTAMIDE|

O6\s*\-*_*,*?BENZYLGUANINE|NAVELBINE|CETUXIMAB\s*\-*_*,*?IFCT\s*\-*_*,*?08\s*\-*_*,*?03|EXEMESTANE|

MYLERAN|SCH\s*\-*_*,*?772984|IMATINIB\s*\-*_*,*?MESYLATE|NOMEGESTROL|BENDAMUSTINE|OZURDEX|NIVAQUINE|

ERIBULINE|INFIGRATINIB|ZOLINZA|TGX\s*\-*_*,*?221|F\s*\-*_*,*?14512|OGX\s*\-*_*,*?427|BAZEDOXIFENE|

VINBLASTINE|ZOELY|AZD\s*\-*_*,*?7762|LEUCOVORIN|TEMOZOLOMIDE|LAPATINIB|AZD\s*\-*_*,*?9291|TEPADINA|

STREPTOZOCINE|APALUTAMIDE|TYVERB|TRUXIMA|RAF\s*\-*_*,*?265|H3B\s*\-*_*,*?8800|

BET\s*\-*_*,*?INHIBITOR|LEVOLEUCOVORIN|ABRAXANE|ARACYTINE|PEMETREXED|ALECENSA|MEK\s*\-*_*,*?162|

CABOZANTINIB|ERLOTINIB|NIVOLUMAB|FOLFIRI|SAPANISERTIB|ANAMORELINE|XIGDUO|FOLFOX|CYTARABINE|

ANTI\s*\-*_*,*?CD\s*\-*_*,*?123|MERCAPTOPURINE|MODOTUXIMAB|BUSULFAN|TEGAFUR|ERIVEDGE|

REGORAFENIB\s*\-*_*,*?PBT|ZAVEDOS|AVE\s*\-*_*,*?8062|DOXORUBICINE\s*\-*_*,*?LIPOSOMALE|TEMODAL|

ABEMACICLIB|A\s*\-*_*,*?66|TASQUINIMOD|FLUDARA|JNJ\s*\-*_*,*?42756493|DAUNOXOME|MELPHALAN|

HERCEPTINJANUMET|AMUVATINIB|FLUTAMIDE|LY\s*\-*_*,*?294002|BAY\s*\-*_*,*?1125976|

PF\s*\-*_*,*?06293622|AMG\s*\-*_*,*?386\s*\-*_*,*?PBT|ICLUSIG|

TRIOXYDE\s*\-*_*,*?D\s*\-*_*,*?ARSENIC|DERUXTECAN|ACLY\s*\-*_*,*?SIRNA|TAXOL|YERVOY|

AZD\s*\-*_*,*?6738|ACIDE\s*\-*_*,*?ZOLEDRONIQUE|TAGRISSO|ISTODAX|GDC\s*\-*_*,*?0575|ALVOCIDIB|

CARBOPLATIN\s*\-*_*,*?TAXOL|PCB\s*\-*_*,*?COMET\s*\-*_*,*?1|DOCETAXEL|FORETINIB|TAFINLAR|RYDAPT|

FUTUXIMAB|ROCILETINIB|GSK\s*\-*_*,*?126|ALIMTA|ELOXATINE|EVEROLIMUS\s*\-*_*,*?CA209\s*\-*_*,*?025|

QUIZARTINIB|RETACNYL|TOBRADEX|AMETYCINE|HOLOXAN|TAS\s*\-*_*,*?120|ASPIRIN|

ETOPOSIDE\s*\-*_*,*?PHOSPHATE|IFIRMACOMBI|SGK1\s*\-*_*,*?INH|LENALIDOMIDE|ZANOSAR|NILUTAMIDE|

PANRETIN|AFINITOR|METFORMIN|FULVESTRANT|HYCAMTIN|TAMOXIFEN|AZACITIDINE|TASIGNA|CEMIPLIMAB|

IRAK\s*\-*_*,*?1/4\s*\-*_*,*?INHIBITOR|CI\s*\-*_*,*?1040|RG\s*\-*_*,*?7356|HALAVEN|AROMASINE|

RETASPIMYCIN\s*\-*_*,*?HYDROCHLORIDE|KISQALI|MELOXICAM|CILOXADEX|DOVITINIB|ALFALASTIN|TOCTINO|

CHLOROQUINE|PI\s*\-*_*,*?103|KADCYLA|ZOLEDRONIC\s*\-*_*,*?ACID|ARMISARTE|CETUXIMAB|

GDC\s*\-*_*,*?0425|CHLORAMINOPHENE|AMG\s*\-*_*,*?510|VYXEOS|DASATINIB|ALIZEM|

PHA\s*\-*_*,*?848125\s*\-*_*,*?AC|PREXASERTIB|LINSITINIB|BLEOMYCINE|ENZALUTAMIDE|RIXATHON|

TRABECTEDIN|OGIVRI|AMGMDS\s*\-*_*,*?3|CURACNE|IMMUNE\s*\-*_*,*?CHECKPOINT\s*\-*_*,*?INHIBITOR|

XL\s*\-*_*,*?184|IRBESARTAN|NINLARO|ADRIBLASTINE|GEMCITABINE|PANITIMUMAB|CARBOPLATIN|

2,4\s*\-*_*,*?PYRIMIDINEDIAMINE|XALKORI|AMG\s*\-*_*,*?386|IVOSIDENIB|E\s*\-*_*,*?7438|

MM\s*\-*_*,*?121|MEGACE|BYL\s*\-*_*,*?179|OCTREOTIDE|CABAZITAXEL|AZD\s*\-*_*,*?5438|PARAPLATINE|

VISMODEGIB|GDC\s*\-*_*,*?0449|

ANTI\s*\-*_*,*?PD\s*\-*_*,*?L1\s*\-*_*,*?MONOCLONAL\s*\-*_*,*?ANTIBODY|XGEVA|CBL\s*\-*_*,*?0137|

NINTEDANIB|JW\s*\-*_*,*?55|BAVENCIO|MEDROL|CC\s*\-*_*,*?223|PLACEBO|VEPESIDE|NIMOTUZUMAB|

ALVESPIMYCIN|GSK\s*\-*_*,*?690693|ARABINOSYLGUANINE|MEKINIST|SERIBANTUMAB|DEBIO\s*\-*_*,*?1347|

SUTENT|TEPROTUMUMAB|MOBIC|CORTANCYL|ERYLIK|VINORELBINE|LUTENYL|UNC\s*\-*_*,*?1062|VIDAZA|

RG\s*\-*_*,*?7112|DENOSUMAB|HYDROCORTANCYL|PP\s*\-*_*,*?242|GILTERITINIB|SANDOSTATINE|RESPREEZA|

TALZENNA|PATRITUMAB|MAXIDROL|ERBITUX|RAPAMUNE|ACIDE\s*\-*_*,*?FOLINIQUE|EVEROLIMUS|PERIFOSINE|
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AXITINIB|SAR\s*\-*_*,*?408701|MEHD7954A|MOTESANIB|OXALIPLATIN|TALAZOPARIB|PLACEBO\s*\-*_*,*?IMPRESS|

YONDELIS|MABTHERA|IPATASERTIB|RIPRETINIB|DINACICLIB|BELINOSTAT|CERITINIB|STAGID|NEOFORDEX|

GDC\s*\-*_*,*?0879|RAPALINK\s*\-*_*,*?1|S\s*\-*_*,*?78454|PD\s*\-*_*,*?173074|DABRAFENIB|IDHIFA|

CIXUTUMUMAB|JEVTANA|ABIRATERONE|CHIBRO\s*\-*_*,*?CADRON|MITOMYCIN|

MDV3100\s*\-*_*,*?AFFIRM\s*\-*_*,*?OUVERT|ZEJULA|KW\s*\-*_*,*?2449|MARQIBO|ZALTRAP|NIRAPARIB|

POMALIDOMIDE|EPIRUBICIN|WHI\s*\-*_*,*?P\s*\-*_*,*?154|NECITUMUMAB|LEVACT|DEXRAZOXANE|THIOTEPA|

AVASTIN|BIBF\s*\-*_*,*?1120|VELMETIA|GLUCOPHAGE|DERINOX|NORDIMET|GNE\s*\-*_*,*?617|PATIDEGIB|

RILOTUMUMAB|TAK\s*\-*_*,*?733|PREXATE|CARDIOXANE|GSK\s*\-*_*,*?2118436|FIRMAGON|JSI\s*\-*_*,*?124|

IMNOVID|IFCT\s*\-*_*,*?1003\s*\-*_*,*?LADIE|CRENOLANIB|CASODEX|ENCORAFENIB|RUBRACA|

ODM\s*\-*_*,*?201|REGORAFENIB|SELPERCATINIB|IODINE|IBRANCE|LANVIS|DEGARELIX|MDV\s*\-*_*,*?3100|

MC\s*\-*_*,*?1568|SAVENE|ERDAFITINIB|TAZEMETOSTAT|9F7\s*\-*_*,*?F11|RIBOCICLIB|ANANDRON|

TAK\s*\-*_*,*?700|XL184\s*\-*_*,*?307|PLX\s*\-*_*,*?8394|AKTI\s*\-*_*,*?1/2|AVAPRITINIB|CANERTINIB|

MEGESTROL|STERDEX|SPRYCEL|SU\s*\-*_*,*?5614|AVELUMAB|FARMORUBICINE|

MONOMETHYL\s*\-*_*,*?AURISTATIN\s*\-*_*,*?E|GW\s*\-*_*,*?2580|MITOMYCINE\s*\-*_*,*?C|

CYPROTERONE\s*\-*_*,*?ACETATE|PHA\s*\-*_*,*?848125AC\s*\-*_*,*?CDKO\s*\-*_*,*?006|PALBOCICLIB|

PREDNISOLONE|MYOCET|XRP\s*\-*_*,*?6976|METFORMINE\s*\-*_*,*EMBONATE|ALITRETINOINE|ISOTRETINOINE|

NAB\s*\-*_*,*PACLITAXEL|TRASTUZUMAB\s*\-*_*,*?EMTANSINE|TRASTUZUMAB\s*\-*_*,*?DERUXTECAN|

PACLITAXEL\s*\-*_*,*?ALBUMINE|IRINOTECAN\s*\-*_*,*?LIPOSOMALE|ADRIAMYCIN|LOMUSTINE|BELUSTINE|

ODM\s*\-*_*,*?203|EMACTUZUMAB

The following table, published as Supplementary Table 3 alongside the paper, delineates
all the tumor type abbreviations for the tumors of META-PRISM patients and provides the
number of patients associated to each tumor type.

Tumor Type Description META-PRISM

ACC Adrenocortical Carcinoma 13

ANUS - Not_TCGA Anal squamous cell carcinoma 6

BLCA Bladder Urothelial Carcinoma 74

BLCA - Not_TCGA Bladder Non-Urothelial Carcinoma 6

BRCA Invasive Breast Carcinoma 98

CESC Cervical Squamous Cell Carcinoma 13

CHOL Cholangiocarcinoma 51

COAD Colon Adenocarcinoma 49

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma 1

ESCA Esophageal Adenocarcinoma 6

GBM Glioblastoma Multiforme 4

HNAC - Not_TCGA Head and Neck Adenoid Cystic Carcinoma 22

HNSC Head and Neck Squamous Cell Carcinoma 51

KICH Kidney Chromophobe 2

KIRC Renal Clear Cell Carcinoma 11

KIRP Renal Papillary Cell Carcinoma 2

LGG Brain lower grade glioma 1

LIHC Liver Hepatocellular Carcinoma 12
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LUAD Lung Adenocarcinoma 192

LUNE - Not_TCGA Lung Neuroendocrine Carcinoma 18

LUSC Lung Squamous Cell Carcinoma 27

MESO Mesothelioma 4

MISC - Not_TCGA Other Tumor 53

OV Ovarian Serous Cystadenocarcinoma 21

PAAD Pancreatic Adenocarcinoma 61

PCPG Pheochromocytoma and Paraganglioma 3

PRAD Prostate Adenocarcinoma 95

READ Rectal Adenocarcinoma 8

SARC Dedifferentiated liposarcoma, leiomyosarcoma, undif-
ferentiated pleomorphic sarcoma, myxofibrosarcoma,
malignant peripheral nerve sheath tumor, and synovial
sarcoma

21

SARC - Not_TCGA Sarcoma other than dedifferentiated liposarcoma,
leiomyosarcoma, undifferentiated pleomorphic sar-
coma, myxofibrosarcoma, malignant peripheral nerve
sheath tumor, and synovial sarcoma

14

SI - Not_TCGA Small Intestine Carcinoma 9

SKCM Cutaneous Melanoma 4

STAD Stomach Adenocarcinoma 26

TGCT Testicular Germ Cell Tumor 9

THCA Thyroid Papillary, Follicular, Oxyphilic, or Nonencap-
sulated Sclerosing Carcinoma

1

THCA - Not_TCGA Thyroid Medullary or Undifferentiated Carcinoma 10

THYM Thymoma 2

UCEC Endometrial Carcinoma 6

UCS Uterine Carcinosarcoma/Uterine Malignant Mixed
Mullerian Tumor

2

Unknown_Primary Carcinoma of Unknown Primary 23

Table A.5.: List of all 39 cancer types for the 1,031 patients included in the META-PRISM cohort. Rare tumor types
represented by 5 or less tumors and not represented in TCGA were grouped into the category "MISC - Not_TCGA".
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A.3.2. Bioinformatic analyses

WGD X_Male TCN LCN SCNA

0 0 0 Homozygous deletion (HD)

0 0 1 0 Loss of heterozygosity (LOH)

0 0 2 0 Copy-neutral LOH (cn-LOH)

0 0 � 3, < 4 Low-level gain (LLG)

0 0 � 4, < 6 Medium-level gain (MLG)

0 0 � 6 High-level gain (HLG)

0 1 0 Homozygous deletion (HD)

0 1 � 2, < 3 Low-level gain (LLG)

0 1 � 3, < 4 Medium-level gain (MLG)

0 1 � 4 High-level gain (HLG)

k 0 0 Homozygous deletion (HD)

k 0 > 0, < 2k+1 � (k � 1) 0 Loss of heterozygosity (LOH)

k 0 � 2k+1 � (k � 1), 2k+1 + (k � 1) 0 Copy-neutral LOH (cn-LOH)

k 0 � 1 + k + 2k+1, < 3 + k + 2k+1 Low-level gain (LLG)

k 0 � 3 + k + 2k+1, < 5 + k + 2k+1 Medium-level gain (MLG)

k 0 � 5 + k + 2k+1 High-level gain (HLG)

k 1 0 Homozygous deletion (HD)

k 1 � k + 2k, < 1 + k + 2k Low-level gain (LLG)

k 1 � 1 + k + 2k, < 3 + k + 2k Medium-level gain (MLG)

k 1 � 3 + k + 2k High-level gain (HLG)

Table A.6.: CNA segments identified by FACETS were classified into one of six categories according to the estimated
number WGDs (0 or k >= 1), the TCN value, and the LCN value of the segment. Empty values for LCN mean that
only the TCN value was used.

A.3.3. Comparison and validation cohorts

The following series of four figures provide details about the effects of different filters on
the list of putative mutations and gene fusions in TCGA (Figure A.1 and A.2) and MET500
(Figure A.3 and A.4) cohorts.
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Fig. A.1.: Upset plot showing the number of mutations filtered out individually by each filtering criteria and in
combination with other criteria in TCGA WES samples. Mutations that passed all filters are described in the PASS
set.
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Fig. A.2.: Upset plot showing the number of gene fusions in common according to different combinations among the
three external lists for TCGA RNA-seq samples.
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Fig. A.3.: Upset plot showing the number of mutations filtered out individually by each filtering criteria and in
combination with other criteria in MET500 WES samples. Mutations that passed all filters are described in the PASS
set.
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Fig. A.4.: Upset plot showing the number of gene fusions filtered out individually by each filtering criteria and in
combination with other criteria in MET500 RNA-seq samples. Gene fusions that passed all filters are described in the
PASS set.
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The two following figures serve to show the good alignment in the calling of substitutions
and indels between our internal pipeline and the application of specific filtering rules on the
variants reported by MC3 project.
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Fig. A.5.: Alignment in the calling of substitutions (SNV/MNV) between our internal pipeline and the refiltering of
the MC3 table.
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Fig. A.6.: Alignment in the calling of indels between our internal pipeline and the refiltering of the MC3 table.

242



A.3. Annexes to chapter 3

A.3.4. Genomic profiles

The following list of five figures serve to illustrate some of the analyzes discussed in
Section 3.3, in particular chromosome arm CNAs (Figure A.7 and A.8), discovery of cancer
driver genes (Figure A.9), and the distribution of multihit events in selectedgenes (Figure A.10
and A.11).
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Fig. A.7.: Chromosome arm A. copy-gains and B. copy-losses in the tumor types of META-PRISM WES subcohort
(10 tumor types). Heatmaps show the percentages of tumors affected by corresponding chromosome arm somatic
CNAs in each tumor type. The absolute bar plots show the percentage of tumors in META- PRISM harboring the
chromosome arm somatic CNA. After correction of p-values from Fisher-Boschloo tests, there was no significant
change in any of the chromosome arms and tumor types.
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Fig. A.10.: Relative bar plots showing the relative frequency of single-hit and different types of multi-hit events in
tumor suppressor genes for A. all 10 tumor types represented in META-PRISM WES subcohort, B. BLCA tumors, C.
BRCA tumors, D. LUAD tumors, E. PAAD tumors, and F. PRAD tumors. For A., only genes altered in 5% of any
cohort are included, while in single-tumor type plots the threshold was set to 10%.
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Fig. A.11.: Relative bar plots showing the relative frequency of single-hit and different types of multi-hit events in
oncogenes for A. all 10 tumor types represented in META-PRISM WES subcohort, B. BLCA tumors, C. BRCA
tumors, D. LUAD tumors, E. PAAD tumors, and F. PRAD tumors. For A., only genes altered in 5% of any cohort are
included, while in single-tumor type plots the threshold was set to 10%.
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Chapter A. Annexes

A.3.5. Transcriptomic profiles

The following figure aims to assess visually the potential sources of batch effects in the
RNA-seq profiles of tumors from all three cohorts of the study.

Axis 1

A
x
is

 2Accessory sinuses

Adrenal gland

Base of tongue

Bladder

Bones, joints and articular cartilage

Brain

Breast

Bronchus and lung

Colon

Connective, subcutaneous and 

Floor of mouth

Gum

Heart, mediastinum,

Hematopoietic and 

Hypopharynx

Kidney

Larynx

Lip

Liver and intrahepatic bile ducts

Lymph nodes

Meninges

Nasal cavity and middle ear

Oropharynx

Other and ill-defined sites

Other and ill-defined sites in lip, oral cavity and pharynx

Other and unspecified parts of mouth

Other and unspecified parts of tongue

Palate

Pancreas

Prostate gland

Rectosigmoid junction

Rectum

Retroperitoneum and

Skin

Tonsil

Vagina

and pleura

reticuloendothelial

other soft tissues

systems

peritoneum

 Axis 1

A
x
is

 2 Hybrid Selection

PolyA

Axis 1

A
x
is

 2

BLCA

BRCA

COAD

HNSC

LUAD

PRAD

Axis 1

A
x
is

 2 met500

prism

tcga

A. B.

C. D.

Fig. A.12.: TSNE representations of transcriptomics profiles from six tumors types and three different studies colored
by A. biopsy site B. RNA selection protocol C. tumor type D. study

248



A.3. Annexes to chapter 3

A.3.6. Improved survival predictions

The following figure provides details about the M7 survival model trained on BRCAs of
META-PRISM cohort.
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Fig. A.13.: Cox models M7 coefficients in META-PRISM BRCA tumors. A. Coefficients and 95% confidence intervals
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&RNA-seq subcohort. B. Number of features from each category that were removed or selected during the modeling
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Chapter A. Annexes

A.4. Annexes to chapter 4

The following figure summarizes the genomic alterations that have positive therapeutic
implications specific as annotated in OncoKB and CIViC knowledge databases.
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Fig. A.14.: Known genetic markers of treatment sensitivity in META-PRISM, MET500, and TCGA by tumor type.
Top, fractions of tumors harboring sensitivity markers split by tier (only the best tier is shown for each tumor).
Middle, fractions of tumors with multiple sensitivity markers. Bottom, heat map showing the most frequent
sensitivity-associated variants. Triangle orientations (increase - triangle points up, decrease - points down) and colors
(red for META-PRISM vs. TCGA, green for MET500 vs. TCGA) highlight significant changes in prevalence.
Similarly, stars next to the gene alterations represent significant changes at the cohort level using the same color code
as for triangles (*, P < 0.05; **, P < 0.01; ***, P < 0.001). P-values per tumor type are from Fisher-Boschloo tests,
and p-values across the cohort are from Cochran-Mantel-Haenszel tests. All p-values were adjusted for multiple
testing using the Benjamini-Hochberg procedure.

250



Bibliography

Bibliography

1. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R.
Deciphering Signatures of Mutational Processes Operative in Human Cancer. en. Cell
Reports 3, 246–259. doi:10.1016/j.celrep.2012.12.008 (Jan. 2013).

2. Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P. & Plemmons, R. J. Algorithms
and applications for approximate nonnegative matrix factorization. en. Computational
Statistics & Data Analysis 52, 155–173. doi:10.1016/j.csda.2006.11.006 (Sept.
2007).

3. Boutsidis, C. & Gallopoulos, E. SVD based initialization: A head start for nonnegative
matrix factorization. en. Pattern Recognition 41, 1350–1362. doi:10.1016/j.patcog.

2007.09.010 (Apr. 2008).
4. Brunet, J.-P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular

pattern discovery using matrix factorization. en. Proceedings of the National Academy
of Sciences 101, 4164–4169. doi:10.1073/pnas.0308531101 (Mar. 2004).

5. Chih-Jen Lin. On the Convergence of Multiplicative Update Algorithms for Nonnegative
Matrix Factorization. IEEE Transactions on Neural Networks 18, 1589–1596. doi:10.

1109/TNN.2007.895831 (Nov. 2007).
6. Cichocki, A. & Zdunek, R. Multilayer nonnegative matrix factorisation. en. Electronics

Letters 42, 947. doi:10.1049/el:20060983 (2006).
7. Cichocki, A., Amari, S.-i., et al. en. in Artificial Intelligence and Soft Computing ICAISC

2006 (eds Hutchison, D. et al.) Series Title: Lecture Notes in Computer Science, 548–
562 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006). doi:10.1007/11785231_58.

8. Cichocki, A., Zdunek, R. & Amari, S.-i. in Independent Component Analysis and
Blind Signal Separation (eds Hutchison, D. et al.) Series Title: Lecture Notes in
Computer Science, 32–39 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006).
doi:10.1007/11679363_5.

9. Cichocki, A., Zdunek, R. & Amari, S.-i. en. in Independent Component Analysis and
Signal Separation (eds Davies, M. E., James, C. J., Abdallah, S. A. & Plumbley, M. D.)
Series Title: Lecture Notes in Computer Science, 169–176 (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007). doi:10.1007/978-3-540-74494-8_22.

10. Cichocki, A., Zdunek, R., Choi, S., et al. NMFLAB for Signal Processing (June 2003).
11. Cichocki, A., Zdunek, R., Phan, A. H. & Amari, S.-I. Nonnegative Matrix and Tensor

Factorizations en. doi:10.1002/9780470747278 (John Wiley & Sons, Ltd, Chichester,
UK, Sept. 2009).

12. Févotte, C., Bertin, N. & Durrieu, J.-L. Nonnegative Matrix Factorization with the
Itakura-Saito Divergence: With Application to Music Analysis. en. Neural Computation
21, 793–830. doi:10.1162/neco.2008.04-08-771 (Mar. 2009).

13. Févotte, C. & Idier, J. Algorithms for nonnegative matrix factorization with the
beta-divergence. arXiv:1010.1763 [cs]. arXiv: 1010.1763 (Mar. 2011).

14. Fischer, A., Illingworth, C. J., Campbell, P. J. & Mustonen, V. EMu: probabilistic
inference of mutational processes and their localization in the cancer genome. en.
Genome Biology 14, R39. doi:10.1186/gb-2013-14-4-r39 (2013).

251

http://dx.doi.org/10.1016/j.celrep.2012.12.008
http://dx.doi.org/10.1016/j.csda.2006.11.006
http://dx.doi.org/10.1016/j.patcog.2007.09.010
http://dx.doi.org/10.1016/j.patcog.2007.09.010
http://dx.doi.org/10.1073/pnas.0308531101
http://dx.doi.org/10.1109/TNN.2007.895831
http://dx.doi.org/10.1109/TNN.2007.895831
http://dx.doi.org/10.1049/el:20060983
http://dx.doi.org/10.1007/11785231_58
http://dx.doi.org/10.1007/11679363_5
http://dx.doi.org/10.1007/978-3-540-74494-8_22
http://dx.doi.org/10.1002/9780470747278
http://dx.doi.org/10.1162/neco.2008.04-08-771
http://dx.doi.org/10.1186/gb-2013-14-4-r39


Chapter A. Annexes

15. Gehring, J. S., Fischer, B., Lawrence, M. & Huber, W. SomaticSignatures: inferring
mutational signatures from single-nucleotide variants. en. Bioinformatics 31, 3673–
3675. doi:10.1093/bioinformatics/btv408 (Nov. 2015).

16. Gillis, N. & Glineur, F. Accelerated Multiplicative Updates and Hierarchical ALS
Algorithms for Nonnegative Matrix Factorization. Neural Computation 24. arXiv:
1107.5194, 1085–1105. doi:10.1162/NECO_a_00256 (Apr. 2012).

17. Gong, P. & Zhang, C. Efficient Nonnegative Matrix Factorization via projected Newton
method. en. Pattern Recognition 45, 3557–3565. doi:10.1016/j.patcog.2012.02.

037 (Sept. 2012).
18. Hoyer, P. O. Non-negative matrix factorization with sparseness constraints. arXiv:cs/0408058.

arXiv: cs/0408058 (Aug. 2004).
19. Huang, Y., Liu, H. & Zhou, S. Quadratic regularization projected BarzilaiBorwein

method for nonnegative matrix factorization. en. Data Mining and Knowledge Discovery
29, 1665–1684. doi:10.1007/s10618-014-0390-x (Nov. 2015).

20. Kim, H. & Park, H. Nonnegative Matrix Factorization Based on Alternating Nonnega-
tivity Constrained Least Squares and Active Set Method. en. SIAM Journal on Matrix
Analysis and Applications 30, 713–730. doi:10.1137/07069239X (Jan. 2008).

21. Kim, P. M. & Tidor, B. Subsystem Identification Through Dimensionality Reduction
of Large-Scale Gene Expression Data. en. Genome Research 13, 1706–1718. doi:10.

1101/gr.903503 (July 2003).
22. Kompass, R. A Generalized Divergence Measure for Nonnegative Matrix Factorization.

en. Neural Computation 19, 780–791. doi:10.1162/neco.2007.19.3.780 (Mar.
2007).

23. Laurberg, H., Christensen, M. G., Plumbley, M. D., Hansen, L. K. & Jensen, S. H.
Theorems on Positive Data: On the Uniqueness of NMF. en. Computational Intelligence
and Neuroscience 2008, 1–9. doi:10.1155/2008/764206 (2008).

24. Lee, D. D. & Seung, H. S. Algorithms for Non-negative Matrix Factorization. en, 7
(2001).

25. Lu, Z., Yang, Z. & Oja, E. in Artificial Neural Networks and Machine Learning ICANN
2012 (eds Hutchison, D. et al.) Series Title: Lecture Notes in Computer Science,
419–426 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012). doi:10.1007/978-3-

642-33266-1_52.
26. Paatero, P. & Tapper, U. Positive matrix factorization: A non-negative factor model

with optimal utilization of error estimates of data values. en. Environmetrics 5, 111–126.
doi:10.1002/env.3170050203 (June 1994).

27. Rosales, R. A., Drummond, R. D., Valieris, R., Dias-Neto, E. & Da Silva, I. T. signeR:
an empirical Bayesian approach to mutational signature discovery. en. Bioinformatics
33 (ed Valencia, A.) 8–16. doi:10.1093/bioinformatics/btw572 (Jan. 2017).

28. Sra, S. & Dhillon, I. S. Generalized Nonnegative Matrix Approximations with Bregman
Divergences en. in Advances in Neural Information Processing Systems 18 - Proceedings
of the 2005 Conference, NIPS 2005 (MIT Press, Vancouver British Columbia Canada,
Dec. 2005), 283–290.

252

http://dx.doi.org/10.1093/bioinformatics/btv408
http://dx.doi.org/10.1162/NECO_a_00256
http://dx.doi.org/10.1016/j.patcog.2012.02.037
http://dx.doi.org/10.1016/j.patcog.2012.02.037
http://dx.doi.org/10.1007/s10618-014-0390-x
http://dx.doi.org/10.1137/07069239X
http://dx.doi.org/10.1101/gr.903503
http://dx.doi.org/10.1101/gr.903503
http://dx.doi.org/10.1162/neco.2007.19.3.780
http://dx.doi.org/10.1155/2008/764206
http://dx.doi.org/10.1007/978-3-642-33266-1_52
http://dx.doi.org/10.1007/978-3-642-33266-1_52
http://dx.doi.org/10.1002/env.3170050203
http://dx.doi.org/10.1093/bioinformatics/btw572


Bibliography

29. Wild, S. M. Seeding Non-Negative Matrix Factorizations with the Spherical K-Means
Clustering MA thesis (University of Colorado, 2003).

253



Glossary

Symbols

1000G 1000 Genomes Project.

A

AACR American Association for Cancer Research.
ACC adrenocortical carcinoma.
ADC antibody-drug conjugate.
Adenocarcinoma a malignant tumor arising from glandular epithelial cells.
ADICAP Association pour le Développment de l’Informatique en Cytologie et Anatomie
Pathologique.
ALL acute lymphocytic leukemia.
ALS alternating least squares.
Amino acid organic molecule composed of a basic amino group, an acidic carboxyl group,
and a unique side chain. It is the building block of proteins.
AML acute myeloid leukemia.
API application programming interface.
ASCO American Society of Clinical Oncology.

B

BAM binary alignment map.
BCL base call format.
BER base-excision repair.
BLCA bladder urothelial carcinoma.
BRCA breast invasive carcinoma.
Breakpoint the chromosomal position at which a DNA break has occured.

C

CADD comined annotation dependent depletion.
CAF cancer-associated fibroblast.
Carcinoma a malignant tumor arising from epithelial cells.
cDNA copy DNA.
CGC cancer gene census.
CGI CpG island.
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Glossary

Chemotherapy a type of treatment that uses potent chemicals to destroy quickly dividing
cells.
CHOL cholangiocarcinoma.
Chromosome a threadlike structure of a long polynucleotidic chain and proteins found in
the nucleus of cells.
CI confidence interval.
CIN chromosomal instability.
CIViC Clinical Interpretation of Variants in Cancer.
CLL chronic lymphocytic leukemia.
CML chronic myeloid leukemia.
CNA copy-number alteration.
CNS central nervous system.
CNV copy-number variation.
COAD colon adenocarcinoma.
Codon a sequence of three nucleotides that encode for one of the twenty-two known amino
acids or for the stop signal of protein translation.
COSMIC Catalogue of Somatic Mutations In Cancer.
ctDNA circulating tumor DNA.
CUP cancer of unknown primary.

D

dbGaP database of Genotypes and Phenotypes.
DBS (doublet-base substitution) mutation of two consecutive nucleotides on the DNA chain.
dbSNP database of Single Nucleotide Polymorphisms.
DNA deoxyribonucleic acid.
Driver a characteristic of a biological element or process that provides a selective growth
advantage and thus promotes cancer development.

Driver gene a gene for which one or multiple driver mutations have been described.
Driver gene fusion a fusion gene that provides a selective growth advantage and thus
promotes cancer development.
Driver mutation a mutation that provides a selective growth advantage and thus promotes
cancer development.

DSC Dice-Sorensen coefficient.

E

EACR European Association for Cancer Research.
ECM extracellular matrix.
EGA European Genome Archive.
EGFR epidermal growth factor receptor.
ELN European Leukemia Net.
EMA European Medical Agency.
EMT epithelial-mesenchymal transition.
Epigenome all the epigenetic modifications of a cell.
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Glossary

ESCAT ESMO Scale for Clinical Actionability of molecular Targets.
ESHG European Society of Human Genetics.
ESMO European Society of Medical Oncology.
ESP Exome Sequencing Project.
Euchromatic located in the euchromatin, the loosely packaged and genetically active region
of the chromatin.
ExAC Exome Aggregation Consortium.
Exome the part of the genome consisting of exons.
Exon subsegment of a gene coding for a sequence of amino acids.

F

FASTQ text-based format for storing both a biological sequence and its corresponding quality
scores using single ASCII characters.
FDA Food and Drug Administration.
FFPE formalin-fixed, paraffin-embedded.
FGFR fibroblast growth factor receptor.
FPKM (fragment per kilobase per million mapped reads) fragment counts in paired-end
sequencing normalized by library size followed by length normalization in kilobase and
multiplication by one million.

G

GATK Genome Analysis Tookit.
Gb gigabase.
GCE Google Cloud Engine.
GDC Genomic Data Commons.
Gene segment of DNA encoding for a specific function, majoratirily proteins, and which
constitutes the unit of inheritance.

Gene expression the set of processes through which genes are transcribed into functional
gene products, either proteins or functional RNAs.

Gene fusion a hybrid gene resulting from the juxtaposition of subparts of two independent
genes. It can occur as the result of a translocation, interstitial deletion, or inversion.
GENIE Genomics Evidence Neoplasia Information Exchange.
Genome all the genetic information of a cell organised in chromosomes.
Germline germline refers to sex cells, also known as germ cells, that pass on their genomes (half
of it) from one generation to another in multicellular organisms with dedicated reproductive
cells. Germline alterations refer to changes in cells inherited from the two parental germ cells.
GitHub a plaform and cloud-based service used to host code in private or public repositories
and maintain version control using Git.
Glioma a malignant tumour of the glial tissue of the nervous system.
GLOBOCAN Global Cancer Observatory.
gnomAD Genome Aggregation Database.
GRC Genome Reference Consortium.
GRIM score Gustave Roussy Immune score.
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Glossary

GTEx Genotype-Tissue Expression.

H

Heterochromatic located in the heterochromatin, the densiley packaged and genetically
inactive region of the chromatin.
HGP Human Genome Project.
HMF Hartwig Medical Foundation.
HNAC head and neck adenoid cystic carcinoma.
HNSC head and neck squamous cell carcinoma.
Hormone therapy a type of drug which inhibits hormones to slow or stop the growth of
hormone-dependent cells.
HR homologous recombination.
HRD homologous recombination deficiency.

I

IARC International Agency for Research on Cancer.
ICD-10 International Classification of Diseases, tenth revision.
ICD-O-3 International Classification of Diseases for Oncology, third edition.
ICGC International Cancer Genome Consortium.
IHC immunohistochemistry.
Immunotherapy a type of treatment aiming at stimulating the immune response.
INCA French National Cancer Institute.
Indel insertion or deletion of nucleotides along DNA.
Intron subsegment of a gene not coding for amino acids.
ISH in situ hybridization.

K

kb kilobase.

L

LDH lactate dehydrogenase.
Leukemia type of cancer in which tumor cells circulate in the blood of the patient. It mostly
arises from blood-forming cells located in the bone marrow.
LHR log hazard ratio.
LIHC liver hepatocellular carcinoma.
lncRNA (long non-coding RNA) class of RNA molecules of over 200 nucleotides that have
no or limited coding capacity.
LOH (loss-of-heterozygosity) type of genomic abnormality causing a locus to lose the copy
originating from one the two parents, rendering it homozygous.
LUAD lung adenocarcinoma.
LUSC lung squamous cell carcinoma.
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Glossary

Lymphoma type of cancer that develops in the glands or nodes of the lymphatic system.

M

MAF (minor allele frequency) the frequency at which the second most common allele occurs
in a given population.
Mb megabase.
MDS myelodysplastic syndrome.
Metachronous existing or occuring at different times - in cancer with more than a six-month
difference.
Metastasis the development of secondary malignant growths at a distance from a primary
site of cancer.
miRNA micro-RNA.
MMR mismatch repair.
MMRd mismatch repair deficiency.
MNV (multi-nucleotide variant) mutation of a two or more consecutive nucleotides on the
DNA chain rarely encountered in the general population, generally < 1%. Term used in the
context of somatic mutations.
Monoclonal antibody an antibody produced from a cell lineage made by cloning a unique
white blood cell.
mRNA messenger RNA.
MSI microsatellite instability.
MSK Memorial Sloan Kettering.
MSK-IMPACT MSK-Integrated Mutation Profiling of Actionable Cancer Targets.
Myeloma type of cancr that arises from the plasma cells of bone marrow.

N

NCBI National Center for Biotechnology.
NCI National Cancer Institute.
NEC neuroendocrine carcinoma.
NER nucleotide-excision repair.
NET neuroendocrine tumor.
NGS next-generation sequencing.
NHEJ non-homologous end joining.
NHGRI National Human Genome Research Institute.
NHLBI National Heart, Lung, and Blood Institute.
NMF non-negative matrix factorisation.
NNLS non-negative least squares.
NSCLC non-small cell lung cancer.
Nucleic acid chemical compounds that serve as primary information-carrying molecules
making up the genetic material of cells. DNA and RNA are the two primary types of nucleic
acids found in living cells.
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Glossary

Nucleotide basic structural unit of nucleic acids composed of a nucleoside and a phosphate
group.

O

Oncogene type of gene that contributes to tumor phenotype when expressed.
OncoKB MSK’s precision Oncology Knowledge Base.

P

PAAD pancreatic adenocarcinoma.
Pan-cancer characterization of a study or analysis examining diverse cancer types.
PCAWG PanCancer Analysis of Whole Genomes.
PCPG pheochromocytoma and paraganglioma.
PCR polymerase chain reaction.
PI3K group of plasma membrane-associated lipid kinases existing under eight different
isoforms classified in three classes. Class IA PI3K contains three isoforms 110α, 110β - 110δ
encoded by PIK3CA, PIK3CB, PIK3CD, respectively - clearly implicated in cancer.
PRAD prostate adenocarcinoma.
Proteome all the proteins expressed in a cell.
PTC papillary thyroid carcinoma.

R

RCT randomized controlled trial.
Read a sequence of base calls produced by a machine and corresponding to all or part of a
DNA fragment.
RECIST Response Evaluation Criteria in Solid Tumors.
RNA ribonucleic acid.
RNA-seq RNA sequencing.
RPKM (reads per kilobase per million mapped reads) read counts normalized by library size
followed by length normalization in kilobase and multiplication by one million.
rRNA ribosomal RNA.

S

SAM sequencing alignment map.
SARC sarcoma.
Sarcoma a malignant tumor arising from supportive and connective tissue such as bone,
adipose, cartilage, or muscle tissues.
SBS (single-base substitution) mutation of a single nucleotide on the DNA chain. Synonym
for SNV or SNP.
SIFT sorting intolerant from tolerant.
Signature a computationally-derived molecular pattern that predicts a phenotype of interest.

Gene expression signature a computationally-derived pattern of gene expressions predict-
ing a particular phenotype.
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Glossary

Mutational signature a computationally-derived pattern of mutations characterizing the
consequence of an endogenous or exogenous mutagenic agent.

SKCM skin cutaneous melanoma.
SNP (single-nucleotide polymorphism) mutation of a single nucleotide on the DNA chain
commonly encountered in the general population, generally > 1%. Term used in the context
of germline mutations.
SNV (single-nucleotide variant) mutation of a single nucleotide on the DNA chain rarely
encountered in the general population, generally < 1%. Term used in the context of somatic
mutations.
Somatic somatic refers to all the cells other than sperm and egg cells in multicellular organisms
with dedicated reproductive cells. Somatic alterations designate alterations occurring after
fertilization in somatic cells.
Squamous cell carcinoma a malignant tumor arising from squamous epithelial cells.
Substitution a type of mutation affecting one or multiple consecutive nucleotides on the
DNA chain.
SV (structural variant) juxtaposition of non-contiguous chromosomal segments through a
process of genomic rearrangement.
Synchronous existing or occuring at the same time - in cancer with less than a six-month
difference.

T

TARGET Therapeutically Applicable Research to Generate Effective Treatments.
Targeted therapy a type of treatment targeting specific proteins which control how cells
survive, grow, divide, or spread.
TCGA The Cancer Genome Atlas.
T-DM1 trastuzumab emtansine.
T-DXd trastuzumab deruxtecan.
THCA thyroid carcinoma.
TKI tyrosine kinase inhibitor.
TMB tumor mutational burden.
TME tumor microenvironment.
TMM trimmed mean of m-values.
TPM (transcripts per million maped reads) read counts normalized by gene lengths and then
normalized to sum to one million.
Transcript the single-stranded RNA molecule that is produced when a gene is transcribed.
Transcription process of making an RNA copy of a segment of DNA.
Transcription factor a protein that controls the rate of transcription.
Transcriptome the set of all RNA transcripts, including coding and non-coding, in an
individual or a population.
Transition single-base substitution of a purine (adenine, guanine) by a another purine (A>G
of G>A) or a pyrimidine (cytosine, thymine) by another pyriminde (C>T or T>C).
Transversion single-base substitution of a purine (adenine, guanine) by a pyrimidine (cytosine,
thymine) or vice-versa.
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tRNA transfer RNA.
Tumor suppressor gene type of gene that negatively regulates cell proliferation and act to
inhibit tumor development.
Tumorigenesis the set of all biological processes involved in the formation of a tumor.

U

UCSC University of California, Santa Cruz.

V

VAF (variant-allele frequency) number of reads supporting a mutation divided by the read
depth at the genomic position.
VCF variant calling format.
VEGF vascular endothelial growth factor.
VEP variant effect predictor.
VM virtual machine.

W

WES whole-exome sequencing.
WGD whole-genome duplication.
WGS whole-genome sequencing.
WHO World Health Organisation.
WTSI Wellcome Trust Sanger Institute.

261



Index

Symbols

1000G . . . . . . . . . . . . . . . . . . . . . 23, 67, 95

A

AACR . . . . . . . . . . . . . . . . . . . . . . . . 20, 24
ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
ADC . . . . . 180–184 passim, 196, 198, 206,
207, 218
Adenocarcinoma . . . . . . . 34–38 passim, 92
ADICAP . . . . . . . . . . . . . . . . . . . . . 34, 126
ALL . . . . . . . . . . . . . . . . . . . . . . . 32, 36, 86
ALS . . . . . . . . . . . . . . . . . . . . . . . . 232, 233
Amino acid . . . . 26–31 passim, 52, 68, 96,
100–104 passim, 162, 191, 204
AML . . . . . . . . . . . . . . . 36, 40, 86, 98, 186
API . . . . . . . . . . . . . . . . . . . . 143, 189, 191
ASCO . . . . . . . . . . . . . . . . . . . . . . . 24, 192

B

BAM . . . . 14, 64, 65, 74, 137–140 passim,
147, 149
BCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
BER . . . . . . . . . . . . . . . . . . . . . . 92, 97, 160
BLCA . . . . 136, 155–167 passim, 194, 196,
246, 247
BRCA . 66, 136, 155–160 passim, 164–170
passim, 196, 246–249 passim
Breakpoint 70–77 passim, 93, 94, 143, 151,
154, 162, 164

C

CADD . . . . . . . . . . . . . . . . . . . . . . 101, 201
CAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Carcinoma . . 28–39 passim, 75, 76, 94, 98,
128, 130, 182
cDNA . . . . . . . . . . . . . . . . . . . . . . . . 56, 60
CGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
CGI . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 32
Chemotherapy . . . . . 181–188 passim, 196,
198, 207
CHOL . . . . . . . . . . . . . . 155, 157, 196, 202
Chromosome 25–28, 52, 67–77 passim, 94,
98, 99, 103, 140, 147, 150, 157, 158, 243
CI . . . . . . . . . . . . . . . . . . . . . . 166–169, 194
CIN . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 29
CIViC . 105, 143, 144, 180, 189–194, 205,
206, 218, 250
CLL . . . . . . . . . . . . . . . . . . 36, 89, 182, 186
CML . . . . . . . . . . . 28, 36, 71, 75, 182, 185
CNA 14, 69–74 passim, 78, 82, 83, 93–95,
103, 138–140, 144–151 passim, 157, 158,
166–170 passim, 188–192, 200, 201, 205,
206, 217, 243, 244
CNS . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 86
CNV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
COAD . . . . . . . . . . . . . . 155, 160, 194, 196
Codon . . . . . . . . . . . . . . . . . . 26, 30, 68, 96
COSMIC 23, 30, 76, 84, 90–95 passim, 102,
143, 154–158 passim, 164
ctDNA . . . . . . . . . . . . . . . . . . . 65, 202, 204
CUP . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 42

D

dbGaP . . . . . . . . . . . . . . . . . . . . . . . 65, 150
DBS . . . . . . . . . . . . . . . . . . . . . . . . . . 93, 94
dbSNP . . . . . . . . . . . . . . . . . . . . . . . . 23, 96
DNA . 8, 14, 25–32, 52–84 passim, 92–99
passim, 154, 159, 160, 181–188 passim, 205,

262



Index

216, 217
Driver . 32, 52, 71, 100–105, 154, 158–164
passim, 194, 201

Driver gene 40, 73, 100–105, 143, 158,
162–166 passim, 170, 243

Driver gene fusion . . 76, 77, 170, 206
Driver mutation . . 8, 31, 71, 100–105

passim, 139, 147, 158, 196,
201, 217

Drug . . . . . . . . . . . . . . . . . . . . . . . . . 20, 21
DSC . . . . . . . . . . . . . . . . . . . . . . . . 152, 154

E

EACR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ECM . . . . . . . . . . . . . . . . . . . . . . . 187, 188
EGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
EGFR . 30, 97, 158, 160, 182–187 passim,
191–196 passim, 205
ELN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
EMA . . . . . . . . . . . . . . . . . . . . . 28, 32, 183
EMT . . . . . . . . . . . . . . . . . . . . . . . 187, 188
Epigenome . . . . . . . . . . . . . . . . 40, 42, 215
ESCAT . . . . . . . . . . . . . 167, 168, 192–194
ESHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ESMO . . . . . . . . . . . . . . . . . . . . . . . 24, 192
ESP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Euchromatic . . . . . . . . . . . . . . . . . . . . . . 52
ExAC . . . . . . . . . . . . . . . . . . . . . 23, 96, 160
Exome 7, 23, 29, 56–64 passim, 73, 74, 83,
84, 90–93 passim, 103, 104, 122, 123, 139,
147, 170, 217, 218
Exon . 26, 30, 52, 75–79 passim, 162, 185,
191–194 passim

F

FASTQ . . . 14, 61–65 passim, 74, 78, 137,
138, 152
FDA 22, 28, 32, 92, 181–185 passim, 189,
193, 198, 202, 207
FFPE . . . . . . . . . . . . . . . . . . . . . 74, 82, 199
FGFR . . . . . . . . 180, 202–207 passim, 218
FPKM . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

G

GATK . . . . . . . . . . . . . . . . 64–66, 137–139
Gb . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 57
GCE . . . . . . . . . . . . . . . . . . . . . 14, 148, 149
GDC . . . 20, 22, 65, 66, 81, 137, 145–152
passim
Gene 15, 22, 26–33, 41, 52, 56, 59, 65, 68,
73–81 passim, 92–105 passim, 139–143
passim, 148, 158–167 passim, 185–195
passim, 201–205 passim, 243

Gene expression . 7, 26–32 passim, 41,
60, 63, 78–81 passim, 86, 124, 137,
142, 145, 151, 160, 162, 169, 188,
206, 217

Gene fusion . 14, 15, 28, 40, 71–78 passim,
98, 137, 142–154 passim, 161–169 passim,
188–192, 202–205 passim, 239
GENIE . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Genome 7, 8, 20–31 passim, 40, 42, 52–57
passim, 62–79 passim, 83–85, 89–104 passim,
122, 138–142 passim, 155–158 passim,
168–170, 215, 216
Germline . . 66–73 passim, 83, 95–97, 123,
138, 139, 145–151 passim, 159, 160,
200, 217
GitHub . 9, 13, 64, 65, 136, 149, 162, 163,
189, 192
Glioma . . . . . . . . . . . . . . . . . . . . . 32, 38, 98
GLOBOCAN . . . . . . . . . . . . . . . . . . . 18, 19
gnomAD . . . . . . . . . . . 23, 66, 96, 139, 147
GRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
GRIM score . . . . . . . . . . . . . . . . . . 166–169
GTEx . . . . . . . . . . . . . . . . . 75, 76, 81, 206

H

Heterochromatic . . . . . . . . . . . . . . . . . . . 52
HGP . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 52
HMF . . . . . . . . . . . . . . . . . . 7, 22, 206, 216
HNAC . . . . . . . . . . . . . . . . . . . . . . . . . . 164
HNSC . . . . . . . . . . . . . . . 35, 130, 155, 196
Hormone therapy . . . . 99, 181–186 passim
HR . . . . . . . . . . . . . . . . . . 29, 97, 160, 186
HRD . . . . . . . . . . . . . . . . . . 65, 92, 95, 186

263



Index

I

IARC . . . . . . . . . . . . . . . . . . . . . . . . . 34, 40
ICD-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
ICD-O-3 . . . . . . . . . 34, 126, 128, 136, 150
ICGC . . . . . . . . . . . . . . . 7, 20, 90, 91, 215
IHC . . . . . . . . . . . . . . . . . . . . 168, 198, 199
Immunotherapy . . . . 181–188 passim, 194,
196, 216
INCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Indel . . . . 23, 30, 67–74 passim, 82, 91–97
passim, 138, 139, 143–152 passim, 158–162
passim, 188, 200, 205, 242
Intron . . . . . . . . . . . . 26, 30, 68, 75, 76, 96
ISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

K

kb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

L

LDH . . . . . . . . . . . . . 123, 166–170 passim
Leukemia . . . . . . . . . . . . . 7, 35, 36, 71, 75
LHR . . . . . . . . . . . . . . . . . . . . . . . . 168, 169
LIHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
lncRNA . . . . . . . . . . . . . . . . . . . . 26, 75, 78
LOH . . . . . . . . . . . . . . . . . . . . 95, 157, 160
LUAD . . . . 136, 155–160 passim, 164–168,
194, 196
LUSC . . 35, 97, 101, 155–160 passim, 194
Lymphoma . . . . . . . . . . . . . . 7, 35, 36, 182

M

MAF . . . . . . . . . . . . . . . . . . . . . . . . . 23, 96
Mb 53, 56, 76, 94, 97, 139, 143, 156, 194
MDS . . . . . . . . . . . . . . . . . . . . . . . . . 32, 98
MET500 . . . . 98, 123, 124, 144, 150, 151,
155–163 passim, 169, 190–195 passim, 206,
217, 218, 239, 241, 250
Metachronous . . . . . . . . . . . . . . . . . . . . . 33
Metastasis . . . . . . . . . . . . . . 18, 33, 98, 99
miRNA . . . . . . . . . . . . . . 27, 31, 32, 56, 78
MMR . . . . . . . . . . . . . . . . . . . . . 92, 97, 160

MMRd . . . . . . . . . . . . . . . . . . . . . . . . 65, 92
MNV . . . . . . . . . . . . . . 29, 67–70, 152, 188
Monoclonal antibody . . . . 182–186 passim
mRNA . . . . . . . . 30, 56, 60, 75–80 passim
MSI 32, 65, 92, 138, 140, 145–150 passim,
167, 188, 194, 200, 205
MSK . . . . . . . . . . . . . . 15, 22, 73, 144, 189
MSK-IMPACT . . . . . . . . . . . . . . . . . . . . . 22
Myeloma . . . . . . . . . . . . . . . . . . . . . . . . . 36

N

NCBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
NCI . . . . . . . . . . 14, 20, 52, 128, 148, 149
NEC . . . . . . . . . . . . . . . . . . . . . . . . . 35, 129
NER . . . . . . . . . . . . . . . . . . 89, 93, 97, 186
NET . . . . . . . . . . . . . . . . . . . . . . . . . 35, 129
NGS . . 7, 8, 53–61 passim, 69, 73, 78, 82,
92, 215
NHEJ . . . . . . . . . . . . . . . . . . . . . . . . 97, 186
NHGRI . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
NHLBI . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
NMF . 15, 85–90 passim, 94, 95, 230–235
NNLS . . . . . . . . . . 85–91 passim, 232, 233
NSCLC . . . 30, 32, 98, 182, 185, 189, 191
Nucleic acid . . . . . . . . . . . . . 24, 53, 57, 60
Nucleotide . . 25–29 passim, 52–55 passim,
59–62 passim, 66, 67, 83, 93, 101–105
passim, 138, 159

O

Oncogene . . . . . 27–32 passim, 71, 97–104
passim, 157–160, 164, 215, 244, 247
OncoKB . . . 104, 105, 143, 144, 158, 180,
189–194, 205, 218, 250

P

PAAD . . . . 136, 155–160 passim, 167, 196
Pan-cancer . 8, 20, 22, 30, 70, 73, 98, 102,
104, 122, 123, 166, 170
PCAWG . . . . 20, 42, 68–71 passim, 75, 89,
104, 215
PCPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

264



Index

PCR . . 55–60 passim, 64, 65, 81, 82, 138,
142, 164
PI3K . . . . . . . 95, 182, 186, 187, 204, 205
PRAD . . . . 136, 155–167 passim, 194, 196
Primary site . . . 19, 33, 42, 127, 128, 136,
150, 169
Proteome . . . . . . . . . . . . . . . . . . . . . 40, 215
PTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

R

RCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Read 9, 22, 57–83 passim, 137–142 passim,
152, 200, 229
RECIST . . . . . . . . . . . . . . . . . . . . . . . . . 200
RNA . 8, 15, 26, 27, 31, 32, 53–64 passim,
75–78, 143, 160, 182, 206, 217, 248
RNA-seq . . . 15, 59–65 passim, 72, 76–81,
123–127 passim, 136, 137, 142–154 passim,
160–170 passim, 180, 188, 194, 196,
204–206, 217, 218, 229, 240, 241, 248, 249
RPKM . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
rRNA . . . . . . . . . . . . . . . . . . . . . . 27, 56, 60

S

SAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
SARC . . . . . . . . . . . . . . . . . . . . . . . 130, 161
Sarcoma . . . . 33–42 passim, 129, 130, 163
SBS . . . . . . . . . . 83–85, 90–94 passim, 155
SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Signature . 15, 71, 84–95 passim, 155–157,
162, 170, 217, 230, 234

Gene expression signature . . . . . . 162,
166, 167

Mutational signature 71, 83–95 passim,
155, 156, 217, 234

SKCM . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
SNP . . . 23, 52, 69–73 passim, 95, 96, 138
SNV 27, 29, 67–74 passim, 82, 96, 97, 104,
138, 147, 152, 188
Somatic 14, 52, 66–74 passim, 83, 94–104
passim, 123, 137–139, 143–151 passim,
155–162 passim, 167–170 passim, 180,
188–192 passim, 200, 205, 227, 243, 244

Squamous cell carcinoma 35, 90, 130, 187
Substitution 29–31, 68–71 passim, 83, 84,
93, 139, 143, 144, 152–160 passim, 200, 204,
205, 242
SV . . . . . . . . . . 67–78 passim, 95, 96, 217
Synchronous . . . . . . . . . . . . . . . . . . . . . . 33

T

TARGET . . . . . . . . . . . . . . . . . . . . . 20, 206
Targeted therapy 181–186 passim, 192–196
passim, 202–207 passim, 216, 218
TCGA 7, 8, 14, 20, 29, 41, 42, 66, 69, 73,
75, 80–84 passim, 90, 95–103 passim, 123,
124, 128–130, 136, 140–170 passim, 189–195
passim, 206, 215–219 passim, 226,
238–240, 250
T-DM1 . . . . . . . . . . . . . . . . . . . . . . . . . . 198
T-DXd . . . . . . . . . . . . . . . . 196–201 passim
THCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
TKI . . . . . . . . . . . . . . . . . 30, 182, 202, 218
TMB . . . . . . . . . . . . . . . 155, 167, 188, 205
TME 100, 161–169 passim, 184–188 passim
TMM . . . . . . . . . . . . . . . . . . . . . . . . . 80, 81
TPM . . . . . . . . . . . . . . . . . 80, 81, 142, 162
Transcript . . 26, 27, 60–65 passim, 75–81,
101, 139, 142, 147, 148, 162
Transcription . . . 26, 30, 31, 56, 60, 72–77
passim, 93
Transcription factor . 26, 30, 167, 186, 187
Transcriptome 40, 42, 60–64 passim, 75–79
passim, 122, 123, 142, 170, 215–218 passim
Transition . . . . . . . . . . . . . . . . . . 29, 31, 84
Transversion . . . . . . . . . . . . . 29, 82, 83, 92
tRNA . . . . . . . . . . . . . . . . . . . . . . . . . 27, 60
Tumor suppressor gene . . . . 27–31, 71, 78,
97–104 passim, 157–164 passim, 215,
244, 246
Tumorigenesis . 18, 20, 27, 30, 98, 99, 170

U

UCSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

265



Index

V

VAF . . . . . 65, 69, 138, 139, 145, 151, 152
VCF . . . . . . . . . . . . . . . . . . . . . . 65, 66, 147
VEGF . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
VEP . . . . . . . . . . . . . . . . . . . . . . . . 139, 147
VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

W

WES 13, 14, 56–59, 65, 69–74 passim, 91,
123–127 passim, 136–160 passim, 165–170

passim, 180, 188, 194–207 passim, 217,
218, 249
WGD 70, 95, 140, 147, 150, 157, 158, 167,
170, 217
WGS . . . 30, 56–59, 64–68 passim, 72–74,
90–94 passim, 206, 216, 218
WHO . . . . . . . . . . . . . . . . . . 19, 34, 40, 41
WTSI . . . . . . . . . . . . . . . . . . . . . . 61, 83, 85

266



Synthèse

À l’ère de l’acquisition et de l’analyse massives de données, notre compréhension de
l’apparition et de l’évolution du cancer s’est améliorée à la lumière des résultats dérivés des
analyses des portraits moléculaires de dizaines de milliers de tumeurs à travers le monde.
L’avènement des technologies de séquençage de nouvelle génération dans les années 2000
a révolutionné la façon dont nous étudions les cellules tumorales des patients atteints de
cancer. Ces technologies ont d’abord été utilisées pour caractériser des régions génomiques
spécifiques, mais ont mûri au fil du temps pour permettre le profilage systématique de
l’ensemble de l’exome, du transcriptome et même du génome entier. Étant donnée la place
grandissante du séquençage dans la recherche et la pratique clinique, une compréhension
complète des différents aspects de l’analyse des données de séquençage est primordiale.
Bien que le séquençage à haut débit ne fasse pas encore partie du parcours clinique de
tous les patients atteints de cancer, des profilages moléculaires ont été proposés à nombre
de patients participant à des essais cliniques et est aujourd’hui utilisé en routine pour un
certaines indications. Cette grande quantité de données est désormais disponible pour étayer
de nombreuses recherches, allant de l’établissement de portraits moléculaires détaillés de
groupes particuliers de patients au déchiffrement des liens entre les génotypes des tumeurs
et les parcours cliniques des patients. Toutes ces recherches participent aux progrès de
l’oncologie de précision.

Cette thèse couvre de nombreux aspects impliqués dans l’analyse rétrospective d’une large
cohorte de patients atteints de cancer, ainsi que des revues détaillées de concepts et d’outils
importants de l’oncologie moderne. Le premier chapitre introduit les concepts généraux sur la
biologie et la classification du cancer, qui sont fondamentaux pour les décisions thérapeutiques
mais également l’orientation et l’organisation de la recherche. La dernière section de ce
premier chapitre présente en outre au lecteur des réflexions sur la place croissante du profilage
moléculaire et leur impact sur les classifications et les conceptions d’essais. Le deuxième
chapitre passe en revue en détail les outils informatiques et les bases de données utilisés pour
analyser les données de séquençage et extraire des informations cliniquement pertinentes.

Les deux premiers chapitres servent de base à l’analyse d’une vaste cohorte de patients
pan-cancer présentée dans le troisième chapitre. Cette cohorte, META-PRISM, comprend
1031 patients issus de deux de grands essais de médecine de précision menés à Gustave Roussy
dans la décennie 2010-2020, dont un tiers ont bénéficié des technologies de séquençage de
l’exome entier ou de l’ARN de leurs tumeurs. Comparée à d’autres analyses de grandes
cohortes pan-cancer, cette étude se distingue par l’accent mis sur les patients réfractaires aux
traitements, tous étant considérés comme affectés par un cancer incurable selon un comité
multidisciplinaire, et par la disponibilité d’historiques cliniques détaillés des patients. Les
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analyses comparatives avec une cohorte internationale de tumeurs primaires non traitées ont
mis au jour des différences génétiques générales ainsi que de multiples différences spécifiques
à certains types de tumeur. De plus, la modélisation prédictive de la survie des patients
à l’aide de biomarqueurs moléculaires a montré que même les patients à un stade avancé
peuvent bénéficier du séquençage pour des décisions thérapeutiques importantes, en particulier
l’éligibilité aux essais de phases 1 ou 2.

Le quatrième et dernier chapitre se concentre sur l’analyse des marqueurs génomiques
connus et émergents de résistance aux traitements dans la cohorte META-PRISM, mais
également dans deux autres cohortes issues d’études cliniques récentes dirigées par Gustave
Roussy, dont l’une s’intéresse à un conjugué anticorps-médicament récemment approuvé pour
les cancers du sein, et l’autre à une classe particulière d’inhibiteurs pour les cancers de la
vessie. Ces deux études ont démontré que les altérations de l’expression ou de la structure de
la cible, ou l’activation de voies alternatives par des mutations, contribuent à la résistance
aux médicaments.
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de médecine de précision 
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Résumé : À l’ère de l’analyse des données, les 
connaissances sur l’apparition et la progression du 
cancer se sont approfondies grâce à l’analyse 
moléculaire de nombreuses tumeurs dans le monde. 
Le séquençage de nouvelle génération, apparu dans 
les années 2000, a transformé la recherche sur les 
cellules cancéreuses en permettant le profilage 
complet de l’exome, du transcriptome et même du 
génome entier. Bien que le séquençage à haut débit 
ne soit pas systématique dans la pratique clinique, il 
est couramment utilisé dans les essais 
thérapeutiques. Le vaste réservoir de données ainsi 
généré alimente de nombreuses recherches qui 
contribuent aux progrès de l’oncologie de précision. 

Cette thèse explore l’analyse de cohortes de patients 
atteints de cancer et les outils modernes d’oncologie. 
Le premier chapitre couvre les principes essentiels   

de la biologie du cancer, en mettant l'accent sur le 
rôle évolutif du profilage moléculaire  dans le 
traitement et la recherche. Le deuxième chapitre 
passe en revue les outils informatiques et les bases 
de données employés pour l’analyse des données 
de séquençage. Ces chapitres donnent les clés pour 
le troisième chapitre, axé sur la cohorte META-
PRISM, comprenant 1 031 patients issus d’essais de 
médecine de précision à Gustave Roussy. Il met en 
évidence les spécificités génétiques des patients 
réfractaires et les possibilités de modélisation 
prédictive sur les données du séquençage haut 
débit. Le quatrième chapitre examine les 
marqueurs de résistance aux traitements connus et 
émergents dans la cohorte META-PRISM et dans 
deux études cliniques récentes, révélant des 
altérations de cibles et des activations de voies 
alternatives comme facteurs de résistance clés. 

 

 

Title : Analyses of genomic and transcriptomic profiles of metastatic tumors from precision medicine clinical 
trials 
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Abstract : In the era of extensive data analysis, 
insights into cancer onset and progression have 
deepened through molecular analysis of numerous 
tumors globally. Next-generation sequencing, 
emerging in the 2000s, transformed cancer cell 
investigation by enabling exome, transcriptome, and 
now whole genome profiling. While high-throughput 
sequencing has not yet entered clinical pratice for all, 
it is commonly used in trials. The vast data pool thus 
generated fuels many research areas which 
contribute to precision oncology advancements. 

This thesis explores cancer patient cohort analysis 
and modern oncology tools. The first chapter covers 
cancer biology fundamentals, emphasizing molecular  

profiling's evolving role in treatment and research. 
The second chapter reviews computing tools and 
databases for sequencing data analysis. These 
chapters set the stage for the third chapter, 
focusing on the META-PRISM cohort, comprising 
1,031 patients from precision medicine trials at 
Gustave Roussy. It highlights the molecular 
specificities of refractory and the promises of 
predictive modeling based on high-throughput 
sequencing data. The fourth chapter delves into 
known and emerging treatment resistance markers 
in the META-PRISM cohort and two recent clinical 
studies, revealing target alterations and alternative 
pathway activations as key resistance factors. 
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