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Abstract xi

Estimation d’erreur a posteriori pour des calculs de structure électronique
par des méthodes ab initio et son application pour diminuer le cout de calcul
A posteriori error estimation for electronic structure calculations using ab initio methods
and its application to reduce calculation costs

Abstract

The thesis is concerned with the error analysis of electronic structure calculation. The long term goal is to,
in one hand, derive computable a posteriori error estimator for ab initio methods and, in the other hand,
propose near-optimal computational cost strategy for the numerical calculation of those methods based
on the a posteriori error estimation and the separation of the discretization and iteration error sources.
In the first part of the thesis, we introduce a new well-posedness analysis for the single reference coupled
cluster method based on the invertibility of the CC derivative. Under the minimal assumption that
the sought-after eigenfunction is intermediately normalisable and the associated eigenvalue is isolated
and non-degenerate, we prove that the continuous (infinite-dimensional) CC equations are always locally
well-posed. Under the same minimal assumptions and provided that the discretization is fine enough,
we prove that the discrete Full-CC equations are locally well-posed, and we derive residual-based error
estimates with guaranteed positive constants. The second part of the thesis focus on the application of
a posteriori error estimation to construct near-optimal path when approximating the solution of PDEs.
We firstly apply a probabilistic method to explore an optimal path that minimizes the cost for the
numerical resolution of linear and nonlinear elliptic source problems. Based on the analysis of those
optimal paths, we propose two near-optimal strategies to achieve a given accuracy based on the error
sources decomposition of the error estimator. Finally, we validate the feasibility of those near-optimal
strategies by applying them to the numerical approximation of a nonlinear eigenvalue problem, i.e., the
Gross-Pitaevskii equation.

Keywords: electronic structure theory, coupled cluster method, numerical analysis, non-linear func-
tions, error estimate, Gross-Pitaevskii equation, residual decomposition.

Résumé

La thèse porte sur l’analyse des erreurs dans le calcul de la structure électronique. L’objectif à long terme
est, d’une part, de dériver un estimateur d’erreur a posteriori calculable pour les méthodes ab initio et,
d’autre part, de proposer une stratégie de coût de calcul quasi-optimale pour le calcul numérique de ces
méthodes basée sur l’estimation d’erreur a posteriori et la séparation des sources d’erreur de discrétisation
et d’itération. Dans la première partie de la thèse, nous introduisons une nouvelle analyse de bien posé
pour la méthode de cluster couplé à référence unique basée sur l’inversibilité de la dérivée CC. Sous
l’hypothèse minimale que la fonction propre recherchée est normalisable de façon intermédiaire et que
la valeur propre associée est isolée et non dégénérée, nous prouvons que les équations CC continues
(en dimension infinie) sont toujours bien posées localement. Sous les mêmes hypothèses minimales et à
condition que la discrétisation soit suffisamment fine, nous prouvons que les équations CC discrètes sont
localement bien posées, et nous dérivons des estimations d’erreur basées sur les résidus avec des constantes
positives garanties. La deuxième partie de la thèse se concentre sur l’application de l’estimation d’erreur
a posteriori pour construire un chemin quasi-optimal lors de l’approximation de la solution d’EDP.
Nous appliquons d’abord une méthode probabiliste pour explorer un chemin optimal pour la résolution
numérique de problèmes elliptiques linéaires et non linéaires en minimisant le coût de calcul. Sur la base
de l’analyse de ces chemins optimaux, nous proposons deux stratégies quasi-optimales pour atteindre une
précision donnée, basées sur la décomposition des sources d’erreur de l’estimateur d’erreur. Enfin, nous
validons la faisabilité de ces stratégies quasi-optimales en les appliquant à l’approximation numérique
du problème des valeurs propres, c’est-à-dire l’équation de Gross-Pitaevskii.

Mots clés : théorie de la structure électronique, méthode des clusters couplées, analyse numérique,
fonction non linéaire, estimation d’erreur, équation de Gross-Pitaevskii, décomposition du residu.

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Chapter 1

Introduction

Computational quantum chemistry is by now widely regarded as one of the central pillars of
modern chemistry. In quantum chemistry, the behavior of matter is described using wave func-
tions and governed by a so-called Hamiltonian operator acting on a Hilbert space of these wave
functions. In the so-called non-relativistic Born-Oppenheimer setting, the nuclei of the molecule
under study are treated as clamped, point-like particles. The goal is to study the evolution
of the electrons, a field of study called electronic structure theory. In electronic structure cal-
culation, the primary difficulty is the extremely high-dimensionality of solution space, which
depends exponentially on the size of the electronic system. For a system containing Q elec-
trons, the sought-after ground state (i.e., the lowest eigenfunction) of the electronic Hamiltonian
depends on 3Q spatial variables. A naive application of traditional numerical methods such as
finite element approximations or spectral schemes, etc., therefore fails spectacularly. After nearly
a century’s development, a number of ab initio (first principles-based) deterministic numerical
methods for approximating the ground state energy have been constructed. However, even these
methods are well established, many questions pertaining to the mathematical error analysis of
these methods remain unconsidered.

Error estimation is usually classified into two types: the a priori error estimation and the a
posteriori error estimation. A priori error estimates typically have the following form:

∥u− uN∥ ⩽ CN−k, (1.1)

where u is the exact solution to our problem and uN is the approximate solution in a discretisation
space depending on a parameter N > 0 measuring the number of degrees of freedom of this
discretization space, ∥ · ∥ is a certain norm, and C, k are positive constants associated with the
measure of the regularity of u. Estimate (1.1) ensures that the approximation error ∥u − uN∥
goes to zero as N goes to infinity. In addition, the parameter k indicates the convergence rate of
the discrete solutions towards the exact one. The disadvantage of the above estimate is that the
constant C is, in general, unknown because it is a function of the unknown solution C = C(u).
Conversely, a posteriori error estimates typically have the following form:

∥u− uN∥ ⩽ P (uN , C), (1.2)

where P is a function of the known numerical solution uN and a set of known or computable
data C at a cost lower or similar to the cost spent to determine uN . Estimate (1.2) provides
computable error bounds controlling the difference between our approximate result and the true
solution. In numerical approximation methods such as finite element method (FEM) [109, 6, 34,
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6 CHAPTER 1. Introduction

108, 80] or finite difference method(FDM) [69, 64, 76, 73], it may also provide further information
on the error in different region of the computational domain. This is the case when the bound
P (uN , C) appears as a sum of contributions related to a small region of the computational
domain. We can then refine the computational domain where the local error is relatively high.
The estimator is then named ‘indicator’ and the method that stems is known as the adaptive
mesh method.

On the one hand, the long term goal of our work is to derive computable a posteriori error
estimator for ab initio methods and, on the other hand, propose near-optimal computational cost
strategies for numerical calculations of these electronic structure methods. For the error analysis
portion of this work, we introduce a new well-posedness analysis for the single reference coupled
cluster method and we derive residual-based error estimates with guaranteed positive constants.
With regards to improving calculation accuracy with limited resources, we propose two near-
optimal strategies to achieve a given accuracy for the numerical solution of Gross-Pitaevskii type
equations.

In the following sections, we will introduce more in detail into these aforementioned topics
and provide an overview of the content in each chapter.

1.1 The coupled cluster equations

The starting point for a derivation of the coupled cluster (CC) equations is the time-independent
Schrödinger equation: For a system containing Q electrons and M nuclei, under the Born-
Oppenheimer approximation, the Hamiltonian operator that describes the electronic behavior is
given by

H := −1

2

Q∑
j=1

∆xj
+

Q∑
j=1

M∑
n=1

−Zn

|zn − xj |
+

Q∑
j=1

j−1∑
i=1

1

|xi − xj |
, (1.3)

where {Zn}Mn=1 and{zn}Mn=1 are the charges and positions of these M nuclei respectively and
{xi}Qi=1 are the positions of the Q electrons. The behavior of the electrons is determined by the
eigenvalues of the Hamiltonian operator H, i.e.,

HΨ∗ = E∗Ψ∗. (1.4)

Here the eigenvector Ψ∗ is the wave function describing the state of the electronic system while the
eigenvalue E∗ corresponds to the energy of the system under state Ψ∗. Of particular importance
in electronic structure calculations is the lowest eigenvalue of H, which is the ground state energy
of the system E∗

GS with corresponding state Ψ∗
GS.

It is well-known that electrons are Fermionic particle and it obeys the so-called Pauli-exclusion
principle. In mathematical term, this means that the wave function Ψ is antisymmetric, i.e.,

Ψ(x1, . . . ,xi, . . . ,xj , . . .xQ) = −Ψ(x1, . . . ,xj , . . . ,xi, . . .xQ) ∀ i, j ∈ {1, . . . , Q} with i ̸= j.

In order to compute a solution to Equation (1.4), it is necessary to approximate the antisymmetric
wave function. The simplest idea is the separation of variables approach, i.e., to write the wave
function as a product of Q functions, each of which only depends on one space variable {xi}Qi=1.
Unfortunately, following this idea, the resulting wave function is not antisymmetric. In 1926,
Heisenberg [50] and Dirac [36] independently proposed to use Slater determinants to represent the
wave function, these Slater determinants being functions that trivially satisfy the antisymmetric
property. Given Q ortho normal functions of one space variable {ϕi(x)}Qi=1 (which we also call
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single particle orbitals), the Slater determinant Φ constructed from {ϕi(x)}Qi=1 is defined as

Φ(x1,x2, . . . ,xQ) =
1√
Q!

det
(
ϕi(xj)

)Q
i,j=1

,

with ∫
R3Q

|Φ(x1,x2, . . . ,xQ)|2dx1dx2 . . . dxQ = 1. (1.5)

A standard Galerkin discretisation strategy involves approximating the antisymmetric wave func-
tions by selecting a finite number of single particle orbitals {ϕi}Ki=1 (K > Q) and constructing a
finite number of Slater determinants using any Q non identical orbitals. Then the sought-after
ground state wave function Ψ∗

GS is expressed as a linear combination of those Slater determi-
nants and Equation (1.4) reduces to a linear system of equations determining unknown coeffi-
cients appearing in the linear expansion of these Slater determinants. This is known as the full
configuration interaction (Full CI) method.

For practical calculations, the full configuration interaction approximate space is still too
large, i.e., with dimension being

(
K
Q

)
. Therefore, furthermore simplification must be made to

balance the solution accuracy and computational costs. The fundamental idea of such approaches
is as follows: By selecting a reference determinant Ψ0, any other Slater determinant can be viewed
as replacing n (1 ⩽ n ⩽ Q) single particle orbitals by n new orbitals. Conventionally, we call
these Q orbitals used to construct Ψ0 occupied orbitals and the remaining orbitals unoccupied or
virtual. In the mathematical term, we describe this orbitals replacement action as an excitation
operator acting on Ψ0. In addition, we can classify these so-called excited Slater determinants
according to the number of orbital replacements, i.e., single excited Slater determinant, double
excited Slater determinant, triple excited Slater determinant, etc. The space is then restricted
to contain Ψ0 and only specific orders of excited Slater determinants, e.g., the CISD method
containing Ψ0 and only single and double excited Slater determinants.

One common problem of such truncated CI methods is that they do not satisfy the size
consistency requirement, which is a major concern in electronic structure calculations. The
size-consistency property concerns the additive separability of the energy of a molecular system,
i.e., if we divide a molecular system into two non-interacting subsystems (e.g. separated by an
infinite distance), then the energy of the whole system computed by a size-consistent method
is the sum of the energies of these two subsystems taken separately. Compared to the linear
parameterization used in the truncated CI methods, the coupled cluster (CC) method uses
an exponential parameterization, which fulfills the size consistency condition for the truncated
versions of the coupled cluster method under the assumption that the reference determinant is
multiplicatively separable (see e.g., the work of Andreas Savin in [86] for the meaning of this
term).

For any Φ in the Galerkin approximate space that satisfies the so-called intermediate nor-
malisation condition∫

R3Q

Φ(x1,x2, . . . ,xQ)Ψ0(x1,x2, . . . ,xQ)dx1dx2 . . . dxQ = 1, (1.6)

the component Φ−Ψ0 can be expressed as a linear combination of excited Slater determinants.
As each excited Slater determinant can be expressed as an excitation operator acting on Ψ0, the
component Φ − Ψ0 can also be viewed as a weighted summation of excitation operators, also
known as a cluster operator acting on Ψ0, i.e., S =

∑
µ∈I sµXµ where {Xµ}µ∈I and {sµ}µ∈I are

a sequence of excitation operators and corresponding coefficients respectively and I is an index
set of excitation operators. It is known [87] that for intermediate normalised wave function Φ
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there exists a unique cluster operator T =
∑

µ∈I tµXµ such that

Φ = eTΨ0. (1.7)

In this manner, a linear combination of basis vectors is rewritten as an exponential of cluster
operator acting on Ψ0. Inserting the above exponential parameterization for Ψ∗ into Equation
(1.4) yields the so-called single reference coupled cluster (CC) equations

∀µ ∈ I,
〈
XµΨ0, e

−T∗
HeT

∗
Ψ0

〉
= 0. (1.8)

A solution of problem (1.8) is a sequence of coefficients t∗ = {tµ}µ∈I
such that T∗ =

∑
µ∈I tµXµ.

After obtaining t∗, the corresponding wave function is given by Ψ∗ = eT
∗
Ψ0 and the energy is

calculated via
E∗ :=

〈
Ψ0, e

−T∗
HeT

∗
Ψ0

〉
. (1.9)

Similar to CI methods, only the truncated CC methods like the CCSD or CCD methods are
widely used in practical calculation. And one of the major interest of truncated CC methods is
that the size consistency condition still holds [87] under the assumption regarding the reference
determinant presented earlier. In addition, the truncated coupled cluster approximations could
be viewed as classical Galerkin discretisation of the so-called continuous coupled cluster equations
resulting in a set of nonlinear equations.

Our work aims at proving the local well-posedness of both the continuous CC equations and
its Galerkin discretisations. We view the coupled cluster equation as a root-finding problem for
a nonlinear function and we attempt to show the local existence and uniqueness of the roots
t∗ = {t∗µ}µ∈I of the coupled cluster function.

The mathematical analysis of the coupled cluster equations was begun by Reinhold Schnei-
der and Thorsten Rohwedder in a series of three papers [87, 82, 83]. It is shown that under
some assumptions, the non-linear coupled cluster function is locally, strongly monotone which
can be exploited to prove the local well-posedness of both the continuous CC equations and
its Galerkin discretisations. They also derived optimal error estimates for the coupled cluster
energies using the dual-weighted residual approach of Rolf Rannacher and co-workers [92]. Un-
fortunately, establishing the local monotonicity property requires rather pessimistic assumption
on the closeness of the targeted root t∗ to 0. Essentially, the local well-posedness analysis and
the resulting error estimates only hold in a perturbative regime t∗ ≈ 0. On the other hand, as
we discuss in more detail in Remark 2.4.2 in Chapter 2.4, in many practical situations where the
CC method is known numerically to yield accurate approximations, the sought-after root t∗ is
not in the perturbative regime. For such problems, the existing a priori analysis yields estimates
with negative constants. The a priori analysis having failed, there is also no hope of developing
a posteriori error estimates for practical coupled cluster simulations which will be the ultimate
goal of our numerical analysis.

The contribution of our work is to develop a new a priori error analysis for the single reference
coupled cluster equations that is valid under more general conditions. The analysis we present
here– motivated by the existing literature on non-linear numerical analysis (see, for instance,
[12, 96])– is based on the invertibility of the Fréchet derivative of the non-linear coupled cluster
function, which is established using a classical inf-sup-type approach. Compared to the local
monotonicity approach, such an inf-sup condition seem to hold under more general assumptions.

In Chapter 2.4, we show that under the assumption that the sought-after eigenvalue E∗ of
the electronic Hamiltonian H is non-degenerate and that the corresponding eigenvector Ψ∗ is
intermediately normalisable, then the continuous CC solution t∗ is unique in its neighborhood
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with the existence of t∗ being deduced directly from the assumption.
In Chapter 2.5, we consider the discretisation of the continuous CC equations, namely, the

Full-CC equations in a finite basis. We show that under similar assumptions, these discrete
equations are also locally well-posed in the asymptotic limit.

In this work, we focus on the continuous (infinite-dimensional) CC equations and a specific
version of the discrete CC equations, namely, the Full-CC equations in a finite basis. The
extension of our analysis to more general discretisation (the so-called truncated CC equations
[52, Chapter 13]) is a work in progress.

1.2 The optimal path problem and its application

The aim of developing a posteriori error estimators is not only to give computable error bounds,
but also to improve the calculation accuracy. A posteriori error analysis was initially developed
for finite element methods (FEM). In FEM, the computational domain is discretized by a mesh.
The a posteriori error analysis may lead to estimate the error in different regions of the mesh.
Based on the information provided by the a posteriori error estimator, we can refine the mesh in
regions where the error is relatively high or coarsen the mesh where the error is relatively small.
In such a way, computational costs are kept under control while accuracy are still maintained.
This method is known as the adaptive mesh method [100, 7, 72].

For other approximation methods like the planewave (Fourier) approximations studied in
this work, the mesh (collocation) is regular and directly in relation with the number of Fourier
modes. This is the sense in refining it locally. The application of a posteriori error estimation
as an adaptive strategy to improve the calculation accuracy is thus only global and the idea of
improving calculation accuracy thus consists of including gradually more Fourier modes in the
numerical solution process.

In our work, the numerical error is divided into two parts which originate respectively from the
limited degrees of freedom of the discretization space and the limited number of iterations in the
numerical solution process of the discrete non linear problem. For obtaining the approximate
solution achieving target accuracy, a straightforward approach is to first fix a large enough
discretization space and then perform iterative calculations, hoping that after enough number
of iterations the final solution will be accurate enough. In this case, the discretization error is
fixed at the beginning and only the iteration error is reduced during the calculation process.
Of course, the final accuracy is guaranteed but the cost is a much longer computation time or
much more practically consumed computational resources. In such a case, in order to achieve
a target accuracy while minimizing the computational costs, the reduction of the discretization
and iteration errors should be carefully synchronized, this is the idea adopted in our work.

The first step of our work is to explore the best error balance strategy such that the com-
putational costs are minimized while guaranteeing a final calculation accuracy. This portion of
the work is called the optimal path problem and is shown in Chapter 4.3. We name ‘path’ any
possible calculation process that allows to reach the target tolerance:

1. We firstly fix a discretization space and perform several iterations in this space.

2. We continue the calculation in a larger discretisation space with several more iterations.

3. We repeat this process several times until we finally obtain a solution satisfying the accuracy
requirement.

A path collects the information about the choice of discretization spaces and number of iterations
performed in corresponding discretization spaces and outputs it as an array. We explore the
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optimal path which minimizes the computational costs using the probabilistic threshold accepting
(TA) method, which is a variant of the well-known simulated annealing (SA) method [58], with
a simpler structure (see Chapter 4.3).

In this work, we focus on the numerical resolution of Gross-Pitaevskii type equations, a simple
toy but representative problem in quantum chemistry. In the first place, we solve numerically a
simple linear elliptic source problem. For a given accuracy, we apply the TA method to obtain
the optimal path. Displayed in Figure 1.1 is result for a specific chosen of model parameters.
There are two paths in Figure 1.1. The blue line represents the calculation process performing
13 iterations in space N = 100. This is the straightforward but expensive way to perform
the calculation. The red line represents the optimal path, which consists of performing seven
iterations for N = 3, four iterations for N = 4, one iteration for N = 6 and finally one iteration
for N = 100. Compared with the fixed N = 100 path, the optimal path cuts down the total
cost of computation by a factor thirteen. From Figure 1.1, we observe that after jumping from
N = 6 to N = 100, only 1 iteration for N = 100 is sufficient to achieve the goal accuracy, which
also means that the discretization error gap is easily covered by one iteration after enlargement
of discretization space.
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Figure 1.1: The optimal path for the linear case

The second step of our work is to explore the mechanism generating the two types of optimal
paths (i.e., for the linear and nonlinear cases) and this part of work is presented in Chapter
4.4. We perform several complementary simulations and compare the results to unlock the key
factor in the iterative scheme determining the form of optimal paths. Based on this discovery, we
give a detailed analysis of the convergence rates of iterative schemes including general iteration
processes and the specific iteration after the enlargement of discretization space. With additional
numerical verification, we confirm the mechanism generating such two types of optimal paths.

Based on our understanding of such optimal path, we next develop simple and computation-
ally cheap strategies that can produce near-optimal paths and this part of our work is presented
in Chapter 4.5. To do so, we apply residual-based a posteriori error estimation for both of the
two source problems and decompose the total residual into so-called discretisation and iteration
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Figure 1.2: Comparison between optimal path and nearly optimal strategies
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Figure 1.3: Nearly optimal strategies for the eigenvalue problem

residuals, each of which represents a bound of the corresponding source of error. An important
feature of our residual-based estimator is that we can use it to predict both the iteration and
discretisation errors after the enlargement of the discretisation space thus allowing us to select an
appropriate choice of N for the next iteration. In this case, we can compare the costs and predict
the benefits (the decrease of the residual) in order to pick near-optimal discretization numbers
N in the path. Using these features, we propose two near-optimal strategies and compare the
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resulting near-optimal paths with the optimal one. We show in Figure 1.2 the result of the linear
case as an example. It is readily seen that the computational cost of the near-optimal paths is
very close to the optimal one.

The last step of our work is to apply these two near-optimal strategies to the numerical
solution of eigenvalue problem, the Gross-Pitaevskii equation. This part of work is presented in
Chapter 5. We compare the differences between numerical solutions of the source and this new
eigenvalue problem. We check that the mechanism controlling the form of the original optimal
path in the source problem is also in play in the eigenvalue problem. Finally, we apply the same
near-optimal strategies to the eigenvalue problem. A representative result is shown in Figure
1.3.

While this thesis involves work only on the nonlinear Gross-Pitaevskii-type equations, the
long term goal is to propose near-optimal strategy for the numerical solution of more complex
quantum chemistry calculation method such as the Hartree-Fock equations, the Khon-Sham
eqautions, eventually other ab initio methods.
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Chapter 2

The coupled cluster equations

This chapter presents the results of [49]. This work was carried out in collaboration with Yvon
Maday and Muhammad Hassan.

2.1 Introduction

Computational quantum chemistry is by now widely regarded as one of the central pillars of
modern chemistry, as evidenced by the award of two Nobel prizes (Walter Kohn and John Pople
(1998) [94]; Martin Karplus, Michael Levitt, and Arieh Warschel (2013) [95]) in recent years.
The field is typically thought to have begun with the pioneering work of Walter Heitler and
Fritz London [51] in the 1920s but major, concurrent advances were due to Vladimir Fock,
Douglas Hartree, Egil Hylleraas and John Slater [48, 44, 91, 90, 57, 56] among others. These
first developments were followed by seminal contributions in the post-war period by the likes of
Francis Boys [8], Jiří Čížek [25], George Hall [47], Clemens Roothan [85, 84] and many others (see,
for instance, [15, Chapter 1.2] for a more comprehensive account). The subsequent explosion in
available computing resources which began in the 1970s helped spur a tremendous development
in the field (see, e.g., the development of computer software such as POLYATOM [5], IBMOL
[26], and GAUSSIAN 70 which is still used today [46]), and quantum-chemical simulations are
today routinely performed by thousands of researchers, complementing painstaking laboratory
work on the design of new compounds for sustainable energy , green catalysis, and pharmaceutical
drugs (see, e.g., [35, 65, 68, 33, 53] and the references therein). Indeed, according to the 2021
annual report of the European High Performance Computing Joint Undertaking (EuroHPC-
JU), nearly a quarter of of the simulations running on the supercomputers Karolina and Vega
pertained to chemical and material science simulations, with similar or higher numbers reported
by supercomputing centers in Germany [41], Italy [24], and Switzerland [2].

The goal of quantum chemistry is to obtain a quantitative description of the behaviour of
matter at the atomic scale, i.e., when matter is viewed as a collection of nuclei and electrons.
In the so-called non-relativistic Born-Oppenheimer setting, the nuclei of the molecule under
study are treated as clamped, point-like particles, and the aim is to describe the evolution of the
electrons in the effective electrostatic potential generated by the static configuration of positively
charged nuclei, this field of study being known as electronic structure theory. The behaviour of the
electrons in this situation is governed by the spectrum of the so-called electronic Hamiltonian–
a semi-unbounded, self-adjoint operator acting on an L2-type Hilbert space of antisymmetric
functions. It has been known since the seminal work of Grigorii Zhislin and Aleksandr Sigalov

15
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[105, 106] that for neutral molecules and positively charged ions, the electronic Hamiltonian
possesses a lowest eigenvalue, frequently called the ground state energy, and a great deal of
quantum chemical simulations are concerned with approximating this ground state energy.

The primary difficulty in the numerical computation of the lowest eigenvalue of the electronic
Hamiltonian is the extremely high-dimensionality of the underlying Hilbert space. Indeed, for
a system containing Q electrons, the sought-after ground state of the electronic Hamiltonian
depends on 3Q spatial variables. A naive application of traditional numerical methods such
as finite element approximations or spectral schemes, etc., therefore fails spectacularly, and
specialised approximation strategies have to be developed. Broadly speaking, ab initio (first
principles-based) deterministic numerical methods for approximating the ground state energy
can be divided into three categories, each of which has a vast variety of subcategories and
flavours (see, e.g., [15, Chapter 1] for a concise but comprehensive overview).

• Wave-function methods which focus on approximating directly the ground state of the
electronic Hamiltonian.

• Density functional methods which are based on a reformulation of the minimisation problem
for the electronic Hamiltonian (which acts on functions of 3Q spatial variables) in terms of
an equivalent minimisation problem over a set of electronic densities (which are functions
of 3 spatial variables).

• Reduced density matrix approaches which are based on the electronic one-body and two-
body reduced density matrices.

The coupled cluster (CC) methodology, which belongs to the class of wave-function methods,
is based on a non-linear ansatz for the sought-after ground state of the electronic Hamiltonian.
In its most common form– the so-called single reference CC method– the unknown ground state
is expressed as the action of an exponential cluster operator, i.e., the operator exponential of
a linear combination of linear maps (so-called excitation operators), acting on a judiciously
chosen reference function (usually a so-called discrete Hartree-Fock determinant). Using this
ansatz the eigenvalue problem for the ground state energy of the electronic Hamiltonian can be
reformulated as a non-linear system of equations for the unknown coefficients appearing in the
linear combination of excitation operators entering the operator exponential. Approximations to
the ground state energy are then obtained by restricting the class of excitation operators that
appear inside the exponential, which leads to a hierarchy of computationally more tractable non-
linear, root-finding problems. Usually these truncations are done on the basis of the excitation
orders (see Chapter 2.2.3 below) and one thus speaks of CCD (double excitation operators only),
CCSD (single and double excitation operators), CCSDT (single, double and triple excitation
operators) and so on.

An important yet subtle concept in these post-Hartree Fock methods (including coupled clus-
ter methods) deals with what is called “size consistency” (see e.g. [93]) and/or “size extensivity”
see e.g. [52]). Intuitively, these properties are meant to describe whether or not the numeri-
cal method under consideration correctly captures the correct scaling properties of the system.
Size-consistency concerns the additive separability of the energy of a molecular system, i.e., if
we divide a molecular system into two non-interacting subsystems (e.g. separated by an infinite
distance), then the energy of the whole system computed by a size-consistent method is the sum
of the energies of these two subsystems taken separately. A size-extensive method, on the other
hand, yields energies that scale linearly with the number of electrons. While these concepts may
appear similar, they are not the same in general, and we refer to [70] for a careful presentation
of these concepts starting from their historical introduction.
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Focusing on the notion of size-consistency, it is well-known that without the exponential struc-
ture of the ansatz wave function, this property cannot be satisfied. On the contrary, as is proven
by Reinhold Schneider in [87], the method we consider in this chapter (SRCC) is size-consistent
under the assumption that the reference determinant is multiplicatively separable (see e.g., the
work of Andreas Savin in [86] for the meaning of this term). Note that, in the vast literature,
other couple cluster methods are said to benefit from size-consistency and/or size-extensivity even
though proofs are missing and no explicit assumption is made about multiplicative separability
of the reference determinant.

Coupled cluster methods were originally introduced in the field of nuclear physics in the
late 1950s by Fritz Coester and Hermann Kummel [27, 28] but were reformulated for use in
quantum chemistry in the following decades by pioneers such as Jiří Čížek [25], Josef Paldus
[74], and Oktay Sinanoğlu [89]. The original motivation for introducing such methods was the
fact that they satisfied the size-consistency property under the previously mentioned assumption
regarding the reference determinant. Since size consistency seems to be a vital chemical property
not conserved by some other numerical methods, and in practice, the CC methods seem to work
extremely well, achieving, in many cases, the chemical accuracy of 1 kcal/mol, they quickly found
wide adoption in the quantum chemical community [62]. In particular, the so-called CCSD(T)1
variant, which can be applied to small and medium-sized molecules at a reasonable computational
cost, is widely regarded as the ‘gold standard’ of quantum chemistry [79].

Despite the ubiquitous use of this ‘gold standard’ computational method in the quantum
chemical community, there is a shockingly limited amount of mathematical literature on the
numerical analysis of the coupled cluster methodology. Indeed, a simple search with the keyword
“coupled cluster” on Google Scholar and MathSciNet, two databases that are representative of
the scientific literature as a whole and the subset of mathematical literature thereof, reveals that
there are more than 100,000 articles pertaining to coupled cluster theory of which less than 40
are listed on MathSciNet. Limiting ourselves to the subset of numerical analysis journals, there
are a total seven articles on coupled cluster methods.

The first systematic study of the single reference coupled cluster method from a numerical
analysis perspective was undertaken by Reinhold Schneider and Thorsten Rohwedder slightly
more than ten years ago. In a series of three remarkable papers [87, 82, 83], they were able
to show that the excitation operators that appear inside the coupled cluster exponential are
bounded linear maps between Hilbert spaces of antisymmetric functions with appropriate reg-
ularity and that consequently, the continuous (infinite-dimensional) coupled cluster equations
could be given a precise functional-analytic meaning. The coupled cluster approximations (built
by restricting the class of excitation operators that enter the exponential operator) could thus be
viewed as classical Galerkin discretization of an infinite-dimensional non-linear problem. Schnei-
der also showed that under some assumptions, the underlying non-linear coupled cluster function
is locally, strongly monotone which could exploited to prove the local well-posedness of both the
continuous CC equations and its Galerkin discretisations. Schneider and Rohwedder also derived
optimal error estimates for the coupled cluster energies using the dual-weighted residual approach
of Rolf Rannacher and co-workers [92]. Since this pioneering work, two further contributions have
been published which provide a similar numerical analysis for two other flavours of coupled clus-
ter methods, namely, the extended coupled cluster method [61] and the tailored coupled cluster
method [42] (see also [60]). In addition to the aforementioned contributions which tackle the
coupled cluster equations from a functional analysis perspective, there has been recent interest
in analysing the CC equations using tools from other fields. Thus, the contributions [29, 30] use
concepts from graph theory to present a unified framework for constructing different variants

1Here, the (T) emphasises the fact that triple excitation orders are not initially included in the CCSD(T)
ansatz and are rather treated perturbatively through a post-processing step.
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of coupled cluster methods and topological index theory to study the solutions of the coupled
cluster equations in finite-dimensions. Recently, an additional contribution has appeared which
investigates the root structure of the CC equations using tools from algebraic geometry [43].

While the articles [87, 82, 83, 61, 42] listed above lay the groundwork for a rigorous a priori
error analysis of the coupled cluster methods, they have one rather unfortunate drawback: in all
cases, the well-posedness of the CC equations is established by demonstrating that the underlying
CC function is locally strongly monotone, and this demonstration can only be shown to hold if
the targeted root t∗ of the CC function is sufficiently close to zero. In other words, the local well-
posedness analysis and the resulting error estimates only hold in a perturbative regime t∗ ≈ 0. On
the other hand, as we discuss in more detail in Remark 2.4.2 in Chapter 2.4, in many practical
situations where the CC method is known numerically to yield accurate approximations, the
sought-after root t∗ is not in the perturbative regime. For such problems, the existing a priori
analysis yields estimates with negative constants! The a priori analysis having failed, there is
also no hope of developing a posteriori error estimates for practical coupled cluster simulations
which, in our opinion, would be the ultimate goal of the numerical analysis.

The aim of the current contribution is to develop a new a priori error analysis for the single
reference coupled cluster equations that is valid under more general conditions. The analysis
we present here– motivated by the existing literature on non-linear numerical analysis (see, for
instance, [12, 96])– is based on the invertibility of the Fréchet derivative of the non-linear coupled
cluster function, which is established using a classical inf-sup-type approach. In contrast to the
local, strong monotonicity approach pioneered by Schneider, our analysis does not require the
sought-after root t∗ of the coupled cluster function to be close to zero. In our work, we will focus
on the continuous (infinite-dimensional) CC equations and a specific version of the discrete CC
equations, namely, the Full-CC equations in a finite basis (see Chapter 2.5). The extension of
our analysis to more general discretization (the so-called truncated CC equations [52, Chapter
13]) will be addressed in a forthcoming contribution.

The remainder of this part is organized as follows. In Chapter 2.2, we introduce more rigor-
ously the problem formulation, i.e., the electronic Hamiltonian and the Hilbert spaces on which
it acts. In Chapter 2.3, we introduce excitation operators and the coupled cluster ansatz, and we
state the continuous and discrete coupled cluster equations. We begin our analysis in Chapter
2.4 where we prove, under the minimal assumptions that the sought-after eigenfunction is in-
termediately normalizable and the associated eigenvalue is non-degenerate, that the continuous
(infinite-dimensional) CC equations are always locally well-posed. In Chapter 2.5, we analyze a
specific discretization of the CC equations, namely, the Full-CC equations in a finite basis. We
prove under the same minimal assumptions of eigenpair non-degeneracy and CC ansatz valid-
ity that these equations are locally well-posed provided that the discretization is fine enough,
and we derive residual-based error estimates with guaranteed positive constants. Preliminary
numerical experiments indicate that the constants that appear in our estimates are a significant
improvement over those obtained from the local monotonicity approach.

2.2 Problem formulation and setting

Computational quantum chemistry is the study of the properties of matter through modelling
at the molecular scale, i.e., when matter is viewed as a collection of positively charged nuclei and
negatively charged electrons. To formalise the problem setting, we assume that we are given a
molecule composed of M ∈ N nuclei carrying charges {Zn}Mn=1 ⊂ R+ and located at positions
{zn}Mn=1 ⊂ R3, respectively. We further assume the presence of Q ∈ N electrons whose spatial
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coordinates are denoted by {xi}Qi=1 ⊂ R3. Throughout this thesis, we will assume that the
Born-Oppenheimer approximation holds, i.e., we will treat the nuclei as fixed, classical particles
and we will focus purely on the quantum mechanical description of the electrons.

In order to describe the behaviour of this system of nuclei and electrons under the Born-
Oppenheimer approximation, we require the notion of several functions spaces. The following
construction is partially based on [81].

2.2.1 Function spaces and norms

To begin with, we denote by L2(R3) the space of real-valued square integrable functions of
three variables, and we denote by H1(R3) the closed subspace of L2(R3) consisting of functions
that additionally possess square integrable first derivatives. Both spaces are equipped with their
usual inner products. Following the convention in the quantum chemical literature, we will
frequently refer to L2(R3) and H1(R3) as infinite-dimensional single particle spaces.

Next, we define the tensor space2

L2 :=

Q⊗
j=1

L2(R3),

which is equipped with an inner product that is constructed by defining first for all elementary
tensors f, g ∈ L2 with f = ⊗Q

j=1fj and g = ⊗Q
j=1gj

(f, g)L2 :=

Q∏
j=1

(fj , gj)L2(R3) , (2.1)

and then extending bilinearly for general tensorial elements of L2.
It is a consequence of Fubini’s theorem that the tensor space L2 is isometrically isomorphic to

the space L2(R3Q) of real-valued square integrable functions of 3Q variables with the associated
L2-inner product. Thanks to this result, we can define the tensor space H1 ⊂ L2 as the closure
of C∞

0 (R3Q) in L2(R3Q) with respect to the usual gradient-gradient inner product on R3Q.
In quantum mechanics, a fundamental distinction is made between so-called bosonic and

fermionic particles, the latter obeying the so-called Pauli-exclusion principle and thus being
described in terms of antisymmetric functions. We are therefore obligated to also define tensor
spaces of antisymmetric functions. To this end, we first introduce the so-called antisymmetric
projection operator Pas : L2 → L2 that is defined through the action

∀f ∈ L2 : (Pasf)(x1, . . . ,xQ) :=
1

Q!

∑
π∈S(Q)

(−1)sgn(π)f(xπ(1), . . . ,xπ(Q)),

where S(Q) denotes the permutation group of order Q, and sgn(π) denotes the signature of
π ∈ S(Q).

2We remind the reader that topological tensor spaces can be defined by taking an orthonormal basis of the
underlying single particle spaces (in this case L2(R3)) and using it to construct the algebraic tensor product vector
space. This vector space is equipped with a tensorial inner product inherited from the single particle function
spaces (in this case the inner product is given by Equation (2.1)). The topological tensor product space is then
obtained by taking the completion of the algebraic tensor product vector space with respect to the norm induced
by the tensorial inner product.
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It is easy to establish that Pas is an L2-orthogonal projection with a closed range. We
therefore define the antisymmetric tensor spaces L̂2 ⊂ L2 and Ĥ1 ⊂ H1 as

L̂2 :=

Q∧
j=1

L2(R3) := ran Pas and Ĥ1 := L̂2 ∩H1,

equipped with the (·, ·)L2 and (·, ·)H1 inner products respectively. We remark that normalised
elements of L̂2 are known as wave-functions, and these are antisymmetric in the sense that for
any f ∈ L̂2 we have that

f(x1, . . . ,xi, . . . ,xj , . . .xQ) = −f(x1, . . . ,xj , . . . ,xi, . . .xQ) ∀ i, j ∈ {1, . . . , Q} with i ̸= j.

In the sequel, we will also occasionally make use of the dual space of Ĥ1. We therefore denote
Ĥ−1 :=

(
Ĥ1
)∗, we equip Ĥ−1 with the canonical dual norm, and we write ⟨·, ·⟩

Ĥ1,Ĥ−1 for the
associated duality pairing. Note that higher regularity Sobolev spaces Ĥr, r ⩾ 1 can be defined
similarly to Ĥ1.

Finally, let us comment on the construction of basis sets for the tensor spaces H1 and Ĥ1.
Given an L2-orthonormal, complete basis B := {ϕk}k∈N ⊂ H1(R3), we can construct a complete
basis B⊗ for H1 by setting

B⊗ =
{
ϕk1
⊗ ϕk2

⊗ . . .⊗ ϕkQ
: k1, k2, . . . , kQ ∈ N

}
,

and it follows immediately that B⊗ is L2-orthonormal.

In order to construct a basis for the antisymmetric tensor space Ĥ1, we must first define a
suitable subset of B⊗. To this end, we introduce an index set JQ

∞ ⊂ NQ given by

JQ
∞ :=

{
α = (α1, α2, . . . , αQ) ∈ NQ : α1 < α2 < . . . < αQ

}
.

We can thus define the subset Bord
⊗ of the basis B⊗ given by

Bord
⊗ :=

{
Φ̃α := ϕα1

⊗ ϕα2
⊗ . . .⊗ ϕαQ

: α = (α1, α2, . . . , αQ) ∈ JQ
∞

}
.

A complete basis for the antisymmetric tensor space Ĥ1 is then given by

B∧ :={ PasΦ

∥PasΦ∥
L̂2

: Φ ∈ Bord
⊗ }

=

Φα(x1,x2, . . . ,xQ) =
1√
Q!

∑
π∈S(Q)

(−1)sgn(π) ⊗Q
i=1 ϕαi

(
xπ(i)

)
: α = (α1, α2, . . . , αQ) ∈ JQ

∞

 .

Elements of the basis set B∧ are called Slater determinants. For simplicity, given α ∈ JQ
∞

and Φα ∈ B∧ of the form

Φα(x1,x2, . . . ,xQ) =
1√
Q!

∑
π∈S(Q)

(−1)sgn(π) ⊗Q
i=1 ϕαi

(
xπ(i)

)
,
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we will write Φα in the succinct form

Φα(x1,x2, . . . ,xQ) =
1√
Q!

det
(
ϕαi

(xj)
)Q
i,j=1

.

2.2.2 Governing operators and problem statement

Throughout this thesis, we assume that the electronic properties of the molecule that we
study can be described by the action of a many-body electronic Hamiltonian given by

H := −1

2

Q∑
j=1

∆xj
+

Q∑
j=1

M∑
n=1

−Zn

|zn − xj |
+

Q∑
j=1

j−1∑
i=1

1

|xi − xj |
acting on L̂2 with domain Ĥ2.

(2.2)
The electronic properties of the molecule that we study are functions of the spectrum of the

electronic Hamiltonian H, and we are therefore interested in its analysis and computation. It is
a classical result (see, e.g., the review article [55]) that the operator H is self-adjoint on L̂2 with
form domain Ĥ1, and under the additional assumption that Z :=

∑M
n=1 Zn ⩾ Q, it holds that

1. The operator H has an essential spectrum σess of the form σess := [Σ,∞) where −∞ <
Σ ⩽ 0;

2. The operator H has a bounded-below discrete spectrum that consists of a countably infinite
number of eigenvalues, each with finite multiplicity, accumulating at Σ.

Consequently, under the assumption that
∑M

n=1 Zn ⩾ Q, the electronic Hamiltonian H pos-
sesses a lowest eigenvalue E∗

GS ∈ R, frequently called the ground state energy, such that

E∗
GS = min

0̸=Ψ∈Ĥ1

〈
Ψ, HΨ

〉
Ĥ1×Ĥ−1

∥Ψ∥2
L2

. (2.3a)

Any function Ψ∗
GS ∈ Ĥ1 that achieves the minimum in Equation (2.3a) is called a ground state

of H and obviously satisfies

HΨ∗
GS = E∗

GSΨ
∗
GS. (2.3b)

For the purpose of this thesis, we will assume that indeed Z :=
∑M

n=1 Zn ⩾ Q. Note that if the
ground state eigenvalue E∗

GS is simple (which is not always the case), normalised ground states
Ψ∗

GS (being elements of a real Hilbert space) are unique up to sign.
From a functional analysis point of view, the electronic Hamiltonian H possesses certain

desirable properties, namely continuity and ellipticity on appropriate Sobolev spaces. More
precisely (see, for instance, [103, Chapter 4]),

• The electronic Hamiltonian defined through Equation (2.2) is bounded as a mapping from
Ĥ1 to Ĥ−1:

∀Φ,Ψ ∈ Ĥ1 :
∣∣∣⟨Φ, HΨ⟩

Ĥ1×Ĥ−1

∣∣∣ ⩽ (1
2
+ 3
√
QZ
)
∥Φ∥

Ĥ1∥Ψ∥Ĥ1 ; (2.4)
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• The electronic Hamiltonian defined through Equation (2.2) satisfies the following ellipticity
condition on the Gelfand triple Ĥ1 ↪→ L̂2 ↪→ Ĥ−1:

∀Φ ∈ Ĥ1 : ⟨Φ, HΦ⟩
Ĥ1×Ĥ−1 ⩾

1

4
∥Φ∥2

Ĥ1 −
(
9QZ2 − 1

4

)
∥Φ∥2

L̂2 . (2.5)

An important consequence of the above ellipticity estimate is that the electronic Hamiltonian,
modified by any suitable shift, defines an invertible operator on a subspace of Ĥ1. This fact will
be of great importance in our analysis and will be the subject of further discussion in Chapter
2.4 (see Remark 2.4.3).

Remark 2.2.1 (Restriction to function spaces of real-valued, spin-independent functions).
To avoid notational complexity, we have restricted our analysis in this thesis to real-valued

function spaces and we have not taken into account spin variables. The restriction to real-
valued functions does not result in any loss in generality since the governing operator that we
consider, namely the electronic Hamiltonian H defined through Equation (2.2), consists entirely
of real terms, and thus the real and imaginary parts of any eigenfunction of H are themselves
eigenfunctions of H (see, e.g., [15, Chapter 6.1] for a brief discussion of this point).

Our choice to neglect spin is motivated by the same observation, i.e., that the electronic
Hamiltonian does not contain any explicit spin dependencies. Consequently, in order to take
spin variables into account we need simply replace the single particle function spaces

L2(R3) and H1(R3) with L2
(
R3 ×

{
± 1

2

})
and H1

(
R3 ×

{
± 1

2

})
respectively.

Here, L2
(
R3 ×

{
± 1

2

})
can be seen as the space of (equivalence classes of) square-integrable

functions of three spatial variables and an additional spin variable s = ± 1
2 , equipped with the

inner product

∀f, g ∈ L2
(
R3 ×

{
± 1

2

})
: (f, g)L2(R3×{± 1

2}) =
∑

s=± 1
2

∫
R3

f(x, s)g(x, s) dx,

and an analogous interpretation holds for H1
(
R3 ×

{
± 1

2

})
.

Equipped with the spin-dependent single particle spaces L2
(
R3 ×

{
± 1

2

})
and H1

(
R3 ×

{
± 1

2

})
,

the spin-dependent tensorial Q-particle function spaces and basis sets can be constructed follow-
ing mutatis mutandis, the procedure described in Chapter 2.2.1 above. Our subsequent analysis
can then be readily applied to such spin-dependent function spaces without any significant modi-
fications (with only slight modification of the values of some constants appearing in our following
error estimates).

One additional feature of the spin-dependent formalism deserves mention. The analysis that
we present in this contribution frequently requires assumptions on the simplicity of certain eigen-
values of the electronic Hamiltonian H. Unfortunately, considering H as an operator on the full
spin-dependent tensorial space L̂2

s = ∧Qj=1L
2
(
R3 ×

{
± 1

2

})
often introduces degeneracies in these

eigenvalues, and in order to remove these degeneracies, it is necessary to restrict the funtional
setting to a suitable subspace of L̂2

s , typically an eigenspace of the so-called z-spin operator (see
[81] for a detailed construction).

2.2.3 Computing the ground state energy in a finite-dimensional sub-
space
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From a practical point of view, the ground state energy of the electronic Hamiltonian defined
through Equation (2.2) can only be approximated in a finite-dimensional subspace. The most
conceptually simple such approach (albeit tremendously computationally expensive and therefore
not widely used) is known in the quantum chemical literature as Full Configuration Interaction.
In this subsection, we introduce the terminology and briefly discuss the methodology of the full
configuration interaction procedure since the underlying notions will be useful when we discuss
the discrete coupled cluster equations in Chapter 2.5

At its core, the full configuration interaction method (Full-CI) is based on a straightforward
Galerkin approximation of the minimisation problem (2.3a). We will therefore begin by defining
an approximation space. To do so, we fix some K ∈ N with K > Q and assume that we are
given a set {ϕj}Kj=1 ⊂ H1(R3) of L2(R3)-orthonormal functions. We also introduce an index set
J

Q
K ⊂ {1, . . . ,K}Q given by

J
Q
K :=

{
α = (α1, α2, . . . , αQ) ∈ {1, . . . ,K}Q : α1 < α2 < . . . < αQ

}
.

Definition 2.2.1 (Finite Dimensional Single-Particle Basis).
We define the K-dimensional single particle basis BK ⊂ H1(R3) as BK := {ϕj}Kj=1. Addi-

tionally, we define the subspace spanned by this basis set as XK := span BK and we refer to XK

as the single particle approximation space.

Definition 2.2.2 (Finite Dimensional Q-Particle Basis).
We define the L2-orthonormal,

(
K
Q

)
-dimensional Q-particle basis B

Q
K ⊂ Ĥ1 as

B
Q
K :=

{
Φα(x1,x2, . . . ,xQ) =

1√
Q!

det
(
ϕαi

(xj)
)Q
i,j=1

: α = (α1, α2, . . . , αQ) ∈ J
Q
K

}
.

Additionally, we define the subspace spanned by this basis set as VK := span B
Q
K and we refer to

VK as the Q-particle approximation space.

Full Configuration Interaction Approximation of Minimisation Problem (2.3a)
Let the Q-particle approximation space VK be defined through Definition 2.2.2. We seek the

pair(s) (E∗
FCI,Ψ

∗
FCI) ∈

(
R,VK

)
with ∥Ψ∗

FCI∥2L2 = 1 that satisfies

E∗
FCI := min

0̸=Ψ∈VK

⟨Ψ, HΨ⟩
Ĥ1×Ĥ−1

∥Ψ∥2
L2

and ⟨Ψ, HΨ∗
FCI⟩Ĥ1×Ĥ−1 = E∗

FCI (Ψ,Ψ
∗
FCI)L̂2 ∀Ψ ∈ VK .

(2.6)
Several remarks are now in order.
First, it follows from the variational principle that the minimum in Equation (2.6) satisfies

E∗
FCI ⩾ E∗

GS.
Second, in practice the Full-CI minimisation problem (2.6) is very often solved by writing

first the associated Euler-Lagrange equations, i.e., the first order optimality conditions. This
yields a linear eigenvalue problem on the finite-dimensional space VK which can, in principle, be
solved through the use of some iterative eigenvalue solver.

Third, despite the fact that the Full-CI methodology (2.6) seems very amenable to numerical
analysis- by virtue of being a Galerkin approximation to the exact minimisation problem (2.3a)-
it has a fundamental computational draw-back: the dimension of the Q-particle approximation
space VK grows combinatorially in Q which renders this approach computationally intractable
for Q even moderately large. As a consequence, we are very often forced to introduce further
approximations to the Full-CI methodology.
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We end this section by defining the Full-CI Hamiltonian which will be referenced in Chap-
ter 2.5 below.

Definition 2.2.3 (Full-CI Hamiltonian).
Let the Q-particle approximation space VK be defined through Definition 2.2.2 and let the

electronic Hamiltonian H : Ĥ1 → Ĥ−1 be defined through Equation (2.2). We define the Full-CI
Hamiltonian HK : VK → V∗

K as the mapping with the property that for all ΨK ,ΦK ∈ VK it holds
that

⟨ΨK , HKΦK⟩VK×V∗
K
:= ⟨ΨK , HΦK⟩Ĥ1×Ĥ−1 . (2.7)

2.3 Excitation operators and the coupled cluster ansatz

Throughout this section, we assume the setting of Chapter 2.2. Our goal now is to intro-
duce the notions of excitation indices, excitation operators and the coupled cluster non-linear
parameterisation ansatz.

Let us begin by recalling that we have introduced complete single-particle and Q-particle
basis sets B = {ϕj}j∈N ⊂ H1(R3) and B∧ ⊂ Ĥ1 respectively in Chapter 2.2.1. Next, we define
a collection of index sets.

Definition 2.3.1 (Excitation Index Sets).
For each j ∈ {1, . . . , Q} we define the index set Ij as

Ij :=

{(
a1, . . . , aj
ℓ1, . . . , ℓj

)
: ℓ1 < . . . < ℓj ∈ {1, . . . , Q} and a1 < . . . < aj ∈ {Q+ 1, Q+ 2, . . .}

}
,

and we say that Ij is the excitation index set of order j. Additionally, we define

I :=

Q⋃
j=1

Ij ,

and we say that I is the global excitation index set.

The excitation index sets {Ij}Qj=1 will be used to construct the so-called excitation and de-
excitation operators which play a central role in post-Hartree Fock wave-function methods for
further approximating the minimisation problem (2.6).

Definition 2.3.2 (Excitation Operators).
Let j ∈ N and let µ ∈ Ij be of the form

µ =

(
a1, . . . , aj
ℓ1, . . . , ℓj

)
: ℓ1 < . . . < ℓj ∈ {1, . . . , Q} and a1 < . . . < aj ∈ {Q+ 1, Q+ 2, . . .}.

We define the excitation operator Xµ : Ĥ
1 → Ĥ1 through its action on the Q-particle basis

set B∧: For Ψν(x1, . . . ,xQ) =
1√
Q!

det
(
ϕνj

(xi)
)Q
i,j=1

, we set

XµΨν =


0 if {ℓ1, . . . , ℓj} ̸⊂ {ν1, . . . , νQ},
0 if ∃am ∈ {a1, . . . , aj} such that am ∈ {ν1, . . . , νQ},
Ψa

ν otherwise,
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where the determinant Ψa
ν is constructed from Ψν by replacing all functions ϕℓ1 , . . . ϕℓj used to

construct Ψν with functions ϕa1 , . . . , ϕaj respectively. In addition, Ψa
ν is an element of the basis

set B∧ up to a sign depending on its index ordering.

Definition 2.3.3 (De-excitation Operators).
Let j ∈ N and let µ ∈ Ij be of the form

µ =

(
a1, . . . , aj
ℓ1, . . . , ℓj

)
: ℓ1 < . . . < ℓj ∈ {1, . . . , Q} and a1 < . . . < aj ∈ {Q+ 1, Q+ 2, . . .}.

We define the de-excitation operator X†
µ : Ĥ

1 → Ĥ1 through its action on the Q-particle basis
set B∧: For Ψν(x1, . . . ,xQ) =

1√
Q!

det
(
ϕνj

(xi)
)Q
i,j=1

, we set

X†
µΨν =


0 if {a1, . . . , aj} ̸⊂ {ν1, . . . , νQ},
0 if ∃ ℓm ∈ {ℓ1, . . . , ℓj} such that ℓm ∈ {ν1, . . . , νQ},
Ψν,ℓ otherwise,

where the determinant Ψν,ℓ is constructed from Ψν by replacing all functions ϕa1
, . . . ϕaj

used to
construct Ψν with functions ϕℓ1 , . . . , ϕℓj respectively. In addition, Ψν,ℓ is an element of the basis
set B∧ up to a sign depending on its index ordering.

It is natural to ask how de-excitation operators are related to excitation operators. The
following remark summarises this relationship.
Remark 2.3.1 (Relationship between Excitation and De-excitation Operators).

Consider the setting of Definitions 2.3.2 and 2.3.3. In some sense, each de-excitation operator
reverses the action the corresponding excitation operator. More precisely, it can be shown that
for any µ ∈ I, the de-excitation operator X†

µ : Ĥ
1 → Ĥ1 is the L̂2-adjoint of the excitation

operator Xµ : Ĥ
1 → Ĥ1, i.e.,

∀Φ, Φ̃ ∈ Ĥ1, ∀µ ∈ I :
(
Φ̃,XµΦ

)
L̂2

=
(
X†

µΦ̃,Φ
)
L̂2
.

Several properties of the excitation operators can now be deduced. We begin with a remark.

Remark 2.3.2 (Interpretation of Q-particle Basis in Terms of Excited Determinants).
It is a simple exercise to show that any Slater determinant in the Q-particle basis set B∧ can

be generated through the action of the excitation operators on a so-called reference determinant
up to a sign depending on its index ordering. More precisely, we define Ψ0(x1, . . . ,xQ) :=
1√
Q!

det
(
ϕj(xi)

)Q
i,j=1

, and it then follows that

B∧ = {Ψ0} ∪ {XµΨ0 : µ ∈ I1} ∪ {XµΨ0 : µ ∈ I2} ∪ . . . ∪ {XµΨ0 : µ ∈ IQ}
= {Ψ0} ∪ {XµΨ0 : µ ∈ I} ,

(2.8)

up to a sign depending on the index ordering of the generated determinant. This observation
motivates the following convention and definition.

Convention 2.3.1 (Reference Determinant).
Consider the setting of Remark 2.3.2. In the sequel, we will refer to the function B∧ ∋

Ψ0(x1, . . . ,xQ)

= 1√
Q!

det
(
ϕj(xi)

)Q
i,j=1

, i.e., the determinant constructed from the first Q single particle basis

functions {ϕi}Qi=1 as the reference determinant. Moreover, for any µ ∈ I, we will frequently
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denote Ψµ := XµΨ0. Finally, we will often refer to each set {XµΨ0 : µ ∈ Ij} as the set of
j-excited determinants,

Definition 2.3.4 (Orthogonal Complement of the Reference Determinant).
Let the excitation index set I be defined through Definition 2.3.1, let the excitation operators

{Xµ}µ∈I be defined through Definition 2.3.2, and let Ψ0(x1,x2, . . . ,xQ) :=
1√
Q!

det
(
ϕj(xi)

)Q
i,j=1

denote the reference determinant. Then we define the set B̃∧ ⊂ B∧ and the subspace Ṽ ⊂ Ĥ1 as

B̃∧ := {XµΨ0 : µ ∈ I} , and

Ṽ := {Ψ0}⊥ :=
{
Φ ∈ Ĥ1 : (Φ,Ψ0)L̂2 = 0

}
,

and we observe that B̃∧ is a complete, L̂2-orthonormal basis for Ṽ.

Definition 2.3.5 (Complementary Decomposition of Ĥ1).
Let the excitation index set I be defined through Definition 2.3.1, let the excitation operators

{Xµ}µ∈I be defined through Definition 2.3.2, and let Ψ0(x1,x2, . . . ,xQ) :=
1√
Q!

det
(
ϕj(xi)

)Q
i,j=1

denote the reference determinant. We define P0 : Ĥ
1 → Ĥ1 as the L̂2-orthogonal projection

operator onto span {Ψ0}, and we define P⊥
0 := I−P0 : Ĥ

1 → Ĥ1 as its complement. Additionally,
we introduce the complementary decomposition of the Q-particle space Ĥ1 given by

Ĥ1 = span {Ψ0} ⊕ Ṽ, where we emphasise that Ṽ = RanP⊥
0 . (2.9)

The complementary decomposition introduced through Equation (2.9) will be particularly
important in our subsequent analysis of the coupled cluster method in Chapter 2.4. Let us
emphasise that the construction of these complementary spaces is based on L̂2-orthogonality
rather than Ĥ1 orthogonality. This choice is intentional as it simplifies considerably the analysis
in Chapters 2.4 and 2.5. Let us also remark that the projection operators P0 : Ĥ

1 → Ĥ1 and
P⊥
0 : Ĥ1 → Ĥ1 are both, nevertheless, bounded operators with respect to the ∥ · ∥

Ĥ1 norm since
they both possess a closed range and a closed kernel.

Returning for the moment to the notion of excitation operators, we see that it is easy to
deduce that each excitation operator Xµ, µ ∈ I is a bounded linear operator from Ĥ1 to Ĥ1.
However, we will frequently be interested in so-called cluster operators which are summations of
the excitation operators Xµ, µ ∈ I, and such summations need not be bounded operators from
Ĥ1 to Ĥ1 or even from L̂2 to L̂2. Fortunately, the following result was proven in [82].

Proposition 2.3.1 (Cluster Operators as Bounded Maps on L̂2).
Let the excitation index set I be defined through Definition 2.3.1 and let t = {tµ}µ∈I ∈ ℓ2(I).

Then there exists a unique bounded linear operator T : L̂2 → L̂2, the so-called cluster operator
generated by t, such that T =

∑
µ∈I tµXµ where the series convergence holds with respect to the

operator norm ∥ · ∥
L̂2→L̂2 .

Next, we introduce a coefficient subspace of ℓ2(I), i.e, the space of square summable sequences
of real numbers indexed by I, which will limit the class of cluster operators that we consider in
the sequel.

Definition 2.3.6 (Coefficient Space For Cluster Operators).
Let the excitation index set I be defined through Definition 2.3.1 and let ℓ2(I) denote the

space of square summable sequences of real numbers indexed by I. We define the Hilbert space
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of sequences V ⊂ ℓ2(I) as the set

V :=

t := {tµ}µ∈I ∈ ℓ2(I) :
∑
µ∈I

tµΨµ ∈ Ĥ1

 , (2.10)

equipped with the inner product

∀t, s ∈ V with t := (tµ)µ∈I, s := (sν)ν∈I : (s, t)V :=

∑
µ∈I

sµΨµ,
∑
ν∈I

tνΨν


Ĥ1

. (2.11)

Additionally, we define V∗ as the topological dual space of V, equipped with the canonical dual
norm

∀w ∈ V∗ : ∥w∥V∗ := sup
0̸=t∈V

∣∣ ⟨w, t⟩V∗×V
∣∣

∥t∥V
,

Some remarks are now in order.

Remark 2.3.3 (Clarification of the Definition of the Coefficient Space).
Consider Definition 2.3.6 of the coefficient space V ⊂ ℓ2(I) and let t = {tµ}µ∈I ∈ V. We

emphasise here that the assertion
∑

µ∈I tµΨµ ∈ Ĥ1 should be understood in the following sense:
there exists Ψt ∈ Ĥ1 ⊂ L̂2 such that Ψt =

∑
µ∈I tµΨµ where the series convergence holds with

respect to the L̂2 norm. In particular, this series convergence does not a priori hold with respect
to the Ĥ1-norm, and it is only the limit function Ψt that is an element of Ĥ1.

Remark 2.3.4 (Dual Coefficient Space).
Consider the setting of Definition 2.3.6. Throughout, this thesis, we will denote by V∗ the

topological dual space of V equipped with the canonical dual norm. Note that since Ĥ1 is dense and
continuously embedded in L̂2, we can deduce that the coefficient space V is dense and continuously
embedded in ℓ2(I). As a consequence, the inner product (·, ·)ℓ2 can be continuously extended to
the duality pairing ⟨·, ·⟩V×V∗ on V× V∗. This fact will be of occasional use in the sequel.

Notation 2.3.2 (Coefficient Sequences and Cluster Operators).
Let t = {tµ}µ∈I ∈ V. As mentioned previously, the operator T :=

∑
µ∈I tµXµ is known as

the cluster operator generated by t, and it plays a key role in the coupled cluster formalism.
For clarity of exposition, we will adopt the convention of denoting by small bold letters such

as r, s, t, and w, etc., elements of the coefficient space V and denoting by capital curly letters
such as R,S,T, and W, etc., the corresponding cluster operators with the understanding that
R :=

∑
µ∈I rµXµ, S :=

∑
µ∈I sµXµ, and so on.

Remark 2.3.5 (Representation of Elements of the Complementary Subspace Ṽ).
Consider the setting of Definition 2.3.6 and recall Definition 2.3.4 of the space Ṽ ⊂ Ĥ1.

It is not difficult to see that every element Φs :=
∑

µ∈I sµXµΨ0 ∈ Ṽ generates a sequence
s := {sµ}µ∈I ∈ V such that

Φs =
∑
µ∈I

sµXµΨ0 = SΨ0.
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Conversely, given any sequence w := {wµ}µ∈I ∈ V, we can define the function Φw ∈ Ṽ as

Φw =
∑
µ∈I

wµXµΨ0 = WΨ0.

Therefore, in the sequel (in particular in Chapter 2.4), we will occasionally write elements of
the space Ṽ as, for instance, SΨ0 or WΨ0 where S :=

∑
µ∈I sµXµ and W :=

∑
µ∈I wµXµ for

some sequences s := {sµ}µ∈I ∈ V and w := {wµ}µ∈I ∈ V.

The following theorem now summarises the main properties of the excitation operators
Xµ, µ ∈ I and cluster operators constructed from these excitation operators. The establish-
ment of these properties in infinite dimensions was the main achievement of the article [82]. In
finite-dimensions, where the situation is considerably simpler from a topological point of view,
these results were first proven in the mathematical literature in [87].

Theorem 2.3.3 (Properties of Excitation and Cluster Operators).
Let the excitation index set I be defined through Definition 2.3.1, let the excitation operators

{Xµ}µ∈I and de-excitation operators {X†
µ}µ∈I be defined through Definitions 2.3.2 and 2.3.3

respectively, and let the Hilbert space V of sequences be defined through Definition 2.3.6. Then

1. For all µ, ν ∈ I, it holds that XµXν = XνXµ and X†
µX

†
ν = X†

νX
†
µ .

2. For every Φ ∈ Ĥ1 that satisfies the so-called intermediate normalisation condition (Φ,Ψ0)L2

= 1, there exists a unique sequence r = {rµ}µ∈I
∈ V with corresponding cluster operator

R =
∑

µ∈I rµXµ such that

Φ = Ψ0 +RΨ0.

3. Let t ∈ V. Then

• The cluster operator T =
∑

µ∈I tµXµ is a bounded linear map from Ĥ1 to Ĥ1 and
there exists a constant β > 0 depending only on Q such that

∥t∥V ⩽ ∥T∥
Ĥ1→Ĥ1 ⩽ β∥t∥V.

• The de-excitation cluster T† =
∑

µ∈I tµX
†
µ is also bounded linear map from Ĥ1 to

Ĥ1 and there exists a constant β† > 0 depending only on N such that

∥T†∥
Ĥ1→Ĥ1 ⩽ β†∥t∥V.

• The cluster operator T =
∑

µ∈I tµXµ has an extension to a bounded linear operator
from Ĥ−1 to Ĥ−1.

4. Define the set of operators

L :=

t0I +T : t0 ∈ R, T =
∑
µ∈I

tµXµ such that t = {tµ}µ∈I ∈ V


The following hold:
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• The set L forms a closed commutative subalgebra in the algebra of bounded linear
operators acting from Ĥ1 to Ĥ1 (and also from Ĥ−1 to Ĥ−1).

• The subalgebra L is closed under inversion and the spectrum of any L ∋ L = t0I +T

is exactly σ(L) = {t0}.
• Any element in L of the form T =

∑
µ∈I tµXµ with t ∈ V is nilpotent: it holds that

TQ+1 ≡ 0.

• The exponential function is a locally C∞ map on L, and is a bijection from the sub-
algebra T : T =

∑
µ∈I

tµXµ such that t = {tµ}µ∈I ∈ V

 .

to the sub-algebraI +T : T =
∑
µ∈I

tµXµ such that t = {tµ}µ∈I ∈ V

 .

As a consequence of Theorem 2.3.3 (c.f., Properties (2) and (4)), one can prove that any
intermediately normalised element of the Q-particle space can be parameterised through an
exponential cluster operator. More precisely, given the excitation index set I defined through
Definition 2.3.1 and the excitation operators {Xµ}µ∈I defined through Definition 2.3.2, for any
Φ ∈ Ĥ1 such that (Φ,Ψ0)L2 = 1, there exists a unique sequence t = {tµ}µ∈I ∈ V and a unique
cluster operator T =

∑
µ∈I tµXµ such that

Φ = eTΨ0. (2.12)

A proof of this statement in the infinite-dimensional setting can be found in [82] while the
corresponding proof for the finite-dimensional case is given in [87].

Equation (2.12) implies in particular that if the sought-after ground state wave-function
Ψ∗

GS ∈ Ĥ1 that solves the minimisation problem (2.3a) is intermediately normalised, then it can
also be written in the form

Ψ∗
GS = eT

∗
Ψ0,

for some sequence t∗ = {t∗µ}µ∈I and corresponding cluster operator T∗ =
∑

µ∈I t
∗
µXµ. In other

words, the minimisation problem (2.3a) can be replaced by an equivalent problem which consists
of finding the sequence t∗ = {t∗µ}µ∈I ∈ V used to construct the appropriate cluster operator T∗

that appears in the exponential parametrisation of Ψ∗. Indeed, it follows from the definition of
Ψ∗

GS and such an exponential cluster operator eT
∗

that

E∗
GSe

T∗
Ψ0 = E∗

GSΨ
∗
GS = HΨ∗

GS = HeT
∗
Ψ0, and therefore E∗

GSΨ0 = e−T∗
HeT

∗
Ψ0.

Recalling now that for any excitation index µ ∈ I, the excited determinant Ψµ = XµΨ0 is
L̂2-orthogonal to the reference determinant Ψ0, we are led to the continuous coupled cluster
equations.

Continuous Coupled Cluster Equations:
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Let the excitation index set I be defined through Definition 2.3.1 and let the excitation
operators {Xµ}µ∈I be defined through Definition 2.3.2. We seek a sequence t∗ = {t∗µ}µ∈I ∈ V
such that for all ν ∈ I we have〈

XνΨ0, e
−T∗

HeT
∗
Ψ0

〉
Ĥ1×Ĥ−1

= 0, where T∗ =
∑
µ∈I

t∗µXµ. (2.13)

Once Equation (2.13) has been solved, the associated coupled cluster energy E∗
CC is given by

E∗
CC :=

〈
Ψ0, e

−T∗
HeT

∗
Ψ0

〉
Ĥ1×Ĥ−1

, where T∗ =
∑
µ∈I

t∗µXµ. (2.14)

Remark 2.3.6 (Solutions to the Continuous Coupled Cluster Equations).
Consider the continuous coupled cluster equations (2.13). Under the assumption that the

ground state wave-function ΨGS of the electronic Hamiltonian H : Ĥ1 → Ĥ−1 is intermediately
normalisable with respect to the chosen reference determinant Ψ0, i.e., it is not orthogonal to
Ψ0, it is obvious that there exists a corresponding solution to this non-linear system of equations.
Indeed, by Equation (2.12), there exists a sequence t∗GS = {t∗µ}µ∈I ∈ V such that Ψ∗

GS = eT
∗
GSΨ0

with T∗
GS =

∑
µ∈I t

∗
µXµ, and it can readily be verified that this sequence t∗GS solves exactly

Equation (2.13), and consequently E∗
CC = E∗

GS.
Of course, t∗GS defined as above need not be the unique solution to the coupled cluster equa-

tions (2.13). In fact, as we discuss in the next Chapter 2.4, every intermediately normalisable
eigenfunction of the electronic Hamiltonian will generate a solution to Equation (2.13). From a
theoretical point of view, this means that only local well-posedness results can be expected to hold
for the continuous CC equations.

The continuous coupled cluster equations are an infinite system of non-linear equations and
thus cannot be solved exactly. Instead, one introduces an approximation of the continuous
coupled cluster equations by considering, instead of the global excitation index I, some finite
subset Ih ⊂ I and solving only the equations associated with this subset of excitation indices.
This procedure results in the so-called discrete coupled cluster equations.

Discrete Coupled Cluster Equations:
Let the excitation index set I be defined through Definition 2.3.1, let Ih ⊂ I denote any

finite subset of excitation indices, and let the excitation operators {Xµ}µ∈I be defined through
Definition 2.3.2. We seek a coefficient vector t∗h = {t∗µ}µ∈Ih ∈ ℓ2(Ih) such that for all ν ∈ Ih we
have 〈

XνΨ0, e
−T∗

h HeT
∗
h Ψ0

〉
Ĥ1×Ĥ−1

= 0, where T∗
h =

∑
µ∈Ih

t∗µXµ. (2.15)

The associated discrete ground state energy E∗
h,CC is given by

E∗
h,CC :=

〈
Ψ0, e

−T∗
h HeT

∗
h Ψ0

〉
Ĥ1×Ĥ−1

, where T∗
h =

∑
µ∈Ih

t∗µXµ. (2.16)

The discrete CC equations will be the subject of further discussion in Chapter 2.5 where we
will analyse their well-posedness for some specific choices of the excitation index subsets and
Q-particle basis sets. For the moment, we conclude this section with a remark on the nature of
the solutions to these discrete equations.
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Remark 2.3.7 (Solutions to the Discrete Coupled Cluster Equations).

Consider the discrete coupled cluster equations (2.15). As in the continuous case, there is
a priori no reason for solutions of Equation (2.15) to be globally unique. Indeed, numerical
experience confirms that solutions to Equation (2.15) are very often not unique (see, e.g., [111,
78, 75, 59, 77]). Nevertheless, in practice the discrete CC equations are solved very frequently
by the quantum chemical community when performing electronic structure calculations, usually
using some type of iterative Newton method, and it is hoped that if one starts from a sufficiently
accurate initial point, then the resulting solution t∗h ∈ ℓ2(Ih) of Equation (2.15) approximates,
in some sense, an exact solution t∗ of the continuous CC equations (2.13) that generates the
intermediately normalised ground state wave-function. Of course there are no mathematical
guarantees that this procedure works, and the current reputation of coupled cluster methods as
a ‘gold-standard’ in computational quantum chemistry seems to be based mostly on successful
empirical experience.

Having introduced the continuous and discrete coupled cluster equations, the remainder of
this part will be concerned with their (local) well-posedness analysis. We will first analyse the
continuous coupled cluster equations (2.13) in Chapter 2.4, following which we will study a
particular class of the discrete coupled cluster equations (2.15) in Chapter 2.5.

2.4 Well-posedness of the continuous coupled cluster equa-
tions

Throughout this section, we assume the setting of Chapters 2.2 and 2.3, and we recall in
particular the notion of excitation operators and the continuous coupled cluster equations. We
begin by defining the so-called coupled cluster function, which will be the main object of study
in this section.

Definition 2.4.1 (Coupled Cluster function).

Let the excitation index set I be defined through Definition 2.3.1 and let the excitation op-
erators {Xµ}µ∈I be defined through Definition 2.3.2. We define the coupled cluster function
f : V → V∗ as the mapping with the property that for all t = {tµ}µ∈I, s = {sν}ν∈I ∈ V it holds
that

〈
s, f(t)

〉
V×V∗ :=

〈∑
ν∈I

sνXνΨ0, e
−THeTΨ0

〉
Ĥ1×Ĥ−1

, where T =
∑
µ∈I

tµXµ.

Remark 2.4.1 (Justification of the Domain and Range of Coupled Cluster Function).

Consider Definition 2.4.1 of the coupled cluster function. The fact that f is indeed a mapping
from V to V∗ is a direct consequence of the boundedness of the electronic Hamiltonian H : Ĥ1 →
Ĥ−1 and the exponential cluster operators eT : Ĥ1 → Ĥ1 and e−T : Ĥ−1 → Ĥ−1. Indeed, for all
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s = {sν}ν∈I ∈ V and all t = {tµ}µ∈I ∈ V it holds that

∣∣〈s, f(t)〉V×V∗

∣∣ =
∣∣∣∣∣∣
〈∑

ν∈I

sνXνΨ0, e
−THeTΨ0

〉
Ĥ1×Ĥ−1

∣∣∣∣∣∣
⩽
∥∥∥∑

ν∈I

sνXνΨ0

∥∥∥
Ĥ1

∥∥∥e−THeTΨ0

∥∥∥
Ĥ−1

⩽ ∥s∥V∥e−T∥
Ĥ−1→Ĥ−1∥H∥Ĥ1→Ĥ−1∥eTΨ0∥Ĥ1 .

Equipped with Definition 2.4.1 of the coupled cluster function, let us point out that the
continuous coupled cluster equations (2.13) can be re-written in the following weak form.

Weak Form of the Continuous Coupled Cluster equations:
Let the excitation index set I be defined through Definition 2.3.1, let the Hilbert space of

sequences V ⊂ ℓ2(I) be defined through Definition 2.3.6, and let the coupled cluster function
f : V → V∗ be defined through Definition 2.4.1. We seek a sequence t = {tµ}µ∈I ∈ V such that
for all sequences s = {sν}ν∈I ∈ V it holds that

⟨s, f(t)⟩V×V∗ = 0. (2.17)

As we shall see in Chapter 2.5, this point of view will allow us to interpret the truncated coupled
cluster equations (2.15) as Galerkin discretisations of Equation (2.17), which will be useful for
the purpose of the numerical analysis.

The following extremely significant result, proven in [82], establishes a precise relationship
between zeros of the coupled cluster function defined through Definition 2.4.1 (i.e., solutions of the
continuous CC equations (2.17)) and intermediately normalised eigenfunctions of the electronic
Hamiltonian defined through Equation (2.2).

Theorem 2.4.1 (Relation between Coupled Cluster Zeros and Eigenfunctions of Electronic
Hamiltonian).

Let the coupled cluster function f : V → V∗ be defined through Definition 2.4.1 and let the
electronic Hamiltonian be given by Equation (2.2). Then

1. For any zero t∗ = {t∗µ}µ∈I ∈ V of the CC function, the function Ψ∗ = eT
∗
Ψ0 ∈ Ĥ1

with T∗ =
∑

µ∈I t
∗
µXµ is an intermediately normalised eigenfunction of the electronic

Hamiltonian. Moreover, the eigenvalue corresponding to the eigenfunction Ψ∗ coincides
with the CC energy E∗

CC generated by t∗ as defined through Equation (2.14).

2. Conversely, for any intermediately normalised eigenfunction Ψ∗ ∈ Ĥ1 of the electronic
Hamiltonian, there exists t∗ = {t∗µ}µ∈I ∈ V such that t∗ is a zero of the CC function and
Ψ∗ = eT

∗
Ψ0 ∈ Ĥ1 with T∗ =

∑
µ∈I t

∗
µXµ. Moreover, the CC energy E∗

CC generated by
t∗ as defined through Equation (2.14) coincides with the eigenvalue corresponding to the
eigenfunction Ψ∗.

In other words every intermediately normalisable eigenfunction of the electronic Hamiltonian
(2.2) corresponds to a zero of the coupled cluster function defined through Definition 2.4.1 and
vice-versa. The goal of our analysis in this section is to study the nature of these zeros of the
coupled cluster function and, in particular, to derive sufficient conditions that guarantee the
simplicity of the zeros. Indeed, if we know that some t∗ ∈ V is a simple zero of the coupled
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cluster function, then this will allow us to deduce local invertibility of the coupled cluster function
at t∗ ∈ V and thereby derive both local uniqueness and local residual-based error estimates for
the CC equations (2.17). Arguments of this nature are standard in the literature on non-linear
numerical analysis (see, e.g., [96, Proposition 2.1] or [12, Theorem 2.1]) and are usually based
on the invertibility of the Fréchet derivative of the non-linear function being studied. The next
step in our analysis therefore will be to study carefully the Fréchet derivative of the coupled
cluster function. Before proceeding with this analysis however, let us comment on the existing
numerical analysis of the coupled cluster equation (2.17).

Remark 2.4.2 (Existing Approaches in the Numerical Analysis of the CC equations (2.17)).
The existing literature on the numerical analysis of coupled cluster methods is rather sparse.

The first numerical analysis of the single reference coupled cluster– in the finite-dimensional
setting– is due to R. Schneider in [87]. The analysis carried out in [87] was then extended to
the infinite-dimensional setting (as considered here) in the subsequent articles [82] and [83]. The
former article showed that the mathematical objects used to formulate the coupled cluster method
(such as excitation operators) are bounded operators on appropriate infinite-dimensional Hilbert
spaces so that the coupled cluster equations can be stated in infinite-dimensions (prior to this
article, the CC equations were always written in a finite-dimensional setting). The article [83]
used these tools and the ideas developed in [87] to perform a numerical analysis of the infinite-
dimensional coupled cluster equations. Additional articles on the mathematical analysis of CC
methods have since appeared, including [61] which studies the so-called extended coupled cluster
method, [42] which studies the so-called tailored coupled cluster method, [30] which studies the
finite-dimensional CC equations using topological degree theory, and [43] which analyses the root
structure of the CC equations using tools from algebraic geometry.

The aforementioned articles have two important features in common: First they are concerned
with the (local) analysis of the ‘ground-state’ zero of the coupled cluster function, i.e., with
the zero t∗GS such that eT

∗
GSΨ0 = Ψ∗

GS. This of course makes sense since the vast majority of
coupled cluster calculations are targeted at approximating the ground state energy of the electronic
Hamiltonian.

Second and more importantly, the well-posedness analysis in all of the above articles is based
on proving a local, strong monotonicity property of the coupled cluster function at t∗GS. Taking
the example of the article [83] whose notation closely aligns with ours, let the coupled cluster
function f : V→ V∗ be defined through Definition 2.4.1. Then it is shown in [83] that for δ > 0
sufficiently small, there exists a constant Γ such that for all w, s ∈ Bδ(t

∗
GS) ⊂ V it holds that

⟨w − s, f(w)− f(s)⟩V×V∗ ⩾ Γ∥w − s∥V. (2.18)

If the constant Γ can be shown to be strictly positive, then the local monotonicity property
(2.18) immediately yields local well-posedness of both the continuous coupled cluster equations
as well as sufficiently rich Galerkin discretisations thereof 3. Quasi-optimal error estimates for
the CC energy can then also be derived using the dual weighted residual approach developed by
Rannacher et al. [4, Chapter 6] .

The main drawback of the above approach is that the actual local monotonicity constant Γ
derived from this analysis (see [83, Theorem 3.4]) is of the form:

Γ = ωγ −
∥∥T∗

GS − (T∗
GS)

†
∥∥
Ĥ1→Ĥ1 ∥H − E∗

GS∥Ĥ1→Ĥ−1 −O
(
∥t∗GS∥2V

)
(2.19a)

⩾ ωγ −
(
β + β†) ∥t∗GS∥V ∥H − E∗

GS∥Ĥ1→Ĥ−1 −O
(
∥t∗GS∥2V

)
(2.19b)

3Although this point of view is not taken in these articles, the local monotonicity condition (2.18) essentially
corresponds to proving that the coupled cluster Fréchet derivative at t∗GS is a positive definite operator.
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where γ > 0 denotes the coercivity constant of the shifted electronic Hamiltonian H − E∗
GS on

{Ψ∗
GS}⊥, the constant ω ∈ (0, 1) is a prefactor depending on ∥Ψ0 − Ψ∗

GS∥L̂2 , and β, β† are the
continuity constants of the mappings V ∋ t 7→ T : Ĥ1 → Ĥ1 and and V ∋ t 7→ T† : Ĥ1 → Ĥ1

respectively as given in Theorem 2.3.3.
Consequently, the constant Γ is positive provided that ∥t∗GS∥V is small enough. However,

according to the theoretical analysis in [82], the constants β, β† grow combinatorially in the
number of electrons Q in the system, and thus as soon as Q ≈ 10 or larger, the lower bound
(2.19b) for the constant Γ is no longer positive. Similar issues arise in the local monotonicity
constants derived in the other articles [42] and [61].

To make matters worse, even if we rely on the sharper Inequality (2.19a), numerical experi-
ments involving small, relatively well-behaved molecules for which it is well-known (from numer-
ical experience) that the coupled cluster method works well, reveal that (see Table 2.1 below)∥∥T∗

GS − (T∗
GS)

†∥∥
Ĥ1→Ĥ1 ∥H − E∗

GS∥Ĥ1→Ĥ−1 > γ.

In other words, the assumptions required to establish local strong monotonicity of the coupled
cluster function, namely, smallness of the amplitude vector norm ∥t∗GS∥V seem restrictive and
not satisfied in many practical examples. As a consequence, the hope of obtaining quantitative
a posteriori error estimates for the coupled cluster equations appears difficult to achieve.

Molecule
Coercivity
constant γ ∥t∗FCI∥V

Monotonicity
constant Γ

from Eq. (2.19a)

Hartree-Fock
Energy Error

(Hartree)

CCSD
Energy Error

(Hartree)

BeH2 0.3257 0.2343 0.0363 3.50× 10−2 3.83× 10−4

BH3 0.2903 0.2844 -0.0950 5.40× 10−2 3.74× 10−4

HF 0.3010 0.2038 -0.0083 2.81× 10−2 3.02× 10−5

H2O 0.3471 0.2687 0.0249 5.01× 10−2 1.18× 10−4

LiH 0.2617 0.1792 -0.0065 2.04× 10−2 1.14× 10−5

NH3 0.3868 0.3074 -0.0325 6.61× 10−2 2.18× 10−4

Table 2.1: Examples of numerically computed local monotonicity constants for a collection of
small molecules at equilibrium geometries. The calculations were performed in STO-6G basis
sets with the exception of the HF and LiH molecules for which 6-31G basis sets were used. In
all cases, the Full-CI solution was taken as the reference solution. To simplify calculations, the
canonical Ĥ1 norm was replaced with an equivalent norm induced by the mean-field Hartree
Fock operator (see, e.g., [87]).

We begin our analysis with the following proposition whose essence seems known (c.f., [87,
Theorem 4.16], [83, Lemma 3.1] and [29, Lemma 4.6]) but that has not been expressed in the
current form in the existing literature.

Proposition 2.4.1 (Coupled Cluster Fréchet Derivative).
Let the excitation index set I be defined through Definition 2.3.1, let the excitation operators

{Xµ}µ∈I be defined through Definition 2.3.2, and let the coupled cluster function f : V → V∗ be
defined through Definition 2.4.1. Then,



2.4. Well-posedness of the continuous coupled cluster equations 35

• For any t = {tµ}µ∈I ∈ V, the Fréchet derivative Df(t) : V → V∗ of the coupled cluster
function f at t is the mapping with the property that for all s,w ∈ V with s = {sν}ν∈I and
w = {wµ}µ∈I it holds that

⟨w,Df(t)s⟩V×V∗ =

〈∑
µ∈I

wµXµΨ0, e
−T

[
H,
∑
ν∈I

sνXν

]
eTΨ0

〉
Ĥ1×Ĥ−1

, (2.20)

where [·, ·] denotes the commutator and T :=
∑

µ∈I tµXµ.

• f : V→ V∗ is a C∞ mapping.

Proof. We start with the proof of the first assertion. This portion of the proof will proceed in
two steps:

• We will obtain an expression for the Gateaux derivative Df(t), t ∈ V of the coupled cluster
function f, and we will show that this agrees with the expression offered by Equation (2.20).

• We will show that the Gateaux derivative is continuous as a function of t, i.e., the mapping
t 7→ Df(t) : V→ V∗ is continuous.

Let t, s ∈ V be arbitrary. Thanks to Remark 2.4.1, we observe that for any h ⩾ 0 it holds
that f(t+ hs) ∈ V∗. It follows that for any h > 0 and any w ∈ V we have that

⟨w, f(t+ hs)− f(t)⟩V×V∗ =

〈∑
µ∈I

wµXµΨ0,
(
e−T−hSHeT+hS − e−THeT

)
Ψ0

〉
Ĥ1×Ĥ−1

=

〈∑
µ∈I

wµXµΨ0, e
−T
(
e−hSHehS −H

)
eTΨ0

〉
Ĥ1×Ĥ−1

,

where we have denoted S :=
∑

µ∈I sµXµ and we have used the fact that T and S commute (see
the first assertion of Theorem 2.3.3).

As a consequence, using once again the commutativity of T and S together with the power
series expansion of the exponential cluster operator, we deduce that

lim
h→0

⟨w, f(t+ hs)− f(t)⟩V×V∗

h
=

〈∑
µ∈I

wµXµΨ0, e
−T (−SH +HS) eTΨ0

〉
Ĥ1×Ĥ−1

=

〈∑
µ∈I

wµXµΨ0, e
−T

[
H,
∑
ν∈I

sνXν

]
eTΨ0

〉
Ĥ1×Ĥ−1

. (2.21)

In order to show that the expression offered by Equation (2.21) defines the Gateaux derivative
Df(t) : V→ V∗, we must show that this operator is bounded. Recalling from Definition 2.3.4, the
subspace Ṽ ⊂ Ĥ1 as the orthogonal complement of {Ψ0}, let us therefore define A(t) : Ṽ → Ĥ−1

as

∀Φ ∈ Ĥ1, ∀SΨ0 ∈ Ṽ with S =
∑
µ

sµXµ : ⟨Φ,A(t)SΨ0⟩Ĥ1×Ĥ−1 :=
〈
Φ, e−T[H,S]eTΨ0

〉
Ĥ1×Ĥ−1 .

We claim that A(t) defines a bounded linear operator. Indeed, a direct calculation shows
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that ∀Φ ∈ Ĥ1 and ∀SΨ0 ∈ Ṽ with S =
∑

µ sµXµ we have∣∣ ⟨Φ,A(t)SΨ0⟩Ĥ1×Ĥ−1

∣∣ = ∣∣∣〈Φ, e−THSeTΨ0

〉
Ĥ1×Ĥ−1 −

〈
Φ, e−TSHeTΨ0

〉
Ĥ1×Ĥ−1

∣∣∣
⩽ ∥Φ∥

Ĥ1

∥∥e−T
∥∥
Ĥ−1→Ĥ−1 ∥H∥Ĥ1→Ĥ−1

∥∥eT∥∥
Ĥ1→Ĥ1 ∥SΨ0∥Ĥ1

+
∥∥S†Φ

∥∥
Ĥ1

∥∥e−T
∥∥
Ĥ−1→Ĥ−1 ∥H∥Ĥ1→Ĥ−1

∥∥eTΨ0

∥∥
Ĥ1 ,

where we have used the fact that the cluster operators eT and S commute. Next, let us observe
that by definition of the cluster operator S and the norm ∥ · ∥V, it holds that ∥SΨ0∥Ĥ1 = ∥s∥V.
Consequently, recalling the continuity properties of cluster operators from Theorem 2.3.3 we
deduce that ∥∥S†Φ

∥∥
Ĥ1 ⩽ β†∥s∥V∥Φ∥Ĥ1 = β†∥SΨ0∥Ĥ1∥WΨ0∥Ĥ1 ,

where the constant β† > 0 is independent of S.

Collecting terms now shows that A(t) : Ṽ → Ĥ−1 is indeed bounded, and therefore the
Gateaux derivative Df(t) : V → V∗ is well-defined according to the expression offered by Equa-
tion (2.21). Since t ∈ V was arbitrary, the coupled cluster function f is everywhere Gateaux
differentiable.

It remains to prove that the Gateaux derivative Df(t) is in fact a Fréchet derivative. To this
end, it suffices to show that the mapping V ∋ t 7→ Df(t) : V → V∗ is continuous. To do so, let
{tn}n∈N ⊂ V be a sequence that converges to t. It follows that

lim
n→∞

∥Df(t)−Df(tn)∥V→V∗ = lim
n→∞

sup
s∈V

∥s∥V=1

sup
w∈V

∥w∥V=1

| ⟨w,Df(t)s−Df(tn)s⟩V×V∗ |

= lim
n→∞

sup
s∈V

∥s∥V=1

sup
w∈V

∥w∥V=1

∣∣∣∣∣∣
〈∑

µ∈I

wµXµΨ0, e
−T
[
H,
∑
ν∈I

sνXν

]
eTΨ0 − e−Tn

[
H,
∑
ν∈I

sνXν

]
eTnΨ0

〉
Ĥ1×Ĥ−1

∣∣∣∣∣∣ ,

where for all n ∈ N we denote Tn :=
∑

µ∈I(tn)µXµ. Adding and subtracting suitable terms



2.4. Well-posedness of the continuous coupled cluster equations 37

yields the inequality

lim
n→∞

∥Df(t)−Df(tn)∥V→V∗

⩽ lim
n→∞

sup
s∈V

∥s∥V=1

sup
w∈V

∥w∥V=1

∣∣∣∣∣∣
〈∑

µ∈I

wµXµΨ0,
(
e−T − e−Tn

) [
H,
∑
ν∈I

sνXν

]
eTΨ0

〉
Ĥ1×Ĥ−1

∣∣∣∣∣∣

+ lim
n→∞

sup
s∈V

∥s∥V=1

sup
w∈V

∥w∥V=1

∣∣∣∣∣∣
〈∑

µ∈I

wµXµΨ0, e
−Tn

[
H,
∑
ν∈I

sνXν

] (
eT − eTn

)
Ψ0

〉
Ĥ1×Ĥ−1

∣∣∣∣∣∣
⩽ lim

n→∞
sup
s∈V

∥s∥V=1

∥∥∥∥∥(e−T − e−Tn
) [
H,
∑
ν∈I

sνXν

]
eTΨ0

∥∥∥∥∥
Ĥ−1

+ lim
n→∞

sup
s∈V

∥s∥V=1

∥∥∥∥∥e−Tn

[
H,
∑
ν∈I

sνXν

] (
eT − eTn

)
Ψ0

∥∥∥∥∥
Ĥ−1

,

where we have used the fact that ∥w∥V =
∥∥∥∑µ∈I wµXµΨ0

∥∥∥
Ĥ1

by definition.
We can now use the fact that the exponential cluster operator is a locally C∞ mapping on

the algebra of cluster operators (see Theorem 2.3.3) together with the boundedness properties
of the Hamiltonian H and excitation operators to deduce that both of the above limits are zero.
Thus, limn→∞ ∥Df(t)− Df(tn)∥V→V∗ = 0, which shows that Df(t) : V→ V∗ as defined through
Equation (2.20) is indeed the Fréchet derivative of the coupled cluster function f : V → V∗ at
t ∈ V.

In order to complete the proof of this proposition, we must demonstrate that the second
assertion also holds, namely, that f is a C∞ mapping from V to V∗. To this end, it is sufficient to
observe that higher order Gateaux derivatives of the coupled cluster function can be computed
exactly as the first order Gateaux derivative given by Equation (2.21) with the single commutator
being replaced by nested commutators. The fact that these Gateaux derivatives are also Fréchet
derivatives is deduced in an identical fashion by making use of the fact that exponential cluster
operator is a locally C∞ map. This completes the proof.

Proposition 2.4.1 has a number of important consequences that we now state. For the first
result, let us recall from Theorem (2.4.1) that every zero t∗ ∈ V of the coupled cluster func-
tion is associated with an intermediately normalised eigenfunction Ψ∗ ∈ Ĥ1 of the electronic
Hamiltonian H : Ĥ1 → Ĥ−1 defined through Equation (2.2).

Corollary 2.4.1.1 (Coupled Cluster Fréchet Derivative at Zeros of the Coupled Cluster Func-
tion).

Let the excitation index set I be defined through Definition 2.3.1, let the excitation operators
{Xµ}µ∈I be defined through Definition 2.3.2, let the coupled cluster function f : V→ V be defined
through Definition 2.4.1, for any t ∈ V let Df(t) denote the Fréchet derivative of the coupled
cluster function as defined through Equation (2.20), let t∗ = {t∗µ}µ∈I ∈ V denote a zero of the CC
function that generates the intermediately normalised eigenfunction Ψ∗ ∈ Ĥ1 of the electronic
Hamiltonian with corresponding eigenvalue E∗. Then for all s,w ∈ V with s = {sν}ν∈I and
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w = {wµ}µ∈I, it holds that

⟨w,Df(t∗)s⟩V×V∗ =

〈∑
µ∈I

wµXµΨ0, e
−T∗

(H − E∗) eT
∗ ∑
ν∈I

sνXνΨ0

〉
Ĥ1×Ĥ−1

where T∗ :=
∑
µ∈I

t∗µXµ.

(2.22)

Proof. The proof follows by a direct calculation from Equation (2.20) by expanding the com-
mutator, making use of the fact that HΨ∗ = E∗Ψ∗ = E∗eT

∗
Ψ0 by definition together with the

commutativity of the cluster operators T∗ and S =
∑

ν sνXν .

Consider the setting of Corollary 2.4.1.1. Let us remark here that, thanks to Theorem 2.4.1,
the eigenvalue E∗ which appears in (2.22) coincides with the CC energy E∗

CC generated by t∗

through Equation (2.14). Therefore, when considering expressions of the form (2.22) involving
the CC Fréchet derivative, we may refer to E∗ as simply the coupled cluster energy associated
with t∗ without reference to the underlying eigenpair of the electronic Hamiltonian.

Corollary 2.4.1.2 (Local Lipschitz Continuity of Coupled Cluster Fréchet Derivative).
Let the coupled cluster function f : V → V be defined through Definition 2.4.1, and for any

t ∈ V let Df(t) denote the Fréchet derivative of the coupled cluster function as defined through
Equation (2.20). Then the mapping V ∋ t 7→ Df(t) : V→ V∗ is Lipschitz continuous for bounded
arguments, i.e., for any t ∈ V and any any δ > 0, there exists a constant Lt(δ) > 0 such that

sup
t ̸=s∈Bδ(t)

∥Df(t)−Df(s)∥V→V∗

∥t− s∥V
:= Lt(δ) <∞.

Corollary 2.4.1.2 follows immediately from the regularity of the coupled cluster function.
Having obtained an expression for the first Fréchet derivative Df(t), t ∈ V of the coupled

cluster function and studied some regularity properties of the mapping V ∋ t 7→ Df(t), the
next step in our analysis will be to study the invertibility of the Fréchet derivative Df at any
zero t∗ ∈ V of the coupled cluster function. In order to proceed with this analysis, let us first
notice that thanks to the expression offered by Equation (2.22) in Corollary 2.4.1.1, the coupled
cluster Fréchet derivative at any zero t∗ ∈ V can be described in terms of an operator acting
on a subspace of the infinite-dimensional N -particle space Ĥ1. This observation motivates us to
introduce the following operator acting on the space Ṽ = {Ψ0}⊥ ⊂ Ĥ1 (recall Definition 2.3.4).

Definition 2.4.2 (Operator Induced by Coupled Cluster Fréchet Derivative at t∗).
Let the excitation index set I be defined through Definition 2.3.1, let the excitation operators

{Xµ}µ∈I be defined through Definition 2.3.2, let t∗ = {t∗µ}µ∈I ∈ V be any zero of the coupled
cluster function defined through Definition 2.4.1, let E∗ be the associated coupled cluster energy
calculated through (2.14), and let the space Ṽ ⊂ Ĥ1 be defined as in Definition 2.3.4. We define
the operator A(t∗) : Ṽ → Ĥ−1 as the mapping with the property that

∀Ψ̃ ∈ Ṽ : A(t∗)Ψ̃ := e−T∗
(H − E∗) eT

∗
Ψ̃ where T∗ =

∑
µ∈I

t∗µXµ. (2.23)

Notation 2.4.2. Let t∗ ∈ V be any zero of the coupled cluster function defined through
Definition 2.4.1 and let E∗ be the associated coupled cluster energy calculated through Equation
(2.14).
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• We denote by αt∗ > 0 the constant defined as

αt∗ := ∥A(t∗)∥
Ṽ→Ṽ∗ := sup

0̸=Φ̃∈Ṽ

sup
0̸=Ψ̃∈Ṽ

⟨Φ̃,A(t∗)Ψ̃⟩
Ĥ−1×Ĥ1

∥Φ̃∥
Ĥ1∥Ψ̃∥Ĥ1

,

with the existence of αt∗ being guaranteed by Proposition 2.4.1.

• For any t ∈ V we denote by Lt : R+ → R+ the so-called ‘Lipschitz continuity function’ as
the mapping with the property that for all δ > 0 it holds that

Lt(δ) := sup
t ̸=s∈Bδ(t)

∥Df(t)−Df(s)∥V→V∗

∥t− s∥V
,

with the existence of the function Lt being guaranteed by Corollary 2.4.1.2.

• We denote by A(t∗)† : Ṽ → Ĥ−1 the mapping with the property that for all Ψ̃ ∈ Ṽ it holds
that

A(t∗)†Ψ̃ := e(T
∗)† (H − E∗) e−(T∗)†Ψ̃, (2.24)

and we emphasise that for all Ψ̃, Φ̃ ∈ Ṽ it holds that

⟨Φ̃,A(t∗)†Ψ̃⟩
Ĥ1×Ĥ−1 = ⟨A(t∗)Φ̃, Ψ̃⟩

Ĥ−1×Ĥ1 ,

so that in particular

∥A(t∗)†∥
Ṽ→Ṽ∗ = ∥A(t∗)∥

Ṽ→Ṽ∗ = αt∗ .

Consider now Definition 2.4.2 of the bounded linear operator A(t∗) : Ṽ → Ĥ−1 for an arbi-
trary zero t∗ ∈ V of the coupled cluster function. Since the coefficient space V inherits its inner
product from the inner product on Ĥ1, it immediately follows that

Df(t∗) : V→ V∗ is an isomorphism ⇐⇒ A(t∗) : Ṽ → Ṽ∗ is an isomorphism.

We claim that the mapping A(t∗) : Ṽ → Ṽ∗ can indeed be shown to be an isomorphism
provided that the zero t∗ is generated by an intermediately normalisable eigenfunction Ψ∗ ∈ Ĥ1

of the electronic Hamiltonian that corresponds to a simple and isolated eigenvalue. The proof
of this claim, which is the subject of the next theorem, is based on classical functional analysis
arguments, and will proceed in the following steps: Assuming that the zero t∗ is generated by a
non-degenerate, intermediately normalisable eigenfunction of the electronic Hamiltonian:

1. We will first show that A(t∗) : Ṽ → Ṽ∗ is injective. As a consequence of the Hahn-Banach
theorem, we will deduce that the adjoint operator A(t∗)† : Ṽ → Ṽ∗ has dense range.

2. Next, we will show that the operator A(t∗)† : Ṽ → Ṽ∗ is bounded below. This will imply
that A(t∗)† : Ṽ → Ṽ∗ is injective, and has closed range.

Combining the above two steps, will allow us to deduce that the adjoint operator A(t∗)† : Ṽ →
Ṽ∗ is an isomorphism, and therefore so too is the operator A(t∗) : Ṽ → Ṽ∗. Let us emphasise
here that rather than attacking directly the operator A(t∗) induced by the Fréchet derivative
of the coupled cluster function at t∗ ∈ V, we are choosing to analyse its adjoint. This choice is
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motivated by practical reasons: there is a technical difficulty in proving directly the invertibility
of A(t∗) which is avoided if we study instead A(t∗)†.

Theorem 2.4.3 (Invertibility of Operator Induced by Coupled Cluster Fréchet Derivative at
t∗).

Let t∗ = {t∗µ}µ∈I ∈ V be associated with a non-degenerate, intermediately normalisable eigen-
pair (E∗,Ψ∗) ∈ R × Ĥ1 of the electronic Hamiltonian H : Ĥ1 → Ĥ−1 defined through Equation
(2.2), i.e.,

HΨ∗ = E∗Ψ∗, with E∗ simple, isolated and Ψ∗ = eT
∗
Ψ0 where T∗ =

∑
µ∈I

t∗µXµ.

Then the operator A(t∗) : Ṽ → Ṽ∗ defined through Definition 2.4.2 is an isomorphism.

Proof. The proof follows the aforementioned two steps. We begin with the injectivity of A(t∗).

Step 1: A(t∗) : Ṽ → Ṽ∗ is injective.

Suppose there exists 0 ̸= Ψ̃ ∈ Ṽ such that A(t∗)Ψ̃ ≡ 0 in Ṽ∗, i.e., for all Φ̃ ∈ Ṽ it holds that〈
Φ̃,A(t∗)Ψ̃

〉
Ĥ1×Ĥ−1

= 0. (2.25)

As a first step, we claim that from Equation (2.25) it must follow that A(t∗)Ψ̃ ≡ 0 in Ĥ−1.
Recalling the complementary decomposition of Ĥ1 given by Definition 2.3.5, we see that it suffices
to prove that 〈

Ψ0,A(t∗)Ψ̃
〉
Ĥ1×Ĥ−1

= 0. (2.26)

Consider now the element Φ̂ = e(T
∗)†eT

∗
Ψ0 ∈ Ĥ1 and recall that we denote by P0 : Ĥ

1 → Ĥ1

the L̂2-orthogonal projection operator onto span{Ψ0} defined through Definition 2.3.5 and we
have defined P⊥

0 := I− P0. Clearly, we have that P0Φ̂ ̸= 0 since

(Φ̂,Ψ0)L̂2 =
(
e(T

∗)†eT
∗
Ψ0,Ψ0

)
L̂2

=
(
eT

∗
Ψ0, e

T∗
Ψ0

)
L̂2

= ∥Ψ∗∥2
L̂2 =: d̂0 ̸= 0. (2.27)

Since Ψ∗ = eT
∗
Ψ0 ∈ Ĥ1 is by definition an eigenfunction of the electronic Hamiltonian with

associated eigenvalue E∗, a direct calculation also reveals that〈
Φ̂,A(t∗)Ψ̃

〉
Ĥ1×Ĥ−1

=
〈
e(T

∗)†eT
∗
Ψ0, e

−T∗
(H − E∗) eT

∗
Ψ̃
〉
Ĥ1×Ĥ−1

=
〈
eT

∗
Ψ0, (H − E∗) eT

∗
Ψ̃
〉
Ĥ1×Ĥ−1

(2.28)

= 0.
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On the other hand, we also have〈
Φ̂,A(t∗)Ψ̃

〉
Ĥ1×Ĥ−1

=
〈
P0Φ̂,A(t∗)Ψ̃

〉
Ĥ1×Ĥ−1

+
〈
P⊥
0 Φ̂,A(t∗)Ψ̃

〉
Ĥ1×Ĥ−1

=
〈
P0Φ̂,A(t∗)Ψ̃

〉
Ĥ1×Ĥ−1

,

(2.29)

where the second equality is due to the fact that A(t∗)Ψ̃ ≡ 0 in Ṽ∗ by assumption.
Combining therefore Equations (2.27)-(2.29), we deduce that

0 =
〈
Φ̂,A(t∗)Ψ̃

〉
Ĥ1×Ĥ−1

=
〈
P0Φ̂,A(t∗)Ψ̃

〉
Ĥ1×Ĥ−1

= d̂0

〈
Ψ0,A(t∗)Ψ̃

〉
Ĥ1×Ĥ−1

.

Since d̂0 ̸= 0, we immediately deduce that Equation (2.26) holds and therefore A(t∗)Ψ̃ ≡ 0 in
Ĥ−1 as claimed.

Since e−(T∗)† : Ĥ1 → Ĥ1 is a bijection, we next deduce that for all Φ ∈ Ĥ1 it holds that

0 =
〈
e(T

∗)†Φ,A(t∗)Ψ̃
〉
Ĥ1×Ĥ−1

=
〈
Φ, (H − E∗) eT

∗
Ψ̃
〉
Ĥ1×Ĥ−1

.

The simplicity of the eigenvalue E∗ now implies that we must have

eT
∗
Ψ̃ ∈ span{Ψ∗}.

Using again the fact that Ψ∗ = eT
∗
Ψ0 and that eT

∗
: Ĥ1 → Ĥ1 is a bijection, we obtain the

existence of some constant d̃0 ∈ R such that

Ψ̃ = d̃0Ψ0.

Recall however that Ψ̃ ∈ Ṽ = {Ψ0}⊥ by assumption, and therefore we must have d̃0 = 0 and
thus Ψ̃ = 0. This completes the proof of the first step.

Step 2: A(t∗)† : Ṽ → Ṽ∗ is bounded below.

Let Ψ̃ ∈ Ṽ be arbitrary. For any Ψ∗
⊥ ∈ {Ψ∗}⊥ ⊂ Ĥ1, i.e., any wave-function Ψ∗

⊥ that is
L̂2-orthogonal to the eigenfunction Ψ∗ with associated eigenvalue E∗, we define the function

Φ̃Ψ⊥ := P⊥
0 e

−T∗
Ψ∗

⊥ ∈ Ṽ,

It is straightforward to observe that for all such Φ̃Ψ⊥ , it holds that∣∣∣∣〈Φ̃Ψ⊥ ,A(t∗)†Ψ̃
〉
Ĥ1×Ĥ−1

∣∣∣∣ = ∣∣∣ 〈e−T∗
Ψ∗

⊥, e
(T∗)† (H − E∗) e−(T∗)†Ψ̃

〉
Ĥ1×Ĥ−1︸ ︷︷ ︸

:=(I)

−
〈
P0e

−T∗
Ψ∗

⊥, e
(T∗)† (H − E∗) e−(T∗)†Ψ̃

〉
Ĥ1×Ĥ−1︸ ︷︷ ︸

:=(II)

∣∣∣. (2.30)
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We claim that the term (II) is identically zero for any choice of Ψ∗
⊥. To this end, observe that

P0e
−T∗

Ψ∗
⊥ =

(
e−T∗

Ψ∗
⊥,Ψ0

)
L̂2

Ψ0 = (Ψ∗
⊥,Ψ0)L̂2 Ψ0 = P0Ψ

∗
⊥.

We therefore deduce that

(II) = −
〈
P0Ψ

∗
⊥, e

(T∗)† (H − E∗) e−(T∗)†Ψ̃
〉
Ĥ1×Ĥ−1

= − (Ψ0,Ψ
∗
⊥)L̂2

〈
Ψ0, e

(T∗)† (H − E∗) e−(T∗)†Ψ̃
〉
Ĥ1×Ĥ−1

,

where we have used the fact that P0Ψ
∗
⊥ = (Ψ0,Ψ

∗
⊥)L̂2 Ψ0.

Notice however that the second term in the product above satisfies〈
Ψ0, e

(T∗)† (H − E∗) e−(T∗)†Ψ̃
〉
Ĥ1×Ĥ−1

=
〈
(H − E∗) eT

∗
Ψ0, e

−(T∗)†Ψ̃
〉
Ĥ−1×Ĥ1

= 0, (2.31)

where the last step follows from the fact that HeT
∗
Ψ0 = HΨ∗ = E∗Ψ∗ by assumption. Thus,

the term (II) is identically zero for any choice of Ψ∗
⊥ ∈ {Ψ∗}⊥ ⊂ Ĥ1 as claimed, and we need

only estimate the term (I).

An easy simplification reveals that

(I) =
〈
Ψ∗

⊥, (H− E∗) e−(T∗)†Ψ̃
〉
Ĥ1×Ĥ−1

. (2.32)

Thanks to the ellipticity of the electronic Hamiltonian H : Ĥ1 → Ĥ−1 and the simplicity of
the eigenvalue E∗, it is easy to deduce that the shifted Hamiltonian H −E∗ : Ĥ1 → Ĥ−1 satisfies
an inf-sup condition on {Ψ∗}⊥ ⊂ Ĥ1 (see also Remark 2.4.3 for a detailed argument). In order
to make use of this result and bound the term (I), we need only show that Ψ∗

⊥ and e−(T∗)†Ψ̃ are
both elements of {Ψ∗}⊥. The former inclusion is true by definition of Ψ∗

⊥ and as for latter, we
see that (

Ψ∗, e−(T∗)†Ψ̃
)
L̂2

=
(
eT

∗
Ψ0, e

−(T∗)†Ψ̃
)
L̂2

=
(
Ψ0, Ψ̃

)
L̂2

= 0,

where we have used the fact that Ψ̃ ∈ Ṽ = {Ψ0}⊥ by definition.

We can therefore deduce from Equation (2.32) that

sup
Ψ∗

⊥∈{Ψ∗}⊥

∣∣∣∣〈Ψ∗
⊥, (H − E∗) e−(T∗)†Ψ̃

〉
Ĥ1×Ĥ−1

∣∣∣∣
∥Ψ∗

⊥∥Ĥ1

⩾ γ
∥∥∥e−(T∗)†Ψ̃

∥∥∥
Ĥ1
, (2.33)

where γ > 0 is the inf-sup constant of the shifted Hamiltonian H − E∗ on {Ψ∗}⊥ ⊂ Ĥ1.

Recalling now that Ψ̃ ∈ Ṽ was arbitrary and combining the estimates (2.31)-(2.33) with
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Equation (2.30) we obtain that for all Ψ̃ ∈ Ṽ it holds that

∥A(t∗)†Ψ̃∥
Ṽ∗ = sup

0 ̸=Φ̃∈Ṽ

∣∣ 〈Φ̃,A(t∗)†Ψ̃
〉
Ĥ1×Ĥ−1

∣∣
∥Φ̃∥

Ĥ1

⩾ sup
0̸=Ψ∗

⊥∈{Ψ∗}⊥

∣∣ 〈Φ̃Ψ⊥ ,A(t∗)†Ψ̃
〉
Ĥ1×Ĥ−1

∣∣
∥Φ̃Ψ⊥∥Ĥ1

= sup
0 ̸=Ψ∗

⊥∈{Ψ∗}⊥

∣∣∣∣〈Ψ∗
⊥, (H − E∗) e−(T∗)†Ψ̃

〉
Ĥ1×Ĥ−1

∣∣∣∣
∥P⊥

0 e
−T(t∗)Ψ∗

⊥∥Ĥ1

⩾
1

∥P⊥
0 e

−T∗∥
Ĥ1→Ĥ1

sup
0̸=Ψ∗

⊥∈{Ψ∗}⊥

∣∣∣∣〈Ψ∗
⊥, (H − E∗) e−(T∗)†Ψ̃

〉
Ĥ1×Ĥ−1

∣∣∣∣
∥Ψ∗

⊥∥Ĥ1

⩾
γ

∥P⊥
0 e

−T∗∥
Ĥ1→Ĥ1

∥∥∥e−(T∗)†Ψ̃
∥∥∥
Ĥ1

⩾
γ

∥P⊥
0 e

−T∗∥
Ĥ1→Ĥ1∥e(T∗)†∥

Ĥ1→Ĥ1

∥∥Ψ̃∥∥
Ĥ1 ,

where the final step follows from the fact that e−(T∗)† : Ĥ1 → Ĥ1 is a bijection. Defining now
the constant Θ ∈ (0,∞) as

Θ := ∥e(T
∗)†∥

Ĥ1→Ĥ1∥P⊥
0 e

−T∗
∥
Ĥ1→Ĥ1 , (2.34)

and recalling that Ψ̃ ∈ Ṽ was arbitrary, we deduce that

∀Ψ̃ ∈ Ṽ : ∥A(t∗)†Ψ̃∥
Ṽ∗ ⩾

γ

Θ
∥Ψ̃∥

Ĥ1 ,

which completes the proof of the second step.
Combining the conclusions of Step 1 and Step 2 we deduce that the adjoint operator

A(t∗)† : Ṽ → Ṽ∗ is an isomorphism, and from this it follows that the operator A(t∗) : Ṽ → Ṽ∗

is also an isomorphism.

Equipped with Theorem 2.4.3 and recalling the discussion following Notation 2.4.2, we imme-
diately obtain the desired invertibility result for the coupled cluster Fréchet derivative at any zero
t∗ ∈ V of the coupled cluster function that is associated with a non-degenerate, intermediately
normalised eigenfunction Ψ∗ ∈ Ĥ1 of the electronic Hamiltonian.

Corollary 2.4.3.1 (Invertibility of the Coupled Cluster Fréchet Derivative at t∗).
Let the coupled cluster function f : V→ V∗ be defined through Definition 2.4.1, for any t ∈ V

let Df(t) denote the Fréchet derivative of the coupled cluster function as defined through Equation
(2.20), let t∗ ∈ V denote a zero of the coupled cluster function corresponding to an intermediately
normalised eigenfunction Ψ∗ ∈ Ĥ1 of the electronic Hamiltonian H : Ĥ1 → Ĥ−1 with simple,
isolated eigenvalue E∗, let γ > 0 denote the inf-sup constant of the shifted Hamiltonian H − E∗

on {Ψ∗}⊥ ⊂ Ĥ1, and let Θ > 0 denote the constant defined through Equation (2.34). Then
Df(t∗) : V→ V∗ is an isomorphism and it holds that

∥Df(t∗)−1∥V∗→V ⩽
Θ

γ
.
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Having completed our study of the coupled cluster Fréchet derivative, we are now finally
ready to state the main result of this section, namely the local well-posedness of the single
reference coupled cluster equations. As mentioned at the beginning of this section, we will do so
by appealing to a classical result from non-linear numerical analysis.

Theorem 2.4.4 (Local Uniqueness of the Coupled Cluster Solution t∗).
Let the coupled cluster function f : V → V∗ be defined through Definition 2.4.1, let t∗ ∈ V

denote a zero of the coupled cluster function corresponding to an intermediately normalised eigen-
function Ψ∗ ∈ Ĥ1 of the electronic Hamiltonian H : Ĥ1 → Ĥ−1 with simple, isolated eigenvalue
E∗, let γ > 0 denote the inf-sup constant of the shifted Hamiltonian H − E∗ on {Ψ∗}⊥ ⊂ Ĥ1, let
Θ > 0 denote the constant defined through Equation (2.34), let the continuity constant αt∗ > 0
and the Lipschitz continuity function Lt∗ : R+ → R+ be defined according to Notation 2.4.2, and
define the constant

T := min
δ>0

{
δ,

γ

Lt∗(δ)Θ
, 2

αt∗

Lt∗(δ)

}
.

Then f
(
BT(t

∗)
)

is an open subset V∗, the restriction of f to BT(t
∗) is a diffeomorphism and

for all s ∈ BT(t
∗) we have the error estimate

1

2

1

αt∗
∥f(s)∥V∗ ⩽ ∥t∗ − s∥V ⩽ 2

Θ

γ
∥f(s)∥V∗ . (2.35)

In particular, t∗ is the unique solution of the continuous coupled cluster equations (2.13) in
the open ball BT(t

∗).

Proof. The fact that the image under f of the open ball BT(t
∗) is itself open and that f is a local

diffeomorphism is a direct consequence of the inverse function theorem for Banach spaces (see,
e.g., [66, Chapter 9]) while the error estimate is a direct application of [96, Proposition 2.1]. The
fact that the assumptions of both results are indeed fulfilled by the coupled cluster function f is
a consequence of Proposition 2.4.1 and Corollaries 2.4.1.2 and 2.4.3.1.

Next, let us comment on the constants that appear in the error estimate offered by Theorem
2.4.4.

Remark 2.4.3 (Interpretation of the Constants Appearing in Error Estimate (2.35)).
Consider the setting of Theorem 2.4.4. From the point of view of a posteriori error quantifi-

cation, it is important to gain a better understanding of the constants γ > 0 and Θ > 0.
Let us recall that the γ > 0 is the inf-sup constant of the shifted Hamiltonian H − E∗ on

{Ψ∗}⊥ ⊂ Ĥ1. A crude lower bound for this constant can be obtained through the following
procedure.

We begin by noting that the shifted Hamiltonian H − E∗
GS + 1 defines a coercive operator on

Ĥ1. Since the electronic Hamiltonian is additionally self-adjoint, we can introduce a new norm
on Ĥ1 by setting

∀Φ ∈ Ĥ1 : |||Φ|||2
Ĥ1 := ⟨Φ, (H − E∗

GS + 1)Φ⟩
Ĥ1×Ĥ−1 ,

and it is clear that this new norm is equivalent to the canonical ∥ · ∥
Ĥ1 norm, i.e.,

∃cequiv > 1 such that ∀Φ ∈ Ĥ1 :
1

cequiv
|||Φ|||

Ĥ1 ⩽ ∥Φ∥
Ĥ1 ⩽ cequiv|||Φ|||Ĥ1 .
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In particular, the ellipticity of the electronic Hamiltonian given by Inequality (2.5) also holds
with respect to the new ||| · |||

Ĥ1 norm and we have

∀Φ ∈ Ĥ1 : ⟨Φ, (H − E∗) Φ⟩
Ĥ1×Ĥ−1 ⩾

1

4cequiv
|||Φ|||2

Ĥ1 −
(
9QZ2 − E∗ − 1

4

)
∥Φ∥2

L̂2 . (2.36)

Moreover, the norm ||| · |||
Ĥ1 also induces a new dual norm ||| · |||

Ĥ−1 on the space Ĥ−1,
and this new norm is also equivalent to the canonical dual norm ∥ · ∥

Ĥ−1 .

Next, we claim that for any Φ ∈ {Ψ∗}⊥ ⊂ Ĥ1 there exists Φflip ∈ {Ψ∗}⊥ such that

⟨Φflip, (H − E∗) Φ⟩
Ĥ1×Ĥ−1 ⩾ Λ∗∥Φ∥2

L̂2 , where Λ∗ := inf
λ∗∈σ(H)
λ∗ ̸=E∗

|λ∗ − E∗| > 0 is the spectral gap at E∗.

(2.37)

To see this, assume that (E∗,Ψ∗) is the J th eigenpair of the electronic Hamiltonian, ordered
non-decreasingly and counting multiplicity. Then we can write any Φ ∈ {Ψ∗}⊥ in the form

Φ =

J+1∑
ℓ=1

PℓΦ+ Φ⊥,

where each Pℓ : Ĥ
1 → Ĥ1 denotes the L̂2-orthogonal projector onto the span of the ℓth eigenfunc-

tion, Φ⊥ := Φ −
∑J+1

ℓ=1 PjΦ, and we emphasise that PJΦ = 0 since Φ ∈ {Ψ∗}⊥. Consequently,
for any Φ ∈ {Ψ∗}⊥, we may define Φflip ∈ {Ψ∗}⊥ as

Φflip := −
J−1∑
ℓ=1

PℓΦ+ PJ+1Φ+ Φ⊥,

and a direct calculation shows that

⟨Φflip, (H − E∗) Φ⟩
Ĥ1×Ĥ−1 ⩾ min {E∗ − EJ−1,EJ+1 − E∗} ∥Φ∥2

L̂2 =: Λ∗∥Φ∥2
L̂2 ,

where we have used EJ−1,EJ+1 to denote the J − 1 and J + 1 eigenvalues of the electronic
Hamiltonian. The claim now readily follows. Additionally, it is readily verified that for any
Φ ∈ {Ψ∗}⊥ with Φflip constructed according to the above procedure, it holds that |||Φflip|||Ĥ1 =
|||Φ|||

Ĥ1 .

Defining now the constant q :=
Λ∗

Λ∗ +
(
9QZ2 − E∗ − 1

4

) ∈ (0, 1) and combining the Estimates

(2.36) and (2.37), we deduce that for all Φ ∈ {Ψ∗}⊥ it holds that
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sup
0̸=Ψ∈{Ψ∗}⊥

∣∣∣⟨Ψ, (H − E∗)Φ⟩
Ĥ1×Ĥ−1

∣∣∣
|||Ψ|||

Ĥ1

= q sup
0 ̸=Ψ∈{Ψ∗}⊥

∣∣∣⟨Ψ, (H − E∗)Φ⟩
Ĥ1×Ĥ−1

∣∣∣
|||Ψ|||

Ĥ1

+ (1− q) sup
0̸=Ψ∈{Ψ∗}⊥

∣∣∣⟨Ψ, (H − E∗)Φ⟩
Ĥ1×Ĥ−1

∣∣∣
|||Ψ|||

Ĥ1

⩾ q

∣∣∣⟨Φ, (H − E∗)Φ⟩
Ĥ1×Ĥ−1

∣∣∣
|||Φ|||

Ĥ1

+ (1− q)

∣∣∣⟨Φflip, (H − E∗)Φ⟩
Ĥ1×Ĥ−1

∣∣∣
|||Φflip|||Ĥ1

⩾ q
1

|||Φ|||
Ĥ1

(
1

4 cequiv
|||Φ|||2

Ĥ1 −
(
9QZ2 − E∗ − 1

4

)
∥Φ∥2

L̂2

)

+ (1− q) 1

|||Φ|||
Ĥ1

Λ∗∥Φ∥2
L̂2

= q
1

4 cequiv
|||Φ|||

Ĥ1 ,

where the cancellations in the last step occurs due to the definition of q ∈ (0, 1).

Recalling now the definition of the constant q, we see that the inf-sup constant γ is lower
bounded by

γ ⩾
Λ∗

4 cequiv
(
Λ∗ + 9QZ2 − E∗ − 1

4

) . (2.38)

Two important comments are now in order. First, we expect the lower bound (2.38) to be
rather coarse because of the appearence of the norm equivalence constant cequiv. Note also that
the Ĥ1-norm associated with this equivalance constant is given by

∀Φ ∈ Ĥ1 : |||Φ|||2
Ĥ1 = ⟨Φ, (H − E∗

GS + 1)Φ⟩
Ĥ1×Ĥ−1 ,

i.e., as the norm induced by the shifted Hamiltonian H−E∗
GS+1, and there is a priori no reason

that a better equivalence constant cannot be obtained for a differently shifted Hamiltonian, i.e.,
for the operator H − E∗

GS + ι with ι > 0 arbitrary.

Second, we observe that if Λ∗, i.e., the spectral gap at E∗, approaches zero, then the lower
bound (2.38) that we have derived also approches zero. In fact, the same is true for the inf-sup
constant γ, i.e., Λ∗ → 0 implies that γ → 0. To see this, assume for simplicity that Λ∗ = E∗ − Ẽ

with Ẽ denoting the eigenvalue associated with some eigenfunction Ψ̃ ̸= Ψ∗ ∈ Ĥ1 of the electronic
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Hamiltonian. It then follows that

γ = inf
0̸=Φ∈{Ψ∗}⊥

sup
0 ̸=Ψ∈{Ψ∗}⊥

∣∣∣⟨Ψ, (H − E∗)Φ⟩
Ĥ1×Ĥ−1

∣∣∣
|||Ψ|||

Ĥ1 |||Φ|||Ĥ1

⩽ sup
0̸=Ψ∈{Ψ∗}⊥

∣∣∣∣〈Ψ, (H − E∗)Ψ̃
〉
Ĥ1×Ĥ−1

∣∣∣∣
|||Ψ|||

Ĥ1 |||Ψ̃|||Ĥ1

=Λ∗ sup
0 ̸=Ψ∈{Ψ∗}⊥

∣∣∣∣〈Ψ, Ψ̃〉
Ĥ1×Ĥ−1

∣∣∣∣
|||Ψ|||

Ĥ1 |||Ψ̃|||Ĥ1

,

from which we deduce that Λ∗ → 0 indeed implies γ → 0.
An important consequence of this observation is that the residual-based CC error estimate

(2.35) that we have derived in this work will degrade as the spectral gap degrades. In particular,
it will not hold for gapless systems for which a more elaborate theory must be developed. A
possible starting point for such a theory could be the Lyapunov–Schmidt construction (see, e.g.,
[12, Chapter V]) which is used in non-linear numerical analysis to study problems that cannot
be analysed using the inverse function theorem. Of course, the applicability of this approach to
the coupled cluster equations is an open question.

Coming now to the constant Θ, we see that it is simply the product of two operator norms
involving the exponential cluster operator and its adjoint. Thanks to the continuity of the mapping
V ∋ t 7→ e−T(t) : Ĥ1 → Ĥ1, (and its adjoint) we deduce that these operator norms will be large
when ∥t∥V is large, and therefore the residual-based CC error estimate (2.35) is expected to
degrade if ∥t∥V is large.

We conclude this section by emphasising, in particular, that if the ground state energy of the
electronic Hamiltonian H : Ĥ1 → Ĥ−1 is simple, and the chosen reference determinant Ψ0 is not
orthogonal to the corresponding ground state wave-function, then the continuous coupled cluster
equations (2.17) are locally well-posed, and we have access to the residual-based error estimates
given by Theorem 2.4.4.

2.5 Well-posedness of the full coupled cluster equations in
a finite basis

Having understood the local well-posedness of the continuous coupled cluster function, the
next step in our analysis is to study the discrete coupled cluster equations (2.15). Unfortunately,
obtaining a local well-posedness result for an arbitrary choice of excitation subset or Q-particle
basis set is a highly non-trivial exercise. Indeed, as the subsequent exposition will show (see
Lemma 2.5.2 and Theorem 2.5.5 below), our discrete local well-posedness analysis depends on
being able to demonstrate that certain discrete inf-sup conditions hold and the establishment
of these conditions for arbitrary discretisations is not obvious. For the purpose of this thesis
therefore, we will limit ourselves to an analysis of the so-called Full-Coupled Cluster equations
in a finite basis. The extension of our analysis to more general discretisations (the so-called
truncated CC equations [52, Chapter 13]) will be addressed in a forthcoming contribution.

Throughout this section, we assume the settings of Chapters 2.2-2.4. In particular, we will
frequently refer to the notions of Chapter 2.2.3. Let {ψj}j∈N denote an L2(R3;C)-orthonormal
basis for H1(R3;C). For any K ∈ N, we define BK := {ψj}Kj=1 and XK := span BK .

Recall that we denote by Q ∈ N the number of electrons in the system under study. Our goal
now is to use the sets {BK}K∈N to construct a sequence of finite-dimensional, nested subspaces
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of the antisymmetric tensor product space Ĥ1 whose union is dense in Ĥ1. To avoid tedious
notation in this construction, we will always assume thatK is a natural number such thatK ⩾ Q.
Proceeding now, exactly as in Chapter 2.2.3, we first introduce for each such K the index set
J

Q
K ⊂ {1, . . . ,K}Q given by

J
Q
K :=

{
ℓ = (ℓ1, ℓ2, . . . , ℓQ) ∈ {1, . . . ,K}Q : ℓ1 < ℓ2 < . . . < ℓQ

}
.

Next, we define for each K the set of L̂2-orthonormal, Q-particle determinants B
Q
K ⊂ Ĥ1 as

B
Q
K :=

{
Ψα(x1,x2, . . . ,xQ) =

1√
Q!

det
(
ψαi

(xj)
)Q
i,j=1

: α = (α1, α2, . . . , αQ) ∈ J
Q
K

}
,

and we denote, as usual, Ψ0(x1, . . . ,xQ) := det
(
ψi(xj)

)Q
i,j=1

.

It now follows that we can define the sequence {VK}K⩾Q of subspaces of Ĥ1 as VK :=

span B
Q
K , and it holds that

∀ K ⩾ Q : dim VK =

(
K

K −Q

)
, ∀ K2 > K1 ⩾ Q : VK1

⊂ VK2
and

⋃
K⩾Q

VK

∥·∥
Ĥ1

= Ĥ1.

Equipped with the sequence of finite-dimensional subspaces {VK}K⩾Q whose union is dense
in Ĥ1, our next task is to introduce a corresponding sequence of finite-dimensional coefficient
spaces {VK}K⩾Q whose union is dense in the Hilbert space of sequences V that was introduced
through Definition 2.3.6. To this end, we require some definitions.

Definition 2.5.1 (Excitation Index Sets For Finite Bases).
For each K and each j ∈ {1, . . . , Q} we define the index set IK as

IK
j :=

{(
i1, . . . , ij
ℓ1, . . . , ℓj

)
: i1 < . . . < ij ∈ {1, . . . , Q} and ℓ1 < . . . < ℓj ∈ {Q+ 1, . . . ,K}

}
,

we set

IK :=

Q⋃
j=1

IK
j ,

and we emphasise that
⋃

K⩾Q

IK = I, i.e., the global excitation index defined through Definition

2.3.1.

Consider Definition 2.5.1 of the excitation index sets IK
j , j ∈ {1, . . . , Q}. Since each IK

j is a
subset of the global excitation index set I defined through Definition 2.3.1, it follows that we can
define for any µ ∈ IK

j , excitation and de-excitation operators Xµ : Ĥ
1 → Ĥ1 and X†

µ : Ĥ
1 → Ĥ1

through Definitions 2.3.2 and 2.3.3 respectively. Moreover, the results of Theorem 2.3.3 can be
applied to these excitation and de-excitation operators, and the following remark summarises
some additional properties of these elementary excitation and de-excitation operators.

Remark 2.5.1 (Properties of Excitation and De-excitation Operators Related to the Index Set
IK).

Let the excitation index set IK be defined according to Definition 2.5.1. Then the finite-
dimensional Q-particle basis B

Q
K and the finite-dimensional Q-particle approximation space VK
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have the decomposition

B
Q
K := {Ψ0} ∪ {XµΨ0 : µ ∈ IK},

VK :=span {Ψ0} ⊕ span{XµΨ0 : µ ∈ IK}︸ ︷︷ ︸
:=ṼK

.

Additionally, for any µ, ν ∈ IK and κ ∈ I \ IK it holds that

XµXνΨ0 ∈ ṼK and X†
µXνΨ0 ∈ ṼK

XµXκΨ0 /∈ B
Q
K and X†

µXκΨ0 /∈ B
Q
K ,

XκXνΨ0 /∈ B
Q
K and X†

κXνΨ0 = 0.

Finally, as in Chapter 2.4 we will denote Ψµ := XµΨ0 for any µ ∈ IK .

Next we will introduce subspaces of coefficient vectors corresponding to the excitation index
sets

{
IK
}
K⩾Q

. The following construction is essentially an adaptation of Definition 2.3.6 of the
sequence space V to finite dimensions.

Definition 2.5.2 (Finite-Dimensional Coefficient Spaces).
Let the excitation index set IK be defined through Definition 2.5.1 for K ⩾ Q, and let the

Hilbert space of sequences V be defined according to Definition 2.3.6. We define the Hilbert
subspace of coefficients VK ⊂ V as the set

VK :=
{
t := (tµ)µ∈I ∈ V : tµ = 0 ∀µ /∈ IK

}
, (2.39)

equipped with the (·, ·)V inner product.

Notation 2.5.1. Consider Definition 2.5.2 of the Hilbert subspace of coefficients VK , and let
t ∈ VK denote an arbitrary element. In the sequel, for clarity of exposition we will frequently
denote t := tK := {tµ}µ∈IK . In other words, by an abuse of notation, we will identify VK with
the set ℓ2

(
IK
)

but equipped with the (·, ·)V inner product.

As can be expected, the coefficient subspaces {VK}K⩾Q introduced through Definition 2.5.2
inherit many properties from the Q-particle approximation spaces {BQ

K}K⩾Q. Indeed, we have
the following lemma.

Lemma 2.5.1 (Density of Finite-Dimensional Coefficient Spaces).
Let the infinite-dimensional Hilbert space of sequences V ⊂ ℓ2(I) be defined through Definition

2.3.6 and let the Hilbert subspace of coefficients VK ⊂ V be defined through Definition 2.5.2 for
K ⩾ Q. Then it holds that

∀ K2 > K1 ⩾ Q : VK1
⊂ VK2

and
⋃

K⩾Q

VK

∥·∥V

= V.

Proof. The set inclusion is obvious so we focus on proving the density. Note that the density
result would also be obvious had the sequence space V been equipped with the ∥ · ∥ℓ2 norm.
The density is slightly subtle precisely because we have equipped V with the non-standard ∥ · ∥V
norm.



50 CHAPTER 2. The coupled cluster equations

Recall that the union of the Q-particle approximation spaces {VK}K⩾Q is dense in Ĥ1. From
this we deduce that the union of the Q-particle approximation subspaces {ṼK}K⩾Q is dense in
span{Ψ0}⊥, where we remind the reader that ṼK = span{Ψµ : µ ∈ IK} = {Ψ ∈ VK : (Ψ,Ψ0)L̂2 =
0}.

Consequently, there exists a sequence of functions {ΨK}K⩾Q with each ΨK :=
∑

µ∈IK tKµ Ψµ ∈
ṼK such that limK→∞ ∥ΨK − Ψ∗

s∥Ĥ1 = 0. Defining for each K ⩾ Q, the sequence tK ∈ VK as
tK = {tKµ }µ∈IK , and using the definition of the ∥ · ∥V norm now yields the required density.

We are now ready to state the discrete coupled cluster equations corresponding to the approx-
imation spaces we have introduced above. As mentioned at the beginning of this section, these
equations are known in the quantum chemical literature as the Full-Coupled Cluster equations
in a finite basis.

Full-Coupled Cluster Equations in a Finite Basis:
Let the excitation index set IK be defined through Definition 2.5.1 for K ⩾ Q, let the Hilbert

subspace of coefficients VK ⊂ V be defined through Definition 2.5.2, and let the coupled cluster
function f : V → V∗ be defined through Definition 2.4.1. We seek a coefficient vector tK ∈ VK

such that for all coefficient vectors sK ∈ VK it holds that

⟨sK , f(tK)⟩V×V∗ = 0. (2.40)

The remainder of this section will be concerned with the (local) well-posedness analysis of
Equation (2.40). We begin with a definition.

Definition 2.5.3 (Restricted Coupled Cluster function on Full-CI spaces).
Let the excitation index set IK be defined through Definition 2.5.1 for K ⩾ Q and let the

Hilbert subspace of coefficients VK ⊂ V be defined through Definition 2.5.2. We define the
restricted coupled cluster function fK : VK → V∗

K as the mapping with the property that for all
tK , sK ∈ VK it holds that

⟨sK , fK(tK)⟩VK×V∗
K
:= ⟨sK , f(tK)⟩V×V∗ .

It is readily seen that solutions t∗K ∈ VK to the Full-CC equations in a finite basis (2.40)
are nothing else than zeros of the restricted coupled cluster function fK : VK → V∗

K defined
through Definition 2.5.3. The following result, whose proof can, for instance, be found in [87], is
essentially a finite-dimensional analogue of Theorem 2.4.1 and establishes a relationship between
these zeros of the restricted coupled cluster function and intermediately normalised eigenfunctions
of the Full-CI Hamiltonian HK : VK → V∗

K defined through Equation (2.7).

Theorem 2.5.2 (Relation between Restricted Coupled Cluster Zeros and Full-CI Eigenfunc-
tions).

Let the restricted coupled cluster function fK : VK → V∗
K be defined through Definition 2.5.3,

and let the Full-CI Hamiltonian HK : VK → V∗
K be defined through Equation (2.7). Then

1. For any zero t∗K = {t∗µ}µ∈IK ∈ VK of the restricted CC function, the function Ψ∗
K =

eT
∗
KΨ0 ∈ VK with T∗

K =
∑

µ∈IK t∗µXµ is an intermediately normalised eigenfunction of
the Full-CI Hamiltonian. Moreover, the eigenvalue corresponding to the eigenfunction Ψ∗

K

coincides with the discrete CC energy E∗
K,CC generated by t∗K as defined through Equation

(2.16).
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2. Conversely, for any intermediately normalised eigenfunction Ψ∗
K ∈ VK of the Full-CI

Hamiltonian, there exists t∗K = {t∗µ}µ∈IK ∈ VK such that t∗K is a zero of the restricted
CC function and Ψ∗

K = eT
∗
KΨ0 ∈ VK with T∗

K =
∑

µ∈IK t∗µXµ. Moreover, the discrete CC
energy E∗

K,CC generated by t∗K through through Equation (2.16) coincides with the eigen-
value corresponding to the eigenfunction Ψ∗

K .

In view of Theorem 2.5.2, the goal of our analysis in this section will be two-fold: first, we
would like to demonstrate, exactly as in the infinite-dimensional case, that solutions t∗K ∈ VK

of the Full-CC equations (2.40) that correspond to non-degenerate eigenpairs of the Full-CI
Hamiltonian are locally unique. Second, we wish to obtain a characterisation of the error between
solutions t∗K ∈ VK of the Full-CC equations (2.40) and solutions t∗ ∈ V of the continuous
coupled cluster equations (2.17). For the latter analysis we will appeal to classical results from
the numerical analysis of Galerkin discretisations of non-linear equations but the former task
is essentially trivial since the Full-CC equations have the same structure as the continuous CC
equations and hence our proofs from Chapter 2.4 can be copied with minor amendments. For
the sake of brevity therefore, we simply state the final result on local uniqueness of solutions to
the Full-CC equations in a finite basis (2.40).

Theorem 2.5.3 (Local Well-Posedness of the Full-Coupled Cluster Equations in a Finite Basis).

Let VK ⊂ V denote the Hilbert subspace of coefficients as defined through Definition 2.5.2
for K ⩾ Q, let the restricted coupled cluster function fK : VK → V∗

K be defined through Defi-
nition 2.5.3, let t∗K := {t∗µ}µ∈IK ∈ VK denote a zero of the restricted coupled cluster function
corresponding to any intermediately normalised eigenfunction Ψ∗

K ∈ VK of the Full-CI Hamil-
tonian HK : VK → V∗

K with non-degenerate eigenvalue E∗
K , let γK > 0 denote the inf-sup con-

stant of the shifted Full-CI Hamiltonian HK − E∗
K on {Ψ∗

K}⊥ ⊂ VK , let ΘK > 0 be defined
as ΘK := ∥e(T∗

K)†∥VK→VK∥P⊥
0 e

−T∗
K∥VK→VK with T∗

K :=
∑

µ∈IK t∗µXµ, let the continuity constant
αt∗K

> 0 and the Lipschitz continuity function Lt∗K
: R+ → R+ be defined according to Nota-

tion 2.4.2, and define the constant

T := T(K) := min
δ>0

{
δ,

γK
Lt∗K

(δ)ΘK
, 2

αt∗K

Lt∗K
(δ)

}
.

Then fK
(
BT(t

∗
K)
)

is an open subset of V∗
K , the restriction of fK to BT(t

∗
K) is a diffeomor-

phism, and for all sK ∈ BT(t
∗
K) we have the error estimate

1

2

1

αt∗K

∥fK(sK)∥V∗
K
⩽ ∥t∗K − sK∥VK

⩽ 2
ΘK

γK
∥fK(sK)∥V∗

K
. (2.41)

In particular, t∗K is the unique solution of the Full-Coupled Cluster equations in a finite basis
(2.13) in the open ball BTK

(t∗K).

Proof. The proof is essentially identical to the proof of Theorem 2.4.4 with some obvious mod-
ifications. We first obtain an expression for the Full-CC Jacobian DfK(tK) : VK → V∗

K at any
tK ∈ VK exactly as in the infinite-dimensional case. Thanks to Theorem 2.5.2, we can deduce
from this expression that the Jacobian DfK(t∗K) at any zero t∗K ∈ VK of the restricted CC
function has the form

⟨wK ,DfK(t∗K)sK⟩VK×V∗
K
=

〈 ∑
µ∈IK

wµXµΨ0, e
−T∗

K (H − E∗
K) eT

∗
K

∑
ν∈IK

sνXνΨ0

〉
Ĥ1×Ĥ−1

,
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for all sK ,wK ∈ VK with sK = {sν}ν∈IK and wK = {wµ}µ∈IK where T∗
K :=

∑
µ∈IK t∗µXµ.

In analogy with Definition 2.4.2, we can then introduce an operator AK(t∗K) : ṼK → Ĥ−1

that characterises the action of the Full-CC derivative DfK(t∗K) and show that this operator is
an isomorphism from ṼK to Ṽ∗

K exactly as in Theorem 2.4.3. The local-uniqueness result then
readily follows.

Consider the setting of Theorem 2.5.3. For very small molecules discretised in minimal basis
sets, it is possible to perform Full-CI calculations and thereby gain access to the derivative DfK(t)
of the restricted coupled cluster function at t = t∗FCI ∈ VK , i.e., at the coefficient vector t∗FCI

which generates the Full-CI ground state wave-function. It is natural to ask how the bounds that
we have derived compare to the exact norm of the inverse Df−1

K (t∗FCI). While a comprehensive
numerical study involving state-of-the-art quantum chemistry basis sets for moderately large
molecules, is computationally unfeasible, there is some hope that numerical experiments can be
performed on certain very small molecules using so-called minimal basis sets. A numerical study
of this nature is left to a future contribution but some preliminary numerical results are given in
Table 2.2 and Figures 2.1 and 2.2. Based on these results, the lower bounds that we have derived
for the operator norm ∥Df−1

K (t∗FCI)∥−1
V∗

K→VK
seem reasonable at equilibrium but tend to degrade

in the bond dissociation regime.

Molecule ∥t∗FCI∥VK

Monotonicity
constant Γ

from Eq. (2.19a) ∥Df−1
K (t∗FCI)∥

−1
V∗

K→VK
γK/ΘK

γK/ΘK

∥Df−1
K (t∗FCI)∥

−1
V∗

K→VK

BeH2 0.2343 0.0363 0.3379 0.2568 0.7599
BH3 0.2844 -0.0950 0.3060 0.2081 0.6801
HF 0.2038 -0.0083 0.2995 0.2529 0.8444
H2O 0.2687 0.0249 0.3576 0.2789 0.7799
LiH 0.1792 -0.0065 0.2628 0.2164 0.8234
NH3 0.3074 -0.0325 0.4113 0.2784 0.6769

Table 2.2: Examples of numerically computed constants for a collection of small molecules at
equilibrium geometries. The calculations were performed in STO-6G basis sets with the exception
of the HF and LiH molecules for which 6-31G basis sets were used. To simplify calculations,
the canonical Ĥ1 norm was replaced with an equivalent norm induced by the mean-field Hartree
Fock operator (see, e.g., [87]).

We now turn to the second goal of this section, namely to a study of the error between
solutions t∗K ∈ VK of the Full-CC equations (2.40) and solutions t∗ ∈ V of the continuous
coupled cluster equations (2.17). Since the Full-CC equations are simply Galerkin discretisations
of the continuous CC equations, their local well-posedness can be deduced from classical results
in non-linear numerical analysis. Indeed, we merely have to obtain an appropriate invertibility
result for the coupled cluster Fréchet derivative restricted to the coefficient subspaces {VK}K⩾Q

and we must establish that the subspaces {VK}K⩾Q have the approximation property with
respect to V. The latter demonstration is a simple consequence of the density of ∪

K⩾Q
VK in V

which has already been proven in Lemma 2.5.1. We therefore focus on obtaining the required
invertibility result.
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Figure 2.1: Numerically computed constants for the HF molecule at different bond lengths. The
equilibrium bond length is 0.9168 Angstrom. The figure on the right uses a log scale on the
y-axis.

1.5 2 2.5 3 3.5 4 4.5
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5 2 2.5 3 3.5 4 4.5
10

-3

10
-2

10
-1

10
0

Figure 2.2: Numerically computed constants for the LiH molecule at different bond lengths. The
equilibrium bond length is 1.5949 Angstrom. The figure on the right uses a log scale on the
y-axis.

We begin by defining projection operators corresponding to the various finite-dimensional
approximation spaces we have introduced.

Definition 2.5.4 (Projection Operators).
Let VK = span{Ψ0}∪ ṼK ⊂ Ĥ1 denote the finite-dimensional Q-particle approximation space

for K ⩾ Q and let VK ⊂ V denote the Hilbert subspace of coefficients as defined through Defini-
tion 2.5.2. Then

• We denote by PK : Ĥ1 → Ĥ1, the Ĥ1-orthogonal projection operator onto VK and by P⊥
K
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its complement, i.e., P⊥
K = I− PK .

• We denote by ΠK : V → V, the (·, ·)V-orthogonal projection operator onto VK and by Π⊥
K

its complement, i.e., Π⊥
K = I−ΠK .

Notation 2.5.4 (Cluster Operators Involving Projections).
Consider the setting of Definition 2.5.4 and let t ∈ V. In the sequel, we will frequently

consider cluster operators generated by ΠKt or Π⊥
Kt. We will therefore use the notation T(ΠK)

and T(Π⊥
K) respectively to denote these cluster operators, i.e., we denote

T(ΠK) :=
∑
µ∈IK

sµXµ where {sµ}µ∈IK = ΠKt ∈ VK , and

T(Π⊥
K) :=

∑
µ∈I

rµXµ where {rµ}µ∈I = Π⊥
Kt ∈ V.

We are now ready to state the main technical lemma of this section. We emphasise that the
proof of this lemma assumes that any isolated, simple eigenpair of the electronic Hamiltonian
can be approximated by a sequence of simple eigenpairs of the Full-CI Hamiltonian.

Lemma 2.5.2 (Invertibility of the coupled cluster Fréchet derivative on VK).
Let the coupled cluster function f : V→ V∗ be defined through Definition 2.4.1, for any t ∈ V

let Df(t) denote the Fréchet derivative of the coupled cluster function as defined through Equation
(2.20), let t∗ ∈ V denote a zero of the coupled cluster function corresponding to an intermediately
normalised eigenfunction Ψ∗ ∈ Ĥ1 of the electronic Hamiltonian H : Ĥ1 → Ĥ−1 with isolated,
non-degenerate eigenvalue E∗, let VK ⊂ V denote the Hilbert subspace of coefficients as defined
through Definition 2.5.2 for K ⩾ Q, let the Full-CI Hamiltonian HK : VK → V∗

K be defined
according to Definition 2.7 and let (Ψ∗

K ,E
∗
K) ∈ VK ×R be a sequence of simple eigenpairs of the

Full-CI Hamiltonians {HK}K⩾Q, i.e.,

∀ΦK ∈ VK : ⟨ΦK , HKΨ∗
K⟩VK×V∗

K
= E∗

K⟨ΦK ,Ψ
∗
K⟩Ĥ1×Ĥ−1 with E∗

K simple and such that

(2.42)

lim
K→∞

∥Ψ∗ −Ψ∗
K∥Ĥ1 = 0, lim

K→∞
|E∗ − E∗

K | = 0.

Then for all K sufficiently large, there exist a constant γK > 0 uniformly bounded below in K,
a constant ΘK > 0 uniformly bounded above in K, a constant εK > 0 such that lim

K→∞
εK = 0, a

constant ωK > 0 such that lim
K→∞

ωK = 1, and we have the estimate

inf
0̸=wK∈VK

sup
0̸=sK∈VK

⟨wK ,Df(t∗)sK⟩V×V∗

∥wK∥V∥sK∥V
⩾

γK/ωK − εK
ΘK

.

Proof. Firstly, let us remark that the existence of convergent sequence of simple eigenpaires
(Ψ∗

K ,E
∗
K) ∈ VK × R satisfying Equation (2.42) is guaranteed by well-known approximability

results for linear eigenvalue problems (see, e.g., [20, Example 5.9]).
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Let wK = {wµ}µ∈IK , sK = {sµ}µ∈IK ∈ VK be arbitrary and let the bounded linear operator
A(t∗) : Ṽ → Ṽ∗ be defined according to Definition 2.4.2. It follows from Corollary 2.4.1.1 that

⟨wK ,Df(t∗)sK⟩V×V∗ = ⟨WKΨ0,A(t∗)SKΨ0⟩Ĥ1×Ĥ−1 =
〈
WKΨ0, e

−T∗
(H − E∗) eT

∗
SKΨ0

〉
Ĥ1×Ĥ−1

,

where WK :=
∑

µ∈IK wµXµ and SK :=
∑

µ∈IK sµXµ. To avoid tedious notation, let us define
ΦW := WKΨ0 ∈ ṼK and ΦS := SKΨ0 ∈ ṼK . Obviously, we now have〈

ΦW, e
−T∗

(H − E∗) eT
∗
ΦS

〉
Ĥ1×Ĥ−1

=
〈
eT

∗
ΦS, (H − E∗) e−(T∗)†ΦW

〉
Ĥ1×Ĥ−1

. (2.43)

Since Ψ∗ is intermediately normalisable by assumption, there exists K̃0 ∈ N such that for all
K ⩾ K̃0, the eigenfunction Ψ∗

K ∈ VK is intermediately normalisable. In the remainder of this
proof, we assume that indeed K ⩾ K̃0 and we denote by t∗K := {t∗µ}µ∈I ∈ VK the coefficient
vector with the property that Ψ∗

K = eT
∗
KΨ0 where T∗

K :=
∑

µ∈IK t∗µXµ. Let us emphasise here
that since Ψ∗

K is an eigenfunction of the Full-CI Hamiltonian, it follows from Theorem 2.5.2 that
t∗K is a zero of the restricted coupled cluster function fK : VK → V∗

K defined through Definition
2.5.3.

Recalling now that ΦS is arbitrary (due to the fact that the sequence sK = {sµ}µ∈IK ∈ VK

was chosen arbitrarily), we may in particular set for any Φ∗
K,⊥ ∈ {Ψ∗

K}⊥ ⊂ VK :

ΦS := P⊥
0 e

−T∗(ΠK)Φ∗
K,⊥ ∈ ṼK ,

where T∗(ΠK) denotes the cluster operator generated by ΠKt∗ ∈ VK (recall Notation 2.5.4) and
we have used the fact that, thanks to the properties of the excitation operators {Xµ}µ∈I given
by Remark 2.5.1, it holds that e−T∗(ΠK)ΨK ∈ VK for any ΨK ∈ VK .

Plugging in this choice of ΦS in Equation (2.43) now yields

⟨WKΨ0,A(t∗)SKΨ0⟩Ĥ1×Ĥ−1 =
〈
eT

∗
e−T∗(ΠK)Φ∗

K,⊥, (H − E∗) e−(T∗)†ΦW

〉
Ĥ1×Ĥ−1︸ ︷︷ ︸

:=(I)

−
〈
eT

∗
P0e

−T∗(ΠK)Φ∗
K,⊥, (H − E∗) e−(T∗)†ΦW

〉
Ĥ1×Ĥ−1︸ ︷︷ ︸

:=(II)

. (2.44)

We claim that the term (II) is identically zero. Indeed, using the fact that eT
∗
Ψ0 = Ψ∗ by

assumption, a straightforward calculation shows that

(II) =
(
Ψ0, e

−T∗(ΠK)Φ∗
K,⊥

)
L̂2

〈
eT

∗
Ψ0, (H − E∗) e−(T∗)†ΦW

〉
Ĥ1×Ĥ−1

,

and the second term in the product above is zero as HeT
∗
Ψ0 = HΨ∗ = E∗Ψ∗.



56 CHAPTER 2. The coupled cluster equations

It therefore remains to simplify the term (I). To this end, we observe that we can write

(I) =
〈
eT

∗(Π⊥
K)Φ∗

K,⊥, (H − E∗) e−(T∗)†ΦW

〉
Ĥ1×Ĥ−1

=
〈
Φ∗

K,⊥, (H − E∗) e−(T∗)†ΦW

〉
Ĥ1×Ĥ−1︸ ︷︷ ︸

:=(IA)

+
〈(
eT

∗(Π⊥
K) − I

)
Φ∗

K,⊥, (H − E∗) e−(T∗)†ΦW

〉
Ĥ1×Ĥ−1︸ ︷︷ ︸

:=(IB)

.

Focusing first on the term (IB) and using the Cauchy-Schwarz inequality, we may write

(IB) ⩾ −
∥∥∥eT∗(Π⊥

K) − I
∥∥∥
Ĥ1→Ĥ1

∥H − E∗∥
Ĥ1→Ĥ−1

∥∥Φ∗
K,⊥

∥∥
Ĥ1

∥∥e−(T∗)†ΦW

∥∥
Ĥ1 . (2.45)

We now claim that in fact

lim
K→∞

∥∥∥eT∗(Π⊥
K) − I

∥∥∥
Ĥ1→Ĥ1

= 0.

Indeed, thanks to the boundedness properties of the excitation operators given in Theo-
rem 2.3.3, it holds that

∥e−T∗(ΠK)∥
Ĥ1→Ĥ1 ⩽ e∥T

∗(ΠK)∥
Ĥ1→Ĥ1 ⩽ eβ∥ΠKt∗∥V ⩽ eβ∥t

∗∥V ,

where the constant β > 0 depends only on Q.
Therefore, we need only show that limK→∞ ∥eT

∗−eT∗(ΠK)∥
Ĥ1→Ĥ1 = 0. Recall however, that

the exponential function is of class C∞ on the algebra of bounded operators on Ĥ1, and thus it
suffices to show that

lim
K→∞

∥T∗ −T∗(ΠK)∥
Ĥ1→Ĥ1 = 0.

But this is an obvious consequence of the density of the coefficient spaces {VK}K⩾Q in V. Indeed,

lim
K→∞

∥T∗ −T∗(ΠK)∥
Ĥ1→Ĥ1 ⩽ β lim

K→∞
∥t∗ −ΠKt∗∥V = 0. (2.46)

Consequently, combining Equations (2.45) and (2.46), we obtain the existence of a constant
ε1,K > 0 with the property that limK→∞ ε1,K = 0 and such that

(IB) ⩾ −ε1,K
∥∥Φ∗

K,⊥
∥∥
Ĥ1

∥∥e−(T∗)†ΦW

∥∥
Ĥ1 . (2.47)

Let us now return to the term (IA). Notice that we may write

(IA) =
〈
Φ∗

K,⊥, (H − E∗) e−(T∗
K)†ΦW

〉
Ĥ1×Ĥ−1︸ ︷︷ ︸

:=(IAA)

+
〈
Φ∗

K,⊥, (H − E∗)
(
e−(T∗)† − e−(T∗

K)†
)
ΦW

〉
Ĥ1×Ĥ−1︸ ︷︷ ︸

:=(IAB)

,

where we recall from Equation (2.42) that t∗K = {t∗µ}µ∈IK ∈ VK is the coefficient vector such
that eT

∗
KΨ0 = Ψ∗

K ∈ VK .
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We first simplify the term (IAB). Thanks to the Cauchy-Schwarz inequality we may write

(IAB) ⩾ −
∥∥∥e−(T∗)† − e−(T∗

K)†
∥∥∥
Ĥ1→Ĥ1

∥∥∥e(T∗)†
∥∥∥
Ĥ1→Ĥ1

∥H − E∗∥
Ĥ1→Ĥ−1

∥∥Φ∗
K,⊥

∥∥
Ĥ1

∥∥e−(T∗)†ΦW

∥∥
Ĥ1 .

(2.48)

We now claim that in fact limK→∞

∥∥∥e−(T∗)† − e−(T∗
K)†
∥∥∥
Ĥ1→Ĥ1

= 0. Indeed, an easy calcu-
lation using the continuity properties of cluster operators given by Theorem 2.3.3, shows the
existence of a constant β̃† > 0, depending only on Q, such that for any K ⩾ Q it holds that∥∥∥e−(T∗)† − e−(T∗

K)†
∥∥∥
Ĥ1→Ĥ1

⩽ β̃†
∥∥∥eT∗

Ψ0 − eT
∗
KΨ0

∥∥∥
Ĥ1

= ∥Ψ∗ −Ψ∗
K∥Ĥ1 . (2.49)

The claim now follows by using the convergence of the approximate eigenvector Ψ∗
K ∈ VK to

Ψ∗ ∈ Ĥ1 from Equation (2.42). Consequently, we obtain the existence of a constant ε2,K > 0
with the property that limK→∞ ε2,K = 0 and such that

(IB) ⩾ −ε2,K
∥∥Φ∗

K,⊥
∥∥
Ĥ1

∥∥e−(T∗)†ΦW

∥∥
Ĥ1 . (2.50)

Focusing finally on the term (IAA), a simple calculation shows that for any ΦW ∈ ṼK , we have
that e−(T∗

K)†ΦW ∈ {Ψ∗
K}⊥ ⊂ VK . Furthermore, E∗ is a simple, isolated eigenvalue by assumption

and limK→∞ E∗
K = E∗. Since Φ∗

K,⊥ ∈ {Ψ∗
K}⊥ ⊂ VK is arbitrary, we therefore deduce the existence

of K̂0 ∈ N sufficiently large such that for all K ⩾ K̂0 the shifted Full-CI Hamiltonian HK − E∗

satisfies an inf-sup condition on {Ψ∗
K}⊥ ⊂ VK , and as a consequence,

sup
0̸=Φ∗

K,⊥∈{Ψ∗
K}⊥

(IAA)

∥Φ∗
K,⊥∥Ĥ1

= sup
0̸=Φ∗

K,⊥∈{Ψ∗
K}⊥

〈
Φ∗

K,⊥, (H − E∗) e−(T∗
K)†ΦW

〉
Ĥ1×Ĥ−1

∥Φ∗
K,⊥∥Ĥ1

⩾ γK
∥∥e−(T∗

K)†ΦW

∥∥
Ĥ1 ,

(2.51)
where γK denotes the inf-sup constant of the shifted Full-CI Hamiltonian HK −E∗ on {Ψ∗

K}⊥ ⊂
VK for K ⩾ K̂0. For the remainder of this proof, we assume that indeed K ⩾ K̂0.

Notice that this last bound can be written as

γK
∥∥e−(T∗

K)†ΦW

∥∥
Ĥ1 = γK

∥∥e−(T∗
K−T∗)†e−(T∗)†ΦW

∥∥
Ĥ1 ⩾

γK

∥e(T∗
K−T∗)†∥

Ĥ1→Ĥ1

∥∥e−(T∗)†ΦW

∥∥
Ĥ1 ,

where the inequality follows from the invertibility of the exponential map. Using now a similar
calculation to the one used to obtain Inequality (2.49), it can easily be shown that
limK→∞ ∥e(T

∗
K−T∗)†∥

Ĥ1→Ĥ1 = 1. Consequently, we obtain the existence of constant ωK > 0 with
the property that limK→∞ ωK = 1 and such that

sup
0̸=Φ∗

K,⊥∈{Ψ∗
K}⊥

(IAA)

∥Φ∗
K,⊥∥Ĥ1

= sup
0̸=Φ∗

K,⊥∈{Ψ∗
K}⊥

〈
Φ∗

K,⊥, (H − E∗) e−(T∗
K)†ΦW

〉
Ĥ1×Ĥ−1

∥Φ∗
K,⊥∥Ĥ1

⩾
γk
ωk

∥∥e−(T∗)†ΦW

∥∥
Ĥ1 .

(2.52)
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Combining now the estimates (2.43)-(2.52) allows us to conclude that

sup
0 ̸=sK∈VK

⟨wK ,Df(t∗)sK⟩V×V∗

∥sK∥V
= sup

0 ̸=ΦS∈ṼK

⟨WKΨ0,A(t∗)SKΨ0⟩Ĥ1×Ĥ−1

∥ΦS∥Ĥ1

⩾ sup
0 ̸=Φ∗

K,⊥∈{Ψ∗
K}⊥

(IAA) + (IAB) + (IB)

∥P⊥
0 e

−T∗(ΠK)Φ∗
K,⊥∥Ĥ1

⩾
γK/ωK − ε1,K − ε2,K∥∥P⊥

0 e
−T∗(ΠK)

∥∥
Ĥ1

∥e−(T∗)†ΦW

∥∥
Ĥ1

⩾
γK/ωK − ε1,K − ε2,K

∥e(T∗)†∥
Ĥ1→Ĥ1∥P⊥

0 e
−T∗(ΠK)∥

Ĥ1→Ĥ1

∥∥ΦW

∥∥
Ĥ1 .

Defining the constants ΘK := ∥e(T∗)†∥
Ĥ1→Ĥ1∥P⊥

0 e
−T∗(ΠK)∥

Ĥ1→Ĥ1 , and εK := ε1,K + ε2,K and
taking the infimum over all coefficient vectors wK ∈ VK now yields the required estimate. The
fact that the constant ΘK is uniformly bounded above in K is a consequence of the continuity
properties of exponential cluster operators together with the density of the union of subspaces
∪

K⩾Q
VK in V. The fact that the inf-sup constant γK is uniformly bounded below in K is a

consequence of the eigenvalue convergence E∗
K → E∗ (see also the arguments in Remark 2.4.3).

Equipped with Lemma 2.5.2, we are now ready to state the final result of this section, which
concerns the error between the ground state solution of the Full-CC equations in a finite basis
(2.40) and the exact solutions of the continuous CC equations (2.17).

Theorem 2.5.5 (Error Estimates for Full-CC in a Finite Basis).
Let the coupled cluster function f : V→ V∗ be defined through Definition 2.4.1, for any t ∈ V

let Df(t) denote the Fréchet derivative of the coupled cluster function as defined through Equation
(2.20), let t∗ ∈ V denote a zero of the coupled cluster function corresponding to an intermediately
normalised eigenfunction Ψ∗ ∈ Ĥ1 of the electronic Hamiltonian H : Ĥ1 → Ĥ−1 with isolated,
non-degenerate ground state eigenvalue E∗, let VK ⊂ V denote the Hilbert subspace of coefficients
as defined through Definition 2.5.2 for K ⩾ Q, let the Full-CI Hamiltonian HK : VK → V∗

K be
defined according to Definition 2.7, for K sufficiently large, let (Ψ∗

K ,E
∗
K) ∈ VK ×R be a sequence

of simple eigenpairs of the Full-CI Hamiltonians {HK}K⩾Q, i.e.,

∀ΦK ∈ VK : ⟨ΦK , HKΨ∗
K⟩VK×V∗

K
= E∗

K⟨ΦK ,Ψ
∗
K⟩Ĥ1×Ĥ−1 with E∗

K simple and such that

lim
K→∞

∥Ψ∗ −Ψ∗
K∥Ĥ1 = 0, lim

K→∞
|E∗ − E∗

K | = 0,

and let the constants γK ,ΘK , εK , ωK > 0 be defined as in the proof of Lemma 2.5.2.
Then there exists K0 ∈ N and a constant δ0 > 0 such that for all K ⩾ K0 there exists

a unique solution t∗K ∈ VK to the Full-CC equations in a finite basis (2.40) in the closed ball

BδK (t∗) where δK = δ0
γK/ωK − εK

ΘK
.

Moreover, there exists a constant C > 0 such that ∀K ⩾ K0 we have the quasi-optimality
result

∥t∗K − t∗∥V ⩽ C
ΘK

γK/ωK − εK
inf

sK∈VK

∥sK − t∗∥V, (2.53)
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and we have the residual-based error estimate

∥t∗K − t∗∥V ⩽ 2
∥∥∥Df (t∗K)

−1
∥∥∥
V∗→V

∥f (t∗K)∥V∗ . (2.54)

Proof. As mentioned at the beginning of this section, the Full-Coupled Cluster equations in a
finite basis (2.40) are simply a Galerkin discretisation of the continuous coupled cluster equations
(2.17). Galerkin discretisations of non-linear equations have been widely studied in the literature
on non-linear numerical analysis. In particular, the proof of Theorem 2.5.5 is a direct application
of [12, Theorem 7.1]. We merely have to confirm that the assumptions of [12, Theorem 7.1] hold,
and this amounts to

1. Establishing that the coupled cluster Fréchet derivative at t∗ ∈ V, which we denote Df(t∗),
satisfies the discrete inf-sup condition

∃ΥK > 0: inf
0̸=wK∈VK

sup
0̸=sK∈VK

⟨wK ,Df(t∗)sK⟩V×V∗

∥wK∥V∥wS∥V
⩾ ΥK ; (2.55)

2. Establishing that the coefficient subspaces {VK}K⩾Q satisfy the following approximability
condition:

lim
K→∞

inf
0 ̸=sK∈VK

1

Υ2
K

∥t∗ − sK∥V = 0. (2.56)

The discrete inf-sup condition (2.55) has been established in Lemma 2.5.2 with constant

ΥK =
γK/ωK − εK

ΘK
which will obviously be positive for all K sufficiently large since εK → 0. It

therefore remains to establish the approximability result (2.56) but this is a simple consequence
of the previously exploited fact that the union of subspaces ∪

K⩾Q
VK is dense in V together with

the fact that, as shown in the proof of Lemma 2.5.2, the constant γK is uniformly bounded below
in K and the constant ΘK is uniformly bounded above in K.

We conclude this section with several remarks.

Remark 2.5.2 (Necessity of Assumptions of Lemma 2.5.2 in Theorem 2.5.5).
Consider the setting of Lemma 2.5.2 and Theorem 2.5.5 and recall in particular the assump-

tion that any isolated, simple eigenpair of the electronic Hamiltonian can be approximated by a
sequence of simple eigenpairs of the Full-CI Hamiltonian as expressed through Equation (2.42). It
is readily seen from the proof of Lemma 2.5.2 that this assumption is not required if one considers
invertibility of the CC Fréchet derivative Df(t∗) on VK at t∗ = t∗GS. Indeed, in this special case,
the discrete inf-sup condition for the shifted Full-CI Hamiltonian HK − E∗ on {Ψ∗

K}⊥ ⊂ VK can
be replaced with the coercivity of the shifted electronic Hamiltonian H − E∗

GS on {Ψ∗
GS}⊥ ⊂ Ĥ1.

In this special case therefore, the proof of Lemma 2.5.2 holds without any assumption beyond
the simplicity of the ground state energy and the intermediate normalisability of the ground state
wave-function. Thus we can deduce the asymptotic local well-posedness of the Full-CC equations
in a finite-basis (2.17) in a neighbourhood of t∗GS ∈ V according to Theorem 2.5.5 without any
additional assumptions.

Remark 2.5.3 (Comparing the Conclusions of Theorems 2.5.3 and 2.5.5).
Consider the settings of Theorems 2.5.3 and 2.5.5. Let us emphasise here that, in contrast

to Theorem 2.5.3, Theorem 2.5.5 does not explicitly require that the ground state wave-function
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in VK of the Full-CI Hamiltonian be intermediately normalisable or that the associated ground
state eigenvalue be simple. Instead these properties are inherited (for K large enough) from
the properties of the exact electronic Hamiltonian H : Ĥ1 → Ĥ−1 thanks to the density of the
Q-particle approximation spaces {VK}K⩾Q in Ĥ1. More significantly, Theorem 2.5.5 provides
error estimates for the Full-CC equations in a finite basis with respect to the zeros of the exact
(infinite-dimensional) coupled cluster function.

Remark 2.5.4 (Error Estimates for the Discrete Coupled Cluster Energies).
It is natural, at this point, to ask whether a priori and residual-based error estimates of the

form (2.53) and (2.54) can be obtained for the Full-CC discrete energies. Quasi-optimal a priori
error estimates for the discrete CC energies have been obtained by Schneider and Rohwedder
[83, Theorem 4.5] using the dual weighted residual-based approach developed by Rannacher and
coworkers [92]. The arguments of Schneider and Rohwedder can readily be seen to apply in our
framework, and the proof and statement of [83, Theorem 4.5] can be thus be copied nearly word-
for-word, the only difference being that the local monotonicity constant that appears in the a priori
error estimate in [83, Theorem 4.5] is replaced with the discrete inf-sup constant that we have
derived in Lemma 2.5.2. The establishment of residual-based error estimates for the discrete CC
energies, which requires considerably more work but can be achieved using the tools developed in
this thesis, will be addressed in a forthcoming contribution.
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Chapter 3

Introduction

The work of Part II was carried out in collaboration with Yvon Maday and Muhammad Hassan.

Numerical methods for solving partial differential equations (PDEs) aim at producing an
approximate solution of a given problem. In many cases, such an approximation is obtained
without guaranteeing the quality of this solution. The error estimation of such approximate
solutions is classified into two types: the a priori and a posteriori error estimation. The a priori
error estimation ensures the convergence of the discrete solutions towards the exact one at a
certain rate that depends on the degrees of freedom. The a posteriori error estimation provides
computable error bounds controlling the difference between the approximate result and the true
solution. For mesh-based methods, a posteriori error estimation also yields the error distribution
in different elements and suggest how to refine the mesh in areas with large error. This is called
an adaptive mesh refinement (AMR) strategy and it is widely used in finite element method
(FEM) [109, 6, 34, 108, 80].

In the past several decades, a large number of articles about the a posteriori error estimation
have been published, owing to its crucial role in the self-adaptive methods, see e.g., [98, 97,
71, 3, 88] for a more detailed presentation. Our work explores the application of a posteriori
error estimation for quantum chemistry calculations, which describe the state of basic particles
using wave functions and yield the energy of a given through the solution of an eigenvalue
problem involving a Hamiltonian. Due to the extremely high-dimensionality of the solution
space and the very limited computational resources, approximations are widely used in these
numerical calculations. Therefore, a posteriori error estimation can serve as a useful and powerful
mathematical tool yielding the accuracy of approximate solutions.

Many numerical methods for approximating the state and energy of a chemical system consist
of resolving a nonlinear eigenvalue problem. This includes the Gross-Pitaevskii equation which
is studied in our work, the Hartree-Fock equations and the Kohn-Sham equations, etc. For the a
priori error analysis of these equations, we refer to papers [15, 107, 13, 23, 14] and the references
therein. The a posteriori error analysis for nonlinear eigenvalue problems began with [67] and
is followed by [23, 31, 32]. Adaptive refinement methods for nonlinear eigenvalue problem are
studied in [32, 31, 21, 22, 54, 101]. Note that these adaptive methods are based on finite element
discretisations. For planewave discretisations, we have the a posteriori studies in [16, 39] and a
first error balance strategy proposed in [38]. The idea of this error balance strategy is to divide
the numerical approximation error into two sources which originate respectively from the limited
degrees of freedom used in the numerical approximation and the limited number of iterations in
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the numerical solution process. The accuracy is improved by decreasing one of those two error
source according to their contributions in the total error , which is quantified with a residual-
based a posteriori error estimator.

The basic strategy in [38] is formulated as follows:

1. The numerical calculation begins by fixing the degree of freedom and increasing the number
of iterations until the iteration residual is below the discretisation residual.

2. The degrees of freedom is increased by two.

3. Repeat the above process until the target accuracy is achieved.

Of course, the above stopping criteria and the manner of increasing the degrees of freedom might
not be the optimal way of using computational resources. This motivates us to study the optimal
strategy of performing numerical calculations in our work.

Under the same context as in [38], the aim of this work is to study how to design numeri-
cal calculation strategy such that the simulation is performed efficiently, in the sense that the
calculation accuracy and the computational cost are well balanced. Obviously, the accuracy of
a numerical approximation can be improved by simply resolving the problem in a large approx-
imation space and adding more iterations, but this is hardly an optimal use of computational
resources. In our work, we explore the optimal way to distribute the computation resource for
reducing one of the two error sources at all stages of numerical computation. We first explore the
optimal (computationally cheapest) way of achieving a given accuracy of the numerical solution
using a probabilistic method and then propose near-optimal strategy to achieve given accuracy
with a rather low computational cost.

The present work focuses on the numerical solution of Gross-Pitaevskii type equations, a sim-
ple but representative problem in quantum chemistry. With the help of a probabilistic method,
we first explore the optimal way of performing the numerical calculations, the so-called optimal
path. Based on this optimal path, we will summarize some key features of the optimal error
balance process. We then aim at proposing near-optimal strategy such that the finally obtained
numerical solution achieves target accuracy while maintaining rather cheap calculation cost. The
long term goal is to propose near-optimal strategy for the numerical solution of more complex
quantum chemistry methods such as the Hartree-Fock equations, Kohn-Sham eqautions, and
eventually other ab initio methods.

The remainder of these two chapters is organized as follows. In Chapter 4.1, we introduce
a linear elliptic source problem, including the problem description, error analysis and general
numerical solution process. In Chapter 4.2, based on these insights, we transfer this linear elliptic
source problem to the Gross-Pitaevskii source problem by adding a suitable non-linearity, and
we study the solution to this problem. In Chapter 4.3, we introduce the optimal path strategy,
which explores the optimal way of numerically solving these above linear and nonlinear problems.
Chapter 4.4 offers more complementary tests and analyzes the mechanisms that generates these
optimal paths for different problems. In Chapter 4.5, we propose two near-optimal strategies
for resolving both the linear and nonlinear problems. In Chapter 5, we apply directly our
nearly optimal strategies for the numerical solution of the Gross-Pitaevskii equation to verify the
usability of our strategies in solving eigenvalue problem.



Chapter 4

The optimal path problem and
near-optimal strategies

4.1 A linear elliptic source problem

4.1.1 Problem description
In this section, we consider the following energy minimization problem

E∗ = min

{
E(v) :=

1

2

∫ 2π

0

|∇v|2 + 1

2

∫ 2π

0

V v2 − ⟨f, v⟩X′,X , v ∈ X
}
. (4.1)

This problem is set on the torus defined as T = R/2πZ and X = H1(T) is the Sobolev space
consisting of functions with square-integrable first-order weak derivatives.1 In addition, we de-
note by X ′ = H−1(T) the dual space of X. Besides, we assume that V ∈ H1(T), f ∈ H−1(T)
and that V is bounded from below by Vmin > 0 . Any solution u ∈ X of the above minimization
problem (4.1) satisfies the following Euler-Lagrange equation

∀v ∈ X,
∫ 2π

0

∇u · ∇v +
∫ 2π

0

V uv = ⟨f, v⟩X′,X . (4.2)

The above variational formulation is equivalent to the following representation using duality
pairing notation:

∀v ∈ X, ⟨−∆u+ V u− f, v⟩X′,X = 0, (4.3)

where ∆u is defined in the distribution sens and we thus define the linear operator A := −∆+V
with domain H2(T) ⊂ X and form domain X.

After giving the weak form of this problem, now we show the existence and uniqueness of
the solution ,i.e., there exists a unique solution u ∈ X of the weak problem (4.2), which is, as
consequence, also the unique minimizer of the energy functional E defined in (4.1). The above
result is a direct consequence by applying the Lax-Milgram Lemma [11] in space X with the
bilinear form a : X ×X → R

∀u, v ∈ X, a(u, v) =

∫ 2π

0

∇u · ∇v +
∫ 2π

0

V uv, (4.4)

1This space coincides with the space of all functions u in H1(0, 2π) such that u(0) = u(2π).
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and with the linear functional b : X → R

∀v ∈ X, b(v) = ⟨f, v⟩X′,X . (4.5)

Indeed, it is easily proven that the bilinear form a : X × X → R possesses the continuity and
ellipticity properties on X. More precisely,

• The bilinear form a : X ×X → R defined through Equation (4.4) is continuous on X:

∀v, w ∈ X, |a(v, w)| ⩽ βa∥v∥H1 ∥w∥H1 , (4.6)

where βa = max{1, ∥V ∥L∞}.

• The bilinear form a : X ×X → R defined through Equation (4.4) is coercive on X:

∀v ∈ X, |a(v, v)| ⩾ γa∥v∥2H1 , (4.7)

where γa = min{1, Vmin}.

Remark 4.1.1.
In the case where f belongs to L2(0, 2π), we can also interpret the solution of the minimization

problem as follows, it is the solution to the strong problem: find u ∈ H2(0, 2π){
−∆u+ V u = f, on [0, 2π],

u(0) = u(2π), u′(0) = u′(2π).
(4.8)

Indeed, we deduce from the regularity of f that u ∈ H2(0, 2π), which guarantees the well-posedness
of derivative u′. Next, it is straightforward to deduce the boundary condition u′(0) = u′(2π).

After showing the existence and uniqueness of the solution u ∈ X to the Equation (4.2), now
we begin the numerical solution of this problem, which aims at finding a numerical approximate
solution in a finite-dimensional subspace XN ⊂ X defined below. Applying the Ritz-Galerkin
discretisation method over XN ⊆ X yields a linear system of equations which is resolved using
a direct or an iterative method.

In what follows, for the sake of simplicity, we shall restrict our consideration to a specific
form of functions f and V , assume them to be even. Consequently, in our case, both v and u
are even functions, allowing us to naturally reduce X to its even part:

X = H1
even(T) := {v ∈ H1(T)|v is even function}.

The set of functions {ei : x 7→ cos(ix), i ∈ N∗} ∪ {e0 : x 7→ 1√
2
} constitute an orthogonal basis of

X. The Fourier spectral approximation of this weak problem consists of defining the family of
finite-dimensional subspaces (XN )N∈N of X as

∀N ∈ N, XN := Span{ei, 0 ⩽ i ⩽ N, i ∈ N}, (4.9)

and looking for discrete solution uN in the spaceXN . Let us recall that for real-valued 2π-periodic
even function v ∈ X, we can write

∀x ∈ [0, 2π], v(x) =
∑
i∈N

v̂iei(x), (4.10)
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where v̂i is the i-th Fourier cosine coefficient of v and is defined as

∀i ∈ N, v̂i :=
1

π

∫ 2π

0

v(x)ei(x)dx.

With this choice of basis at hand, we have a simple expression for the norms (L2 or H1 or H−1)
of v, i.e.,

∥v∥L2 =

(∫ 2π

0

v2
) 1

2

=
√
π

(∑
i∈N

v̂2i

) 1
2

,

and for r ∈ {1,−1}, we have the function norm defined as follows

∥v∥Hr =
√
π

(∑
i∈N

(1 + i2)rv̂2i

) 1
2

. (4.11)

More generally, for any r ∈ R, we define the Sobolev space

Hr
even(T) :=

{
v : T→ R

∣∣v =
∑
i∈N

v̂iei and
∑
i∈N

(1 + i2)rv̂2i < +∞

}
, (4.12)

with corresponding Hr-norm defined as

∥v∥Hr =
√
π

(∑
i∈N

(1 + i2)rv̂2i

) 1
2

. (4.13)

Remark 4.1.2.
In what follows, we choose

∀x ∈ [0, 2π], V (x) = 1 +
∑
i∈N∗

cos(ix)

i2
and f(x) =

∑
i∈N∗

2cos(ix)

i0.05
.

Note that

∀x ∈ [0, 2π], V (x) =
x2

4
− πx

2
+
π2

6
+ 1,

that can be derived, e.g. from [110, P46]. Consequently, it is easy to check that V ∈ L∞(T) ∩
H

3
2−ϵ (ϵ > 0) and that the maximum and minimum value of function V over [0, 2π] are respec-

tively ∥V ∥L∞ = 1 + π2

6 and Vmin = 1 − π2

12 . Besides, f ∈ H−1(T) as follows from the simple
calculation

∥f∥H−1 =

(∑
i∈N∗

4π

1 + i2
· i−0.1

) 1
2

<

(∑
i∈Z∗

4π

i2.1

) 1
2

<∞.

After introducing the Fourier spectral approximation, now we state the weak problem in a
finite-dimensional discretisation space setting: For N ∈ N∗, find uN ∈ XN such that

∀vN ∈ XN , a(uN , vN ) = b(vN ). (4.14)

By the Lax-Milgram Lemma, the above discrete problem has exactly one solution. Besides, the
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solution uN also minimizes the energy functional defined through (4.1) over space XN ,

E(uN ) = min
vN∈XN

E(vN ) =: E∗
N . (4.15)

4.1.2 A priori and a posteriori error estimation

The aim of this section is to perform the a priori and a posteriori analysis. For the a priori error
analysis, the aim is to guarantee the convergence of the discrete solution uN ∈ XN of problem
(4.14) towards the solution u ∈ X of problem (4.2) when N −→ ∞. The derivation is a direct
application of Céa’s Lemma [19] and we have the following a priori estimation:

∥u− uN∥H1 ⩽
βa
γa

min
vN∈XN

∥u− vN∥H1 , (4.16)

where βa is the continuity constant of a : X × X → R defined through (4.6) and γa is the
coercivity constant of a : X ×X → R defined through (4.7). Beside, we also have the following
energy estimate.

1

2
γa∥u− uN∥2H1 ⩽ E(uN )− E(u) ⩽

1

2
βa∥u− uN∥2H1 , (4.17)

indeed we have: for any vN ∈ XN ,

E(vN )− E(u) =
1

2
a(vN , vN )− b(vN )− 1

2
a(u, u) + b(u)

=
1

2
a(vN , vN )− a(u, vN )− 1

2
a(u, u) + a(u, u)

=
1

2
a(vN , vN )− a(u, vN ) +

1

2
a(u, u)

=
1

2
a(vN , vN )− 1

2
a(u, vN )− 1

2
a(vN , u) +

1

2
a(u, u)

=
1

2
a(vN − u, vN − u),

(4.18)

where in the above derivation we use the fact that u ∈ X is the solution of the weak problem
(4.2) and that the bilinear form a : X × X → R is symmetric. Inserting the discrete solution
uN ∈ XN into the above expression and using the continuity and coercivity of a : X ×X → R in
addition, yields the energy estimate given by Equation (4.17).

For any N ∈ N∗, we define ΠN : X → XN being the L2-orthogonal projection operator onto
XN and we extend it continuously into X ′ such that ΠN is defined from X ′ to XN . In addition,
we define its complementary Π⊥

N := I−ΠN . Then, for any v ∈ X with Fourier expansion

v =
∑
i∈N

v̂iei,

we have
ΠNv =

∑
0⩽i⩽N

v̂iei and Π⊥
Nv =

∑
i>N

v̂iei.

The convergence rate of the truncated series ΠNv towards v depends on the regularity of function
v: for any real numbers r and s with s < r, we have [18]

∀v ∈ Hr(T), ∥v −ΠNv∥Hs ⩽
1

Nr−s
∥v −ΠNv∥Hr ⩽

1

Nr−s
∥v∥Hr . (4.19)



4.1. A linear elliptic source problem 69

Moreover, we point out that the L2-orthogonal projection operator ΠN also satisfies the following
H1-orthogonal relation

∀v ∈ X, ∀wN ∈ XN ,

∫ 2π

0

∇(v −ΠNv) · ∇wN +

∫ 2π

0

(v −ΠNv)wN = 0. (4.20)

In addition to the above classical a priori error estimate given by Equation (4.16), we also
have the following classical L2 error estimate based on the Aubin-Nitsche duality argument (see,
e.g., [9, Theorem 5.4.8]).

Lemma 4.1.1. Let u ∈ X be the weak solution of problem (4.2) and for N ∈ N∗, let uN ∈ XN

be the solution of discrete problem (4.14). Then there exits constant C1 > 0 such that

∥u− uN∥L2 ⩽ C1N
−1∥u− uN∥H1 , (4.21)

Remark 4.1.3.
In the following chapters of the thesis, by an abuse of notation, we will use the constant

C1, C2 or C3 several times in different lemmas, theorems. It is important to note that in each
statement, those constants represent different values and each specific value will be defined within
the proof.

Proof. For showing the L2 convergence, we firstly introduce the following adjoint problem: find
φ ∈ X such that

∀v ∈ X, a(v, φ) =

∫ 2π

0

v(u− uN ), (4.22)

where a is the bilinear form defined in the weak problem (4.2).
The existence and uniqueness of the solution φ is a direct consequence by applying the Lax-

Milgram Lemma. In addition, we have the following classical elliptic regularity result [40]: there
exists constant c1 > 0 such that

∥φ∥H2 ⩽
1

c1
∥u− uN∥L2 . (4.23)

Combining the above estimate with Estimate (4.19) and recalling the Galerkin orthogonality
that we have a(u− uN , vN ) = 0 for any vN ∈ XN , we deduce that

∥u− uN∥2L2 =

∫ 2π

0

(u− uN )2

= a(φ, u− uN )

= a(φ−ΠNφ, u− uN )

⩽ βa∥φ−ΠNφ∥H1 ∥u− uN∥H1

⩽ βaN
−1∥φ∥H2 ∥u− uN∥H1

⩽
βa
c1N
∥u− uN∥L2 ∥u− uN∥H1 ,

where βa is the continuity constant of a : X × X → R defined through (4.6). From the above
derivation we deduce directly (4.21) and we have C1 = βa

c1
.

Additionally, we have the following super convergence result.
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Theorem 4.1.1. Let u ∈ X be the weak solution of problem (4.2), for N ∈ N∗, let uN ∈ XN be
the solution of discrete problem (4.14), let ΠN : X ′ → XN be the orthogonal projection operator
onto space XN , let V ∈ Hs(T) for some s > 1

2 be the potential function in problem (4.2) and let
us denote by r = min{2, s}. Then for N large enough:

• There exits constant C2 > 0 such that

∥ΠNu− uN∥H1 ⩽ C2N
− r

2−1∥u− uN∥H1 . (4.24)

• There exits constant C3 > 0 such that

∥ΠNu− uN∥L2 ⩽ C3N
−r−1∥u− uN∥H1 . (4.25)

Specifically, for our chosen potential function V defined in Remark 4.1.2, we have

∥ΠNu− uN∥H1 ⩽ C2N
− 7

4+ϵ∥u− uN∥H1 (4.26)

and
∥ΠNu− uN∥L2 ⩽ C3N

− 5
2+ϵ∥u− uN∥H1 , (4.27)

where ϵ > 0.

Proof. At the first step, using the Galerkin orthogonality relation, we have the following equality:

a(uN −ΠNu, uN −ΠNu) = a(u−ΠNu, uN −ΠNu). (4.28)

For the left-hand side of Equation (4.28), we have

a(uN −ΠNu, uN −ΠNu) ⩾ γa∥uN −ΠNu∥2H1 , (4.29)

where γa is the coercivity constant of a : X ×X → R defined through (4.7). For the right-hand
side of Equation (4.28), using the orthogonality relation (4.20), we deduce that

a(u−ΠNu, uN −ΠNu) =

∫ 2π

0

∇(u−ΠNu) · ∇(uN −ΠNu) +

∫ 2π

0

V (u−ΠNu)(uN −ΠNu)

=

∫ 2π

0

V (u−ΠNu)(uN −ΠNu)

⩽ ∥V ∥L∞ ∥u−ΠNu∥L2 ∥uN −ΠNu∥L2 .
(4.30)

For the aim of bounding the term ∥uN − ΠNu∥L2 , we introduce a new adjoint problem: find
ϑ ∈ X such that

∀v ∈ X, a(v, ϑ) =

∫ 2π

0

v(uN −ΠNu). (4.31)

Similarly to the problem (4.22), the existence and uniqueness of the solution ϑ is a direct conse-
quence by applying the Lax-Milgram Lemma and there exists c2 > 0 such that

∥ϑ∥H2 ⩽ c2∥uN −ΠNu∥L2 . (4.32)
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And we therefore have

∥uN −ΠNu∥2L2 =

∫ 2π

0

(uN −ΠNu)
2

= a(ϑ, uN −ΠNu)

= a(ϑ−ΠNϑ, uN −ΠNu) + a(ΠNϑ, uN −ΠNu)

= a(ϑ−ΠNϑ, uN −ΠNu) + a(ΠNϑ, u−ΠNu)

where the last step comes from the Galerkin orthogonality. Recalling Equation (4.20) and Esti-
mate (4.19), we deduce that

∥uN −ΠNu∥2L2 = a(ϑ−ΠNϑ, uN −ΠNu) +

∫ 2π

0

∇(ΠNϑ) · ∇(u−ΠNu) +

∫ 2π

0

VΠNϑ(u−ΠNu)

= a(ϑ−ΠNϑ, uN −ΠNu) +

∫ 2π

0

VΠNϑ(u−ΠNu)−
∫ 2π

0

ΠN (VΠNϑ)(u−ΠNu)

= a(ϑ−ΠNϑ, uN −ΠNu) +

∫ 2π

0

[VΠNϑ−ΠN (VΠNϑ)](u−ΠNu)

⩽ ∥V ∥L∞ ∥ϑ−ΠNϑ∥L2 ∥uN −ΠNu∥L2 + ∥VΠNϑ−ΠN (VΠNϑ)∥L2 ∥u−ΠNu∥L2

⩽ N−2∥V ∥L∞ ∥ϑ∥H2 ∥uN −ΠNu∥L2 +N−r∥VΠNϑ∥Hr ∥u−ΠNu∥L2

⩽ N−2∥V ∥L∞ ∥ϑ∥H2 ∥uN −ΠNu∥L2 +N−r∥V ∥Hr ∥ΠNϑ∥Hr ∥u−ΠNu∥L2

⩽ c2N
−2∥V ∥L∞ ∥uN −ΠNu∥2L2 + c2N

−r∥V ∥Hr ∥u−ΠNu∥L2 ∥uN −ΠNu∥L2 ,

where the last step comes from Estimate (4.32). For N large enough such that c2N−2∥V ∥L∞ ⩽ 1
2 ,

it therefore follows that

1

2
∥uN −ΠNu∥2L2 ⩽c2N

−r∥V ∥Hr ∥u−ΠNu∥L2 ∥uN −ΠNu∥L2

∥uN −ΠNu∥L2 ⩽2c2N
−r∥u−ΠNu∥L2 .

(4.33)

Combining Estimates (4.19), (4.29), (4.30) and (4.33) yields that

γa
∥V ∥L∞

∥uN −ΠNu∥2H1 ⩽2c2N
−r∥u−ΠNu∥2L2

⩽2c2N
−r−2∥u−ΠNu∥2H1 ,

from which we deduce that

∥uN −ΠNu∥H1 ⩽ c3N
− r

2−1 (∥u− uN∥H1 + ∥uN −ΠNu∥H1) , (4.34)

where c3 =
(

2c2∥V ∥L∞

γa

) 1
2

. For N large enough such that c3N− r
2−1 ⩽ 1

2 , we have

∥uN −ΠNu∥H1 ⩽ 2c3N
− r

2−1∥u− uN∥H1 , (4.35)

which demonstrates the Estimate (4.26).

In addition, for N large enough such that 2c2N
−r ⩽ 1

2 , combining Estimates (4.21) and
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(4.33) yields that

∥uN −ΠNu∥L2 ⩽4c2N
−r−1∥u− uN∥H1 ,

which demonstrates the convergence result (4.27).

In the first part of this section, we perform the a priori error analysis of this problem. The
a priori analysis bounds the term ∥u− uN∥H1 by minvN∈XN

∥u− vN∥H1 , which guarantees the
convergence of the discrete solution uN towards the exact solution u, assuming that uN can
be computed. In the rest of this section, we will derive the a posteriori error analysis. The
a posteriori error analysis aims at providing a bound of ∥u − ũN∥H1 where ũN is an available
numerical approximation of the discrete solution uN . In contrast to the a priori analysis, the
a posteriori bound is fully computable and (hopefully) should be cheap to calculate. It is a
function of the approximation solution ũN and other computable parameter. There are various
strategies for deriving a posteriori error estimation [96]. In this work, we use the residual-based
a posteriori error estimator and the residual is defined as

R(ũN ) := −∆ũN + V ũN − f. (4.36)

Here we state the lemma showing that the error is bounded by the residual under a suitable
norm, which is based on the classical estimate for elliptic partial differential equation (see, e.g.,
[99]).

Proposition 4.1.1 (A posteriori error estimation). Let u ∈ X be the weak solution of problem
(4.2), for N ∈ N∗, let XN be the discrete space defined through (4.9), let βa be the continuity
constant of a : X×X → R defined through (4.6), let γa be the coercivity constant of a : X×X → R
defined through (4.7) and let E : X → R be the energy functional defined though (4.1). Then, for
any ũN ∈ XN we have

∥ũN − u∥H1 ⩽
1

γa
∥R(ũN )∥H−1 , (4.37)

and
0 ⩽ E(ũN )− E(u) ⩽

βa
2γ2a
∥R(ũN )∥2H−1 . (4.38)

Proof. Recalling the bilinear form a : X ×X → R and the functional b : X → R defined through
(4.4) and (4.5) respectively, we deduce that

a(ũN − u, ũN − u) = a(ũN , ũN − u)− a(u, ũN − u)
= a(ũN , ũN − u)− b(ũN − u)− a(u, ũN − u) + b(ũN − u)
= a(ũN , ũN − u)− b(ũN − u)
= ⟨−∆ũN + V ũN − f, ũN − u⟩X′,X

⩽ ∥ −∆ũN + V ũN − f∥H−1∥ũN − u∥H1 ,

where in the above expression we make use of the fact that u ∈ X is the solution of the weak
problem (4.2). Together with the coercivity property of the bilinear form a : X × X → R, we
deduce that

∥ũN − u∥H1 ⩽
1

γa
∥ −∆ũN + V ũN − f∥H−1 .
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For the estimation of the energy error, we make use of the Equation (4.18). Indeed, we have

E(ũN )− E(u) =
1

2
a(ũN − u, ũN − u).

Equipped with the continuity constant βa of a : X × X → R defined through (4.6), we deduce
form the solution error estimate that

E(ũN )− E(u) ⩽
βa
2γ2a
∥ −∆ũN + V ũN − f∥2H−1 .

4.1.3 Iteration scheme and analysis

In this section, we give the details of numerical solution of this problem. More importantly, in
this section, we introduce the concepts of different error source and following this error balance
idea, we will present the optimal path problem in Chapter 4.3.

Based on the discretized weak problem (4.14), by inserting different test functions {ej}0⩽j⩽N

(vectors of the basis chosen in (4.9)), we obtain system of linear equations written in the following
matrix form

ANuN = bN , (4.39)

where AN = [a(ei, ej)]0⩽i,j⩽N , bN = [b(ej)]0⩽j⩽N and uN is the unknown vector of coefficients
uN = [ûN 0, ûN 1, . . . , ûNN ]T . Most of the times, the above matrix equation is resolved using
iterative method. In this work, we use the Gauss-Seidel-Relaxation(GSR) method. Starting
from an initial guess u0

N , in each iteration step the new vector uk+1
N is calculated from uk

N via
the following expression:

uk+1
N = −(DN + ωLN )−1 ((1− ω)LN +UN )uk

N + (DN + ωLN )−1bN , (4.40)

where ω is the relaxation factor, UN , DN and LN are respectively the strict upper triangular
component, the diagonal component and the strict lower triangular component of matrix AN .
Here, we remark that UN = LT

N which will be used in the iterative scheme convergence analysis.
By defining PN := −(DN +ωLN )−1((1−ω)LN +UN ) and qN := (DN +ωLN )−1bN , the above
expression can be simplified as the following more general form

uk+1
N = PNuk

N + qN . (4.41)

From the iterative scheme given by Equation (4.41), we know that the converged solution u∞
N

also satisfies this equality
u∞
N = PNu∞

N + qN . (4.42)

Subtracting Equation (4.41) by (4.42) yields that

uk+1
N − u∞

N = PN (uk
N − u∞

N ). (4.43)

Denoting the iteration error by ekN := uk
N − u∞

N yields the following expression which is similar
to the power iteration scheme:

ek+1
N = PNekN . (4.44)

According to the analysis with the power iteration scheme, it follows that the iteration error ekN
goes to 0 as long as the spectral radius of PN is strictly smaller than 1: ρ(PN ) < 1, where the
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spectral radius is defined as maximal of absolute value of all eigenvalues of the square matrix
PN . We denote by vP

max the eigenvector of PN corresponding to the biggest eigenvalue (in
absolute value) which we denote by λPmax. Supposing that the initial error e0N is decomposed as
linear combination of eigenvectors of the matrix PN and that the coefficient of vP

max is non-zero.
After a large number of iterations, the iteration error ekN will behave to be proportional to vP

max

and the ratio of iteration error between two successive iterations ek+1
N

ek
N

will be smaller than λPmax

and very close to λPmax. Similarly, the above statement holds for iteration increment denoted by
ẽkN := uk+1

N − uk
N and this will be checked numerically in next section. Without the restriction

of large number of iterations, we have the following more general expression.

∥uk+1
N − u∞

N ∥ℓ2 ⩽ ∥PN∥ℓ2→ℓ2 ∥uk
N − u∞

N ∥ℓ2 , (4.45)

where ∥ · ∥ℓ2 is the Euclidean vector norm. Note that for any function v ∈ X with corresponding
Fourier coefficients vector v = [v̂j ]0⩽j⩽N , we have the following relation:

∥v∥2L2 = vTv =

N∑
j=0

v̂2j =
1

π
∥v∥2L2 .

Thus, for the sake of simplicity, we also refer ∥ ·∥L2 to the ℓ2 Euclidean vector norm. In analogue
to the above relation, we define the H1 vector norm in a similar way such that for any function
v ∈ X with corresponding Fourier coefficients vector v = [v̂j ]0⩽j⩽N , we have

∥v∥2H1 := (vH1)TvH1 =

N∑
j=0

(1 + j2)v̂2j =
1

π
∥v∥2H1 .

Therefore, we define the H1 (by an abuse of notation) vector norm as

∥v∥H1 :=
(
(TNv)T (TNv)

) 1
2 = ∥TNv∥L2 , (4.46)

where the matrix TN is a diagonal matrix with the diagonal part [(1+ j2)
1
2 ]0⩽j⩽N . In addition,

the matrix TN is invertible and its inverse T−1
N is also a diagonal matrix with the diagonal part

[(1 + j2)−
1
2 ]0⩽j⩽N .

In analogue to Estimate (4.45), we have the following estimate

∥uk+1
N − u∞

N ∥H1 = ∥TNek+1
N ∥L2

= ∥TNPNekN∥L2

= ∥TNPNT−1
N TNekN∥L2

⩽ ∥TNPNT−1
N ∥L2→L2 ∥TNekN∥L2

= ∥TNPNT−1
N ∥L2→L2 ∥uk

N − u∞
N ∥H1 ,

(4.47)

from which we define the matrix norm ∥PN∥H1→H1 as

∥PN∥H1→H1 =
√
λmax

(
(TNPNT−1

N )T (TNPNT−1
N )
)
= σmax(TNPNT−1

N ).

Here we lastly remark that the matrix norm ∥PN∥H1→H1 is the sharper upper bound of the
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error decrease ratio ∥uk+1
N −u∞

N ∥H1

∥uk
N−u∞

N ∥H1
and it is possible that the true ratio is smaller, which means

that the error decreases faster.
Recall that the iterative scheme given by Equation (4.40) for resolving this matrix equation

can be rewritten as follows

(DN + ωLN )uk
N + ((1− ω)LN +UN )uk−1

N = bN . (4.48)

And the above expression can be simplified as

A1,Nuk
N +A2,Nuk−1

N = bN . (4.49)

where A1,N := DN + ωLN and A2,N := (1− ω)LN +UN . As the above matrix decomposition
of AN in the GSR scheme, we introduce the following operator decomposition defined in the
continuous space X, corresponding to the discrete matrix decomposition of AN .

Proposition 4.1.2. Let a be the bilinear form defined in (4.4) and let (ei)i∈N be the L2-
orthogonal basis of X chosen in (4.9). Then for any v ∈ X written in the form of cosine
series v =

∑
j∈N v̂jej,

• we define the operator A : X → X ′ as the mapping with the property that

Av = −∆v + V v. (4.50)

• we define the operator D : X → X ′ as the mapping with the property that

Dv =
∑
j∈N

a(ej , ej)v̂jej , (4.51)

• we define the operator L : X → X ′ as the mapping with the property that

Lv =
∑
i∈N

∑
j<i

a(ei, ej)v̂jei, (4.52)

• we define the operator U : X → X ′ as the mapping with the property that

Uv =
∑
i∈N

∑
j>i

a(ei, ej)v̂jei. (4.53)

Proof. The proof aims at showing the well-posedness of the above four operators, i.e., showing
that they are mappings defined from X to X ′.

Let us begin by showing the well-posedness of operator A, which is a direct consequence of
the continuity of bilinear form a. In fact, for any v, w ∈ X, we have

⟨Av,w⟩X′,X = a(v, w) ⩽ βa∥v∥H1 ∥w∥H1 ,

where βa is the continuity constant of a : X×X → R defined through (4.6). And from the above
derivation, we deduce immediately that

∥Av∥H−1 = sup
w∈X,w ̸=0

⟨Av,w⟩X′,X

∥w∥H1

⩽ βa∥v∥H1 ⩽∞, (4.54)
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which proofs that A : X → X ′ is well defined.

Now we focus on the diagonal operator. Recall the expression of H−1 norm defined in (4.11),
for any v =

∑
j∈N v̂jej ∈ X, we have

∥Dv∥H−1 =
√
π

∑
j∈N

a(ej , ej)
2v̂2j

1 + j2

 1
2

⩽
√
π

∑
j∈N

β2
a∥ej∥4H1 v̂2j
1 + j2

 1
2

⩽ πβa

∑
j∈N

(1 + j2)2v̂2j
1 + j2

 1
2

⩽
√
πβa∥v∥H1 ,

where βa is the continuity constant of a : X ×X → R defined through (4.6).

∥Dv∥H−1 ⩽
√
πβa∥v∥H1 <∞, (4.55)

which shows the well-posedness of operator D : X → X ′. Next, we show the well-posedness of
operator L : X → X ′. For any v =

∑
j∈N v̂jej ∈ X, we have

∥Lv∥H−1 =
√
π

∑
i∈N

(∑
j<i a(ei, ej)v̂j

)2
1 + i2


1
2

. (4.56)

For any i > j ⩾ 0, we have

a(ei, ej) =

∫ 2π

0

V eiej ⩽ ∥V ∥L∞ ∥ei∥L2 ∥ej∥L2 ⩽ π∥V ∥L∞ . (4.57)
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Inserting Estimate (4.57) into (4.56) yields

∥Lv∥H−1 ⩽ π
3
2 ∥V ∥L∞

∑
i∈N

(∑
j<i |v̂j |

)2
1 + i2


1
2

⩽ π
3
2 ∥V ∥L∞

∑
i∈N

(∑
j<i

1
1+j2

)(∑
j<i(1 + j2)v̂2j

)
1 + i2


1
2

⩽ π
3
2 ∥V ∥L∞

∑
i∈N

(∑
j∈N

1
1+j2

)(∑
j∈N(1 + j2)v̂2j

)
1 + i2


1
2

⩽ π2∥V ∥L∞ ∥v∥H1

(∑
i∈N

1

1 + i2

) 1
2

⩽∞,

(4.58)

where we have made use of the Cauchy-Schwarz Inequality in the derivation.
The above inequality shows that L defines a mapping from X to its dual space X ′. In the

end, we show the well-posedness of operator U , whose proof is quite similar as the one used for
operator L. For i ∈ N, in both cases where j < i or j > i, the partial sum of v̂2j is always bounded
by ∥v∥2H1

∑
j∈N

1
1+j2 . Therefore, we deduce that the mapping U : X → X ′ is well defined, which

completes the proof.

Corollary 4.1.1.1. Let operator D, L and U be defined through Proposition 4.1.2 and let ω ∈ R
be the relaxation parameter of the GSR iteration scheme. Then we define operator A1 := D+ωL
and operator A2 := (1 − ω)L + U satisfying A = A1 + A2, which corresponds to the matrix
decomposition AN = A1,N +A2,N in GSR scheme.

Recall that for any N ∈ N∗, ΠN : X ′ → XN is the extended L2-orthogonal projection operator
onto space XN . Here, based on the relation between function uN ∈ XN and its Fourier coefficient
vector uN , by an abuse of notation, we also refer ΠN to the vector projection operator picking
the first N + 1 elements in the coefficient vector uM corresponding to uM ∈ XM (M > N).
Combining with Corollary 4.1.1.1, we deduce immediately that for any N ∈ N∗, we have

ΠNA1u
k
N +ΠNA2u

k−1
N = ΠNf. (4.59)

In addition, we have the following discretized version of equivalence:

uN ∈ XN is solution of the weak problem (4.14) ⇐⇒ uN ∈ XN , ΠNA(uN ) = ΠNf.
(4.60)

Moreover, for any N ∈ N, by denoting A1,N := ΠNA1ΠN , we have A1,N = ΠNA1ΠN =
ΠN (ΠMA1ΠM )ΠN = ΠNA1,MΠN and this relation also holds if we replace A1 by A2 or A.

The error between the exact solution u and our approximate solution ukN obtained after k iter-
ations stems mainly from two sources: the finite number of iterations and the finite-dimensional
discretisation space. According to this idea, we split the total error into iteration error Eriter and
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discretisation error Erdisc in two different manners:

∥ukN − u∥H1 ⩽ ∥ukN − uN∥H1︸ ︷︷ ︸
:=Eriter(uk

N )

+ ∥uN − u∥H1︸ ︷︷ ︸
:=ErNdisc

, (4.61)

where uN is the solution of discrete problem (4.14). In this definition, the term uN−u represents
purely the discretisation error without influence of finite number of iterations. From another point
of view, we define these two source errors as:

∥ukN − u∥H1 ⩽ ∥ukN − uk∥H1︸ ︷︷ ︸
:=Erdisc(uk

N )

+ ∥uk − u∥H1︸ ︷︷ ︸
:=Erkiter

, (4.62)

where uk ∈ X is the approximate solution obtained after performing k iterations via the following
iterative scheme

A1u
k +A2u

k−1 = f. (4.63)

In this definition, the term uk − u represents purely the iteration error without influence of
finite-dimensional discretisation space.

The aim of our optimal path problem is, actually, to explore how to balance these two error
sources such that the computation cost to achieve a given accuracy is optimized. It reveals from
Proposition 4.2.1 that the error is bounded a posteriori with a measure of the residual. This
leads naturally to the decomposition of residual such that each part represents one of the error
sources. From the above GSR iterative scheme given by Equation (4.48), it is natural to define
the discretisation residual as

Rdisc(u
k
N ) := A1u

k
N +A2u

k−1
N − f. (4.64)

From Equation (4.59), it is clear that we have

ΠNRdisc(u
k
N ) = 0. (4.65)

Then we define the iteration residual as the rest part in the total residual.

Riter(u
k
N ) := R(ukN )−Rdisc(u

k
N ) = A2(u

k
N − uk−1

N ). (4.66)

After decomposing the residual into two part, we state the following lemma to show that, in
some sense, the two residuals can represent respectively those two error sources.

Lemma 4.1.2. For N ∈ N∗, let the total residual be defined through (4.36), let the discretisa-
tion residual be defined through (4.64), let the iteration residual be defined through (4.66), let
ΠN : X ′ → XN be the orthogonal projection operator onto space XN and let Π⊥

N = I−ΠN be its
complementary.
Let the iteration error and the discretisation error be defined through (4.61), then

(1a) The total residual is bounded from below by the calculation error:

γa∥ukN − u∥H1 ⩽ ∥R(ukN )∥H−1 , (4.67)

where γa is the coercivity constant of a : X ×X → R defined through (4.7).
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(1b) The iteration residual is bounded above and below by the iteration error:

γNEriter(ukN ) ⩽ ∥Riter(u
k
N )∥H−1 ⩽(β2

N + 2∥Π⊥
NA2∥2H1→H−1)Eriter(ukN )

+ ∥Π⊥
NA2∥H1→H−1Eriter(uk−1

N ),
(4.68)

where γN and βN are the coercivity and continuity constant of ΠNAΠN .

(1c) The discretisation residual is bounded above by the discretisation error and the iteration
error:

∥Rdisc(u
k
N )∥H−1 ⩽∥Π⊥

NA1∥H1→H−1Eriter(ukN )

+ ∥Π⊥
NA2∥H1→H−1Eriter(uk−1

N ) + βaErNdisc,
(4.69)

where βa is the continuity constant of a : X ×X → R defined through (4.6). Besides, when
the iterations are enough, the discretisation residual is mainly bounded by the discretisation
error.

Let the iteration error and the discretisation error be defined through (4.62), then

(2) The discretisation residual is bounded above by the discretisation error:

∥Rdisc(u
k
N )∥H−1 ⩽∥A1∥H1→H−1Erdisc(u

k
N ) + ∥A2∥H1→H−1Erdisc(u

k−1
N ). (4.70)

Proof. Picking ũN = ukN in (4.37) yields (4.67). For N ∈ N∗, we have

∥ΠNRiter(u
k
N )∥H−1 ⩽ ∥Riter(u

k
N )∥H−1 ⩽ ∥ΠNRiter(u

k
N )∥H−1 + ∥Π⊥

NRiter(u
k
N )∥H−1 , (4.71)

where in the above equality we make use of the fact that the L2-orthogonal projection operator
is also H−1-orthogonal. It follows from Equations (4.65) and (4.66) that

∥ΠNRiter(u
k
N )∥H−1 = ∥ΠN (R(ukN )−Rdisc(u

k
N ))∥H−1

= ∥ΠNR(u
k
N )∥H−1

= ∥ΠNA(u
k
N )−ΠNf∥H−1

= ∥ΠNA(u
k
N )−ΠNA(uN )∥H−1

= ∥ΠNAΠN (ukN − uN )∥H−1

where in the above derivation uN is the discrete solution satisfying (4.60). Let γN and βN be
the coercivity and the continuity constant of ΠNAΠN . We have

γN∥ukN − uN∥H1 ⩽ ∥ΠNAΠN (ukN − uN )∥H−1 ⩽ βN∥ukN − uN∥H1 . (4.72)

For the second right-hand side term of (4.71), from the second part of (4.66), we have

∥Π⊥
NRiter(u

k
N )∥H−1 = ∥Π⊥

NA2(u
k
N − uk−1

N )∥H−1

⩽ ∥Π⊥
NA2(u

k
N − uN )∥H−1 + ∥Π⊥

NA2(u
k−1
N − uN )∥H−1

⩽ ∥Π⊥
NA2∥H1→H−1∥ukN − uN∥H1 + ∥Π⊥

NA2∥H1→H−1∥uk−1
N − uN∥H1 .

(4.73)
Inserting Estimates (4.72) and (4.73) into (4.71) yields Estimate (4.68). For the discretisation
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residual, thanks to (4.65) we have

Rdisc(u
k
N ) =A1u

k
N +A2u

k−1
N − f

=Π⊥
NA1u

k
N +Π⊥

NA2u
k−1
N −Π⊥

Nf

=Π⊥
NA1u

k
N +Π⊥

NA2u
k−1
N −Π⊥

NAuN +Π⊥
NAuN −Π⊥

Nf

=Π⊥
NA1(u

k
N − uN ) + Π⊥

NA2(u
k−1
N − uN ) + Π⊥

N (AuN − f)
=Π⊥

NA1(u
k
N − uN ) + Π⊥

NA2(u
k−1
N − uN ) + (AuN − f),

where the last equality comes from (4.60). From Estimate (4.54), we have

∥AuN − f∥H−1 = ∥A(uN − u)∥H−1

⩽ βa∥uN − u∥H1 .

Combining the above equations yields

∥Rdisc(u
k
N )∥H−1 ⩽∥Π⊥

NA1∥H1→H−1Eriter(ukN )

+ ∥Π⊥
NA2∥H1→H−1Eriter(uk−1

N ) + βaErNdisc.
(4.74)

Note that, from the above estimate, we know that when k goes to infinity, the iteration errors
Eriter(uk−1

N ) and Eriter(ukN ) go to zero. Therefore, βaErNdisc is the dominant term in the above
estimate when the number of iterations is large enough.

More simply, we have alternatively

Rdisc(u
k
N ) =A1u

k
N +A2u

k−1
N − f

=A1u
k
N +A2u

k−1
N − (A1u

k +A2u
k−1)

=A1(u
k
N − uk) +A2(u

k−1
N − uk−1),

with the iteration error and the discretisation error defined through (4.62), we deduce Estimate
(4.70).

4.1.4 Convergence and stability

In this part, we give a theoretical analysis about the convergence of the iterative scheme given
by Equation (4.41). As mentioned before, the convergence of this iteration scheme is guaranteed
by picking proper parameter ω such that the spectral radius of PN is strictly smaller than 1:
ρ(PN ) < 1. Here we give the following convergence analysis result which is inspired by the work
in [102].

Proposition 4.1.3. Let the iteration matrix PN be defined through Equation (4.41), then there
exist ω1 < 1 and ω2 > 2 such that for all ω1 < ω < ω2 we have ρ(PN ) < 1.

Proof. Let us consider any eigenvalue of matrix PN :

PNvP = λPvP (λP ∈ C,vP ∈ CN+1). (4.75)

Recall the explicit expression of PN in (4.40) and we have

((1− ω)LN +UN )vP = −λP(DN + ωLN )vP. (4.76)
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By multiplying on both sides with
(
vP
)T , we get(

vP
)T

((1− ω)LN +UN )vP = −λP
(
vP
)T

(DN + ωLN )vP. (4.77)

We note incidentally that, in our case, UN = LT
N , so that we note by λt =

(
vP
)T

LNvP =

(vP)
T
UNvP. Besides, we introduce λd =

(
vP
)T

DNvP. Hence, for any eigenvalue λP of PN

we have

λP =− (1− ω)λt + λt
λd − ωλt

=− (2− ω)Re(λt) + ω Im(λt)

λd + ωRe(λt) + ω Im(λt)
.

(4.78)

In addition, the ellipticity of the bilinear form a shows that λd + 2Re(λt) = λd + λt + λt =(
vP
)T

(DN + LN +UN )vP =
〈
AvP, vP

〉
X′,X

> 0 and from the expression of elements in matrix
DN , we know that λd > 0. Hence, for 1 ⩽ ω ⩽ 2,

(i) if Re(λt) ⩾ 0, then λd + ωRe(λt) > ωRe(λt) ⩾ (2− ω)Re(λt) ⩾ 0, hence, |λP| < 1;

(ii) if Re(λt) < 0, then λd + ωRe(λt) > −(2− ω)Re(λt) > 0, hence, |λP| < 1.

In both cases the spectral radius of PN is smaller than 1. By continuity, this remains true for
ω1 < ω < ω2 with some ω1 < 1 and ω2 > 2.

Numerically, we plot the variation of ρ(PN ) as a function of ω for N = 10 in Figure 4.1. In
addition, we test for N = 10: by setting ω = −0.2 and u0N = 0, we perform 30 GSR iterations
and then plot the variation of associated norm ∥uk−1

N − ukN∥H1 for k = 1, . . . , 30 in Figure 4.2
and of the energy E(ukN ) in Figure 4.3. From Figure 4.2, we note that at the beginning, the
error decreases faster and then the decrease of the term ∥ukN −u

k+1
N ∥H1 is close to a straight line

in log-scale. From the analysis in previous section, we know that this slope corresponds to the
matrix norm ∥PN∥H1→H1 and the slope is a bit sharper at the beginning, which means that the
iterations are more efficient at the beginning. This property will also be used when we propose
the nearly optimal strategies in the following part.

4.2 Non linear case

Throughout this section, we assume the setting of Chapter 4.1 for the Sobolev space X and for
function V and f . In this section, we consider the following energy minimization problem:

E∗ = min{E(v) :=
1

2

∫ 2π

0

(∇v)2 + 1

2

∫ 2π

0

V v2 +
1

4

∫ 2π

0

v4 − ⟨f, v⟩X′,X , v ∈ X}. (4.79)

And the corresponding variational problem that characterizes a function u ∈ X which minimizes
the above energy is defined as: Find u ∈ X such that

∀v ∈ X,
∫ 2π

0

∇u · ∇v +
∫ 2π

0

V uv +

∫ 2π

0

u3v = ⟨f, v⟩X′,X . (4.80)

or using the duality pairing notation

∀v ∈ X, ⟨F (u), v⟩X′,X = 0, (4.81)
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Figure 4.1: The variation of ρ(PN ) for N = 10 as a function of the relaxation parameter ω.
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Figure 4.2: The variation of iteration increment ∥ukN − u
k+1
N ∥H1 for N = 10 as a function of

iteration number k in log-scale.

where the nonlinear operator F : X → X ′ is defined as

∀v ∈ X, F (v) = −∆v + V v + v3 − f. (4.82)

For proving the well-posedness of this problem, i.e., the existence and uniqueness of the
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Figure 4.3: The variation of energy E(ukN ) for N = 10 as a function of iteration number k.

solution, we mainly make use of the property of nonlinear monotone operator. Therefore, we
prove firstly that the operator F : X → X ′ is strongly monotone and that the energy functional
defined in (4.79) is weakly coercive. Consequently, with a classical nonlinear functional analysis
result, we prove the existence and uniqueness of the solution for (4.80), which, consequently, also
minimizes the energy functional.

Proposition 4.2.1. Let E : X → R be defined through (4.79), let F : X → X ′ be defined through
(4.82), which is the functional derivative of E : X → R. Then

The minimization problem

Find u ∈ X such that E(u) = min
v∈X

E(v), (4.83)

and the operation equation
Find u ∈ X such that F (u) = 0, (4.84)

are equivalent. Besides, both of them have a unique solution.
In addition, let u ∈ X be the solution of the above two problems. Then we have the following

estimate:
∥u∥H1 ⩽

1

γa
∥f∥H−1 , (4.85)

where γa = min{1, Vmin} is the coercivity constant of a : X ×X → R defined through (4.7).

Proof. The proof is a direct application of Theorem 25.F in [104]. For showing the above well-
posedness result, we need to prove two properties: F : X → X ′ is strongly monotone and E : X →
R is weakly coercive.

In the first step, we show the strong monotonicity of operator F : X → X ′, i.e., there exists
constant γF > 0 such that

∀w, v ∈ X, ⟨F (w)− F (v), w − v⟩X′,X > γF ∥w − v∥2H1 . (4.86)
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The proof of the above statement is straightforward: For any w, v ∈ X, we have

⟨F (w)− F (v), w − v⟩X′,X =

∫ 2π

0

∇(w − v) · ∇(w − v) +
∫ 2π

0

V (w − v)2 +
∫ 2π

0

(w3 − v3)(w − v)

=

∫ 2π

0

(∇(w − v))2 +
∫ 2π

0

V (w − v)2 +
∫ 2π

0

(w2 + wv + v2)(w − v)2

=

∫ 2π

0

(∇(w − v))2 +
∫ 2π

0

V (w − v)2 + 1

2

∫ 2π

0

(
w2 + v2 + (w + v)2

)
(w − v)2

⩾
∫ 2π

0

(∇(w − v))2 +
∫ 2π

0

V (w − v)2

⩾ ∥∇(w − v)∥2L2 + Vmin∥w − v∥2L2

⩾ γa∥w − v∥2H1 ,

where γa = min{1, Vmin} is the coercivity constant of a : X×X → R defined through (4.7). This
shows that F : X → X ′ is a strongly monotone operator.

In next step, we prove the weak coercivity of the energy functional E : X → R, i.e., E(u)→∞
as ∥u∥H1 →∞ on X.

For any v ∈ X, we have

E(v) =
1

2

∫ 2π

0

(∇v)2 + 1

2

∫ 2π

0

V v2 +
1

4

∫ 2π

0

v4 − ⟨f, v⟩X′,X

⩾
1

2

∫ 2π

0

(∇v)2 + 1

2

∫ 2π

0

V v2 − ⟨f, v⟩X′,X

⩾
1

2
γa∥v∥2H1 − ∥f∥H−1 ∥v∥H1

⩾

[
1

2
γa∥v∥H1 − ∥f∥H−1

]
∥v∥H1 .

From the above inequality, we deduce that when ∥v∥H1 → ∞, the lower bound of E(v) goes to
infinity. This implies that E(v) goes to infinity, which completes the proof of the weak coercivity.

By checking all the conditions of the above mentioned theorem, finally we obtain the well-
posedness property of our nonlinear problem.

Picking v = u and inserting it into the weak formulation (4.80) yields that

⟨f, u⟩X′,X =

∫ 2π

0

(∇u)2 +
∫ 2π

0

V u2 +

∫ 2π

0

u4

⩾
∫ 2π

0

(∇u)2 + Vmin

∫ 2π

0

u2

⩾γa∥u∥2H1 ,

(4.87)

where γa = min{1, Vmin} is the coercivity constant of a : X ×X → R defined through (4.7) and
Vmin is the lower bound of potential function V . From the above estimate, we deduce immediately
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a rough estimation of ∥u∥H1 :

∥u∥H1 ⩽
1

γa

⟨f, u⟩X′,X

∥u∥H1

⩽
1

γa
∥f∥H−1 ,

(4.88)

which completes the proof.

Remark 4.2.1.
Proposition 4.2.1 states the existence and uniqueness of the solution u ∈ H1(T) to the weak

problem (4.81) or the strong problem (4.84). However, the solution u can be more regular.In fact,
if V ∈ Hr(T) (r > 1

2 ) and f ∈ Hs(T) (s ⩾ −1), then u ∈ Hτ (T) with τ = 2 + min{r, s} [10,
45, 63]. Specially, for our chosen potential function V and f defined in Remark 4.1.2, we have
u ∈ H1.55−ϵ(T) with ϵ > 0. This property will be used later in the proof of the super convergence
result.

After proving the well-posedness of this problem, the next step is to resolve it numerically in
XN and get approximate solution ukN using iterative process. Similarly as in Equation (4.10), we
write the unknown function as a sum of cosine functions and resolve for the truncated Fourier
series coefficient in the discretisation space XN .

Now, we introduce the discrete variational problem: For N ∈ N∗, find uN ∈ XN such that

∀vN ∈ XN ,

∫ 2π

0

∇uN · ∇vN +

∫ 2π

0

V uNvN +

∫ 2π

0

u3NvN = ⟨f, vN ⟩X′,X . (4.89)

Using similar argument as in Proposition 4.2.1, the above questions has exactly one solution,
which also minimizes the energy defined through (4.79) over the space XN ,

E(uN ) = min
vN∈XN

E(vN ). (4.90)

4.2.1 A priori and a posteriori error estimation

The aim of this section is to derive the a priori and a posteriori analysis of the nonlinear problem.
Compared to the linear case, we no longer have the continuity or the global Lipschitz continuity
of our nonlinear operator F : X → X ′, therefore, some uncomputable constant like ∥u∥H1 are
needed in our a priori error estimator. Fortunately, we still have the strong monotonicity (c.f., the
coercivity in the linear case) and it is straightforward to deduce our a posteriori error estimator.
Now, as a first step, we give the a priori analysis about the convergence of the discrete solution
uN ∈ XN of problem (4.89) to the solution u ∈ X of problem (4.80), which is based on the Céa’s
Lemma [19] and the proof of [38, Theorem 6.2.1].

Lemma 4.2.1. Let u ∈ X be the weak solution of problem (4.80), for N ∈ N∗, let uN ∈ XN be the
solution of discrete problem (4.89), let γF be the monotonicity constant of operator F : X → X ′

and let E : X → R be the energy functional defined though (4.79). Then there exists constant C1

such that
∥u− uN∥H1 ⩽ C1 min

vN∈XN

∥u− vN∥H1 . (4.91)

If u ∈ Hτ (T) with τ > 1, then there exists constant C2 > 0 such that

∥u− uN∥H1 ⩽ C2N
1−τ . (4.92)
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Moreover, there exists constant C3 > 0 independent of N such that for any r ⩽ τ , we have

∥uN∥Hr ⩽ C3∥u∥Hr . (4.93)

In addition, there exists constant C4 such that

1

2
γF ∥u− uN∥2H1 ⩽ E(uN )− E(u) ⩽ C4∥u− uN∥2H1 . (4.94)

Proof. Firstly, recalling the definition of the energy functional E : X → R, for any vN ∈ XN , we
have

E(vN )− E(u) =
1

2

∫ 2π

0

(∇vN )2 +
1

2

∫ 2π

0

V v2N +
1

4

∫ 2π

0

v4N − ⟨f, vN ⟩X′,X

− 1

2

∫ 2π

0

(∇u)2 − 1

2

∫ 2π

0

V u2 − 1

4

∫ 2π

0

u4 + ⟨f, u⟩X′,X

=
1

2

∫ 2π

0

(∇vN )2 +
1

2

∫ 2π

0

V v2N +
1

4

∫ 2π

0

v4N

− 1

2

∫ 2π

0

(∇u)2 − 1

2

∫ 2π

0

V u2 − 1

4

∫ 2π

0

u4

+ ⟨f, u− vN ⟩X′,X .

Here, with the property that u ∈ X is the weak solution of problem (4.80), we have

E(vN )− E(u) =
1

2

∫ 2π

0

(∇vN )2 +
1

2

∫ 2π

0

V v2N +
1

4

∫ 2π

0

v4N

− 1

2

∫ 2π

0

(∇u)2 − 1

2

∫ 2π

0

V u2 − 1

4

∫ 2π

0

u4

+

∫ 2π

0

∇u · ∇u− vN +

∫ 2π

0

V u(u− vN ) +

∫ 2π

0

u3(u− vN )

=
1

2

∫ 2π

0

(∇vN −∇u)2 +
1

2

∫ 2π

0

V (vN − u)2 +
1

4

∫ 2π

0

(v4N − 4u3vN + 3u4)

=
1

2

∫ 2π

0

(∇vN −∇u)2 +
1

2

∫ 2π

0

V (vN − u)2

+
1

4

∫ 2π

0

(vN − u)2(vN + u)2 +
1

2

∫ 2π

0

u2(vN − u)2.

(4.95)

By picking vN = uN the solution of discrete problem (4.89), we give the first upper bound
estimate of the energy difference in (4.94).

E(uN )− E(u) ⩾
1

2

∫ 2π

0

(∇uN −∇u)2 +
1

2

∫ 2π

0

V (uN − u)2 ⩾
1

2
γF ∥uN − u∥2H1 . (4.96)

According to the variational principle, together with the strong continuity of E and the density
of
⋃∞

N=1XN in Hr(T), we have

lim
N→∞

E(uN )− E(u) = lim
N→∞

inf
v∈XN

E(v)− E(u) = 0, (4.97)
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Additionally, with (4.96) we conclude that

lim
N→∞

∥u− uN∥H1 = 0. (4.98)

From the above result, we deduce that the sequence (uN )N∈N∗ is bounded, i.e., there exists a
constant Cu > 0, such that

∀N ∈ N∗, ∥uN∥H1 ⩽ Cu.

After obtaining the boundedness property of uN , now we give the error estimate of the approxi-
mate solution uN . Recalling the strong monotonicity of the operator F : X → X ′, we have

(I) := ⟨F (u)− F (uN ), u− uN ⟩X′,X ⩾ γF ∥u− uN∥2H1 .

Besides, for any vN ∈ XN , with the property that u ∈ X is the weak solution of problem (4.81)
and that uN ∈ XN is the discrete weak solution of problem (4.89), we have

(I) = ⟨F (u)− F (uN ), u⟩X′,X

= ⟨F (u)− F (uN ), u− vN ⟩X′,X

=

∫ 2π

0

∇(u− uN ) · ∇(u− vN ) +

∫ 2π

0

V (u− uN )(u− vN )

+

∫ 2π

0

(u2 + uuN + u2N )(u− uN )(u− vN )

⩽
∫ 2π

0

|∇(u− uN )| · |∇(u− vN )|+
∫ 2π

0

V |u− uN | · |u− vN |

+ ∥u2 + uuN + u2N∥L∞

∫ 2π

0

|u− uN | · |u− vN |

⩽
∫ 2π

0

|∇(u− uN )| · |∇(u− vN )|+
∫ 2π

0

V |u− uN | · |u− vN |

+ (∥u∥2L∞ + ∥u∥L∞∥uN∥L∞ + ∥uN∥2L∞)

∫ 2π

0

|u− uN | · |u− vN |

⩽
∫ 2π

0

|∇(u− uN )| · |∇(u− vN )|+
∫ 2π

0

V |u− uN | · |u− vN |

+ C2
GN(∥u∥2H1 + ∥u∥H1∥uN∥H1 + ∥uN∥2H1)

∫ 2π

0

|u− uN | · |u− vN |

⩽(βa + 3C2
GNC

2
u)∥u− uN∥H1∥u− vN∥H1 ,

where βa is the continuity constant of a : X × X → R defined through (4.6) and CGN is the
Gagliardo Nirenberg type inequality constant2. Combining the above two estimates about the

2This constant depends on the domain of definition [0, 2π] and a detailed derivation of this constant can be
found in [38, p.165]. In our case, we have

∀v ∈ X, ∥v∥L∞ ⩽

(
1

4π
+

√
1

16π2
+ 1

) 1
2

∥v∥H1 .
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term(I), we deduce that

∥u− uN∥H1 ⩽
βa + 3C2

GNC
2
u

γF
∥u− vN∥H1 , (4.99)

which gives the a priori estimate of the discrete solution (4.91) with C1 =
βa+3C2

GNC2
u

γF
. Let us

recall that ΠN : X ′ → XN is the orthogonal projection operator onto space XN . Then, inserting
vN = ΠNu into the above estimate yields that

∥u− uN∥H1 ⩽ C1∥u−ΠNu∥H1

⩽ C1N
1−τ∥u∥Hτ ,

(4.100)

from which we deduce Estimate (4.94) with C2 = C1∥u∥Hτ .
For any vN ∈ XN , it’s easy to deduce that there exists c > 0 independent of N such that

∥vN∥Hr ⩽ cNr−s∥vN∥Hs , (4.101)

where r ⩾ s. For any r ⩽ τ , combining Estimate (4.101) with the a priori error estimate given
by Equation (4.91) yields that

∥ΠNu− uN∥Hr ⩽cNr−1∥ΠNu− uN∥H1

⩽cNr−1(∥ΠNu− u∥H1 + ∥u− uN∥H1)

⩽cNr−1(C1 + 1)∥ΠNu− u∥H1

⩽c(C1 + 1)∥u∥Hr ,

where in the last step we use similar argument as that used in Estimate (4.100). From the above
derivation we deduce Estimate (4.93).

The last part of the proof is to show the upper bound of the energy difference estimate, which
is deduced from (4.95).

E(uN )− E(u) ⩽
1

2
βa∥u− uN∥2H1 +

1

4
∥u+ uN∥2L∞∥u− uN∥2H1 +

1

2
∥u∥2L∞∥u− uN∥2H1

⩽ (
1

2
βa +

3

2
C2

GNC
2
u)∥u− uN∥2H1 ,

which completes the proof.

In addition to the above classical a priori error estimate given by Equation (4.16), we also
have the following classical L2 error estimate. Similar to the Lemma 4.1.1 and Theorem 4.1.1 in
the linear problem, in the nonlinear case, we also have the following following classical L2 error
estimate and super convergence result.

Lemma 4.2.2. Let u ∈ X be the weak solution of problem (4.80) and for N ∈ N∗, let uN ∈ XN

be the solution of discrete problem (4.89). Then there exits constant C1 > 0 such that

∥u− uN∥L2 ⩽ C1N
−1∥u− uN∥H1 , (4.102)

Proof. The proof is essentially identical to the proof of Lemma 4.1.1 with some obvious modifi-
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cations. We define the bilinear form as follows:

∀v, w ∈ X, a′(v, w) :=

∫ 2π

0

∇v · ∇w +

∫ 2π

0

V ′vw, (4.103)

where V ′ = V + u2 + u2N + uuN . Using now Equations (4.80) and (4.89), we deduce that the
above bilinear form maintains the Galerkin orthogonality:

∀vN ∈ XN , a′(u− uN , vN ) =

∫ 2π

0

∇(u− uN ) · ∇vN +

∫ 2π

0

V (u− uN )vN

+

∫ 2π

0

(u2 + u2N + uuN )(u− uN )vN

=

∫ 2π

0

∇(u− uN ) · ∇vN +

∫ 2π

0

V (u− uN )vN +

∫ 2π

0

(u3 − u3N )vN

=0.

Besides, V ′ ∈ L∞(T) with ∥V ′∥L∞ ⩽ ∥V ∥L∞ + ∥u∥2L∞ + ∥uN∥2L∞ + ∥u∥2L∞ ∥uN∥2L∞ and V ′

is bounded from below by the same lower bound Vmin > 0 of function V . Therefore, the new
bilinear form is also continuous and coercive. Then the rest of the proof is identical to that for
Lemma 4.2.2, simply replacing a : X ×X → R by a′ : X ×X → R.

Theorem 4.2.1. Let u ∈ X be the weak solution of problem (4.80), for N ∈ N∗, let uN ∈ XN be
the solution of discrete problem (4.89), let ΠN : X ′ → XN be the orthogonal projection operator
onto space XN and let V be the potential function in problem (4.80), let V ∈ Hr(T) for some
r > 1

2 be the potential function in problem (5.2), let f ∈ Hs(T) for some s ⩾ −1 and let us
denote by τ = min{r, 2 + s, 2}. Then for N large enough:

• There exits constant C2 > 0 such that

∥ΠNu− uN∥H1 ⩽ C2N
− τ

2−1∥u− uN∥H1 . (4.104)

• There exits constant C3 > 0 such that

∥ΠNu− uN∥L2 ⩽ C3N
−τ−1∥u− uN∥H1 . (4.105)

Specifically, for our chosen V and f defined in Remark 4.1.2, we have

∥ΠNu− uN∥H1 ⩽ C2N
− 7

4+ϵ∥u− uN∥H1 (4.106)

and
∥ΠNu− uN∥L2 ⩽ C3N

− 5
2+ϵ∥u− uN∥H1 , (4.107)

where ϵ > 0.

Proof. The proof is essentially identical to the proof of Theorem 4.1.1 with the bilinear form
defined through (4.103).

One direct consequence of the above change is the regularity of the new potential term
V ′ = V + u2 + u2N + uuN : for V ∈ Hr ( 12 < r) and f ∈ Hs(T) (s ⩾ −1), from Remark 4.2.1 we
know that then u ∈ Ht(T) with t = 2 +min{r, s} ⩾ 1. In addition, from (4.93) we deduce that
uN ∈ Ht(T) and ∥uN∥Ht is uniformly bounded by ∥u∥Ht . Therefore, we have V ′ ∈ Hq(T) for
q = min{r, t} = min{r, 2 + s}.
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Considering the above regularity change and combining the proof in Theorem 4.1.1 yields the
super convergence result.

After showing the a priori error estimate, now we give the a posteriori error estimate with
the nonlinear residual at hand: for any ũN ∈ XN , we define the residual as

R(ũN ) := −∆ũN + V ũN + ũN
3 − f. (4.108)

The proof of the following a posteriori error estimate is similar to that for the linear case while
we make use of the strong monotonicity of operator F instead of the coercivity.

Lemma 4.2.3. Let u ∈ X be the weak solution of problem (4.80), for N ∈ N∗, let ũN ∈ XN be a
numerical approximation solution of discrete problem (4.89), let γF be the monotonicity constant
of operator F : X → X ′ and let E : X → R be the energy functional defined through (4.79). Then
we have

∥ũN − u∥H1 ⩽
1

γF
∥R(ũN )∥H−1 . (4.109)

We also have the following energy estimate:

0 ⩽ E(ũN )− E(u) ⩽
1

γ2F

(
1

2
βa +

1

4
C2

GN(∥ũN∥H1 +
1

γa
∥f∥H−1)2 +

C2
GN
2γ2a
∥f∥2H−1

)
∥R(ũN )∥2H−1 .

(4.110)
or

0 ⩽ E(ũN )− E(u) ⩽
1

γ2F
(
1

2
βa +

3

2
C2

GN∥ũN∥2H1)∥R(ũN )∥2H−1

+
2C2

GN
γ3F
∥ũN∥H1 ∥R(ũN )∥3H−1 +

3C2
GN

4γ4F
∥R(ũN )∥4H−1 .

(4.111)

Proof. Firstly, we recall the strong monotonicity of the operator F : X → X ′, we have

(II) := ⟨F (u)− F (ũN ), u− ũN ⟩ ⩾ γF ∥u− ũN∥2H1 .

Besides, we have

(II) = ⟨F (u)− F (ũN ), u− ũN ⟩
= ⟨−F (ũN ), u− ũN ⟩
⩽ ∥ −∆ũN + V ũN + (ũN )3 − f∥H−1∥u− ũN∥H1 ,

where in the above equation we use the property that u ∈ X is the weak solution of problem
(4.80).

By combining the above two estimates of the term (II), we deduce that

∥ũN − u∥H1 ⩽
1

γF
∥R(ũN )∥H−1 .

Now we come up to the estimate of the energy. The positivity of the term E(ũN )−E(u) is clear
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thanks to the variational principle. Then, from (4.95), we have

E(ũN )− E(u) =
1

2

∫ 2π

0

(∇ũN −∇u)2 +
1

2

∫ 2π

0

V (ũN − u)2

+
1

4

∫ 2π

0

(ũN − u)2(ũN + u)2 +
1

2

∫ 2π

0

u2(ũN − u)2

⩽
1

2
βa∥ũN − u∥2H1 +

1

4
C2

GN∥ũN + u∥2H1∥ũN − u∥2H1 +
1

2
C2

GN∥u∥2H1∥ũN − u∥2H1

⩽(
1

2
βa +

1

4
C2

GN(∥ũN∥H1 + ∥u∥H1)2 +
1

2
C2

GN∥u∥2H1)∥ũN − u∥2H1 .

(4.112)
Inserting Estimates (4.85) and (4.109) into (4.112) yields the a posteriori energy error estimate
given by Equation (4.110). In addition, by taking the argument u a line back with above set of
inequalities, we can go on and bound the term ∥u∥H1 using the residual and ∥ũN∥H1 :

E(ũN )− E(u) ⩽
1

2
βa∥ũN − u∥2H1 +

1

4
C2

GN∥ũN + u∥2H1∥ũN − u∥2H1 +
1

2
C2

GN∥u∥2H1∥ũN − u∥2H1

⩽
1

2
βa∥ũN − u∥2H1 +

1

4
C2

GN(2∥ũN∥H1 + ∥ũN − u∥H1)2∥ũN − u∥2H1

+
1

2
C2

GN(∥ũN − u∥H1 + ∥ũN∥H1)2∥ũN − u∥2H1

⩽(
1

2
βa +

3

2
C2

GN∥ũN∥2H1)∥ũN − u∥2H1 + 2C2
GN∥ũN∥H1 ∥ũN − u∥3H1

+
3

4
C2

GN∥ũN − u∥4H1 .

Inserting the a posteriori error estimate for the solution into the above expression yields
(4.111), which completes the proof.

4.2.2 Iteration scheme and analysis

As in the linear case, in this section, we will give details of the numerical resolution of this
problem. Based on the discretized weak problem (4.89), where uN =

∑
0⩽j<N (ûN )jej and

selecting the basis vectors {ei}0⩽i<N as test functions vN , we obtain a system of nonlinear
equations represented in the following matrix form

AN (uN )uN = bN , (4.113)

with uN being the unknown vector of coefficients uN = [(ûN )0, (ûN )1, . . . , (ûN )N ]T . Unlike the
linear case, in the nonlinear problem, the matrix AN is not constant and depends on uN with a
term generated by

∫ 2π

0
u3NvN that we denote by SN (uN ). For the rest part, which is the same

as AN in (4.39) for the linear case, we still keep the notation of UN ,DN and LN , i.e.,

AN (uN ) = UN +DN + LN + SN (uN ).

In the nonlinear case, we still use the Gauss-Seidel-Relaxation(GSR) iterative scheme. Start-
ing from an initial guess u0

N , in each iteration step the new vector uk+1
N is calculated from uk

N
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via:

uk+1
N =ξ

(
−(DN + ωLN )−1

(
(1− ω)LN +UN + SN (uk

N )
)
uk
N + (DN + ωLN )−1bN

)
+ (1− ξ)uk

N ,
(4.114)

with ω being the relaxation factor and 0 < ξ < 1 being a damping factor. Similarly, by defining
PN (uk

N ) := −(DN + ωLN )−1
(
(1− ω)LN +UN + SN (uk−1

N )
)

and qN := (DN + ωLN )−1bN ,
the above expression can be simplified as

uk+1
N = ξ

(
PN (uk

N )uk
N + qN

)
+ (1− ξ)uk

N .

Remark 4.2.2 (Addition of the damping term).

• For the nonlinear problem, if we just make use of the GSR scheme like the one used for
the linear problem, it will be written as follows:

uk+1
N = −(DN + ωLN )−1((1− ω)LN +UN + SN (uk

N ))uk
N + (DN + ωLN )−1bN . (4.115)

However, the above scheme may not converge even by picking proper value of relaxation
factor ω, i.e., we select a ‘good’ ω such that the spectral radius of PN (uk

N ) is between 0

and 1 for each iteration, the odd subsequence (u2j+1
N )j∈N and even subsequence (u2jN )j∈N

generally converge respectively to uodd and ueven, but uodd ̸= ueven. This phenomenon also
occurs when we apply the Roothaan algorithm to resolve the Hartree-Fock equations [17].
This is why we add an additional damping factor in the iteration process and in this way,
the convergence of this algorithm is assured.

• Here we don’t split matrix AN (uN ) directly into the diagonal, upper and lower triangular
parts. This is feasible but for the simplicity of the following residual analysis, we separate
the nonlinear term SN (uN ) from the matrix AN (uN ) and divide the rest matrix into three
parts: DN , UN and LN .

Compared to the linear case, in the nonlinear iteration scheme, there is the additional non-
linear term SN (uk

N ) in matrix PN (uk
N ). Hence, there is a slight difference in the convergence

analysis. Compared to relation (4.42) and (4.43) in the linear case, the converged solution u∞
N

of the nonlinear problem satisfies

u∞
N =ξ

(
−(DN + ωLN )−1 ((1− ω)LN +UN + SN (u∞

N ))u∞
N + (DN + ωLN )−1bN

)
+ (1− ξ)u∞

N .
(4.116)

Subtracting Equation (4.114) by (4.116) yields that

uk+1
N − u∞

N =ξ
(
−(DN + ωLN )−1 ((1− ω)LN +UN ) (uk

N − u∞
N )

−(DN + ωLN )−1
(
SN (uk

N )uk
N − SN (u∞

N )u∞
N

))
+ (1− ξ)(uk

N − u∞
N ).

(4.117)

Noting that the matrix multiplication SN (uk
N )uk

N in fact produces the vector containing the
Fourier coefficients of function ΠN π·(ukN )3 and SN (u∞

N )u∞
N corresponds to function ΠN π·(u∞N )3.

Therefore, we have the correspondence between the term SN (uk
N )uk

N −SN (u∞
N )u∞

N and function
ΠN π ·

(
(ukN )3 −ΠNπ · (u∞N )3

)
= ΠN π ·

(
(ukN )2 + ukNu

∞
N + (u∞N )2

) (
ukN − u∞N

)
. By denoting
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S′
N (ukN , u

∞
N ) the matrix form of the function (ukN )2 + ukNu

∞
N + (u∞N )2, we deduce that

uk+1
N − u∞

N =ξ
(
−(DN + ωLN )−1

(
(1− ω)LN +UN + S′

N (ukN , u
∞
N )
)
(uk

N − u∞
N )
)

+ (1− ξ)(uk
N − u∞

N ).
(4.118)

By denoting P′
N (uk

N ,u
∞
N ) := −(DN + ωLN )−1 ((1− ω)LN +UN + S′

N (u∞N , u
∞
N )), we obtain

uk+1
N − u∞

N = (ξP′
N (uk

N ,u
∞
N ) + (1− ξ)IN )(uk

N − u∞
N ).

Therefore, in the nonlinear case, the convergence of the iterative scheme (4.114) depends on the
numerical solution uk

N and it can’t be achieved by simply picking proper values of ξ and ω. In
practical calculation, we verify numerically that the spectral radius of the matrix ξP′

N (uk
N ,u

∞
N )+

(1− ξ)IN is strictly smaller than one to ensure the convergence. Additionally, compare with the
linear case, the convergence rate of the iteration scheme (4.114) also depends on the damping
factor.

After defining the iterative scheme and analyzing its convergence, in the remaining part of
this section, we aim at decomposing the residual according to our iterative scheme and showing
the relation between the residual and the error. Recalling that ΠN : X ′ → XN is the orthog-
onal projection operator onto space XN , we have the following equivalent statements for the
discretized form.

uN ∈ XN is solution of the weak problem (4.89) ⇐⇒ uN ∈ XN , ΠNF (uN ) = 0.

Recall that the total residual is defined as R(ukN ) := F (ukN ). According to the expression of the
iterative scheme given by Equation (4.114), we define the discretisation residual as follows

Rdisc(u
k
N ) :=

1

ξ
A1u

k
N +A2u

k−1
N + (uk−1

N )3 − (
1

ξ
− 1)A1u

k−1
N − f

=
1

ξ
A1(u

k
N − uk−1

N ) +R(uk−1
N ),

(4.119)

such that compared to the linear case, we maintain the property that

ΠNRdisc(u
k
N ) =

1

ξ
ΠN

(
A1u

k
N + ξ

(
A2u

k−1
N + (uk−1

N )3 − f
)
− (1− ξ)A1u

k−1
N

)
= 0, (4.120)

where A1 and A2 are defined in Corollary 4.1.1.1 and we denote by A = A1+A2. Then we define
the iteration residual as the rest part in the total residual

Riter(u
k
N ) := R(ukN )−Rdisc(u

k
N )

= A1u
k
N +A2u

k
N + (ukN )3 − f − 1

ξ
A1(u

k
N − uk−1

N )−A1u
k−1
N −A2u

k−1
N − (uk−1

N )3 + f

= (1− 1

ξ
)A1(u

k
N − uk−1

N ) +A2(u
k
N − uk−1

N ) + (ukN )3 − (uk−1
N )3.

(4.121)
Now we state the lemma showing relation between error and residual.

Lemma 4.2.4. For N ∈ N∗, let the total residual be defined through (4.108), let the discretisation
residual be defined through (4.119) and let the iteration residual be defined through (4.121).
Let the iteration error and the discretisation error be defined through (4.61), then
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(1a) The total residual is an upper bound for the calculation error:

∥ukN − u∥H1 ⩽
1

γF
∥R(ukN )∥H−1 , (4.122)

where γF is the monotonicity constant of operator F : X → X ′.

(1b) The iteration residual is bounded above and below by the iteration error:

γNEriter(ukN ) ⩽ ∥Riter(u
k
N )∥H−1 ⩽

(
βa +

1

ξ
∥A1∥H1→H−1 + C2

GN(∥ukN∥2L2 + ∥ukN∥L2∥uk−1
N ∥L2

+ ∥uk−1
N ∥2L2)

) (
Eriter(ukN ) + Eriter(uk−1

N )
)
,

(4.123)
where γN is the coercivity, βa is the continuity constant of a : X ×X → R defined through
(4.6).

(1c) The discretisation residual is bounded above by the discretisation error and the iteration
error:

∥Rdisc(u
k
N )∥H−1 ⩽

1

ξ
∥A1∥H1→H−1

(
Eriter(ukN ) + Eriter(uk−1

N )
)
+ βa

(
Eriter(uk−1

N ) + Erdisc
)

+ C2
GN
(
Eriter(uk−1

N ) + Erdisc
) (

3∥uk−1
N ∥2L2

+3∥uk−1
N ∥L2

(
Eriter(uk−1

N ) + Erdisc
)

+
(
Eriter(uk−1

N ) + Erdisc
)2)

,

(4.124)
where βa is the continuity constant of a : X ×X → R defined through (4.6). Besides, when
the iterations are enough, the discretisation residual is mainly bounded by the discretisation
error.

Let the iteration error and the discretisation error be defined through (4.62), then

(2) The discretisation residual is bounded above by the discretisation error:

∥Rdisc(u
k
N )∥H−1 ⩽

1

ξ
∥A1∥H1→H−1

(
Erdisc(u

k
N ) + Erdisc(u

k−1
N )

)
+ ∥A∥H1→H−1Erdisc(u

k−1
N )

+ C2
GN Erdisc(u

k−1
N )

(
Erdisc(u

k−1
N )2 + ∥uk−1

N ∥L2Erdisc(u
k−1
N )2 + ∥uk−1

N ∥2L2

)
,

(4.125)
where uk could be obtained by setting an initial condition u0 ∈ X and calculated via the
following iterative scheme:

1

ξ
A1(u

k − uk−1) +Auk−1 + (uk−1)3 = f. (4.126)

Proof. Picking ũN = ukN in (4.109) yields (4.122). For the iteration residual, using Equation
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(4.120), we deduce that

∥ΠNRiter(u
k
N )∥H−1 ⩽ ∥Riter(u

k
N )∥H−1 ⩽∥ΠNRiter(u

k
N )∥H−1 + ∥Π⊥

NRiter(u
k
N )∥H−1

⩽∥ΠN

(
R(ukN )−Rdisc(u

k
N )
)
∥H−1 +

∥∥(1− 1

ξ
)Π⊥

NA1(u
k
N − uk−1

N )

+ Π⊥
NA2(u

k
N − uk−1

N ) + Π⊥
N

(
(ukN )3 − (uk−1

N )3
) ∥∥

H−1 ,
(4.127)

where ΠN : X ′ → XN is the orthogonal projection operator onto space XN and Π⊥
N = I−ΠN is

its complementary. It follows from Equation (4.120) that

ΠN

(
R(ukN )−Rdisc(u

k
N )
)
= ΠNR(u

k
N )

= ΠNAu
k
N +ΠN (ukN )3 −ΠNf

= ΠNAu
k
N +ΠN (ukN )3 −ΠN

(
AuN + (uN )3

)
(uN is solution of (4.89))

= ΠNAΠN (ukN − uN ) + ΠN

((
(ukN )2 + ukNuN + u2N

)
(ukN − uN )

)
.

It thus follows that

∥ΠN

(
R(ukN )−Rdisc(u

k
N )
)
∥H−1 ⩾

〈
ΠN

(
R(ukN )−Rdisc(u

k
N )
)
, ukN − uN

〉
X′,X

∥ukN − uN∥H1

⩾

〈
ΠNAΠN (ukN − uN ), ukN − uN

〉
X′,X

∥ukN − uN∥H1

+

〈
ΠN

((
(ukN )2 + ukNuN + u2N

)
(ukN − uN )

)
, ukN − uN

〉
X′,X

∥ukN − uN∥H1

.

Here we use the fact that the term (ukN )2 + ukNuN + u2N is always positive to deduce that

∥ΠNRiter(u
k
N )∥H−1 ⩾ γN∥ukN − uN∥H1 , (4.128)

where we recall that γN is the coercivity constant of ΠNAΠN . For the continuity of Riter(u
k
N ),

we firstly rewrite

Riter(u
k
N ) =(1− 1

ξ
)A1(u

k
N − uk−1

N ) +A2(u
k
N − uk−1

N ) + (ukN )3 − (uk−1
N )3

=A(ukN − uk−1
N )− 1

ξ
A1(u

k
N − uk−1

N ) +
(
(ukN )2 + ukNu

k−1
N + (uk−1

N )2
)
(ukN − uk−1

N )

=A(ukN − uN ) +A(uN − uk−1
N )− 1

ξ
A1(u

k
N − uN )− 1

ξ
A1(uN − uk−1

N )(
(ukN )2 + ukNu

k−1
N + (uk−1

N )2
)
(ukN − uN ) +

(
(ukN )2 + ukNu

k−1
N + (uk−1

N )2
)
(uN − uk−1

N ).
(4.129)

For any v ∈ X, we have

〈
(ukN )2(ukN − uN ), v

〉
=

∫ 2π

0

(ukN )2(ukN − uN )v

⩽ ∥v∥L∞∥ukN − uN∥L∞∥ukN∥2L2

⩽ C2
GN∥v∥H1∥ukN∥2L2Eriter(ukN ),
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from which we deduce that

∥(ukN )2(ukN − uN )∥H−1 = sup
v∈X,v ̸=0

〈
(ukN )2(ukN − uN ), v

〉
∥v∥H1

⩽ C2
GN∥ukN∥2L2Eriter(ukN ). (4.130)

By replacing (ukN )2 with (uk−1
N )2 or ukNu

k−1
N , we get similar result. Combing the above argument

with Equation (4.129) yields (4.123).
For the discretisation residual. We have

Rdisc(u
k
N ) =

1

ξ
A1(u

k
N − uk−1

N ) +R(uk−1
N )

=
1

ξ
A1(u

k
N − uk−1

N ) +R(uk−1
N )−R(u)

=
1

ξ
A1(u

k
N − uk−1

N ) +A(uk−1
N − u) + (uk−1

N )3 − u3

=
1

ξ
A1(u

k
N − uN ) +

1

ξ
A1(uN − uk−1

N ) +A(uk−1
N − uN ) +A(uN − u)

+
(
(uk−1

N )2 + uk−1
N u+ u2

)
(uk−1

N − u)

=
1

ξ
A1(u

k
N − uN ) +

1

ξ
A1(uN − uk−1

N ) +A(uk−1
N − uN ) +A(uN − u)

+
(
3(uk−1

N )2 − 3uk−1
N (uk−1

N − u) + (uk−1
N − u)2

)
(uk−1

N − u).

(4.131)

Using similar argument as the one in Estimate (4.130), we obtain

∥(uk−1
N )2(uk−1

N − u)∥H−1 ⩽ C2
GN∥uk−1

N ∥2L2

(
Eriter(uk−1

N ) + Erdisc
)
, (4.132)

∥(uk−1
N )(uk−1

N − u)2∥H−1 ⩽ C2
GN∥uk−1

N ∥L2

(
Eriter(uk−1

N ) + Erdisc
)2
, (4.133)

and
∥(uk−1

N − u)3∥H−1 ⩽ C2
GN∥uk−1

N ∥2L2

(
Eriter(uk−1

N ) + Erdisc
)3
. (4.134)

Combining those arguments yields (4.124). When k goes to infinity, the iteration errors Eriter(uk−1
N )

and Eriter(ukN ) go to zero. Therefore the contribution of the discretisation residual is dominant
in the above estimate when k is large enough.

More simply, we have alternatively

Rdisc(u
k
N ) =

1

ξ
A1(u

k
N − uk−1

N ) +Auk−1
N + (uk−1

N )3 − f

=
1

ξ
A1(u

k
N − uk−1

N ) +Auk−1
N + (uk−1

N )3 − 1

ξ
A1(u

k − uk−1)−Auk−1 − (uk−1)3

=
1

ξ
A1(u

k
N − uk)−

1

ξ
A1(u

k−1
N − uk−1) +A(uk−1

N − uk−1) + (uk−1
N )3 − (uk−1)3

=
1

ξ
A1(u

k
N − uk)−

1

ξ
A1(u

k−1
N − uk−1) +A(uk−1

N − uk−1)

+
(
3(uk−1

N )2 − 3uk−1
N (uk−1

N − uk−1) + (uk−1
N − uk−1)2

)
(uk−1

N − uk−1).

Using similar argument as what we do in (4.132), (4.133) and (4.134) and combining with the
new definition of discretisation error Erdisc(u

k
N ) := ukN − uk yields Estimate (4.125),
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4.2.3 Convergence and stability

In this part, we aim at showing some numerical results related to the convergence of the GSR
iterative scheme for our discrete nonlinear problem (4.89). As mentioned in remark 4.2.2, without
the damping term the convergence of the GSR iterative scheme given by Equation (4.115) could
not be guaranteed. The following numerical test reveals the oscillation of solution using (4.115):

For N = 100, given u0N = 0 as the initial guess, we perform 40 GSR iterations according
to Scheme (4.115) with ω = 1.1 and plot the variation of error ∥ukN − uk−1

N ∥H1 and energy
E(ukN ) in Figure 4.4. We observe that the term ∥ukN − uk−1

N ∥H1 doesn’t converge to 0 and
the oscillation of the energy is obvious from Figure 4.4B. However, we divide the numerical
solution (ukN )0⩽k⩽40 into the odd part (u2k−1

N )1⩽k⩽20 and even part (u2kN )0⩽k⩽20 and then plot
respectively the variation of error and energy for these two parts in Figure 4.5 and Figure 4.6.
We observe the convergence of the numerical solution respectively for the odd and even part.
Besides, according to the variational principle, it is clear that none of these two subsequences
converge to the discrete solution uN of (4.89).
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(A) The variation of ∥uk
N −uk−1

N ∥H1 for N = 100 as
a function of iteration number k.
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(B) The variation of E(uk
N ) for N = 100 as a func-

tion of iteration number k.

Figure 4.4: The oscillation of nonlinear GSR scheme without damping term.

After explaining the necessity of adding a damping term into the GSR scheme given by
Equation (4.114), now we show one numerical example using (4.114): For N = 100, given
u0N = 0 as the initial guess, we perform 40 GSR iterations with ω = 1.1 and ξ = 0.25, then
we plot the variation of error ∥ukN − u

k−1
N ∥H1 and energy E(ukN ) in Figure 4.7. After inserting

a damping term into the GSR scheme, the convergence of the numerical solutions and of the
energy are checked and the decrease rate of ∥ukN −u

k−1
N ∥H1 is also very close to a straight line in

log-scale, which is the same as in the linear case. In the linear case, we know that the decrease
rate of ∥ukN − uk−1

N ∥H1 is close to the matrix norm ∥PN∥H1→H1 . But in the nonlinear case,
matrix PN (uk

N ) depends on the current numerical solution. Only under the assumption that
the numerical solution ukN is close enough to the discrete solution uN , we can deduce that the
decrease rate of the error ∥ukN − u

k−1
N ∥H1 is nearly a constant close to PN (uN ).
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Figure 4.5: The convergence of odd numerical solutions
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Figure 4.6: The convergence of even numerical solutions

4.3 Optimal path problem

4.3.1 Introduction

In the above two parts, we give the theoretical well-posedness analysis and some numerical
convergence results of both the linear and the nonlinear problems. In this section, we explore
the optimal error balance strategy such that these above two problems are numerically solved in
an optimal way.

In most cases, the resolution of the above two problems involve firstly fixing a N ∈ N∗, then
constructing the discretisation space XN and finally solving the problem over XN . This discreti-
sation number N which indicates the degree of freedom or the dimension of the discretisation
space (the dimension is N+1) is chosen manually. If we pick N = 10, for example, the numerical
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Figure 4.7: The convergence of numerical solutions with damping term

solution of this problem is rather fast, however, the difference between our numerical solution
and the true solution might be rather big. On the other hand, by picking a larger discretisation
number N , e.g., N = 100, the numerical solution would be closer to the true solution, but it takes
more computation resources to run the calculations. By only giving a target error bound, there
is no evident clue for picking a proper N . It is possible to run a fast calculation but get a solution
without satisfying the target bound or take much longer time for calculation and (luckily) get
an accurate enough solution. Or even worse, we take a long-time calculation but still the final
error is not satisfactory.

The aim of this work is to explore a new strategy to balance the computation resource and
numerical results’ accuracy. The idea is as follows: Firstly, we pick a small Nmin ∈ N∗ as
the starting point and initialize with u0Nmin

= 0. Then we do several GSR iterations until we
obtain a well converged solution in space XNmin

. Next, we continue the numerical solution in a
larger space XN1(N1 > Nmin). Initializing the new series of iterations with the previous ‘well
converged solution’ obtained in XNmin , we continue until obtaining, once again, well converged
solution in space XN1

. By repeating this process several times, finally we can get an accurate
enough solution as desired. In addition, this may save computational resources provided that
initializing iterations with previous well-converged solution diminishes the number of iterations
needed to achieve the target accuracy.

After describing briefly the idea, the next step is to explore how to realize this idea. The first
mission is to know how to switch between different discretisation spaces in a close-to-optimal
way. Fortunately, the two problems studied are both periodic and we use cosine functions to
approximate the unknown solution. Recall that in our numerical solution process, we obtain the
coefficient vector uk

N = [(ûkN )0, (ûkN )1, . . . , (ûkN )N ]T associated with the numerical approximation
solution ukN =

∑N
j=0 û

k
Njej . When we want to switch numerical solution from discretisation space

XN to space XN ′(N ′ > N), we just add N ′ −N zeros in the current coefficient vector uk
N and

define the resulting vector as u0
N ′ :

u0
N ′ = [(ûkN )0, (ûkN )1, . . . , (ûkN )N , 0, . . . , 0]

T . (4.135)
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In this way, based on the solution obtained in XN , we continue the calculation in a larger
discretisation space XN ′ and at the same time the approximation solution isn’t modified, i.e.,

u0N ′ =

N ′∑
j=0

(û0N ′)jej =

N∑
j=0

(û0N ′)jej +

N ′∑
j=N+1

(û0N ′)jej =

N∑
j=0

(ûkN )jej = ukN .

Convention 4.3.1. In the rest part of this section, we will frequently present the switch between
two discretisation spaces. We will always denote by XN the smaller discretisation space with
dimension N+1 and by XN ′ the larger discretisation space with dimension N ′+1. For simplicity,
we will use discretisation number N to indicate corresponding discretisation space XN , i.e., we
will say the switch from N to N ′ to indicate the switch of numerical solution process from
discretisation space XN to discretisation space XN ′ . Besides, we adapt the convention that
N ′ > N for the switch. And for N ∈ N∗, we denote the number of iterations carried out in space
XN by kN or sN (which will be used in the Threshold Accepting simulation).

After knowing how to switch between different discretisation spaces, the next question is to
know how many iterations kN should be performed in the fixed discretisation space XN and how
to choose next discretisation space XN ′ . We name ‘path’ any possible calculation process that
reduces the total error until the target tolerance is reached. A path collects the information about
the choice of discretization spaces XN and number of iterations kN performed in corresponding
discretization spaces and outputs it as an array. In addition, we aim at finding the optimal path
minimizing the computational resources and achieving target accuracy. In our work, we set an
error target for the approximate energy and explore the optimal way of finalizing the solution by
achieving the target accuracy. There are a variety of possible paths and we use a probabilistic
method, the threshold accepting method, to find the optimal path. In the rest of this section, we
will introduce the TA method and present relevant mathematical settings. Finally we will show
the optimal path result for both linear and nonlinear problems and discuss their differences. Here
we remark that the way obtaining optimal path is not of practical use for solving the linear or
the nonlinear source problem. The idea is to guide the intuition to define a possible near-optimal
strategy.

4.3.2 Threshold Accepting method

Threshold Accepting method is proposed by Gunter and Tobias in [37], which is a variant of
the well-known Simulated Annealing(SA) method [58], with its simpler structure and equal per-
formance in some numerical examples. TA and SA are both probabilistic algorithms aiming
at finding global optimum of a given function. Given an initial path, new neighboring path is
generated as small random perturbation of the old path, then the ‘quality’ of those two paths are
compared and the algorithm decides if the new path is kept for next iteration or not. The advan-
tage of those two methods is that they accept new path having bad ‘quality’ with a tolerance,
this is the key for finding the global optimum: sometimes the new path could be a local optimum
and all its neighbors could be regarded as bad paths. By allowing the acceptance of bad paths,
the algorithm can jump out from the local ‘trap’. The difference between those two methods
is the rule for acceptance of bad paths, which is known as annealing schedule. SA accepts bad
path with a probability function which decreases with calculation time. However, TA accepts
bad path with a deterministic tolerance which is replaced by a smaller one after a fixed number
of iterations. Therefore, TA doesn’t need to calculate probabilities to make the decision, which
makes it easier to implement.

In our optimal path problem, we don’t fully copy the algorithm in [37] but with some mod-
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ifications. Here we state the general framework of TA method for our optimal path problem in
Algorithm 1. After showing the algorithm, we will present in detail those functions appearing in
the algorithm.

Algorithm 1 TA Algorithm for optimal path problem.
Input: Choose initial path Sint and initial threshold T , fix maximal number of iteration Kmax

1: while T > 0 do
2: k = 0
3: while k < Kmax do
4: Snew = Neighbor(S)
5: if Cost(Snew) < Cost(S) + T then
6: S ← Snew
7: end if
8: end while
9: Deacrease threshold T until T = 0

10: end while
Output: Optimal path Sop

As the first step, we define the error as the energy difference:

εkN = E(ukN )− E(uf ). (4.136)

Here, uf is a converged very fine numerical solution, and in our problem, we set it as uf := u∞200.
The notation ∞ doesn’t means that we do infinite number of iterations, it is the converged
numerical solution uk

∗

N for fixed N and here k∗ = 200 is sufficient. In our path, N varies between
3 and 100, according to the variational principle, we deduce that εkN is always positive. Besides,
we defined the discretisation energy error as follows.

ε∞N = E(u∞N )− E(uf ). (4.137)

With the same variational argument, we know that ε∞N decreases as a function of N and in the
general case it decreases, strongly. What’s more, if we set the target error as, i.e., ε = ε∞N , we
can not arrive at the target accuracy without solving numerically the problem in discretization
space XN ′ (N ′ ⩾ N). In the optimal path problem, we set the goal error as

εg =
ε∞99 + ε∞100

2
. (4.138)

We thus have εg ⩾ ε∞100 and εg close to ε∞100. Moreover, the total number of iterations for a possible
path is limited such that the computational resources required for probabilistic calculation is
limited. In addition, in this way, we make sure that we will need at least to perform one iteration
for N = 100, which is the maximum discretisation number in the path. And any possible path
has the following general form:

S = {k3, k4, . . . , k100}. (4.139)

From the definition of goal error, we know that k100 ⩾ 1. In addition, the target accuracy
is attained when we have εk100 ⩽ εg. Therefore, in addition to satisfy the accuracy condition,
a path can be tested only when the number of iterations for N = 100 is minimized. This is
equivalent to say that the iteration number k100 is a function of k3, k4, . . . , k99: for a random
set {k3, k4, . . . , k99}, the corresponding k100 is uniquely defined as the smallest iteration number
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for N = 100 such that the final error εkN ⩽ εg. Therefore, the generation of a path is to firstly
generate the integers set {k3, k4, . . . , k99} and then add k100 which is obtained via calculation.

After defining properly the path, now we come to define the neighbor function which generates
a new path from the old one with a small random perturbation. Firstly we pick a random number
3 ⩽ N ⩽ 99, then for kN , we generate the new neighbor path s′N by picking a random integer
in the interval [max{kN − 3, 0}, kN ) ∪ (kN ,min{kN + 3, kmax}] such that we add a perturbation
smaller than 3 iterations. Here, we set kmax as the maximal number of iterations, which is
obtained by fixing the discretisation number as N = 100 and choosing kmax as the minimal
number of iterations k such that εk100 ⩽ εg.

Another important function in the algorithm is the cost function that models the computation
cost. It is based on the number of multiplications of two numbers. Therefore, in the linear
problem, the cost of one iteration is (N + 1)2 for discretisation number N (The dimension of
XN is N + 1) and the computational cost is proportional to the so-called cost function defined
as follows:

Cost(S) =
100∑
N=3

kN (N + 1)2. (4.140)

For the nonlinear problem, in each iteration, the nonlinear cubic term needs to be updated and
this part of cost is also counted. The cost function of the nonlinear problem is thus defined as:

Cost(S) =
100∑
N=3

kN (N + 1)2(N + 2). (4.141)

The above Algorithm 1 is the sequential threshold acceptance method. In our problem, the
dimension of search space is (kmax + 1)97, therefore it is slow to get the optimal path. To speed
up this process, we run a parallel version of TA on 100 nodes and the algorithm is given in
Algorithm 2. The threshold is initially set to be equal to the initial cost, and it is divided by 6
and after each loop the threshold is subtracted by 1

6 of the initial cost.

Algorithm 2 Parallel TA Algorithm for optimal path problem.
Input: Choose initial path Sint and initial threshold T , fix maximal number of iteration Kmax

and number of nodes n in the network
1: while T > 0 do
2: if the node is the central node then
3: distribute initial path to n− 1 worker nodes
4: run sequential TA algorithm with fixed threshold T
5: get the simulation result and gather results from other worker nodes
6: compare those results and choose the best one as initial path for next loop
7: end if
8: if the node is worker node then
9: receive initial path from central node

10: run sequential TA algorithm with fixed threshold T
11: send the simulation result to the central node
12: end if
13: decrease threshold T until T = 0
14: end while
Output: Optimal path S
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4.3.3 Optimal path result
In this subsection, we will present the optimal path result for both the linear case and the
nonlinear case.
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Figure 4.8: The optimal path for the linear case

Firstly we have the linear optimal path result in Figure 4.8. In this figure, we also add the
path for fixed discretisation number N = 100 for comparison. For the optimal path and the
fixed N path, we both need 13 iterations to achieve the target accuracy. The optimal path is
Sop = {7, 4, 0, 1, 0, . . . , 0, 1}: we do 7 iterations for N = 3, 4 iterations for N = 4, 1 iteration
for N = 6 and finally 1 iteration for N = 100. The cost is Cost(Sop) = 10, 462 compared with
Cost(S100) = 132, 613 for fixed N = 100 path. From the expression of the cost function in
(4.140), we know that the major contribution of the cost comes from the iteration for N in the
range of 100, therefore, the solution path is optimized by decreasing as much as possible the
number of iterations for large values of N while maintaining the required final accuracy. In this
linear case, we get rather satisfactory result, this type of optimal path is what we can expect
in the best case: to achieve the target accuracy, we need to do the same number of iterations,3
but only one iterations for N = 100 is needed, most iterations can be realized with much smaller
discretisation number N .

The result of nonlinear problem is shown in the Figure 4.9, and we also indicate the optimal
path in Table 4.1. The cost of the optimal path is Cost(Sop) = 10, 216, 786. For the path
with fixed N = 100, 15 iterations are needed to achieve the target accuracy and the cost is
Cost(S100) = 15, 607, 530, hence Cost(Sop) is about 2

3 of Cost(S100) and the optimal process
does not help much. This is because nearly half of the iterations for N = 100 are still needed.
Besides, unlike the linear optimal path, in the nonlinear case, iterations for small N doesn’t play
an important role in the optimal path, but iterations for a range of different N are required
before jumping to N = 100.

3It seems that in most cases we can find manually some paths similar to the optimal one: 1)The number of
iterations for this path is the same as for theN = 100 case. 2)All the iterations are done for N small except the
last one iteration for N = 100. We are not sure if this is general.
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Figure 4.9: The optimal path for the nonlinear case with damping parameter ξ.

discretisation number N 27 40 52 59 79 98 100
Iteration number kN 5 3 1 2 2 1 7

Table 4.1: The optimal path of the nonlinear case.

Remark 4.3.1 (Convergence of threshold accepting (TA) method).
Theoretically, the probability that we obtain the global optimal result through TA method could

approach 1 under the condition that the number of nodes and iterations are large enough and
that the decrease of threshold T is slow [1]. However, in practical calculation, the computation
resources are limited and we can not guarantee that the output of TA calculation is truly the
global optimal path for given problem. Or even worse, the output path could be manually checked
that, unfortunately, it is not the optimal one.

For example, an easy check can be implemented as follows: For any output path S = {k3, k4, . . . , k100}
with at least one nonzero element kN (4 ⩽ N ⩽ 99), we pick one of those nonzero elements
kN (4 ⩽ N ⩽ 99). Then we remove one iteration for N , i.e., k′N = kN − 1 and add one iteration
for N−1, i.e., k′N−1 = kN−1+1. And we check if the new path S′ = {k3, . . . , k′N−1, k

′
N , . . . , k100}

still satisfies the given accuracy or not. If the new path also works, then we obtain manually a
more optimal path and it is evident that the previous path is not the optimal one.

In our TA calculation, before decreasing the threshold T , we will check if the output varies for
bigger thresholds. The aim is to avoid being stuck in the local ‘trap’. If the path S is always the
same and we verify manually that it is not the optimal one. We will set S′ obtained via the above
described manual check as the new initial path and continue the TA calculation. Even finally the
threshold arrives at T = 0, we still check manually if the output is the optimal one.

For the nonlinear optimal path result in Figure 4.9, we observe that there is no iteration
for small N . In fact, the output TA calculation also contains nonzero elements kN for small
N . However, after checking manually the output path, we found out that even we remove all
iterations for small N , the path still satisfies the target accuracy. Therefore, we conclude that
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small N doesn’t play an important role in the nonlinear optimal path and plot the final manually-
checked path in Figure 4.9.

From Figure 4.8, we observe that there is a jump from small N to N = 100 and then after 1
iteration the target accuracy is achieved. For small N , even we do enough iterations to get the
nearly converged solution uN , with the energy error being nearly equal to εN , there still exists
an evident gap between εN and the goal error εg = ε99+ε100

2 . However, 1 iteration for N = 100
is enough to cover this gap. This could be explained by the fact that the gap is not big enough
or that the jump from small N to N = 100 is very efficient.

For checking if the ‘good performance’ of the linear optimal path result originates occasionally
from a ‘suitable’ goal error, we add one more test for the linear optimal path problem: in this
new test, we set the goal error as εg = 0.01ε99 + 0.99ε100 and see if this time we can obtain
similar path as the one in Figure 4.8.

Remark 4.3.2 (Optimized Path).
In the above additional test with εg = 0.01ε99 + 0.99ε100, we don’t run TA simulation to get

optimal path result. Not only because TA simulation costs too much time, but also we declare
again that the aim of this test is to see if we can reproduce a similar path as the one in Figure 4.8,
but not to get the optimal path with new εg. We just enter manually the path S = {k3, . . . , k99}
to see if we can achieve the target accuracy with k100 = 1. For example, we initialize the path
with kN = kmax with a small N (e.g. N = 3) and evaluate the number of iterations at N = 100
to achieve εg. By including gradually bigger N into the path, less iterations will be needed for
N = 100 and we stop this process when k100 = 1. Next, we continue by replacing iterations
for discretisation number N with smaller discretization numbers (N − 1, N − 2, etc) to get a
manually cheaper path while maintaining k100 = 1 at the same time. Finally, we stop when we
arrive at Nmin=3 with optimized k3 and we call the manually generated result as optimized path
rather than optimal path.
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Figure 4.10: The optimized path for the linear case with εg = 0.01ε99 + 0.99ε100
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The optimized path is plotted in Figure 4.10. After setting new goal error to be closer to the
discretisation error ε100, we need 18 total number of iterations when we perform calculations with
fixed N = 100. For the optimized path, we can still achieve the target error with only 1 iteration
for N = 100, even though this time the range of small N is a bit larger, i.e., 3 ⩽ N ⩽ 14
compared with 3 ⩽ N ⩽ 6 in our original linear optimal path. Although, in the optimized
path, more iterations are needed for small N , this part of additional computation costs are
less important when compared to the costs of 1 iteration for N = 100. The result of this
complementary test shows that the most important factor in the linear optimal is the jump from
small N to N = 100: after getting a rather accurate simulation result for small N and jumping
to N = 100, one iteration is enough to get the desired solution.

In this section, we show the optimal path result for both the linear and the nonlinear problems.
In addition, we add one more test for the linear case by modifying the goal error. It seems that
we could always realize an efficient jump in the linear case to reduce the calculation error more
efficiently, which is impossible in the nonlinear case. At instance, we don’t know much about
the mechanism behind those two types of optimal paths. Still, we recall that the aim of this
work is not only to know the optimal path result, but also to propose general strategies for
any given accuracy requirement. Therefore, in next section, we will explore a bit about the
mechanism generating two types of optimal paths and propose general strategies for both linear
and nonlinear problems.

4.4 Complementary simulation results and analysis

4.4.1 Complementary simulation results

In previous section, we show the optimal paths for the linear and the nonlinear problem. In
addition, we also add one more test to show the efficiency of the jump from small discretisation
number N to N = 100 in the linear case. However, it seems that the jump between different
discretisation numbers N (or more precisely, the switch of numerical solution in different dis-
cretisation spaces XN ) is less efficient in the nonlinear case. In this section, through a series
of complementary tests, we explore the mechanism controlling the efficiency of jump between
different discretisation numbers N and producing these two types of optimal paths.

Comparing the linear problem and the nonlinear problem, we find two differences in their
iteration schemes: there are the nonlinear term SN (uN ) and the damping parameter 0 < ξ < 1
in the nonlinear GSR scheme. According to this observation, we design the following tests and
reveal the key factor by resuming these tests results.

Remark 4.4.1 (Nomenclature of complementary tests).
The nomenclature principle of the following tests is as follows: Firstly, we clarify the type

of problems to be solved: L for the linear problem and NL for the nonlinear problem. Next, we
distinguish the algorithm type used to solve the problem: L for the algorithm without damping
term and NL for the algorithm with damping term. If there are more than one tests corresponding
to the same type of problem and also the same type of algorithm, we will add letters as A or B.
According to this principle, the linear optimal path result in Figure 4.8 corresponds to test for
the type L-L and the nonlinear optimal path result in Figure 4.9 corresponds to test for the type
NL-NL.

Test NL-L-A, in this test, we resolve the nonlinear problem by transferring it into a linear
problem.

−∆u+ V u+ (u∞200)
2u = f, (4.142)
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where u∞200 is the converged solution for N = 200. The iteration scheme is the same as (4.40)
and the matrix equation to be solved is

AN (u∞200)uN = bN . (4.143)

In Test NL-L-B, we modify the matrix equation as

AN (ΠNu
∞
200)uN = bN , (4.144)

where we recall that ΠN : X → X is the orthogonal projection operator onto space XN .
The above two tests remove the influence of damping term. Test L-NL focus on problem

without the existence of nonlinear term: in this test, for resolving the linear problem

−∆u+ V u = f, (4.145)

we add damping term into the GSR iteration scheme

uk+1
N =ξ

(
−(DN + ωLN )−1 ((1− ω)LN +UN )uk

N + (DN + ωLN )−1bN

)
+ (1− ξ)uk

N ,
(4.146)

with 0 < ξ < 1. As we stated in previous section, here our aim is to explore the mechanism
controlling the efficiency of the jump but not to obtain the optimal path. Therefore, obtaining
optimized path result is enough. These test results are plotted in Figure 4.11. We classify
all these results into two types: Type L indicating the path type in figure 4.8 and Type NL
indicating the path type in figure 4.9. From these test results, we observe that the existence
of damping term plays the essential role for controlling the efficiency of the jump and thus
producing different types of optimized paths. Furthermore, it seems that the linearity of the
problem doesn’t have important influence to the path types. In both the linear problem and the
nonlinear problem, we can have two path types using different iterative schemes.

Now we know that the jump between different discretisation numbers N is more efficient
for the algorithm without damping term. Therefore, we propose a new GSR algorithm for the
nonlinear problem:

uk+1
N = −(DN + ωLN )−1

(
(1− ω)LN +UN + SN

(
uk−1
N + uk−2

N

2

))
uk
N + (DN + ωLN )−1bN .

(4.147)
After changing the iteration scheme, we can obtain converged result for the discrete nonlinear
problem (4.89) and there is no oscillation of numerical solutions as shown in Figure 4.4. We name
this case as Test NL-L’ and we also plot its optimized path in Figure 4.11. We observe from the
figure that after changing a new algorithm without damping term, we can produce optimized
path of Type L, which is more efficient than the one of Type NL.

As a summary, we also list all different iteration schemes for different problems with corre-
sponding path type in Table 4.2. In this section, we identify the key factor in the iterative scheme
based on numerical calculations. In next section, we will give a theoretical analysis about the
different behaviors of two path types.

4.4.2 Result analysis

In the previous section, we offer some complementary tests and these test results show that the
optimal path behavior relies strongly on the existence of the damping term. Thus, we explore
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(A) Optimized path of test L-NL, we re-
mark the same behavior for this problem
as the one of Type NL, hence we deduce
that the "damping parameter ξ is respon-
sible of reducing the convergence speed.
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(B) Optimized path of test NL-L-A, we
remark here the same behavior for this lin-
earized problem as the one of Type L,
hence we deduce that the complexity of
the equation is not responsible of reduc-
ing the convergence speed.

0 20 40 60 80 100
Discretization Number N

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

k-
th

 it
er

at
io

n 
st

ep

Optimized Path
Path for fixed N = 100

(C) Optimized path of test NL-L-B

0 20 40 60 80 100
Discretization Number N

0

5

10

15

20

25

k-
th

 it
er

at
io

n 
st

ep

Optimized Path
Path for fixed N = 100

(D) Optimized path of test NL-L’

Figure 4.11: The complementary tests results

firstly why the jump is so efficient for GSR iterative scheme without damping term.
Here, we recall the error analysis in section 4.1.3 and 4.2.2. In the first place, we focus on

the linear problem, we know that the convergence rate of iteration algorithm is controlled by the
matrix norm of matrix PN , which is a constant. However, from Figure 4.8 and Figure 4.10, it is
clear that the first iteration after the jump reduces the iteration error efficiently. Therefore, here
we do a simple test: We solve the linear problem using the iterative scheme given by Equation
(4.40) without damping term. Firstly, we perform 10 iterations for N = 3 and we calculate
the ratio ∥uk+1

N −u∞
N ∥H1

∥uk
N−u∞

N ∥H1
for those 10 iterations. Those values vary between 0.5 and 0.69, which

is reasonable because we have 0.698 < ∥P3∥H1→H1 < 0.699. Then we switch from N = 3 to

N ′ = 12 and perform 4 iterations. We also calculate the ratio
∥uk+1

N′ −u∞
N′∥H1

∥uk
N′−u∞

N′∥H1
for those 4 iterations.

The ratios are about 0.057, 0.451, 0.691, 0.693 and we have 0.70 < ∥P12∥H1→H1 < 0.701. From
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Table 4.2: List of different paths

Matrix Equation Iteration scheme Path type

ANuN = bN

uk+1
N =− (DN + ωLN )−1((1− ω)LN

+UN )uk
N + (DN + ωLN )−1bN

Type L

ANuN = bN

uk+1
N =− ξ(DN + ωLN )−1((1− ω)LN +UN )uk

N

+ ξ(DN + ωLN )−1bN + (1− ξ)uk
N

Type NL

AN (ΠNu
∞
200)uN = bN

uk+1
N =− (DN + ωLN )−1((1− ω)LN

+UN )uk
N + (DN + ωLN )−1bN

Type L

AN (u∞200)uN = bN

uk+1
N =− (DN + ωLN )−1((1− ω)LN

+UN )uk
N + (DN + ωLN )−1bN

Type L

AN (uN )uN = bN

uk+1
N =− (DN + ωLN )−1((1− ω)LN +UN+

SN (
uk−1
N + uk−2

N

2
))uk

N + (DN + ωLN )−1bN

Type L

AN (uN )uN = bN

uk+1
N =− ξ(DN + ωLN )−1((1− ω)LN +UN + SN (uk−1

N ))uk
N

+ ξ(DN + ωLN )−1bN + (1− ξ)uk
N

Type NL

this simple test, we see that the ratio
∥uk+1

N′ −u∞
N′∥H1

∥uk
N′−u∞

N′∥H1
is very small for the first iteration after

the jump, which means that this first iteration is very efficient and from the next iteration the

ratio
∥uk+1

N′ −u∞
N′∥H1

∥uk
N′−u∞

N′∥H1
becomes closer and closer to ∥P12∥H1→H1 , which means that these iterations

become less efficient.

After the jump from N = 3 to N ′ = 12, we have u0
12 = {(û10

3 )0, . . . , (û10
3 )3, 0, . . . , 0}. In

general, after large enough number of iterations, we assume that the approximate solution uk
3 is

close to the converged solution u∞
3 . In addition, providing that it is also close to Π3u

∞
12 where

Π3 is the projection operator picking out the first four elements, the iteration error can thus
be approximately expressed as u∞

12 − u0
12 ≈ {0, . . . , 0, (û∞

12)4, . . . , (û
∞
12)12}. Then for the first

iteration after the jump, from Equation (4.43), we know that the matrix taking effect is not
P12 but rather P12(I − Π3). We have the norm 0.064 < ∥P12(I − Π3)∥H1→H1 < 0.065, which
explains why the first iteration after the jump is more efficient than next iterations for fixed N .
In addition, we do one more test, we put Π3u

∞
12 as input for N = 3, perform 1 iteration after the

jump from N = 3 to N ′ = 12 and calculate the ratio ∥u1
N′−u∞

N′∥H1

∥u0
N′−u∞

N′∥H1
= 0.0526. This result verifies

our explanation that the first iteration after a jump is more efficient because the matrix norm of
the ’true’ part ∥PN ′(I − ΠN )∥H1→H1 is smaller than ∥PN ′∥H1→H1 . Lastly, it follows from the
super convergence result (4.26) in Theorem 4.1.1 that the term ∥u∞N −ΠNu

∞
N ′∥H1 decreases at a

rate of N− 7
4+ϵ (ϵ > 0)4. Therefore, this term is negligible as long as N and N ′ are large enough

and in this linear source problem, we numerically checked that this assumption is satisfied.

In Table 4.2, there are four schemes with Type L path. For the linear case (type L-L or
NL-L), we have three schemes with Type L path. For those three schemes, we verify that the
above argument holds in each scheme. For the nonlinear case, the iterative scheme without the
damping term also produces Type L optimized path. The convergence analysis is similar to the
one in Chapter 4.2.2. By setting ξ = 1 and assuming that the algorithm is already well converged

4Here we checked numericaly that the decrease rate of this term is faster that N−2.
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before the jump, i.e., ukN ≈ u
k+1
N , we obtain

uk+1
N ′ − u∞

N ′ = P′
N ′(uk

N ,u
∞
N )(uk

N ′ − u∞
N ′),

where P′
N ′ is defined in (4.118). The jump efficiency is controlled by the term ∥P′

N ′(I −
ΠN )∥H1→H1 . Similarly, in this case, we also checked numerically that the matrix norm ∥PN ′(I−
ΠN )∥H1→H1 is smaller than ∥PN ′∥H1→H1 . The last remark is that for the nonlinear problem,
we also have the super convergence result (4.106) in Theorem 4.2.1, the assumption that the
term ∥u∞N −ΠNu

∞
N ′∥H1 is negligible is satisfied.

After explaining the efficiency of the jump in Type L path for both the linear and the
nonlinear problems, now we take the linear problem L-NL as example to explain the behavior of
Type NL path. In the case of Type NL path, we have a damping parameter ξ in the iteration
scheme. In this situation, the jump isn’t efficient anymore. Similarly to the analysis in Chapter
4.2.2, we firstly write the GSR iteration scheme as

uk+1
N − u∞

N = (ξPN + (1− ξ)IN )(uk
N − u∞

N ).

Therefore, by denoting that P′′
N = ξPN + (1− ξ)IN , we obtain

∥P′′
N ′(I−ΠN )∥2H1→H1 =λmax

(
(TN ′P′′

N ′(I−ΠN )T−1
N ′ )

T (TN ′P′′
N ′(I−ΠN )T−1

N ′ )
)

=λmax(ξ
2(TN ′PN ′(I−ΠN )T−1

N ′ )
T (TN ′PN ′(I−ΠN )T−1

N ′ )

+ (1− ξ)2(TN ′(I−ΠN )T−1
N ′ )

T (TN ′(I−ΠN )T−1
N ′ )

+ ξ(1− ξ)(TN ′PN ′(I−ΠN )T−1
N ′ )

T (TN ′(I−ΠN )T−1
N ′ )

+ ξ(1− ξ)(TN ′(I−ΠN )T−1
N ′ )

T (TN ′PN ′(I−ΠN )T−1
N ′ )

=λmax(ξ
2(TN ′PN ′(I−ΠN )T−1

N ′ )
T (TN ′PN ′(I−ΠN )T−1

N ′ )

+ (1− ξ)2(I−ΠN )

+ ξ(1− ξ)(TN ′PN ′(I−ΠN )T−1
N ′ )

T (I−ΠN )

+ ξ(1− ξ)(I−ΠN )T (TN ′PN ′(I−ΠN )T−1
N ′ ),

where the matrix TN ′ is a diagonal matrix with the diagonal part [(1 + j2)
1
2 ]0⩽j⩽N ′ . In the

above expression, as in the analysis of Type L path, we assume and have checked numerically for
iterative scheme without damping term that the term ∥PN ′(I−ΠN )∥2H1→H1 = λmax((TN ′PN ′(I−
ΠN )T−1

N ′ )T (TN ′PN ′(I − ΠN )T−1
N ′ )) is small compared to ∥PN ′∥2H1→H1 . Moreover, it is evident

that the eigenvalue of the matrix (I − ΠN ) are zero and one. In addition, for e.g., ξ = 0.25,
combining those above arguments, we claim that the dominant term in the above expression is
λmax

(
(1− ξ)2(I−ΠN )

)
and that ∥P′′

N ′(I − ΠN )∥H1→H1 is thus close to 1 − ξ = 0.75. Here we
check numerically the above statement: we calculate 0.757 < ∥P′′

12(I−Π3)∥H1→H1 < 0.758. This
verifies our explanation: After adding a damping term, we need more iterations for N = 100
and 1 iteration is far from being enough. Besides, we need iterations for a range of different N
to gradually decrease the discretisation error. Lastly, we also numerically check that the above
explanation holds for the nonlinear iterative scheme with the damping term.

Here we give a brief summary to finalize this section: we have two optimal path types Type
L and Type NL. The key factor determining the path behavior is the existence of the damping
term. Without the damping term, i.e. the Type L case, the jump is efficient because the decrease
of iteration error is not controlled, temporally, by the spectral radius of PN ′ but PN ′(I− ΠN ),
which is smaller. For the Type NL case, the efficiency of the jump is degraded because of the
existence of the damping term and the efficiency is mainly controlled by the parameter ξ.



4.5. Calculation strategy 111

4.5 Calculation strategy

In previous sections, we study the optimal path problem. Then by applying the TA method, we
obtain optimal paths for the linear and the nonlinear problems. Next, we explore the mechanism
of producing two kinds of optimal paths. By adding complementary tests and giving the detailed
explanation, we reveal the critical impact of the damping term on the iterative scheme for
determining the optimal path type. Now, in this section, we aim at proposing general strategies
to solve efficiently these problems under a certain calculation goal.

From these optimal path results in Chapter 4.3 and the analysis in Chapter 4.4, the basic idea
of constructing optimal path strategy is as follows: Let us start with an iterative scheme without
the damping term. Then the strategy is constructed as follows: We fix a discretisation number
N and perform enough number of iterations (the meaning of ‘enough’ will be specified in these
following strategies). Next, we switch to a new discretisation number N and repeat this process
for several different discretisation numbers. Finally, we perform 1 iteration after jumping to the
final discretisation number Nf , which terminates the calculation. After giving some remarks, we
will present our nearly optimal strategies for the linear and the nonlinear problem.

Remark 4.5.1.

• In our previous calculations, we set the goal error as εkN ⩽ εg = ε99+ε100
2 . Here we recall

that the error is defined as the energy difference εkN = E(ukN )−E(uf ) and uf , in our case,
is the converged solution for N = 200, i.e., uf := u∞200. However, in a more general case,
we only know our approximate numerical solution ukN . Thanks to the a posteriori error
estimation, the difference between the approximate solution and the unknown true solution
∥ukN − u∥ is bounded by the residual under a certain norm. Therefore, in a more general
situation, we set the criteria for the residual ∥R(ukN )∥ < εg where εg here is given a priori
(and not with respect to the knowledge of the error bound for N = 100).

• In the expression of the residual, the potential term V and the source term f in the operator
A (in the linear case) or in the operator F (in the nonlinear case) are expressed as infinite
sum of cosine functions. Even acting on an approximate solution ukN , which is a finite sum
of cosine functions, the residual is still an infinite sum of cosine functions. Therefore, In
our numerical simulation, we will numerically approximate the residual by truncating it for
the sum of the first 1001 basis vectors (ei)0⩽i⩽1000 as defined in (4.9).

4.5.1 Strategy for linear problem
In this subsection, we will propose our strategies for the linear problem. In previous section, we
analyze the mechanism producing two types of optimal paths. For Type L path, we know that
the jump from small N to a larger N ′ is efficient because this iteration efficiency is controlled by
the matrix norm ∥PN ′(I − ΠN )∥H1→H1 , which is smaller than ∥PN ′∥H1→H1 . Therefore, let us
start with proposing a calculation strategy based on the above mentioned mechanism in order to
verify that we have well understood the optimal path behavior and that we are able to produce
near-optimal path.

For a very well converged solution uk
N ≈ u∞

N , we can approximately predict the iteration
error of the first iteration after jumping from N to N ′ via the following estimate:

∥u1
N ′ − u∞

N ′∥H1 ⩽ ∥PN ′(I−ΠN )∥H1→H1 · ∥u∞
N − u∞

N ′∥H1 ,

which means that we can control the error after the first iteration by calculating some terms
independent of the iteration process. One application of this idea is as follows: We take N ′ = 100
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as example and the goal is to obtain an approximate solution u1
100 (only one iteration forN ′ = 100

after the jump) such that ∥u1
100 − u∞

100∥H1 ⩽ εg. Then we can determine the smallest N such
that after the jump from uk

N to u0
100, we only need one iteration to achieve the goal accuracy.

This is realized by supposing that uk
N is well converged to u∞

N and calculate the smallest N such
that ∥P100(I−ΠN )∥H1→H1 · ∥u∞

N − u∞
100∥H1 ⩽ εg.

We can also generalize this idea to design a nearly optimal path for achieving a target accuracy
set to the iteration error ∥uk

100−u∞
100∥H1 ⩽ εg. Here we remark that we design the path starting

from Nmax = 100 and ending with Nmin = 3. For every jump, given the iteration error accuracy
for N ′, we pick the smallest N such that after jumping from N to N ′ one iteration is enough to
satisfy the required iteration error. In addition, we consider the difference between the numerical
solution uk

N and the converged solution u∞
N . Therefore, let us denote by ε̃i the iteration error

tolerance to bound the iteration error, i.e., ∥uk
N − u∞

N ∥H1 ⩽ ε̃i and a priori, this tolerance
should be small. It follows that ∥uk

N − u∞
N ′∥H1 ⩽ ∥u∞

N − u∞
N ′∥H1 + ε̃i. Now we start from

N = 100 with the target accuracy ∥u1
100 − u∞

100∥H1 ⩽ εg, we pick the smallest N such that
∥P100(I − ΠN )∥H1→H1 · (∥u∞

N − u∞
100∥H1 + ε̃i) ⩽ εg. Once again, we set the previous N before

the jump as N ′ for the next loop and seek for a smaller N for the new jump. If there exist some
N satisfying ∥PN ′(I−ΠN )∥H1→H1 · (∥u∞

N − u∞
N ′∥H1 + ε̃i) ⩽ ε̃i, then we pick the smallest value

of N . If not, it means that the iteration error ε̃i is not small enough. We add one GSR iteration
for the fixed N ′ and reduce the target accuracy to ∥PN ′∥H1→H1 ε̃i. Then we check if we can pick
a smaller N to realize a jump. If the answer is still no, we just repeat performing GSR iterations
for the fixed N ′ until the target accuracy is small enough to realize a jump. Repeating the above
process until, finally, we arrive at N = Nmin = 3.

In fact, even the above strategy produces near-optimal path that spends less computational
resources compared with the optimal path obtained via the probabilistic calculation. This strat-
egy is still expensive to implement: We must calculate the matrix norm ∥PN ′(I − ΠN )∥H1→H1

and discretisation error ∥u∞
N − u∞

N ′∥H1 for different N and N ′, which is more expensive than
just solving directly the problem with fixed discretisation number N = 100. In addition, in
practical calculation, we won’t calculate u∞

N for different N and then set the iteration error value
as target accuracy. Therefore, in our nearly optimal path strategy, we must avoid calculating
the matrix norm for different N . Moreover, the target accuracy is set to the value of the residual
∥R(ukN )∥ < εg, which is more common in the general case.

In our strategy, the jump criteria is based on the use of the numerical solution residual in
place of errors in H1 norm, which is nearly free. Because our goal criteria is ∥R(ukN )∥ < εg and
we need to calculate the residual after each iteration to know if the target accuracy is achieved.
After obtaining uk

N , we calculate its residual R(ukN ). By truncating the residual at N ′ (N ′ > N),
we obtain

ΠN ′R(ukN ) = ΠN ′(−∆ukN + V ukN )−ΠN ′f

= ΠN ′A1u
k
N +ΠN ′A2u

k
N −ΠN ′f,

where A1 and A2 are defined through Corollary 4.1.1.1. Besides, for next iteration, if we jump
from N to N ′ and perform one GSR iteration to obtain u1N ′ , then from (4.59), we have the
following equation

ΠN ′A1u
1
N ′ +ΠN ′A2u

k
N = ΠN ′f.
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Combing the above two equations yields that

ΠN ′R(ukN ) = ΠN ′A1u
k
N +ΠN ′A2u

k
N −ΠN ′f

= ΠN ′A1u
k
N −ΠN ′A1u

1
N ′

= ΠN ′A1(u
k
N − u1N ′).

(4.148)

The above equation shows that by truncating the residual at N ′, this part could, in some sense,
represent a substitute of ∥ukN − u1N ′∥H1 and predict the situation of the next iterative solution
u1N ′ after jumping from N to N ′. Besides, for the rest part of the residual Π⊥

N ′R(ukN ), we have

Π⊥
N ′R(ukN ) =Π⊥

N ′(R(ukN )−R(u))
=Π⊥

N ′A(ukN − u)
=Π⊥

N ′A(ukN − u∞N ′ + u∞N ′ − u)
=Π⊥

N ′A(ukN − u∞N ′) + Π⊥
N ′A(u∞N ′ − u)

=Π⊥
N ′A(ukN − u∞N ′) +R∞

N ′ ,

(4.149)

where u is the true solution of this problem and we also used the fact that u∞N ′ is the discrete
solution satisfying condition (4.60). Additionally, we have

ΠN ′R(ukN ) =ΠN ′(R(ukN )−R∞
N ′)

=ΠN ′A(ukN − u∞N ′).
(4.150)

Therefore, if we assume that the term ΠN ′A(ukN−u∞N ) is dominant in A(ukN−u∞N ), then the term
Π⊥

N ′R(ukN ) can approximately represent R∞
N ′ . Here, we do one test: For N = 3, we calculate

the residual R∞
N and then for N < N ′ ⩽ 100, we compare ∥Π⊥

N ′R∞
N ∥H−1 and ∥R∞

N ′∥H−1 . The
result shows that for each N < N ′ ⩽ 100, we have ∥Π⊥

N ′R∞
N ∥H−1 > ∥R∞

N ′∥H−1 . This result
shows that after getting a well-converged solution for N = Nmin, we can already predict Nf such
that R∞

Nf
⩽ εg. The application of this character avoids picking unreasonably big discretisation

number as the destination of jump.
After presenting all relevant formulas, now we propose the first nearly optimal path strategy

in Algorithm 3. After giving a goal accuracy for the residual ∥R(ukNf
)∥H−1 < εg (hopefully

with k = 1), we begin from Nmin = 3 and make several jumps to obtain an approximate solution
satisfying the target accuracy. Here, in the criteria ∥Riter(u

k
N )∥H−1 ⩾ εg

10 and ∥Π⊥
N ′R(ukN )∥H−1 ⩽

∥Rdisc(u
k
N )∥H−1

3 , the value 10 and 3 are parameters to be fitted by experience. Besides, similar to
the relation between ΠN ′R(ukN ) and R∞

N ′ , we also perform the following numerical test: For a well

converged solution ukN , by picking the smallest N ′ such that ∥Π⊥
N ′R(ukN )∥H−1 ⩽ ∥Rdisc(u

k
N )∥H−1

3 ,

we perform one iteration after jumping from N to N ′ and calculate ∥R(uk
N )∥H−1

∥R1
N′∥H−1

. This ratio is
very close to 3. In addition, the criteria for picking new N makes use of our previous observation
aboutNf . In addition, we also set restriction on the jump distanceN ′−N to avoid picking clearly
unreasonable values of N ′, e.g., in previous linear optimal path problem, performing iterations
for N = 300 can satisfy the accuracy requirement but the computational cost will increase at
least by a factor of 9 compare to the optimal path. Therefore, after each jump, we record the
jump distance N ′ − N . When we obtain next N ′ through calculation, we compare the actual
distance N ′ −N with four times the previous one to avoid too big jump.

The inconvenient of the above strategy is that the criteria for picking new N contains two
hand-fitted parameters (10 and 3). Therefore, we try in another strategy to give ’reasonable’
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Algorithm 3 The nearly optimal path Strategy I

Input: target accuracy ∥AukN∥H−1 < εg and Nmin = 3.
1: N = Nmin

2: while ∥R(ukN )∥H−1 > εg do
3: while ∥Riter(u

k
N )∥H−1 ⩾ εg

10 and ∥R(ukN )∥H−1 > εg do
4: One GSR iteration
5: end while
6: if ∥R(ukN )∥H−1 ⩽ εg then
7: break while iteration process
8: end if
9: Pick Nf as the smallest N ′ such that ∥Π⊥

N ′R(ukN )∥H−1 ⩽ εg

10: Pick smallest N ′ such that ∥Π⊥
N ′R(ukN )∥H−1 ⩽ ∥Rdisc(u

k
N )∥H−1

3
11: Pick N∗ = min{Nf , N

′}
12: if N∗ −N is four times bigger than last jump then
13: N ← N∗+N

2
14: else
15: N ← N∗

16: end if
17: end while
Output: Nearly optimal path S and the approximate solution ukN .

criteria for picking next N ′. We firstly divide the strategy into two parts: the first part con-
taining all the jumps except the last one jumping to the final discretisation number Nf and the
other part only containing the last jump. We make this division because these two parts serve
different purposes. According to the expression of cost function (4.140), for the aim of decreasing
computational costs, we should decrease the number of iterations for big discretisation number,
e.g. only 1 iteration for N = Nf . Therefore, all these rest iterations aim at decreasing the error
(or the residual) at a certain level such that 1 iteration for N = Nf is enough to finalize the
calculation.

For the first part of the path, we want to decrease the error while balancing corresponding
computation costs. Therefore, after obtaining a well-converged solution ukN , we define a efficiency
parameter κN ′ to evaluate the efficiency if we pick discretisation number N ′ as the destination
of the jump. Then we pick N ′ corresponding to the highest value of the efficiency parameter κ.
Ideally, the efficiency parameter should be defined as κN ′ := ∆R

∆C , where ∆R is the variation of
residual after doing KN ′ iterations for N ′ such that the iteration residual Riter(u

KN′
N ′ ) satisfies

the stopping criteria and ∆C = KN ′(N ′ +1)2 is the increase of computation cost. Nevertheless,
as we said before, it isn’t practical to calculate κN ′ precisely, which is as expensive as solving
the problem directly for fixed N = 100. Therefore, we need to find a computationally cheap
approximation of this efficiency parameter.

The practical efficiency parameter is defined as

κN ′ =
∥R(ukN )∥H−1 − ∥Π⊥

N ′R(ukN )∥H−1

(N ′ + 1)2
, (4.151)

where ukN is the actual numerical solution before jumping. This new definition bases on some
numerical observations.

The first observation is that the spectral radius of PN is nearly a constant with respect to N .
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In fact, theoretically, the spectral radius of PN converges to the operator norm of A−1
1 A2 and our

numerical test shows that the values of PN for different N don’t vary much, even for small N .
Moreover, recall that the decrease rate of iteration error is closer and closer to the spectral radius
of PN as the iteration process goes on. So is the iteration residual according to the iteration
residual definition (4.66). Therefore, we can store the iteration residual values for Nini = 3. If
we could predict the iteration residual of u1N ′ after jumping from N to N ′ and performing 1
iteration, then we could predict the number of iterations KN ′ needed for the new discretisation
number N ′. Therefore, we did a test: For N = 5, we take u∞N as input. Then for different
N < N ′ ⩽ 100, we jump from N to N ′ and calculate output u1N ′ and the corresponding iteration
residual Riter(u

1
N ′). We show the result in Figure 4.12. From Figure 4.12, we observe that the

iteration residual increases for N ′ close to initial input N . Then it is nearly a constant for other
choice of output discretisation number N ′. Combining the above arguments, if we suppose that
the discretisation number corresponding to the best efficiency locates in the constant iteration
residual value region, then the number of iterations KN ′ is approximately regarded as a constant
for different N ′. This explains why we remove the term KN ′ in the denominator of κN ′ in (4.151).
For the term ∆R in (4.151), ∥Π⊥

N ′R(ukN )∥H−1 is used to approximately represent ∥R(uKN′
N ′ )∥H−1

as discussed previously.
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Figure 4.12: Iteration residual of u1N ′ for different discretisation number N ′.

For the second part of the optimal path, namely, the last jump to Nf , we make use of the
experience result. We estimate the iteration residual and the discretisation residual of u1Nf

if
we jump from N to Nf and perform 1 GSR iteration. Then we jump for N large enough such
that the sum of the estimated iteration and discretisation residuals are smaller than the target
accuracy. After obtaining ukN , if we jump from N to Nf = 100 and perform the last iteration,
the estimation of the discretisation residual of u1Nf

is ∥Π⊥
Nf
R(ukN )∥H−1 . However, we could

not connect directly the term A2(u
1
Nf
− ukN ) with R(ukN ). From the definition of operator A2

in Proposition 4.1.2, it is easy to deduce that the regularity of A2 is the same as that of the
potential function V , i.e., A2 ∈ L∞(T) ∩H 3

2−ϵ (ϵ > 0) for our chosen V in Remark 4.1.2. Thus
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it follows that

∥A2(u
1
Nf
− ukN )∥H−1 = sup

v∈X,v ̸=0

〈
A2(u

1
Nf
− ukN ), v

〉
X′,X

∥v∥H1

= sup
v∈X,v ̸=0

∫ 2π

0
A2(u

1
Nf
− ukN )v

∥v∥H1

= sup
v∈X,v ̸=0

∫ 2π

0
(u1Nf

− ukN )(A2v)

∥v∥H1

⩽ sup
v∈X,v ̸=0

∥A2v∥H1 ∥u1Nf
− ukN∥H−1

∥v∥H1

⩽ sup
v∈X,v ̸=0

∥A2∥H1 ∥v∥H1 ∥u1Nf
− ukN∥H−1

∥v∥H1

⩽∥A2∥H1 ∥u1Nf
− ukN∥H−1 .

(4.152)

From the super convergence result in Theorem 4.1.1, we can deduce that u1Nf
−ukN ≈ (I−ΠN )u1Nf

.
Thus similarly to Estimate (4.19), we have

∥u1Nf
− ukN∥H−1 ⩽

Cr

N2
∥u1Nf

− ukN∥H1 , (4.153)

where Cr > 1 is close to 1 for N and Nf large enough. Lastly, assuming that the Laplace
operator −∆ is dominant in A1, we have

∥A1(u
1
Nf
− ukN )∥H−1 ≈ ∥u1Nf

− ukN∥H1 . (4.154)

Combining all these above arguments, we approximately have

∥Riter(u
1
Nf

)∥H−1 ⩽ ∥A2∥H1 ∥u1Nf
− ukN∥H−1

⩽
Cr∥A2∥H1

N2
∥u1Nf

− ukN∥H1

≈ Cr∥A2∥H1

N2
∥A1(u

1
Nf
− ukN )∥H1 .

(4.155)

Based on the above estimate, we perform the following numerical test: We fix Nf = 100 and take
u∞N as input for 3 ⩽ N ⩽ Nf − 1. Then we jump from N to Nf and perform 1 GSR iteration

to get u1Nf
and ∥Riter(u

1
Nf

)∥H−1 . We plot the variation of ∥Riter(u
1
Nf

)∥H−1 and
∥ΠNf

R(u∞
N )∥H−1

N2

in Figure 4.13. From this figure, it might be reasonable to use
∥ΠNf

R(uk
N )∥H−1

N2 as the estimation
of the iteration residual in our strategy. Combining all these above statements, we propose our
second nearly optimal strategy in Algorithm 4.

After giving our strategies, we do a comparison with the optimal path. Recalling that In
the optimal path problem, the target error is the energy difference εkN ⩽ εg =

ε∞99+ε∞100
2 . We

need to transfer it into the residual requirement: Firstly, we fix N = 100 and get uk100 such that
εk100 ⩽ εg after performing the smallest number of iterations. Then we set ∥R(uk100)∥H−1 as the
target accuracy. Finally, we get our nearly optimal strategies. Together with the optimal path
and the path for fixed N = 100, we plot them in Figure 4.14 and list corresponding computational
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Figure 4.13: Iteration residual of u1N for different discretisation number N .

costs in Table 4.3.

Path Fixed N = 100 Optimal path Strategy I Strategy II
Cost 132,613 10,462 13,126 12,136

Table 4.3: Computational costs of different paths for the linear problem.

Compared to the optimal path Cost(Sop) = 10, 462, Strategy I offers an nearly optimal path
with Cost(SI) = 13, 126. The main contribution of the cost comes from the iteration for N = 105.
From this result, we know that the jump in Strategy I is still a little large and that it could not
predict Nf precisely. Besides, we have 2 iterations for N = 28, which makes our path a bit
more expensive than the optimal one. Nevertheless, the nearly optimal path is finalized with
only 1 iteration for the largest N and the cost isn’t far from the optimal one. Strategy II offers
an nearly optimal path with a lower cost Cost(SII) = 12, 136. The second strategy gives a
more accurate prediction, i.e., Nf = 101. In addition, we have more iterations for small N in
Strategy II. However, even we only count these computational costs originating from small N
and compare these costs for strategy I and II, Strategy II still offers a more optimal path. From
this comparison, we know that when we have less iterations for bigger N , we have a more optimal
path. In conclusion, this result shows that both of our Strategy I and II offer nearly optimal
paths well balancing between the cost and accuracy.

4.5.2 Strategy for the nonlinear problem

In this section, we propose the nonlinear calculation strategy, which is similar to that for the
linear problem. For our nonlinear problem, we have two iterative schemes at hand with different
characters. For the scheme without the damping term, the nonlinear term SN is constructed
from uk

N+uk−1
N

2 but not uk
N . For fixed N , the convergence of the iteration process is assured.
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Algorithm 4 The nearly optimal path Strategy II

Input: target accuracy ∥AukN∥H−1 < εg and Nmin = 3.
1: N = Nmin

2: while ∥R(ukN )∥H−1 > εg do
3: while ∥Riter(u

k
N )∥H−1 ⩾ εg

10 and ∥R(ukN )∥H−1 > εg do
4: One GSR iteration
5: end while
6: if ∥R(ukN )∥H−1 ⩽ εg then
7: break while iteration process
8: end if
9: Pick Nf as the smallest N ′ such that ∥Π⊥

N ′R(ukN )∥H−1 ⩽ εg

10: if ∥Π⊥
Nf
R(ukN )∥H−1 +

∥ΠNf
R(uk

N )∥H−1

N2 ⩽ εg then
11: N ← Nf

12: else
13: Calculate κN ′ =

∥R(uk
N )∥H−1−∥Π⊥

N′R(uk
N )∥H−1

(N ′+1)2 for N < N ′ < Nf and pick N ′ correspond-
ing to the biggest κN ′ .

14: N ← N ′

15: end if
16: end while
Output: Nearly optimal path S and the approximate solution ukN .
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Figure 4.14: Comparison between optimal path and nearly optimal strategies

With this scheme, we have the Type L optimized path result shown in Figure 4.11. For the
scheme with damping term, the convergence of the iteration process for fixed N is also assured.
However, in this situation, there is no efficient jump as explained earlier.

Here we propose two associated strategies for the nonlinear problem. The Strategy I is
associated with the scheme of Type L (without the damping term but with the nonlinear term



4.5. Calculation strategy 119

SN constructed from uk
N+uk−1

N

2 ). The Strategy II is associated with the scheme of Type NL
(with damping term for iterations with fixed N) but without the damping term for the first
iteration after a jump. For each of those two schemes, the convergence of the solution is achieved
while the jump efficiency is maintained.

Since we propose iterative scheme (4.147) when performing complementary tests in Chapter
4.4, the a posteriori error analysis of this iterative scheme is undertaken. Here before applying
our strategies to these two iterative schemes, we firstly provide the following a posteriori error
analysis of iterative scheme (4.147).

According to the expression of the iterative scheme given by Equation (4.147), we define the
discretisation residual as follows

Rdisc(u
k
N ) :=A1u

k
N +A2u

k−1
N +

(
uk−1
N + uk−2

N

2

)2

uk−1
N − f, (4.156)

such that compared to the linear case, we maintain the property that

ΠNRdisc(u
k
N ) = 0, (4.157)

where A1 and A2 are defined in Corollary 4.1.1.1 and we denote by A = A1+A2. Then we define
the iteration residual as the rest part in the total residual

Riter(u
k
N ) :=R(ukN )−Rdisc(u

k
N )

=A1u
k
N +A2u

k
N + (ukN )3 − f −A1u

k
N −A2u

k−1
N −

(
uk−1
N + uk−2

N

2

)2

uk−1
N + f

=A2(u
k
N − uk−1

N ) + (ukN )3 −

(
uk−1
N + uk−2

N

2

)2

uk−1
N

=A2(u
k
N − uk−1

N ) + (ukN )3 − (uk−1
N )3 + (uk−1

N )3 −

(
uk−1
N + uk−2

N

2

)2

uk−1
N

=A2(u
k
N − uk−1

N ) + (((ukN )2 + (uk−1
N )2 + ukNu

k−1
N )(ukN − uk−1

N )

+
1

4
uk−1
N (3uk−1

N + uk−2
N )(uk−1

N − uk−2
N )

.
(4.158)

Now we state the lemma showing relation between error and residual.

Lemma 4.5.1. For N ∈ N∗, let the discretisation residual be defined through (4.156), let the
iteration residual be defined through (4.158) and let the iteration error and the discretisation
error be defined through (4.61). Then

• The iteration residual is bounded above by the iteration error:

∥Riter(u
k
N )∥H−1 ⩽∥A2∥H1→H−1

(
Eriter(ukN ) + Eriter(uk−1

N )
)

+ C2
GN(∥ukN∥2L2 + ∥ukN∥L2∥uk−1

N ∥L2 + ∥uk−1
N ∥2L2)

(
Eriter(ukN ) + Eriter(uk−1

N )
)

+
1

4
C2

GN∥uk−1
N ∥L2(3∥uk−1

N ∥L2 + ∥uk−2
N ∥L2)

(
Eriter(uk−1

N ) + Eriter(uk−2
N )

)
,

(4.159)
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where CGN is the Gagliardo Nirenberg type inequality constant.

• The discretisation residual is bounded above by the discretisation error and the iteration
error:

∥Rdisc(u
k
N )∥H−1 ⩽∥A1∥H1→H−1Eriter(ukN ) + ∥A2∥H1→H−1Eriter(uk−1

N ) + βaErdisc

+ C2
GN
(
Eriter(uk−1

N ) + Erdisc
) (

3∥uk−1
N ∥2L2

+3∥uk−1
N ∥L2

(
Eriter(uk−1

N ) + Erdisc
)

+
(
Eriter(uk−1

N ) + Erdisc
)2)

+
1

4
C2

GN∥uk−1
N ∥L2(3∥uk−1

N ∥L2 + ∥uk−2
N ∥L2)

(
Eriter(uk−1

N ) + Eriter(uk−2
N )

)
,

(4.160)
where βa is the continuity constant of a : X ×X → R defined through (4.6). Besides, when
the iteration error is small enough, the discretisation residual is mainly bounded by the
discretisation error.

Proof. The proof is similar to that of the Lemma 4.2.4. For the iteration residual, we firstly
rewrite

Riter(u
k
N ) =A2(u

k
N − uk−1

N ) + (((ukN )2 + (uk−1
N )2 + ukNu

k−1
N )(ukN − uk−1

N )

+
1

4
uk−1
N (3uk−1

N + uk−2
N )(uk−1

N − uk−2
N )

=A2(u
k
N − uN ) +A2(uN − uk−1

N ) + (((ukN )2 + (uk−1
N )2 + ukNu

k−1
N )(ukN − uN )

+ (((ukN )2 + (uk−1
N )2 + ukNu

k−1
N )(uN − uk−1

N ) +
1

4
uk−1
N (3uk−1

N + uk−2
N )(uk−1

N − uN )

+
1

4
uk−1
N (3uk−1

N + uk−2
N )(uN − uk−2

N ).

(4.161)
Following similar argument used to establish Estimate (4.130) and combining it with the Equation
(4.161) yields the Estimate (4.159).

For the discretisation residual. We have

Rdisc(u
k
N ) =A1u

k
N +A2u

k−1
N +

(
uk−1
N + uk−2

N

2

)2

uk−1
N −Au− u3

=A1(u
k
N − uN ) +A2(u

k−1
N − uN ) +A(uN − u) + (((u)2 + (uk−1

N )2 + uuk−1
N )(uk−1

N − u)

+
1

4
uk−1
N (3uk−1

N + uk−2
N )(uk−2

N − uk−1
N )

=A1(u
k
N − uN ) +A2(u

k−1
N − uN ) +A(uN − u)

+ (3(uk−1
N )2 − 3uk−1

N (uk−1
N − u) + (uk−1

N − u)2)(uk−1
N − u)

+
1

4
uk−1
N (3uk−1

N + uk−2
N )(uk−2

N − uk−1
N ).

(4.162)
Using similar argument as what we do in (4.132), (4.133) and (4.134), we obtain Estimate (4.160).
When k goes to infinity, the iteration errors Eriter(uk−2

N ), Eriter(uk−1
N ) and Eriter(ukN ) go to zero.

Therefore the contribution of the discretisation residual is dominant in the above estimate when
k is large enough.
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By truncating the residual, we have the following expression

ΠN ′R(ukN ) = ΠN ′A1u
k
N +ΠN ′A2u

k
N +ΠN ′(ukN )3 −ΠN ′f,

where A1 and A2 are defined in (4.59). For the first scheme with the nonlinear term uk
N+uk−1

N

2 ,
we have

ΠN ′A1u
1
N ′ +ΠN ′A2u

k
N +ΠN ′(

ukN + uk−1
N

2
)2ukN = ΠN ′f. (4.163)

By assuming that the iteration error for ukN is small such that we have ukN ≈ u
k−1
N , we approxi-

mately have
ΠN ′R(ukN ) = ΠN ′A1u

k
N +ΠN ′A2u

k
N +ΠN ′(ukN )3 −ΠN ′f

≈ ΠN ′A1u
k
N −ΠN ′A1u

1
N ′

≈ ΠN ′A1(u
k
N − u1N ′).

(4.164)

For the second scheme, there is no damping term for the first iteration after the jump. So we
have

ΠN ′A1u
1
N ′ +ΠN ′A2u

k
N +ΠN ′(ukN )2ukN = ΠN ′f.

Combine with the expression of the projected residual (4.163), we still have

ΠN ′R(ukN ) = ΠN ′A1u
k
N +ΠN ′A2u

k
N +ΠN ′(ukN )3 −ΠN ′f

= ΠN ′A1(u
k
N − u1N ′).

(4.165)

On the other hand, for iterations with damping term (fixed discretisation number N), we have

ΠNA1u
k+1
N − (1− ξ)ΠNA1u

k
N + ξΠNA2u

k
N + ξΠN (ukN )3 = ξΠNf,

or
1

ξ
ΠNA1u

k+1
N − 1− ξ

ξ
ΠNA1u

k
N +ΠNA2u

k
N +ΠN (ukN )2ukN = ΠNf.

If we apply the above scheme to the first iteration after the jump (from N to N ′), we have

ΠN ′R(ukN ) =ΠN ′A1u
k
N +ΠN ′A2u

k
N +ΠN ′(ukN )3 −ΠN ′f

=ΠN ′A1u
k
N +ΠN ′A2u

k
N +ΠN ′(ukN )3

− (
1

ξ
ΠN ′A1u

1
N ′ −

1− ξ
ξ

ΠN ′A1u
k
N +ΠN ′A2u

k
N +ΠN ′(ukN )3)

=
1

ξ
ΠN ′A1(u

k
N − u1N ′).

(4.166)

From the above derivation, we deduce that for the first iteration after a jump, the difference
u1N ′ − ukN depends on the choice of scheme (with or without damping term) and there is a ratio
1
ξ between these two cases. This also explains the fact that the first iteration after a jump loss
its effectiveness for the scheme with damping term.

Moreover, in the nonlinear problem, we also test that for N = 3 and N < N ′ ⩽ 100, we
always have ∥Π⊥

N ′R∞
N ∥H−1 > ∥R∞

N ′∥H−1 . Therefore, in the nonlinear problem, we can also
predict Nf such that ∥R∞

Nf
∥H−1 ⩽ εg. Additionally, for the iteration residual after the jump, the

numerical observation shown in the linear case also holds except that the parameter connecting
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the discretisation residual and the iteration residual is not N2 but N1.6 (obtained by trial and
error and corresponding simulation result is shown in Figure 4.15), this difference is caused by
the addition of nonlinear term. Nevertheless, even there is the nonlinear term, the behavior of
the nonlinear problem is similar to that for the linear case and we therefore propose these same
strategies as those in the linear case, in Algorithm 3 and in Algorithm 4, except that the iteration
cost in efficiency parameter (4.151) becomes (N + 1)2(N + 2). Finally, we get these two nearly
optimal paths in Figure 4.16 for the first scheme and Figure 4.17 for the second scheme and we
list all these computational costs in Table 4.4. Similar to the linear problem, for two iterative
schemes conserving the jump efficiency, our two proposed strategies can produce satisfactory
nearly optimal paths. In addition, from Figure 4.15, we know that we overestimate the iteration
residual for the first iteration after jumping from N to Nf = 100. Therefore, the prediction of
Nf is also guaranteed. After jumping to Nf = 100, one iteration is enough to terminate the
path.

Path Fixed N = 100 Strategy I Strategy II
Cost of Scheme I 16,648,032 1,279,222 1,150,010
Cost of Scheme II 15,607,530 1,354,672 1,150,070

Table 4.4: Computational costs of different paths for the nonlinear problem.
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Figure 4.15: Iteration residual of u1N for different discretisation number N .

4.6 Generalization of the problem

In previous sections, we study the optimal path problem and analysis the mechanism of the
jump efficiency, which is the key feature determining the optimal path. Then with the help of
the a posteriori error estimation and the residual decomposition, we propose two nearly optimal
strategies, both of which produce satisfactory nearly optimal paths. In this section, we will
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Figure 4.16: Nearly optimal strategies of the first scheme for the nonlinear case
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Figure 4.17: Nearly optimal strategies of the second scheme for the nonlinear case

change the regularity or continuity of the potential function V or the source term f in previous
linear problem (4.2) and nonlinear problem (4.80). The aim of this section is to see if those two
nearly optimal strategies still behave well under such modifications.
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Recall that in the linear problem (4.2) and nonlinear problem (4.80), we pick

∀x ∈ [0, 2π], V (x) = 1 +
∑
i∈N∗

cos(ix)

i2
and f(x) =

∑
i∈N∗

2cos(ix)

|i|0.05
.

The first series of cases begin by setting

∀x ∈ [0, 2π], V (x) = 1 +
∑
i∈N∗

cos(ix)

iυ
and f(x) =

∑
i∈N∗

2cos(ix)

|i|τ
, (4.167)

where υ = 1.5, 2.0 or 2.5 and τ pick one of the following values {0.01, 0.05, 0.25, 0.5, 1.0}. And
we still use the same iterative scheme for solving the linear or the nonlinear problem with this
new series of parameters.

Similarly as in the optimal path problem, at the beginning the target accuracy is defined as
the energy difference εkN ⩽ εg =

ε∞99+ε∞100
2 where ε∞N (3 ⩽ N ⩽ 100) is defined in (4.137). Then

we transfer it into the residual requirement: We fix N = 100 and get uk100 such that εk100 ⩽ εg
and that k is the smallest number of iterations. Then we set ∥Rk

100∥H−1 as the target accuracy.
Finally, we get our nearly optimal paths.

We calculate all above cases with different parameters υ and τ for the linear problem (4.2) with
GSR iterative scheme and the nonlinear problem (4.80) with two iterative schemes mentioned
in Chapter 4.5.2. The behavior of nearly optimal paths for different cases is quite similar: for
each case, the Strategy II can predict accurately the final jump such that Nf is close to the
theoretically smallest one N = 100. However, in some cases, the Strategy I can’t do that, i.e.,
sometimes the final jump can reach N ≈ 130. The behavior of these optimal paths is the same
for both the linear problem and the nonlinear problem with two different iterative schemes.
Therefore, here we just show near-optimal paths with two different choices of parameters for the
linear problem in Figure 4.18. Figure 4.18A is the calculation result for υ = 2.5 and τ = 0.5 and
Figure 4.18B is the calculation result for υ = 2.0 and τ = 0.01 with corresponding computational
costs listed in Table 4.5.

Path6 Fixed N = 100 Strategy I Strategy II
Cost with υ = 2.5 and τ = 0.5 163,216 13,524 12,159
Cost with υ = 2.0 and τ = 0.01 122,412 20,359 11,995

Table 4.5: Computational costs of different paths for different parameter values.

In above cases, the regularity of the solution u varies with different values of υ and τ with the
variation of its Fourier coefficients (ûi)i ∈ N being regular. In the following test, we introduce
piecewise regularity variations of Fourier coefficients and verify whether our strategies can detect
the connection points. The second series of cases begin by giving the explicit expression of the
discrete solution u1000 =

∑1000
k=0 ûkek:

ûk =


2

|20.5| , if k = 0
2

|k−20.5| +
2

|k+20.5| , if 1 ⩽ k ⩽ 40
2
k3 , if k ⩾ 41

, (4.168)
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(A) Nearly optimal strategies with υ = 2.5 and τ =
0.5 for the linear problem.
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(B) Nearly optimal strategies with υ = 2.0 and τ =
0.01 for the linear problem.

Figure 4.18: Examples of nearly optimal strategies results.

or

ûk =


2

|25.5| +
2

|25.5| , if k = 0
2

|k−50.5| +
2

|k−25.5| +
2

|k+25.5| ++ 2
|k+50.5| , if 1 ⩽ k ⩽ 75

2
k3 , if k ⩾ 76

. (4.169)

By inserting the solution with expression (4.168) or (4.169) into the linear problem (4.14) with the
same potential function V , we obtain the source term f ′. Then we solve the new linear problem
with new source term f ′. Similarly, following the same manner, we can resolve new nonlinear
problem by computing f ′ with (4.168) or (4.169). In addition, by varying the parameter υ in
the potential function V , we get new series of source term f ′.
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(A) Nearly optimal strategies with υ = 1.5 and so-
lution (4.168) for the nonlinear problem.
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Figure 4.19: Examples of nearly optimal strategies results.

We calculate all above cases with different parameters υ and f ′ for the linear problem (4.2)
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Path6 Fixed N = 100 Strategy I Strategy II
Cost with υ = 1.5 and solution (4.168) 21,850,542 4,523,176 2,696,726
Cost with υ = 2.5 and solution (4.169) 83,240,160 67,016,232 51,160,092

Table 4.6: Computational costs of different paths for different parameter values.

with GSR iterative scheme and nonlinear problem (4.80) with two iterative schemes mentioned
in Chapter 4.5.2. The behavior of nearly optimal paths for different cases is similar to that for
the first series of calculations: the Strategy II can predict accurately the final jump such that
Nf is close to the theoretically smallest one N = 100. However, in some cases, the Strategy I
can’t do that. In addition, the behavior of these optimal paths is the same for both the linear
problem and the nonlinear problem with two different iterative schemes. The only difference is
that before jumping to Nf , we have both iterations before and after the discontinuous points,
i.e., N = 40 for (4.168) and N = 75 for (4.169). Here we just show near-optimal paths with two
different choices of parameters for the nonlinear problem with iterative scheme given by Equation
(4.147) in Figure 4.19. Figure 4.19A is the calculation result for υ = 1.5 and solution expression
(4.168) and Figure 4.19B is the calculation result for υ = 2.5 and solution expression (4.169)
with corresponding computational costs listed in Table 4.6. In this difficult case, the strategies
are able to detect the special parameter N = 40 and N = 75 and provide as well paths that are
less expensive than plain iterations with N = 100. Note also that impressively the strategies also
provide only one iteration for the maximum N close to 100. We lastly remark that the above
Figures show that the hand-fitted parameter 3 might not be adapted to different cases shown
above and the study of picking a proper value of this parameter will be a part of future work.



Chapter 5

Application of near-optimal path
strategies to nonlinear eigenvalue
problem

In this chapter, we study the numerical optimal path in the resolution of Gross-Pitaevskii equa-
tion, which is an eigenvalue problem. This is a follow-up work of [38], where the authors intro-
duced a separation of a posteriori errors into two parts (iteration and discretisation residuals)
but did not provide an optimal strategy.

5.1 Problem description and error analysis

We consider the following energy minimization problem

E∗ = min

{
E(v) :=

1

2

∫
Ω

(∇v)2 + 1

2

∫
Ω

V v2 +
1

4

∫
Ω

v4, v ∈ X,
∫
Ω

v2 = 1

}
, (5.1)

where Ω is the unit cell (0, 2π) of a periodic lattice R of R and X = H1
#(Ω) is the Sobolev space

defined as
Hs

#(Ω) := {v|Ω, v ∈ Hs
loc(R)|v is 2π-periodic},

and X ′ = H−1
# (Ω) is the dual space of X. Besides, we assume that V ∈ L∞(Ω). The well-

posedness of the above energy minimization problem can be found in e.g., [13] and it was shown
that the above energy minimization problem (5.1) has exactly two solutions with opposite signs:
u with u > 0 in Ω and −u. Besides, the minimizer u ∈ X of (5.1) is also solution of the Euler
equation expressed in the weak form:{

∀v ∈ X,
∫
Ω
∇u · ∇v +

∫
Ω
V uv +

∫
Ω
u3v =

∫
Ω
λuv,∫

Ω
u2 = 1,

(5.2)

127
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where λ ∈ R is the Lagrange multiplier associated with the constraint ∥u∥L2 = 1. Moreover, this
weak problem (5.2) is equivalent to the strong problem: find u ∈ X and λ ∈ R such that{

−∆u+ V u+ u3 = λu,∫
Ω
u2 = 1.

(5.3)

Besides, here we remark that λ is the smallest eigenvalue (or in the quantum chemistry termi-
nology, the ground state eigenvalue) of the linear operator Au := −∆+ V + u2 and it is shown
that this eigenvalue λ is simple (see, for instance, the Appendix of [13]). The energy functional
E : X → R is twice differentiable and its second order derivative E′′ is defined as follows: for any
v, w, z ∈ X, we have

⟨E′′(v)w, z⟩X′,X = ⟨Avw, z⟩X′,X + 2

∫
Ω

v2wz =

∫
Ω

∇w · ∇z +
∫
Ω

V wz + 3

∫
Ω

v2wz. (5.4)

Besides, from [38, Lemma 6.2.1], we have the following coercivity and continuity property: there
exists γe, βe > 0 such that for any v ∈ X,

γe∥v∥2H1 ⩽ ⟨(E′′(u)− λ)v, v⟩X′,X , (5.5)

and for any v, w ∈ X,
⟨(E′′(u)− λ)v, w⟩X′,X ⩽ βe∥v∥H1 ∥w∥H1 , (5.6)

where (u, λ) is solution of eigenvalue problem (5.2) with λ being the smallest eigenvalue.

Remark 5.1.1.
If V ∈ Hr

#(Ω) (r >
1
2 ), then we have u ∈ H2+r

# (Ω). In what follows, we choose

∀x ∈ [0, 2π], V (x) = 1 +
∑
k∈N∗

cos(kx)

k1.01
.

Here, we pick a more irregular potential function such that the solution is not too regular. In
addition, we claim that V ∈ L∞

# (Ω) ∩H
1.05
2 −ϵ

# (Ω) (ϵ > 0).

In this section, we adapt the setting of Chapter 4.3: we restrict again X to its even part and
define discretization space XN (N > 0) as in (4.9). Then we state the discretized weak problem
as follows: For N ∈ N∗, find uN ∈ XN such that{

∀vN ∈ XN ,
∫
Ω
∇uN · ∇vN +

∫
Ω
V uNvN +

∫
Ω
u3NvN =

∫
Ω
λNuNvN ,∫

Ω
u2N = 1.

(5.7)

The solution uN of the above problem (5.7) also minimizes the energy functional defined through
(5.1) over space XN ,

E(uN ) = min
vN∈XN , ∥vN∥L2=1

E(vN ) =: E∗
N . (5.8)

After defining properly the eigenvalue problem, we will next give the a priori and a posteriori
analysis. Fortunately, the a priori analysis is established in[13] and the the a posteriori analysis
can be found in [39, 38]. The only difference in our work is that the periodic cell is (0, 2π) but not
(0, 1), which only leads to minor amendments. Therefore, we state directly the main results and
refer the readers to [39, 38] for a detailed proof. Additionally, in our work we will also show the
super convergence property, which is essential for supporting the jump efficiency of the optimal
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path problem.
Before stating the a priori error estimation, we introduce the following adjoint problem which

will be used later: for any w ∈ X ′, we consider the weak problem: find ϕw ∈ X such that

∀v ∈ X, ⟨(E′′(u)− λ)ϕw, v⟩X′,X = ⟨w, v⟩X′,X , (5.9)

where (u, λ) is the solution of problem (5.2). With the coercivity property (5.5) and the continuity
property (5.6) at hand, the existence and uniqueness of the solution is proved by applying directly
the Lax-Milgram Theorem. In addition, similarly to Estimate (4.23), here we also have the
following regularity result: there exists constant ca > 0 independent of w such that

∥ϕw∥H2 ⩽ ca∥w∥L2 . (5.10)

Remark 5.1.2.
Here we remark the difference originating from different lengths of the unit cell: the Gagliardo-

Nirenberg-type inequality constant. Following the same derivation in [38], we have the following
results:

∀v ∈ X, ∥v∥2L∞ ⩽

√
1

4π2
+ 4∥v∥H1 ∥v∥L2 ,

and

∀v ∈ X, ∥v∥L∞ ⩽

(
1

4π
+

√
1

16π2
+ 1

) 1
2

∥v∥H1 .

Theorem 5.1.1 (A Priori Analysis, see [38] and eventiually [13]). Let u ∈ X be the weak
solution of problem (5.2) with corresponding eigenvalue λ, for N ∈ N∗, let uN ∈ XN be the
weak solution of problem (5.7) with corresponding eigenvalue λN , let E : X → R be the energy
functional defined though (5.1), let V ∈ Hr

#(Ω) for some r > 1
2 and let η be defined as

η =
min{λ2 − λ, 2}

4(min{λ2 − λ, 2}+ 2|λ|+ 2)
,

where λ2 is the second smallest eigenvalue of Au. Then, we have

• uN converges strongly to u in H1(Ω) when N goes to infinity.

• There exists CE ∈ R+ independent of N such that

η∥uN − u∥2H1 ⩽ E(uN )− E(u) ⩽ CE∥uN − u∥2H1 . (5.11)

• There exists Cλ ∈ R+ independent of N such that

|λ− λN | ⩽ Cλ(∥uN − u∥2H1 + ∥uN − u∥L2). (5.12)

• There exists Cλ
2 > 0 independent of N such that

|λN − λ| ⩽
Cλ

2

N2(r+1)
. (5.13)

• There exists N0 ∈ N and CH1 ∈ R+ independent of N such that for any N ⩾ N0, N ∈ N∗,
we have

∥uN − u∥H1 ⩽ CH1 min
vN∈XN

∥vN − u∥H1 . (5.14)
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• There exists N1 ∈ N and CL2 ∈ R+ independent of N such that for any N ⩾ N1, N ∈ N∗,
we have

∥uN − u∥2L2 ⩽ CL2∥uN − u∥H1 min
ϕN∈XN

∥ϕuN−u − ϕN∥H1 , (5.15)

Corollary 5.1.1.1. Let u ∈ X be the weak solution of problem (5.2) with corresponding eigen-
value λ and for N ∈ N∗, let uN ∈ XN be the weak solution of problem (5.7) with corresponding
eigenvalue λN , then there exits constant C1 > 0 such that

∥u− uN∥L2 ⩽ C1N
−1∥u− uN∥H1 , (5.16)

Proof. This Corollary is a direct consequence of Estimate (5.15). In fact, for any N ⩾ N1, by
picking ϕN = ΠNϕuN−u, we have

∥uN − u∥2L2 ⩽ CL2∥uN − u∥H1∥ϕuN−u −ΠNϕuN−u∥H1

⩽
CL2

N
∥uN − u∥H1∥ϕuN−u∥H2

⩽
CL2ca
N
∥uN − u∥H1∥uN − u∥L2 ,

where we make use of (4.19) and the regularity result of the adjoint problem. From the above
derivation we deduce directly (5.16) with C1 = CL2ca.

Here we state the super convergence result for which we give a detailed proof following the
same idea as that in Theorem 4.1.1.

Theorem 5.1.2. Let u ∈ X be the weak solution of problem (5.2) with corresponding eigenvalue
λ, for N ∈ N∗, let uN ∈ XN be the weak solution of problem (5.7) with corresponding eigenvalue
λN , let ΠN : X ′ → XN be the extended L2-orthogonal operator onto space XN , let V ∈ Hs(T)
for some s > 1

2 be the potential function in problem (5.2) and let us denote by r = min{2, s}.
Then for N large enough:

• There exits constant C2 > 0 such that

∥ΠNu− uN∥H1
⩽ C2N

−1− r
2 ∥u− uN∥H1 . (5.17)

• There exits constant C3 > 0 such that

∥ΠNu− uN∥L2 ⩽ C3N
−τ∥u− uN∥H1 , (5.18)

where τ = min{r + 1, r2 + 2}.

Specifically, for our chosen potential function V defined in Remark 5.1.1, we have

∥ΠNu− uN∥H1 ⩽ C2N
− 5.05

4 +ϵ∥u− uN∥H1 (5.19)

and
∥ΠNu− uN∥L2 ⩽ C3N

− 3.05
2 +ϵ∥u− uN∥H1 , (5.20)

where ϵ > 0.



5.1. Problem description and error analysis 131

Proof. For any vN ∈ XN , using Equation (5.7), we deduce that

⟨(E′′(u)− λ)(uN − u), vN ⟩X′,X = ⟨(Au − λ)(uN − u), vN ⟩X′,X + 2

∫
Ω

u2(uN − u)vN

= ⟨(Au − λ)uN , vN ⟩X′,X + 2

∫
Ω

u2(uN − u)vN

=

∫
Ω

∇uN · ∇vN +

∫
Ω

V uNvN +

∫
Ω

u2uNvN − λ
∫
Ω

uNvN

+ 2

∫
Ω

u2(uN − u)vN

=λN

∫
Ω

uNvN −
∫
Ω

u3NvN +

∫
Ω

u2uNvN − λ
∫
Ω

uNvN

+ 2

∫
Ω

u2(uN − u)vN

=(λN − λ)
∫
Ω

uNvN −
∫
Ω

(uN − u)2(uN + 2u)vN .

(5.21)
Then, for any vN ∈ XN we have

⟨(E′′(u)− λ)(uN −ΠNu), vN ⟩X′,X = ⟨(E′′(u)− λ)(uN − u), vN ⟩X′,X + ⟨(E′′(u)− λ)(u−ΠNu), vN ⟩X′,X

=(λN − λ)
∫
Ω

uNvN −
∫
Ω

(uN − u)2(uN + 2u)vN

+

∫
Ω

∇(u−ΠNu) · ∇vN +

∫
Ω

V (u−ΠNu)vN

+ 3

∫
Ω

u2(u−ΠNu)vN − λ
∫
Ω

(u−ΠNu)vN

=(λN − λ)
∫
Ω

uNvN −
∫
Ω

(uN − u)2(uN + 2u)vN

+

∫
Ω

V (u−ΠNu)vN + 3

∫
Ω

u2(u−ΠNu)vN ,

(5.22)
where the last equality comes from the L2 and H1 orthogonality. Therefore, by picking vN =
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uN −ΠNu, it follows from Estimate (5.12) that

⟨(E′′(u)− λ)(uN −ΠNu), uN −ΠNu⟩X′,X =(λN − λ)
∫
Ω

uN (uN −ΠNu)

−
∫
Ω

(uN − u)2(uN + 2u)(uN −ΠNu)

+

∫
Ω

V (u−ΠNu)(uN −ΠNu)

+ 3

∫
Ω

u2(u−ΠNu)(uN −ΠNu)

=(λN − λ)
∫
Ω

uN (uN −ΠNu)

−
∫
Ω

(uN − u)2(uN + 2u)(uN −ΠNu)

+

∫
Ω

(V + u2 + u2N + uuN )(u− uN )(uN −ΠNu)

+

∫
Ω

(V + 3u2)(uN −ΠNu)
2

⩽ Cλ(∥uN − u∥2H1 + ∥uN − u∥L2)∥uN −ΠNu∥L2

+ ∥V + u2 + u2N + uuN∥L∞∥u− uN∥L2 ∥uN −ΠNu∥L2

+ ∥V + 3u2∥L∞∥uN −ΠNu∥2L2 .
(5.23)

On the other hand, from (5.5) we deduce that

⟨(E′′(u)− λ)(uN −ΠNu), uN −ΠNu⟩X′,X ⩾ γe∥uN −ΠNu∥2H1 . (5.24)

Combining Estimates (5.23) and (5.24) yields

γe∥uN −ΠNu∥2H1 ⩽Cλ(∥uN − u∥2H1 + ∥uN − u∥L2) ∥uN −ΠNu∥L2

+ ∥V + u2 + u2N + uuN∥L∞∥u− uN∥L2 ∥uN −ΠNu∥L2

+ ∥V + 3u2∥L∞∥uN −ΠNu∥2L2 .

(5.25)

Next, we will give an upper bound of ∥uN −ΠNu∥L2 using ∥uN − u∥L2 . Similar to the proof of
Lemma 4.1.1, we will make use of the adjoint equation (5.9). Thus, we have

∥uN −ΠNu∥2L2 =

∫
Ω

(uN −ΠNu)(uN −ΠNu)

= ⟨(E′′(u)− λ)ϕuN−ΠNu, uN −ΠNu⟩X′,X

= ⟨(E′′(u)− λ)(uN −ΠNu), ϕuN−ΠNu −ΠNϕuN−ΠNu⟩X′,X

+ ⟨(E′′(u)− λ)(uN −ΠNu),ΠNϕuN−ΠNu⟩X′,X .



5.1. Problem description and error analysis 133

It follows from Equation (5.22) by picking vN = ΠNϕuN−ΠNu that

∥uN −ΠNu∥2L2 = ⟨(E′′(u)− λ)(uN −ΠNu), ϕuN−ΠNu −ΠNϕuN−ΠNu⟩X′,X︸ ︷︷ ︸
:=(I)

+ (λN − λ)
∫
Ω

uNΠNϕuN−ΠNu︸ ︷︷ ︸
:=(II)

−
∫
Ω

(uN − u)2(uN + 2u)ΠNϕuN−ΠNu︸ ︷︷ ︸
:=(III)

+

∫
Ω

(V + 3u2)(u−ΠNu)ΠNϕuN−ΠNu︸ ︷︷ ︸
:=(IV)

.

(5.26)

For the first term, it follows from the continuity property (5.6) and Estimates (4.19) and
(5.10) that

(I) ⩽βe∥uN −ΠNu∥H1 ∥ϕuN−ΠNu −ΠNϕuN−ΠNu∥H1

⩽βeN
−1∥uN −ΠNu∥H1 ∥ϕuN−ΠNu∥H2

⩽βeca︸︷︷︸
:=CI

N−1∥uN −ΠNu∥H1 ∥uN −ΠNu∥L2 .
(5.27)

Next, for the second term, applying Estimate (5.13) and making use of the fact that ∥ΠNϕuN−ΠNu∥L2 ⩽
∥ϕuN−ΠNu∥L2 ⩽ ∥ϕuN−ΠNu∥H2 ⩽ ca∥uN −ΠNu∥L2 yield that

(II) ⩽Cλ
2N

−2(s+1)∥uN∥L2 ∥ΠNϕuN−ΠNu∥L2

⩽ caC
λ
2︸ ︷︷ ︸

:=CII

N−2(s+1)∥uN −ΠNu∥L2 . (5.28)

For the third term (III), using similar argument about ΠNϕuN−ΠNu as that for term (II) yields
that

(III) ⩽

(
1

4π
+

√
1

16π2
+ 1

)
∥uN − u∥2L2 ∥uN + 2u∥H1 ∥ΠNϕuN−ΠNu∥H1

⩽

(
1

4π
+

√
1

16π2
+ 1

)
ca∥uN + 2u∥H1︸ ︷︷ ︸

:=CIII

∥uN − u∥2L2 ∥uN −ΠNu∥L2

(5.29)

Now we come to the term (IV). It follows from the orthogonality relation and the Estimate (4.19)
that

(IV) =
∫
Ω

(u−ΠNu)
[
(V + 3u2)ΠNϕuN−ΠNu

]
−
∫
Ω

(u−ΠNu)ΠN

[
(V + 3u2)ΠNϕuN−ΠNu

]
⩽∥u−ΠNu∥L2∥(V + 3u2)ΠNϕuN−ΠNu −ΠN

[
(V + 3u2)ΠNϕuN−ΠNu

]
∥2L2

⩽N−r∥u−ΠNu∥L2 ∥(V + 3u2)ΠNϕuN−ΠNu∥Hr

⩽N−r∥V + 3u2∥Hr ∥u−ΠNu∥L2 ∥ϕuN−ΠNu∥H2

⩽ ca∥V + 3u2∥Hr︸ ︷︷ ︸
:=CIV

N−r(∥u− uN∥L2 + ∥uN −ΠNu∥L2)∥uN −ΠNu∥L2 ,

(5.30)
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where in the above derivation we use the regularity analysis that V ∈ Hs
#(Ω) (s > 1

2 ) implies
u ∈ H2+s

# (Ω) and thus V + 3u2 ∈ Hs
#(Ω). In summary, combing Estimates (5.27), (5.28), (5.29)

and (5.30) yields that

∥uN −ΠNu∥L2 ⩽CIN
−1∥uN −ΠNu∥H1 + CIIN

−2(s+1)∥uN −ΠNu∥L2 + CIII∥uN − u∥2L2

+ CIVN
−r(∥u− uN∥L2 + ∥uN −ΠNu∥L2),

(5.31)
from which we conclude that(

1− CIIN
−2(s+1) − CIVN

−r
)
∥uN −ΠNu∥L2 ⩽CIN

−1∥uN −ΠNu∥H1 + CIII∥uN − u∥2L2

+ CIVN
−r∥u− uN∥L2 .

(5.32)
When N is large enough, we have 1− CIIN

−2(r+1) − CIVN
−r ⩾ 1

2 and we deduce that

∥uN −ΠNu∥L2 ⩽2CIN
−1∥uN −ΠNu∥H1 + 2CIII∥uN − u∥2L2 + 2CIVN

−r∥u− uN∥L2 . (5.33)

Combining Estimates (5.25) and (5.33) yields

γe∥uN −ΠNu∥2H1 ⩽
(
Cλ∥uN − u∥2H1 + (Cλ + ∥V + u2 + u2N + uuN∥L∞)∥uN − u∥L2

+∥V + 3u2∥L∞∥uN −ΠNu∥H1

)
∥uN −ΠNu∥L2

⩽
(
Cλ∥uN − u∥2H1 + (Cλ + ∥V + u2 + u2N + uuN∥L∞)∥uN − u∥L2

+∥V + 3u2∥L∞∥uN −ΠNu∥H1

) (
2CIN

−1∥uN −ΠNu∥H1

+2CIII∥uN − u∥2L2 + 2CIVN
−r∥u− uN∥L2

)
⩽2CIN

−1∥V + 3u2∥L∞∥uN −ΠNu∥2H1 + 2∥V + 3u2∥L∞

(CIII∥uN − u∥L2 + CIVN
−r)∥u− uN∥L2 ∥uN −ΠNu∥H1

+ 2CIN
−1
(
Cλ∥uN − u∥2H1 + (Cλ + ∥V + u2 + u2N + uuN∥L∞)∥uN − u∥L2

)
∥uN −ΠNu∥H1 + 2

(
Cλ∥uN − u∥2H1 + (Cλ + ∥V + u2 + u2N + uuN∥L∞)

∥uN − u∥L2) (CIII∥uN − u∥L2 + CIVN
−r)∥u− uN∥L2 .

(5.34)
Firstly, we claim that for N large enough, we have γe − 2CIN

−1∥V + 3u2∥L∞ ⩾ γe

2 . Next, from
(5.14) we deduce that

∥uN − u∥H1 ⩽ CH1∥ΠNu− u∥H1 ⩽ CH1N−1∥u∥H2 . (5.35)

Additionally, combining the above estimates with (5.16) yields

∥uN − u∥L2 ⩽ C1C
H1N−2−r∥u∥H2+r . (5.36)

From the above two estimates, we conclude the following estimate:

•
2(CIII∥uN − u∥L2 + CIVN

−r)∥u− uN∥L2

⩽2(CIIIC1C
H1∥u∥H2+rN−2−r + CIVN

−r)C1N
−1∥u− uN∥H1

⩽ 2(CIIIC1C
H1∥u∥H2+r + CIV)C1︸ ︷︷ ︸

:=CV

N−1−r∥u− uN∥H1 .
(5.37)
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•
Cλ∥uN − u∥2H1 + (Cλ + ∥V + u2 + u2N + uuN∥L∞)∥uN − u∥L2

⩽
(
CλCH1∥u∥H2 + C1

(
Cλ + ∥V + u2 + u2N + uuN∥L∞

))︸ ︷︷ ︸
:=CVI

N−1∥uN − u∥H1 . (5.38)

Inserting the above estimate into (5.34) and supposing that N is large enough yields that

γe
2
∥uN −ΠNu∥2H1 ⩽

(
∥V + 3u2∥L∞CVN

−1−r + 2CICVIN
−2
)
∥uN − u∥H1 ∥uN −ΠNu∥H1

+ CVCVIN
−2−r∥uN − u∥2H1 .

(5.39)
We regard the above expression as inequality for a quadratic polynomial with variable ∥uN −
ΠNu∥H1 and apply the quadratic formula to calculate the roots of the above polynomial. By
analyzing the decrease rate of each term in the expression of the positive root, we deduce the
quadratic convergence result (5.17). Additionally, by inserting (5.17) into (5.33) and combining
Estimates (5.16) and (5.36) we deduce Estimate (5.18), which completes the proof.

Before stating the a posteriori error estimation, all relevant elements need to be defined
properly. First of all, we define space of multi-variable X ≡ X × R and defined the function
F: X → X

′
as

∀u = (u, λ) ∈ X, F(u) =

(
−∆u+ V u+ u3 − λu∫

Ω
u2 − 1

)
. (5.40)

And for any u = (u, λ) ∈ X its derivative DFu : X → X
′
is defined as

∀(v, τ) ∈ X, DFu(v, τ) =

(
−∆v + V v + 3u2v − τu− λv

2
∫
Ω
uv

)
. (5.41)

For u ∈ X such that DFu is an isomorphism, we give the following notation:

γu = ∥DF−1
u ∥X′→X , L(α) = sup

v∈B(u,α)

∥DFu−v∥X→X
′ , ζ(u) = ∥F(u)∥X′ , (5.42)

where B(u, α) is the ball in X of center u and radius α. Apart from the above notation, we
also introduce the following linear eigenvalue problem associated with an available numerical
approximation ũN of the discrete solution uN with ∥ũN∥L2 = 1: Find (vN , µN ) ∈ X such that{

∀wN ∈ XN ,
∫
Ω
∇vN · ∇wN +

∫
Ω
V vNwN +

∫
Ω
ũN

2
vNwN =

∫
Ω
µNvNwN ,∫

Ω
v2N = 1.

(5.43)

Remark 5.1.3.
The numerical approximation ũN is obtained, e.g., using iterative scheme. And the approxi-

mate eigenvalue λ̃N is obtained via

λ̃N =

∫
Ω

(∇ũN )2 +

∫
Ω

V (ũN )2 +

∫
Ω

ũN
4
. (5.44)

Therefore, according to the Rayleigh Variational Principle, we always have λ̃N ⩾ µ
(1)
N where µ(1)

N

is the smallest eigenvalue of problem (5.43). If λ̃N = µ
(1)
N , the lowest eigenvalue of (5.43), then

it’s clear that (ũN , λ̃N ) is the solution of weak problem (5.7), i.e., (ũN , λ̃N ) = (uN , λN ).
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Let us denote all the eigenvalues of problem (5.43) by
(
µ
(i)
N

)
i⩾1

arranged in increasing order

with corresponding L2 normalized eigenvector
(
v
(i)
N

)
i⩾1

and we denote δ̃N := µ
(2)
N − µ(1)

N the

gap between two smallest eigenvalues. As remarked before, for ũN which is closed enough to the
discrete solution uN , we have µ(1)

N < λ̃N < µ
(2)
N and ũN close to v(1)N by picking properly v(1)N but

not −v(1)N . And for (ũN , λ̃N ) ∈ X, we define the residual of problem (5.3) as

R(ũN , λ̃N ) := −∆ũN + V ũN + ũN
3 − λ̃N ũN (5.45)

and we note R̃N := R(ũN , λ̃N ) for simplicity. Lastly, we define

ÃN =

∫
R̃N ũN .

With all these notations at hand, now we state the error estimation based on the invertibility of
the derivative DF and we refer the readers to [38, Lemma 6.3.1] for a detailed proof.

Theorem 5.1.3 (Coarse A Posteriori Error Estimation [38]). For N ∈ N, let ũN ∈ XN denote
a numerical approximation solution of the discrete solution uN with λ̃N being corresponding
eigenvalue obtained via (5.44), let

(
µ
(i)
N

)
i⩾1

denote all the eigenvalues of problem (5.43) arranged

in increasing order with corresponding L2 normalized eigenvector
(
v
(i)
N

)
i⩾1

and let δ̃N := µ
(2)
N −

µ
(1)
N denote the gap between two smallest eigenvalues, we define the constant

CN = min

{
N2

N2 + 1
, β̃N

}
−

4

√
1

4π2 + 4∥V + 3(ũN )2 − λ̃N∥L2

N
,

where

β̃N =

1
4 min

{
δ̃N , 3

}
1
4 min

{
δ̃N , 3

}
+ ∥(V + 3(ũN )2 − λ̃N )−∥L∞ + 1

,

and (V +3(ũN )2 − λ̃N )− is the negative part of V +3(ũN )2 − λ̃N . Then for ũN close enough to
uN such that

∥v(1)N − ũN∥L∞ ⩽
1

4
min

1,
min

{
δ̃N
2 ,

1
π −

1
4

}
2∥v(1)N ∥L∞

 and λ̃N − µ(1)
N ⩽ min

{
1

2
δ̃N ,

1

4

}
,

and for N large enough such that CN > 0, DF
(ũN ,λ̃N )

: X̃ → X̃
′
is an isomorphism. Besides, by

denoting ũN := (ũN , λ̃N ) and giving the following computable bounds

γũN
⩽ max

{
ĨN

(
1

2
+ C−1

N

)
, C−1

N

(
1 + ĨN (2C−1

N + 1)
)}

L(t) ⩽

(
3

√
1

4π2
+ 4(t+ 2) + 4

)
t,

if 2γũN
L
(
2γũN

ζ(ũN )
)
⩽ 1, then there exists a unique solution u∗ = (u∗, λ∗) ∈ B

(
ũN , 2γũN

ζ(ũN )
)
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satisfying F(u∗) = 0 and we have the following a posteriori error estimate

∥ũN − u∗∥H1 + |λ̃N − λ∗| ⩽ 2γũN
∥R̃N∥H−1 . (5.46)

Apart from the above coarse estimate, there is another more accurate error estimate that we
state here and refer the readers to [38, Theorem 6.3.1]for a detailed proof.

Theorem 5.1.4 (More Accurate A Posteriori Error Estimation [38]). For N ∈ N, let ũN ∈ XN

denote a numerical approximation solution of the discrete solution uN with λ̃N being correspond-
ing eigenvalue obtained via (5.44), let u ∈ X be the solution of weak problem (5.2) with cor-
responding eigenvalue λ, let

(
µ
(i)
N

)
i⩾1

denote all the eigenvalues of problem (5.43) arranged in

increasing order with corresponding L2 normalized eigenvector
(
v
(i)
N

)
i⩾1

and let δ̃N := µ
(2)
N −µ

(1)
N

denote the gap between two smallest eigenvalues. Then for any α > 1, there exist Nα ∈ N such
that for any N ⩾ Nα and for ũN close enough to uN , the following inequality holds:

1

2
|λ̃N − λ|+

√√√√1

2

(
1

2π
+

√
1

4π2
+ 4

)
∥ũN − u∥L2 ∥2ũN + u∥L∞ +

∥∥∥∥(V + 3(ũN )2 − λ̃N − 1
)
−

∥∥∥∥
L∞[√

1

4π2
+ 4

1

β̃N
∥ũN − u∥H1 ∥2ũN + u∥L2 +

1

β̃N

[
|λ̃N − µ(1)

N |+ ∥ũN − v
(1)
N ∥L2 (M1∥ũN − u∥H1

+2∥(ũN )3∥L2 + ∥ũN∥2L∞ ∥ũN − u∥L2

)
+ |λ̃N − λ|

]
+ ∥ũN − u∥L2

(
1 +
∥2(ũN )2µ

(1)
N ∥H−1

β̃N

)

+
1

N2
+
Cr

β̃N

1

N1+r
∥V + 3(ũN )2∥Hr

]
⩽ 1− 1

α
,

(5.47)
where

β̃N =
µ
(2)
N − µ

(1)
N

µ
(2)
N − µ

(1)
N +

∥∥∥∥(V + (ũN )2 − µ(1)
N − 1

)
−

∥∥∥∥
L∞

,

M1 = 1 + ∥V ∥L∞ + ∥u∥2L∞ + |λ|,

and 0 ⩽ r ⩽ 1, Cr = 2r
(

1
4π2 + 4

) 1
4 . Under the condition that the above inequality holds, we have

the following a posteriori error estimate:

∥ũN − u∥H1 ⩽ α

(
∥R(ũN )∥H−1 +

∥∥∥∥(V + 3(ũN )2 − λ̃N − 1
)
−

∥∥∥∥
L∞

[
1

β̃N
∥ΠNR(ũN )∥H−1

+
2

β̃N
|λ̃N − µ(1)

N | ∥ũN − v
(1)
N ∥L2 +

3

2
∥ũN − v(1)N ∥

2
L2

(
1 +
∥2(ũN )2µ

(1)
N ∥H−1

β̃N

)])
.

(5.48)

Remark 5.1.4.
Here, we remark that compared with the coarse a posteriori error estimator, the second error

estimator is not fully computable. In Theorem 5.1.3, the validation condition is 2γũN
L
(
2γũN

ζ(ũN )
)
⩽

1. Even though we can not compute directly γũN
and the Lipschitz function L, we still have com-
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putable upper bound of those two terms. As long as the computable upper bound of 2γũN
L
(
2γũN

ζ(ũN )
)

is smaller than 1, the validation condition is verified.

5.2 Iteration scheme and analysis

In this section, we give the details of numerical solution of this problem and the convergence anal-
ysis, which is quite different from the source problem in previous chapter. Based on the discretized
weak problem (5.7) where uN =

∑
0⩽k<N (ûN )kek with additional constraint ∥uN∥L2 = 1, we se-

lect the basis vectors {ei}0⩽i<N as test functions vN and obtain a system of nonlinear eigenvalue
equations represented in the following matrix form{

AN (uN )uN = πλNuN ,

uT
NuN = π−1,

(5.49)

where π appearing in the equation originates from the basis vector integration
∫
Ω
e2k = π(0 ⩽

k ⩽ N). Similar to the nonlinear iterative scheme given by Equation (4.114) in previous chapter,
we have the following decomposition of matrix:

AN (uN ) = UN +DN + LN + SN (uN ),

and we still make use of the Gauss-Seidel-Relaxation (GSR) iterative scheme. By setting an initial
guess (u0

N , λ
0
N ), in each iteration the new eigenpair (uk+1

N , λk+1
N ) is calculated from (uk

N , λ
k
N ) via

the following process:
(
uk+1
N

)∗
= −(DN + ωLN )−1

(
(1− ω)LN +UN + SN (uk

N )
)
uk
N + π(DN + ωLN )−1λkNuk

N ,

uk+1
N =

(uk+1
N )

∗

π
1
2 ∥(uk+1

N )
∗∥L2

,

λk+1
N = (uk+1

N )TAN (uk+1
N )uk+1

N ,

(5.50)
with ω being the relaxation factor. Here we remark that in the eigenvalue problem there is no
oscillation of the numerical solutions as indicated in Remark 4.2.2. Therefore, unlike iterative
scheme given by Equation (4.114), we don’t add the damping term in the iterative scheme given
by Equation (5.50). From (5.50), we know that(

uk+1
N

)∗
= −(DN + ωLN )−1

(
(1− ω)LN +UN + SN (uk

N )− πλkNI
)
uk
N .

Therefore, by denoting PN (uk
N , λ

k
N ) = −(DN +ωLN )−1

(
(1− ω)LN +UN + SN (uk

N )− πλkNI
)
,

the above GSR scheme has the following equivalent expression:
(
uk+1
N

)∗
= PN (uk

N , λ
k
N )uk

N ,

uk+1
N =

(uk+1
N )

∗

π
1
2 ∥(uk+1

N )
∗∥L2

,

λk+1
N = (uk+1

N )TAN (uk+1
N )uk+1

N .

(5.51)

The main difficulty for the analysis of the iterative scheme (5.51) relies on the update of matrix
PN (uk

N , λ
k
N ) in each iteration. From Estimate (5.12), we know that the convergence rate of

eigenvalue is faster than the eigenvector. When λkN is close enough to λ∞N , by assuming that the
influence of the nonlinear term SN (uk

N ) is small compared to the contribution from other terms,
we can deduce that the decrease rate of the iteration error is bounded by the matrix norm of
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π− 1
2 ∥PN (u∞

N , λ
∞
N )u∞

N ∥
−1
L2PN (u∞

N , λ
∞
N ). Additionally, we perform the following numerical test:

For N = 100, given u0N = (0.01, · · · , 0.01) as the initial guess, we perform 40 GSR iterations
according to Scheme (5.51) with ω = 0.2 and plot the variation of eigenvector errors ∥ukN−u∞N ∥H1

and eigenvalue errors |λkN−λ∞N | in Figure 5.1. From Figure 5.1, firstly we observe the convergence
for both the eigenvalue and eigenvector and the faster convergence of eigenvalue. In addition,
after the first 5 iterations, the variation of the eigenvalue λkN becomes small, i.e., λkN ≈ λ∞N ,
and we observe that the corresponding iteration error ∥ukN − u∞N ∥H1 converges to 0 with a near-
constant decrease rate, which is similar to the convergence result of the source problems.

0 5 10 15 20 25 30 35 40
Iteration number k

10 11

10 9

10 7

10 5

10 3

10 1

101 uk
N uN H1

(A) The variation of ∥uk
N − u∞

N ∥H1 for N = 100 as
a function of iteration number k.

0 5 10 15 20 25 30 35 40
Iteration number k

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100 | k
N N |

(B) The variation of |λk
N − λ∞

N | for N = 100 as a
function of iteration number k.

Figure 5.1: The convergence of nonlinear GSR eigen scheme .

5.3 Strategies and numerical test

In this section, we will explore the optimal path problem for the solution of eigenvalue problem
(5.2). Thanks to the work for the solution of the linear and nonlinear source problems, now we
don’t need to apply probabilistic method to explore the optimal path and then to summarize
the characteristics of the optimal path. In this section, we will skip this time-consuming process
and focus on checking several key properties of the eigenvalue problem such that we can directly
apply the same strategies to give near-optimal paths. First at all, we decompose the total residual
into two parts: the discretization residual and the iteration residual. Recall the definition of the
residual in (5.45) and the iterative scheme given by Equation (5.50), for numerical solution
(ukN , λ

k
N ) and the intermediate solution (ukN )∗ , we define the discretization residual as

Rdisc(u
k
N , λ

k
N ) := A1

(
ukN −

uk−1
N

∥(ukN )∗∥L2

)
+

1

∥(ukN )∗∥L2

R(uk−1
N , λk−1

N ), (5.52)
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and the iteration residual as

Riter(u
k
N , λ

k
N ) :=R(ukN , λ

k
N )−Rdisc(u

k
N , λ

k
N )

=A2

(
ukN −

uk−1
N

∥(ukN )∗∥L2

)
+ (ukN )3 − 1

∥(ukN )∗∥L2

(uk−1
N )3

−
(
λkN − ukN −

1

∥(ukN )∗∥L2

λk−1
N − uk−1

N

)
,

(5.53)

where A1 and A2 are defined in Corollary 4.1.1.1.
Next, the first key property to check is the jump efficiency. In fact, the iterative scheme

given by Equation (5.51) also maintains the jump efficiency as for the source problems. Here
we give one numerical example to illustrate the jump efficiency in this case: Firstly, we set the
initial guess for N = 3 as u0

N = {0.01, 0.01, 0.01, 0.01} and here we remind the reader that initial
guess can not be zero, otherwise the numerical solution will always be zero. Then, we perform 10
iterations for N = 3 and we calculate the ratio ∥uk+1

N −u∞
N ∥H1

∥uk
N−u∞

N ∥H1
for those 10 iterations. Those values

vary between 0.23 and 1.27 and the value 1.27 corresponds to the ratio for the first iteration.
Then those rest ratios are all smaller that 1 and they vary from 0.28 to 0.515. With the increase
of iteration numbers, the ratio is closer and closer to 0.515. Then we switch from N = 3 to

N ′ = 12 and perform 4 iterations. We calculate the ratio
∥uk+1

N′ −u∞
N′∥H1

∥uk
N′−u∞

N′∥H1
for these 4 iterations.

The ratios are about 0.072, 0.245, 0.298, 0.425. From this simple test, we observe the same jump
efficiency as in the linear and nonlinear source problems.

The following key property to be checked is the predictability of Nf . Recalling Scheme (5.50),
then truncating the residual R(ukN , λ

k
N ) at N ′(N ′ > N) yields that

ΠN ′R(ukN , λ
k
N ) =ΠN ′A1u

k
N +ΠN ′A2u

k
N +ΠN ′(ukN )3 − λkNukN

=ΠN ′A1u
k
N −ΠN ′A1(u

1
N ′)∗

=ΠN ′A1(u
k
N − (u1N ′)∗),

where (u1N ′)∗ is the intermediate solution obtained via one GSR iteration after the jump from
N to N ′. In addition, we have

Π⊥
N ′R(ukN , λ

k
N ) =Π⊥

N ′A(ukN − u∞N ′) + Π⊥
N ′

(
(ukN )3 − (u∞N ′)3

)
+R(u∞N ′ , λ∞N ′).

Therefore, if we assume that the term ΠN ′A(ukN − u∞N ) + ΠN ′
(
(ukN )3 − (u∞N ′)3

)
is dominant

in A(ukN − u∞N ) +
(
(ukN )3 − (u∞N ′)3

)
, then the term Π⊥

N ′R(ukN ) can represent R∞
N ′ . Here, we do

one test: For N = 3, we calculate the residual R∞
N and then for N < N ′ ⩽ 100, we compare

∥Π⊥
N ′R∞

N ∥H−1 and ∥R∞
N ′∥H−1 . The result shows that for each N < N ′ ⩽ 100, we always have

∥Π⊥
N ′R∞

N ∥H−1 > ∥R∞
N ′∥H−1 . This result confirms that in the eigenvalue problem, we can also

predict Nf such that R∞
Nf

⩽ εg.
According to the above tests, we can already conclude that it’s feasible to apply Strategy I

(Algorithm 3) for the solution of eigenvalue problem. For applying the Strategy II, we still need
to check the behavior of the iteration residual after the jump. The first observation is that the
decrease of the iteration errors for calculations with a fixed N is nearly a constant with respect
to N . Then we do the same test as that for the source problems: For N = 5, we take u∞N
as input to calculate output u1N ′ for different N < N ′ ⩽ 100 and the corresponding iteration
residual. We plot the result in Figure 5.2. From Figure 5.2, we observe that the iteration
residual increases for N ′ close to initial input N and then it’s nearly a constant for other choice



5.3. Strategies and numerical test 141

20 40 60 80 100
Discretization number N ′

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

Riter(u1
N ′) H 1

Figure 5.2: Iteration residual of u1N ′ for different discretization number N ′.
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Figure 5.3: Iteration residual of u1100 for different discretization number N before the jump.

of output discretization number N ′, which is the same as that for source problems. Next, We
fix Nf = 100, take u∞N as input for 3 ⩽ N ⩽ Nf − 1, jump from N to Nf , perform one GSR
iteration to obtain output u1Nf

and calculate the iteration residual ∥Riter(u
1
Nf

)∥H−1 . Then we

plot the variation of ∥Riter(u
1
Nf

)∥H−1 and
∥ΠNf

R(u∞
N )∥H−1

N1.6 in Figure 5.3. Here, the parameter
connecting the discretization residual and the iteration residual is not N2 but N1.6, which is the
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Figure 5.4: Nearly optimal strategies for the eigenvalue problem

same as that for the nonlinear source case, which indicates that this difference might originate
from the addition of the nonlinear term. From this figure, we conclude that it is reasonable to
add this criteria into our strategy.

Path Fixed N = 100 Strategy I Strategy II
Cost 14,567,028 5,227,524 1,360,896

Table 5.1: Computational costs of different paths for the eigenvalue problem.

By summarizing all above arguments, we conclude that we can also apply Strategy II for
the numerical solution of our eigenvalue optimal path problem. By setting the goal residual as
εg = 0.5ε99 + 0.5ε100 and transferring it into the residual requirement, we compare three paths:
path for fixed N = 100 and paths generated by Strategy I and II respectively. We plot the result
in Figure 5.4 and list corresponding computational costs in Table 5.1. From the figure, we see
that both the strategies can finish the path with only 1 iteration for the biggest discretization
number N . Unfortunately, Strategy I can not predict well the last discretization number Nf ,
which increase the computational cost but Strategy II still behaves well in this case.
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Estimation d’erreur a posteriori pour des calculs de structure électronique
par des méthodes ab initio et son application pour diminuer le cout de calcul
A posteriori error estimation for electronic structure calculations using ab initio methods
and its application to reduce calculation costs

Abstract

The thesis is concerned with the error analysis of electronic structure calculation. The long term goal is to,
in one hand, derive computable a posteriori error estimator for ab initio methods and, in the other hand,
propose near-optimal computational cost strategy for the numerical calculation of those methods based
on the a posteriori error estimation and the separation of the discretization and iteration error sources.
In the first part of the thesis, we introduce a new well-posedness analysis for the single reference coupled
cluster method based on the invertibility of the CC derivative. Under the minimal assumption that
the sought-after eigenfunction is intermediately normalisable and the associated eigenvalue is isolated
and non-degenerate, we prove that the continuous (infinite-dimensional) CC equations are always locally
well-posed. Under the same minimal assumptions and provided that the discretization is fine enough,
we prove that the discrete Full-CC equations are locally well-posed, and we derive residual-based error
estimates with guaranteed positive constants. The second part of the thesis focus on the application of
a posteriori error estimation to construct near-optimal path when approximating the solution of PDEs.
We firstly apply a probabilistic method to explore an optimal path that minimizes the cost for the
numerical resolution of linear and nonlinear elliptic source problems. Based on the analysis of those
optimal paths, we propose two near-optimal strategies to achieve a given accuracy based on the error
sources decomposition of the error estimator. Finally, we validate the feasibility of those near-optimal
strategies by applying them to the numerical approximation of a nonlinear eigenvalue problem, i.e., the
Gross-Pitaevskii equation.

Keywords: electronic structure theory, coupled cluster method, numerical analysis, non-linear func-
tions, error estimate, Gross-Pitaevskii equation, residual decomposition.

Résumé

La thèse porte sur l’analyse des erreurs dans le calcul de la structure électronique. L’objectif à long terme
est, d’une part, de dériver un estimateur d’erreur a posteriori calculable pour les méthodes ab initio et,
d’autre part, de proposer une stratégie de coût de calcul quasi-optimale pour le calcul numérique de ces
méthodes basée sur l’estimation d’erreur a posteriori et la séparation des sources d’erreur de discrétisation
et d’itération. Dans la première partie de la thèse, nous introduisons une nouvelle analyse de bien posé
pour la méthode de cluster couplé à référence unique basée sur l’inversibilité de la dérivée CC. Sous
l’hypothèse minimale que la fonction propre recherchée est normalisable de façon intermédiaire et que
la valeur propre associée est isolée et non dégénérée, nous prouvons que les équations CC continues
(en dimension infinie) sont toujours bien posées localement. Sous les mêmes hypothèses minimales et à
condition que la discrétisation soit suffisamment fine, nous prouvons que les équations CC discrètes sont
localement bien posées, et nous dérivons des estimations d’erreur basées sur les résidus avec des constantes
positives garanties. La deuxième partie de la thèse se concentre sur l’application de l’estimation d’erreur
a posteriori pour construire un chemin quasi-optimal lors de l’approximation de la solution d’EDP.
Nous appliquons d’abord une méthode probabiliste pour explorer un chemin optimal pour la résolution
numérique de problèmes elliptiques linéaires et non linéaires en minimisant le coût de calcul. Sur la base
de l’analyse de ces chemins optimaux, nous proposons deux stratégies quasi-optimales pour atteindre une
précision donnée, basées sur la décomposition des sources d’erreur de l’estimateur d’erreur. Enfin, nous
validons la faisabilité de ces stratégies quasi-optimales en les appliquant à l’approximation numérique
du problème des valeurs propres, c’est-à-dire l’équation de Gross-Pitaevskii.

Mots clés : théorie de la structure électronique, méthode des clusters couplées, analyse numérique,
fonction non linéaire, estimation d’erreur, équation de Gross-Pitaevskii, décomposition du residu.
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