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Deep learning pour le streaming adaptatif de vidéos à
360◦ en réalité virtuelle

Résumé
La réalité virtuelle (VR) a évolué de manière significative ces dernières années. Les casques
immersifs devenant de plus en plus abordables et populaires, de nombreuses applications sont à
l’horizon, des vidéos à 360◦ aux formations interactives en passant par les environnements virtuels
collaboratifs. Cependant, pour atteindre des niveaux élevés de qualité perçue, la bande passante
du réseau et les ressources de calcul nécessaires peuvent être supérieures de plusieurs ordres de
grandeur à celles requises pour un contenu 2D traditionnel. Pour pallier ce problème, des straté-
gies de streaming qui adaptent le débit vidéo aux conditions du réseau et à l’orientation de la
tête de la personne ont été mises en œuvre afin d’améliorer la qualité d’expérience. Étant donné
que la plupart des algorithmes de débit adaptatif reposent sur l’utilisation d’une mémoire tampon
vidéo suffisamment grande pour compenser les fluctuations de la bande passante, l’algorithme
doit savoir où la personne regardera quelques secondes avant la lecture pour adapter correcte-
ment la qualité. La qualité d’expérience pour le streaming 360◦ dépend donc de la prédiction des
mouvements de la tête en VR. Malheureusement, il s’agit d’un problème difficile en raison (i) du
caractère aléatoire des mouvements humains, (ii) de la diversité des trajectoires de tête des person-
nes qui regardent des vidéos à 360◦ ce qui entraîne une ambiguïté entre les trajectoires passées,
et (iii) des nombreux facteurs qui influencent le comportement, l’attention et les mouvements
de la personne en VR. Afin de concevoir des systèmes de streaming VR qui s’adaptent mieux à
chaque personne, il est important de comprendre les différents facteurs, leurs interactions et leurs
effets sur le comportement humain. La collecte et l’exploitation de nouvelles données relatives
à ces facteurs pourraient aider à désambiguïser les trajectoires la tête et à améliorer leur prédic-
tion. Ce travail est divisé en quatre contributions principales. Premièrement, nous avons proposé
un nouveau framework de deep learning variationnel pour prédire de multiples trajectoires possi-
bles de mouvements de tête afin de mieux prendre en compte la diversité des trajectoires. Nous
avons montré que notre modèle surpasse les performances de concurrents adaptés du domaine de
la conduite autonome, réduisant l’erreur jusqu’à 41 % sur quatre datasets. Nous avons ensuite
proposé un nouveau simulateur de streaming 360◦ afin de mesurer les gains système de notre
framework et de permettre de comparer facilement les stratégies de streaming adaptatif. Nous
avons montré que la prédiction de trajectoires multiples conduit à une plus grande équité entre
les usagers, avec des gains de qualité atteignant jusqu’à 10 % pour 20 à 30 % des personnes. En
parallèle, nous avons mené des expériences avec des personnes et des analyses statistiques pour
mieux comprendre l’interaction entre le contenu immersif, l’attention et les émotions. Nous avons
observé que le degré d’activation physiologique de la personne était corrélé à l’attention portée
aux objets, et nous avons quantifié les effets des émotions sur la prédictibilité des mouvements
de la tête. Enfin, nous avons voulu tirer parti des données liées aux émotions afin d’apprendre
de meilleures représentations et d’améliorer la prédiction des mouvements de la tête. Inspirés par
les travaux récents sur la distillation cross-modale et les modèles de fondation multimodaux, nous
avons commencé à travailler sur une nouvelle architecture de deep learning multimodale capable
d’apprendre des représentations transférables de modalités qui ne sont disponibles qu’au moment
de l’apprentissage. Nous avons obtenu des résultats préliminaires qui surpassent de 21 % l’état de
l’art existant tout en réduisant considérablement le nombre de paramètres.

Mots-clés : Apprentissage profond, Réseaux de neurones artificiels, Réalité virtuelle,
Streaming, Régression, Multimedia



Deep learning for adaptive 360◦ video streaming in virtual
reality
Abstract

Virtual reality (VR) has evolved significantly in recent years. As head-mounted displays become
more affordable and popular, new opportunities for high-quality immersive experiences are open-
ing up. A variety of exciting applications are on the horizon, from 360◦ videos to interactive
training simulations and collaborative virtual environments. However, to achieve high levels of
perceptual quality, the required network bandwidth and GPU computing resources can be orders
of magnitude higher than those required for traditional 2D content. To mitigate this, adaptive
streaming strategies have been implemented to improve the quality of experience (QoE) for peo-
ple watching 360◦ videos over the Internet. This is done by adapting the video quality to the
network conditions and the user’s head orientation. Since most adaptive bitrate algorithms rely on
using a large enough video buffer to compensate for bandwidth fluctuations, the algorithm needs
to know where the person will be looking a few seconds before playback to make the appropriate
quality decisions. Improving the QoE for 360◦ video streaming therefore depends on accurately
predicting the user’s viewport in VR. Unfortunately, viewport prediction is a challenging prob-
lem due to (i) the inherent randomness of human motion, (ii) the diversity of head trajectories
among people watching 360◦ video, which leads to ambiguity between similar past trajectories,
and (iii) the many factors that influence user behavior, attention, and movement in VR. In order to
design VR streaming systems that can better adapt to each user, it is important to understand the
different factors, their interactions, and their effects on human behavior. Collecting and exploit-
ing additional data modalities related to these factors could help disambiguate head trajectories
and improve viewport prediction. The work covered in this manuscript touches on many areas,
including the design of various multimodal deep learning architectures applied to regression, dy-
namic optimization problems, time series forecasting, and user experiments along with associated
statistical analyses. This work is divided into four main contributions. First, we studied the simi-
larity between head motion trajectories and proposed a new variational deep learning framework
for predicting multiple possible head motion trajectories to better account for trajectory diversity.
While our framework is compatible with any sequence-to-sequence architecture, we implemented
a flexible and lightweight stochastic prediction model and showed that it outperformed competi-
tors adapted from the self-driving domain by up to 41% on four datasets. We then proposed a
new trace-driven 360◦ video streaming simulator to measure the system gains of our framework
and provide a way to easily compare adaptive streaming strategies. We showed that predicting
multiple trajectories leads to higher fairness among simulated users, with gains for 20% to 30%
of users reaching up to 10% in visual quality. In parallel, we conducted user experiments and
statistical analyses to better understand the interaction between immersive content, attention, and
emotions, as well as the effects of emotions on user motion. We observed that user arousal corre-
lated with the accuracy of high-level saliency. We also quantified the effects of valence and arousal
on the predictability of head movements and their interaction with spatial information. Finally, we
wanted to take advantage of additional emotion-related data modalities to learn better represen-
tations and improve viewport prediction. Motivated by recent work on cross-modal knowledge
distillation and multimodal foundation models, we initiated work on a new multimodal deep ar-
chitecture able to learn transferable representations of modalities that are only available at training
time. We obtained early results outperforming the existing state-of-the-art by up to 21% while
greatly reducing the number of parameters.
Keywords: Deep learning, Artificial neural networks, Virtual reality, Streaming, Regres-
sion, Multimedia
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CHAPTER 1
Introduction

In this chapter, we introduce the subject of this thesis. We first provide some historical
context and background about virtual reality and head-mounted displays. We then elu-
cidate the challenges hampering the widespread adoption of virtual reality, despite the
recent technological developments. We propose to tackle these challenges by formulating
objectives in the form of research questions. We finally list the scientific contributions
that were made to answer these questions.

1.1 Context
The earliest published use of the term “virtual reality” dates back to 1938, where Antonin
Artaud used the expression “réalité virtuelle” to describe the illusory nature of charac-
ters and objects in theater (Artaud, 1938). The meaning of “virtual reality” has since
evolved to become what we know today, mostly thanks to the work of virtual reality pi-
oneers (Zimmerman, Lanier, Blanchard, Bryson, & Harvill, 1986; Lanier, n.d.; Conn,
Lanier, Minsky, Fisher, & Druin, 1989; Blanchard et al., 1990) and science fiction writers
(Broderick, 1982; Krueger, 1983; The Lawnmower Man, 1992) in the 1980s. Nowadays,
according to Merriam-Webster’s disctionary (Merriam-Webster, 2023), virtual reality can
be defined as “an artificial environment which is experienced through sensory stimuli
(such as sights and sounds) provided by a computer and in which one’s actions partially
determine what happens in the environment”.

The earliest form of virtual reality (VR) to approach this definition was envisioned by
Morton Heilig (Heilig, 1955) in 1955, calling it the “Experience Theater”. Over several
years, he developed the Telesphere Mask (Heilig, U.S. Patent US2955156A, Oct. 1960)
(Fig. 1.1a), “a telescopic television apparatus for individual use”, and the Sensorama
(Heilig, U.S. Patent US3050870A, Aug. 1962) (Fig. 1.1b), his vision for the future of
cinema, with the help of his partner, Marianne Heilig. Patented in 1960, the Telesphere
Mask can be considered as the first ever head-mounted VR display. “The spectator is
given a complete sensation of reality, i.e. moving three dimensional images which may
be in colour, with 100% peripheral vision, binaural sound, scents and air breezes”, read
the patent filing. Predating digital computing, the Sensorama was a mechanical device
and one of the earliest known examples of immersive, multi-sensory technology. Unfor-
tunately, Heilig did not manage to secure sufficient investment or sales, and both of his
inventions were commercial failures.

1



2 CHAPTER 1 — Introduction

(a) Telesphere Mask (1960) (b) Sensorama (1962)

Figure 1.1: Heilig’s early VR prototypes.

Other notable early prototypes of head-mounted VR displays include “The Sword of
Damocles” (1968, owing its name to the fact that it had to be attached to a mechanical
arm suspended from the ceiling), NASA’s LEEP (1979, Large Expanse, Extra Perspective
optical system) and VIEW (1985, Virtual Interactive Environment Workstation), the VPL
EyePhone (1989), the Virtuality 1000 (1990) and 2000 (1994) series, the unreleased Sega
VR (199X), the Forte VFX1 Headgear (1995) and the Nintendo Virtual Boy (1995).

From then on, VR technology has undergone significant development, especially in
the last 10 years, with the advent of mass-market VR-capable head-mounted displays.
Since the release of the Oculus Rift DK1 in 2013 (Fig. 1.2a), VR headsets have been get-
ting more popular and affordable. The HTC Vive headsets (2016-), the Sony PlayStation
VR (2016) and VR2 (2023), the Valve Index (2019), the Oculus (now Meta) Quest line
of standalone headsets (2019-), and the recently-announced Apple Vision Pro (2023) are
the most popular examples of modern VR heasets.

In 2023, Meta declared they had sold over 20 million Quest units (Fig. 1.2b). Revenue
in the AR and VR market is projected to reach US$31.12bn in 2023 and is expected to
rise to US$52.05bn by 2027 (Statista Market Insights, 2023). VR technology is rapidly
evolving, opening up a wide array of applications across various fields, such as gaming
and entertainment, education, healthcare, real estate and architecture, corporate training,
or even art and design. The development of these new technologies brings new technical
challenges.

1.2 Challenges
The evolution of VR technology has witnessed remarkable strides in recent years, with in-
novations in hardware and software leading to immersive experiences that were once con-
sidered the realm of science fiction. However, despite these advancements, the widespread
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(a) Oculus Rift DK1 (2013) (b) Meta Quest 3 (2023)

Figure 1.2: First generation and latest generation of Oculus’ (now Meta) VR headsets.

adoption of VR remains hampered by a number of challenges that significantly impact the
quality of user experience.

In the QUALINET White Paper on Definitions of Immersive Media Experience
(Perkis et al., 2020), Quality of Experience (QoE) for immersive media is defined as “the
degree of delight or annoyance of the user of an application or service which involves
an immersive media experience. It results from the fulfillment of his or her expectations
with respect to the utility and/or enjoyment of the application or service in the light of the
user’s personality and current state.”

The challenges in achieving a high QoE in VR are intricately linked to human percep-
tual characteristics and a varity of influencing factors. Dizziness or nausea, commonly
experienced in VR and usually referred to as “cybersickness”, can heavily deteriorate
the QoE. Prominent causes are locomotion, acceleration, and rotation in conflict with
what the vestibular system perceives, and still imperfect displays (resolution, vergence-
accomodation conflict,...) which lead to a loss of spatial awareness. It is also widely
believed that a feeling of presence plays a vital role in enhancing the QoE in immersive
media. This “sense of being there” involves a sense of agency while navigating and in-
teracting within the virtual environment and allows users to perceive virtual objects as if
they were real.

When watching 360◦ videos in a VR headset over the Internet, we argue that a smooth,
high-resolution, experience is necessary to reduce cybersickness and strengthen the sense
of presence. However, in order to achieve these high levels of perceptual quality, the
necessary network bandwidth and GPU computing resources can be orders of magnitude
higher than those required for traditional 2D content. This is mainly due to the fact that
VR displays only stand a few centimeters from the eyes and need a very high resolution
(25 pixels per degree for the Meta Quest 3, up to 70 for the Varjo VR-3 headset).

The QoE for people watching 360◦ videos over the Internet can be significantly im-
proved by taking advantage of adaptive streaming strategies. While traditional 2D adap-
tive bitrate algorithms improve the QoE by dynamically adapting the bitrate of video
segments to network conditions, 360◦ adaptive bitrate algorithms can take it a step further
by also adapting the quality to the user’s head orientation. Since the user can only see
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one-third of the entire 360◦ scene at a time, the visual quality can be spatially adapted to
match the user’s field of view. This can be done through tile-based or view-based adaptive
streaming, currently implemented in industry standards such as HLS and MPEG-DASH
(Hosseini & Swaminathan, 2016a; H. S. Kim et al., 2018). Additional levers such as vir-
tual walls that prevent the user from seeing certain areas, snap-changes selected by content
creators to show important parts of the content, or even slow-downs can also be included
in 360◦ adaptive streaming strategies (Dambra et al., 2018; Sassatelli et al., 2020).

The streaming of 360◦ videos can therefore be defined as an optimization problem
where maximizing the QoE depending on the user and the state of the network can be
done by dynamically adapting the bitrate of the video, both temporally and spatially, and
carefully activating some of the aforementioned levers. We refer to these bitrate choices
and lever activations as “quality decisions”. Most adaptive bitrate algorithms rely on
using a large enough video buffer to compensate for bandwidth fluctuations. This requires
the quality decisions to be made a few seconds ahead of playback. For this reason, the
algorithm needs to know where the person will be looking a few seconds in the future
before making requests to the server.

Improving the QoE for 360◦ video streaming therefore depends on accurately pre-
dicting the user’s viewport in VR. Unfortunately, viewport prediction is a challenging
problem due to (i) the inherent randomness of human motion, (ii) the diversity of head
trajectories among people watching 360◦ video, which leads to ambiguity between future
trajectories that were similar in the past, and (iii) the many factors that influence user
behavior, attention, and movement in VR.

1.3 Objectives
The main objective of the work presented in this manuscript is to address the challenges
that arise when predicting the user’s viewport in VR. We want to improve the quality of
experience by designing VR streaming systems that can better adapt to each user. Specif-
ically, we aim to answer the following research questions:

• How can we consider the randomness and diversity of human motion when predict-
ing head movements based on past head trajectories?

• What is the relationship between immersive content, emotions, and attention in
virtual reality?

• Can we identify which factors influence human movement in VR and quantify their
effects?

• How can we take advantage of these factors to learn better representations and
improve viewport prediction?
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1.4 Contributions
We make the following contributions:

• First, in chapter 3, we present a pioneering approach for generating multiple plau-
sible futures of head motion in 360◦ videos based on a shared past trajectory. We
analyze the diversity of potential futures corresponding to similar past trajectories
and address the limitations of existing predictors. We introduce the discrete varia-
tional multiple sequence (DVMS) learning framework, leveraging deep latent vari-
able models to modulate the connection between past and future trajectories. We
also conduct a detailed analysis of the learned latent space and its impact on tra-
jectory prediction. Additionally, we devise a method to estimate the likelihoods
of multiple predicted trajectories by exploiting the stationarity of prediction errors
over the latent space. Our method outperforms competitors in the self-driving do-
main by up to 41% on prediction horizons up to 5 seconds, demonstrating superior
performance at lower computational costs. This work represents the first explo-
ration of multiple head motion prediction in 360◦ videos, contributing valuable in-
sights and techniques to the field.

• Second, in chapter 4, we present SMART360, a 360◦ streaming simulation environ-
ment designed for comparing head motion prediction and Adaptive Bitrate (ABR)
algorithms. Our contributions include the development of a comprehensive simula-
tor with large datasets and baseline algorithms, along with transparent preprocess-
ing pipelines for creating new input configurations. We provide detailed guidance
on utilizing SMART360 for implementing and comparing motion prediction and
adaptive bitrate strategies. Additionally, we conduct an extensive analysis, involv-
ing nearly 5 million simulations with diverse user-video pairs, network traces, and
viewport prediction algorithms. Our findings demonstrate that predicting multiple
trajectories under a constant bandwidth budget results in higher fairness between
user-video pairs, reducing traces with the worst QoE. Furthermore, we show that
choosing the best number of trajectories to predict yields significantly improved
quality in the viewport and overall QoE, showcasing the effectiveness of our ap-
proach.

• Third, in chapter 5, we present a comprehensive contribution consisting of three
key elements. First, we introduce PEM360, a novel dataset featuring user head
movements, gaze recordings, emotional ratings, and physiological measurements in
360◦ videos. This dataset is enriched with high-level and low-level content-based
saliency maps, enabling spatiotemporal analysis of the interconnections between
content, user motion, and emotion. We provide open-access Python tools and note-
books for data processing and visualization, ensuring reproducibility. Secondly,
we investigate the impact of emotions on saliency estimators in 360◦ videos, re-
vealing that high-level saliency better predicts user attention under higher arousal
levels. Lastly, we explore the relationships between user-centric and video-centric
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measures and head motion predictability, validating hypotheses through a struc-
tural equation model (SEM). Our findings demonstrate that higher arousal leads to
higher predictability, while higher valence leads to lower predictability, with head
speed mediating this relationship. Furthermore, spatial information moderates the
effect of arousal on predictability, providing valuable insights into emotion–video
feature–predictability dynamics.

• Finally, in chapter 6, we present an ongoing work focused on developing a mod-
ular multimodal deep architecture for viewport prediction, leveraging cross-modal
learning techniques. This architecture is designed to learn transferable cross-modal
representations by jointly training on multiple modalities and can be easily ex-
panded with additional modalities. Our contributions include the introduction of
a new efficient multimodal architecture for viewport prediction and a benchmark of
existing methods for online viewport prediction in 360◦ videos.
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CHAPTER 2
Background

All models are wrong, but some are useful.

— George Box, Empirical Model-Building and Response Surfaces.

In this chapter, we take a deep dive in the scientific literature related to deep
learning for deep learning for adaptive 360◦ video streaming in virtual reality.
As this subject lies at the intersection of multiple fields, we split this chapter in
three sections.
First, we discuss the evolution of adaptive streaming in a chronological fashion,
before dwelling upon the question of adaptive streaming in immersive virtual
environments.
Second, we provide the reader with a background of selected work on the closely
related fields viewport prediction, human motion prediction, trajectory predic-
tion, and time series forecasting–sequence modeling.
Third, we take an interest in works dealing with human attention and behavior
in VR as well as their influencing factors.
This chapter is not destined to be an exhaustive review of the state of the art of
each of the aforementioned fields. Instead, we make an attempt at mentioning (i)
the existing work that we consider to be interesting and relevant to this thesis,
(ii) the major works in each field to get a good general idea of the state of the
art, and (iii) some recent work to catch a glimpse of the direction future work
seems to be taking.

9
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2.1 Adaptive streaming
In this section, we discuss the evolution of adaptive streaming, from the early stages to
VR-adapted adaptive streaming. In Fig. 2.1, we provide a timeline showing what we
consider to be the most impactful contributions to HTTP adaptive streaming.

2.1.1 Early stages
The idea of adaptive streaming, adapting the bit rate of the video to the network condi-
tions to ensure a smooth experience, is not new and has been the subject of many works
since the 1990s. As early as 1993, Kanakia, Mishra, and Reibman (1993) proposed an
adaptive congestion control scheme, demonstrating that modulating the source rate of a
video encoder based on delayed feedback from the network led to graceful degradation
in picture quality during congestion. A year later, Bolot, Turletti, and Wakeman (1994)
presented a rate control mechanism for packet video in the Internet, emphasizing the use
of feedback mechanisms to adapt the output rate of video coders based on the state of the
network. Their mechanism was implemented in the H.261 video coder of IVS. Building
on this work, Bolot and Turletti (1994) developed a scalable feedback control mecha-
nism for multicast video distribution in the Internet. Their innovative approach utilized a
probing mechanism to solicit feedback information in a scalable manner, estimating the
number of receivers, and separating congestion signals from the control algorithm. This
strategy ensured effective multicast video distribution to a large number of participants,
preventing congestion in the Internet and maximizing perceptual quality while minimiz-
ing bandwidth usage.

In 1995, Cen, Pu, Staehli, Cowan, and Walpole (1995) presented a distributed real-
time MPEG video audio player designed for the diverse and variable Internet environ-
ment. Their approach utilized software feedback mechanisms for client/server synchro-
nization, dynamic Quality-of-Service control, and system adaptiveness. The same year,
Eleftheriadis and Anastassiou (1995) introduced the concept of Dynamic Rate Shaping,
enabling the adaptation of compressed video bitstreams to dynamically varying rate and
delay constraints. This technique decoupled the encoder and the network, ensuring uni-
versal interoperability and providing algorithms for dynamic rate shaping that could be
implemented in software, allowing for widespread applicability in video-on-demand sys-
tems. Other notable contributions to the field at that time include the adaptive streaming
service for streaming MPEG video over best-effort IP network environments designed by
Ramanujan et al. (1997), and the Streaming Control Protocol (SCP) of Cen, Walpole, and
Pu (1997).

2.1.2 First proposals and standards
Adaptive streaming continued to undergo significant development in the following years,
with many commercial solutions for adaptive bitrate streaming over HTTP emerging in
the late 2000s. Move Networks was the first to deploy its adaptive streaming solution
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in 2006, based on a proprietary adaptive bit-rate technology, patented in 2010 (Brueck
& Hurst, U.S. Patent US7818444B2, Oct. 2010). Large video files were broken up into
many small files called streamlets, which were then delivered as a series of video seg-
ments using a highly efficient transmission protocol. Microsoft came up with Smooth
Streaming (MSS) when they released their new Internet Information Server (IIS) 7.0 in
2008. Apple then release HTTP Live Streaming (HLS) in 2009. Adobe also released
their own commercial solution for adaptive streaming in 2010 with the Flash 10.1 player,
called HTTP Dynamic Streaming (HDS).

Standardization efforts led to the creation of Dynamic Adaptive Streaming over HTTP
(DASH), developed under MPEG between 2010 and 2012. DASH specifies how the mul-
timedia files must be segmented and described using a media presentation description
(MPD) file. DASH is codec-agnostic, can be used with any protocol, and does not specify
the adaptive bitrate streaming (ABR) logic.

2008 2009 2010 2011 2012 2013

Microsoft SS Apple HLS Adobe HDS DASH standard FESTIVE

2013 2014 2015 2016 2017 2018

PANDABBA RobustMPC BOLA Pensieve

2018 2019 2020 2021 2022 2023

BOLA-E / DYNAMIC Yan et al. BayesMPC

Figure 2.1: Timeline of the key commercial and scientific contributions to HTTP adaptive streaming. ABR
algorithms are highlighted in bold. Rate-based algorithms are colored in orange, buffer-based in blue,
hybrid in green, and RL-based in purple.

We mention some of the important research works contemporary to the standardiza-
tion of DASH. Stockhammer (2011) delved into the specifications of DASH in 2011,
providing design principles and examples. Akhshabi, Begen, and Dovrolis (2011) pro-
vided an evalutation of rate-adaptation mechanisms in adaptive streaming. They exper-
imentally assessed commercial players (Smooth Streaming, Netflix) and an open-source
player (OSMF) under different network conditions, identifying inefficiencies and differ-
ences between these players, especially concerning bandwidth adaptation and competition
between players. Lederer, Müller, and Timmerer (2012) addressed the challenge of com-
paring adaptive streaming algorithms objectively due to the lack of a common dataset.
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They introduced a DASH dataset and an open-source tool (DASHEncoder) for content
generation. They explored segment lengths, HTTP server settings, and the advantages and
problems associated with shorter segment lengths. Akhshabi, Anantakrishnan, Begen,
and Dovrolis (2012) investigated the performance problems arising when multiple adap-
tive streaming players compete for available bandwidth. They identified player instability,
unfairness, and bandwidth underutilization as issues and explored the root causes, focus-
ing on the behavior of adaptive streaming players in their Steady-State. Mueller, Lederer,
Timmerer, and Hellwagner (2013) explored the implementation of MPEG-DASH over
HTTP 2.0 (SPDY). They highlighted DASH’s ability to handle varying bandwidth con-
ditions and its benefits in terms of NAT and Firewall traversal, flexibility, scalability, and
reduced infrastructure costs. They conducted experimental evaluations comparing HTTP
2.0 with HTTP 1.1 and HTTP 1.0, assessing protocol overhead, performance under dif-
ferent round trip times, and DASH performance in a lab test scenario.

2.1.3 Adaptive bitrate (ABR) algorithms
When streaming multimedia with DASH, one or more representations (i.e., versions at
different resolutions or bit rates) of multimedia files are typically available, and selection
can be made based on network conditions, device capabilities and user preferences. Many
algorithms have been proposed to get the best bitrate selection. The bitrate adaptation
mechanisms can be implemented at different stages of content delivery. Several surveys
provide interesting insights into adaptive streaming (Kua, Armitage, & Branch, 2017;
Sani, Mauthe, & Edwards, 2017; Bentaleb, Taani, Begen, Timmerer, & Zimmermann,
2019; Jedari et al., 2021) from different perspectives. Kua et al. (2017) looked at emerg-
ing research into the application of client-side, server-side, and in-network rate adapta-
tion techniques to support DASH-based content delivery. Sani et al. (2017) presented a
comprehensive survey of the most significant research activities in the area of client-side
HTTP-based adaptive video streaming. Bentaleb et al. (2019) examined more schemes
and classified them based on the unique features of their adaptation logics. More recently,
Jedari et al. (2021) presented an in-depth survey on video edge-C3 (edge caching, com-
puting, and communication) challenges and state-of-the-art solutions in next-generation
wireless and mobile networks. In this section, we choose to focus on client-side ABR al-
gorithms, but it is important to note that server/edge-side approaches to adaptive stream-
ing have also been the subject of many research works, including optimizing the encoding
parameters (Toni, Aparicio-Pardo, Simon, Blanc, & Frossard, 2014; Toni et al., 2015) co-
ordinating proxies to ensure fairness between clients (Petrangeli, Famaey, Claeys, Latré,
& De Turck, 2015), optimizing edge caching (C. Li, Toni, Zou, Xiong, & Frossard, 2018;
A. Zhang et al., 2021), taking advantage of edge computing (X. Ma, Li, Jiang, Muntean,
& Zou, 2022; X. Ma, Li, Zou, et al., 2022), and content centric networks (Monks, Olaru,
& Muntean, 2019). Some recent work also propose to improve base station selection
in various environments (Anand, Togou, & Muntean, 2021; W. Shi et al., 2021) to op-
timize video transmission. Regarding client-side ABR algorithms, we can define three
categories of ABR strategies: rate-based, which base their decisions upon bandwidth esti-
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mation, buffer-based, which base their decisions upon buffer level, and hybrid approaches
(among which there can be learning-based approaches), which can use both the estimated
bandwidth and the buffer level.

2.1.3.1 Rate-based algorithms

As most of the recent ABR algorithms are now hybrid, we discuss two early important
works in rate-based ABR streaming. J. Jiang, Sekar, and Zhang (2012) proposed FES-
TIVE to address the challenges related to bitrate adaptation in commercial video players
when multiple players share a bottleneck link. They presented a principled understanding
of bitrate adaptation and analyzed various commercial players using an abstract player
model. Through this analysis, they identified the root causes of issues related to effi-
ciency, fairness, and stability in adaptive streaming over HTTP. Leveraging these insights,
the paper proposed a set of techniques that systematically balanced stability, fairness, and
efficiency, leading to a robust framework for video adaptation. The authors demonstrated
the effectiveness of one specific technique from this framework, showing significant im-
provements over current commercial players across diverse experimental scenarios. Z. Li
et al. (2014) then challenged the conventional approach to HTTP-based adaptive stream-
ing (HAS) by highlighting the limitations of using TCP throughput as a reliable reference
for video bitrate selection, especially when multiple HAS clients compete at a network
bottleneck. They proposed a novel “probe and adapt” principle for video bitrate adapta-
tion, introducing PANDA, a client-side rate adaptation algorithm for HAS, as a practical
embodiment of this principle. Unlike traditional methods, PANDA conducted trial incre-
ments of the data rate (probe) without sending auxiliary piggybacking traffic, effectively
reducing video bitrate oscillation and other undesirable behaviors by over 75% without
increasing the risk of buffer underrun.

2.1.3.2 Buffer-based algorithms

Research in the ABR field quickly showed that solely relying on bandwidth estimation
to make quality decisions had major drawbacks. We discuss these drawbacks and the
proposed solutions. T.-Y. Huang, Handigol, Heller, McKeown, and Johari (2012) iden-
tified the challenge of accurate client-side bandwidth estimation above the HTTP layer
in popular video streaming services like Hulu, Netflix, and Vudu. They discovered the
“downward spiral effect”, where inaccurate estimates lead to variable and low-quality
video. After investigating this phenomenon and presenting its root causes, T.-Y. Huang,
Johari, McKeown, Trunnell, and Watson (2014) introduced BBA, an innovative approach
by questioning the necessity of continuous capacity estimation. Instead of relying on
bandwidth estimation, they advocated using buffer occupancy to guide rate selection,
demonstrating that capacity estimation is only crucial during the startup phase. This ap-
proach significantly reduced the rebuffer rate compared to Netflix’s default algorithm,
maintaining similar average video rates and achieving higher rates in steady state. Spiteri,
Urgaonkar, and Sitaraman (2016, 2020) then introduced BOLA, an innovative online con-
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trol algorithm formulated as a utility maximization problem, utilizing Lyapunov optimiza-
tion techniques. Unlike previous approaches, BOLA didn’t require prediction of network
bandwidth and adaptively selected bitrates for video segments without freezing or de-
grading quality excessively. Their algorithm achieved near-optimal utility, outperforming
existing methods in simulated network environments. BOLA’s effectiveness was vali-
dated through extensive empirical testing, demonstrating significantly improved utility.
Moreover, it had immediate practical impact as it became part of the standard reference
player dash.js, adopted by major video providers like Akamai, BBC, CBS, and Orange,
enhancing the user experience in real-world video streaming scenarios and contributing
to the evolving DASH standard for video transmission.

2.1.3.3 Hybrid algorithms

Most of the state-of-the-art ABR algorithms now consider both the estimated bandwidth
and the buffer level to make quality decisions, as it usually allows to get the best of
both worlds. These ABR algorithms are sometimes referred to as “hybrid” or “buffer-
aware”. In this section, we discuss “traditional” hybrid ABR algorithms, and we focus on
reinforcement learning (RL)–based algorithms in Sec. 2.1.3.4.

Notable early work in hybrid ABR algorithms for HTTP adaptive streaming made
use of feedback control mechanisms (De Cicco, Mascolo, & Palmisano, 2011; G. Tian
& Liu, 2012; De Cicco, Caldaralo, Palmisano, & Mascolo, 2013) to dynamically adapt
the content bitrate in order to provide the maximum QoE, given the available bandwidth.
In 2012, G. Tian and Liu (2012) studied the responsiveness and smoothness trade-off in
DASH, and showed that client-side buffered video time was a good feedback signal to
guide video adaptation. From these findings, they proposed novel hybrid ABR algorithms
that balance the needs for video rate smoothness and high bandwidth utilization. A year
later, De Cicco et al. (2013) introduced ELASTIC, a client-side controller aiming at elim-
inating the on-off traffic pattern generated by existing client-side algorithms and avoiding
the unfairness and underutilization issues associated with shared network bottlenecks.

An important milestone was reached when X. Yin, Sekar, and Sinopoli (2014) framed
adaptive bitrate streaming as a model-based predictive control (MPC) problem, address-
ing fundamental questions about objectives, environment signals, and algorithm sensi-
tivity. By adopting a control-theoretic abstraction, it shed light on these critical aspects,
enhancing clarity in this complex area. X. Yin, Jindal, Sekar, and Sinopoli (2015) subse-
quently built on this foundation by developing a principled control-theoretic model and
introducing a novel model predictive control algorithm, named RobustMPC. This new
algorithm optimally combined throughput and buffer occupancy information, surpassing
traditional methods. Additionally, a practical implementation in a reference video player
validated their approach, offering a robust solution for client-side bitrate adaptation.

Notable works posterior to MPC include:

• A new class of prediction-based adaptation (PBA) algorithms (Zou et al., 2015),
where the authors investigated the potential improvement in video Quality of Expe-
rience (QoE) if accurate bandwidth prediction were possible in cellular networks.
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By assuming knowledge of bandwidth for the entire video session or even a few
seconds into the future, their study revealed that existing streaming algorithms
achieved only 69%-86% of optimal quality. Importantly, the research demonstrated
that while prediction alone might not be sufficient, combining prediction with rate
stabilization functions significantly enhanced QoE, reducing the gap with optimal
quality to just 4%.

• The segment-aware rate adaptation (SARA) algorithm (Juluri, Tamarapalli, &
Medhi, 2016), which took into account the significant variation in segment sizes
for a given video bitrate to accurately predict the time required to download the
next segment and ensure seamless playback.

• The spectrum-based quality adaptation (SQUAD) algorithm (C. Wang, Rizk, &
Zink, 2016), designed to address several critical issues that contributed to the degra-
dation of DASH performance with respect to the rate control loops of DASH and
TCP.

• The cross session stateful predictor (CS2P) (Y. Sun et al., 2016), built on insights
from an analysis the throughput characteristics in a large dataset of 20M+ sessions.
CS2P leveraged data-driven approach to learn clusters of similar sessions, an ini-
tial throughput predictor, and a hidden Markov model–based midstream predictor
modeling the stateful evolution of throughput.

• Oboe (Akhtar et al., 2018), a new technique to auto-tune the parameters of various
ABR algorithms, such as MPC (X. Yin et al., 2015), BOLA (Spiteri et al., 2016) or
Pensieve (H. Mao, Netravali, & Alizadeh, 2017), to different network conditions.

• BOLA-E and DYNAMIC (Spiteri, Sitaraman, & Sparacio, 2018, 2019), proposed
as improvements to the solely buffer-based BOLA algorithm, integrating bandwidth
estimation as well as a FAST SWITCHING algorithm able to replace segments that
had already been downloaded. These algorithms are now part of the official DASH
reference player dash.js and are being used by video providers in production en-
vironments. Along with these ABR algorithms, the authors provided Sabre, an
open-source publicly available software tool to simulate adaptive streaming envi-
ronments.

• The throughput and buffer occupancy-based adaptation (TBOA) algorithm
(Yaqoob, Bi, & Muntean, 2019), which, in contrast to previous works, increased
the bitrate aggressively to make efficient use of the available bandwidth and waited
for the buffer to cross a certain level before decreasing the bitrate to obtain a steady
performance.

• The elastic DASH-based bitrate adaptation (EDRA) scheme (Togou & Muntean,
2022), which focused on reducing the number of bitrate switches that can damage
the QoE. EDRA was implemented in Sabre (Spiteri et al., 2018) and improved QoE
and utility compared to BOLA and DYNAMIC.
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In 2020, Yan et al. (2020) presented findings from a comprehensive randomized con-
trolled trial evaluating video-streaming algorithms for bitrate selection and network pre-
diction. Their study, conducted over a year and involving substantial real-world video
streaming to over 63,000 users, revealed the challenges faced by sophisticated or machine-
learned control schemes when dealing with the complex, heavy-tailed nature of network
and user behavior. Despite previous successes in emulators or simulators, these learned
algorithms were shown to struggle in real-world settings. The authors subsequently in-
troduced a robust ABR algorithm outperforming other schemes by combining supervised
learning with data from real deployments, creating a probabilistic predictor of upcoming
chunk transmission times. This predictor informed a classical control policy (MPC), lead-
ing to improved performance. Additionally, they provided an open platform, sharing data
and results, inviting other researchers to explore and develop new algorithms for bitrate
selection, network prediction, and congestion control in video streaming applications.

As MPC-based ABR algorithms use the predicted throughputs to solve a QoE max-
imization problem for the next chunk’s optimal bitrate, their performance heavily relies
on throughput prediction accuracy. To mitigate this issue, Kan et al. (2021) proposed to
take the uncertainty of throughput prediction into account. They introduced BayesMPC, a
novel ABR algorithm that combines Bayesian neural networks (BNNs) and MPC. Unlike
traditional methods, BayesMPC employed a BNN-based predictor capable of capturing
both aleatoric uncertainty (e.g., noise) and epistemic uncertainty (resulting from limited
training samples) when predicting future network throughput. By minimizing the gener-
alization error using the negative log-likelihood loss function, the algorithm established
a confidence region for future throughput. This uncertainty-aware approach informed a
robust MPC strategy that maximized worst-case user QoE within this confidence region.
Experimental results using real-world network trace datasets demonstrated the efficiency
of the BNN-based predictor and the uncertainty-aware robust MPC strategy. BayesMPC
outperformed other baselines in terms of overall QoE performance and generalization
across diverse network and user conditions.

This new type of uncertainty-aware approach constitutes the core motivation behind
the DVMS framework we propose in chapter 3, where we propose to take the uncer-
tainty of the viewport prediction into account with a different method, BNNs being
computationally-heavy.

2.1.3.4 Reinforcement learning–based algorithms

Many approaches have also studied the benefits of reinforcement learning (RL)–based
ABR algorithms. Even though these algorithms can be rate-based, buffer-based, or hy-
brid, we choose to separate them for clarity and because they usually have a different
approach to the adaptive streaming problem. Early works considering the use of RL to
make quality decisions wanted to address the issues of traditional ABR algorithms that
relied on fixed control rules and simplified models, which were rigid and less flexible
across various network configurations, leading to suboptimal solutions. The idea behind
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RL-based ABR algorithm was to dynamically learn optimal behaviors according to the
current network conditions.

In 2014, Claeys, Latré, Famaey, and De Turck (2014); Claeys, Latré, Famaey, Wu, et
al. (2014) proposed adaptive (frequency-adjusted) Q-learning-based HAS clients, which
utilized tunable reward functions, allowing focus on different aspects of QoE. In 2015,
van der Hooft, Petrangeli, Claeys, Famaey, and De Turck (2015) followed the same ideas,
incorporating RL to existing rate adaptation heuristics based on real-time bandwidth char-
acteristics. They focused on reducing average buffer filling while maintaining a high
QoE. In 2016, Chiariotti, D’Aronco, Toni, and Frossard (2016) aimed to maximize long-
term expected user satisfaction by formulating the problem as a Markov Decision Process
(MDP) optimization, where clients selected video representations considering decoded
quality, quality fluctuations, and rebuffering events. In 2017, H. Mao et al. (2017) in-
troduced Pensieve, a novel ABR algorithm for client-side video players based on RL.
Pensieve dynamically generated ABR strategies through RL by training a neural net-
work model to select bitrates for video chunks based on past performance data. Pensieve
adapted to diverse network conditions and QoE metrics without pre-programmed assump-
tions about the environment. Experimental comparisons demonstrated that Pensieve out-
performed state-of-the-art ABR algorithms in various scenarios, improving average QoE
by 12% to 25% and demonstrating superior generalization even on networks it was not
explicitly trained for.

More recently, T. Huang et al. (2019) proposed to improve existing ABR algorithms
by selecting video chunks based on perceptual video qualities instead of bitrates, training
policies through expert trajectory imitation, and employing lifelong learning to continu-
ally adapt to changing network conditions. The system utilized a quality-driven neural
network architecture, a specialized dataset, and QoE metrics estimation. They showed
significant improvements in sample efficiency and training time, while outperforming ex-
isting methods. To address the challenge of unstable ABR performance in heterogeneous
network conditions, T. Huang, Zhou, Zhang, Wu, and Sun (2022) presented A2BR (Adap-
tation of ABR), a novel meta-RL approach for ABR algorithms in internet video stream-
ing. It employed an online and offline stage, utilizing meta-RL to learn an initial meta-
policy in various network conditions offline and tailoring ABR decisions to personalized
network conditions online. A2BR continually optimized the meta-policy for specific net-
work environments efficiently and demonstrated superior adaptation to personalized QoE
metrics and specific network conditions, outperforming recent ABR methods.

2.1.4 Adaptive streaming for virtual reality
Immersive media accentuates the challenges of adaptive streaming, with harsher band-
width and latency requirements to achieve a reasonable QoE. Many approaches to de-
sign VR-specific adaptive streaming systems have been proposed over the years. A large
part of VR adaptive streaming approaches are viewport-adaptive and rely on viewport
prediction. In this section, we focus on advances in VR streaming systems. Scientific
literature on viewport prediction and trajectory prediction in general is investigated in
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Sec. 2.2.1. Recently, several surveys have explored 360◦ video streaming under different
angles (Z. Chen, Li, & Zhang, 2018; D. He, Westphal, & Garcia-Luna-Aceves, 2018;
C.-L. Fan, Lo, Pai, & Hsu, 2019; Zink, Sitaraman, & Nahrstedt, 2019; Azevedo et al.,
2020; Yaqoob, Bi, & Muntean, 2020; Shafi, Shuai, & Younus, 2020; M. Xu, Li, Zhang,
& Le Callet, 2020; Ruan & Xie, 2021; Chiariotti, 2021; Rossi, Guedes, & Toni, 2023),
providing interesting insights into state-of-the-art solutions for 360◦ video acquisition,
compression, delivery, and rendering, as well as quality assessment, prediction and be-
havioral analysis in VR.

2.1.4.1 Early works and aggressiveness tradeoff

Before the advent of 360◦ videos (also called omnidirectional or panoramic videos)
and virtual reality streaming, early work on adaptive streaming with layered views for
free viewpoint applications (Toni, Thomos, & Frossard, 2013) and interactive multiview
videos (De Abreu et al., 2015; Toni & Frossard, 2017; X. Zhang, Toni, Frossard, Zhao,
& Lin, 2019) has been carried out to provide high-quality interactive experiences. Pio-
neering work on adaptive streaming for 360◦ videos (Qian, Ji, Han, & Gopalakrishnan,
2016; Bao, Wu, Zhang, Ramli, & Liu, 2016; Hosseini & Swaminathan, 2016b; Corbil-
lon, Simon, Devlic, & Chakareski, 2017; Ozcinar, De Abreu, & Smolic, 2017; Petrangeli,
Swaminathan, Hosseini, & De Turck, 2017) then demonstrated the feasability of stream-
ing schemes that delivers 360◦ videos in a viewport-aware manner, spatially adapting the
quality of the video to the user’s viewport. The topic of optimizing 360◦ video delivery
rapidly took center stage with proposals of optimal transmission strategies to maximize
user QoE (Rossi & Toni, 2017; Chakareski, Aksu, Corbillon, Simon, & Swaminathan,
2018; Ben Yahia, Le Louedec, Simon, & Nuaymi, 2018), while some work focused
on optimizing the encoding parameters (Corbillon, Devlic, Simon, & Chakareski, 2017;
Ozcinar, De Abreu, Knorr, & Smolic, 2017).

Nasrabadi, Mahzari, Beshay, and Prakash (2017b, 2017a) claimed viewport-adaptive
streaming was too aggressive because it prevented buffering future video chunks for a
duration longer than the interval that user’s viewport was predictable, which made the
streaming scheme vulnerable to bandwidth variations and caused freezes due to rebuffer-
ing. To solve this issue, they proposed using scalable video coding, alleviating the restric-
tions on buffer duration. More recently, Polakovič, Rozinaj, and Muntean (2022) followed
this idea and proposed to extend the DASH spatial relationship description (SRD) by
adding scalable video encoding to spatial tiling in conjunction with a novel tile-layering–
based gaze adaptation algorithm. Almquist, Almquist, Krishnamoorthi, Carlsson, and
Eager (2018) characterized this problem as the prefetch aggressiveness tradeoff: How far
ahead in time from playback should we prefetch immersive content? On the one hand,
prefetching late allows to benefit from good viewport prediction, but the buffer size will
not be sufficient to absorb bandwidth variations. On the other hand, prefetching early
allows to fill the buffer but is not really viewport-adaptive as the viewport cannot be pre-
dicted more than a few seconds in advance. The authors presented an optimization-based
comparison of the prefetch aggressiveness tradeoffs for different video categories and
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proposed a novel system design that allows both tradeoff objectives to be targeted simul-
taneously. They also provided insights into how to best design future delivery systems
for 360◦ videos, allowing content providers to reduce bandwidth costs and improve users’
playback experiences.

2.1.4.2 Heuristic-based bitrate adaptation

In recent years, many heuristics for 360◦ video bitrate adaptation have been proposed,
mostly in a tile-based manner. Qian et al. (2016); Qian, Han, Xiao, and Gopalakrish-
nan (2018) focused on mobile 360◦ video delivery, proposing cellular-friendly tile-based
streaming schemes that delivers only visible portions of 360◦ videos, based on head move-
ment prediction and online algorithms that determine which spatial portions to fetch and
their corresponding qualities. Bao et al. (2016) proposed to use the deviation of the pre-
diction to decide the amount of redundancy needed to be streamed. Ozcinar, Cabrera, and
Smolic (2018b, 2018a, 2019); Ozcinar, İmamoğlu, Wang, and Smolic (2021) proposed
to make use of visual attention (VA) maps, a type of saliency map. They presented a
novel user-centric framework for 360◦ video delivery, optimizing DASH representations
of 360◦ videos considering their VA maps and taking advantage of VA maps for bitrate
allocation algorithm and dynamic tiling. Hooft, Vega, Petrangeli, Wauters, and Turck
(2019) proposed tile-based rate adaptation heuristics for 360◦ videos and introduced a
feedback loop in the quality decision process, which allows the client to revise prior de-
cisions based on more recent information on the viewport location. Yaqoob and Muntean
(2020, 2021); Yaqoob, Togou, and Muntean (2022); Yaqoob and Muntean (2023) pro-
posed several tile-based heuristics based on simple and lightweight content-agnostic pre-
diction mechanisms, defining different regions around the viewport to prioritize the bitrate
allocation.

2.1.4.3 Machine learning–based bitrate adaptation

In addition to heuristic-based approaches to adaptive streaming in VR, many machine
learning–based approaches have been investigated. X. Jiang, Chiang, Zhao, and Ji (2018)
combined supervised deep learning with recurrent neural networks (RNNs) to predict
the user’s viewport with an RL-based agent to determine the optimal tile bitrates to be
streamed. Feng, Swaminathan, and Wei (2019); Feng, Liu, and Wei (2020); Feng, Bao,
and Wei (2021); Feng, Li, and Wei (2021) focused on live VR streaming as most of the
existing viewport prediction approaches targeted only the video-on-demand (VOD) use
cases, requiring offline processing of the historical video and/or user data that was not
available in the live streaming scenario. They proposed several content-based machine
learning approaches to reach high prediction accuracy, obtain significant bandwidth sav-
ings, and achieve real-time performance with low processing delays, meeting the band-
width and real-time requirements of live VR streaming. Hou, Dey, Zhang, and Budagavi
(2021) considered a remote rendering case and presented ultra-low latency viewport pre-
diction with deep learning to dynamically adapt the encoding settings. S. Park, Hoai,
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Bhattacharya, and Das (2021) used a 3-dimensional convolutional network (3DCNN) to
extract spatio-temporal features of videos and predict the viewport, then applied RL to
learn a streaming policy able to adapt to the predicted behavior of a viewer and the dy-
namics of the network conditions. S. Park, Bhattacharya, Yang, Das, and Samaras (2021)
combined a deep learning–based viewport prediction with a rate control mechanism that
assigned rates to different tiles in the 360◦ frame such that the QoE was optimized subject
to a given network capacity. They modeled the optimization as a multi-choice knap-
sack problem and solved it using a greedy approach. Chopra, Chakraborty, Mondal, and
Chakraborty (2021) presented PARIMA, employing a pyramid-based bitrate allocation
scheme informed by an online viewport prediction model that used past viewports of
users along with the trajectories of prime objects as a representative of video content to
predict future viewports. C. Wu, Wang, and Sun (2021) proposed to use deep RL (DRL)
in conjunction with a dual-queue streaming framework, enabling the DRL agent to deter-
mine and change the tile download order without incurring overhead. They also designed
a preference-aware DRL algorithm to incentivize the agent to learn preference-dependent
ABR decisions efficiently. R. Zhang et al. (2021) formulated the multi-user buffer-aware
VR video streaming problem as a stochastic game and leveraged a DRL algorithm to solve
the formulated resource block allocation problem in a distributed manner.

2.1.4.4 Caching and edge devices for VR streaming

Recent advances in VR streaming include new delivery mechanisms taking advantage and
edge caching and computing. Hou et al. (2021) aimed to enable truly mobile VR using
wireless HMDs with rendering performed on edge devices. For live 360◦ video streaming,
L. Sun, Mao, Zong, Liu, and Wang (2020) proposed to assign variable playback latencies
to all the users in a streaming session to form a “streaming flock”, and to use information
from users in the front of the flock to improve the performance of both viewport prediction
and caching on the edge servers. Various works (J. Liu, Simon, Corbillon, Chakareski,
& Yang, 2020; R. Zhang et al., 2021; Z. Chen et al., 2022) designed intelligent delivery
mechanisms for VR streaming taking advantage of cache-aided Mobile Edge Computing
(MEC) networks, considering viewport prediction and communication resource alloca-
tion. Xiao et al. (2022) proposed a novel transcoding-enabled VR video caching and de-
livery framework for edge-enhanced next-generation wireless networks. (Ye et al., 2023)
proposed a QoE-driven viewport reconstruction-based 360◦ video caching solution for
tile-adaptive streaming.

2.1.4.5 Other forms of VR adaptive streaming

While most of the work discussed here relies on splitting the video in tiles and changing
the quality of the tiles to spatially adapt the quality to the viewport, Hristova, Simon, Cor-
billon, Devlic, and Swaminathan (2021) investigated alternatives to tile-based encoding
and proposed two novel approaches that prepare heterogeneous quality versions of a 360◦

video based on the Gaussian pyramid and the Laplace pyramid. In recent years, research
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has also been going towards VR adaptive streaming with more than three degrees of free-
dom (3DoF), such as multi-viewpoint (MVP) 360-degree videos (Corbillon, De Simone,
Simon, & Frossard, 2018), volumetric data (J. Park, Chou, & Hwang, 2019), point clouds
(Hosseini & Timmerer, 2018; van der Hooft, Wauters, De Turck, Timmerer, & Hellwag-
ner, 2019), as well as augmented reality (AR) applications (Petrangeli, Simon, Wang, &
Swaminathan, 2019).

2.2 Viewport and trajectory prediction
As seen in Sec. 2.1.4, viewport-adaptive streaming in VR relies on viewport prediction.
In this section, we aim to provide useful background on viewport prediction, and we
progressively expand the scope to human motion prediction, trajectory prediction, and
time series forecasting–sequence modeling. We illustrate how the fields nest inside each
other in Fig. 2.2.

Sequence
modeling

Time series
forecasting

Trajectory prediction

Human motion
prediction

Viewport
prediction

Figure 2.2: Nested representation of the fields of viewport prediction, human motion prediction, trajectory
prediction and time series forecasting–sequence modeling.

Since the fields in Fig. 2.2 are very well-studied, we selected major works for viewport
prediction as well as relevant works from the related fields that are interesting to consider
for the scope of this thesis. Most of the approaches that we mention are deep learning
approaches, as they are more relevant to our work and usually fare significantly better in
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most benchmarks for trajectory prediction and time series forecasting tasks (Chang et al.,
2019; H. Zhou et al., 2021).

2.2.1 Viewport prediction for 360◦ videos
In this section, we discuss some of the work that has been proposed for viewport pre-
diction in 360◦ videos. We provide a list of viewport prediction methods that were pro-
posed in the scientific literature in Table 2.1, sorted in chronological order of publication.
This list contains the main methods until 2021, the time at which DVMS, the method we
propose in chapter 3, was designed, as well as some more recent methods that we find
relevant.

The first distinction we can make between methods for viewport prediction lies in
how the problem is formulated. Some methods formulate this problem as a head tra-
jectory prediction problem, and predict the orientation of the user’s head, while other
methods formulate this as a tile classification problem. We provide information about the
prediction objective of the different methods in the “Objective” column. The “Prediction
horizon” column tells us, for each method, how far ahead the prediction is done. For
the selected methods, the interval is between 1 frame (30 milliseconds) and 10 seconds.
The “Input modalities” column informs us on the type of data used to make predictions.
Some methods rely on the past head orientations of the user, the past and/or future video
frames, or even other users’ known head orientations on the video. To further differentiate
the prediction methods, we provide three binary columns:

• CU stands for “cross-users” and is set to “yes” if the viewport prediction method
has access to data from other users who already watched the video. Comparison
between CU and non-CU methods may not be fair, as CU methods have access to
extra data. CU methods cannot work in a live streaming context (unless a technique
like “flocking” (L. Sun et al., 2020) is used, which adds latency). CU is set to “no⋆”
if the viewport prediction method cannot directly access other users’ viewing data,
but can benefit from some cross-user information, such as weight sharing in the
case of federated learning.

• ML stands for “machine learning” and is set to “yes” if the method uses a model
that learns parameters from the data. This includes linear regression, clustering,
reinforcement learning or even deep learning methods.

• DL stands for “deep learning” and is set to “yes” if the method uses a deep neural
network that learns parameters from the data. DL is set to “no⋆” if the method uses
a pre-trained deep learning model as a feature extractor (such as the YOLO object
detector), but does not train or propose any deep architecture.

Finally, we provide a short description of the method in the “Description” column, about
the type of algorithm(s) used for prediction.

Let us now discuss some of the work presented in Table 2.1. Qian et al. (2016) were
the first to predict head trajectories for 360◦ videos in a streaming context, and used
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Table 2.1: List of methods for viewport prediction in 360◦ videos.

Reference Objective
Prediction
horizon

Input
modalities CU ML DL Description

(Qian et al., 2016) head orientation 2 seconds head orientation no yes no linear regression
(Bao et al., 2016) head orientation 1 second head orientation no yes no linear regression / shallow MLP

(C.-L. Fan et al., 2017) tile probabilities 1 second
head orientation,
video frames no yes yes CNN + optical flow + LSTM

(Petrangeli et al., 2017) head orientation 4 seconds head orientation no no no constant movement
(Aladagli, Ekmekcioglu,
Jarnikov, & Kondoz,
2017)

head orientation 2 seconds video frame no no no GBVS saliency

(Y. Xu et al., 2018) gaze position 1 second
gaze position,
video frames no yes yes CNN + LSTM

(Ban et al., 2018) tile probabilities 6 seconds
head orientation,
other users
head orientations

yes yes no linear regression + KNN

(M. Xu, Song, et al.,
2019) head orientation

1 frame
(30 ms)

head orientation,
video frames no yes yes DRL + CNN + LSTM

(X. Jiang et al., 2018) head orientation 3 seconds head orientation no yes yes LSTM
(Nguyen, Yan, &
Nahrstedt, 2018) heatmap 2.5 seconds

head orientation,
video frames no yes yes CNN + LSTM

(Qian et al., 2018) head orientation 3 seconds head orientation no yes no linear / ridge regression
(Y. Li, Xu, Xie, Ma, &
Sun, 2019) tiles in viewport 1 second

head orientation,
video frames no yes yes CNN + optical flow + LSTM

(Petrangeli, Simon, &
Swaminathan, 2018) head orientation 10 seconds

head orientation,
other users
head orientations

yes yes no clustering

(C. Li, Zhang, Liu, &
Wang, 2019) heatmap 10 seconds

head orientation,
other users
head orientations

yes yes yes convLSTM + MLP

(Yu & Liu, 2019) head orientation 3 seconds head orientation no yes yes transformer
(Feng et al., 2019) tiles in viewport 4 seconds video frame no yes no GMM + Shi-Tomasi

(J. Park & Nahrstedt,
2019) “view” probability 5 seconds

head orientation,
other users
head orientations

yes yes no view transition model

(Feng et al., 2020) tiles in viewport 2 seconds
head orientation,
video frames no yes yes CNN + LSTM

(X. Zhang, Cheung,
Le Callet, & Tan, 2020)

probability distribution
of all positions 2 seconds head orientation yes yes no view transition model

(Hou et al., 2021) tile probabilities 0.2 second head orientation no yes yes LSTM

(Nasrabadi, Samiei, &
Prakash, 2020) head orientation 10 seconds

head orientation,
other users
head orientations

yes yes no clustering

(J. Chen, Luo, Hu, Wu, &
Zhou, 2021) tile probabilities 4 seconds

head orientation,
other users
head orientations

yes no no hand-crafted

(S. Park, Bhattacharya, et
al., 2021) tile probabilities 2 seconds

head orientation,
saliency maps,
and motion maps

no yes yes CNN+LSTM / 3DCNN+FC

(Feng, Bao, & Wei, 2021) tiles in viewport 4 seconds
head orientation,
video frames no yes no⋆ YOLOv3 + Q-learning

(Romero Rondón,
Sassatelli, Aparicio-Pardo,
& Precioso, 2021)

head orientation 5 seconds
head orientation,
saliency maps no yes yes LSTM

(Chopra et al., 2021) head orientation 2 seconds
head orientation
and video frames no yes no⋆ YOLOv3 + ARIMA +

passive aggressive regression

(Feng, Li, & Wei, 2021) tiles in viewport 2 seconds
head orientation
and video frames no yes no⋆ 3DCNN + Phrase2Vec

(Chao, Ozcinar, & Smolic,
2021) head orientation 5 seconds head orientation no yes yes transformer

(R. Zhang et al., 2021) tiles in viewport 5 seconds tiles in viewport yes yes yes
DRL + ConvLSTM +
federated learning

(Romero Rondon, Zanca,
Melacci, Gori, &
Sassatelli, 2021)

head orientation 5 seconds head orientation no no no⋆ physical model

(Chao, Ozcinar, & Smolic,
2022) head orientation 5 seconds head orientation no⋆ yes yes

transformer +
federated learning
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linear regression. C.-L. Fan et al. (2017) were the first to use saliency maps (in conjunc-
tion with motion maps and past head orientations) and long short-term memory (LSTM)
(Hochreiter & Schmidhuber, 1997) deep networks to predict the future tiles to be seen
by the user. We provide more background on saliency maps in Sec. 2.3.2. Yu and Liu
(2019) were the first to propose an attention-based neural encoder-decoder (i.e., trans-
former (Vaswani et al., 2017)) to predict viewport in 360◦ videos. In 2020, as many
viewport prediction methods had been proposed but were not comparing with each other,
Romero Rondón, Sassatelli, Aparicio-Pardo, and Precioso (2020) proposed unified evalu-
ation framework for these methods. They uniformized the sampling rate, the data formats
and the metrics for several 360◦ datasets (C.-L. Fan et al., 2017; David, Gutiérrez, Coutrot,
Da Silva, & Le Callet, 2018; Y. Xu et al., 2018; M. Xu, Song, et al., 2019; Nguyen et al.,
2018; Y. Li et al., 2019). Building on this work, Romero Rondón et al. (2021) re-examined
the existing deep learning models for viewport prediction in 360◦ videos and obtained the
surprising result that they all performed worse than baselines using the user’s trajectory.
After analyzing the metrics, datasets and neural architectures, they identified the flaws of
the existing methods and proposed a new model that used the user’s past head orienta-
tions and the video content (not knowing other users’ traces), establishing state-of-the-art
performance.

While many deep learning methods have been proposed and proven to work well
for head motion prediction, they can be perceived as “black boxes”, with unexplainable
outputs and internal mechanisms whose meaning are difficult to grasp. We find important
to mention that J. Chen et al. (2021) and Romero Rondon et al. (2021), mentioned in Table
2.1, made a step in the opposite direction, proposing “white box” explainable models for
viewport prediction that can be competitive with deep learning models, with parameters
that have a physical meaning.

In contrast to previous “one-size-fits-all” approaches, some recent work has been in-
vestigating the use of federated learning (R. Zhang et al., 2021; Chao et al., 2022; Haseeb
Ul Hassan, Brennan, Muntean, & McManis, 2023) to learn personalized user models for
viewport prediction in a distributed manner. R. Zhang et al. (2021) and Chao et al. (2022)
addressed the privacy concerns that arise with user data collection by constraining the
personal scanpath data to the client-side.

The work we present in chapter 3 aims to better consider the uncertainty and random-
ness of human motion, and takes inspiration from other works in trajectory prediction,
especially the idea of predicting multiple possible trajectories, described in Sec. 2.2.2.2
and Sec. 2.2.2.3.

2.2.2 Trajectory prediction
In this section, we provide some background on deep learning approaches to trajectory
prediction. We first discuss models that predict the movements of the human body. We
then focus on “social” trajectory prediction of human agents. Finally, we explore related
work on vehicle trajectory prediction.
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2.2.2.1 Human motion prediction

The work discussed in this section explicitly models the human body as part of the motion
prediction.

Fragkiadaki, Levine, Felsen, and Malik (2015) proposed the encoder-recurrent-
decoder (ERD) model for recognition and prediction of human body pose in videos and
motion capture. ERDs extended previous LSTM models in the literature, incorporating
nonlinear encoder and decoder networks before and after recurrent layers to jointly learn
representations and their dynamics. The authors showed that representation learning was
crucial for both labeling and prediction in space-time. Martinez, Black, and Romero
(2017) showed that state-of-the-art performance could be achieved by a simple baseline
that does not attempt to model motion at all. After investigating this result, analyzing
previous RNN methods by looking at the architectures, loss functions, and training pro-
cedures, they proposed changes to the standard RNN models typically used for human
motion, which resulted in a simple and scalable RNN architecture that obtained state-of-
the-art performance on human motion prediction. Cao et al. (2020) took advantage from
the fact that human movement is goal-directed and influenced by the spatial layout of the
objects in the scene to design a three-stage framework that exploits scene context to pre-
dict human motion. Given a single scene image and 2D pose histories, their method first
sampled multiple human motion goals, then planned 3D human paths towards each goal,
and finally predicted 3D human pose sequences following each path.

Recent advances in pose forecasting aim to improve spatio-temporal modeling of
human motion (Adeli et al., 2021; Z. Liu et al., 2021; Sofianos, Sampieri, Franco, &
Galasso, 2021; Parsaeifard, Saadatnejad, Liu, Mordan, & Alahi, 2021). Adeli et al.
(2021) proposed TRiPOD, a method based on graph attentional networks to model the
human-human and human-object interactions both in the input space and the output space
(decoded future output). Z. Liu et al. (2021) advocated to model motion contexts in the
trajectory space instead of the traditional pose space, and used a semi-constrained graph
convolution network (GCN) to explicitly encode skeletal connections and prior knowl-
edge. Sofianos et al. (2021) also used a GCN to model human body dynamics, but pro-
posed to factor the space-time graph connectivity into space and time affinity matrices,
which bottlenecked the space-time cross-talk, while enabling full joint-joint and time-
time correlations. Parsaeifard et al. (2021) proposed to learn decoupled representations
for the global and local pose forecasting tasks, by using an LSTM encoder-decoder net-
work for trajectory forecasting and a variational auto-encoder (VAE) to solve the local
pose forecasting task.

When it comes to motion prediction in virtual environments, Gomes, Rossi, and Toni
(2021) tackled the problem of point cloud prediction by proposing an end-to-end learning
network to predict future frames in a point cloud sequence. Their pipeline included an
initial layer learning topological information of point clouds as geometric features, fol-
lowed by multiple Graph-RNN cells which learned point dynamics by processing each
point jointly with its spatiotemporal neighbours. Zheng et al. (2022) studied of the ben-
efits of leveraging the eye gaze for ego-centric human motion prediction with various
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state-of-the-art architectures, arguing that eye gaze that served as a surrogate for inferring
human intent. To realize the full potential of the gaze-informed prediction, they proposed
a novel network architecture that enabled bidirectional communication between the gaze
and motion branches.

2.2.2.2 Social trajectory prediction

In this section, we discuss various approaches to human trajectory prediction in social
contexts. Pedestrians follow different trajectories to avoid obstacles and accommodate
fellow pedestrians. Predicting the trajectories of pedestrians is a challenging problem
due to the inherent properties of human motion in crowded environments. Following the
recent success of RNN models for sequence prediction tasks, Alahi et al. (2016) proposed
an LSTM model coupled with a “Social” pooling layer which could learn general human
movement, typical interactions, and predict future trajectories. This was in contrast to
traditional approaches which used hand-crafted functions.

Pedestrian trajectories are inherently multimodal: given a partial history, there is no
single correct future prediction. For this reason many approaches started to generate mul-
tiple plausible future trajectories instead of one (Lee et al., 2017; Gupta, Johnson, Fei-
Fei, Savarese, & Alahi, 2018; Sadeghian et al., 2019; Amirian, Hayet, & Pettré, 2019;
Y. Huang, Bi, Li, Mao, & Wang, 2019; Ivanovic & Pavone, 2019; Kosaraju et al., 2019;
Mangalam et al., 2020; Dendorfer, Ošep, & Leal-Taixé, 2020; H. Zhao & Wildes, 2021;
H. Zhao et al., 2021). Lee et al. (2017) proposed to account for the multimodal nature of
the future prediction by sampling potential future outcomes from the latent space of a con-
ditional VAE (CVAE). Gupta et al. (2018) instead used a generative adversarial network
(GAN) in conjunction with a variety loss to ensure the diversity of predictions. The use of
such a loss function for trajectory prediction was analyzed by Thiede and Brahma (2019).
Sadeghian et al. (2019) built on this idea and designed an attention module to incorpo-
rate context information in addition to the past agents’ trajectories. While most of the
existing methods ignored the temporal correlations of interactions between pedestrians,
Y. Huang et al. (2019) proposed a spatial-temporal graph attention network to better cap-
ture spatio-temporal interactions. More recent approaches to trajectory prediction adopt a
goal-driven approach, where a set of possible destinations of the agent are first estimated,
and a set of possible trajectories going towards these goals are then generated (Dendorfer
et al., 2020; H. Zhao & Wildes, 2021; H. Zhao et al., 2021).

2.2.2.3 Vehicle trajectory prediction

The idea to generate multiple plausible future trajectories, which can be applied to view-
port prediction, as discussed in chapter 3, was also explored to predict the trajectories
of vehicles, particularly in self-driving contexts. Similar to pedestrian trajectory predic-
tion, vehicle trajectory prediction is an active research area (Chang et al., 2019). Some
of the models discussed in Sec. 2.2.2.2 can actually predict both pedestrian and vehicle
trajectories (Lee et al., 2017; H. Zhao et al., 2021). Generated vehicle trajectories are also
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multimodal, as vehicles can choose to go in different directions, given a common past
trajectory. While several approaches to vehicle trajectory prediction had been proposed,
the best-performing ones which required extremely detailed input representations did not
generalize to datasets they had not been trained on. Srikanth et al. (2019) proposed to
use scene semantics as intermediate latent representations in their, as it allowed zero-shot
transfer to unseen datasets. Marchetti, Becattini, Seidenari, and Del Bimbo (2020a) pro-
posed to consider trajectory multimodality in a novel explainable way by using memory
augmented neural networks, storing distinct past and future trajectories in a key-value
register during training, and retrieving similar pasts to generate new futures at test time.
We adapt this approach to predict multiple trajectories of head motion in chapter 3.

2.2.3 Sequence modeling and time series forecasting
In this section, we explore the most general case of sequence modeling and prediction.
While time series forecasting can arguably be considered as a subset of sequence mod-
eling, we choose to consider them separately for historical reasons. The term “sequence
modeling” is mostly used to describe recent sequence-to-sequence deep models for nat-
ural language processing (NLP), while “time series forecasting” usually denotes a more
traditional prediction task based on historical time stamped data.

2.2.3.1 Sequence modeling

Sequence modeling is the ability to model, interpret, make predictions about or generate
any type of sequential data, such as audio, text, video, etc. In this section, we discuss
some recent and influential work in sequence modeling.

Since LSTM networks (Hochreiter & Schmidhuber, 1997) were proposed in 1997 to
solve the vanishing gradient problem, deep neural networks have come a long way. We
first discuss recent improvements to RNNs. Sutskever, Vinyals, and Le (2014) were the
first to present sequence-to-sequence encoder-decoder networks, a general end-to-end ap-
proach to sequence learning that makes minimal assumptions on the sequence structure,
now widely used for a variety of tasks. Chung et al. (2015) proposed to include of la-
tent random variables into the hidden state of RNNs by combining the elements of the
variational auto-encoder to address sequence modeling problems. Realizing the power of
high-level spatio-temporal graphs and sequence learning success of RNNs, Jain, Zamir,
Savarese, and Saxena (2016) designed a generic method for casting spatiotemporal-graph
as rich, scalable, and jointly trainable RNN mixtures. As many extensions of the VAE
model to process sequential data with RNNs were proposed, Girin et al. (2021) provided
a comprehensive review of a newly identified class of models: dynamical variational auto-
encoders (DVAEs). We propose to explore DVAE models and what they can bring to head
motion prediction in Sec. 3.7.2.

In recent years, transformer-based models (Vaswani et al., 2017) have become in-
dispensable, as they now dominate most NLP tasks, as well as many computer vision
tasks. Vaswani et al. (2017) first proposed the transformer model, based solely on atten-
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tion mechanisms (Bahdanau, Cho, & Bengio, 2014). This new architecture avoided the
recursion of RNNs, processed sentences as a whole, and learned relationships between
words thanks to multi-head attention mechanisms and positional embeddings. Avoiding
recursion allowed parallel computation (to reduce training time) and also improved per-
formance for long dependency modeling. Devlin, Chang, Lee, and Toutanova (2019) then
introduced masked language model (MLM) pre-training objective to learn deep bidirec-
tional representations from unlabeled text. (Raffel et al., 2020) presented a comprehen-
sive perspective on pre-training and transfer learning in NLP. They introduced a unified
framework able to convert all text-based language problems into a text-to-text format and
compared pre-training objectives, architectures, unlabeled data sets, transfer approaches,
and other factors on dozens of language understanding tasks. Recently, transformer-based
models have also been applied to pedestrian (see Sec. 2.2.2.2) and vehicle (see Sec.
2.2.2.3) trajectory prediction successfully (Giuliari, Hasan, Cristani, & Galasso, 2021;
Y. Liu, Zhang, Fang, Jiang, & Zhou, 2021; Yuan, Weng, Ou, & Kitani, 2021; S. Shi,
Jiang, Dai, & Schiele, 2022; Nayakanti et al., 2023).

Many transformer-based models have now been proposed, as the proposed multi-head
self-attention is a very flexible architectural block that makes few assumptions about the
relationship between its inputs. The weak inductive bias of transformer-based models al-
low them to outperform traditional CNNs and RNNs at sequence modeling tasks, given
enough data. However, the all-to-all design of self-attention blocks makes transformer-
based models scale quadratically with the number of inputs, in terms of both memory and
computation. Several approaches to improve transformer efficiency have been proposed.
Child, Gray, Radford, and Sutskever (2019) proposed sparse factorizations of the atten-
tion matrix which reduce the complexity. S. Wang, Li, Khabsa, Fang, and Ma (2020)
proposed to further reduce the complexity of self-attention by demonstrating that the
self-attention mechanism could be approximated by a low-rank matrix. Exploiting this
finding, they proposed Linformer, based on a new self-attention mechanism that scales
linearly with the number of inputs. Instead of changing the attention mechanism, Jaegle
et al. (2021) proposed to use a cross-attention module to project an high-dimensional in-
put byte array to a fixed-dimensional latent bottleneck, before processing it using a deep
stack of transformer-style self-attention blocks in the latent space. The resulting archi-
tecture, named Perceiver was then extended to work with any kind of inputs and outputs
(Jaegle et al., 2022), in an autoregressive mode (Hawthorne et al., 2022), and even in
vision-language tasks (Z. Tang, Cho, Lei, & Bansal, 2023).

Due to their quadratic self-attention complexity transformers, do not scale very well
to long sequence length. Recently, deep state-space models (SSMs) have been getting
traction for very long sequence modeling thanks their efficient encoding of the recurrent
structure. Deep SSMs leverage the state-space representation of linear systems that is
commonly used in control theory, and propose to learn automatically the state, input, and
output matrices. Gu et al. (2021) showed that deep SSMs actually struggle even on simple
tasks, but can perform exceptionally well when equipped with HiPPO matrices (Gu, Dao,
Ermon, Rudra, & Ré, 2020), special state matrices recently derived to solve a problem of
continuous-time memorization. Gu, Goel, and Re (2022) proposed the first truly success-
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ful deep SSM, the structured state space sequence model (S4), outperforming all previous
transformer-based models on long range sequence modeling by a wide margin. Several
extensions and variations to this model have since been proposed (Gupta, Gu, & Berant,
2022; Gu, Goel, Gupta, & Ré, 2022; Gu, Johnson, Timalsina, Rudra, & Re, 2023; Smith,
Warrington, & Linderman, 2023).

2.2.3.2 Time series forecasting

Time series forecasting describes the general case of using a model to predict future val-
ues based on previously observed values. Yule (1921) first identified this as the “time-
correlation problem”, “the problem of elucidating (...) the relations subsisting between
two quantities varying with the time”, and proposed the aurogressive model (Yule, 1927)
analyze Wolf sunspot numbers. With large amounts of consistent, quality data becoming
available, more refined and complex time series forecasting models ermerged. Whittle
(1951) proposed the autoregressive–moving-average (ARMA) model, combining an au-
toregressive model and a moving-average model, to describe stationary stochastic pro-
cesses. Its generalization, ARIMA (Box & Jenkins, 1970), adds an initial differencing
step to eliminate the non-stationarity of the mean function. ARIMA models have been
a popular choice for time series forecasting, including stock price prediction (Ariyo,
Adewumi, & Ayo, 2014). Other traditional time series forecasting approaches include
exponential smoothing methods (Hyndman, Koehler, Snyder, & Grose, 2002) and ran-
dom walk models (Kilian & Taylor, 2003). In 2018, Taylor and Letham (2018) proposed
a practical approach to forecasting “at scale” using a modular regression model with in-
terpretable parameters that can be intuitively adjusted by analysts with domain knowledge
about the time series, outperforming previous traditional forecasting methods.

Recently, deep learning models have also been applied to univariate and multivari-
ate time series forecasting. Lai, Chang, Yang, and Liu (2018) proposed the long- and
short-term time-series network (LSTNet) for multivariate time series forecasting, com-
bining RNNs and CNNs to extract short-term local dependency patterns among variables
and to discover long-term patterns for time series trends. Oreshkin, Carpov, Chapados,
and Bengio (2020) focused on univariate times series forecasting and proposed a deep
architecture based on backward and forward residual links, as well as a very deep stack of
fully-connected layers. As transformer-based models have become more popular in recent
years, new transformer-based architectures have been proposed for time series forecast-
ing. (S. Li et al., 2019; H. Zhou et al., 2021; Lim, Arik, Loeff, & Pfister, 2021; H. Wu,
Xu, Wang, & Long, 2021; S. Liu et al., 2022; T. Zhou et al., 2022). S. Li et al. (2019)
addressed two major weaknesses of the transformer model for time series forecasting: the
locality-agnosticism due to point-wise dot product self-attention and the memory bottle-
neck due to the quadratic scaling problem discussed in Sec. 2.2.3.1. To solve these issues,
they proposed to produce queries and keys with causal convolution to better consider lo-
cal context and used a sparse self-attention mechanism (instead of all-to-all quadratic
attention). H. Zhou et al. (2021) also used a sparse attention mechanism in combination
with self-attention distilling to privilege dominating attention scores and further reduce
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the complexity, as well as a generative decoder to directly predict multiple time-steps and
avoid error accumulation, a common issue of autoregressive models. Lim et al. (2021)
proposed to use recurrent layers for local processing in addition to the self-attention lay-
ers, better suited for long-term dependencies. Their architecture also included specialized
components to select relevant features and a series of gating layers to suppress unnec-
essary components. Instead of using sparse attention, H. Wu et al. (2021) designed an
auto-correlation mechanism inspired by stochastic process theory. S. Liu et al. (2022) ex-
plored multiresolution representations of time series by introducing a pyramidal attention
module to summarize features at different resolutions and model the temporal dependen-
cies of different ranges. T. Zhou et al. (2022) proposed to combine transformer with
seasonal-trend decomposition method based on the Fourier transform.

While these transformer-based models have demonstrated considerable prediction ac-
curacy improvements over traditional methods for time series forecasting, A. Zeng, Chen,
Zhang, and Xu (2023) showed that simple one-layer linear models outperformed existing
sophisticated transformer-based models, questioning the use of transformers for long-term
time series forecasting. The authors found that most of the accuracy improvements came
form direct multi-step (DMS) forecasting, compared to the traditional autoregressive it-
erated multi-step (IMS) forecasting. Following their findings, we develop a new DMS
baseline for viewport prediction in chapter 6.

Recent trends in time series forecasting include using patch embeddings to represent
time series (Nie, Nguyen, Sinthong, & Kalagnanam, 2023; Gong, Tang, & Liang, 2023)
following the vision transformer (ViT) idea (Dosovitskiy et al., 2021), and incorporating
stationary processeses into hierarchical structures with specialized attention mechanisms
(Y. Yang et al., 2023).

2.3 Behavior, attention and influencing factors in VR
Understanding what drives user behavior and attention in VR is key to design better view-
port prediction. We illustrate the interactions between content, emotions and user behav-
ior in VR in Fig. 2.3. Immersive content directly affects the user’s behavior by driving
their visual attention. The content also affects the emotions felt by the user in VR, which
in turn can affect their behavior. We call “influencing factors” some properties of the im-
mersive content and the user emotional state that can significantly impact user behavior
and, ultimately, quality of experience (QoE). In this section, we first explore studies that
investigated human behavior in VR. Second, we focus on the influence of visual attention
and saliency estimation in VR. Finally, we discuss the importance of the users’ emotions
in VR.

2.3.1 Human behavior in virtual environments
We first mention interesting work regarding human behavior in 360◦ videos. Almquist
et al. (2018), who described the prefetch aggressiveness tradeoff discussed in 2.1.4.1,
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Figure 2.3: The interactions between content, emotions and user behavior in VR.

proposed a taxonomy of 360◦ videos and characterized the user behavior for four dif-
ferent video categories: static focus, moving focus, ride, and exploration. They found
that, while head movement was highly predictable in short time ranges, the predictability
significantly differed among the video categories in longer time ranges. Rossi, De Si-
mone, Frossard, and Toni (2019) proposed a graph-based method to identify clusters of
users based on their common navigation patterns to better understand the behavior of
users watching 360◦ videos. Rossi, Ozcinar, Smolic, and Toni (2020) investigated users’
similarities when navigating within immersive content with different devices and found
key differences of users’ behavior across devices and content categories. Rossi and Toni
(2020) highlighted the importance of looking at users’ trajectories instead of more quali-
tative measures of users’ interactions by studying the intra- and and inter-user variability
of users in a VR system, using trajectory-based metrics adapted from information theory.
This allowed them to identify consistent patterns across different contents (intra-user)
and show that the transfer entropy better quantified behavioural similarity among users
watching the same content rather than metrics based on spatial distribution (inter-user).
A profusion of datasets of people watching 360◦ videos have now been proposed to test
viewport prediction methods and study user behavior (Corbillon, De Simone, & Simon,
2017; Lo et al., 2017; C. Wu, Tan, Wang, & Yang, 2017; C.-L. Fan et al., 2017; David et
al., 2018; Y. Xu et al., 2018; M. Xu, Song, et al., 2019; Nguyen et al., 2018; Y. Li et al.,
2019; Nasrabadi et al., 2019; Rossi et al., 2020; Jin, Liu, Wang, & Cui, 2022).

Human behavior in six degrees of freedom (6DoF) virtual environments is also getting
investigated (Zerman, Kulkarni, & Smolic, 2021; Rossi, Viola, Jansen, et al., 2021; Rossi,
Viola, Toni, & Cesar, 2021, 2023). Zerman et al. (2021) analyzed the user behaviour for
volumetric video consumption in an augmented reality (AR) setting. They showed that
users spent most of their time looking at the frontal part of the volumetric video, indicating
the importance of faces in visual attention. Rossi, Viola, Jansen, et al. (2021) investigated
how users are affected by salient agents and narrative elements of the VR movie, show-
ing that the motion during the VR experience was affected by the storytelling. While
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more static and focused behaviour happened when participant had to complete a given
task, exploration movements were more frequent when virtual characters were talking in
the scene. Rossi, Viola, Toni, and Cesar (2021) showed the limitations of clustering algo-
rithms for 3DoF in assessing user similarity in 6DoF and advocated needing new solutions
to analyze 6DoF trajectories.

In chapter 5, we propose several contributions with the objective to gain a better un-
derstanding of user behavior in VR. Specifically, we investigate the link between immer-
sive content, attention, emotions, and movements in VR. We discuss visual attention and
emotions in VR in Sec. 2.3.2 and Sec. 2.3.3, respectively.

2.3.2 Saliency and attention in immersive media
In order to understand and predict user behavior in VR, it is crucial to know what at-
tracts the users’ attention. Visual attention in images and videos can be expressed with
saliency maps, which highlight salient areas, areas that attract the viewer’s visual atten-
tion. Saliency estimators aim to predict salient areas by generating saliency maps. While
saliency maps are useful tools to predict human behavior in VR, they are also used ob-
jective quality assessment (Rai, Le Callet, & Guillotel, 2017), in order to efficiently drive
encoding algorithms. In this section, we discuss recent work on visual attention and
saliency estimation in VR.

Saliency estimators and their relationship with gaze and attention are well-studied
(Itti, Koch, & Niebur, 1998; Cerf, Harel, Einhaeuser, & Koch, 2007; M. Jiang, Huang,
Duan, & Zhao, 2015; Rai, Le Callet, & Cheung, 2016; Chaabouni & Precioso, 2019)
and we choose to not go into details for the sake of brevity. However, while there are
differences in the gaze patterns (fixations and saccades) between flat screen presentations
and immersive content viewed in VR headset (David, Lebranchu, Perreira Da Silva, &
Le Callet, 2022), research on saliency estimation and visual attention in 360◦ images
and videos builds on existing saliency models. Recent research on saliency estimation
in VR was enabled thanks to dedicated tools and datasets (Rai, Gutiérrez, & Le Callet,
2017; Ozcinar & Smolic, 2018; Gutiérrez, David, Coutrot, Da Silva, & Le Callet, 2018;
Gutiérrez, David, Rai, & Le Callet, 2018).

2.3.2.1 Saliency in 360◦ images

Before the advent of immersive content and 360◦ images, traditional saliency models had
already been extended to consider the depth factor of stereoscopic images, using ma-
chine learning (J. Wang, Da Silva, Le Callet, & Ricordel, 2013; Fang, Lin, et al., 2014)
or hand-crafted features (Fang, Wang, Narwaria, Le Callet, & Lin, 2014). To generate
saliency maps for saliency images De Abreu, Ozcinar, and Smolic (2017) proposed to
use the viewport center (i.e., head motion) when gaze tracking data was not available.
They also proposed fused saliency maps (FSM), a method to adapt previous saliency
models considering the equatorial bias in 360◦ image viewing. Sitzmann et al. (2018)
also showed the existence of a particular fixation bias in VR, which they then used to
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adapt existing saliency estimators to 360◦ images. Monroy, Lutz, Chalasani, and Smolic
(2018) used deep learning to estimate saliency by extending traditional 2D deep saliency
estimators (CNNs) to 360◦ images. Battisti, Baldoni, Brizzi, and Carli (2018); Battisti
and Carli (2019); Mazumdar and Battisti (2019); Mazumdar, Arru, Carli, and Battisti
(2019); Mazumdar, Lamichhane, Carli, and Battisti (2019) proposed several models for
saliency estimation in 360◦ images using hand-crafted features, such as low-level saliency
features, depth information, and higher-level features such as human faces and semantic
information. Mazumdar, Arru, Carli, and Battisti (2021) further investigated the influence
of human faces on visual attention in 360◦ images. Their study confirmed previous re-
search on saliency estimation in 2D images, as they observed that the presence of faces
also attracts human attention in 360◦ images. However, the authors also found that giving
equal importance to all the detected faces did not improve saliency estimation, showing
that more refined models were needed.

2.3.2.2 Saliency in 360◦ videos

Recently, Chao, Battisti, Lebreton, and Raake (2023) presented a comprehensive litera-
ture review of omnidirectional (i.e., 360◦) video saliency, providing information on the
different approaches that have been taken, and key challenges that have been raised com-
pared to traditional 2D contents.

Ozcinar and Smolic (2018) were the first to propose a new dataset for 360◦ video
saliency estimation. They analyzed viewer behavior and compared the performance of
state-of-the-art 2D and 360◦ image saliency models. Many proposed to estimate 360◦

video saliency with deep learning in the following years (Cheng et al., 2018; Z. Zhang,
Xu, Yu, & Gao, 2018; Nguyen et al., 2018; Chao, Ozcinar, Zhang, et al., 2020; Qiao,
Xu, Wang, & Borji, 2021; Dahou, Tliba, McGuinness, & O’Connor, 2021; Yun, Lee,
& Kim, 2022; Q. Yang et al., 2023; Cokelek, Imamoglu, Ozcinar, Erdem, & Erdem,
2023). Cheng et al. (2018) proposed to solve the saliency estimation problem with
weakly-supervised deep neural network using a new ConvLSTM-based cube padding
technique, which extended CNN architectures to accommodate the distortions inherent to
360◦ videos. Z. Zhang et al. (2018) adapted the U-Net (CNN) architecture by definining
the convolutional on a spherical crown that rotated along the 360◦ sphere. Nguyen et al.
(2018) leveraged pre-trained 2D saliency models to improve 360◦ video saliency estima-
tion. Qiao et al. (2021) had the idea to generate viewport-dependent saliency maps, unlike
previous methods that generated full frame saliency maps, and achieved this through the
use of a multi-task deep neural network that considered both the viewport and the full
360◦ video frame. Dahou et al. (2021) proposed a two-stream architecture, leveraging
an attention mechanism and “expert” models to improve over previous approaches. Re-
cently, vision transformer (ViT)–based architectures have been adopted for 360◦ video
saliency estimation, taking advantage of powerful pre-trained models (Yun et al., 2022;
Cokelek et al., 2023).

All of the models we just mentioned only consider visual content as an input to gen-
erate saliency maps (and may train on gaze data). Other VR-specific modalities, such as
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directional sound, might influence visual attention. Chao, Ozcinar, Wang, et al. (2020);
Hirway, Qiao, and Murray (2022); J. Li, Zhai, Zhu, Zhou, and Zhang (2022); Singla et
al. (2023); Q. Yang et al. (2023) presented new audio-visual datasets of people watching
with different types of audio (usually no audio, mono audio, or ambisonics). As expected,
Chao, Ozcinar, Wang, et al. (2020) found that compared to only perceiving visual cues,
perceiving visual cues with salient object sound could draw more visual attention to the
objects making sound and guide viewing behaviour when such objects were not in the
user’s field of view. Hirway et al. (2022) found that the participants paid attention to a
wider range of visual elements when the sound was spatial in nature. J. Li et al. (2022)
found that visual attention was drawn to and concentrated on the sound source with the
presence of sound, especially when there were several visually salient objects and only
one sound source. Singla et al. (2023) also found that subjects concentrated more on the
directions sound was coming from when higher-order ambisonics was played. They also
noted that the different types of audio did not have an influence on cybersickness. Follow-
ing these studies, Chao, Ozcinar, Zhang, et al. (2020); Q. Yang et al. (2023) proposed new
audio-visual saliency models, improving over previous models that only considered the
video. Due to the novelty of these approaches and the scarcity of datasets, which makes it
more difficult to develop and compare new models, we did not choose to consider direc-
tional sound in our work. However, we believe that this modality should be considered in
future work on viewport prediction.

2.3.3 Emotions in virtual reality
While video content and visual saliency play an important role in driving human attention
and behavior in VR, modeling the effect of emotions might lead to a better understanding
of the users’ behavior (Schupp et al., 2007; S. Fan et al., 2018). Emotions can be described
with a two-dimensional circumplex model (Russell, 1980), using valence as the x-axis
(positiveness-negativeness of emotions) and arousal as the y-axis (intensity of emotions).
These can be measured with subjective methods (Mehrabian & Russell, 1974; Bradley &
Lang, 1994) and physiological signals (Bradley & Lang, 2000; Nasoz, Alvarez, Lisetti, &
Finkelstein, 2004).

Baños et al. (2008) explored the impact of stereoscopy on presence and emotions
in virtual environments. While previous literature had shown that stereoscopic displays
enhanced subjective feelings of presence, they found no significant influence, as similar
emotional reactions are elicited by both monoscopic and stereoscopic presentation. How-
ever, the authors confirmed that a strong sense of presence was correlated with strong
emotional reactions. Felnhofer et al. (2015) then used virtual environments to induce
specific emotional states and showed that the type of emotional reaction did not have an
effect on the level of presence. They also found that electrodermal activity (EDA) seemed
to be a poor indicator of presence as it was not significantly correlated with self-reported
presence.

In recent years several tools and datasets have been proposed (B. J. Li, Bailenson,
Pines, Greenleaf, & Williams, 2017; W. Tang, Wu, Vigier, & Da Silva, 2020; Toet, Heijn,
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Brouwer, Mioch, & van Erp, 2020; Xue, Ali, Zhang, Ding, & Cesar, 2021) to investi-
gate emotions and their influence on user behavior in VR. In these studies, people were
watching 360◦ videos in a VR headset and the emotions were measured using subjective
metrics such as self-assessed valence and arousal (Bradley & Lang, 1994) and objective
physiological measurements, such as EDA (Boucsein, 2012). B. J. Li et al. (2017) found
that the standard deviation of yaw (horizontal head movements) positively correlated with
valence, while a significant positive relationship was found between head pitch (vertical
movements) and arousal. While Pallavicini, Pepe, and Minissi (2019) found that, com-
pared to 2D displays, playing video games with head-mounted displays led to a higher
sense of presence and self-reported feelings of happiness and surprise, Voigt-Antons et
al. (2020) found no significant differences in presence and emotional ratings between 2D
and head-mounted displays. W. Tang et al. (2020) observed that the presence of nega-
tive images had a significant impact on visual attention, resulting in more visual agita-
tion and avoidance behavior from larger, longer and faster saccades when people were
showed negative 360◦ images. Barreda-Ángeles, Aleix-Guillaume, and Pereda-Baños
(2020) proposed to investigate the claim of VR being an “empathy machine”, as it had
been described before. While they observed a direct positive effect of spatial presence on
perspective taking and empathic concern, they also observed an indirect negative effect
of immersive presentation on empathic concern through enjoyment. This meant that the
enjoyment of pleasurable aspects associated to VR experiences may hinder the affective
dimension of empathy toward the characters, pointing out the need to carefully consider
the targeted reactions from the audience when designing VR experiences. Xue, El Ali,
Zhang, Ding, and Cesar (2021) proposed a new tool to collect real-time, continuous emo-
tion annotation in 360◦ videos and used it to collect a new dataset (Xue, Ali, Zhang, et
al., 2021), also containing behavioral and physiological information, as well as subjective
ratings. From this data, (Xue, Ali, Ding, & Cesar, 2021) found significant correlations
between head motion rotation data, as well as some eye movement features, with valence
and arousal ratings. They also showed that their new fine-grained emotion labels provided
greater insight into how head and eye movements related to emotions during 360◦ video
watching in VR. Jicol et al. (2021) studied the effects of human factors such as emotions
and agency on the sense of presence. They showed that the dominant emotion induced
by a virtual environment was positively correlated with presence, and that agency had a
significant positive effect on presence, while also moderating the effects of emotions on
presence.

The dataset we present in chapter 5 and the dataset presented by Xue, Ali, Zhang, et
al. (2021) were collected concurrently, and are quite similar. However, the analyses we
present to investigate the relationship between immersive content, attention, emotions,
and movements in VR have not been proposed before.



CHAPTER 3
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trajectory prediction of

360◦ head movements
Prediction of head movements in immersive media is key to design efficient
streaming systems able to focus the bandwidth budget on visible areas of the
content.
Numerous proposals have therefore been made in the recent years to predict
360◦ images and videos. However, the performance of these models is limited by
a main characteristic of the head motion data: its intrinsic uncertainty.
In this chapter, we present an approach to generate multiple plausible futures
of head motion in 360◦ videos, given a common past trajectory. Our method
provides likelihood estimates of every predicted trajectory, enabling direct in-
tegration in streaming optimization. To the best of our knowledge, this is the
first work that considers the problem of multiple head motion prediction for 360◦

video streaming.
We first quantify this uncertainty from the data. We then introduce our dis-
crete variational multiple sequence (DVMS) learning framework, which builds
on deep latent variable models. We design a training procedure to obtain a flex-
ible and lightweight stochastic prediction model compatible with sequence-to-
sequence recurrent neural architectures. Experimental results on four different
datasets show that our method DVMS outperforms competitors adapted from the
self-driving domain by up to 41% on prediction horizons up to 5 sec., at lower
computational and memory costs.
To understand how the learned features account for the motion uncertainty, we
analyze the structure of the learned latent space and connect it with the physical
properties of the trajectories. From this analysis, we design a method to estimate
the respective likelihoods of the multiple predicted trajectories, by exploiting
the stationarity of the distribution of the prediction error over the latent space.
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Experimental results on three datasets show the quality of these estimates, and
how they depend on the video category.
Additionally, we present a brief exploration of other methods we considered to
consider the uncertainty of head motion data. We show promising results, high-
lighting the need to pursue further research in this direction.
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3.1 Introduction
As explained in Sec. 2.1.4, predicting head movements in VR is crucial for viewport-
adaptive streaming, significantly improving the quality of experience in constrained net-
work conditions. Numerous works have therefore looked into the problem of head motion
prediction in 360◦ images and videos in the last couple of years (J. Chen et al., 2021;
Romero Rondón et al., 2021; R. Zhang et al., 2021; Chao et al., 2021). However, the
performance of existing prediction models is limited by a main characteristic of the head
motion data: its intrinsic uncertainty. Very few models have considered this characteristic
so far (H. Hu, Xu, Zhang, & Guo, 2019; X. Fan et al., 2021; L. Yang et al., 2022), but only
heuristically for 360◦ videos. We illustrate this uncertainty in Fig. 3.1-left, showing that
close past trajectories often lead to diverse/distant future trajectories. This is exemplified
for two different users in Fig. 3.10-left. This has long been identified in other application
domains such as autonomous driving (Marchetti et al., 2020a; Berlincioni, Becattini, Sei-
denari, & Del Bimbo, 2021) or human pose estimation (Rupprecht et al., 2017). Such an
ambiguity in the data (a same input may be mapped to several outputs) leads to degraded
performance and over-fitting. Considering uncertainty in optimization of resource alloca-
tion is therefore key to improve systems’ performance, as shown in robotic planning (Ha
& Schmidhuber, 2018) and regular video streaming considering bandwidth uncertainty
(Yan et al., 2020; Kan et al., 2021).

In this chapter, we present an approach to generate multiple plausible futures of head
motion in 360◦ videos, given a common past trajectory. Our method provides likelihood
estimates of every predicted trajectory, enabling direct integration in streaming optimiza-
tion. To the best of our knowledge, this is the first work that considers the problem of
multiple head motion prediction in 360◦ videos. Our contributions are:

• We first analyze head motion data and show the substantial diversity of futures
corresponding to close past trajectories, and the shortcomings of a recent predictor
in such cases.

• We introduce our discrete variational multiple sequence (DVMS) learning frame-
work, which builds on deep latent variable models. The latent variable is designed
to modulate the function connecting the past to the future. Each sample of the la-
tent variable leads to a different plausible future. We design a training procedure
to obtain a flexible and lightweight stochastic prediction model compatible with
sequence-to-sequence recurrent neural architectures. Experimental results on four
different datasets show that our method DVMS outperforms competitors adapted
from the self-driving domain by up to 41% on prediction horizons up to 5 sec., at
lower computational and memory costs.

• We provide a detailed analysis of both the learned latent space where the encoding
of the past trajectories lies, and of the impact of z on the connection between past
and predicted trajectories. For both analyses, we connect latent space locations and
values of z with physical properties.
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• We design a method to estimate the respective likelihoods of the multiple predicted
trajectories, by showing that the distribution of the prediction error over the la-
tent space has some stationarity, which we exploit. Experimental results on three
datasets show the quality of these estimates, and how they depend on the video
category.

Part of the work and ideas presented in this chapter are the outcome of a 1-month re-
search stay at the Media Integration and Communication Center (MICC, part of the Uni-
versity of Florence), carried out in collaboration with Dott. Mag. Francesco Marchetti,
Dr. Federico Becattini, Prof. Lorenzo Seidenari, and Prof. Alberto Del Bimbo. Part of the
work presented in this chapter was the object of a conference paper presented at the 13th
ACM Multimedia Systems Conference (MMSys ’22) (Guimard, Sassatelli, et al., 2022).
The in-depth analyses of the latent space of our model were submitted as part of a journal
extension to this article and accepted with minor revisions in the ACM Transactions on
Multimedia Computing, Communications, and Applications journal (TOMM) (Guimard
et al., 2024).

In Sec. 3.2, we present recent work on point-wise and uncertainty-aware prediction
of head motion, as well as relevant work on trajectory prediction from the domains of
robotics and autonomous driving. In Sec. 3.3, we formulate the prediction problem we
tackle, position formally the contribution in the framework of 360◦ streaming optimiza-
tion, and motivate the approach with analysis of head motion data. In Sec. 3.4, we (i) pro-
vide necessary background on deep generative models, (ii) present our DVMS stochastic
prediction model, emphasizing its generality and exemplifying it with a simple recurrent
architecture, and (iii) present experimental results of DVMS on four datasets. In Sec.
3.5, we give an analysis of the DVMS latent space and shows how it can be exploited
to estimate trajectory likelihoods, with an experimental assessment. In Sec. 3.6, we dis-
cuss the limitations of this work and the perspectives it opens for streaming optimization
In Sec. 3.7 we briefly explore other approaches to consider uncertainty, including uncer-
tainty quantification and the formalization of variational models for sequences. We finally
conclude the chapter in Sec. 3.8.

We provide an analysis of the system gains of DVMS in a 360◦ system in chapter
4. The code associated with this chapter is publicly available at https://gitlab.com/
DVMS /DVMS.

3.2 Related work
We first review head motion prediction in 360◦ videos, with methods producing point-
wise trajectory estimates, and methods considering motion uncertainty. We then discuss
recent relevant work on multiple trajectory prediction in the domain of robotics with hu-
man pose estimation and autonomous driving systems.

https://gitlab.com/DVMS_/DVMS
https://gitlab.com/DVMS_/DVMS
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3.2.1 Head motion prediction in 360◦ videos
Point-wise prediction:

Several approaches have relied on simple regressors or hand-crafted features to pro-
duce single trajectory prediction. For example, J. Chen et al. (2021) observed an equa-
torial posture attraction, and that video genre affects user behavior similarity. They then
proposed a FoV prediction algorithm that explicitly balance between the current user’s
history and the history of other traces, for horizon of up to 4 seconds. Their method re-
quires to have traces of previous users available for every video. Y. Mao, Sun, Liu, and
Wang (2020) presented a coding scheme for interactive applications based on 360◦ video
content, such as VR gaming or conferencing. They also adopt a simple linear FoV predic-
tion method for horizons of 100ms. Recently, Chopra et al. (2021) extracted trajectories
of moving objects in the video and combine them with autoregressive-filtered past user
trajectories to predict future trajectories.

Regression with deep neural networks (DNNs) have also been investigated in several
works. S. Park, Bhattacharya, et al. (2021) designed a point-wise prediction method fed
with the video content and the past trajectory of the current user. They then fed the pre-
dicted FoV coordinates to a model-predictive control (MPC)–based streaming logic. Hou
et al. (2021) also considered streaming optimization with FoV prediction based on an
LSTM architecture predicting the tiles in FoV over the next 2 seconds. Both approaches
are similar to a baseline considered by (Romero Rondón et al., 2021). They first re-
examined existing deep-learning approaches and showed that they achieve worse or sim-
ilar performance as simple baselines (predicting the future position equal to the last past
or predicting only from the past head coordinates and not considering the video content).
Then they proposed a new deep architecture establishing state-of-the-art performance for
head prediction on horizons of up to 5 seconds. Their method enables prediction for new
videos where no previous user trace is available. Feng, Li, and Wei (2021) also considered
FoV prediction for live content. They underlined that the challenge is to find features of
the video content and user behavior that have high correlation with the user’s future FoV.
They designed a FoV prediction method by collecting the user’s real-time trajectory and
the semantic description of the attended video regions. FoV is then predicted by finding
the tiles with semantic description similar enough with the user’s past trajectory encoded
as a phrase. R. Zhang et al. (2021) designed a federated learning approach to predict
the viewing probability of every tile, considering the video catalog known per user and
focus on personalized model training from other users traces. Yu and Liu (2019) pro-
posed LSTM-based architectures with attention to predict future FoV up to 3 sec. ahead,
given past FoV coordinates. Chao et al. (2021) proposed a similar approach but with a
transformer-based architecture, and showed that it can outperform previous approaches.
Finally, several approaches are based on a deep reinforcement learning (DRL) framework
where FoV prediction, bandwidth prediction and tile quality decisions are not achieved
separately but jointly. C. Wu et al. (2021) proposed one of the most recent such DRL-
based approaches for end-to-end control of 360◦ video streaming. The download horizon
is up to 5 seconds.
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Considering prediction uncertainty:
How users explore in VR and what commonalities do their viewing patterns exhibit

have fostered a lot of interest in the last few years (Sitzmann et al., 2018; David et al.,
2018; Almquist et al., 2018). Almquist et al. (2018) showed that the viewing congruence
heavily depends on the type of scene, while other works (Sitzmann et al., 2018; David
et al., 2018) have shown that, upon entering a new scene, the user first goes through an
exploration phase where movements are not strongly correlated with the visual content.

To study and cope with user movement uncertainty, several approaches have relied on
hand-crafted adaptations. X. Fan et al. (2021) studied spurious head movements that are
not related to the scene content. They ran user experiments and attempted to automat-
ically classify such movements. H. Hu et al. (2019) dealt with the uncertainty of FoV
prediction by designing a FoV prediction method with a probabilistic model to prefetch
video segments into the playback buffer, and enabled chunk replacements to maximize
quality in the FoV. Prediction is achieved with a linear regressor trained on data from
which are also extracted the parameters of the Gaussian distribution of prediction errors.
Feng et al. (2019) developed a FoV prediction scheme for live 360◦ videos that consider
various levels of synchronization of the user with the moving objects in the scene. From
object detection and optical flow calculation, they linearly predicted future FoV, and dy-
namically adapted the size of the predicted region to cope with arbitrary moves. X. Zhang
et al. (2020) considered FoV prediction over 50-300ms. They proposed a Markov model
that learns stationary and transition distributions between discrete angle positions from
past users’ traces on this video, from the saliency map, and considering human head
physical constraints. In contrast to these works relying on single trajectory prediction try-
ing to consider the error distribution around a single mode, our method provides diverse
trajectories by design, additionally to their estimated likelihood.

Recent works in 2D adaptive streaming have presented deep learning approaches to
consider prediction uncertainty (Yan et al., 2020; Kan et al., 2021). In contrast with
the vast majority of approaches considering point-wise estimates of future bandwidth for
adaptive streaming, both consider the uncertainty of bandwidth prediction in the decision
problem of what encoding rate to choose for the next video chunks to send. Both derive
probability distribution of the future throughputs, that they feed into an MPC algorithm.
Yan et al. (2020) designed a neural network to output a discretized probability distribution
of predicted transmission times. Kan et al. (2021) considered Bayesian neural networks
(BNNs) to output the probability distribution of future throughput, given the network’s
historical throughput.

In another recent work, L. Yang et al. (2022) considered predicting multiple head tra-
jectories but only for 360◦ images, not videos as we do. They consider head trajectory as a
succession of fixations and saccades, and intend to learn to capture the uncertainty of head
trajectories across different subjects. They resort to a Bayesian neural networks (BNNs)
approach, to predict, given an input 360◦ image, multiple head trajectories by sampling
the weights of the neural network predictor, the inter-subject variance being modeled with
a latent variable conditioning the weight distribution. This approach is the closest to our
work, but it differs from ours in several aspects. It considers 360◦ images, not videos as
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we do. It generates trajectories for the entire viewing duration, and is meant to model the
intrinsic variability between the users, generating the trajectory uncertainty. In our work,
we generate future trajectories online over a prediction horizon of 5 seconds and consid-
ering past motion of the current user only. We therefore cope not only with inter-user
variability, but also with intrinsic uncertainty of the data in how past is correlated with
future motion, data uncertainty often referred to as aleatoric uncertainty. Also, BNNs are
computationally-heavy (the approach from L. Yang et al. (2022) is not real-time) and fit
accurately but to just one mode in the data (Fort, Hu, & Lakshminarayanan, 2020). In
this chapter, we consider a lightweight approach to multiple trajectory prediction, able to
predict multiple modes for the future trajectory.

3.2.2 Multiple trajectory prediction in robotics
Prediction of 360◦ head motion is closely related to human pose prediction, and more gen-
erally to human motion prediction. In the field of robotics, a major challenge is the study
of human pose motion, with the aim of generating the future movement of a collection of
joints that represent human body. Fragkiadaki et al. (2015) developed an encoder-decoder
model based on a recurrent neural network (RNN) to process the temporal dynamics of
human pose. Afterwards, Jain et al. (2016) combined the ability of temporal modeling
of RNNs with a spatio-temporal graph to model the interactions between humans and the
environment. Many of the state-of-the-art models are based on graph neural networks
(GNN) and its evolutions such as the graph convolutional network (GCN) and graph at-
tentional network (GAT) (Adeli et al., 2021; Sofianos et al., 2021; Z. Liu et al., 2021).
In these models, each joint is represented as a node and each relation between joints as
an edge. In the literature, this problem is still handled in single-modal setting, despite a
recent attempt to better consider randomness (Parsaeifard et al., 2021).

The problem of predicting a set of multiple and diverse trajectories has been exten-
sively studied in the field of autonomous driving. There the task is to forecast future
positions of moving agents such as cars and pedestrians. Compared to head motion pre-
diction, where predictions are guided by content and user attitude, trajectory forecasting
is a more constrained task due to social behavioral rules (Alahi et al., 2016; Lee et al.,
2017; Gupta et al., 2018; Sadeghian et al., 2019; Ivanovic & Pavone, 2019; Yuan et al.,
2021), inertia of moving agents and environmental constraints (Lee et al., 2017; Srikanth
et al., 2019; Berlincioni et al., 2021; Chang et al., 2019; Marchetti, Becattini, Seidenari,
& Del Bimbo, 2020b). Nonetheless, the ability to forecast a multimodal prediction is of
fundamental importance for planning secure trajectories for autonomous vehicles.

The first method to generate multiple predictions has been DESIRE (Lee et al., 2017),
which samples plausible trajectories from the latent space of a conditional variational
auto-encoder (CVAE), in combination with RNN encoders and decoders, as well as a
combination of reconstruction and Kullback–Leibler divergence (KLD) losses, which do
not explicitly enforce diversity. Gupta et al. (2018) then proposed Social-GAN, which
uses a generative adversarial model to sample multiple outcomes by injecting random
noise in an encoder-decoder architecture. Diversity is enforced with the introduction of
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a variety loss, which optimizes only the best prediction thus leaving the model free to
explore the output space with multiple outcomes. The usage of a variety loss is now a
common approach for generating multimodal predictions, not only for trajectory fore-
casting (Marchetti et al., 2020b; Y. Huang et al., 2019; Kosaraju et al., 2019; Amirian
et al., 2019; Guan, Yuan, Kitani, & Rhinehart, 2020; De Divitiis, Becattini, Baecchi, &
Del Bimbo, 2021; Walker, Doersch, Gupta, & Hebert, 2016). In the present chapter, we
leverage this domain knowledge by considering the variety loss to enable the training of
our DVMS model aiming to produce diverse plausible trajectories.

An extension of such loss, the multimodality Loss, has been introduced by Berlincioni
et al. (2021), where the authors rely on synthetic data to generate multiple ground truth
futures and directly optimize the model to output multiple adequate predictions. This
approach requires the ability to generate synthetic samples but replaces the exploration
step with an explicit supervision signal.

A recent trend in multimodal trajectory forecasting for autonomous driving is to divide
the problem into two steps: first, possible goals or endpoints are estimated and then actual
trajectories are regressed to reach such intents (H. Zhao et al., 2021; Dendorfer et al.,
2020; Mangalam et al., 2020). Similarly, other approaches use a set of anchors to guide
motion prediction following some previously observed samples (H. Zhao & Wildes, 2021;
Marchetti et al., 2020b). We believe that such approaches are less suited for 360◦ head
motion prediction, since motion is mostly guided by content and user attitude rather than
constrained maneuvers.

3.3 Motivation behind multiple prediction of head trajec-
tories

We first outline the 360◦ adaptive streaming problem we aim to solve in Sec. 3.3.1, then
formally define the head motion prediction problem in Sec. 3.3.2. In Sec. 3.3.3, we
analyze head motion data to quantify the diversity of futures corresponding to similar
past trajectories, and show the need for multiple future predictions.

3.3.1 360◦ adaptive streaming problem
The core motivation for our contribution is to improve adaptive streaming for 360◦ videos
by taking into account randomness of the environment in the optimization of resource
allocation. Specifically, considering the optimization of spatial heterogeneous quality
in streaming 360◦ videos, one has to consider the variations of network bandwidth and
human head position, which both cannot be predicted perfectly. Such stochastic optimiza-
tion can generally be approached in two ways. First, RL-based approaches (H. Mao et
al., 2017; C. Wu et al., 2021) do not split the problem into environment prediction and
resource allocation, but rather tackle it end-to-end. Other recent works show the benefit,
for regular video streaming (Yan et al., 2020; Kan et al., 2021), of splitting the problem
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and designing a DNN to produce stochastic predictions of bandwidth, which are then con-
sidered as parameters in model predictive control (MPC). For example, Yan et al. (2020)
used dynamic programming to maximize the expected cumulative quality of experience
(QoE) as shown in Eq. 3.1, where H is the look-ahead horizon for download, Bj is the
playback buffer’s level at chunk j, QoE(·) is the QoE function, Ks

i is chunk i in quality
s, and T (Ks

j ) is the stochastic download time of this chunk.
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Such formulation enables buffering of H chunks to absorb bandwidth variations. Kan et
al. (2021) formulated this optimization by projecting the estimated bandwidth distribution
onto a confidence interval. In the case of 360◦ streaming, the equivalent problem can be
formulated, incorporating the distribution of the FoV position over the look-head horizon
(Sassatelli, Winckler, Fisichella, Aparicio, & Pinna-Déry, 2019) as shown in Eq. 3.2, with
l ∈ {1, L} denoting the tile index, if we consider a tile-based formulation.

In this chapter, we provide a stochastic tool, the DVMS learning framework presented
in Sec. 3.4.2, to estimate the distribution Pr [l ∈ FoV (j)]. To do so, we make a proposal
to predict several K trajectories (series of centers of FoV) yk

t:t+H , for k ∈ {1, K}, with
their estimated likelihood Pr[yk

t:t+H |x0:t]. If the problem is tile-based as above, then we
can obtain Pr [l ∈ FoV (j)] in Eq. 3.3.

Pr [l ∈ FoV (j)] =
K∑︂

k=1
Pr[l ∈ FoV (j)|yk

i:i+H−1]Pr[yk
i:i+H−1|x0:i]

=
∑︂

k:l∈ FoV of center yk
j

Pr[yk
i:i+H−1|x0:i] (3.3)

Once we have at our disposal multiple trajectory estimates and their respective likeli-
hoods, we can express the distribution of the FoV position as a function of these estimates
as seen in Eq. 3.3. This distribution can in turn be used in conjunction with the appropriate
QoE function by an adaptive bitrate (ABR) algorithm to solve the optimization problem
as formulated in Eq. 3.2. In this chapter, we focus on the design and evaluation of the
prediction methods. An evaluation of the system gains is provided in chapter 4.

3.3.2 Head motion prediction problem
The problem we consider is formally described as follows. We consider that a given 360◦

video v of duration T seconds is being watched by a user u. The head trajectory of the
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user is denoted xu,v
0:T , with x storing the head coordinates on the unit sphere (as, e.g., Euler

angles, Euclidean coordinates or quaternions).
Online single prediction problem: At any time t in [0, T ], predict xu,v

t:t+H with an estimate
yu,v

t:t+H , that is predict the future trajectory over a prediction horizonH , assuming only xu,v
0:t

is known.
That is, we do not assume any knowledge of traces other than u on this video v. Hence,

for lighter notations, we drop indices u and v from xu,v
0:t and only write x0:t and y0:t.

Online multiple future prediction problem: At any time t in [0, T ], predict K possible
future trajectories yk

t:t+H , for k = 1, . . . , K, to estimate xt:t+H .
This is the general problem definition considered in related work (Babaeizadeh, Finn,

Erhan, Campbell, & Levine, 2018; Bhattacharyya, Schiele, & Fritz, 2018). However,
for optimization of heterogeneous quality decisions in a video streaming system, it is
also important to estimate the likelihood of every such possible future trajectory. We
therefore augment the multiple future prediction problem with estimation of likelihood
Pr[yk

t:t+H |x0:t]. This is addressed in Sec. 3.5.2 thanks to our variational model proposed
in Sec. 3.4.2.

3.3.3 Analysis of the need for multiple prediction in head motion data
We now analyze the need for multiple prediction from two perspectives: from the data
only, and from the performance of a given predictor on this data. We consider data from
the test set of the MMSys18 dataset, described in Sec. 3.4.4.3. In what follows, past (resp.
future) trajectories are considered over a horizon of 1 sec. (resp. 5 sec.) as done in recent
work (Chao et al., 2021; Romero Rondón et al., 2021). We exclude the 5% shortest past
trajectories and the 5% shortest future trajectories from this analysis, as they may skew
the distance calculations between pairs of trajectories.
Distance metric: We compare two trajectories P1 and P2 of equal length L using the aver-
age point-wise great-circle distance, defined in Eq. 3.4. We consider pairs of trajectories
with the lowest distance to be the closest to each other.

d(P1, P2) = 2
L
·

∑︂
p1∈P1,p2∈P2

arcsin
(︄
∥p1 − p2∥2

2

)︄
(3.4)

First, we investigate how the distance between past trajectories relates to the distance
between their corresponding true futures. To do so, for each timestamp of each video in
the dataset, we consider all pairs of users, and select 200 pairs per video with the closest
past trajectories. Every pair of users yields the distance between both past trajectories,
and the distance between both respective true future trajectories. Fig. 3.1-left represents
the scatter plot of both distances for every pair. We observe that, for 200 pairs of closest
past trajectories per video, 90% of the corresponding future pairs have a distance more
than twice the distance between their past trajectories (above the y = 2x line). Also, we
observe that for close past elements, more distant futures are produced, on this dataset,
for exploration-type videos PortoRiverside and PlanEnergyBioLab. Specifically, 81% of
the points are above the y = 4x line for PortoRiverside and 85% of the points are above



3.3 – 3.3.3 Analysis of the need for multiple prediction in head motion data 49

the y = 4x line for PlanEnergyBioLab. Fig. 3.1-right represents the distance between
past trajectories (continuous) and the distance between future trajectories (dashed), for
every N -th pair of closest past trajectories for each video, with N ≤ 5000 (distances
are smoothed with a moving average). It confirms that the distance between future tra-
jectories is generally higher that the distance between past trajectories, with a greater
difference obtained for exploration videos.
Finding: This is an indication that relatively close past trajectories may lead to distinct/-
farther apart future trajectories, which may create difficulties when attempting to train a
prediction model on such data. Indeed, a (neural) regressor trained with the regular mean
square error (MSE) cannot map similar inputs to different outputs.
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Figure 3.1: Distances between pairs of past and future trajectories for pairs of close past trajectories on
the test videos of the MMSys18 dataset. The colors are associated with the video IDs and are the following:
blue: PortoRiverside, orange: PlanEnergyBioLab, green: Waterpark, red: Warship, purple: Turtle.

Second, we investigate predictions made by a recent deep predictor on this data.
Thanks to the reproducible framework provided by Romero Rondón et al. (2021), we
consider their prediction model named TRACK. For the same pairs of closest past tra-
jectories as in Fig. 3.1, Fig. 3.2 represents how the distance between predicted future
trajectories match the distance between their corresponding true futures. Fig. 3.2-left
shows that, given close past trajectories, the predicted trajectories are much closer to-
gether than the true future trajectories. Specifically, for all of the videos, the proportion
of points above y = 2x ranges from 83% (Turtle) to 99% (PlanEnergyBioLab), and the
proportion of points above y = 4x ranges from 40% (Turtle) to 88% (PortoRiverside and
PlanEnergyBioLab). This is confirmed in Fig. 3.2-right showing the difference between
the average in-between true futures distances and in-between predicted futures distances.
Finding: This is an indication that predicted trajectories have less diversity than true tra-
jectories.
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Figure 3.2: Distances between pairs of predicted and true future trajectories for pairs of close past tra-
jectories on the test videos of the MMSys18 dataset. The colors are associated with the video IDs and are
the following: blue: PortoRiverside, orange: PlanEnergyBioLab, green: Waterpark, red: Warship, purple:
Turtle.

Finally, we investigate the connection between multimodality (ratio of distance be-
tween the true futures over the distance between their pasts) and prediction error. Fig.
3.3 shows the evolution of the average prediction error for pairs of trajectories where
dfuture

dpast
≥ 0.8 (i.e., ratio ≥ 0.8) against the ratio of distance between the true futures over

the distance between their pasts. As the ratio increases, the prediction error also tends to
increase for most videos.
Finding: This is an indication that the predictor is less accurate when there is more diver-
sity in the true futures than in the past trajectories.

While this finding might have been expected, we considered important to experimen-
tally verify that (i) there is diversity in head motion traces as seen in Fig. 3.1, (ii) the
diversity of ground truth data is not properly reproduced by a refined recent predictor
considering both past motion and visual content as shown in Fig. 3.2, and (iii) this diver-
sity of futures indeed contributes to the error of single trajectory predictor as illustrated in
Fig. 3.3.

In this section, we have seen that (i) we need to estimate the distribution of future
viewports for streaming optimization, (ii) future trajectories exhibit a significant diversity
relatively to their close respective past trajectories, and (iii) the prediction error increases
in such cases. All these observations provide strong justification for the development of
multiple trajectory prediction methods.
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Figure 3.3: Prediction error of TRACK (Romero Rondón et al., 2021) against the ratio of distances between
pairs of future trajectories over distances between pairs of their corresponding past trajectories.

3.4 Deep stochastic prediction of multiple head trajecto-
ries

We first provide necessary background on deep generative models in Sec. 3.4.1. We
present our proposal for a multiple prediction framework in Sec. 3.4.2, exemplified with
an architecture in Sec. 3.4.3. Sec. 3.4.4 presents performance results.

3.4.1 Background on deep generative models for sequences
Trajectory prediction can be cast into conditional sequence generation, for which we pro-
vide some background next. Deep generative approaches are meant to generate data, mod-
eling either explicitly or implicitly training data distributions. Variational auto-encoders
(VAEs) (Kingma & Welling, 2014; Rezende, Mohamed, & Wierstra, 2014) and generative
adversarial networks (GANs) (Goodfellow et al., 2020) are two prominent such families
of approaches.

In this work, we focus on the VAE family owing to their capability not to narrowly
focus on a few modes of the data distribution, hence being a better fit to the characteris-
tics of head motion data as described in Sec. 3.3.3. VAE frameworks aim to enable the
generation of high-dimensional data samples by sampling a normally distributed low di-
mensional latent variable z ∼ N (0, I). A sample x is then generated by passing z through
a high-capacity model, particularly a deep neural network. The latent variable is meant to
capture the minimum number of independent random dimensions from the data, while the
decoding by a neural network of z into x is meant to capture the complex dependencies
in a sample (Kingma & Welling, 2014). The typical representation of a VAE is illustrated
in Fig. 3.4. Denoting the decoder’s parameters with θ, the generative model is typically
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defined with p(z) and pθ(x|z). For the decoder network to be trained, the posterior dis-
tribution p(z|x) is required, but can only be approximated with the output distribution,
named the approximate posterior qϕ(z|x), of another neural network of parameters ϕ and
usually referred to as the encoder or inference network. VAEs can also be declined into
conditional VAEs (CVAEs) when the goal is to generate output variables y from input
variables x, drawing z from a prior distribution pθ(z|x) to generate y from the decoder
with pθ(y|x, z) (Sohn, Lee, & Yan, 2015).

Encoder

DecoderTraining stage
of VAE

Testing
stage of

VAE

Figure 3.4: Schematic representation of a VAE.

When considering sequence prediction formalized in Sec. 5.6.1.1, prediction of a
time series over a certain horizon is often made conditionally to the past of the time se-
ries. This is often translated into sequence-to-sequence architectures, where a so-called
encoder processes the past (even at test time, different to VAEs), produces an intermediate
embedding, which is then decoded into a future trajectory (see Fig. 3.5). The architec-
ture of the encoder and decoder networks are often based on recurrent neural networks
(RNNs), such as LSTM or GRU (Sutskever et al., 2014; Romero Rondón et al., 2021).
Note that the concept of encoder of past trajectory in a sequence-to-sequence architecture
is different from the term encoder used in a variational context (aka inference network, as
mentioned above).

Past
Embedding

Past Encoder Future Decoder

Figure 3.5: A sequence-to-sequence architecture.

Deep variational learning has initially been designed for image data. More recently,
variational approaches have been proposed for sequence data and so-called structured
output prediction. These approaches are diverse depending on where the random latent
variables are considered in the recurrent architectures (Chung et al., 2015; Babaeizadeh
et al., 2018; Parsaeifard et al., 2021).
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For example, Babaeizadeh et al. (2018) performed conditional video prediction to pre-
dict future frames until final video time T , conditioned on c initial frames, by sampling
from p(xc:T |x0:c−1). A random latent vector z is picked at random from the prior distribu-
tion p(z) ∼ N (0, I) at test time (while the training is made as usual with z sampled from
the approximate posterior qϕ(z|x0:T )). They show the performance in multiple future
frame sequence prediction, specifically in PSNR and SSIM of the 10% best sequences
obtained from 100 samples of z.

Parsaeifard et al. (2021) considered the randomness in human pose forecasting, which
they decompose into trajectory forecasting and local pose forecasting. They advocate
that the latter has higher randomness, which they tackle by considering an LSTM-based
sequence-to-sequence architecture as done by Martinez et al. (2017), but they set the
initial hidden state of the decoder to a latent vector z drawn from N (µ(ht), σ(ht)) where
ht is the latest hidden state of the encoder of the past coordinates, and µ(·) and σ(·) are
functions implemented with fully connected layers.

The training of such RNN-based VAEs can be difficult to converge and unstable
(Babaeizadeh et al., 2018; Bhattacharyya et al., 2018). This is particularly due to the
fact that during training, z is sampled from the approximate posterior qϕ(z|x0:T ) while it
can only be sampled from pθ(z|x0:c−1) in test, and despite a KL divergence component in
the training loss meant to nudge qϕ(z|x0:T ) towards pθ(z|x0:c−1).

With this background on variational approaches for sequence generation, we now
present our learning framework for multiple prediction of head trajectories.

3.4.2 Discrete Variational Multiple Sequence (DVMS) prediction
We now present a new learning framework for multiple head motion trajectory prediction,
named discrete variational multiple sequence (DVMS). It builds on deep latent variable
models like VAEs. DVMS is designed to be compatible with any sequence-to-sequence
architecture. The rationale for such design is as follows. Our goal is to design a frame-
work for multiple prediction of head motion for deep architectures, which provides key
properties:

(P1) sufficiently diverse predictions yk
t:t+H , for k = 1, . . . , K,

(P2) state-of-the-art performance when K = 1,

(P3) estimates of likelihoods of the predicted trajectories,

(P4) flexibility and low computational cost.

Generative model: The probabilistic graphical model of DVMS is depicted in Fig. 3.6.
For any encoder fed with past sequence x0:t, an embedding ht is produced. This embed-
ding is then concatenated with a unique latent variable z. The latent variable is key in our
DVMS proposal. This latent variable is meant to capture the variations in the function
relating the future sequence to the past sequence, hence acting as a parameter in the past-
to-future mapping. The resulting concatenation produces the first hidden state gt of the
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decoder. Considering that the encoder is made of recurrent connections with hidden state
ht, the generative model writes as Eq. 3.5, where UZK

denotes the uniform distribution
over discrete set ZK , and MLP stands for multi-layer perceptron to denote one or several
fully connected (FC) layers.

ℎ𝑡−1 ℎ𝑡 𝑔𝑡+1 𝑔𝑡+2

𝑧

Figure 3.6: Probabilistic graphical model of the proposed stochastic discrete variational multiple sequence
(DVMS) prediction framework. A random variable is represented with a circle, a deterministic state with a
diamond.

To generate multiple prediction, every zk ∈ ZK generates a future trajectory yk
t:t+H .

To enable diverse predictions (P1), we do not constrain the distribution p(z) we sample
from to be conditioned on x0:t in test, in contrast to what was done by Parsaeifard et al.
(2021), but instead draw z uniformly in Z ∈ [−1, 1]d (where d is the dimension of vector
z). To meet (P3), z is drawn from a discrete set Z with K elements. Indeed, z codes
for latent features parameterizing the expression of the future trajectory from the past
trajectory. In other words, different values of z allow for the representation of different
modes of future trajectories, given the same past. If there is some stationarity in how
likely is every trajectory produced from every zk, then we can exploit this stationarity for
likelihood estimation (P3). We therefore consider a discrete fixed set of possible z values
to ease this exploitation, which we describe in Sec. 3.5.2.

ht = RNNenc (ht−1,xt−1) , h0 = 0
z ∼ UZK

gt+1 = MLP(ht, z) (3.5)
yt = xt

yt+s = FC(gt+s) + yt+s−1 , for s ≥ 1
gt+s = RNNdec (gt+s−1,yt+s−1) , for s ≥ 2

Training procedure: To ensure (P2), we enforce the prior distribution p(z) z is sampled
from at training time to be the same as in test (contrary to work from Babaeizadeh et al.
(2018)), i.e., we do not consider an inference network. This allows to avoid the mismatch
between p(z) and q(z|x0:T ), which impedes the training convergence, as described in Sec.
3.4.1. However, doing so also adds noise to the sequence decoder which, if trained with



3.4 – 3.4.3 Proposal of a DVMS-based architecture 55

gradient descent performed over every sampled trajectory obtained from zk, for all k ∈
{1, K}, learns to discard the z input and only produces a single trajectory corresponding
to the baseline, as described by Babaeizadeh et al. (2018). To avoid this phenomenon, we
instead train our architecture with the best of many samples (BMS) loss (Bhattacharyya
et al., 2018), also named the variety loss (Gupta et al., 2018; Thiede & Brahma, 2019),
defined in Eq. 3.6.

L(x0:t, θ) = min
k∈{1,K}

D
(︂
yk

t:t+H ,xt:t+H

)︂
(3.6)

where D (·) can be any distance between two trajectories on the sphere. This loss thus
consists, for every past trajectory sample, in selecting sample zk∗ generating the best
match to the single ground truth future. The gradient descent is hence performed only
on a single k∗ sample out of the trajectories generated by the model. This prevents the
architecture from learning to discard z as being an uninformative input for prediction.

DVMS is flexible (P4) because it can be used with any sequence-to-sequence archi-
tecture, being it an architecture processing video content (Romero Rondón et al., 2021) in
case of streaming of stored content, or an architecture processing only the past user’s tra-
jectory (Chao et al., 2021) in case of live streaming. Indeed, Bayesian methods like BNN
(Neal, 2012) and Monte-Carlo dropout (Gal & Ghahramani, 2016) require to change how
every network weight is considered in train (generating multiple weight samples). In
contrast, DVMS only consists in adding a latent variable to modulate the initial state of
the sequence-to-sequence decoder with a random component, independently of the actual
structure of the sequence-to-sequence encoder and decoder.

DVMS is also lightweight (P4) because the additional training cost, w.r.t. the original
sequence-to-sequence architecture, only comes from the latent variable z to be concate-
nated with the encoder’s last hidden state (MLP to learn in Eq. 3.5). This additional cost
is also limited because we do not learn an approximate posterior q(z|x0:t), that is an ad-
ditional neural network (named inference network in Fig. 3.4 and used only in train), but
rather directly sample z from UZK

both in test and train.
All 4 properties (P1)-(P4) are experimentally evaluated in Sec. 3.4.4 and 3.5.3.

3.4.3 Proposal of a DVMS-based architecture
To demonstrate the interest of the proposed DVMS learning framework of multiple
head trajectory prediction, we propose a simple architecture akin to those presented in
(Parsaeifard et al., 2021, Fig. 2) or (Romero Rondón et al., 2021, Fig. 4) in this section.
This architecture is of type sequence-to-sequence and is represented in Fig. 3.7. It is how-
ever simplified compared to the previous literature, as we consider double-stacked gated
recurrent units (GRU) instead of single or double-stacked LSTM.

Here, we purposefully do not consider the visual content in order to simplify the pre-
sentation and analysis of our contribution, which is on the variational framework DVMS
for multiple future prediction, and not on a specific neural architecture. This means that
other architectures can be incorporated in our framework, such as based on more advanced
recurrent techniques like transformers (Chao et al., 2021) or fusion of multimodal input
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GRU64 GRU64 GRU64 GRU64

GRU64 GRU64 GRU64 GRU64

FC128 FC128

Figure 3.7: Proposed example of a DVMS-based architecture.

considering the visual content (Romero Rondón et al., 2021). This compatibility is further
discussed in Sec. 3.6.
Architecture: We set d = 1 as the dimension of z. The encoder is made of a doubly-
stacked GRU with 64 neurons (and default GRU activations). The final GRU’s hidden
state is then fed to a 128-neuron fully connected layer. The output of this layer is concate-
nated with z and fed to another 128-neuron fully connected layer. The decoder is also a
doubly-stacked GRU with same hyper-parameters as the encoder. Not shown on the dia-
gram for simplicity, the output of the GRU decoder is fed to a fully connected layer that
reduces the dimension to 3. This output is added to the last known position, computing the
next position in a residual manner. Using residuals improves training stability and overall
test performance. The past sequence is restricted to xt−m:t with m = 1sec., matching
recent work (Chao et al., 2021; Romero Rondón et al., 2021), and we set H = 5sec. as
the prediction horizon. The sampling rate of the scanpaths is 5Hz, thus the past sequences
are 5 sample-long, and the future sequences are 25 sample-long.
Training procedure: The model is trained using the loss described in Eq. 3.6. Dis-
tance D(·) is taken as the cumulated Euclidean distance, that is D

(︂
yk

t:t+H ,xt:t+H

)︂
=∑︁H

s=0.2

⃦⃦⃦
yk

t+s − xk
t+s

⃦⃦⃦2
. The optimizer is Adam with weight decay (AdamW), with a

learning rate of 5× 10−4 and a batch size of 64.

3.4.4 Results on multiple trajectory prediction
In this section we assess (P1) the diversity of predictions, (P2) the performance forK = 1,
and (P4) the computational cost. Likelihood estimation (P3) is addressed in Sec. 3.5.2.

3.4.4.1 Notation

For simplicity, we introduce a new notation to indicate the number of trajectories the
model is generating. As our model can be trained to generate any number of K trajecto-
ries, we note DVMS-K the version of the model that predicts K future head trajectories.
For example, DVMS-1 generates one trajectories and DVMS-5 generates five trajectories.
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3.4.4.2 Experimental settings

Datasets: We consider four datasets of 360◦ videos with head motion traces:

• MMSys18 (David et al., 2018): head motion traces of 57 subjects watching 19 360◦

videos, all lasting 20 seconds.

• CVPR18 (Y. Xu et al., 2018): head motion traces of 45 subjects watching 208 360◦

videos lasting from 15 to more than 80 seconds (36 seconds on average).

• PAMI18 (M. Xu, Song, et al., 2019): head motion traces of 58 subjects watching
76 360◦ videos, lasting from 10 to 80 seconds (25 seconds on average).

• MM18 (Nguyen et al., 2018): head motion traces of 48 subjects watching 9 360◦

videos, lasting from 19 to 49 seconds (30 seconds on average).

For all of these datasets, we use the same split as described in the supplemental material
from Romero Rondón et al. (2021), such that there is no overlap between the videos in
the train and test sets of CVPR18, PAMI18, and MM18, as well as no overlap between
the users of MMSys18. Additionally, we do not make predictions for the first 6 seconds
of the video with any of the considered competitors, as done by Romero Rondón et al.
(2021) to skip the user’s initial exploration phase.
Metrics: When it comes to evaluating the quality of the multiple predictions, the ma-
jor challenge is that several plausible futures may correspond to a single input, but the
datasets provide only a single ground-truth future. The best way to assess (P1) is there-
fore to check if the known ground truth is covered by one of the few predictions, while
the others can efficiently explore the search space to cover the futures of close inputs.
This can be done by using the winner-take-all or best of many samples (BMS) metric
(Bhattacharyya et al., 2018). Therefore, as is usually done as standard practice in mul-
tiple sequence prediction (Babaeizadeh et al., 2018; Marchetti et al., 2020a; Srikanth et
al., 2019), we report the BMS metric. Specifically, BMS at prediction step s is defined
in Eq. 3.7, where the great-circle distance between points P1 and P2 on the unit sphere
is gcd(P1, P2) = arccos(sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cosλ) with ϕ the latitude and λ the
absolute difference in longitude, and k∗ is defined in Eq. 3.8.

1
U

1
V

1
T

∑︂
u

∑︂
v

∑︂
t

gcd(yk∗

u,v,t+s, xu,v,t+s) (3.7)

k∗(u, v, t) = arg min
k

H∑︂
s=0.2

gcd(yk
u,v,t+s, xu,v,t+s) (3.8)

We report the BMS metric in figures, and we report in a more compact form in tables the
average prediction error, which is the average over s ≤ H of the BMS metric, similarly
to what Marchetti et al. (2020a) reported. For K = 1, the BMS metric is equal to the
great-circle distance, hence enabling the assessment of (P2) with the same metric as used
for single sequence prediction (Chao et al., 2021; Romero Rondón et al., 2021).
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Competitors: We compare our models with four competitors. As no competitor exists so
far for multiple prediction of head motion, we adapt a recent method from the autonomous
driving domain.

• Trivial-static: Trivial-static is a trivial baseline already shown to outperform pre-
vious viewport prediction architectures by Romero Rondón et al. (2021). The pre-
dicted head positions are equal to the last known head position.

• Deep-position-only: Deep-position-only is a deep learning baseline introduced by
Romero Rondón et al. (2021). It is a simple sequence-to-sequence LSTM tak-
ing past head positions as input. Additional details can be found in section 3.2
of (Romero Rondón et al., 2021). Thanks to the reproducible framework they
published (Romero Rondón et al., 2020), we were able to directly evaluate Deep-
position-only with the provided code and model weights and achieve the same per-
formance as reported.

• MANTRA-adapted: MANTRA is an approach described by Marchetti et al.
(2020a) to predict the trajectory of moving agents in a self-driving context. It
uses an auto-encoder in conjunction with a memory network. The auto-encoder
is first trained to reconstruct future trajectories from past and future trajectories.
A memory-writing controller is then trained to fill the memory with embeddings
from the encoder. The memory takes the form of a (key, value) dictionary, where
the embeddings of past trajectories are the keys that are used to retrieve the values,
embeddings of future trajectories.

At prediction time, embeddings of yet unseen past trajectories are computed and
matched with keys from the memory. The K most similar keys are used to retrieve
the K corresponding values, which are then fused with the embedding of the actual
past and decoded into K predicted future trajectories.

Memory is built at training time with the following procedure. During training, if
none of the predicted trajectories is close enough (defined by a manual threshold) to
the ground truth future trajectory, the embeddings (past and future) of this trajectory
are added as new key and value to the memory. The loss for the writing controller
is designed so that it only writes relevant trajectories into the memory. Embeddings
that are too similar and do not help to decrease the prediction error are not added
to the memory. At test time, the memory is read-only and filled with embeddings
from the training set. For this model to work properly, the trajectories have to be
normalized so that they are translation and rotation-invariant.

Building from this approach, we build a MANTRA-adapted model as a multiple
trajectory prediction baseline to be compared to our proposed model. The changes
from the original MANTRA model are described as follows. The trajectories are
3-dimensional instead of 2-dimensional. We adapt the manual distance thresholds
used for the writing controller with values that fit our data and give an acceptable
memory size. We do not normalize the trajectories in the same way. As there is
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no rotation invariance in head motion, we carried out several tests with translation
invariance (separating yaw and pitch). The results were best when only re-centering
on yaw (longitude). The results were worse with re-centering both axes, only pitch
or with no re-centering. Since video cue is not considered in DVMS, thus not
providing any contextual information or map, MANTRA-adapted does not employ
any contextual cue either, such as the “Iterative Refinement Module” (Marchetti et
al., 2020a), which normally integrates information from the map.

• VPT360: VPT360 is the recurrent transformer-based viewport prediction architec-
ture presented by Chao et al. (2021). We do not reproduce their results because the
code is not available at the time of writing, but we report the values presented in
their work (Chao et al., 2021) on the MMSys18 dataset and compare DVMS with
VPT360 on the exact same settings.

3.4.4.3 Experimental results

Prediction error: Fig. 3.8 shows the prediction error (great-circle distance, BMS metric
of DVMS forK > 1) of DVMS against against state-of-the-art single trajectory predictors
on all four datasets. The shaded area represents the 95% confidence interval. Detailed
prediction results showing the average displacement error (ADE) on the same datasets
are also available in Tables 3.1, 3.2, 3.3 and 3.4.

Table 3.1: Prediction error over all s ≤ H on the MMSys18 dataset. Lowest prediction error for a given
K is underlined, lowest prediction error for all K is highlighted in bold.

Method
Average prediction error

s ≤ 1s s ≤ 2s s ≤ 3s s ≤ 4s s ≤ 5s
Trivial-static (K = 1) 0.322 0.522 0.674 0.792 0.883
Deep-position-only (K = 1) 0.261 0.450 0.598 0.721 0.818
VPT360 (reported) (K = 1) 0.239 0.438 0.603 0.726 0.809

MANTRA-adapted

K = 1 0.333 0.621 0.828 0.967 1.066
K = 2 0.296 0.515 0.651 0.743 0.824
K = 3 0.290 0.472 0.575 0.645 0.717
K = 4 0.287 0.453 0.539 0.592 0.659
K = 5 0.274 0.433 0.515 0.566 0.625

DVMS (ours)

K = 1 0.245 0.432 0.581 0.700 0.790
K = 2 0.262 0.424 0.516 0.566 0.613
K = 3 0.228 0.372 0.439 0.465 0.501
K = 4 0.218 0.352 0.402 0.418 0.452
K = 5 0.216 0.343 0.386 0.397 0.432

We observe that DVMS-1 slightly outperforms both Deep-position-only (by 3.4%)
and VPT360 (by 2.3%) on the MMSys18 dataset for when looking at the average predic-
tion error over 5 seconds (prediction step s ≤ 5sec.). DVMS-1 also slightly outperforms
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Figure 3.8: Prediction error (great-circle distance) of DVMS (ours) against state-of-the-art single trajectory
predictors on the four evaluated datasets. Colors have the same meaning across all subfigures.

Deep-position-only on the PAMI18 and MM18 datasets, by 2.1% and 2.8%, respec-
tively, hence meeting (P2). On CVPR18, DVMS largely outperforms Deep-position-only
by 19.5%, which may suggest that Deep-position-only was not properly trained on this
dataset. DVMS-1 also consistently outperforms the Trivial-static baseline (by 8.3% on
average), which is expected. For (P1), we observe for K = 2 a 25% reduction in pre-
diction error for s ≤ 5sec. with DVMS, compared to the single prediction competitors
Deep-position-only and VPT360. For higher K, the error reduction increases, and tends
to saturate for K = 4 then K = 5. DVMS hence meets both (P1) and (P2) on these
datasets.

Fig. 3.9 compares the performance of DVMS with the MANTRA-adapted competitor
on the same datasets. Detailed prediction results can also be found in in Tables 3.1, 3.2,
3.3 and 3.4. We first notice that for everyK = 1, . . . , 5, DVMS consistently yields a lower
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Figure 3.9: Prediction error (BMS metric) of DVMS (ours, solid lines) against MANTRA-adapted (dashed
lines) on the four evaluated datasets. Colors have the same meaning across all subfigures.

prediction error than MANTRA-adapted. Also, we observe that MANTRA-adapted does
not match the state of the art performance of Deep-position-only for K = 1. Over all
datasets, for s ≤ 5sec., the prediction gains of DVMS over MANTRA-adapted range
from 25.9% to 47.3% (average 36.0%) for K = 1, from 25.6% to 40.9% (average
32.7%) for K = 2, from 27.4% to 36.8% (average 32.6%) for K = 3, from 27.2%
to 36.7% (average 32.6%) for K = 4, and from 26.0% to 37.5% (average 32.8%) for
K = 5.

Constructing futures by combining past with future pieces from the training set does
not seem sufficient for MANTRA-adapted to produce diverse enough futures, compared
with DVMS which instead modulates the initial state of the sequence decoder with a
random component. The results on all four datasets therefore show that DVMS is able
to produce diverse predictions (P1), outperforming the multiple prediction competitor
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Table 3.2: Prediction error over all s ≤ H on the CVPR18 dataset. Lowest prediction error for a given K
is underlined, lowest prediction error for all K is highlighted in bold.

Method
Average prediction error

s ≤ 1s s ≤ 2s s ≤ 3s s ≤ 4s s ≤ 5s
Trivial-static (K = 1) 0.263 0.417 0.528 0.610 0.672
Deep-position-only (K = 1) 0.369 0.529 0.637 0.713 0.768

MANTRA-adapted

K = 1 0.351 0.594 0.767 0.887 0.981
K = 2 0.323 0.503 0.608 0.678 0.755
K = 3 0.298 0.456 0.544 0.598 0.656
K = 4 0.292 0.433 0.500 0.543 0.596
K = 5 0.303 0.426 0.487 0.533 0.581

DVMS (ours)

K = 1 0.200 0.355 0.470 0.555 0.618
K = 2 0.200 0.326 0.394 0.435 0.477
K = 3 0.190 0.305 0.357 0.383 0.419
K = 4 0.187 0.295 0.337 0.355 0.387
K = 5 0.186 0.287 0.321 0.335 0.366

Table 3.3: Prediction error over all s ≤ H on the PAMI18 dataset. Lowest prediction error for a given K
is underlined, lowest prediction error for all K is highlighted in bold.

Method
Average prediction error

s ≤ 1s s ≤ 2s s ≤ 3s s ≤ 4s s ≤ 5s
Trivial-static (K = 1) 0.169 0.270 0.345 0.399 0.439
Deep-position-only (K = 1) 0.140 0.239 0.311 0.361 0.396

MANTRA-adapted

K = 1 0.236 0.429 0.571 0.666 0.736
K = 2 0.211 0.343 0.426 0.479 0.530
K = 3 0.202 0.313 0.375 0.417 0.457
K = 4 0.186 0.291 0.351 0.389 0.428
K = 5 0.194 0.290 0.342 0.378 0.413

DVMS (ours)

K = 1 0.135 0.233 0.304 0.353 0.388
K = 2 0.127 0.207 0.253 0.284 0.313
K = 3 0.128 0.202 0.238 0.262 0.289
K = 4 0.124 0.192 0.224 0.244 0.271
K = 5 0.125 0.189 0.218 0.235 0.258

MANTRA-adapted, while providing comparable performance to state-of-the-art single
trajectory predictors when K = 1 (P2).

We ran experiments where DVMS was tested on different datasets than it was trained
on to assess its generalization capabilities. We report the cross-dataset performance in
Table 3.5. We can see that models trained on smaller datasets such as MMSys18 and
MM18 struggle to generalize to other datasets, with a prediction error usually higher than
the other models. However, we observe that models trained on CVPR18 (the largest of
the four datasets) tend to generalize well to other datasets, even outperforming models
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Table 3.4: Prediction error over all s ≤ H on the MM18 dataset. Lowest prediction error for a given K is
underlined, lowest prediction error for all K is highlighted in bold.

Method
Average prediction error

s ≤ 1s s ≤ 2s s ≤ 3s s ≤ 4s s ≤ 5s
Trivial-static (K = 1) 0.190 0.309 0.400 0.471 0.530
Deep-position-only (K = 1) 0.183 0.301 0.392 0.466 0.529

MANTRA-adapted

K = 1 0.221 0.411 0.572 0.693 0.779
K = 2 0.204 0.341 0.431 0.499 0.565
K = 3 0.204 0.330 0.402 0.450 0.501
K = 4 0.202 0.310 0.366 0.409 0.456
K = 5 0.199 0.302 0.356 0.391 0.435

DVMS (ours)

K = 1 0.159 0.282 0.377 0.453 0.514
K = 2 0.155 0.262 0.326 0.369 0.410
K = 3 0.156 0.254 0.302 0.330 0.364
K = 4 0.148 0.236 0.275 0.298 0.332
K = 5 0.149 0.237 0.273 0.292 0.322

trained MMSys18 and MM18 on their own test datasets in some cases, without any kind
of dataset-specific fine-tuning. We recommend using the CVPR18 dataset to train DVMS,
as models trained on CVPR18 are always the best or second-best performing on any test
dataset.

Fig. 3.10 shows qualitative examples of multiple trajectory prediction. It shows sim-
ilar past trajectories of two different users, yielding distant future trajectories. When
K = 2, we observe that DVMS produces different plausible trajectories, where one
matches best the first user and the other the second user.
Computational cost: Hardware used to train and test the methods is a Nvidia RTX 3080
with 10GB of video RAM on a station with 128GB of RAM. Table 3.6 shows that DVMS
and MANTRA-adapted have significantly less weights than both single prediction meth-
ods Deep-position-only and VPT360. While DVMS has more neural network parameters
than MANTRA-adapted, the execution time to generate a trajectory at test time is 14%
less than MANTRA-adapted. This is due to MANTRA-adapted having to do memory
lookup.

Indeed, MANTRA-adapted has an extra memory, which DVMS does not, and the size
of this memory, shown in Table 3.7 in percentage of the training set size, varies with the
target accuracy and the dataset (and hence cannot be generalized to other datasets before
actual training). Also, training MANTRA-adapted requires two phases, the first to train
the auto-encoder, the second for the memory writing controller.

Hence, on four datasets of head motion data, DVMS achieves better prediction per-
formance for lower computational resources than single prediction methods VPT360 and
Deep-position-only, and for lower or equivalent resources than MANTRA-adapted.
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Table 3.5: Prediction error over s ≤ 5s when training and testing on different datasets. For a given test
dataset and a given K, the lowest prediction error is highlighted in bold, the second lowest prediction error
is underlined.

Test dataset
Train dataset MMSys18 CVPR18 PAMI18 MM18

K = 1

MMSys18 0.790 0.695 0.466 0.706
CVPR18 0.778 0.618 0.397 0.561
PAMI18 0.789 0.643 0.388 0.718
MM18 0.881 0.796 0.802 0.514

K = 2

MMSys18 0.613 0.569 0.420 0.542
CVPR18 0.581 0.477 0.321 0.437
PAMI18 0.604 0.493 0.313 0.501
MM18 0.698 0.606 0.530 0.410

K = 3

MMSys18 0.501 0.491 0.371 0.414
CVPR18 0.503 0.419 0.295 0.362
PAMI18 0.530 0.442 0.289 0.440
MM18 0.597 0.533 0.487 0.364

K = 4

MMSys18 0.452 0.444 0.350 0.354
CVPR18 0.460 0.387 0.275 0.341
PAMI18 0.476 0.404 0.271 0.407
MM18 0.531 0.481 0.435 0.332

K = 5

MMSys18 0.432 0.418 0.330 0.347
CVPR18 0.427 0.366 0.261 0.321
PAMI18 0.451 0.385 0.258 0.376
MM18 0.483 0.434 0.364 0.322

Table 3.6: Computational cost of the different models.

Model # parameters Latency (ms)

Trivial-static 0 < 0.01
Deep-position-only 4.21M 46.98
VPT360 6.3M N/A
MANTRA-adapted 76k 6.81
DVMS (ours) 110k 5.87

3.5 Analysis of the DVMS latent space and likelihood es-
timation

In this section, we first analyze the structure of the latent space learned from the trajectory
data and we connect latent space locations and values of z with physical properties. We
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Figure 3.10: Examples of generated trajectories. Two different users (rows) have close past trajectories for
the same timestamp t = 8sec. of the same video DroneFlight (MMSys18 dataset), but their future trajecto-
ries are significantly different. Predicting only one future (left column) does not enable good prediction of
both futures, while predicting multiple (right column) does.

then present our method to estimate the likelihood of every of theK generated trajectories,
instrumental to deploy DVMS in a streaming system (evaluated in chapter 4).

3.5.1 Linking latent space features to trajectory properties
The model learns a representation of the past trajectory before being combined with z to
generate a future trajectory. In this section, we first show what trajectory properties the
encoder is able to perceive, and then we analyze the impact that different values of z can
have on the generated trajectories when combined with the output of the encoder.
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Table 3.7: Memory size (in number and percentage of training samples) of the MANTRA-adapted method
for different number of predicted trajectories K across all the datasets.

Dataset MMSys18 CVPR18 PAMI18 MM18
Training set size 12600 560342 271440 32160

K = 1 6413
(50.90%)

258758
(46.18%)

79503
(29.29%)

10520
(32.71%)

K = 2 3601
(28.58%)

142113
(25.36%)

34564
(12.73%)

4575
(14.23%)

K = 3 2041
(16.20%)

83702
(14.94%)

20059
(7.39%)

2489
(7.74%)

K = 4 1227
(9.74%)

50265
(8.97%)

10470
(3.86%)

1431
(4.45%)

K = 5 811
(6.44%)

36325
(6.48%)

7632
(2.81%)

797
(2.48%)

3.5.1.1 Learned representation of past trajectories

We define as “embedding of the past trajectory” the output of the last layer of the encoder
of DVMS, i.e., the output of the last orange layer in Fig. 3.7 (128 dimensions). Fig. 3.11
shows a 2D representation (obtained with t-SNE (van der Maaten & Hinton, 2008)) of
all the embeddings of the test set of the CVPR18 dataset obtained with a model trained
to predict three trajectories (K = 3) on the train set of the CVPR18 dataset. Each dot
corresponds to a past trajectory, and embeddings that are similar in the 128-dimensional
space should be close to each other on the 2D representation.

(a) Colored by past trajectory speed (b) Colored by past trajectory direction

Figure 3.11: 2D representation of the embeddings of past trajectories learned by the encoder on the CVPR
dataset.

The embeddings dots were colored according to the speed of their corresponding past
trajectories on Fig. 3.11a. Blue dots represent embeddings of low-speed trajectories and
yellow dots represent embeddings of high-speed trajectories. We can see some areas



3.5 – 3.5.1 Linking latent space features to trajectory properties 67

where the colors are well separated, with yellow “high-speed areas” and blue “low-speed
areas”.

The embeddings dots were colored according to the direction of their corresponding
past trajectories on Fig. 3.11b. Blue dots represent embeddings of trajectories going to
the left and red dots represent embeddings of trajectories going to the right. We can see
some areas where the colors are well separated, with some plain blue (resp. red) areas
where all the embeddings correspond to trajectories going to the left (resp. right).

We can observe a correspondance between “high-speed areas” and areas where the
direction is clearly left or right. “Low-speed areas” correlate with areas where the direc-
tion seems random. From these observations, we can deduce that the model is able to
differentiate and represent different speeds and angles in its latent space. Specifically, it
can easily identify high speed trajectories coming from left or right.

3.5.1.2 Impact of z

Depending on weight initialization, training set and data order, the model will map differ-
ent trajectory features to z. Here we show an example for a model trained to predict three
trajectories (K = 3) on the CVPR dataset.

To understand and evaluate the impact of z in the model, we show the estimated prob-
ability density functions (PDF) of the speed and direction of the output trajectories gen-
erated with each zk. The approximate probability density functions are obtained through
kernel density estimation (KDE), which we consider to be easier to read and understand
than histograms for our data.

Fig. 3.12 shows the impact of z on trajectory speed. Fig. 3.12-left shows the distribu-
tion of the past and future trajectory speeds. Fig. 3.12-center shows the distribution of the
output trajectory speeds generated with each zk and that corresponding to the ground truth
future (GT). Fig. 3.12-right shows the distribution of the ratios between past and future
speed. A ratio of 100 (1) means that the generated/future trajectory has the same speed as
its corresponding past. A ratio greater (resp. lower) than 1 means that the generated/future
trajectory has a greater (resp. lower) speed than its corresponding past.

We can see that the predicted speed is always at least slightly lower than the actual
speed (which we see for all K on all datasets), most likely because predicting higher
speed (longer) trajectories will lead to higher error on average. The model learns to be
conservative by predicting shorter (lower speed) trajectories. We also see much less vari-
ance in predicted speed than in actual speed (which we also see for all K on all datasets),
but having more predicted trajectories (higher K) allows for more diversity overall, since
each z can cover different parts of the distribution. In this example, the model learns to
“specialize” z: z2 generates low speed trajectories while z1 and z3 give similar speeds,
usually in the same order of magnitude as GT.

Fig. 3.13 shows the impact of z on trajectory direction. Fig. 3.13-left shows the
distribution of the past and future trajectory directions. Fig. 3.13-center shows the distri-
bution of the output trajectory directions generated with each zk compared to the ground
truth future (GT). Fig. 3.13-right shows the distribution of the differences between past
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Figure 3.12: Distribution of the trajectory speeds depending on z.

and future direction. A difference of 0 means that the generated/future trajectory kept
going in the same direction as its corresponding past. A difference greater (resp. lower)
than 0 means that the generated/future trajectory turned right (resp. left) relative to its
corresponding past.
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Figure 3.13: Distribution of the trajectory directions depending on z.

The direction peaks that we observe on Fig. 3.13-left and Fig. 3.13-center indicate
more trajectories going left (−π

2 ) or right (π
2 ) than in other directions. This means there

is a lot more horizontal head movement than vertical head movement, which is expected
in head motion data. We can discern 3 peaks on Fig. 3.13-right. The first peak at −π
corresponds to cases where the past was going to the right but the future is going to the
left, the second peak at 0 corresponds to cases where the past and the future go in the
same direction, and the third peak at +π corresponds to cases where the past was going
to the left but the future is going to the right.

In this example, while z1 and z3 give similar speeds, the generated trajectories have
completely different directions. With z1, the generated trajectories always go in the left
direction. With z3, the generated trajectories always go in the right direction. The direc-
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tion of trajectories generated with z2 follow a distribution close to GT. We can see that in
order to go left, trajectories generated with z1 will either continue in the same direction
as the past or turn around to go left if the past was going right. Similarly, trajectories
generated with z3 will either continue or turn around in order to always go right.

In conclusion, DVMS learns to efficiently use the values of z by specializing them.
Each zk will generate a different “type” of future trajectory. In this example, we have seen
that one zk is used to generate low speed futures, while the other two are used to generate
higher-speed futures, but with opposite directions.

3.5.2 Exploiting properties of z to estimate trajectory likelihood
We have seen that the model learns to differentiate trajectories based on their features
such as speed (length) and direction to project them into a meaningful latent space, and
that the model also learns to specialize provided values of z into specific types of trajecto-
ries. In this section, we present how we can take advantage the latent space properties of
our variational predictor DVMS to estimate the likelihood of the multiple predicted tra-
jectories. First, we present the general approach to likelihood estimation in Sec. 3.5.2.1.
Second, we study in Sec 3.5.2.2 a stationarity hypothesis we make to produce our esti-
mator. Third, we demonstrate in Sec. 3.5.3 the performance of our likelihood estimator,
including disaggregated results and analysis over video categories.

3.5.2.1 Definition of the likelihood estimator

For a regression problem, the likelihood Pr[yk
t:t+H |x0:t] of a future trajectory can be ex-

pressed with exp−D(yt:t+H ,xt:t+H), hence estimating the likelihood is equivalent to estimat-
ing the distance of a trajectory to the ground truth, that is the negative log-likelihood. We
denote by errk

u,v,t the error of the k-th generated trajectory yk
t:t+H , the motion of user u

on video v at timestamp t, defined in Eq. 3.9.

errk
u,v,t = D

(︂
yk

t:t+H ,xt:t+H

)︂
(3.9)

With a variational framework, a standard approach to estimate the likelihood would be
to rely on the model (whose parameters are set from the training data) and on the known
past x0:t.

In this work, we argue that this is not sufficient, and that other available information
must be considered, namely the past generated trajectories yk

s:min(s+H,t), for all k ∈ {1, K}
and s ∈ [0, t], and the errors obtained by every such trajectory when compared to the
available ground truth at t xs:min(s+H,t). Indeed, these errors are informative of which zk,
for k ∈ {1, K}, have best coded the latent features connecting the future trajectory with
the past trajectory.

If the errors over the various zk, for k ∈ {1, K}, have sufficient stationarity in time,
then we can exploit such stationarity to estimate the likelihood of the predicted trajecto-
ries. We therefore define an estimate the estimate ˆ︃errk

u,v,t(r) of errk
u,v,t in Eq. 3.10.

ˆ︃errk
u,v,t(r) = D

(︂
yk

t−r:min(t−r+H,t),xt−r:min(t−r+H,t)
)︂

(3.10)
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where r is a past window of size controlling the age of the trajectory ground truth to
produce the error estimate. Let us recall that the z-space is discrete, with ZK = {zk}K

k=1.
This means that errk

u,v,t is predicted by the error produced by the trajectory yk
t−r:t−r+H

generated with the same zk and predicted at time t − r over a horizon H , but with the
error only counted on the timestamps for which the ground truth xu,v is available, i.e., on
[t− r,min(t− r +H, t)].

The accuracy of this estimator therefore depends on the stationarity in time of the dis-
tribution of the error over the latent values zk, for k ∈ {1, K}. We study this stationarity
next.

3.5.2.2 Study of the stationarity of error distribution in the latent space of DVMS

We first analyze how errk
u,v,t evolves over t = tstart : T , for given test videos v and users

u from the MMSys18 dataset. The MMSys18 test set is made of 5 videos of 4 categories
according to the taxonomy established by Almquist et al. (2018) (Romero Rondón et al.,
2021): exploration (PortoRiverside and PlanEnergyBioLab), moving focus (Turtle), static
focus with camera motion (WaterPark), static focus without camera motion (Warship).
Fig. 3.14-left shows an example for video PortoRiverside and user u = 56. We observe
that, for every t ∈ {tstart : T}, the future trajectory y3

t:t+H produced by latent value z3
consistently yields the lowest prediction error. Fig. 3.14-right shows that, for video Turtle
and user u = 28, the lowest error is consistently produced by latent value z2.
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Figure 3.14: Prediction error for different latent values over time, test set of the MMSys18 dataset. Left:
video PortoRiverside, user 56. Right: video Turtle, user 28.

Second, as Fig. 3.14 only shows examples obtained for specific choices of (v, u), we
investigate how representative these cases are. To do so, we define a latent stationarity
matrix (LSM) per video v defined in Eq. 3.11, where U is the total number of user traces
per video.

Av
ij = 1

UK

U∑︂
u=1

K∑︂
k=0

(︂
errk

u,v,i − errk
u,v,j

)︂2
, (i, j) ∈ {tstart, . . . , T}2 (3.11)
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For every user u, the main term in the summation represents the difference, between
timestamps i and j, in how the error is distributed in the discrete latent space ZK . Fig.
3.15 depicts such error differences as heatmaps for all the five videos of the test set of
the MMSys18 dataset. Each heatmap shows how the distribution of the error over all
k ∈ 1, . . . , K varies over time for each video. The more variation in prediction error over
time for each k (i.e., the more variation in Fig. 3.14 over all users), the higher the value
of Av

ij .
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Figure 3.15: Latent Stationarity Matrix (LSM). The color scale codes for the error difference Av
ij . Axes are

in seconds (t = 6 sec. to t = 15 sec. so t + H ≤ T = 20 sec.). Test videos of the MMSys18 dataset.
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First, we observe that, when the timestamps i and j are equal, error difference is null,
which is expected. Also, it is interesting to observe that the closer i and j, the lower
the error distance. This shows that the results illustrated in Fig. 3.14 for specific (u, v)
pairs are general: the prediction error yielded by zk varies more or less slowly over time
(depending on the videos). Such stationarity may hence be exploited to produce error (i.e.,
likelihood) estimates. Similar qualitative results hold on the other datasets, but we do not
show these maps for the sake of brevity. However, estimation results on all 3 datasets are
shown in Sec. 3.5.3.

Second, it is interesting to observe that the level of stationarity/speed of variation of
the error produced by every zk, for k ∈ {1, K}, depends on the video category. For both
exploration-type videos PortoRiverside and PlanEnergyBioLab, the error difference for
a given timestamp difference is significantly higher than for the focus-type videos. The
stationarity of latent errors is hence lower in exploration videos, and error estimates from
the past timestamps should yields better estimates in Focus videos, which we investigate
in the next section.

3.5.3 Results on trajectory likelihood estimation
Datasets: The results below are obtained on the three largest datasets among those con-
sidered in Sec. 3.4.4, namely MMSys18, CVPR18, and PAMI18.
Metrics: We measure the quality of the trajectory likelihood/error estimate with its Pear-
son correlation coefficient with the ground truth. Indeed, as the motivation for the present
contribution is to benefit from such estimates in a stochastic formulation of resource op-
timization (see Sec. 3.3.1), we want to evaluate how much are the produced estimates
linearly correlated with the ground truth error. If the correlation coefficient was 1, we
would obtain the true likelihood. For any past window size r, for every tuple (v, u, t), we

are interested in how the corresponding K samples
{︂
(errk

u,v,t,ˆ︃errk
u,v,t(r))

}︂K

k=1
are corre-

lated. To allow considering a larger number of samples to obtain more confident estimates
of the correlation coefficient, we consider

{︂
(errk

u,v,t,ˆ︃errk
u,v,t(r))

}︂
k,u,t

. However, to do so
without artificially increasing the correlation coefficient owing to different average val-
ues of the samples over the (u, t) tuples, we first normalize

{︂
(errk

u,v,t,ˆ︃errk
u,v,t(r))

}︂K

k=1
independently for every (u, t). The correlation coefficient for every value of r is then
computed on the normalized pairs of ground truth error and error estimate.
Results: Figures 3.16-3.18 show the evolution of the Pearson correlation coefficient with
the past window size r ∈ [0, H], with the shaded area representing the 95% confidence
interval. To assess the correlation strength, we follow the recommendation from recent
literature (Xue, Ali, Ding, & Cesar, 2021; Akoglu, 2018): low: 0.1 ≤ |corr| < 0.3;
moderate; 0.3 ≤ |corr| < 0.6; high: 0.6 ≤ |corr| ≤ 1.0.

It is important to note that the LSM is a novel type of characterization for 360◦ video.
While previous characterizations were directly based on the video content or the user
traces (Almquist et al., 2018; Nasrabadi et al., 2019; Rossi & Toni, 2020), the LSM
represents characteristics of the latent space in connection with prediction performance.
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Figure 3.16: Correlation between estimated and ground truth error of predicted trajectories, on the MM-
Sys18 dataset. Left: average over all test videos. Right: average per test video.
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Figure 3.17: Correlation between estimated and ground truth error, on the PAMI18 dataset. Left: average
over all test videos. Right: average per group.

For the test sets of the PAMI18 and CVPR18 datasets, Fig. 3.17-left and 3.18-left
show that there is a moderate significant correlation of the estimates with the ground truth
errors. For the test set of the MMSys18 dataset, there is a moderate to low correlation,
the significance being low possibly owing to the very low number of videos in the test set
(only 5). We also observe that the correlation generally increases with r for the MMSys18
and PAMI18 datasets in Fig. 3.16 and 3.17 (reaching maximum level for r ≥ 2 sec. and
r ≥ 3.5 sec., respectively), while for the CVPR18 dataset in Fig. 3.18, the average
correlation reaches a maximum for r = 3 seconds then decreases.

It is interesting to disaggregate the results and analyze the correlation per video type.
Regarding video types, as in Section 3.5.2.2, we follow the taxonomy of Almquist et al.
(2018), who define the following categories: static focus, moving focus, ride, and explo-
ration. Fig. 3.16-right shows the correlation results for each of the 5 test videos in the



74
CHAPTER 3 — Deep variational learning for multiple trajectory prediction of 360◦ head

movements

0 1 2 3 4 5

0.15

0.2

0.25

0.3

0.35

past estimation window size r (sec.)

Pe
ar

so
n

co
rr

el
at

io
n

co
ef

fic
ie

nt

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

past estimation window size r (sec.)
Pe

ar
so

n
co

rr
el

at
io

n
co

ef
fic

ie
nt Lowest 10% entropy

Medium entropy
Highest 10% entropy

Figure 3.18: Correlation between estimated and ground truth error, on the CVPR18 dataset. Left: average
over all test videos. Right: average per group.

MMSys18 dataset. For both videos of type exploration, PortoRiverside and PlanEnergy-
Biolab, the correlation is significantly low. However for the focus-type videos (Warship,
WaterPark and Turtle), the correlation is moderate, being significant for the first two for
2 ≤ r ≤ 3 sec., while for Turtle, the performance in unstable (it is worth noting that
Turtle is of type moving focus video, which is not present in the training set). We also
notice that the maximum correlation is obtained for r ≤ 1.5 sec. for exploration videos,
while the maximum is obtained for r ≥ 3 sec. for focus-type videos.

The other two datasets have 16 (PAMI18) and 42 (CVPR18) test videos. Therefore,
to categorize the video automatically between exploration and focus-type video, we re-
sort to the method presented by Romero Rondón et al. (2021), consisting in associating
exploration (resp. focus) videos with low (resp. high) entropy values of the saliency maps
obtained from the user traces. Fig. 3.17-right and 3.18-right show the correlation results
broken down into the 10% of videos with highest entropy, 10% with lowest entropy, and
the rest. In Fig. 3.17-right, we observe that for PAMI18 focus videos, the correlation is
strong and significant for r ≥ 3 sec., while it is low significant for exploration videos and
moderate significant for the rest. Similar trends can be observed with CVPR18 videos,
where the correlation is low and significant for exploration videos, and moderate and sig-
nificant for the rest. For exploration videos, the correlation is maximum for r ∼ 2 sec.,
while it is maximum for r ∼ 3 sec. for the rest.

Therefore, we have shown that our method is able to predict multiple diverse trajecto-
ries, providing estimates of their respective likelihood to leverage in stochastic optimiza-
tion of resource allocation. The estimates are shown to correlate with ground truth, the
level of correlation and past window size r providing highest correlation depending on
the video category. In chapter 4, we show how multiple trajectories and their estimated
likelihoods can be used in an 360◦ streaming system with trace-driven simulations in a
new simulator that we propose and make publicly available.
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3.6 Discussion
To the best of our knowledge, this work presents the first proposal to generate multiple
plausible 360◦ head trajectories. Our DVMS learning framework therefore establishes
a first baseline for comparison, and paves the way for more principled approaches to
stochastic optimization of 360◦ streaming, and immersive streaming in general.

In particular, DVMS can be adapted to 6DoF immersive environments where both
head-gaze and translational motion need to be predicted. It will also be most relevant
for foveated rendering and streaming for ultra-high resolution eye-tracker equipped head-
mounted displays, where the level of uncertainty is increased by the need to predict a
restricted foveal area where the human focuses and which moves rapidly. It is also instru-
mental to enable the automatic triggering of interactive strategies when the predictability
of the user motion is evaluated to be too low (Sassatelli et al., 2020). Also, we have
shown that the latent variable with discrete values is learned to generate different types
of trajectory, for example with low speed or with high speed with two different posi-
tions. Considering DVMS with content-aware architectures in connection to user and
video profiles will enable to investigate more intricate connections between scene video
content, user state and motion predictability, as preliminarily investigated in chapter 5.

Considering uncertainty in prediction is often approached with Bayesian neural net-
works (Neal, 2012; Kan et al., 2021; L. Yang et al., 2022). However, these approaches are
computationally intensive and do not allow to capture mode diversity in the data (Fort et
al., 2020). Alternatives exist to better learn data diversity, e.g., Monte-Carlo dropout (Gal
& Ghahramani, 2016), or approaches based on memory networks like (Marchetti et al.,
2020a). In contrast, our DVMS method builds on deep latent variable models, and proves
lightweight, flexible and suited to the head motion data diversity. It confirms the interest
in investigating more dynamic VAEs, to possibly design proper inference networks and
conditional prior p(z|x0:t) in test. We discuss this approach in Sec. 3.7.2.

We have exemplified the DVMS prediction framework with a video-agnostic neu-
ral architecture. A direct perspective is to investigate DVMS performance when used
in conjunction with a content-aware architecture. DVMS is compatible by design with
sequence-to-sequence architectures, such as those used in the head motion prediction lit-
erature (Romero Rondón et al., 2021; Nguyen et al., 2018; Y. Xu et al., 2018).

3.7 Other investigated approaches to consider uncer-
tainty

The idea behind DVMS was to alleviate the problem of uncertainty caused by the intrinsic
randomness of head motion data. To do so, we proposed a stochastic model capable
of estimating the probability distribution of future viewports by (i) predicting multiple
possible trajectories of future head motion (Sec. 3.4), (ii) estimating the likelihood of
these trajectories (Sec. 3.5.2). In this section, we provide a quick exploration of other
ideas to reach the same objective.
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The work discussed in this section is the outcome of two Master’s theses internships,
which were co-supervised by Prof. Lucile Sassatelli and myself. We worked on un-
certainty quantification using the variational information bottleneck with Hugo Bell who
was a Master student at the University of Edimburgh. We worked on formal approaches
to variational sequence prediction with dynamical VAEs with Franz Franco Gallo who
was a Master student at Université Côte d’Azur.

3.7.1 Uncertainty quantification with the variational information
bottleneck

Predicting future head movements and being able to provide an indication of the confi-
dence that we can have in the prediction would essentially achieve our desired objective.
For this reason, we started to look into ways to quantify the uncertainty of our predictions.
Uncertainty can be classified into two categories (Kendall & Gal, 2017):

• Aleatoric uncertainty, also known as statistical uncertainty, pertains to the inherent
randomness and variability in experimental outcomes, exemplified by phenomena
like coin flipping. This randomness originates from intrinsic stochastic elements,
leading to outcomes like heads or tails, which cannot be definitively predicted even
with the best possible model.

• In contrast, epistemic uncertainty, or systematic uncertainty, arises from a lack of
knowledge about the underlying model. It represents the ignorance of the agent or
decision maker regarding the true nature of the phenomenon, rather than an inherent
randomness.

We can roughly simplify these definitions to fit our head prediction problem: aleatoric
uncertainty originates from the randomness of the data and is irreducible, while epistemic
uncertainty comes from the incorrectness of our model, and may reduce with more data.

Following work from A. A. Alemi, Fischer, and Dillon (2018), we looked into how
we could leverage the variational information bottleneck (VIB) to quantify the uncertainty
of our predictions. We provide a more detailed background as well as our methods and
results in the next sections.

3.7.1.1 Background

The variational information bottleneck (VIB) (A. A. Alemi, Fischer, Dillon, & Murphy,
2017) establishes a variational approximation of the Information Bottleneck (IB) (Tishby
& Zaslavsky, 2015). The VIB operates in the realm of supervised learning, mirroring the
role of β-VAE (Burgess et al., 2018) in unsupervised learning. Both methodologies find
their foundation in information-theoretic principles (A. Alemi et al., 2018). In the context
of supervised learning, the IB addresses the challenge as a representation learning task. It
aims to discover a probabilistic mapping from input data X to a latent representation Z,
ensuring that this representation retains the capability to predict the corresponding labels
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Y . This process operates under a constraint limiting the overall complexity of the learned
representation.

In other words, the objective of the IB is to only learn the most useful latent representa-
tion of the input, while discarding irrelevant information. This is done by maximizing the
mutual information between the latent representation and the output, while minimizing
the mutual information between the input and the latent representation. While the mutual
information optimization problem of the IB is intractable in general, A. A. Alemi et al.
(2017) derived a simple tractable variational bound. In practice, the VIB is implemented
as follows:

• a (learned) stochastic encoder transforms the input X into some encoding Z,

• a (learned) variational decoder outputs predicted labels Ŷ from the sampled code
Z,

• the loss function combines the cross-entropy between the outputs Ŷ and the ground
truth labels Y and the Kullback–Leibler divergence (KLD) between the conditional
distribution of the latent codes learned by the encoder (given the inputs) and the
density of the latent space estimated by a (learned) variational marginal.

A. A. Alemi et al. (2018) proposed two metrics to quantify the (epistemic) uncertainty
with the VIB: (i) the entropy of the classifier H , and (ii) the KLD between the conditional
distribution over latent codes given the input and the code space defined by the learned
marginal. (also known as the rate R).

The VIB and the uncertainty quantification metrics that we just discussed were de-
fined in the context of classification tasks. While the VIB appears to be easily trans-
ferrable to our encoder-decoder sequence-to-sequence framework (we can introduce a
bottleneck between the encoder and the decoder), this is part of exciting new work to ap-
ply this approach to regression tasks (Lyu, Aminian, & Rodrigues, 2021; Ngampruetikorn
& Schwab, 2022).

3.7.1.2 Methods

In order to use the VIB approach to uncertainty quantification, we chose to start
with the adaptation of a simple model: the deep-position-only baseline introduced by
Romero Rondón et al. (2021), discussed in Sec. 3.4.4.2. We adapted deep-position-only
by introducing latent random variables between the encoder and decoder LSTMs. We
briefly explain how this new model (namely, pos-only-VIB) works, and provide an illus-
tration in Fig. 3.19.

First, instead of generating a single, deterministic hidden state, the LSTM encoder
generates the parameters of a Gaussian distribution, our latent space. Second, the decoder
is fed with samples from this distribution to generate future head trajectories.

To estimate epistemic uncertainty with pos-only-VIB, we used the rate R described
by A. A. Alemi et al. (2018). To do so, we needed to estimate the density of the latent
space with a marginal, as described in Sec. 3.7.1.1. We used Gaussian mixture of 200
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Figure 3.19: Architecture of the pos-only-VIB model.

components, following A. A. Alemi et al. (2018). To estimate the aleatoric uncertainty,
we followed the approach of Sinha et al. (2021), repeatedly sampling from the latent
distribution for a test input, generating the corresponding network outputs and observing
their empirical variance.

To evaluate the uncertainty estimates of our approach, we must assess how well-
calibrated our model is, i.e., how well our uncertainty estimates align with true epis-
temic and aleatoric uncertainty. To evaluate our epistemic uncertainty estimates, we used
the rate R for out-of-distribution (OOD) detection against an induced distributional shift
(Ovadia et al., 2019), by using users and videos unseen in training on head motion datasets
(MMSys18 and CVPR18, see Sec. 3.4.4.2) and by using synthetic data generated from
different distributions. We used the AUROC metric as a threshold-free metric to measure
the calibration of our model for epistemic uncertainty estimates (A. A. Alemi et al., 2018;
van Amersfoort, Smith, Teh, & Gal, 2020; Postels et al., 2021). To evaluate our aleatoric
uncertainty estimates, we measured the correlation between the empirical variance of our
outputs (when repeatedly sampling from the latent space) and the prediction error on
in-distribution (ID) trajectories (because aleatoric uncertainty is irreducible), following
Postels et al. (2021).

3.7.1.3 Results

Regarding epistemic uncertainty quantification, the AUROC stayed around 0.5 for all
cases on real world datasets, indicating there was no threshold on the rate R that al-
lowed to differentiate between ID and OOD samples. On “easily” differentiable synthetic
trajectories which were generated using radically different distributions, R was a good
indicator of epistemic uncertainty, as the AUROC reached 0.9. However, the AUROC
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stayed around 0.5 for more “difficult” cases of synthetic trajectories that were generated
with speed and curvature constraints to look like realistic trajectories.

Regarding aleatoric uncertainty quantification, we found a strong correlation between
our estimates and the prediction error, with Pearson and Spearman correlation scores
of 0.912 and 0.794 respectively. The accuracy of of our aleatoric uncertainty estimates
seemed to vary with the type of video (lower accuracy for exploration-type videos).

We also investigated a non-variational density estimation approach to uncertainty
quantification, following the idea of Postels et al. (2021), fitting a conditional normalizing
flow (CNF) (Ardizzone, Lüth, Kruse, Rother, & Köthe, 2019) to training set activations,
allowing the exact evaluation of the log-likelihood of test inputs (Kingma & Dhariwal,
2018). However, this approach was found to be unsuitable in its current form for our
purposes, as it assumes a uniform distribution over the output space (which is not the case
for the head motion prediction task).

Although alternative methods for density estimation using Gaussian mixture models
(often in the form of mixture density networks (Bishop, 1994)) have been developed in
the uncertainty quantification literature, practical issues have been found with these mod-
els such as non-convergence for high-dimensional problems (Postels, Ferroni, Coskun,
Navab, & Tombari, 2019) and mode collapse (Makansi, Ilg, Cicek, & Brox, 2019).

Overall, the outcomes of our experiments demonstrated the efficacy of our model
in accurately quantifying aleatoric uncertainty in real head motion trajectories. How-
ever, its success in quantifying epistemic uncertainty was observed solely in the case of
highly simplified synthetic trajectories. Through visualizations of epistemic uncertainty
estimates and model latent representations (not shown here), we hypothesized that the
failures in epistemic uncertainty estimation could be attributed to a recently identified
issue called feature collapse (van Amersfoort et al., 2020), affecting the representations
generated by our model.

In summary, despite negative results on epistemic uncertainty quantification, we think
that our approach yielded promising outcomes, encouraging further exploration. This
highlights the need for in-depth examinations of the acquired learned representations and
the creation of more efficient representation techniques, pointing toward avenues for fu-
ture development.

3.7.2 Dynamical variational auto-encoders
With DVMS, we took inspiration from RNN-based VAEs to build a (discrete) variational
model for sequence prediction (see Sec. 3.4 for a background on deep generative mod-
els and the design of DVMS). Dynamical VAEs were recently formalized as a new class
of models by Girin et al. (2021), extending VAE to sequence modeling. In their com-
prehensive review, they detailed the temporal dependencies of the latent variables in the
inference (encoder) and generative (decoder) networks of various DVAE models. In this
section, we investigate the potential of DVAE approaches compared to our DVMS ap-
proach. We first provide a background on DVAE in Sec. 3.7.2.1, then we provide some
details on the specific DVAE approaches that we chose to explore for our head motion
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prediction tasks, with graphical models of their generative and inference networks in Sec.
3.7.2.2 and Sec. 3.7.2.3.

3.7.2.1 Background on DVAE

To better understand what DVAE models are and how they are related to different classes
of models, we look at the proposed taxonomy in Fig. 3.20, originally proposed by Girin
et al. (2021).
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Figure 3.20: Graphical taxonomy of generative probabilistic models, adapted from Girin et al. (2021).

We left the original elements of the proposed taxonomy of generative probabilistic
models in blue. In orange, we added elements that we consider relevant here:

(i) An example of implicit generative model (Mohamed & Lakshminarayanan,
2017), that can generate data “directly”. Implicit generative models can be seen
as “decoder-only”, as they do not have an explicit inference (encoder) network that
learns an approximate posterior distribution of the latent space. Generative adver-
sarial networks (GANs) constitute the most popular example (Goodfellow et al.,
2014, 2020) of this type of model.

(ii) Conditional variational auto-encoders (CVAEs), which are considered as be-
yond the scope of the DVAE review, but that we consider relevant to our head
motion prediction problem (e.g., we can condition the reconstruction of the future
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trajectory on the past trajectory or the video content). DVAEs could also be seen
as a special case where the built-in temporal dependency in the latent variable itself
constitutes a conditioning.

We highlighted the focus of the DVAE review in bold, and examples of DVAE models
they explore in bold italics.

We position DVMS in this taxonomy. DVMS does not fall in the DVAE class, as it
is not a VAE. DVMS is an implicit generation model with no inference network. While
DVMS is designed for sequence modeling with temporal dependencies, another important
difference with DVAEs is the time-independence of z in our case: unlike DVAEs, we
only draw z once between the encoder and the decoder (like in a regular VAE), as seen
in Fig. 3.6. As an implicit generation model, it introduces noise in the model from
a prior distribution without approximating a posterior, losing the need to train with the
variational lower bound. A parallel and can be drawn between DVMS and the generator
of a conditional GAN in this sense. In fact, the variety loss that we use to enforce diversity
was first proposed for SocialGAN (Gupta et al., 2018), an implicit generation model.

3.7.2.2 Stochastic recurrent networks (STORN)

As a first baseline, we looked into stochastic recurrent networks (STORN) (Bayer & Os-
endorfer, 2015). We made this choice because this model was the most straightforward
way to apply the DVAE framework to DVMS or deep-position-only (Sec. 3.4.4.2), due
to architectural similarities. It is interesting to note that VRAE, that we briefly discuss
in Sec. 3.4.1, can been considered a simplified version of STORN.We provide graphical
models of the generation and inference networks of STORN in Fig. 3.21.

zt-1 zt zt+1

xt-1 xt xt+1

(a) generation

zt-1 zt zt+1

xt-1 xt xt+1

(b) inference

Figure 3.21: STORN graphical models showing the temporal dependencies, adapted from Girin et al.
(2021).

At generation time (decoding, Fig. 3.21a), xt depends on x1:t−1 and z1:t (we chose to
omit the internal deterministic state ht for brevity), while zt is considered to be indepen-
dent and identically distributed (i.i.d.) with a standard Gaussian distribution. At inference
time (encoding, Fig. 3.21b), zt depends on x1:t (we chose to omit the internal state gt for
brevity).
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With this formulation, we do not expect to reach good prediction performance, since zt

will be sampled from a standard Gaussian distribution that does not hold any information
about the past, and cannot represent multiple modes of the data. When training with a
mean square error (MSE) loss combined with the KLD, the model did not converge. This
is not a surprising result, as we introduce random noise at each decoding step. Training
with the variety loss would partially solve this problem, but likely lead to overfitting
due to a large difference between the approximate posterior learned at inference and the
standard Gaussian prior used at inference time. Unfortunately, we did not have time to
pursue further experiments with STORN due to a lack of time.

3.7.2.3 Stochastic recurrent neural networks (SRNN)

Our objective was to adapt stochastic recurrent neural networks (SRNN) to our problem
(Fraccaro, Sø nderby, Paquet, & Winther, 2016). According to the authors, their objec-
tive was to “glue (or stack) a deterministic recurrent neural network and a state space
model together to form a stochastic and sequential neural generative model”. Among all
investigated DVAE models, SRNN was found to be the best performing model on the
analysis-synthesis task, on both speech and human motion data (Girin et al., 2021). With
the help of the graphical models shown in Fig. 3.22, we further detail the motivations
behind an adaptation of SRNN to head motion prediction.

zt-1 zt zt+1

xt-1 xt xt+1

(a) generation

zt-1 zt zt+1

xt-1 xt xt+1

(b) inference

Figure 3.22: SRNN graphical models showing the temporal dependencies, adapted from Girin et al. (2021).

At generation time (decoding, Fig. 3.22a), xt depends on x1:t−1 and zt (we chose
to omit the internal deterministic state ht for brevity). A key difference with STORN is
the introduction of the parameterization of the prior: zt is dependent on zt−1 and x1:t−1,
which means that the parameters of the distribution are learned, instead of being a standard
Gaussian. At inference time (encoding, Fig. 3.22b), zt depends on zt−1 and x1:T , with T
the full length of the sequence (we chose to omit the internal states ht and gt for brevity).

With this formulation, we can expect to reach a better prediction performance, for two
main reasons:

(i) During inference, we can learn bidirectional dependencies (zt depends on past
and future x1:T ), providing the model with a higher learning capacity.
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(ii) More importantly, during generation, the samples are not drawn from a standard
Gaussian distribution, but from a learned approximate prior that depends on past
values of x and z, reducing the difference with the approximate posterior learned at
inference.

Reaching better prediction performance with SRNN might not be a straightforward path
however, due to likely instabilities during training. Appropriate losses and training pro-
cedures must be considered (Babaeizadeh et al., 2018). Unfortunately, we were not able
to implement and test an SRNN-based model to fit our task, due to a lack of time. We
believe that further research deserves to be carried out in this direction.

3.8 Conclusion
In this chapter, we have presented the first method for multiple head motion prediction
in 360◦ videos, motivated by the user motion uncertainty yielding a high diversity of
future trajectories. Our main contribution is a new learning framework, called DVMS,
which builds on deep latent variable models and allows to predict multiple future tra-
jectories from a given past. We have designed a training procedure to obtain a flexi-
ble and lightweight stochastic prediction model compatible with sequence-to-sequence
architectures. We have analyzed the structure of the learned latent space and the im-
pact of the latent variable on the generated futures, and are able to connect them with
physical properties of the trajectories. We have assessed DVMS on 4 datasets and show
that it outperforms competitors adapted from the self-driving domain by up to 41%, on
prediction horizons up to 5 seconds. By exploiting the stationarity of the prediction er-
ror over the latent space, our method provides likelihood estimates of every predicted
trajectory, enabling direct integration in streaming optimization. In a more exploratory
section, we have provided leads into interesting research directions for uncertainty quan-
tification for sequence-to-sequence architectures and sequence prediction with variational
auto-encoders. DVMS paves the way for multiple head motion prediction in 360◦ videos,
and an evaluation of the gains when predicted trajectories and their likelihoods are used
by a 360◦ adaptive streaming system is provided in chapter 4.





CHAPTER 4
Simulating motion

prediction and adaptive
bitrate strategies for
360◦ video streaming

Adaptive bitrate (ABR) algorithms are used in streaming media to adjust video
or audio quality based on the viewer’s network conditions to provide a smooth
playback experience. With the rise of virtual reality (VR) headsets, 360◦ video
streaming is growing rapidly and requires efficient ABR strategies to also adapt
the video quality to the user’s head position.
However, research in this field is often difficult to compare due to a lack of re-
producible simulations. To address this problem, we provide SMART360, a 360◦

streaming simulation environment to compare motion prediction and adaptive
bitrates strategies.
We provide sample inputs and baseline algorithms along with the simulator,
as well as examples of results and visualizations that can be obtained with
SMART360. The code and data are made publicly available.
This new simulator enables an extensive evaluation of the interest of our DVMS
proposal for a streaming system. On real-world user, video, and networking
data, we show that predicting multiple trajectories yields higher fairness between
the traces, the gains for 20 to 30% of the users reaching up to 10% in visual
quality for the best number K of trajectories to generate.
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4.1 Introduction
As seen in Sec. 2.1.4, adaptive streaming of 360◦ videos has been the subject of many
research works in the past few years (Qian et al., 2016; Corbillon, Simon, et al., 2017;
S. Park, Hoai, et al., 2021). While these works present new approaches and methods
to improve the quality of experience (QoE) or bandwidth usage of adaptive streaming
systems, it is often difficult to compare them fairly, as the code for simulating them is not
always provided.

We proposed the discrete variational multiple sequence learning framework (DVMS)
in chapter 3 as a way to predict multiple possible future trajectories of head motion
for people watching 360◦ videos. Evaluating the practical gains of this framework in
a streaming system would only be possible through (i) user experiments where a video
would be streamed over a network with a variable bandwidth and DVMS would be used
to predict head positions in real time, or (ii) simulations of real-world streaming situations
with network traces and simulated users with head motion traces.

Unfortunately, user experiments can be very costly and take a lot of time, cannot test
millions of cases like simulations can, and are difficult to reproduce. With the many pub-
lic datasets of head motion traces and network traces, comparing motion prediction and
adaptive bitrate strategies for 360◦ video streaming should be an easy task. However, de-
spite the wide availability of such datasets, we could not find any suitable public software
tool to simulate a realistic tile-based VR adaptive streaming system, flexible enough to
work with any 360◦ video, head motion and network trace.

For these reasons, we present SMART360, a 360◦ streaming simulation environment
that can be used to compare head motion prediction and ABR algorithms. Our contribu-
tions are the following:

• We provide a new simulator∗, equipped with large datasets and baseline algorithms
that builds upon the existing solutions, with explanations about the code structure
and logic.

• We also make the preprocessing pipeline available† for transparency and to give the
ability to easily create new input configurations for the simulator.

• We explain in detail how SMART360 can be used by researchers to implement
and compare existing and new motion prediction and adaptive bitrate strategies and
show examples of metrics and visualizations that can readily be used to evaluate
their algorithms. SMART360 can be used to implement any kind of viewport pre-
diction algorithm to work with tile-based adaptive streaming.

• We provide an in-depth analysis of the performance of multiple trajectory prediction
with the DVMS framework when incorporated in a streaming system, obtaining
results from nearly 5 million simulations using 3378 head motion traces from 132

∗https://gitlab.com/SMART360/SMART360-simulator
†https://gitlab.com/SMART360/SMART360-preprocessing

https://gitlab.com/SMART360/SMART360-simulator
https://gitlab.com/SMART360/SMART360-preprocessing
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different users watching 94 different videos, 40 different network traces with 5
different buffer settings and 7 viewport prediction algorithms, including state-of-
the-art competitors and variants of DVMS. Our results show that predicting multiple
trajectories (under constant bandwidth budget) yields a higher fairness between the
traces of the user-video pairs, with less traces with the worst quality of experience
(QoE) level, and a close (resp. slightly higher) number of traces with maximum
QoE when predicting with K = 5 (resp. choosing the best K per trace) futures
with DVMS. We also quantify that choosing the best K yields up to a 10% higher
quality in the FoV (up to a 5% better QoE) for the 20% to 30% of traces with the
highest prediction errors.

The work presented in this chapter was the object of a conference paper presented
at the Open Dataset and Software track of the 14th ACM Multimedia Systems Confer-
ence (MMSys ’22) (Guimard & Sassatelli, 2023). The simulation results showing the
system gains of DVMS were submitted as part of a journal extension to the DVMS ar-
ticle (Guimard, Sassatelli, et al., 2022) presented in chapter 3 and accepted with minor
revisions in the ACM Transactions on Multimedia Computing, Communications, and Ap-
plications journal (TOMM) (Guimard et al., 2024).

The chapter is organized as follows: Sec. 4.2 makes an inventory of the existing tools
to compare 360◦ adaptive streaming strategies and algorithms and exhibits their short-
comings. Sec. 4.3 presents the simulator inputs and the preprocessing pipeline for these
inputs. Sec. 4.4 details the the architecture of the proposed simulator, explaining the
file and object structure, as well as the algorithmic logic behind SMART360. Sec. 4.5
explains how SMART360 can be used to compare motion predictors and adaptive bitrate
algorithms, and serves a guide to improve reproducibility. Sec. 4.6 provides simulation
results when prediction multiple head trajectories with DVMS, and shows the benefits of
our proposed framework. the extensive evaluation of our DVMS proposal in a streaming
system. Sec. 4.7 discusses how the simulator can still be improved and what the sim-
ulation results of DVMS tell us for future work on viewport prediction for 360◦ video
streaming, and Sec. 4.8 concludes the chapter.

4.2 Related work
As a result of the lack of reproducible simulations for most of the 360◦ adaptive streaming
research, several tools have been made available in recent years in an effort to improve
reproducibility in this field.

Ribezzo, De Cicco, Palmisano, and Mascolo (2020) released TAPAS-360◦ ∗, an open-
source emulator that enables designing and experimenting omnidirectional video stream-
ing algorithms. Unfortunately, TAPAS-360◦ does not support tile-based streaming, but
works with a set of pre-defined “views”. This makes it impossible to use with tile-based
bitrate adaptation algorithms, which are the most common type of bitrate adaptation al-
gorithms for 360◦ video streaming.

∗https://github.com/c3lab/tapas360

https://github.com/c3lab/tapas360
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Spiteri (Spiteri, 2021) released Sabre360∗, a simulation testbed for 360◦ videos as
an extension of Sabre† (Spiteri et al., 2019), an open-source simulation environment for
ABR algorithms. While Sabre360 can be used to compare adaptive bitrate algorithms, it
has some drawbacks: (i) it does not implement stalls, but plays “blank tiles” instead, (ii)
it is built around a “view” system that only supports one kind of tiling layout (4x4 tiles),
and (iii) the ABR optimization for quality allocation is done between each tile download,
and makes an individual request for each tile of each segment, which is not realistic. In a
real-world scenario, the ABR has to plan in advance and make a single request for several
tiles.

X. Jiang et al. (2018) provide code for simulating 360◦ bitrate adaptation and mo-
tion prediction along with Plato‡, but the lack of documentation and obscure file structure
makes it difficult to use, precluding other researchers from using it and test new algo-
rithms.

Finally, Chopra et al. (2021) provide the code for PARIMA§, which allows to test
and compare their model to some baselines with QoE metrics, but it is not a streaming
simulation since it does not consider network aspects.

Our simulator takes a lot of inspiration from Sabre360, which we consider to be the
closest solution to the problem we want to solve. Our work aims at rectifying any short-
comings the existing solutions may have for comparing motion prediction and adaptive
bitrate strategies in the context of 360◦ streaming.

4.3 Data preprocessing
The objective of SMART360 is to provide a simulation environment that enables the
comparison of ABR and viewport prediction algorithms when streaming 360◦ videos with
network constraints. In this section, we describe the necessary inputs the simulator needs
to perform this task, as well as the preprocessing pipeline the data undergoes before being
used by the simulator.

4.3.1 Simulator inputs
All the input data for the SMART360 simulator is provided in the config/ directory of
the simulator repository. The input data uses the same JSON format as Sabre360 (Spiteri,
2021). The data provided in the SMART360-simulator/config/ directory is split in
two types: real and synthetic data. The real data is extracted from multiple public datasets
and is described in the following subsections. The synthetic data contains simple cases of
network traces with constant bandwidth and manifests describing uniformly-sized 360◦

∗https://github.com/UMass-LIDS/sabre360
†https://github.com/UMass-LIDS/sabre
‡https://github.com/federerjiang/Plato
§https://github.com/sarthak-chakraborty/PARIMA

https://github.com/UMass-LIDS/sabre360
https://github.com/UMass-LIDS/sabre
https://github.com/federerjiang/Plato
https://github.com/sarthak-chakraborty/PARIMA
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videos. The user head motion traces found in the synthetic directory are copied from real
data.

4.3.1.1 Network traces

The network traces describe the available bandwidth and the latency over time in differ-
ent situations. They allow for realistic simulations where the bandwidth is highly vari-
able. The network traces provided in the real input data are the same as the ones used in
Sabre360, and come from the 4G/LTE dataset published by van der Hooft et al. (2016).
They are made of 40 traces of bandwidth measurements along several routes in the city
of Ghent, Belgium.

For the comparisons between ABR algorithms to be relevant, we need to be in a situ-
ation where the algorithm has to adapt to the network constraints. On the one hand, if the
bandwidth is very high relative to the video bitrate, there is no need for ABR streaming,
as we can just download everything in the highest quality without any rebuffering (stall)
event. On the other hand, if the bandwidth is very low relative to the video bitrate, ABR
streaming is not so useful either, as we can only download everything in the lowest qual-
ity. To make for a relevant comparison between ABR algorithms, we provide a Jupyter
notebook to scale the network traces relatively to the video bitrates, as illustrated in Fig.
4.1. This notebook is available in the SMART360-simulator/notebooks/ directory.

raw network traces

scaled network traces

network_traces_scaling.ipynb

video bitrates

Figure 4.1: Network trace scaling principle.

4.3.1.2 User head motion traces

The user head motion traces describe the behavior of people watching 360◦ videos. They
contain the coordinates of the head orientation over time. This allows calculating which
tiles are visible to the user at any given time during the video. We provide 3518 head mo-
tion traces from users watching 94 different videos, extracted from three of the datasets
used by Romero Rondón et al. (2020) in their framework to evaluate head motion pre-
diction methods in 360◦ videos∗. The traces have a 5 Hz sampling rate and use a 3D

∗https://gitlab.com/miguelfromeror/head-motion-prediction

https://gitlab.com/miguelfromeror/head-motion-prediction
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Cartesian coordinate system, where the orientation of the head is represented as a point
on the unit sphere.

We provide a Python script, available in the SMART360-preprocessing/ root direc-
tory to convert the traces from their original CSV format to a JSON format similar to the
one used in Sabre360.

4.3.1.3 Video manifests

The video manifests describe the video files to be streamed over the Internet. In the
case of 360◦ tiled videos, the manifests describe the tiling layout and the different quality
levels of encoding. The SMART360 simulator uses the video manifest to get the size of
each downloaded tile. We provide simplified JSON video manifests for the 94 videos
mentioned in Sec. 4.3.1.2 in the same format as the one used in Sabre360. We detail
the preprocessing steps to obtain the video manifests from MP4 video files in the next
subsection.

4.3.2 Preprocessing pipeline
The preprocessing pipeline is based on TOUCAN-preprocessing∗, a Java command line
application to convert a regular 360◦ videos into DASH-SRD described videos, using
FFmpeg and MP4Box, released by Dambra et al. (2018). We have made some changes
to simplify the original pipeline, update the encoding parameters, and adapt the input and
output formats to our problem. The preprocessing pipeline is described in Fig. 4.2 and
detailed in the following subsections.

4.3.2.1 Video tiling and re-encoding

First, the MP4 videos are split into tiles using the FFmpeg crop filter. Since cropping
the videos requires re-encoding them, we choose to re-encode the video tiles in different
quality levels while tiling them. The tiling layouts and quality levels are configurable
settings that can be specified in an XML file for each video.

The videos are re-encoded with libx265, using the HEVC compression standard. Dif-
ferent quality levels are achieved using different constant rate factors (CRFs). CRF is a
method of video compression that is designed to maintain a constant level of perceived
quality, as opposed to constant bitrate (CBR) encoding, but similar to using a constant
quantization parameter (CQP). Unlike CQP, CRF adjusts the QP to compress different
frames by varying amounts by taking motion into account. For high-motion frames, the
QP is increased to compress the frame more, and for low-motion frames, the QP is low-
ered to reduce compression. This leads to a varying bitrate allocation over time, resulting
in a more efficient use of the available bandwidth. While constant bitrate and constrained
CRF may be better suited for streaming to avoid bitrate variations, CRF is better suited
than CQP (the most popular encoding mode to compare adaptive bitrate strategies in 360◦

∗https://github.com/UCA4SVR/TOUCAN-preprocessing

https://github.com/UCA4SVR/TOUCAN-preprocessing
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FFmpeg filters
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generate_json_video_manifests.py
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{...}
video manifests in JSON format ready for simulations

Figure 4.2: SMART360 video preprocessing pipeline.

videos (Yaqoob et al., 2020)), as it results in a more constant bitrate (Robitza, 2019). CRF
was chosen as the best compromise between bitrate stability (better than CQP), efficiency
(not wasting bits like constant bitrate), and encoding time (not needing multiple passes
like constrained CRF).

4.3.2.2 DASH packaging

Once the videos are cropped into the desired tiling layouts and encoded in the appropriate
quality levels, we use the MP4Box multimedia packager to obtain a DASH-SRD compli-
ant video split in segments. The segment duration is also a configurable parameter that
can be specified in the same XML file as mentioned in Sec. 4.3.2.1. The output files gen-
erated by this preprocessing step are MP4 tracks and an XML manifest for each video,
which correspond to the files that can be streamed over the Internet.

4.3.2.3 JSON file generation

Finally, we provide a Python script, available in the SMART360-preprocessing/ root
directory to build the JSON manifests that can be used by the simulator. This script
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simply reads the files that were previously generated and keeps only the information that is
relevant for the simulations to put them in the JSON video manifests described in 4.3.1.3.

4.4 Simulator architecture
The SMART360 simulator architecture is based on the architecture of the Sabre360 simu-
lator, with substantial differences. The changes mainly aim at rectifying the shortcomings
formulated in Sec. 4.2, namely: (i) introducing actual stall events that pause the video
playback instead of playing blank tiles, (ii) re-thinking the coordinate system and mod-
ifying the headset model to support any rectangular tiling layout, and (iii) re-designing
the simulator and ABR logic, enabling the planning of quality allocation for multiple tiles
and segments in advance.

4.4.1 File and object structure
We present a simplified class diagram in Fig. 4.3, where we choose to only keep the
relevant attributes and methods of the SMART360 simulator. The classes are separated in
multiple files located at SMART360-simulator/simulator/. The classes highlighted
in red in the diagram, BandwidthEstimator, TiledABR, and ViewportPredictor are classes
that can be easily extended to implement new algorithms. We detail the file structure and
classes of the simulator in the following subsections.

4.4.1.1 Session

The session.py file contains the Session and SessionInfo classes. The Session class is
the main class that contains all the objects necessary to the simulation. The Session::run
method is the entry point of the simulator and is described in Algo. 1. The SessionInfo
class is mainly used to access information and objects like the buffer, log file, or viewport
predictor from other objects.

4.4.1.2 Buffer

The buffer.py file contains the TiledBuffer class. This class contains the buffer in the
form of a two-dimensional NumPy array of size B × T , where B is the buffer size (in
number of segments) and T is the number of tiles in the video. This class also provides
methods to update the buffer.

4.4.1.3 Headset

The headset.py file contains the HeadsetModel and HeadsetConfig classes. These
classes contain information about the headset configuration (tile layout, FoV size) and
provide methods to calculate which tiles are visible, given the user’s head coordinates.
Unlike most existing tools, the tile calculation considers the distortion produced by the
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Figure 4.3: UML class diagram of the SMART360 simulator. All aggregation relationships are one-to-one.

equirectangular projection. The headset configuration is loaded from JSON file located
in the SMART360-simulator/config/ directory.

4.4.1.4 User

The user.py file contains the UserModel class. This class handles the user head motion
trace and is used to get head motion coordinates updates.
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4.4.1.5 Network

The network.py file contains the NetworkModel class. This class handles the network
trace and provides methods to download groups of tiles in compliance with the bandwidth
and latency information present in the network trace.

4.4.1.6 Bitrate adaptation

The br_adaptation.py file contains the TiledABR abstract class and its subclasses. This
class is responsible for deciding which tiles of which segments will be downloaded in
which quality, and in which order. We provide three simple ABR strategies with no buffer
replacements. TrivialABR tries to download all tiles in the lowest quality and fills the
buffer as quickly as possible. MaxStallABR is provided for experimental purposes to
calculate the maximum possible stall ratio for a user, in the case where we only download
tiles once they are missing in the viewport and causing a stall event. We also provide
BaselineABR, a simple ABR strategy with some rate-based and buffer-based elements.

4.4.1.7 Viewport prediction

The vp_prediction.py file contains the ViewportPredictor abstract class and its sub-
classes. This class is used to make predictions about user head movements and the result-
ing viewports. These predictions can in turn be used by the ABR algorithms. We provide
two baseline viewport predictors as well as an implementation of a deep learning predic-
tor. NoPredictor gives equal probabilities for all tiles. StaticPredictor assumes the user
will not move and gives higher probabilities to tiles that were inside the viewport. It is
based on the Trivial-static baseline described and evaluated in Sec. 3.4.4. DVMSPredictor
uses the DVMS-based deep learning model described in Sec. 3.4.3 to make predictions.

4.4.1.8 Bandwidth estimation

The bw_estimation.py file contains the BandwidthEstimator abstract class and its
EWMA subclass. This class can be used to make estimates of the future bandwidth and
latency of the network, useful for ABR planning. The EWMA subclass makes latency
and bandwidth estimates following an exponentially weighted moving average model, as
done in the dash.js reference player∗, but in a simplified manner.

4.4.1.9 Logging

The _logging.py file contains the LogFile class. This class provides methods to add
simulation information and measurements to a list of records, that is then written to a
JSON log file at the end of the simulation. New methods can easily be implemented to
include more information and measurements.

∗https://github.com/Dash-Industry-Forum/dash.js

https://github.com/Dash-Industry-Forum/dash.js
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4.4.1.10 Log parsing

The parse_session_logs.py file, located in the log_parsing/ directory, consists of
a post-processing pipeline that reads the JSON log file and builds data frames stored in
Feather files. This file format produces very lightweight files that are quick to read and
write compared to the raw log files.

4.4.1.11 Notebooks

There are two notebooks in the notebooks/ directory. The first notebook,
network_traces_scaling.ipynb, is described in Sec. 4.3.1.1, and the second
notebook, output_metrics.ipynb, gives examples of possible visualizations of the
SMART360 output metrics, as shown in Sec. 4.5.3.

4.4.2 Simulator logic
In this section, we describe the algorithmic flow of the SMART360 simulator. As men-
tioned in Sec. 4.4.1.1, the Session::run method is the entry point to the simulator. We
describe the logic behind this method in Algo. 1. For the sake of readability, the algo-
rithms described in Algo. 1 and Algo. 2 are simplified versions of the methods, where
only the most relevant steps are shown.

The three ABR functions that appear on lines 3 and 9 of Algo. 1, and line 11 of Algo.
2 refer to the three methods of the TiledABR abstract class that have to be implemented by
subclasses, as explained in Sec. 4.5.1. These functions return download schedules, noted
skd. A download schedule is an ordered list of elements that each contain s, the segment
number, t, the tile number, and q, the quality level. In the case of startup and stall (lines
3 of Algo. 1 and line 11 of Algo. 2), the full schedule must be downloaded before the
video playback can be resumed. In the case of the regular ABR decision function (line 9
of Algo. 1), elements are downloaded in the same order as given by the schedule during
∆DL seconds.

On line 5 of Algo. 1 and lines 13 and 17 of Algo. 2, “download” implies using
the NetworkModel with the appropriate latency and bandwidth, as well as putting the
downloaded tiles in the buffer.

In Algo. 2, we give some detail behind the logic of one the most complex methods of
the simulator, Session::play_and_download. This method enables the simulation of video
playback and tile download at the same time, while also making sure that the Network-
Model and the UserModel stay synchronized. This method brings two improvements over
Sabre360:

• the ABR algorithm has to plan and make individual requests for downloading
groups of tiles every ∆DL seconds, which is more realistic than the very frequent
ABR optimizations and requests in Sabre360;

• stall events can happen and stall periods can be measured, which we also consider
more realistic than the video not pausing and showing blank tiles in Sabre360. We
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Algorithm 1 Simplified run method
1: l← video length
2: p← 0 ▷ video play head
3: skdstartup ← ABR_STARTUP ▷ startup schedule
4: for all s, t, q in skdstartup do
5: download tile t from segment s in quality q
6: end for
7: while p < l do
8: bwest ← network bandwidth estimation
9: skd← ABR_DECIDE(bwest, ∆DL) ▷ download schedule

10: PLAY_AND_DOWNLOAD(skd, ∆DL) ▷ see Algo. 2
11: end while

have chosen for stall events to happen in SMART360 only if a tile that should be
visible to the user is not present in the buffer. This means that the video does not
stop if tiles are missing from the buffer but are not in the user’s field of view.

4.5 Using SMART360 to compare motion predictors and
adaptive bitrate algorithms

In this section, we explain how researchers can use the SMART360 simulation environ-
ment to implement new ABR strategies and motion prediction algorithms for 360◦ video
streaming and compare them.

4.5.1 Implementing an ABR strategy within SMART360
To implement a new ABR strategy, one only needs to create a new subclass of TiledABR
(see Sec. 4.4.1.6) that implements three methods. Each one of these methods returns a
download schedule containing elements composed of s, the segment number, t, the tile
number, and q, the quality level. In addition to the method parameters, the ABR class
can access other information such as the buffer content, the video manifest, or a viewport
predictor.

• startup_dl_schedule() is called at the beginning of the simulation. It must return a
schedule of what to download before the video playback starts;

• decide_dl_schedule(bwest, ∆DL) is the main ABR decision method. It is called
every ∆DL seconds and must return a schedule of what to download in the next
∆DL seconds, given the estimated bandwidth;

• stall_dl_schedule(Tmissing) is called whenever a stall event happens. When the
video playback is paused during this event, the list of missing tiles in the user’s
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Algorithm 2 Simplified play and download method
1: procedure PLAY_AND_DOWNLOAD(skd, ∆DL)
2: ∆left ← ∆DL

3: while ∆left > 0 do
4: τcoord ← time until next user coord. update
5: τsegment ← time until next video segment
6: τ ← min(∆left, τcoord, τsegment)
7: Tbuf ← set of tiles in buffer for current segment
8: Tvisible ← set of visible tiles calculated from coord.
9: Tmissing ← Tvisible − Tbuf ∩ Tvisible

10: if Tmissing ̸= ∅ then ▷ stall event
11: skdstall ← ABR_STALL(Tmissing) ▷ stall schedule
12: for all s, t, q in skdstartup do
13: download tile t from segment s in quality q
14: end for
15: end if
16: if |skd| > 0 then
17: download (s, t, q) schedule elements for τ seconds
18: remove downloaded elements from skd
19: end if
20: p← p+ τ
21: end while
22: end procedure
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field of view is passed as a parameter and the method must return a schedule of
what to download. The video playback can only resume if all the missing tiles and
everything in the stall schedule has been downloaded.

4.5.2 Implementing a motion predictor within SMART360
SMART360 also allows the implementation of head motion prediction algorithms, in the
form of a viewport predictor that can in turn be used by the ABR algorithm. To implement
a new motion predictor, one only needs to create a new subclass of ViewportPredictor (see
Sec. 4.4.1.7) that can implement two methods:

• predict_tiles(s) has to be implemented by the subclass. The parameter s corre-
sponds to the segment number for which we want to make predictions. This method
returns a list of length T , where each element corresponds to the score given to each
tile. A higher score means a higher probability of being present in the user’s view-
port during segment s;

• update_coord(coord) can be implemented, but is not mandatory. This method al-
lows updating the motion predictor with new head coordinates that can be used to
make predictions.

As of right now, the only information that can be used for predictions is the past head
coordinates of the user. However, SMART360 could easily be extended to include video
information such as saliency maps for head motion prediction.

4.5.3 SMART360 output metrics
SMART360 brings many QoE-related metrics and visualizations, as well as some
network-related metrics. The logs that we provide already enable numerous types of
insightful visualizations, as shown in Fig. 4.4, and can easily be extended to include more
information and measurements. In this section, we show examples of figures that can be
produced with SMART360 to compare ABR and head motion prediction algorithms. The
figures presented in this section are extracted from the output_metrics.ipynb note-
book, and new visualizations can readily be generated from the same data frames without
needing to extend the logs. These figures show examples for 34 user head motion traces
on one specific hand-made network trace, which alternates between 0 and 4 Mbps, for
one video with hand-made quality levels corresponding to 1, 2, 4, 8, and 16 Mbps. The
buffer size is set to 10 seconds andBmin (see Section 4.6.1) is set to 1 second. The shaded
areas represent the 95% confidence interval.

• Fig. 4.4a compares the average visible quality when using two different viewport
predictors over one video for all users who have watched this video. The average
visible quality is computed by calculating the average quality level of the tiles that
are inside the user’s viewport at each point in time. In this example, each tile
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Figure 4.4: Some examples of visualizations from SMART360 simulation output metrics. (a) average visible
quality, (b) average visible quality against video timestamp, (c) sum of all user stalls against video times-
tamp, (d) average downloaded quality against download offset, (e) bandwidth efficiency. Colors have the
same meaning across all subfigures.

can be downloaded five quality levels ranging from 1 to 5, and more details about
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the simulation settings can be found in the notebook. Here, we can see that the
StaticPredictor gives higher average visible quality than NoPredictor.

• Fig. 4.4b compares the average visible quality when using two different viewport
predictors against the video timestamp for all users who have watched this video.
The quality levels and simulation settings are the same as in Fig. 4.4a. Here, we
can see with more detail when, in the video, StaticPredictor gives higher average
visible quality than NoPredictor.

• Fig. 4.4c compares the sum of stall periods when using two different viewport
predictors against the video timestamp for all users who have watched this video.
The simulation settings are the same as in Fig. 4.4a. Here, we can see with precision
exactly when, in the video, the stalls are happening, and that StaticPredictor gives
fewer stall periods than NoPredictor.

• Fig. 4.4d compares the average quality of downloaded tiles that end up in the user’s
viewport when using two different viewport predictors against the “download off-
set” for all users who have watched this video. The download offset is inversely
proportional to the buffer level: a download offset of -6 means that the tile was
downloaded 6 seconds before it was played. The quality levels and simulation set-
tings are the same as in Fig. 4.4a. Here, we can understand better how the ABR
strategy works and how the prediction impacts its behavior regarding the buffer
level, and that StaticPredictor gives higher average visible quality than NoPredic-
tor, regardless of the buffer level.

• Fig. 4.4e compares the distribution of the “hit rate” when using two different
viewport predictors over one video for all users who have watched this video. This
figure shows the estimated density of the distribution on the x-axis for different
values of hit rate on the y-axis. The hit rate is calculated by dividing the number
of bits that appeared in the user’s viewport by the total number of bits that were
downloaded, it can be seen as a form of bandwidth efficiency. The simulation
settings are the same as in Fig. 4.4a. Here, we can see that StaticPredictor is
more efficient than NoPredictor and wastes less bandwidth.

With Figures 4.4b, 4.4c, and 4.4d, we can get an understanding of the ABR algorithm
behavior for each viewport prediction algorithm. As mentioned above, the bandwidth
alternates between 0 Mbps for 5 seconds and 4 Mbps for 5 seconds.

Since it must spread the quality equally, NoPredictor only has budget to first fill the
buffer with tiles of the lowest quality (Fig. 4.4d), which gives a poor average visible
quality (Fig. 4.4b). Once the buffer has reached a sufficient level, NoPredictor has enough
budget to start downloading tiles of higher quality for the whole frame (Fig. 4.4d). This
leads to an improved average visual quality (first blue peak on Fig. 4.4b). However, the
bandwidth drops to 0 and the buffer depletes, which causes a stall (Fig. 4.4c). Once the
bandwidth is back to 4 Mbps, the same cycle repeats (Fig. 4.4b and Fig. 4.4c).
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Since it can focus the quality in some areas, StaticPredictor starts downloading higher
quality tiles much earlier (Fig. 4.4d), which gives an increased average visible quality
(Fig. 4.4b). Once the bandwidth drops to 0, the buffer does not deplete as fast, since the
bandwidth was not wasted by downloading high quality tiles far away from the viewport,
which reduces also stall periods (Fig. 4.4c).

The notebook also includes metrics on the spatial and temporal quality variance of
360◦ videos, as well fairness metrics based on the QoE fairness index described by
Hoßfeld, Skorin-Kapov, Heegaard, and Varela (2017).

4.6 360◦ video streaming with DVMS
This section presents an extensive evaluation of the interest of our discrete variational
multiple sequence learning framework (DVMS), proposed in chapter 3, in a 360◦ stream-
ing system. We first detail the implementation of DVMS in our simulation environment.
We then present the simulation settings and results, identifying the possible gains on dif-
ferent metrics and quantifying them.

4.6.1 DVMS implementation in SMART360
From trajectory and likelihood to tile scores: In the SMART360 simulator, the client
uses an ABR algorithm to make requests for new tiles every ∆DL seconds. The ABR
makes its quality allocation for incoming segments decisions based on tile scores, given
by the viewport prediction algorithm. Before the prediction is made, all the tile scores are
initialized to 0. DVMS outputs the predicted head positions for a given segment. In our
case, DVMS outputs 5 ·K points (with K the number of predicted trajectories), because
the segments are one-second-long and the head motion trace sampling rate is 5 Hz. For
each predicted position (FoV center), we calculate the list of tiles belonging to this FoV.
The scores of the tiles belonging to this FoV are updated as follows: α += Lk

5·K , with α
being the score of any tile belonging to the FoV calculated from a position of a predicted
trajectory of likelihood Lk. Since

∑︁
k∈K Lk = 1, the maximum score for a tile that belong

to all the predicted FoVs is 1. The remaining tiles are given a score inversely proportional
to the distance to the viewport.
Adaptive bitrate (ABR) algorithm: The objective of our ABR algorithm is to maximize
the expected QoE given the predicted viewport, the estimated network bandwidth, and
the buffer level. This task is achieved by selecting the right tiles to download in the right
quality, such that the quality inside of the user’s viewport is as high as possible, without
any stall event. With SMART360, the ABR algorithm is called periodically: every ∆DL

seconds, the ABR algorithm is used to produce a download schedule that will be sent as
a request to the server.

We chose to implement a simple “hybrid” ABR algorithm, considering both the es-
timated bandwidth and the buffer level (see Sec. 2.1.3.3), named BaselineABR for tile-
based streaming that can demonstrate the advantages of multiple trajectory prediction.
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This algorithm was kept simple for an easier understanding of the streaming behavior
with different viewport prediction algorithms. The objective of BaselineABR is to maxi-
mize the expected viewport quality, while maintaining a minimum buffer level Bmin. A
simplified version of the BaselineABR is described in Algo. 3.

Algorithm 3 Simplified BaselineABR logic
1: Input: Available bandwidth budget b, Tile scores αs,t, Indices of empty (segments,

tiles) in buffer (S, T )
2: Parameters: Minimum buffer level Bmin, Quality levels Qk, k = 1, ..., 5, Score

threshold p = 0.2
3: Output: Download schedule skd
4: (Smin, Tmin) = st < Bmin, st ∈ (S, T ) ▷ Indices of empty (segments, tiles) inferior

to Bmin

5: if COST(Smin, Tmin, Q1) > b then
6: skd← Smin, Tmin, Q1 ▷ Request all under Bmin anyway
7: else
8: skd← S, T,Q5 ▷ Initialize schedule with max quality
9: while COST(skd) > b do

10: S, T,Qk ← skd

11: Qk =
{︄

Qk if αS,T > p or (Qk == Q1 and st ∈ (Smin, Tmin))
Qk−1 otherwise (remove from schedule if already min quality)

12: p = min(p+ 0.2, 1)
13: end while
14: end if
15: skd← SORT(skd, αs,t) ▷ Sort with highest tile scores first

4.6.2 Simulation settings
The results presented in Sec. 4.6.3 summarize metrics from 4,729,000 simulations us-
ing 3,378 head motion traces of 132 different users watching 94 different videos, 40
different network traces with 5 different buffer settings and 7 different viewport pre-
diction algorithms.

4.6.2.1 Videos

The simulations were run on 94 different videos coming from the test sets of three datasets
the DVMS model was trained on (see Sec. 3.4.4.2). There are 5 videos from the MM-
Sys18 (David et al., 2018) dataset, 74 videos from the CVPR18 (Y. Xu et al., 2018)
dataset, and 15 videos from the PAMI18 (M. Xu, Song, et al., 2019) dataset. The average
video duration is around 30 seconds (range 17-64).

The original video files of each dataset were retrieved, split in a 12x6 tile layout and
re-encoded with libx265, using the HEVC compression standard. The tiles were each
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encoded in five different quality levels with different constant rate factors (CRFs): 16,
22, 28, 34, and 40, which each quality level being approximately twice the bitrate of
the previous one. Finally, the videos were packaged in 1 second segments for streaming
delivery.

4.6.2.2 Head motion traces

Each video was watched by an average of approximately 36 users (can vary for each video,
range 28-58), which gives a total 3,378 head motion traces, coming from 132 different
unique users. 145 traces (29 different users) come from the MMSys18 dataset, 2363
traces (45 different users) come from the CVPR18 dataset, and 870 traces (58 different
users) come from the PAMI18 dataset. Each trace contains the head positions of the user
with a 5 Hz sampling rate. These traces were not included in the training of the model, as
they come from the test sets of the datasets.

4.6.2.3 Network traces

The simulations were run on 40 different 4G network traces from the 4G/LTE dataset
published by van der Hooft et al. (2016). They are made of 40 traces of bandwidth and
latency measurements along several routes in the city of Ghent, Belgium. For the com-
parisons between ABR algorithms to be relevant, the average bandwidths of the network
traces were scaled to approximately match the video bit rates, because we need to be in a
situation where the algorithm has to adapt to the network constraints to make a difference
in quality.

4.6.2.4 Buffer settings

The maximum size of the buffer was always set to 10 segments (i.e., 10 seconds), because
it is not possible to show the benefit of viewport prediction with larger values, since we
only predict the future head positions 5 seconds ahead.

The simulations were run for 5 different values of Bmin, the ABR buffer constraint
(see Sec. 4.6.1): 1, 2, 3, 4, and 5 seconds. With this parameter, we can tune the behavior
of the ABR algorithm and show results for different levels of aggressiveness.

4.6.2.5 Prediction algorithms

7 different prediction algorithms were tested in the simulations:

• NoPred: no assumption is made about the viewport location and the same score is
given to all tiles before ABR allocation. This serves as a baseline for comparison.

• StaticPred: we assume that the person will stay still and that the viewport will not
change in the near future. Tiles present in the viewport are given a score of 1.0,
and remaining tiles are given a score inversely proportional to the distance to the
viewport. This serves as a baseline for comparison.
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• DVMS, K = 1 (DVMS-1): DVMS is used to predict one trajectory of the future
head positions. Since there is only one trajectory, the likelihood of this trajectory is
set to 1.0 and the tile scores are computed as described in Sec. 4.6.1.

• DVMS, K > 1 (2 to 5): DVMS is used to predict K possible trajectories of the
future head positions. The respective likelihoods are based on the past error as
described in Sec. 3.5.2. The tile scores are computed as described in Sec. 4.6.1.

For DVMS-based prediction algorithms, we choose to reuse the DVMS-K notation
introduced in Sec. 3.4.4.1 to improve readability.

4.6.2.6 Metrics

We report results on two metrics in the following section:
Viewport quality: For each video segment, a person sees multiple tiles that were down-
loaded at a certain quality level. The quality level of a tile is approximately logarith-
mically proportional to its bitrate, because of the choice of CRFs that was made in Sec.
4.6.2. The viewport quality metric is computed as the weighted average of the quality of
the tiles that were seen during a segment. The weights are proportional to the duration for
which this tile was visible during the segment.
Normalized QoE: After reviewing several references including QoE functions combin-
ing various components, we decided to make our own in order to avoid subjective hyper-
parameter choices required by existing formula. We defined our own QoE function, the
normalized QoE (Eq. 4.1) combines the viewport quality, the stall periods, the spatial
quality variance, and the temporal quality variance in one metric, with a value between 0
and 1. T is the duration of the video and S is the stall duration over the simulation. V Q
is the average viewport quality over the video, V Qmax is the maximum possible viewport
quality for a frame. SQV is the average spatial quality variance (standard deviation of
quality levels of the tiles in a viewport) over the video, SQV max is the maximum possible
spatial quality variance for a frame. TQV is the temporal quality variance (mean of abso-
lute differences between average viewport quality of segments) over the video, TQV max

is the maximum possible temporal quality variance over a video.

QoE = T · V Q
V Qmax · (T + S) ·

(︄
1− SQV

2 · SQV max

)︄
·
(︄

1− TQV

2 · TQV max

)︄
(4.1)

This normalized QoE includes the four main usual components of 360◦ video stream-
ing: the viewport quality, the stall periods, the spatial quality variance, and the temporal
quality variance, without the need for additional factors or hyper-parameters for each
component. A QoE of 1 indicates the highest possible viewport quality without any stall
period and with no spatial or temporal quality variance. Stall periods only appear in the
denominator of the first term and are consequently considered as time spent at a quality
level of 0. A high spatial or temporal quality variance also reduces the QoE by multiply-
ing it by a factor between 0.5 (highest variance) and 1 (lowest variance). All these choices
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were made to avoid negative and unbounded QoE values, and allow to keep the QoE value
between 0 and 1. This makes comparisons and fairness computation easier (when using
the QoE fairness metric described by Hoßfeld et al. (2017)).

4.6.3 Results
In this section, we compare the results for simulations with the viewport prediction al-
gorithms presented in Sec. 4.6.2.5. For DVMS, only K = 1, K = 5, and K = best
are shown for better readability. The choice of number of trajectories to predict (K) is
related to prediction uncertainty, where factors such as video features such as spatial and
temporal information as well as user emotions can have a strong impact, as seen in Sec.
5.6. The “best K” shows the potential gains if we were able to use this information to
choose the best K (ranging from 1 to 5) for each (user, video) pair, but even more gains
could be found by dynamically adapting K during video playback, using head speed or
past prediction error.

4.6.3.1 Viewport quality and QoE gains of DVMS

We present results showing viewport quality and QoE gains in Fig. 4.5 and Fig. 4.6,
where the simulations were run with Bmin = 1, which is where differences between
viewport prediction algorithms are the most visible. The order of performance between
predictors is nearly identical for all values of Bmin. As Bmin increases, the advantage of
viewport prediction slowly decreases. We provide detailed results in Tables 4.1 and 4.2
for completeness.

Fig. 4.5 shows the average viewport quality across all segments during the simula-
tions. The average viewport quality is not necessarily an integer, each bin contains the
number of segments with an average viewport quality lower or equal to its tick label,
but greater than the preceding bins. NoPred (i.e., uniform spread of the quality budget)
gives the most segments with the lowest quality and the fewest segments with the highest
quality. We can see that StaticPred already gives significant quality improvements. This
figure also illustrates a key difference between single and multiple trajectory prediction:
DVMS-5 gives fewer segments with a very low viewport quality, but also fewer segments
with a very high viewport quality than DVMS-1. While DVMS-1 leads to more segments
with very low quality than DVMS-5, it is still fewer very low quality segments than Stat-
icPred. While DVMS-5 leads to fewer segments with very high quality than DVMS-1,
it is still more very high quality segments than StaticPred. DVMS-best gives the best of
both worlds with less segments with very low quality and more segments with very high
quality.

Fig. 4.6-left shows the viewport quality gain over NoPred for all the played seg-
ments of the simulations. We can see that DVMS-5 has an average viewport quality
gain (48.0%) slightly better than the gain of DVMS-1 (46.7%). The median gain is bet-
ter: 50% of segments have a viewport quality improvement over 20.4% with DVMS-5,
while 50% of segments have a viewport quality improvement over 14.3% with DVMS-1.
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Figure 4.5: Segment quality distribution comparing different viewport prediction algorithms over all simu-
lations with Bmin = 1s.

Improvements are also more evenly distributed with DVMS-5, with 61.2% of segments
having an increased viewport quality (20.0% decreased, 18.8% unchanged), while 57.2%
of segments had an increased viewport quality (20.4% decreased, 22.4% unchanged) with
DVMS-1.

Fig. 4.6-right shows the QoE gain over NoPred for all simulations. We can see that
DVMS-5 has an average QoE gain (15.6%) slightly worse than the gain of DVMS-1
(16.2%), but the median gain is slightly better: 50% of segments have a QoE improvement
over 10.0% with DVMS-5, while 50% of segments have a QoE improvement over 9.8%
with DVMS-1. Improvements are once again more evenly distributed with DVMS-5,
with 71.9% of simulations having an increased QoE, while 70.0% of simulations had an
increased QoE with DVMS-1.

−50 0 50 100 150 200 250 300
Viewport quality gain over NoPred (%)

−20 0 20 40 60 80 100 120
QoE gain over NoPred (%)

Figure 4.6: Viewport quality and QoE gains over all simulations with Bmin = 1s. Colors are the same as
in Fig. 4.5.
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Table 4.1: Visual quality gains (in %) over NoPred for all segments during simulations for different values
of Bmin. We report average and median gains in the “Avg. / Med.” columns. We report the proportion of
segments (in %) for which there was an increase / decrease in viewport quality over NoPred in the “Inc. /
Dec.” columns (some segments keep the same quality). Best results are highlighted in bold, second best are
underlined.

Bmin = 1 Bmin = 2 Bmin = 3 Bmin = 4 Bmin = 5
Avg. / Med. Inc. / Dec. Avg. / Med. Inc. / Dec. Avg. / Med. Inc. / Dec. Avg. / Med. Inc. / Dec. Avg. / Med. Inc. / Dec.

StaticPred 44.3 / 11.1 54.7 / 22.2 39.8 / 4.8 51.2 / 22.1 36.1 / 0.0 48.7 / 22.1 32.6 / 0.0 45.3 / 21.8 29.1 / 0.0 42.2 / 21.5
DVMS-1 46.7 / 14.3 57.2 / 20.4 41.4 / 9.6 53.4 / 20.3 37.3 / 1.9 50.6 / 20.2 34.0 / 0.0 47.3 / 20.0 31.0 / 0.0 44.5 / 19.6
DVMS-5 48.0 / 20.4 61.2 / 20.0 42.3 / 14.3 58.0 / 19.8 36.9 / 9.7 54.1 / 19.6 33.6 / 2.2 50.8 / 19.3 30.4 / 0.0 47.5 / 18.9
DVMS-best 53.1 / 25.0 62.8 / 18.4 47.7 / 17.1 59.6 / 18.2 43.2 / 12.2 56.1 / 18.1 39.8 / 6.6 52.6 / 17.8 36.2 / 0.0 49.3 / 17.5

Table 4.2: QoE gains (in %) over NoPred for all simulations for different values of Bmin. We report
average and median gains in the “Avg. / Med.” columns. We report the proportion of simulations (in %) for
which there was an increase in QoE over NoPred in the “Inc.” columns (no Dec. column because it can be
inferred from Inc., as no simulations keep the same QoE). Best results are highlighted in bold, second best
are underlined.

Bmin = 1 Bmin = 2 Bmin = 3 Bmin = 4 Bmin = 5
Avg. / Med. Inc. Avg. / Med. Inc. Avg. / Med. Inc. Avg. / Med. Inc. Avg. / Med. Inc.

StaticPred 14.3 / 7.8 65.8 13.2 / 7.1 65.0 12.2 / 6.1 63.3 11.0 / 5.3 62.2 10.0 / 4.5 61.0
DVMS-1 16.2 / 9.8 70.0 14.8 / 8.9 68.9 13.8 / 7.9 67.5 12.9 / 7.2 66.5 12.0 / 6.7 65.6
DVMS-5 15.6 / 10.0 71.9 14.2 / 9.2 71.1 12.8 / 8.1 69.3 12.1 / 7.6 68.8 11.3 / 7.1 67.9
DVMS-best 19.7 / 13.2 77.9 18.4 / 12.4 77.3 17.4 / 11.4 76.2 16.6 / 10.9 75.7 15.5 / 10.2 74.7

Over all Bmin, DVMS-5 gives similar improvements on average than DVMS-1 but
leads to better fairness between users than DVMS-1: there are more cases of segments
where the quality is improved, slightly fewer cases with very high quality, considerably
fewer cases with very low quality. This could be the effect of the aggressiveness of
DVMS-1. Single trajectory is a double-edged sword as it completely focuses the qual-
ity where the single prediction is: if the prediction is accurate prediction, we can have
very high quality segments, but if the prediction is inaccurate, we will have very low
quality segments. Predicting more trajectories would be a more conservative approach,
as spreading the quality more prevents from catastrophic failure, albeit at the cost of less
very high quality segments.

4.6.3.2 Link with prediction error

To confirm that this different distribution of quality gains between DVMS-1 and DVMS-
5 is indeed due to the prediction error, we first look at the link between normalized QoE
and prediction error in Fig. 4.7. The x-axis of this figure is the prediction centile: the
average prediction error for all (users, videos) was sorted and equally distributed in 100
sorted bins, so that each bin has the same number of (users, videos). Unsurprisingly, there
is a clear decreasing trend across all K: the QoE decreases when the prediction error
increases.

We now show the average viewport quality (resp. QoE) of segments (resp. simula-
tions) against DVMS prediction error deciles in Fig. 4.8-left (resp. 4.8-right). The process
for deciles is the same as for centiles, but there are only 10 bins instead of 100. We can
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Figure 4.7: Average normalized QoE against DVMS prediction error centiles for different values of K.

see that predicting one trajectory is better than predicting 5 trajectories when head motion
is predictable and that the single trajectory is very accurate. However, when head motion
becomes less predictable and prediction error increases, predicting 5 trajectories leads to
higher viewport quality and QoE. As previously shown in Fig. 4.6, predicting multiple
trajectories increases fairness between users, as individual bad predictions have a smaller
negative effect on viewport quality and QoE than in the case of single trajectory predic-
tion. Finally, we can see that the potential gain in visual quality (resp. QoE) when using
DVMS-best over DVMS-1 is around 10% (resp. 5%) for roughly 30% of the data, when
the prediction error is at its highest (deciles 7-10).
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Figure 4.8: Average viewport quality and QoE against DVMS prediction error deciles. Horizontal blue
arrow: 30% of the users, vertical arrow: 10% gain in visual quality, 5% gain in QoE.
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4.7 Discussion
With these simulations, we have shown the type of gains that DVMS can bring, partic-
ularly to reduce the number of (video,user) traces with lowest visual quality and QoE,
while maintaining the number of traces with high-quality levels. Beyond enabling such
a fairness increase, maximizing the QoE requires to dynamically adapt the number K of
predicted trajectories to both the type of scene and the current state of the user, that is to
the (video,user) pair, but also if possible over time, considering changing types of scene
and user attentional states. The more predictable the user motion (i.e., in sync with the
content and with an attention-driving content with a low number of points of interest), the
less the need for a high K. We propose to explore these ideas in chapter 6, motivated by
this work and based on the results that we obtain in chapter 5.

We believe that SMART360 successfully addresses the shortcomings of the existing
solutions to realistically simulate 360◦ streaming systems and efficiently compare ABR
and head motion prediction algorithms. With SMART360, we yearn to encourage re-
producible research by providing transparent code that can be adapted and improved.
Possible improvements include but are not limited to: considering the percentage of each
tile actually in the viewport for more accurate measurements of the visible quality, instead
of counting them as inside the viewport regardless of the proportion of the tile actually in
the viewport; giving the ability to the viewport predictor to use more information than the
past head coordinates, such as video saliency maps; using multiple threads and communi-
cation between threads when events occur during the simulation instead of the monolithic
structure of the Session::play_and_download method.

4.8 Conclusion
In this chapter, we have presented SMART360, a new simulation environment for 360◦

video streaming that allows comparing different motion prediction and adaptive bitrate
strategies with numerous metrics and graphical visualizations.

SMART360 overcomes the drawbacks of the few existing alternative tools by provid-
ing highly-configurable code, with many inputs and settings, as well as offering a realistic
streaming behavior, with stall events and ABR planning.

We have described the inputs and outputs of the simulator, as well as its internal
structure. We have explained how new motion predictors and adaptive bitrate algorithms
can be implemented inside the simulation environment to be evaluated and compared.

Thanks to SMART360, we are able to deploy an extensive system evaluation of our
proposed DVMS framework, considering four different datasets of user, video and net-
work bandwidth traces. We show that predicting multiple trajectories yields a higher
fairness between the traces, the gains for 20% to 30% of the users reaching up to 10% in
visual quality for the best number K of trajectories to generate for a given trace. Finding
the ideal K should consider video characteristics in connection with user emotional and
attentional states, and can be made even more effective by adapting K over time consid-
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ering the evolution of these variables. We explore these ideas by proposing new ways to
consider emotions in conjunction with video content in chapter 6.

We believe that SMART360 can improve the reproducibility of research regarding
360◦ video motion prediction and adaptive streaming algorithms, and make future com-
parisons of new strategies easier for researchers.





CHAPTER 5
Investigating the link

between immersive
content, attention,

emotion, and
movements in virtual

reality

From a user perspective, immersive content can elicit more intense emotions
than flat-screen presentations. From a system perspective, efficient storage and
distribution remain challenging, and must consider user attention. Understand-
ing the connection between user attention, user emotions and immersive content
is therefore key. While 360◦ videos viewed in a VR headset are gaining popular-
ity, it is necessary to reduce the bandwidth required to stream these immersive
videos and achieve a satisfactory quality of experience. This requires predicting
the user’s head motion in advance, which has been addressed by a number of re-
cent prediction methods that consider the video content and the user’s previous
motion, as shown in the previous chapters. However, human motion is a complex
process that can depend on many more parameters, including the type of atten-
tional state the user is in and their emotions, which can be difficult to capture.
In this chapter, we present three contributions stemming from user experiments
aiming at better understanding the link between immersive content, attention,
emotion, and movements in virtual reality.
First, we present PEM360, a new dataset of user head movements and gaze
recordings in 360◦ videos, along with self-reported emotional ratings of valence
and arousal, and continuous physiological measurement of electrodermal activ-
ity and heart rate. The stimuli are selected to enable the spatiotemporal analysis
of the connection between content, user motion and emotion. We describe and
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provide a set of software tools to process the various data modalities, and intro-
duce a joint instantaneous visualization of user attention and emotion we name
Emotional maps. We exemplify new types of analyses the PEM360 dataset en-
ables. The entire data and code are made available in a reproducible framework.
Second, using this new dataset, we make a first step towards understanding the
connection between user emotion and visual attention, in the form of content-
based saliency maps. To the best of our knowledge, this is the first work to
investigate the tri-partite connection between user attention, user emotion and
visual content in immersive environments. To do so, we use PEM360 to ana-
lyze how different types of saliency, both low-level and high-level, are related
with the user’s state in 360◦ videos. Specifically, we study how the accuracy of
saliency estimators in predicting user attention depends on user-reported and
physiologically-sensed emotional perceptions. Our results show that high-level
saliency better predicts user attention for higher levels of arousal. We discuss
how this work serves as a first step to understand and predict user attention and
intents in immersive interactive environments.
Finally, using PEM360 as well as CEAP-360VR, another dataset, we investigate
the effects of user emotions on the predictability of head motion, in connection
with video-centric parameters. We formulate and verify hypotheses, and con-
struct a structural equation model of emotion, motion and predictability. We
show that the prediction error is higher for higher valence ratings, and that this
relationship is mediated by head speed. We also show that the prediction error
is lower for higher arousal, but that spatial information moderates the effect of
arousal on predictability. This work opens the path to better capture important
factors in human motion, to help improve the training process of head motion
predictors, which is investigated in chapter 6.
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5.1 Introduction
As explored in Sec. 2.3.2, visual attention and content-based saliency estimation in virtual
reality (VR) is of crucial for several reasons. First, saliency maps are a useful tool to pre-
dict user behavior in VR and constitute an important part of viewport-adaptive streaming
systems (C.-L. Fan et al., 2017; S. Park, Hoai, et al., 2021; Romero Rondón et al., 2021).
Second, saliency maps are used to automate quality assessment with objective quality
estimators (M. Xu, Li, Chen, Wang, & Guan, 2019), which are key to enable efficient
storage and distribution of content with high perceptual quality (Brunnström et al., 2013).

Studies have shown that emotional stimuli attracts attention (Schupp et al., 2007;
S. Fan et al., 2018), but recent work indicates that low-level saliency features may better
explain visual attention than emotional stimuli (Hedger, Garner, & Adams, 2019). While
saliency estimation in 360◦ images and videos is well-studied with many proposed ap-
proaches (De Abreu et al., 2017; Mazumdar et al., 2021; Ozcinar & Smolic, 2018; Chao,
Ozcinar, Zhang, et al., 2020), little research has investigated the link between content-
based saliency and emotions in VR. For these reasons, we state the need to better under-
stand the attentional and emotional processes of users in an immersive environment, and
how these processes relate to the content.

As seen in Sec. 2.2.1, viewport prediction is also well-studied, and many different pre-
diction approaches have been investigated. However, existing viewport prediction meth-
ods do not consider how emotions may affect the predictability in virtual environments.
As the effects of emotions may be interlinked with features of the video content, we aim
to propose an approach considering both user-centric parameters (emotion and motion)
and video-centric parameters.

In this chapter, we propose to investigate the following research questions:

• How do emotions impact the accuracy of saliency estimators?

• What are user-centric parameters (emotion and motion) and video-centric param-
eters impacting the head motion predictability in immersive 360◦ videos, and what
are the relationships?

Answering the first question will allow us to better understand the connection between
user attention, user emotions and immersive visual content. Answering the second ques-
tion is important to understand how well the human motion can be captured, and how we
can improve prediction approaches, by explicitly modeling the impact these parameters
can have when designing prediction models, or by changing the architectures or training
losses of the deep models to learn directly from these parameters. We propose an ex-
ploration into new ways to consider the emotional data in viewport prediction models in
chapter 6.

To answer these questions, we make the following contributions:

• A new dataset of user head movements and gaze recordings in 360◦ videos, named
PEM360, along with self-reported emotional ratings of valence and arousal, and
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continuous physiological measurement of electrodermal activity and heart rate. The
stimuli are selected based on high-level and low-level content saliency to enable
the spatiotemporal analysis of the connection between content, user motion and
emotion. The dataset comes with a set of software tools to pre-process the data
of gaze, electrodermal activity and content, and to visualize jointly instantaneous
heat maps of gaze and arousal level superimposed on the frame, which we name
Emotional maps. The entire collection of artifacts is presented as Python tools and
notebooks to enable reproducibility of the data processing. The dataset and tools
are now available in a public GitLab repository∗.

• An investigation into how emotions affect the accuracy of saliency estimators, both
with low-level and high-level saliency, in 360◦ videos. Our results show that high-
level saliency better predicts user attention for higher levels of arousal.

• An investigation into the connection between a subset of user-centric and video-
centric measures and head motion predictability. We consider two datasets (includ-
ing PEM360) where the user movements and subjective emotions are available. The
considered measures are valence and arousal graded by every user on every video,
head motion speed, spatial information (SI) and temporal information (TI), shown
to provide important insights into this type of emotion-video feature-predictability
relationships. We formulate three hypotheses that we verify, and model the data
with a directed graph of causal relationships formalized in a structural equation
model (SEM). We show that the prediction error is generally lower (higher pre-
dictability) for users having provided higher arousal ratings. We also show that the
prediction error is higher for higher valence ratings, and that this relationship is
mediated by head speed. Finally, we exhibit an interaction effect between SI and
arousal, SI being shown to moderate the effect of arousal on the prediction error.

The work presented in this chapter was the object of two conference and one workshop
papers. Our dataset and software tools were presented at the Open Dataset and Software
track of the 13th ACM Multimedia Systems Conference (MMSys ’22) (Guimard, Robert,
et al., 2022b). The analysis highlighting the link between emotion, attention and content
in virtual immersive environments was presented at the 2022 IEEE International Con-
ference on Image Processing (ICIP) (Guimard, Robert, et al., 2022a). The investigation
into the effects of head motion on predictability in VR was presented at the 14th Inter-
national Workshop on Immersive Mixed and Virtual Environment Systems (MMVE ’22)
(Guimard & Sassatelli, 2022).

Section 5.2 positions our approach with respect to existing works. Section 5.3 outlines
the design of our user study. Section 5.4 presents the dataset and software tools that we
make available to the research community. Section 5.5.1 provides analyses of our data,
including an investigation into the link between attention, emotion and content. Section
5.6 studies the effects of emotions on head motion predictability, combining our collected
data with another recent dataset. Finally, section 5.7 concludes the chapter.

∗https://gitlab.com/PEM360/PEM360/

https://gitlab.com/PEM360/PEM360/
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5.2 Related work
Sensing and analyzing emotions in immersive environments has spurred interest with
several studies looking into the state of presence as well as emotional states in virtual
reality (Baños et al., 2008; Felnhofer et al., 2015; Pallavicini et al., 2019; Voigt-Antons
et al., 2020). More recently, studies and public datasets considered behavioral data (head
and eye movements) in addition to emotional ratings (B. J. Li et al., 2017; W. Tang et al.,
2020; Toet et al., 2020; Xue, Ali, Zhang, et al., 2021; Xue, Ali, Ding, & Cesar, 2021).

5.2.1 Sensing emotions in VR environments
Human emotions are commonly decomposed along two main dimensions: valence, rep-
resenting the negative or positive nature of an emotion (unpleasant-pleasant), and arousal,
representing the intensity of the perceived emotion (calm-excited) (Russell, 1980; Barrett,
1998).

The first reference database (B. J. Li et al., 2017) providing emotional ratings and mo-
tion recordings of 360◦ videos is made of 73 VR videos on which 95 users rated valence
and arousal using the self-assessment manikin (SAM) tool (Bradley & Lang, 1994) after
experiencing each video. Their head positions were continuously recorded. A dataset of
self-reported emotions of 19 users watching thirty-six 360◦ images is collected by W. Tang
et al. (2020), with eye motion recorded. However, ratings made in retrospect cannot rep-
resent the variety of states a user goes through during the experience (Voigt-Antons et
al., 2020), limiting potential analyses and interpretations. Recent works have therefore
proposed tools enabling a continuous collection of self-reports inside the immersive en-
vironment (Toet et al., 2020; Xue, Ali, Zhang, et al., 2021). The data collected in these
recent works also comprise physiological measurements of heart rate and electrodermal
activity (EDA, as skin conductance), which has been shown to reliably represent user in-
stantaneous arousal (Boucsein, 2012). Toet et al. (2020) presented a new emotions rating
tool, named EmojiGrid, tested on 40 users viewing 62 videos from the reference database
of B. J. Li et al. (2017). While they provide the per-user per-video valence and arousal
ratings, only time averages are made available for EDA, and no gaze or head motion
traces. Xue, Ali, Zhang, et al. (2021) introduced a continuous grading tool of valence and
arousal. They provide a dataset of 11 immersive videos from the same database (B. J. Li
et al., 2017) experienced by 32 users. Subjective emotional ratings, physiological mea-
surements (including EDA) and head and gaze movements are continuously collected and
made available. This latter work (Xue, Ali, Zhang, et al., 2021) is closer to ours and has
been made partly concurrently. Our dataset is however complementary and enables other
types of studies. We provide EDA streams at a higher rate, acquired at 16Hz, compared
to 4Hz in the work of Xue, Ali, Zhang, et al. (2021). In the aforementioned objective of
understanding the connection between attended regions and instantaneous emotions, like
arousal, it is important to enable the detection of several peaks of the phasic component of
EDA per second, requiring hence a higher acquisition rate. Also, we sample seven video
stimuli from the same reference database (B. J. Li et al., 2017) for our experiments, so
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that specific criteria on saliency are met, as detailed in Sec. 5.3.1. Out of the seven videos,
six differ from the videos selected by Xue, Ali, Zhang, et al. (2021). Our dataset therefore
enriches the existing datasets and enables extensive analysis to gain new insights on the
connection between attention, emotion and content.

5.2.2 Correlating user emotion with motion
Understanding how different types and levels of emotions correspond to specific types of
motion has already been investigated (B. J. Li et al., 2017; W. Tang et al., 2020; Xue, Ali,
Ding, & Cesar, 2021). Results from B. J. Li et al. (2017) show some level of correlation
between (time) average arousal and average pitch angle, and between yaw angle standard
deviation and valence. Correlations analyzed from continuous ratings by Xue, Ali, Ding,
and Cesar (2021) also show moderate correlation between pitch and arousal on segments
of 5 to 10 seconds, pitch and valence, but negative correlation between yaw standard
deviation and valence, while results from W. Tang et al. (2020) show a significant impact
of negative images on eye behavior.

5.2.3 Correlation of user attention with the spatial content
While previously mentioned works have focused on the analysis of user emotion and mo-
tion based on coarse-grained categorization of the entire content (high/low positive/neg-
ative valence and high/low arousal), other works have focused on the impact of specific
regions on the user’s attention, described with low-level (LL) saliency or emotional as-
pects. LL saliency refers to pixel-level features (e.g., edges, luminance, motion). Cerf et
al. (2007) showed that human eye movements are influenced both by LL and high-level
(HL) saliency (related to higher semantic concepts such as objects and faces), possibly
based on the emotional content. Chaabouni and Precioso (2019) showed that user inter-
est estimators fed with gaze recordings are shown to be weak because highly dependent
on LL saliency, which is independent of the user interest. They found that normalizing
fixations density with LL saliency significantly improves the interest estimators based on
gaze data. The authors took care of selecting emotion-neutral images in their experiments
not to interfere with the interest-guided task. Hedger et al. (2019) re-examined previous
results suggesting that emotional faces in an image attract more user attention/fixations
outside awareness. They showed that facial expressions had no effect on attentional allo-
cation, which can instead be explained by the higher LL saliency.

5.2.4 Prediction of head movements in VR
The prediction of head movements in VR, or viewport prediction has been heavily inves-
tigated in recent years, as seen in Sec. 2.2.1. In this chapter, we consider the prediction
methods presented by Romero Rondón et al. (2021) to benchmark our approach. Con-
sidering the analysis of how the video content or user emotions impact the head motion
predictability, to the best of our knowledge only Romero Rondón et al. (2021) analyzed
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the prediction performance disaggregated over video categories. However, to the best of
our knowledge, no previous research has looked at motion predictability based on felt
emotions, nor did they formalize the relationship between predictability and video fea-
tures.

5.2.5 Positioning of our contributions
In this chapter, we first present a first step towards understanding the connection between
user emotion and predictability of motion from content saliency. Specifically, we analyze
how the accuracy of LL and HL saliency estimators depend on the user’s self-reported
and physiologically-sensed emotional perceptions.

Secondly, no work has so far investigated and formalized the effect of emotions
and video features on head motion predictability, that is on the performance of pre-
diction methods. To do so, we consider the state-of-the-art predictors introduced by
Romero Rondón et al. (2021), as motivated below, and formulate working hypotheses
from initial results obtained in the works we previously mentioned (B. J. Li et al., 2017;
Xue, Ali, Ding, & Cesar, 2021).

5.3 User study design
We conducted a controlled, indoor laboratory experiment where users watched 360◦

videos in a VR headset. We collected eye movement (EM), head movement (HM), heart
rate (HR) and skin conductance (EDA) data as well as emotion annotations of valence
and arousal. The user experiment has been approved by the university ethics committee.

5.3.1 Stimuli
The videos are selected to enable several levels of content analysis and description, to
correlate with user motion and emotion. User attention in relation with the visual content
is described with saliency maps, obtained either from gaze locations, or estimated from
the content. Here we consider two levels of content description as two types of saliency
maps, and select the videos so that for each, the overlap between both saliency maps is
limited. Specifically, we consider low-level (LL) and high-level (HL) saliency. Low-
level saliency maps are made up of a combination of colors, intensity and orientations as
defined by Itti et al. (1998). Since we are dealing with videos and not images, we combine
this definition with the one of optical flow (Horn & Schunck, 1981), because we also
consider motion in the video to be part of the low-level saliency. High-level saliency maps
are composed of high-level semantic features, such as faces, cars, or animals. Inspiring
from Chopra et al. (2021), high-level saliency is obtained from YOLOv4 object detector,
with object bounding boxes being used as binary saliency maps.

We selected 7 videos from the reference database of B. J. Li et al. (2017). The selected
videos should have a range of valence and arousal as wide as possible, and the LL saliency
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should be evenly distributed both within and outside object bounding boxes characterizing
HL saliency. To select these videos we compare (i) the number of pixels inside and outside
objects, and (ii) the per-pixel LL saliency (ranging between 0 and 255), computed as the
total LL saliency inside and outside objects normalized with the corresponding number
of pixels. Fig. 5.1 demonstrates this in videos 13 and 73. The number of pixels with
such minimum LL saliency inside and outside objects is equivalent over time, as is the
per-pixel LL saliency in both areas. Fig. 5.2 shows a frame where regions with high LL
saliency can be seen outside of the detected objects. Table 5.1 lists the video details.

Table 5.1: Details of selected videos for our dataset. Videos YouTubeIDs are clickable links, otherwise
accessible at youtube.com/watch?v=[YouTubeID]. Ratings of valence and arousal are between 1 and 9.

ID Valence Arousal Start (s) End (s) Duration (s) YouTubeID

12 7 4.6 5 103 98 T-aOVE22lEw
13 4.92 4.08 4 131 127 GJGfxfGEa9Y
17 5.22 5 5 69 64 g7btxyIbQQ0
23 7.2 3.2 8 143 135 CDfsFuDuHds
27 6 1.6 60 180 120 QxxXu_B–ZA
73 6.27 6.18 9 70 61 bUiP-iGN6oI
32 6.57 1.57 40 130 90 -bIrUYM-GjU

5.3.2 Equipment
Recordings of head and eye movements have been made with a FOVE headset, equipped
with an eye-tracker with a 120Hz acquisition rate, and tethered to a desktop computer.
A Unity3D scene was used with a 360◦ sphere object to display the videos. We use the
FOVE Unity plugin to record head and gaze positions.

Recordings of EDA and optical pulse have been made with a Shimmer3 GSR+ sensor
with a frequency range of 15.9Hz and 51.2Hz, respectively. All of the measurements were
resampled to 100Hz for analysis. The apparatus is depicted in Fig. 5.3.

5.3.3 Participants
The experiment was carried out with a total of 34 users. The data of three participants
was removed from the dataset due to corrupt or incomplete files. No other outlier removal
procedure was implemented. Therefore, we include the data from 31 participants (10
women, 20 men, 1 non-binary; 18-29 years old, M=24, SD=3.26). 19 of them had a
normal vision, 9 had corrected to normal vision and 3 did not have a normal vision. Most
of them played games but rarely or never in VR, and the majority have seen only one or
two 360◦ videos before the experiment. Participants received monetary compensation for
their time. The seven videos were experienced by all 31 users for their entire duration (60
to 135 seconds, see Table 5.1).

https://www.youtube.com/watch?v=T-aOVE22lEw
https://www.youtube.com/watch?v=GJGfxfGEa9Y
https://www.youtube.com/watch?v=g7btxyIbQQ0
https://www.youtube.com/watch?v=CDfsFuDuHds
https://www.youtube.com/watch?v=QxxXu_B--ZA
https://www.youtube.com/watch?v=bUiP-iGN6oI
https://www.youtube.com/watch?v=-bIrUYM-GjU
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Figure 5.1: HL and LL saliency characterization of video 13 (left) and video 73 (right). Top: number of
pixels inside and outside objects. Bottom: average LL saliency per pixel inside and outside objects.

Figure 5.2: HL and LL saliency visualization for frame 2145 of video 13 (top) and frame 3630 of video 73
(bottom). Left: the frame. Center: HL saliency (detected objects, human on top, animals at bottom). Right:
LL saliency.

5.3.4 Procedure
The lab experiment started with a pre-questionnaire assessing the user’s background with
VR and checking for visual deficiencies. Eye tracking calibration was done using the
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Figure 5.3: Shimmer3 GSR+ used to record EDA and optical pulse. Gray wires connect the EDA sensor,
white wire connects the pulse sensor.

FOVE software for each user before beginning the experiment to make sure the eye track-
ing data is properly recorded. The VR experiment systematically started with a low-
arousal (relaxing) video (ID 32) to bring EDA and HR levels to a user-relative base-
line. The remaining six VR videos were then experienced in a random order by every
user. Users were in standing position during the experience and could freely explore in
360◦ while holding the back of a chair to maintain balance and orientation. The videos
were played without audio. After each viewing, the headset was removed and the user
was asked to rate their emotions (valence and arousal) using the self-assessment manikin
(SAM, see Fig. 5.4). An at least 1-min break outside the headset was observed between
every video.

Figure 5.4: Self-Assessment Manikin (SAM) scale for rating of valence (top row) and arousal (bottom row).
Taken from (Bradley & Lang, 1994).
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5.4 Dataset and tools
Along with the data, we provide a Jupyter notebook to reproduce the entire processing of
head and gaze data, EDA, ratings of valence and arousal, and the code to produce saliency
maps from the content.

5.4.1 Dataset structure
The resulting dataset PEM360 is provided with the structure shown in Fig. 5.5. The
raw data folder contains 34 folders, one for each user. User folders contain a Shimmer
CSV file containing the EDA and optical pulse data recorded over all the 360◦ videos
experienced by the user, and seven CSV files, one per video, containing the gaze and head
motion data recorded during the corresponding video. Entries in the CSV files include
system timestamps to synchronize the data modalities for analysis.

Valence and arousal ratings of each user for each video are stored in the root folder
under graded valence arousal.csv. Finally, the root folder PEM360 also contains the
Python Jupyter notebook providing the software tools described below, and the entire data
processing workflow to reproduce the analysis presented in Sec. 5.5.1 and Sec. 5.5.2.

Figure 5.5: Folder structure of the dataset with main files.

5.4.2 Processing gaze data
For both HM and EM, 3D positions are logged in Cartesian coordinates (x, y, z) ∈ R3.
We provide functions:

• to convert the positions from Cartesian to Eulerian (ϕ, θ, ψ) denoting respectively
yaw, pitch and roll (function cartesian to eulerian()),
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• to obtain speed and acceleration over yaw and pitch (function get speed acc yaw pitch()),

• to obtain global speed and acceleration by computing the derivatives of the ortho-
dromic distance (function get speed acc()),

• to represent rotational motion with quaternions (hence enabling to compute non-
linear motion on the sphere as changes in quaternion rotational axis) (function
convert to quaternion()).

5.4.3 Processing EDA data
The EDA signal is the raw measurement of skin electrical conductance in micro-Siemens
(µS). Two main components can be distinguished in an EDA signal (Braithwaite, Watson,
Jones, & Rowe, 2013; Boucsein, 2012): the tonic level, also called skin conductance level
(SCL), varies slowly and represents slow autonomic changes that may not be associated
with stimulus presentation; and the phasic level, which represents faster changes in EDA,
and can better reflect the impact of successive stimuli. Raw EDA, phasic and tonic com-
ponents are shown in Fig. 5.6-top and 5.6-center. We use the Python toolbox Neurokit
(Makowski et al., 2021) to process EDA data, which uses the cvxEDA method to extract
the phasic component. Finally, the physiological arousal to be analyzed in connection
with experimental stimuli can be assessed from several metrics on the phasic level, such
as peak frequency, duration and amplitude. This is called the skin conductance response
(SCR), and can be defined in several ways. In our code, we choose to compute instanta-
neous SCR as the absolute value of the first-order time derivative of the phasic component,
shown in 5.6-bottom. Note however that the code can easily be modified to implement
other definitions of SCR from the phasic component. The obtained SCR is therefore a
time series for every user-video pair. This enables analysis with SCR averaged over time
for each such pair (as often done), or on a time-dependent basis.

5.4.4 Processing video content
As introduced in Sec. 5.3.1, we use LL and HL saliency models designed for regular
flat images. We therefore apply them on FoV projections of the entire frame. We first
uniformly sample 100 points on the unit sphere and project them on the equirectangular
frame using the equirectangular-toolbox (Mutha, 2017). Each “patch” is made of a projec-
tion centered on one of these points, it is a 512x512 image corresponding to a 108◦x108◦

FoV. These patches can overlap each other and are separately given to the appropriate
models for both LL and HL saliency. For LL saliency, we use a Python implementation
of Itti’s saliency map (Kimura, 2020), which also allows the combination of Itti saliency
with the optical flow between consecutive frames, which we do by using separate ex-
tractors for each patch. For HL saliency, we use the TensorFlow 2 implementation of
YOLOv4 (TensorfFlow, 2021). For each patch given to the YOLO model, we create a
binary saliency map equal to 1 inside the bounding boxes of the detected objects. For
both LL and HL saliency, the overlapping patches are back-projected by addition onto
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Figure 5.6: EDA signal recorded for user 03 while watching video 73. The three graphs from the top show
the raw EDA data and the tonic component, the phasic component and the SCR (absolute value of phasic
first derivative).

the equirectangular frame to obtain a single (LL or HL) saliency map per frame. For
LL saliency, the back-projection is normalized by dividing the value of each pixel by the
number of patches it belongs to. The final value of a given pixel is the average over all
existing projections for this pixel. For HL saliency, the back-projection is normalized by
clipping the value of each pixel between 0 and 1. The final value of a given pixel is the
maximum over all existing projections for this pixel. Finally, the saliency maps are down-
scaled by a factor of 5 both horizontally and vertically (from 1920x1080 to 384x216) for
storage space reasons. The LL saliency is downscaled using average pooling over blocks
of 5x5 pixels, whereas HL saliency is downscaled using max pooling over blocks of the
same size. The files are stored in HDF5 format and can be accessed from a link given
in the repository mentioned in Sec. 5.1, but can also be re-computed from the provided
code.



130
CHAPTER 5 — Investigating the link between immersive content, attention, emotion,

and movements in virtual reality

5.4.5 Instantaneous visualization of gaze and emotions: Emotional
maps

Figure 5.7: Emotional map visualizing instantaneous gaze locations (luminance) and user arousal (from
blue to red for low to high SCR). Example with high arousal in a roller-coaster video.

As previously discussed, the stimuli choice and experimental procedure are designed
to collect data enabling a time-dependent analysis of the connection between attention,
emotion and content. That is why we provide a tool for the experimenter to play the
360◦ video and visualize the instantaneous gaze locations and arousal (SCR) of a given
user from the recorded data. This tool implements a new way of visualizing arousal in
connection with gaze, which we name emotional maps. An emotional map is a 4D-array
represented as a frame where:

• pixel luminance reflects the time the user spent attending the area over a past win-
dow of T seconds. A Gaussian kernel of parameter σ is convolved with every gaze
location, and accumulated over the sliding window of T seconds. A bright (resp.
dark) area can therefore reflect a fixation (resp. a saccade).

• pixel color represents the user’s SCR, from blue (low arousal) to red (high arousal).

Emotional maps generated from a record with our tool are accumulated into videos. Each
point persists on the video for P seconds, creating a trail to easily visualize the gaze
path and arousal changes. An example of such a video frame is shown in Fig. 5.7∗.
The script compute emotional map.py creates the emotional maps and blends them with
the frames to produce the resulting video visualization from records of gaze and EDA
data. We believe this tool can lead to important qualitative insights for diverse disciplines
(including neuroscience) on the connection between visual attention and emotion.

∗Demonstration of a resulting video is accessible at https://tinyurl.com/25vjwk2s.

https://tinyurl.com/25vjwk2s
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5.5 Analyses of the collected data

5.5.1 Preliminary analysis
In this section we first verify the validity of our data and correspondence with the original
dataset and between arousal and EDA. We then exemplify possible analyses of correlation
between motion and emotion, and between attention, content saliency and emotion.

5.5.1.1 Data validation

Reliability of the collected ratings We verify the reliability of the collected arousal
and valence by assessing the similarity of the user ratings for each video. This is achieved
with the intra-class correlation coefficient (ICC), with classes corresponding to the 360◦

videos. ICC estimates based on mean ratings with a two-way mixed effects model are 0.96
(95% CI 0.87-0.99) for arousal and 0.88 (95% CI 0.72-0.98) for valence. According to
Koo and Li’s guidelines (Koo & Li, 2016), this is excellent and good inter-rater agreement,
respectively.

Agreement between collected ratings and original dataset Fig. 5.8 shows the va-
lence and arousal ratings of our users as a boxplot for each video, along with a red dot
representing the corresponding average values available in the original dataset (B. J. Li
et al., 2017). We observe the good agreement between both sets, as the latter are all the
times but one in the inter-quartile value range of our data. We also compute the median
of the root square difference of averages of our valence and arousal ratings with the cor-
responding averages from (B. J. Li et al., 2017). This median is 1.17 (within a range of 1
to 9), showing the agreement between both.
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Figure 5.8: Arousal and valence ratings by users for each videos. The green dotted line corresponds to the
mean and the orange solid line to the median.
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5.5.1.2 Connecting EDA with graded arousal

We investigate the correspondence between SCR and arousal ratings. We gather the av-
erage SCR values SCRu,v for every pair (u, v) of user u and video v, and corresponding
graded arousal GAu,v. First, we average both variables over all users for every video, and
obtain seven sample pairs (GAv,SCRv), shown in Fig. 5.9-left. We verify as did Toet et
al. (2020) that the video ranking according to mean graded arousal is similar to the video
ranking according to mean SCR. We also compute the Spearman correlation coefficient
(CC) between GAv and SCRv for all seven videos. The Spearman CC between mean
graded arousal and mean SCR is (0.92, p = 0.003). According to (Walline, 2001, appx.
6C, p. 79), such level of correlation is significant (α = 0.05, β = 0.2) from 7 samples
(see (UCSF, 2021)).

We then consider the 217 sample pairs (GAu,v,SCRu,v). It is interesting to ob-
serve that the Pearson or Spearman CCs do not show any correlation between these
pairs. Looking more closely at the data, we identify that the mean level of SCR per
user, SCRu = Ev[SCRu,v] (averaged over all videos), varies significantly over the users
(M = 6.0e−4, SD = 6.2e−4). With the rationale that the excitability of a user is person-
dependent and impacts the absolute SCR values, we verify whether the SCR variations
relative to this individual’s mean are better associated with graded arousal. To do so, we
define centered SCR as cSCRu,v = SCRu,v − SCRu, and do the same with graded arousal
cGAu,v = GAu,v − GAu. Fig. 5.9-right represents the scatter plot of cSCRu,v against
cGAu,v. The Spearman CC between both is (0.25, p < 0.001). According to (Walline,
2001, appx. 6C, p. 79) implemented in (UCSF, 2021), such level of correlation is sig-
nificant (α = 0.05, β = 0.2) from 52 samples. There is therefore a moderate significant
correlation between centered SCR and centered graded arousal (Akoglu, 2018).
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5.5.2 Investigating the link between attention, emotion and content
Our objective is to compare the accuracy of both types of saliency maps, HL and LL,
to match the users’ fixations over every frame of the 360◦ video. To do so, we compute
the normalized scanpath saliency (NSS), which measures the amount of saliency around
fixations (Le Meur & Baccino, 2013). We consider segments of 5 sec. to average the
saliency maps of all frames and aggregate the user’s fixations in this interval, hence ob-
taining an NSS value for both saliency types NSSHL

u,v,i and NSSLL
u,v,i for every user u, video

v, and interval i. The averages over intervals (resp. users) are denoted by NSSu,v and
NSSv, respectively. We analyze the association between NSSHL

u,v and NSSLL
u,v with mean

centered SCR denoted cSCRu,v and graded arousal GAu,v. SCR is centered per user with
cSCRu,v = SCRu,v−Ev[SCRu,v] because the preliminary analysis has shown that the ab-
solute levels of SCR vary significantly across users, but intra-user variations across videos
are consistent with the ordering of each user’s arousal ratings.

5.5.2.1 Results
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Figure 5.10: NSSDiff
u,v against cSCRu,v and GAu,v for every user u and video v. The black line shows a

linear regression model fitted on the data.

To analyze the difference in accuracy of both types of saliency depending on the
user’s arousal, we consider in Fig. 5.10 the difference NSSDiff

u,v = NSSHL
u,v − NSSLL

u,v

plotted against cSCRu,v (left) and graded arousal GAu,v (right) for all u, v, the points be-
ing colored per video. The major finding is the increasing trend of NSSDiff with EDA
and graded arousal. Specifically, the PCC between NSSDiff and EDA cSCR is 0.25
(p < 10−3), and the PCC between NSSDiff and graded arousal GAu,v is 0.41 (p < 10−9).
These estimates are obtained over 217 (u, v) samples. According to Walline (Walline,
2001, Appendix 6C, page 79), such levels of correlation are significant for 123 and 44
samples, respectively (see (UCSF, 2021)).
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We then analyze the same associations averaged per video in Fig. 5.11, where the
x-axis of the first row is cSCRv and that of the second row is GAv, with v in the set
of video indices. The columns are numbered from the left. We first confirm from the
leftmost column that ordering and appearance of NSSDiff

v against EDA or graded arousal
are close. Second, we observe a clear increasing trend confirming the above positive
significant correlation results.

To investigate the reasons for this trend, we decompose NSSDiff
v into its individual

components NSSHL
v and NSSLL

v depicted in columns 2 and 3. Owing to the similarity of
trends against EDA and graded arousal, we conduct the analysis only on the latter. We first
observe an increasing trend of NSSHL

v . It could have been even clearer considering that
underwater objects in video 12 (brown dot) are often missed by the object detector (large
shark), hence under-estimating NSSHL

12 . We can then question whether this increase is due
to users focusing more when more aroused, or to intrinsic features of the videos, where
larger objects would appear in higher arousal videos. We verify in the last column that
the increase in NSSHL with arousal cannot be entirely attributed to a relatively larger area
occupied by objects. Second, column 3 shows no clear trend, NSSLL seems to remains
steady over the range of arousal. One exception is the highest-arousal video (73, green
dot) where the very low NSSLL is explained by large and dark homogeneous objects
(black furred gorilla). The variation in NSSLL does not appear to be related to EDA or
graded arousal.

We can therefore conclude that the increasing trend of NSSDiff with arousal is mainly
due to higher NSSHL for higher-arousal videos. A first conclusion we may draw is that
the relative weight of HL saliency should vary in a saliency model depending on the user’s
arousal state. Sensing the user’s state may hence help predict their attention.

5.5.2.2 Discussion

We cannot claim causation on whether users focus because they are more aroused by the
content, or if they are more aroused because they focus on objects. A first question is
whether significantly different levels of arousal occur for users on the same video. This
would mean that the video content alone is not informative enough to adapt the relative
weights of HL and LL saliency to users. On the contrary, if the video content is sufficient,
then one can think of leveraging arousal (physiological or subjective) measurements in
quality assessment sessions to serve as an auxiliary loss to train (deep) saliency models.

While arousal and valence are major dimensions to describe user emotion of a given
content like a video, the richer experience of an immersive and possibly interactive en-
vironment is described over various additional dimensions, particularly presence, immer-
sion, agency, engagement, flow, usability, skill or judgement (Tcha-Tokey, Christmann,
Loup-Escande, & Richir, 2016). Recently, valence, arousal and agency have been shown
to interact in non-trivial ways to produce presence (Jicol et al., 2021). In 6DoF envi-
ronments, which we are currently investigating for rehabilitation scenarios and where
engagement, skills and judgments are major outcomes, it is crucial to adapt the environ-
ment’s content to provide proper adaptive guidance to the user. This requires an under-
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standing and the prediction of the user’s attention and intents, which depend on the user’s
emotional state. This work in 3DoF immersive low-interaction environment hence serves
as a baseline for immersive interactive environments.

5.6 Effects of emotions on head motion predictability
In this section, we want to investigate the effects of emotions on head motion predictabil-
ity in VR. We first define the head motion prediction problem and presents the prediction
method we consider in Sec. 5.6.1. We detail the chosen datasets and measures in Sec.
5.6.2. We make hypotheses based on previous works and analyze their validity from the
data in Sec. 5.6.3, and we model the effects of user emotions and motion on predictability
with a SEM in Sec. 5.6.4. Finally, we discuss limitations and perspectives in Sec. 5.6.5.

5.6.1 Head motion prediction
We first define the problem of head motion prediction in Sec. 5.6.1.1, then describe the
chosen method and the motivation behind this choice in Sec. 5.6.1.2.

5.6.1.1 Problem definition

We consider the same head motion prediction problem as in chapter 3. In this section,
we use the following description. We consider that a given 360◦ video v of duration T
seconds is being watched by a user u. The head trajectory of the user is denoted Pu,v

0:T ,
with P storing the head coordinates on the unit sphere (as, e.g., Euler angles, Cartesian
coordinates or quaternions).

At any time t in [0, T ], we want to predict the future trajectory Pu,v
t:t+H over a prediction

horizon H , assuming only Pu,v
0:t and the video content of v are known. That is, we do not

assume any knowledge of traces other than u on this video v.

5.6.1.2 Prediction method

In order to predict head motion, many methods have already been proposed. Clustering-
based methods, like the one proposed by Petrangeli et al. (2018) or the one proposed by
Nasrabadi et al. (2020) need to rely on other user traces of the same video v and cannot
be used on new videos. Since we do not assume any knowledge of traces other than
the current user u on the current video v, we need to consider other kinds of prediction
methods. Recent works like TRACK (Romero Rondón et al., 2021) and VPT360 (Chao
et al., 2021) are deep-learning models that have been shown to perform well on various
head motion datasets. We choose two main methods presented by Romero Rondón et al.
(2021), named Deep-position-only and TRACK. We make this choice because (i) these
approaches are representative of other prior approaches relying on sequence-to-sequence
architectures, (ii) they are very close to our proposed state-of-the-art approach, DVMS
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(chapter 3), when it comes to single trajectory prediction, and (iii) the models and entire
framework are made publicly available (Romero Rondón et al., 2020).

To conduct our study, we consider both models trained on two different head motion
datasets from David et al. (2018) and Y. Xu et al. (2018), and selected the trained models
that obtained the best results when testing (without re-training or fine-tuning) on our data
described in Sec. 5.6.2. All the trained models were similar in performance on our data,
but the models trained on the dataset by Y. Xu et al. (2018), the largest dataset, performed
slightly better. Then, we inspected the mutual effects, such as those shown in Fig. 5.16,
when the prediction error is obtained with Deep-position-only and TRACK. As results
were qualitatively similar, for the rest of the chapter, we have chosen to only present
results obtained with TRACK.

TRACK is a sequence-to-sequence deep model using separate long short-term mem-
ory (LSTM) units to encode both the past positions and the visual saliency. The same kind
of LSTM units, combined with fully connected layers are then used to decode the future
positions based on the embeddings given by the encoder. The visual saliency is made up
of 384x216 saliency maps extracted from the video frames by PanoSalNet. A simplified
diagram of the architecture is shown in Fig. 5.12. TRACK was fully re-implemented
using PyTorch and trained on multiple head motion datasets as provided in the repository
(Romero Rondón et al., 2020). To conduct our study, we chose the trained model that
obtained the best results when testing (without re-training or fine-tuning) on our data de-
scribed in Sec. 5.6.2. All the trained models were similar in performance on our data,
but the model trained on the dataset by Y. Xu et al. (2018), the largest dataset, performed
slightly better.

5.6.2 Datasets and measures
In this section, we present the datasets considered for our data analysis, and our choice
of user-centric and video-centric measures. The effect of these measures on motion pre-
dictability in investigated next in Sec. 5.6.3 and 5.6.4.

5.6.2.1 Datasets

We consider the only two datasets available where both user movements and emotions
have been collected from immersive viewing of 360◦ videos.

The first dataset we consider is PEM360, our own dataset collected from user experi-
ments, described in Sec. 5.3 and 5.4.

Our second source of data comes from CEAP-360VR (Xue, Ali, Zhang, et al., 2021).
This dataset is made from user experiments with 32 participants each watching 8 videos
in a VR headset equipped with an eye-tracker, recording head and eye movements. After
each video, the users grade their emotions valence and arousal.

Additionally, emotional ratings are continuously annotated by the users thanks to a
controller in their hand, along with physiological measurements with a wristband. We do
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Figure 5.12: Simplified architectural diagram of the prediction method TRACK. Input P denotes positional
coordinates and input S denotes visual content in the form of a frame saliency map.

not use this latter data in this work. Head and eye movement were also recorded using the
VR headset with an integrated eye tracker.

In both datasets, users were asked to rate each video using the self-assessment manikin
(SAM) (Bradley & Lang, 1994), giving individual ratings of valence and arousal.

The videos shown to users in both datasets come from the same 360◦ video database
(B. J. Li et al., 2017), with average ratings of valence and arousal from 95 participants.
We report in Table 5.2 the details of every video from both datasets. The left-most col-
umn “ID” refers to the video ID the author used in their dataset. The right-most column
“Database ID” indicates the original ID in the 360◦ video database (B. J. Li et al., 2017).
Ratings of valence and arousal given in this table are the original average ratings of the
database. We show the video ratings on the valence-arousal plane in Fig. 5.13. In each
of the datasets, the videos were trimmed, so the videos are not exactly the same as in
the database. The clips trimmed from each video were manually curated to preserve im-
portant semantic information of the original video, which preserves the validity of the
original valence-arousal ratings. The start offset of each video as well as the duration of
the trimmed clip are specified in the table.

As shown by the asterisk⋆, we note that videos 32 and V6 are different versions of
the same video (clipped at different times), which makes a total of 14 distinct videos
experienced in VR by 63 different users.
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Table 5.2: Details of selected videos, combining the two datasets. The ID refers to the original database
(B. J. Li et al., 2017). Ratings of valence and arousal are between 1 and 9.

ID Valence Arousal Start (s) Duration (s) Database ID

12 7.00 4.60 5 98 12
13 4.92 4.08 4 127 13
17 5.22 5.00 5 64 17
23 7.20 3.20 8 135 23
27 6.00 1.60 60 120 27

32⋆ 6.57 1.57 40 90 32⋆

73 6.27 6.18 9 61 73
V1 7.47 5.35 0 60 50
V2 6.13 1.80 10 60 38
V3 3.20 5.60 65 59 21
V4 2.53 3.82 3 60 14
V5 6.75 7.42 0 60 52

V6⋆ 6.57 1.57 0 60 32⋆

V7 4.40 6.70 127 60 68
V8 2.73 3.80 41 60 19
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Figure 5.13: Average ratings of valence and arousal for all the considered videos.

5.6.2.2 Measures

Outcome measure The objective of this analysis is to evaluate the influence of various
factors on the prediction error of head movements. We define the prediction error as the
average displacement error (ADE) between the predicted head positions and the actual
future head positions over a prediction horizon H . We set H = 5 seconds, the standard
prediction horizon in recent deep prediction methods (Romero Rondón et al., 2021; Chao
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et al., 2021), which we also used in chapter 3 covers both user inertia and content saliency
(Romero Rondón et al., 2021).

We define the displacement error between two head positions (x1, y1, z1) and
(x2, y2, z2) as the great circle distance between these two points. Since (x, y, z) are
the Cartesian coordinates of a point on the unit sphere, we can easily compute the
great circle distance ∆σ from the Euclidean distance d between these two positions as
∆σ = 2 · arcsin d

2 .
User-centric measures We consider two types of user-centric measures: those related to
emotions, and those related to motion. The measures of emotions are considered as the
subjective ratings of valence and arousal made by each user after experiencing each 360◦

video, as detailed in Sec. 5.6.2.1.
The user motion can be characterized by various metrics, such as mean values of the

head or gaze yaw and pitch angles, or the standard deviations of these positional compo-
nents (B. J. Li et al., 2017; Xue, Ali, Zhang, et al., 2021). Here, we choose to combine
these elements and consider the angular speed of the head movements. Specifically, to
compute head speed, we first convert the head coordinates collected from the VR headset
into Cartesian coordinates, where each recorded head position at time t is a point on the
unit sphere of coordinates (xt, yt, zt).

The head motion data in CEAP360-VR is originally in the format (ψt, θt, ϕt), where
ψ is the yaw, θ is the pitch, and ϕ is the roll. These coordinates were first transformed
to have ψ ∈ [0, 2π[ where 0 is the left edge of the equirectangular frame, and θ ∈ [0, π[
where 0 is the top edge of the equirectangular frame. Cartesian (xt, yt, zt) coordinates are
then obtained as projections of these angles using this set of equations:⎧⎪⎨⎪⎩

xt = cosψt · sin θt

yt = sinψt · sin θt

zt = cos θt

We define the instantaneous head speed at time t as the total angular speed, noted ωt,
computed from the great-circle distance between two consecutive positions divided by
the sampling rate of the recordings. The average head speed is then taken as the mean of
all instantaneous head speeds for a given user on a given video.
Video-centric measures As for user motion, several characterizations of 360◦ video con-
tent are possible. For example, Almquist et al. (2018) proposed a taxonomy in four cate-
gories depending on the location of the regions of interest. Romero Rondón et al. (2021)
built on this taxonomy and categorized videos based on the entropy of the head location
heat maps. David et al. (2018) and Xue, Ali, Zhang, et al. (2021) considered spatial in-
formation and temporal information to characterize the 360◦ videos. In the preliminary
study presented in this chapter, we consider legacy spatial and temporal information, and
show their relevance characterizing the effects of emotions on motion predictability.

Spatial information and temporal information are scene-specific metrics defined in
ITU-T Recommendation P.910 (ITU-T P.910, 2021). According to the ITU-T recom-
mendation, SI and TI are “critical parameters” playing “a crucial role in determining the
amount of video compression that is possible”.
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Spatial information (SI) or spatial perceptual information is “a measure that generally
indicates the amount of spatial detail in a picture. (...) It is usually higher for more spa-
tially complex scenes.” “The SI is based on the Sobel filter. Each video frame (luminance
plane) is first filtered with the Sobel filter. The standard deviation over the pixels in each
Sobel-filtered frame is then computed”, resulting in the SI for a single frame. We consider
SIv, the average SI for all the frames of video v.

Temporal information (TI) or temporal perceptual information is “a measure that gen-
erally indicates the amount of temporal changes of a video sequence. (...) It is usually
higher for high motion sequences.” “TI is based upon the motion difference feature, that
is the difference between the pixel values (of the luminance plane) at the same location
in space but at successive frames.” The standard deviation over the pixels of all the dif-
ferences between successive frames is then computed to give the TI for two consecutive
frames. We consider TIv, the average TI for all the frames of video v. “More motion in
adjacent frames will result in higher values of TI.”

5.6.3 Hypothesis testing
Based on previous works (B. J. Li et al., 2017; Xue, Ali, Ding, & Cesar, 2021), we make
the following a priori hypotheses:

(H1) Prediction error is lower for higher user arousal.

(H2) Prediction error is higher for higher user valence.

(H3) Head speed mediates the effect of valence on error.

To analyze the validity of the above hypotheses, we first binarize some variables and
perform analysis of variance (ANOVA) testing, shown in Table 5.3. The analysis of linear
correlations on continuous data is incorporated into the structural equation modeling in
Sec. 5.6.4.

Table 5.3: F-scores of one-way ANOVA. The significance of group difference is denoted with * for p < 10−2

and ** for p < 10−3.

SIbin TIbin Arousalbin Valencebin

Prediction error 70.89** 79.09** 15.15** 7.67*

Head speed 17.77** 19.94** 2.76 15.78**

Arousal 51.90** 55.50** (1253**) 0.37

Valence 30.60** 2.69 0.42 (1266**)

The binarization is performed on SI, TI, Arousal and Valence (denoting continuous
variables) to obtain SIbin, TIbin, Arousalbin and Valencebin. For SI and TI of every video
v, binarization thresholds are chosen so that approximately half of the videos are in each
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partition: SIbin = -1 (resp. 1) for SIv ≤ 45 (resp. > 45), and TIbin = 0 (resp. 1) for TIv ≤ 3
(resp. > 3). In Fig. 5.16, SIbin is denoted “Low SI” or “High SI” with the same threshold.
For Arousal and Valence of every user-video pair (u, v), Arousalbin = 0 (resp. = 1) for
Arousalu,v ≤ 5 (resp. > 5), and the same to obtain Valencebin. This threshold was chosen
because the ratings are between 1 and 9, and 5 is usually considered to be neutral. In Fig.
5.14, Arousalbin (resp. Valencebin) is also referred to as “LA” for low Arousal (resp. “LV”
for low Valence) and “HA” for high Arousal (resp. “HV” for high Valence), with the same
thresholds as defined above.
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Figure 5.14: Prediction error against binarized Arousalbin (left) and Valencebin (center). Right: Difference
in variation of Prediction error against Arousalbin depending on Valencebin.

We first observe from Table 5.3 that SIbin significantly impacts all variables (Predic-
tion error, Head speed, Valence and Arousal), while TIbin does not significantly impact
Valence. The relations mentioned in (H1) and (H2) are significant. Fig. 5.14-left and
5.14-center show the direction of the association with 95% confidence intervals. We can
therefore accept (H1) and (H2).

To investigate the sizes of the significant effects, Fig. 5.15 shows scatter plots of error
as a function of Arousal and Head speed, as well as how Head speed varies with graded
Arousal and Valence. We first observe that there is a strong correlation between Prediction
error and Head speed. We also observe that, as hinted in preliminary results from B. J. Li
et al. (2017) and Xue, Ali, Ding, and Cesar (2021), Prediction error tends to decrease with
Arousal. While Head speed does not seem to significantly vary with Arousal, as confirmed
by the ANOVA result in Table 5.3, the scatter plot of Head Speed versus Valence shows
that the significant association between both, shown by the corresponding ANOVA result
in Table 5.3, is an increasing function. This is in line with (H3), which will be validated
in the next section.

As Fig. 5.15-top-right shows the strong association of Prediction error with Head
speed and Table 5.3 shows significant associations of Prediction error, Head speed,
Arousal and Valence with SIbin, we analyze whether some variables interact with Arousal
and Valence in their effect on Head speed and Prediction error. Fig. 5.16 shows that there
is a possible interaction between the video feature SIbin and Arousal, and SIbin and Va-
lence, in their effect on Prediction error and Head speed. This can be seen in the different
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Figure 5.15: Scatter plots of Prediction error against Arousal and Head speed (top row), and Head speed
against Arousal and Valence (bottom row). Straight lines are linear regression models fitted on the data.
Shaded areas represent 95% confidence intervals.

slopes of linear model fitting the cloud of points, for each set of (u, v) points, for all users
u ∈ U and videos v such that SIbin(v) = -1, or 1.

Also, it is interesting to observe in Fig. 5.14-right that Prediction error does not de-
crease in the same way with increased Arousal, depending on whether Valence is graded
high or low. Indeed, Prediction error decreases more when Arousal increases when Va-
lence is high. We may assume that the user tends to move more when they enjoy the
video, and higher Arousal means more involvement/attentional capture, and hence syn-
chronization between motion and the content’s salient regions, facilitating the prediction.
This corresponds partly to (H3) and is investigated in the next section.

5.6.4 Modeling the effect of emotions and video characteristics on
motion predictability

We now construct a structural equation model of the data. SEM is established as a method-
ological approach to represent how different variables affect each other (Hoyle, 1995). It
allows to build a network of causal relations, and to investigate direct and indirect ef-
fects with mediating variables and external moderators interacting on the effect. A SEM
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Figure 5.16: Scatter plots of Prediction error and Head speed against Arousal and Valence, disaggregated
over SIbin. Straight lines are linear regression models fitted on the data. Shaded areas represent 95%
confidence intervals.

therefore gathers significant linear relations, enabling to both incorporate the correlation
coefficient and measure the size of the effect. We construct a SEM based on accepted
(H1) and (H2), and incorporating the possible interaction of SIbin with Arousal and Va-
lence. An interaction effect is modeled as the product of two variables, one of which is
binary. Owing to the above analysis of Fig. 5.16, we define interaction variables Arousal
× SIbin and Valence× SIbin. We then consider possible causal relationships from Arousal,
Valence, Arousal × SIbin and Valence × SIbin to both Head speed and Prediction error,
as well as relationship from Head speed to Prediction error.

We use the Python toolkit Semopy (Igolkina & Meshcheryakov, 2020; Meshch-
eryakov, Igolkina, & Samsonova, 2021), using the Wishart log-likelihood objective func-
tion. The resulting SEM is shown in Fig. 5.17, where only edges with regression coeffi-
cients significantly different from 0 have been kept (with p ≤ 0.01). Every edge is tagged
with the unstandardized coefficient of the linear relationship between both participating
variables, and with the corresponding standardized coefficient in parenthesis. The unstan-
dardized coefficient is impacted by the difference in the relative scale of the variables,
while the standardized coefficient is independent of the scale and represents by how many
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standard deviations the end variable varies when the regressor variable increases by one
standard deviation.

Valence

Arousal

Arousal

x

SIbin

Head Speed

Prediction
Error

0.017 (0.19)

1.151 (0.85)-0.008 (-0.07)

-0.013 (-0.11)

0.009 (0.17)

Figure 5.17: Structural equation model (SEM) describing the direct and indirect effects of user Valence and
Arousal onto Prediction error, mediated by Head speed and moderated by video measure SIbin.

First, the model shows that the major impact of Valence on Prediction error is me-
diated by Head speed. Indeed, the standardized indirect effect of Valence on Prediction
error is 0.19 × 0.85 = 0.16, while the direct effect is only -0.07. (H3) is therefore vali-
dated. This suggests that users rating the video with higher Valence tend to move more.
This connects with the results obtained by B. J. Li et al. (2017). Second, the model con-
firms that the prediction error varies inversely with Arousal, with a standardized linear
coefficient of -0.11. Third, the interaction effect is significant. Indeed, for a high SI video
with SIbin = 1, the total effect of Arousal on Prediction error is -0.11 + 0.17 × 1 = 0.06.
In this case, the effect of Arousal on Prediction error is low and not significantly nega-
tive. However, for a low SI video with SIbin = -1, the total effect of Arousal on Prediction
error is -0.11 + 0.17 × -1 = -0.28. SIbin is therefore a strong moderator of the effect
of Arousal on Prediction error. To interpret this result, one may investigate how SIbin

connects with video categories, such as those proposed by Almquist et al. (2018). We
may think that a high SIbin describes videos with numerous salient areas in frames, hence
yielding more exploratory head movements difficult to predict, even though the person
rates their arousal/involvement in the video as high. Finally, this last result means that
the video feature SI is a strong confounding factor which must be taken into considera-
tion when one chooses 360◦ videos to investigate the impact of user emotion on motion
prediction.



146
CHAPTER 5 — Investigating the link between immersive content, attention, emotion,

and movements in virtual reality

5.6.5 Discussion
The results we just presented open the path to promising directions to understanding the
human motion process in immersive environments, as detailed in Sec. 5.7. Let us mention
here some limits and perspectives of the presented data analysis.

First, obtaining results on more than 14 videos will be important for generalization,
and to avoid possible spurious correlation between arousal and valence ratings that may
impact our findings. Second, the main outcome variable considered here being the pre-
diction error, the results may depend on the type of predictor considered. While, for the
reasons described in Sec. 5.6.1.2, we verified that the results were similar between both
methods taken from Romero Rondón et al. (2021), other families of approaches might
lead to different effects of emotion on predictability. Third, we have considered head
motion in this work, but it would be important to identify how the effects of emotions
differ when predicting eye motion. More generally, while we have focused on only three
types of user-centric measures (arousal, valence and head motion speed) and two types of
video-centric measures (SI and TI), it will be most interesting to generalize this approach
to more user-centric measures such as electrodermal activity and gaze, and video-centric
measures such as video categories (focus or exploration (Almquist et al., 2018), fear or
happiness (Jicol et al., 2021), possibly relating SI and TI to these).

5.7 Conclusion
In this chapter, we have presented three contributions stemming from user experiments
aiming at better understanding the link between immersive content, attention, emotion,
and movements in virtual reality.

We have presented the new PEM360 dataset of 360◦ videos with continuous physio-
logical measurements, subjective emotional ratings and user motion traces. The stimuli
are selected to enable investigating the spatiotemporal connection between user attention,
user emotions and visual content. We have described the data collection process, the pre-
processing workflow of the different data modalities, and exemplified some possible novel
types of analyses to demonstrate the potential insights that can be drawn from PEM360.
The artifacts are made available in a reproducible framework based on notebooks.

We have presented a first analysis on the impact of emotions on the accuracy of
saliency estimators. We have measured the effect of user arousal (both physiologically
and subjectively measured) on two types of saliency maps, high-level (HL) saliency and
low-level (LL) saliency. We have showed that the accuracy of HL saliency increases when
user arousal increases, while the accuracy of LL saliency is not affected.

We have also presented a first investigation into the effect of emotion on head mo-
tion predictability. We considered two datasets totalling 14 videos and 63 users, provid-
ing head motion traces and arousal and valence subjective ratings. Through hypothesis
testing and structural equation modeling, we have shown that the predictability of head
motion increases with arousal but decreases with valence, that the effect of valence on pre-
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dictability is mediated by head speed, and that video SI interacts in the effect of arousal
on predictability, a high SI moderating the effect.

This work opens the way to better understand factors impacting the human motion
and their effect on the performance of head motion predictors, and how such knowledge
can be leveraged to improve prediction. This can be done by augmenting the datasets
with videos with specific emotional and visual features where head motion prediction is
harder, or by designing ancillary training losses where a deep neural model would have
to learn how to predict the user emotional state from the video content and the user’s past
motion. We explore this kind emotion-aware viewport prediction approach in chapter
6. An important outcome of this work is also to estimate the motion predictability from
user emotional state. Such an estimation of the confidence of head motion prediction
can readily be leveraged in the optimization of a 360◦ streaming system, even more so if
the user emotional state is estimated with lightweight non-invasive device such as finger
straps to measure electrodermal activity.





CHAPTER 6
Learning from emotions

to improve viewport
prediction

Predicting the viewport in virtual environments improves the quality of experi-
ence but remains an open challenge, as many factors can influence human atten-
tion and movements in VR.
With recent datasets collecting more diverse data modalities beyond the immer-
sive content, such as emotional data, deep learning algorithms might be able to
learn from these new modalities to improve viewport prediction.
In this chapter, we present a work in progress to build a modular multimodal
deep architecture for viewport prediction, with the objective to learn transferable
representations of these diverse modalities. We propose a general architecture
and provide leads for upcoming developments.
Preliminary results without additional modalities show that the proposed archi-
tecture outperforms its competitors by up to 21%, with 150x fewer parameters.
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6.1 Introduction
Being able to predict human attention and movements in virtual environments is key to
maximizing the quality of experience, as not everything can be downloaded or rendered
in high quality, as seen in the previous chapters. For this reason, many approaches to
viewport prediction have been developed (see Sec. 2.2.1), including our own, DVMS,
presented in chapter 3. Recent approaches to viewport prediction (Chao et al., 2021;
Y. Xu, Zhang, & Gao, 2022) typically use deep learning models and learn to predict
future head trajectories from past known user head positions as well as information from
the immersive content itself (such as saliency maps or optical flow).

However, as seen in Sec. 5.6, emotions can significantly influence human behavior
and predictability. Understanding factors that influence human attention, and thus move-
ments within virtual environments is still an open challenge. This has led to the collec-
tion of new multimodal datasets: beyond navigational data, more dimensions of the VR
experience are captured such as emotions and physiological signals. Examples include
CEAP-360VR (Xue, Ali, Zhang, et al., 2021) and PEM360, the dataset we collected in
described in Sec. 5.4. To our knowledge, deep learning models have not yet considered
these additional data modalities for viewport prediction.

In this chapter, we investigate the following question: How can we learn from the
additional modalities available in limited datasets, such as emotions, and take advantage
of this knowledge when deploying in environments where we do not have access to these
modalities?

Following recent trends in multimodal and cross-modal representation learning
(Radford et al., 2021; Singh et al., 2022), we present a work in progress with the first
steps towards building a modular multimodal deep architecture for viewport prediction,
able to learn transferable cross-modal representations from jointly training on multiple
modalities, and that can be easily incremented with additional modalities. Our contribu-
tions are:

• A new modular, efficient, multimodal architecture for viewport prediction that can
be incremented to learn from more modalities.

• Early results comparing to the current state-of-the-art methods for online viewport
prediction in 360◦ videos,

• A glance at the upcoming developments to integrate emotions and enchance our
architecture.

Part of the work and ideas presented in this chapter are the outcome of a 3-month
research stay at Centrum Wiskunde & Informatica (CWI, national research institute for
mathematics and computer science in the Netherlands), carried out in collaboration with
Dr. Silvia Rossi, Dr Irene Viola, and Prof. Pablo Cesar. Part of the work presented
in this chapter was the object of a short paper submission at the 2nd computer vision
for Metaverse workshop (CV4Metaverse) 2023, co-located with the 2023 International



152 CHAPTER 6 — Learning from emotions to improve viewport prediction

Conference on Computer Vision (ICCV), and was not accepted. This work is still ongoing
and will be the object of future submissions at other venues.

We first provide a background on cross-modal learning in Sec. 6.2. We then detail
our motivations and introduce our proposed architecture in Sec. 6.3. We show the results
achieved by our model in Sec. 6.4. We cast a glance at the upcoming developments and
improvements of this work in Sec. 6.5. Finally, we conclude the chapter in Sec. 6.6.

6.2 Background on cross-modal learning
Benefiting from additional modalities to improve a unimodal task falls into the scope of
cross-modal learning (Xing, Rostamzadeh, Oreshkin, & O. Pinheiro, 2019; Mu, Liang,
& Goodman, 2020), a subfield of multimodal machine learning. Several approaches to
cross-modal learning have been proposed in which we distinguish two families discussed
in this section.

6.2.1 Cross-modal knowledge distillation
In the realm of supervised learning, knowledge distillation (KD) aims to transfer exper-
tise from a large, proficient teacher network to a small, efficient, less robust student net-
work. KD can be broadly categorized into three types: response-based (Hinton, Vinyals,
& Dean, 2015; G. Chen, Choi, Yu, Han, & Chandraker, 2017; Furlanello, Lipton, Tschan-
nen, Itti, & Anandkumar, 2018; Guo et al., 2020; Mirzadeh et al., 2020; Beyer et al., 2022;
B. Zhao, Cui, Song, Qiu, & Liang, 2022), representation-based (Romero et al., 2015;
Z. Huang & Wang, 2017; Zagoruyko & Komodakis, 2017; J. Kim, Park, & Kwak, 2018;
Heo et al., 2019; T. Wang, Yuan, Zhang, & Feng, 2019; Passban, Wu, Rezagholizadeh, &
Liu, 2021; Shu, Liu, Gao, Yan, & Shen, 2021; Baevski et al., 2022), and relation-based
(Passalis & Tefas, 2018; Y. Liu et al., 2019; W. Park, Kim, Lu, & Cho, 2019; Tung &
Mori, 2019). Response-based methods focus on matching softened logits, encouraging
the student to produce similar predictions to those of the teacher. Representation-based
methods focus on aligning features in the latent space. Relation-based methods focus
on matching inter-sample relationships. Each method addresses different aspects of the
knowledge transfer process, catering to the nuances of the data and the learning task.

With cross-modal knowledge distillation, the objective is to transfer knowledge from
a superior modality (teacher) to an inferior modality (student). Here, the teacher net-
work has access to a modality that is more potent or comprehensive compared to what
the student possesses (Stroud, Ross, Sun, Deng, & Sukthankar, 2020; M. Hu et al., 2020;
L. Zhao, Peng, Chen, Kapadia, & Metaxas, 2020; Ren, Du, Lv, Han, & He, 2021; X. Li,
Lei, Sun, & Kuang, 2022). Several noteworthy examples of this approach include con-
trastive representation distillation (CRD) (Y. Tian, Krishnan, & Isola, 2020), composi-
tional contrastive learning (CCL) (Y. Chen, Xian, Koepke, Shan, & Akata, 2021), and
complementary relation contrastive distillation (CRCD) (Zhu et al., 2021). These meth-
ods exemplify the principle of leveraging the teacher’s expertise in a superior modality
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to guide and enhance the learning of the student in a different modality, showcasing the
versatility and applicability of cross-modal knowledge transfer techniques in various do-
mains, such as video action recognition (Stroud et al., 2020), brain tumor segmentation
(M. Hu et al., 2020), 3D hand pose estimation (L. Zhao et al., 2020), lip reading (Ren et
al., 2021), and land cover classification (X. Li et al., 2022).

6.2.2 Multimodal learning with missing modalities
In the context of multimodal learning, inputs from various modalities such as like im-
ages, texts, or audio are harnessed conjointly to convey a shared concept. In recent years,
multimodal transformers have emerged as general-purpose models capable of process-
ing inputs from diverse modalities. These models fuse multimodal inputs through token
concatenation, eliminating the need for modality-specific feature extractors. They have
found widespread applications across various multimodal tasks (Botach, Zheltonozhskii,
& Baskin, 2022; Gabeur, Sun, Alahari, & Schmid, 2020; W. Kim, Son, & Kim, 2021;
J. Li et al., 2021). However, their effectiveness is compromised when a modality is ab-
sent, leading to inaccurate predictions (M. Ma, Ren, Zhao, Testuggine, & Peng, 2022).
Addressing this issue, recent research endeavors (M. Ma et al., 2021; J. Zhao, Li, & Jin,
2021; M. Ma et al., 2022; J. Zeng, Liu, & Zhou, 2022) have focused on developing robust
multimodal models capable of accommodating missing modalities, ensuring the integrity
of multimodal fusion and enhancing prediction accuracy.

Recently, Wei, Luo, and Luo (2023) proposed to categorize incomplete multimodal
learning methods in two types: customized methods and unified methods. Customized
methods need specific models to recover missing modalities within each incomplete
modality combination. These methods are further categorized into sample-based cus-
tomized methods, which reconstruct missing modalities at the input space using GANs
(Cai, Wang, Gao, Shen, & Ji, 2018; Jue et al., 2019; Pan, Liu, Lian, Xia, & Shen, 2020;
A. Liu et al., 2021; Y. Wang et al., 2021) and customized representation-based cus-
tomized methods, which reconstruct missing modalities through VAEs knowledge dis-
tillation (Hoffman, Gupta, & Darrell, 2016; Garcia, Morerio, & Murino, 2018; Stroud
et al., 2020) or matrix completion (Lin et al., 2021; J. Liu et al., 2021). While these
methods have demonstrated promising results, they necessitate training and deploying a
distinct model for each subset of missing modalities, significantly increasing complex-
ity in practical applications. To decrease the complexity, unified methods, which aim
to train one model to deal with different incomplete modality combinations, were de-
veloped. The proposed methods reach this objective by extracting modality-invariant
features (Havaei, Guizard, Chapados, & Bengio, 2016; Chartsias, Joyce, Giuffrida, &
Tsaftaris, 2018; Q. Yin, Wu, & Wang, 2017; van Tulder & de Bruijne, 2019; Dorent,
Joutard, Modat, Ourselin, & Vercauteren, 2019; M. Ma et al., 2021; T. Zhou, Canu, Vera,
& Ruan, 2020; Ding, Yu, & Yang, 2021; Y. Zhang et al., 2022).

While not explicitly accounting for missing modalities, multimodal foundation mod-
els (Radford et al., 2021; Jia et al., 2021; J. Li et al., 2021) learn from large scale image-
text data with various multimodal pre-training objectives and can be transferred to a wide
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range of downstream tasks, even without explicit supervised fine-tuning. Recently, Singh
et al. (2022) showed that we can build modular multimodal foundation models that can
handle unimodal, cross-modal as well as multimodal tasks, by combining transformer-
based encoders and pre-training them accordingly. More importantly, they showed that
pre-training on more than one modality allowed to learn better joint representations and
obtain better results on unimodal tasks.

Following the findings of Singh et al. (2022), we propose to build a transformer-based
modular multimodal model for viewport prediction, which learns unified representations,
without the need of customized models or distillation losses.

6.3 A first proposal of a new modular multimodal archi-
tecture for viewport prediction

6.3.1 Problem definition
The problem that we consider is the prediction of the future viewport in 360◦ videos.
This is the same problem as defined in Sec. 3.3.2. We shortly remind the reader of the
prediction problem in this section. We define Pt to be the center of the viewport of a user
watching a 360◦ video at time t, that we also call the head position at time t. We defineM
to be the past window of positions that can be used to make a prediction. We also assume
that the entire content of the video is available and can be used to make predictions.

When doing an online prediction of the viewport, we want to output a prediction
P̂ t+1:t+H of the future head positions Pt+1:t+H between t and t + H , where H is the
prediction horizon.

The prediction problem can be formulated as a minimization of the distance
d(P̂ t+1:t+H , Pt+1:t+H), the distance between the predicted future positions and the ground-
truth future positions.

6.3.2 Motivation
The objectives of our architecture are to obtain cross-modal representations that are trans-
ferable to domains with fewer modalities, and to be easily incrementable with new modal-
ities. We present a conceptual diagram of this architecture in Fig. 6.1. The blue boxes and
arrows correspond to elements that have been implemented and for which we provide re-
sults in Sec. 6.4.3. Orange boxes include modalities that may not be available at test time,
but from which we may be able to learn useful transferable representations. Additional
modalities may include, e.g., interaction logs in interactive virtual environments.

The advantages of such an architecture are numerous:

• We can pre-train single modalities independently, which makes training from noisy
samples easier.
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Figure 6.1: Conceptual diagram of a modular multimodal architecture for viewport prediction. Each small
box is a learned cross-modal representation of a single modality.

• Given enough data, We can pre-train on multiple modalities, and the learned cross-
modal representations will be transferable to smaller versions of the model with
fewer modalities.

• We can pre-train on a variety of tasks other than viewport prediction, such as
masked auto-encoding, which has been shown to be a good pre-training objective
that generalizes well to a wide range of downstream tasks (K. He et al., 2022; Bach-
mann, Mizrahi, Atanov, & Zamir, 2022; Tong, Song, Wang, & Wang, 2022).

6.3.3 Proposed Architecture
Several elements of our architecture are inspired from a transformer-based architecture,
Perceiver (Jaegle et al., 2021). This decision was motivated by the fact that, despite
its success, the self-attention mechanism of the transformer model scales quadratically
with the size of the inputs, which can lead to model training and inference being very
computationally demanding. The attention bottleneck introduced by the cross-attention
module of Perceiver allows for more efficient models, eliminating the quadratic scaling
problem. Multiple extensions of Perceiver have been shown to work with many kinds
of inputs and outputs (Jaegle et al., 2022; Hawthorne et al., 2022; Z. Tang et al., 2023),
making it a good choice for a general-purpose modular architecture.

We present an implementation diagram of the proposed architecture in Fig. 6.2. As
this is an ongoing work, the version of the architecture that we propose only uses the
head positions and video content as multimodal inputs. The architecture is divided in four
modules explained below.

Position encoder We choose to represent head positions with 3D Cartesian coor-
dinates of points on the unit sphere, following DVMS in chapter 3 and previous work
(Romero Rondón et al., 2021; Chao et al., 2021). While recent deep models that only use
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Figure 6.2: Diagram of the proposed modular multimodal architecture for viewport prediction. We use the
same attention blocks as in Perceiver IO (Jaegle et al., 2022). Q denotes fixed queries defined in Sec. 6.3.3.
The shape of the arrays are given as an example of prediction setting where we would consider M = 6
seconds of past positions to predict the future viewport over H = 5 seconds, with a sampling rate of 5 Hz.
In this example, 25 future saliency maps of 256 x 256 pixels are given to the saliency encoder.

the past head positions to predict the future viewport have used RNN-based (DVMS) and
transformer-based architectures (Chao et al., 2021), novel work on time series forecasting
shows that a simple linear baseline can outperform most transformer models (A. Zeng
et al., 2023). Inspired from this work, we have designed a simple multilayer perceptron
(MLP) baseline that we detail in Fig. 6.3 and explain in Sec. 6.4.1. This baseline benefits
from the direct multi-step (DMS) forecasting strategy described by A. Zeng et al. (2023).
From these results, we design a simple linear encoder for the positions described in Fig.
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6.2. We first temporally differentiate the positions over the past M seconds to get the
speed vectors, and a flattened array containing all the past positions and speeds between
t −M and t is fed to a linear layer. The output of this linear layer is then reshaped into
tokens that will go into the multimodal encoder. We did not find any gain to using the
auto-regressive framework of Perceiver AR (Hawthorne et al., 2022) for our problem.

Saliency encoder For this model, we decide to work with pre-extracted saliency maps
from PanoSalNet (Nguyen et al., 2018), following TRACK (Romero Rondón et al., 2021).
Following recent work to adapt the vision transformer (ViT (Dosovitskiy et al., 2021))
to videos (Arnab et al., 2021; Tong et al., 2022), we use a shallow 3D convolutional
layer to obtain tubelet embeddings, corresponding to spatio-temporal patches of the se-
quence of saliency maps. Specifically, we use temporally dilated tubelets, where each
embedding containing information about evenly-spaced, non-consecutive saliency maps.
A sinusoidal position encoding is added to each embedding before being projected into
a smaller latent space by the Perceiver-inspired cross-attention module, followed by sev-
eral self-attention layers. The size of this latent space is determined by the size of the
latent query Q, that we initialize with sinusoidal position encodings. The cross-attention
module is followed by several layers of multi-head self-attention, which does not scale
quadratically with the inputs, but with the size of the initial latent query, thanks to the up-
stream cross-attention module. During training, we randomly replace 50% of the tokens
with zeros, labeled as “token dropout” in Fig. 6.2. This greatly reduced overfitting in our
case.

Multimodal encoder To obtain a joint representation of the encoded modalities, we
take full advantage of the cross-attention and iterative latent self-attention modules of
Perceiver. The tokens originating from the unimodal encoding modules are concatenated
and projected into a smaller latent space by another Perceiver-inspired cross-attention
module. The cross-attention module is again followed by several layers of multi-head self-
attention to obtain a final latent joint representation of our multimodal inputs. We found
that using token dropout on the tokens before the cross-attention module also helped to
reduce overfitting.

Viewport prediction decoder The design of the viewport prediction decoder is also
motivated by our findings with the MLP baseline model (see Sec. 6.4.1). The decoder is
detailed in Fig. 6.2. The tokens of the final latent joint representation of the multimodal
inputs are flattened into a one-dimensional array and go through a ReLU activation before
being fed to a linear layer. The output of the linear layer is reshaped into a S ·H x 3 array,
with S being the sampling rate of the head motion traces, in Hertz, and H the prediction
horizon, in seconds. A residual connection not shown in the diagram adds this array to
the last known position, the model therefore only predicting the displacement.

Additional modality encoders, such as the emotion encoder, will be the subject of
upcoming work, briefly discussed in Sec. 6.5.
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6.4 Comparison of viewport prediction methods
The results in this section are obtained from our experiments, except for VPT360, because
the code was not available at the time of writing. We follow the online viewport prediction
setting described in Sec. 6.3.1, and we set H to 5 seconds.

6.4.1 Compared models
Trivial-static baseline is a trivial baseline already shown to outperform previous viewport
prediction architectures by Romero Rondón et al. (2021). The predicted head positions
are equal to the last known head position.

VPT360 (Chao et al., 2021) is a transformer-based deep learning model which only
uses the past positions for viewport prediction. As the code is not available, we are only
able to report results on the MMSys18 dataset, which are reported in their paper. They set
M = 1 second, which was reported to be the optimal value in their case.

DVMS-1 is our implementation of a DVMS-based architecture, discussed in chapter
3. It is a GRU-based sequence-to-sequence deep learning model which only uses the past
positions to predict K multiple trajectories of head positions. It is here used with K = 1
to predict one trajectory. We set M = 5 seconds. We found this value to be optimal, but
the differences between M = 1 and M = 5 were marginal (less than 0.5% difference in
error).
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Figure 6.3: Diagram of the MLP baseline model. The shapes of the arrays follow the same prediction
setting as in Fig. 6.2.

MLP baseline is a new baseline that we propose. We provide a diagram in Fig. 6.3.
This baseline benefits from the direct multi-step (DMS) forecasting strategy described by
A. Zeng et al. (2023). We first temporally differentiate the positions to get the speed vec-
tors, and a flattened array containing all the past positions and speeds between t−M and
t is fed to a linear layer with 128 units. After a ReLU activation, this flat representation
is fed to another linear layer with 75 units, which is then reshaped into an array of shape
25x3. These values are added to the last known position to directly predict the next 25 po-
sitions. We set M to 6 seconds, which we found to be optimal, even though the difference
in error between M = 1, 2, 3, 4, 5, 6 was marginal (less than 0.5%).

TRACK (Romero Rondón et al., 2021) is an LSTM-based sequence-to-sequence ar-
chitecture that simultaneously processes head positions and saliency maps with separate
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LSTM cells, before fusing them with a shared LSTM cell, at each time step. Two ver-
sions were proposed: using content-based saliency maps extracted from the content with
PanoSalNet (Nguyen et al., 2018), and using ground-truth maps generated from the head
motion traces. We use M = 1 second, which was reported to be the optimal value in their
case.

The proposed architecture, explained in Sec. 6.3.3, is described in detail in Fig. 6.2.
We use the same PanoSalNet-extracted (Nguyen et al., 2018) saliency maps as TRACK,
for fairness. We set M to 6 seconds, following our findings with the MLP baseline.

6.4.2 Experimental settings
Datasets

We test all the models on six datasets containing head motion traces of people watch-
ing 360◦ videos. Four of these datasets, CVPR18 (Y. Xu et al., 2018), MMSys18 (David
et al., 2018), PAMI18 (M. Xu, Song, et al., 2019), and MM18 (Nguyen et al., 2018) were
taken from the reproducible framework of Romero Rondón et al. (2020), and we use the
same train and test sets as they did.

We also test the considered methods on two recent datasets that collected additional
modalities, emotions and physiological signals, and have not yet been used in the con-
text of viewport prediction, CEAP-360VR (Xue, Ali, Zhang, et al., 2021) and PEM360,
our collected dataset discussed in chapter 5. The train and test splits for these datasets
were chosen with the objective to have a balanced training and testing sets in terms of
content metrics (i.e., spatial information and temporal information (ITU-T P.910, 2021))
and emotional ratings (valence and arousal). Information about the train/test split will be
made available along with the code. Future increments of our architecture will benefit
from the additional modalities collected in these datasets.

Training settings All models, apart from VPT360, were trained end-to-end with the
task to predict 5 seconds of future head positions on the train set of our largest dataset,
CVPR18, and tested with the same task on the test set of every dataset without fine-tuning.
Our experiments have shown that it yields better performance than training on individual
datasets. All the training settings and hyper-parameters will be made available along with
the code.

Metric We use the great-circle distance (gcd) to measure the distance between two
head positions. The great-circle distance can be defined as a function of the Euclidean
distance of two points P 1 and P 2 on the unit sphere, as shown in Eq. 6.1.

gcd(P 1, P 2) = 2 · arcsin
(︄
∥P 1 − P 2∥2

2

)︄
(6.1)

We report the average displacement error (ADE) between generated trajectories and
ground-truth trajectories. The ADE between two head motion trajectories P 1 and P 2 of
length T is defined in Eq. 6.2, where gcd is the great-circle distance.
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ADE(T 1, T 2) = 1
L

∑︂
t∈1:L

gcd(T 1
t , T

2
t ) (6.2)

6.4.3 Results
Results are presented in Table 6.1.

Table 6.1: Average displacement error (great-circle distance, lower is better) for all models divided in three
categories depending on their input modalities, between t + 0.2 and t + H , with H in seconds. Best results
for each modality are in bold only if they improve over models that use fewer modalities.

CVPR18 MMSys18 PAMI18 MM18 PEM360 CEAP-360VR
Model Params H = 1 H = 5 H = 1 H = 5 H = 1 H = 5 H = 1 H = 5 H = 1 H = 5 H = 1 H = 5

Only past
positions

Trivial-static 0 0.263 0.672 0.322 0.883 0.169 0.439 0.190 0.530 0.313 0.889 0.177 0.548
VPT360 6.3M - - 0.239 0.809 - - - - - - - -
DVMS-1 110k 0.199 0.613 0.222 0.773 0.133 0.386 0.152 0.561 0.231 0.850 0.119 0.471
MLP 33k 0.197 0.612 0.222 0.783 0.131 0.384 0.147 0.556 0.228 0.858 0.117 0.470

Content-based
saliency + pos

TRACK 172M 0.197 0.621 0.223 0.801 0.132 0.401 0.152 0.654 0.231 0.884 0.119 0.477
Proposed 1.1M 0.201 0.621 0.227 0.815 0.133 0.386 0.149 0.545 0.232 0.876 0.122 0.470

Ground-truth
saliency + pos

TRACK 136M 0.211 0.564 0.238 0.700 0.160 0.396 0.182 0.499 0.249 0.801 0.144 0.500
Proposed 991K 0.192 0.548 0.216 0.693 0.129 0.367 0.144 0.451 0.224 0.752 0.118 0.459

When only using the past positions, we observe that DVMS and the MLP baseline
have very close performance, with the MLP baseline slightly outperforming DVMS in
most cases, with 3x fewer parameters. The MLP baseline matches or outperforms all com-
petitors, except on long prediction on the MM18 dataset, where the trivial-static baseline
performs best.

When integrating the content-based saliency maps into the model, we can see that the
performance is always degraded on average. However, the proposed model is usually on
par with TRACK (1.3% better on average) with more than 150x fewer parameters.

When integrating the ground-truth saliency maps into the model, the proposed model
consistently outperforms TRACK (by 10.1% on average, up to 20.9%) and also improves
over the baselines that only use past positions. Long-term (5 seconds) prediction is im-
proved on all the datasets, and short-term (1 second) prediction is never degraded, and
even slightly improved on 5 of the 6 datasets.

6.4.4 Interpretations and discussion
It was shown that integrating content-based saliency maps can lead to viewport prediction
improvements on certain types of video, but it led to a degradation of performance on
average in our case. Romero Rondón et al. (2021) have shown with TRACK that it can be
very challenging to use the video content to make predictions of the viewport, especially
because we can build strong baselines only using the positions. First, the performance of
the models that use content-based saliency is also dependent on the accuracy of saliency
extractors, and results should improve when using a more accurate saliency extractor.
Second, the attention of the user is not always synchronized with the video content, de-
pending, among other things, on their emotional state. Adding information about the user
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emotional state during training might help solving the problem of content synchronization
and improve the predictions, and this will be the subject of our future work to increment
this architecture.

6.5 Upcoming developments
While the preliminary results we just presented are encouraging, this work is still ongoing.
In this section, we provide some elements about upcoming developments.

6.5.1 Potential improvements
We list some ideas that can be explored to improve the model:

• Saliency maps: content-based saliency maps degrade the performance, while
ground-truth saliency maps significantly improve over the “position-only” setting.
A first idea could be to use better saliency, as we are using the same PanoSalNet
(Nguyen et al., 2018) saliency maps as TRACK (Romero Rondón et al., 2021). This
idea was partially explored by using saliency maps from PAVER (Yun et al., 2022),
but the results were nearly identical. A second idea could be to facilitate training
by progressively replacing ground-truth saliency maps with content-based saliency
maps, using a process like morphing (Vallez, Bueno, Deniz, & Blanco, 2022).

• Pre-training tasks: the only task on which the model was trained and tested was
viewport prediction. Masked modeling of the head trajectories could be explored.
These ideas are currently being investigated for trajectory prediction (H. Chen et
al., 2023; P. Wu et al., 2023).

• Positional encodings: in this first version, sinusoidal positional encodings are added
to data modalities, but also used as cross-modal queries. Instead of using fixed
positional encodings, learned embeddings are a possibility (Carion et al., 2020).

6.5.2 Integrating emotional data
As stated in Sec. 6.1, our objective was to “learn from the additional modalities available
in limited datasets and take advantage of this knowledge when deploying in environments
where we do not have access to these modalities”. Specifically, this would mean using
emotional data during training, but not in testing. For the model to be able to take ad-
vantage of the additional training knowledge that comes with emotional data, it needs to
learn how to better exploit the data from the other modalities. This is what happens in
foundation models like FLAVA (Singh et al., 2022), where the multimodal pre-training
objective allows to learn a better representation from multiple input modalities, which is
conserved in unimodal downstream tasks.

This is only possible if there are exploitable correlations between the modalities that
would not be exploited otherwise. For this reason, we need rich representations of the
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input modalities. We argue that content-based saliency maps do not fit this definition
of rich representation. For this reason, simply having emotional data as an additional
input could improve the performance in training, but would likely degrade in testing. In
order to add emotional data, the next step will be to integrate rich representations of the
video content instead of saliency maps. Features extracted from the video by a pre-trained
foundation model are an example of rich representation of the content that we could use.
Ideas for the integration of emotional data include an additional emotion encoder that
could be inspired from the position encoder, because the emotional data is present in the
form of time series in the datasets we consider.

6.6 Conclusion
In this chapter, we have presented ongoing work about a new modular multimodal deep
architecture for viewport prediction, motivated by the need for a model that can learn from
additional modalities, such as emotions, and transfer this knowledge in a context where
these additional modalities may not be available.

Early results combining past positions and future saliency maps show that our model
can outperform the existing state-of-the-art by up to 21%, while dividing the number
of parameters by more than 150. Our architecture can easily be incremented with new
modalities, which will be the subject of future work.

We have given several leads for future developments and potential improvements of
this architecture.

This architecture establishes a first step towards an architecture able to learn trans-
ferable cross-modal representations from jointly training on multiple modalities in the
context of viewport prediction in VR.



CHAPTER 7
Conclusion and

perspectives
7.1 Conclusion
Returning to the initial objectives of the work presented in this manuscript, we contributed
to addressing the challenges that arise when predicting the user’s viewport in VR. We
worked on deep learning approaches for the design of new VR streaming systems that
improve the quality of experience and can better adapt to each user.

In chapter 3, to consider the randomness and diversity of human motion when pre-
dicting head movements based on past head trajectories, we presented the first method for
multiple head motion prediction in 360◦ videos. Our main contribution is a new learn-
ing framework, called DVMS, which builds on deep latent variable models and allows
to predict multiple future trajectories from a given past. DVMS provides a training pro-
cedure to obtain a flexible and lightweight stochastic prediction model compatible with
sequence-to-sequence architectures. We assessed DVMS on 4 datasets and showed that
it outperforms competitors adapted from the self-driving domain by up to 41%, on pre-
diction horizons up to 5 seconds. We analyzed the latent space of our model and showed
that the stationarity of the prediction error enabled easy likelihood estimation of the tra-
jectories, enabling direct integration in streaming optimization. DVMS paves the way for
multiple head motion prediction in 360◦ videos.

In chapter 4, to evaluate the system gains of DVMS and address the reproducibility
issue of viewport-adaptive streaming algorithms, we proposed SMART360, a new trace-
driven simulation environment that enables new comparisons different motion predic-
tion and adaptive bitrate strategies with numerous metrics and graphical visualizations.
SMART360 overcomes the drawbacks of the few existing alternative tools by provid-
ing highly-configurable code, with many inputs and settings, and offers a more realistic
streaming behavior. We described the structure of SMART360 and explained how new
motion predictors and adaptive bitrate algorithms can be implemented inside the simula-
tion environment to be evaluated and compared. Thanks to SMART360, we were able
to deploy an extensive system evaluation of our proposed DVMS framework, considering
four different datasets of user, video and network bandwidth traces. We showed that pre-
dicting multiple trajectories yields a higher fairness between the traces. We also showed
that predicting the ideal number of trajectories led to visual quality gains up to 10% for
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20% to 30% of the users. We believe that SMART360 can improve the reproducibility of
research regarding 360◦ video viewport-adaptive streaming algorithms, and make future
comparisons of new strategies easier for researchers.

In chapter 5, to investigate the relationship between immersive content, attention,
emotion, and movements in virtual reality, we collected PEM360, a new dataset with
head motion traces, gaze scanpaths, physiological measurements, and subjective emo-
tional ratings of people watching 360◦ videos. We made PEM360 publicly available. We
presented a first analysis on the impact of emotions on the accuracy of saliency estimators.
We measured the effect of user arousal (both physiologically and subjectively measured)
on two types of saliency maps, high-level (HL) saliency and low-level (LL) saliency. We
showed that the accuracy of HL saliency increases when user arousal increases, while the
accuracy of LL saliency is not affected. We also presented a first investigation into the
effects of emotions on head motion predictability. Through hypothesis testing and struc-
tural equation modeling, we showed that the predictability of head motion increased with
arousal but decreased with valence, that the effect of valence on predictability was medi-
ated by head speed, and that video SI interacted in the effect of arousal on predictability.
This work opens the way to better understand factors impacting the human motion and
their effect on the performance of head motion predictors, and how such knowledge can
be leveraged to improve prediction. An important outcome of this work is also to estimate
the motion predictability from user emotional state. Such an estimation of the confidence
of head motion prediction can readily be leveraged in the optimization of a 360◦ streaming
system.

In chapter 6, we presented ongoing work about a new modular multimodal deep ar-
chitecture for viewport prediction, motivated by the need for a model that can learn from
additional modalities, such as emotional data, and transfer this knowledge in a context
where these additional modalities may not be available. Early results combining past po-
sitions and future saliency maps showed that our model can outperform the existing state-
of-the-art by up to 21%, while dividing the number of parameters by more than 150. Our
architecture can easily be incremented with new modalities, which will be the subject of
future work. We gave several leads for future developments and potential improvements
of this architecture. This architecture establishes a first step towards an architecture able
to learn transferable cross-modal representations from jointly training on multiple modal-
ities in the context of viewport prediction in VR.

7.2 Perspectives
Overall, our contributions open new exciting applications and research perspectives.

The DVMS framework for multiple trajectory prediction will easily be extended to
other contexts. Transformer-based models (Chao et al., 2021), context-aware architec-
tures that consider more than the past positions (Romero Rondón et al., 2021), short-term
gaze prediction models (Mondal et al., 2023), and 6DoF motion prediction models for
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interactive virtual environments (Zheng et al., 2022) are the most straightforward applica-
tive extensions of multiple trajectory prediction with DVMS.

Stochastic models for head trajectory prediction and uncertainty quantification ap-
proaches, based on the user emotional state or with variational models such as discussed
in Sec. 3.7, will enable new uncertainty-aware VR streaming systems with extra levers
(Dambra et al., 2018; Sassatelli et al., 2020). Such a system might trigger a snap-change
when head movements become unpredicable, for example.

Exciting new research also lies in multimodal learning for VR. We describe ongoing
work and give elements about future developments of a new modular multimodal model
for viewport prediction in chapter 6. Models with more modalities, such as emotions
or spatial audio (Singla et al., 2023; Q. Yang et al., 2023), potentially modulating the
importance of modalities over time, will continue to be investigated.

Finally, we reflect on the paradigm shift brought by foundation models (Bommasani
et al., 2022), and the impact it will have on prediction models for virtual environments.
These new large-scale models are trained on broad data in a self-supervised manner and
can be adapted to a wide range of downstream tasks. Their scaling capabilities, their
large number of parameters, and the massive amount of data they are trained on make
them excellent at transfer learning. Simple adaptations of these models now outperform
specialized fine-tuned models in many tasks (Brown et al., 2020; Radford et al., 2021;
Singh et al., 2022; Zara et al., 2023), which encourages their use in many applications.
While foundation models for trajectory prediction do not exist yet, foundation models for
time series are starting to emerge (Garza & Mergenthaler-Canseco, 2023). Nevertheless,
existing vision and language foundation models can already be used as feature extractors
in directly applicable multimodal prediction contexts. While application of foundation
models to VR prediction task may prove beneficial, we believe that it is important to
consider the associated risks, as we still lack a clear understanding of how they work,
when they fail, and what their biases are.
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Deep learning pour le streaming adaptatif de vidéos à 360◦ en
réalité virtuelle

Quentin GUIMARD

Résumé
La réalité virtuelle (VR) a évolué de manière significative ces dernières années. Les casques
immersifs devenant de plus en plus abordables et populaires, de nombreuses applications sont à
l’horizon, des vidéos à 360◦ aux formations interactives en passant par les environnements virtuels
collaboratifs. Cependant, pour atteindre des niveaux élevés de qualité perçue, la bande passante
du réseau et les ressources de calcul nécessaires peuvent être supérieures de plusieurs ordres de
grandeur à celles requises pour un contenu 2D traditionnel. Pour pallier ce problème, des straté-
gies de streaming qui adaptent le débit vidéo aux conditions du réseau et à l’orientation de la
tête de la personne ont été mises en œuvre afin d’améliorer la qualité d’expérience. Étant donné
que la plupart des algorithmes de débit adaptatif reposent sur l’utilisation d’une mémoire tampon
vidéo suffisamment grande pour compenser les fluctuations de la bande passante, l’algorithme
doit savoir où la personne regardera quelques secondes avant la lecture pour adapter correcte-
ment la qualité. La qualité d’expérience pour le streaming 360◦ dépend donc de la prédiction des
mouvements de la tête en VR. Malheureusement, il s’agit d’un problème difficile en raison (i) du
caractère aléatoire des mouvements humains, (ii) de la diversité des trajectoires de tête des person-
nes qui regardent des vidéos à 360◦ ce qui entraîne une ambiguïté entre les trajectoires passées,
et (iii) des nombreux facteurs qui influencent le comportement, l’attention et les mouvements
de la personne en VR. Afin de concevoir des systèmes de streaming VR qui s’adaptent mieux à
chaque personne, il est important de comprendre les différents facteurs, leurs interactions et leurs
effets sur le comportement humain. La collecte et l’exploitation de nouvelles données relatives
à ces facteurs pourraient aider à désambiguïser les trajectoires la tête et à améliorer leur prédic-
tion. Ce travail est divisé en quatre contributions principales. Premièrement, nous avons proposé
un nouveau framework de deep learning variationnel pour prédire de multiples trajectoires possi-
bles de mouvements de tête afin de mieux prendre en compte la diversité des trajectoires. Nous
avons montré que notre modèle surpasse les performances de concurrents adaptés du domaine de
la conduite autonome, réduisant l’erreur jusqu’à 41 % sur quatre datasets. Nous avons ensuite
proposé un nouveau simulateur de streaming 360◦ afin de mesurer les gains système de notre
framework et de permettre de comparer facilement les stratégies de streaming adaptatif. Nous
avons montré que la prédiction de trajectoires multiples conduit à une plus grande équité entre
les usagers, avec des gains de qualité atteignant jusqu’à 10 % pour 20 à 30 % des personnes. En
parallèle, nous avons mené des expériences avec des personnes et des analyses statistiques pour
mieux comprendre l’interaction entre le contenu immersif, l’attention et les émotions. Nous avons
observé que le degré d’activation physiologique de la personne était corrélé à l’attention portée
aux objets, et nous avons quantifié les effets des émotions sur la prédictibilité des mouvements
de la tête. Enfin, nous avons voulu tirer parti des données liées aux émotions afin d’apprendre
de meilleures représentations et d’améliorer la prédiction des mouvements de la tête. Inspirés par
les travaux récents sur la distillation cross-modale et les modèles de fondation multimodaux, nous
avons commencé à travailler sur une nouvelle architecture de deep learning multimodale capable
d’apprendre des représentations transférables de modalités qui ne sont disponibles qu’au moment
de l’apprentissage. Nous avons obtenu des résultats préliminaires qui surpassent de 21 % l’état de
l’art existant tout en réduisant considérablement le nombre de paramètres.

Mots-clés : Apprentissage profond, Réseaux de neurones artificiels, Réalité virtuelle, Streaming,
Régression, Multimedia



Deep learning for adaptive 360◦ video streaming in virtual
reality

Quentin GUIMARD

Abstract
Virtual reality (VR) has evolved significantly in recent years. As head-mounted displays become
more affordable and popular, new opportunities for high-quality immersive experiences are open-
ing up. A variety of exciting applications are on the horizon, from 360◦ videos to interactive
training simulations and collaborative virtual environments. However, to achieve high levels of
perceptual quality, the required network bandwidth and GPU computing resources can be orders
of magnitude higher than those required for traditional 2D content. To mitigate this, adaptive
streaming strategies have been implemented to improve the quality of experience (QoE) for peo-
ple watching 360◦ videos over the Internet. This is done by adapting the video quality to the
network conditions and the user’s head orientation. Since most adaptive bitrate algorithms rely on
using a large enough video buffer to compensate for bandwidth fluctuations, the algorithm needs
to know where the person will be looking a few seconds before playback to make the appropriate
quality decisions. Improving the QoE for 360◦ video streaming therefore depends on accurately
predicting the user’s viewport in VR. Unfortunately, viewport prediction is a challenging prob-
lem due to (i) the inherent randomness of human motion, (ii) the diversity of head trajectories
among people watching 360◦ video, which leads to ambiguity between similar past trajectories,
and (iii) the many factors that influence user behavior, attention, and movement in VR. In order to
design VR streaming systems that can better adapt to each user, it is important to understand the
different factors, their interactions, and their effects on human behavior. Collecting and exploit-
ing additional data modalities related to these factors could help disambiguate head trajectories
and improve viewport prediction. The work covered in this manuscript touches on many areas,
including the design of various multimodal deep learning architectures applied to regression, dy-
namic optimization problems, time series forecasting, and user experiments along with associated
statistical analyses. This work is divided into four main contributions. First, we studied the simi-
larity between head motion trajectories and proposed a new variational deep learning framework
for predicting multiple possible head motion trajectories to better account for trajectory diversity.
While our framework is compatible with any sequence-to-sequence architecture, we implemented
a flexible and lightweight stochastic prediction model and showed that it outperformed competi-
tors adapted from the self-driving domain by up to 41% on four datasets. We then proposed a
new trace-driven 360◦ video streaming simulator to measure the system gains of our framework
and provide a way to easily compare adaptive streaming strategies. We showed that predicting
multiple trajectories leads to higher fairness among simulated users, with gains for 20% to 30%
of users reaching up to 10% in visual quality. In parallel, we conducted user experiments and
statistical analyses to better understand the interaction between immersive content, attention, and
emotions, as well as the effects of emotions on user motion. We observed that user arousal corre-
lated with the accuracy of high-level saliency. We also quantified the effects of valence and arousal
on the predictability of head movements and their interaction with spatial information. Finally, we
wanted to take advantage of additional emotion-related data modalities to learn better represen-
tations and improve viewport prediction. Motivated by recent work on cross-modal knowledge
distillation and multimodal foundation models, we initiated work on a new multimodal deep ar-
chitecture able to learn transferable representations of modalities that are only available at training
time. We obtained early results outperforming the existing state-of-the-art by up to 21% while
greatly reducing the number of parameters.

Keywords: Deep learning, Artificial neural networks, Virtual reality, Streaming, Regression,
Multimedia
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