
HAL Id: tel-04524379
https://theses.hal.science/tel-04524379

Submitted on 28 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Communicating automata and quasi-synchronous
communications

Loïc Germerie Guizouarn

To cite this version:
Loïc Germerie Guizouarn. Communicating automata and quasi-synchronous communications. Mod-
eling and Simulation. Université Côte d’Azur, 2023. English. �NNT : 2023COAZ4112�. �tel-04524379�

https://theses.hal.science/tel-04524379
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
Automates communicants et

communications quasi-synchrones

Loïc GERMERIE GUIZOUARN
Laboratoire d’Informatique, de Signaux et Systèmes de Sophia Antipolis (I3S)

UMR7271 UCA CNRS

Présentée en vue de l’obtention
du grade de docteur en Informatique
d’Université Côte d’Azur

Dirigée par : Étienne LOZES,
Professeur des Universités,
Université Côte d’Azur

Co-encadrée par : Cinzia DI GIUSTO,
Maîtresse de conférences,
Université Côte d’Azur

Soutenue le : 19 décembre 2023

Devant le jury, composé de :
Emilio TUOSTO,

Professeur associé,
Gran Sasso Science Institute in l’Aquila

Daniele VARACCA,
Professeur des Universités,
Université Paris Est - Créteil

Yves BERTOT,
Directeur de recherche,
INRIA Sophia-Antipolis

Ilaria CASTELLANI,
Chargée de recherche,
INRIA Sophia-Antipolis

Alain FINKEL,
Professeur des Universités,
Université Paris-Saclay

Damien ZUFFEREY,
Docteur,
SonarSource

Alan SCHMITT,
Directeur de recherche,
INRIA Rennes

AUTOMATES COMMUNICANTS ET COMMUNICATIONS
QUASI-SYNCHRONES

Communicating automata and quasi-synchronous communications

Loïc GERMERIE GUIZOUARN

▷◁

Jury :

Rapporteurs
Emilio TUOSTO,
Professeur associé,
Gran Sasso Science Institute in l’Aquila

Daniele VARACCA,
Professeur des Universités,
Université Paris Est - Créteil

Examinateurs
Yves BERTOT,

Directeur de recherche,
INRIA Sophia-Antipolis

Ilaria CASTELLANI,
Chargée de recherche,
INRIA Sophia-Antipolis

Alain FINKEL,
Professeur des Universités,
Université Paris-Saclay

Damien ZUFFEREY,
Docteur,
SonarSource

Directeur de thèse
Étienne LOZES,
Professeur des Universités,
Université Côte d’Azur

Co-encadrant de thèse
Cinzia DI GIUSTO,
Maîtresse de conférences,
Université Côte d’Azur

Membres invités
Alan SCHMITT,

Directeur de recherche,
INRIA Rennes

Université Côte d’Azur

Loïc GERMERIE GUIZOUARN

Automates communicants et communications quasi-synchrones
xi+122 p.

Ce document a été préparé avec LATEX2e et la classe these-ISSS version v. 2.10.

Impression : main.tex – 18/3/2024 – 23:36

Révision pour la classe : these-ISSS.cls,v 2.10 2020/06/24 14:16:37 mpelleau

Automates communicants et communications quasi-synchrones
Résumé

Les systèmes distribués sont le plus souvent basés sur l’échange asynchrone de messages entre
des agents. La programmation par échanges de messages est largement utilisée en calcul haute
performance, en programmation événementielle, dans les architectures orientées service, etc.
Malheureusement du fait de la variété des modèles de communication, des ambiguïtés dans
les spécifications, de la portabilité limitée du code, ou encore de la difficulté à exécuter des
tests, il est très difficile de vérifier les systèmes communicants. Le model-checking de systèmes
communicants vise à analyser des modèles formels de systèmes distribués et à détecter automa-
tiquement des erreurs comme des pertes de messages ou des inter-blocages. Ces problèmes sont
indécidables pour des systèmes à partir de deux machines, et plusieurs hypothèses restrictives
ont été étudiées pour rendre les problèmes décidables. Nous définissons dans cette thèse une
nouvelle classe de systèmes : les systèmes réalisables avec des communications synchrones
(RSC pour faire court). Les comportements de ces systèmes approximent des comportement
synchrones, où les messages sont envoyés et reçus simultanément. Nous nous basons sur cette
définition pour étudier la généralisation d’une autre classe de systèmes : les systèmes half-
duplex. Un système à deux machines est half-duplex si lorsqu’une machine envoie des messages,
l’autre ne peut pas lui en envoyer. Nous étudions également un autre formalisme, permettant
de raisonner sur les systèmes de manière globale : les chorégraphies. Ce formalisme décrit les
exécutions de manière synchrone, et un des problèmes qui y est associé est de vérifier si la
combinaison des comportements de chaque acteur qui y est décrit est conforme à la description
globale. Nous proposons d’utiliser les propriétés des systèmes RSC pour traiter ce problème.

Mots-clés : Communications, vérification, automates communicants.

Communicating automata and quasi-synchronous communications
Abstract

Most of the distributed systems we use nowadays are based on the message-passing paradigm
where systems are structured into parties that interact only by sending and receiving messages
asynchronously. Message-passing programming is largely employed in high performance
computing (MPI, OpenMP, etc), event-driven applications built on top of actor-based languages
(Scala, Erlang, etc), service-oriented architectures, peer-to-peer applications, etc. Unfortunately,
because of the variety of communication models (peer to peer, mailbox, etc), of the ambiguities
of the specifications of the communication primitives, of a limited portability of the code,
and of the difficulty of running representative tests, etc, it is error prone and therefore often
reserved to experts. Model-checking of communicating automata aims at analysing formal
models of distributed systems and discovering bugs like message loss or deadlocks. Due to the
asynchronous nature of the communications, this problem is undecidable in general, even with
two machines only, and several restrictions have been considered to restore decidability. We
define a new one in this thesis: systems that are realisable with synchronous communications
(RSC for short), that is the systems whose behaviours are equivalent to synchronous ones. We
propose the class of RSC systems as a generalisation of half-duplex systems, which are system
of two machines, where a machines does not send any message if it still has some pending
messages to be received in its queue. We study another formalism as well: choreographies,
which provide a way to reason globally on a system. Choreographies describe synchronous
executions, and one of the problems associated with it is checking whether the combination of all
participants of the described communication will behave accordingly to the global description.
We propose to rely on the properties of RSC systems to study this problem.

Keywords: Communication, model-checking, communicating automata.

Remerciements

Je tiens à commencer par remercier tous les membres du jury d’avoir été là, que ça soit physiquement
ou grâce à des technologies de communication efficaces, de leur intérêt, et de leur bienveillance.
Merci tout particulièrement à Daniele et Emilio d’avoir accepté d’être rapporteurs, et d’avoir, par
votre relecture attentive et vos remarques, amélioré ce manuscrit.

Merci également à Étienne et Cinzia qui ont su me guider dans cette entreprise, qui m’ont fait
découvrir le monde des méthodes formelles, vers lequel je ne me serais sans doute pas aventuré, et
qui m’ont donné les outils pour me permettre de l’explorer.

Le dernier chapitre de cet ouvrage doit beaucoup à Paul, dont je suis reconnaissant de la
contribution sur ReSCu, et à Loïc, qui m’a accompagné dans ma première publication sans mes
encadrants. Pour les aspects plus théoriques, je remercie également Amrita de son intérêt pour mon
travail, et de ses remarques avisées qui ont permis de mettre en lumière quelques subtilités.

Merci à mes nouveaux collègues de Créteil, et tout particulièrement à Luc, pour l’accueil et
pour avoir permis que la fin de ma rédaction se passe aussi bien que possible.

Au delà de la recherche, ces trois années ont également été l’occasion de belles rencontres, et je
remercie tous ceux, à l’I3S, avec qui j’ai pu partager de bons moments. Merci aux doctorants qui
étaient là, m’ont accueilli, et m’ont tout de suite fait me sentir chez moi : Arthur, Diana, Giulia,
Laeti blonde (mais plus maintenant), Marie, Nico, Oussama, Piotr, Rémy, et Samvel. Merci aussi
à ceux qui sont arrivés en cours de route : Aymeric, Florian, Margaux, Nina, Romain (change
rien), ainsi que Steve et Victor qui m’auront supporté un peu plus longtemps. Je me dois aussi
de mentionner Théo et Violette, qui, bien que n’ayant pas répondu positivement aux nombreuses
sollicitations à faire une thèse, ont toujours été là, jusqu’au bout de cette aventure.

Remerciements particuliers pour le bureau 222. François et Sara vous avez été les meilleurs
co-bureau, et sans vous ce doctorat n’aurait pas été le même. Grazie mille Sara, per la tua energia
e la tua generosità, merci aussi de nous avoir rassemblés dans ce bureau ! François, compagnon
d’infortune... ma mémoire sélective retiendra bien plus volontiers le compagnon que l’infortune. Si
je devais dire si c’était plutôt une bonne ou une mauvaise idée de faire une thèse, je dirais que notre
rencontre constitue un argument suffisant pour que je n’ai pas à hésiter un seul instant.

Au delà de toutes ces rencontres, et de ces soutiens, tout au long de mon parcours académique,
je tiens à remercier ma famille pour son soutien. Merci tout particulièrement à mes parents qui ont
toujours été là pour moi, et qui m’ont offert la chance de faire les études que je voulais.

Pour finir, merci à Laetitia. Même si ce n’est pas toi qui m’a amené à travailler sur les automates
communicants, tu as été l’interlocutrice qui m’a fait aimer le faire. Ces mots peuvent sonner creux,
mais ce sont ceux qui me semblent les plus justes : je n’aurais pas pu réussir sans toi. Merci pour
tes relectures, tes conseils, tes avis éclairés, tes encouragements si précieux, tes figures, et merci
d’être à mes côtés, pour tout le reste.

Contents

1 Introduction 1
1.1 General context . 1
1.2 Background . 1

1.2.1 Communicating automata . 2
1.2.2 Global approaches . 3

1.3 Our objectives . 4
1.4 Contributions and outline . 4

Notations 7

2 Preliminaries 11
2.1 General definitions . 11

2.1.1 Finite State Automata and regular languages 11
2.1.2 Graphs . 12

2.2 Communicating automata . 12
2.2.1 Communicating automaton . 13
2.2.2 System of communicating automata . 13
2.2.3 Communication architectures . 15

2.3 Executions . 16
2.4 Graphical representations . 19

2.4.1 Messages Sequence Charts . 19
2.4.2 Action Graphs . 20
2.4.3 Conflict Graphs . 22

2.5 Discussion . 23
2.5.1 Communicating automata . 23
2.5.2 Fully-bag causal equivalence . 24
2.5.3 MSCs and action graphs . 24
2.5.4 Conflict graphs . 25

3 RSC systems 27
3.1 RSC executions . 27

3.1.1 RSC executions and sequences of communications 28
3.1.2 Characterisation . 28

3.2 RSC Systems . 30
3.3 Automaton Arsc . 30
3.4 Discussion . 35

ix

x CONTENTS

4 Model-checking 39
4.1 Membership . 39

4.1.1 Borderline violations . 39
4.1.2 Automaton Abv . 41
4.1.3 Decidability of the membership problem 47

4.2 Reachability . 48
4.2.1 Recognising executions leading to a given configuration 49
4.2.2 Automaton Aep . 51
4.2.3 Decidability of the reachability problem for RSC systems 54
4.2.4 Regular Safety Problems . 56

4.3 Discussion . 58

5 Generalisation of half-duplex systems 61
5.1 Unsuitable generalisations . 61

5.1.1 Propositions from [Cécé and Finkel 2005] 62
5.1.2 Multiparty half-duplex systems . 62

5.2 Mailbox multiparty half-duplex systems . 68
5.3 Why RSC is a good generalisation of binary half-duplex 69

6 RSC characterisation of well-formed choreographies 71
6.1 Choreographies . 71
6.2 Well-formedness of choreographies . 74
6.3 Properties of well-formed choreographies . 82

6.3.1 Deadlock-freedom . 82
6.3.2 RSC implementation . 85

6.4 Discussion . 85
6.4.1 Global description and safety . 86
6.4.2 Realisability problem . 89
6.4.3 RSC and typeable systems . 91

7 Tool support 93
7.1 Related tools . 93
7.2 Features and implementation . 94

7.2.1 Features . 94
7.2.2 SCM description language . 94
7.2.3 Implementation . 96

7.3 Protocol library . 98
7.4 Performance . 99

7.4.1 Comparison with McScM . 99
7.4.2 Evaluation benchmark . 101
7.4.3 Comparison with STABC and KMC . 103

7.5 Perspectives . 104

8 Conclusion and perspectives 105

Bibliography 107

x

CONTENTS xi

List of Figures 115

List of Definition 117

List of Examples 119

xi

CHAPTER 1
Introduction

1.1 General context

As for any automated system, reliability of distributed systems is an important object of study.
Such a system consists in different actors, which combine their work to achieve a common task.
Distributed systems are ubiquitous in applications ranging from web services to high-performance
computing. Design errors that lead to downtime of such systems can have enormous consequences
for their users, including financial ones.

The ‘distributed’ aspect of these systems means that the actors are independent from each other,
and exchange messages to synchronise or share information. The communication between these
actors is therefore an important aspect of their operation. In fact, a potential weakness specific
to distributed systems is communication errors. There are several error situations that can arise.
For example, a system can end up in a deadlock, where the system is stuck because at the same
time, all participants are waiting for a message from another one. Because they are all waiting, no
participant is sending any messages, and therefore they all wait forever. The problem we address in
this thesis is precisely preventing these errors, or rather to ensure that a system is free of them.

To isolate the communication of distributed systems, we reason on what we will call their
communication protocol. Informally, a communication protocol is a description of the sequences
of messages that may be exchanged between a fixed set of participants. Defining such a protocol
allows to abstract away all the other aspects of the system, such as the internal behaviour of each
participant, and to focus on the verification of its communication only.

In this context, formal methods are used to certify the safety of such protocols. The intuition
behind these methods is to define a formalism in which the protocols can be modelled, and then to
prove safety properties of these models. A slight variant to this approach is to define the formalism
to constrain the models it describes such that they benefit from safety properties by construction.

1.2 Background

Use of formal methods in relation to verification of communications of distributed systems was
extensively studied. Some early works used classical finite state automata to represent the states of
a protocol [Bochmann 1978], and in the same spirit, [Zafiropulo et al. 1980] proposed a setting that
is close to the communicating automata we will present in the next section.

Early on, Petri nets were used to model communications [David and Alla 1994]. In a Petri net,
places may be filled with tokens, enabling transitions. Transitions can provide tokens to places,
while consuming tokens from other places. Those tokens typically represent the availability of a
resource. Research into Petri nets as a way to model communications has led to the emergence of
trace theory. Trace theory consists in reasoning about the sequences of communication actions a

1

2 CHAPTER 1 — Introduction

distributed system can generate. A notable example of this line of work is Mazurkiewicz traces
[Mazurkiewicz 1986]. In a Mazurkiewicz trace, events of a communication that can happen
concurrently can be commuted. Those traces are algebraically characterised thanks to free partial
monoids. The Book of Traces [Diekert and Rozenberg 1995] provides a thorough collection of the
works on traces as a way to represent concurrent executions.

Modern works on formalisation of communication protocols tend to fall in one of the two
following categories: a global description of all the possible communications between a set of
participants, and a distributed description, where each participant is specified independently and
their interaction is studied afterward. We will discuss various formalisms from the former category
after presenting one of the most common example of the latter: communicating automata.

1.2.1 Communicating automata

In a system of communicating automata, each participant of the modelled communication is
represented by a finite state automaton. The transitions of these automata are labelled by actions:
either to send or receive messages. Typically, a reception transition can be executed (that is, the
automaton to which it belongs may go from the origin state of this transition to its destination) if
the message is available: intuitively, it must have been sent already, and not yet received.

The two main semantics defining when a message is available, and more generally, how auto-
mata of such systems exchange messages, are synchronous and asynchronous communications. In
systems working synchronously, a reception transition can be executed only if one other automaton
of the system executes a send action for the same message, at the same time. In an asynchronous
setting, systems are equipped with a fixed set of unbounded buffers, in which messages are sent,
and where they remain until a reception removes them. Typically, buffers behave as First In First
Out queues (FIFO) or as bags (out of order). In a FIFO buffer, the only message that is available
for reception is the one that arrived first among the messages it contains, whereas any message in a
bag buffer may be received at any time.

Verification of a system of communicating automata usually consists in checking whether some
‘bad’ configurations are reachable or not. Informally, a configuration is a snapshot of the system:
the control states of each automaton and the content of the buffers (in an asynchronous setting). A
configuration of a system is said reachable if the system can execute transitions until it reaches this
configuration, and we call a sequence of transitions that can be executed by a system an execution.
Bad configurations may represent the ones in which the system, or a single participant, is blocked.
For instance, such an issue can occur when the automaton of each participants reach a control state
from which they have only reception transitions, and all the buffers are empty (or no send action
is executable in a synchronous setting). As no participant can execute any transition, they all end
up stuck waiting for some messages that will never arrive. This example of bad configuration is a
translation in the formalism of communicating automata of the deadlock situation we described
earlier as an example of communication errors for distributed systems.

Given a finite set of bad configurations of a system, checking whether at least one of them
is reachable using synchronous communications is decidable. However, the actual behaviour
of distributed systems is often asynchronous. Indeed, distributing a system is only relevant if
each participant is allowed to proceed with its actions at its pace, not waiting to send messages.
Unfortunately, using asynchronous communications, reachability of a configuration is undecidable
in general [Brand and Zafiropulo 1983a]. Intuitively, this is because unbounded FIFO buffers can

1.2 – 1.2.2 Global approaches 3

mimic the tape of a Turing machine, and therefore the halting problem reduces to the reachability
of a configuration.

From this result, an interesting research topic regarding communicating automata is the defin-
ition of classes of systems for which the reachability (and possibly other verification problems)
is decidable. Ideally, membership to these classes, that is to say, deciding whether a given sys-
tem is a member of the class, should be decidable as well. Finally, these classes should not be
over-restrictive, ie a significant proportion of actual protocols should fall into them.

1.2.2 Global approaches

One of the most prominent formalism to reason globally on a communication protocol is multiparty
session types [Bettini et al. 2008; Honda et al. 2008]. They are an extension to any number of
participants of session types, which defined a type system applied to communications between two
participants [Honda 1993; Takeuchi et al. 1994]. A global type describes the communication as a
whole, and local types are deduced for each participant in an operation called projection. Typicaly,
this operation is only defined when the global type is well-formed. It is sufficient to check each
participant’s implementation against its local type, independently, to ensure that their combination
will be well-behaved.

There are several notions of well-formedness of global types in the various works on multiparty
session types. Sometimes, well-formedness is explicitly defined, and sometimes it can be implicitly
deduced from the projection function. In the latter case, a well-formed global type is one for which
projection is defined. A key difference between this approach and communicating automata in
general is that here, safety properties of the protocol are ensured by construction. A distributed
implementation typed by the projection of a well-formed global type will benefit from various
safety properties, depending on the definition of well-formedness. For instance, for many multiparty
session type settings, such an implementation may never reach a deadlock as defined in the previous
section.

There are some natural connections between multiparty session types and communicating
automata however, and using the latter as local types was studied in [Deniélou and Yoshida 2012a].
Following this work, characterisations of the systems of communicating automata that could have
been obtained by projection of a well-formed global type were proposed in [Deniélou and Yoshida
2013; Lange, Tuosto et al. 2015a]. By definition, such systems benefit from the same safety
properties ensured for multiparty session types.

Without the background of type theory, choreographies are a generic name for formalisms
where the communication is described as a whole, and behaviours for the participants are extracted
from this description. A problem of interest for choreographic settings is deciding the realisability
of a global description. A global description is realisable if there exists a local description of all
participants, so that the combination of these local descriptions behave exactly as described globally.
Using communicating automata as a formalism of these local behaviours, as well as realisability,
has been studied in [Barbanera et al. 2020; Basu, Bultan and Ouederni 2012a].

The last approach we mention here makes use of MSCs. They are a visual representation of
interactions introduced in [ITU-TS 1993] (the most recent revision of this norm is [ITU-TS 2011]).
They are composed by a vertical line per participant, messages are represented by arrows between
their sender and their receiver, and time flows vertically from top to bottom. An arrow represented
above another means the message it represents was exchanged before the other. This formalism
connects back to Mazurkiewicz traces, as like them, they are essentially partial ordering of the

4 CHAPTER 1 — Introduction

events of a communication. This formalism was extensively studied [Genest, Muscholl and Peled
2003], and languages of MSCs have been proposed as a global description of protocols [Alur,
Etessami et al. 2003; Alur and Yannakakis 1999; Genest, Muscholl, Seidl et al. 2006; Muscholl
and Peled 1999]. For these languages, the realisability problem is similar to that of choreographies.
Knowing whether some behaviours, not described as part of an MSC language, are implied by this
MSC language, is a difficult problem, and is undecidable in general [Lohrey 2003].

1.3 Our objectives

The aim of the current work is twofold. First, we want to characterise, in communicating automata,
a bridge between the decidability of the verification of synchronous communications and the
expressiveness of asynchronous ones. An important aspect for us is the practicality of the techniques
we develop. This means that the complexity of these techniques should be low enough to make
them usable. Second, we want to explore the links between this characterisation and the various
global approaches we mentioned in the previous section. More precisely, we aim at establishing a
characterisation of well-formedness of choreographies.

To this aim, we rely heavily on an existing notion: Realisable with Synchronous Communica-
tions (RSC for short). This notion was defined for computations [Charron-Bost et al. 1996], but we
could adapt it to define a class of systems of communicating automata. It defines computations
(partial orders on communicating actions: sending or receptions of messages) that could have been
obtained in a synchronous setting. The idea behind such a computation is that between the sending
of any message and its reception, nothing has to happen.

1.4 Contributions and outline

Relying on the RSC notion introduced in [Charron-Bost et al. 1996], we introduce the class of
RSC systems in Chapter 3. To do so, we define RSC executions, and we discuss their relation with
synchronous executions. We show that the set of RSC executions a system can produce is regular
and we provide a way to build its representation for any given system of communicating automata.

In Chapter 4, we discuss decidability of model-checking problems for RSC systems. More
precisely, we show that checking if a system of communicating automata is RSC is decidable, and
that various safety properties are decidable for RSC systems. In fact, all regular safety properties,
that is the ones that can be expressed as the reachability of a regular set of configurations, are
decidable. This work was initially published in [Di Giusto, Germerie Guizouarn and É. Lozes
2021], were the RSC notion was named ‘greedy’, and later refined in a long version of this paper
[Di Giusto, Germerie Guizouarn and E. Lozes 2023].

After this study of the intrinsic properties of RSC communicating automata, we explore, in
Chapters 5 and 6, some of their applications. Namely, we propose RSC systems as the generalisation
to multiparty of the binary half-duplex systems from [Cécé and Finkel 2005] (Chapter 5). This
comparison was initially published in [Di Giusto, Germerie Guizouarn and E. Lozes 2023].

In Chapter 6, we define a choreographic setting, and we characterise its well-formedness using
RSC communicating automata. We conclude this chapter with a comparison of our choreographic
setting with various works based on global description approaches. These works range from
multiparty session types to languages of MSCs.

1.4 – Contributions and outline 5

The final contribution of this thesis is ReSCu, a tool that implements the model-checking
techniques developed in Chapter 4, as evidence of our interest in the practicality of our approach.
This tool, introduced in [Desgeorges and Germerie Guizouarn 2023], is presented in Chapter 7.

Following this introduction, Chapter 2 provides the formal definitions necessary to the rest of
the work.

Notations

Finite state automata and regular languages

Σ an alphabet
L a language
s a letter
w a word
letters(w) the multiset of the letters of w
A a finite state automaton
Q a set of control states
F a subset of accepting control states
q0 an initial control state
q a control state
(q, w, q′) a sequence of transitions from q to q′ while reading letters of w
w ⊑ w′ w is a subword of w′

[w] encoding of w

Systems of communicating automata

S a system of communicating automata
L a set of control states of a communicating automaton
V a set of messages
P a set of processes
I a set of buffers
IF a set of FIFO buffers
IB a set of bag buffers
Λ an alphabet of system actions
Ω an alphabet of communications
Υ an alphabet of matched communications
S a set of send actions
R a set of receive actions
Act a set of actions of a system
γ a configuration
γ0 an initial configuration
l a local control state
l a global control state (vector of local control states)
b a tuple of buffer contents
b∅ a tuple of empty buffers
RS(S) the reachability set of S
Γ a set of configurations

7

8 Notations

Communicating actions

v a message
ι a buffer identifier
aA a communicating automaton action
a a system action
b a buffer content
p, q, . . . some participants of the communication
ι?pv the reception of message v from buffer ι by participant p
ι!pv the send action of message v in buffer ι by participant p
c a communication
ι!p?qv the communication gathering the actions ι!pv and ι?pv
process (a) the process of action a
buffer (a) the buffer of action a
message (a) the message of action a

γ
a−→
S

γ′ the transition of system S going from configuration γ to configuration γ′

by executing action a

γ
e=⇒
S

γ′ the sequence of transitions in system S going from configuration γ to
configuration γ′ executing the sequence of actions e

Choreographies

C a choreography
α (C) the implementation of C
w ⇂ p projection of w on participant p
Apart automaton recognising the partial closure of a choreography
p set of blocked participants

Graphs

G a graph
V a set of vertices
v a vertex
A a set of arcs
d−(v) the input degree of vertex v
d+(v) the output degree of vertex v

Notations 9

Executions and their graphical representation

µ an MSC
agraph(e) the action graph of execution e
λ an action graph labelling function
lin (agraph(e)) the set of linearisations of agraph(e)
cgraph (e) the conflict graph of execution e
→e an arc of the conflict graph of e
κe the labelling function of the conflict graph of e
e ∼ e′ executions e and e′ are causally equivalent

JeK∼ set of executions causally equivalent to e

L
∼

the causal closure of the language of executions L
e ≺ e′ execution e is a prefix of e′

pre (e) the prefixes of e
e ⊴ e′ execution e is a partial execution of e′

e ⋬ e′ execution e is not a partial execution of e′

partials (L) the closure by partial executions of the language of executions L
P a safety property
P (S) the configurations of S satisfying P
AP (S) the automaton recognising P (S)
e an execution
com (e) the set of communications of e
cte (w) the execution corresponding to the sequence of communications w
etc (c) the execution corresponding to the actions composing c
e ⇂ι the sequence of actions of e whose buffer is ι
unmatched (w) the subword of w containing only the unmatched communications
executions (S) the set of executions of S
executionsrsc (S) the set of RSC executions of S
executionssync (S) the set of synchronous executions of S
Arsc the automaton recognising all RSC executions of a system
f a set of blocked FIFO buffers
b a set of blocked messages in a bag buffer

CHAPTER 2
Preliminaries

We begin with some generally accepted definitions about standard formalisms in computer science.
These include graphs (we will only use the directed variant in this thesis), regular languages and
finite state automata. We will follow by defining a setting of communicating automata, with
particular emphasis on the definitions of the sequences of actions of such systems, and of their
graphical representations. We will conclude this chapter with a discussion about how our setting
compares with previous works.

2.1 General definitions

For a finite set S, S∗ denotes the set of finite words over S, w · w′ denotes the concatenation of
words w and w′, |w| denotes the length of word w, and ε denotes the empty word. We write a letter
in bold to denote a vector (for example b), and bi for the i-th component of b.

2.1.1 Finite State Automata and regular languages

We recall usual definitions and results in the field of automata and languages.

Definition 2.1.1 (Finite State Automata). Let Σ be an alphabet, a finite state automaton over Σ,
denoted A, is a tuple

(
Q, δ, q0, F

)
where

• Q is a finite set of control states,

• q0 ∈ Q is the initial control state,

• F ⊆ Q is the set of accepting control states, and

• δ ⊆ Q × Σ × Q is the transition function.

A word w ∈ Σ∗ is recognised by A =
(
Q, δ, q0, F

)
if there exist a sequence of transitions

t1, t2, . . . , tn such that for all i ∈ {1, . . . , n}, ti ∈ δ with ti = (qi−1, s, qi), q0 = q0, and qn ∈ F.
We say that qn is an accepting state of w. The set of all words recognised by A is called the
language of A, and is denoted L (A). A language L, or set of words, is regular if there exists a
finite state automaton A such that L = L (A).

For a word w = s1 · . . . · sn in an alphabet Σ, and a word w′ = s′
1 · . . . · s′

m, we say that w′ is a
subword of w (denoted w′ ⊑ w) if there exists a function α such that for all i ∈ {1, . . . , m}, α(i) ∈
{1, . . . , n} and s′

i = sα(i), and for all {i, i′} ⊆ {1, . . . , m}, i < i′ if and only if α(i) < α(i′).
Intuitively, a subword of w is a word that can be obtained by removing some letters of w.

For a word w = s1 · . . . · sn in an alphabet Σ, letters(w) = {s1, . . . , sn} is the multiset
containing all the letters of w, as many times as they were present. By abuse of notation, we write
s ∈ w if s ∈ letters(w).

11

12 CHAPTER 2 — Preliminaries

2.1.2 Graphs

Definition 2.1.2 (Directed labelled graph). Given a set of labels L, a directed labelled graph is a
tuple (V, A, l) where

• V is a finite set of vertices,

• A ⊆ V × V is a set of arcs: for v, v′ ⊆ V, (v, v′) ∈ A means that v is connected to v′,

• l : V → L is a labelling function, assigning a label to each vertex.

For a directed graph G = (V, A, l) and a vertex v ∈ V , we write d−(v) (respectively d+(v))
for the number of vertices v′ such that (v′, v) ∈ A (respectively (v, v′) ∈ A).

Definition 2.1.3 (Graph isomorphism). Let L be a set of labels, G = (V, A, l) and G′ = (V ′, A′, l′)
two directed labelled graphs, G and G′ are isomorphic if there exists a bijection f between V
and V ′, such that for all v ∈ V, l(v) = l′(f(v)), and for v, v′ ∈ V , (v, v′) ∈ A if and only if
(f(v), f(v′)) ∈ A′.

Informally, the induced subgraph of a graph G is a graph obtained by removing vertices from
G, alongside with all the vertices that were reachable through an arc from the removed ones.

Definition 2.1.4 (Consistent induced subgraph). Let G = (V, A, l) and G′ = (V ′, A′, l′), G is a
consistent induced subgraph of G′ if

1. G is an induced subgraph of G′,

2. for all {v, v′} ⊆ V , if (v, v′) ∈ A, and v′ ∈ V ′, then v ∈ V ′.

2.2 Communicating automata

Generally speaking, a communication protocol is a set rules describing the possible interactions
between actors, called participants. For a given protocol, the set of all participants of the commu-
nication is denoted P. We begin with an informal description of a simple communication protocol,
that we will use as a running example.

Example 2.2.1 – We will consider a generic client/server protocol, enhanced with a database logging
activity. In this protocol, the client may send a request to the server, and when it receives a result
for this request, it sends an acknowledgement back to the server. The server waits for a request, and
upon receiving it, it sends a result to the client. After that, it waits for an acknowledgement from the
client and sends a logging message to the database. Those behaviours can be repeated indefinitely.

Systems of communicating automata are a model used to formally represent communication
protocols. Each participant is represented by a finite state automaton, the transitions of which are
labelled by actions, either to send or receive a message. Communications modelled by communic-
ating automata are asynchronous, which means that messages are sent to a specified buffer, where
they wait until they are explicitly received. These buffers can be First In First Out, or FIFO for
short, or bag. The latter are buffers from which messages can be received out of order, whereas, in
FIFO buffers, they have to be received in the order in which they were sent.

2.2 – 2.2.1 Communicating automaton 13

2.2.1 Communicating automaton

We now define formally a communicating automaton.

Definition 2.2.1 (Communicating automaton). A communicating automaton A is a tuple(
L,V, IF , IB, Act, δ, l0

)
where:

• L is a finite set of control states,

• V is a finite set of messages,

• I = IF ∪ IB with IB ∩ IF = ∅ is a finite set of buffer identifiers where IB (respectively IF)
is the subset of bag (respectively FIFO) buffer identifiers,

• Act ⊆ I × {!, ?} × V is a finite set of communicating automaton actions,

• δ ⊆ L × Act × L is a finite set of transitions, and

• l0 is the initial control state.

A communicating automaton action (denoted aA) can be a send action: ι!v, meaning ‘send
message v in buffer ι’, or a reception: ι?v meaning ‘receive message v from buffer ι’. For aA = ι†v
with † ∈ {!, ?}, buffer (aA) = ι and message (aA) = v.

We mostly consider deterministic communicating automata, as defined below. Except when
explicitly mentioned, a communication automaton is deterministic.

Definition 2.2.2 (Deterministic communicating automaton). Let A =
(
L,V, IF , IB, Act, δ, l0

)
be

a communicating automaton, A is deterministic if for all l ∈ L, for all communicating automaton
action aA ∈ Act, for all pair of control states (l′, l′′) ∈ L2, if (l, aA, l′) ∈ δ and (l, aA, l′′) ∈ δ,
then l′ = l′′.

A non-deterministic communicating automaton may violate the condition of Definition 2.2.2,
and its transition function δ is a subset of L × (Act ∪ {ε}) × L, meaning its transitions may have
no action labelling them.

2.2.2 System of communicating automata

A system of communicating automata, denoted by S, is a family of communicating automata,
one per participant p ∈ P, where actions of each automaton are tagged with the identifier of its
participant.

Definition 2.2.3 (System of communicating automata). Let P be a finite set of participant, a
system of communicating automata is a family S = (Ap)p∈P, where for all p ∈ P, Ap is the
communicating automaton representing participant p.

Example 2.2.2 – Figure 2.1 displays the graphical representation of Scsd, a system of communicat-
ing automata encoding formally the protocol from Example 2.2.1. We equipped each participant
with a buffer (not represented graphically) from which it receives all its messages. To improve
clarity, we named the buffers with the initial of the participant it is associated to.

14 CHAPTER 2 — Preliminaries

Client

0 1 2 0

Server

1 2 3 0

Database

s?req c!res s?ack

d!log

s!req c?res

s!ack
d?log

Figure 2.1: System Scsd of Communicating Automata encoding the protocol from Example 2.2.1

Definition 2.2.4 (Product of a system). Let S = (Ap)p∈P be a system of communicating auto-

mata, where for all p ∈ P, Ap =
(
Lp,Vp, IF

p , IB
p , Actp, δp, l0p

)
is the communicating automaton

representing participant p, then product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
is the product of S,

where:

• LS =
∏
p∈P

Lp is the set of global control states of the system: for l ∈ LS, l = (lp)p∈P is
a vector of control states, where for each participant p, lp is a control state
of the automaton representing p;

• l0 =
(
l0p

)
p∈P

is the initial global state;

• VS =
⋃
p∈P

Vp is the set of messages;

• IS = IF
S ∪ IB

S is the set of buffer identifiers, where IF
S = ⋃

p∈P I
F
p is the set of FIFO

buffers identifiers and IB
S = ⋃

p∈P I
B
p is the set of bag buffers identifiers;

• ActS =
⋃
p∈P

{ι †p v | † ∈ {!, ?}, ι † v ∈ Actp} is the set of system actions;

• δS =
{

(l, a, l′) | ∃p ∈ P, (lp, a, l′p) ∈ δp, ∀q ̸= p, lq = l′q

}
.

A system action is a communicating automaton action tagged with the process performing it.
This allows to ensure that all sets of actions of the participants in a system are disjoint. We extend
the definition of buffer (a) and message (a) to system actions as expected, and for a system action
a ∈ ActS, with a = ι †p v for † ∈ {!, ?} and p ∈ P, process (a) = p. We will refer to system
actions as actions.

Independently of a system, given a set of processes P, a set of buffer identifier I, and a set of mes-
sages V, the alphabet of send actions is SP,I,V = {ι!pv | ι ∈ I, p ∈ P, v ∈ V}, the alphabet of recep-
tions RP,I,V = {ι?pv | ι ∈ I, p ∈ P, v ∈ V}, and the alphabet of actions is ΛP,I,V = SP,I,V ∪ RP,I,V.
Often, P, I and V are not necessary, or obvious from context, and to alleviate notation we simply
write S, R and Λ.

For a system S with product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
, RS = RP,I,V ∩ ActS is the

set of receptions of S, and SS = SP,I,V ∩ ActS its set of send actions. To refer to the buffers in
which a participant p may receive messages, we write I?

p, defined as {ι | ∃v ∈ VS, ι!pv ∈ ActS}.
We say that a state is final if there are no transitions available from it.

Definition 2.2.5 (Final state). Let S be a system with product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
.

A state l ∈ LS is final if for all l′ ∈ LS, for all a ∈ ActS, (l, a, l′) /∈ δS.

2.2 – 2.2.3 Communication architectures 15

A configuration of a system is a snapshot of all its components at a given time: it is the control
state of all automata composing the system, as well as the content of all the buffers.

Definition 2.2.6 (Configuration). Let S be a system of communicating automata, a configuration
of S (denoted γ) is a pair (l, b) where l ∈ LS is a global control states, and b = (bι)ι∈IS is a
vector of buffers: for each ι ∈ I, bι ∈ (VS)∗ is the concatenation of the messages contained in the
buffer ι.

The initial configuration of a system S is denoted γ0, and is defined as
(
l0, b∅)

, with
b∅ = (ε)ι∈IS . Although we represent the content of bag buffers as words, we consider these
words as unordered. This means that two configurations (l, b) and (l′, b′) are equal if l = l′, for all
FIFO buffer identifier ι, bι = b′

ι, and for all bag buffer identifier ι′, letters(bι′) = letters(b′
ι′).

Intuitively, a configuration where a buffer contains messages represents a transient state of the
system: we expect the message to be received at some point. In contrast, we say that a configuration
in which no message is waiting to be received is stable.

Definition 2.2.7 (Stable configuration). A configuration (l, b) is stable if b = b∅.

Definition 2.2.8 (Transition). A transition of S is a tuple (γ, a, γ′), often written γ
a−→
S

γ′, where
γ = (l, b) and γ′ = (l′, b′) are two configurations, a is an action, and the following holds:

• (l, a, l′) ∈ δS

• if a = ι!pv, then b′
ι = bι · v, and for all j ∈ IS, j ̸= ι, bj = b′

j

• if a = ι?pv, then for all j ∈ IS, j ̸= ι, bj = b′
j and

− if ι ∈ IF
S then bι = v · b′

ι

− if ι ∈ IB
S then ∃w, w′ ∈ (VS)∗ , bι = w · v · w′, and b′

ι = w · w′.

If a system is equipped exclusively with FIFO buffers, we sometimes say that it is a FIFO
system. Similarly, a bag system is equipped with bag buffers only.

2.2.3 Communication architectures

In the setting we chose, we allow any communication architecture: there is no relation a priori
between the set of processes and the set of buffers. A participant may read and write from the same
buffer, and there might be more than one buffer between a given pair of participants. However,
most of the work in the literature uses a specific communication architecture.

The most common one is peer-to-peer, where a buffer is used in each direction between each
pair of participants.

Definition 2.2.9 (Peer-to-peer systems). Let S = (Ap)p∈P be a system of communicating automata,
such that product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. The system S is peer-to-peer if IS = IF

S

and if there exists an injection r : I → P × P such that for all p ∈ P:

1. if ι!v ∈ Actp, then r(ι) ∈ {p} × (P \ {p}), and

2. if ι?v ∈ Actp, then r(ι) ∈ P \ p × {p}.

16 CHAPTER 2 — Preliminaries

Note that a participant is not allowed to send and receive in the same buffer. Another common
architecture is mailbox, where each participant is equipped with a single buffer, in which it receives
messages from all participants.

Definition 2.2.10 (Mailbox systems). A system S = (Ap)p∈P, such that its product is
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
, is mailbox if there exist a injection r : IS → P such

that for all p ∈ P:

1. for all aA ∈ Actp, if aA = ι?v then r(ι) = p, and

2. if aA = ι!v, then r(ι) ̸= p.

Observe that systems with two participants are peer-to-peer if and only if they are mailbox.
They are equipped with two buffers, one in each direction between the two participants. These
systems are referred to as binary systems.

2.3 Executions

Given an alphabet of actions Λ, an execution is a word on Λ: it is a finite sequence of actions. An
execution is feasible in a system if this system is able to exhibit this sequence of actions.

Definition 2.3.1 (Feasible execution). An execution e = a1 · a2 · . . . · an is feasible in S if there
exists a sequence of configurations γ1, γ2, . . . , γn such that for all i ∈ {1, . . . , n}, γi−1

ai−→
S

γi.

The set of all feasible executions of S is denoted executions (S). We write γ0
e=⇒
S

γn for

γ0
a1−→
S

γ1
a2−→
S

· · · an−→
S

γn, and by abuse of notation we write a ∈ e = a0 · . . . · an if there exists

i ∈ {1, . . . , n} such that a = ai. If an execution e is feasible in a system S, we also say that S
admits e.

A configuration γ of S is reachable if there exists an execution e ∈ (ActS)∗ such that γ0
e=⇒
S

γ.
The set of all reachable configurations of S, called reachability space, is denoted RS(S).

For an execution e = a1 · . . . · an over an alphabet ΛP,I,V, we write message (e) for the
word message (a1) · . . . · message (an) in V∗. We write e′ = e ⇂ι for ι ∈ I if e′ ⊑ e such that
letters(e) ∩ ΛP,{ι},V = letters(e′) ∩ ΛP,{ι},V. The execution e′ is e restricted to actions implying
buffer ι. The notion of prefix of an execution is defined as it is for words.

Definition 2.3.2 (Prefix of an execution). Let e1 and e2 be two executions. We say that e1 is a prefix
of e2, denoted e1 ≺ e2, if there exists e′ such that e1 · e′ = e2. Given a language of executions L,
the prefix closure of L is pre (L) = {e | ∃e′ ∈ L, e ≺ e′}.

In an execution, we say that the set formed by the index of the send action of a message and
that of the reception of this very message is a matching pair.

Definition 2.3.3 (Matching pair). Let e = a1 · . . . · an be an execution over ΛP,I,V. A set of
two indices {j, j′} ⊆ {1, . . . , n} with j < j′ is a matching pair if there exist ι ∈ I, v ∈ V, and
(p, q) ∈ P2 such that:

1. aj = ι!pv,

2. aj′ = ι?qv,

2.3 – Executions 17

3. and there exists k such that

(a) if ι ∈ IF then aj (respectively aj′) is the k-th send action (respectively reception) on ι
in e,

(b) else
(
ι ∈ IB

)
, aj (respectively aj′) is the k-th send action (respectively reception) of

message v on ι in e.

For bag buffers, we say that when the same message is sent several times to a buffer, receptions
of this message match the send actions in their order. A bag buffer can be seen as a set of FIFO
buffers, one per message name. This choice is explained in the discussion, Section 2.5.2.

An action aj is unmatched in e if there is no j′ such that {j, j′} is a matching pair. By abuse of
notation, we often use the term matching pair to refer to the actions whose indices form a matching
pair in a given execution.

Note that, as executions are words on an alphabet of actions, with no restriction whatsoever,
some of them are ill-formed: receptions could occur before send actions for example. Because
of the j < j′ condition in Definition 2.3.3, such reception would not be part of a matching pair,
meaning they are receptions of messages that were not sent in this execution. Intuitively, we call
ill-formed any execution that could not be feasible in any system.

Example 2.3.1 – Consider an execution e = ι?v1 · ι!v1 · ι′?v2 · ι′!v3 · ι′?v3 , where all the buffers are
FIFO. It is ill-formed: because of the semantics rules of Definition 2.2.8, a reception cannot happen
from the initial configuration of a system, because all the buffers are empty in this configuration.
Another issue is what happens in buffer ι′: because ι′!v3 is the first send action in this buffer,
and ι′?v3 is the second reception, these actions do not form a matching pair. In fact, there are no
matching pairs at all in this execution.

To avoid corner cases that could happen because of these ill-formed executions, we will focus
on what we call well-formed executions.

Definition 2.3.4 (Well-formed execution). Let Λ be an alphabet of actions. An execution
e = a0 · . . . · an over Λ∗ is well-formed if for all i ∈ {1, . . . , n}, if ai ∈ R then there exists
j ∈ {1, . . . , i − 1} such that {j, i} is a matching pair in e.

We say that two actions of a well-formed execution commute if:

• they do not form a matching pair,

• they are not actions of the same type on the same FIFO buffer,

• they are not actions of the same type with the same message on the same bag buffer,

• and they are not performed by the same participant.

Intuitively, two actions commute if their order was not observable from the viewpoint of any
individual component of the system, participant or buffer.

For an execution e = a1 · . . . · an, we say that j ≺e j′, with {j, j′} ⊆ {1, . . . , n} if j < j′ and
aj does not commute with aj′ . The relation ≺e represents causal dependencies between actions of
an execution.

We say that two executions that are equivalent up to reordering of actions that commute are
causally equivalent.

18 CHAPTER 2 — Preliminaries

Definition 2.3.5 (Causal equivalence). Let Λ be an alphabet of actions. Two executions
e = a1 · . . . · an ∈ Λ∗ and e′ = a′

1 · . . . · a′
n ∈ Λ∗ are causally equivalent, denoted e ∼ e′, if

there exists a permutation σ of {1, . . . , n} such that:

(1) for all i ∈ {1, . . . , n}, a′
σ(i) = ai, and

(2) for all {j, j′} ⊆ {1, . . . , n}, j ≺e j′ if and only if σ(j) ≺e′ σ(j′).

We denote with JeK∼ the set of all executions causally equivalent to e. We defined the causal
closure of a set of execution L as follow: L

∼
=

⋃
e∈L JeK∼.

The conditions on the actions on bag buffers make this notion compatible with our definition of
matching pairs, where bag buffers behave like if they were composed by a FIFO buffer per message
it contains. Commuting two send actions or two receptions of the same message on the same
bag buffer could change which send action matches each reception, leading to causally equivalent
executions where the matching pairs are not the same.

Example 2.3.2 – Let e = ι!pv · ι!qv · ι?rv and e′ = ι!qv · ι!pv · ι?rv be two executions, with ι being
a bag buffer. If we did not prevent actions using the same message on the same buffer to commute,
we would have e ∼ e′ according to Definition 2.3.5. However, according to Definition 2.3.3, the
send action matched by the final reception in both e and e′ is the first one in each execution, so the
only matching pair is not the same in these two executions.

Lemma 2.3.1. Let S be a system of communicating automata, e1 and e2 be two executions feasible
in S with γ0

e1=⇒
S

γ and γ0
e2=⇒
S

γ′. If e1 ∼ e2, then γ = γ′.

Proof.

Let S = (Ap)p∈P be a system of communicating automata, such that its product is
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. Let e1 and e2 be two executions feasible in S

with γ0
e1=⇒
S

(l, b) and γ0
e2=⇒
S

(l′, b′).

Observe that, in two causally equivalent executions, the order of the actions of each process
happen in the same order, so for all p ∈ P, the sequence of communicating automaton actions
executed on Ap is the same, so lp = l′p.

We reason similarly for the buffers, beginning with FIFO ones. For a buffer ι ∈ IF , bι is equal to
the sequence of sent messages to which the sequence of received messages is removed. These
two sequences are equal for two causally equivalent executions, so bι = b′

ι. For bag buffers now,
the key argument is that because the actions are the same in e1 and e2, there are as many send
actions and receptions of each message in each bag buffer. For a bag buffer ι, bι = b′

ι. □

In a synchronous setting, send and receive actions of the same message are indivisible. The
whole exchange happens as one single step. In our setting, we say that an execution is synchronous
if it is a sequence of matching pairs. If we consider the configurations reached after a matching pair
as a step of a synchronous execution, each step is stable.

Well-formed executions are composed by exchanges of messages between participants: a
message is either sent and received, or sent and remaining in a buffer. We consider the pair of
actions constituting such exchanges, and call them communications. Formally, a communication
(denoted c) is a set of actions: either {ι!pv, ι?qv} or {ι!pv}. We say that a communication of the
first kind is a matched communication, and a communication of the second kind is an unmatched
one.

2.4 – Graphical representations 19

Definition 2.3.6 (Communications of an execution). Let e = a0 · . . . · an be an execution over an
alphabet of actions Λ. The multiset of all communications of e is

com (e) =
{{

aj , aj′
}

| {j, j′} is a matching pair of e
}

∪{
{aj} | aj ∈ S, ∀j′ ∈ {1, . . . , n}, {j, j′} is not a matching pair of e

}
.

Observe that because unmatched communications can only contain send actions, if an execution
e is ill-formed, some of its actions will not be part of a communication in com (e). We sometimes
need to relate specific actions and their communication. For an execution e = a1 · . . . · an, we
assume an arbitrary ordering c1, . . . , cm of the communications of e (that is for all i ∈ {1, . . . , m},
ci ∈ com (e)). We sometimes need a function ϑ, which associates each action index to the index of
the communication it belongs to: for all i ∈ {1, . . . , n}, ϑ(i) = j if cj contains action ai specifically.
This implies that for j ∈ {1, . . . , m}, ϑ−1(j) = {i, i′} if ci is a matched communication and
ϑ−1(j) = i otherwise.

Example 2.3.3 – Consider the execution e from Example 2.3.1. Because there are no matching
pairs in e, com (e) = {{ι!v1 } , {ι′!v3 }}. The send actions form unmatched communications.

If we consider now a well-formed execution e′ = ι!v1 · ι′!v2 · ι?v1 , we have
com (e′) = {{ι!v1 , ι?v1 } , {ι′!v2 }}.

We define an alphabet of communications:

ΩP,I,V =
{

ι!p?qv | ι ∈ I, (p, q) ∈ P2, v ∈ V
}

∪ {ι!pv | ι ∈ I, p ∈ P, v ∈ V} .

Similarly to Λ, we omit the subscript and write Ω when P,V, and I are obvious or not necessary.
Notation ι!p?qv stands for {ι!pv, ι?qv}, and ι!pv stands for the communication {ι!pv}. To refer to an
alphabet of matched communications only, we define ΥP,I,V =

{
ι!p?qv | ι ∈ I, (p, q) ∈ P2, v ∈ V

}
.

Often, we need to refer to the alphabets of communications that are possible in a given system. To
do so, we use ΥS = {ι!p?qv | ι!pv ∈ ActS, ι?qv ∈ ActS} and ΩS = ΥS ∪ {ι!pv | ι!pv ∈ ActS}.

2.4 Graphical representations

We present several graphical representations of executions, and more specifically of their causal
dependencies. We survey Message Sequence Charts, and motivate the need for action graphs in
our setting.

2.4.1 Messages Sequence Charts

Message Sequence Charts have been introduced as a standard in [ITU-TS 1993], and are a visual
representation of communications of a distributed system. Each participant of the communication
is represented by a vertical line, and a message is represented by an arrow from its sender to the
receiver. An unmatched message, that is sent, but not received, is represented by a partially dotted
arrow. We say that the intersections between arrows and vertical lines are events, either send or
receive ones. Time flows top to to bottom on each vertical line, meaning that an event that is below
another happens later.

Example 2.4.1 – An MSC is depicted in Figure 2.2. It represents an interaction between three
participants: p, q and r. First, a message v1 is exchanged from p to q, and then a message v2 is
exchanged between r and q. After that, an unmatched message v3 is sent to p by q.

20 CHAPTER 2 — Preliminaries

We give the formal definition of an MSC:

Definition 2.4.1 (Message Sequence Chart). Let P be a set of processes, V be a set of messages and
I be a set of buffers identifiers. An MSC µ over action alphabet ΛP,I,V is a tuple (E, λ, m, ⪯proc)
where

• E is a finite set of events;

• λ is a function from E to ΛP,I,V, such that for e ∈ E, a = λ(e) is the action corresponding
to event e;

• m is a binary relation on E, matching the send action and the reception of the same message:

− for all (e, e′) ∈ m, there exists (p, q) ∈ P2, ι ∈ I, v ∈ V such that λ(e) = ι!pv and
λ(e′) = ι?qv;

− for all e ∈ E such that λ(e) ∈ RP,I,V, there exists a unique e′ ∈ E such that (e′, e) ∈ m;
and

− for all e ∈ E such that λ(e) ∈ SP,I,V, there exists at most one e′ ∈ E such that
(e, e′) ∈ m, and λ(e′) ∈ RP,I,V;

• ⪯proc is a partial order over E, such that for all p ∈ P, ⪯proc induces a total order on the
events of p, that is on λ−1

(
S{p},I,V ∪ R{p},I,V

)
.

• (m∪ ⪯proc)+, the transitive closure of m and ⪯proc, is irreflexive.

We write ⪯µ for the transitive closure of ⪯proc and m, and call this partial order the visual order
of µ.

A linearisation of an MSC µ = (E, λ, m, ⪯proc), with E = {1, . . . , n}, is an execution
e = a1 · . . . · an such that there exists a permutation σ of E with λ(e) = aσ(e), and for all
{e, e′} ⊆ E, e ⪯µ e′ implies σ(e) ≤ σ(e′). We denote with lin (µ) the set of linearisations of µ.

MSCs can be used to reason about executions of systems of communicating automata. If S is a
system, and e ∈ executions (S), the MSC µ = (E, λ, m, ⪯proc) associated with e = a1, . . . , an is
defined such that E = {1, . . . , n}, for all e ∈ E, λ(e) = ae, for all {e, e′} ⊆ E, (e, e′) ∈ m if and
only if {e, e′} forms a matching pair in e.

2.4.2 Action Graphs

A shortcoming of MSCs is that not all their linearisations are valid executions. While they are very
well suited to reason about executions in a peer-to-peer setting, they lack information to reason
about executions in a more generic communication architecture, and even for structured ones like
mailbox.

Example 2.4.2 – Consider as an example the MSC µ from Figure 2.2, with FIFO mailbox commu-
nication: both v1 and v2 are sent in the same buffer. The execution

e = ι!pv1 · ι!rv2 · ι?qv1 · ι?qv2 · ι′!qv3

is a valid linearisation of µ, but

e′ = ι!rv2 · ι!pv1 · ι?qv1 · ι?qv2 · ι′!qv3

2.4 – 2.4.2 Action Graphs 21

p q r

v1

v2

v3

Figure 2.2: Example of an MSC

is not: message v2 is sent first in ι but is received second, which is not compatible with the FIFO
semantic.

As we consider a generic setting with no restriction on the communication architecture in
general, we might have to deal with trickier situations: knowing the sender and the receiver of
a message could be insufficient to know which buffer is involved in this communication. Even
though this could be fixed by adding the information about the buffer in the MSC, a more suitable
option is to use another graphical representation of execution: action graphs.

Definition 2.4.2 (Action Graph). Let ΛP,I,V be an alphabet of actions, and e = a1, . . . , an be
an execution over this alphabet. The action graph of e, denoted agraph(e), is the vertex-labelled
directed graph ({1, . . . , n}, ≺e, λ), where for all i ∈ {1, . . . , n}, λ(i) = ai, and arcs follow from
causal dependency: there is an arc between vertices i and j if i ≺e j.

Action graphs are acyclic, by definition of ≺e: remember that a ≺e a′ if a′ occurs in e after
a. Action graphs embed by definition all the information about causal dependency. The set of
linearisations of an action graph agraph(e) = ({1, . . . , n}, ≺e, λ) is

{ai1 · . . . · ain | ∀j ∈ {1, . . . , n}, aij = λ(ij),
and i1, . . . , in is a topological ordering of agraph(e)}.

Because arcs in action graphs correspond to causal ordering of actions of the executions they
represent, two executions e and e′ are causally equivalent if their action graphs agraph(e) and
agraph(e′) are isomorphic. This implies that lin (agraph(e)) = JeK∼.

The graphical representation of action graphs can be close to the one of MSCs: we chose to
represent actions of the same process vertically, in the order they have to be from top to bottom.

Example 2.4.3 – Figure 2.3 is the representation of the action graph of the execution e from
Example 2.4.2. Contrary to what we saw in its MSC in Figure 2.2, there is an arc between the two
send actions, as they act on the same FIFO buffer. This arc prevent the wrong linearisation from
earlier.

As all the causal dependencies are represented in an action graph, the visual representation can
be cumbersome. Because there is a causal dependency between actions of the same process, the
number of arcs is quadratic in the number of actions, and such a graph is not easily understandable.
To circumvent this issue, we opted for a visual representation of action graphs omitting the arcs
between actions of the same participant, except from the arc between two actions immediately
following each other. Figure 2.4 is an example of this drawback, and presents the same action graph
as Figure 2.3, with all its arcs.

22 CHAPTER 2 — Preliminaries

p q r

ι!pv1 ι?qv1

ι!rv2ι?qv2

ι′!qv3

Figure 2.3: Action graph of execution e from
Example 2.4.2

p q r

ι!pv1 ι?qv1

ι!rv2ι?qv2

ι′!qv3

Figure 2.4: Complete representation of
action graph from Figure 2.3

ι!p?qv1 ι!r?qv2 ι!pv3

Figure 2.5: Representation of a conflict graph

2.4.3 Conflict Graphs

Another graphical tool that we will use to characterise executions is the conflict graph, which is
intuitively obtained from the action graph by merging matching pairs of vertices.

Definition 2.4.3 (Conflict graph). Given an execution e = a1 ·. . .·an with com (e) = {c1, . . . , cm},
the conflict graph cgraph (e) of the execution e is the vertex-labelled directed graph
({1, . . . , m} , →e, κe) where for all i ∈ {1, . . . , m}, κe(i) = ci, and for all {k, k′} ⊆ {1, . . . , m},
k →e k′ if there is i ∈ ϑ−1(k) and j ∈ ϑ−1(k′) such that i ≺e j.

Example 2.4.4 – Let e be the execution from Example 2.4.2. Figure 2.5 shows the visual represent-
ation of cgraph (e). We used the compact representation of communications defined in the end of
Section 2.3.

Lemma 2.4.1. Let e and e′ be two executions, e ∼ e′ if and only if cgraph (e) is isomorphic to

cgraph (e′).

Proof.

Let e and e′ be two executions such that e ∼ e′. By Definition 2.3.5, we know that e is a
permutation of e′, and because order of actions of the same kind on the same buffer is preserved
between e and e′, the kth send, respectively receive, action on a buffer ι in e is also the kth send,
respectively receive, action ι in e′. We can deduce that actions forming a matching pair in e form
a matching pair in e′ as well. From this consideration we have that com (e) = com (e′), and
from item (2) Definition 2.3.5, and Definition 2.4.3 of the conflict graphs, k1 →e k2 if and only
if there exists ai ∈ κk1 and aj ∈ cgraph (k2) such that ai ≺e aj , so ai ≺e′ aj , so there exists
{k′

1, k′
2} ⊆ {1, . . . , |com (e′) |} such that ai ∈ κe′(k′

1) and aj ∈ κe′(k′
2), with k′

1 →e′ k′
2.

Now, we show that two executions with isomorphic conflict graphs are causally equivalent. Let
e = a1 · . . . · an and e′ = a′

1 · . . . · a′
n two executions such that cgraph (e) is isomorphic to

cgraph (e′). Because their conflict graphs are isomorphic, we know that com (e) = com (e′).

2.5 – Discussion 23

Let {i, j} ⊆ {1, . . . , n} such that ai and aj do not commute in e. We know that ai and aj do
not commute in e′ either. Assume that ai ≺e aj , then there exists {k1, k2} ⊆ {1, . . . , |com (e) |}
such that ai ∈ κe(k1), aj ∈ κe(k2), and k1 →e k2. Because cgraph (e) is isomorphic to
cgraph (e′), there exists {k′

1, k′
2} ⊆ {1, . . . , |com (e) |} such that ai ∈ κe′(k′

1), aj ∈ κe′(k′
2),

and k′
1 →e′ k′

2; therefore ai ≺e′ aj . □

2.5 Discussion

Now that we have introduced the formal framework we will be working with in the next chapters,
we will discuss how the definitions we have chosen for its various elements are related to previous
work.

We begin with an overview of the different definitions of communicating automata, and how
they take into account the possible buffer semantics and communication architectures. Then we
discuss the graphical representation of executions: we discuss how definitions of MSCs from the
literature are related to action graphs. Finally, we will discuss how our conflict graphs differs from
those that have been introduced in the literature so far.

2.5.1 Communicating automata

The definition we provided for communicating automata is as generic as possible. In particular,
most of the works around this formalism consider a limited amount of communication architectures,
typically peer-to-peer (like in [Brand and Zafiropulo 1983a; Genest, Kuske et al. 2007; Heußner,
Leroux et al. 2012; Kuske and Muscholl 2021] to mention a few), or sometimes mailbox (e.g. in
[Basu, Bultan and Ouederni 2012b; Bouajjani, Enea et al. 2018a; Finkel and É. Lozes 2017])∗. In
the present thesis, we reason on a generic setting that subsumes any communication architecture
from these works.

We only considered two semantics for our buffers: FIFO or bag, and we allow buffers using
different ones coexisting in the same system. This is a similar setting as the one studied in [Clemente
et al. 2014], where topologies composed by both bag and FIFO buffers are studied. Asynchronous
communications relying on bag buffers are referred to as fully asynchronous communication in
[Chevrou et al. 2016]. This term gives the intuition of a communication where the only order
between actions comes from the fact they are done by the same participant (or between a send action
and its corresponding reception). While most of the literature focused on FIFO communication,
[Basu and Bultan 2016] and [Akroun and Salaün 2018] are instances of works studying bag buffers.
Contrary to what we defined here, both these works did not define a notion of matching pair. The
semantic of [Akroun and Salaün 2018] is defined as if for each buffer, there was a counter per
possible message. Each time a message is sent to the buffer, its counter is incremented, and each
time a message is received from the buffer, its counter is decremented. In [Basu and Bultan 2016],
each message is treated as if it had been tagged with its sender and recipient. This forbids a shared
bag buffer to contain a message that could be received by multiple participants (to mimic a token
for example).

∗Buffers are sometimes called channels in the literature.

24 CHAPTER 2 — Preliminaries

2.5.2 Fully-bag causal equivalence

The definition we chose for matching pairs (Definition 2.3.3) is not the only possible one. This is
because in general, it is not possible to know which actions form matching pairs in an execution
using bag buffers with our semantics. This is illustrated in the example below.

Example 2.5.1 – Let e = ι!pv · ι!qv · ι?rv be an execution such that ι is a bag buffer. According to
Definition 2.3.3, ι?rv is matched with ι!pv. However, from the operational semantics point of view
(as hinted in Definition 2.2.8), we could also consider that ι?rv is matched with ι!qv.

We could have considered a more relaxed definition of matching pairs, which we call fully-bag
matching pairs, in which receptions are arbitrarily (but injectively) matched to any send action that
happened before.

This reasoning extends to fully-bag causal equivalence: two actions can commute if they are
actions of the same type on the same bag buffer implying the same message. Two executions e and
e′ are fully-bag causally equivalent if they are causally equivalent according to Definition 2.3.5
with the modified condition to commute, and both executions match the same actions together
(because fully-bag matching pairs are arbitrary and cannot be determined with only the information
contained in the execution itself). Once again, if two executions are causally equivalent, they are
fully-bag causally equivalent as well.

The issue with fully-bag matching pairs is that an execution in itself does not embed enough
information to determine which send action matches which reception, which is why we rely on
the arbitrary association of matching pairs from Definition 2.3.3. Furthermore, in practice, there
is little difference between the matching pairs from Definition 2.3.3 and fully-bag matching pairs.
Causal equivalence using matching pairs from our definition still allow to reorder actions of the
same type in bag buffers, and receptions from the same buffer do not have to be in the same order
as their send actions (as long as they do not involve the same message).

We did not however consider ‘lossy’ buffers. This is a semantic where messages may randomly
disappear from a buffer. The idea is to mimic errors in the communication. Systems using them
were studied in [Abdulla and Jonsson 1996a; b]. Some combinations of FIFO and lossy buffers
were also studied in [Chambart and Schnoebelen 2008].

2.5.3 MSCs and action graphs

MSCs were studied in numerous papers, and Definition 2.4.1 is similar to the definition of MSCs
from [Lohrey and Muscholl 2002] or [Genest, Muscholl and Peled 2003] for instance. A difference
is that in both these definitions, the visual order ⪯µ is defined as a component of the MSC itself
while in our proposal it is deduced from the other components. This approach is identical to the
definition of MSCs from [Laversa 2021]. In the remainder of this work, we will not formally rely on
MSCs. We will discuss them in Chapter 6 when we discuss global descriptions of communication
protocols. We defined them to motivate the use of action graphs, which are more suited to reason
about executions when no specific communication architecture is assumed.

The intuition of action graphs is present in [Bollig, Katoen et al. 2010], where MSCs are
represented as graphs, allowing to easily visualise the partial order between the actions of an
execution. However, Bollig, Katoen et al. did not consider other communication architecture than
peer-to-peer, so their graph representation of MSCs was just a different visualisation, which did not
add information to them.

2.5 – 2.5.4 Conflict graphs 25

Action graphs are closely related to partially ordered multisets (pomsets). If we consider the
multiset of the actions of an execution rather than their indexes, and we consider the relation of
causal dependencies as a partial order on the actions themselves, we obtain a pomset that embeds
the same information as our action graphs. A reason why we relied on the graph formalism is that
it made it easier to

2.5.4 Conflict graphs

The notion of conflict graph appeared in [Bouajjani, Enea et al. 2018a], inspired by [Papadimitriou
1979]. Contrary to our Definition 2.4.3, Bouajjani, Enea et al. label the arcs of their conflict graph
rather that the nodes. They lose the information about which communication is in conflict with
another one, but the label on an arc between two communications allow to know which action of
each communication created the conflict. Arc labels are of the kind XY , for (X, Y) ∈ {S, R}2.
There is an arc between two communications c, c′ if an action of c′ depends on an action of c. The
value of Y (respectively X) indicates which action of c′ (respectively c) depends on c (respectively
is depended on by c′). An S label means that the send action is involved in the dependency, and
an R means it is the reception. Note that there might be multiple arcs between two vertices in a
conflict graph from [Bouajjani, Enea et al. 2018a].

By labelling the nodes with the communications themselves, rather than the arcs with in-
formation about the nature of the conflict, we do not loose any information. Indeed, given two
communications, it is easy in our setting to know whether it is the send action or the possible
reception of one communication that conflicts with the other one. For us, the main interest of using
such a labelling is that, provided with such a conflict graph, it is easy to rebuild another execution
with the same conflict graph. We will use that feature in our proofs.

In both [Bouajjani, Enea et al. 2018a; Di Giusto, Laversa et al. 2020], conflict graphs have been
defined as inferred from the MSCs. Therefore, when using another communication architecture
than peer-to-peer, they suffer the same drawbacks as the ones illustrated in Example 2.4.2: some of
the arcs are there implicitly. This is one of the reasons that led Di Giusto, Laversa et al. to extend
the definition from [Bouajjani, Enea et al. 2018a] with new arcs. These arcs represent the causal
dependency of send actions from different participants happening in the same buffer. These extra
arcs are naturally included in our conflict graphs since we build them from the partial order of our
action graphs rather than the one of MSCs.

CHAPTER 3
RSC systems

In this chapter, we study the notion of Realisability with Synchronous Communication, after the
definition from [Charron-Bost et al. 1996]. We state how this notion applies to our definition of
executions, and we define RSC systems of communicating automata. An interesting result is that
the set of RSC executions of a system is regular, we show that by detailing how an automaton
recognising them can be built. We conclude this chapter with a discussion of certain aspects of the
notion of RSC, and a comparison with related notions from the literature.

3.1 RSC executions

We begin this chapter by defining RSC executions in our setting.

Definition 3.1.1 (RSC execution). Let Λ be an alphabet of actions. A well-formed execu-
tion e = a1 · . . . · an over Λ is RSC if all its matching pairs are of the form {j, j + 1} with
j ∈ {1, . . . , n − 1}.

Intuitively, an execution is RSC if it mimics a synchronous execution, where the send action and
reception of the same message happen at the same time. Note that contrary to actual synchronous
executions, here we do not impose that all send actions are matched. We say that an execution e is
causally RSC if there exists e′ ∈ JeK∼ such that e′ is RSC.

Example 3.1.1 – Let er = s!creq · s?sreq · c!sres · c?cres · s!cacks · s?sacks · d!clogc · d?dlogc ·
c!dackd · c?cackd · d!slogs · d?dlogs · s!creq, this execution is RSC. All the receptions happen right
after their corresponding send actions. However, a send actions is not matched: the second s!creq.

Example 3.1.2 – en = 0!pv ·1!qv′ ·1?pv′ ·0?qv is not RSC. Actions 1!qv′ and 1?pv′ happen between
the send action and the reception of v.

Another example, using a different alphabet of actions, is:

eeq = s!creq · s?sreq · c!sres · c?cres · s!cacks · d!clogc · d?dlogc · s?sacks·

c!dackd · d!slogs · c?cackd · s!creq · d?dlogs

where we linked by an arrow the actions belonging to matching pairs separated by other actions.
However, eeq is causally equivalent to eer from Example 3.1.1, so eeq is causally RSC.

27

28 CHAPTER 3 — RSC systems

0p 1 2

0q 1 2

0!v 1?v′

1!v′ 0?v

(a) Non-RSC system Sn

p q

1!v′

0?v

0!v

1?v′

(b) agraph(en)

0!p?qv 1!q?pv′

(c) cgraph (en)

Figure 3.1: Non-RSC system, action and conflict graphs of one of its executions

3.1.1 RSC executions and sequences of communications

In an RSC execution, the actions composing a matching pair happen immediately one after the
other. This means that for an RSC execution e, there exists an ordering k1, . . . , km of com (e) such
that e = cte (ck1 · . . . · ckm), where cte ({ι!pv, ι?qv}) = ι!pv · ι?qv, and cte ({ι!pv}) = ι!pv. For a
word w = c1 · . . . · cn of communications, we write cte (w) for the execution cte (c1) · . . . · cte (cn).

We denote the inverse of cte with etc: for e, etc (e) = w if cte (w) = e. Note that cte is
injective, so cte is not always defined, but it is defined for RSC executions.

Intuitively, for e an RSC execution, etc (e) is a sequence of communications equivalent to e:
e = ι!pv · ι?qv · ι′!pv′, etc (e) = {ι!pv, ι?qv} · {ι′!pv′}. This function is not defined for non-RSC
executions. This is because in a non-RSC execution, there is at least one action that is scheduled
between two actions of the same communication.

If an RSC execution is equivalent to a sequence of communications, the reverse is not true: any
sequence of communications is not necessarily equivalent to an RSC execution. Example 3.1.3
below illustrates this.

Example 3.1.3 – Let w = ι!pv · ι!p?qv, and let e = ι!pv · ι!pv · ι?qv. We have that e = cte (w).
Observe that e is not RSC: the reception of v matches the first send action.

For a sequence of communications w = c1 · . . . · cm over an alphabet ΩP,I,V, the execution
e = cte (w) is RSC if:

• it is well-formed, and

• for all k ∈ {1, . . . , m}, if ck is a matched communication, with ck = ι!p?qv for (p, q) ∈
P2, ι ∈ I and v ∈ V, then for all k′ ∈ {1, . . . , k − 1}, ck′ ̸= ι!rv with r ∈ P.

A well-formed execution corresponding to a sequence of communications is RSC if no message
v is sent on a buffer ι before a matching pair involving this same message on this same buffer.
Note that if another message was unmatched before the matching pair, the execution would not be
well-formed, as an action not in a matching pair are never matched, preventing the matching pair to
happen.

3.1.2 Characterisation

In this section, we show how RSC executions can be graphically characterised. The first observation
we make is that RSC executions have acyclic conflict graphs.

3.2 – 3.1.2 Characterisation 29

Lemma 3.1.1. Let e be a well-formed execution. If e is RSC, then cgraph (e) is acyclic.

Proof.

Let e = a1 · . . . ·an be a well-formed RSC execution. Let com (e) = {c1, . . . , cm} be the multiset
of communications of e, and let cgraph (e) = ({1, . . . , m} , →e, κe). For j ∈ {1, . . . , m}, let
maxcom(j) = max

(
ϑ−1(j)

)
and mincom(j) = min

(
ϑ−1(j)

)
. In an RSC execution, k →e k′

induces maxcom(k) < mincom(k′), because ck′ happens after ck in the execution, and the two
actions of ck (if there are two) are not separated by any action.

By contradiction, assume cgraph (e) admits a cycle k1 →e k2 →e · · · →e kn →e k1. This
implies maxcom(k1) < mincom(k2) ≤ maxcom(k2) < · · · < mincom(kn) ≤ maxcom(kn) <
mincom(k1) ≤ maxcom(k1). This would imply maxcom(k1) < maxcom(k1), which is a contra-
diction. □

Intuitively, this is because actions of a communication in a cycle in the conflict graph of an
execution have to happen both before and after something else. As the send action has to happen
before the reception, this means that there are actions in the execution that have to happen after the
send action, and before the reception.

The second observation is that executions with acyclic conflict graphs are causally equivalent
to an RSC execution.

Lemma 3.1.2. Let e be a well-formed execution. If cgraph (e) is acyclic, then there exists an RSC
execution e′ such that e ∼ e′.

Proof.

Let e be a well-formed execution, with com (e) = {c1, . . . , cm}, and assume
cgraph (e) = ({1, . . . , m} , →e, κe) is acyclic. Let e′ = cte (ck1 · . . . · ckm) such that
k1, . . . , km is a topological sort of cgraph (e). By Definition 3.1.1, e′ is RSC: it is ob-
tained by concatenation of communications, so actions of matching pairs happen right one
after the other. Finally, by Lemma 2.4.1, because by construction, cgraph (e′) is isomorphic to
cgraph (e), e ∼ e′. □

An execution whose conflict graph is acyclic can be reordered such that the actions forming a
communication are paired, hence it allows an RSC ordering of its actions.

From the previous observations, we can characterise the executions that are causally equivalent
to RSC executions: an execution is causally equivalent to an RSC execution if and only if its
conflict graph is acyclic. As a corollary, we have that executions that are not RSC are characterised
by their cyclic conflict graph.

Example 3.1.4 – Consider execution eeq of Example 3.1.2. It is not RSC, but it is causally equivalent
to execution er from Example 3.1.1. Their conflict graph can be seen in Figure 3.2b. As expected,
because eeq is causally equivalent to an RSC execution, its conflict graph is acyclic.

Example 3.1.5 – Consider execution en from Example 3.1.2. As stated in this example, it is not
RSC. Its action and conflict graphs can be seen in Figure 3.1b and Figure 3.1c respectively. We can
see that there is a cycle in the conflict graph, preventing this execution to be reordered to be RSC.

30 CHAPTER 3 — RSC systems

Server Client Database

s!creqs?sreq

c!sres c?cres

s?sacks s!cacks

d!clogc d?dlogc

c!dackdc?cackd

d!slogs d?dlogs

s!creq

(a) The action graph agraph(eeq)

s!c?sreq

c!s?cres

s!c?sacksd!c?dlogc

d!s?dlogs

s!d?sackd

s!creq

(b) The conflict graph cgraph (eeq)

Figure 3.2: Causal dependencies of an execution of Client/Server/Database protocol

3.2 RSC Systems

We begin with the formal definition of an RSC system.

Definition 3.2.1 (RSC system). A system S is RSC if for all execution e ∈ executions (S), there
exists an RSC execution e′ such that e ∼ e′.

We do not impose all the executions of an RSC system to be RSC, this allows some slack
in the synchronisation. A sent message could be received arbitrarily late, but it is ensured that
from a causal point of view, nothing prevents the send and receive actions to happen virtually
simultaneously. The system from Figure 2.1 is an example of RSC system, but being as simple as it
is, it allows few non-RSC scheduling of its executions. To make for a more interesting example, we
extended the protocol by giving to the client the possibility to log information in the database.

Example 3.2.1 – The system in Figure 3.3 is RSC. For instance, it is capable of producing execution
eeq from Example 3.1.2 which is not RSC. However, execution eeq is causally equivalent to er from
Example 3.1.1 , which is RSC. Notice that, as expected, eeq and er have the same action graph,
given in Figure 3.2a.

Example 3.2.2 – The system in Figure 3.1a is not RSC. It admits execution en from Example 3.1.2,
which is not causally equivalent to an RSC execution. In facts, as it can be observed in the action
graph of en in Figure 3.1b, any execution causally equivalent to en will begin with the two send
actions. One of the receptions will necessarily be delayed from its matching send action.

3.3 Automaton Arsc

An RSC execution can be written as a sequence of communications. Either the communication is
a matched one and the reception happens right after the send action, or the communication is an

3.3 – Automaton Arsc 31

Server

0

1

2

3

Client

3

0

2 1

Database

0 1
s?creq

c!sres
s?cacks

d!slogs

s!creq

c?sres

s!cacks

d!clogcc?dackd

d?slogs

d?clogc

c!dackd

Figure 3.3: Client/Server/Database protocol

unmatched send. Therefore, the language of all RSC executions over a set of participant P, a set of
buffers I and a set of messages V is a subset of (ΩP,I,V)∗.

We will now show that the set of RSC executions of a system is regular. For that, we will
define a way to build, for any system of communicating automata Arsc, a finite state automaton
recognising RSC executions feasible in this system.

Definition 3.3.1 (Arsc). Let S = (Ap)p∈P be a system of communicating automata, with
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
.

Let Arsc (S) =
(
Qrsc, δrsc, q0

rsc, Frsc
)

be the deterministic finite state automaton over ΩS

with:

(1) Qrsc = LS × 2IF
S × 2(IB

S×VS) its set of control states;

(2) q0
rsc = (l0,∅,∅) its initial state;

(3) Frsc = Qrsc its set of accepting states (all states are accepting);

(4) for c ∈ ΩS, (l, f, b) ∈ Qrsc, (l′, f′, b′) ∈ Qrsc, ((l, f, b) , c, (l′, f′, b′)) ∈ δrsc if:

• (l, b) cte(c)===⇒
S

(l′, b′) for some b, b′, such that:

− for all ι ∈ IF
S, bι ̸= ε if and only if ι ∈ f, and b′

ι ̸= ε if and only if ι ∈ f′ and
− for all ι ∈ IB

S, v ∈ bι if and only if (ι, v) ∈ b and v ∈ b′
ι if and only if (ι, v) ∈ b′;

and

• if c = ι!?v, ι /∈ f and (ι, v) /∈ b.

A control state of Arsc encodes a control state of the system, the set of blocked FIFO buffers,
and the set of blocked messages on a given bag buffers. Remembering the blocked FIFO buffers
allows us to prevent occurrences of matched communications after an unmatched send in an
execution: for a word w = ι!v · ι!?v, the corresponding execution is e = ι!v · ι!v · ι?v where the
reception matches the first send action. As the second send action happens in between the send
action and reception of this matching pair, execution e is not RSC. The second condition of point
(4) in Definition 3.3.1 ensures that w is not recognised by Arsc: after reading the first ι!v, Arsc

reaches a state where buffer ι is marked as blocked, from which ι!?v cannot be read. The reasoning
is the same for the pairs bag buffer/message, Arsc prevents a matched communication of message v

32 CHAPTER 3 — RSC systems

p 0

q 0

r 0 1

0!v1

1!v2

0?v1

1?v2

(a) Representation of system
Srsc

r0;∅ r1;∅

r0; {0}

r0; {1} r1; {1}

r1; {0}

r0; {0, 1} r1; {0, 1}

0!?v1

0!v1

1!v2

1!?v2

1!v2

0!v1

1!v2

0!?v1

0!v1 0!v1

1!?v2

1!v2

1!v2 1!v2

0!v1

1!v2

0!v1

1!v2

0!v10!v1

(b) Representation of Arsc (S)

Figure 3.4: Representation of an RSC system and its automaton Arsc

in a bag buffer ι if an unmatched send of this message happened previously in ι. This is to ensure
that the reception of a matched communication matches the send action it is paired with, and not an
earlier one, according to Definition 2.3.3.

Example 3.3.1 – Let Srsc be a system of three communicating automata. Two of them send
messages v1 and v2 respectively, to different FIFO buffers, and the third one alternates between
receptions of v1 and v2. It is depicted in Figure 3.4a, and Figure 3.4b is the visual representation of
Arsc (Srsc). As the communicating automata of participants p and q have only one control state,
representing the state of r is enough to encode the global control state of the system. Similarly, as
no buffer is a bag, there is no need for remembering the blocked pairs of messages in bag buffers.
We can visually confirm that from the moment an unmatched send action happens in an execution,
no further matched communication (hence reception) is possible.

The next example illustrates the fact that systems that are not RSC can have RSC executions.
Automaton Arsc can be built for any system, and may accept some executions for non-RSC systems.
However, the causal closure of the language of Arsc will not be the language of all executions of a
non-RSC system.

Example 3.3.2 – Let Sn be the system of communicating automata depicted in Figure 3.1a.
Figure 3.5 represents Arsc (Sn). Even though Sn is not RSC, it admits some RSC executions. For
instance, using the upmost transition available at each time, we see that the word w = 0!v · 1!?v′ is
recognised by Arsc (Sn), meaning that e = 0!v · 1!v′ · 1?v′ is an RSC execution feasible in Sn.

3.3 – Automaton Arsc 33

0, 0;∅

0, 1; {1}

1, 0; {0}

1, 1; {0, 1}

2, 1; {0}

1, 2; {1}

0!v

1!v′

1!?v′

1!v′

0!?v

0!v

Figure 3.5: Representation of Arsc for a non-RSC system

However, for en = 0!pv · 1!qv′ · 1?pv′ · 0?qv, no execution e′ ∈ JenK∼ is recognised by Arsc (Sn).
This is because en is not causally equivalent to any RSC execution.

We defined Arsc so that it recognises all sequences of communications that the transitions of a
system allow. The only constraint we added was to prevent a matched communication to happen
after an unmatched send in a FIFO buffer, of after an unmatched send implying the same message
in a bag buffer. Such situations never occur in a feasible RSC execution, so this constraint does not
prevent any RSC execution of the studied system to be recognised. We state formally that Arsc is
complete: it recognises all RSC executions of a system.

Lemma 3.3.1. Let S be a system of communicating automata, and let e ∈ executions (S). If e is
RSC, then etc (e) ∈ Arsc (S).

Proof.

Let S = (Ap)p∈P be a system of communicating automata, such that its product is
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. Let Arsc (S) =

(
Qrsc, δrsc, q0

rsc, Frsc
)

be the fi-
nite state automaton as in Definition 3.3.1. Let e ∈ executions (S) be an RSC execution, and
w = etc (e): we know w is defined because e is RSC. We will show that w ∈ L (Arsc (S)).

Let w = c1 · . . . · cm, we have:(
l0, b∅

) cte(c1)====⇒
S

(l1, b1) cte(c2)====⇒
S

· · · cte(cm)=====⇒
S

(lm, bm).

For all j ∈ {1, . . . , m}, let fj =
{

ι | ι ∈ IF
S, bι ̸= ε, bι the ιth component of bj

}
, and let

bj =
{

(ι, v) | ι ∈ IB
S, v ∈ VS, v ∈ bι, bι the ιth component of bj

}
. Because e is RSC, for all

j ∈ {1, . . . , m}, if cj = ι!?v then the two actions of cte (cj) form a matching pair in e,
so we know that bι the ιth component of bj−1 is empty if it is FIFO, and does not contain
message v if it is bag (otherwise, there would be one more send than receive action on this
buffer, contradicting the condition for actions to be in the same matching pair given in Defin-
ition 2.3.3). Therefore, we can associate to each configuration (lj , bj), for j ∈ {1, . . . , m}, a
control state (lj , fj , bj) ∈ Qrsc, and the conditions of (4) in Definition 3.3.1 are satisfied such
that ((lj−1, fj−1, bj−1), cj , (lj , fj , bj)) ∈ δrsc, proving our point. □

In the next lemma, we state that all executions accepted by Arsc (S) are indeed RSC executions
feasible in S.

34 CHAPTER 3 — RSC systems

Lemma 3.3.2. Let S = (Ap)p∈P be a system of communicating automata. For all
w ∈ L (Arsc (S)), cte (w) ∈ executions (S).

Proof.

Let S = (Ap)p∈P be a system of communicating automata, such that its product is
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. Let Arsc (S) =

(
Qrsc, δrsc, q0

rsc, Frsc
)

be the fi-
nite state automaton as in Definition 3.3.1. We proceed by induction on the length of w.

Let w = c1 · . . . · cn in L (Arsc (S)), and {(l0, f0, b0), . . . , (ln, fn, b,)} ⊆ Qrsc the control
states of Arsc (S) such that for all j ∈ {1, . . . , n}, ((lj−1, fj−1, bj−1), cj , (lj , fj , bj)) ∈ δrsc.
Let e = cte (w), and assume by induction that e is RSC and that there exists b such that(
l0, b∅) e=⇒

S
(ln, b) with for all ι ∈ IF

S, bι = ε if and only if ι /∈ fn, and for all ι ∈ IB
S, for all

v ∈ VS, v ∈ bι if and only if (ι, v) ∈ bn.

We will show that if there exists c ∈ ΩP,I,V such that ((ln, fn, bn), c, (ln+1, fn+1, bn+1)), there

exists b′ such that
(
l0, b∅) e·cte(c)====⇒

S
(ln+1, b′), with for all ι ∈ IF

S, b′
ι = ε if and only if ι /∈ fn+1,

and for all ι ∈ IB
S, v ∈ b′

ι if and only if (ι, v) ∈ bn+1.

We know by Definition 3.3.1 that there exists bpre, bpost such that (ln, bpre) cte(c)===⇒
S

(ln+1, bpost).

• If c = ι!v, then we know from Definition 2.2.8 that v ∈ bpost
ι , so bpost

ι ̸= ε. By the same
definition, since there are no restrictions on the content of the buffers before sending a
message, we know that (ln, b) ι!v−→

S
(ln+1, b′) for some b′, and if ι ∈ IF

S, ι ∈ fn+1 and
b′

ι ̸= ε, else (ι, v) ∈ bn+1, with v ∈ b′
ι. Because e was RSC, e · ι!v is still RSC: there are

no additional matching pairs, and we added the action at the end of the execution so no
matching pair is split.

• If c = ι!?v, we know that ι /∈ fn and that (ι, v) /∈ bn, so either

− ι ∈ IF
S and bι = ε, or

− ι ∈ IB
S and v /∈ bι.

We can deduce from Definition 2.2.8 that if bpre
ι = bι, (l, bpre) cte(ι!?v)=====⇒

S
(l′, bpost) implies

(l, b) cte(ι!?v)=====⇒
S

(l′, b′) for some b′. Moreover, as either ι ∈ IF
S and bι = ε or ι ∈ IB

S and
v /∈ bι, the reception ι?v matches ι!v, so e · ι!v · ι?v is RSC.

In both cases above, as other buffers than ι are unchanged by a transition, for all j ∈ IS \ {ι},
bj = ε if and only if b′

j = ε, so j ∈ fn+1 if and only if b′
j = ε. We showed that

e · cte (c) ∈ executions (S), and that for ι ∈ IS, b′
ι = ε if and only if ι ∈ fn+1. Because a

trivial base case is both a word w ∈ L (Arsc (S)) and an execution e ∈ executions (S) of length
0, this shows the claim. □

Because we have shown that the way Arsc is defined for a system S, it recognises all and
only the RSC executions of S, we can show the following theorem. It states that the set of RSC
executions of a system is regular.

Theorem 3.3.3. Let S = (Ap)p∈P be a system of communicating automata, such that
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. The language of RSC executions feasible in S

3.4 – Discussion 35

p q1!v 1?v

Figure 3.6: RSC system with non regular execution set

is regular, and a deterministic finite state automaton recognising it is computable in time
O

(
|LS| · 2|IF

S|+|IB
S×VS| · |VS| · |P|2 · |IS|

)
.

Proof.

Let S = (Ap)p∈P be a system of communicating automata such that its product is product (S) =(
LS,VS, IS, ActS, δS, l0S

)
. By Lemma 3.3.2, we know that cte (L (Arsc (S))) is the language

of RSC executions of S.

The complexity results comes from the fact that each transition can be built in constant
time, so we show that the result we stated is an upper bound to the number of transitions
in Arsc (S). The number of states of Arsc (S) is |Qrsc| = |LS| · 2|IF

S| · 2|IB
S×VS|. From

any state (l, f, b), a bound to the number of outgoing transitions is the number of commu-
nications, that is |VS| · |P| · |IS| unmatched communications and |VS| · |P|2 · |IS| matched
ones, multiplied by the number of destination states: in the worst case, |Qrsc|. Therefore,
|δrsc| ≤

(
|Qrsc|2 · 2 |VS| ·

(
|P|2 + |P|

)
· 2 |IS|

)
. □

For a system S, we will write executionsrsc (S) for cte (L (Arsc (S))), that is to say the set of
all RSC executions feasible in the system. Because in RSC systems, all executions are causally
equivalent to an RSC execution, for such a system S the causal closure of executionsrsc (S) is
equal to executions (S). It is important to note that the set of all executions of an RSC system
is not necessarily regular. For instance, if we take the system S as depicted in Figure 3.6, the
following is not regular:

executions (S) ∩ ((1!pv)∗ · (1?qv)∗) = {(1!pv)n · (1?qv)m |n ≥ m} .

3.4 Discussion

We begin with a comparison between our definition of the class of RSC systems and other notions
from the literature. We focus on the similarities and differences between these notions and RSC
systems, leaving the discussion on decidability results for the next chapter.

As far as we know, the definition of the class of RSC systems of communicating automata was
introduced in [Di Giusto, Germerie Guizouarn and É. Lozes 2021]∗, as well as the proof of the
regularity of the set of RSC executions of a system. However, RSC computations were introduced
in [Charron-Bost et al. 1996], which is the first paper to explore the notion of realisability with
synchronous communication. A ‘computation’ is the equivalent of our action graphs, that is a
partial order on actions of an execution. RSC computations are defined as the partial orders
admitting a linear extension where all matching actions are not separated by another action. In this
thesis, we defined RSC executions, that is total orders on actions, as the ones satisfying the same

∗In this work this notion was named ‘greedy’, it was renamed RSC in [Di Giusto, Germerie Guizouarn and E. Lozes
2023])

36 CHAPTER 3 — RSC systems

p q r

v1

v2

v3

Figure 3.7: MSC with straight lines that is not RSC with a mailbox architecture

condition: matching actions must be paired together. An execution corresponds to one linearisation
of a computation, so if RSC computations are more accurately comparable with causally RSC
executions, the executions that are causally equivalent to an RSC execution.

Charron-Bost et al. proposed two alternative characterisations of RSC computations. The first
one is called the ‘crown criterion’, and it says that a computation is RSC if and only if it has no
crown. A crown is defined on computations, so on a partial order of the actions of an execution. We
transcript this definition to our setting: an execution e = a1 · . . . · an contains a crown if there exists
{s1, r1, . . . , sm, rm} ⊆ {1, . . . , n} such that for all i ∈ {1, . . . , m}, {si, ri} is a matching pair of
e, and s1 ≺e r2, s2 ≺e r3, . . . , sm ≺e r1. Because they consider a peer-to-peer architecture, for
si ≺e ri+1 to hold, it means that asi and ari+1 are done by the same participant. A crown imposes
that there are two matching pairs in the computation such that both the receptions require both send
actions to be executed before happening. The way Charron-Bost et al. prove that the absence of
crowns characterises causally RSC executions is interesting, as it relies on a construct very similar
to conflict graphs. They show that a crown is present in a computation if and only if there is a cycle
in this graph. This characterisation is the same as the one we give from Section 3.1.2.

The last RSC characterisation from [Charron-Bost et al. 1996] is a graphical one. This work
defines ‘space time diagrams’, which are essentially MSCs. They are graphical representations of
the computations, which are themselves partial orders of actions. If we express this characterisation
in the terms we defined in the present work, it says that an execution is RSC if its MSC can be drawn
without crossing arrows. Note that this condition applies to peer-to-peer architecture only. With
a mailbox architecture, it is not a sufficient condition (although it is a necessary one). Figure 3.7
gives an example of such an MSC with straight lines which does not have an RSC linearisation
with mailbox architecture. Indeed, the message v1 is sent in the same buffer as message v3, so in
order for the latter to be received, it has to be sent before v1, meaning v2 cannot be received right
after it was sent.

Half-duplex systems [Cécé and Finkel 2005] are a class of binary systems of communicating
automata. If we say that binary RSC systems are the binary systems that are RSC, half-duplex and
binary RSC are really close notions. We will discuss their relationship in more detail in Chapter 5.

Another class of communicating automata which is close to RSC is eager systems. In [Heußner,
Leroux et al. 2012], eager ‘runs’ (executions in our setting) are defined in the same way as our RSC
executions. The authors defined a class of eager systems, but their characterisation differs from
ours: indeed, for a system to be eager, all its reachable configurations must be reachable through an
eager run (for clarity, we will refer to eager runs as RSC executions from now on as they are the
same, and we keep the term ‘eager’ to refer to systems). The key difference between eager and RSC

3.4 – Discussion 37

p

0

1

2

4

q

0 1 2

1!v1

2?v2

2?v2

1!v1

2!v2 1?v1

Figure 3.8: Example of eager system that is not RSC

systems is that there might be executions that are not causally equivalent to an RSC execution in an
eager system. An RSC system is clearly eager: as all its executions are equivalent to an RSC one,
every reachable configuration is reachable through an RSC execution. However, an eager system is
not necessarily RSC, because two executions that are not causally equivalent may lead to the same
configuration. Example 3.4.1 below illustrates this difference.

Example 3.4.1 – Let S be the system of communicating automata depicted in Figure 3.8. Observe
that any of its reachable configurations can be reached through an RSC execution. Consider the
following execution: e = 1!pv1 · 2!qv2 · 1?qv1 · 2?pv2 . It is not causally RSC, implying that S is
not RSC. This system is eager, because the configuration γ such that γ0

e=⇒
S

γ is reachable through
execution e′ = 2!qv2 · 2?pv2 · 1!pv1 · 1?qv1 , which is RSC. However, e ̸∼ e′, which is easy to see
as participant p does not execute the same transitions in these executions.

Some classes are not defined as closely to RSC as the one we just discussed, but come from
the same idea of characterising behaviours that are almost synchronous. One of them is the
synchronisable systems from [Basu, Bultan and Ouederni 2012b]. A system is synchronisable if its
synchronous behaviour is the same as its asynchronous behaviour. In this paper, the equivalence
between behaviours of the systems is defined as the equivalence between traces of send actions.
This notion of synchronisability was later extended to stability [Akroun and Salaün 2018; Akroun,
Salaün and Ye 2016]. A system is k stable if its behaviour with its buffers bounded to k is the same
as its behaviour with any bound k′ > k.

Toward the same goal of characterising the synchronisability of systems, another class close to
RSC is the k-synchronisability [Bouajjani, Enea et al. 2018a]. A system is k-synchronisable if its
executions can be organised as sequences of k-exchanges. A k-exchange is a sequence of actions
in which at most k messages are sent, and then some receptions may happen for these messages,
without overlap between the sending and receiving phases. RSC systems are 1-synchronisable, but
the converse is not true [Di Giusto, Laversa et al. 2020, Example 1.2]. However a refinement of
the notion of k-synchronisability, named strong k-synchronisability [Bollig, Giusto et al. 2021],
excludes this example. The class of strong 1-synchronisable systems is equivalent to the class of
RSC systems.

Several notions of buffer boundedness were studied. In [Lohrey and Muscholl 2004], bounded-
ness was studied for MSCs and languages of MSCs, and in [Genest, Kuske et al. 2007] these results
were applied to communicating automata. Boundedness may be local, that is applied to each buffer
individually, or global, that is considering the total amount of messages in all the buffers combined.
An execution is k-bounded if at any step (that is, in any configuration reached by a prefix of the
execution), there are at most k messages in either any buffer (local boundedness), or in all the
buffers (global boundedness). For systems of communicating automata, or languages of executions,
the two main notions of boundedness are universal and existential boundedness. A system is
universally k-bounded if all its executions are k-bounded. A system is existentially k-bounded if

38 CHAPTER 3 — RSC systems

all its executions can be rearranged to be k-bounded. There are two differences between RSC and
existentially 1-bounded systems:

1. in an RSC execution, we allow buffers to grow indefinitely, provided that no message is
received from them.

2. in a 1-bounded execution, a single message may have to wait in a buffer before being received.
The system from Example 3.4.1 is not RSC but is existentially 1-bounded.

Note that an RSC system without unmatched messages is existentially 1-bounded.
Bounded context-switching reachability was introduced in [Torre et al. 2008]. Intuitively, a

context is a sequence during which a single participant is active, and it can only receive messages
from one buffer (but can send messages to any buffer). A bounded context-switching execution
is one that is a sequence of a bounded amount of contexts. If the idea of bounded interactions
makes this class similar to the ones we discussed here, the intuition of bounded-context switching
reachability is the opposite of the one of RSC reachability. For an execution to be RSC, the
matching send and reception must be grouped together, while to minimise the number of context
switches in an execution, all the actions of a participant should be grouped together if possible.

An interesting aspect of the characterisation of RSC executions is how it relies on matching
pairs. This makes the notion versatile: as long as what actions form a matching pair in an execution
is well defined in the semantics used, the RSC notion is defined as well. This is what allowed us to
adapt the results we had for FIFO systems to systems with bag buffers.

With fully-bag matching pairs, the definition of an RSC system is less clear. In fact, let us
consider the following execution: e = ι!pv · ι!pv · ι?pv (the only purpose of participant p receiving
messages in the same buffer in this example is to shorten the example). If we follow the fully-bag
definition of matching pairs and causal equivalence, the reception could match either send actions.
Execution e is RSC only if the second send action is matched by the reception. So there is one
action graph of e for which this execution is not RSC, and one for which it is, meaning that if the
system is capable of producing both interpretations of the executions, it is not RSC according to
Definition 3.2.1. Intuitively, a system is RSC with fully-bag matching pairs if all the conflict graphs
of all the distributions of matching pairs of all its executions are acyclic. We leave membership of
RSC with fully-bag buffers as an open problem.

CHAPTER 4
Model-checking

In general, model-checking consists in verifying whether a given model satisfies some properties. In
this chapter, we will tackle two model-checking problems for systems of communicating automata.
The first one is the membership problem for the class of RSC systems, and the second one is the
reachability problem of a regular set of configurations through an RSC execution.

4.1 Membership

We call membership problem the decision problem consisting in checking whether a system is RSC
or not. We say that an RSC system is member of the class of RSC systems. We will rely on a
technique originally used in [Bouajjani, Enea et al. 2018a] to show that this problem is decidable.
The idea is to characterise a regular subset of non-RSC executions, such that a system admits at
least one of them if it is not RSC, and none if it is. We call these executions borderline violations.

4.1.1 Borderline violations

A borderline violation is an execution that is RSC until its last action, which prevents it from being
causally equivalent to any RSC execution.

Definition 4.1.1 (Borderline violation). Let ΛP,I,V be an alphabet of communications. A borderline
violation is an execution e = e′ ·ι?pv over ΛP,I,V such that e′ is RSC, and e is not causally equivalent
to an RSC execution.

In a borderline violation, the last reception ι?v matches a send action ι!v in e′, with ι!v not being
the last action of e′ (because otherwise the last reception would follow immediately its matching
send action, and as e′ is RSC, e would be RSC as well). We say that such an execution is minimally
non-RSC because removing its last action yields an RSC execution.

Example 4.1.1 – Execution en = 0!pv · 1!qv′ · 1?pv′ · 0?qv, already studied in Example 3.1.2, is a
borderline violation. Indeed, 0!pv · 1!qv′ · 1?pv′ is RSC: the only matching pair is exchanging v′,
and the reception of this message immediately follows its send action. The final reception makes
en not causally equivalent to an RSC execution.

Note that, by Lemma 3.1.2, the conflict graph of a borderline violation is cyclic. Moreover, we
know that removing the last reception of a borderline violation makes it RSC, breaking all cycles in
the conflict graph. So the communication containing the last reception is part of any cycle of the
conflict graph of a borderline violation.

The claim of the following lemma is that if a system is not RSC, there is at least one borderline
violation in its executions.

39

40 CHAPTER 4 — Model-checking

Lemma 4.1.1. A system S is RSC if and only if executions (S) contains no borderline violation.

Proof.

Let S be a system such that product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
. Clearly, if

executions (S) contains a borderline violation, S is not RSC. Conversely, assume that S is not
RSC, and let us show that executions (S) contains a borderline violation.

Let e ∈ executions (S) be an execution that is not causally equivalent to any RSC execution
and of minimal length among all such executions. Then e = e1 · a with e1 causally equivalent
to an RSC execution, otherwise e1 would contradict the minimality of the length of e. Let e′

1
be an RSC execution causally equivalent to e1. Then e′ = e′

1 · a ∈ executions (S), because by
Lemma 2.3.1, e1 and e′

1 lead to the same configuration. Moreover,we know that a is a reception,
otherwise e′ is RSC, contradicting the fact that e is not causally equivalent to an RSC execution.
Therefore, e′ is a borderline violation. □

We say that the borderline violations of a system are all the borderline violations feasible in the
system. We will show that this set is regular for any system of communicating automata. To do so,
we will rely on the regularity of the set of RSC execution of a system, and on a relaxation of the
definition of borderline violations: candidate borderline violations.

Definition 4.1.2 (Candidate borderline violation). Let ΩP,I,V be an alphabet of communications,
and ΛP,I,V an alphabet of actions. An execution e over ΛP,I,V is a candidate borderline violation if
there exists w ∈ (ΩP,I,V)∗ , c ∈ ΩP,I,V, p ∈ P, ι ∈ I, v ∈ V such that

(1) e = cte (w) · cte (c) · ι?pv,

(2) ι!pv ∈ cte (w), and

(3) if cte (w · c) is RSC, then e is a borderline violation.

Intuitively, a candidate borderline violation is an execution that is built like a borderline
violation, but might not be one. It is an execution obtained by concatenation of communications,
ending with a single reception, whose buffer and message match the ones of at least one earlier
unmatched communication. A candidate borderline violation might not be a borderline violation
in the case where the concatenation of communications is not RSC: this happens when these
communications do not correspond to the matching pairs of the execution (see Example 3.1.3).
Example 4.1.2 below illustrates this situation.

Example 4.1.2 – Let e = cte (ι!pv · ι!p?qv) ·ι?qv, e is a candidate borderline violation: let w = ι!pv,
and c = ι!p?qv, then e = cte (w) · cte (c) · ι?qv; cte (w) · cte (c) is not RSC, so the implication in
condition (3) of Definition 4.1.2 trivially holds. However, e is not a borderline violation: its prefix
cte (w · c) is not RSC, so e does not satisfy the first condition in Definition 4.1.1. In fact, observe
that e is actually causally equivalent to an RSC execution: e′ = ι!pv · ι?qv · ι!pv · ι?qv.

Condition (3) is there to ensure that the only situation where a candidate borderline violation is
not actually a borderline violation is when its matching pairs are not formed by actions belonging
to the same communication in the sequence it was obtained from. An example where this condition
is not met is given below.

4.1 – 4.1.2 Automaton Abv 41

Example 4.1.3 – Let e = ι!pv1 · ι′!qv2 · ι′?rv2 · ι?rv1 be an execution satisfying items (1) and (2)
of Definition 4.1.2. Because of the condition in item (3) of Definition 4.1.2, this execution is not
a candidate borderline violation: its prefix ι!pv1 · ι′!qv2 · ι′?rv2 is RSC, but e is not a borderline
violation. Indeed, e is causally equivalent to e′ = ι′!qv2 · ι′?rv2 · ι!pv1 · ι?rv1 , which is RSC.

4.1.2 Automaton Abv

We define a non deterministic finite state automaton Abv that will be able to recognise some
candidate borderline violations, among which all the actual borderline violations over an alphabet
of actions. It does so by recognising executions formed by concatenation of communications,
among which it selects non-deterministically an unmatched send. The words it accepts end with a
reception ι?v matching the selected send action.

If the communications of a recognised word w are the matching pairs of cte (w), there is a cycle
in cgraph (cte (w)). This is because Abv ensures there is a sequence of conflicting communications
from the selected send action and the final reception. As illustrated in Figure 4.1, the communication
formed by the final reception and its matching send action close a cycle in cgraph (e). Notice
however that if the matching pairs of e are not formed by actions of the same communication in the
recognised word, there might not be a cycle in the conflict graph.

ι!v ι?vι!v c1 ι?v

Figure 4.1: Illustration of a cycle in a conflict graph ensured by Abv.

In what follows, by a slight abuse of notation, for a word w = w′ · ι?pv over an alphabet
Λ ∪ RP,I,V, we write cte (w) for cte (w′) · ι?pv.

Definition 4.1.3 (Abv). Let S = (Ap)p∈P be a system such that its product is
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
, Abv (S) =

(
Qbv, δbv, (∅,∅) ,

{
qf

bv

})
is the non-

deterministic finite state automaton over ΩS ∪ RP,I,V such that

Qbv =
(
2IF × 2IB×V

)
∪ (IS × VS × P) ∪ (IS × VS × ΩS) ∪

{
qf

bv

}
,

and for all (c, c′) ∈ (ΩS)2, for all ι ∈ IS, v ∈ VS:

(1) ((f, b), ι!?v, (f, b)) ∈ δbv if ι!?v ∈ ΩS

(2) ((f, b), ι!v, (f′, b′)) ∈ δbv if ι!v ∈ ΩS, and either

• ι ∈ IF
S and f′ = f ∪ {ι}, b = b′; or

• ι ∈ IB
S and b′ = b ∪ {(ι, v)}, and f = f′

(3) ((f, b), ι!pv, (ι, v, p)) ∈ δbv if ι /∈ f and (ι, v) /∈ b

(4) ((ι, v, p), c, (ι, v, p)) ∈ δbv

(5) ((ι, v, p), c, (ι, v, c)) ∈ δbv if either

• p ∈ process (c), or

42 CHAPTER 4 — Model-checking

• buffer (c) = ι and either buffer (c) ∈ IF
S or message (c) = v

(6) ((ι, v, c), c′, (ι, v, c)) ∈ δbv

(7) ((ι, v, c), c′, (ι, v, c′)) ∈ δbv if either

• process (c′) ∩ process (c) ̸= ∅, or
• buffer (c) = buffer (c′) and either buffer (c) ∈ IF

S or message (c) = message (c′)

(8)
(
(ι, v, c), ι?pv, qf

bv

)
∈ δbv if process (c) = p.

The states of this automaton can be divided in three stages. The first one gathers control states
of the form (f, b) where f is a set of blocked FIFO buffers, and b is a set of blocked combinations
of buffer and messages. Within this stage, any sequence of communication can be recognised, but
we remember the FIFO buffers in which an unmatched send occurred, and the messages and bag
buffers of unmatched communications. This is why transitions defined in (1) prevent looping on
unmatched send actions in a buffer, unless the buffer is already marked as blocked. Transitions
from (2) allow to recognise an unmatched send from a first stage state, by marking the buffer as
blocked if it is FIFO, or the pair buffer/message if the buffer is a bag.

Transitions defined in (3) go from the first to the second stage, selecting the send action ι!pv to
be matched by the final reception. We make sure that the selected action happens in a buffer that
was not blocked yet, otherwise the final reception would not match this send action.

States from the second stage are of the form (ι, v, p) where ι, v and p are respectively the buffer
identifier, the message, and the actor of the send action that was non-deterministically selected to be
matched by the final reception. From each state of the second stage, we can read any communication
through transitions from (4). This time, unmatched send actions are included in the loop.

A state (ι, v, c) from the third stage keeps the information about the selected send action,
except from the actor which is replaced by the last communication taking part in the cycle we are
building in the conflict graph. To get to this stage, a communication that is causally dependant
on the selected unmatched send must be read. Therefore, a transition from (5) going from the
second to the third stage is possible only if it is labelled by a communication c that either has
p as one of its actors, or acts on buffer ι, with either ι being a FIFO buffer, or the message of c
is the same as the selected one. These conditions ensure that ι!pv and cte (c) do not commute.
There is always a send action in a communication, and remember that actions of the same type
on the same FIFO buffer do not commute, and that actions implying the same message on the
same bag buffer do not commute either. The communication c is remembered in the control state,
allowing transitions from (7) to recognise a new step in the potential cycle in the conflict graph.
Such a transition recognises a communication that is conflicting with the one that was previously
remembered. This ensures that for any reachable third stage state (ι, v, c), there is a sequence of
conflicting communications between the chosen send action and c. In this stage again, from each
state we can read any communication and stay in the same state (transitions defined in (6)), to go
through any communication not implied in the cycle in the conflict graph.

Finally, from the third stage, it is possible to read a final reception, moving to the only accepting
state (transitions defined in (8)). The transitions to this accepting state must be labelled with a
reception of message v in buffer ι corresponding to the send action remembered when moving to
the second stage. In addition, this reception must be causally dependent on the communication
remembered in the control state from which it happens. This means that its actor must be one of the
participants involved in the last remembered communication.

4.1 – 4.1.2 Automaton Abv 43

∅,∅

{1} ,∅

{0} ,∅

{0, 1} ,∅

0, v, p

1, v′, q

0, v, 1!q?pv′

0, v, 1!qv′

0, v, 0!p?qv

0, v, 0!pv

1, v′, 1!q?pv′

1, v′, 1!qv′

1, v′, 0!p?qv

1, v′, 0!pv

qf
bv

ΥS

ΥS

1!qv

ΥS

0!pv

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

0!pv

1!qv′

1!qv′

0!pv

1!qv′

0!pv

1!qv′

0!pv

0!pv

1!qv′

1!q?pv′

0!p?qv

0!pv

1!qv′

1!q?pv′

0!p?qv

0!p?qv

1!q?pv′

1!q?pv′

1!qv′

0!pv

1!qv′

0!p?qv

0!pv

0!p?qv

1!q?pv′

0!p?qv

1!q?pv′

1!q?pv′

1!qv′

0!pv

1!qv′

0!p?qv

0!pv

0!p?qv

1!q?pv′

0?qv

0?qv

0?qv

1?pv′

1?pv′

1?pv′

Figure 4.2: Illustration of Abv (Sn), for Sn from Example 3.2.2.

44 CHAPTER 4 — Model-checking

Example 4.1.4 – Let Sn be the non-RSC system presented in Example 3.2.2. Figure 4.2 represents
Abv (Sn). To improve clarity, we gathered the loops reading all possible communications in a
single loop labelled by the alphabet ΩS. The states are vertically partitioned according to the three
stages, from left to right.

Notice that we did not represent all the states described in Definition 4.1.3. We chose to omit
the states that are unreachable from the initial state. For instance, the second stage should include,
in addition to the two states that are present, states like (1, v, p), or (1, v, q), because it is defined
as all the combinations of buffer identifiers, messages, and participants. However, as there are no
actions 1!pv or 1!qv in ActS, there are no transitions going from the first stage to them.

The highlighted path in the automaton represents the transitions used when recognising the
sequence of communications corresponding to execution en = 0!pv · 1!qv′ · 1?pv′ · 0?qv from
Example 4.1.1.

Notice that if, from second to third stage, we chose the transition 0!p?qv instead of
1!q?pv′, we could recognise a word of communications corresponding to the execution
e′ = 0!pv · 0!pv · 0?qv · 0?qv, which is similar to execution e from Example 4.1.2. It is a can-
didate borderline violation but not a borderline violation.

We now show that all confirmed borderline violations of a system are recognised by its
automaton Abv.

Lemma 4.1.2. Let S = (Ap)p∈P be a system with product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
its

product. For all e ∈ executions (S), if e is a borderline violation then there exists w ∈ L (Abv (S))
such that cte (w) = e.

Proof.

Let S be a system such that its product is product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
. Let

e = a1 · . . . · an · ι?qv ∈ executions (S) be a borderline violation of S. We know that
e′ = a1 · . . . · an is RSC, and that there exists i ∈ {1, . . . , n − 1} such that ai = ι!pv and
{i, n + 1} is a matching pair. Because {i, n + 1} is a matching pair, we know that for all
j ∈ {1, . . . , i}, either ι ∈ IF

S and aj ̸= ι!rv′ with r ∈ P and v′ ∈ V, or aj ̸= ι!rv with r ∈ P. Let
w = etc (e′), we will show that w · ι?qv ∈ L (Abv (S)).

Let w = w1 · cs · w2 with cs = {ι!pv} the communication containing ai. As w1 ∈ (ΩS)∗,
((∅,∅), w1, (f, b)) ∈ (δbv)∗. If ι ∈ IF

S, then cs is the first unmatched send on ι, so ι /∈ f.
Otherwise, if ι is a bag buffer, cs is the first unmatched send of v on ι, so (ι, v) /∈ b. Therefore,
((f, b), cs, (ι, v, cs)) ∈ δbv.

Because e is a borderline violation, and because e′ is RSC, there is a cycle in the conflict graph of e
that is broken when removing its last reception. Let cgraph (e) = ({1, . . . , m} , →e, κe), and let
i1, . . . , i′

m, if be a cycle in cgraph (e) with κe(if) = {ι!pv, ι?qv} be the communication matched
by the last reception. There exists c1 · . . . · cm′ ⊑ w2 with for all j ∈ {1, . . . , m′} , κe(ij) = cj .

Because if →e i1, we know that the send action ι!pv do not commute with an action of c1:

• buffer (c1) = ι, and either

− ι ∈ IF
S or

− message (c) = v, or

• p ∈ process (c1),

4.1 – 4.1.2 Automaton Abv 45

so ((ι, v, p), c1, (ι, v, c1)) ∈ δAbv
(transition defined in (5) of Definition 4.1.3).

We have that w2 = w′
0 · c1 · w′

1 · c2 · . . . · cm · w′
m. For all j ∈ {1, . . . , m}, w′

m ∈ (ΩS)∗ so
because of Definition 4.1.3, (6),

(
(i, v, cj), w′

j , (i, v, cj)
)

∈ (δAbv
)∗. For all j ∈ {2, . . . , m}, we

have that cj−1 →e cj so either

• buffer (cj) = buffer (cj−1) and either

− buffer (cj) ∈ IF
S, or

− message (cj) = message (cj−1); or

• process (cj−1) ∩ process (cj),

meaning that, according to Definition 4.1.3, (7), ((ι, v, cj−1), cj , (ι, v, cj)) ∈ δAbv
.

Finally, because cm →e {ι!pv, ι?qv}, again we know that q ∈ process (cm), because the send
action ι!pv happens earlier in the execution, and if the reception ι?qv depended causally on
the reception of cm, it would mean that the last reception would not complete the unmatched
communication cs. By Definition 4.1.3, (8), this ensures that

(
(ι, v, cm), ι?qv, qf

bv

)
. This shows

that w is recognised by Abv (S), proving that the sequences of communications corresponding
to all borderline violations of S are recognised by Abv (S). □

All borderline violations of a system are recognised by Abv. However the language of this
automaton contains more than just borderline violations. Execution e′ from Example 4.1.4 illustrates
this. Example 4.1.5 below is even more striking: the language recognised by Abv might not be
empty even for an RSC system, which, by definition, does not admit any borderline violation.

Example 4.1.5 – Let Srsc be the system from Example 3.3.1, depicted in Figure 3.4b,
page 32 (and recalled in Figure 4.4a, page 49. Figure 4.3 represents Abv (Srsc). We
can see that even though Srsc is RSC, L (Abv (Srsc)) is not empty. Indeed, the execution
e = 1!qv2 · 1!qv2 · 1!qv2 · 1?rv2 · 1?rv2 is recognised by Abv (Srsc), as illustrated with the trans-
itions used to read the communications used to compose it. However it is easy to see that this
execution is causally equivalent to e′ = 1!qv2 ·1?rv2 ·1!qv2 ·1?rv2 ·1!qv2 , which is RSC. Execution
e is therefore not a borderline violation, but it is still a candidate borderline violation. Indeed, the
prefix of e, 1!qv2 · 1!qv2 · 1!qv2 · 1?rv2 was not RSC: the reception in the end of this execution
matched the first send action.

What we know about the words recognised by Abv is that they are all candidate borderline
violations.

Lemma 4.1.3. Let S be a system with product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
its product. If

word w ∈ L (Abv (S)), then cte (w) is a candidate borderline violation.

Proof.

Let S be a system with product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
its product, and let

Abv (S) =
(
Qbv, δbv, (∅,∅) ,

{
qf

bv

})
. Let w ∈ L (Abv (S)), we show that cte (w) is a candid-

ate borderline violation.

We know that w = w′ · ι?qv1 for ι?qv ∈ ActS. Let e = cte (w), and let e′ = cte (w′). We know
that e′ is obtained by concatenation of communications. Because of the division of the states

46 CHAPTER 4 — Model-checking

∅,∅

{1} ,∅

{0} ,∅

{0, 1} ,∅

0, v1, p

1, v2, q

0, v1, 1!q?rv2

0, v1, 1!qv2

0, v1, 0!p?rv1

0, v1, 0!pv1

1, v2, 1!q?rv2

1, v2, 1!qv2

1, v2, 0!p?rv1

1, v2, 0!pv1

qf
bv

ΥS

ΥS

1!qv1

ΥS

0!pv1

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

ΩS

0!pv1

1!qv2

1!qv2

0!pv1

1!qv2

0!pv1

1!qv2

0!pv1

0!pv1

0!p?rv1

1!qv2

1!q?rv2

0!p?rv1

1!q?rv2

0!pv1

1!qv2

0!p?rv1

1!q?rv2

0!p?rv1

1!q?rv2

0!pv1

1!qv2

0!p?rv1

1!q?rv2

0?rv1

0?rv1

1?rv2

1?rv2

Figure 4.3: Abv (Srsc).

4.1 – 4.1.3 Decidability of the membership problem 47

of Abv (S) in three stages, we know by Definition 4.1.3 that to recognise w, a transition from
items (3), (5), and (8) must have been used. This implies that ι!pv ∈ e′, and that there is at least a
communication in w′ between ι!pv and ι?qv. These considerations ensure that e satisfies points
(1) and (2) of Definition 4.1.2.

To show that the last condition of Definition 4.1.2 is satisfied as well, we will assume that
e′ is RSC (if it was not, this condition is trivially satisfied). As e′ is composed by the
concatenation of communications w′, and because it is RSC, com (e′) = letters(w′). Let
cgraph (e) = ({1, . . . , m} , →e, κe), such that for all i ∈ {1, . . . , m}, κi = ci. Let cf be the
communication {ι!pv, ι?qv} containing the last reception. Let w′ = w1 · ι!pv · w2 with ι!pv the
first unmatched communication using buffer ι if ι ∈ IF

S, or the first unmatched communication
implying message v on buffer ι if ι ∈ IB

S.

To recognise the last reception, with a transition (8), the automaton Abv must have reached
one of its third stage states. The reception must be causally dependent on the communication
remembered in this control state. Let cl be this communication, we know that cl →e cf . To reach
a third stage state, with a transition (5), the communication c read by Abv was necessarily causally
dependent on the send action ι!pv, so cf →e c. Finally, to get from the first third stage state
visited to the last before the final reception, each communication recognised by a transition (7)
must be conflicting with the previous one, meaning there is a path cf →e c →e · · · →e cs →e cf

in cgraph (e), so cgraph (e) is cyclic, therefore e is a borderline violation. □

Notice that the previous lemma does not imply that all candidate borderline violations are
recognised by Abv. For instance, execution e = 0!pv1 · 1!q?rv2 · 0!p?rv1 · 0?rv1 is a candidate
borderline violation S from Example 4.1.5 that is not recognised by Abv (Srsc) from Figure 4.3.
This is not an issue because what matters is that all the confirmed borderline violations are
recognised, and that nothing else than candidates borderline violations are recognised.

4.1.3 Decidability of the membership problem

Using automata Abv and Arsc, we show that the set of borderline violations of a system is regular.
The idea is to isolate, among the candidate borderline violations recognised by Abv, the ones that
are confirmed borderline violations. Automaton Arsc can recognise the RSC executions of a system,
so we can use it to identify the candidate borderline violations that have an RSC prefix, therefore
the ones that are confirmed borderline violations.

The idea behind the following theorem is that we can build a finite state automaton recognising
borderline violations of a system by computing the intersection between Abv, and a slight modifica-
tion of Arsc such that it accepts executions ending with any reception, not necessarily following
immediately its send action.

Theorem 4.1.4. Whether a system of communicating automata is RSC is decidable.

Proof.

Let S = (Ap)p∈P be a system of communicating automata, such that its product is
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. We denote with L (Arsc (S)) · RS the set of words

{w · a | w ∈ L (Arsc (S)) , a ∈ RS}. Let L = L (Abv (S)) ∩ (L (Arsc (S)) · RS).

We show that e ∈ executions (S) is a borderline violation if and only if there exists w ∈ L with
cte (w) = e.

48 CHAPTER 4 — Model-checking

Let e ∈ executions (S) a borderline violation, then by Lemma 4.1.2, there exists a word
w ∈ L (Abv (S)) such that cte (w) = e. By Lemma 4.1.3 w is a candidate borderline violation,
and by Definition 4.1.2, there exist ι ∈ IS, v ∈ VS, and q ∈ P such that e = e′ · ι?qv with e′

RSC. Let w = w′ · ι?qv, by Lemma 3.3.1, w′ ∈ L (Arsc (S)), so w ∈ (L (Arsc (S)) · RS) , so
w ∈ L.

Let w ∈ L, and let e = cte (w). Let us prove that e ∈ executions (S) and that it is a bor-
derline violation. We know that w is of the form w′ · ι?qv, and let e′ = cte (w′). Because
w ∈ (L (Arsc (S)) · RS), w′ ∈ L (Arsc (S)), so by Lemma 3.3.2 e′ is RSC. By Lemma 4.1.3,
w is a candidate borderline violation, and by Definition 4.1.2, because cte (w′) is RSC, cte (w)
is a borderline violation. □

Once a set of participants and their communication architecture is set, variations in the size
of the system impact only polynomially the verification time of membership of the class of RSC
systems. However, the number of buffers has an exponential impact on this time. As the number
of global states is exponential with respect to the number of participants, the verification time is
exponential with the number of participants as well.

4.2 Reachability

In general, the reachability problem consists in checking whether some configuration from a given
set is reachable by the system. We will see in this section that this problem is decidable for RSC
systems.

We are interested in the reachability problem to ensure safety of protocols. For a property P ,
we denote with P (S) the set of configurations of S satisfying P . We call the problem consisting
in checking whether a system S is such that RS(S) ∩ P (S) = ∅ the P safety problem. We
address this problem for the properties that are regular. A property is regular if for all S, P (S) is
a regular set.

To tackle this problem, we need a way to represent the sets of configurations as languages. As
we restrict ourself to regular sets of configurations, we use regular expressions to describe them.
Words matching such a regular expression encode a configuration in the set. The encoding consists
in the concatenation of the different elements of a configuration: the global control state, encoded
as a single letter, and the content of each FIFO buffers, separated by a specific symbol. We do not
consider the content of bag buffers here, as they are not entirely relevant to the safety properties we
will study. Note however that the systems may still rely on them to perform their executions. This
encoding is close to the Queue-content Decision Diagram from [Boigelot and Godefroid 1996].

Definition 4.2.1 (Encoding [γ]). Let S = (Ap)p∈P be a system such that its product is
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
, and let γ = (l, b1, . . . , b|IS|) be a configuration of

S. The encoding [γ] of γ is l · # · bσ(1) · # · . . . · # · bσ(|IF
S

|), where:

• # /∈ LS ∪ VS, and

• σ :
∣∣∣IF
S

∣∣∣ → |IS| is a function such that σ (i) is the buffer index of the i-th FIFO buffer.

The # symbol is used to separate the encoding of each buffer and the encoding of the control
state from that of the buffers. This symbol is chosen such that it is different from any control state,

4.2 – 4.2.1 Recognising executions leading to a given configuration 49

p 0

q 0

r 0 1

0!v1

1!v2

0?v1

1?v2

(a) System Srsc

0 1 2 3 4 5

6 7 9 10

8

(0, 0, 1) #
v1

v1

#
v2

v2

(0, 0, 0)

#

v1 v1

#

v2

v2

(b) AP (Srsc)

Figure 4.4: Example of AP (Srsc)

any buffer identifier, and any message. Notice that we encode the content of the buffers from first
message sent to last, contrary to the semantics from Definition 2.2.8.

Example 4.2.1 – Let (l, b) be a configuration of system Srsc from Example 3.3.1 (recalled in
Figure 4.4a), such that l is the initial global control state, b0 = v1 · v1 and b1 = v2 · v2 · v2. The
encoding [(l, b)] is l · # · v1 · v1 · # · v2 · v2 · v2.

Because for a regular safety property P , and a system S, P (S) is regular, we can build an auto-
maton AP (S) such that L

(
AP (S)

)
= P (S). We use for that the encoding from Definition 4.2.1.

Example 4.2.2 – Let Srsc be the system recalled in Figure 4.4a. Let P be a regular safety property,
such that the informal description of P (Srsc) is: ‘all the configurations where participant r is in
state 1 with an odd number of messages in buffer 0 and an even number of messages in buffer 1;
and all the configurations where participant r is in state 0 with an even number of messages in
buffer 0 and an odd number of messages in buffer 1’. The automaton AP (Srsc) recognising the
encodings of the configurations satisfying this property is represented in Figure 4.4b.

4.2.1 Recognising executions leading to a given configuration

In general, the set of all reachable configurations of an RSC system is not regular. Example 4.2.3
below illustrates this, with a system whose reachability space is even context-sensitive. However,
we can reason on the RSC executions of a system to check whether one of them can lead to a
configuration we are looking for.

Example 4.2.3 – Let S be the system containing only one communicating automaton depicted
in Figure 4.5. It is trivially RSC, as there are no receptions, so no matching pair, in any of its
executions. Its reachability space is not regular:

[RS(S)] ∩ (l0# (VS)∗ # (VS)∗ # (VS)∗) = {l0#vn
1 #vn

2 #vn
3 |n ≥ 0} .

We need to be able to check whether an RSC execution reaches a configuration with specific
buffer contents. This is not trivial: the first difficulty is that the buffers can be filled in any order.
Two very different executions may lead to the same configuration, as long as the order of the
messages to each buffer is the same.

50 CHAPTER 4 — Model-checking

p

l0 l1

l2

1!v1

2!v23!v3

Figure 4.5: Example of system with non regular reachability space

p

q

1!v12!v2

2?v2 1?v1

(a) The system S

0 1 2 3 4 5

6 7 8

l # v1

v2

#

v2

v1

v1

v2

(b) AP (S)

Figure 4.6: An example of AP (S) such that acceptance of a buffer depends on the content of an
other one

Example 4.2.4 – Let S = (Ap)p∈P be a system, and let execution e1 = ι!pv1 · ι!pv1 · ι′!qv2 be
such that γ0

e=⇒
S

γ. Executions e2 = ι!pv1 · ι′!qv2 · ι!pv1 and e3 = ι′!qv2 · ι!pv1 · ι!pv1 both lead to
γ as well, where γ = (l, b) with bι = v1 · v1 and bι′ = v2.

The second challenge is that the specification of a buffer may depend on the content of another
buffer.

Example 4.2.5 – Let us consider the system S depicted in Figure 4.6a, and a property P such
that P (S) contains all the configurations where buffer 2 consists in a single message: the last
message contained by buffer 1. Figure 4.6b is the representation of AP (S). Note that here it is
not relevant to mention the control state, as the product of the system has only one. Execution
e = 1!v2 · 2!v1 · 1!v1 leads to γ ∈ P (S).

However, for a finite state automaton to recognise an encoding of e, ensuring it satisfies the
specification for the buffer contents, it has to accepts parts of [γ] out of order: any sequence of
actions in buffer 1 will satisfy the required content, but to accept an action adding a message in
buffer 2, it has to make sure this message is the same as the last message sent to buffer 1. The
difficulty is that the last action adding a message to buffer 1 could happen after a message is sent to
buffer 2.

To recognise executions able to produce configurations whose encoding is recognised by an
automaton AP (S), the content of each buffer must be recognised separately, as actions filling them
could be interleaved, but consistency between each buffer must be ensured. We present in the next
section automaton Aep which is our answer to these challenges.

4.2 – 4.2.2 Automaton Aep 51

4.2.2 Automaton Aep

We explain how to build an automaton which, for a given system and an automaton AP (S), accepts
all the sequences of communications leading to a configuration with a buffer content recognised by
AP (S).

To circumvent the difficulties presented in the previous section, we built in the states of
automaton Aep what could be seen as ‘pebbles’ placed on the states of AP (S). They will allow to
read the content of each buffer independently, and to accept an execution only if the parts of AP (S)
used to recognise each buffer are compatible.

Definition 4.2.2 (Aep (S)). Let S = (Ap)p∈P with product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
,

and let P be a regular safety property. Let AP (S) =
(
QP (S), δP (S), q0

P (S), FP (S)
)

a finite state

automaton such that L
(
AP (S)

)
= P (S).

Aep (S) =
(
Qep, δep, q0

ep, Fep

)
is the non-deterministic finite state automaton over the alphabet

ΩS where:

(1) Qep =
(

LS ×
(
QP (S)

)|IF
S|

×
(
QP (S)

)|IF
S|−1

)
∪

{
q0

ep

}
;

(2)
(
q0

ep, ε, (l, p, i)
)

∈ δep if:

•
(
q0

P (S), l · #, p1
)

∈
(
δAP (S)

)∗
, and

• for all ι ∈
{

2, . . . ,
∣∣∣IF
S

∣∣∣} , pι = iι−1;

(3) (l, p, i) ∈ Fep if:

(a) for all ι ∈
{

1, . . . ,
∣∣∣IF
S

∣∣∣ − 1
}

, (pι, #, iι) ∈ δAP (S) , and

(b) p|IF
S| ∈ FAP (S) ;

(4) ((l, p, i) , c, (l′, p′, i′)) ∈ δep if:

• l = l′,
• i = i′,
• if c = ι!v and ι ∈ IF

S, then
(
pσ(ι), v, p′

σ(ι)

)
∈ δA and for all ι′ ∈ IF

S, ι′ ̸= ι,
pσ(ι′) = p′

σ(ι′) ; else, p = p′.

In a control state (l, p, i), p represents the positions of the pebbles: for ι ∈
{

1, . . . ,
∣∣∣IF
S

∣∣∣}, pι is

the state of AP (S) on which the ιth pebble is placed. To ensure consistency between the buffers
recognition, we need to remember the initial position for all buffers but the first one: this is what i
does. For ι ∈

{
1, . . . ,

∣∣∣IF
S

∣∣∣ − 1
}

, iι is the initial position of the (ι + 1)th pebble. Finally, l is the
target control state of S. This is the control state of a configuration whose encoding is accepted by
AP (S).

A control state (l, p, i) is accepting if it is consistent, and if the last pebble is on an accepting
state of AP (S). For a state to be consistent, the position of the ιth pebble must be a control state of
AP (S) allowing a transition to the initial position of the (ι + 1)th pebble, reading the separating

52 CHAPTER 4 — Model-checking

letter #. This ensures that the execution accepted produced a buffer content that is accepted by
AP (S) in its entirety, not only pieces of accepted buffer contents.

The goal of transitions from the initial state is to select the states that might be relevant to
begin recognising an execution. A state (l, p, i) is a relevant one if p1 is a control state of AP (S)
reachable by reading l · #. For the other pebbles, all possible combinations are considered.

Observe that, in an execution composed only by sequences of communications, matched
communications do not take part in the final buffer content. From each state of Aep (S), it is
possible to read any matched communication, remaining in the same state. To read a matched
communication {ι!v} where ι is a FIFO buffer however, automaton AP (S) must be able to read v
from the control state marked by the (σ (ι))th pebble.

Example 4.2.6 – Let Srsc be the system recalled in Figure 4.4a and AP (Srsc) be the automaton
represented in Figure 4.4b. Figure 4.7 shows the graphical representation of Aep (Srsc). In a state
(l; ⟨p⟩; ⟨i⟩), l represents the targeted control state of Srsc, p represents the position of each pebble,
and i the initial position of all pebbles but the first one, here only the second one.

Similarly to what we did in Example 3.3.1, we only represent the control state of participant q
as p has only one state.

The representation is partial, as illustrated by the partial dashed arrows. This is because
according to Definition 4.2.2, item (2), all the combinations of pebbles positions are reachable from
the initial state, as long as the first pebble is on a state reachable after reading only l · #, where
l is the target control state of S. However, only a few of these combinations allow to proceed to
an accepting state. This is illustrated by the state reached through the third ε-transition from the
top. The position for pebble 0 is in a different branch of AP (S) than the position of pebble 1. This
implies that the condition (3)a will never be satisfied.

We show that, for a system S and a safety property P , if a sequence of communications
recognised by Aep (S) is RSC and feasible in S, then it leads to a configuration with buffers with
the same content as in a configuration whose encoding is in P (S). In other words, Aep is correct
and recognises only executions leading to buffer contents described in the property.

Lemma 4.2.1. Let S be a system, and P a regular safety property. If w ∈ L (Aep (S)), with

(l′, p, i) an accepting state of w, such that γ0
cte(w)====⇒

S
(l, b), then [(l′, b)] ∈ L

(
AP (S)

)
.

Proof.

Let S = (Ap)p∈P be a system such that product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
. Let P be a

regular safety property, and AP (S) =
(
QP (S), δP (S), q0

P (S), FP (S)
)

the finite state automaton

such that L
(
AP (S)

)
= P (S). Let Aep (S) =

(
Qep, δep, q0

ep, Fep

)
the finite state automaton

as defined in Definition 4.2.2. Let w ∈ L (Aep (S)) be a word such that γ0
cte(w)====⇒

S
(l, b). Let

(l′, p, i) be the accepting control state of Aep (S) reached when reading w.

Because the only transitions from q0
ep are the one described in item (2), we know

that there exists l′ · # · p′
1 prefix of an accepted word in L

(
AP (S)

)
, and be-

cause of how transitions are defined in item (4) of Definition 4.2.2, we know that(
p′

1, message
(
cte (unmatched (w)) ⇂σ(1)

)
, p

)
∈

(
δP (S)

)∗
, where for w ∈ Ω, unmatched (w)

4.2 – 4.2.2 Automaton Aep 53

q0
ep

0; ⟨7, 9⟩; ⟨9⟩

0; ⟨7, 10⟩; ⟨9⟩

0; ⟨8, 9⟩; ⟨9⟩

0; ⟨8, 10⟩; ⟨9⟩

1; ⟨2, 4⟩; ⟨4⟩

1; ⟨3, 4⟩; ⟨4⟩

1; ⟨2, 5⟩; ⟨4⟩

1; ⟨3, 5⟩; ⟨4⟩

1; ⟨2, 9⟩; ⟨9⟩

1; ⟨3, 9⟩; ⟨9⟩

1; ⟨2, 10⟩; ⟨9⟩

1; ⟨3, 10⟩; ⟨9⟩

ε

ε

ε

0!v1

0!v1

1!v2

1!v2

1!v2

1!v2

0!v1

0!v1

0!v1

0!v1

1!v2

1!v2

1!v2

1!v2

0!v1

0!v1

0!v1

0!v1

1!v2

1!v2

1!v2

1!v2

0!v1

0!v1

ΥS

ΥS

ΥS

ΥS

ΥS

ΥS

ΥS

ΥS

ΥS

ΥS

ΥS

ΥS

Figure 4.7: Representation of Aep (Srsc)

54 CHAPTER 4 — Model-checking

is the subword of w containing only unmatched communications. For each unmatched com-
munication to be accepted, the first pebble must have been able to move, up to the position it
reached at the end of the run.

Following the same logic, we know that for all buffer identifiers ι ∈
{

2, . . . ,
∣∣∣IF
S

∣∣∣},(
iι−1, message

(
cte (unmatched (w)) ⇂σ(j)

)
, pι

)
∈

(
δP (S)

)∗
.

Finally, because (l′, p, i) is accepting, by Definition 4.2.2 item (3), we know that for all
ι ∈

{
1, . . . ,

∣∣∣IF
S

∣∣∣ − 1
}

, (pι, #, iι) ∈ δP (S), and that p|IF
S| ∈ FP (S), so we have that l′ · # · p′

1 ·

message
(
cte (unmatched (w)) ⇂σ(1)

)
· # · . . . · # · message

(
cte (unmatched (w)) ⇂σ(|IF

S|)
)

is
a word accepted by AP (S).

Observe that, by Definition 2.2.8, for ι ∈ IF
S, bι = message (cte (unmatched (w))). Therefore

[(l′, b)] ∈ L
(
AP (S)

)
. □

We now show that Aep is complete: all sequences of communications corresponding to execu-
tions S leading to a configuration with buffer contents in P (S) are accepted by Aep (S).

Lemma 4.2.2. Let S be a system of communicating automata, and let P be a regular property. Let
Aep (S) be the finite state automaton defined in Definition 4.2.2 for S and P . Let e be an RSC
execution such that γ0

e=⇒
S

γ. If [γ] ∈ P (S), then etc (e) ∈ L (Aep (S)).

Proof.

Let S be a system, let P be a regular safety property and AP (S) =
(
QP (S), δP (S), q0

P (S), FP (S)
)

the finite state automaton such that L
(
AP (S)

)
= P (S).

Let e be an RSC execution such that γ0
e=⇒
S

(l, b), and assume that [(l, b)] ∈ L
(
AP (S)

)
.

Let w = etc (e): this is defined because e is RSC. We will show that w is accepted by Aep (S).

Because [(l, b)] ∈ L
(
AP (S)

)
, we know that

(
q0

P (S), l · #, q1
)

∈
(
δP (S)

)∗
,

and that for all ι ∈
{

1, . . . ,
∣∣∣IF
S

∣∣∣ − 1
}

,
(
qι, bσ(ι) · #, qι+1

)
∈

(
δP (S)

)∗
, and that(

q|IF
S|, b|IF

S|, qa

)
∈

(
δP (S)

)∗
, with qa ∈ FP (S). Thus

(
q0

ep, ε, (l, p, i)
)

∈ δep with for all

ι ∈
{

1, . . . ,
∣∣∣IF
S

∣∣∣} , pι = qι, and for all ι ∈
{

1, . . . ,
∣∣∣IF
S

∣∣∣ − 1
}

, iι = q(ι+1). We can also
deduce by Definition 4.2.2 item (4) that ((l, p, i) , w, (l, p′, i)) ∈ (δep)∗ such that for all
ι ∈

{
1, . . . ,

∣∣∣IF
S

∣∣∣ − 1
}

, (p′
i, #, qι+1) ∈ δP (S), and p′

|IF
S| = qa. By Definition 4.2.2, item (3),

(l, p′, i) is accepting, therefore w ∈ L (Aep (S)). □

4.2.3 Decidability of the reachability problem for RSC systems

For a system S, and a property P , we can use the intersection of Aep (S) and Arsc (S) to answer
the P safety problem for RSC systems. However, using a simple product construction between
Aep (S) and Arsc (S) is not enough. Indeed, executions recognised by Aep (S) are not required to
lead in a configuration (l, b) such that [(l, b)] is accepted by AP (S), we only know that there exists
l′ such that [(l′, b)] is accepted. To solve this issue, we define Aprod, which is a slight variation
around the usual Cartesian product between finite state automata.

4.2 – 4.2.3 Decidability of the reachability problem for RSC systems 55

Definition 4.2.3 (Aprod). Let S = (Ap)p∈P be an RSC system with as product
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
, Arsc (S) =

(
Qrsc, δrsc, q0

rsc, Frsc
)

is the finite state
automaton recognising all RSC executions of S as defined in Definition 3.3.1. Let P be a safety
property, and AP (S) =

(
QP (S), δP (S), q0

P (S), FP (S)
)

the finite state automaton recognising

encodings of the configurations satisfying P (S). Let Aep (S) =
(
Qep, δep, q0

ep, Fep

)
the finite

state automaton as defined in Definition 4.2.2.
Aprod(S) =

(
Qprod, δprod, q0

prod, Fprod

)
is the non deterministic finite state automaton over

alphabet ΩS such that, for all c ∈ ΩS:

• Qprod = Qrsc × Qep,

•
(
(qrsc, qep) , c,

(
q′

rsc, q′
ep

))
∈ δprod if (qrsc, c, q′

rsc) ∈ δrsc and
(
qep, c, q′

ep

)
∈ δep,

• q0
prod =

(
q0

rsc, q0
ep

)
, and

• ((l, f, b), (l′, p, i)) ∈ Fprod if (l′, p, i) ∈ Fep, and l = l′.

Intuitively, an execution is recognised by Aprod if:

• it is an RSC execution which produces buffer contents that are recognised by AP (S),

• is feasible in the system, and

• gets the system in the global state that was necessary for the buffer content to be recognised
by AP (S).

We express that formally in the following lemma.

Lemma 4.2.3. Let S be a system, and P a regular property. Let w ∈ (ΩS)∗, w ∈ L (Aprod) if and
only if cte (w) is an RSC execution feasible in S and leading to a configuration whose encoding is
in P (S).

Proof.

Let S = (Ap)p∈P be an RSC system with product (S) =
(
LS,VS, IS, ActS, δS, l0S

)
,

Arsc (S) =
(
Qrsc, δrsc, q0

rsc, Frsc
)

is the finite state automaton recognising all RSC execu-
tions of S as defined in Definition 3.3.1. Let AP (S) =

(
QP (S), δP (S), q0

P (S), FP (S)
)

the
finite state automaton recognising encodings of the configurations satisfying P (S). Let
Aep (S) =

(
Qep, δep, q0

ep, Fep

)
the finite state automaton as defined in Definition 4.2.2. Let

Aprod =
(
Qprod, δprod, q0

prod, Fprod

)
be a finite state automaton as defined in Definition 4.2.3.

Let w ∈ L (Aprod), we show that cte (w) is an RSC execution such that γ0
cte(w)====⇒

S
(l, b),

with [(l, b)] ∈ P (S). By Definition 4.2.3, w ∈ L (Arsc (S)) and w ∈ L (Aep (S)). Let

q = ((l, f, b) , (l, p, i)) ∈ Qprod be an accepting state of w. By Lemma 3.3.2, γ0
cte(w)====⇒

S
(l, b),

and (l, p, i) is an accepting state of w in Aep (S), so by Lemma 4.2.1, [(l, b)] ∈ P (S).

Let e ∈ executions (S) be an RSC execution such that γ0
e=⇒
S

(l, b), and [(l, b)] ∈ P (S).
We show that there exists w such that cte (w) = e, and w ∈ L (Aprod). By Lemma 4.2.2,

56 CHAPTER 4 — Model-checking

etc (e) ∈ L (Aep (S)), with (l, p, i) an accepting state of w for some p and i. By Lemma 3.3.1,
w ∈ L (Arsc (S)), and (l, f) is an accepting state of w in Arsc (S). By Definition 4.2.3,
as both (l, f, b) and (l, p, i) are accepting states of w in Arsc (S) and Aep (S) respectively,
((l, f, b) , (l, p, i)) is an accepting state of w in Aprod: w ∈ L (Aprod). □

Because the language of Aprod is exactly the feasible RSC executions of a system leading to
configurations that satisfy a property, we can use it to show decidability of the P safety problem.

Theorem 4.2.4. Let S be an RSC system, and P a regular property, it is decidable whether S is P
safe.

Proof.

Let S = (Ap)p∈P be an RSC system.

Let Aprod(S) be a finite state automaton as defined in Definition 4.2.3. By Lemma 4.2.3,
w ∈ L (Aprod(S)) if and only if cte (w) is an RSC execution feasible in S and leading to a
configuration satisfying P (S). Therefore, S is P safe if and only if L (Aprod(S)) = ∅. □

4.2.4 Regular Safety Problems

We showcase, here, some applications of Theorem 4.2.4 by presenting few regular properties.

4.2.4.1 Unspecified reception

Unspecified receptions correspond to a situation where a participant awaits a message in a FIFO
buffer, and receives something else, preventing it to progress any further due to the FIFO nature
of its buffer. We say that a participant is in a receiving state if there are only (and at least one)
receptions from its control state.

Definition 4.2.4 (Unspecified reception). Let S = (Ap)p∈P be a system, with its product
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. A configuration (l, b) of S is an unspecified reception

if there exists p ∈ P such that lp is a receiving state, and for all lp
ι?v−−→
Ap

l′p, ι ∈ IF , bι = v′ · b′
ι with

v′ ∈ V and b′
ι ∈ V∗, RP\{p},{ι},{v′} ∩ ActS = ∅, and v′ ̸= v.

A configuration is an unspecified reception if one of the participants is in a receiving state, and
none of its outgoing transitions can receive the first message in any of its buffers. A configuration
is not an unspecified reception if the participant is in a receiving state and its buffers are empty: a
message could arrive later, and in an unspecified reception, the participant is blocked forever: all the
buffers it could receive from are blocked by a message that cannot be received. For the same reason,
a configuration where a reception is possible from a bag buffer is not considered an unspecified
reception, since the message could arrive later. The same reasoning applies to receptions from
buffers from which other participants can receive messages as well, because the message ‘blocking’
the buffer could be received by another participant later.

A system S is unspecified reception free if for all γ ∈ RS(S), γ is not an unspecified reception.

4.2 – 4.2.4 Regular Safety Problems 57

p

0 1

q

0

0?v1

0!v2

(a) System satisfying progress
but not unspecified reception

p

0 1

q

0 1

r

0 1

0?v1

1!v2

1?v2

(b) System that does not satisfy
progress

p

0 1

q

0 1

r

0 1

0!v1

1!v2

1?v2

(c) System with an orphan mes-
sage

Figure 4.8: Systems to illustrate safety properties

Example 4.2.7 – Let Scsd be the system from Example 2.2.2. The configurations where the Server
is in state 0 and buffer s starts with any message but req are unspecified receptions. Note that no
such configuration is reachable in S, in fact this system is unspecified reception free.

The system depicted in Figure 4.8a is not however: as soon as q sent one v2 in the FIFO buffer
0, an unspecified reception is reached, because participant p expects to receive v1 from this buffer.

The set of unspecified receptions of a systems is regular: there is a finite number of one bounded
configurations in a system, and unspecified receptions are configurations that can be obtained by
adding any sequence of messages in the buffers of one bounded configurations.

4.2.4.2 Progress

Another important property is progress. Its purpose is to ensure a system does not get ‘stuck’ unless
it has nothing more to do.

Definition 4.2.5 (Progress). Let S = (Ap)p∈P be a system such that its product is
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. A configuration γ = (l, b) of S satisfies pro-

gress if either l is final, or there exists an action a and a configuration γ′ such that γ
a−→
S

γ′. A
system S satisfies progress if for all γ ∈ RS(S), γ satisfies progress.

A system satisfies progress if, unless it reaches a configuration from which no transition exists
(that is from which no action is supposed to happen), it can always perform an action.

Example 4.2.8 – Let us consider the system depicted in Figure 4.8b. This system does not satisfy
progress: after the execution e = 1!qv2 · 1?rv2 , automata of both participants q and r reached a
final state, but automaton of participant p did not, and not transition can be executed.

Conversely, the system from Figure 4.8a satisfies progress. Indeed, even though participant p
will never be able to execute its action (because no message v1 is ever sent), the transition of the
automaton of participant q is always executable from any reachable configuration.

It can be observed that the set of configurations that do not satisfy progress is regular and
polynomial time computable.

58 CHAPTER 4 — Model-checking

4.2.4.3 Orphan message

Intuitively, an orphan message is a message sent to a buffer, from which it will never be received.
There are several ways to interpret this intuition. The following definition, from [Deniélou and
Yoshida 2012a], is one of them.

Definition 4.2.6 (Orphan message configuration). Let S = (Ap)p∈P be a system of communicating
automata, such that product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. A configuration γ = (l, b) is an

orphan message configuration if l is final and there exists ι ∈ IS such that bι ̸= ε.

The above definition corresponds to what we could call ‘terminal orphan messages’, where the
system has nothing more to do, and yet some messages are still there to be received. A system S is
orphan message free if no configuration γ ∈ RS(S) is an orphan message configuration.

Example 4.2.9 – The system in Figure 4.8c is not orphan message free. Indeed, once each
participant executed its only action, a final state is reached, and buffer 0 contains message v1 sent
by p.

Both systems from Figure 4.8b and Figure 4.8a are trivially orphan message free, as no final
state is reachable for them.

The set of orphan message configurations of a system is regular.

4.2.4.4 Reception-deadlock

Unspecified reception is not the only reception error that can occur. Indeed, we mentioned that a
configuration in which the buffers are empty is not an unspecified reception because a message
could arrive later, but if all the participant reach a reception state with all their buffers empty, the
system is stuck.

Definition 4.2.7 (Reception-deadlock). Let S = (Ap)p∈P be a system of communicating automata,
such that product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. A configuration γ = (l, b) is an reception-

deadlock configuration if for all p ∈ P, lp is a receiving state, and for all aA such that lp
aA−−→
Ap

l′p,

bbuffer(aA) = ε.
A system S is reception-deadlock free if for all γ ∈ RS(S), γ is not a reception-deadlock.

A system ends up in a reception-deadlock if all its participants reach at the same time a reception
state, and all the buffers from which they may receive a message are empty. Notice that here, there
is no difference between bag and FIFO buffers. The set of reception-deadlock configurations of a
system is regular.

4.3 Discussion

We begin this discussion by comparing the decidability results we obtained for RSC systems to
those of various classes from the literature. We recall that, in general, reachability is undecidable,
due to the unbounded nature of the FIFO buffers.

The decidability results we obtained for RSC systems are similar to those for the class of k-
synchronisable systems defined in [Bouajjani, Enea et al. 2018a]. Both membership of the class and
reachability of a configuration are decidable, and the corrected proofs of these results can be found

4.3 – Discussion 59

in [Di Giusto, Laversa et al. 2020]. The techniques we used to prove membership are similar the one
developed for k-synchronisability: the idea of characterising the borderline violations of a property
for a system first appeared in [Bouajjani, Enea et al. 2018a]. It could be argued that the membership
problem for the class of RSC systems can be treated as a special case of membership of the class
of strong k-synchronisable systems, where k = 1. This problem was indeed shown decidable
with both mailbox [Bollig, Giusto et al. 2021] and peer-to-peer [Laversa 2021] communication
architectures. However, our proof offers two benefits compared to this approach. The first one is
that, as mentioned earlier, we do not restrict ourselves to any communication architecture. Our
proof holds even for architectures where participants are allowed to receive and send messages in
the same buffer. The second benefit is that focusing on the instance where k = 1, we could devise
an algorithm with a better complexity. This is important to us as we want to provide practical
solutions to verification problems.

The results we obtained for the reachability problem are applicable to the class of eager systems,
because all reachable configurations of such a system are reachable through an RSC execution.
However, the difference in definition we mentioned in Section 3.4 has a big implication regarding
membership: it is not decidable whether a system is eager [Heußner, Leroux et al. 2012].

Reachability for bounded systems, whether the bound is universal or existential, is trivially
decidable. Indeed, as the alphabet of messages is also bounded, the set of configurations of a
system is bounded for such a system. However, both universal and existential k-boundedness of a
system is undecidable [Genest, Kuske et al. 2007]. In the same paper, this problem was shown to
be decidable for deadlock-free systems, under the condition that k is known in advance. In [Genest,
Kuske et al. 2007], a system is deadlock-free if all its states are accepting, and if from any reachable
configuration, a stable configuration (with all the buffers empty, Definition 2.2.7) is reachable. Note
that in general, checking whether a system of communicating automata satisfies these conditions is
not decidable. As we did not consider accepting states in our setting, we can consider that all of our
systems of communicating automata satisfy the first condition. The second one corresponds to the
definition we give for deadlock-freedom in the Chapter 6 (Definition 6.3.2).

CHAPTER 5
Generalisation of

half-duplex systems
The class of binary half-duplex systems was introduced in [Cécé and Finkel 2005]∗, and offers
some nice model-checking decidability results. However, this class is defined for binary systems
only. We found interesting to try to generalise the definition of this class to multiparty systems:
those with arbitrarily many participants. In this chapter, we propose the class of RSC systems as a
natural generalisation of binary half-duplex systems.

Definition 5.0.1 (Binary half-duplex systems [Cécé and Finkel 2005]). A binary half duplex system
is a system of communicating automata S = (Ap)p∈P with |P| = 2, using a mailbox or peer-to-peer
communication architecture, such that for all (l, b) ∈ RS(S), b0 = ε or b1 = ε.

A binary system is binary half-duplex if in all its reachable configurations, there is no more
than one buffer containing messages. One of the implication of this condition is that whenever a
message is sent, either it will stay in its buffer forever and no more messages can be exchanged, or
it can immediately be received.

Binary half-duplex systems benefit from decidability of a lot of verification problems. The
decidability results, detailed in [Cécé and Finkel 2005], revolve around the regularity of the
reachability set of those systems.

Theorem 5.0.1 ([Cécé and Finkel 2005]). Regular safety problems are decidable for binary
half-duplex systems.

In addition to this decidability result, this class enjoys decidability of the membership problem.
It also corresponds to a somewhat natural behaviour: the intuition behind its systems is that at
a given time, a participant of a system is either ‘talking’ or ‘listening’ to the other. This makes
it interesting, and generalising its properties to multiparty systems, that is with arbitrarily many
participants, would yield a nice basis for verifying actual systems.

5.1 Unsuitable generalisations

In this section, we detail several attempts at generalising binary half-duplex systems. These attempts
fail either at generalising enough, that is at effectively allowing more behaviours than binary half-
duplex systems, or at keeping interesting decidability results. We begin with two propositions from
[Cécé and Finkel 2005], and we follow with our attempt.

∗The class was simply called ‘half-duplex’ in this paper

61

62 CHAPTER 5 — Generalisation of half-duplex systems

5.1.1 Propositions from [Cécé and Finkel 2005]

[Cécé and Finkel 2005] proposed two generalisations of the binary half-duplex systems to systems
with multiple participants. They called them natural generalisation and restricted generalisation.
In both these definitions, the authors considered peer-to-peer communication architectures.

Natural generalisation. The natural generalisation consists in restricting the communication
between each pair of processes to half-duplex communications, as if each pair of processes formed
a binary half-duplex subsystem, gathered with other subsystems to form a big half-duplex system.

Definition 5.1.1 (Natural half-duplex generalisation [Cécé and Finkel 2005]). Let S = (Ap)p∈P
be a peer-to-peer system of communicating automata, product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
,

and let r be the injection between pairs of processes and buffers (Definition 2.2.9), S is natural
half-duplex if for all (l, b) ∈ RS(S), for all {p, q} ⊆ P, if both ι = r(p, q) and ι′ = r(q, p) are
defined, bι = ε or bι′ = ε.

One interesting aspect of this generalisation is that for systems with two processes, it coincides
with the definition of binary half-duplex systems. However, the interest of generalising the definition
to multiparty systems is to keep decidability for at least some of the verification problems that
were decidable for binary systems. Unfortunately, a three participants system member of the class
from Definition 5.1.1 can emulate a Turing machine, and therefore regular safety problems are not
decidable in general for these systems.

Restricted generalisation. The restricted generalisation proposes the same definition as the one
of binary systems: at most one buffer is not empty in any reachable configuration.

Definition 5.1.2 (Restricted half-duplex generalisation [Cécé and Finkel 2005]). Let
S = (Ap)p∈P be a peer-to-peer system of communicating automata with its product
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. System S is restricted half-duplex if, for all

(l, b) ∈ RS(S), for all ι ∈ IS, if bι ̸= ε then, for all ι′ ∈ IS \ {ι} , bι′ = ε.

Here again, the generalised definition coincides with the binary definition for systems with two
participants. The issue with this generalisation is that, as its name suggests, it is too restrictive. The
point of generalising binary-half duplex systems to multiparty systems is to allow for behaviours
that would not be possible in two participants systems. Here, allowing only one buffer to be used at
any time, we obtain systems that are not more expressive than binary half-duplex systems.

5.1.2 Multiparty half-duplex systems

We propose another approach to generalise binary half-duplex systems, inspired by the definition
of RSC systems. As we did for this notion, we begin by defining half-duplex executions, and
we define multiparty half-duplex systems as the ones whose executions are all equivalent to an
half-duplex one.

Definition 5.1.3 (Multiparty half-duplex system). Given a system S = (Ap)p∈P with
product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
,

• a transition (l, b) ι!pv−−→
S

(l′, b′) is a half-duplex send if for all ι ∈ I?
p, bι = ε;

5.1 – 5.1.2 Multiparty half-duplex systems 63

ServerClient Database

Figure 5.1: Topology of the system Scsd in Figure 2.1

• an execution e = γ0
a1−→
S

γ1 −→ · · · an−→
S

γn is half-duplex if for all j ∈ {1, . . . , n}, aj is
either a reception or a half-duplex send;

• S is half-duplex if for all e ∈ executions (S), there is a half-duplex execution e′ such that
e ∼ e′.

Intuitively, an execution is half-duplex if all send actions are executed from a configuration
where all the input buffers of the sender are empty. This means that at the time of sending a message,
a communicating automaton does not have pending messages.

Example 5.1.1 – Let Scsd be the system of communicating automata depicted in Figure 2.1, and let

e = s!creq · s?sreq · c!sres · c?cres · s!cack · s?sack · s!creq · d!slog

be one of its executions. Execution e is not half-duplex: when the last message log is sent, the
sender (server) has message req in its single input buffer. However, this does not prevent Scsd

from being multiparty half-duplex:

e′ = s!creq · s?sreq · c!sres · c?cres · s!cack · s?sack · d!slog · s!creq

is causally equivalent to e, and e′ is an half-duplex execution.

This generalisation differs from the natural generalisation from [Cécé and Finkel 2005]. Indeed,
their definition forbids simultaneous use of the two buffers linking each pair of participants, while
ours prevents any send action to happen from a participant if all its input buffers are not empty.
As a consequence, the Turing machine construction of Cécé and Finkel is not multiparty half-
duplex following our definition. Moreover, restricted to two participants, multiparty peer-to-peer
half-duplex systems are also half-duplex in the sense of the definition in [Cécé and Finkel 2005].

Unfortunately, for peer-to-peer systems, regular safety problems are still undecidable with this
generalisation. To prove this, we begin by providing a graphical characterisation of multiparty
half-duplex systems.

5.1.2.1 Graphical characterisation

Our definition of half-duplex system enjoys an interesting characterisation. We can define a class
of communication topologies that ensures that a system (that uses such topology) is half-duplex,
regardless of what the automata may do. For a peer-to-peer system S, let topo(S) be the directed
graph whose vertices are the participants of S and whose edges p → q are the buffers that are used
by the participants.

Example 5.1.2 – The topology of the system Scsd from Figure 2.1 is depicted in Figure 5.1.

64 CHAPTER 5 — Generalisation of half-duplex systems

Definition 5.1.4 (Half-duplex topology). A directed graph G is a half-duplex topology if all
peer-to-peer systems S such that topo(S) = G are half-duplex.

Lemma 5.1.1. Let G = (V, A) be a directed graph such that

(1) G is acyclic, and

(2) for all v ∈ V , d+(v) = 0 or d−(v) ≤ 1,

then G is a half-duplex topology.

Proof.

Let G = (V, A) be a graph satisfying conditions (1) and (2), and S = (Ap)p∈P be a peer-to-peer
system with topo(S) = G, such that product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
. Thanks to the

acyclicity of G, we can assign a priority to each participant of S in such a way that, for all pairs
of participants p, q, if (p, q) ∈ A∗, then p has lower priority on q (‘priority on consumers’). Let
e ∈ executions (S) be some execution of S. We show that e can be rescheduled as a half-duplex
execution. Without loss of generality, we assume that all send actions in e are matched. Consider
the following scheduler: in order to select which machine will execute the next action, we pick
the machine with highest priority whose next action in e can be immediately triggered (either
because it is a send action, or because it is a receive action and the message that has to be
received is already in the queue). Let e′ be the execution obtained from e with this scheduler. We
claim that e′ is half-duplex. Indeed, assume by contradiction, that e′ is not half-duplex. Then
e′ = . . . · s1 · . . . · s2 · . . . · r1 · . . . where s1 is a send action from some participant p to some other
participant q, s2 is a send action from participant q, and r1 is the reception matching s1. Since p
sends to q, q has a higher priority than p. So, when s1 gets scheduled, q is not able to execute its
next action, so this next action must be a reception. By hypothesis on G, q only receives from p,
so at the time s1 is performed, q is expecting a message v′

1 from p. Since q later performs s2, p
eventually provides v′

1 to q who receives it, that is

e = . . . · s1 · . . . · s′
1 · . . . · r′

1 · . . . · s2 · . . . · r1 · . . .

with both v1 and v′
1 transiting through the buffer between p and q, which violates the FIFO

behavior of this buffer, and hence the contradiction. □

5.1.2.2 Reduction of reachability to PCP

We show that reachability in a peer-to-peer multiparty half-duplex system is undecidable by
reducing to the Post correspondence problem [Post 1946] (PCP for short). We begin by providing
formal definitions for instance and solutions of the PCP.

Definition 5.1.5 (PCP instance). A PCP instance is a tuple P = (A, N, α, β) where A is a finite
alphabet, N ≥ 1, and α = (α1, α2, . . . , αN) and β = (β1, β2, . . . , βN) are two sequences of
N -words over A.

Definition 5.1.6 (PCP solution). A solution to the PCP instance P is a finite, non-empty, sequence
of indices i1, i2, . . . , im (with ij ∈ {1, . . . , N}) such that αi1 · αi2 · . . . · αim = βi1 · βi2 · . . . · βim .

5.1 – 5.1.2 Multiparty half-duplex systems 65

We aim at defining, for any given PCP instance P , a special system of communicating automata
SP such that the reachability of a specific configuration in this system would depend on the
existence of a solution to P . Let P = (A, N, α, β) be a PCP instance. System SP consists in
three participants. The first participant pg (guesser), non-deterministically guesses a non-empty
sequence of indices i1, . . . , im. For each index i, participant pg sends letter by letter the word αi

to participant pc. Automaton pg also sends each index i to participant pf. Upon reception of an
index i, participant pf (forwarder) sends letter by letter the word βi to participant pc. Automaton
pc (checker) therefore receives, from both participant pg and participant pf, in two distinct buffers,
g −→ c and f −→ c, the concatenation of words αi1 · αi2 · . . . · αim and βi1 · βi2 · . . . · βim , respectively.
Note that since SP is a peer-to-peer system, each buffer is associated with a pair of processes: the
unique sender and receiver acting on it. We write g −→ c for the buffer between participants pg
and pc. In order to check that the sequence of indices guessed by pg is, indeed, a solution of P ,
participant pf repeatedly pops a pair of letters from the two buffers and checks whether, at each
iteration, the two letters are the same. In order to detect the end of the sequence of indices, we
introduce a special character #. This system is depicted in Figure 5.2.

More formally, we denote with |αi| the number of letters of αi, and its jth letter with αi,j .
The set of messages used in SP is V = A ∪ {1, . . . , N} ∪ {#}. The automata of SP are

defined as follows.

Definition 5.1.7 (Communicating automata encoding a PCP instance). Let P be an instance of the
Post correspondence problem.

• Automaton Ag = (Lg,V, Ig, Actg, δg, l0) where:

− Lg =
{

li,j , l′i,j

∣∣∣ i ∈ {1, . . . , N} , j ∈ {1, . . . , |αi|}
}

∪ {l0, l′0, lf1 , lf2},

− Actg = {g→f!gi, g→c!gαi,j | i ∈ {1, . . . , N} , j ∈ {1, . . . , |αi|}} ∪
{

g→c!g#, g→f!g#
}

,

− δg =
N⋃

i=1

{
li,|αi|

g→f!gi−−−→ l′0, l′i,|αi|
g→f!gi−−−→ l′0, l′0

g→c!gαi,1−−−−−→ li,1, l0
g→c!gαi,1−−−−−→ l′i,1

}
∪

N⋃
i=1

|αi|⋃
j=2

{
li,j−1

g→c!gαi,j−−−−−→ li,j , l′i,j−1
g→c!gαi,j−−−−−→ l′i,j

}
∪{

l′0
g→c!g#−−−−→ lf1 , lf1

g→f!g#−−−−→ lf2

}
.

• Automaton Af = (Lf,V, If, Actf, δf, l0) where:

− Lf =
N⋃

i=1

{
li,j

∣∣ j ∈ {1, . . . , |βi|}
}

∪ {l0, lf1 , lf2},

− Actf =
N⋃

i=1

{
g→f?fi

}
∪

N⋃
i=1

{
f→c!fβi,j

∣∣∣ j ∈ {1, . . . , |αi|}
}

∪
{

g→f?f#, f→c!f#
}

,

− δf =
N⋃

i=1

{
l0

g→f?fi−−−→ li,1, li,|βi|
f→c!fβi,|βi|−−−−−−→ l0

}
∪

N⋃
i=1

{
li,j

f→c!fβi,j−−−−−→ li,j+1

∣∣∣∣ j ∈ {1, . . . , |βi| − 1}
}

∪{
l0

g→f?f#−−−−→ lf1 , lf1
f→c!f#−−−−→ lf2

}
.

66 CHAPTER 5 — Generalisation of half-duplex systems

g

l0

l′i,1

l′i,n−1 l′i,n l′0 li,1 li,n−1

li,n
lf1

lf2

f

l0 li,1 li,2

li,n
lf1

lf2

c

l0 la

lf1

lf2

g→c!gαi,1

g→c!gαi,n g→f!gi g→c!gαi,1

g→c!gαi,n

g→f!gi
g→c!g#

g→f!g#

g→f?fi f→c!fβi,1

f→c!fβi,n

g→f?f#

f→c!f#

g→c?ca

f→c?ca

g→c?c#

f→c?c#

Figure 5.2: Automata pg, pf, and pc used in the encoding of the Post correspondence problem

• Automaton Ac = (Lc,V, Ic, Actc, δc, l0) where:

− Lc =
⋃

a∈A
{la} ∪ {l0, lf1 , lf2} ,

− Actc =
⋃

a∈A
{g→c?ca, f→c?ca} ∪ {g→c?c#, f→c?c#} ,

− δc =
⋃

a∈A

{
l0

g→c?ca−−−−→ la, la
f→c?ca−−−−→ l0

}
∪

{
l0

g→c?c#−−−−→ lf1 , lf1
f→c?c#−−−−→ lf2

}
.

Now that we have defined the system SP , we want to establish that it can be used to reduce
the PCP problem to a reachability problem in a peer-to-peer half-duplex system. We first show the
reduction to reachability in SP .

Lemma 5.1.2 (Reduction). Let P = (A, N, α, β) be a PCP instance. Then P admits at least one
solution if and only if the configuration

(
(lf2 , lf2 , lf2), (ε, ε, ε)

)
is reachable in SP .

Proof.

Let P = (A, N, α, β) be a PCP instance, and SP the system of communicating automata
encoding P .

5.1 – 5.1.2 Multiparty half-duplex systems 67

We begin by proving that if P has a solution, then
(
(lf2 , lf2 , lf2), (ε, ε, ε)

)
is a reachable con-

figuration in SP . Assume that P has a solution i1, i2, . . . , im, and let σ = αi1 · αi2 · . . . · αim .
Consider the execution

e = ei1 · ei2 · . . . · eim · ev · ef

where, for each j ∈ {1, · · · , N}, ej denotes the execution

ej = g→c!gαj,1 · . . . · g→c!gαj,|αj | · g→f!gj · g→f?fj · f→c!fβj,1 · . . . · f→c!fβj,|βj |

and

ev =
|σ|
•

k=1
(g→c?cσk · f→c?cσk) and ef = g→c!g# · g→f!g# · g→f?f# · f→c!f# · g→c?c# · f→c?c#.

The processes executing actions in ej are pg and pf. If they start with an empty buffer for g → f,
they end with an buffer empty. So the sequence of actions ei1 · ei2 · . . . · eim respects the FIFO
semantics, and ends with buffer g → c containing αi1 · . . . · αim , whereas buffer f → c contains
βi1 · . . . · βim . Since, by hypothesis, i1, . . . , im is a solution of P , both buffers actually contain σ.
So ev respects the FIFO semantics, and we showed that

(
(lf2 , lf2 , lf2), (ε, ε, ε)

)
is reachable in

SP through the execution e.

Conversely, if
(
(lf2 , lf2 , lf2), (ε, ε, ε)

)
is reachable in SP , then we show that there exists a solu-

tion to P . Let e be an execution of SP such that
(
(l0, l0, l0), (ε, ε, ε)

) e=⇒
(
lf2 , lf2 , lf2), (ε, ε, ε)

)
.

Let e′ ∼ e be the execution obtained by rescheduling all receptions of pc after all send actions
of pg and pf, ie e′ = es · ec where es contains actions of participants pg and pf and ec contains
actions of participant pc. Let γ be the configuration such that γ0

es=⇒ γ. We claim that γ is such
that

(1) participants pg and pf are in their final state lf2 ,
(2) participant pc is in its initial state l0, and buffer g → f is empty,
(3) there is a non-empty sequence of indices i1, . . . , im such that g → c contains αi1 ·. . .·αim ·#

and f → c contains βi1 · . . . · αim · #.

Claim 1 follows from the fact that γ
ec=⇒

(
lf2 , lf2 , lf2), (ε, ε, ε)

)
and participants pg and pf are

idle during ec. Claim 2 follows from the fact that γ0
es=⇒ γ and pc remains idle during es.

Claim 3 follows from claim 1 and claim 2 and the definition of SP ; indeed, the only way for
pg to reach its final state is to guess a non-empty sequence i1, . . . , im, send it to pf, and send
αi1 · . . . · αim · # to pc, whereas the only way for pf to reach its final state lf2 is to pop i1, . . . , im

and send βi1 · . . . · βim · # to pc.

Now, from the fact that γ
ec=⇒

(
lf2 , lf2 , lf2), (ε, ε, ε)

)
, we deduce that pc receives on buffers g −→ c

and f −→ c the same sequence of messages, therefore αi1 · α12 · . . . · αim = βi1 · β12 · . . . · βim ,
and i1, i2, . . . , im is a solution of P . □

Finally, observe that SP is peer-to-peer half-duplex as topo(S) is a half-duplex topology (see
Figure 5.3).

So far, we have shown that SP allows to reduce the existence of a solution to the PCP instance
P to a reachability problem in SP (Lemma 5.1.2). We also identified sufficient conditions on their
topology for peer-to-peer systems to be half-duplex (Lemma 5.1.1). It is immediate to check that
SP satisfies these conditions. As a consequence, we have the following result.

68 CHAPTER 5 — Generalisation of half-duplex systems

pg pc

pf

Figure 5.3: Topology of the system SP from Figure 5.2

Theorem 5.1.3. The configuration and control-state reachability problem are not decidable for
peer-to-peer half-duplex systems.

5.2 Mailbox multiparty half-duplex systems

We saw in the previous section that in general, regular safety problems are not decidable in
multiparty half-duplex systems from Definition 5.1.3. However, our undecidability proof relied on a
peer-to-peer system, and we will see in this section that the safety problems we are interested in are
decidable for mailbox systems. The following theorem states that with a mailbox communication
architecture, multiparty half-duplex systems are in fact RSC.

Theorem 5.2.1. Mailbox multiparty half-duplex systems are RSC.

Proof.

By contradiction, assume that a mailbox system S is not RSC, we show that S is not multiparty
half-duplex. As S is not RSC, there exists a borderline violation e ∈ executions (S). We claim
that for all e′ such that e ∼ e′, e′ is not half-duplex.

Let cgraph (e′) = ({1, . . . , m} , →e′ , κe′). Since e′ is not causally RSC, we get, by Lemma 3.1.2,
that cgraph (e′) contains a cycle of communications 1 →e′ 2 →e′ · · · →e′ n →e′ 1 where for all
i ∈ {1, . . . , n}, either ϑ−1(i) = {ji, ki} is a matching pair, or ϑ−1(i) = {ji} is an unmatched
send. We assume that ji < ki, ie ji is the index of the send action and ki the index of the receive
action. Up to a circular permutation, we can also assume, without loss of generality, that j1 is the
first send in e′ among the send actions of the communications forming the cycle, ie j1 < jℓ for
all ℓ ∈ {2, . . . , n}. Now, let us reason by a case analysis on the nature of the edge in agraph(e′)
implying the edge n →e′ 1 in cgraph (e′).

• Case jn ≺e′ j1: then jn < j1, contradicts the minimality of j1. Impossible.

• Case kn ≺e′ j1: then jn < kn < j1, impossible.

• Case kn ≺e′ k1: then kn < k1 and either (1) process (akn) = process (ak1) or (2) there is
i ∈ I , v, v′ ∈ V such that akn = ι?v and ak1 = ι?v′. Because of the mailbox semantics, (1)
and (2) are equivalent, so (2) is granted. But then ajn = ι!v and aj1 = ι!v′. Since e′ is a
FIFO execution, and kn < k1, we get that jn < j1, and again, we arrive at a contradiction.

• Case jn ≺e′ k1: then jn < k1, and process (ajn) = process (ak1). Moreover, j1 < jn by
the minimality of j1.

To sum up, let p, q, r, v1, v2 be such that aj1 = q!pv1 , ak1 = q?pv1 , and ajn = r!qv2 . Then we
have just shown that e′ = . . . · q!pv1 · . . . · r!qv2 · . . . · q?pv1 · . . ., so e′ is not a half-duplex
execution. □

5.3 – Why RSC is a good generalisation of binary half-duplex 69

p

l0 l1

l2

q

l0 l1 l2
2!v2

1?v1

1!v1 2?v2

Figure 5.4: Example of RSC system that is not binary half-duplex

Notice that the converse of Theorem 5.2.1 does not hold: being RSC is not a sufficient condition
to be half-duplex. Indeed, an unmatched send can fill the buffer of a process willing to send. More
precisely, consider the system from Figure 5.4. It is RSC, but not binary half-duplex: the two send
actions have to happen before the reception of v2. At least one of the two messages is sent by a
participant whose input buffer is not empty. However this can be seen as a pathological situation,
and if a system is RSC and has no unmatched messages it is also half-duplex. In an RSC execution
without unmatched messages, all messages sent are received right away, hence all send actions
happen when all buffers are empty.

5.3 Why RSC is a good generalisation of binary half-duplex

As we saw, mailbox generalised half-duplex systems enjoy the same decidability results as binary
half-duplex systems. Their reachability space is not regular, but as they are RSC, regular safety
problems are decidable for them.

Binary half-duplex systems are RSC, and two participants RSC systems are close to binary
half-duplex systems. The only difference between those two classes is the unmatched messages.
Indeed, such RSC systems allow both buffers to be filled by unmatched messages, while binary
half-duplex systems allow only one buffer to contain unmatched messages. As this was mentioned
in the previous section, this is a pathological situation, as no system is supposed to be able to have
its buffers filled with messages that cannot be matched.

As binary half-duplex systems, RSC systems enjoy decidability of regular safety problems.
These decidability results hold whatever the number of participants is. As several buffers may
contain messages simultaneously, they lack regularity of the reachability space, but we think this is
an acceptable cost for extending the properties of binary half-duplex systems to multiparty.

To conclude this discussion, we propose in Figure 5.5 a graphical representation of the relation
between the different generalisations we mentioned in this chapter.

70 CHAPTER 5 — Generalisation of half-duplex systems

Binary H.D.

Mailbox H.D.

Undecidable reachability

Multiparty H.D.

D
ecidable reachability

RSC

Figure 5.5: Relation between different half-duplex generalisations

CHAPTER 6
RSC characterisation of

well-formed
choreographies

Typically, the formal approaches reasoning on protocols of communications globally provide a
way to describe synchronous behaviours: the atomic action is a message exchange between two
participants. They also provide formal basis to reason on the distribution of global description on the
individual participants. A global description is well-formed when its distribution is well-behaved.

In this chapter, we present a choreographic setting where the ‘global description’ is a language
of synchronous execution, and the distribution of such a language is a system of communicating
automata. We discuss how the notion of realisability with synchronous communication is well
suited to reason on the distribution of such a language.

6.1 Choreographies

We will use the term choreography to refer to a global description of a protocol of communication.
A choreography describes the interactions between all the participants: which message exchange
can happen after which one, what can be done in parallel. We define formally choreographies as
languages of synchronous executions, relying on the same generic framework we used throughout
this thesis.

Definition 6.1.1 (Choreography). Given a set of participants P, a set of buffer I and a set of
messages V, a choreography (denoted C) is a regular language, prefix closed, over ΥP,I,V.

We restrict choreographies to regular languages to be able to describe them efficiently, using
finite state automata. We denote with AC the finite state automaton recognising executions of C. As
C is prefixe closed, all control states of AC are accepting.

The intuition behind the prefix closure is that we want a global description that embeds all the
possible behaviours of the system. This is similar to what we had with communicating automata, in
which we did not define accepting states.

Example 6.1.1 – A choreography can be used to formalise the protocol we used to illustrate
communicating automata in Example 2.2.2. Informally, this protocol is a sequence of four ex-
changes of messages: request from the client to the server, result from the server to the client,
acknowledgement from the client to the server, and log from the server to the database. This

71

72 CHAPTER 6 — RSC characterisation of well-formed choreographies

0 1

23

4

s!c?srequest

c!s?cresult

s!c?sack

d!s?dlog

s!c?srequest

d!s?dlog

Figure 6.1: Example of a choreography: Ccsd

sequence of exchanges can be repeated at will. Let Ccsd the choreography corresponding to this
description, Figure 6.1 shows the automaton AC

∗. Notice that to account for the fact that nothing
prevents the client from sending a new request before the server sent log to the database, the two
orderings of these messages are composed in parallel.

We allow ourselves to extend the notation cte (w) for choreographies, defining it as such:
cte (C) = {e|∃w ∈ C, e = cte (w)}. To ease notation, given a choreography C, when referring to
pre (cte (C)), or cte (C)

∼
, we write pre (C), or C

∼
.

A choreography is a description of a communication protocol from a global point view. We
propose communicating automata to reason on their distributed description. We begin by defining
the projection of a choreography onto a communicating automaton. This operation consists in
extracting the behaviour of one participant from the global description.

Definition 6.1.2 (Projection). Let C be a choreography, and AC =
(
QC , δC , q0

C , FC
)

be the finite
state automaton over alphabet ΥP,I,V recognising executions of C. The projection of C on a
participant p ∈ P, denoted C ⇂ p, is the non-deterministic communicating automaton Ap =(
Lp,Vp, Ip, Actp, δp, l0p

)
where:

• Lp = QC ;

• l0p = l0C ;

• Actp = {ι!v | ∃(l, ι!p?qv, l′) ∈ δC} ∪ {ι?v | ∃(l, ι!q?pv, l′) ∈ δC};

• Vp = {v | ∃aA ∈ Actp, message (aA) = v};

• Ip = {ι | ∃aA ∈ Actp, buffer (aA) = ι};

• and the transition function is defined as follow:

− (l, ι!v, l′) ∈ δp if (l, ι!p?qv, l′) ∈ δC ,

− (l, ι?v, l′) ∈ δp if (l, ι!q?pv, l′) ∈ δC , and

− (l, ε, l′) ∈ δp if (l, c, l′) ∈ δC with p /∈ process (c).
∗This figure corresponds to [Akroun, Salaün and Ye 2016, Fig. 4]

6.1 – Choreographies 73

Client Server Database

s!request

c?result

s!ack

s?request

c!result

s?ack

d!log d?log

s!request s?request

d!log

ε

ε

ε

ε

ε

ε ε

Figure 6.2: Intermediate implementation of the choreography Ccsd from Figure 6.1

The projection of a choreography C is defined thanks to its automaton AC: the obtained
communicating automata have the same states and transitions as AC . However, the labels of
the transitions are translated from communications to communicating automaton actions. A
communication is translated to a send action when projecting onto the sender, to a reception when
projecting onto the receiver, and to an epsilon transition when projecting on neither of them.

While the projection allows to obtain a communicating automaton able to display all the
behaviours of a participant in a choreography, what we are interested in is to obtain a system
of communicating automata, able to interact with each other in a way that was described by the
choreography. That is the purpose of implementation.

Definition 6.1.3 (Implementation of a choreography). Let C be a choreography over ΥP,I,V, the inter-
mediate implementation of C, denoted αnd (C), is the system of non-deterministic communicating
automata (Ap)p∈P, where for all p ∈ P, Ap = C ⇂ p.

The implementation of C, denoted α (C), is obtained by removing the ε-transitions from
αnd (C)†.

The implementation of a choreography is a system of communicating automata capable of
exhibiting all the behaviours of the choreography. When S = α (C), we say that S implements C.

Example 6.1.2 – The implementation of the choreography Ccsd from Example 6.1.1 is displayed in
Figure 6.3. As expected, this system behaves in a similar way to the one from Figure 2.1, page 14.
The only difference is the two possible orderings of d!log and s?request for the server.

The intermediate implementation is shown in Figure 6.2. The use of ε-transitions simplifies
the projection: providing as many copies of the automaton AC as there are participants with
straightforward rewriting of the labels of the transitions is enough.

All executions described by a choreography are feasible synchronous executions in its imple-
mentation. We denote with executionssync (S) = {e | e ∈ executions (S), e ∈ cte ((ΥS)∗)} the
set of feasible synchronous executions of S.

Lemma 6.1.1. Let C be a choreography, C ⊆ executionssync (α (C)).

Proof.
†Note that removing ε-transitions from a finite state automaton is always possible [Hopcroft and Ullman 1979].

74 CHAPTER 6 — RSC characterisation of well-formed choreographies

Client

0 1 2
s!request c?result

s!ack

0

Server

1

23

4

s?request

c!result

s?ack

d!log

s!request

d!log

0

Database

d?log

Figure 6.3: Implementation of the choreography Ccsd from Figure 6.1

Let C be a choreography over an alphabet of matched communication ΥP,I,V, and
AC =

(
QC , δC , q0

C , FC
)

the automaton recognising it. Let Snd = αnd (C) be the interme-
diate implementation of C. Let w ∈ C, we reason by induction on the length of w.

Let w = w′ · c, assume by induction that w′ ∈ executionssync (Snd) with γ0
cte(w′)====⇒
Snd

(l, b∅)
such that there exists q ∈ QC such that for all p ∈ P, lp = q. This is possible because by
Definition 6.1.2, all Ap have the same set of states.

We show that if w′ · c ∈ C, then there exists q′ ∈ QC such that (l, b∅) cte(c)===⇒
Snd

(l′, b∅) with for

all p ∈ P, l′p = q′. Let c = ι!p?qv. We know that (q, c, q′) ∈ δAC , so by Definition 6.1.2, the
communicating automaton of each participant in P can execute a transition to state q′:

• (q, ι!v, q′) ∈ δp, so (l, b∅) ι!pv−−→
Snd

(ls, b), with bι = v, lsp = q′ and for all q ∈ P \ {p} , lrq =
q;

• (q, ι?v, q′) ∈ δq, so (ls, b) ι?qv−−→
Snd

(lr, b∅), with lrq = lrp = q′, and for all r ∈ P \ {p, q} ,

lrr = q;

• for all r ∈ P \ {p, q}, (q, ε, q′) ∈ δr, so (lr, b∅) ε==⇒
Snd

(l′, b∅).

As w ∈ (ΥP,I,V)∗, cte (w) is a synchronous execution. It is feasible in Snd, and as S is obtained
by computing the ε-closure of Snd, cte (w) ∈ executionssync (S). □

We saw that the implementation of a choreography is capable of exhibiting all the synchronous
executions of the choreography. However, the Lemma 6.1.1 does not state that all the behaviours of
the projection are part of those of the choreography. In fact, it is not always the case, and this is a
reason why we need a notion of well-formedness for choreographies.

6.2 Well-formedness of choreographies

Choreographies are a description of synchronous behaviours, and their implementations are asyn-
chronous. The implementation can therefore display more behaviours than the choreography. This
can be an issue sometimes, as behaviours that were not desired, and not apparent when designing
the choreography, may become possible in the implementation. Well-formedness of a choreography
is a property ensuring that its implementation will behave accordingly to what was described in the

6.2 – Well-formedness of choreographies 75

global point of view. However we do not want to restrict the implementation to only synchronous
behaviours, as we want to benefit from asynchrony in the communicating automata. Therefore,
we have to define which asynchronous executions are considered as part of what a choreography
describes. This is illustrated in the following example.

Example 6.2.1 – Let ΥP,I,V be an alphabet of matched communications, Ccsd ∈ (ΥP,I,V)∗ be
the choreography from Example 6.1.1, and S its implementation. The word w = s!c?sreq ·
c!s?cres · s!c?sack · d!slog · s!creq is obviously not in Ccsd, as it is not in (ΥP,I,V)∗. However,
the execution e = cte (w) could be completed to become synchronous execution cte (w′) with
w′ = s!c?sreq · c!s?cres · s!c?sack · d!s?dlog · s!c?sreq, and w′ ∈ C. We do not want to reject S
as a valid implementation of Ccsd because it admits this non-synchronous execution.

To answer the question from the previous paragraph, we begin by defining partial executions.

Definition 6.2.1 (Partial execution). Let e = a1 · . . . ·an and e′ = a′
1 · . . . ·a′

m be two executions, e is
a partial execution of e′, denoted e ⊴ e′, if there exists a function σ such that for all i ∈ {1, . . . , n}:

1. ai = a′
σ(i);

2. ∀j ∈ {1, . . . , n},

• i < j ⇐⇒ σ(i) < σ(j), and

• i = j ⇐⇒ σ(i) = σ(j);

3. ∀k ∈ {1, . . . , m}, a′
k ≺e′ a′

σ(i) =⇒ ∃j, σ(j) = k.

Relying on action graphs, this definition can be rephrased as so: e ⊴ e′ if agraph(e) is a consist-
ent induced subgraph of agraph(e′). Intuitively, e is a partial execution of e′ if it can be obtained by
removing a set of actions from e′, such that no action in e depends on an action in the set of removed
ones. If a ≺ a′, with a′ ∈ e, then a ∈ e as well. For an execution e, partials (e) = {e′|e′ ⊴ e}. We
extend this notion to languages of executions: partials (L) = {e|∃e′ ∈ L, e ⊴ e′}.

We say that any partial execution of a synchronous execution in a given choreography is
considered as part of what the choreography describes.

Definition 6.2.2 (Well-Formedness of a choreography). A choreography C is well-formed if

• α (C) is RSC, and

• partials (C) = executionsrsc (α (C)).

Remember that, if the projection of a choreography is RSC, the language of its RSC executions
is enough to describe all the executions of the system. Checking that this language is equivalent to
the partial closure of the choreography allows us to know whether the implementation is able to
exhibit unspecified behaviours or not.

Observe that the conditions of Definition 6.2.2 imply the converse of the statement of
Lemma 6.1.1: for a well-formed choreography C, C = executionsrsc (α (C)).

When a choreography is not well-formed, we sometimes call them ill-formed. Example 6.2.2
illustrates this notion. The reason why the choreography from this example is not well-formed is
that it imposes an order on actions without causal dependencies: the two send actions can happen
independently and still the choreography imposes that they alternate.

76 CHAPTER 6 — RSC characterisation of well-formed choreographies

p 0 q 0

r 0 1

0!v1 1!v2

0?v1

1?v2

(a) System Srsc

0 1
1!p?qv1

2!r?qv2

(b) Choreography Cn

Figure 6.4: AC of Cn which is not well-formed

Example 6.2.2 – Consider the choreography Cn whose automaton AC is represented in Figure 6.4.
Its implementation is the system Ssrc recalled in Figure 6.4a. This choreography is not well-
formed: indeed, even though S is RSC, the execution e = 2!qv2 · 1!pv1 is RSC and feasible by
S, but is not a partial execution of any execution in Cn. This execution is causally equivalent to
e′ = 1!pv1 · 2!qv2 which is a partial execution of 1!p?qv1 · 2!q?qv2, but no partial execution of C
can begin with 2!rv2 and still contain 1!pv1 later, so e ⋬ cte (w) for all w ∈ C.

In contrast, the choreography from Example 6.1.1 is well-formed. We show now that checking
well-formedness of a choreography is decidable. This result comes from the fact that for C a
choreography, partials (C) is a regular language. To show this, we define how to build a finite state
automaton Apart (C), and then we will show that its language is partials (C).

To build Apart (C), we start from AC , and for each transition (labelled by a matched communic-
ation), we add two transitions, towards copies of the state of AC reached by the original transition.
On one of the new transitions, we remove the reception, and on the other one, we remove the
whole communication and leave only an ε. From each copied state, we copy the behaviours of AC
possible from the original state, removing all the actions that are causally dependent on the actions
that were removed. This process is then carried on for the new transitions as well: each matched
communication that was copied undergo the same process, and each unmatched communication is
doubled by an ε-transition with its own copy of the states.

Definition 6.2.3 (Apart). Let C be a choreography over alphabet ΥP,I,V, and AC =
(
QC , δC , q0

C , FC
)

be the finite state automaton recognising executions of C; Apart (C) =
(
Qpart, δpart, q0

part, Fpart

)
is the non-deterministic finite state automaton where Qpart = QC × 2P × 3IF × 3IB×V,
q0

part =
(
q0

C ,∅,∅,∅
)
, Fpart = Qpart, and

(1) ((q, p, f, b) , ι!p?qv, (q′, p, f, b)) ∈ δpart if:

• (q, ι!p?qv, q′) ∈ δC , and

• {p, q} ∩ p = ∅, and

• {ιr, ιs} ∩ f = ∅ and

• {(ι, v)r , (ι, v)s} ∩ b = ∅;

(2) ((q, p, f, b) , ι!pv, (q′, p′, f′, b′)) ∈ δpart if there exists q ∈ P such that:

• (q, ι!p?qv, q′) ∈ δC , and

• p′ = p ∪ {q}, and

• ιs /∈ f, and

6.2 – Well-formedness of choreographies 77

• either:

− ι ∈ IF , and f′ = f ∪ {ιr} and b′ = b, or
− ι ∈ IB , and b′ = b ∪ {(ι, v)r} and f′ = f;

(3) ((q, p, f, b) , ε, (q′, p′, f′, b′)) ∈ δpart if there exists (p, q) ∈ P2, ι ∈ I, and v ∈ V such that:

• (q, ι!p?qv, q′) ∈ δC , and

• p′ = p ∪ {p, q}, and

• either:

− ι ∈ IF , and f′ = f ∪ {ιs}, or
− ι ∈ IB , and b′ = b ∪ {(ι, v)s} and f′ = f;

In a state (q, p, f, b), q represents the control state of C, p represents the set of blocked processes,
and f represents the set of blocked FIFO buffers, and b represents the set of blocked bag buffers.
The notation ιs ∈ f means that ι is blocked for all actions, and ιr that ι is blocked for receptions.
The same notation applies to pairs of bag buffers and messages in b.

Remember that two actions have a causal dependency if either their processes are the same, or
if they are of the same type on the same FIFO buffer, or if they are of the same type, implying the
same message, on the same bag buffer. We say that a process, or a buffer, is ‘blocked’ if a transition
necessary to reach (q, p, f, b) is labelled by a communication in which an action by this process, or
on this buffer, was removed. The intuition is that from this state, no action by such a process, or
on such a buffer (implying the same message if the buffer is bag), should be part of a recognised
execution.

A FIFO buffer ι, or a pair (ι, v) of bag buffer and message, can be blocked in two ways: either
for receiving messages, that is a reception from this buffer was removed, or for sending, if an entire
communication using this buffer was removed. Observe that it is not possible to remove a send
action on a buffer without removing a reception as well, therefore, we consider a buffer that is
blocked for send actions as blocked for all actions.

Remembering blocked processes and buffers ensures that, in an execution e recognised by
Apart (C), being the partial execution of an synchronous execution w, if an action a is missing from
cte (w), no action causally dependant on a will be part of e.

Example 6.2.3 – Figure 6.5 represents automaton Apart (C) for Ccsd from Example 6.1.1. Parts
of the automaton have been omitted, as illustrated with the dashed transitions leaving some states.
These dashed transitions are labelled by ε, and lead to states from which only ε are accepted. In
this example, there are no bag buffers, so we did not represent the set of blocked bag buffers on the
states of the figure.

Highlighted transitions are the ones leading to a state accepting the execution e from Ex-
ample 6.2.1.

Example 6.2.4 – Consider the choreography from Example 6.2.2, Apart (Cn) is represented in
Figure 6.6. It can be visually confirmed that no execution starting with 2!rv2 can contain 1!pv1 .

We show now that the construction of Apart is correct and complete: it recognises all and only
partial executions of synchronous ones in the choreography it comes from.

78 CHAPTER 6 — RSC characterisation of well-formed choreographies

0,∅,∅ 1,∅,∅

2,∅,∅3,∅,∅

4,∅,∅

1, {s} , {sr}

3, {s} , {sr}

4, {s} , {sr}

0, {d} , {dr}

1, {d} , {dr} 2, {d} , {dr}

3, {d} , {dr}

4, {d} , {dr}

3, {d, s} , {dr, sr}

4, {d, s} , {dr, sr}

0, {d, s} , {ds, sr}1, {d, s} , {ds, sr}1, {d, s} , {dr, sr} 0, {d, s} , {ds}

2, {c} , {cr}

2, {c, d} , {cr, dr}

s!c?sreq

s!creq

c!s?cres

c!sres

s!c?sack s!cack

d!s?dlog

s!c?sreq

d!slog

ε

s!creq

d!s?dlog

s!creq

ε

ε

s!creqs!creq

s!c?sreq

s!creq

c!s?cres

c!sres

s!c?sack

s!cack

d!slog

ε

s!c?sreq

s!creq

d!slog

s!creq

ε

ε

Figure 6.5: Apart (Ccsd)

6.2 – Well-formedness of choreographies 79

0,∅,∅ 1,∅,∅

1, {q} , {1r}

0, {q} , {1r, 2r}

1, {q} , {1r, 2r}

0, {q, r} , {2s}

1, {q, r} , {1r, 2s}

0, {q, r} , {1r, 2s}

1, {p, q, r} , {1s, 2s}

1, {p, q} , {1s}

0, {p, q} , {1s, 2r}

1, {p, q} , {1s, 2r}0, {q} , {2r}

0, {p, q, r} , {1s, 2s}

1!p?qv1

1!pv1

ε

2!r?qv2

2!rv2

ε

2!rv2

ε

1!pv1

ε

2!rv2

ε

1!pv1

ε ε 1!pv1

ε

ε

ε

2!rv2

ε

ε2!rv2

ε

ε

1!pv1

Figure 6.6: Apart (choreography) for Cn from Figure 6.4

80 CHAPTER 6 — RSC characterisation of well-formed choreographies

Lemma 6.2.1. Let C be a choreography, L (Apart (C)) = partials (C).

Proof.

Let C be a choreography over an alphabet ΥP,I,V, with AC =
(
QC , δC , q0

C , FC
)

the finite state
automaton recognising it, and Apart (C) =

(
Qpart, δpart, q0

part, Fpart

)
the finite state automaton

from Definition 6.2.3.

Let w = c1 · . . . · cn such that w ∈ L (Apart (C)), we will show that there exists w′ ∈ C such
that cte (w) ⊴ cte (w′).

Because w is recognised by Apart (C), we know that for all i ∈ {1, . . . , n}, there ex-
ists qi ∈ QC , pi ⊆ P, fi ⊆ IF × {r, s}, and bi ⊆ IB × V × {r, s}, such that
((qi−1, pi−1, fi−1, bi−1) , ci, (qi, pi, fi, bi)) ∈ δpart, with q0 = q0

C , p0 = f0 = b0 = ∅. We
assume that w contains explicitly all the ε needed for Apart (C) to recognise this word. By
Definition 6.2.3 of Apart, this means that for all i ∈ {1, . . . , n}, there exists c′

i ∈ ΥP,I,V with
ci ⊆ c′

i (or ci = ε), such that (qi−1, c′
i, qi) ∈ δC , with q0 = q0

C . Let w′ = c′
1 · . . . · c′

n, and
observe that w′ ∈ C. Let e′ = cte (w′), with e′ = a′

1 · . . . · a′
k, and similarly, e = cte (w) with

e = a1 · . . . · am. We will show that e ⊴ e′.

Let ϑ be the function such that cϑ(i) is the communication of w to which belongs ai from e,
respectively for w′ and e′. Let σ be the function such that for all i ∈ {1, . . . , m}, ai = a′

σ(i).

By contradiction, assume that e ⋬ e′. This means that there exists i ∈ {1, . . . , m}, and
j ∈ {1, . . . , σ(i)}, such that a′

j ≺e′ a′
σ(i), and for all i′ ∈ {1, . . . , i} , σ(i′) ̸= j. In turns, this

implies that either:

• process
(
a′

j

)
= process (ai), or

• buffer
(
a′

j

)
= buffer (ai), a′

j and ai are of the same type, and either

− ι ∈ IF , or
− ι ∈ IB and message

(
a′

j

)
= message (ai).

Let c′
ϑ(j) = {ι!pv, ι?qv} be the communication from which an action was removed, there are two

possibilities for the removed action a′
j :

• a′
j = ι!pv, then cϑ(j) = ε, implying {p, q} ⊆ pϑ(j) and

− if ι ∈ IF , ιs ∈ fϑ(j),
− (ι, v)s ∈ bϑ(j) otherwise; or

• a′
j = ι?qv, then either

− cϑ(j) = ε, we already dealt with this case, or
− cϑ(j) = {ι!pv}, implying q ∈ pϑ(j) and

− if ι ∈ IF , then ιr ∈ fϑ(j),
− (ι, v)r ∈ bϑ(j) otherwise.

6.2 – Well-formedness of choreographies 81

As ϑ (σ(i)) > ϑ(j), and because in Definition 6.2.3 no transition removes element from f, b or p,
either process (ai) ∈ pϑ(σ(i))−1 or buffer (ai) ∈ fϑ(σ(i))−1. This is a contradiction, because((

qϑ(σ(i))−1, pϑ(σ(i))−1, fϑ(σ(i))−1, bϑ(σ(i))−1
)

, cϑ(σ(i))−1,(
qϑ(σ(i)), pϑ(σ(i)), fϑ(σ(i)), bϑ(σ(i))

))
∈ δpart.

Now for the other inclusion, let e ∈ partials (C). We show that e ∈ L (Apart (C)).

By definition of partials (C) and by Definition 6.2.1 of partial executions, there exists e′ ∈ C
such that e ⊴ e′, and e′ is synchronous. Observe that e is RSC: it is the partial execution of
a synchronous one. Let w = etc (e) and w′ = etc (e′). Let w′ = c′

1 · . . . · c′
n, and assume w

contains explicit ε for each communication that was totally removed from w′ to obtain w, hence
w = c1 · . . . · cn. We will show by induction on the length of w that it is accepted by Apart (C).

Assume by induction that wpre = c1 · . . . ·cj , for j < n,, is accepted by Apart (C), with (q, p, f, b)
the state accepting wpre, such that:

• p = {q | ∃i ∈ {1, . . . , j} , c′
i = ι!p?qv, ci = ι!pv} ∪

{p, q | ∃i ∈ {1, . . . , j} , c′
i = ι!p?qv, ci = ε},

• f = {ιr | ∃i ∈ {1, . . . , j} , c′
i = ι!p?qv, ci = ι!pv} ∪

{ιs | ∃i ∈ {1, . . . , j} , c′
i = ι!p?qv, ci = ε}, and

• b = {(ι, v)r | ∃i ∈ {1, . . . , j} , c′
i = ι!p?qv, ci = ι!pv} ∪

{(ι, v)s | ∃i ∈ {1, . . . , j} , c′
i = ι!p?qv, ci = ε}.

We show that
(
(q, p, f, b) , c(j+1), (q′, p′, f′, b′)

)
∈ δpart, with p′, f′ and b′ satisfying the same

constraints as p, f, and b respectively for j = j + 1. Depending on c(j+1):

• c(j+1) = ι!p?qv, so c(j+1) = c′
(j+1). Because, by hypothesis, we have

cte (c1 · . . . · cj) ⊴ cte
(
c′

1 · . . . · c′
j

)
, by Definition 6.2.1 of partial executions we know

that for all k ∈ {1, . . . , j}, for all a ∈ c′
k, if:

− process (a) ∈ {p, q}, or
− buffer (a) = ι and either

− ι ∈ IF or
− ι ∈ IB and buffer (a) = v,

then a ∈ ck. So by induction hypothesis, {p, q} ∩ p = ∅, ιr /∈ f and (ι, v)r /∈ b. By
item (1) of Definition 6.2.3,

(
(q, p, f, b) , c(j+1), (q′, p′, f′, b′)

)
∈ δpart, with p′ = p, f′ = f,

and b = b′.

• c(j+1) = ι!pv, so there exists a′ = ι?qv such that c′
(j+1) = c(j+1)∪{a′}. By Definition 6.2.1

again, we know that for all k ∈ {1, . . . , j}, for all a ∈ c′
k, if process (a) = p then a ∈ ck.

Moreover, if a ∈ SP,I,V, and buffer (a) = ι, if either ι ∈ IF or message (a) = v, a ∈ ck.
So, by induction hypothesis, p /∈ p, ιs /∈ f, and (ι, v)s /∈ b. By item (2) of Definition 6.2.3,(
(q, p, f, b) , c(j+1), (q′, p′, f′, b′)

)
∈ δpart, with f′ = f ∪ {ι} and p′ = p ∪ {q}.

82 CHAPTER 6 — RSC characterisation of well-formed choreographies

p q r

0 1

1!v1 2!v2 1?v1

2?v2

2?v2

Figure 6.7: System that is not deadlock-free

• c(j+1) = ∅, let c′
(j+1) = ι!p?qv. By item (3) of Definition 6.2.3, we have that

((q, p, f, b) , ε, (q′, p′, f′, b′)) ∈ δpart , with p′ = p ∪ {p, q}, and either

− f′ = f ∪ {ιr} if ι ∈ IF , or
− b′ = b ∪ {(ι, v)r} otherwise.

In all the cases, for all a ∈ c′
(j+1) such that a /∈ c(j+1), buffer (a) ∈ f′ and process (a) ∈ p′.

As the initial state of Apart (C) is
(
q0

C ,∅,∅,∅
)
, the induction hypothesis holds for w = ε. □

Because the partial closure of a choreography is a regular language (Lemma 6.2.1), checking if
a system of communicating automata is RSC is decidable (Theorem 4.1.4), and the language of
RSC executions of a system is regular (Theorem 3.3.3), we can state the following theorem.

Theorem 6.2.2. Checking whether a choreography is well-formed is decidable.

6.3 Properties of well-formed choreographies

If by definition, well-formedness of a choreography ensures that its implementation does not exhibit
new behaviours, other interesting properties come with this characterisation.

6.3.1 Deadlock-freedom

A property which is usually associated with safety of distributed systems is deadlock-freedom.
From any configuration of a system satisfying this property, reachability of a ‘final’ configuration
is guaranteed. A final configuration is a configuration in which all automata are in an accepting
state and all the buffers are empty, that is there are no pending message. All our control states are
accepting, so we consider stable configurations as final.

Definition 6.3.1 (Deadlock). Let S be a system, γ ∈ RS(S) is a deadlock if for all γ′ ∈ RS(γ),
γ′ is not stable.

A deadlock is a configuration from which no stable configuration is reachable.

Example 6.3.1 – Consider the system of communicating automata S, whose graphical representa-
tion is depicted in Figure 6.7. This system admits a deadlock: if participant r reaches its state 1
while buffer 1 is not empty, no execution will ever lead to a stable configuration.

A system S admits a deadlock if there exists γ ∈ RS(S) such that γ is a deadlock, and is
deadlock-free otherwise.

6.3 – 6.3.1 Deadlock-freedom 83

0 1

1!p?rv1

2!q?rv2

2!q?rv2

Figure 6.8: Example of Async

Definition 6.3.2 (Deadlock-Freedom). A system S is deadlock-free if for all γ ∈ RS(S),
∃γ′ ∈ RS(γ) such that γs is a stable configuration.

In other words, a system is deadlock-free if no deadlock is reachable. From all reachable
configuration of such a system, an execution can lead to a stable configuration.

There is a connection between the notion of deadlock-freedom and synchronous executions.
By essence, synchronous execution lead to stable configurations. If all executions of a system are
prefixes of one of its synchronous executions, we can be sure that this system is deadlock-free.

The language of synchronous executions of a system of communicating automata is reg-
ular. To show this, we begin by defining how to build an automaton Async such that
L (Async (S)) = executionssync (S) .

Definition 6.3.3 (Automaton Async). Let S = (Ap)p∈P be a system of communicating automata
such that product (S) =

(
LS,VS, IS, ActS, δS, l0S

)
, Async (S) =

(
Qsync, δsync, q0

sync, Fsync

)
is a finite state automaton over alphabet ΥS such that

• Qsync = LS,

• q0
sync = l0,

• Fsync = Qsync, and

• (l, c, l′) ∈ δsync if (l, b∅) cte(c)===⇒
S

(l′, b∅).

Intuitively, Async matches the send actions and the receptions that can happen ‘at the same
time’, with all the buffers empty at all time. Its control states are the states of the product of the
system, all of them being accepting. It allows a transition from a first control state to a second one
if it is labelled by a communication whose send action can be executed from the first control state,
and whose reception can happen from the said send action, leading to the second control state.

Example 6.3.2 – Figure 6.8 shows the graphical representation of Async (S), for S the system of
communicating automata from Example 6.3.1. As participant r was the only one having more than
one state, Async (S) has the same shape as its automaton.

As mentioned earlier, if all executions of a system are prefixes of some of its synchronous
executions, this system is deadlock free. Remember that, for an RSC system, the set of RSC
executions is equal to the set of all executions, up to causal reordering. This means that, for such a
system, checking that its RSC executions are prefixes of its synchronous executions is enough to
ensure its deadlock-freedom. To show this, we need the following lemma, stating that the actions
missing from a partial execution can be added after it to form an new execution, causally equivalent
to the complete one.

Lemma 6.3.1. Let ep and e be two executions. If ep ⊴ e, then there exists e′ such that ep · e′ ∼ e.

84 CHAPTER 6 — RSC characterisation of well-formed choreographies

Proof.

Let e = a1 · . . . · an and epa′
1 · . . . · a′

m be two executions, such that ep ⊴ e.

By Definition 6.2.1 we know that there exists a function σ such that for all i ∈ {1, . . . , n},
for all j ∈ {1, . . . , m}, if i ≺e σ(j) then there exists j′ ∈ {1, . . . , j − 1} such that σ(j′) = i.
Therefore, for all ai ∈ e such that for all j ∈ {1, . . . , m}, σ(j) ̸= i, a can commute at least up to
the last action of ep. □

We now state that equality between the RSC executions of an RSC system, and the partial
closure of its synchronous executions, ensures deadlock-freedom of this system.

Lemma 6.3.2. Let S be an RSC system of communicating automata. If executionsrsc (S) =
partials (executionssync (S)), then S is deadlock-free.

Proof.

Let S = (Ap)p∈P be an RSC system of communicating automata, and assume
executionsrsc (S) = partials (executionssync (S)). We will show that for all e ∈ executions (S)
such that γ0

e=⇒
S

γ, there exists a stable configuration γs and an execution ec such that γ
ec=⇒
S

γs.

Let e ∈ executions (S) such that γ0
e=⇒
S

γ. Let e′ be an RSC execution such that
e′ ∼ e. We know that etc (e′) ∈ L (Arsc (S)) (by Lemma 3.3.1, page 33), and
because executionsrsc (S) = partials (executionssync (S)), we know that there exists
et ∈ executionssync (S) such that e′ ⊴ et. By Lemma 6.3.1, this means that there exists
ec such that e′ · ec = e′

t, with e′
t ∼ et. By definition of synchronous executions, there exists γ′

such that γ0
et=⇒
S

γ′, with γ′ stable. Therefore, γ
ec=⇒
S

γ′, proving our point. □

Notice however that the condition in Lemma 6.3.2 is not necessary for an RSC system to be
deadlock-free. Two causally equivalent executions are not necessarily partial executions of the same
execution: for e1, e2, e3 three executions over an arbitrary alphabet Λ, if e1 ⊴ e3, and e1 ∼ e2, it is
not always the case that e2 ⊴ e3. Observing that executionsrsc (S) ̸= partials (executionssync (S))
does not imply that executions (S) ̸= partials (executionssync (S))

∼
. Example 6.3.3 presents a

deadlock-free system that dos not satisfies the premise of Lemma 6.3.2.

Example 6.3.3 – Consider Srsc from Figure 3.4a. This system is deadlock-free: from any
configuration, the execution were either p or q sends its message in order to have the two buffers
filled with the same amount of messages, and then r receives all the messages in its buffer, leads to
a stable configuration. However, executionsrsc (Srsc) ⊈ partials (executionssync (Srsc)). Indeed,
observe that Async (Srsc) = AC for C the choreography from Example 6.2.2. As it was discussed
in this example, execution e was part of executionsrsc (Srsc), but not in partials (AC) and therefore
not in partials (executionssync (Srsc)). This can be visually confirmed with Figure 6.6, which
shows the automaton partials (executionssync (Srsc)), and Figure 6.6, displaying Arsc (Srsc).

Definition 6.2.2 of a well-formed choreography C does not require that the partial closure of
the synchronous executions of α (C) is equal to its RSC executions. However, the following lemma
states that this partial closure is equal to the partial closure of C.

6.4 – 6.3.2 RSC implementation 85

Lemma 6.3.3. Let C be a well-formed choreography, partials (executionssync (α (C))) =
partials (C).

Proof.

Let C be a well-formed choreography, with AC the associated finite state automaton. Let
S = α (C) be the implementation of C.

We begin by showing that partials (executionssync (S)) ⊆ partials (C). Let e ∈
partials (executionssync (S)). As it is a partial execution of a synchronous execution, we know
that e is RSC. This implies that e ∈ executionsrsc (S), because partials (executionssync (S)) ⊆
executions (S). Therefore, as C is well-formed, by Definition 6.2.2 executionsrsc (S) =
partials (C) so e ∈ partials (C).

For the other inclusion, remember that by Lemma 6.1.1, C ⊆ executionssync (α (C)). For all
e ∈ partials (C), there exists e′ ∈ C such that e ⊴ e′. As e′ ∈ executionssync (α (C)) as well,
e ∈ partials (α (C)). □

The consequence of the previous lemma is that implementations of well-formed choreographies
are deadlock-free.

Theorem 6.3.4. Let C be a choreography. If C is well-formed, then α (C) is deadlock-free.

Proof.

Let C be a well-formed choreography, and S = α (C) be its implementation. As C is well-formed,
by Definition 6.2.2 we have that partials (C) = executionsrsc (S). By Lemma 6.3.3, we know
that partials (executionssync (S)) = partials (C). Therefore, partials (executionssync (S)) =
executionsrsc (S), and by Lemma 6.3.2, we can conclude that S is deadlock-free. □

6.3.2 RSC implementation

Apart from deadlock-freedom, and therefore the safety properties that are implied by deadlock-
freedom, systems of communicating automata obtained by implementations of a well-formed
choreography are not guaranteed to have any safety properties. However, as implementations of
such choreographies are RSC, regular safety properties can be checked on the implementations.
This includes progress (see Section 4.2.4, page 56).

6.4 Discussion

The approach consisting in describing the protocols globally is quite natural. From the design
perspective, it is easier to think in terms of sequences of message exchange rather than in terms of
behaviour of each participant individually. One difficult aspect of the formalisms allowing to do
this is that the distributed system obtained from the global description may present behaviours that
were not planned globally. Ensuring there are no such behaviours is the point of the realisability
problem.

We begin this discussion with an overview of the formalisms allowing to do this, and a
comparison between them and our choreographic setting. We will follow with a study of realisability
throughout the different formalisms we considered, and we will finish with some comparison
between the classes of communicating automata obtained by projection of global types and RSC.

86 CHAPTER 6 — RSC characterisation of well-formed choreographies

6.4.1 Global description and safety

There are several formalisms allowing to describe globally a communication. We give an overview
of three of them: choreographies, MSGs, and multiparty session types. Almost all of them assume
a peer-to-peer communication architecture, and some of them rely on a mailbox one ([Basu,
Bultan and Ouederni 2012a]). In all the settings we will discuss here, the buffer implied in a
message exchange can be deduced from the sender and the receiver. This is not the case for our
choreographies, the buffer is a parameter of the communication, and we can describe hypothetical
protocols where a buffer would be used as a bus, with several participants sending and receiving
messages from it. In the following comparisons, we always consider our choreographies restricted
to the same communication architecture as the one of the other formalism.

6.4.1.1 Choreographies

Barbanera et al. defined in [Barbanera et al. 2020] choreography automata, which are very similar to
the automata AC of choreographies from Definition 6.1.1. Choreography automata can be projected
to obtained a local description of the behaviour, using communicating automata. Authors of [Bar-
banera et al. 2020] characterised well-formedness of choreography automata thanks syntactical
properties. Both synchronous and asynchronous semantics were considered for the distributed
representation.

A system of communicating automata obtained by projection of a well-formed choreography
automaton benefits from three safety properties: live, lock-free, and reception deadlock-free.
Liveness and lock-freedom are stronger properties than progress (Definition 4.2.5), imposing that
all the participants that did not reach a final state are able to execute transitions.

More recently, Barbanera et al. defined a generic framework for choreographic languages
[Barbanera et al. 2022]. They give a general condition for the projection of choreographies, based
on the notion of closure under unknown information. Intuitively, a language of communication is
closed under unknown information if it contains all words that cannot be distinguished from words
it contains by some participants. The results of this work are not entirely applicable to our setting,
as the only semantics studied for the local languages is synchronous. The safety properties ensured
for well-formed choreographies are not guaranteed to hold in an asynchronous setting.

Choreography conformance is a notion similar to well-formedness of choreography, but from a
different angle: its purpose is to ensure that a distributed description of a protocol satisfies a global
one (a choreography). In [Basu and Bultan 2011], this problem is addressed with an approach
seemingly similar to the one we used to characterise and decide well-formedness of choreographies.
Indeed, using a model similar to communicating automata for the formalisation of the distributed
description, they relied on the notion of synchronisability to decide choreography conformance. As
discussed in Section 3.4, the notion of synchronisability is very close to RSC, which we based our
well-formed choreographies on. However, remember that, contrary to what was stated in [Basu and
Bultan 2011], whether a system is synchronisable is not decidable [Finkel and É. Lozes 2017].

6.4.1.2 Multiparty Session Types

Multiparty session types resemble choreographies. One of their specificity compared to other
choreographic settings is the interest in typing programs, and therefore the use of process algebra
to reason on these programs. Well-formedness of the global type is often addressed through the
projection function (e.g. in [Coppo et al. 2015], [Honda et al. 2008]): a global type is well-formed if

6.4 – 6.4.1 Global description and safety 87

1!p?qv1

2!p?rv2

Figure 6.9: Example of a choreography whose implementation does not satisfy progress from
[Coppo et al. 2015]

the projection function is defined for it. Choice is the mechanism allowing branching. A participant
may choose within a list which message to send to another participant. For a given choice, both the
sender and receiver are typically fixed: this is called ‘directed choice’. In the standard multiparty
session type settings, for a global type to be well-formed, all the other participants (those who are
not the sender or the receiver of the choice) should behave in the same way, whatever message
is chosen. Choreographies do not have the same constraint, which means they can express more
behaviours than standard global types.

In exchange for this reduced expressiveness, the composition of processes typed by projection
of a well-formed global type benefit from safety properties. Typically, like in both [Coppo et al.
2015] and [Honda et al. 2008], communication safety, protocol fidelity and strong progress are
ensured to hold for composition of processes (in π-calculus) typed by local types obtained by
projection of a global type. Communication safety means that the types of the messages sent and
received are compatible, this property is strongly connected with unspecified reception freedom
(Definition 4.2.4) in our setting. Protocol fidelity (or session fidelity in [Honda et al. 2008]) is
equivalent to the second point of Definition 6.2.2, it ensures that all the behaviours of the distributed
system is accounted for in the global type. This property is related to the realisability problem
we will discuss in Section 6.4.2. Finally, ‘strong progress’ (called ‘progress’ in Coppo et al.) is a
stronger notion than the one from Definition 4.2.5. It imposes that every message sent will eventually
be received, and every message expected by a participant will eventually be sent. Definition 6.3.2
of deadlock-freedom, which is ensured for implementation of our well-formed choreographies,
corresponds to the first part of these two properties. This is because in a deadlock-free system, from
any reachable configuration, a stable configuration is reachable, which means all pending messages
can be received. However, our well-formed choreographies do not ensure that all participant
expecting a message receive it, as shown in Example 6.4.1 below.

Example 6.4.1 – Consider the choreography C whose automaton AC is depicted in Figure 6.9. It
is well-formed, because participant p is the only one sending messages, and it chooses to which
participant it sends it, so the RSC language of α (C) is obviously equal to the partial closure of
C. However, depending on which transition is executed by p, either q or r will never execute its
reception transition.

Several studies on multiparty session types attempted to circumvent the restrictions of the
standard projection operator. A notable work in this context is [Majumdar et al. 2021], which
defines a generalised projection operator, allowing the sender to choose a receiver in addition of the

88 CHAPTER 6 — RSC characterisation of well-formed choreographies

p q

v1 v2

Figure 6.10: MSC with a non synchronous pattern

message to send. A thorough comparison between existing projection operators can be found in
[Stutz 2023].

6.4.1.3 MSCs languages

MSGs (for Message Sequence Graphs) [Muscholl and Peled 1999] are a formalism allowing to
define languages of MSCs. They are graphs, the nodes of which are labelled with MSCs. The
concatenation of MSCs found along a path in the graph are part of the language of the MSG.
High-level MSCs, or HMSCs in short, were introduced in [ITU-TS 1996]. They are graphs where
nodes themselves are labelled by HMSCs. HMSCs and MSGs can be considered equivalent, as an
HMSC can always be flattened to be defined as an MSG [Alur and Yannakakis 1999]. An MSG is
bounded if in each cycle, the graph a communication (a directed graph where the nodes are the
participants, and there is an arc between p and q if p sends a message to q) is strongly connected
(excluding the actors not taking part in the communication at all). If this same graph is connected
in an undirected manner, the MSG is said globally cooperative.

While choreographies can be seen as languages of synchronous executions, MSGs can describe
executions that are not synchronous: an MSC on one of the nodes constituting an MSG can contain
patterns where two participants must send a message first before receiving the one from the other
for example (see Figure 6.10). In this case, the language of executions of the MSG (the set of all
linearisation of all the MSCs in the language of the MSG) is not RSC. It also cannot be represented
by a choreography, as in this formalism the atomic element is typically a communication. Here,
the atomic element is an MSC, and an MSC can describe interleaving of actions from different
communications.

In a way, choreographies can be represented by MSGs. Indeed, an MSG can be represented
by a graph where the arcs, instead of the vertices, are labelled by MSCs, without changing the
expressiveness of the formalism (this is done in [Lohrey 2003] for instance). Limiting labels to
MSCs containing one message exchange makes this formalism very close to our automata AC (and
to choreography automata [Barbanera et al. 2020]). The difference is that in the case of MSGs,
the words of the language are MSCs, as opposed to the executions in a language described by a
choreography. If we consider an execution recognised by a choreography up to causal closure,
choreographies and MSGs restricted in the way we described above are equivalent. In any case, the
language of any choreography is included in the language of an MSG.

In [Stutz and Zufferey 2022], an embedding of multiparty session types in HMSCs is defined.
The global types studied in this paper are standard ones, with branching and recursion (but no
parallel composition). The only addition to the global types from [Honda et al. 2008] is the
possibility to send a message to different participants in a choice. Stutz and Zufferey states that the

6.4 – 6.4.2 Realisability problem 89

Global types
(MPST, [Honda et al. 2008])

Definition 6.1.1, and
Choreography Automata
[Barbanera et al. 2020]

MSG [Muscholl, Peled and Su 1998]
(and HMSC [ITU-TS 1996])

Figure 6.11: Comparison between the expressive power of different formalisms

language of a global type is included in the language of the HMSC it is embedded in, and that only
the causal closure of the language of the global type is equal to that of the HMSC. This makes the
embedding from [Stutz and Zufferey 2022] similar to the one we sketched in the previous paragraph
for choreographies.

Figure 6.11 illustrates the relative expressive power of the different formalisms we discussed.

6.4.2 Realisability problem

To our knowledge, the realisability problem was first defined for MSC languages in [Alur, Etessami
et al. 2000]. It consists in checking whether there exists a distributed implementation of all the
behaviours of a finite set of MSCs, without inducing new ones. Alur, Etessami et al. also introduced
a variant of this problem: safe realisability, which requires the distributed implementation to
be deadlock-free. The communicating automata used as distributed implementation are defined
with a discrete set of accepting states, and the notion of deadlock-freedom is defined as the
possibility to reach an accepting state from any reachable state of the system. For the finite sets
of MSCs considered here, both problems are decidable. These results were extended to generic
communication models in [Alur, Etessami et al. 2003]. The communication model is abstracted by
a function, enabling or not an action to happen after a given execution.

Realisability was then studied in [Alur, Etessami et al. 2003; 2001] for infinite languages of
MSCs, defined as MSGs. For bounded MSGs, safe realisability is decidable, but weak realisability
is not (the realisability problem is called weak realisability to differentiate it from safe realisability).
The same results were also extended to non-FIFO semantics in [Morin 2002], that is allowing
reception of messages out of order. This setting corresponds to our bag semantics, but is still
constrained by a peer-to-peer communication architecture.

Lohrey showed in [Lohrey 2003] that in general safe realisability is undecidable. He also
showed that this problem is decidable (and EXPSPACE-complete) for globally cooperative MSGs.

The problem we address with our notion of well-formedness can be compared to safe-
realisability. We check that the behaviours described by a choreography encompass all those
of its implementation, and if our check gives positive results, we are assured that the implementa-

90 CHAPTER 6 — RSC characterisation of well-formed choreographies

tion is deadlock-free. In the context of this thesis, as choreographies are closed by prefixes, the
notion of deadlock-freedom from Definition 6.3.2 coincide with the deadlock-freedom for commu-
nicating automata with specific accepting states: a stable configuration in an accepting control state
must be reachable from any reachable configuration. All our control states are accepting, so being
able to reach a stable configuration is the only condition to satisfy.

The problem of realisability was previously studied for choreographies as well [Basu and
Bultan 2011; Fu et al. 2004]. These works are quite close to ours as they rely on the notion of
synchronisability [Fu et al. 2005] to establish their results. As we mentioned in Section 3.4, this
notion is conceptually close to our notion of RSC. Unfortunately, the decidability results obtained
relying on synchronisability do not hold, as synchronisability is not decidable [Finkel and É. Lozes
2017].

In [Barbanera et al. 2020] in addition to the safety properties ensured for a well-formed
choreography automata (see Section 6.4.1), the language of a well-formed choreography automata
is ensured to be the same as that of its projection: well-formedness implies realisability A key
difference between realisability of choreographies from [Barbanera et al. 2020; 2022] and from
this thesis is that for Barbanera et al., it is ensured by the well-formedness, which is syntactically
checked, while in our approach we are immediately checking realisability itself, and we characterise
our well-formedness thanks to this property.

To complete this section on realisability, me discuss how this notion is handled for multiparty
session types. In these frameworks, a global type gives an overall description of the modelled
protocol, and its projection on local types constitutes the distributed implementation of the same
protocol. In such a setting, it is obviously very important to ensure that the combined local types
behave accordingly to the global type. This property is called session fidelity (or sometimes protocol
fidelity) throughout the literature on this formalism. Here the question is usually slightly different
from realisability: the problem is generally not to check, for a given global type, whether there
exists a local type being its exact projection, but rather to ensure that when defined, the projection
of a well-formed global type always satisfies session fidelity. This is similar to what we just
saw with choreography automata: if the global description (here the global type) satisfies some
syntactic conditions, its realisability is ensured. Moreover, projection of well-formed global types
are typically ensured to be deadlock-free, among other safety properties. This means that projection
of well-formed global types can be related to the problem of safe realisability as defined for MSGs
in [Alur, Etessami et al. 2000; 2001].

In recent works, another approach emerged with the definition of implementability of a global
type [Majumdar et al. 2021]. A global type is implementable if there exists a deadlock-free system
of communicating automata whose language is the same as the causal closure of the language of
the global type (the executions it describes). This definition is equivalent to the definition of safe
realisability, and in [Stutz 2023], decidability of the implementability problem was proved to be
decidable by showing that the encoding of a global type to an HMSC, as defined in [Stutz and
Zufferey 2022], is globally cooperative.

These results were the base of [Li et al. 2023], which defined a new projection function for
multiparty session types: a system is obtained in a similar way to Definition 6.1.3, and the projection
function is defined if this system is an implementation of the global type. This approach is close to
the one we use to ensure well-formedness. We also obtain a system from any choreography, and
then check that this system is a correct implementation. However, in [Li et al. 2023], the projection
is complete: every implementable global type is accepted. In contrast, one of our choreographies
may be realisable but not well-formed.

6.4 – 6.4.3 RSC and typeable systems 91

6.4.3 RSC and typeable systems

In the context of multiparty session types, the relationship between local types and communicating
automata have been studied in various works. We call typeable a system that can be obtained
by projection of a global type. The intuition is that there is a global type typing this system. In
the context of our choreographies, even if we cannot exactly call it typing, we will allow the use
of this term to describe implementation of well-formed choreographies. In this context, RSC is
very clearly the class of typeable systems. In this section we discuss how the different classes of
communicating automata defined with the goal of characterising the systems obtained as projection
of global types can be compared to RSC.

To our knowledge, the first paper establishing a correspondence between between local types
and communicating automata is [Deniélou and Yoshida 2012a]. In this work, Deniélou and Yoshida
defined Multiparty Session Automata (MSA for short) as the class of systems obtained by projection
of a well-formed generalised global type. Because of the parallel composition in generalised global
types, mixed states are possible in MSA: in a given state, a participant may be able to send a
message or receive another one. The implementation of our choreographies can have mixed states
as well, and an example of that can be found in the automaton of Server in Figure 6.3. This
example illustrates how parallel composition can be accounted for in our setting: all the interleaving
must be expressed. Because of how MSA are defined, they have some safety properties, like all
projection of a well-formed global type. More precisely, they are unspecified reception free, orphan
message free, and reception deadlock-free. This makes MSA different form RSC, as no safety
property is ensured for RSC systems. However, all the safety properties satisfied for MSA are
decidable for RSC systems. Additionally, MSA are shown to have a property called ‘stable-output
decomposition’: each reachable configuration is reachable through a stable-output execution. An
execution is stable-output if it has an RSC prefix continued by a sequence of unmatched send
actions. A stable output execution is trivially RSC, but stable-output decomposition does not mean
MSA are necessarily RSC. In fact this notion makes MSA a subclass of eager systems [Heußner,
Leroux et al. 2012].

One of the main drawback of MSA is that is not characterised, it relies only on the existence
of a generalised global type that can be projected on it. Multiparty compatibility [Deniélou and
Yoshida 2013] is an attempt to close this gap. As this characterisation relies on the standard global
types (without parallel composition), and Deniélou and Yoshida impose a first condition on the
systems: all the communicating automata composing it must be basic. A communicating automaton
is basic if it has no mixed state (states from which both send and receive actions are available), it is
deterministic, and it is directed (all the send actions, respectively receptions, from a given states
are toward, respectively from, the same participant). A basic system is multiparty compatible if,
from any stable configuration reachable through a locally 1-bounded execution, all the sequences of
actions possible for a participant can be matched by the rest of the system by doing only alternations.
Alternations are basically RSC executions without unmatched messages, but because the condition
applies to configurations reachable through locally bounded executions, this condition may not be
enough to imply RSC. However, we conjecture that for basic systems, multiparty compatibility
implies RSC. Here again, the same safety properties are ensured for multiparty compatible systems
as for MSA: unspecified reception freedom, orphan message freedom, and reception deadlock-
freedom. In addition to these, multiparty compatible systems benefit from a liveness property: from
any reachable configuration, a final configuration is reachable. This is equivalent to our definition

92 CHAPTER 6 — RSC characterisation of well-formed choreographies

of deadlock-freedom (Definition 6.3.2). We do not know whether this property is decidable for
RSC systems, however it is ensured for implementation of well-formed choreographies.

Multiparty compatibility was latter generalised in [Lange, Tuosto et al. 2015a]. General
Multiparty Compatibility (GMC for short) is to the generalised global types from [Deniélou and
Yoshida 2012a] the same as multiparty compatibility is to standard global types. It essentially
characterises MSA, GMC systems can therefore have mixed states. To be part of this class, systems
must satisfy two conditions, one of them being that all sequences of actions a participant can
produce must be part of the synchronous language of the system. This condition led us to believe
that these systems should be RSC, but it turns out it is not the case. Indeed, [Lange, Tuosto et al.
2015a] is supported by a tool, and we could run the tool we developed to check whether a system is
RSC (see Chapter 7) on examples that are GMC to find out that some of them are not RSC.

To finish this overview, we mention a newer evolution of multiparty compatibility: k-multiparty
compatibility [Lange and Yoshida 2019a]. This characterisation is based on existential boundedness,
and is parametrised by the bound k. This time, the global types considered are the standard ones
again, so k-multiparty compatible systems cannot have mixed states. Contrary to general multiparty
compatibility and multiparty compatibility, k-multiparty compatibility is not decidable. However
Lange and Yoshida provide decidable conditions under which a system is k-multiparty compatible.
In a 1-multiparty compatible system, patterns where two participants start by sending each other a
message before receiving the one from the other are accepted. This means that these systems are
not RSC.

CHAPTER 7
Tool support

ReSCu, for Realisable with Synchronous Communication, is a tool allowing to check whether
a system of communicating automata is RSC, and reachability of a regular set of configurations
through RSC executions. It relies on the results presented in Chapter 4. In this chapter, we will
present this tool, and discuss some results we obtained with it. We will discuss its performance as
well, and compare it to that of other tools. We begin this chapter by providing an overview of the
existing tools. This allows us to compare our work with some of them later. ReSCu was introduced
in [Desgeorges and Germerie Guizouarn 2023], and can be found at [SW, Germerie Guizouarn
2023].

7.1 Related tools

One of the closest tools to ReSCu is McScM [Heußner, Le Gall et al. 2012]. It takes a description of
a system and a set of bad configurations and checks whether a bad configuration is reachable. It uses
a description language for the representation of systems called SCM, for System of Communicating
Machines. ReSCu uses the same input language. McScM was designed as a framework, with four
components implementing model-checking approaches based on abstract interpretation: Abstract
Interpretation (absint) [Gall et al. 2006], Abstract Regular Model Checking (armc) [Bouajjani,
Habermehl et al. 2004], Counterexample Guided Abstraction Refinement (cegar) [Clarke et al.
2003; Heußner, Gall et al. 2009], and a lazy abstraction approach (lart) developed in [McMillan
2006]. The two last model-checking engine, cegar and lart, are parametrised by a trace checker
and a invariant generator, providing four variants for each of these engines. Among all the
algorithms, absint is the only one to always terminate. The other ones are semi-algorithms and
will provide counter examples for unsafe protocols, but they may run infinitely checking safe ones.

One of the most prominent model-checker for systems of communicating automata is
SPIN [Holzmann 1997]. This tool differs from ReSCu as it only allows to verify systems whose
buffers are bounded, with the bound known. RSC systems may be unbounded, and for any system,
ReSCu allows to check whether it is RSC, not requiring any information to be known a priori.
A strength of SPIN is that it allows to check properties specified in linear temporal logic, while
ReSCu does not implement any temporal logic.

We mentioned stability in previous discussions (Sections 3.4 and 4.3), STABC is a tool built
around this notion [Akroun and Salaün 2018]. It allows to check whether a system is stable or not.
As stability is not decidable in general, this tool may not provide a conclusive answer for some
systems. It uses CADP [Garavel and Thivolle 2009] as a back-end for equivalence checking. Like
ReSCu, it works with systems using bag or FIFO buffers, but the only communication architecture
it considers is mailbox.

93

94 CHAPTER 7 — Tool support

Another tool focused on checking membership of a class is KMC [Lange and Yoshida 2019a].
This tool checks for various properties, which when combined together ensure the system is
unspecified reception free and satisfies progress (no participant is ever stuck in a reception state).
Tool support can also be found for a related class of communicating automata, which we discussed
previously: generalised multiparty-compatibility [Lange, Tuosto et al. 2015a]. The notion of
k-multiparty compatibility was more recently used as the background of kmclib [Imai, Lange
et al. 2022]. This tool is an OCaml library allowing to enforce safety of message passing programs,
thanks to an encoding of multiparty session types in the language [Imai, Neykova et al. 2020].

7.2 Features and implementation

We now present ReSCu, its features, the input language it uses, and its implementation.

7.2.1 Features

ReSCu allows to check both membership of the class of RSC systems and reachability of a regular
set of configurations through an RSC execution. It is built around the semantics we used throughout
this thesis: it can take as input systems with any topology, and any combination of FIFO and bag
buffers.

ReSCu is a command line tool: rescu -isrsc <system> checks whether the system de-
scribed in the SCM file <system> is RSC, and rescu -mc <system> checks that no bad
configuration is reachable. The results are displayed on the standard output. The two options can
be combined in one call to ReSCu. Option -fifo specifies that all buffers should be considered as
FIFO buffers, overriding specifications of bag buffers. When a system is not safe, using -counter
in conjunction with -mc provides the user with an RSC execution leading to the bad configuration
that was found reachable. The same option, used with -isrsc, outputs the borderline violation
that was found, in the case the tested system was not RSC.

For convenience, the progression of the computation can be displayed while performing model-
checking. This allows to estimate the remaining time during long computations. Another interesting
secondary feature is the -to_dot option, allowing to output a DOT representation of a the input
file, to visualise the systems of communicating automata.

7.2.2 SCM description language

We chose the SCM language used in [Heußner, Le Gall et al. 2012] as an input format. This allowed
to compare easily ReSCu with this tool.

A grammar of a part of this language is displayed in Grammar 7.1, we omit some features of
the language that are not implemented in ReSCu. In the syntax we chose, <ident> can contain
either letters or numbers, and must start with a letter. We write <int> when we require a positive
integer number. As usual, choices are represented by a vertical bar, a | b meaning that either a or
b should be present, and elements in brackets are optional.

To declare a system, a name must be provided with scm <name>. The next element is the
declaration of the number of buffers: nb_channels: <number>, followed by the optional
special comment declaring the list of identifiers of buffers to be treated according to bag semantics
(//# bag_buffers = <id 1>, <id 2>, ...). The identifier of a buffer is its number, from
0 to the number of buffer minus 1. We rely on a special comment to keep compatibility with

7.2 – 7.2.2 SCM description language 95

prog ::= <header> <aut_list> [<bad_confs>]

header ::= scm <ident>:<channels> [<bags>] <parameters>

channels ::= nb_channels = <int>;
bags ::= //# bag_buffers = <int_list>

int_list ::= <int>
| <int_list>, <int>

parameters ::= parameters = <param_list>

param_list ::= <param>

| <param> <param_list>

param ::= {int | real} <ident>;
aut_list ::= automaton <ident>:<initial>; <state_list>

initial ::= initial:<int_list>;

state_list ::= <state>

| <state_list> <state>

state ::= state <int> : <trans_list>

trans_list ::= <transition>

| <trans_list> <transition>

transition ::= to <int>:when true , <int> <action> <ident>
action ::= "!" | "?"

bad_confs ::= bad_states: <bad_list>

bad_list ::= (<bad_conf>)

| <bad_list> (<bad_conf>)

bad_conf ::= <bad_state>

| <bad_state> with <bad_buffers>

bad_state ::= automaton <ident>: in <int>: true [<bad_state>]

bad_buffers ::= <regular_expression>

Grammar 7.1: Simplified SCM grammar

McScM: if we added an actual instruction in the language, we could not run this tool on files with
specified bag buffers for ReSCu. To conclude the preliminary declarations, the list of the names of
the messages that will be used must be declared, after the keyword parameters. Each of them
is assigned a type (either real or int), which is ignored by ReSCu, but was kept to preserve
compatibility with McScM.

Each automaton of a system is given a name, before the list of its initial states is declared
thanks to the keyword initial. Here, SCM differs from the semantics we introduced in Chapter 2,
as a communicating automaton (and therefore the product of a system of such automata) may
have more than one initial state. This clearly does not prevent this language from being used to
model the systems according to the semantics we considered. The states of an automaton are
declared thanks to the keyword state, and are identified as integers. After each state, an optional
list of transitions may be declared. Each transition is of the form to <state>: when true,

<act> where <state> is a state identifier that must be declared, and <act> follows the syntax of
communicating automata actions we used throughout this thesis. The when true statements are
there as a remainder of McScM, and are kept there only for compatibility. There purpose was to
have some values assigned to the message names, and to be able to have guards on the transitions
referencing them.

96 CHAPTER 7 — Tool support

The definition of bad configurations differs a little bit from the encoding defined in Defini-
tion 4.2.1, page 48. With the syntax of SCM, it is not possible to declare the control state as part of
a regular expression. Instead, for each specification of a bad configuration, a local control state
must be specified for one or more participants. For instance, a specification automaton p: in

0: true automaton q: in 1: true describes configurations where automaton p is in
state 0 and automaton q is in state 1. If there were more participants than the two mentioned in the
specification, this example of bad configuration would match any global control state satisfying
the constraint for p and q, regardless of the state of the other participants. The specification of
the buffer contents of bad configurations is similar to the encoding of Definition 4.2.1. Regular
expression, where as usual, a.b stands for the concatenation of messages (or expressions) a and b,
a|b stands for the disjunction between expressions a and b, aˆ* stands for the iterative closure of
expression a, and aˆ+ stands for a.aˆ*.

Example 7.2.1 – Figure 7.1 shows the SCM description of the system in Example 2.2.2. The
bad states of this listing corresponds to the unspecified receptions of the system, described in
Example 4.2.7.

7.2.3 Implementation

ReSCu is a stand-alone tool implemented in OCaml. While it first reused the parser of McScM, it
now benefits from its own, avoiding a step of translation between the data structures of this tool and
the one we needed. The only element of McScM that ReSCu relies on is the regular expression
data structure.

For both reachability and membership, the algorithms that are presented in Chapter 4 consist in
checking the emptiness of the intersection of two finite state automata. While this was a convenient
approach for proving decidability and showing the complexity of these problems, it is not ideal for
the implementation. Indeed, this method imposes to build entirely both automaton Arsc, and either
Abv for membership, or Aep for reachability, before computing their intersection and providing an
answer. This approach would lead to computation times that are always equal to the worst case.

In ReSCu, the intersection itself is built step by step, allowing to end early if a borderline
violation or bad configuration is found. For both problems, a transition function is defined for the
intersection of the automata, and a breadth first search is performed to find an accepting state. An
advantage of using breadth first search is that the counter-examples provided are minimal in length.

Another aspect of the theoretical algorithms that required some optimisation in the implementa-
tion is the set of initial states of automaton Aep. The term ‘initial state’ is abusive, but remember
that in this automaton, there is a set of states reachable through an epsilon transition from the actual
initial state (Definition 4.2.2, page 51). We refer to states of this set as initial states here. There are
as many initial states as there are combinations of |I| control states in the automaton AP (S). The
size of this set is exponential with respect to the number of buffers. However, many of these states
cannot lead to an accepting state of Aep. Indeed, remember that for a control state of Aep to be
accepting, the letter # must be accepted from states of AP (S) marked by each pebble, and reading
this letter must lead to the initial position of the next pebble.

We implemented two slight optimisations of the algorithms from Section 4.2. The first one
was to restrict the position of the first pebble to the initial state of AP (S). This was quite natural
because in the implementation, AP (S) describes only buffer contents, and there is only one target
control state. The second optimisation we made was to restrict the initial position of all pebbles

7.3 – 7.2.3 Implementation 97

scm client_server_database :

nb_channels = 3;
parameters: int req; int res; int log; int ack;

automaton server:
initial: 0
state 0:
to 1: when true, 0 ? req;
state 1:
to 2: when true, 1 ! res;
state 2:
to 3: when true, 0 ? ack;
state 3:
to 0: when true, 2 ! log;

automaton database:
initial: 0
state 0:
to 0: when true, 2 ? log;

automaton client:
initial: 0
state 0:
to 1: when true, 0 ! req;
state 1:
to 2: when true, 1 ? res;
state 2:
to 0: when true, 0 ! ack;

bad_states:
(automaton client: in 0: true automaton server: in 1: true)

(automaton server: in 0: true with
(log|res|ack).(req|res|log|ack)^*.#.(req|res|log|ack)^*.#.
(req|res|log|ack)^*)

Figure 7.1: SCM representation of Example 2.2.2

but the first one to states reachable through a transition labelled by a letter #. In practice, we have
been able to roughly halve our model-checking time with this technique.

The same idea could be used for further optimisation. Observe that in any word matching a
regular expression describing buffer contents, the number of occurrences of the letter # must be
exactly |I| − 1. This implies that this letter cannot be found in a stared expression. Therefore we
can match statically each state of AP (S) reachable through a transition labelled by # with a buffer
identifier.

98 CHAPTER 7 — Tool support

7.3 Protocol library

To us, the most interesting use of ReSCu was to check the existence of actual systems member of
the RSC class. In order to do so, we ran our tool on the set of SCM files provided with McScM. But
even though these example were varied and very useful to us, they were too few to be considered a
representative set of actual systems. To widen our test sample, we ported the protocols that were
available with both KMC and STABC to SCM.

KMC allows two input format, one is a textual representation of global types, and the other
is a textual language similar to SCM. We only focused on the latter. A noticeable difference is
that instead of specifying the buffer to or from which messages are sent or received, the identifier
of the other participant of the communication is mentioned. As a peer-to-peer communication
architecture is assumed, the identifier of the buffers of a communication can be deduced from the
pair of participants taking part in it. We used a tool to automatically port the examples of protocols.

Porting examples from STABC was slightly more challenging, as in the labels of the transitions
in the AUT language, there are no mention to the buffer, or to the other participant involved in the
communication. As in [Akroun and Salaün 2018], all the automata are considered with a mailbox
communication architecture, each message can be assigned to a buffer identifier as long as two
different participants do not receive the same message name. If, in addition to this constraint, no
two different participants send the same message, messages can be assigned to a buffer assuming
a peer-to-peer architecture as well. In fact, most of the protocols from STABC satisfy both these
conditions. We used to port these protocols. This utility allows to interpret AUT files according to
a mailbox or a peer-to-peer communication architecture. In the rest of this chapter, we only discuss
the results we obtain with the protocols we ported with a mailbox architecture.

Ultimately, we collected a set of more than three hundred examples of protocols, including
some real life and well known protocols, e.g. POP3 or SSH. We ran ReSCu on these example,
as well as the tool they came with on their original version to reproduce the results published
in [Akroun and Salaün 2018] and [Lange and Yoshida 2019a]. The proportion of examples we
found to be RSC is 60% of the protocols we ported from KMC, 38% of the protocols that came
with STABC, and 30% of the ones distributed with McScM. When using exclusively bag buffers,
these results are respectively 41%, 11%, and 12%. It was expected that using bags instead of FIFO
buffers would reduce the proportion of RSC systems. Intuitively, bag buffers make it easier to build
a borderline violation, because they allow more receptions to happen.

To give a better insight into the representativeness of RSC systems, we reproduce the results
from both [Lange and Yoshida 2019a, Table 2] and [Akroun and Salaün 2018, Table 2], in Table 7.2
and Table 7.1 respectively. We added in these tables the results of ReSCu, showing that a significant
portion of these protocols, coming from the literature, are RSC.

In addition to these tables, we ran ReSCu on the selected protocols from STABC using FIFO
buffers rather than bag, and we provide the results of both our tool and STABC with this setting
in Table 7.3. Once again, the fact that there are more RSC systems when using FIFO buffers was
expected. However we are quite surprised by the fact that the result are identical with FIFO and bag
buffers for STABC. We think that this might be an issue with STABC, but the required investigation
is left as future work.

7.4 – Performance 99

Protocol |P| S T RSC trsc k-MC tkmc

Client-Server-Logger [1] 3 11 12 No 3 Yes 17
4 players game [2] 4 13 16 Yes 13 Yes 20
Bargain [2] 3 9 8 Yes 4 Yes 35
Filter collaboration [3] 2 6 10 Yes 4 Yes 33
Alternating bit [4] 2 12 15 Yes 9 Yes 24
TPMContract v2 [5] 2 10 14 Yes 4 Yes 31
Sanitary agency [6] 4 25 30 Yes 15 Yes 39
Logistic [7] 4 26 26 Yes 8 Yes 32
Cloud system v4 [8] 4 14 16 Yes 6 Yes 22
Commit protocol [9] 4 12 12 Yes 4 Yes 15
Elevator [9] 3 13 23 No 7 Yes 41
Dev system [10] 4 22 23 Yes 7 Yes 17
Fibonacci [11] 2 6 6 Yes 3 Yes 17
SH [11] 3 22 30 Yes 18 Yes 33
Travel agency [11] 3 17 20 Yes 8 Yes 15
SMTP [12][11] 2 64 108 Yes 17 Yes 34
HTTP [13] 2 12 48 Yes 17 Yes 28

Table 7.1: Comparison between the membership results of ReSCu and KMC. |P| is the number of
participants, S the number of states, and T the number of transitions. trsc and tkmc are the time (in
ms) of execution of ReSCu and KMC respectively.

7.4 Performance

To evaluate performance of ReSCu, we compared its computation time for reachability with
McScM, which is the only tool we studied performing this operation. We also crafted special
examples in order to show how the size of the input affects computation time of both membership
and model-checking. Finally, we compare the time required to check membership of the class of
RSC systems and that of the class of stable systems, and we discuss the computation times of KMC.

All the tools were ran on the same desktop computer with an AMD Ryzen™ 5 3600 CPU, and
equipped with 16Gb of RAM. The times displayed here are the mean between three consecutive
runs, except from the examples of protocols timing out, which were ran only twice to confirm the
timeout. Timeout was set to 30 minutes.

7.4.1 Comparison with McScM

McScM is a collection of algorithms to compute reachability of a regular set of configurations. We
compared model-checking time of these algorithms with ReSCu by running them on the subset of
RSC protocols that came with McScM, plus one of them which is not RSC: tcp_error. We added
this example as an illustration of the fact that ReSCu can find bad configurations in some unsafe
systems even if they are not RSC. We added to this set four examples that came with STABC and
KMC. Because these two tools do not implement reachability, their examples do not come with
specifications of bad configurations, so we had to define some. For each example, we crafted the
specification of an unspecified reception. We did so in the same way as the second bad state is
defined in Example 7.2.1.

100 CHAPTER 7 — Tool support

Protocol |P| S T RSC trsc k tstabc

Estelle specification [14] 2 7 9 No 3 max 100,461
News server [15] 2 10 10 No 3 3 34,927
Client/Server [16] 2 6 10 Yes 3 1 16,713
CFSM system [14] 2 6 7 No 3 max 98,597
Promela program (1) [17] 2 6 6 No 3 2 25,825
Promela program (2) [18] 2 6 7 Yes 3 max 97,852
Trade system [19] 3 12 12 Yes 3 1 22,499
FTP transfer [20] 3 20 17 Yes 3 4 57,469
Client/Server [21] 3 15 15 Yes 3 2 34,071
Mars explorer [22] 3 36 34 No 3 3 48,160
Online computer sale [23] 3 26 26 Yes 3 2 35,269
E-museum [24] 4 19 24 No 5 3 57,709
Client/supplier [25] 3 31 33 Yes 3 2 34,300
Restaurant service [26] 3 16 16 No 4 2 34,367
Travel agency [27] 3 34 38 No 3 4 65,593
Vending machine [28] 3 15 14 Yes 3 2 34,326
Travel agency [29] 3 43 56 No 4 3 46,674
Train station [30] 4 20 18 No 3 2 42,969
Factory job manager [31] 4 20 20 No 3 2 42,698
Bug report repository [32] 4 11 11 No 3 - Tmax

Cloud application [8] 4 8 10 No 4 max 161,496
Sanitary agency [33] 4 35 42 Yes 3 3 57,949
SQL server [34] 4 33 38 Yes 3 3 58,686
SSH [35] 4 27 28 Yes 3 1 28,329
Booking system [36] 5 45 50 Yes 3 2 51,982

Table 7.2: Comparison between the membership results of ReSCu and STABC, using bag buffers
and ‘strong equivalence’. |P| is the number of participants, S the number of states, and T the
number of transitions. max means the arbitrary limit for k, set at 10, was reached. trsc and tstabc

are the time (in ms) of execution of ReSCu and STABC respectively.

The result of this comparison are displayed in Table 7.4. All the tools agreed on all the protocols
(except when they did not provide an answer), and all the protocols but tcp_error were found safe.
For cegar and lart, we chose to represent only the best time of all the variants. Note that this
means that a timeout in one of these columns means that four runs timed out. Immediately, it is
obvious that ReSCu is faster than McScM. For all the protocols we included in our test, it was
the fastest tool, and sometimes by a substantial margin. An important remark however: for all the
protocol we have tested McScM on, there is always one of its algorithms that finishes in a short
time (less than a second). This means that even if ReSCu is faster, it is not fast enough to make
McScM irrelevant, especially considering that the latter is able to provide reachability results for
some non RSC systems.

A drawback of McScM however is that its best performing algorithm is not always the same.
This can be seen in Table 7.4 already, and is emphasised by Table 7.5, in which the times of the

7.4 – 7.4.2 Evaluation benchmark 101

Protocol |P| S T RSC trsc k tstabc

Estelle specification [14] 2 7 9 No 3 max 101,775
News server [15] 2 10 10 No 4 3 35,197
Client/Server [16] 2 6 10 Yes 3 1 16,765
CFSM system [14] 2 6 7 No 3 max 98,932
Promela program (1) [17] 2 6 6 No 3 2 26,042
Promela program (2) [18] 2 6 7 Yes 3 max 98,365
Trade system [19] 3 12 12 Yes 3 1 22,548
FTP transfer [20] 3 20 17 Yes 4 4 59,664
Client/Server [21] 3 15 15 Yes 3 2 34,271
Mars explorer [22] 3 36 34 Yes 4 3 48,631
Online computer sale [23] 3 26 26 Yes 3 2 34,709
E-museum [24] 4 19 24 Yes 6 3 58,441
Client/supplier [25] 3 31 33 Yes 3 2 34,839
Restaurant service [26] 3 16 16 No 4 2 34,706
Travel agency [27] 3 34 38 Yes 3 4 65,657
Vending machine [28] 3 15 14 Yes 4 2 34,667
Travel agency [29] 3 43 56 No 4 3 47,132
Train station [30] 4 20 18 Yes 3 2 43,225
Factory job manager [31] 4 20 20 Yes 3 2 43,251
Bug report repository [32] 4 11 11 Yes 4 - Tmax

Cloud application [8] 4 8 10 No 5 max 202,510
Sanitary agency [33] 4 35 42 Yes 3 3 58,398
SQL server [34] 4 33 38 Yes 4 3 59,083
SSH [35] 4 27 28 Yes 3 1 28,474
Booking system [36] 5 45 50 Yes 4 2 52,122

Table 7.3: Comparison between the membership results of ReSCu and STABC, using FIFO buffers
and ‘strong equivalence’. |P| is the number of participants, S the number of states, and T the
number of transitions. max means the arbitrary limit for k, set at 10, was reached. trsc and tstabc

are the time (in ms) of execution of ReSCu and STABC respectively.

variants of cegar and lart respectively are detailed. The performances of each algorithm vary
greatly from one protocol to another.

7.4.2 Evaluation benchmark

To evaluate how the computation time of verification and membership evolves in function of the
size of the input, we crafted sets of parametric RSC systems. These systems are as represented
in Figure 7.2. It is a kind of ring protocol, where each of the p participants start by sending
n messages to the next one, and then receive the same number of messages from the previous.
The first participant has a different behaviour: it starts by sending its messages before receiving,
avoiding a deadlock. These systems use a mailbox communication architecture, so in each of
them, there are as many buffers as there are participants. All the systems built this way are RSC,
regardless their size. This makes them suitable for benchmarking our membership implementation,

102 CHAPTER 7 — Tool support

Protocol |P| S ReSCu absint armc cegar lart

ring 2 20 5 (16,999) 240,426 323 1,437
NonRegular 2 6 3 53 Tmax 13 12
pop3 2 43 5 622 1,909 5,568 Tmax

Nested 2 5 4 5 12 284 1,803
con_disc_reg 2 4 4 (17) 5 9 6
tcp_error∗ 2 28 9 (88) 22 45 11
http-fsm 2 12 4 43 Tmax Tmax Tmax

smtp 2 64 3 133 81 22 73
FTP 3 20 5 22 46 51 58
SSH 4 27 3 466 310 147 687

Table 7.4: Model-checking time of McScM and ReSCu in ms. Examples marked with a ∗ are
not safe with respect to their specifications, all the others are told to be safe by all the tools. |P|
and S are the number of processes and states of the system respectively. Numbers in brackets
indicate inconclusive runs. Tmax indicates timeouts. Numbers in bold indicate the best time for
each protocol.

1!v

0?v

1?v

2!v

p − 1?v

0!v

p

n

· · ·

Figure 7.2: Illustration of parametric systems for benchmarking

as they represent a worst case for our tool. Indeed, to ensure a system is RSC, ReSCu must build
the entire automaton Abv ∩ Arsc.

To use the same systems to test reachability time, we needed to specify some bad configurations
for them. As for membership, the worst case for ReSCu when checking reachability is when no
bad configuration is reachable, so that is what we aimed for. We settled on specification of control
states only: the ones where both the first and second automata received their first message. This
configuration of control states is illustrated by the highlighted states in Figure 7.2.

Figure 7.3 shows how the time for checking whether a system is RSC evolves with the size of
this system. Figures 7.3a and 7.3b show the impact of the number of participants and the number of
transitions respectively. These graphics confirm visually the complexity we discussed in Section 4.1:
checking membership of RSC systems is exponential in the number of participants (and number of
buffers, which are equal here), and polynomial in the number of states and transitions.

Similar observations can be made for the reachability problem, for which the results are shown
in Figures 7.4a and 7.4b. We can observe that checking reachability of a control state is a lot faster
than checking membership. This is expected as Abv embeds in its set of states all the combinations

7.4 – 7.4.3 Comparison with STABC and KMC 103

Protocol |P| S
cegar lart

apinv upinv apinv upinv

bwd fwd bwd fwd bwd fwd bwd fwd

ring 2 20 8,972 323 103,909 1,836 Tmax 1,437 Tmax 49,887
NonRegular 2 6 13 24 27 26 12 17 190 24
pop3 2 43 5,568 Tmax Tmax Tmax Tmax Tmax Tmax Tmax

Nested 2 5 284 8,617 575 469 Tmax 50,203 Tmax 1,803
con_disc_reg 2 4 12 9 14 10 6 6 9 7
tcp_error∗ 2 28 84 45 242 50 18 11 31 12
http-fsm 2 12 Tmax Tmax Tmax Tmax Tmax Tmax Tmax Tmax

smtp 2 64 23 22 22 22 73 74 73 74
FTP 3 20 151 88 506 51 358 122 1,849 58
SSH 4 27 527 292 226,601 147 1,679 1,359 Tmax 687

Table 7.5: Details of cegar and lart results

0 5 10 150
2
4
6
8

10
12 ·103

Number of participants

Ti
m

e
[m

s]

(a) Depending on the number of participants

0 500 1,000 1,500 2,0000
2
4
6
8

10
12 ·103

Number of states and transitions

Ti
m

e
[m

s]

(b) Depending on the number of states and trans-
itions

Figure 7.3: Computation time of membership depending on the size of the input

of unmatched send paired with a communication, while with the optimisation we mentioned in
Section 7.2.3, checking reachability of a control state requires only an automaton of the size of
Arsc.

7.4.3 Comparison with STABC and KMC

Both STABC and KMC only allow to check membership of a class of communicating automata:
stable and k-multiparty compatible systems respectively. Checking stability of a system allows to
know whether bounded model-checking can be used to address the reachability problem, while
multiparty compatibility implies some safety properties.

The columns trsc and tstabc of Tables 7.2 and 7.3 give an insight about the difference in
performance of ReSCu and STABC. The huge difference in time between the two tools to perform
a comparable operation could come from the fact that STABC is not a native tool, and it relies on

104 CHAPTER 7 — Tool support

0 5 10 150
25
50
75

100
125
150

Number of participants

Ti
m

e
[m

s]

(a) Depending on the number of participants

0 500 1,000 1,500 2,0000
25
50
75

100
125
150

Number of states and transitions

Ti
m

e
[m

s]

(b) Depending on the number of states and trans-
itions

Figure 7.4: Model-checking time depending of the size of the input

another tool to perform the actual checking. This introduces some overhead, which could explain
why the fastest examples are treated in more than 16 seconds.

The time required to check multiparty compatibility is displayed in column tkmc of Table 7.1,
where it is compared to the time of checking membership of the class of RSC systems (column
trsc). KMC performs well, and although slightly slower, its computation time is comparable to the
membership time of ReSCu. Note however that membership of the class of k-multiparty compatible
systems ensures safety properties, like unspecified reception freedom for instance. In contrast,
membership of the class of RSC systems only means that verification techniques described in
Chapter 4 can be applied to ensure safety. Deciding similar safety properties as KMC is possible
with ReSCu, but would require additional verification time.

7.5 Perspectives

The most obvious direction for ReSCu is the integration of our work on choreographies. Imple-
menting the techniques we developed for this formalism would be straightforward, as they rely on
finite state automata, like membership and reachability.

For an improvement of the current state of ReSCu, a nice feature could be the automatic
generation of the specifications of bad configurations. For instance, generating automatically
the description of all the potential unspecified receptions of a system (where an automaton is in
receiving state, and the buffers it receives from begin by a message they cannot receive) could
be useful. In addition to helping the user, it would decrease the likelihood of human error while
crafting the specifications of a system.

CHAPTER 8
Conclusion and

perspectives
In this thesis, we studied a class of systems of communicating automata: the systems whose
executions are all Realisable with Synchronous Communications (RSC for short). The definition
we provided for this class is based on the RSC computations from [Charron-Bost et al. 1996],
extended to account for bag buffers in addition to FIFO ones. The characterisation of RSC
systems relies only on the definition of matching pairs in an execution, and does not depend on the
communication architecture. All the results we obtained around this class are applicable to systems
of communicating automata without any condition on the buffers: any participant can in principle
read and write from and to any buffer.

We showed that we can compute a finite representation of the executions of an RSC system,
and we relied on this result to show that both membership to the class, and reachability of a regular
set of configuration in RSC systems, are decidable. This implies that a lot of interesting safety
problems are decidable, like unspecified reception freedom, or reception deadlock freedom. As
future work, these results could be extended to other semantics for buffers, like ‘lossy channels’
from [Schnoebelen 2002] (were messages can randomly disappear from a buffer). Another path for
generalisation could be the study of fully-bag definitions of matching pairs (and causal equivalence),
allowing reordering of actions of the same type implying the same message on the same bag buffer.

We implemented the techniques we used to obtain these decidability results in a tool: ReSCu,
and we studied extensively its performances. We gathered a large database of examples of protocols
from the literature for this tool, which allows us to claim that many actual protocols are RSC.

We studied another class of systems of communicating automata: half-duplex systems, that were
introduced in [Cécé and Finkel 2005]. In this work, binary half-duplex systems were studied, and
because their reachability space is regular, all regular safety properties were shown to be decidable
for them. Some generalisations to multiple participants were studied, but they are either too
restrictive, or the reachability problem is not decidable for them. We studied a new generalisation,
for which the reachability problem ended up being undecidable as well. We provided a proof for
this undecidability. Lastly, we established RSC system as a good generalisation to any number of
participants of the class of binary half-duplex systems.

Finally, we defined a choreographic setting, and studied its realisability by relying on properties
inherent to the notion of RSC. Contrary to most of the works on this topic, the communication
architecture is not fixed in our approach, and which buffer is used to exchange a message between
two participants is not fixed. We used this definition as a basis to study the notion of realisability
across a wide range of global description formalisms, from languages of MSCs to multiparty
session types.

105

106 CHAPTER 8 — Conclusion and perspectives

Expanding the capabilities of ReSCu to integrate the work we have done on choreographies
would be an interesting task to tackle. This would mean making this tool able to accept choreograph-
ies as input, to check various safety properties on their implementation, and adding the possibility
to check whether a choreography is well-formed.

Bibliography

Parosh Aziz Abdulla and Bengt Jonsson. 1996a. ‘Undecidable Verification Problems for Programs with Unreliable
Channels’. Inf. Comput., 130, 1, 71–90. DOI: 10/dt6tk5.

Parosh Aziz Abdulla and Bengt Jonsson. 1996b. ‘Verifying Programs with Unreliable Channels’. Inf. Comput., 127, 2,
91–101. DOI: 10/fgw8h9.

Lakhdar Akroun and Gwen Salaün. 2018. ‘Automated verification of automata communicating via FIFO and bag buffers’.
Formal Methods Syst. Des., 52, 3, 260–276. DOI: 10/gsmrgs.

Lakhdar Akroun, Gwen Salaün and Lina Ye. 2016. ‘Automated Analysis of Asynchronously Communicating Systems’.
In: Model Checking Software - 23rd International Symposium, SPIN 2016, Co-located with ETAPS 2016, Eindhoven,
The Netherlands, April 7-8, 2016, Proceedings (Lecture Notes in Computer Science). Ed. by Dragan Bosnacki and
Anton Wijs. Vol. 9641. Springer, 1–18. DOI: 10/gsmrgt.

Rajeev Alur, Kousha Etessami and Mihalis Yannakakis. 2003. ‘Inference of Message Sequence Charts’. IEEE Trans.
Software Eng., 29, 7, 623–633. DOI: 10/cckm73.

Rajeev Alur, Kousha Etessami and Mihalis Yannakakis. 2000. ‘Inference of message sequence charts’. In: Proceedings
of the 22nd International Conference on on Software Engineering, ICSE 2000, Limerick Ireland, June 4-11, 2000.
Ed. by Carlo Ghezzi, Mehdi Jazayeri and Alexander L. Wolf. ACM, 304–313. DOI: 10/c3mqm3.

Rajeev Alur, Kousha Etessami and Mihalis Yannakakis. 2001. ‘Realizability and Verification of MSC Graphs’. In:
Automata, Languages and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12,
2001, Proceedings (Lecture Notes in Computer Science). Ed. by Fernando Orejas, Paul G. Spirakis and Jan van
Leeuwen. Vol. 2076. Springer, 797–808. DOI: 10/ffncmh.

Rajeev Alur and Mihalis Yannakakis. 1999. ‘Model Checking of Message Sequence Charts’. In: CONCUR ’99:
Concurrency Theory, 10th International Conference, Eindhoven, The Netherlands, August 24-27, 1999, Proceedings
(Lecture Notes in Computer Science). Ed. by Jos C. M. Baeten and Sjouke Mauw. Vol. 1664. Springer, 114–129.
DOI: 10/cxm7xw.

Franco Barbanera, Ivan Lanese and Emilio Tuosto. 2020. ‘Choreography Automata’. In: Coordination Models and
Languages - 22nd IFIP WG 6.1 International Conference, COORDINATION 2020, Held as Part of the 15th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June
15-19, 2020, Proceedings (Lecture Notes in Computer Science). Ed. by Simon Bliudze and Laura Bocchi. Vol. 12134.
Springer, 86–106. DOI: 10/gsmrgv.

Franco Barbanera, Ivan Lanese and Emilio Tuosto. 2022. ‘Formal Choreographic Languages’. In: Coordination Models
and Languages - 24th IFIP WG 6.1 International Conference, COORDINATION 2022, Held as Part of the 17th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2022, Lucca, Italy, June
13-17, 2022, Proceedings (Lecture Notes in Computer Science). Ed. by Maurice H. ter Beek and Marjan Sirjani.
Vol. 13271. Springer, 121–139. DOI: 10/gsmzhf.

Samik Basu and Tevfik Bultan. 28th Mar. 2011. ‘Choreography conformance via synchronizability’. In: Proceedings of
the 20th international conference on World wide web. WWW ’11: 20th International World Wide Web Conference.
ACM, Hyderabad India, (28th Mar. 2011), 795–804. ISBN: 978-1-4503-0632-4. DOI: 10/bsh5nw.

Samik Basu and Tevfik Bultan. 2016. ‘On deciding synchronizability for asynchronously communicating systems’. Theor.
Comput. Sci., 656, 60–75. DOI: 10/f9jv2x.

Samik Basu, Tevfik Bultan and Meriem Ouederni. 2012a. ‘Deciding choreography realizability’. In: Proceedings of the
39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, January 22-28, 2012. Ed. by John Field and Michael Hicks. ACM, 191–202. DOI: 10/fz3n7m.

Samik Basu, Tevfik Bultan and Meriem Ouederni. 2012b. ‘Synchronizability for Verification of Asynchronously
Communicating Systems’. In: Verification, Model Checking, and Abstract Interpretation - 13th International
Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceedings (Lecture Notes in Computer
Science). Ed. by Viktor Kuncak and Andrey Rybalchenko. Vol. 7148. Springer, 56–71. DOI: 10/fzmzwh.

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini and Nobuko Yoshida.
Aug. 2008. ‘Global Progress in Dynamically Interleaved Multiparty Sessions’. In: CONCUR 2008 - Concurrency
Theory, 19th International Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings (Lecture
Notes in Computer Science). Ed. by Franck van Breugel and Marsha Chechik. Vol. 5201. Springer, (Aug. 2008),
418–433. DOI: 10/cxxt7z.

107

https://doi.org/10/dt6tk5
https://doi.org/10/fgw8h9
https://doi.org/10/gsmrgs
https://doi.org/10/gsmrgt
https://doi.org/10/cckm73
https://doi.org/10/c3mqm3
https://doi.org/10/ffncmh
https://doi.org/10/cxm7xw
https://doi.org/10/gsmrgv
https://doi.org/10/gsmzhf
https://doi.org/10/bsh5nw
https://doi.org/10/f9jv2x
https://doi.org/10/fz3n7m
https://doi.org/10/fzmzwh
https://doi.org/10/cxxt7z

108 Bibliography

Gregor von Bochmann. 1978. ‘Finite State Description of Communication Protocols’. Comput. Networks, 2, 361–372.
DOI: 10/brj9tm.

Bernard Boigelot and Patrice Godefroid. 1996. ‘Symbolic Verification of Communication Protocols with Infinite State
Spaces Using QDDs (Extended Abstract)’. In: Computer Aided Verification, 8th International Conference, CAV

’96, New Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings (Lecture Notes in Computer Science). Ed. by
Rajeev Alur and Thomas A. Henzinger. Vol. 1102. Springer, 1–12. DOI: 10/dr434r.

Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Étienne Lozes and Amrita Suresh. 2021. ‘A Unifying
Framework for Deciding Synchronizability’. In: 32nd International Conference on Concurrency Theory, CONCUR
2021, August 24-27, 2021, Virtual Conference, 14:1–14:18. DOI: 10/gsmrg3.

Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern and Martin Leucker. 2010. ‘Learning Communicating Automata
from MSCs’. IEEE Trans. Software Eng., 36, 3, 390–408. DOI: 10/fd5m6n.

Ahmed Bouajjani, Constantin Enea, Kailiang Ji and Shaz Qadeer. 2018a. ‘On the Completeness of Verifying Message
Passing Programs Under Bounded Asynchrony’. In: Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part II (Lecture Notes in Computer Science). Ed. by Hana Chockler and Georg Weissenbacher. Vol. 10982. Springer,
372–391. DOI: 10/gsmrg4.

Ahmed Bouajjani, Peter Habermehl and Tomás Vojnar. 2004. ‘Abstract Regular Model Checking’. In: Computer
Aided Verification, 16th International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings
(Lecture Notes in Computer Science). Ed. by Rajeev Alur and Doron A. Peled. Vol. 3114. Springer, 372–386. DOI:
10/fnfjnp.

Daniel Brand and Pitro Zafiropulo. 1983a. ‘On Communicating Finite-State Machines’. J. ACM, 30, 2, 323–342. DOI:
10/dw9xwr.

Gérard Cécé and Alain Finkel. 2005. ‘Verification of programs with half-duplex communication’. Inf. Comput., 202, 2,
166–190. DOI: 10/b8wcwv.

Pierre Chambart and Philippe Schnoebelen. 2008. ‘Mixing Lossy and Perfect Fifo Channels’. In: CONCUR 2008
- Concurrency Theory, 19th International Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008.
Proceedings (Lecture Notes in Computer Science). Ed. by Franck van Breugel and Marsha Chechik. Vol. 5201.
Springer, 340–355. DOI: 10/cr7cs8.

Bernadette Charron-Bost, Friedemann Mattern and Gerard Tel. 1996. ‘Synchronous, Asynchronous, and Causally
Ordered Communication’. Distributed Comput., 9, 4, 173–191. DOI: 10/dcf58p.

Florent Chevrou, Aurélie Hurault and Philippe Quéinnec. 2016. ‘On the diversity of asynchronous communication’.
Formal Aspects Comput., 28, 5, 847–879. DOI: 10/f833k9.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu and Helmut Veith. 2003. ‘Counterexample-guided abstraction
refinement for symbolic model checking’. J. ACM, 50, 5, 752–794. DOI: 10/cx67fj.

Lorenzo Clemente, Frédéric Herbreteau and Grégoire Sutre. 2014. ‘Decidable Topologies for Communicating Automata
with FIFO and Bag Channels’. In: CONCUR 2014 (LNCS). Vol. 8704, 281–296. DOI: 10/gsmrg5.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani and Nobuko Yoshida. 2015. ‘A Gentle Introduction to
Multiparty Asynchronous Session Types’. In: Formal Methods for Multicore Programming - 15th International
School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2015, Bertinoro,
Italy, June 15-19, 2015, Advanced Lectures (Lecture Notes in Computer Science). Ed. by Marco Bernardo and
Einar Broch Johnsen. Vol. 9104. Springer, 146–178. DOI: 10/gsmrg6.

René David and Hassane Alla. 1st Feb. 1994. ‘Petri nets for modeling of dynamic systems: A survey’. Automatica, 30, 2,
(1st Feb. 1994), 175–202. DOI: 10/fh9fkg.

Pierre-Malo Deniélou and Nobuko Yoshida. July 2013. ‘Multiparty Compatibility in Communicating Automata: Charac-
terisation and Synthesis of Global Session Types’. In: Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II (Lecture Notes in Computer Science).
Ed. by Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska and David Peleg. Vol. 7966. Springer, (July 2013),
174–186. DOI: 10/gsmrhb.

Pierre-Malo Deniélou and Nobuko Yoshida. 2012a. ‘Multiparty Session Types Meet Communicating Automata’. In:
Programming Languages and Systems - 21st European Symposium on Programming, ESOP 2012, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March
24 - April 1, 2012. Proceedings (Lecture Notes in Computer Science). Ed. by Helmut Seidl. Vol. 7211. Springer,
194–213. DOI: 10/gsmrg9.

Loïc Desgeorges and Loïc Germerie Guizouarn. 2023. ‘RSC to the ReSCu: Automated Verification of Systems of
Communicating Automata’. In: Coordination Models and Languages - 25th IFIP WG 6.1 International Conference,
COORDINATION 2023, Held as Part of the 18th International Federated Conference on Distributed Computing

https://doi.org/10/brj9tm
https://doi.org/10/dr434r
https://doi.org/10/gsmrg3
https://doi.org/10/fd5m6n
https://doi.org/10/gsmrg4
https://doi.org/10/fnfjnp
https://doi.org/10/dw9xwr
https://doi.org/10/b8wcwv
https://doi.org/10/cr7cs8
https://doi.org/10/dcf58p
https://doi.org/10/f833k9
https://doi.org/10/cx67fj
https://doi.org/10/gsmrg5
https://doi.org/10/gsmrg6
https://doi.org/10/fh9fkg
https://doi.org/10/gsmrhb
https://doi.org/10/gsmrg9

Bibliography 109

Techniques, DisCoTec 2023, Lisbon, Portugal, June 19-23, 2023, Proceedings (Lecture Notes in Computer Science).
Ed. by Sung-Shik Jongmans and Antónia Lopes. Vol. 13908. Springer, 135–143. DOI: 10/gsmrhc.

Cinzia Di Giusto, Loïc Germerie Guizouarn and Étienne Lozes. 2021. ‘Towards Generalised Half-Duplex Systems’. In:
Proceedings 14th Interaction and Concurrency Experience, ICE 2021, Online, 18th June 2021 (EPTCS). Ed. by
Julien Lange, Anastasia Mavridou, Larisa Safina and Alceste Scalas. Vol. 347, 22–37. DOI: 10/gsmrhd.

Cinzia Di Giusto, Loïc Germerie Guizouarn and Etienne Lozes. 2023. ‘Multiparty half-duplex systems and synchronous
communications’. Journal of Logical and Algebraic Methods in Programming, 131, 100843. DOI: 10/gsmrhf.

Cinzia Di Giusto, Laetitia Laversa and Étienne Lozes. Apr. 2020. ‘On the k-synchronizability of Systems’. In: Foundations
of Software Science and Computation Structures - 23rd International Conference, FOSSACS 2020, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April
25-30, 2020, Proceedings (Lecture Notes in Computer Science). Ed. by Jean Goubault-Larrecq and Barbara König.
Vol. 12077. Springer, (Apr. 2020), 157–176. DOI: 10/gsmrhh.

Volker Diekert and Grzegorz Rozenberg, eds. . 1995. The Book of Traces. World Scientific. ISBN: 978-981-02-2058-7.
DOI: 10.1142/2563.

Alain Finkel and Étienne Lozes. July 2017. ‘Synchronizability of Communicating Finite State Machines is not Decidable’.
In: Proceedings of the 44th International Colloquium on Automata, Languages and Programming (ICALP’17)
(Leibniz International Proceedings in Informatics). Ed. by Ioannis Chatzigiannakis, Piotr Indyk, Anca Muscholl
and Fabian Kuhn. Vol. 80. Leibniz-Zentrum für Informatik, Warsaw, Poland, (July 2017), 122:1–122:14. DOI:
10/gsmrhm.

Xiang Fu, Tevfik Bultan and Jianwen Su. Nov. 2004. ‘Conversation protocols: a formalism for specification and
verification of reactive electronic services’. Theoretical Computer Science, 328, 1, (Nov. 2004), 19–37. DOI:
10/dwd7jp.

Xiang Fu, Tevfik Bultan and Jianwen Su. 2005. ‘Synchronizability of Conversations among Web Services’. IEEE Trans.
Software Eng., 31, 12, 1042–1055. DOI: 10/fn7hqt.

Tristan Le Gall, Bertrand Jeannet and Thierry Jéron. 2006. ‘Verification of Communication Protocols Using Abstract
Interpretation of FIFO Queues’. In: Algebraic Methodology and Software Technology, 11th International Conference,
AMAST 2006, Kuressaare, Estonia, July 5-8, 2006, Proceedings (Lecture Notes in Computer Science). Ed. by
Michael Johnson and Varmo Vene. Vol. 4019. Springer, 204–219. DOI: 10/db833s.

Hubert Garavel and Damien Thivolle. 2009. ‘Verification of GALS Systems by Combining Synchronous Languages and
Process Calculi’. In: Model Checking Software, 16th International SPIN Workshop, Grenoble, France, June 26-28,
2009. Proceedings (Lecture Notes in Computer Science). Ed. by Corina S. Pasareanu. Vol. 5578. Springer, 241–260.
DOI: 10/fwps7d.

Blaise Genest, Dietrich Kuske and Anca Muscholl. 2007. ‘On Communicating Automata with Bounded Channels’.
Fundam. Inform., 80, 1, 147–167. http://content.iospress.com/articles/fundamenta-infor
maticae/fi80-1-3-09.

Blaise Genest, Anca Muscholl and Doron A. Peled. 2003. ‘Message Sequence Charts’. In: Lectures on Concurrency and
Petri Nets, Advances in Petri Nets [This tutorial volume originates from the 4th Advanced Course on Petri Nets,
ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to lectures given at ACPN 2003, additional
chapters have been commissioned] (Lecture Notes in Computer Science). Ed. by Jörg Desel, Wolfgang Reisig and
Grzegorz Rozenberg. Vol. 3098. Springer, 537–558. DOI: 10/c6msfx.

Blaise Genest, Anca Muscholl, Helmut Seidl and Marc Zeitoun. 2006. ‘Infinite-state high-level MSCs: Model-checking
and realizability’. J. Comput. Syst. Sci., 72, 4, 617–647. DOI: 10/d2j38k.

Alexander Heußner, Tristan Le Gall and Grégoire Sutre. 2009. ‘Extrapolation-Based Path Invariants for Abstraction
Refinement of Fifo Systems’. In: Model Checking Software, 16th International SPIN Workshop, Grenoble, France,
June 26-28, 2009. Proceedings (Lecture Notes in Computer Science). Ed. by Corina S. Pasareanu. Vol. 5578.
Springer, 107–124. DOI: 10/fhqrs6.

Alexander Heußner, Tristan Le Gall and Grégoire Sutre. 2012. ‘McScM: A General Framework for the Verification
of Communicating Machines’. In: Tools and Algorithms for the Construction and Analysis of Systems - 18th
International Conference, TACAS 2012, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings (Lecture Notes in Computer
Science). Ed. by Cormac Flanagan and Barbara König. Vol. 7214. Springer, 478–484. DOI: 10/gsmrht.

Alexander Heußner, Jérôme Leroux, Anca Muscholl and Grégoire Sutre. 2012. ‘Reachability Analysis of Communicating
Pushdown Systems’. Log. Methods Comput. Sci., 8, 3. DOI: 10/gsmrhs.

Gerard J. Holzmann. 1997. ‘The Model Checker SPIN’. IEEE Trans. Software Eng., 23, 5, 279–295. DOI: 10/d7wqxt.

https://doi.org/10/gsmrhc
https://doi.org/10/gsmrhd
https://doi.org/10/gsmrhf
https://doi.org/10/gsmrhh
https://doi.org/10.1142/2563
https://doi.org/10/gsmrhm
https://doi.org/10/dwd7jp
https://doi.org/10/fn7hqt
https://doi.org/10/db833s
https://doi.org/10/fwps7d
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10/c6msfx
https://doi.org/10/d2j38k
https://doi.org/10/fhqrs6
https://doi.org/10/gsmrht
https://doi.org/10/gsmrhs
https://doi.org/10/d7wqxt

110 Bibliography

Kohei Honda. 1993. ‘Types for Dyadic Interaction’. In: CONCUR ’93, 4th International Conference on Concurrency
Theory, Hildesheim, Germany, August 23-26, 1993, Proceedings (Lecture Notes in Computer Science). Ed. by
Eike Best. Vol. 715. Springer, 509–523. DOI: 10/dhpsrd.

Kohei Honda, Nobuko Yoshida and Marco Carbone. Jan. 2008. ‘Multiparty asynchronous session types’. In: Proceedings
of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San
Francisco, California, USA, January 7-12, 2008. Ed. by George C. Necula and Philip Wadler. ACM, (Jan. 2008),
273–284. DOI: 10/b8m6mf.

John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages and Computation. Addison-
Wesley. ISBN: 0-201-02988-X.

Keigo Imai, Julien Lange and Rumyana Neykova. 2022. ‘Kmclib: Automated Inference and Verification of Session Types
from OCaml Programs’. In: Tools and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I (Lecture Notes in Computer Science). Ed. by
Dana Fisman and Grigore Rosu. Vol. 13243. Springer, 379–386. DOI: 10/gsn2v2.

Keigo Imai, Rumyana Neykova, Nobuko Yoshida and Shoji Yuen. 2020. ‘Multiparty Session Programming With Global
Protocol Combinators’. In: 34th European Conference on Object-Oriented Programming, ECOOP 2020, November
15-17, 2020, Berlin, Germany (Virtual Conference) (LIPIcs). Ed. by Robert Hirschfeld and Tobias Pape. Vol. 166.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 9:1–9:30. DOI: 10/gsmrhw.

Dietrich Kuske and Anca Muscholl. 2021. ‘Communicating automata’. In: Handbook of Automata Theory. Ed. by
Jean-Éric Pin. European Mathematical Society Publishing House, Zürich, Switzerland, 1147–1188. DOI: 10.4171
/Automata-2/9.

Julien Lange, Emilio Tuosto and Nobuko Yoshida. 14th Jan. 2015a. ‘From Communicating Machines to Graphical
Choreographies’. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. Ed. by Sriram K. Rajamani and David Walker. ACM, (14th Jan. 2015), 221–232. DOI:
10/gsmrh3.

Julien Lange and Nobuko Yoshida. July 2019a. ‘Verifying Asynchronous Interactions via Communicating Session
Automata’. In: Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part I (Lecture Notes in Computer Science). Ed. by Isil Dillig and Serdar Tasiran.
Vol. 11561. Springer, (July 2019), 97–117. DOI: 10/gsmrh4.

Laetitia Laversa. 14th Dec. 2021. ‘La synchronisabilité pour les systèmes distribués’. PhD thesis. Université Côte d’Azur,
(14th Dec. 2021). Retrieved 24th Aug. 2023 from https://theses.hal.science/tel-03574701.

Elaine Li, Felix Stutz, Thomas Wies and Damien Zufferey. 2023. ‘Complete Multiparty Session Type Projection with
Automata’. In: Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22,
2023, Proceedings, Part III (Lecture Notes in Computer Science). Ed. by Constantin Enea and Akash Lal. Vol. 13966.
Springer, 350–373. DOI: 10.1007/978-3-031-37709-9_17.

Markus Lohrey. 2003. ‘Realizability of high-level message sequence charts: closing the gaps’. Theor. Comput. Sci., 309,
1, 529–554. DOI: 10/cspvjw.

Markus Lohrey and Anca Muscholl. 2002. ‘Bounded MSC Communication’. In: Foundations of Software Science
and Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings
(Lecture Notes in Computer Science). Ed. by Mogens Nielsen and Uffe Engberg. Vol. 2303. Springer, 295–309.
DOI: 10/bwrdzf.

Markus Lohrey and Anca Muscholl. 2004. ‘Bounded MSC communication’. Inf. Comput., 189, 2, 160–181. DOI:
10/dhrsrp.

Rupak Majumdar, Madhavan Mukund, Felix Stutz and Damien Zufferey. 2021. ‘Generalising Projection in Asynchronous
Multiparty Session Types’. In: 32nd International Conference on Concurrency Theory, CONCUR 2021, August
24-27, 2021, Virtual Conference (LIPIcs). Ed. by Serge Haddad and Daniele Varacca. Vol. 203. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 35:1–35:24. DOI: 10/gsmrh7.

Antoni W. Mazurkiewicz. 1986. ‘Trace Theory’. In: Petri Nets: Central Models and Their Properties, Advances in Petri
Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-19 September 1986 (Lecture
Notes in Computer Science). Ed. by Wilfried Brauer, Wolfgang Reisig and Grzegorz Rozenberg. Vol. 255. Springer,
279–324. DOI: 10/b2kf67.

Kenneth L. McMillan. 2006. ‘Lazy Abstraction with Interpolants’. In: Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings (Lecture Notes in Computer Science).
Ed. by Thomas Ball and Robert B. Jones. Vol. 4144. Springer, 123–136. DOI: 10/d2vkb3.

https://doi.org/10/dhpsrd
https://doi.org/10/b8m6mf
https://doi.org/10/gsn2v2
https://doi.org/10/gsmrhw
https://doi.org/10.4171/Automata-2/9
https://doi.org/10.4171/Automata-2/9
https://doi.org/10/gsmrh3
https://doi.org/10/gsmrh4
https://theses.hal.science/tel-03574701
https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10/cspvjw
https://doi.org/10/bwrdzf
https://doi.org/10/dhrsrp
https://doi.org/10/gsmrh7
https://doi.org/10/b2kf67
https://doi.org/10/d2vkb3

8.0 – WEB LINKS 111

Rémi Morin. 2002. ‘Recognizable Sets of Message Sequence Charts’. In: STACS 2002, 19th Annual Symposium on
Theoretical Aspects of Computer Science, Antibes - Juan les Pins, France, March 14-16, 2002, Proceedings
(Lecture Notes in Computer Science). Ed. by Helmut Alt and Afonso Ferreira. Vol. 2285. Springer, 523–534. DOI:
10/db8xnd.

Anca Muscholl and Doron A. Peled. 1999. ‘Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces’.
In: Mathematical Foundations of Computer Science 1999, 24th International Symposium, MFCS’99, Szklarska
Poreba, Poland, September 6-10, 1999, Proceedings (Lecture Notes in Computer Science). Ed. by Miroslaw
Kutylowski, Leszek Pacholski and Tomasz Wierzbicki. Vol. 1672. Springer, 81–91. DOI: 10/d4pp52.

Anca Muscholl, Doron A. Peled and Zhendong Su. 1998. ‘Deciding Properties for Message Sequence Charts’. In:
Foundations of Software Science and Computation Structure, First International Conference, FoSSaCS’98, Held
as Part of the European Joint Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal,
March 28 - April 4, 1998, Proceedings (Lecture Notes in Computer Science). Ed. by Maurice Nivat. Vol. 1378.
Springer, 226–242. DOI: 10/d3cg4k.

Christos H. Papadimitriou. 1979. ‘The serializability of concurrent database updates’. J. ACM, 26, 4, 631–653. DOI:
10/b2rcdk.

Emil L. Post. 1946. ‘A variant of a recursively unsolvable problem’. Bull. Amer. Math. Soc. 52, 264–268. DOI: 10/dtq
c88.

Philippe Schnoebelen. 2002. ‘Verifying lossy channel systems has nonprimitive recursive complexity’. Inf. Process. Lett.,
83, 5, 251–261. DOI: 10/d36q8k.

Felix Stutz. 2023. ‘Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from
Message Sequence Charts’. In: 37th European Conference on Object-Oriented Programming, ECOOP 2023, July
17-21, 2023, Seattle, Washington, United States (LIPIcs). Ed. by Karim Ali and Guido Salvaneschi. Vol. 263. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 32:1–32:31. DOI: 10/gsmrjk.

Felix Stutz and Damien Zufferey. 2022. ‘Comparing Channel Restrictions of Communicating State Machines, High-level
Message Sequence Charts, and Multiparty Session Types’. In: Proceedings of the 13th International Symposium
on Games, Automata, Logics and Formal Verification, GandALF 2022, Madrid, Spain, September 21-23, 2022
(EPTCS). Ed. by Pierre Ganty and Dario Della Monica. Vol. 370, 194–212. DOI: 10/gsmrjm.

Kaku Takeuchi, Kohei Honda and Makoto Kubo. 1994. ‘An Interaction-based Language and its Typing System’. In:
PARLE ’94: Parallel Architectures and Languages Europe, 6th International PARLE Conference, Athens, Greece,
July 4-8, 1994, Proceedings (Lecture Notes in Computer Science). Ed. by Constantine Halatsis, Dimitris G. Maritsas,
George Philokyprou and Sergios Theodoridis. Vol. 817. Springer, 398–413. DOI: 10/ch8jf2.

Salvatore La Torre, P. Madhusudan and Gennaro Parlato. 2008. ‘Context-Bounded Analysis of Concurrent Queue
Systems’. In: Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science). Ed. by C. R.
Ramakrishnan and Jakob Rehof. Vol. 4963. Springer, 299–314. DOI: 10/bvrdjj.

Pitro Zafiropulo, Colin H. West, Harry Rudin, D. D. Cowan and Daniel Brand. 1980. ‘Towards Analyzing and Synthesiz-
ing Protocols’. IEEE Trans. Commun., 28, 4, 651–661. DOI: 10/ddwq48.

Web links
Introduction to protocol egineering. (2006). http://cs.uccs.edu/%20cs522/pe/pe.htm.
ITU-TS. Mar. 1993. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). (Mar. 1993). https://www.i

tu.int/rec/T-REC-Z.120-199303-S/en.
ITU-TS. Oct. 1996. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). (Oct. 1996). https://www.i

tu.int/rec/T-REC-Z.120-199610-S/en.
ITU-TS. Feb. 2011. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). (Feb. 2011). https://www.i

tu.int/rec/T-REC-Z.120-201102-I/en.
OMG. 2018. Business Process Model and Notation. (2018). https://www.omg.org/spec/BPMN/2.0.

Software
[SW] Loïc Germerie Guizouarn, ReSCu 2023. VCS: https://src.koda.cnrs.fr/loic.germerie.guizo

uarn/rescu.

https://doi.org/10/db8xnd
https://doi.org/10/d4pp52
https://doi.org/10/d3cg4k
https://doi.org/10/b2rcdk
https://doi.org/10/dtqc88
https://doi.org/10/dtqc88
https://doi.org/10/d36q8k
https://doi.org/10/gsmrjk
https://doi.org/10/gsmrjm
https://doi.org/10/ch8jf2
https://doi.org/10/bvrdjj
https://doi.org/10/ddwq48
http://cs.uccs.edu/%20cs522/pe/pe.htm
https://www.itu.int/rec/T-REC-Z.120-199303-S/en
https://www.itu.int/rec/T-REC-Z.120-199303-S/en
https://www.itu.int/rec/T-REC-Z.120-199610-S/en
https://www.itu.int/rec/T-REC-Z.120-199610-S/en
https://www.itu.int/rec/T-REC-Z.120-201102-I/en
https://www.itu.int/rec/T-REC-Z.120-201102-I/en
https://www.omg.org/spec/BPMN/2.0
https://src.koda.cnrs.fr/loic.germerie.guizouarn/rescu
https://src.koda.cnrs.fr/loic.germerie.guizouarn/rescu

112 CHAPTER 8 — Bibliography

References of the examples
[1] Julien Lange and Nobuko Yoshida. 2019b. ‘Verifying Asynchronous Interactions via Communicating Session

Automata’. In: Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part I (Lecture Notes in Computer Science). Ed. by Isil Dillig and Serdar Tasiran.
Vol. 11561. Springer, 97–117. DOI: 10/gsmrh4.

[2] Julien Lange, Emilio Tuosto and Nobuko Yoshida. 14th Jan. 2015b. ‘From Communicating Machines to Graphical
Choreographies’. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. Ed. by Sriram K. Rajamani and David Walker. ACM, (14th Jan. 2015), 221–232. DOI:
10/gsmrh3.

[3] Daniel M. Yellin and Robert E. Strom. 1997. ‘Protocol Specifications and Component Adaptors’. ACM Trans.
Program. Lang. Syst., 19, 2, 292–333. DOI: 10/fg2k78.

[4] Introduction to protocol egineering. (2006). http://cs.uccs.edu/%20cs522/pe/pe.htm.
[5] Sylvain Hallé and Tevfik Bultan. 2010. ‘Realizability analysis for message-based interactions using shared-state

projections’. In: Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010. Ed. by Gruia-Catalin Roman and André van der
Hoek. ACM, 27–36. DOI: 10/cbqd8h.

[6] Gwen Salaün, Lucas Bordeaux and Marco Schaerf. 2006. ‘Describing and reasoning on Web Services using
Process Algebra’. Int. J. Bus. Process. Integr. Manag., 1, 2, 116–128. DOI: 10/bkp55b.

[7] OMG. 2018. Business Process Model and Notation. (2018). https://www.omg.org/spec/BPMN/2.0.
[8] Matthias Güdemann, Gwen Salaün and Meriem Ouederni. 2012. ‘Counterexample Guided Synthesis of Monitors

for Realizability Enforcement’. In: Automated Technology for Verification and Analysis - 10th International
Symposium, ATVA 2012, Thiruvananthapuram, India, October 3-6, 2012. Proceedings (Lecture Notes in Computer
Science). Ed. by Supratik Chakraborty and Madhavan Mukund. Vol. 7561. Springer, 238–253. DOI: 10/gsmrhr.

[9] Ahmed Bouajjani, Constantin Enea, Kailiang Ji and Shaz Qadeer. 2018b. ‘On the Completeness of Verifying
Message Passing Programs Under Bounded Asynchrony’. In: Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II (Lecture Notes in Computer Science). Ed. by Hana Chockler and Georg Weissenbacher.
Vol. 10982. Springer, 372–391. DOI: 10/gsmrg4.

[10] Roly Perera, Julien Lange and Simon J. Gay. 2016. ‘Multiparty Compatibility for Concurrent Objects’. In:
Proceedings of the Ninth workshop on Programming Language Approaches to Concurrency- and Communication-
cEntric Software, PLACES 2016, Eindhoven, The Netherlands, 8th April 2016 (EPTCS). Ed. by Dominic A.
Orchard and Nobuko Yoshida. Vol. 211, 73–82. DOI: 10/gks43x.

[11] Rumyana Neykova, Raymond Hu, Nobuko Yoshida and Fahd Abdeljallal. 2018. ‘A session type provider: compile-
time API generation of distributed protocols with refinements in F#’. In: Proceedings of the 27th International
Conference on Compiler Construction, CC 2018, February 24-25, 2018, Vienna, Austria. Ed. by Christophe
Dubach and Jingling Xue. ACM, 128–138. DOI: 10/gsmrh8.

[12] Raymond Hu. 2017. ‘Distributed programming using Java APIs generated from session types’. Behavioural
Types: from Theory to Tools, 287–308.

[13] Raymond Hu and Nobuko Yoshida. 2016. ‘Hybrid Session Verification Through Endpoint API Generation’. In:
Fundamental Approaches to Software Engineering - 19th International Conference, FASE 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings (Lecture Notes in Computer Science). Ed. by Perdita Stevens and Andrzej Wasowski.
Vol. 9633. Springer, 401–418. DOI: 10.1007/978-3-662-49665-7_24.

[14] Thierry Jéron and Claude Jard. 1993. ‘Testing for unboundedness of fifo channels’. Theoretical Computer Science,
113, 1, 93–117. DOI: 10/fq3ssc.

[15] Meriem Ouederni, Gwen Salaün and Tevfik Bultan. 2013. ‘Compatibility Checking for Asynchronously Com-
municating Software’. In: Formal Aspects of Component Software - 10th International Symposium, FACS 2013,
Nanchang, China, October 27-29, 2013, Revised Selected Papers (Lecture Notes in Computer Science). Ed. by
José Luiz Fiadeiro, Zhiming Liu and Jinyun Xue. Vol. 8348. Springer, 310–328. DOI: 10/gsmrjc.

[16] Daniel Brand and Pitro Zafiropulo. 1983b. ‘On Communicating Finite-State Machines’. J. ACM, 30, 2, 323–342.
DOI: 10/dw9xwr.

[17] Stefan Leue, Richard Mayr and Wei Wei. 2004. ‘A Scalable Incomplete Test for Message Buffer Overflow in
Promela Models’. In: Model Checking Software, 11th International SPIN Workshop, Barcelona, Spain, April 1-3,
2004, Proceedings (Lecture Notes in Computer Science). Ed. by Susanne Graf and Laurent Mounier. Vol. 2989.
Springer, 216–233. DOI: 10/dvk5vm.

https://doi.org/10/gsmrh4
https://doi.org/10/gsmrh3
https://doi.org/10/fg2k78
http://cs.uccs.edu/%20cs522/pe/pe.htm
https://doi.org/10/cbqd8h
https://doi.org/10/bkp55b
https://www.omg.org/spec/BPMN/2.0
https://doi.org/10/gsmrhr
https://doi.org/10/gsmrg4
https://doi.org/10/gks43x
https://doi.org/10/gsmrh8
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10/fq3ssc
https://doi.org/10/gsmrjc
https://doi.org/10/dw9xwr
https://doi.org/10/dvk5vm

8.0 – REFERENCES OF THE EXAMPLES 113

[18] Stefan Leue, Alin Stefanescu and Wei Wei. 2008. ‘Dependency Analysis for Control Flow Cycles in Reactive
Communicating Processes’. In: Model Checking Software, 15th International SPIN Workshop, Los Angeles, CA,
USA, August 10-12, 2008, Proceedings (Lecture Notes in Computer Science). Ed. by Klaus Havelund, Rupak
Majumdar and Jens Palsberg. Vol. 5156. Springer, 176–195. DOI: 10/dkk32b.

[19] Pierre-Malo Deniélou and Nobuko Yoshida. 2012b. ‘Multiparty Session Types Meet Communicating Automata’.
In: Programming Languages and Systems - 21st European Symposium on Programming, ESOP 2012, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,
March 24 - April 1, 2012. Proceedings (Lecture Notes in Computer Science). Ed. by Helmut Seidl. Vol. 7211.
Springer, 194–213. DOI: 10/gsmrg9.

[20] Andrea Bracciali, Antonio Brogi and Carlos Canal. 2005. ‘A formal approach to component adaptation’. Journal
of Systems and Software, 74, 1, 45–54. DOI: 10/dr9w9j.

[21] Carlos Canal, Pascal Poizat and Gwen Salaün. 2006. ‘Synchronizing Behavioural Mismatch in Software Composi-
tion’. In: Formal Methods for Open Object-Based Distributed Systems, 8th IFIP WG 6.1 International Conference,
FMOODS 2006, Bologna, Italy, June 14-16, 2006, Proceedings (Lecture Notes in Computer Science). Ed. by
Roberto Gorrieri and Heike Wehrheim. Vol. 4037. Springer, 63–77. DOI: 10/bn2s99.

[22] Antonio Brogi and Razvan Popescu. 2006. ‘Automated Generation of BPEL Adapters’. In: Service-Oriented
Computing - ICSOC 2006, 4th International Conference, Chicago, IL, USA, December 4-7, 2006, Proceedings
(Lecture Notes in Computer Science). Ed. by Asit Dan and Winfried Lamersdorf. Vol. 4294. Springer, 27–39.
DOI: 10/fgxcsd.

[23] Javier Cubo, Gwen Salaün, Carlos Canal, Ernesto Pimentel and Pascal Poizat. 2007. ‘A Model-Based Approach to
the Verification and Adaptation of WF/.NET Components’. In: Proceedings of the 4th International Workshop on
Formal Aspects of Component Software, FACS 2007, Sophia-Antipolis, France, September 19-21, 2007 (Electronic
Notes in Theoretical Computer Science). Ed. by Markus Lumpe and Eric Madelaine. Vol. 215. Elsevier, 39–55.
DOI: 10/dbkrtp.

[24] Carlos Canal, Pascal Poizat and Gwen Salaün. 2008. ‘Model-Based Adaptation of Behavioral Mismatching
Components’. IEEE Trans. Software Eng., 34, 4, 546–563. DOI: 10/cq9n3c.

[25] Javier Cámara, José Antonio Martín, Gwen Salaün, Carlos Canal and Ernesto Pimentel. 2010. ‘Semi-Automatic
Specification of Behavioural Service Adaptation Contracts’. Electron. Notes Theor. Comput. Sci., 264, 1, 19–34.
DOI: 10/fksdm7.

[26] Wil MP van der Aalst, Arjan J Mooij, Christian Stahl and Karsten Wolf. 2009. ‘Service interaction: Patterns,
formalization, and analysis’. Formal Methods for Web Services: 9th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems, SFM 2009, Bertinoro, Italy, June 1-6, 2009,
Advanced Lectures 9, 42–88.

[27] Ricardo Seguel, Rik Eshuis and Paul W. P. J. Grefen. 2010. ‘Generating Minimal Protocol Adaptors for Loosely
Coupled Services’. In: IEEE International Conference on Web Services, ICWS 2010, Miami, Florida, USA, July
5-10, 2010. IEEE Computer Society, 417–424. DOI: 10/fjnmg3.

[28] Christian Gierds, Arjan J. Mooij and Karsten Wolf. 2012. ‘Reducing Adapter Synthesis to Controller Synthesis’.
IEEE Trans. Serv. Comput., 5, 1, 72–85. DOI: 10/fmjmd6.

[29] Amel Bennaceur, Chris Chilton, Malte Isberner and Bengt Jonsson. 2013. ‘Automated Mediator Synthesis:
Combining Behavioural and Ontological Reasoning’. In: Software Engineering and Formal Methods - 11th
International Conference, SEFM 2013, Madrid, Spain, September 25-27, 2013. Proceedings (Lecture Notes in
Computer Science). Ed. by Robert M. Hierons, Mercedes G. Merayo and Mario Bravetti. Vol. 8137. Springer,
274–288. DOI: 10/f2znt8.

[30] Gwen Salaün, Tevfik Bultan and Nima Roohi. 2012. ‘Realizability of Choreographies Using Process Algebra
Encodings’. IEEE Trans. Serv. Comput., 5, 3, 290–304. DOI: 10/ftstqs.

[31] Tevfik Bultan, Chris Ferguson and Xiang Fu. 2009. ‘A Tool for Choreography Analysis Using Collaboration
Diagrams’. In: IEEE International Conference on Web Services, ICWS 2009, Los Angeles, CA, USA, 6-10 July
2009. IEEE Computer Society, 856–863. DOI: 10/ffhkv6.

[32] Gregor Gößler and Gwen Salaün. 2011. ‘Realizability of Choreographies for Services Interacting Asynchronously’.
In: Formal Aspects of Component Software - 8th International Symposium, FACS 2011, Oslo, Norway, September
14-16, 2011, Revised Selected Papers (Lecture Notes in Computer Science). Ed. by Farhad Arbab and Peter Csaba
Ölveczky. Vol. 7253. Springer, 151–167. DOI: 10/gsmrhq.

[33] Gwen Salaün, Lucas Bordeaux and Marco Schaerf. 2004. ‘Describing and Reasoning on Web Services using
Process Algebra’. In: Proceedings of the IEEE International Conference on Web Services (ICWS’04), June 6-9,
2004, San Diego, California, USA. IEEE Computer Society, 43. DOI: 10/fv8ncq.

https://doi.org/10/dkk32b
https://doi.org/10/gsmrg9
https://doi.org/10/dr9w9j
https://doi.org/10/bn2s99
https://doi.org/10/fgxcsd
https://doi.org/10/dbkrtp
https://doi.org/10/cq9n3c
https://doi.org/10/fksdm7
https://doi.org/10/fjnmg3
https://doi.org/10/fmjmd6
https://doi.org/10/f2znt8
https://doi.org/10/ftstqs
https://doi.org/10/ffhkv6
https://doi.org/10/gsmrhq
https://doi.org/10/fv8ncq

114 CHAPTER 8 — Bibliography

[34] Pascal Poizat and Gwen Salaün. 2007. ‘Adaptation of Open Component-Based Systems’. In: Formal Methods for
Open Object-Based Distributed Systems, 9th IFIP WG 6.1 International Conference, FMOODS 2007, Paphos,
Cyprus, June 6-8, 2007, Proceedings (Lecture Notes in Computer Science). Ed. by Marcello M. Bonsangue and
Einar Broch Johnsen. Vol. 4468. Springer, 141–156. DOI: 10.1007/978-3-540-72952-5_9.

[35] José Antonio Martín and Ernesto Pimentel. 2011. ‘Contracts for security adaptation’. The Journal of Logic and
Algebraic Programming, 80, 3, 154–179. DOI: 10/ctjt9z.

[36] Radu Mateescu, Pascal Poizat and Gwen Salaün. 2008. ‘Adaptation of Service Protocols Using Process Algebra
and On-the-Fly Reduction Techniques’. In: Service-Oriented Computing - ICSOC 2008, 6th International
Conference, Sydney, Australia, December 1-5, 2008. Proceedings (Lecture Notes in Computer Science). Ed. by
Athman Bouguettaya, Ingolf Krüger and Tiziana Margaria. Vol. 5364, 84–99. DOI: 10/bt6p89.

https://doi.org/10.1007/978-3-540-72952-5_9
https://doi.org/10/ctjt9z
https://doi.org/10/bt6p89

List of Figures

2.1 System Scsd of Communicating Automata encoding the protocol from Example 2.2.1 14
2.2 Example of an MSC . 21
2.3 Action graph of execution e from Example 2.4.2 22
2.4 Complete representation of action graph from Figure 2.3 22
2.5 Representation of a conflict graph . 22

3.1 Non-RSC system, action and conflict graphs of one of its executions 28
3.2 Causal dependencies of an execution of Client/Server/Database protocol 30
3.3 Client/Server/Database protocol . 31
3.4 Representation of an RSC system and its automaton Arsc 32
3.5 Representation of Arsc for a non-RSC system 33
3.6 RSC system with non regular execution set . 35
3.7 MSC with straight lines that is not RSC with a mailbox architecture 36
3.8 Example of eager system that is not RSC . 37

4.1 Illustration of a cycle in a conflict graph ensured by Abv. 41
4.2 Illustration of Abv (Sn), for Sn from Example 3.2.2. 43
4.3 Abv (Srsc). 46
4.4 Example of AP (Srsc) . 49
4.5 Example of system with non regular reachability space 50
4.6 An example of AP (S) such that acceptance of a buffer depends on the content of

an other one . 50
4.7 Representation of Aep (Srsc) . 53
4.8 Systems to illustrate safety properties . 57

5.1 Topology of the system Scsd in Figure 2.1 . 63
5.2 Automata pg, pf, and pc used in the encoding of the Post correspondence problem 66
5.3 Topology of the system SP from Figure 5.2 . 68
5.4 Example of RSC system that is not binary half-duplex 69
5.5 Relation between different half-duplex generalisations 70

6.1 Example of a choreography: Ccsd . 72
6.2 Intermediate implementation of the choreography Ccsd from Figure 6.1 73
6.3 Implementation of the choreography Ccsd from Figure 6.1 74
6.4 AC of Cn which is not well-formed . 76
6.5 Apart (Ccsd) . 78
6.6 Apart (choreography) for Cn from Figure 6.4 79
6.7 System that is not deadlock-free . 82
6.8 Example of Async . 83
6.9 Example of a choreography whose implementation does not satisfy progress from

[Coppo et al. 2015] . 87

115

116 List of Figures

6.10 MSC with a non synchronous pattern . 88
6.11 Comparison between the expressive power of different formalisms 89

7.1 SCM representation of Example 2.2.2 . 97
7.2 Illustration of parametric systems for benchmarking 102
7.3 Computation time of membership depending on the size of the input 103
7.4 Model-checking time depending of the size of the input 104

List of Definition

2.1.1 Finite State Automata . 11
2.1.2 Directed labelled graph . 12
2.1.3 Graph isomorphism . 12
2.1.4 Consistent induced subgraph . 12
2.2.1 Communicating automaton . 13
2.2.2 Deterministic communicating automaton . 13
2.2.3 System of communicating automata . 13
2.2.4 Product of a system . 14
2.2.5 Final state . 14
2.2.6 Configuration . 15
2.2.7 Stable configuration . 15
2.2.8 Transition . 15
2.2.9 Peer-to-peer systems . 15
2.2.10Mailbox systems . 16
2.3.1 Feasible execution . 16
2.3.2 Prefix of an execution . 16
2.3.3 Matching pair . 16
2.3.4 Well-formed execution . 17
2.3.5 Causal equivalence . 18
2.3.6 Communications of an execution . 19
2.4.1 Message Sequence Chart . 20
2.4.2 Action Graph . 21
2.4.3 Conflict graph . 22
3.1.1 RSC execution . 27
3.2.1 RSC system . 30
3.3.1 Arsc . 31
4.1.1 Borderline violation . 39
4.1.2 Candidate borderline violation . 40
4.1.3 Abv . 41
4.2.1 Encoding [γ] . 48
4.2.2 Aep (S) . 51
4.2.3 Aprod . 55
4.2.4 Unspecified reception . 56
4.2.5 Progress . 57
4.2.6 Orphan message configuration . 58
4.2.7 Reception-deadlock . 58
5.0.1 Binary half-duplex systems [Cécé and Finkel 2005] 61
5.1.1 Natural half-duplex generalisation [Cécé and Finkel 2005] 62
5.1.2 Restricted half-duplex generalisation [Cécé and Finkel 2005] 62
5.1.3 Multiparty half-duplex system . 62
5.1.4 Half-duplex topology . 64

117

118 List of Definition

5.1.5 PCP instance . 64
5.1.6 PCP solution . 64
5.1.7 Communicating automata encoding a PCP instance 65
6.1.1 Choreography . 71
6.1.2 Projection . 72
6.1.3 Implementation of a choreography . 73
6.2.1 Partial execution . 75
6.2.2 Well-Formedness of a choreography . 75
6.2.3 Apart . 76
6.3.1 Deadlock . 82
6.3.2 Deadlock-Freedom . 83
6.3.3 Automaton Async . 83

List of Examples

2.2.1 Communication protocol . 12
2.2.2 Representation of a system of communicating automata 13
2.3.1 Ill-formed execution . 17
2.3.2 Causally equivalent executions with different matching pairs 18
2.3.3 Communications of an execution . 19
2.4.1 MSC . 19
2.4.2 MSC with wrong linearisation . 20
2.4.3 Action graph . 21
2.4.4 Conflict graph . 22
2.5.1 Execution with multiple possibilities for matching pairs 24
3.1.1 RSC execution . 27
3.1.2 Non-RSC execution . 27
3.1.3 Non-RSC execution obtained by concatenation of communications 28
3.1.4 Execution with acyclic conflict graph . 29
3.1.5 Execution with cyclic confilct graph . 29
3.2.1 RSC system . 30
3.2.2 Non-RSC system . 30
3.3.1 Arsc (S) . 32
3.3.2 Arsc of a non-RSC system . 32
3.4.1 Eager system that is not RSC . 37
4.1.1 Borderline violation . 39
4.1.2 Candidate borderline violation that is not a borderline violation 40
4.1.3 Sequence of communication that is not a candidate borderline violation 41
4.1.4 Abv of a non-RSC system . 44
4.1.5 Abv of an RSC system . 45
4.2.1 Encoding of a configuration . 49
4.2.2 Automaton AP (S) . 49
4.2.3 RSC system with non regular reachability space 49
4.2.4 Different executions leading to the same configuration 50
4.2.5 Challenge in recognition of executions leading to a configuration 50
4.2.6 Automaton Aep . 52
4.2.7 Unspecified reception . 57
4.2.8 Progress . 57
4.2.9 Orphan message . 58
5.1.1 Multiparty half-duplex execution . 63
5.1.2 Topology of a system . 63
6.1.1 Choreography . 71
6.1.2 Implementation of a choreography . 73
6.2.1 Non-synchronous execution in a choreography 75
6.2.2 Ill-formed choreography . 76

119

120 List of Examples

6.2.3 Automaton Apart for a well-formed choreography 77
6.2.4 Automaton Apart for an ill-formed choreography 77
6.3.1 Deadlock . 82
6.3.2 Automaton Async . 83
6.3.3 Deadlock-free system with Arsc ⊈ Apart . 84
6.4.1 Well-formed choreography not satisfying strong progress 87
7.2.1 SCM implementation of Example 2.2.2 . 96

Automates communicants et communications quasi-synchrones

Loïc GERMERIE GUIZOUARN

Résumé

Les systèmes distribués sont le plus souvent basés sur l’échange asynchrone de messages entre
des agents. La programmation par échanges de messages est largement utilisée en calcul haute
performance, en programmation événementielle, dans les architectures orientées service, etc.
Malheureusement du fait de la variété des modèles de communication, des ambiguïtés dans
les spécifications, de la portabilité limitée du code, ou encore de la difficulté à exécuter des
tests, il est très difficile de vérifier les systèmes communicants. Le model-checking de systèmes
communicants vise à analyser des modèles formels de systèmes distribués et à détecter automa-
tiquement des erreurs comme des pertes de messages ou des inter-blocages. Ces problèmes sont
indécidables pour des systèmes à partir de deux machines, et plusieurs hypothèses restrictives
ont été étudiées pour rendre les problèmes décidables. Nous définissons dans cette thèse une
nouvelle classe de systèmes : les systèmes réalisables avec des communications synchrones
(RSC pour faire court). Les comportements de ces systèmes approximent des comportement
synchrones, où les messages sont envoyés et reçus simultanément. Nous nous basons sur cette
définition pour étudier la généralisation d’une autre classe de systèmes : les systèmes half-
duplex. Un système à deux machines est half-duplex si lorsqu’une machine envoie des messages,
l’autre ne peut pas lui en envoyer. Nous étudions également un autre formalisme, permettant
de raisonner sur les systèmes de manière globale : les chorégraphies. Ce formalisme décrit les
exécutions de manière synchrone, et un des problèmes qui y est associé est de vérifier si la
combinaison des comportements de chaque acteur qui y est décrit est conforme à la description
globale. Nous proposons d’utiliser les propriétés des systèmes RSC pour traiter ce problème.

Mots-clés : Communications, vérification, automates communicants.

Abstract

Most of the distributed systems we use nowadays are based on the message-passing paradigm
where systems are structured into parties that interact only by sending and receiving messages
asynchronously. Message-passing programming is largely employed in high performance
computing (MPI, OpenMP, etc), event-driven applications built on top of actor-based languages
(Scala, Erlang, etc), service-oriented architectures, peer-to-peer applications, etc. Unfortunately,
because of the variety of communication models (peer to peer, mailbox, etc), of the ambiguities
of the specifications of the communication primitives, of a limited portability of the code,
and of the difficulty of running representative tests, etc, it is error prone and therefore often
reserved to experts. Model-checking of communicating automata aims at analysing formal
models of distributed systems and discovering bugs like message loss or deadlocks. Due to the
asynchronous nature of the communications, this problem is undecidable in general, even with
two machines only, and several restrictions have been considered to restore decidability. We
define a new one in this thesis: systems that are realisable with synchronous communications
(RSC for short), that is the systems whose behaviours are equivalent to synchronous ones. We
propose the class of RSC systems as a generalisation of half-duplex systems, which are system
of two machines, where a machines does not send any message if it still has some pending
messages to be received in its queue. We study another formalism as well: choreographies,
which provide a way to reason globally on a system. Choreographies describe synchronous
executions, and one of the problems associated with it is checking whether the combination of all
participants of the described communication will behave accordingly to the global description.
We propose to rely on the properties of RSC systems to study this problem.

Keywords: Communication, model-checking, communicating automata.

	1 Introduction
	1.1 General context
	1.2 Background
	1.2.1 Communicating automata
	1.2.2 Global approaches

	1.3 Our objectives
	1.4 Contributions and outline

	Notations
	2 Preliminaries
	2.1 General definitions
	2.1.1 Finite State Automata and regular languages
	2.1.2 Graphs

	2.2 Communicating automata
	2.2.1 Communicating automaton
	2.2.2 System of communicating automata
	2.2.3 Communication architectures

	2.3 Executions
	2.4 Graphical representations
	2.4.1 Messages Sequence Charts
	2.4.2 Action Graphs
	2.4.3 Conflict Graphs

	2.5 Discussion
	2.5.1 Communicating automata
	2.5.2 Fully-bag causal equivalence
	2.5.3 MSCs and action graphs
	2.5.4 Conflict graphs

	3 RSC systems
	3.1 RSC executions
	3.1.1 RSC executions and sequences of communications
	3.1.2 Characterisation

	3.2 RSC Systems
	3.3 Automaton Arsc
	3.4 Discussion

	4 Model-checking
	4.1 Membership
	4.1.1 Borderline violations
	4.1.2 Automaton Abv
	4.1.3 Decidability of the membership problem

	4.2 Reachability
	4.2.1 Recognising executions leading to a given configuration
	4.2.2 Automaton Aep
	4.2.3 Decidability of the reachability problem for RSC systems
	4.2.4 Regular Safety Problems

	4.3 Discussion

	5 Generalisation of half-duplex systems
	5.1 Unsuitable generalisations
	5.1.1 Propositions from ceceverification2005
	5.1.2 Multiparty half-duplex systems

	5.2 Mailbox multiparty half-duplex systems
	5.3 Why RSC is a good generalisation of binary half-duplex

	6 RSC characterisation of well-formed choreographies
	6.1 Choreographies
	6.2 Well-formedness of choreographies
	6.3 Properties of well-formed choreographies
	6.3.1 Deadlock-freedom
	6.3.2 RSC implementation

	6.4 Discussion
	6.4.1 Global description and safety
	6.4.2 Realisability problem
	6.4.3 RSC and typeable systems

	7 Tool support
	7.1 Related tools
	7.2 Features and implementation
	7.2.1 Features
	7.2.2 SCM description language
	7.2.3 Implementation

	7.3 Protocol library
	7.4 Performance
	7.4.1 Comparison with McScM
	7.4.2 Evaluation benchmark
	7.4.3 Comparison with STABC and KMC

	7.5 Perspectives

	8 Conclusion and perspectives
	Bibliography
	List of Figures

