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Introduction

Position of the work in the spatial context

These last fifty years have been marked by the revolutionary progress in
the domain of space exploration. The race to conquer space has seen its
peak during the cold-war with the competition between the USSR and
the USA. Nowadays, space missions have become an area of cooperation
between countries, notably with the International Space Station (ISS) and
the European Space Agency (ESA). During all these years, the techno-
logical advancements in several areas, especially computer engineering,
electronics and embedded systems have an impact on the development
of the know-how and the mastering techniques answering space domain
requirements. The long duration of space programs on one hand and the
increasing development of modern technologies on the other hand induce
high demands on advanced technologies for spacecraft design.
Moreover, space is a harsh environment (the vacuum, temperatures (with
big contrasts), radiations, energetic charged particles, degrading chemi-
cal agents, orbital debris) for satellite components (electronic components,
materials, mechanisms), and failures can be fatal for the mission objective.
However, the estrangement between the spatial segment and the ground
segment, especially for interplanetary missions whose duration is very
long (dozens of years) is a crucial problem for the spacecraft mission suc-
cess. For such missions the transmission delays between space segment
and ground segment (the TM/TC system) are very important. The impor-
tant delay of the incoming measures translates into an important delay
to analyze the health state of the satellite. The important delay of control
actions translates into bad reactivity of the ground segment after fault oc-
currence. The time the sensor telemetry data are received, the diagnosis
determined and the control actions sent back, the spacecraft may be lost.
Hence, the high demand on autonomy translates into a high need for on-
line monitoring, diagnosis and recovery.
During the last decades, space exploration was disordered by many failing
missions :

– Mars Observer is the first of a series of NASA planetary missions
intended to study the geology and climate of Mars. In august 1993,
three days before scheduled Martian orbit insertion, contact with the
probe was lost for reasons still not known. Several scenarios for what
might have happened during the final moments of Mars Observer
were put forward, but none has been confirmed.

– Beagle 2 was an unsuccessful British landing spacecraft that formed
part of the European Space Agency’s 2003 Mars Express mission. It
is not known for certain whether the lander reached the Martian sur-
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2 Introduction

face, all contact was lost upon its separation from the Mars Express
six days before its scheduled entry into the atmosphere.

– Phobos program was an unmanned space mission consisting of two
probes launched by the Soviet Union to study Mars and its moons
Phobos and Deimos. Phobos 1 operated nominally until an expected
communications session on 2 September 1988 failed to occur. The
failure of controllers to regain contact with the spacecraft was traced
to an error in the software uploaded on 29 August/30 August, which
had deactivated the attitude thrusters. By losing its lock on the Sun,
the spacecraft could no longer properly orient its solar arrays, thus
depleting its batteries.

– Sakigake (MS-T5) was Japan’s first interplanetary spacecraft. It aimed
at demonstrating the performance of the new launch vehicle, test
the schemes of the first escape from the Earth gravitation for Japan,
observe space plasma and magnetic field in interplanetary space.
Contact was lost in January 7, 1999.

These missions could probably have been rescued with the presence of an
on-board diagnosis module able to diagnose the faults and decide about
the appropriate reconfiguration actions to be performed. On-board diag-
nosis could have maintained the spacecraft in a safe state, allowing more
time for the ground segment to acquire and interpret measurements, and
broadcast appropriate control.
In future space missions, the tendency is to bet on autonomy, especially
for far-space-missions. The work of this thesis is motivated by the above
considerations and aims at defining an active diagnosis approach for a
new generation of autonomous satellites. Active diagnosis consists of ap-
plying appropriate control inputs able to exhibit a suitable set of symp-
toms leading to a precise diagnosis of the health status of the spacecraft,
hence providing focused information for the reconfiguration module.

Architecture for Autonomy : on-board Active

Diagnosis and Reconfiguration

Figure 1 provides the active diagnosis and reconfiguration scheme that
we foresee. The proposed architecture is based on the idea that provi-
ding a non ambiguous diagnosis is key and given priority as long as it
is consistent with the spacecraft safety. Indeed, even the reconfiguration
module could accommodate ambiguous faulty situations, the ground seg-
ment needs a precise view of the health status of the component to adapt
its control strategy.

– The Active Diagnoser performs on-line diagnosis of the system state
from available measurements. In the case of non precise diagnosis,
additional control inputs are issued in order to exhibit additional
symptoms.

– The Planner provides a plan for the system. When the system beha-
vior is normal (no fault), the plan required for mission fulfillment is
excused. After a fault is diagnosed, if the diagnosis is precise, a re-
configuration plan is defined and executed, otherwise, a conditional
plan is determined for active diagnosis and executed.
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– The Hybrid Controller achieves closed loop control. It takes as input
incoming measurements and provides suitable discrete and conti-
nuous control inputs.

– The Reconfiguration module accommodates to faulty situations by
providing a reconfiguration plan. Several reconfiguration strategies
can be considered. Reconfiguration can be performed by defining
new input commands to drive the system in a degraded mode, by
switching on redundant components, etc ... Reconfiguration can be
defined on-line or by using a pre-computed reconfiguration-table
that associates a suitable plan to every anticipated faulty situation.

SpaceCraftActuators Sensors

Hybrid

Controller

Active Diagnoser

Planner

Reconfiguration Module

MISSION OBJECTIVE

Reconfiguration Plan Active Diagnosis

 Plan

Diagnosis

Measures

Continuous/Discrete

Control Inputs

Fig. 1 – On-board active diagnosis and reconfiguration scheme

Introduction of the diagnosis approach

Among existing diagnosis approaches (c.f. Chapters 1 and 2), this work
is concerned with model-based approaches. The principle of these ap-
proaches is to represent explicitly the physical plant in the form of a model
to support the diagnosis reasoning. In model-based approaches, the know-
ledge about the physical system and the knowledge about the diagnosis
task are separated, hence the diagnosis engine is generic and can be used
to diagnose different systems, just by changing the system model. Model-
based diagnosis is appropriate to take into account different aspects of the
system behavior including faulty situations.
This thesis focuses on satellites, that are complex dynamical systems in
which the overall physical plant is inherently continuous, but control is
often performed by a supervisory controller that imposes discrete swit-
ching behavior between several operating modes. Hence a hybrid mo-
deling framework that takes into account both continuous and discrete
dynamics is required for the model-based diagnosis approach. The appro-
priateness of on-board model-based diagnosis for autonomous spacecraft



4 Introduction

has been proved with the model-based diagnosis software LIVINGSTONE
(c.f. Williams and Nayak (1996)) developed by MIT, JPL and NASA Ames
Research Center and used on Deep Space 1. Then, model-based diagnosis
was used for space domain applications with the French diagnosis soft-
ware KOALA Benazera (2003) developed by LAAS-CNRS (Centre Natio-
nal de la Recherche Scientifique) in collaboration with CNES (Centre Na-
tional des Etudes Spatiales), the monitoring and diagnosis system TRANS-
CEND Manders et al. (February 1999) etc... These approaches can be qua-
lified as "passive" in the sense that control and diagnosis are performed
separately. Moreover, these approaches do not make use of the diagno-
sability properties of the system. While, in the autonomy context, the
diagnosability property is very important and guarantees that, after the
occurrence of a fault, the state of the system can non-ambiguously be de-
termined. Active diagnosis interleaves diagnosis and control and can be
considered in order to disambiguate an ambiguous estimated state of the
system. It consists of applying additional control inputs to exhibit further
symptoms. In this thesis, we propose a hybrid modeling framework and
an approach for hybrid system diagnosis which couples discrete event and
continuous techniques. The same hybrid model is used to define the diag-
nosability property for hybrid systems and deriving diagnosability criteria
and to support the on-line diagnosis reasoning. The diagnosis approach
is extended to active diagnosis guided by the diagnosability properties of
the system. The hybrid system is seen as the contribution of two under-
lying discrete event and continuous systems. The underlying continuous
system called the multimode system is diagnosed following an extension
of the parity space approach. New concepts of mirror and mode signatures
are introduced and capture diagnosis information about the underlying
continuous system behavior. Then, signature switches are abstracted in
terms of discrete events typifying continuous dynamics and are used to
enrich the underlying discrete event system model. From the enriched dis-
crete event model called the behavior automaton, we build the diagnoser of
the hybrid system to perform on-line diagnosis. It takes as input natural
observable discrete events and events issued from the abstraction of the
continuous dynamics changes. The definition of diagnosability of multi-
mode systems is introduced based on the new concept of mode signature.
By putting together events issued from the abstraction of continuous dy-
namics and natural discrete events, a prefix closed language is defined and
describes the evolution of the hybrid system. Based on this model, the de-
finition and criteria for diagnosability of hybrid systems are provided. It
is shown that diagnosability of either the underlying continuous system
or the discrete event system are sufficient but not necessary conditions for
hybrid diagnosability. Finally, based on the above presented background,
a method for performing active diagnosis of hybrid systems is proposed.
Starting with an ambiguous belief state, our method calls for diagnosa-
bility analysis results to determine a new system configuration in which
fault candidates can be discriminated. The control inputs to be applied to
the system to drive it into the selected configuration are then determined
paying attention to avoid states that could be dangerous for the system.
The active diagnosis problem is formulated as a conditional planning pro-
blem. The search for active diagnosis actions is guided by the observable
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response of the system and by the introduced concept of controllable path.
From an ambiguous state of the diagnoser the plan defines how to find a
controllable path leading to a non-ambiguous state.

Roadmap of the thesis

The thesis starts with a state of the art of model-based diagnosis ap-
proaches, diagnosis of hybrid systems, and diagnosability analysis, res-
pectively provided in Chapters 1, 2 and 3. The second part of the thesis
presents our active diagnosis approach. First, our formalism for hybrid
system modeling as well as our passive diagnosis approach are introduced
in Chapter 4. Then, based on this formalism, Chapter 5 presents the un-
derlying diagnosability analysis approach. Next, the diagnosis approach
is extended to an active diagnosis guided by diagnosability properties of
the hybrid system and provided in Chapter 6. Finally, the proposed diag-
nosis approach is demonstrated on the Control Attitude System (ACS)
of a satellite stabilized by four reaction wheels 1 presented in Chapter 7.
This system is diagnosable and consequently diagnosed by means of the
passive diagnosis approach (the diagnosis scheme does not call for active
diagnosis).

1The case study is provided by Thales Alenia Space, France.





PART I

State of the Art on
Model-Based Diagnosis and

Diagnosability of Hybrid
Systems

7





Chapter

1
Approaches for Model Based

Diagnosis

Contents

1.1 Fault Detection and Isolation (FDI) . . . . . . . . . . . . . 13

1.2 Logical diagnosis theory approach (DX) . . . . . . . . . . . 15

1.3 Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Diagnosis is concerned with the development of algorithms that are
able to determine whether the behavior of a system is normal. If this

is not the case, the algorithm should be able to determine, as accurately
as possible, which part of the system is failing, and which kind of fault
it is undergoing. In the literature, there are several diagnosis approaches
developed along theories of Artificial Intelligence, Automatic Control and
Statistics.
We can distinguish model-based approaches that require an accurate (ana-
lytic, qualitative, logic, ...) model of the system and non model-based ap-
proaches, i.e. approaches that do not assume any model and rely only on
historic process data.
The main non model-based approaches developed for diagnosis, in the
field of Artificial Intelligence are :

– Pattern recognition : the diagnosis is performed by means of a set
of indexed observations which are used to identify data classes cor-
responding to different operating modes (normal and faulty) of the
system. In a sense, this approach can be likened to a model-based
approach. However, in opposition to the model-based approaches
the model is not issued from physical, chemical, etc... considerations,
system components and their interactions, but from a data base com-
posed by collected measure samples (c.f. Dubuisson (2001)). There
are several approaches of pattern recognition : the structural pattern
recognition (c.f. Schalkoff (1992)) that uses the relations between pat-
tern components and numeric (statistic, fuzzy, etc...) pattern recog-
nition that uses probabilistic (or fuzzy) models of the patterns. The
last one is the most appropriate to the diagnosis problem.

– Learning approaches : the diagnosis is translated into a learning pro-
blem. These approaches assume that the available knowledge of the

9
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system is only given by past and current observations. Then, from
these observations a diagnosis system is "learned". The learning aims
at searching a set of computable relations between observable input
and observable output variables. These relations are used to estimate
output variables knowing only input variables. Neuronal and Baye-
sian Networks can be used to build learning systems (c.f. Schalkoff
(1992), Neal (1996)).

In the field of system control and signal-based approaches the main
diagnosis approaches are based on physical redundancy, frequency analy-
sis of measurements (c.f. Morita and Okitsu (1990)) and statistical methods
(c.f. Bakhache and Nikiforov (2000)).
This thesis is concerned with model-based diagnosis approaches. Model-
based diagnosis has been one of the very active research domains in the
last decades in both Automatic Control and Artificial Intelligence fields.
Several paradigms for qualitative (c.f. Travé-Massuyès and Dague (2003))
and quantitative modeling of physical plants have been proposed and al-
low one to model complex dynamical systems in order to perform diag-
nosis. The system model offers the possibility to integrate the physical
plant behavior knowledge in the diagnosis module that takes as input
on-line measurements provided by the sensoring and monitoring system.
Indeed, model-based diagnosis consists of checking the consistency bet-
ween measurements and the system model. Then, a fault manifests itself
and is detected as an inconsistency between the system model and the
observations. The use of fault models allows one to determine the fault
(identification), by checking the consistency between measurements and
models of anticipated faulty behaviors.
It is important to notice that a system model depends on the nature of the
system behavior. Hence, we can distinguish :

– Continuous systems, in which the system behavior is described by
a continuous state, i.e. by variables that evolve in a continuous do-
main and describe the evolution of physical phenomena governed
by physical laws modeled by algebraic and differential equations.

– Discrete-event systems, in which the system behavior is described by
a discrete state, i.e. by discrete variables that evolve in finite discrete
domains 1. These systems can be modeled with logic formulas or
finite state machines.

– Hybrid systems that combine both continuous and discrete event
dynamics.

Several communities dealing with model-based diagnosis have wor-
ked in parallel, developing their own and specific methods that depend
on the system modeling framework. We distinguish two main communi-
ties, on one hand the Artificial Intelligence community also called diagnosis
from first principles (DX community) (c.f. Reiter (1987)) that uses symbolic
and qualitative models with logic, and on the other hand the Automatic
Control community also called FDI (Fault Detection and Isolation) com-
munity that develops control and statistic decision theories for model-

1Notice the difference between discrete systems (the system behavior is described by
discrete variables evolving in finite discrete domains) and discrete time representation of
continuous systems (the system behavior is described by continuous variables considered
at sampling times).
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based diagnosis using analytic models and linear algebra (c.f. Chow and
Willsky (Jul 1984), Staroswiecki and Comtet-Varga (2001a). Last years have
seen bridge works that compare the approaches in the two fields and have
established some equivalence between DX and FDI concepts demonstrated
in Cordier et al. (2004), published in the special issue "Diagnosis of Complex
Systems : Bridging the Methodologies of the FDI and DX Communities" (c.f.
Biswas et al. (2004)).
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1.1 Fault Detection and Isolation (FDI)

Fault Detection and Isolation algorithms developed by the Automatic
Control community rely on quantitative models deduced from the physi-
cal rules that govern the system behavior or estimated from input/output
data. Quantitative models can be formulated in the temporal domain (state
space models with continuous or discrete time representation) or in the
frequency domain (transfer functions). The first formulation can be ap-
plied to both linear and non linear systems, however, the second formu-
lation is limited to linear systems. A fault is detected by an inconsistency
between the model of normal behavior and the observations (detection
phase). Then, models of faulty behaviors are used according to the same
principle to precisely determine the fault nature (isolation phase). Fault
detection and isolation algorithms can be based on analytic redundancy,
state estimation (or filtering) and parameter estimation techniques.

– Analytical redundancy : the key idea is to use of analytic redun-
dancy to build testable models, i.e. models that only involve obser-
vable variables. Existence of such models is conditioned by redun-
dant information conveyed by the system model. Testable models
must be able to reject perturbations (robustness), to detect faults (de-
tectability) and to discriminate them (distinguishability) as presen-
ted in Frank (1990). Testable models correspond to Analytic Redun-
dancy Relations (ARRs), that are constraints linking only observable
variables (c.f. Chow and Willsky (Jul 1984)). ARR techniques have
been developed to deal with linear systems, then they were extended
to non linear systems in Staroswiecki and Comtet-Varga (2001a). The
system model involves non measurable variables (the state variables)
that must be eliminated to obtain the ARRs. The analysis of the exis-
tence of ARRs can be made using a structural model of the system in
the form of a bipartite graph (c.f. Staroswiecki and Declerck (1989)).
Furthermore, structural analysis offers a tool to analyze the detec-
tability and isolability properties of the system as presented in Sta-
roswiecki and Comtet-Varga (2001b). Then, several techniques are
proposed to effectively obtain the ARRs analytical expressions, on
one hand for linear systems by means of the parity space approach
as presented Chow and Willsky (Jul 1984) and on the other hand for
non linear systems as presented in Staroswiecki and Comtet-Varga
(2001a).
For linear systems, the parity space approach allows one to elimi-
nate the state variables by projection on the Parity space. The exten-
sion of this approach to non linear systems is given in Chow and
Willsky (Jul 1984). In the absence of unknown inputs (no perturba-
tions), the obtained ARRs involve only observable inputs and out-
puts, the faults and the noise signals. Hence, they can be directly
used to build indicators for fault diagnosis.
Consider a linear system modeled by its state space and observation
equations with discrete time representation :{

X(n + 1) = AX(n) + BU(n) + Fxδ(n) + Exε(n)
Y(n) = CX(n) + DU(n) + Fyδ(n) + Eyε(n) (1.1)
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X, U, Y represent the continuous state vector of the system, the in-
put vector and the output vector, of dimensions nx, nu and ny res-
pectively. A, B, C and D are matrices with appropriate dimensions
that denote dynamic, input, measure and direct transmission ma-
trices, respectively. n represents the sampling time. δ and ε denote
the fault and the noise input vectors respectively . Fx, Ex, Fy and Ey
are matrices with appropriate dimensions that capture the influence
of the fault and the noise, respectively, on state evolution and obser-
vations.
State variables are eliminated by iterating the state and the obser-
vation equations. The number of iterations defines the order of the
parity space and determines the number of consecutive inputs and
outputs to be considered to compute the ARRs.
Let p denote the order of the parity space.
Up(n) = [UT(n− p), ..., UT(n− p + k), ..., UT(n)]T, Yp(n) = [YT(n−
p), ..., YT(n − p + k), ..., YT(n)]T, δp(n) = [δT(n − p), ..., δT(n − p +
k), ..., δT(n)]T and εp(n) = [εT(n − p), ..., εT(n − p + k), ..., YT(n)]T

are the input, the output, the fault and the noise vectors respectively
considered at the sampling times : n− p, ..., n− p + k, ..., n.
The ARRs are decomposed into a so-called computation and evalua-
tion form. The computation form involves only the input and the
output vectors. The evaluation form involves only the noise and the
fault vectors. The associated residual is obtained by comparing the
computation and the evaluation forms. It is equal to 0 if the ARR is
satisfied, 1 otherwise.
The computation form is given by :

ρc(n) = ΩpYp(n)−ΩpLpUp(n) (1.2)

where :

Op =


C

CA
...

CAp

, ΩpOp = 0, Lp =


D 0 ... 0

CB D ... ...
... ... ... 0

CA(p−1)B ... CB D


The evaluation form is given by :

ρe(n) = Ωp Mpδp(n) + ΩpNpεp(n) (1.3)

where :

Mp =


Fy 0 ... 0

CFx Fy ... ...
... ... ... 0

CA(p−1)Fx ... CFx Fy

, Np =


Ey 0 ... 0

CEx Ey ... ...
... ... ... 0

CA(p−1)B ... CEx Ey


In this thesis, an extension of the parity space approach is used
to generate consistency tests for the underlying continuous beha-
vior of hybrid systems. Hence, more details about the parity space
techniques are provided in Chapter 4 and in Appendix A.1.

– Observer techniques developed for both linear and non linear sys-
tems can also be used for fault detection and isolation (c.f. Magni
and Mouyon (1991), Misawa and Hedrick (1989)). The observer
gives an estimation of the system state and outputs. Fault detection
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is achieved by comparing measured and estimated outputs.
To illustrate the method, consider a continuous linear system mode-
led by its state space representation with discrete time as shown in
equation (1.1). Noise and perturbations are not considered.
The observer is a dynamical system 2, built from the analytic model
of the system, that estimates the system state and output. The gene-
ral form of an observer is defined as follows :{

X̂(n + 1) = AX̂(n) + BU(n) + L(Ŷ(n)−Y(n))
Ŷ(n) = CX̂(n) + DU(n)

(1.4)

X̂ and Ŷ are the estimated state and output respectively. The gain
matrix L must be chosen such that the eigenvalues of the matrix
A + LC are included in the unit circle. This guarantees the conver-
gence of the state estimation. The estimation error is given as the
difference between the real state and the estimated state of the sys-
tem : e(n) = X̂(n)− X(n). Then, the residual vector is obtained as
the difference between the output measurement (provided by the
sensors) and the output estimation, ρ = Ŷ(n)−Y(n) = C.e(n).
In the same way as for input/output testable models, structural ana-
lysis can be used to analyze detectability and isolability properties.
The general form of an observer is not suited for the resolution of
the isolation problem and it has to be structured to satisfy isolability
requirement (c.f. Patton et al. (1989)). Moreover, residuals can be op-
timized to be robust to the perturbations (c.f. Qiu and Gertler (1993))
and to deal with uncertainty (c.f. Adrot et al. (1999)).

– Parameter estimation techniques for both linear and non linear sys-
tems can be used to develop fault detection and isolation algorithms
(c.f. Pouliezos et al. (1985)). Fault detection is achieved by comparing
estimated parameters to nominal parameters that characterize the
normal behavior of the system. Parameters estimation algorithms
have to be able to deal with perturbations and uncertainties and to
satisfy isolability requirements that rely on identifiability properties
(c.f. Grewal and Glover (1976)).

This state of the art does not aim to be exhaustive, only the main ideas of
the most known techniques for residual generation are mentioned. Let us
notice that in the case of linear systems, the equivalence between obser-
vers, parity space and parameter estimation has been established in Patton
and Chen (1991).

1.2 Logical diagnosis theory approach (DX)

Over the last 30 years, the DX community has developed an original fra-
mework for model-based-diagnosis called diagnosis from first principles in-
troduced in Reiter (1987), Hamscher et al. (1992). The modeling framework
is component-based. The system model describes the system structure (the
connections between the system’s components) and the system behavior
(the behavior of system’s components). The behavior description of every

2Notice that classically the observer is used in Automatic Control for full state feedback
control.
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component is issued from physical laws. A diagnosis problem is defined
by the system description and a set of observations. The system descrip-
tion and observations are expressed by means of suitable logical formulas
(propositional first-order, etc ...). Logic-based diagnosis aims at formally
characterizing the set of solutions of a diagnosis problem expressed in
term of logic formulas.
Given a system description together with some conflicting observations,
the diagnosis problem is set as the one of determining those components
of the system which, when assumed to be functioning abnormally, restore
the consistency between the observed and the correct system behavior
(c.f. Reiter (1987)). In the following we provide the basic definitions and
concepts of the classical logical-based diagnosis approach.

Definition 1.1 The system model is a pair (SD, COMPS) where :
– SD (System Description) is a set of first order logic formulas that describe

the system behavior
– COMPS (Components) is a finite set of constants that represent system’s

components

To describe the system behavior a specific predicate AB is defined and
interpreted to mean abnormal. Given a system component c ∈ COMPS,
AB(c) means that the component c is faulty.

Example 1.1 Let us consider the polybox example shown in Figure 1.1, where M1, M2, and
M3 are multiplier components, A1 and A2 are adder components. The system

Fig. 1.1 – The polybox system

model is given by (SD, COMPS) with :
COMPS = {A1, A2, M1, M2, M3}
SD = {ADD(x) ∧ AB(x)⇒ Output(x) = Input1(x) + Input2(x)
MULT(x) ∧ AB(x)⇒ Output(x) = Input1(x)× Input2(x)
ADD(A1), ADD(A2)
MULT(M1), MULT(M2), MULT(M3)
Output(M1) = Input1(A1), Output(M2) = Input2(A1)
Output(M2) = Input1(A2), Output(M3) = Input2(A2)
Input1(M1) = Input1(M3) }
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Formulas describing the behavior of the components may also be ex-
pressed as constraints and then need a constraint solver to be processed.

Definition 1.2 Diagnosis problem
A diagnosis problem is a triple (SD, COMPS, OBS) where :

– SD is the system description
– COMPS the set of system’s components
– OBS the set of observations described by a set of first order formulas

Definition 1.3 Fault
A fault corresponds to a set of components ∆ ⊆ COMPS described by the formula
∧c∈∆ AB(c)

Given a diagnosis problem formulated as a triple (SD, COMPS, OBS),
a diagnosis is a conjecture that certain components of the system are beha-
ving abnormally. This conjecture has to be consistent with both the system
model and observations. Thus, a diagnosis is given by an assignment of
the behavioral mode, AB or AB, to every component of the system in a
way consistent with the observations and the model. Formally :

Definition 1.4 Diagnosis
A diagnosis for (SD, COMPS, OBS) is a set of components ∆ ⊆ COMPS such
that : SD ∪OBS ∪ {AB(c)|c ∈ ∆} ∪ {AB(c)|c ∈ COMPS− ∆} is consistent.

Definition 1.5 Minimal diagnosis
A minimal diagnosis is a diagnosis ∆ such that ∀∆′ ⊂ ∆, ∆′is not a diagnosis.

The concept of con f lict is introduced Reiter (1987) and is the key to
most implemented diagnosis algorithms.

Definition 1.6 Conflict
A conflict for a diagnosis problem (SD, COMPS, OBS) is a set of components
C ⊆ COMPS such that SD ∪OBS ∪ {AB(c) c ∈ C} is inconsistent.

Definition 1.7 Minimal conflict
A minimal conflict is a conflict C such that ∀C′ ⊂ C, C′ is not a conflict.

The diagnosis process

The diagnosis is processed in 3 phases :
– Conflict detection : the contradiction between observations and pre-

dictions (based on the system model) allows one to detect faults.
– Hypotheses generation : this phase consists of generating hypo-

theses about the behavior of components (normal or faulty) to re-
solve all conflicts (to restore the consistency between predictions and
observations). A (minimal) diagnosis can be seen as a hitting set of
the (minimal) conflicts. In this phase, hitting set computation algo-
rithms (c.f. Reiter (1987), Greiner et al. (1989), L.Lin and Jiang (2003))
may be used to determine the possible diagnoses.

– Diagnosis discrimination : this phase consists of determining addi-
tional informations to discriminate the possible diagnoses. This is
achieved by making new measures when it is possible. Otherwise,
the system inputs may be changed in order to put it in a new confi-
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guration that exhibits new symptoms (conflicts) (c.f. de Kleer and
Williams (1987)).

1.3 Bridge

Both DX and FDI communities have been working in parallel along the
lines of Model-Based Diagnosis. In Cordier et al. (2004), a formal frame-
work is proposed in order to compare the two approaches and theoretical
proof of their equivalence together with necessary and sufficient condi-
tions are provided. A comparison between system modeling, observations,
the fault concept, diagnosis definition on both DX and FDI sides is provi-
ded as well as links between analytic redundancy relations and conflicts.
A track of work has been developed that bridges FDI and DX methods in
a synergic way (c.f. Biswas et al. (2004)).
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Hybrid systems have been the focus of many works in the last ten years.
They answer the increasing need to represent systems which exhibit

combined continuous and discrete dynamics. Diagnosis techniques deve-
loped by the Artificial Intelligence and Automatic Control communities to
diagnose continuous and discrete-event systems (c.f. Chapter 1) cannot be
directly applied. Hence, specific approaches have been developed. In this
chapter, we present the main model-based diagnosis tracks developed for
hybrid systems, especially in the field of space vehicles.
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2.1 Diagnosis of hybrid systems

The main approaches of model-based diagnosis for hybrid systems have
been developed taking benefit of the increasing work developed within
the communities of hybrid system modeling and control. Several mode-
ling frameworks have been proposed to represent the behavior of hybrid
systems : hybrid automata defined in Henzinger (1996), input/output au-
tomata proposed in Lynch et al. (1996), hybrid Bond-Graph as proposed
in Narasimhan and Biswas (2002), quantized systems presented in Lunze
(2000) etc...
Hybrid system research gathers works from artificial intelligence and au-
tomatic control. Two classes of models are defined : those proposed by
the artificial intelligence community in which the discrete-event aspect is
predominant (c.f. Williams and Nayak (1996)) and those proposed by the
control community that emphasize continuous aspects (c.f. Hofbaur and
Williams (2002), Narasimhan and Biswas (2002)). Diagnosis algorithms
supported by these models have been developed using a large spectrum
of techniques which often extend existing techniques developed for conti-
nuous and discrete-event systems.
This part of the state of the art presents the main directions of work and
few illustrative examples. Hybrid diagnosis approaches can be classified
in several classes :

– Qualitative approaches are based on a qualitative abstraction of the
continuous dynamics. In Lunze (2000), the continuous state is re-
presented in the state space and is only accessible through a quan-
tizer. A qualitative value is associated to every state of the system.
The quantizer generates a discrete event whenever the qualitative
value of the state changes. The continuous state being quantized,
discrete methods are then used. This approach fits with the case
when the system state is a signal that cannot be measured quanti-
tatively as well as with some industrial applications for which the
faulty behavior is indicated by means of alarm messages, which re-
present quantized signal values. Williams and Nayak (1996) follows
a logical-based diagnosis approach in which the qualitative models
are translated into propositional formulas. Measurements are discre-
tized by observation monitors so that observations take their values
in a finite domain. In Koutsoukos et al. (2001) a fault modeling and
diagnosis approach for hybrid systems based on a qualitative repre-
sentation of the fault hypotheses is presented. Generally, qualitative
model-based diagnosis approaches cannot isolate faults manifesting
as small variations in the system behavior and their performance is
limited by the resolution of the observation monitors.

– Approaches based on hybrid state estimation using Kalman filters :
the diagnosis of the hybrid system can be formulated as a hybrid
state estimation problem. The use of classical estimation techniques
like Kalman filters leads to interesting algorithms with an unified re-
presentation of the uncertainty. Indeed, noise and disturbances affec-
ting the continuous models as well as the uncertainty about the tran-
sitions between operating modes are represented by means of pro-
bability distribution functions. However, they are computationally
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very expensive because of the need for tracking multiple models as
well as the spontaneous transitions between them like fault tran-
sitions that may occur every-time. In Hofbaur and Williams (2002)
an approach based on a bank of extended Kalman filters has been
presented, where only the most likely trajectories are tracked.

– Approaches based on particle filtering : in Koutsoukos et al. (2002)
a particle filtering algorithm (that takes into account the interaction
between continuous and discrete dynamics) is proposed for hybrid
estimation. Autonomous transitions are estimated based on complex
transition guards. The transition guard estimation improves the ro-
bustness of the hybrid estimation algorithm. In Koller and Lerner
(2001) particle filtering has been applied also for a class of hybrid
systems modeled by dynamic Bayesian networks for which the auto-
nomous transitions between system modes are defined using condi-
tional probability distributions.

– Approaches using guaranteed set computation techniques : hybrid
diagnosis based on concurrent automata has been presented in Be-
nazera et al. (2002). The uncertainty on continuous variables and sys-
tem parameters is modeled in the form of numerical intervals and set
computation techniques are interlinked with discrete consistency-
based methods for hybrid state estimation.

– Approaches based on coupling qualitative and quantitative models :
a model-based diagnosis that combines qualitative and quantitative
techniques is presented in McIlraith et al. (2000). The hybrid mode-
ling framework allows one to represent continuous behaviors des-
cribed by Differential and Algebraic Equations (DAEs) as well as
discrete transitions that dictate mode switching, modeled by finite
state automata, temporal logics and switching functions. Then, the
diagnosis task is performed on-line and can be divided into two
diagnosis stages :
- the initial conjecturing of candidate diagnoses.
- subsequent refinement and tracking to select the most likely diag-
noses.
The diagnosis problem is again formulated as a model selection pro-
blem. The aim of the diagnosis task is to find a mathematical model
and the associated parameter values that best fit the system data.
To address this problem, artificial intelligence techniques for quali-
tative diagnosis of continuous systems are proposed to generate an
initial set of qualitative candidate diagnosis and associated models.
To generate these candidates, an abstract model of the dynamical
system behavior is constructed as a temporal Bond Graph. This is
followed by parameter estimation and model fitting techniques to
select the most likely mode and system parameters for candidate
models of system behavior, given both past and subsequent obser-
vations of system behavior and controller actions. This approach was
tested on the AERCam robot of NASA (c.f. McIlraith et al. (2000)). In
Narasimhan and Biswas (2002) a diagnosis approach is proposed to
diagnose piecewise linear hybrid dynamical systems. The modeling
framework is given by the Hybrid Bond Graphs and the used diagnosis
techniques combine qualitative reasoning mechanisms with quanti-
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tative techniques. Qualitative reasoning supports the fault isolation
task that is broken into a hypothesis generation followed by a hy-
pothesis refinement based on the causal Bond Graph model. The
quantitative techniques translate into a real-time parameter estima-
tion process using least-squares optimization for fault identification.

2.2 Hybrid Model-Based Diagnosis for Autonomous

Spacecraft

One of the most spectacular progress of diagnosis in the space domain is
Livingstone, developed by the NASA and embedded on-board the probe
Deep Space 1 (c.f. Williams and Nayak (1996)). Livingstone is directly based
on the theory of model-based diagnosis. The diagnosis module relies on
the propositional logic theory. In the Livingstone formalism, the system
dynamics are abstracted in the form of logic formulas (called qualitative
constraints). The generation of conflicts and diagnosis is formulated as a
constraint satisfaction problem solved by an incremental Truth Mainte-
nance System presented in Nayak and Williams (1997). The diagnosis is
returned in the form of a set of possible system trajectories.
Livingstone modeling formalism offers the possibility to represent hy-
brid hardware/software systems by coupling transition system models
underlying concurrent reactive languages with qualitative representations
of continuous behaviors. Indeed, the system is modeled as a set of concur-
rent components. The component behavior is described by a probabilistic
automaton in which probabilities are linked with every mode transition.
The system behavior within a given mode is represented by a set of qua-
litative constraints expressed with propositional logic formulas. Measure-
ments are discretized by the observation monitors and the observations
have finite domains. The benefit of propositional logic theory is the com-
putational efficiency. However, complex continuous dynamics (differential
equations) in operating modes cannot be modeled in terms of propositio-
nal logic formulas. Furthermore fault detection is limited by the discreti-
zation capacity of the observation monitors.
In Benazera (2003) the model-based diagnosis engine KOALA1 has been
developed, inspired by Livingstone. The system’s components are mo-
deled as hybrid automata and allow one to represent not only qualita-
tive constraints, but also quantitative constraints (algebraic and differen-
tial equations). The diagnosis scheme combines interval-based state es-
timation with consistency-based reasoning. In the hybrid framework of
KOALA, the uncertainty is modeled in the form of numerical intervals on
continuous variables and probabilities over discrete transition switches.
The diagnosis problem is formulated as mode and continuous state esti-
mation. This approach has been demonstrated on the attitude control loop
of a standard earth orbiting satellite provided by CNES (Centre National
d’ Etudes Spatiales).

1Work supported by CNES (Centre National des Etudes Spatiales), France and EADS-
Astrium, France.
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2.3 Position of our work

This thesis introduces the new concept of Active Diagnosis, in the sense
that the control objectives are temporary modulated in order to diagnose
the system state. The diagnosis is so formulated as a joint problem of
diagnosis, control and planning. Thereby, a common architecture for diag-
nosis, planning and control is proposed and improves the autonomy of
the system especially in the space domain. In our approach the diagnosis
is processed in two stages :
- First stage : the passive diagnosis scheme is performed to esti-
mate the system mode. It takes as input continuous measurements (in-
puts/outputs) and observable discrete events. The passive diagnosis ap-
proach can be compared to other works on diagnosis for hybrid systems.
- Second stage : after an ambiguous passive diagnosis, the active diagnosis
process is performed by means of the active diagnoser w.r.t controllability
and safety considerations. Active diagnosis is formulated as a conditional
planning problem. Then, the active diagnosis plan is transmitted to the
system controller.
The passive diagnosis approach combines an extension of the parity space
approach and the diagnoser approach. Consequently, the system mode
is estimated only using observable inputs, output and discrete control in-
puts (and other observable discrete events). We do not need to estimate the
system state to perform diagnosis. Hence, the mode estimation is faster in
terms of computation time. In opposition to Hofbaur and Williams (2002)
the estimation of the continuous state is not required. Indeed, in Hofbaur
and Williams (2002) when more than one system mode is possible, the
estimation algorithm tracks all likely modes, hence it is computationally
very expensive. Furthermore our approach is generic in the sense that it
can be easily extended to take into account different types of constraints
(logic formulas, linear or non linear equations ...) as well as different resi-
dual generation techniques (to deal with non linear systems for example).
Our approach does not deal with probabilities that can be linked with
mode transitions. Indeed, probabilities will allow us to define the most
likely mode when the system diagnosis is ambiguous. However, in our
approach to deal with ambiguity (when the system mode is ambiguous)
we perform the second stage of the diagnosis scheme : i.e. we perform
active diagnosis in order to disambiguate the system.
In this thesis, the research of the active diagnosis plan is guided by diagno-
sabilities properties of the system. Work perspective is to use probabilities
to improve the research efficiency of the diagnosis plan. In this case, our
approach can be extended using probabilistic hybrid automata.
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The diagnosability of a supervised system is the property that guaran-
tees that after a fault occurrence, the diagnosis module is able to diag-

nose the fault without ambiguity i.e. the diagnosis module is able to detect
the fault and to discriminate it from all the other faults. The definition of
the diagnosability property depends mainly on the system model (that
must represent faithfully the system behavior), the diagnosis approach
adopted to design the diagnosis module and the observation system (the
observation acquisition). Diagnosability is properly defined on one hand
for discrete-event systems and on the other hand for continuous systems.
But there are few equivalent results for hybrid systems.
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3.1 Diagnosability of discrete-event systems

The first diagnosability definition of discrete-event systems was provided
in Sampath et al. (1995) as well as the necessary and sufficient criterion
to check diagnosability. The diagnosability checking is based on the diag-
noser that is a finite state machine built from the system model. The di-
sadvantage of this method is that the state space of the diagnoser is in
the worst case exponential in the cardinality of the state space of the sys-
tem making the diagnosability checking algorithm very computationally
expensive. In Jiang et al. (2001) and Yoo and Lafortune (2002) polynomial-
time diagnosability verification algorithms have been proposed to reduce
this computation problem. The formal verification of diagnosability by
means of symbolic model-checking techniques has been proposed in Ci-
matti et al. (2003). All these methods are based on the global representation
of the entire system.
On the other hand, approaches to analyze diagnosability in a decentra-
lized way (based on local diagnosers) have been proposed in order to
reduce the computational problem. In Pencolé (2004), Pencolé proposes a
way to analyze the diagnosability of the system in a decentralized way
without the use of the global model. The diagnosability analysis approach
is based on local diagnosers built from a distributed model of the system.
In Contant et al. (2006), an algorithm for diagnosability checking based on
a modular representation of the entire system has been proposed and its
correctness has been proved.
Extensions of the diagnosability definition have been proposed for sto-
chastic discrete-event systems in Thorsley and Teneketzis (2005), Liu and
Qiu (2008) and for fuzzy discrete-event systems in Kilic (2008), corres-
ponding diagnosers and checking algorithms have been provided. In this
thesis, we draw one’s inspiration from the classical diagnosability defi-
nition as proposed for discrete-event systems in Sampath et al. (1995) to
characterize the diagnosability of hybrid systems.
In the following sections, we provide the basic concepts and definitions
originally introduced in Sampath et al. (1995) and taken up thereafter by
researchers of the discrete-event systems field : Jiang et al. (2001), Yoo and
Lafortune (2002), Pencolé (2004), Thorsley and Teneketzis (2005), Liu and
Qiu (2008). These concepts and definitions are required to formalize our
active diagnosis approach and will be recalled later in Chapters 4, 5 and
6.

3.1.1 Modeling framework for discrete-event systems

As classically defined in languages and automata theory (c.f. Hopcroft et
al. (2000)), a discrete-event system is modeled as a finite state machine
M = (Q, Σ, T, q0), where :

– Q is the set of discrete states of the system
– Σ is the set of events
– T ⊆ (Q× Σ→ Q) is the partial transition function
– q0 is the initial state

Some of the events in Σ are observable, the rest are non observable. Thus,
the event set Σ is partitioned as Σ = Σuo ∪ Σo, where Σuo (Σo) is the
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unobservable (observable) event set. The observable events can be used to
model discrete control inputs, discrete sensor readings and communica-
tion messages. The unobservable events model the fault occurrences and
changes in the system state that are not recorded by the sensors.
The fault occurrence is modeled by a discrete event f ∈ ΣF, where ΣF
models the set of anticipated fault events. Without loss of generality it
is assumed that ΣF ⊆ Σuo, since an observable fault event is obviously
diagnosable. The set of fault events ΣF is partitioned into disjoint sets
corresponding to different fault types, ΣF = ΣF1 ∪ ΣF2 ∪ ... ∪ ΣFm where m
is the number of different fault types in the system.
The behavior of the discrete-event system is described by a string of
events (called trajectory) : s = e1.e2...ek, where ei ∈ Σ, i ∈ 1..k. The set of
all possible trajectories forms a prefix-closed language (c.f. definition 3.1)
over the event alphabet Σ, denoted L(M). L(M) is a subset of Σ∗, where
Σ∗ denotes the set of all finite strings of elements of Σ (including the
empty string ε) termed the Kleene-closure of the set Σ (c.f. Ramadge and
Wonham (1989)).

Definition 3.1 Prefix-closed language
A string u is a prefix of a string v ∈ Σ∗ if for some w ∈ Σ∗, v = uw.
The prefix closure of a language L ⊂ Σ∗ is defined to be the language : L̄ = {u :
uv ∈ L for some v ∈ Σ∗}.
A language L is prefix-closed if L̄ = L

Notice that, if v is a possible trajectory of the discrete-event system
described by the language L(M) then clearly so are all the prefixes of v.
Consequently, L(M) is a prefix-closed language.
Generally the following assumptions are made about the discrete-event
system M :

– The language L(M) is life i.e. there is a transition defined at every
state q ∈ Q.

– There does not exist in M any unobservable cycle (i.e cycles contai-
ning unobservable events only).

The liveness assumption of L(M) is made for the sake of simplicity. Other-
wise with slight modifications all the main results hold true when this
assumption is relaxed. In the community of discrete-event systems, the
diagnosis consists in the deduction of unobservable fault events from the
observable strings of events generated by the system (c.f. Sampath et al.
(1995)). The absence of non observable cycles guarantees that observations
occur with some regularity.

3.1.2 The diagnoser construction

The aim of diagnosis is to make inferences about past occurrences of faults
on the basis of the observed events. In order to solve this problem the
system model is converted into a deterministic finite state machine called
the diagnoser built from the system model as explained in Sampath et al.
(1995).
In order to explain the diagnoser construction, we recall the following
definitions and notations.
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First, we define a set of fault labels ∆ f = {F1, F2, ..., Fm}, where m is the
number of different fault types in the system. The set of possible fault
labels is defined as ∆ = 2∆ f . Notice that the empty-set label ∅ ∈ ∆ should
be interpreted as representing the normal behavior of the system. A label
of the form {Fi, Fj} should be interpreted to mean that at least one fault of
type i and at least one fault of type j have occurred.
Given s ∈ Σ∗ a string of events, "ΣFi ∈ s" should be interpreted as at least
one fault event of type i belongs to s.
Let s f denote the final event of a string s and L(M, q) the set of all strings
that originate from state q ∈ Q. We define :
Lo(M, q) = {s ∈ L(M, q) | s = uσ, u ∈ Σ∗uo, σ ∈ Σo}
and Lσ(M, q) = {s ∈ Lo(M, q) | s f = σ}
Lo(M, q) denotes the set of all strings that originate from the state q and
end at the first observable event. Lσ(M, q) denote those strings in Lo(M, q)
that end at the particular observable event σ.
We define Qo = {q0} ∪ {q ∈ Q, ∃(q′, σ) ∈ Q× Σo such that T(q′, σ) = q}
the set of observable states.
We define the label propagation function LP : Qo × ∆× Σ∗ → ∆ as :

LP(q, l, s) =

{
∅ if l = ∅ and ∀i, ΣFi /∈ s
{Fi|Fi ∈ l} ∪ {Fi|ΣFi ∈ s} otherwise

The diagnoser for an automaton M = (Q, Σ, T, q0) is a deterministic finite
state machine Diag(M) = (QD, ΣD, TD, qD0) with :

– qD0 = {(q0, {∅})} is the initial state of the diagnoser (we assume
that the system M is normal to start with).

– ΣD = Σo is the set of observable events of the system.
– QD ⊆ 2Qo×∆ is the set of states of the diagnoser (states reachable

from qD0 under TD). The states of the diagnoser provide the set of
diagnosis candidates as a set of couples whose first element refers to
the state of the original system and the second is a label providing
the set of faults on the path leading to this state. An element qD ∈ QD
is a set of the form qD = {(q1, l1), (q2, l2), ..., (qn, ln)}, where qi ∈ Qo
and li ∈ ∆.

– TD ⊆ (QD × Σo → QD) is the partial transition function of the diag-
noser defined as follows :
TD(qD, σ) =

⋃
(q,l)∈qD

⋃
s∈Lσ(M,q)

{(T(q, s), LP(q, l, s))}

The diagnoser is built off-line from the system model and used for on-line
diagnosis and monitoring using observable discrete events. Furthermore,
the diagnoser can be used to check the diagnosability property of the
system. The diagnoser can be used off-line as a design assistant in order
to design diagnosable systems. Diagnosability of discrete-event systems is
introduced in the following section.

3.1.3 The diagnosability definition

A discrete-event system is diagnosable if the associated prefix-closed lan-
guage over the alphabet of events, generated by the automaton model is
diagnosable. The classic diagnosability definition for discrete-event sys-
tems has been provided in Sampath et al. (1995). The system is said to
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be diagnosable if and only if all the anticipated faults are diagnosable.
Roughly speaking, a fault f is diagnosable if and only if its occurrence is
always followed by a finite observable sequence of events that allows one
to diagnose f with certainty. Formally :

Definition 3.2 The discrete-event system is diagnosable if ∀ f ∈ ΣF, ∃n ∈N such that :
∀sFt a string of events (or trajectory), such that sF ends with the occurrence of f ,
and t is a continuation of sF :
||t|| ≥ n⇒ (∀s ∈ L(M) : PΣo(s) = PΣo(sFt)⇒ f occurs in s)
where PΣo is the projection operator on the set of observable events.

Definition 3.3 Uncertain state
Given a diagnoser state qd ∈ QD, this state is Fi-uncertain if Fi does not belong
to all the labels of qD, whereas Fi belongs to at least one label of qD. Formally :
a state qD ∈ QD is Fi-uncertain if ∃(q, l), (q′, l′) ∈ qD, such that Fi ∈ l and
Fi /∈ l′.

Definition 3.4 Indeterminate cycle
An Fi-indeterminate cycle in Diag(M) is a cycle composed of Fi-uncertain states
for which there exist two corresponding cycles in M : one involves only states that
carry and the other involves states that does not carry, the fault label Fi in their
labels in the cycle in Diag(M).

Theorem 3.1 Sufficient and necessary condition for diagnosability
The system M is not diagnosable if and only if the associated diagnoser Diag(M)
contains an Fi-indeterminate cycle.

Example 3.1 We illustrate by a simple example the construction of the diagnoser. Consider the
discrete-event system shown in Figure 3.1 (left). Here, o1, o2 are observable events,
uo is an unobservable event while f1 and f2 represent fault events. Let q0 be the
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Fig. 3.1 – The example of a discrete-event system and its associated diagnoser
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initial (normal) state of the system. The set of fault events is partitioned into :
{ f1} ∪ { f2} that model two different types of faults. The associated diagnoser is
provided in Figure 3.1 (right). F1 and F2 denote the fault labels associated to fault
events f1 and f2 respectively. In this example, the empty-set label is denoted "{ }".
{(q2, {F1}), (q5, {F2}), (q6, { })} is an F1 (F2) -uncertain state of the diagnoser,
{(q5, {F2}), (q6, { })} is an F2-uncertain state. The loop o1 over the F2-uncertain
state {(q5, {F2}), (q6, { })} represents an F2-indeterminate cycle, hence the fault
F2 is not diagnosable. However, there is no F1-indeterminate cycle in the diagnoser,
hence the fault F1 is diagnosable.

A relaxed diagnosability definition has been proposed in Sampath et
al. (1995) and termed I-diagnosability. This definition requires the diagnosa-
bility to hold not for all trajectories containing the fault but only for those
in which the fault event is followed by some associated observable events
called indicators. Formally :
For every fault event f ∈ ΣF we associate a set of indicator events. Let
ΣI ⊆ Σo denote the set of all indicator events and let I f : ΣF → 2ΣI denote
the indicator map.

Definition 3.5 I-Diagnosability
The discrete-event system is I-diagnosable if ∀ f ∈ ΣF, ∃n ∈N such as :
∀sFt a string of events (or trajectory) such that sF ends with the occurrence of f ,
and t is a continuation of sF such that I f ( f ) ⊆ PΣI (t) :
||t|| ≥ n⇒ (∀ s ∈ L(M) : PΣo(s) = PΣo(sFt)⇒ f occurs in s)
where PΣo is the projection operator on the set of observable events and PΣI is the
projection operator on the set of indicator events.

The corresponding diagnoser condition then proves that the presence
of indeterminate cycles following the indicator events make the system non
I-diagnosable. In the active diagnosis context, the set of indicator events
associated to a given fault can be used to take into account the active diag-
nosis commands that have to be performed to diagnose the system. Hence,
the diagnosability definition can be relaxed w.r.t to active diagnosis. This
will be discussed in Chapter 6.

3.2 Diagnosability of Continuous Systems

In the FDI community, diagnosability of continuous systems is formula-
ted in terms of fault detectability and isolability provided in Chen and
Patton (1994), Nyberg (2002), Travé-Massuyès et al. (2006). In Basseville et
al. (2001) a survey of the several definitions of fault detectability and iso-
lability is provided, in which two types of definitions are distinguished :
intrinsic and performance-based (c.f. Basseville and Nikiforov (1993)) de-
finitions. Classically, detectability and isolability are defined as intrinsic
properties of the system without any reference to a particular FDI algo-
rithm (c.f. Frisk et al. (2003)). This might be compared to observability and
controllability, which are defined without any reference to any particular
observer or controller. Detectability and isolability definitions are based
on the concept of fault signature associated to every anticipated fault. The
signatures are generally gathered (c.f. Gertler (1998)) by means of a struc-
ture matrix (called the fault signature matrix) that expresses the cause-effect
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relationships between faults/disturbances as inputs and residuals as out-
puts. Each column of the matrix represents a fault/disturbance and each
row a Boolean residual (c.f. Chapter 1) of the system. A ”1” in the inter-
section means that the fault/disturbance may affect the residual while a
”0” means it does not.

Example 3.2 Let us consider a system with three faults : F1, F2 and F3, three residuals r1, r2
and r3, and the fault signature matrix defined as follows :

F1 F2 F3
r1 1 1 0
r2 1 1 1
r3 1 0 1

This means that F1 may affect all residuals, F2 may affect r1 and r2 and F3 may
affect r2 and r3.

The fault signature of a fault Fi is the ith column of the fault signature
matrix.

Definition 3.6 Detectability
A fault (or a disturbance) is non detectable if its corresponding column in the
fault signature matrix contains only ”0” elements.

Definition 3.7 Isolability
Two faults (or disturbances) Fi and Fj are isolable if they are detectable and their
two corresponding columns in the fault signature matrix are different.

Let us then notice that in Example 3.2 faults F1, F2 and F3 are detectable
and isolable.
But the signature can also be defined in terms of fault-to-output transfer
functions or in terms of the different subspaces in which the output data
may live when the system is subject to the different faults. In Basseville et
al. (2001) it is shown that this definition can also be defined in terms of
the amount information about the fault contained in the observed data or
in terms of a distance between the normal and the faulty system.
In an opposite way, the second approach is to define the detectability and
isolability properties with explicit reference to a particular FDI algorithm
taking into account its performances i.e. performance-based definitions
are built on indexes of performance of FDI algorithms (c.f. Basseville and
Nikiforov (1993)).

3.3 Diagnosability of Hybrid Systems

As mentioned in the introduction of the chapter, the diagnosability de-
finition depends mainly on the used modeling framework as well as on
the observation system. Referring to hybrid systems some work directions
have been given to characterize the diagnosability properties. In Biswas
et al. (2006), the used formalism is based on Real Time Hybrid Systems
(RTHS). In this formalism the behavior of the hybrid system is described
by the notion of trace which is a sequence of transitions. Transitions cap-
ture the change of both continuous and discrete variables of the system
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during mode change. The set of all traces generated by the system mo-
del builds up the system language and an algorithm is proposed for the
diagnoser construction. The classical necessary and sufficient condition of
discrete-event system diagnosability from Sampath et al. (1995) is lightly
modified because it does not take into account that an uncertain cycle can-
not be infinitely crossed due to physical considerations of the underlying
continuous behavior. To capture this continuous feature, the necessary and
sufficient condition is expressed in terms of reachability. It has the advan-
tage that the diagnosability condition can be checked over the diagnoser
without having to refer back to the original system model. However, the
reachability analysis can be complex.
In our approach presented in Bayoudh et al. (2008a), the trajectory concept
defined for hybrid system is equivalent to the notion of trace defined in
Biswas et al. (2006). However the trajectory is composed by two types of
events (our language is heterogeneous) : the naturally discrete events and
new events added to capture the continuous dynamics. This allows us to
explicitly exhibit discrete-event and continuous aspects of the hybrid be-
havior.
In Fourlas et al. (July 2002) authors use the Hybrid Input/Ouput Auto-
mata (HIOA) formalism. The hybrid behavior is described by an hybrid
execution which is an alternating sequence of continuous evolutions called
trajectories and actions. This feature is similar to our formalism in which
the hybrid behavior is described by alternating events capturing conti-
nuous dynamics and "natural" discrete events. The visible behavior of the
system is described by the hybrid trace obtained by the projection on ob-
servable variables. Observations are only achieved by the measurement
of transition guards (linking continuous variables). This is different from
our approach in which we have two kinds of observations : observable
"natural" discrete events and observable continuous variables abstracted
in terms of observable discrete events. The necessary and sufficient condi-
tion for diagnosability proposed by Fourlas et al. (July 2002) requires the
measurability of transitions guards (even for the guards of fault transi-
tions), and as a consequence, the observability of the continuous system in
a given mode. These hypotheses are very restrictive. Furthermore, discrete
observations, like "observable" input actions (that can be useful for diag-
nosis) are not benefited for the diagnosability analysis. On the contrary,
in our approach, we use both observable discrete-event and continuous
dynamics, consequently, our diagnosability conditions (c.f. Bayoudh et al.
(2008a)) do not require observability of the continuous system within a
given mode.
In Cocquempot et al. (2004), the definition of discernability of a hybrid
system is given and corresponds to our mutual diagnosability definition
provided in Bayoudh et al. (2008a). Actually, Cocquempot et al. (2004) just
considers multimode continuous systems and ignores the discrete event
dynamics. Restricting the comparison to multimode systems, our work
complete the diagnosability analysis by introducing the important pro-
perty of 3rd diagnosability. Our framework proposed to hybrid system
diagnosability analysis is detailed in the Chapter 5 of the thesis.
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The use of embedded electronic controllers in physical processes, is in-
creasing, and lead to complex systems that mix both discrete and

continuous behaviors. As a consequence, the overall system is hybrid and
a hybrid modeling framework is hence needed to take into account conti-
nuous and discrete dynamics. On the other hand, the high demands on
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performance and availability for such systems, translates itself into a man-
datory need for on-line fault detection and diagnosis.
In this chapter we introduce our modeling framework based on hybrid au-
tomata (c.f. Henzinger (1996)). In addition to the classic hybrid automata
representation, we propose to model the two continuous and discrete-
event behaviors by two underlying systems, thus the behavior of the hy-
brid system is seen as the contribution of both of them. Then, supported
by this framework, we introduce the first stage of our diagnosis scheme
that corresponds to the passive diagnosis approach, (active diagnosis will
be considered in Chapter 6). In our framework, the diagnosis problem is
formulated as a mode tracking problem. The tracked modes returned by
the passive diagnosis scheme can be a nominal mode, a faulty mode or a
set of such modes (in this case, the state of the system is ambiguous and
active diagnosis is required). The diagnosis scheme is based on the hy-
brid model. The decomposition of the model into two underlying systems
allows us to combine both discrete-event and continuous diagnosis tech-
niques in the same framework. Indeed, the parity space and the diagnoser
approaches are combined.
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4.1 Hybrid System Modeling

The hybrid system evolves between several operating modes that model
both nominal, anticipated faulty continuous behaviors as well as degra-
ded modes modeling reduced operation of the system after fault occur-
rence yet ensuring the minimal functionalities required for system survi-
val. These latter modes are included in the anticipated faulty modes and
model the behavior of the system after the reconfiguration actions. Tran-
sitions between nominal modes can be spontaneous or controlled. Transi-
tions between faulty modes can be spontaneous (in the case of multiple
faults) or controlled (in the case of a reconfiguration action aiming at dri-
ving the system from a faulty mode to a degraded mode). Finally, the
transition between a nominal and a faulty mode is spontaneous and mo-
deled by an uncontrollable unobservable fault event. The behavior of the
system in an operating mode is modeled by an associated discrete state in
the hybrid automaton and operating mode changes are modeled by cor-
responding discrete transitions labeled by associated discrete-events.
Formally, as mentioned in Henzinger (1996) and Bayoudh et al. (2008b),
a hybrid system is described by a hybrid automaton defined as a tuple
S = (ζ, Q, Σ, T, C, (q0, ζ0)), where :

– ζ is the set of continuous variables, which includes observable and
non observable variables. The set of observable variables is denoted
by ζOBS

1.
– Q is the set of discrete system states. Each state qi ∈ Q represents a

behavioral mode of the system. It includes nominal and anticipated
fault modes. The unknown mode defined in Hofbaur and Williams
(2004), can be added to model all the non anticipated faulty situa-
tions.

– Σ is the set of events that correspond to discrete control inputs, spon-
taneous mode changes and fault occurrences. Events corresponding
to spontaneous mode changes are triggered upon guards that de-
pend on continuous variables.
Σo ⊆ Σ is the set of observable events.
Σuo ⊆ Σ is the set of unobservable events.
Σ = Σuo ∪ Σo

– T ⊆ Q× Σ→ Q is the partial transition function.
– C is the set of system constraints linking continuous variables. It

contains differential and algebraic equations modeling the conti-
nuous behavior of the system. The set of constraints associated to
a mode qi ∈ Q is denoted Ci.

– (ζ0, q0) ∈ ζ ×Q is the initial condition of the hybrid system.
The occurrence of a fault Fi is modeled by a discrete event fi ∈ ΣF, where
ΣF models the set of anticipated fault events. Without loss of generality
it is assumed that ΣF ⊆ Σuo, since an observable fault event is obviously
diagnosable.
As mentioned before, the behavior of the hybrid system is seen as the

1We assume that the set of system observable variables is the same in all system modes.
This assumption is generally verified when the set of system’s sensors is permanent, and
hence does not depend on the system mode.
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contribution of an underlying discrete-event system and an underlying
continuous system.

4.1.1 The underlying discrete-event system

The discrete part of the hybrid automaton is modeled as a discrete auto-
maton denoted M = (Q, Σ, T, q0) that describes the discrete dynamics of
the system, i.e. the possible transitions between operating modes of the
system and their associated events.

4.1.2 The underlying continuous system

The continuous behavior of the hybrid system is modeled by an un-
derlying continuous system denoted Ξ = (ζ, Q, C, ζ0) that describes the
whole continuous behavior of the system. Notice that transitions between
modes are implicit and consequently not constrained in any way. We
hence call this system the multimode system.
The underlying continuous behavior in each mode qi is modeled by a set
of constraints Ci. The different modeling frameworks proposed for conti-
nuous systems can be used to describe the continuous behavior in every
operating mode. In this work, to illustrate our approach and without loss
of generality, we deal with linear systems, modeled in the state space
by the evolution and the observation equations. Under this assumption,
the continuous part of the hybrid automaton is given by the continuous
models associated to every mode qi in the following form :{

Xi(n + 1) = AiXi(n) + BiU(n) + Exi ε(n)
Y(n) = CiXi(n) + DiU(n) + Eyi ε(n) (4.1)

Xi(n), U(n), Y(n) and ε(n) are : the state, the input, the output and the
noise vectors of dimension nxi , nu , ny and nε respectively, considered at
the sampling time nTs.
Hence ζOBS is composed by input and output variables and ζ is composed
by all input, output and state variables.
Ts is the sampling period. Ai, Bi, Ci and Di are constant matrices of appro-
priate dimensions that denote dynamic, input, measure and direct trans-
mission matrices, respectively. Exi and Eyi are constant matrices of appro-
priate dimensions that capture the influence of the noise on state evolution
and observations, respectively.
Notice that we do not require to represent the fault vector in the state
equations because in our approach we associate a faulty mode and model
to every anticipated fault.

4.1.3 Illustrative example : the underlying CS and DES

To illustrate our approach, we introduce the example of a dynamic hybrid
system whose underlying discrete part is described by the automaton
of Figure 4.1. o1 and o2 are observable events (example : discrete control
inputs, etc...), f1 is a fault event and uo1 is an unobservable event that
model a spontaneous transitions. Modes q1, q2, q3 and q4 represent opera-
ting modes of the system : q1, q3 and q4 are nominal, q2 is an anticipated
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f1 uo1
f1

o1

o2
o2

q1

q2 q3

q4

Fig. 4.1 – The underlying discrete-event system

faulty mode linked with the fault event f1. The underlying continuous
behavior is given by the state space model of every mode qi, i ∈ 1..4. In
this example, without loss of generality and for sake of simplicity, we
consider no noise and no disturbance.{

Xi(n + 1) = AiXi(n) + BiU(n)
Y(n) = CiXi(n) + DiU(n) (4.2)

where

A1 =
(

0.7 0
0 0.7

)
, A2 =

−0.5 4 0
0 0.6 0
6 0 0.8

, A3 =

 0.3 −0.3 0
0 0.6 0
−0.3 0 0.9

,

A4 =

 0.6 −0.3 0
0.3 0.6 0
−0.6 0 0.9


B1

(
1
0

)
, B2 = B3 =

1
1
1

, B4 =

2
2
0


C1 =

(
1 1
1 0

)
, C2 =

(
1 0 0
0 1 0

)
, C3 =

(
1 0 1
0 1 1

)
, C4 =

(
1 0 1
0 1 1

)
D1 = D2 = D3 = D4 =

(
1
0

)
This example will be reconsidered further on in this chapter and in Chap-
ter 5 to illustrate the introduced concepts.

4.2 The hybrid system diagnosis approach

The proposed model-based diagnosis scheme is achieved through the fol-
lowing steps (c.f. Bayoudh et al. (2008b)) :

– diagnose the underlying continuous system.
– abstract the continuous diagnosis knowledge in terms of discrete

events (c.f. Bayoudh et al. (2006; 2008a)).
– enrich the underlying discrete-event system by discrete events is-

sued from the abstraction of the continuous dynamics.
– apply the diagnoser approach to the resulting enriched discrete-

event system.
Diagnosis (mode tracking) is achieved on-line by the diagnoser approach
using observable discrete events and continuous measurements.
Now, in the following sections, the diagnosis problem is specified for hy-
brid systems and the steps of the diagnosis scheme are developed.
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4.2.1 The hybrid system diagnosis problem

Supported by the presented hybrid modeling framework, model-based
diagnosis consists in checking the consistency between the system model
and incoming measurements (observable continuous variables and obser-
vable discrete events). Since anticipated faults are modeled by fault modes
with associating faulty behavior models, the diagnosis is then formulated
as a mode tracking problem. Diagnosing the hybrid system consists in
determining the current state(s) of the underlying discrete-event system
which is consistent with incoming measurements i.e. estimating the hy-
brid system mode.

4.2.2 Diagnosing the underlying multimode system

To check the consistency between the system model and the observations,
a set of consistency indicators is linked with every operating mode qi ∈ Q.
A set of constraints Cobsi that involve only observable continuous variables
is associated to each mode qi. Constraints of Cobsi are determined by eli-
minating non observable variables in the constraints belonging to the set
Ci. The constraints are then evaluated on observable variables. Constraints
of Cobsi are satisfied when the system evolves in mode qi. A consistency
indicator (the residual) is associated to every constraint Ck

obsi
∈ Cobsi and de-

noted rik. The residual is a boolean indicator. It is zero when the constraint
Ck

obsi
is satisfied, otherwise it is equal to 1.

4.2.3 The extension of the parity space approach to multimode system
diagnosis

Following the parity space approach, consistency tests take the form of a
set of Analytical Redundancy Relations (ARRs) by eliminating non obser-
vable variables (c.f. Chapter 1). For every mode qi ∈ Q, the set Cobsi is com-
posed by ARRs determined from the system model given by constraints
of Ci. Hence a constraint Cj

obsi
is an analytic redundancy relation denoted

ARRij and the associated residual is rij defined as follows :

rij =
{

0 when ARRij is satisfied
1 otherwise

j = 1, ..., Nr(qi), where Nr(qi) is the number of associated residuals/ARRs.
The parity space approach is extended to multimode systems and pro-
vides analytic redundancy relations that relate the continuous inputs with
the observable continuous outputs over a time-window of length pi + 1.
Selecting pi appropriately (typically pi ≤ nx) allows us to eliminate any
dependency upon the system state Xi. This procedure can be summarized
for a given mode qi as follows :
Given a vector V, let us denote by Vp the vector obtained by the conca-
tenation of the vector values at every sampling instant (n − p + k), 0 ≤
k ≤ p, for a given order p. Hence Vp(n) = [VT(n − p), ..., VT(n − p +
k), ..., VT(n)]T.
By iterating state-evolution and observation equations 4.1, we obtain :

Ypi(n) = Opi
i Xi(n− pi) + Lpi

i (Ai, Bi, Ci, Di)Upi + Lpi
i (Ai, Exi , Ci, Eyi)εpi(n)

(4.3)
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with : Lpi
i (Mi, Ni, Pi, Qi) =


Qi 0 ... 0

PiNi Qi ... ...
... ... ... 0

Pi M
(pi−1)
i Ni ... PiNi Qi



Opi
i =


Ci

Ci Ai
...

Ci A
pi
i


Notice that for a sufficiently high order pi ≤ nx, there always exists a
matrix Ωpi

i that is orthogonal to the matrix Opi
i , i.e. Ωpi

i .Opi
i = 0 (the proof

is provided in appendix A.1). So, we can eliminate the state Xi(n− pi) in
equation 4.3 through left-hand multiplication with Ωpi

i .
Hence we obtain the analytic redundancy relations that can be decom-
posed into a computational and an evaluation form denoted ρ

pi
ci and ρ

pi
ei

respectively and given as follows :

ρ
pi
ci (n) = Ωpi

i Ypi(n)−Ωpi
i Lpi

i (Ai, Bi, Ci, Di)Upi(n) (4.4)

ρ
pi
ei (n) = Ωpi

i Lpi(Ai, Exi , Ci, Eyi)εpi(n) (4.5)

The Boolean-residual vector of the mode qi is denoted Rqi =
[ri1, ri2, ..., riNr(qi)]

T and obtained by checking the consistency between
computational and evaluation forms.
Notice that in a noise-free environment, the evaluation form of the resi-
duals is null : ρ

pi
ei (n) = 0, ∀n ∈N.

In the multimode framework, the set of ARRs linked with each functional
system mode is generally different, although some ARRs may be shared.

Illustrative example : the ARRs computation

Now, let us take again the example of Figure 4.1. The optimal parity space
order2 is computed for every mode of the system and it is equal to 1,
i.e. the computational form is calculated from the continuous observable
variables U and Y, at time n− 1 and n, and given as follows :

– ρ1
c1
(n) =

(
−0.5715 0.0471 0.8165 −0.0673
−0.0471 −0.5715 0.0673 0.8165

) 
y1(n− 1)
y2(n− 1)

y1(n)
y2(n)


+
(
−0.1776 −0.8165
−0.8367 −0.0673

) (
u1(n− 1)

u1(n)

)

– ρ1
c2
(n) =

(
−0.1278 −0.9508 0.2557 −0.1198
0.0536 −0.1594 −0.1071 0.9799

) 
y1(n− 1)
y2(n− 1)

y1(n)
y2(n)


+
(
−0.0081 −0.2557
−0.9264 0.1071

) (
u1(n− 1)

u1(n)

)
2The optimal parity space order pi is the smallest integer that guarantees the existence

of the matrix Ωpi
i .
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– ρ1
c3
(n) =

(
0.2175 −0.5437 −0.3625 0.7250

) 
y1(n− 1)
y2(n− 1)

y1(n)
y2(n)


+
(
−0.9425 0.3625

) (u1(n− 1)
u1(n)

)

– ρ1
c4
(n) =

(
0.2175 −0.5437 −0.3625 0.7250

) 
y1(n− 1)
y2(n− 1)

y1(n)
y2(n)


+
(
−0.9425 0.3625

) (u1(n− 1)
u1(n)

)
A parity-space-based residual bench is implemented to compute on-line
the residual vector of the hybrid system. Figures 4.2 and 4.3 show the
real-time evolution during 10 seconds of the system residuals when the
multimode system is under different modes indicated at the bottom of
the figures. Residuals are computed according to the sampling period
Ts = 0.01s, by the residual bench that takes as input observable variables :
the input U and the output Y.
We can verify that residuals of mode qi are null when the system mode is
qi, ∀i ∈ 1..4. We notice that residuals of modes q3 and q4 : ρ1

c3
= [r̃31] and

ρ1
c4

= [r̃41], are null in mode q3 as well as in mode q4. Hence, a diagnosa-
bility problem can appear and will be discussed in the following chapter.
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Fig. 4.2 – Residuals of modes q1 and q2 : ρ1
c1

= [r̃11, r̃12]T and ρ1
c2

= [r̃21, r̃22]T
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Fig. 4.3 – Residuals of mode q3 and q4 : ρ1
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= [r̃31] and ρ1
c4

= [r̃41]

4.2.4 Residual filtering

Mode switches are characterized by a spurious jump of the residual va-
lues (c.f. Figures 4.2 and 4.3) that is due to the fact that the time-window,
over which observations are recorded to evaluate the residuals, overlaps
over two modes. Since residuals have been designed for every mode sepa-
rately, they need at least pi time steps to settle after a mode change. This
may result in a false interpretation of the mode transition that may cause
false alarms, in the case when a nominal mode transition is interpreted
as a faulty mode transition. This is solved by implementing a residual fil-
ter that takes as input residual values computed at every time step, and
generating as output clean Boolean residuals that reflect the consistency
between model and observed behavior. The filter principle is explained
below.
The consistency check is made by comparing the computational and the
evaluation forms of the residuals. Given a mode qi ∈ Q and ρ

pi
c (n) =

[r̃i1, ..., r̃iNr(qi)] the computational form of the residual. Two cases are dis-
tinguished :

Noise-free hypothesis

In a noise-free environment (ρpi
ei = 0), a threshold vector is defined as αi =

[αi1, ..., αiNr(qi)]. The threshold values take into account the computation
precision and the relative order of magnitude of the physical variables.

rij =
{

0 if r̃ij ≤ αij
1 otherwise

(4.6)
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White-Gaussian-Noise hypothesis

In the classical case of a white noise with a normal distribution of the
probability density function :
ε(n) ∼ N(0, σ2), hence ε(n, n − pi) ∼ N(0, diagpi+1(σ2)) (σ2 denotes the
variance and diagpi+1(σ2) denotes the diagonal matrix of dimension pi + 1
in which the diagonal values are equal to σ2).
Consequently the probability density function of the evaluation form has
a normal distribution :
ρ

pi
ei (n) ∼ N(0, Ωpi

i Lpi(Ai, Exi , Ci, Eyi)diag(σ2)(Lpi(Ai, Exi , Ci, Eyi))
T(Ωpi

i )T)

rij =
{

0 if r̃ij ∼ ρeij

1 otherwise
(4.7)

ρ
pi
eij denotes the jth element of ρ

pi
ei .

The filter principle

The principle of the residual filter is to hold-on to the current value as long
as the Boolean-residual is not computed to a different value during a num-
ber of steps specified by a prefixed time-window TFilter ≥ max

i=1..m
(pi). The

value of TFilter determines the filter sensitivity with respect to the rough
residual changes. It is set according to the physical properties of the dy-
namic system (time response, etc ...) and must be higher than the parity
space order of every mode.
Figures 4.4 and 4.5 provide the Boolean residuals for our illustrative
example. The threshold has been taken as 10−12.
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4.2.5 Mirror, reflexive and mode signatures

The concept of fault signature classically defined for continuous systems
is now extended to multimode systems. Every operating mode is charac-
terized by a theoretical signature that captures the expected behavior of
residuals in this mode. New concepts of mirror and reflexive signatures
are defined and lead to the definition of mode signature introduced in
Bayoudh et al. (2008a).
The qj-mirror signature of mode qi is the vector of Boolean-residuals of
mode qj evaluated when the system is in mode qi. We use the term mirror
because it represents the signature of qi seen in mode qj.

Definition 4.1 Mirror Signature
Given the tuple Rqj = [rj1, rj2, ..., rjNr(qj)

] of the Boolean-residuals associated
to mode qj, the qj-mirror signature of mode qi is given by the vector Si/j =
[s1i/j , ..., sNr(qj)i/j

]T = [Rqj(ζOBSqi
)]T, where ζOBSqi

denotes the incoming obser-
vable variables in mode qi i.e. observations that are consistent with the model of
mode qi.

The reflexive signature is a particular case of the mirror signature Si/j,
with i = j.

Definition 4.2 Reflexive Signature
The reflexive signature of mode qi, Si/i = [Rqi(ζOBSqi

)]T = [0, 0, ..., 0]T
Nr(qi)

, is
the vector of Boolean-residuals of mode qi, evaluated with incoming observable
variables in mode qi.

The new concept of mode signature that characterizes a mode is now
introduced.
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Definition 4.3 Mode Signature
The signature of a mode qi is the vector obtained by the concatenation of all the
mirror signatures of qi, Sig(qi) = [ST

i/1, ST
i/2, ..., ST

i/i, ..., ST
i/m]T, where m is the

number of system modes 3.

In our diagnosis scheme, the real-time mode signature of the system
is computed by on-line evaluating the Boolean-residuals of each system
mode. The diagnosis of the multimode system is then achieved by compa-
ring the real-time mode signature and the pre-computed theoretical mode
signatures.

Illustrative example–mode signatures

The theoretical pre-computed mode signatures of the example of Figure
4.1 are given in Table 4.1. These signatures are determined using the model
of each mode to determine the expected behavior of associated residuals.
S1/1, S2/2, S3/3 and S4/4 denote the reflexive signatures of modes q1, q2,

Sig(q1) =


S1/1
S1/2
S1/3
S1/4

 =



0
0
−
1
1
−
1
−
1


Sig(q2) =


S2/1
S2/2
S2/3
S2/4

 =



1
1
−
0
0
−
1
−
1



Sig(q3) =


S3/1
S3/2
S3/3
S3/4

 =



1
1
−
1
1
−
0
−
0


Sig(q4) =


S4/1
S4/2
S4/3
S4/4

 =



1
1
−
1
1
−
0
−
0



Tab. 4.1 – Mode signatures of the underlying continuous system Ξ

q3 and q4 respectively.
S1/2, S1/3 and S1/4 denote the q2, q3 and q4 mirror signatures of mode q1
respectively and so forth for modes q2, q3 and q4.
In following chapter, these new signature concepts are used to characterize
the diagnosability of multimode systems.

4.2.6 Abstraction of the continuous dynamics in terms of discrete
events

In our approach, the diagnosis of the hybrid system is performed by the
diagnoser built from the underlying discrete-event system enriched with
events that capture continuous diagnosis knowledge. To generate these
events we propose to use pre-computed theoretical signatures in order to
define discrete events associated to each mode signature change. To do
this, we define an abstraction function from the continuous domain to the
discrete-event domain.

3In our approach, nominal and fault modes have the same status and the signature of
a given mode anticipates how it should be seen in terms of the indicator tuples of the
different modes of the system (including itself).
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Assumption 4.1 We assume that the dynamics of the discrete control inputs are slower than the
dynamics of residual generators to guarantee that mode signatures have time to
establish between two consecutive discrete events.

The abstraction function is denoted fCS_DES and defined as follows : for
each discrete transition of the underlying discrete-event system, fCS_DES
associates an event which represents the change of mode signature.
This function aims to define ΣSig, as the set of discrete events issued from
an abstraction of the continuous dynamics of the multimode system.

fCS_DES : Q× T(Q, Σ) −→ ΣSig

(qi, qj) 7−→
{

Roij ∈ ΣSig
o if Sig(qi) 6= Sig(qj)

Ruoij ∈ ΣSig
uo if Sig(qi) = Sig(qj)

– ΣSig
o is a set of observable events, generated when the mode signa-

ture of the source mode is different from the mode signature of the
destination mode.

– ΣSig
uo is a set of unobservable events generated when the mode si-

gnature of the source mode is equal to the mode signature of the
destination mode.

– We define ΣSig = ΣSig
o ∪ ΣSig

uo .

Hybrid language and hybrid trajectories

The abstraction of the continuous dynamics changes in terms of discrete
events allows us to define the language of the hybrid system, which des-
cribes the evolution of the system behavior.
We denote by Σhyb = Σ∪ ΣSig the alphabet that contains "natural" discrete
events and events modeling the signature switches.
Σhyb can be partitioned into Σhyb = Σhybo ∪ Σhybuo with Σhybo = Σo ∪ ΣSig

o

and Σhybuo = Σuo ∪ ΣSig
uo .

The behavior of the hybrid system is modeled by the prefix-closed lan-
guage L(S) ⊆ Σ∗hyb over the event alphabet Σhyb, where Σ∗hyb denotes the
set of all finite strings of elements of the set Σhyb including the empty
string (Σ∗hyb is called the Kleene-Closure of Σhyb as presented in Ramadge
and Wonham (1989)). A trajectory of the hybrid system is represented by
a string of events of the hybrid alphabet Σhyb.

The behavior automaton

The hybrid language L(S) can be represented by its finite state genera-
tor representation (c.f. Ramadge and Wonham (1989)) called the behavior
automaton denoted BA(S) = (Qbeh, Σhyb, Tbeh, q0) which generates both "na-
tural" discrete events and events issued from the abstraction of continuous
dynamics (signature changes).
The behavior automaton construction is achieved as follows : let Qt denote
the set of transient modes that model the continuous dynamic reaction af-
ter the occurrence of a discrete event. We define the bijective function ft
that associates a transient mode to each mode change represented as a
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pair of modes (source and destination modes). The set of transient modes
is obtained as follows :

ft : Q× T(Q, Σ) −→ Qt
(qi, qj) 7−→ qij

The set of modes of the behavior automaton is Qbeh = Q ∪ Qt and the
partial transition function Tbeh is defined as follows :

Tbeh ⊆ (Qbeh × Σhyb −→ Qbeh)

(q, σ) 7−→
{

ft(q, T(q, σ)) if q ∈ Q and σ ∈ Σ

( f−1
t )2(q) if q ∈ Qt and σ ∈ ΣSig

( f−1
t )2 denotes the second component of the inverse function of ft.

In practice, non observable signature switches (ΣSig
uo ) are useless because

they do not convey additional information, hence they are not considered
as well as corresponding transient modes (c.f. Figure 4.6 in which Ruo34
and Ruo43 do not appear neither q34 and q43). In this case, Σhyb is defined

as Σ ∪ ΣSig
o (i.e. Σhybuo = Σuo).

For illustration, Figure 4.6 provides the behavior automaton of the hy-
brid system shown in Figure 4.1. q13, q12, q32 and q24 are transient modes
added to the mode automaton to model the response of the underlying
continuous system to event occurrences.

     q1

     q2      q3

     q4

f uo1

o1 o2o2

    q13

     q32

     q24

     q12

Ro13Ro12 Ro32

Ro24

1

f1

Fig. 4.6 – The behavior automaton of the hybrid system S

4.2.7 Extension of the diagnoser approach to hybrid systems diagnosis

The diagnosis of the hybrid system is achieved by extending the diagnoser
approach to hybrid systems. The diagnoser of the hybrid system is a finite
state machine built from the behavior automaton as follows :
First, we define a set of fault labels ∆ f = {F1, F2, ..., Fm}, where m is the
number of different fault types in the system. The set of possible fault la-
bels is defined as ∆ = 2∆ f .
Notice that the empty-set label ∅ ∈ ∆ should be interpreted as represen-
ting the normal behavior of the system. A label of the form {Fi, Fj} should
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be interpreted to mean that at least one fault of type i and at least one
fault of type j has occurred.
Given s ∈ Σ∗hyb a string of events, "ΣFi ∈ s" should be interpreted to mean
that at least one fault event of type i belongs to s.
Let s f denote the final event of a string s and L(S, q) the set of all strings
that originate from state q ∈ Qbeh.
We define : Lo(S, q) = {s ∈ L(S, q) | s = uσ, u ∈ Σ∗hybuo

, σ ∈ Σhybo}
and Lσ(S, q) = {s ∈ Lo(S, q) | s f = σ}.
Lo(S, q) denotes the set of all strings that originate from the state q and
end at the first observable event.
Lσ(S, q) denotes those strings in Lo(S, q) that end at the particular obser-
vable event σ.
Qbeho = {q0} ∪ {q ∈ Qbeh, ∃(q′, σ) ∈ Qbeh × Σhybo

| Tbeh(q′, σ) = q} denotes
the set of observable states.
We define the label propagation function :
LP : Qbeho × ∆× Σ∗hyb → ∆ as :

LP(q, l, s) =

{
∅ if l = ∅ and ∀i, ΣFi /∈ s
{Fi|Fi ∈ l} ∪ {Fi|ΣFi ∈ s} otherwise

The diagnoser of the hybrid system is a deterministic finite state machine
built from the behavior automaton, Diag(BA(S)) = (QD, ΣD, TD, qD0)
with :

– qD0 = {(q0, ∅)} is the initial state of the diagnoser (we assume that
the system S is normal to start with).

– ΣD = Σhybo is the set of all observable events of the system.
– QD ⊆ 2Qbeho×∆ is the set of states of the diagnoser (states rea-

chable from qD0 under TD). The states of the diagnoser provide
the set of diagnosis candidates as a set of couples whose first ele-
ment refers to the state of the behavior automaton and the second
is a label providing the set of faults on the path leading to this
state. In other words, an element qD ∈ QD is a set of the form
qD = {(q1, l1), (q2, l2), ..., (qn, ln)}, where qi ∈ Qbeho and li ∈ ∆.

– TD ⊆ QD × Σhybo → QD is the partial transition function of the
diagnoser defined as follows :
TD(qD, σ) =

⋃
(q,l)∈qD

s∈Lσ(S,q)

{(Tbeh(q, s), LP(q, l, s))}

The diagnoser of the hybrid system (c.f. Figure 4.1) is provided in Figure
4.8. Notice that the notion of fault label can be extended to other non
unobservable events if the historic of unobservable event occurrence is
needed.

4.2.8 The hybrid diagnosis scheme based on the diagnoser of the hy-
brid system

Figure 4.7 provides our hybrid diagnosis scheme implemented with MAT-
LAB/SIMULINK :

– the block HYBRID SYSTEM corresponds to the system model. Un-
derlying continuous behaviors are modeled by means of state-space
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Fig. 4.7 – Diagnosis scheme by coupling discrete-event and continuous techniques

models and discrete-event dynamics are modeled as a finite state
machine by means of an incidence-matrix representation.

– the block RESIDUAL BENCH computes the vector of residuals asso-
ciated to each mode. As output, it gives the on-line evolution of the
residuals.

– the block RESIDUAL FILTER filters the system residuals to obtain
the Boolean-residuals. By putting together these Boolean-residuals,
we obtain the real-time mode signature of the hybrid system.

State Number= 7

Transition Number= 10
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Ro12
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o1

Ro32

o2

Fig. 4.8 – The diagnoser of the hybrid system built from the behavior automaton

– the block RESIDUAL DISCRETE-EVENT GENERATOR generates an
observable discrete event (from ΣSig

o ) when the real-time mode si-
gnature changes. The generator is modeled as a finite state machine,
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each state corresponds to a theoretical mode signature, the genera-
ted discrete events are linked with state transitions.

– the block HYBRID DIAGNOSER performs the on-line mode tracking
of the hybrid system. It takes as input observable "natural" discrete
events, and observable events that capture the continuous diagnosis
knowledge. The hybrid diagnoser is modeled as a finite state ma-
chine built off-line from the behavior automaton by applying the
diagnoser approach 4.

4.2.9 Illustrative example : mode tracking of the hybrid system

Let us consider again the illustrative example shown in Figure 4.1. The
hybrid system is implemented in a MATALAB/SIMULINK block and hy-
brid diagnosis is achieved as explained in Figure 4.7. The diagnoser of the
hybrid system is shown in Figure 4.8.
The system mode is tracked at every time step during the simulation time
given by Tsimulation = 10s and the sampling period Ts = 0.01s. The filter
sensitivity is set as TFilter = 0.07s. Two different scenarios are tested :

Scenario 1

The system starts from the initial mode q1 and follows the discrete trajec-
tory : [( f1, t = 1s), (o2, t = 3s), (o1, t = 5s), (o2, t = 6s), (o1, t = 7s)].
The evolution of the residuals and the Boolean-residuals of modes q1, q2, q3
and q4 have been already given in Figures 4.2, 4.3, 4.4 and 4.5 respectively.
On-line mode tracking is performed thanks to the hybrid diagnoser. The
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Fig. 4.9 – Scenario 1 : mode tracking of the hybrid system

estimated mode as well as the real mode are shown in Figure 4.9. Table

4We use the DIADES software from Pencolé (2006) to build the diagnoser of the hybrid
system from the behavior automaton.
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4.2 shows the mode transition detection times corresponding to event oc-
currences. We notice that the occurrence of the fault event f1 is detected
after a delay equal to 0.13s.

Event occurrence Mode transition time

( f1, t = 1s) q1
t=1.13s−−−−→ q2

(o2, t = 3s) q2
t=3.02s−−−−→ q24

t=3.13s−−−−→ q4

(o1, t = 5s) q4
t=5.02s−−−−→ q3

(o2, t = 6s) q3
t=6.02s−−−−→ q4

(o1, t = 7s) q4
t=7.02s−−−−→ q3

Tab. 4.2 – Mode tracking scenario 1 : mode transition detection times

Scenario 2

The system starts from the initial mode q1 and follows the discrete trajec-
tory : [(uo1, t = 3s), ( f1, t = 5s), (o2, t = 7s), (o1, t = 9s)]. The estimated
mode as well as the real mode are shown in Figure 4.10. Table 4.3 shows
mode transition detection times corresponding to event occurrences. We
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Fig. 4.10 – Scenario 2 : mode tracking the hybrid system

notice that the occurrence of the fault event f1 and the unobservable event
uo1 are detected after a delay equal to 0.13s.
Let us notice that the hybrid diagnoser is able to follow the system mode,

even after unobservable event occurrence ( f1 and uo1). The hybrid diagno-
ser can also diagnose modes q3 and q4 that have the same mode signature.
This is achieved by coupling continuous and discrete informations. No-
tice that the diagnoser tracks the system mode with a delay. Two types of
delay are distinguished :
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Event occurrence Mode transition time

(uo1, t = 3s) q1
t=3.13s−−−−→ q3

( f1, t = 5s) q3
t=5.13s−−−−→ q2

(o2, t = 7s) q2
t=7.02s−−−−→ q24

t=7.13s−−−−→ q4

(o1, t = 9s) q4
t=9.02s−−−−→ q3

Tab. 4.3 – Mode tracking scenario 2 : mode transition detection times

– a small delay (2.Ts) due to the computation time, it represents the
time needed to upload the observed signature.

– a delay due to the sensitivity of the residual filter TFilter that repre-
sents the time needed by the algorithm to filter the system residuals.
This delay is linearly dependent of the sampling period.

The second type of delay is avoided if the occurred event is observable,
indeed in this case the discrete-event knowledge is sufficient to detect
mode transition. However, after the occurrence of an unobservable event,
the delay is due to the two types of delays (TFilter + 3.(2.Ts)), hence, the
delay can be reduced if we improve the computation resolution.
In these two scenarios, the system mode returned by the hybrid diagnoser
at every sampling time is unique. It means that the diagnosis is precise at
every sampling time of the simulation, thus active diagnosis is not needed.

4.3 Geometrical Interpretation in the space of system

modes

In this section, we propose a geometrical representation of hybrid systems,
in the vectorial space Rm, where m is the number of operational system
modes as proposed in Bayoudh et al. (2007)5.
The vectorial space Rm is described by the vectorial base B = (~q1,~q2, ...,~qm)
and it is called the space of modes, with ~q1 = [1, 0, 0, ..., 0]m , ~q2 =
[0, 1, 0, ..., 0]m , ..., ~qm = [0, 0, 0, ..., 1]m.
Given Rqi = [ri1, ..., riNr(qi)]

T the vector of Boolean-residuals of mode

qi ∈ Q. Let ||Rqi || =
√

(∑j=1..Nr(qi)
r2

ij) denote the Euclidian norm.

When the system mode is qi, the associated vector of Boolean-residuals is
zero, i.e. Rqi = [0, 0, ..., 0]T. However the reciprocal is not true, it depends
on the diagnosability property of the system as will be discussed in Chap-
ter 5.
We propose to describe the behavior of the hybrid system S in the space of
modes at a sampling time n by the linear mapping F defined as follows :

F(S)(n) = ||Rq1 ||(n)~q1 + ||Rq2 ||(n)~q2 + ... + ||Rqm ||(n)~qm (4.8)

When the system evolves in the mode qi : ||Rqi || = 0, then :

F(S)(n) = ||Rq1 ||(n)~q1 + ||Rqi−1 ||(n)~qi−1 + ||Rqi+1 ||(n)~qi+1 + ... + ||Rqm ||(n)~qm

5It will be shown in Chapter 5 that this vectorial representation in the space of modes
offers a framework to geometrically interpret the diagnosability of multimode systems.
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Consequently the system evolves in the space region denoted Rqi
eg inclu-

ded in the subspace of dimension m− 1 orthogonal to the vector ~qi deno-
ted : ~q⊥i , hence, Rqi

eg ⊆ ~q⊥i .
The dimension of Rqi

eg depends on the diagnosability properties of the
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   q1    q3
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Fig. 4.11 – Example of a 3-dimensional space of modes

multimode system. It will be discussed in Chapter 5. For illustration, Fi-
gure 4.11 shows an example of the 3-dimensional space of modes.

4.4 Hybrid state estimation through synergic mode-set

focusing

The work presented above in this chapter proposes a passive diagnosis
approach in which the diagnosis problem is formulated as a mode esti-
mation problem solved through a hybrid parity-based method. However
it does not provide the continuous state estimation, which may be a pro-
blem in case an appropriate feedback reaction is needed on the system (for
active diagnosis or control purposes). On the other hand, hybrid estima-
tion schemas that account both for the continuously-valued state evolution
and the interleaved discrete mode changes suffer from a blow up of the
number of estimation hypothesis to be considered.
This section summarizes a piece of work arising from a collaboration with
Graz University of Technology, namely Prof. M. Hofbaur and his PhD
student T. Rienmüller. The work couples our diagnosis approach to the
filtering approach of Hofbaur and Williams (2004). It results in a novel
scheme that uses the hybrid parity-based method as a mode focusing
procedure and then applies hybrid estimation on the resulting reduced
number of hypotheses. The advantages of the mixed method are on both
sides : it boosts the mode identification time and the convergence of conti-
nuous state estimation. This work has been accepted for presentation in
the IFAC Safeprocess 09 Symposium (c.f. Rienmüller et al. (2009)). The
principle of our mixed method is to perform continuous estimation in two
ways, even-though this may appear as redundant. The parity-space based
diagnosis technique is used as an abstraction operator of the continuous
evolution and is used to supply a focused mode estimation through a
discrete-event diagnoser (cf. section 4.2.6). This restricted set of possible
mode hypotheses is given as input to the additional continuous estima-
tion scheme that supplies the neglected continuous state estimate through
a traditional filtering based hybrid estimation technique. This is illustrated
in Figure 4.12, which can be compared to Figure 4.7.
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HYBRID-Diagnosis and State-Estimation SCHEME:  Implemented in MATLAB/SIMULINK
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Fig. 4.12 – Mixed method architecture

4.4.1 Hybrid Estimation

Given a hybrid model S, the discrete-time sequence of noisy (conti-
nuous) observations {Y(1), . . . , Y(n)}, the sequence of observable events
{σ1, . . . , σn} and the actuated control inputs {U(1), . . . , U(n)}, the hybrid
estimation problem estimates the mode hybrid state that is composed of
the mode of operation qi ∈ Q and the continuous state Xi(n) for time-
step n. Hybrid estimation must be performed under partial observations
and account for model uncertainties, for instance the mode evolution of
the automaton cannot generally be fully observed. As a consequence, a
hybrid estimator has to consider all possible mode sequences with its as-
sociated continuous evolution that are consistent with the actuation and
observations. This results in an inevitable blow up of the number of hypo-
theses, which has led the community to propose different suboptimal hy-
brid estimation schemes. Early solutions to the hybrid estimation problem
such as the multi-model IMM algorithm (c.f. Blom and Bar-Shalom (1998))
track hypotheses over a limited number of time-steps only and merge the
continuous estimates according to a measure of likelihood. This likeli-
hood is mostly drawn from the continuous filters and expresses the level
of agreement between the estimate and the observations but might also
include prior transition probability information, if available. Several other
strategies have been proposed later, ranging from hierarchical approaches
(c.f. Verma et al. (2003)) to mixed sampling and search (c.f. Blackmore
et al. (2005)). The hybrid estimation algorithm (HME) (c.f. Hofbaur and
Williams (2004)) that we consider for this work, uses the likelihood mea-
sure to focus on the set of most likely hypotheses. The first best hypotheses
are obtained thanks to a focused search strategy, leading to an any-time
any-space algorithm. Although the method was shown to operate success-
fully on systems with a quite large number of modes, its efficiency can be
significantly improved by focusing on possible hypothesis.
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4.4.2 Hybrid Estimation through mode set focusing

The mode estimate provided by our hybrid parity-based method (cf. Sec-
tion 4.2.6) is now coupled with the associated continuous state estimate
provided by HME (cf. Section 4.4.1). It is interesting to notice that when
the mode estimator output a single mode estimate for the current mode of
operation, the continuous state estimation problem reduces to a standard
filtering problem. However, it is generally the case that, due to uncertain-
ties and scare observations, mode estimation takes the form of a set of
possible modes.
In the following, it is shown that this coupling is valuable in all aspects, as
it synergically contributes both to accelerate mode change detection and
to improve the continuous state estimation quality. The first improvement
deals with the delay required by the mode estimator to perform mode
identification. Indeed, although mode change detection can be drawn from
abrupt residual changes almost instantly, mode identification is delayed by
two factors :

– the p time-steps required by the observation window to report
single-mode observed data

– the additional Tf ilter time-steps required by the algorithm to filter the
system residuals.

This delay would of course introduce an error on the continuous state
estimate as well, resulting in a low quality overall procedure. To avoid the
above delay, the idea is to not wait until the mode estimator settles upon
a new or set of new modes of operation, but to generate the hypotheses
to be followed by HME from the previous mode estimate. As a result, we
get the following nice features :

– continuous state estimates for all hypotheses under consideration
with their associated likelihood values are immediately obtained.

– the adaptation delay of the continuous estimate is avoided by tra-
cking multiple hypotheses and the hybrid estimator immediately
provides the correct continuous estimate.

Of course, an analogous interaction can be used whenever the mode esti-
mator settles upon a focused set of modes. This additional evidence can
easily be included in the multi-mode estimation scheme as additional fo-
cusing method that contributes to the estimation quality but also reduces
the computational effort that is necessary for hybrid estimation.
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The "passive" diagnosis approach introduced in Chapter 4 does not
take into account the diagnosability properties of the hybrid system.

Consequently, the uniqueness of the diagnosis is not guaranteed. Indeed,
diagnosability is the property that ensures that the system state can be pre-
cisely diagnosed after the occurrence of a fault. In an autonomy context,
in particular for satellites, the diagnosability properties can be used to
guide the active diagnosis process in order to disambiguate an ambiguous
estimated situation. The diagnosability definition depends mainly on the
system model, the diagnosis approach and the observation system (the
manner in which the system is observed). Diagnosability of discrete-event
and continuous systems as well as some work directions for hybrid sys-
tems have been recalled in Chapter 3.
In this chapter, we propose a formulation of the diagnosability of mul-
timode systems on one hand, and of hybrid systems on the other hand.
This formulation is based on the concepts of mirror, reflexive and mode
signatures introduced in Chapter 4.
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5.1 Diagnosability of multimode systems

5.1.1 From mode signatures to multimode system diagnosability cha-
racterization

The concept of mode signature presented previously in Chapter 4 leads
us to the characterization of the diagnosability of multimode systems.
Let us notice that in our approach, the faulty behaviors are modeled by
fault modes. A given fault, in the classical sense, corresponds to a set of
fault modes in which this fault is present. In this thesis, diagnosability
(of multimode systems) is analysed at the level of fault modes, which is
somehow more precise than at the level of faults. Indeed, whereas the
signature of a mode is reduced to one single tuple, the signature of a fault
is in general a set of tuples.

Example 5.1 Let consider for instance a system composed by a valve and a
pump that has two operating modes, pump ”on” and pump ”o f f ”.
Then, the fault ” f _ValveBlocked” has two corresponding fault modes
”Mode_ValveBlocked_PumpOn” and ”Mode_ValveBlocked_PumpO f f ” (c.f.
Figure 5.1).
Moreover, notice that we have Sig( f _ValveBlocked) = {Sig(Mode_ValveBlock-
ed_PumpOn), Sig(Mode_ValveBlocked_PumpO f f )}.

Fig. 5.1 – The relation between fault signature and mode signature

By analogy with fault diagnosability of continuous systems, the
concepts of mode and fault diagnosability of multimode systems are defi-
ned as follows :

Definition 5.1 Two modes qi and qj (i 6= j) are diagnosable if Sig(qi) 6= Sig(qj).
The multimode system Ξ is diagnosable if and only if all pairs of modes qi and qj,
i 6= j, are diagnosable.

Definition 5.2 The signature of a fault F is defined as the set of the signatures of all the system
modes in which the fault is present.

Definition 5.3 In the case in which the model does not account for reparability actions, i.e. ac-
tions that repair the faults, the signature of a fault Fi is equal to the set of the
signatures of all possible destination modes after the occurrence of the fault event
fi. Formally :
Sig(Fi) = ∪

k∈1..m
u∈Σ∗

{Sig(T(qk, fiu))}.
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Definition 5.4 Two faults Fi and Fj, i 6= j are diagnosable if Sig(Fi) ∩ Sig(Fj) = ∅.

Then, the diagnosability of two modes qi and qj of the multimode sys-
tem is interpreted along two complementary ways through the definitions
of mutual and 3rd diagnosability :

Definition 5.5 Mutual Diagnosability
Two modes qi and qj, i 6= j, are not mutually diagnosable if :
Si/i = Si/j = [0, 0, ..., 0]T

Nr(qi)
and Sj/j = Sj/i = [0, 0, ..., 0]T

Nr(qj)
.

Mutual diagnosability is equivalent to mode discernability as defined in
Cocquempot et al. (2004).

Definition 5.6 3rd-Diagnosability
Two modes qi and qj are qk-3rd-diagnosable if they have different signatures with
respect to the qk mode , i.e. they have two different qk-mirror signatures, k 6= i, j.
Formally, qi and qj, i 6= j, are qk-3rd-mirror diagnosable if Si/k 6= Sj/k.
Two modes qi and qj, i 6= j, are 3rd-diagnosable if ∃k 6= i, j such as Si/k 6= Sj/k.
The multimode system is 3rd-diagnosable if for all pairs of modes qi and qj, i 6= j,
there exists ki,j 6= i, j such that Si/ki,j 6= Sj/ki,j .

Then, we have the following result :

Theorem 5.1 Two modes qi and qj, i 6= j are diagnosable if and only if they are mutually diagno-
sable or 3rd-diagnosable.

Proof. Consider two modes qi and qj, i 6= j.
Let Sig(qi) = [ST

i/1, ST
i/2, ..., ST

i/i, ..., ST
i/m]T

and Sig(qj) = [ST
j/1, ST

j/2, ..., ST
j/j, ..., ST

j/m]T

qi and qj are diagnosable if and only if Sig(qi) 6= Sig(qj)
⇔ ∃k ∈ 1..m such as ST

i/k 6= ST
j/k

⇔ qi and qj are 3rd (if k 6= i, j) or mutually (if k = i or k = j) diagnosable.

Consequently, the multimode system is diagnosable if and only if for
every pair of modes (qi, qj), i 6= j mutual or/and 3rd-diagnosability holds.

Mutual and 3rd-diagnosability : illustrative example

Consider again the example (Figure 4.1) introduced in chapter 4. We focus
on the diagnosability of the underlying continuous system. Let us consider
the mode signatures provided in Table 4.1. We notice that modes q1 and
q2 are mutually diagnosable by the fact that S1/1 6= S2/1 (or S1/2 6= S2/2 ).
Hence they are diagnosable.
We notice that modes q3 and q4 are non diagnosable because they have the
same mode signature. It can be interpreted as follows :

– S3/3 = S4/3 and S4/4 = S3/4, thus q3 and q4 are non mutually diag-
nosable.

– S3/1 = S4/1 and S3/2 = S4/2, thus q3 and q4 are non 3rd-diagnosable.
Therefore the underlying continuous system is not diagnosable w.r.t the
diagnosability definition of multimode systems.
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5.1.2 Structural conditions for mutual and 3rd diagnosability in the case
of linear continuous behaviors

In the case of multimode systems with linear continuous behaviors in ope-
rating modes, structural conditions for mutual can be established. Consi-
der a multimode system modeled in the state space as given by Equation
4.1. We take an identical parity order for all modes (p = Max

i∈1..m
{pi}). For

sake of simplicity, we consider the case in which there is no noise and no
perturbation ( ∀i ∈ 1..m, ρ

p
ei(n) = 0, n ∈ N). The computational form in

mode qi is given by Equation 4.4 :

ρ
p
ci(n) = Ωp

i Yp(n)−Ωp
i Lp

i (Ai, Bi, Ci, Di)Up(n)

If we replace Yp by the outputs given by the theoretical model
of mode qj (given by Equation 4.3, i.e. Yp(n) = Op

j Xj(n − p) +
Lp

j (Aj, Bj, Cj, Dj)Up(n)), we obtain :

ρ
p
ci(n) = Ωp

i Op
j Xj(n− p) + Ωp

i [L
p
j (Aj, Bj, Cj, Dj)− Lp

i (Ai, Bi, Ci, Di)]Up(n)

Mutual diagnosability

Theorem 5.2 Two modes qi and qj, i 6= j modeled in the state space as given by Equation 4.1
are non mutually diagnosable if and only if : Ker1([Op

j ]
T) = Ker([Op

j ]
T) and

Ker([Op
i ]T) ⊆ Ker([Lp

j (Aj, Bj, Cj, Dj)− Lp
i (Ai, Bi, Ci, Di)]T).

Proof. Modes qi and qj are non mutually diagnosable Si/i = Si/j =
[0, 0, ..., 0]T

i and Sj/j = Sj/i = [0, 0, ..., 0]T
j if and only if :

∀n ∈ N, ρ
p
ci(n) = ρ

p
cj(n) = 0, ∀(Up, Yp) the incoming inputs/outputs in

mode qi or qj (this is generalized in Proposition 5.1).
⇔ ∀Up, ∀Xi(n− p), ∀Xj(n− p) :

Ωp
i Op

j Xj(n− p) + Ωp
i [L

p
j (Aj, Bj, Cj, Dj)− Lp

i (Ai, Bi, Ci, Di)]Up(n) = 0

and

Ωp
j Op

i Xi(n− p) + Ωp
j [L

p
i (Ai, Bi, Ci, Di)− Lp

j (Aj, Bj, Cj, Dj)]Up(n) = 0

⇔
Ωp

i Op
j = Ωp

j Op
i = 0

and
Ωp

i [L
p
j (Aj, Bj, Cj, Dj)− Lp

i (Ai, Bi, Ci, Di)] = 0

Since Ωp
i (Ωp

j ) is defined as Ωp
i Op

i = 0 (Ωp
j Op

j = 0), we obtain the following
result :
Ker([Op

j ]
T) = Ker([Op

j ]
T) and

Ker([Op
i ]T) ⊆ Ker([Lp

j (Aj, Bj, Cj, Dj)− Lp
i (Ai, Bi, Ci, Di)]T)

1Ker(M) denotes the null space of a given matrix M.
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3rd-Diagnosability

Theorem 5.3 Two modes qi and qj, i 6= j modeled in the state space as given by Equation 4.1 are
non qk − 3rd-diagnosable if :
Ker([Op

k ]T) ⊆ Ker([Op
i ]T) and Ker([Op

k ]T) ⊆ Ker([Op
j ]

T) and Ker([Op
k ]T) ⊆

Ker([Lp
j (Aj, Bj, Cj, Dj)− Lp

i (Ai, Bi, Ci, Di)]T).

Proof. qi and qj are non qk − 3rd-diagnosable (Si/k = Sj/k) if :
∀n ∈ N, ρ

p
ck(n) is the same, ∀(Up, Yp) the incoming inputs/outputs in

mode qi or qj.
⇔ ∀Up, ∀Xi(n− p), ∀Xj(n− p) :

Ωp
k Op

i Xi(n− p) + Ωp
k [L

p
i (Ai, Bi, Ci, Di)− Lp

k (Ak, Bk, Ck, Dk)]Up(n) =

Ωp
k Op

j Xj(n− p) + Ωp
k [L

p
j (Aj, Bj, Cj, Dj)− Lp

k (Ak, Bk, Ck, Dk)]Up(n)

⇔ ∀Up, ∀Xi(n− p), ∀Xj(n− p) :

Ωp
k Op

i Xi(n− p) + Ωp
k [L

p
i (Ai, Bi, Ci, Di)− Lp

k (Ak, Bk, Ck, Dk)]Up(n)−

Ωp
k Op

j Xj(n− p) + Ωp
k [L

p
j (Aj, Bj, Cj, Dj)− Lp

k (Ak, Bk, Ck, Dk)]Up(n) = 0

⇔ ∀Up, ∀Xi(n− p), ∀Xj(n− p) :

Ωp
k Op

i Xi(n− p)−Ωp
k Op

j Xj(n− p)+ Ωp
k [L

p
i (Ai, Bi, Ci, Di)− Lp

j (Aj, Bj, Cj, Dj)] = 0

Since Ωp
k is defined as Ωp

k Op
k = 0, we obtain the following result :

Ker([Op
k ]T) ⊆ Ker([Op

i ]T) and Ker([Op
k ]T) ⊆ Ker([Op

j ]
T) and Ker([Op

k ]T) ⊆
Ker([Lp

j (Aj, Bj, Cj, Dj)− Lp
i (Ai, Bi, Ci, Di)]T)

5.1.3 The mutual diagnosability property seen in the space of modes

As mentioned in Chapter 4, the space of modes offers a framework for
the geometric interpretation of diagnosability, in particularly for mutual
diagnosability.

Proposition 5.1 Two modes qi and qj, (i 6= j) are non mutually diagnosable if and only if :
∀ ζ i

OBS and ∀ ζ
j
OBS : ||Rqj(ζ i

OBS)|| = ||Rqi(ζ
j
OBS)|| = 0

Proof. qi and qj are non mutually diagnosable if and only if :
Si/j = Sj/j = [0, 0, ..., 0]T

j and Sj/i = Si/i = [0, 0, ..., 0]T
i ⇔

||Rj(ζ i
OBS)|| = ||Rj(ζ

j
OBS)|| = 0 and ||Ri(ζ

j
OBS)|| = ||Ri(ζ i

OBS)|| = 0⇔
||Rqj(ζ i

OBS)|| = ||Rqi(ζ
j
OBS)|| = 0

The mutual diagnosability property can easily be interpreted geome-
trically in the space of modes framework, making clear what it means in
terms of the regions associated to the different modes.

Theorem 5.4 A mode qi is mutually diagnosable from all other modes qj, i 6= j, if and only if :
dim(Rqi

eg) = m− 1.
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Proof. (⇒)
∀qi,R

qi
eg ⊆ ~q⊥i ⇒ dim(Rqi

eg) ≤ m− 1
In the other hand, ∀j 6= i, qi is mutually diagnosable from qj ⇒
∃ζ i

OBS such that ||Rqj(ζ i
OBS)|| 6= 0⇒

Rqi
eg ∩ {α.~qj, α ∈ R} 6= {~0} ⇒

dim(Rqi
eg) = m− 1

(⇐)
dim(Rqi

eg) = m− 1 ⇒ ∀j 6= i, ∃ζ i
OBS such that ||Rqj(ζ i

OBS)|| 6= 0, hence qi
and qj are mutually diagnosable.

q1

q2

q3

q3

q1

    q2 e1

e2

e3

R
R

R   
eg

eg

eg

Fig. 5.2 – Example of 2 non mutually diagnosable modes : q1 and q3, in the 3D-mode-
space

Proposition 5.2 If two modes qi and qj are non mutually diagnosable then dim(Rqi
eg) ≤ m − 2

and dim(Rqj
eg) ≤ m− 2.

Proof. qi and qj are non mutually diagnosable⇒
∀ζ i

OBS, ||Rqi(ζ i
OBS)|| = ||R

qj((ζ i
OBS))|| = 0⇒

F(S)(n) = ||Rq1 ||~q1 + ... + ||Rqi ||~qi + ... + ||Rqj ||~qj + ...||Rqm || ~qm =
F(S)(n) = ||Rq1 ||~q1 + ... + ||Rqi−1 || ~qi−1 + ||Rqi+1 || ~qi+1 + ... + ||Rqj−1 || ~qj−1 +
||Rqj+1 || ~qj+1 + ...||Rqm || ~qm ⇒
dim(Rqi

eg) ≤ m− 2 and dim(Rqj
eg) ≤ m− 2

The Figure 5.2 shows the 3-dimension space of modes under the hypo-
thesis that modes q1 and q3 are non mutually diagnosable. In this case, we
notice that Rq1

eg and Rq3
eg are included in the vectorial subspace oriented by

the vector ~q2 : {α.~q2, α ∈ R} and dim(Rq1
eg) = dim(Rq3

eg) = 1.
Whereas, the mode q2 is mutually diagnosable from all other modes, the-
refore dim(Rq2

eg) = 2.

5.2 Diagnosability of Hybrid Systems

As mentioned before, diagnosing a hybrid system consists on tracking the
system mode that can be normal or faulty, by benefiting from both conti-
nuous and discrete observable behaviors. Since the mode change after the
occurrence of an observable event is obviously determined, the diagnosa-
bility of hybrid systems can be formulated as follows : the hybrid system is
diagnosable if and only if the occurrence of any unobservable fault event
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is detected with a finite number of discrete-event and continuous obser-
vations. Since the behavior of the hybrid system is the result of under-
lying continuous and discrete-event behaviors, the hybrid diagnosability
analysis must call upon both underlying discrete-event and continuous
knowledges. To do this, the hybrid modeling framework, proposed for
diagnosis in Chapter 4 is used and offers the theoretical framework for
diagnosability characterization.

Properties of the hybrid language

Let us consider the hybrid language L(S) ⊆ Σ∗hyb defined in Chapter 4.
As presented before, this language mixes "natural" discrete events from Σ
and events issued from the abstraction of the continuous dynamics : ΣSig.
Hence, some specific properties can be stated, for instance Property 5.1
illustrated in Figure 5.3.

Property 5.1 ∀w ∈ L(S), w = e′.R′.w′, where e′ ∈ Σ, R′ ∈ ΣSig, w′ ∈ L(S).

qi qij qj

w = e′R′w′

w′
e′ R′

1

Fig. 5.3 – Property of the hybrid language

This property will be used later to prove the hybrid diagnosability
criterion.

5.2.1 Hybrid system diagnosability definition

In this thesis, we propose a new definition of hybrid systems diagnosabi-
lity based on our hybrid modeling framework and diagnosis approach.

Definition 5.7 A fault event F is diagnosable if it can always be detected after a finite set of conti-
nuous and discrete observations i.e. after a finite sequence of observable discrete
events and a finite set of continuous variable observations. The system is said to
be diagnosable if and only if all the anticipated faults are diagnosable.

This definition provides the following result in the hybrid language
framework :

Proposition 5.3 The hybrid system is diagnosable if ∀ f , ∃n ∈N such as : ∀sFt ∈ L(S), such that
sF ends with the occurrence of f , and t ∈ L(S) is a continuation of sF :
||t|| ≥ n⇒ (∀w ∈ L(S) : PΣhybo

(w) = PΣhybo
(sFt)⇒ f ∈ w)

Where PΣhybo
is the projection operator on the set of observable events of Σhyb i.e.

Σhybo = Σo ∪ ΣSig
o .

5.2.2 Sufficient conditions

In this thesis, two sufficient criteria for diagnosability of hybrid systems
based on the diagnosability of the underlying discrete-event and conti-
nuous systems are stated and proved.
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The DES sufficient criterion

Theorem 5.5 The hybrid system S = (ζ, Q, Σ, T, C, (ζ0, q0)) is diagnosable if its underlying
discrete-event system M = (Q, Σ, T, q0) is diagnosable.

Proof. Given a hybrid system S = (ζ, Q, Σ, T, C, (ζ0, q0)), such that the un-
derlying discrete-event system M = (Q, Σ, T, q0) is diagnosable.
Given a fault f ∈ ΣF and sFt ∈ L(S) such that sF ∈ L(S) ends with the
occurrence of f , and t ∈ Σ∗hyb is a continuation of sF as shown in Figure
5.4.
We denote s′F = PΣ(sF) and t′ = PΣ(t) , where PΣ is the projection on the
set of discrete events Σ.
We have s′F ∈ L(M) ends with f ∈ Σuo ⊆ Σ, and t′ ∈ Σ∗ is a continuation
of s′F.
Since M = (Q, Σ, T, q0) is diagnosable then there exists an integer n′ such
that : ||t′|| ≥ n′ ⇒ ∀w′ ∈ L(M), (PΣo(w′) = PΣo(s′Ft′) ⇒ f ∈ w′) (stated by
Definition 3.2 of discrete-event system diagnosability).
We consider the integer n = 2n′ + 1, then from Property 5.1 we have
||t|| ≥ n⇒ ||t′|| ≥ n′

∀w ∈ L(S) such that PΣhybo
(w) = PΣhybo

(sFt), we consider w′ = PΣ(w)
PΣhybo

(w) = PΣhybo
(sFt)⇒ PΣo(w′) = PΣo(s′Ft′)

⇒ f ∈ w′ thus f ∈ w
and consequently the hybrid system S is diagnosable.

Fig. 5.4 – The composition of a hybrid fault trajectory and its projection into the discrete-
event set Σ

The above result provides a sufficient condition for hybrid diagnosabi-
lity that is solely based on the underlying discrete-event system. In prac-
tice, the underlying discrete-event system is rarely diagnosable because it
does not include explicit information about the events that occur after the
occurrence of a fault. The continuous knowledge is not represented and
the diagnosability can only be decided on the basis of the observation of
discrete control inputs and discrete sensor outputs.

The CS sufficient criterion

Theorem 5.6 The hybrid system S = (ζ, Q, Σ, T, C, (ζ0, q0)) is diagnosable if the underlying
multimode system Ξ = (ζ, Q, C, ζ0) is diagnosable.

Proof. Consider a hybrid system S = (ζ, Q, Σ, T, C, (ζ0, q0)), such that the
underlying multimode system Ξ = (ζ, Q, C, ζ0) is diagnosable.
Given a fault f ∈ ΣF and sFt ∈ L(S) such that sF ∈ L(S) ends with the
occurrence of f as shown in Figure 5.5.
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Let qc(q f ) be the mode of the system before (after) the occurrence of the
fault event f .
Since the underlying multimode system is diagnosable then ∀qi 6=
qj, Sig(qi) 6= Sig(qj), therefore ΣSig

uo = ∅ and in addition, all the obser-
vable events Roij are different.
Let t ∈ Σ∗hyb be a continuation of sF such that ||t|| ≥ 1.
∀w ∈ L(S) such that PΣhybo

(w) = PΣhybo
(sFt), Property 5.1 guarantees that

PΣhybo
(sFt) = PΣhybo

(sF)Roc f w
′ (where w′ ∈ Σ∗hybo

).
The observation of the event Roc f means that the system has transited from
the current mode qc to the fault mode q f , thus f ∈ w. Hence, the hybrid
system S is diagnosable.

Fig. 5.5 – Composition of a hybrid fault trajectory

Corollary 5.1 Two modes qi and qj, i 6= j of the hybrid system S are diagnosable if Sig(qi) 6=
Sig(qj). If all pairs of modes (qi, qj), i 6= j of the hybrid system are diagnosable
then the hybrid system is diagnosable.

This is again only a sufficient condition in terms of the underlying
multimode system. As a matter of fact, the next section shows that conti-
nuous and discrete-event informations are required to achieve a necessary
and sufficient condition.

5.2.3 The necessary and sufficient condition

As mentioned in Chapter 4, the diagnoser built from the behavior auto-
maton (c.f. Section 4.2.6) is used, on one hand to perform on-line diagno-
sis, and on the other hand to check diagnosability for the hybrid system.
Indeed, based on the diagnoser of the hybrid system, the diagnosability
definition (Definition 5.7) is analyzed by extending discrete-event diagno-
sability (Theorem 3.1) to hybrid systems.
Consider Diag(BA(S)) = (QD, ΣD, TD, qD0), the diagnoser of the hybrid
system as provided in Section 4.2.7, and ∆ f = {F1, F2, ..., Fn} a set of fault
labels.

Definition 5.8 Uncertain state
Given a diagnoser state qd ∈ QD, this state is Fi-uncertain if Fi does not belong
to all the labels of qD, whereas Fi belongs to at least one label of qD. Formally :
a state qD ∈ QD is Fi-uncertain if ∃(q, l), (q′, l′) ∈ qD, such that Fi ∈ l and
Fi /∈ l′.

Definition 5.9 Indeterminate cycle
An Fi-indeterminate cycle in Diag(BA(S)) is a cycle composed of Fi-uncertain
states for which there exist two corresponding cycles in BA(S) : one involves only
states that carry the fault label Fi in their labels in the cycle in Diag(BA(S)) and
the other does not.
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Proposition 5.4 The hybrid system S = (ζ, Q, Σ, T, C, (ζ0, q0)) is not Fi diagnosable if and only
if the diagnoser Diag(BA(S)) = (QD, ΣD, TD, qD0) built from the behavior au-
tomaton BA(S) contains an Fi-indeterminate cycle.

5.2.4 Illustrative example : diagnosability analysis

Example 5.2 Let us consider the hybrid system whose underlying discrete-event system is
given in Figure 5.6. The mode signatures (that capture the continuous know-

Model name = example2

State Number= 5

Transition Number= 6

Edge color: fault event -> red, normal event -> black, shared event -> green, observable event -> blue

init

N

 

qF1

 

f1

qF2

 

f2

q'F1

 

o1

q'F2

 

o1o2 o2

Fig. 5.6 – Example 5.2 : the underlying discrete-event system

ledge) are defined as follows : Sig(N) = Sig1, Sig(qF1) = Sig(qF2) = Sig2,
Sig(q′F1) = Sig3 and Sig(q′F2) = Sig4. First, we focus on the diagnosability of
the underlying continuous system on one hand and the discrete-event system on
the other hand, which aims at checking the diagnosability of the hybrid system by
means of sufficient conditions. Then, we address directly the diagnosability of the
hybrid system by means of the sufficient and necessary criterion that takes into
account both continuous and discrete-event knowledges.

Diagnosability of the underlying discrete-event system

The diagnoser of the underlying discrete-event system is given in Figure
5.7. The underlying discrete-event system is not diagnosable because of the

State Number= 3

Transition Number= 3

N,{ }

 

q'F1,{ F1 }

 q'F2,{ F2 }

 

o1

qF1,{ F1 }

 qF2,{ F2 }

 

o2 o1

Fig. 5.7 – Example 5.2 : the diagnoser of the underlying discrete-event system

presence of the indeterminate cycle o1, o2 crossing F1 (F2) uncertain states
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{(qF1, {F1}), (qF2, {F2})} and {(q′F1, {F1}), (q′F2, {F2})}, hence, faults F1
and F2 are not diagnosable.

Diagnosability of the underlying continuous system

Modes qF1 and qF2 are non diagnosable because they have the same mode si-
gnature : ”Sig2”, therefore the underlying continuous system is not diagnosable
w.r.t the diagnosability definition of multimode systems. Furthermore, the faults
F1 and F2 are not diagnosable because Sig(F1) ∩ Sig(F2) = {Sig2, Sig3} ∩
{Sig2, Sig4} = {Sig2} 6= ∅ (c.f. Definition 5.4). We will see later that the
hybrid system may be diagnosable (for instance, faults F1 and F2) although the
underlying continuous system is not.

Diagnosability of the hybrid system

Both discrete-event and continuous underlying systems are non diagnosable,
hence the sufficient diagnosability criteria do not allow us to conclude. Hence,
the necessary and sufficient criterion is required to decide about the diagnosability
of the hybrid system. The behavior automaton of the hybrid system is built and
provided in Figure 5.8. The diagnoser of the hybrid system is built from this beha-

Model name = example2_beh

State Number= 11

Transition Number= 12

Edge color: fault event -> red, normal event -> black, shared event -> green, observable event -> blue

init
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NqF1

 

f1

NqF2

 

f2

qF1
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o2
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q'qF2

 

o2

Ro32 Ro42

Fig. 5.8 – Example : 5.2 : the associated behavior automaton

vior automaton and provided in Figure 5.9. Since the hybrid diagnoser does not
contain any indeterminate cycle we conclude that the hybrid system is diagno-
sable according to the hybrid sufficient and necessary condition (Proposition 5.4).
Faults F1 and F2 that are non diagnosable neither in the underlying continuous
system nor in the discrete-event system are diagnosable in the hybrid system.
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State Number= 11

Transition Number= 12

N,{ }

 

qF1,{ F1 }
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Ro23 Ro24

Fig. 5.9 – Example 5.2 : the diagnoser of the hybrid system

5.2.5 Discussion about diagnosability and mode tracking of hybrid
systems

The diagnosability definition that we use is inspired from the discrete-
event system definition, hence it is event-based in the sense that it is stated
in terms of fault events and guarantees that a fault event is detected after
a delay represented by the integer n as explained in Definition 5.3. This
delay models the number of observable events (from Σhybo ) required to de-
tect the fault occurrence. This delay is a consequence of the disrete-event
dynamics, and captures the number of mode changes needed before the
fault detection. When the underlying continuous system is diagnosable,
the underlying discrete-event dynamics are not required and so this delay
is null. Indeed when the system modes are diagnosable, the integer n is
equal to 1 for each fault f that means that all fault occurrences are detec-
ted without need of waiting for further events (the event Roc f allows us
to detect the fault as explained in proof of Theorem 5.6). Furthermore, in
this case, we can precisely determine the fault mode in which the system
is. However, if it is not the case, since a fault event generally corresponds
to several fault modes (in which the fault is present), our event-based
diagnosability formalism does not allow us to precise the fault mode. For
example the diagnosability of the fault event f1 implies that the system is
in one of the fault modes associated to the fault F1.
As a consequence, even when the hybrid system is diagnosable, the diag-
nosis scheme gives only a set of belief modes that belong to the observable
modes Qbeho (defined in Section 4.2.7). Non observable modes cannot be
returned by the hybrid diagnoser module because there is not any avai-
lable observable information (neither discrete-event nor continuous). Ho-
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wever note that a back tracking procedure could be designed to retrieve
a more precise mode history. For illustration, we propose to analyse the
Example 5.3.

Example 5.3 Consider the hybrid system whose underlying discrete-event system is provided
in Figure 5.10. The mode signatures (that capture the continuous knowledge) are

Model name = example3

State Number= 7

Transition Number= 8

Edge color: fault event -> red, normal event -> black, shared event -> green, observable event -> blue
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Fig. 5.10 – Example 5.3 : the underlying discrete-event system

defined as follows : Sig(N) = Sig1, Sig(qF1) = Sig(qF2) = Sig(q′F1) =
Sig(q′F2) = Sig2, Sig(q”F1) = Sig3 and Sig(q”F2) = Sig4. The behavior au-
tomaton is provided in Figure 5.11. We focus on the diagnosability of the hybrid

Model name = example3_beh

State Number= 11

Transition Number= 12

Edge color: fault event -> red, normal event -> black, shared event -> green, observable event -> blue

init

N

 

NqF1

 

f1

NqF2

 

f2

qF1

 

Ro12

q'F1

 

uo1

qF2

 

Ro12

q'F2

 

uo3

q'q''F1

 

uo2

q'q''F2

 

uo4

q''F1

 

Ro23

q''F2

 

Ro24

o1 o1

Fig. 5.11 – Example : 5.3 : the associated behavior automaton

system, the diagnoser of the hybrid system is so given in Figure 5.12. There are
no indeterminate cycle in this diagnoser, hence the hybrid system is diagnosable.
However, the diagnoser scheme presented in Chapter 4 is able to only track obser-
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State Number= 4

Transition Number= 5
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Fig. 5.12 – Example 5.3 : the diagnoser of the hybrid system

vable modes (Qbeho ), it means modes preceded by an observable event of Σhybo . For
illustration, let us consider the fault scenario [ f1, uo1, uo2] that starts from the
initial state ”N”. A comparison between Real and Estimated mode is provided in
Table 5.1. We notice that faults F1 and F2 are diagnosable after two mode changes

Real mode N qF1 q’F1 q”F1

Set of estimated modes {N} {qF1, qF2} {qF1, qF2} {q"F1}

Tab. 5.1 – Real Vs estimated mode

n2 = n3 = 2× 2 = 4 (two mode changes generate 2 "natural" discrete events
and 2 events from ΣSig). Modes qF1 and qF2 are observable but not diagnosable,
hence, the diagnoser scheme returns the set {qF1, qF2}. However, modes q′F1
and q′F2 are non observable, hence the diagnoser scheme cannot return them. Fi-
nally, modes q”F1 and q”F2 are diagnosable and observable, hence the diagnoser
scheme returns a precise diagnosis {q”F1}.

In conclusion, the main contributions provided in this chapter are the
definition of diagnosability of multimode and hybrid systems, as well as
the criteria for diagnosability checking. We have shown that the diagnosa-
bility of the underlying multimode or the underlying discrete-event sys-
tem are only sufficient conditions, hence the sufficient and necessary cri-
terion is provided based on the language of the hybrid system. The fol-
lowing chapter provides the active diagnosis scheme guided by the diag-
nosability properties of the system discussed in this chapter. When the
system state is ambiguous, diagnosability analysis is used to decide about
the control inputs able to disambiguate the ambiguous situation.
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On-line diagnosis is often approached as a passive task that takes as
input the available observations provided by the sensoring devices

instrumenting a physical system and returns an estimation of its state,
often interpreted in terms of the status of each component. However diag-
nosis is originally defined as a process (c.f. Hamscher et al. (1992)) that
interlinks the determination of a belief state and the proposal of new tests
that provide additional information allowing the diagnoser to refine the
belief state and ultimately end with a non ambiguous state estimation.
This way to go is quite common for solving post-mortem diagnosis pro-
blems, and the diagnosis is often formulated as a test sequencing problem
or related in some way to testing as proposed in Struss (1994), Abramo-
vici et al. (1999), Nicolaidis and Zorian (1998). The proposed tests can be
achieved by :

– defining other variables to be measured
– applying other input patterns defined by specific values or signals
– driving the system to other configuration
Referring to on-line diagnosis, there are very few works mixing diag-

nosis and testing techniques. There are two main reasons for that : the
first one is that the sensing capabilities are constrained by the available
sensors, and the second is that the system’s inputs are used to achieve the
normal operation tasks of the system. Nevertheless, interlinking diagnosis

75
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and test on-line, i.e. performing active diagnosis, is possible and may be
necessary in some application domains, particularly those requiring auto-
nomy. This is the case in the space domain in which the new architectures
proposed for satellites are designed for giving the system self-properties.
Although the constraints about on-board sensoring capabilities remain,
what is different in this domain is that :

– time constraints for achieving the operating tasks are not severe and
one can consider to use momentarily the inputs for diagnosis pur-
poses.

– embedded electronic controllers acting on physical systems impose
discrete switches that result in numerous configurations (or opera-
ting modes) that differ in the available measurements and may bring
additional information for diagnosis.

On the other hand, active diagnosis is dictated by reliability and availabi-
lity requirements. Reconfiguration actions can indeed be dangerous if the
belief state is too ambiguous. The existing few works dealing with active
diagnosis understood as active excitation of the system through its inputs
to achieve diagnosis can be classified into two categories :

– active diagnosis for discrete-event systems : Sampath et al. (1998) can
be mentioned as one of the only works proposing an approach for
active diagnosis of discrete-event systems. A discrete-event system
is modeled by a finite state machine, and active diagnosis is formu-
lated as a supervisory control problem as in Ramadge and Wonham
(1989). The novelty of the paper is to devise the controller so that spe-
cific actions that may drive the system into non diagnosable regions
are forbidden. The system is hence "actively" diagnosable, allowing
non ambiguous diagnosis to be performed.

– active diagnosis for continuous systems : in the field of continuous
systems, Niemann (2006; 2005) are certainly the most representative
works. An approach for Active Fault Diagnosis (AFD) of parametric
faults is proposed for closed loop continuous systems. Auxiliary si-
gnals are introduced and a fault signature matrix in connexion with
parametric faults is defined. This fault signature matrix is used for
fault detection and isolation. When diagnosis based on the structure
of the fault signature matrix is not possible, active diagnosis is per-
formed thanks to the auxiliary inputs. Auxiliary input signals are
designed so that the effect on system performance is minimized, but
it becomes possible to detect/isolate parametric faults in the system.

Conditional planning for active diagnosis

This thesis addresses active diagnosis problem of hybrid systems. The pas-
sive diagnosis approach presented in Chapter 4 does not take into account
the diagnosability properties of the system. Therefore, the returned diag-
nosis may be ambiguous in the sense that the mode tracking process re-
turns more than one possible current mode, jeopardizing in this way, the
reconfiguration process. Therefore, in the autonomy context, the system
must be able to autonomously leave such an ambiguous situation by ac-
tively diagnosing the system mode. Active diagnosis is introduced as
the solution of this problem (c.f. Bayoudh et al. (2008c)). Indeed, starting
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Fig. 6.1 – The active diagnosis scheme for hybrid systems

from an ambiguous situation, the active diagnosis process consists of per-
forming additional control inputs to change the system configuration in
order to exhibit further diagnosis information. Therefore, active diagnosis
must be seen as an integrated control and diagnosis problem. The active
diagnosis objectives must be consistent with the normal operation control
objectives. The system’s operation is required, in the worst case, to remain
safe and, in the best case, to preserve normal performances when specific
control inputs are applied to drive the system into state space regions that
exhibit the appropriate symptoms. Hence, active diagnosis actions must
be optimized and those that can be dangerous for the system must be for-
bidden.
This chapter provides a scheme to achieve active diagnosis in our hy-
brid system framework. Starting with an ambiguous belief state1 , our
method calls for diagnosability analysis results to determine a new sys-
tem configuration in which fault candidates can be discriminated. The
control inputs to be applied to the system to drive it into this configuration
are determined, paying attention to avoid states that could be dangerous
for the system. In our modeling framework, the system behavior after a
fault occurrence is modeled by an anticipated fault mode with associated
continuous dynamics. Possible control actions after the occurrence of a
fault are modeled by transitions outgoing the corresponding faulty mode.
These control actions are the key of active diagnosis. Seeing that mode
transitions can be resulting from discrete-event or continuous dynamics
evolution, both continuous and discrete control actions can be used, in
an interlinked way, to perform active diagnosis. These interlinked actions
ultimately act by putting the system in a goal configuration, i.e. a goal
behavioral mode, by driving it through a selected sequence of interme-
diary behavioral modes. In contrast to Sampath et al. (1998) that forbids
non diagnosable regions with appropriate control actions, our approach is
based on driving the system towards diagnosable regions. These regions

1An ambiguous belief state (or situation) of the system corresponds to an uncertain
state of the diagnoser of the hybrid system.
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correspond to non uncertain states of the hybrid system diagnoser and
represent the target states of the active diagnosis problem.
This chapter starts by defining the active diagnosis problem of hybrid sys-
tems, the new concepts of controllable and induced controllable events
are introduced. Based on these concepts, a new finite state machine called
the active diagnoser is defined (c.f. Bayoudh et al. (2008c; 2009)) in order to
on-line perform active diagnosis.
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6.1 Defining the active diagnosis problem for hybrid

systems

Let us assume that a hybrid system is continuously monitored and that
its state is tracked following the passive diagnosis approach proposed in
Chapter 4. Assume that the current belief state returned by the diagnoser
is faulty and uncertain, i.e. several faults are candidate. This is the star-
ting point of an active diagnosis session. The active diagnosis problem is
formulated as a conditional planning problem. From an uncertain state of
the diagnoser, the plan defines how to find a controllable paths leading
to a certain state. The search of active diagnosis actions is guided by the
observable response of the system on active control inputs.
What is important to notice is that even when the conditions for non diag-
nosability as stated by Proposition 5.4 hold, there may be a way to enforce
a sequence of transitions to drive the system towards a non certain state of
the diagnoser. Indeed, an indeterminate cycle of the diagnoser only indi-
cates that the system may get stuck in the cycle. Therefore, we distinguish
two situations for which an active diagnosis session is triggered :

– the uncertain state belongs to an indeterminate cycle, in this case the
system is non diagnosable w.r.t this state and the active diagnosis
aims at cutting the indeterminate cycle and bringing the diagnoser
in a certain state.

– the uncertain state does not belong to an indeterminate cycle, in this
case the system is diagnosable w.r.t this state, however, the active
diagnosis aims at energizing the diagnoser to leave this state (the
system does not wait for observations, the controller sets them off).

6.2 Introducing the notion of controllable and indu-
ced controllable paths

Active diagnosis is closely linked to the property of controllability of the
system. Indeed, the active diagnosis consists on determining paths from
the starting uncertain state of the active diagnoser to target states in which
the diagnosis is precise (or more precise). Consequently the dynamics of
the system along these paths must be controllable to allow the system to
be driven to the target states. Hence, concepts of controllable events and
induced controllable events are introduced.
Let us consider the hybrid language L(S) ⊆ Σ∗hyb and let us call Σc ⊆ Σo ⊆
Σhyb the set of controllable events2.

Definition 6.1 Controllable event
Controllable events fall in one of the categories below :

– discrete control inputs, c ∈ Σc (for example, the software commands sent
by embedded calculators).

– events, σu ∈ Σc, corresponding to spontaneous mode changes when the
continuous dynamics model of the source mode is controllable in the sense
of Terrell (1999). This means that there always exists a continuous control
law u that leads to the occurrence of such event.

2Controllable actions are assumed to be observable.
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The set of possible transitions outgoing fault modes represents all the
control actions that can be done to perform active diagnosis. The set of
these allowed control actions is different for the different fault modes, and
is a mean to account for safety constraints.

Definition 6.2 Induced controllable event
Events whose occurrence always follow the occurrence of a controllable event are
called induced controllable events and form the set Σhybic

⊆ Σhyb.

Induced controllable events model the response of the hybrid system
after a control action either a discrete input event or a continuous input
signal. Induced controllable events fall in one of the categories below :

– ΣSig
ic ⊆ ΣSig : the set of induced controllable events that manifest the

reaction of the continuous dynamics. Let Rij ∈ ΣSig denote a dis-
crete event associated to a mode signature change. Rij is an induced
controllable event denoted Ric

ij if the mode change is controlled by a
controllable event.

– Σic ⊆ Σ : the set of induced controllable events that manifest the
reaction of discrete dynamics. σ ∈ Σic is an induced discrete event
denoted σic if its occurrence is always a consequence of a given
controllable event.

The set of induced controllable events of the hybrid system is given as
Σhybic

= Σic ∪ ΣSig
ic . Controllable events are those that provide means to

act on the system. Induced controllable events are those that manifest the
reaction of the system and allow us to discriminate ambiguous situations.

Definition 6.3 Controllable path
Consider the hybrid system behavior automaton and its associated hybrid lan-
guage L(S) ⊆ Σ∗hyb

3. A controllable path s is a string of controllable and in-
duced controllable events, s ∈ (Σc ∪ Σhybic)

∗. Formally, a controllable path is
s = α1β1, ..., αkβk, with αi ∈ 2Σc and βi ∈ Σhybic , i = 1..k, k ∈N∗.

A controllable path in the behavior automaton corresponds to a
controllable observable path in the corresponding diagnoser.

6.3 Towards an active diagnoser

The idea proposed in this thesis is to use the diagnoser to guide the search
for the sequence of actions that will disambiguate an ambiguous belief
state in the diagnoser. However, in order to suit active diagnosis purposes,
the diagnoser must be modified into an Active Diagnoser that involves only
controllable paths. Classically, the control actions that appear in the diag-
noser are supposed to be observed but not necessarily applied. In particu-
lar, a control event associated to a transition outgoing an uncertain state
of the diagnoser is only observed in at least one of the underlying faulty
modes of the system. In our case, we want to actively apply the control
event, which means that it must be applicable in all the faulty modes inclu-
ded in the concerned diagnoser state, otherwise it means that the control

3As defined in Section 4.2.6 of Chapter 4.
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is forbidden as it may be dangerous in some underlying modes. The diag-
noser is hence modified accordingly.
Given an uncertain state of the diagnoser, outgoing transitions associated
with controllable events are removed if there is no corresponding transi-
tion outgoing from all the corresponding modes of the behavior automa-
ton.
In our modeling, all enabled control inputs in faulty modes are represen-
ted in the mode automaton and can be used to perform active diagnosis.
Control inputs that do not appear in the mode automaton must be forbid-
den and can be dangerous for the system (this is achieved by Equation 6.1).
Let us consider the example shown in Figure 6.2 (left). When the system
is in the faulty mode qF2, the set of enabled control inputs is {c1, c2}. Ho-
wever, in the faulty mode qF1, the set of enabled control inputs is reduced
to {c1}. It means that the control input c2 is forbidden in mode qF1. Now,

(qF1, F1)
(qF2, F2)

(q′F1, F1)
(q′F2, F2)

(q”F2, F2)

N

qF1 qF2

q’F1 q’F2 q”F2

c1 c2

f2f1

c2c1
c1

1

Fig. 6.2 – Enabled actions for active diagnosis

let us consider the associated diagnoser shown in Figure 6.2 (right). Tran-
sitions outgoing the uncertain diagnoser state {(qF1, {F1}), (qF2, {F2})}
are labeled by control inputs c1 and c2. However, by considering the mode
automaton, only c1 can be enabled. Hence, c2 must be removed.
Formally the construction of the active diagnoser is achieved from
Diag(BA(S)) (c.f. Chapter 4, Section 4.2.7) by defining a new partial tran-
sition function Tact

D ⊆ QD × Σhybo → QD as follows, where two cases are
distinguished :

– σ ∈ Σc :

Tact
D (qD, σ) =

⋃
(q,l)∈qD

{(Tbeh(q, σ), l)} if (∀(q, l) ∈ qD, Tbeh(q, σ) 6= ∅),

otherwise Tact
D (qD, σ) = ∅ (6.1)

– σ ∈ Σhybo \ Σc :

Tact
D (qD, σ) =

⋃
(q,l)∈qD

s∈Lσ(S,q)∩Σ∗hybic

{(Tbeh(q, s), LP(q, l, s))} (6.2)

6.4 Conditional planning for determining an active

diagnosis plan

As mentioned before, active diagnosis consists on exciting the hybrid sys-
tem to exhibit additional observations. Given an uncertain state of the
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active diagnoser, the active diagnosis problem is how to find controllable
paths leading to certain states. In the uncertain state, the active diagnosis
is performed by triggering a sequence of consecutive controllable events,
observing the system reaction, and deciding about the next sequence.
The choice of the consecutive controllable event sequence depends on the
last observed induced controllable event. This problem is formulated as a
conditional planning in a full observable environment problem (c.f. Ber-
toli et al. (2001), Jimenez and Torras (2000), Russel and Norvig (2003)). The
active diagnoser is seen as an AND-OR graph. The "OR" nodes (squares)
correspond to the selection of a possible sequence of consecutive control-
lable events, the "AND" nodes (circles) correspond to the resulting induced
events as shown in Figure 6.3. A modified MINIMAX algorithm (c.f. Algo-
rithm 1) is applied to resolve the conditional planning problem Bayoudh
and Travé-Massuyès (2009). The algorithm is performed from an uncer-
tain state and searches all controllable paths leading to certain states. The
active diagnosis session can be started only from an uncertain state that
belongs to the active diagnoser (qD ∈ Tact

D (QD, Σhybo)).

ic1 ic2

ic3 ic4

c1

c 2

c 3

q
D3

q
D6

q
D4

q
D1

q
D7 q

D8

q
D5

q
D2

Fig. 6.3 – The active diagnosis seen as a planning problem

6.4.1 Conditional planning algorithm

The mapping between the active diagnoser and the AND-OR graph is
described as follows :

– the state nodes (OR nodes) Sk of the graph correspond to the states
qDk of the active diagnoser (represented by squares in Figure 6.3)
in which sequences of controllable events are started (for example,
states qD1 , qD4 , qD5 , qD7 and qD8 of the active diagnoser shown in
Figure 6.3).

– actions ai ∈ 2Σc are the sequences of consecutive controllable events
starting in state nodes (for example, in Figure 6.3, a1 = [c1, c2] and
a2 = [c3]).

– the observation nodes Oj (AND nodes) of the graph (represented
by circles in Figure 6.3) correspond to the state qDj of the active
diagnoser in which the outgoing transitions are labeled with indu-
ced controllable events (for example, states qD3 and qD6 of the ac-
tive diagnoser shown in Figure 6.3). An observation ok outgoing an
observation node Oj corresponds to an induced controllable event
σick ∈ Σhybic and leads to a next state node (for example o1 = ic1
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and o2 = ic2 that are associated to the observation node O1 = qD3

as well as o3 = ic3 and o4 = ic4 that are associated to the observa-
tion node O2 = qD6 , in the active diagnoser shown in Figure 6.3).
We link in a pair (Sk, ok) the state node Sk with the observation
ok that corresponds to the induced controllable discrete event lea-
ding this state (for example (S1, o1) = (qD1 , ∅), (S2, o2) = (qD4 , ic1),
(S3, o3) = (qD5 , ic2), (S4, o4) = (qD7 , ic3) and (S5, o5) = (qD8 , ic4) in
the active diagnoser shown in Figure 6.34).

– target states of the graph correspond to certain states of the active
diagnoser. Let us assume that the active diagnosis session is star-
ted in a diagnoser state uncertain with respect to every fault Fij in
a set F = {Fi1 , Fi2 , ..., Fin}, i.e. Fi1-uncertain, Fi2-uncertain, ..., and Fin -
uncertain state. Then the set of target states is composed by Fi1 , Fi2 , ...,
and Fin certain states (i.e. F -certain states) and denoted ∆certain. This
set can be relaxed to a set of 2F certain states when the active diag-
nosis is not expected to achieve single fault diagnosis refinement.

– the initial state of the graph is a state node S1 that corresponds to an
uncertain state of the active diagnoser in which the active diagnosis
session is started.

Notice that in the active diagnoser shown in Figure 6.3 the state qD2 is nei-
ther an AND node, nor an OR node because it is preceded and followed
by a controllable event.
We define the SUCCESSORS function that for each pair (Sk, ok) of node
state and linked observation, associates an action a outgoing Sk and a
set of corresponding successor node states (and their associated observa-
tions) : ∪

k
{(Sk′ , ok′)}.

A modified MINIMAX algorithm is proposed for the AND-OR graph ex-
ploration (Algorithm 1). For conditional planning the minimax algorithm
is modified as follows. First MAX and MIN nodes become OR and AND
nodes. The plan needs to take some action at every state it reaches, but
must account for every observation after an action is taken (c.f. Russel and
Norvig (2003)). Second, the algorithm needs to return a conditional plan
rather than just a single action. At an OR node, the plan is just the action
selected, followed by whatever comes next. At an AND node, the plan is
a nested series of if-then-else steps specifying subplans for each possible
outcome, the tests in these steps being the associated state observations.
More details are provided in Russel and Norvig (2003).
The algorithm is a recursive depth-first algorithm, an important point is
that it deals with cycles, which often arise in non diagnosable system diag-
nosers. Indeed, when the current state is identical to a state on the path
from the root, then it returns failure. This does not mean that there is
no solution from the current state, but simply means that if there is one, it
must be reachable from the earlier instance of the current state, so the new
instance can be discarded. With this check, we ensure that the algorithm
always terminates (the state space that is a part of the active diagnoser is
finite) (c.f. Russel and Norvig (2003)).

4Notice that the observation associated to the starting state of the active diagnosis
session is the empty element.
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Algorithm 1 : AND-OR search algorithm for active diagnosis
FUNCTION AND-OR-GRAPH-SEARCH ( ) ;
returns a conditional plan, or failure ;
begin

OR-SEARCH((S0, ∅), [ ] )
end
FUNCTION OR-SEARCH ((S,o), path) ;
returns a conditional plan, or failure ;
begin

if S = certain-state then
return the-empty-plan

if S ∈ path then
return failure

foreach a, sate-observation-set ∈ SUCESSORS((S, o)) do
plan←− AND-SEARCH(sate-observation-set, [S|path]

if plan 6= f ailure then
return [a|plan]

return failure
end
FUNCTION AND-SEARCH (state-observation-set, path) ;
returns a conditional plan, or failure ;
begin

foreach (Si, oi) ∈ state-observation-set do
plani ←− OR-SEARCH((Si, oi), path)

if plani = failure then
return failure

return [if o1 then
plan1 ;
else if o2 then

plan2 ;
else if ... then

... ;
else if on−1 then

plann−1 ;
else

plann]

end
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6.4.2 Discussion

Algorithm 1 explores the AND-OR graph corresponding to the active
diagnoser and returns all controllable paths leading to certain states. Each
path is a conditional plan for the active diagnosis. A plan can be then
executed by the controller. Two types of plans can be distinguished :

Definition 6.4 Guaranteed plan
A conditional plan is said to be guaranteed if it guarantees to reach a certain
state of the active diagnoser from the starting uncertain state.

Indeed, a guaranteed plan anticipates all the possible resulting indu-
ced controllable events following an action included in the plan. In the
opposite, the plan is not guaranteed if it contains at least one action for
which at least one possible resulting induced controllable event is not an-
ticipated by the plan. When we execute a guaranteed plan, we have the
guaranty that the system will reach a target state (a certain state) because
all possible resulting situations after an action are taken into account.
In the contrary, when we execute an plan that is not guaranteed, the rea-
chability of a certain state is not guaranteed. After an action, if an induced
controllable event that is not anticipated occurs, the plan fails. When there
is no guaranteed plan, the system must be able to choose the best plan
among the non guaranteed plans. Costs as well as probabilities can be as-
sociated to the control actions in order to help with the decision. In this
case, the AND-OR graph exploration could be achieved by AO∗ type al-
gorithms based on heuristic search.

6.4.3 Diagnosability and active diagnosis

This section addresses the link between active diagnosis and diagnosabi-
lity.

Definition 6.5 Active diagnosability
The hybrid system is actively diagnosable if for any uncertain state of the diag-
noser a guaranteed plan exists in the active diagnoser which starts from the
uncertain state and leads to a certain state.

Definition 6.5 ensures that the system controller is able to bring the
diagnoser out of any uncertain state. This definition is different from the
diagnosability definition (c.f. Definition 5.7), in the sense that the defini-
tion of active diagnosability takes into account not only the observation
system, but also the system controller properties.
A relaxed definition of active diagnosability called non-guaranteed active
diagnosability is now proposed :

Definition 6.6 Non-guaranteed active diagnosability
The hybrid system is actively diagnosable if for any uncertain state of the diag-
noser there exists a plan (guaranteed or non guaranteed) in the active diagnoser,
which starts from this uncertain state and leads to a certain state.

In the following, we extend the definition of I-diagnosability from Sam-
path et al. (1995) recalled by Definition 3.5 to hybrid systems to establish a
link between I-diagnosability and active diagnosability of hybrid systems.
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First we define ΣI ⊆ Σo the set of indicator events. Then, for each fault
event f ∈ ΣF we associate a set of indicator events I f ( f ) ⊆ ΣI defined by
the indicator map I f : ΣF → 2ΣI .

Definition 6.7 I-diagnosability of hybrid systems
The hybrid system is I-diagnosable w.r.t I f if ∀ f ∈ ΣF, ∃n ∈ N such as :
∀sFt ∈ L(S), such that sF ends with the occurrence of f , and t ∈ L(S) is a
continuation of sF such that I f ( f ) ⊆ PΣI (t) :
||t|| ≥ n⇒ (∀ s ∈ L(S) : PΣhybo

(s) = PΣhybo
(sFt)⇒ f occurs in s),

where PΣhybo
is the projection operator on the set of observable events and PΣI is

the projection operator on the set of indicator events.

Sampath et al. (1995) proves that a fault f is non I-diagnosable if and
only if there exists an indeterminate cycle following the occurrence of the
associated indicator events included in I f ( f ).
Let us analyze how this can be interpreted in the active diagnosis context.
The a set of indicator events I f ( f ) associated to each fault f is now as-
sumed to be composed by controllable events belonging to any active
diagnosis plan (guaranteed or not) starting with an F-uncertain state and
ending with an F-certain state. Link between actively diagnosability and
I-diagnosability with respect to active diagnoser can is established.

Proposition 6.1 If the hybrid system is actively diagnosable(in a guaranteed or not guaranteed
way) then it is I-diagnosable with respect to I f (the reciprocal is not true 5).

Proof. If the hybrid system is actively-diagnosable, then the set of active
diagnosis plans returned by Algorithm 1 started from a any F-uncertain
state of the diagnoser is not empty.
Let us take I f ( f ) as the set of controllable events belonging to any active
diagnosis plan (guaranteed or not). The system is obviously I-diagnosable
w.r.t the map indicator I f .

6.5 Illustrative example

Let us consider a hybrid system consisting of three tanks of water, T1, T2
and T3. Valves V1 and V2 allow the flow to transfer between tanks. Valves

h1 h2

f1 f2

V2

f3

V1
h3

Fig. 6.4 – The three-tanks system

are controlled by discrete control inputs openV1 , openV2 , closeV1 and closeV2 .

5The reciprocal is not true because I-diagnosability does not account for the control-
lability of paths outgoing the concerned uncertain state, which is present in the active
diagnosis plans.
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The system is equipped with three level sensors that measure the level of
water in each tank. Hence, water levels h1, h2 and h3 are observable.
The discrete behavior of the system between nominal modes (no fault) is
described in Figure 6.5.
Every nominal mode models a configuration of the system as shown in

N1 N2

N3 N4

closeV1

openV1

closeV1

openV1

closeV2
openV2 closeV2

openV2

1

Fig. 6.5 – The mode automaton of the nominal behavior of the three tanks system

Table 6.1.
Fault events f1, f2 and f3 model leaks that may occur in tanks T1, T2

Nominal mode N1 N2 N3 N4
Valve V1 opened closed closed opened
Valve V2 opened opened closed closed

Tab. 6.1 – The system configuration in nominal modes

and T3, respectively. A fault event f j, 1 ≤ j ≤ 3 may occur in any nominal
mode N1, N2, N3 and N4 and leads to anticipated fault mode 1Fj, 2Fj, 3Fj
and 4Fj, respectively. This is shown in Figure 6.6.
The observable continuous behavior in every mode (nominal or faulty) is

1Fj 2Fj

4Fj 3Fj

Ni

iF1 iF2 iF3

closeV1

openV1

closeV1

openV1

closeV2
openV2 closeV2

openV2f2

f3f1

1

Fig. 6.6 – The anticipated fault modes of the three-tanks system

described by constraints linking observable variables given in Table 6.2.
Boolean consistency indicators (residuals) ri, i = 1..6, are associated to

every constraint and allow one to check the consistency between observa-
tions and system model (see Table 6.3).
For sake of clarity, shared constraints are considered only once in the

mode signatures of the system. Given [r1, r2, r3, r4, r5, r6] the vector of all
system residuals, the mode signature is computed on-line by evaluating
this vector using system observations. The mode theoretical signatures of
the system are given in Table 6.4.
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N1, N2, N3, N4 dh1
dt = 0, dh2

dt = 0, dh3
dt = 0

1F1, 1F2, 1F3 dh1
dt < 0, dh2

dt < 0, dh3
dt < 0

2F1, 3F1 dh1
dt < 0, dh2

dt = 0, dh3
dt = 0

2F2, 2F3 dh1
dt = 0, dh2

dt < 0, dh3
dt < 0

3F2 dh1
dt = 0, dh2

dt < 0, dh3
dt = 0

3F3, 4F3 dh1
dt = 0, dh2

dt = 0, dh3
dt < 0

4F1, 4F2 dh1
dt < 0, dh2

dt < 0, dh3
dt = 0

Tab. 6.2 – Set of continuous constraints in each operating mode

dh1
dt = 0⇔ r1 = 0 dh3

dt = 0⇔ r3 = 0 dh2
dt < 0⇔ r5 = 0

dh2
dt = 0⇔ r2 = 0 dh1

dt < 0⇔ r4 = 0 dh3
dt < 0⇔ r6 = 0

Tab. 6.3 – The consistency indicators

Let’s consider the case when any of the fault events f 1, f 2 or f 3 occur in

Sig(N1) = Sig(N2) = Sig(N3) = Sig(N4) =


0
0
0
1
1
1



Sig(2F1) = Sig(3F1) =


1
0
0
0
1
1

, Sig(2F2) = Sig(2F3) =


0
1
1
1
0
0



Sig(1F1) = Sig(1F2) = Sig(1F3) =


1
1
1
0
0
0

, Sig(3F2) =


0
1
0
1
0
1



Sig(3F3) = Sig(4F3) =


0
0
1
1
1
0

, Sig(4F1) = Sig(4F2) =


1
1
0
0
0
1



Tab. 6.4 – Mode Signatures of the three-tanks system

the nominal mode N1. The corresponding partial behavior automaton is
shown in Figure 6.7.
Events Ric

o1, R′ico1 , Ric
o2, R′ico2 , Ric

o3, R′ico3 , Ric
o4 and R′ico4 (c.f. Table 6.5) correspond

to the observable switches of the mode signature that follow the control
inputs. They belong to the set of induced controllable events Σhybic . Ro f
corresponds to the observable mode signature switch after the occurrence
of any of the fault events f 1, f 2 or f 3. As previously mentioned, non ob-
servable signature switches (ΣSig

uo ) are not considered.
The diagnoser of the three-tanks system is computed from the beha-

vior automaton. Let us focus on the part of the active diagnoser shown
in Figure 6.8. The occurrence of the fault event f 1, f 2 or f 3 is detected
by the observation of the observable event Ro f . The presence of the in-
determinate cycle [{({2F2, {F2}), (2F3, {F3})}, {({21F2, {F2}), (21F3, {F3})},
{({1F2, {F2}), (1F3, {F3})}, {({12F2, {F2}), (12F3, {F3})}] (cycle defined by
the red transitions in Figure 6.8) proves (c.f. Proposition 5.4 of Chapter 5)
that the language of the hybrid system is not diagnosable.
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N1

11F211F1 11F3

1F21F1 1F3

12F1 21F1 12F2 21F2 12F3 21F3

2F22F1 2F3

23F2 32F2 23F3 32F3

3F2 3F3

f2

f1 f3

RofRof Rof

closeV1
closeV1

closeV1R′ic
o1 R′ic

o2 R′ic
o3

Ric
o1 openV1

Ric
o2 openV1

Ric
o3 openV1

closeV2

Ric
o3 openV2

R′ic
o3

closeV2

Ric
o4 openV2

R′ic
o4

1

Fig. 6.7 – Part of the behavior automaton of the three-tanks system

The non diagnosability of the system language is due to the non diagno-
sability of faults f 2 and f 3 pointed out by the indeterminate cycle shown
in Figure 6.8. However, we show that performing active diagnosis allows
us to diagnose the system with certainty.
The active diagnosis consists in searching a conditional plan that per-
mits to leave the starting uncertain state of the diagnoser and reach
a certain state. These uncertain states may be crossed by indetermi-

Source mode Destination mode Associated event
N1 {1F1, 1F2, 1F3} Ro f
1F1 2F1 Ric

o1
{1F2, 1F3} {2F2, 2F3} Ric

o2
2F2 3F2 Ric

o3
2F3 3F3 Ric

o4
2F1 1F1 R′ico1

{2F2, 2F3} {1F2, 1F3} R′ico2
3F2 2F2 R′ico3
3F3 2F3 R′ico4

Tab. 6.5 – Observable events associated to mode signature changes

nate cycles (example : {({2F2, {F2}), (2F3, {F3})} ) or not (example :
{(1F1, {F1}), (1F2, {F2}), (1F3, {F3})}).
The active diagnoser of the three-tanks system is seen as a AND-OR graph
as explained in Section 6.4.1. From the uncertain state of the diagnoser the
active diagnosis plan is given by the MINIMAX algorithm. An active diag-
nosis plan defines a set of controllable paths from the uncertain state of
the diagnoser to certain states.
Given the system diagnoser, the occurrence of any fault event f 1, f 2 or
f 3 is detected by the observable events Ro f and puts the diagnoser in the
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uncertain state {(1F1, {F1}), (1F2, {F2}), (1F3, {F3})}. From this uncertain
state the active diagnosis plan is : [closeV1 , i f Ric

o2 closeV2 Else [ ] ].
Consequently, to perform active diagnosis, the controller sends the
discrete-control-input closeV1 , if the resulting observed induced control-
lable event is Ric

o2 (i.e. the diagnoser state is {(2F2, {F2}), (2F3, {F3})})
then it sends the control input closeV2 to discriminate between F2 and F3,
else, the resulting observed induced controllable event is Ric

o1 (i.e. the diag-
noser has reached the certain state {(2F1, {F1})} and the controller does
not send any more discrete control input.
Let us notice that the plan [closeV1 , i f Ric

o2 closeV2 Else [ ] ] is a guaranteed
plan, because after the action closeV1 (closeV2), the possible resulting indu-
ced controllable events Ric

o1 and Ric
o2 (Ric

o3 and Ric
o4) are anticipated by the

plan.
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Fig. 6.8 – The active diagnoser of the three-tanks system
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The spacecraft attitude describes its orientation compared to external re-
ference frames and is influenced by external disturbances (torques

exerted on the spacecraft). Therefore a control system is necessary for sys-

Fig. 7.1 – The Attitude Control System

tem stabilization, namely, the Attitude Control System (ACS) that controls
the satellite attitude in the presence of disturbances by pointing the axes of

91
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the spacecraft to the directions required for its mission (c.f. Figure 7.1). To
do this, the satellite attitude is determined using measurements incoming
from sensors and appropriate control torques that are exerted by actua-
tors. The reaction wheels make part of the inertial actuators. The principle
of the wheels is to create torques by accelerating or decelerating the rotor,
which produces a reaction torque directly applied to the platform. In this
thesis, our diagnosis approach is tested on a MATLAB/SIMULINK simu-
lator (Figure 7.2) of a satellite Attitude Control System whose actuators
are four reaction wheels. This case study was provided by Thales Alenia
Space, France.
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7.1 Presentation of the case study

7.1.1 Model description

Rotation Vector

S/R

2

Attitude

 Quaternion

1

rw_mf
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rw_rate_meas

rw_Trq_cmd

rw

Trq_cmd_rw

rw_rate (TAC)

sc_Hrw, sc_Trqrw

SC dynamics

Hrw_sc, Trq_sc

Qisc

rate

Torque order

1

Fig. 7.2 – The MATLAB/SIMULINK simulator of the ACS with reaction wheels

The MATLAB/SIMULINK simulator is composed by three boxes :
– the ”rw_m f ” box models the system controller that computes the

torque distribution on reaction wheels. This box takes as input the
torque setpoint to be exerted on the spacecraft, the rotation velo-
city of every wheel (closed loop) and returns as output the torque
setpoint for every reaction wheel.

– the ”rw” box is the model of the reaction wheels. It takes as input
the torque setpoint on every wheel. This setpoint is multiplied by
the scale factor of the motor to obtain the actual torque that will be
exerted by every wheel. Then, by subtracting viscous and Coulomb
friction and by multiplying by an appropriate matrix that models the
spatial configuration of wheel axes, the torque exerted by whole the
system on the spacecraft is obtained. The kinetic momentum of the
four reaction wheels is also obtained and returned as output of the
”rw” box by applying the kinetic momentum theorem on the wheels
system.

– the ”sc_dynamics” box models the dynamics of the spacecraft. It
takes as input the equivalent kinetic momentum (of the four wheels),
the equivalent torque exerted by the system rotors linked with reac-
tion wheels. Applying the kinetic momentum theorem to the space-
craft and changing reference frame, the rotation vector of the space-
craft is obtained. The attitude quaternion is then obtained from the
rotation vector doing some mathematical operations.

The system observable variables that are available for diagnosis are the
rotation vector measured by the gyroscope and the attitude quaternion
measured by the star tracker system. The rotation vector can be obtained
from the quaternion, this physical redundancy may be used to diagnose
sensor faults. For actuator faults detection, we use the rotation vector mea-
sure.

7.1.2 The spacecraft equations

To get the equations of the spacecraft dynamics, we apply the kinetic mo-
mentum theorem to the system {spacecraft+wheels} in the inertial frame
reference R :

d
dt /R

[~HG] =
d
dt /R

[~HGSpacecra f t + ~HGWheels] = ~MGFext (7.1)
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where :
– ~HG is the kinetic momentum at G which, is the gravity center of the

system
– ~HGSpacecra f t is the kinetic momentum of the spacecraft
– ~HGWheels is the kinetic momentum of the reaction wheels
– ~MGFext is the momentum of external forces exerted on the system.

Here, it is the equivalent torque applied by rotors linked with reac-
tion wheels denoted ~Trqsc

.
Let S denote the spacecraft reference frame (the reference frame linked to
the spacecraft) and ~ΩS/R the rotation vector of S compared to R.
The kinetic momentum of the spacecraft is ~HGSpacecra f t = IG.~ΩS/R where
IG is the inertia of the spacecraft.
By changing the reference frame from R to S we obtain :

d
dt /R

[~HGSpacecra f t] =
d
dt /S

[~HGSpacecra f t] + ~ΩS/R ∧ ~HGSpacecra f t

and
d
dt /R

[~HGWheels] =
d
dt /S

[~HGWheels] + ~ΩS/R ∧ ~HWheels

Therefore, the theorem of kinetic momuntum becomes :

d
dt /S

[~HGSpacecra f t] + ~ΩS/R ∧ ~HGSpacecra f t +
d
dt /S

[~HGWheels] + ~ΩS/R ∧ ~HWheels

= ~Trqsc
⇔

d
dt /S

[IG.~ΩS/R] + ~ΩS/R ∧ IG.~ΩS/R = ~Trqsc
− (

d
dt /S

[~HGWheels]

+ ~ΩS/R ∧ ~HWheels)⇔

d
dt /S

[IG.~ΩS/R] + ~ΩS/R ∧ IG.~ΩS/R = ~Trqsc
− ~Hrwsc (7.2)

where :

– ~Hrwsc = d
dt /S[~HGWheels] + ~ΩS/R ∧ ~HWheels represents the torque ex-

changed between the reaction wheels and the spacecraft.
– d

dt /S[~HGWheels] represents the torque applied to the spacecraft due
to the velocity variation of wheels. The wheel velocity must conti-
nuously increase to compensate a torque with non null average va-
lue. Since the wheel velocity is limited by the maximal velocity of its
motor, wheels have to be kept out of the saturation limite.

– ~ΩS/R ∧ ~HWheels represents the gyroscopic coupling due to the pre-
sence of wheels. This torque is low in the case of reaction wheels.

Let ~ΩS/R =

p
q
r

, ~Trqsc
=

Trqsc1

Trqsc2

Trqsc3

 and ~Hrwsc =

Hrwsc1

Hrwsc2

Hrwsc3


The spacecraft equation becomes :

IG.

 ṗ
q̇
ṙ

+

p
q
r

 ∧ IG.

p
q
r

 =

Trqsc1
− Hrwsc1

Trqsc2
− Hrwsc2

Trqsc3
− Hrwsc3

 (7.3)
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Numerically, in our case study the spacecraft inertia is IG =600 0 0
0 700 0
0 0 600


Developing Equation 7.3, we get :

ṗ = 1
6 q.r + 1

600 (Trqsc1
− Hrwsc1)

q̇ = 1
700 (Trqsc2

− Hrwsc2)
ṙ = −1

6 p.q + 1
600 (Trqsc3

− Hrwsc3)
(7.4)

The polynomial non linearity present in Equation 7.4 is modeled in a non
linear space state representation as follows :{

ẋ = f (x, u)
y = g(x, u) (7.5)

with u = [Hrwsc1 , Hrwsc2 , Hrwsc3 , Trqsc1
, Trqsc2

, Trqsc3
], x = [p, r, q]T and y = x

(i.e. g(x, u) = x). Therefore, residuals generation approach for non li-
near systems is required. In a general case, an extension of the parity
space approach to polynomial systems can be applied (c.f. Staroswiecki
and Comtet-Varga (2001a)). Here, since y = x, it is a degenerated case.
Analytic redundancy relations are directly given by the state evolution
equation. Notice, that Hrwsc i and Hrwsc i , i = 1..3 are not measured. They
will be expressed in terms of observable variables by trickily connecting
the spacecraft and actuator equations in Section 7.1.3.

7.1.3 Actuator (reaction wheels) equations

Let us define the following variables :
– Trwi is the torque exerted by the reaction wheel i
– Troti is the torque generated by the rotor associated to the wheel i
– Tcmdi is the torque setpoint for the reaction wheel i
– Tf rici is the viscous and the Coulomb friction torque exerted on the

wheel i
– Hrwi is the kinetic momentum of the wheel i
– αmi is the factor scale of the associated motor of the wheel i, when

no fault αm1 = αm2 = αm3 = αm4 = αm = 1.01
– i is the index of the wheel, i = 1..4
The torque exerted by a reaction wheel i is equal to the difference bet-

ween the torque exerted by the associated rotor and the friction (Coulomb
and viscous) torque.

Trwi = Troti − Tf rici
(7.6)

The torque exerted by the rotor of the wheel i is given as follows :

Troti = αmi × Tcmdi (7.7)

Now let us take into account the saturation phenomenon. The maximal
torque that can be provided by the motor associated to the wheel i is
Trotmax = 0.15 N.m.

Troti =

{
αmi × Tcmdi if |Tcmdi | ≤

Trotmax
αmi

sign(Tcmdi).Trotmax otherwise
(7.8)
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The actual torque exerted on the spacecraft by the rotation of all reaction
wheels is :

~Trqsc
= CT

as


Trw1
Trw2
Trw3
Trw4

 (7.9)

Where Cas =


0.7071 0.5000 0.5000
0.7071 0.5000 −0.5000
0.7071 −0.5000 −0.5000
0.7071 −0.5000 0.5000

 models the configuration of

the spin axes of the wheels in the space.
The theorem of kinetic momentum applied to the reaction wheel i gives :

dHrwi

dt
= −Trwi (7.10)

Equation 7.10 means that the derivative of the kinetic momentum of the
wheel i is equal to the torque exerted on the wheel. Since Trwi is the torque
is the torque exerted by the wheel i on the spacecraft, −Trwi is the torque
exerted by the spacecraft on the wheel i.
Now, let us take into account the saturation phenomenon on the kinetic
momentum. The maximal kinetic momentum of a wheel i is Hrwmax =
18 Kg.m2.s−1. It models the maximal velocity of the wheel. Consequently :

Hrwi =
{
−
∫

Trwi if | −
∫

Trwi | ≤ Hrwmax

sign(−
∫

Trwi).Hrwmax otherwise
(7.11)

The kinetic momentum of the four wheels ~Hrwsc exchanged with the spa-
cecraft is given by :

~Hrwsc = CT
as


Hrw1

Hrw2

Hrw3

Hrw4

 (7.12)

Friction equations

For a wheel i, i = 1..4 the friction torque is given by :

Tf rici = Tviscous_ f rici + TCoulomb_ f rici (7.13)

where :
Tviscous_ f rici

= fviscous.θ̇i (7.14)

TCoulomb_ f rici
= sign(θ̇i). fCoulomb (7.15)

Where :
– fviscous is the viscous friction coefficient, numerically fviscous =

0.27 10−4 N.m.s
– fCoulomb is the Coulomb friction coefficient, numerically fCoulomb =

0.005 N.m
– θ̇i = Hrwi

I denotes the rotation velocity of wheel i
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– I is the inertia of wheel i, numerically I = 0.1322 Kg.m2 (the four
wheels have the same inertia)

Hence, from 7.6 the torque exerted by a reaction wheel i is given by :

Trwi = Troti − fviscous
Hrwi

I
− sign(Ḣrwi) fCoulomb (7.16)

Non linearity modeling

The non linearities present in the model of wheels are saturations (Equa-
tions 7.8 and 7.11) and Coulomb friction (Equation 7.15). We have chosen
to model them with Piece-Wise-Affine (PWA) functions. In our diagnosis
model, each linear region is modeled by an additional operating mode.

7.2 The specification of the diagnosis problem

The diagnosis problem focus on actuator-faults. The attitude control of the
spacecraft is achieved by means of inertial actuators which are the four
reaction wheels. For each wheel i, Fi models a failure of the associated
motor i.e. the wheel does not rotate (the associated factor scale is αmi = 0).

7.3 Problem formalization in the hybrid modeling fra-
mework

The system is composed by 5 components : the spacecraft itself and the
four reaction wheels. Each component is modeled as a hybrid automaton.
The behavior of whole the system is seen as the synchronous product of
these component automata.

7.3.1 The spacecraft hybrid model

The spacecraft is modeled as a hybrid automaton A(S) that contains only
one mode modeling the nominal behavior described by Equations 7.4. This
component is assumed to be fault-free.

7.3.2 The reaction wheel hybrid model

Each reaction wheel is modeled as a hybrid automaton. Two types of
modes are distinguished : nominal and faulty modes. The underlying be-
havior of each mode is described by linear equations.

Model of the nominal behavior

For each reaction wheel i, each linear region is modeled as a different
configuration, leading to an operating mode at the level of the whole sys-
tem.

– The non linearity in Equation 7.8 is modeled by 3 configurations as
shown in Table 7.1.

– The non linearity in Equation 7.11 is modeled by 3 configurations as
shown in Table 7.2.
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Configuration Equation Condition
ai1 Troti = αmi × Tcmdi |Tcmdi | ≤

Trotmax
αmi

ai2 Troti = Trotmax Tcmdi > Trotmax
αmi

ai3 Troti = −Trotmax Tcmdi < − Trotmax
αmi

Tab. 7.1 – System configurations that model the torque saturation

Configuration Equation Condition
bi1 Hrwi = −

∫
Trwi | −

∫
Trwi | ≤ Hrwmax

bi2 Hrwi = Hrwmax −
∫

Trwi > Hrwmax

bi3 Hrwi = −Hrwmax −
∫

Trwi < Hrwmax

Tab. 7.2 – System configurations that model the momentum saturation

– The non linearity in Equation 7.15 is modeled by 2 configurations as
shown in Table 7.3.

Configuration Equation Condition
ci1 TCoulomb_ f rici

= fCoulomb sign(Hrwi) > 0
ci2 TCoulomb_ f rici

= − fCoulomb sign(Hrwi) < 0

Tab. 7.3 – System configurations that model the Coulomb friction

As an example, when the wheel i is in configuration ai1 bi1 ci1 Equations
7.16 and 7.11 become :

Trwi = αmi × Tcmdi − fviscous
Hrwi

I
− fCoulomb (7.17)

Hrwi = −
∫

Trwi (7.18)

respectively.
The number of configurations is : 3× 3× 2 = 18 that model the regions
of linear behavior of the system. A wheel i, i = 1..4 is in configuration :
aik bil cim , k = 1..3, l = 1..3 and m = 1..2. However, some configurations are
impossible because of physical considerations. Since Hrwi = I.θi, bi2 ⇒ ci1
and bi3 ⇒ ci2 . Then the number of nominal modes is 3 × 2 × 2 = 12.
The configuration conditions shown in Tables 7.1, 7.2 and 7.3 define the
nominal transition guards.
The hybrid automaton AN(wi) representing the nominal behavior of a
wheel i is given in Figure 7.3.

Model of the faulty behavior

We focus on actuator faults (F1, F2, F3 and F4) as described in Section 7.2.
We associate an unobservable fault event f j to each fault Fj that models
the transition between the nominal mode and the faulty mode. For sake of
simplicity, we only consider single faults (i.e. we do not consider the case
of two consecutive fault events). A fault event f j may occur in any nominal
mode qNi , i = 1..124 and leads to a faulty mode qNi Fj . The faulty behavior
of a wheel i is described by the hybrid automaton shown in Figure 7.4.
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Fig. 7.3 – The hybrid automaton AN(wi) that models the nominal behavior of wheel i
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Fig. 7.4 – The hybrid automaton AF(wi) that models the faulty behavior of wheel i
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The model of nominal and faulty behavior of a wheel

A wheel is composed by a flywheel that exchanges the kinetic momentum
Hrwi with the spacecraft and a motor that exerts the motor torque Troti .
The automata models of the flywheel and motor of wheel i are provided
in Figures 7.5 and 7.6 respectively. The whole automaton model of the
wheel i including nominal and fault modes can be obtained by composing
the flywheel and the motor automata.

θi = −θmax θi ≤ 0

θi = θmax θi ≥ 0

θi > −θmax

θi < −θmax

θi < θmax

θi > θmax

θi > 0θi < 0

1

Fig. 7.5 – The hybrid automaton model of the flywheel associated to wheel i
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Fig. 7.6 – The hybrid automaton model of the motor associated to wheel i

The diagnosis model of the system

The behavior of each wheel (both nominal and faulty) is modeled by a
hybrid automaton A(wi) that contains 4 + 12 = 16 operating modes and
obtained by combining AN(wi) and AF(wi). A(wi) can also obtained by
composing flywheel and motor automata : 16 = 4× 4.
The hybrid automaton of the whole system is A(System) =
A(w1)||A(w2)||A(w3)||A(w4)||A(S) that contains 164 × 1 = 65536 modes.
Since we assume the single fault assumption, modes that model multiple
faults are deleted. Then the number of all system modes is reduced to :
124 + 123 × 4× 4 = 48384 modes.
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7.4 Diagnosis scheme

7.4.1 Diagnosis of the underlying multimode system

Generation of residuals

First, we assume that the torque setpoint Tcmdi for each reaction
wheel i is measured i.e. that the controller ("rw_mf") output vector
[Tcmd1 , Tcmd2 , Tcmd3 , Tcmd4 ]

T (c.f. Section 7.1.1) is measured.
The connection between the spacecraft and the actuator equations (Equa-
tions 7.4 and 7.16, respectively) is achieved by means of equations 7.9 and
7.12.
Analytic redundancy relations for each system mode (nominal and faulty)
are obtained by merging spacecraft and actuator equations. Non obser-
vable variables (connection variables) are eliminated by manipulating
spacecraft and actuator equations.
By simulating the system w.r.t the scenario provided by THALES ALENIA
SPACE, we notice that it starts in the nominal mode qN1 corresponding
to the wheel configurations : a11b11c11.a21b21c22.a32b31c31.a41b41c42. In this
mode, the analytic redundancy relations are generated as follows :
Equations 7.16 becomes :

Trwi = αmi × Tcmdi − fviscous
Hrwi

I
− fCoulomb, for i = 1 (7.19)

Trwi = Trotmax − fviscous
Hrwi

I
− fCoulomb, for i = 3 (7.20)

Trwi = αmi × Tcmdi − fviscous
Hrwi

I
+ fCoulomb, for i = 2 and i = 4 (7.21)

and Equation 7.11 becomes :

Hrwi = −
∫

Trwi , for i = 1..4 (7.22)

We proceed as follows
Actuator Equations 7.19 (7.20, 7.21) and 7.22 give us :

– for i = 1 :{
Ḣrwi = − fviscous

I Hrwi + (αmi Tcmdi − fCoulomb)
Trwi = −Ḣrwi

(7.23)

– for i = 3 : {
Ḣrwi = − fviscous

I Hrwi + (Trotmax − fCoulomb)
Trwi = −Ḣrwi

(7.24)

– for i = 2 and i = 4 :{
Ḣrwi = − fviscous

I Hrwi + (αmi Tcmdi + fCoulomb)
Trwi = −Ḣrwi

(7.25)

Consequently :
– for i = 1 : {

Ḣrwi +
fviscous

I Hrwi = αmi Tcmdi − fCoulomb

Ṫrwi +
fviscous

I Trwi = −αmi Ṫcmdi

(7.26)
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– for i = 3 : {
Ḣrwi +

fviscous
I Hrwi = Trotmax − fCoulomb

Ṫrwi +
fviscous

I Trwi = 0
(7.27)

– for i = 2 and i = 4 :{
Ḣrwi +

fviscous
I Hrwi = αmi Tcmdi + fCoulomb

Ṫrwi +
fviscous

I Trwi = −αmi Ṫcmdi

(7.28)

Then, by replacing Equations 7.9 and 7.12 in Equation 7.4, we obtain :

ṗ = 1
6 q.r + 1

600 [0.7071(Trw1 − Hrw1) + 0.7071(Trw2 − Hrw2)+
0.7071(Trw3 − Hrw3) + 0.7071(Trw4 − Hrw4)]

q̇ = 1
700 [0.5(Trw1 − Hrw1) + 0.5(Trw2 − Hrw2)−

0.5(Trw3 − Hrw3)− 0.5(Trw4 − Hrw4)]
ṙ = −1

6 p.q + 1
600 [0.5(Trw1 − Hrw1)− 0.5(Trw2 − Hrw2)−

0.5(Trw3 − Hrw3) + 0.5(Trw4 − Hrw4)]
(7.29)

By derivating Equation 7.29, we obtain :

p̈ = 1
6 (q.ṙ + q̇.r) + 1

600 [0.7071(Ṫrw1 − Ḣrw1) + 0.7071(Ṫrw2 − Ḣrw2)+
0.7071(Ṫrw3 − Ḣrw3) + 0.7071(Ṫrw4 − Ḣrw4)]

q̈ = 1
700 [0.5(Ṫrw1 − Ḣrw1) + 0.5(Ṫrw2 − Ḣrw2)−

0.5(Ṫrw3 − Ḣrw3)− 0.5(Ṫrw4 − Ḣrw4)]
r̈ = −1

6 (p.q̇ + ṗ.q) + 1
600 [0.5(Ṫrw1 − Ḣrw1)− 0.5(Ṫrw2 − Ḣrw2)−

0.5(Ṫrw3 − Ḣrw3) + 0.5(Ṫrw4 − Ḣrw4)]
(7.30)

Finally, fviscous
I × 7.29 + 7.30⇔

fviscous
I ṗ + p̈ = fviscous

6.I q.r + 1
6 (q.ṙ + q̇.r) + 1

600 [0.7071(−αmi Ṫcmd1 − αmi Tcmd1

− fCoulomb) + 0.7071(−αmi Ṫcmd2 − αmi Tcmd2 + fCoulomb) + 0.7071(−Trotmax

− fCoulomb) + 0.7071(−αmi Ṫcmd4 − αmi Tcmd4 + fCoulomb)]

fviscous
I q̇ + q̈ = 1

700 [0.5(−αmi Ṫcmd1 − αmi Tcmd1 − fCoulomb) + 0.5(−αmi Ṫcmd2

−αmi Tcmd2 + fCoulomb)− 0.5(−Trotmax − fCoulomb)− 0.5(−αmi Ṫcmd4

−αmi Tcmd4 + fCoulomb))]

fviscous
I ṙ + r̈ = − fviscous

6.I p.q + −1
6 (p.q̇ + ṗ.q) + 1

600 [0.5(−αmi Ṫcmd1 − αmi Tcmd1

− fCoulomb)− 0.5(−αmi Ṫcmd2 − αmi Tcmd2 + fCoulomb)− 0.5(−Trotmax

− fCoulomb) + 0.5(−αmi Ṫcmd4 − αmi Tcmd4 + fCoulomb)]
(7.31)
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The analytic redundancy relations of mode qN1 (and their associated resi-
duals) are then given as follows :

ARRN11 : fviscous
I ṗ + p̈− fviscous

6.I q.r− 1
6 (q.ṙ + q̇.r) + 0.7071αm

600 [(Ṫcmd1 + Ṫcmd2

+Ṫcmd4) + (Tcmd1 + Tcmd2 + Trotmax
αm

+ Tcmd4)] = 0 (rN11)

ARRN12 : fviscous
I q̇ + q̈ + 0.5αm

700 [(Ṫcmd1 + Ṫcmd2 − Ṫcmd4) + (Tcmd1 + Tcmd2−
Trotmax

αm
− Tcmd4)] = 0 (rN12)

ARR3N13 : fviscous
I ṙ + r̈ + fviscous

6.I p.q + 1
6 (p.q̇ + ṗ.q) + 0.5αm

600 [(Ṫcmd1 − Ṫcmd2

+Ṫcmd4) + (Tcmd1 − Tcmd2 −
Trotmax

αm
+ Tcmd4)] = 0 (rN13)

(7.32)
The analytic redundancy relations in each mode are different. Hence, the
mode signatures are different, as a consequence the hybrid system is diag-
nosable w.r.t the CS sufficient condition (Theorem 5.2.2, Chapter 5) by
means of Corollary 5.1. In this case the diagnoser of the hybrid system is
simply obtained from the behavior automaton and contains 48348 states.

Towards an on-line analytic redundancy relation generation

To optimize the diagnosis scheme we avoid to build the automaton of
the hybrid system (the synchronous product). We keep the non lineari-
ties obtaining a generic analytic redundancy relations that contain satura-
tion functions. From a current mode we compute the possible destination
modes by considering component automata. In the worst case, the number
of possible destination modes is : 4× 5 = 20 modes (under the hypothesis
of asynchronous guard transition validation). For all these possible modes
we instantiate the generic analytic redundancy relations by replacing the
saturation functions by their corresponding instances w.r.t configurations
shown in Tables 7.1, 7.2 and 7.3. Hence, in the worst case, we instantiate
on-line 3 × 20 = 60 analytic redundancy relations. By checking on-line
the consistency of associated residuals we detect the mode change (this
is guaranteed by the diagnosability property of the system). Hence, the
system mode can be tracked on-line.

7.5 Simulation and results

The diagnosis module of the system is implemented in Matlab/Simulink
following the diagnosis scheme presented in Figure 4.7 of Chapter 4.

– the residual bench : let qN1F1 , qN1F2 , qN1F3 and qN1F4 model the fault
modes after the occurrence of fault events f1, f2, f3 and f4 in the
mode qN1 . The analytic redundancy relations of faulty modes qN1F1

and qN1F2 , qN1F3 and qN1F4 are computed as explained in Section 7.4.1
and provided by Equations 7.33, 7.34, 7.35 and 7.36, respectively. The
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sampling period is Ts = 10−4 s.

ARRN1F11 : fviscous
I ṗ + p̈− fviscous

6.I q.r− 1
6 (q.ṙ + q̇.r) + 0.7071αm

600 [(Ṫcmd2

+Ṫcmd4) + (Tcmd2 + Trotmax
αm

+ Tcmd4)] = 0 (rN1F11)

ARRN1F12 : fviscous
I q̇ + q̈ + 0.5αm

700 [(Ṫcmd2 − Ṫcmd4) + (Tcmd2−
Trotmax

αm
− Tcmd4)] = 0 (rN1F12)

ARRN1F13 : fviscous
I ṙ + r̈ + fviscous

6.I p.q + 1
6 (p.q̇ + ṗ.q) + 0.5αm

600 [(−Ṫcmd2

+Ṫcmd4) + (−Tcmd2 −
Trotmax

αm
+ Tcmd4)] = 0 (rN1F13)

(7.33)

ARRN1F21 : fviscous
I ṗ + p̈− fviscous

6.I q.r− 1
6 (q.ṙ + q̇.r) + 0.7071αm

600 [(Ṫcmd1

+Ṫcmd4) + (Tcmd1 + Trotmax
αm

+ Tcmd4)] = 0 (rN1F21)

ARRN1F22 : fviscous
I q̇ + q̈ + 0.5αm

700 [(Ṫcmd1 − Ṫcmd4) + (Tcmd1−
Trotmax

αm
− Tcmd4)] = 0 (rN1F22)

ARRN1F23 : fviscous
I ṙ + r̈ + fviscous

6.I p.q + 1
6 (p.q̇ + ṗ.q) + 0.5αm

600 [(Ṫcmd1

+Ṫcmd4) + (Tcmd1 −
Trotmax

αm
+ Tcmd4)] = 0 (rN1F23)

(7.34)

ARRN1F31 : fviscous
I ṗ + p̈− fviscous

6.I q.r− 1
6 (q.ṙ + q̇.r) + 0.7071αm

600 [(Ṫcmd1

+Ṫcmd2 + Ṫcmd4) + (Tcmd1 + Tcmd2 + Tcmd4)] = 0 (rN1F31)

ARRrN1F32 : fviscous
I q̇ + q̈ + 0.5αm

700 [(Ṫcmd1 + Ṫcmd2 − Ṫcmd4) + (Tcmd1

+Tcmd2 − Tcmd4)] = 0 (rN1F32)

ARRrN1F33 : fviscous
I ṙ + r̈ + fviscous

6.I p.q + 1
6 (p.q̇ + ṗ.q) + 0.5αm

600 [(Ṫcmd1

−Ṫcmd2 + Ṫcmd4) + (Tcmd1 − Tcmd2 + Tcmd4)] = 0 (rN1F33)
(7.35)

ARRN1F41 : fviscous
I ṗ + p̈− fviscous

6.I q.r− 1
6 (q.ṙ + q̇.r) + 0.7071αm

600 [(Ṫcmd1

+Ṫcmd2) + (Tcmd1 + Tcmd2 + Trotmax
αm

)] = 0 (rN1F41)

ARRN1F42 : fviscous
I q̇ + q̈ + 0.5αm

700 [(Ṫcmd1 + Ṫcmd2) + (Tcmd1 + Tcmd2

− Trotmax
αm

] = 0 (rN1F42)

ARRN1F43 : fviscous
I ṙ + r̈ + fviscous

6.I p.q + 1
6 (p.q̇ + ṗ.q) + 0.5αm

600 [(Ṫcmd1

−Ṫcmd2) + (Tcmd1 − Tcmd2 −
Trotmax

αm
)] = 0 (rN1F43)

(7.36)
Let qN2 denote the nominal mode that corresponds to the wheel
configurations a11b11c11.a21b21c22.a31b31c31.a41b41c42 and qN2F1 the cor-
responding destination mode after the occurrence of fault event f1.
These analytic redundancy relations are given by Equations 7.37 and
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7.38.

ARRN21 : fviscous
I ṗ + p̈− fviscous

6.I q.r− 1
6 (q.ṙ + q̇.r) + 0.7071αm

600 [(Ṫcmd1

+Ṫcmd2 + Ṫcmd3 + Ṫcmd4) + (Tcmd1 + Tcmd2 + Tcmd3 + Tcmd4)] = 0
(rN21)

ARRN22 : fviscous
I q̇ + q̈ + 0.5αm

700 [(Ṫcmd1 + Ṫcmd2 − Ṫcmd3 − Ṫcmd4)
+(Tcmd1 + Tcmd2 − Tcmd3 − Tcmd4)] = 0
(rN22)

ARR3N23 : fviscous
I ṙ + r̈ + fviscous

6.I p.q + 1
6 (p.q̇ + ṗ.q) + 0.5αm

600 [(Ṫcmd1

−Ṫcmd2 − Ṫcmd3 + Ṫcmd4) + (Tcmd1 − Tcmd2 − Tcmd3 + Tcmd4)] = 0
(rN23)

(7.37)

ARRN2F11 : fviscous
I ṗ + p̈− fviscous

6.I q.r− 1
6 (q.ṙ + q̇.r) + 0.7071αm

600 [Ṫcmd2

+Ṫcmd3 + Ṫcmd4) + (Tcmd2 + Tcmd3 + Tcmd4)] = 0 (rN2F11)

ARRN2F12 : fviscous
I q̇ + q̈ + 0.5αm

700 [(Ṫcmd2 − Ṫcmd3 − Ṫcmd4) + Tcmd2

−Tcmd3 − Tcmd4)] = 0 (rN2F12)

ARR3N2F13 : fviscous
I ṙ + r̈ + fviscous

6.I p.q + 1
6 (p.q̇ + ṗ.q) + 0.5αm

600 [(−
Ṫcmd2 − Ṫcmd3 + Ṫcmd4) + (−Tcmd2 − Tcmd3 + Tcmd4)] = 0 (rN2F13)

(7.38)
– The residual filter : the residual computation involves variables of

order magnitude 10−5. The threshold is set as follows : Threshold =
5. 10−10. To compute the residuals, we require the derivatives of p, q
and r at orders 1 and 2. Hence, the filter sensitivity TFilter must be
higher than 3.Ts. Furthermore, transitions to (or from) saturation
modes are slow, hence we require time to detect them, Tf ilter is 0.01s.

– the hybrid diagnoser : part of the diagnoser is implemented to run
the scenarios presented below. The diagnoser returns the number of
estimated system mode. The mapping between system modes and
associated numbers can be found in Table 7.4.

Three scenarios are considered to illustrate our approach. Unfortunately,
it was not possible to exhibit a scenario for active diagnosis due to the
diagnosability of the considered system.

7.5.1 Scenario 1

The system starts in the nominal mode qN1 . At t = 14.05s the system mode
changes autonomously from qN1 to mode qN2 .

qN1

Trot3 <0.15 at t=14.05s
−−−−−−−−−−−−→ qN2

Simulation time = 40s

Figure 7.7 shows the evolution of non observable variables : the motor
torque Troti , the kinetic momentum Hrwi and the rotation velocity θi, of
each wheel i. The simulation duration is 40 s. We notice that the motor
torque Trot3 of wheel 3 is equal to Trotmax = 0.15 N.m until t = 14.05 s.
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Fig. 7.7 – Scenario 1 : non observables variables

Then at t = 14.05 s Trot3 leaves the saturation region.
The residuals of modes qN1 and qN2 are computed from the observable
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Fig. 7.8 – Scenario 1 : residuals of mode qN1

variables (and their derivatives) as shown in Figures 7.8 and 7.9, respecti-
vely. Figure 7.10 provides the mode estimate and the observable variables :
Tcmdi , i = 1..4 and ~ΩS/R. Notice the mapping between residual values and
the mode estimate. The mapping between system configuration and mode
estimate can also be verified by comparing Figure 7.7 and Figure 7.10.
The time of the autonomous mode change is detected by the diagnosis
module. Notice that the detection of mode transitions into flywheel satu-



7.5. Simulation and results 107

0 5 10 15 20 25 30 35 40
0

0.5

1

time (s)

r N2
1 (r

ad
/s

2 )

0 5 10 15 20 25 30 35 40
0

0.5

1

time (s)

r N2
2 (r

ad
/s

2 )

0 5 10 15 20 25 30 35 40
0

0.5

1

time (s)

r N2
3 (r

ad
/s

2 )

Fig. 7.9 – Scenario 1 : residuals of mode qN2
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Fig. 7.10 – Scenario 1 : mode estimation from observable variables
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ration modes is required to perform the wheel desaturation by activating
thrusters for example (or other types of actuators).

7.5.2 Scenario 2

Now faults are injected to test the diagnosis module. Table 7.4 provides
the discrete events issued from the abstraction of continuous dynamics
required for scenario 2 (and 3). Scenario 2 considers the case in which the

Source mode Destination mode Associated event
qN1 (1) qN1F1 (2) RoN1F1

qN1 (1) qN1F2 (3) RoN1F2

qN1 (1) qN1F3 (4) RoN1F3

qN1 (1) qN1F4 (5) RoN1F4

qN2 (6) qN2F1 (7) RoN2F1

qN1F1 (2) qN2F1 (7) RoN1 N2F1

Tab. 7.4 – Observable events issued from the abstraction of continuous dynamics

system suffers the fault F1, then transitions autonomously from qN1F1 to
qN2F1 .

qN1

f1 at t=5s−−−−−→ qN1F1

Trot3 <0.15 N.m at t = 15.7s
−−−−−−−−−−−−−−−−−→ qN2F1

simulation time = 40s

Figure 7.11 shows the evolution of non observable variables : the motor
torque Troti , the kinetic momentum Hrwi and the rotation velocity θi of
each reaction wheel.
Figures 7.12, 7.13 and 7.14 show the evolution of filtered residuals of
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Fig. 7.11 – Scenario 2 : non observables variables
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modes qN1 , qN1F1 and qN2F1 during the simulation time.
At time t = 5, 01s residuals [rN11, rN12, rN13] of mode qN1 change
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Fig. 7.12 – Scenario 2 : residuals of mode qN1
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Fig. 7.13 – Scenario 2 : residuals of mode qN1F1

their values from 0 to 1, and residuals [rN1F11, rN1F12, rN1F13] of mode
qN1F1 change their values from 1 to 0. Then, at t = 15.7s residuals
[rN1F11, rN1F12, rN1F13] of mode qN1F1 change their values from 0 to 1 and
residuals [rN2F11, rN2F12, rN2F13] of modes qN2F1 change their values from 1
to 0. The time of the autonomous transition is detected by the diagnosis
module.
The mode estimate and the observable variables are provided in Figure
7.15. Notice the mapping between the faulty mode transition shown in
Figure 7.15 and the variation of rotation velocity (kinetic momentum) of



110 chapter 7. The Attitude Control System (ACS) with Reaction Wheels

0 5 10 15 20 25 30 35 40
0

0.5

1

time (s)

r N2
F1

1 (r
ad

/s
2 )

0 5 10 15 20 25 30 35 40
0

0.5

1

time (s)

r N2
F1

2 (r
ad

/s
2 )

0 5 10 15 20 25 30 35 40
0

0.5

1

time (s)

r N2
F1

3 (r
ad

/s
2 )

Fig. 7.14 – Scenario 2 : residuals of mode qN2F1
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Fig. 7.15 – Scenario 2 : mode estimation from observable variables
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wheel 1 : θ̇1 (Hrw1) shown in Figure 7.11. In the fault mode qN2F1, the failure
of motor 1 translates into a deceleration of the wheel 1 down to 0 and an
immediate cancellation of the motor torque Trot1 as shown by Figure 7.11.
The transition from the fault mode qN1F1 to the fault mode qN2F1 shown
in Figure 7.15 is confirmed by Figure 7.11, in which the torque Trot3 leaves
the saturation region to the linear region.

7.5.3 Scenario 3

Scenario 3 considers the case in which the fault F1 occurs after the auto-
nomous mode change.

qN1

Trot3 <0.15 N.m at t=14.05 s
−−−−−−−−−−−−−−−→ qN2

f1 at t=25s−−−−−−→ qN2F1

simulation time = 40s

The system switches autonomously from qN1 to qN2 at time t = 14.05 s,
then suffers the fault F1 at time t = 25 s. The evolution of non observable
variables is provided in Figure 7.16. The residuals of concerned modes are
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Fig. 7.16 – Scenario 3 : non observables variables

computed from observable variables and provided in Figures 7.17, 7.18

and 7.19. The mode estimate and the observable variables are provided
in Figure 7.20. Let us notice the mapping between the faulty mode tran-
sition shown in Figure 7.20 and the variation of rotation velocity (kinetic
momentum) of wheel 1 : θ̇1 (Hrw1) shown in Figure 7.16.

In conclusion, we notice that the occurrence of the fault F1 is detec-
ted in the nominal mode N1 (scenario 2) as well as in the nominal mode
N2 (scenario 3). The diagnosis module tracks successfully transitions
between nominal modes as well as transitions from nominal to fault
modes.
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Fig. 7.17 – Scenario 3 : residuals of mode qN1
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Fig. 7.18 – Scenario 3 : residuals of mode qN2
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Fig. 7.19 – Scenario 3 : residuals of mode qN2F1
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Conclusion and Perspectives

This thesis addresses several aspects related to diagnosis in the fra-
mework of hybrid systems. The pursued goal is to provide a diagnosis
method enhanced with an active diagnosis strategy that permits to disam-
biguate the output of the (passive) diagnosis module when it is not redu-
ced to one only diagnosis hypothesis. The active diagnosis method relies
on the diagnosability properties of the system. This is why a significant
part of the work has been devoted to the characterization of diagnosabi-
lity in the chosen hybrid modeling framework. This issue is quite novel
and has been investigated by very few works. The same is true for the
active diagnosis approach. We hence believe that the proposed methods
are a valuable step forwards the analysis of diagnosability and diagnosis
of hybrid systems and that they constitute a significant set of new results.
The main contributions can be listed as follows :

– a hybrid modeling framework in which the behavior of the hybrid
system is seen as the contribution of two underlying systems, a
continuous multimode system – for which the transition function
between modes is not constrained – and a discrete-event system.
The behavioral representation is expressed by a hybrid automaton
in which the discrete states correspond to the different behavioral
modes of the system and every mode has a set of associated alge-
braic differential equations that represent its continuous behavior.
The modeling framework supporting the work is quite appropriate
for large systems. Considering operational modes allows one to de-
cide how to organize the behavioral models and their dynamics. It
offers the flexibility to represent non linear dynamics or to use pie-
cewise linear models.

– a passive diagnosis approach that combines methods rooted in the
artificial intelligence and the control fields. On the multimode sys-
tem side, it is based on the definition of mode signatures, which rely
on defining a set of residuals for each mode of the system. For this
purpose, the parity space approach is extended to multimode sys-
tems. But the method does not presume of a specific method to gene-
rate the residuals and any other method could be used, as illustrated
in our case study (cf. Chapter 7). The key idea of our hybrid diagno-
sis approach is then to abstract the mode signature changes in terms
of a set of observable discrete events. These events are then consi-
dered together with the pure discrete events to define the alphabet
of the language of the hybrid system. We define this language as
well as the corresponding finite state generator called the behavior
automaton. The diagnoser approach is then applied to the behavior
automaton to perform on-line diagnosis.

– a definition for the diagnosability the underlying continuous mul-

115



116 Conclusion and Perspectives

timode system and a method for its analysis. The new concepts of
mirror signature, reflexive signature, and mode signature are defined.
The diagnosability of the multimode system can be achieved by the
defined mutual diagnosability or 3rd diagnosability. The necessary and
sufficient criterion for multimode systems diagnosability is stated
and proved, extending the work by Cocquempot et al. (2004).

– the characterization of the diagnosability of the hybrid system based
on the language of the hybrid system. Two sufficient conditions for
hybrid diagnosability are provided in terms of the the underlying
multimode system on one hand and the underlying discrete system
on the other hand. Finally, the necessary and sufficient criterion is
given.

– an active diagnosis method, which is guided by the diagnosability
properties of the hybrid system. This method considerable enhances
the passive diagnosis approach, by allowing to disambiguate the
diagnosis results when necessary. A new finite state machine called
the active diagnoser is defined based on the new concepts of control-
lable events, induced controllable events and controllable paths. It is em-
bedded in the diagnoser and defines the sets of states whose uncer-
tainty can be reduced. The active diagnosis problem is formalized as
a conditional planning problem and consists on exciting the hybrid
system by applying active diagnosis control, observing the dyna-
mic response (continuous or event-based) of the hybrid system and
then deciding about the next sequence of actions. A mapping bet-
ween the active diagnoser and an AND-OR graph is established. An
active diagnosis plan is a controllable path in the AND-OR graph,
starting from an ambiguous state and leading to a certain state. An
algorithm is proposed to explore the AND-OR graph and returns ac-
tive diagnosis plans. These plans can be guaranteed or not and lead
to the new definitions of active diagnosability and non guaranteed ac-
tive diagnosability. This new notions are compared to I-diagnosability
introduced by Sampath et al. (1995). Diagnosability of the hybrid
system w.r.t active diagnosis is also discussed.

– a demonstration of our approach on the attitude control system of a
satellite, whose actuators are assumed to be composed of four reac-
tion wheels. Thales Alenia Space provided a MATLAB/Simulink si-
mulator for this case study. It was our job to derive all the mathe-
matical equations from spatial mechanics and to organize them in a
comprehensive framework to form a hybrid model. The continuous
models associated to the different modes are generally non linear
and the models were manipulated in order to generate appropriate
residuals using an original and non standard method. Three applica-
tion scenarios have been tested, providing good results and showing
the relevance of our approach.

The proposed method remains very generic in the sense that it provides
a general framework in which the procedures can be instantiated by dif-
ferent methods. For example, the residual generation procedure that has
been illustrated with a parity space method in the thesis and with a speci-
fic method in the spatial attitude control system case study can be imple-
mented by any other specific method for generating residuals. The same
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is true for the event-based diagnoser method, that could be replaced by
the twin plants method for instance Pencolé (2004). The active diagnosis
approach is fully integrated in the diagnoser approach and significantly
enhances the whole approach. It is quite generic as well, given that the for-
malization as a conditional planning problem permits to call for different
planning methods.
The perspectives of this work can be foreseen in several directions. Some
of them are in the short term and directly follow the achieved work. Others
are openings that can be seen as wider undertakings.
Section 4.4 in Chapter 4 is an illustration of how the parity-based mode es-
timator could be coupled with filter-based Hybrid mode Estimator (HME)
enhancing the hybrid state estimation. This is certainly a direction to go,
particularly for pursuing and completing the active diagnosis method. In-
deed, at the moment, the plan is given in terms of discrete actions and
transitions. However, some of the transitions may be supported by guards
involving continuous variables. Triggering such transitions hence means
being able to apply the appropriate continuous control input that would
drive the system to satisfy the guard. Hence, the continuous state variable
estimation is required and the coupling with the HME is justified.
The connection that has been drawn between active diagnosability and
I-diagnosability as defined by Sampath et al. (1995) is another interesting
link. It would be another immediate work to consolidate this link and
extend diagnosability to account for actions. The proposed framework fol-
lows a centralized approach that may result computationally inadequate.
However, let us notice that the modeling is based on a hybrid automaton
for which the discrete states correspond to the operational modes of the
system. This approach is hence far from blowing up like standard discrete-
event approaches in which the states of the automaton represent low level
states of the system, defined with respect to behavioral variable changes.
Now, an improvement at the modeling level would certainly be to use
concurrent or communicating hybrid automata, each one representing the
behavior of one component of the system. In this case, it would be inter-
esting to devise the decentralized versions of the proposed methods.
Diagnosis as well as diagnosability analysis are based on mode signatures
at the continuous level but then abstract their dynamics in terms of a
specific set of discrete events. These discrete events are then considered
together with the pure discrete events in the behavior automaton of the
hybrid system. The framework then falls back into a discrete-event frame-
work for which discrete-event methods are used, namely the diagnoser.
Another interesting direction would be to use a unified signature frame-
work as defined by Pucel (2008). Yet an interesting idea would be to define
a new concept of hybrid signature, that would allow us to avoid the event
abstraction phase and to work directly with the original hybrid automa-
ton.
In conclusion, the framework proposed for active diagnosis promises to be
very valuable. It is an interesting piece of theoretical work and provides
very important perspectives from the application point of view.
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A.1 Determining the parity space order

As mentioned before, the underlying continuous model associated to
every operating mode qi is represented in the state space as follows :{

Xi(n + 1) = AiXi(n) + BiU(n) + Exi ε(n)
Y(n) = CiXi(n) + DiU(n) + Eyi ε(n)

with :
– Xi(n) : the state vector at time step nTs.
– U(n) : the input vector at time step nTs.
– Y(n) : the output vector at time step nTs.
– ε(n) : the noise vector at the time step nTs.

Ts is the sampling period ; Ai, Bi, Ci, Di, Exi and Eyi are constant matrices
of appropriate dimensions.
Let consider the matrix Opi

i is defined by :

Opi
i =


Ci

Ci Ai
...

Ci A
pi
i


To compute analytic redundancy relations using the parity space ap-
proach we need to determine a matrix Ωpi

i orthogonal to Opi
i .

Ωpi
i .Opi

i = 0⇔ (Opi
i )T.(Ωpi

i )T = 0
Since Opi

i contains m× (p + 1) rows and n columns, we have :
m× (pi + 1) = dim(kernel((Opi

i )T)) + rank((Opi
i )T)⇔

m× (pi + 1) = dim(kernel((Opi
i )T)) + rank((Opi

i ))
The existence of Ωpi

i is guaranteed when dim(kernel((Opi
i )T)) ≥ 1. In the

other hand, we have rank((Opi
i )) ≤ n. Thus, in the worst case when we

have rank((Opi
i )) = n, there exists an integer pi such that (pi + 1)×m ≥ n.

Consequently, there always exists an order pi such that Ωpi
i is orthogonal

to Opi
i . In practice, we take to smallest order pi such that guarantees this.

We can distinguish two cases :

A.1.1 Static Redundancy

When the the number of outputs m is bigger than the rank of C (the num-
ber of independent rows of C). This case models the ideal case when we
have enough sensors to directly observe the state of the system. Conse-
quently, we only need inputs and outputs at sampling time n.Ts to obtain
analytic redundancy relations and the order of the parity space is equal to
0. We say that we have static redundancy.

A.1.2 Dynamic Redundancy

When the number of outputs m is less (or equal) than the rank of C. It
models the most general case. In this case the order of the parity space
is at least equal to 1. It means that a temporal windows of is needed to
observe inputs/outputs at sampling times n, n − 1, ..., n − p. We say that
we have dynamic redundancy. In our MATLAB/SIMULINK program, we
compute the smallest p such that analytic redundancy relations exist. In-
deed, the length of the observation windows has a direct implications on
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the mode estimation delay. Nevertheless, the use of a bigger value (a non
optimal value) of the parity space order (equal to the system order) can be
useful and allows us to have more analytic redundancy relations that can
improve the mutual diagnosability between system modes.
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A.2 HYDIAG Softaware : Class Diagram

HYDIAG is a software developed in the context of this thesis for hybrid
systems diagnosis. It takes as parameters :

Automaton
nb_modes: int
nb_transitions: int
initial_state: string
incidence_matrix: matrix<int>
mode_vector: vector <string>
transition_vector: vector <string>
Automaton(string: file_name)
~Automaton()
get_nb_modes(): int
get_nb_transitions() :int
get_initial_state() :string
get_incidence_matrix() :matrix<int>
get_mode_vector() :vector <string>
get_transition_vector():vector <string>

ResGenerator
nb_residuals: int
U_size: int
Y_size:int
ComputForm_U:matrix<double>
ComputForm_Y:matrix<double>
signature_matrix:matrix<int>
set_automaton()
get_nb_residuals():int
get_U_size():int
get_Y_size():int
get_signature_matrix():matrix<int>
get_ComputForm_U():matrix<double>
get_ComputForm_Y():matrix<double>
ResidualComputation(M_u, M_y: matrix<double>):matrix<double>
SignComputation(_U:matrix<double>, _Y: matrix<double>, T:double):matrix<int> 
ColumnExtraction(int Column_n): matrix<int>
SignIdentification(obs_sign_vect: matrix<int>): string
ResSwitchGenerate(sig_cur, sig_obs: string): string

HybDiagnoser

HybDiagnoser(string: file_name)
~HybDiagnoser()
NextState(string _current_state, string _event): string
set_automaton(): void

Simulator
SamplingTimeNumber: int
T_Filter: int
Threshold: double
FileIN: string
FileOUT: string
FileMUL: string
Simulator(In, Out, Hd, Mul: string, T: double, T: int)
~Simulator()
Simul()

OutputWriter
output_file: string
OutputWriter(file_name :string)
~OutputWriter()

InputReader
U: matrix<double>
Y: matrix<double>
cmd: string
U_size: int
Y_size: int
CMD_size: int
simulation_time: float
sampling_period: float
file_in: ifstream
input_file: string
InputReader(string: file_name)
~InputReader()
Parameter_Setting()
U_Y_cmd_Read()
get_U_size(): int
get_Y_size(): int
get_CMD_size(): int
get_U(): matrix<double>
get_Y(): matrix<double>
get_cmd(): string
get_simulation_time(): float
get_sampling_period(): float

Fig. A.1 – The UML Class diagram of HYDIAG software developed in C++

– the structure of the hybrid diagnoser built from the behavior au-
tomaton (using DIADES from Pencolé (2006)) included in a file
"_NAME.hd".

– the matrix modeling computation and evaluation forms of the ana-
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lytic redundancy relations associated to operating modes included
in a file "_NAME.mul".

The input file : "_NAME.in" contains the input/output and the observable
discrete events at each sampling time. The simulation parameters (the
sampling period, the simulation time, the size of continuous input/output
vectors and observable discrete events) are specified in the beginning of
this file. The simulator returns the mode estimate at each sampling time
in the output file "_NAME.out". The software architecture is provided in
Figure A.1.
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Notations

ACS Attitude Control System
AFD Active Fault Control
ARR Analytic Redundancy Relation
CS Continuous Systems
DES Discrete Event Systems
FDI Fault Detection and Isolation
FDIR Fault Detection and Isolation and Reconfiguration/Recovery
HME Hybrid Mode Estimator
MBD Model Based Diagnosis
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Active Diagnosis of Hybrid Systems Guided by
Diagnosability Properties

Application to Autonomous Satellites

Abstract : Motivated by the requirements of the space domain in terms of
on-board diagnosis and autonomy, this thesis addresses the problems of
diagnosis, diagnosability and active diagnosis of hybrid systems. Suppor-
ted by a hybrid modeling framework, a passive approach for model-based
diagnosis mixing discrete-event and continuous techniques is proposed.
The same hybrid model is used to define the diagnosability property for
hybrid systems and diagnosability criteria are derived.
When the diagnosis provided by the passive diagnosis approach is ambi-
guous, active diagnosis is needed. This work provides a method for per-
forming such active diagnosis. Starting with an ambiguous belief state,
the method calls for diagnosability analysis results to determine a new
system configuration in which fault candidates can be discriminated. Ba-
sed on a new finite state machine called the diagnoser, the active diagnosis
is formulated as a conditional planning problem and an AND-OR graph
exploration algorithm is proposed to determine active diagnosis plans.
Finally, the diagnosis approach is tested on the Attitude Control System
(ACS) of a satellite simulator provided by Thales Alenia Space. The diag-
nosis module is successfully tested on several fault scenarios and the ob-
tained results are reported.
Keywords : Hybrid Systems, Model-Based Diagnosis, Fault detection and
Isolation, Parity Space Approach, Diagnoser, Diagnosability, Active Diag-
nosis, Autonomous satellites, Attitude Control System.
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Diagnostic Actif pour les Systèmes Hybrides Guidé
par les Propriétés de Diagnosticabilité

Application aux Satellites Autonomes

Résumé : Motivée par les besoins du domaine spatial en termes de diag-
nostic embarqué et d’autonomie, cette thèse s’intéresse aux problèmes de
diagnostic, de diagnosticabilité et de diagnostic actif des systèmes hy-
brides. Un formalisme hybride est proposé pour représenter les deux dy-
namiques, continues et discrètes, du système. En s’appuyant sur ce mo-
dèle, une approche de diagnostic passif est proposée en mariant les tech-
niques des systèmes à événements discrets et des systèmes continus. Un
cadre formel pour la diagnosticabilité des systèmes hybrides a également
été établi proposant des définitions et des critères pour la diagnosticabilité
hybride.
Suite à un diagnostic passif ambigu, le diagnostic actif est nécessaire afin
de désambiguïser l’état du système. Cette thèse propose donc une ap-
proche de diagnostic actif, qui partant d’un état de croyance incertain,
fait appel aux propriétés de diagnosticabilité du système pour détermi-
ner la configuration où les fautes peuvent être discriminées. Une nouvelle
machine à états finis appelée diagnostiqueur actif est introduite permet-
tant de formaliser le diagnostic actif comme un problème de planification
conditionnelle. Un algorithme d’exploration de graphes ET-OU est pro-
posé pour calculer les plans de diagnostic actif. Finalement, l’approche de
diagnostic a été testée sur le Système de Contrôle d’Attitude (SCA) d’un
satellite de Thales Alenia Space. Le module de diagnostic a été intégré
dans la boucle fermée de commande. Des scénarios de faute ont été testés
donnant des résultats très satisfaisants.
Mots Clés : Systèmes Hybrides, Diagnostic à base de Modèles, Détection
et Isolation de Fautes, Espace de Parité, diagnostiqueur, Diagnostic Actif,
Satellites Autonomes, Système de Contrôle d’Attitude.
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