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Université Bourgogne Franche-Comté
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Abstract:
The cooperative automation of connected and
autonomous vehicles (CAVs) has great potential
to address a number of safety, mobility, and
sustainability issues of our current transportation
systems. One key aspect of this innovation lies
in cooperative longitudinal motion control, which
has been a focal point of extensive research.
This dissertation studies how to reduce the energy
consumption of vehicles by making high-level driving
decisions of different type vehicles. The first part
of this dissertation considers the problem of eco-
driving for Plug-in Hybrid Electric Buses (PHEBs), a
spatial PHEB velocity optimization formulation with
communication to traffic information is proposed to
minimize the energy consumption or travel time,
the simulation results validate the energy savings
or time savings of the proposed velocity planning
strategy. The second part addresses the problem

of traffic environment randomness at signalized
intersections. A Stochastic Eco-Driving System
(S-EDS) is proposed for Hybrid electric Vehicle
(HEV) to minimize the energy cost of individual
HEV. The performance of the proposed system is
evaluated through many cases that were built with
an applied S-EDS in traffic simulation environment
SUMO (Simulation of Urban MObility). The final
statistical results of simulation groups proved the
effectiveness of the stochastic eco-driving system
in fuel economy. The third part presents a data-
driven trajectory planning strategy for Connected
and Automated Vehicles (CAVs), which can ensure
probabilistic collision avoidance and improve the fuel
economy along signalized corridors, the results from
the numerical simulation using the NGSIM (Next
Generation SIMulation) data set show the proposed
method’s efficacy in improving the fuel economy.

Titre : Optimal Traffic Control: Cooperative Eco-driving Strategies at Signalized Intersection

Mots-clés : Stratégie d’éco-conduite, carrefour à feux, gestion de l’énergie, transport intelligent,
consommation d’énergie
Résumé :
L’automatisation coopérative des véhicules
connectés et autonomes (VCA) présente un
potentiel considérable pour résoudre divers
problèmes liés à la sécurité, la mobilité et la
durabilité de nos systèmes de transport actuels. Un
aspect essentiel de cette innovation concerne le
contrôle coopératif du mouvement longitudinal, qui
a été l’objet d’une recherche approfondie. Cette
thèse étude comment réduire la consommation
d’énergie des véhicules en prenant des décisions
de conduite de haut niveau pour différents types
de véhicules. La première partie de cette thèse
considère le problème de l’éco-conduite pour les
bus électriques hybrides rechargeables (PHEB),
une formulation d’optimisation de la vitesse spatiale
modèle avec communication aux informations de
trafic est proposée pour minimiser la consommation
d’énergie ou le temps de déplacement. Les
résultats de simulation valident les économies
d’énergie ou de temps de la stratégie de planification
de la vitesse proposée. La deuxième partie
aborde le problème en considérant le caractère

aléatoire de l’environnement de circulation aux
intersections signalisées, Un système d’éco-
conduite stochastique (S-EDS) est proposé pour
les véhicules électriques hybrides (HEV) afin de
minimiser le coût énergétique. La performance du
système proposé est évaluée à travers de nombreux
cas construits dans un environnement de simulation
de trafic SUMO (Simulation of Urban MObility) avec
S-EDS appliqué. Les résultats statistiques finaux
des groupes de simulation prouvent l’efficacité du
système d’éco-conduite stochastique en termes
d’économie de carburant. La troisième partie
présente une stratégie de planification de trajectoire
basée sur les données pour les véhicules connectés
et automatisés (CAV), qui peut assurer l’évitement
probabiliste des collisions et améliorer l’économie
de carburant le long des couloirs signalisés,
les résultats de la simulation numérique utilisant
l’ensemble de données NGSIM (Next Generation
SIMulation) montrent l’efficacité de la méthode
proposée pour améliorer l’économie de carburant.
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GENERAL INTRODUCTION

Urban cities have been focusing on energy shortages and environmental issues in recent
years. The transportation sector, which accounts for nearly three-quarters of the total
petroleum consumption, is the most energy-consuming system. According to reports
[118], energy consumption in the U.S. transportation sector accounted for approximately
28% of total U.S. energy use in 2021. Moreover, the International Energy Agency (IEA)
states that the transportation sector, which has the highest reliance on fossil fuels, con-
tributed to 37% of CO2 emissions from end-use sectors during the same year, causing the
share of transportation in global energy-related carbon dioxide emissions to increase by
two percentage points, reaching 26% [57]. It is evident that the majority of our daily energy
consumption is attributed to our movements. In response to reducing energy consump-
tion and emissions related to transportation, scholars and researchers have proposed
many approaches which can be summarized based on two technical aspects.

The first aspect is to use alternative energy sources as much as possible to replace
traditional fossil fuels, such as the promotion of new energy taxis, buses, subways, pas-
senger cars, and trains; the so-called new energy sources are obtained from renewable
resources like hydrogen, solar, and wind. With these new energy sources, new power-
train types have been created for the purpose of using electricity that comes from these
renewable energy sources. For instance, Hybrid Electric Vehicles (HEVs) and Pure Elec-
tric Vehicles (PEVs) have been developed, which offer better fuel efficiency compared to
traditional Internal Combustion Engine (ICE) vehicles. However, even though we surmise
the widespread adoption of PEVs and HEVs could alleviate energy shortages, charging
infrastructure limitations and range anxiety are major obstacles to their large-scale rollout.
While, unlike PEVs, HEVs are formed by adding additional energy sources and storage
systems, which offer a temporary solution to the above two issues under existing con-
ditions. Therefore, they are a suitable choice during the transition period before moving
to large-scale PEVs. Such a trend is also reflected in the market share performance as
Fig.1 shows. The market share of HEVs has increased significantly, capturing 3.2% of
the light vehicle market in 2013 and 5.5% in 2021. PHEVs sales began in 2011, and their
market share has grown every year. As of 2021, PEVs accounted for 3.2% of the light
vehicle market. Consequently, the Energy Management System (EMS) of these vehicles
has become an increasingly important issue.

In order to better understand the following reviewed EMS solutions, Fig.2 illustrates the
structural differences between the three types of three Electrical Vehicles (EVs). In the
case of a Hybrid Electrical Vehicle (HEV), both an engine (ICE) and an electric drive
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Figure 1: Sales illustration of HEV/PHEV on the US market [118]

power the drivetrain. The electric motor’s battery is charged by regenerative braking and a
generator connected to the ICE, allowing for the use of smaller engines and improving fuel
efficiency. And for a Plug-in HEV (PHEV), the battery is charged not only by regenerative
braking and the generator but also by an external electric power source. Finally, a Pure
EV (PEV) is solely powered by its battery, which is charged using an outside electric
power source.

Figure 2: Basic structure of different EV types. (a) HEV (b) PHEV(c) PEV

Meanwhile, the second aspect focuses on novel driving techniques that prioritize environ-
mental sustainability in transportation systems, such as Ecological Driving (Eco-Driving)
strategies. The concept of Eco-driving involves optimizing and regulating the speed of
vehicles based on various factors such as the route information and surrounding envi-
ronment, such as speed limits, locations of stop signs, and Signal Phase and Timing
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(SPaT) information provided by the Intelligent Transportation System (ITS) technology.
More details, such as the use of Connected Vehicles (CVs) can lead to enhanced road
safety, smoother traffic flow, and energy conservation through Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) communication. V2V enables vehicles equipped with
communication technology to exchange information, thereby preventing collisions and
enabling coordinated movement. On the other hand, V2I enables vehicles to communi-
cate with roadside units and infrastructure, such as traffic signals, which allows for better
coordination between them. The transportation system has evolved with the integration
of smart and connected technologies, as shown in Fig.3, not only for vehicles but also
for the road network, which has become smarter with the deployment of intelligent traffic
infrastructures and sensors.

Figure 3: Schematic of ITS technology

Therefore, with the rapid development of intelligent transportation systems (ITS) and the
increasing emphasis on sustainable mobility, connected hybrid electric vehicles (HEVs)
and plug-in hybrid electric vehicles (PHEVs) have emerged as crucial components in
the global effort to reduce emissions, improve energy efficiency, and achieve sustainable
transportation. The integration of advanced energy management systems (EMS) and
eco-driving strategies in connected HEV/PHEVs has the potential to address these chal-
lenges by optimizing single-vehicle and transportation system performance. The choice
of this topic is motivated by the growing demand for effective solutions that can harness
the benefits of connected vehicle technologies and cooperative systems to enhance the
performance of HEV/PHEVs in diverse traffic conditions. The importance of this topic
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lies in its potential to provide valuable insights for researchers, policymakers, and prac-
titioners, guiding the development of innovative EMS and eco-driving strategies that can
maximize fuel economy, reduce emissions, and improve traffic flow.

PLAN OF THE THESIS

In this thesis, there are total five chapters as follows.

Chapter 1 introduces definition and main difference between HEV, PHEV, and PEV in
terms of their operation, as well as state-of-the-art about existing EMS for HEV/PHEV,
eco-driving strategies for CAV, and cooperative optimization of EMS and eco-driving
strategies for CAHEV. Then conclude the review part and point out our contribution in
this study.

Chapter 2 presented a velocity planning strategy for PHEBs focused on energy and time
savings. Firstly mathematical model is established for the PHEB, its components, and
traffic signals, then the velocity planning problem is formulated using a DP framework.
To simplify the computation, we proposed a 2D-DP method that uses optimal SOC from
empirical data. Our simulation utilized the optimal SOC curve from the energy manage-
ment system without velocity optimization as a substitute for empirical data. We solved
sub-problems as time-discrete nonlinear optimization problems using DP and treated the
velocity planning problem as a deterministic spatial-discrete nonlinear optimization prob-
lem. The simulation results showed a 3.98% energy reduction and a 4.84% time saving.
Despite its limitations, such as assuming deterministic intersection and bus-stop informa-
tion and potential inaccuracies in energy distribution ratios, the strategy can serve as a
precursor for online EMS to reduce energy consumption.

Chapter 3 proposed a stochastic eco-driving system for power-split HEVs, featuring co-
optimization of vehicle dynamics and hybrid powertrain operations. The system consists
of a stochastic eco-driving decision subsystem and a hybrid powertrain control decision
subsystem. The upper-level decision subsystem utilizes a dual-driven approach to sug-
gest optimal set speeds or predict trajectories, while the hybrid powertrain control sub-
system employs a rule-based strategy to optimize energy consumption at intersections.
Simulations in SUMO traffic environment demonstrate energy reductions of 6.49% and
4.17% compared to groups without the system. The system’s independence from full
traffic infrastructure connectivity is a major advantage, as universal connectivity is costly
and unlikely in the near future. Data- and model-driven optimization shows promise for
future traffic data and intelligent transportation systems. Although real traffic data was
not used, our method can be easily extended to various traffic environments and multiple
intersections.

Chapter 4 developed a data-driven trajectory planning strategy for connected vehicles,
addressing uncertainty in shared information. We first reviewed the Gaussian sampling-
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based method for handling chance constraints in trajectory planning. Inspired by this, we
developed a strategy that solves the optimal control problem by transforming the chance
constraint into a deterministic equivalent interval for each time step, using a Gaussian
Process Regression prediction model. We evaluated our approach using the Next Gen-
eration SIMulation (NGSIM) dataset, simulating various scenarios and examining vehicle
trajectory and fuel consumption performance under different probability values. The re-
sults demonstrated improvements in fuel economy, validating the effectiveness of our
strategy. Future research could involve extending this approach to longer routes with
more signalized intersections, further refining the method and potentially achieving even
greater efficiency improvements in complex traffic situations.

Chapter 5 concludes the whole thesis and discussed potential research directions and
opportunities in this field.





1
INTRODUCTION OF EMS,

ECO-DRIVING AND CO-OPTIMIZATION

1.1/ ARCHITECTURE OF HEVS/PHEVS

To fully understand the potential of HEV/PHEVs as an approach for sustainable trans-
portation, it is important to examine the architecture of HEV/PHEVs and EMS that govern
their performance. EMS is the core determinant of HEV/PHEV performance and is closely
linked to the vehicles’ architecture. Thus we will provide a comprehensive overview high-
lighting the key components that make up these vehicles and their respective roles in the
energy management process.

Generally, the structure of HEVs/PHEVs offers additional flexibility to optimize their engine
operation regions compared with ICE vehicles, as the latter can only adjust their engine
speed to regulate their torque in response to a driver’s power demand. Then the key
characteristics of HEV/PHEVs which are different from the ICE vehicles, are listed as
follows [102],

• Recover the regenerative braking energy as much as possible

• Reduce the idling energy cost by turning off the engine

• Achieve an optimal distribution of power among various power sources

• Reduce the size of the ICE while ensuring that the vehicle’s maximum requirements
are still met

• Tend to be more complex and costly as they necessitate additional controllers

• Have a weight that is 10-30% greater than that of ICE vehicles

Anyway, as depicted in Fig.2, a motor assists the engine to operate in a higher efficiency
area in an HEV/PHEV, which is able to achieve better fuel efficiency. To accomplish this,
HEVs/PHEVs need to determine how to distribute power among various power sources

13
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(e.g., the engine and battery) in response to varying driving conditions. Typically, there are
three types of HEV powertrains, which are also utilized in PHEVs except that PHEVs have
a charging port that allows the battery to be charged directly from the grid. The three types
are series hybrid, parallel hybrid, and combined(series-parallel) hybrid respectively [4]. In
a series hybrid powertrain system, a motor/generator set is powered by the engine to drive
the vehicle; In a parallel hybrid system, either use the battery with a motor/generator set
or the engine to drive the vehicle according to the torque demand; In a combined hybrid
system, vehicles has the ability to operate as a series or parallel hybridization.

SERIES HYBRID

Specifically, the IC engine acts as an Auxiliary Power Unit (APU) and thus extends the
range of a purely electric vehicle in a series hybrid drive system, as shown in Fig.1.1.
One of the advantages of this configuration is that the IC Engine can be employed at
a point where efficiency and emissions are at their highest levels because it is not de-
pendent on the mechanical requirements of the vehicle in this form. Furthermore, the
loss brought on by the gears or clutch is reduced by the lack of a mechanical connection
between the vehicle and the IC Engine, and using the Electric Motor enables the con-
tinued use of regenerative braking. Nevertheless, this configuration requires IC Engine,
Electric Generator, and Electric Motor and the added weight could offset the benefits de-
scribed earlier. Based on these characteristics, series HEV/PHEVs are more suitable for
low-speed operating conditions in urban areas and not for highway driving conditions.

Figure 1.1: Series Hybrid Configuration

PARALLEL HYBRID

In a parallel hybrid drive system, both the IC Engine and Electric Motor operate simultane-
ously. As illustrated in Fig.1.2, compared to the series hybrid system, the parallel config-
uration requires only the IC Engine and Electric Motor, eliminating the Electric Generator
and reducing the total weight and complexity. Furthermore, the auxiliary power effect of
the electric motor enables a reduction in the power of the IC Engine and battery capacity.
Additionally, because the IC Engine remains mechanically connected to the drive system,
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the energy utilization of the engine in the parallel hybrid system is relatively high, resulting
in higher fuel efficiency than in the series hybrid drive system. However, the IC Engine’s
operating conditions are influenced by the driving conditions, and frequent changes in
driving conditions can cause the engine to operate inefficiently, resulting in increased
emissions compared with the series type. Therefore, the parallel hybrid system is better
to match the operating conditions where the car is driven steadily at medium and high
speeds and is most suitable for driving on intercity roads and highways.

Figure 1.2: Parallel Hybrid Configuration

COMBINED HYBRID

The combined hybrid system (Fig.1.3) combines the characteristics of the series and
parallel hybrid systems, compared to the series hybrid system, it incorporates additional
transmission routes for mechanical power, while compared to the parallel hybrid system,
it introduces more transmission routes for electric power. The combined hybrid system
gains flexibility by dividing the power between the motor and the generator and this com-
plex configuration generally makes it more costly and difficult to control. But the advan-
tages of this combined hybrid system are also obvious, on the one hand, it can be applied
to a variety of vehicle operating conditions, and the vehicle’s economy and emissions can
be guaranteed whether on the inter-city arterial road or on the highway, on the other hand,
this system is suitable for all size of vehicles.

In the subsequent study, different types of hybrid type were selected for different scenarios
according to their characteristics. After having examined the architecture of HEV/PHEVs,
we can now turn our attention to the Energy Management Strategies (EMSs) that are
commonly used in HEV/PHEVs, as well as the key factors that influence their design and
optimization. By examining the EMS in detail, we can gain a deeper understanding of
how these strategies are developed and optimized to ensure maximum efficiency and
performance in various driving conditions.
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Figure 1.3: Combined Hybrid Configuration

1.2/ LITERTURE REVIEWS

1.2.1/ ENERGY MANAGEMENT STRATEGY FOR HEV/PHEVS

EMS is critical as it determines the allocation and flow of energy between the power-
train components and energy storage system. By optimizing the EMS, HEV/PHEVs can
achieve higher efficiency and better performance in a wide range of driving conditions.
In this section, we will examine the different types of EMS that are commonly used for
HEV/PHEVs. Through a detailed analysis of EMS, we aim to provide a comprehensive
understanding of the key principles and strategies that underlie the design and optimiza-
tion of HEV/PHEVs.

The presence of two power sources in HEVs/PHEVs allows for the regulation of energy
allocation to achieve greater environmental friendliness. Normally, the energy manage-
ment problem of hybrid power is formulated as the following [119],

min
x,u

J(x, u)

s.t. G(x) ≤ 0
(1.1)

where x ∈ X denotes the state variables of the hybrid system, such as vehicle distance,
speed, State of Charge (SOC), fuel consumption, etc. The control variable u ∈ U is usually
defined as the ratio of power or torque demand. The constraint conditions G(x) represent
limitations on power or velocity, torque, and the final value of SOC. The objective function
J can be defined to minimize fuel consumption, and exhaust emissions, delay battery
aging, or maintain vehicle mobility or combinations of these objectives.

Based on the above formulation, numerous efforts have been made to develop more ef-
ficient powertrain systems and Energy Management Strategies (EMSs) for HEV/PHEVs.
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Fig.1.4 illustrates the related classification of strategies based on the approach adopted.

Figure 1.4: Classification of HEV/PHEVs Control Strategies, source:[47]

1.2.1.1/ RULE-BASED EMS

Rule-based control strategies are usually extracted from the existing control experience to
meet the characteristics of each component, belonging to the class of real-time strategy.
The main research directions can be divided into two categories, the first category is
based on a deterministic logic threshold, the earliest as in literature [16], the researchers
divided the operation of PHEV into Charging Depleting (CD) and Charging Sustaining
(CS) mode by setting SOC threshold value, the other is using fuzzy logic, like [2, 37].
Rule-based EMSs have shown promising results since the early 2000s, but they are not
guaranteed to be optimal since they are based only on instantaneous outputs. In fact,
these rules are determined by the car manufacturer using standard speed profiles that do
not always accurately represent real-world conditions.

1.2.1.2/ OPTIMIZATION-BASED EMS

The optimization-based strategies are derived from optimization theory, specifically opti-
mal control theory. And the solution to this Optimal Control Problem (OCP) can be divided
into two main classes: those that attempt to compute a local solution in real-time, usually
online, and those that compute a global solution, typically offline [63, 61].
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REAL-TIME OPTIMIZATION

The real-time strategies aim to determine the allocation of power sources at each time
step while simultaneously minimizing the cost function (e.g., fuel economy, power, emis-
sions). This class of strategy has been widely developed in recent years due to its relative
ease of implementation. It can be subdivided as follows:

• Pontryagin’s Maximum Principle (PMP), which is the main method in optimal control
theory, obtains the optimal control variable by solving the extreme values of the
Hamilton function at each moment. It is easy to be implemented in order to find the
optimal control, see in [22, 93].

• Equivalent Consumption Minimization (ECM) is developed by calculating the total
fuel consumption as the sum of the fuel used by the ICE and equivalent fuel con-
sumption for the electric motor. This unifies the electric power and combustion
power [5]. It is also a form of PMP that is proven to yield the maximum fuel econ-
omy under certain conditions [18]. An adaptive method [74] has been developed
based on ECM, which refreshes the equivalent factor while taking into account driv-
ing conditions. The equivalent consumption is calculated in real-time as a function
of the current system output. This method enables the system to work without any
information about future driving conditions [48].

• Model Predictive Control (MPC) is an advanced method of process control that is
used to control a process while satisfying a set of constraints. In the context of
EMS for HEV/PHEV, it is a strategy that combines online system parameter up-
dates with optimal control to predict future velocities and optimize fuel consumption
based on them. A typical example can be found in [25], where the authors formu-
lated the energy management problem of combined HEV as a nonlinear optimal
control problem with constraints. Two different cost functions were defined and the
MPC strategy was used to determine the power split between the IC Engine and
electrical machines at each sample time. Results showed significant improvement
in fuel economy with compared to those of an available controller in the commercial
Powertrain System Analysis Toolkit (PSAT) software. For more reviews of MPC-
based EMS, please refer to [66].

• Machine learning in recent years is a popular and useful technique for address-
ing various problems in many research fields, including as an EMS method for
HEV/PHEVs. It has great potential to improve the computation process and adapt-
ability. The applications of machine learning to energy management can be gener-
ally classified into two categories [100]. The first involves using a single algorithm,
such as reinforcement learning algorithms [52, 95], to derive the energy manage-
ment policy. The second category involves combining other information or algo-
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rithms with machine learning methods, such as predictive algorithms, trip informa-
tion, and MPC [21, 32, 33, 38].

• Metaheuristic algorithms are a type of computational intelligence paradigms that
are especially useful for solving complex optimization problems with large search
space of likely solutions [81]. They use general methods that can be applied to
different types of optimization problems, without relying on specific knowledge, and
aim to find near-optimal solutions within a reasonable amount of computation time.
They are often used in engineering, science, and business to solve a wide range
of optimization problems, including those encountered in HEV/PHEV EMSs. The
most commonly used metaheuristic algorithms in HEV/PHEVs EMSs are Simulated
Annealing(SA), Genetic Algorithm(GA), and Particle Swarm Optimization (PSO)
[13, 9, 15], these algorithms do not require derivative calculations but harness alter-
native methods to populate candidates for the optimal solution. This solution search
depends on certain parameters that facilitate getting rid of local minima, although
convergence to global optima cannot be generally ensured [61].

GLOBAL OPTIMIZATION

The concept of Dynamic Programming (DP) is essential in developing strategies to find
an optimal global solution. DP applies Bellman’s optimality principle and solves complex
problems by breaking them into simpler subproblems. Normally, Deterministic Dynamic
Programming (DDP) has been used to obtain a theoretical lower bound for consumption
on specific speed profiles [10]. but it has a curse of dimensionality where the computa-
tional cost increases exponentially with the number of state and control variables, making
it limited to small systems and difficult to use in real-time. Some works have proposed
dimension reduction techniques for the state or control space to overcome this limitation
[12, 11]. Additionally, future trips information can be considered in the EMS formula-
tion in order to minimize the total trip fuel consumption, which can be described as a
mixed-integer linear programming problem[49], or using a stochastic control (Stochastic
Dynamic Programming) framework [6, 14].

In conclusion, EMS is a crucial aspect for HEV/PHEV, playing a vital role in achieving their
energy efficiency and reducing their environmental impact. The various optimization tech-
niques offer a range of options for designing EMS that meet the specific requirements of
different HEV/PHEV applications. Furthermore, the integration of eco-driving strategies
with EMS can result in improvement in more aspects, such as significant fuel savings,
increased safety, and driving comfort. In order to fully understand the complex integra-
tion technique, we will explore the various eco-driving strategies that are not limited by
HEV/PHEV first in the next section.
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1.2.2/ ECO-DRIVING STRATEGY FOR CONNECTED VEHICLES

As mentioned before, Eco-driving is a relatively low-cost and immediate approach to re-
duce fuel consumption and emissions significantly [86], as the driver plays a major role
in determining vehicle performance. Meanwhile, eco-driving has various definitions and
scopes in the literature, for example, the authors in [35] defined it as vehicle purchase and
post-purchase decisions, and in [75], the authors pointed out that eco-driving behavior in-
cluding driving, cabin comfort, trip planning, load management, fuelling, and maintenance
six classes, the driving behavior is further divided into acceleration/deceleration, cruise,
idling and driving mode selection and parking. However, In the following context, eco-
driving is narrowed to the driving behaviors or the control a driver has over the vehicle
during a journey that can influence fuel consumption and emissions. The typical research
methods used to study eco-driving technology include laboratory testing, on-road experi-
ments, and numerical modeling.

LABORATORY TESTING

There are various methods to measure different driving styles, including the use of a
chassis dynamometer, engine dynamometer, or driving simulator. Engine dynamometer
testing requires following specific procedures set out in regulations for the testing of the
engine and exhaust after-treatment system [127]. Similarly, the chassis dynamometer
requires standard operation by the operator. These kinds of dynamometers are located
in the laboratory and designed to meet regulatory standards. The testing results from the
laboratory dynamometer are highly precise and reliable, and influencing factors such as
test cycles, road resistance, and climate conditions can be fully controlled. In addition, a
driving simulator is also commonly used to study driving behaviors, comprising a fixed-
base car mock-up equipped with a steering wheel, acceleration, and brake pedals and
indicators, with road scenarios displayed on a screen. The driver will operate the driving
simulator according to the virtual traffic environment. The primary advantage of driving
simulators offers a safe and effective way to examine various factors that impact driver
performance [56].

ON-ROAD EXPERIMENTS

On-road experiments provide valuable data for evaluating the actual driver performance
with the eco-driving strategy, they are generally less accurate and repeatable than lab-
oratory testing. Due to the absence of standard testing cycles, on-road experiments
are highly affected by uncertainties in traffic conditions, driver behaviors, and transient
operation[39]. And the commonly used on-road research methods for eco-driving include
Portable Emissions Measurement Systems (PEMS), data loggers, odometer reading and
fuel use, and surveys [86].
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NUMERICAL MODELLING

Numerical modeling is a commonly used tool to evaluate the performance of new eco-
driving and eco-routing algorithms, the reason why it becomes popular is that allows
researchers to study the effectiveness of new eco-driving strategies or algorithms without
conducting field experiments, saving greatly in both research time and cost. Meanwhile,
the limitation is that results are generally less accurate and reliable than those of labora-
tory testing and on-road experiments.

Anyway, if novel eco-driving strategies are proposed, two significant scenarios are
typically considered: freeways [41, 60], and signalized intersection on urban roads
[24, 84, 94, 98]. Since the first scenario is beyond the scope of this thesis, we will fo-
cus on investigating the literature on the second scenario. There are a variety of existing
dynamic eco-driving models that differ in their conceptual design, problem solution formu-
lation (including mathematical formulation, interacting modules, input space, and more),
and the energy and traffic models used to translate the eco-driving service to energy
and vehicle dynamics [104]. In the early models of dynamic eco-driving, the fuel-optimal
speed trajectory is estimated and advised using the equipped vehicle’s dynamic status,
location information, and SPaT data. For instance, Mandava et.al [17] proposed arte-
rial velocity planning, which aimed to maximize the probability of encountering a green
light when approaching a signalized intersection. Building on this concept, Barth. et.
al [24] developed the model further to estimate energy-efficient (de)acceleration profiles
based on remaining green/red time and distance between the vehicle and intersection.
However, despite the aforementioned models considering similar inputs for fuel-optimal
speed profile estimation, they used different methodologies to process inputs, and all their
assumptions were based on the absence of other surrounding traffic interference.

Next, to account for the impact of other surrounding traffic factors, the concept design
of the eco-driving strategy was adjusted to consider queue discharge information and
the status of the preceding vehicle. So in order to implement the advice speed in actual
complex traffic conditions, the authors [20] proposed the Predictive Cruise Control (PCC)
model, which minimized travel time under both free-flow and stop-and-go traffic conditions
while providing energy-efficient (de)acceleration strategies. In addition to traffic signal
and preceding vehicle factors, Queue Length Estimation (QLE) techniques, which are
based on commonly installed induction loop sensor systems, help the predictive speed
assistance system to show fuel savings of 8–11% [28]. Similar research can be found in
[34, 44, 54].

Although V2I technology has made it easier to obtain real-time SPaT information on sig-
nalized intersections with pre-timed signal control, the use of accurate future SPaT in-
formation is challenging in practice due to time drift in pre-timed traffic signals and fluc-
tuations in the traffic environment. To address this challenge, probabilistic signal timing
information has been designed based on real-time SPaT data and historically averaged
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timing data per signal status [31]. For instance, Green Light Optimized Speed Advisory
(GLOSA) has been enabled for fully and semi-adaptive traffic lights using empirical sig-
nal and detector data as a solution developed from a traffic signal control perspective
[43]. And from another perspective of the transportation system, vehicle control, the
eco-driving problem for CAVs has been formulated as a data-driven chance-constrained
robust optimization problem, and DP has been employed to solve the optimization prob-
lem in order to improve the controller’s robustness in the face of uncertain signal timing
with/without the distribution of the random variable [92, 106]. Despite these develop-
ments, obtaining precise and accurate future SPaT information remains challenging due
to technological barriers and the dynamic operation of actuated coordinated, and adaptive
traffic signals. However, as CAV driving technology continues to develop, new possibilities
may open up to address this challenge.

Last but not least, the dynamic eco-driving control for platoons of vehicles at signalized
intersections, the concept has attracted the interest of some researchers. One of the
main methods to solve the effects of platooning is by accurately identifying the leading
vehicles of each phase and giving slightly different advice to each vehicle in the platoon.
For example, in [51], the algorithm is designed to account for real-time signal informa-
tion and traffic conditions, and group vehicles into platoons based on their permutations,
and the simulation results significantly reduce fuel consumption and emissions, while
also minimizing travel time and improving traffic flow. Similarly, [76] develops algorithms
by characterizing the optimal speed profiles for platoon-based optimization and highlights
the importance of accurately estimating the vehicle’s position and speed again, especially
for platooning scenarios. In addition to the homogeneous CAV fleet, the heterogeneous
traffic flow, including both CAVs and human-driven vehicles (HDVs), is also a hot issue
that needs to be addressed urgently, in [117], where a suggestion-based control frame-
work based on MPC is proposed to optimize fuel efficiency in heterogeneous urban traffic,
the authors considered the recommended velocity from CAVs are non-binding with HDVs,
which means the driver of HDV can choose to follow or not to follow the suggested veloc-
ity. In the simulation, this assumption is expressed as a certain probability β. At last, the
simulation results show the proposed control strategy’s efficacy. Even though research on
dynamic eco-driving for platoons has received limited attention so far, it provides a basis
for significantly improving the energy-saving and emission-reduction potential of existing
models.

Here conclude the main elements for developing eco-driving models near the signalized
intersections:

• Optimization problem formulation and methods

Most proposed eco-driving systems employ mathematical programming to estimate
optimal speed profiles for energy and/or traffic efficiency objectives. These ob-
jectives include improving energy efficiency (minimizing vehicle tractive force/fuel
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consumption [34, 54, 68]), traffic efficiency (minimize idling time [24, 20, 53]), or
a combination of safety, energy consumption, emissions, and traffic flow efficient
objectives [98, 106, 117]. Generally speaking, for models that incorporate a fuel
consumption model, energy efficiency calculations are integrated with optimal prob-
lem solutions. While for others, speed trajectories are derived from simulation tools
and input into fuel consumption and emissions models. At the same time, various
optimization frameworks have been proposed for different objectives, such as MPC
approaches based on trip time and kinetic energy loss [20], fuel-optimal speed pro-
files estimation based on a linear combination of traffic efficiency and emissions
[44], and optimal controllers based on the formation of tight and fast-moving pla-
toons for fuel efficiency optimization [68].

• Analysis boundary

The analysis boundary for a dynamic eco-driving system typically includes the area
of the road network where the system can affect CAVs. This area comprises both
the upstream road section leading to the signalized intersection and the down-
stream section where benefits of eco-driving strategies [104].

• Vehicle dynamic model and energy model

In many research works, constant acceleration [17, 44, 34] and non-linear accelera-
tion models [7, 98] were considered and adopted to estimate optimal speed profiles
for eco-driving strategy. Besides these traditional vehicle dynamics models, trigono-
metric functions were developed to replicate the increase/decrease of an equipped
vehicle speed profile while considering the comfortable objective in [24]. These
vehicle models are employed to depict the progression of a vehicle’s speed from
the current speed to the target speed, and eventually to the desired speed. Re-
garding the energy models, they can be classified based on their transparency into
white-box, grey-box, and black-box models, according to [64]. White-box models
are constructed based on the physical or chemical processes of the engine, black-
box models treat the entire vehicle or the engine alone as a black box, and grey-box
models are the most suitable energy models for evaluating eco-routing and eco-
driving systems because its balance between accuracy and simplicity.

Furthermore, the efficiency of CAV operation depends heavily on the drivers’compliance,
if drivers do not follow the recommended speed advice by CAV technology, the benefits
of the system will reduce a lot, but the human-related factor is so unpredictable in reality,
as the human can be influenced on so many factors, like personal traits, cognitive and
psychomotor functions, situational factors, acceptance and trust [91], which now is grad-
ually become an important topic and will get more attention. In the following section, we
will analyze deeper into the integration of eco-driving strategies with energy management
systems for hybrid and plug-in hybrid vehicles. By doing so, we aim to explore the poten-
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tial synergies and opportunities for improvement in both environmental sustainability and
energy efficiency.

1.2.3/ CO-OPTIMIZATION OF ECO-DRIVING STRATEGY AND EMS FOR

HEV/PHEVS

As mentioned earlier, the integration of eco-driving and EMSs of HEV/PHEVsis essential
for enhancing the energy-saving and environmental-friendly potential of vehicular traffic.
The effectiveness of EMSs depends on predicting future states of vehicular traffic, like ve-
locity and surrounding traffic information, these data can be partially obtained through ITS
technology. As a result, co-optimization of eco-driving strategy and EMS for HEV/PHEVs
further developed. Current literature can be classified into two categories based on dif-
ferent scenarios, namely single-vehicle, double/multi-vehicle scenarios.

1.2.3.1/ SINGLE-VEHICLE SCENARIO

In the past decade, most research literature in the cooperative optimization of eco-driving
and energy management systems (EMS) for HEV/PHEVs focuses on the single-vehicle
scenario, where the most valued target is to optimize the power split considering traffic or
road information and progressively taking the safety constraints into account, but rarely
considering other vehicle’s interactions, like overtaking and lane-changing.

Figure 1.5: The Scenario of Single-Vehicle, cooperative optimization logic based on V2I
information

• Cooperative Optimization for HEV
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In most cases, the cooperative optimization framework for HEV is normally designed
to minimize energy consumption by optimizing velocity trajectories first, then the
power split is optimized by tracking the optimal velocity provided recommended by
the eco-velocity planning system, as the Fig.?? shows, the main idea is based on a
two-level framework, consisting of the vehicle level and the powertrain level. How-
ever, the complex nature of driving in real-world scenarios makes it impractical to
optimize the entire velocity trajectory. Therefore, the analysis boundary is typically
restricted near to the intersection, allowing better integration of EMS with the traffic
and road conditions such as SPAT information and speed limits. Numerous methods
have been proposed to tackle the two-layer problem. For instance, if only consid-
ering one signalized intersection, [58] decomposes the hybrid optimal problem into
two subproblems. First, the optimal velocity trajectory is computed by solving a
nonlinear time-varying optimal problem using the Krylov subspace method to im-
prove computational efficiency. Second, the optimal torque split ratio and gear shift
schedule are determined by combining Pontryagin’s minimum principle (PMP) and
numerical methods in the bi-level MPC framework. While considering continuous
intersections, [69] introduces a novel cooperative optimization framework for HEVs,
similarly, which is designed to minimize energy consumption by optimizing veloc-
ity trajectories first, then optimizing the power split based on a genetic algorithm
to solve the complex fuel consumption model of HEVs. Simulation results of the
proposed optimal speed algorithm are compared to the results of a real driving test
and a single-intersection optimization algorithm. These comparisons show that the
proposed strategy is more effective in reducing fuel consumption and intersection
passing time. Finally, an example of considering as many real traffic scenarios as
possible, [108] developed an MPC-based strategy that fully considered the three
main objectives: safe driving, energy management, and exhaust emission reduc-
tion. To address these objectives, the study designed a driving scenario classifier
to determine the corresponding vehicle mode. And the simulation was conducted in
a realistic urban traffic environment by using Simulation of Urban MObility (SUMO),
and the results demonstrated that the proposed strategy guaranteed safe driving
throughout the entire trip, reduced fuel consumption and exhaust emissions, and
kept the battery in a healthy SOC range. The study showed the effectiveness and
robustness of the proposed strategy for potential online applications.

The studies mentioned above focus on the intersection as a specific scenario and
determine the constraints based on the real-time state of the signalized intersection.
However, there is another way of considering the signalized intersection scenario
that includes their possible encounters in the uncertainty of future traffic informa-
tion. One such approach is proposed by [115], which uses a novel statistical traffic
model to generate stochastic driving behavior and formulates the EMS of HEV as
a bi-level hierarchical optimization problem. This formulation leads to an effective
upper-level problem that can be solved online as a global optimization using a low-
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dimension deterministic DP and can be optimized offline using Stochastic Dynamic
Programming (SDP), which is embedded with stochastic traffic behavior in the lower
level. Simulation results show reasonable over-consumption compared to determin-
istic optimization and manageable computational times for both offline and online
parts. Another recent work by [124] proposes an adaptive co-optimization method
of speed planning and EMS with dynamic probabilistic constraints. The proposed
composite sequence generation model enables dynamic probabilistic constraints by
predicting the future speed distribution of the preceding vehicle based on the prob-
ability relationship among future speed sequence, historical speed sequence, and
macroscopic traffic state of downstream road segments. This effectively models the
macro and micro disturbance from a random traffic environment and improves the
prediction accuracy by about 10% compared to pure sequence generation models,
with over a 57% decrease in distribution divergence. Simulation results indicate a
14.81% increase in driving safety and relatively high energy efficiency compared to
existing co-optimization methods under the same car-following tasks.

• Cooperative Optimization for PHEV

Compared with HEV’s cooperative optimization, PHEVs differ only by an additional
degree of freedom, which corresponds to the ability to deplete the battery for elec-
tric traction and recharge the battery pack, whereas the PHEV’s EMS will be more
complicated because the SOC planning for PHEV is hoped for battery depletion
during a journey [8]. To tackle this challenge, typical work such as [72] has inte-
grated an eco-driving assistance system with the co-optimization of vehicle dynam-
ics and powertrain operations. In this approach, the vehicle dynamic optimization
is approximated using the trigonometric speed profile, and the powertrain oper-
ation optimization is formulated as a nonlinear constrained optimization problem,
which is solved using Mixed Integer Nonlinear Programming (MINP). The perfor-
mance of the proposed system is evaluated at different vehicle automation levels
and achieves an average 24% fuel savings for typical urban driving conditions.
[96, 97] present the design of an ecological adaptive cruise controller (ECO-ACC)
for PHEV considering a deterministic traffic signal phase and timing (SPaT) over
the entire route, the hardware-in-the-loop (HIL) simulation results validate the en-
ergy savings of the receding-horizon control framework in various traffic scenarios.
As the machine learning methods introduced, [110] propose an innovative deep
learning-based queue-aware eco-approach and departure (DLQ-EAD) system for a
Plug-in Hybrid Electric Bus (PHEB), which is able to provide an online optimal tra-
jectory for the vehicle considering both the downstream traffic condition (i.e. traffic
lights, queues) and the vehicle powertrain efficiency. The simulation shows that the
proposed DLQ-EAD can achieve 18.7%-24.0% energy efficiency improvements for
a single PHEB on various traffic congestion levels. In addition, back to the tradi-
tional optimization methods, like mentioned in the previous HEV part, many studies



1.2. LITERTURE REVIEWS 27

[36, 30, 77, 82] did not deal with the signalized intersection as a special scenario,
proposed the eco-driving base EMS for PHEV based on a velocity optimization al-
gorithm by utilizing the velocity bounds via V2V and V2I communication, and the
power split of connected PHEVs and fuel economy can be optimized over a given
prediction horizon. Generally, the first step is to plan a global optimal SOC trajectory
with the available traffic information. Then fuel economy is further improved by opti-
mizing the velocity and power split at different levels. However, the driver’s behavior
in this type of method is often ignored in the simulation results, the performance is
dependent on the driver’s behavior in real conditions.

The analysis of single-vehicle scenarios in HEV and PHEV has demonstrated that coop-
erative optimization strategies can play a crucial role in shaping future green transporta-
tion. As we continue to advance our understanding of double/multi-vehicle scenarios,
the lessons we will learn from these optimization strategies will pave the way for a more
sustainable, efficient, and environmentally friendly transportation ecosystem.

1.2.3.2/ DOUBLE/MULTI-VEHICLE SCENARIO

The previous subsections concluded the integration of ITS information and EMS of single-
vehicle scenarios, these ideas can also be applied to double/multi HEV/PHEVs to further
enhance overall performance or for a fleet with regards to fuel economy and traffic effi-
ciency.

Figure 1.6: The Scenario of Double-Vehicle considering the safety constraints with pre-
ceding vehicle

• Double-Vehicle Scenario

The advent of ITS technology has made it more convenient to acquire V2I/V2V in-
formation about the surrounding traffic. In the double-vehicle scenario, cooperative
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optimization is typically carried out using a car-following model that takes into ac-
count the interaction between the two vehicles in order to balance fuel economy
and safety. According to [102], two categories of strategies can be distinguished for
double-vehicle scenario optimization. The first category is mainly based on Adap-
tive Cruise Control (ACC) systems, which aim to increase driving comfort, reduce
traffic accidents, and improve traffic flow throughput[3]. Instead of the safety and
traffic efficiency objectives, the integration of ACC and EMS means the optimiza-
tion of them simultaneously, adding the target to improve fuel economy. In the
car-following scenarios, the velocity of the preceding vehicle has a great impact on
the following vehicle as an input for devising the following vehicle’s EMS. A typical
example is [55], the authors developed an ACC system based on a nonlinear MPC
for intelligent HEVs that simultaneously considers traffic safety, fuel economy, and
ride comfort to enhance energy efficiency and control system integration. However,
this combination of ACC and EMS is usually carried out by predefining the pre-
ceding vehicle’s velocity, which can be done by following certain rules. A similar
work is [90], an adaptive tube-based nonlinear model predictive control (AT-NMPC)
approach is introduced for designing autonomous cruise control systems, which
guarantees robust satisfaction of the specified constraints, even in the presence of
uncertainties and enhances the system’s performance by adapting to changes in
the vehicle control-oriented model. Using a different approach in [87], an ecologi-
cal ACC based on motion-dependent heuristic dynamic programming is developed
to achieve multi-objective optimization. As Fig.1.6 illustrated, the aforementioned
point about the pre-defining velocity of the preceding vehicle based on traffic light
time when a signalized intersection is taken into account, and the second category
is based on Predictive Cruise Control (PCC). EMSs utilizing PCC are designed to
make the most of future information by predicting the velocity of the preceding ve-
hicle and using a predictive control algorithm to determine the optimal velocity and
power split for the subject vehicle considering the traffic disturbances [19]. Specif-
ically, the PCC-based EMSs are designed with the goal of maximizing the use of
future information, achieved through the prediction of the preceding vehicle’s ve-
locity. An example is [46], which suggests an estimation method based on actual
and past inter-vehicle distance data and information on traffic and upcoming traffic
lights, employing a set of nonlinear, autoregressive (NARX) models to predict traf-
fic behavior, using cooperative adaptive cruise controller (CACC) to achieve better
fuel economy because of the advantages of information prediction. Moreover, some
machine learning methods are introduced to the part of the preceding vehicle’s pre-
diction due to the complexity and stochastic of dynamic traffic, such as the Bayes
network model used in [79], which shows a better prediction performance than the
“constant acceleration” and “constant velocity” methods. Gaussian Process model
is used in [88], which predicts leading vehicle velocity based on time series data and
mean traffic flow speed drawn from cloud data. By the way, these machine-learning
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methods can also be leveraged to optimize complex systems with inconsistent ob-
jectives and stringent constraints. For example, [121] integrated completely ACC
and EMS, proposed Deep Deterministic Policy Gradient-based ECOlogical driv-
ing strategy (DDPG-ECO) based on deep reinforcement learning, the weights of
multiple objectives are analyzed to optimize the training results, simulation results
showed that the DDPG-ECO approach achieved over 90% of the performance of
DP-based methods, while also ensuring good car-following performance. In con-
clusion, the integration of ACC and EMS aims to reduce fuel consumption by using
specific driving cycles to approximate the velocity of the preceding vehicle, without
taking into account dynamic driving conditions. On the other hand, the integration of
PCC and EMS more focus on predicting preceding vehicles’ state through dynamic
traffic information, further improving fuel economy. Both approaches prioritize safety
and fuel economy in optimizing controls.

• Multi-Vehicle Scenario

In the multi-vehicle scenario, which has the potential to reduce air resistance for
each vehicle and in turn, can increase road capacity, reduce fuel consumption,
and improve road safety [103]. Therefore, there has been increased attention on
the cooperative optimization of EMSs and eco-driving for HEV/PHEVs platoon and
making great efforts towards proposing holistic approaches in this area. The most
classic framework as shown in Fig.1.7, which is presented in [59, 73], is a hierar-
chical energy management control strategy for a group of connected HEVs. At the
higher level, MPC is used to incorporate SPAT information to predict the optimal
velocity profile over a finite time horizon. At the lower level, the adaptive ECMS
and DP are used separately controllers to achieve power distribution by tracking the
optimal speed of each HEV’s higher-level controller. The effectiveness of the pro-
posed control strategy is validated through simulation results. However, it should be
noted that the propulsion and recuperation efficiencies of HEVs are considered to
be constant in this work. To reflect operating characteristics precisely, [101] consid-
ers the efficiency feedback of the two characters based on the above hierarchical
energy management control strategy. The fuel economy of the system can be im-
proved, and additional benefits can be achieved by synergizing the reduction of red
light stopping, collision avoidance, and cooperative platoon information. Around the
same time, [109] proposed a real-time MPC scheme for connected HEVs that relies
on look-ahead traffic information, a chain GP-based predictor is utilized to obtain
the preceding vehicle’s speed, assuming that the vehicle aims to maintain an aver-
age speed that is reflected through the traffic density. The simulation results show
that the proposed method can avoid violations of the spacing corridor to ensure
traffic safety, and reduce energy consumption without requiring significant emer-
gency acceleration or braking behavior. Moreover, several related works such as
[70, 85, 112] have confirmed the fuel-saving potential in platoons of HEV/PHEVs.
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However, optimizing the control strategy for a platoon and EMS of each HEV si-
multaneously can be challenging due to the highly coupled nature of the nonlinear
augmented system. Most current literature assumes a perfectly homogeneous traf-
fic flow, overlooking human-related factors. As heterogeneous traffic flow becomes
more prevalent in multi-vehicle scenarios in the near future, it will further increase
the complexity of traffic conditions, posing a more significant challenge to improving
both the mobility of the traffic system and fuel economy.

Figure 1.7: The Hierarchical Control Framework of Multi-Vehicle Scenario

1.3/ CONCLUSION AND OBJECTIVE OF THE THESIS

As seen from the review of existing EMS, eco-driving strategies, and cooperative op-
timization of EMS and eco-driving strategies, EMS approaches typically require driving
conditions when applied to real vehicles. This is because real-time power demand directly
impacts the power distribution and energy consumption calculations of the energy man-
agement system, which in turn affect other performance aspects such as vehicle comfort
and emissions. Given the mutual coupling characteristics of humans, vehicles, and the
environment, driving conditions are primarily influenced by drivers and surrounding traffic.

Generally, there are two ways to obtain driving information: one is through applying var-
ious prediction algorithms to forecast future working conditions based on historical data
analysis, and the other is by integrating ITS, which includes road load sensing units and
moving edge computing units. The ITS background provides an effective application
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framework for energy management strategies that integrate traffic information into vehi-
cle control systems. This involves obtaining traffic data outside the driver’s visual range
through sensors or ITS, increasing the vehicle’s perception range, and combining histor-
ical driving condition information recorded by on-board VCUs. During this process, eco-
driving strategies optimize traffic perspectives, and these two techniques will be seam-
lessly integrated within the future ITS context.

However, there are still challenges to be addressed in the transition period, for example, a
typical problem that need to face is the heterogeneous traffic environment. The automo-
biles could be categorized Human-Driven Vehicles (HDVs), connected PEV/HEV/PHEVs
in the near future, the mixed traffic streams will face heterogeneous dynamics and stabil-
ity. The control problem for this must respond effectively to re al-world traffic conditions
while maintaining string stability to ensure safe transitional platoon maneuvers. In addi-
tion to meeting queue control requirements, another issue that deserves consideration is
the interaction with HDV. In realistic traffic conditions, lane-changing and merging maneu-
vers posed by human occur frequently. How do we deal with the traffic risks associated
with the uncertainty of human behavior is also a question worthy of in-depth study.

Therefore, to lay the foundation for solving these complex problems, three main tasks
have been undertaken as follows.

• A deterministic data-based eco-driving strategy for a PHEB is proposed that aims
to reduce energy consumption and save time. By simplifying the 3D-DP problem to
a 2D-DP method and utilizing a DP framework, our approach led to a 3.98% energy
reduction and 4.84% time saving in simulations.

• A stochastic data-based eco-driving system is developed for power-split HEVs, fo-
cusing on co-optimizing vehicle dynamics and hybrid powertrain operations. Our
dual-driven approach in the eco-driving decision subsystem and rule-based strat-
egy in the hybrid powertrain control subsystem led to energy reductions of 6.49%
and 4.17% in SUMO traffic simulations. The system’s independence from full traffic
infrastructure connectivity and adaptability to various traffic environments make it
could be a promising solution for future intelligent transportation systems.

• A data-driven trajectory planning strategy for connected vehicles is introduced for
addressing uncertainty in shared traffic information. The proposed approach effec-
tively improved fuel economy, as demonstrated using the real-world Next Genera-
tion SIMulation (NGSIM) dataset.





2
A DETERMINISTIC DATA-BASED

ECO-DRIVING STRATEGY

2.1/ INTRODUCTION

In general, the intersection is an area of concern for researchers, according to [23], fuel
reduction of approximately 22% could be obtained by receiving phase-shifting information
of the traffic lights and computing the optimal velocity in advance. In addition, bus-stops
are the similar area with intersections, we can think of it as a signalized intersection that
is always in a red-light period when buses arrive.

The rapid development of ITS provides huge opportunities to improve the overall perfor-
mance of Energy Management Strategies (EMS) for Connected and Automated Hybrid
Electrical Vehicles (CAHEVs). In this context, Plug-in Hybrid Electrical Bus (PHEB) as
a suitable public transportation attracts researcher’s attention. Normally, the researchers
achieve the purpose of reducing fuel consumption and being environment friendly by
planning the trajectory of the subject vehicle, which is defined as a vehicle trajectory op-
timization problem. But we need to consider more information for PHEB ,the powertrain
operation is considered as the first dimension–EMS, which is complicated as there are
two energy sources flow and we want to use electric as much as possible in order to en-
sure the low cost of energy consumption. And the other dimension-vehicle (longitudinal)
dynamic optimization, which is gradually become possible by connected traffic informa-
tion. Therefore, based on the above background, as we try to simplify the first eco-driving
strategy problem for CAHEV as much as possible, a specific example of velocity planning
problem for a series PHEB on a fixed route with signalized intersections is modeled and
simulated in this chapter. The objective is to minimize energy consumption or travel time
under the premise of safety and we treat this problem as a spatial optimization formulation
and via Dynamic Programming (DP) to solve.

This chapter is organized as follows. Section 2.2 represents the PHEB vehicle modeling
and its components modeling. The fixed traffic signal is presented using mathematical
model in Section 2.3. Section 2.4 introduce the dynamic programming and the calculation
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steps. Then based on the DP framework, the velocity planning problem considering the
fixed traffic signals constraints is formulated in the section 2.5. The section 2.6 illustrate
the method that constructed 3 Dimensional (3D)-DP, and simplified 3D-DP to 2D-DP by
adopting empirically optimal SOC. Finally, section 2.7 presents the simulation results that
consists of SOC optimization under a standard driving cycle and velocity optimization
under an actual bus route condition and section 2.8 conclude this chapter.

2.2/ PHEB VEHICLE MODELING

In the contemporary automotive industry and transportation research, numerical simu-
lation of vehicles using mathematical models has become a standard method for eval-
uating energy consumption. Generally, the numerical method is widely applicable, and
there are two common approaches to the describe vehicle simulation process, namely
”backward” simulation and ”forward” simulation [40], which can greatly affect the behav-
ior of the model. In the backward scheme, a target speed is provided by a driving cycle
and the necessary propulsion force is calculated from Newton’s second law. The vehicle
speed and the calculated propulsion force are then propagated from the vehicle model,
through the transmission model, and to the prime mover where the required input power
for the engine model is determined. This approach is referred to as backward because
the data flows backwards through the powertrain, as depicted in Fig.2.1b. While in the
forward scheme, a target speed is similarly provided by a driving cycle, but it passes
through a driver model, the driver controls the longitudinal vehicle interfaces such as the
accelerator and brake pedals based on the difference between the target and the actual
vehicle speed. The engine torque is propagated forward through the transmission model
to the vehicle model; where the traction sustains the propulsion force. Again, Newton’s
second law provides the vehicle acceleration which is integrated for speed and position.
The position is fed back to the driving cycle to find a target speed, which closes the com-
putation loop. The effort flows in the opposite direction in the powertrain compared to
the backward method and the approach is therefore called forward. Both schemes are
commonly used in science and engineering. The backward method is often used when
treating control problems, for example optimal control of battery management or finding
the best configuration. And forward simulation is more common when predicting the influ-
ence from the environment, when the driver impact is of concern, or when investigating
specific components [105]. Therefore, the backward simulation is chosen for the following
study in this chapter.

2.2.1/ VEHICLE MODEL

In this chapter, a series PHEB is chosen as the research subject, as indicated by Fig. 2.2,
the PHEB powertrain has four main parts, including the battery part that can be external
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(a) Forward (dynamic) vehicle simulation

(b) Backward (quasi-static) vehicle simulation

Figure 2.1: Vehicle simulation process classification, source:[40]

recharge, the Auxiliary Power Unit (APU) consists of an Internal Combustion Engine (ICE)
and an Integrated Starter Generator (ISG), the final drive by dual motor connected to the
rear wheel, the high voltage control unit consists of generator controller and a drive motor
controller. As the series structure indicated in the chapter 1, the mechanical energy is
convert to electrical energy through the ISG and the wheel motor is driven to meet the ve-
hicle running demand to keep the vehicle running normally. Some vehicle characteristics
of PHEB are shown in TABLE 2.1.

Since our main goal is to improve fuel economy, the lateral dynamic is ignored and the
longitudinal dynamic equation [67] models vehicle model that calculated by

Preq =
v

3600ηT

(
G f cosα + G sinα +

CDAV2

21.15
+ δm

dv
dt

)
(2.1)

where Preq is the total power required by vehicle, G is gravity, α is route slope, v and V
vehicle speed (m/s) and (km/h), f is rolling friction coefficient.
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Figure 2.2: PHEB powertrain architecture

Table 2.1: Vehicle Parameters

Parameter Mark Value

Vehicle

Vehicle mass m(kg) 14500
Air drag coefficient CD 0.65

Front area A(m2) 8
Transmission efficiency ηT 0.97

Rotational mass coefficient δ 1.07

Battery
Open circuit voltage Voc(V) 340

Capacity Qb(Ah) 180

2.2.2/ POWERTRAIN MODEL

2.2.2.1/ APU MODEL

As mentioned before, APU consists of an IC Engine and an IS Generator (ISG), therefore,
to model the APU part, we first model the engine and generator separately, and according
to the different principles, this modeling process can be divided into two categories: theo-
retical and experimental modeling. Theoretical modeling is based on a detailed analysis
of the internal characteristics and operating processes, which can accurately describe the
operating states, but there are disadvantages such as complicated model construction,
some parameters are hard to get and low time efficiency for simulation. As a result, the
experimental modeling is generally used for simulation, which is based on experimental
data and often ignored the internal working process, established the mapping relationship
between the performance parameters, and then extends the non-test points by using data
interpolation. Then a table look-up is applied in the simulation process, it does not reflect
the transient operating characteristics but is simple to implement and time efficient for
simulation studies. The Fig.2.3 shows the ICE and ISG 3D maps based on the experi-
mental modeling respectively. The fuel consumption efficiency of ICE at different speeds
and torque is shown in Eq.2.2, similarly, Eq.2.3 represents the ISG experimental model-
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ing.
m f = f (ne,Te) (2.2)

where ne is the ICE speed (RPM), Te is the output torque of the ICE (Nm), m f is the
fuel consumption rate (g/kWh), f is the mapping between engine speed, torque and fuel
consumption rate.

η = f (nm,Tm) (2.3)

where nm is the ISG speed, Tm is the motor torque, whose positive and negative values
represent the two operating states of motor and generator respectively. η is the ISG
efficiency, f is the function which described the relationship between speed, torque and
efficiency.

(a) ICE 3D map (b) ISG 3D map

Figure 2.3: 3Dmap

Figure 2.4: APU map

From the Fig.2.2, the direct connection of ICE and ISG is considered as APU module and
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the fuel consumption rate of APU can be calculated by the ratio of fuel efficiency of the
ICE to the efficiency of the ISG for a combination of speed and torque by discrete the
engine speed and torque and the generator speed and torque into several values within
a certain range. As a result, fig. 2.4 shows the power map and fuel consumption map of
APU.

Next, as we all know, if the engine is defined to operate at its optimal operating point
during the control process, excess energy loss can be effectively avoided. Similar to the
above method, the output power of the APU can be found for a combination of speed-
torque by discretizing the engine speed-torque and generator speed-torque and combin-
ing them with the motor efficiency. In this case, if the output power is known, interpolate
the torque for each APU speed to get the corresponding fuel consumption rate, and then
find the operating point with the lowest fuel consumption, which is the optimal operating
point of the APU for that output power. The red line in fig.2.5a represents the optimal
operating point of the APU.

By replacing the vertical coordinate in fig.2.5a with the fuel consumption rate, the mini-
mum fuel consumption rate is obtained for different discrete values of the APU’s output
power, and the curve in fig.2.5b is called the minimum fuel consumption curve for the
APU’s equal power. In the subsequent calculation, the default APU operating point is
always located on the minimum fuel consumption curve.

(a) APU optimal operating points (b) APU minimum fuel consumption curve

2.2.2.2/ WHEEL-SIDE DRIVE MOTOR MODEL

Similar to the ISG model, the wheel-side drive motor still uses experimental model. How-
ever, the wheel-side drive motor is direct source power transmission, its operation mode
is divided into two types: on charge mode and discharge mode. In the series PHEB
architecture, it can provide driving torque on discharge mode and it can also act as a
generator on charge mode during regenerative braking state, converting mechanical en-
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ergy into electrical energy and storing it in the battery to increase the distance range.
And to taking into account of battery life, we set the maximum reused electrical energy
as 30kW. So the output power of wheel-side drive motor Pm can be written as

Pm =

 Preq/e f f m Preq ≥ 0
max

(
Preq · e f f m,−30

)
Preq < 0

(2.4)

wherePreq is the vehicle required power that calculated by Eq.2.1, e f f m is the efficiency
of the wheel-side drive motor, it can be calculated through Fig. 2.6.

Figure 2.6: Motor efficiency map

2.2.2.3/ BATTERY MODEL

Another important component of the PHEB is the power battery, the structure of its com-
position is in the form of Cell-Battery-Pack. The voltage of the power cell is 3.2V and the
nominal capacity is 2.3 Ah. Then 78 cells are connected in parallel to form a power battery
with total capacity of 180 Ah. Finally, 100 power battery are connected in series to form a
power pack with a total output voltage of 340V and a total capacity of 180Ah. In the simu-
lation, the inconsistency of battery is ignored and the internal resistance and open circuit
voltage of battery are assumed to be the same, so the charging/discharging character-
istic curves with SOC can be obtained as shown in Fig.2.7. As the core energy storage
element, the internal chemical reaction is complicated during the charging/discharging
process. To describe the battery model as simple and accurate as possible, the widely
used equivalent electrical circuit is established for simulate, as Fig.2.8 indicated. And
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Figure 2.7: Open-circuit voltage and internal resistance

Figure 2.8: Equivalent electrical circuit

based on the Rint internal resistance equivalent circuit, there is,
Voc = n · Uoc

Rb = n · Rint

Ub = Voc − I · Rb

1000 · Pb = I · Ub

(2.5)

Therefore, I can be calculated,

I =
Voc −

√
V2

oc − 4000Rb · Pb

2Rb
(2.6)

where Uoc is the open circuit voltage of battery, Voc is the pack voltage, n = 100 is the num-
ber of battery, Ub is the terminal voltage of battery, Rint is the equivalent internal resistance
of battery, Rt is the equivalent internal resistance of pack, I is the charging/discharging
current, specifying that the current here is positive when discharging and negative when
charging. Pb is the output power of pack.

Then according to Coulomb Counting method, the State-Of-Charge of power battery dy-
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namics can be expressed as

S ȮC = −
I

Qb
= −

Voc −
√

Voc
2 − 4000RbPb

2QbRb
(2.7)

where Qb is the total power pack capacity.

2.3/ FIXED TRAFFIC SIGNAL MODELING

Fixed traffic signs are space indexed and time varying during vehicle driving [92]. We
suppose the length of the target driving route is s f , the position of the i th traffic signal is
denoted by si, therefore

siε
[
0, s f

]
i = {1, 2, 3, . . . I} (2.8)

where I is total number of traffic signals along the route. It’s worth noting that these traffic
signs include not only M traffic signals but also N stops signs, naturally M + N = I. In
addition, each traffic light has an independent periodic clock. For every intersection, we
denote the clock period at intersection i as ci

f ∈ R+, while the red-light duration is indicated
by ci

r,
ci

r ∈
[
0, ci

f

]
i = {1, 2, 3, . . . ..M} (2.9)

Denote by ci
0 the clock time when the vehicle departs from its origin, and ti

p is the time
at which the subject vehicle passes through the i th the intersection in the travelling time
domain, the corresponding time in the periodic traffic signal clock timing can be calculated
as,

ci
p =

(
ci

0 + ti
p

)
mod ci

f t ∈ R+ (2.10)

ci
p is the vehicle passing time in the signal-cycling clock. According to the basic safety

rule, ci
p has a bound

ci
p > ci

f (2.11)

2.4/ DYNAMIC PROGRAMMING

Dynamic Programming is a mathematical optimization method that was developed by
Richard Bellman in the 1950s and has been applied in numerous fields. Especially for
discrete problems, where the dynamic programming method becomes a very useful tool
in the absence of analytical mathematics [29]. Its main idea is to simplify a decision by
breaking it down into a sequence of decision steps over time, which means sub-problems
can be nested recursively inside larger problems, so that can be solved easily. The fol-
lowing part will state the DP algorithm for a basic optimal control problem as an example
[106].
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Denoting the cost at the kth step by gk (xk, uk), the cost function can be summed step by
step,

J =

N−1∑
k=0

gk (xk, uk) + gN (xN) (2.12)

According to Bellman’s principle of optimality equation, the objective is to minimize the
following cost-to-go function at each stage k:

Vk (xk) = min {gk (xk, uk) + Vk+1 (xk+1)}

= min {gk (xk, uk) + Vk+1 ( f (xk, uk))}
(2.13)

where Vk (xk) is value function (“cost-to-go” function). It represents the minimum cost from
stage k to stage N, given that the state is initialized to xk at stage k. And the terminal cost
at k = N is given by the boundary,

VN (xN) = gN (xN) (2.14)

Assume the optimal control and state variable trajectories for the basic optimal problem
are U∗ and X∗, respectively, then

U∗ =
[
u∗0, u

∗
1, u
∗
2, . . . , u

∗
N−1

]T

X∗ =
[
x∗0, x

∗
1, x
∗
2, . . . , x

∗
N

]T
.

(2.15)

Based on the terminal condition, the optimal control policy can be computed by the fol-
lowing backward recursive algorithm starting from step N − 1 to 0:

u∗k = argmin
uk∈UD

{gk (xk, uk) + Vk+1 ( f (xk, uk))}

∀xk ∈ XD

(2.16)

where UD and XD are the feasible control and state variable constraint sets, f (xk, uk)
described this basic control system dynamics.

2.5/ PROBLEM FORMULATION

The main objective of the vehicle trajectory optimization is to minimize travel time or en-
ergy consumption. For the PHEB, the energy consumption can be computed by fuel
consumption and battery consumption respectively (Eq.2.17), while it depends on power
splitting between APU model and battery model, the cost function J can be expressed as

Preq = Pbat + Papu (2.17)
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J = λ ·

s f∑
1

∣∣∣∣m f uel
(
v, Papu, Pbat

)∣∣∣∣ ∆t + (1 − λ) ·
∣∣∣∣t (s f

)∣∣∣∣ (2.18)

where λ is a tuning weight, s f is the trip distance, m f uel is energy consumption , v is veloc-
ity, Papu is APU output power, Pbat is power provided by the battery.

∣∣∣∣t (s f
)∣∣∣∣ is normalized

cumulative travel time at destination for making the unit consistent.

First, the velocity, travel time, and state of charge are state variables, the velocity at bus
stops is calculated by considering v(s) as a small positive constant.

x = [v(s), t(s),SOC] (2.19)

dv
ds

(s) =
a(s)
v(s)

,
dt
ds

(s) =
1

v(s)
, v(s) > 0 (2.20)

Next, the APU output power and vehicle acceleration are control variables u =
[
Papu, a

]
.

Besides, during the calculation, the following vehicle physical constraints should be con-
sidered,

vmin ≤ v ≤ vmax

v(0) = v
(
si
)

= vmin(s) · · · i ∈ {1, 2, 3, 4 . . .N}

amin(s) ≤ a(s) ≤ amax(s)

(2.21)

Eq. 2.11 forces buses to pass through signalized intersections only at green-light duration.

Finally, as we treat this problem as a spatial trajectory formulation, a maximum arrival time
t f needs to be imposed at the final stage to balance energy consumption and traveling
time.

t
(
s f

)
≤ t f (2.22)

2.6/ METHODOLOGY

2.6.1/ CONSTRUCTION OF DYNAMIC PROGRAMMING

Global optimization solution is necessary to analyze planning strategy performance. Ac-
cording to the problem formulation, if we gave the current state and traffic signals infor-
mation can be fully known in advance through V2I technology, which means the red-light
duration ci

r is known and deterministic mathematically. In this case, DP is chosen to
solve this deterministic global optimal planning problem. To guarantee the location of bus
stop and traffic light, a distance sampling is utilized. Trading off computation complexity
and result precision the mesh step is determined to be 1 meter, Fig. 2.9a shows three
dimensions(3D)-DP structure diagrams, the process of solving the optimization problem
starts from the final stage, and then from the stage that the last stage minus 1 meter,
until the entire problem is solved. At each stage, the power distribution between the APU
model and the battery model will have a significant impact on the calculation of transfer
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function between stages. Therefore, it’s essential to optimize the energy management in
the transfer function at each step, but this will lead to a computation ”dimensional disas-
ter”. In order to solve this problem and considering there are generally fixed commuting
routes for PHEBs, in other word, drivers are like to face similar traffic situations every day
so we can get some empirical EMS results that simplify the 3D-DP to 2D-DP, the Fig. 2.9b
described 2D-DP structure.

(a) 3D-DP structure diagram

(b) 2D-DP structure diagram

Figure 2.9: Dynamic Programming Construction

2.6.2/ SOC BOUNDARIES WITHOUT OPTIMAL VELOCITY PLANNING

Therefore, here we will use the optimal energy contribution results without velocity opti-
mization to substitute these empirical data mentioned in the previous section. The sub-
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problem regarding EMS allocation can be described as,

Js =

N−1∑
k=1

L(x(k), u(k), k)∆t =

N∑
k=1

(
c f uelPapu(k) + cgridPbat(k)

)
∆t (2.23)

where c f uel is the current fuel energy price, cbat is the current electricity energy price, and
the state variable x(k) in this context represents SOC value and the control variable is
Pbat,

Vk(S OC(k)) = min {(gk(S OC(k), Pbat(k)) + Vk+1 (S OC(k), Pbat(k))} (2.24)

And the following constraints have to be satisfied,

Pmin
apu ≤ Papu ≤ Pmax

apu

Pmin
bat ≤ Pbat ≤ Pmax

bat

S OCmin ≤ S OC ≤ S OCmax

(2.25)

Pmin
apu, Pmax

apu , Pmin
bat and Pmax

bat are the minimum and maximum output power of APU and bat-
tery, respectively. In the calculation process, similar to the above 3D-DP structure, it start
from the last stage to find the optimal Js for each state of each stage recursively, and
store them in a data table, then from a given initial state to find the optimal sequence.

2.7/ SIMULATION

2.7.1/ DP-BASED EMS OPTIMIZATION RESULTS

Before we use the actual road condition to simulate, the PHEB vehicle and powertrain
model need to be validate first. Thus, we will use a standard driving cycle to validate the
vehicle model for controlling and the sub-optimization model. The Urban Dynamometer
Driving Schedule (UDDS) cycle, is also called the US FTP-72 driving cycle, represents a
pure city route consisting of frequent stops. Fig.2.10 illustrated the speed profile, the total
distance is 12.07 km, and the whole time is 1372 s.

Considering the large battery capacity of PHEB, we repeated the UDDS driving cycle 7
times as input to validate the vehicle model and test the SOC planning model without
velocity optimization that will be applied in the subsequent simulation process. Fig.2.11
shows the performance of PHEB with SOC initial value equal to 0.4, the output power of
APU and battery add up to meet the entire required power, and the APU always runs in
its minimum fuel consumption zone when it’s on. For comparison further, we compare
the SOC curve with different initial values of SOC (Fig.2.12), when S OC0 = 0.6, batteries
can freely utilize their stored energy without exceeding the maximum allowable battery
power, so the final SOC has not yet reached 0.3. While for the rest cases where the SOC
initial value is less than 0.6, the output power of the APU and battery is evenly distributed
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Figure 2.10: UDDS speed profile

during the operation of PHEB to achieve the minimum energy consumption. The final
cost of different initial SOC is recorded in TABLE 2.2, as the initial SOC decrease, total
cost consumption increases, because there is less energy stored in the battery at first so
the vehicle have to rely more on the engine to meet the required power.

Table 2.2: Total cost of different initial SOC

initial SOC
0.6 0.5 0.4 0.3

Cost($) 13.68 18.08 24.23 32.94

2.7.2/ DRIVING CONDITION IN REAL WORLD

After validating the vehicle model and the SOC optimization model, a small fragment of
city bus route data including 4 intersections and 9 bus stations is obtained from a lot of
actual road condition data. This short but typical route segment is chosen for developing
and verifying, which is shown in Fig. 2.13. The operation time of this route segment is
930 seconds, the distance is 3.72km and the velocity range is from 0km/h to 60 km/h.
The position and timing information for this route segment are shown in TABLE 2.3.

2.7.3/ VELOCITY OPTIMIZATION RESULTS

A new optimized velocity profile is obtained by the proposed velocity optimization strategy
according to the previous subsection, the results are shown in the Fig. 2.14.

First, it can be indicated clearly that PHEB will cost shorter time by the optimized velocity
than the original route data, because of the participation of ∆t in objective function, the
subject bus takes about 930.0 seconds to complete this journey with the original speed
plan, but with the optimized velocity planning, it only takes 921.4s or 885.1s respectively
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Figure 2.11: PHEB performance using DP optimal strategy with S OC0 = 0.4

Figure 2.12: S OC as a function of S OC0

by the choice of target is minimum energy consumption or minimum travel time as de-
scribed in TABLE 2.4. Also, for the facility of calculation, we convert the energy consump-
tion to price cost with the different unit prices of fuel and electricity. As the balance of time
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Figure 2.13: Actual road

Figure 2.14: The result of optimized velocity profile

reduction, we have to sacrifice the fuel economy during the journey, thus the price cost
by the original velocity file is cheaper, it cost 3.27 dollars. However, as for the situation of
λ = 0, which means the fastest velocity planning, it cost 3.44 dollars for entire trip.
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Table 2.3: Traffic information of real route

No. si
M ci

0 ci
f ci

r si
N Stop time(s)

1 light 750 15 60 20 stop 86 6
2 light 1500 25 60 20 stop 186 21
3 light 2250 0 60 20 stop 452 11
4 light 3000 5 60 20 stop 938 38
5 stop 1058 14
6 stop 1137 39
7 stop 1233 5
8 stop 1857 37
9 stop 2895 57

At the same time, the situation of λ = 1 only cost 3.14 dollars, which is beyond our
expectation in the performance of fuel consumption.

Figure 2.15: The result of optimized velocity for comparison

Besides, we can see clearly from Fig 2.15 that the main velocity adjustment occurs when
the PHEB encounters traffic signals and bus stations, the faster acceleration and decel-
eration in these places greatly reduce the travel time of the entire trip, but equally, these
behaviors are not friendly to the vehicle fuel economy. It is also worth noting that the
optimized velocity sequence accomplish the purpose of time-saving from global perspec-
tive, for example, when the PHEB passed through the first intersection, the original data
indicated that the bus waiting for a few seconds, but the optimized velocity reduce stop
as much as possible, the optimized decision is to choose go-slow in advance. Another
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Table 2.4: Comparison of arrival time and energy consumption results

Arrival time(s) Energy consumption($)
λ = 0 885.1 3.44
λ = 1 921.4 3.14

Actual road without optimization 930 3.27

example is when at the bus station before the third intersection, the strategy of λ = 0
chooses to accelerate fast for catching the last green-time duration, while the strategy of
λ = 1 chooses to wait few seconds at the third intersection by the bound of stop time at the
bus stop, which makes the travel time longer than the former situation but shorter than the
original velocity planning, in this case, the fuel-saving potential of the intersection is still
worth exploring. From the perspective of time, the saving of time has positive meaning for
alleviating traffic congestion in some certain situation especially like morning and evening
peak periods in the city.

2.8/ CONCLUSION

In this chapter, we proposed a velocity planning strategy focusing on energy consumption
saving and time-saving for PHEB. At first, the mathematical model of PHEB vehicle, its
components and traffic signals are built respectively, then the velocity planning problem
considering traffic signals for PHEB is proposed and formulated based on DP framework.
In order to solve the problem and to avoid the heavy computational duty, we proposed the
method which simplified 3D-DP to 2D-DP by adopting an optimal SOC that obtained the
empirical data. And in our simulation, the optimal SOC curve is obtained from the energy
management system without velocity optimization for replacing the empirical data. Dur-
ing this process, we formulated this sub-problem as a time-discrete nonlinear optimization
problem and also solved by DP. Then considering the location constraints of traffic signs,
the velocity planning problem is treated as a deterministic spatial-discrete nonlinear opti-
mization problem. Finally, the simulation results indicated that the proposed strategy can
reduce energy consumption by 3.98%, and time-saving by 4.84%. Consequently, the ve-
locity optimization strategy can be used as an antecedent for on-line EMS to reduce the
energy consumption. However, there exist some limitations to the proposed strategy and
implementation. First, we assumed all the intersection and bus-stop information is deter-
ministic and known in advance, which is an extremely ideal situation. Second, the energy
consumption will be greatly impacted by the ratio of APU power and battery power, so if
we calculate the energy consumption on the premise of determined energy distribution
ratio, the result may differ greatly from the application in the real world. Thus, on one
hand, the diversity of traffic scenarios should be considered, the SPaT and bus station
information will be set to uncertain, on the other hand, the accuracy of planning system
and the reliability of control system should also be improved further.
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A STOCHASTIC DATA-BASED

ECO-DRIVING STRATEGY

3.1/ INTRODUCTION

In Chapter 2, we focused on deterministic traffic information, assuming that we could
obtain precise and accurate data in advance. This allowed us to develop a velocity plan-
ning and energy management strategy based on empirical State of Charge (SOC). In this
chapter, we will shift our focus to the more realistic scenario in which traffic information,
particularly in intersection areas near traffic lights, is stochastic in nature. By acknowl-
edging the inherent uncertainties in traffic data, we will now explore the development of
an optimal velocity profile for power-split hybrid electric vehicles that accounts for these
stochastic elements. Specifically, in this study, we propose and assess a stochastic eco-
driving system for hybrid electric vehicles (HEVs) that co-optimizes vehicle dynamics and
hybrid powertrain operations. This system comprises two interconnected subsystems: a
stochastic eco-driving decision subsystem and a hybrid powertrain control decision sub-
system. The upper-level stochastic eco-driving decision subsystem takes into account
the randomness of the traffic environment, employing a dual-driven (data and model) ap-
proach to recommend optimal desired set speeds or predict trajectories through stochas-
tic optimization. Meanwhile, the hybrid powertrain control decision subsystem employs
a rule-based control strategy tailored to the specific characteristics of intersections, op-
timizing the host HEV’s energy costs. We evaluate the performance of our proposed
stochastic eco-driving system using simulation cases created in the SUMO traffic sim-
ulation environment. The results demonstrate a significant decrease in the groups that
applied the proposed stochastic eco-driving system in energy consumption compared to
groups without the stochastic eco-driving system.

The remaining of this chapter is structured as follows: Section 3.2 introduces the primary
research problem of this chapter. Section 3.3 outlines the essential traffic flow model,
Eco-Approach and Departure (EAD) model, Gaussian Process Regression (GPR) model.
The HEV model is detailed in Section 3.4. In Section 3.5, the co-optimization problem for
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HEVs at a signalized intersection is formulated mathematically, and a stochastic eco-
driving system is established using a bi-level approximation for co-optimization, which is
solved by dividing it into two optimization objectives. Section 3.6 documents the process
of collecting traffic data necessary for constructing the GPR model. Finally, simulation
results and analysis are presented in Section 3.7, while the conclusion and discussion
can be found 3.8.

3.2/ PROBLEM STATEMENT

An accurate road section (intercepted from a residential area in Belfort, France), as
shown in Fig.3.1, it is a typical road section found in many places, such as residential
communities, industrial parks, etc. Such road sections are generally characterized by
non-congested traffic flow, and the duration of the green (and yellow) and red signals
is coordinated according to the actual traffic situation so that vehicles can pass through
the intersection from a certain distance within a signal cycle. However, there are some
accidental interference situations. For instance, cars on the main road (Rue de Luxem-
bourg) are susceptible to the sudden impact of the merged turning of the vehicles on
both sides of the road (Rue de Jérusalem and Rue d’Amsterdam) and the opposite di-
rection, or even if a pedestrian presses the pass button. This kind of interference often
prolongs the passing time of the vehicles at signalized intersections. As mentioned in

Figure 3.1: A typical real road section with the conventional environment from a residential
area in Belfort, France

Chapter 1, HEVs will gradually become the market’s mainstream as a substitute for the
development of large-scale Connected and Automated Electric Vehicles (CAEVs). And
it is not realistic to upgrade all the V2I infrastructure very soon for the typical road sec-
tions like Fig.3.1. Therefore, this study focuses on the bi-level optimization of vehicle
dynamic and powertrain operation at a signalized intersection, especially given the un-
certainty environment. As shown in Fig.3.2, we consider a signalized intersection with
a single lane, the vehicles in this lane of the signalized intersection entrance can turn
left, go straight and turn right. And for simplicity, we ignore human factors such as lane
changing, overtaking, and pedestrian behavior first, and consider the disturbance caused
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by other vehicles from/to the connecting road. These random occurrences occasionally
force vehicles to slow down, making the arrival time at intersection uncertain. However,
thanks to the past driving experience of this route, we can build a model to describe the
relationship between the crossing time of this intersection and the driving-affected factors
through Gaussian Process Regression, by predicting the crossing time with the possibility
to co-optimize the vehicle velocity and hybrid powertrain system.

Figure 3.2: Random interventions scenario

3.3/ ECO-DRIVING AT SIGNALIZED INTERSECTION

3.3.1/ ECO-APPROACH AND DEPARTURE (EAD) AT SIGNALIZED INTERSECTION

Normally, when a vehicle approaches a signalized intersection, four possible passing
scenarios [72] could happen as shown in Fig. 3.3,

1) Scenario 1: The host vehicle might speed up slightly to rush through the intersection
before the red light, but still under the maximum speed limit of the intersection. The
maximum speed limit is the smaller value between the speed of preceding vehicle
and the maximum speed specified at the intersection.

2) Scenario 2: The most ideal situation, the host vehicle pass the intersection smoothly
at cruising speed with the sufficient green light signal regardless of whether there is
a preceding vehicle.

3) Scenario 3: The host vehicle has to slow down because the preceding vehicle’s
speed limit, but there’s still enough green light signal left time to pass.

4) Scenario 4: The host vehicle have to stop since some uncertainty such as the
vehicle or passenger coming out of the side road, which made the preceding vehicle
could not pass within the green-yellow signal, and it’s the worst situation compared
to the previous 3 cases because the fuel consumption and travel time of host vehicle
may increase greatly due to passing-with-stop.
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Figure 3.3: Illustration of 4 passing scenarios through an intersection

Moreover, for the above four scenarios, if the real-time information of signal timing are
given in advance, the eco-driving trajectory for host vehicle is easy to be planned based
on the distance to intersection d, the current speed vc, the desired time to arrival at the
intersection Td and uniform speed vu = d/Td, then the speed v(t) at every time step t
for scenario 1 and 3 can be determined based on the trigonometric speed profiles. And
the trigonometric model was proposed in [24], its objective is to minimize vehicle tractive
power without compromising the driving comfort which constrained by the maximum jerk
duM. After testing in authors’follow-up works[42, 65, 89],the fuel saving of trigonomet-
ric model-based speed profile achieved 10%-15%. Therefore, according to the Eq.3.3,
shown at the top of next page, the speed profiles for scenario 1 and 3 can be determined,
where m and n determine the shape of the speed profile and satisfy,

|n · (vu − vc)| ≤ amax

|n · (vu − vc)| ≤ dmax∣∣∣n2 · (vu − vc)
∣∣∣ ≤ duM

n ≥
π
2−1
Td

(3.1)

m =
−π2 n −

√(
π
2 n

)2
− 4n2 ·

[(
π
2 − 1

)
− Td · n

]
2
[(
π
2 − 1

)
− Td · n

] (3.2)

where amax, dmax denote the max acceleration and deceleration and duM is the maximum
jerk. m and n also are the dominant variables to control the fuel efficiency in the accel-
eration and deceleration process. Given a value of n, the choice of m is affected by the
specific time that the vehicle reach to the intersection.

Similarly, for scenario 4, the host vehicle’s trajectory could also be planned by Eq.3.4,

where g2
s denotes the start time of the second green time and m, n satisfied,

n = m

m =
π · vu

d

(3.5)
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3.3.2/ TRAFFIC FLOW MODEL

The mathematical concept of traffic flow modeling for conventional cars is presented in
this subsection. Generally, microscopic traffic models express the acceleration and de-
celeration of each vehicle as a function of the velocity of the preceding vehicle, speed
difference, and safe headway between vehicles [98]. Our traffic simulation is based on
a discrete-time framework and we only consider the longitudinal motion dynamics of ve-
hicles, thus the car-following models are used to infer driving behavior at a signalized
intersection and the vehicle dynamic motion could be expressed at every timestep t as

yh(t + 1) = yh(t) + vh(t)∆t + 0.5uh(t)∆t2

vh(t + 1) = vh(t) + uh(t)∆t
(3.6)

where yh, vh, and uh are the position, velocity, and acceleration of host vehicle, and ∆t
is the step size. The vehicle velocity depends on input acceleration ui in Eq. 3.6, which
is calculated according to a microscopic car-following model called the Intelligent Driver
Model (IDM), the instantaneous acceleration uh(t) with its preceding vehicle is calculated
by

uh(t) = a

1 − (
vh(t)
vdes

)4

−

(
s∗ (vh(t),∆vh(t))

∆yh(t)

)2
s∗ (vh(t),∆vh(t)) = s0 + vhthw +

vh∆vh

2
√

ab

(3.7)

where vdes is the desired velocity of the host vehicle, s0, thw is the minimal distance, the



56 CHAPTER 3. A STOCHASTIC DATA-BASED ECO-DRIVING STRATEGY

desired time headway to the preceding vehicle respectively, a, b is the maximum acceler-
ation and comfortable deceleration (positive number), and ∆vh = vh − vp, ∆yh = yh − yp are
the distance gap and velocity difference of host vehicle and the preceding vehicle.

3.4/ HEV POWERTRAIN MODEL

Figure 3.4: Power-split HEV architecture

Generally speaking, there are three typical types of HEV powertrains: series, parallel, and
series-parallel as mentioned in Chapter1. This work focused on a power-split (also known
as a series-parallel hybrid) HEV, as Fig.3.4 shows, consists of PGS (Planetary Gear Set),
an ICE (Internal Combustion Engine), two EMs (Generator and Motor), energy storage
system (battery). The PGS bonded ICE and EMs together, the sun gear, carrier gear,
and ring gear are connected to motor/generator (MG1), ICE and motor/generator (MG2).
Meanwhile, the TABLE 3.1 records the basic characteristics of this HEV.

The PGS, as a result of mechanical connection through gear teeth, satisfy the following
relationship, where c, r, s indicate the carrier gear, the ring gear, and the sun gear.

(NR + NS )ωc = ωsNS + ωrNR (3.8)

Moreover, at each time step, the energy flow of power-split HEV can be described as
Eq. 3.9, where Preq is the tractive power demand, Ti, ωi denote the torque and speed,
i ∈ {engine, MG1,MG2}.

Preq = Teng ωeng + TMG1ωMG1 + TMG2ωMG2 (3.9)
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Table 3.1: Vehicle parameters

Parameter[Symbol] Value

Vehicle

Vehicle mass[m] 1750kg
Front area[A] 3.8m2

Air drag coefficient[CD] 0.33
Air density[ρ] 1.293kg/m2

Tire radius[Rtire] 0.298
Rolling resistance coefficient[δ] 0.015

Powertrain

Transmission efficiency[ηT ] 0.97
Final differential gear ratio[g f ] 4.113
Sun gear teeth number[NS ] 30
Ring gear teeth number[NR] 78

IC Engine Max Power 57kW

Motor/Generator(1)
Max Power 50kW

Rated Power 25kW

Motor/Generator(2)
Max Power 30kW

Rated Power 15kW

Battery
Capacity[Qb] 6.5Ah

number of cells 240

Suppose that the connection between the components are rigid and the energy losses
can be ignored, and consider the force analysis, the dynamic equations that govern the
mechanical path are

ωc = ωICE , ωr = ωMG2, ωs = ωMG1 =
g f

Rtire
v

JMG1
dωMG

dt
= TMG1 + F × NS

Jeng
dωeng

dt
= Teng − F × (NS + NR)

JMG2
dωMG2

dt
= TMG2 −

Tout

g f
+ F × NR

(3.10)

where v is the speed of HEV, g is the gravity acceleration, α is the road angle, Ji is the
lumped inertia, F is the interaction force between the differential gears, T out is the sum of
the powertrain output torque. To reduce the number of dynamic states, the inertial losses
Ji (dωi/dt)are ignored and set to zero in the control-oriented model[25].

The fuel consumption is selected as the target of the fuel economy, a empirical break-
specific fuel map (Fig.3.5) of engine is used to relate the fuel flow rate, ṁ f described
as,

ṁ f = BS FC
(
Teng, ωeng

) Peng

3600
(3.11)

Another important evaluated indicator when consider the energy consumption for an HEV
is the electricity consumption, the dynamic equation of the state of charge (SOC) can be
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Figure 3.5: BSFC map of ICE

represented by

S ȮC = −
Voc −

√
V2

oc − 4PbatRbat

2QbRb

Pbat = ηk1
MG1TMG1ωMG1 + ηk2

MG2TMG2ωMG2

(3.12)

where Rbat, Pbat and Voc are internal resistance, power of battery and the open-circuit
voltage respectively. As for ηk1

MG1,ηk2
MG2 denotes the efficiency of MG1, MG2 (Fig. 3.7),

when Tiωi > 0, k1 = 1 denotes the discharging state, and Tiωi < 0 , k1 = −1 denotes the
charging state. Furthermore, Voc and Rbat are generally dependent on both the SOC and
the temperature, since we only consider the situation at normal operating temperature of
25◦C, the map of Voc and Rbat are shown in Fig 3.6.

Figure 3.6: Maps of the open circuit voltage and the internal resistance
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Figure 3.7: MG1 and MG2 efficiency map and torque boundary

3.5/ METHODOLOGY

3.5.1/ CO-OPTIMIZATION FORMULATION AT AN INTERSECTION

The co-optimization of this power-split HEV at an intersection is formulated as a nonlinear
constrained optimization problem. We only consider longitudinal velocity and assume no
road grade, the total energy consumption cost of crossing an intersection for an HEV is
optimized to minimize, which can be written as,

min
T∑

t=ten

(
c f uelm f (t) + celeme(t)

)
(3.13)

subject to ∫ T

t=ten

v(t) = L (3.14)

vmin ≤ v(t) ≤ vmax (3.15)

where c f uel, cele is the fuel and electricity price separately, me(t) is the instantaneous elec-
tricity consumption, it can be calculated by Pbat(t)/3600, T is the time to cross the inter-
section, ten is the moment at occurrence of traffic light change, L is the given road section
distance, vmin and vmax are boundaries of v(t). In addition to the distance limit of the
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velocity optimization, the constraints to optimize the powertrain of HEV are,

Preq (t) =
v(t)

3600ηT

(
mg( f cosα + sinα) +

CDAv(t)
21.15

+ δmu(t)
)

(3.16)

Peng
(
ωeng(t),Teng(t)

)
= Preq(t) − Pbat (t; S OC0)∀t (3.17)

where S OC0 is the given initial SOC, Preq(t) is the required traction power at every time
step. Besides, the boundaries of related variables are,

ωmin
i ≤ ωi(t) ≤ ωmax

i

T min
i ≤ Ti(t) ≤ T max

i

Pmin
eng ≤ Peng(t) ≤ Pmax

eng

Pmin
bat ≤ Pbat(t) ≤ Pmax

bat

S OCmin ≤ S OC(t) ≤ S OCmax

(3.18)

3.5.2/ GAUSSIAN PROCESS REGRESSION MODEL

Based on the previously analysis, we consider that the crossing time T to pass through
an intersection for such a vehicle is uncertain because the exact information of the traffic
signal is unknown. However, it’s possible to use past driving data to estimate the crossing
time T = tcross, thus the following variables related to the important factors which can
influence the traffic flow are defined,

1) Crossing time τn, and τn = tc − ten, ten is the moment at occurrence of traffic light
change, tc is the moment that vehicle cross through the intersection

2) States of traffic signal δn (ten) , where δn (ten) = 0 denotes signal switching from green
to yellow and to red and δn (ten) = 1 denotes a signal switching from red to green

3) Velocity vn (ten) ∈ R+

4) Distance to the intersection dn (ten) ∈ R+

Firstly, the crossing time τn as the most important indicator should be recorded, here it’s
worth noting that the crossing time calculated from the moment ten at the occurrence of
traffic light change to ensure the validity of the collected data and the accuracy of esti-
mation possibilities. Next, the state of traffic signal δn (ten) since the crossing time start
at the occurrence of traffic light change, when δn (ten) = 0, a vehicle with fast velocity and
nearing the intersection seems to have the higher possibility to cross without stop, and
when δn (ten) = 1, a vehicle may or may not cross depending on the velocity vn (ten) and
distance to the intersection dn (ten), but still, there’s a possibility that vehicles fail to cross
if there are some unexpected situations, such as the preceding vehicle has to slow down
due to the appearance of passenger or other cars from both sides of the road, which
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also are hazardous behaviors, then the vehicle fails to cross and brakes aggressively to
stop. It’s clear that the crossing time of each vehicle τn has stochastic nature, and is
impacted by predictor variables δn (ten), vn (ten), dn (ten). Therefore, a kernel-based proba-
bilistic model called Gaussian Process Regression (GPR) model is defined for predicting
the crossing time tcross is presented below. GPR is a nonparametric, bayesian approach
to regression that has been widely used for regression and classification tasks in the area
of machine learning [107], its benefits are working well on small datasets, having the abil-
ity to provide uncertainty measurements on the predictions, and making the prediction
more versatile by providing the opportunity of specifying custom kernels [27]. In order to
learn the probabilistic relation between a set of the above-mentioned variables and their
conditional dependencies, the training dataset is collected from a series of intersection
scenario simulations, and after having D = {( fn, τn) | n = 1, 2, . . . ,N}, where fn = {dn, vn, δn}

is input vector, τn is response vector, the GPR model fGPR is defined to fit the training
dataset . The output of fGPR is a multivariate Gaussian with mean µn and covariance ma-
trix Σn, and the elements of covariance matrix is determined using squared-exponential
kernel function. Next, if the new input vector (dnew , vnew , δnew ) is received, the crossing
time distribution tcross is predicted from the model fGPR (dnew , vnew , δnew ), we can obtain
the mean µcross and covariance matrix Σcross (tcross ∼ N (µcross ,Σcross ))(Fig.3.8).

Figure 3.8: Gaussian Process Regression Model Structure

The standard deviation σcross is obtained from the covariance matrix, and the probability
Pcross of a vehicle crossing the intersection for any arbitrary time is calculated using the
Gaussian cumulative distribution function[98],

P (tcross | τn, fn, znew ) =
P (tcross , τn | fn, znew )

P (τn | fn, znew )
(3.19)

Pcross = P (tcross ≤ tr) = P
(
Zr ≤

tr − µcross

σcross

)
(3.20)

where tr is the red signal timing, Zr follows the standard normal distribution. The failure
probability of crossing Pfail is the complement of Pcross.
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3.5.3/ BI-LEVEL APPROXIMATION OF CO-OPTIMIZATION

As shown in Fig 3.9, a system driven by model and data is designed to obtain the op-
timal or near-optimal solution for the above-formulated co-optimization problem. First, a
stochastic eco-driving decision system composed of learning-based on the past traffic
data model (GPR model) and EAD model is built to evaluate the probability of crossing
Pcross the intersection and to obtain the desired set speed v∗s for the host HEV, the optimal
trajectory problem is considered as a stochastic optimization problem and according to
this subsystem, vehicle adjust the velocity from where the it can observe a change of
traffic signal, and the minimum limit of SOC (S OCMIN) is compared with the initial value of
SOC detected S OC0 at the same time, once S OC0 > S OCMIN , the optimal speed of host
HEV is planned by real-time calculation based on IDM model and desired set speed and
the pure electric mode will be locked in consideration of the above co-optimized objective
function, but if S OC0 is not satisfied S OC0 > S OCMIN , the optimal energy management
for HEV can be formulated as a nonlinear constrained optimization problem based on the
predicted speed planning with the probability of crossing, and is implemented to power-
train in real-time.

Figure 3.9: Flowchart of the proposed system with co-optimization of velocity and power-
train

3.5.3.1/ STOCHASTIC ECO-DRIVING PROBLEM FORMULATION

Before we begin to describe the stochastic eco-driving system, recall that the car-following
model described in Eq. 3.7, where the parameter vdes denote the desired speed of the
host vehicle and can be handled as a simple optimization problem with only one control
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variable as the Eq. 3.21 shows, Preq is a function of vh and uh Eq. 3.16. According to
optimized vdes and suggested EAD trajectory [89]of the preceding vehicle, the optimal
speed planning of host HEV is able to be implemented easily no matter in which event
(δn = 0 or δn = 1). Moreover, in case of preventing the sharp change of deceleration
caused by the sudden drop of vdes, the desired speed can be implemented by tuning the
set speed vs, as the equation (3.22) shows, where ϕ is the adjustment factor and ϕ < 1.

min
T∑

t=ten

Preq
(
vh, uh

(
vdes

))
(3.21)

vdes (
t, vs) =

 vs if vs ≥ vdes (t − 1)
ϕvdes (t − 1) + (1 − ϕ)vs otherwise

(3.22)

In order to solve this formulated optimization problem, vs is is discretized by speed step
into a set of possible solutions, which is also constrained by vs

min ≤ vs ≤ vs
max, so the

optimal (desired) set speed vs∗ ∈
{
vs

min + k∆v
}
, where k = 0, 1, 2, . . . ,K, speed step ∆v = 0.1

m/s and K =
(
vs

max − vs
min

)
/∆v, for each vs, the trajectory is able to be calculated by Eq. 3.6

and Eq. 3.7 assuming a preceding vehicle, if there’s any, driving in the EAD way, such
as Eq. 3.3, after the corresponding vh and uh of each time step are calculated in the
entire horizon, the objective Preq is determined accordingly. Therefore, K+1 target values
are obtained from the given set of possible solutions, and the desired set speed vs∗ is
selected corresponding to the minimum target value.

Then recall the GPR model that driven by a small amount of experienced traffic data
and presented in previous subsection 3.5.2, based on estimated probability Pcross of host
vehicle crossing the intersection, the aforementioned simple deterministic optimization
problem can be changed in a stochastic manner as,

Tc∑
t=ten

PcrossPcross
req

(
vh, uh

(
vs, t

))
+

T f∑
t=ten

PfailPfail
req

(
vh, uh

(
vs, t

))
(3.23)

It is worth noting that the crossing time of the preceding vehicle remains an important fac-
tor if there’s a preceding vehicle and the safety distance between the preceding vehicle
and the host vehicle is close enough. Still, in this case, the possibility of the host vehi-
cle crossing the intersection is considered equal to the chance of the preceding, which
could be determined by the GPR model as well. Thus let’s assume that there is always a
preceding car. When there is no data of the preceding vehicle in reality, the speed of the
preceding can be considered to be the same as the host HEV, and the position of the pre-
ceding car is calculated by dp = dh + S s, S s is the safe following distance, the value equals
to 30-60m according to the speed of host vehicle. In this way, we solve the optimization
problem by proposing a stochastic eco-driving decision subsystem; the overall procedure
is summarized in Algorithm 1, will advise either to slow down early to avoid the high fuel
consumption of emergency deceleration or increase acceleration appropriately to have a
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higher probability of crossing the intersection without stopping when there’s a preceding
vehicle, and if not, predict the trajectory of crossing the intersection with the consideration
of the possibility.

Algorithm 1 Stochastic Eco-driving Decision Subsystem
Input: dh (ten), vh (ten), dp (ten), vp (ten)
Output: vs∗ , Pcross, Pfail, vcross

h , vfail
h

1: Initialize δn at ten = t, visible distance of signal xJ, distance after the intersection xd,
empirical fixed traffic signal time tg, tr

2: Estimate Pcross and Pfail from fGPR
(
dp (ten) , vp (ten) , δn

)
3: if (δn == 1 and tr <

xJ−dp
vp
≤ tr + tg )or(δn == 0 and xJ−dp

vp
< tg ) then

4: Set the preceding vehicle pass through the intersection with steady cruise speed
vp

5: else
6: if δn == 1 then
7: Td = tr + 3 and vu = dp/Td . 3s is the buffer time
8: else
9: Td = tg − 3 and vu = dp/Td

10: end if
11: Compute the trajectory of preceding car by the EAD model Eq(3.3)

12: end if
13: Compute the fail trajectory of preceding vehicle by Eq(3.4)

14: Discrete vs∗ ∈ V s∗ =
{
vs

min + k∆v
}

and K =
(
vs

max − vs
min

)
/∆v

15: for each vs ∈ V s∗ do
16: Pcross

req := 0, Pfail
req := 0, t := 0

17: while dh <= xJ + xd do
18: Calculate uh(t) by IDM Eq(3.7)

19: Update dcross
h , vcross

h using traffic model Eq(3.6)

20: Compute Pcross
req = Pcross

req + Pcross
req (vh, uh(vs))

21: end while
22: t := 0
23: while dh <= xJ + xd do
24: Calculate uh(t) by IDM Eq(3.7)

25: Update dfail
h , vfail

h using traffic model Eq(3.6)

26: Compute Pfail
req = Pfail

req + Pfail
req(vh, uh(vs))

27: end while
28: Calculate J (k) = Pcross Pcross

req (vh, uh (vs)) + Pfail Pfail
req (vh, uh (vs))

29: end for
30: Find optimal vs∗ corresponding to the minimum J
31: Record vcross

h and vfail
h corresponding to the optimal vs∗
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3.5.3.2/ POWERTRAIN OPTIMIZATION PROBLEM FORMULATION

Except for the vehicle dynamic optimization, the operation of HEV is still a valuable part
of improving fuel economy. Typically, the optimal energy management for HEV is formu-
lated as a nonlinear constrained optimization problem and the objective is to minimize
the total fuel consumption along the given required tractive power as the same expres-
sion as Eq. 3.13, and the constraints conclude Eq. 3.8-Eq. 3.12 and Eq. 3.16-Eq. 3.18,
such formulation is suitable for traditional mathematical optimization methods with high
complexity, which are difficult to be implemented in real-time[72]. So in order to facilitate
on-line optimization based on the predicted optimal trajectory from stochastic eco-driving
system, the energy management optimization problem can be reformulated as,

min
T∑

t=ten

N∑
l=1

xl
t
Peng(t, l)
ηeng(t, l)

(3.24)

subject to:
j∑

t=1

γ

Preq (t) −
N∑

l=1

xl
tPeng (l)

 ≤ C ∀ j = 1, . . . ,T (3.25)

N∑
n=1

xl
t = 1 (3.26)

xl
t = {0, 1} (3.27)

where N is the number of discretized power levels for the engine, l is the engine power
level index, Peng(l) is the l-th discretized level of the engine power; x(t, l) is a binary vari-
able, either 1 or 0, the objective means to choose the optimal ICE power level for each
time step in order to achieve the highest fuel efficiency. Besides, γ() models the SOC
change as a function of required demand power Preq, C is the gap of the battery pack’s
SOC between the initial and the minimum. For the constraint Eq. 3.25, if ∆S OC is pre-
calculated for each associated engine power level based on the given power demand at
each time step from predicted velocity, it can be replaced by,

S OC0 − S OCmax ≤

j∑
t=ten

selec(t, l)∆S OC(t, l)

≤ S OC0 − S OCmin ∀ j = 1, . . . ,T

(3.28)

It’s worth noting that the minimum SOC here indicated S OCmin, which refers to the low-
est SOC value set in the whole process under the premise of protecting the battery life
as much as possible. In this way, the original problem is transformed into a Mixed Inte-
ger Linear Programming (MILP) problem and can easily be solved by numerous efficient
solvers [49]. In this paper, we used the GUROBI OPTIMIZER [126] to solve this MILP
problem.
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3.6/ DATA PREPARATION

The data preparation for establishing the GPR model is described first to implement the
proposed stochastic eco-driving system. To achieve realistic traffic patterns, the arrival of
vehicles in the simulator is determined at random by using a probability distribution, the
car-following models’ parameters are also picked at random from a pre-defined distribu-
tion. The traffic light is settled with a fixed cycle and splits the last 3 seconds of the green
period actually is yellow signal, but for simplicity we will treat the yellow sign within the
green signal, and the buffer time is considered for safety. Each vehicle in the simulator
follows the signal strictly.

The traffic flow rate is set to be moderate and non-congested, the parameters of IDM are
vdes = 27 − 60km/h, s0 = 2m,thw = 1.5sec, a = 1.5m/s2, and b = 2.5m/s2. The green-yellow
and red traffic signal durations are set as tg = 45s, tr = 30s respectively, but in fact the last
3 seconds is yellow signal. Then, the selected road for simulation has a single lane with
total length of 1.5 km and the intersection is located at 1.0 km, but in order to evaluate
fuel consumption, the analysis boundary of the road section is set to 600 m before and
200 m after the intersection. In the simulation, all the vehicles are assumed to be the
same type, and the simulation is run in a discrete-time framework with time step ∆t = 1.

We collected the crossing data from driving on the test road net, all the vehicles were
set with random trips during 20000 seconds, here we only considered the uncertainty of
the car on the road and ignored people for simplicity. Once the traffic signal changes,
the speed and position of vehicles in the analysis area of the test road will be recorded,
and the moment that vehicles cross through the intersection will also be recorded by a
detector placed 5 meters through the intersection. Then the crossing time of passing
through the intersection for a series of vehicles could be calculated and normalized with
respect to green-yellow and red signal durations, if δn (ten) = 1, then τn = (τn − tr) /tr and
if δn − (ten) = 0, then τn =

(
τn − tg

)
/tg. According to the collected data samples, which

contains 116 groups in total, there are 49 groups with δn = 1 and 67 groups with δn = 0,
they are used to build a GPR model for estimating the probability of a vehicle crossing
the intersection when an event occurs. As the Fig 3.10 shows, the estimated normalized
cross time is predicted by this data-driven model, it is seen that when δn = 0, the estimated
normalized average crossing time τn > 0, which means that the actual crossing time is
likely to be less than or equal to 45 seconds, but as can be seen from Fig 3.11a, there
is still a possibility of failure due to some Uncertainty. However, for δn = 0, the vehicle
often have to stop at the intersection, the normalized cross time τn ≤ 0, which means the
actual crossing time is more than or equal to 30 seconds as shown in Fig 3.11b. After the
training by two-dimensional data samples, the normalized output of the Bayesian network
is translated back into the original scale. Finally, the GPR model is used to predict the
average cross time and estimate the host vehicle’s possibility, which become the basis of
stochastic eco-driving decision subsystem to give the recommended velocity.
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Figure 3.10: 3-D plot of the average normalized cross time predicted by GPR

(a) 1-D slice plot with 95% confidence inter-
val when δn = 0

(b) 1-D slice plot with 95% confidence inter-
val when δn = 1

Figure 3.11: GPR model training by two-dimensional data samples to approximate cross-
ing time
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3.7/ RESULTS AND ANALYSIS

The performance of S-EDS is analyzed and compared through four simulation exper-
iments with the same traffic characteristics. Firstly, start from several individual tests,
when the initial SOC of a host HEV satisfied S OC0 > S OCMIN , taking into account the
short driving distance, the proposed stochastic eco-driving system will optimize the en-
ergy consumption by adjusting the desired set speed. The performance of the proposed
S-EDS is evaluated and compared with the IDM model (without S-EDS) in a free-flow
traffic scenario. The distance-velocity, distance-acceleration, distance-time, and distance-
cost plots for events δn = 0 and δn = 1 are shown in Fig.3.12. In Fig. 3.12a, the IDM model
adjusts the vdes of the host HEV in the situation where there is a preceding vehicle, when
event δn = 0 (traffic signal from green to red) occurs, so that the speed of the host HEV
is always maintained at 12.5m/s until has to stop aggressively near the intersection, but
with the proposed S-EDS based on the relatively lower probability, the host HEV is rec-
ommended to decelerate early to 10m/s to avoid aggressive braking. Thus the cumulative
cost of energy consumption of S-EDS is lower than the IDM vehicle though the travel time
of both cars is similar. While as for the event δn = 1 (traffic signal from red to green), the
host HEV is recommended to increase its velocity to have a higher probability of crossing
the intersection, but still limited by the speed of the preceding vehicle, and the cumulative
energy consumption of S-EDS outperforms the IDM because the brake recovery system
of host HEV makes deceleration more advantageous than slow acceleration. At the same
time, the host vehicle still has the chance of failing to cross the intersection during this
traffic signal cycle with the traditional IDM strategy, as shown in the case of δn = 1 in Fig.
3.12b, then if there’s no speed limit, the S-EDS system will recommend accelerating early
to a relatively high speed to obtain the higher probability to cross. In addition, similarly,
for the case of δn = 0 without limit speed, the host vehicle will also be recommended to
decelerate in advance to avoid idling at the red light signal.

All of the above analyses and comparisons are individual trajectories, the performance
with and without S-EDS are compared in non-congested traffic flow at last. Four traffic
simulation experiments with the same traffic flow and distribution are established, S-EDS
is applied by two of the four groups, and one group is selected to set S OC0 = 0.9. The
other group is S OC0 = 0.35, HEV with a higher initial value of SOC means that the electric
energy is sufficient at this time, so the electric mode is applied in this area, but when
the initial value of SOC is low, the system will optimize the powertrain operation of HEV
according to the predicted vehicle speed to achieve the better energy consumption effect.
The other two groups without S-EDS use the same settings. The four groups are divided
into two comparison groups; in the first comparison group, the energy costs, which are
calculated in pure-electric mode through the optimized set speed, are noted as group 1
(with/without S-EDS1), and in the second comparison group, the energy costs that by
applying powertrain optimization are reported as group 2 (with/without S-EDS2). Be-
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(a) Cases with the speed limit of the preceding vehicle

(b) Cases without the speed limit of the preceding vehicle

Figure 3.12: Comparison of the driving performance with and without the stochastic eco-
driving system when passing through an 800m intersection, and δn = 0 represents the
traffic signal change from green to yellow to red, δn = 1 represents the traffic signal
change from red to green.
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Figure 3.13: Energy costs with/without S-EDS1

Figure 3.14: Energy costs with/without S-EDS2

cause the time when HEVs appear is uncertain and the total simulation time is set to a
fixed value, the numbers of HEVs counted in the four simulation experiments are not the
same, the final statistical results indicated the numbers are 345 and 357(with S-EDS),
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338 and 341(without S-EDS) respectively. Eventually, the histograms of energy costs are
shown in Fig3.13 and Fig3.14, and the percentage improvement in energy cost is given
in TABLE 3.2.

Table 3.2: Energy costs improvement with/without S-EDS

Energy costs with/without S-EDS1(C) Energy costs with/without S-EDS2(C)

Mean value
Without S-EDS1: 0.0297 Without S-EDS2: 0.0785

With S-EDS1: 0.0277 With S-EDS2: 0.0752
Energy consumption reduce percentage 6.49% 4.17%

3.8/ CONCLUSION

In this chapter, a stochastic eco-driving system with co-optimization of vehicle dynamics
and hybrid powertrain operations for power-split HEV is presented and evaluated, which
contains a stochastic eco-driving decision subsystem and hybrid powertrain control de-
cision subsystem. For the upper-level stochastic eco-driving decision subsystem, tak-
ing into account the randomness of the traffic environment, we used a dual-driven (data
and model) approach to suggest the optimal desired set speed or predict the trajectory
through stochastic optimization. As for the hybrid powertrain control decision subsystem,
the rule-based control strategy is developed to optimize the energy cost of host HEV con-
sidering the particularity of the intersection. At last, the performance of the proposed
stochastic eco-driving system is evaluated by the simulation cases which were built in
SUMO traffic simulation environment; the simulation results show that the energy con-
sumption is reduced by 6.49% and 4.17% respectively compared with the groups without
stochastic eco-driving system. Furthermore, this system does not rely on full connectiv-
ity with traffic infrastructure, which is its greatest advantage because the realization of
connectivity at all intersections is not only costly but also impossible to achieve in the
near future. Moreover, the optimization driven by data and model is a promising technol-
ogy perspective facing future massive traffic data and intelligent transportation systems.
Although we have not used real traffic data simulations, our method can be extended
relatively easily to consider multiple traffic environments (such as the scenarios where
connected and automated hybrid electric vehicles are mixed with human-driven vehicles
or pedestrians) and multiple intersections, which is also the direction of future research.





4
A DATA-DRIVEN TRAJECTORY

PLANNING STRATEGY

4.1/ INTRODUCTION

In Chapter 3, we focus on a power-split HEV as the subject of our research, designing
a cooperative optimization framework to enhance fuel economy while ensuring the drive
comfort. To simplify the process, we extract stochastic traffic data from the SUMO simu-
lator, as real-world traffic data often presents greater complexity and challenges. In this
chapter, we apply real-world traffic datasets in an attempt to develop a data-driven speed
planning strategy for connected vehicles (CVs) to achieve fuel efficiency and safety. In
this context, we initially choose a general vehicle model for our study rather than using
an HEV directly in order to reduce the complexity of data processing. This approach al-
lows for the subsequent extension of our research to scenarios involving the coexistence
of HEVs/PHEVs with regular vehicles. Normally we assume in an ITS system, a host
vehicle can easily access information about surrounding through V2V and V2I commu-
nication, this information may include SPaT data for upcoming intersections, as well as
the position information of preceding vehicles. However, when the preceding vehicle is
not ”connected” or encounters unforeseen situations, uncertainties in position information
may arise. To account for the potential influence of realistic process noise or unexpected
changes, we tackle the relative distance between the host and preceding vehicles as a
random variable. Therefore, a non-parametric regression (Gaussian Process Regres-
sion) is constructed based on historical data to represent the uncertain relative distance
between the preceding and host vehicle. Then a optimal control problem is formulated
and solved using a Receding Horizon Control (RHC) framework, through transforming
the probabilistic constraint into a deterministic constraint within a shorter control interval.
Based on these efforts, the numerical simulation applied the NGSIM (Next Generation
SIMulation) dataset, demonstrate the effectiveness of the proposed method in improving
fuel economy while guarantee the safety simultaneously.

The rest of this chapter is structured as follows: Section 4.2 introduces mathematical for-

73
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mulations of the uncertainty in shared traffic information and treat it as an optimal control
problem, while also presenting the normal longitudinal vehicle dynamics. Section 4.3 re-
views the Gaussian sampling planner method for handling chance constraints. Section
4.4 provides details on our proposed method, which is based on the GPR-based predictor
and the receding control framework. Section4.5 exhibits the process of data preparation.
Section 4.6 presents the simulation results for the reviewed Gaussian sampling planner
method and the proposed GPR-based method, comparing their outcomes to demonstrate
effectiveness. Lastly, Section4.7 offers the conclusion and discusses future work.

4.2/ PROBLEM FORMULATION

4.2.1/ UNCERTAINTY IN SHARED INFORMATION

As described in the introduction, the host vehicle can easily access information about its
surroundings via V2V or V2I communication in a CAV system, which may include SPaT
information of upcoming intersection, as well as the position information of preceding ve-
hicle, denoted as s j. But once the preceding vehicle can not be “connected” or encounter
some unforeseen situation, there will be uncertainties in position information provided by
the preceding vehicle. To model the potential influence of the realistic process noise or

Figure 4.1: Schematic of the probability of collision between the preceding and the host
vehicles

unforeseen changes, we consider the relative distance between the host and preceding
vehicle as a random variable D, it is worth noting that the true distribution of D is unknown.
The probability distribution diagram in Fig.4.1 is only a schematic representation, but a
probabilistic constraint would capture the collision avoidance requirement.
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4.2.2/ VEHICLE MODEL

Firstly, we use the regular vehicle model and energy model for the numerical modeling.
The longitudinal vehicle dynamics [113] of i th vehicle is given by,

fi
(
xi, ui

)
=

 vi(t)
ui(t) − 1

2Mi
Ci

DρAi
vvi(t)2 − µg − gθ

 (4.1)

where the control variable is ui, tractive force per unit of mass, the state variable xi =[
si, vi

]T
includes the position si and the velocity vi of a host vehicle. And for simplicity,

we assume that road gradients are small, thus there is sin(θ) ≈ θ and cos(θ) ≈ 1. The
rest parameters, Mi, Ci

D, ρ, Ai
v, µ, g and θ are the vehicle mass, air drag coefficient,

air density, front area, rolling resistance coefficient, gravitational acceleration, and road
gradient separately.

And the energy model can be estimated as [26],

mi
f (t) = b0 + b1V i(t) + b2V i(t)2 + b3V i(t)3

+ āi(t)
(
c0 + c1V i(t) + c2V i(t)2

) (4.2)

where m f denotes the fuel consumption rate (in ml/sec),b0, b1, b2, b3, c0, c1 and c2 are the
consumption parameters. āi(t) is the non-negative acceleration and given by

āi(t) =

 ai(t) + g sin θ, if ai(t) + g sin θ ≥ 0
0, otherwise

(4.3)

4.2.3/ OPTIMAL CONTROL PROBLEM

The goal of host vehicle is to improve its fuel economy while avoiding rear-end collisions,
thus the objective function is

min
k+T−1∑

t=k

mi
f (t)

vi(t)
(4.4)

where t is the discrete time, the finite time horizon length T is chosen to be the time
remaining until the end of the current or the next green-light window from any time k
begins. Here it’s worth noted that v and V in the Eq.4.2 both is velocity, but the difference
is that the unit of V is km/h and v is m/s.

The probability of relative distance between the host vehicle (index i) and preceding vehi-
cle (index j) is required to drop below a threshold dmin to be less than β at each time step
for avoiding a potential collision, which is given by

P
(
s j(t) − si(t) < dmin

)
≤ β (4.5)
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And the predicted states from any time k are denoted by xi(t+1 | k) and discretized system
dynamics are calculated by

xi(t + 1 | k) = fdi
(
xi(t | k), ui(t | k)

)
(4.6)

At last, the boundary of each time step velocity is road speed limits, vmin and vmax, the
control bounds are umin and umax.

vmin ≤ vi(t | k) ≤ vmax

umax ≤ ui(t | k) ≤ umin
(4.7)

4.3/ REVIEW METHOD

4.3.1/ DETERMINISTIC EQUIVALENT OF CHANCE CONSTRAINT

The review method comes from the reference [114], the authors model the uncertain-
ties by defining the position of preceding vehicle as a random variable and suppose it
obey the Gaussian distribution for over-approximation. Then for the constraint Eq 4.5, the
probability of collision avoidance constraint constraint violation must be upper bounded
by β, if the position of preceding vehicle is considered as a random vector S j(t), whose
elements follow a Gaussian distribution S j(t) ∼ N

(
s j(t), σ2

j(t)
)

with changing mean s j(t)
and variance σ2

j(t). Here, the mean is the shared or predicted position, the time-varying
standard deviation captures the amount of possible deviation. Increasing standard devi-
ation models the prediction error. So for a given mean s j and standard deviation σ j of
S j(t), the probability of collision when the host vehicle position S i,

p = P
(
si − Li/2 ≤ S j − L j/2 ≤ si + Li/2

)
(4.8)

where Li and L j are the lengths of the vehicles i, j, si is the position of host vehicle at
each time step, then we suppose,

λ =
s − (s j −

L j
2 )

σ j
(4.9)
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By this changes of variable, we can get the following equations,

p =

∫ λ2

λ1

1
√

2π
e
−λ2

2 dλ

λ1 =
−D +

L j−Li
2

σ j

λ2 =
−D +

L j+Li
2

σ j

D = s j − si

(4.10)

if the relative distance of D is confirmed, the probability of collision would be p. Here
we can obtain an analytical approximation of the minimum distance that the host vehicle
should keep with its preceding vehicle so that the probability of collision is less than β.

Then taking a first-order Taylor expansion around λ0 =
−D+

L j
2

σ j

p '
1
√

2π

∫ λ2

λ1

e
−λ2

0
2 (1 − λ0 (λ − λ0)) dλ (4.11)

Hence,

p ' (λ2 − λ1)︸    ︷︷    ︸
=Li/σ j

e
−λ2

0
2

√
2π

[
(
1 + λ2

0

)
−
λ0

2
(λ2 + λ1)︸    ︷︷    ︸

=2λ0

] '
Lie

−λ2
0

2√
2πσ2

j

(4.12)

After considering p < β, we can get an analytical approximation of the required relative
distance D

(
σ j, β

)
, which is a function of the standard deviation of the uncertainty and the

chosen probability threshold in constraint Eq 4.5, which can be forced as,

s j(t) − si(t) ≥ D
(
σ j(t), β, τ

)
(4.13)

D
(
σ j(t), β, τ

)
'

L j

2
+ σ j(t)

√√√
log

 L2
i

2πσ2
j(t)β

2

 (4.14)

4.3.2/ GAUSSIAN SAMPLING-BASED PLANNER

Based on the above analysis, the chance constraint Eq.4.5 can be transformed to a de-
terministic interval through the approximation and assumption of Gaussian distribution.
However, the finite horizon length T in Eq.4.4 is typically large enough to obtain a feasible
solution, which increases the computational complexity to solve the nonlinear optimiza-
tion. Still in [114], a sampling-based method is employed to sample the control space and
retain only those solutions that fulfill the constraints and objective function. Specifically,
the control solution is obtained by Gaussian distribution as,

us(k) ∼ N
(
µ(k), σ2

c(k)
)

(4.15)
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where us(k) is the control input sampled at each time step following the Gaussian distri-
bution with mean µ(k) and standard deviation, σc(k) depend on current target velocity and
the relative distance between the host and the preceding vehicle. This distribution is dif-
ferent from the probability distribution followed by the information/prediction uncertainty.
Here,

µ(k) = a(k) +
1

2Mi
Ci

DρaAi
vvi(k)2 + µg + gθ

σc(k) =
β1∣∣∣∣ ∆sa(k)

∆sc(k)−β2

∣∣∣∣
(4.16)

where µ(k) of the Gaussian distribution is chosen as the acceleration that maintains the
target velocity vtarget for the host vehicle as the following,

a(k) =
vtarget (k) − v(k)

∆t
(4.17)

The target velocity is calculated wisely using SPAT information that helps the vehicle avoid
stopping at red light,

vtarget (k) =
dia(k)

ga
(4.18)

where dia is the distance between si(k) (location of the host vehicle) and the traffic signal
a, ga is the time to green signal of the traffic signal a, which creates a feasible velocity
space for making the vehicle move past traffic signal a through a green light window.

In addition, the following equations will give the definition of ∆sa and ∆sc in Eq.4.16.

∆sa = s j − si

∆sc = dmin + αvi
(4.19)

Since the host vehicle is required to perform rear-end collision avoidance, the standard
deviation σc(k) is computed to smaller if the relative distance ∆sa between the host and
the preceding vehicle is larger. And the highly probable control solution space expands
when the relative distance decreases, facilitating collision avoidance control actions, the
vehicle tends to cruise at the target velocity. Vice versa, the standard deviation will be
smaller when the relative distance is smaller.

4.4/ PROPOSED METHOD

4.4.1/ GPR-BASED RELATIVE DISTANCE PREDICTION

The reviewed method in section 4.3 is based on the assumption that the position of pre-
ceding vehicle follows Gaussian distribution. Next, inspired by this review method, the
actual distribution of the preceding vehicle’s position, as well as the relative distance be-
tween the host and the preceding vehicle, is actually unknown. In this case, the variable
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can be considered a random vector. As the relative distance is characterized by a ran-
dom vector, it can be inferred that a nonlinear stochastic relationship exists between the
distance difference and the traffic environment. To address this, Gaussian Process Re-
gression (GPR) can generate the predicted output after learning a functional mapping
from the training inputs and outputs, which can be implemented by parameterizing a co-
variance function.

Given a training set including n input-output pairs, where an arbitrary element X =

[x1, x2, . . . , xn]T is a D-dimension vectors. The training input xi is related to a scalar value
yi, y =

[
y1, y2, . . . , yn

]T, each output yi is related to the relevant input vector xi under a latent
function γi and is disturbed by gaussian noise εi, which can be written as,

yi = γi + εi

εi ∼ N
(
0, σ2

) (4.20)

where the n latent variables are collected into a vector form γ =
[
γ1, γ2, . . . , γn

]T , the γ is
considered to follow a joint Gaussian distribution and a random single γi follows a GP,
which is fully specified by a mean function and covariance function [111],

γi ∼ GP
(
µi (xi) , k

(
xi, x j

))
i, j = 1, 2, . . . , n (4.21)

where is also called a Gaussian process prior, xi, x j are two arbitrary inputs, µi(·) is
the mean function, k(·) is the covariance function. From the Gaussian process prior,
the collection of training points (x, y) and test points X∗ are joint multivariate Gaussian
distributed as follows [62],  y

γ∗

 ∼ N 0,  K + σ2I K∗
K′∗ K∗∗

 (4.22)

γ∗ is predict function value set at m test points X∗, where, X∗ =
[
x∗1, x

∗
2, . . . , x

∗
m

]T
, γ∗ =[

γ∗1, γ
∗
2, . . . , γ

∗
m

]T
and K is the covariance kernel matrix where its entries correspond to

the covariance function evaluated at observations, (K)i j = k
(
xi, x j

)
, (K∗)i j = k

(
xi, x∗j

)
,(

K′∗
)
i j = k

(
x∗i , x j

)
and (K∗∗)i j = k

(
x∗i , x

∗
j

)
. As the joint distribution is Gaussian,it is able to

have predictive posterior distribution,

p
(
γ∗ | y, θ, σ2

)
= N (γ∗ | µ∗,Σ∗)

µ∗ = K′∗
(
K + σ2I

)−1
y

Σ∗ = K∗∗ − K′∗
(
K + σ2I

)−1
K∗

(4.23)

where the hyperparameter θ should be the optimal to build the kernel function. Normally
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the optimization is realized by maximizing the marginal likelihood

θmax = arg max{log(p(y | X, θ))} (4.24)

In this work, we assume the predicted relative distance D∗ at each step ∆t from the current
time t follows the GP as

p (D∗ | X∗, Xtr, ytr) ∼ GP (µ(·),K(·)) (4.25)

where the inputs Xtr represent the effect of the traffic information on the relative distance.
Specifically, the following information is recorded as Fig.3.11 indicated,

1) The relative distance between the preceding and host vehicle ytr = s j(t+∆t)−si(t+∆t)

2) The relative velocity between the preceding and host vehicle xtr,i = v j(t) − vi(t)

3) The distance to from the host vehicle to intersection xtr, j = s − si(t)

The uncertainties in position information make the true distribution of relative distance at
each step is unknown, but after training the GPR model by optimizing the hyperparameter
θ with historical traffic information, the real distribution model of relative distance can be
approximated. Once the relative distance D∗ is predicted from the GPR model with new

Figure 4.2: Gaussian Process Regression Prediction Model

inputs xnew,i, xnew, j, we obtain the mean µD∗ and the covariance matrix ΣD∗ , i.e., D∗ ∼
N

(
µD∗ ,ΣD∗

)
. Then, once the exact collision possibility β is settled, like less than 5%, 1%,

the constraint in Eq.4.5 is calculated using the inverse cumulative distribution function as,

P
(
s j(t + ∆t) − si(t + ∆t) < dmin

)
= P (D∗ < dmin) ≤ β

(4.26)
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4.4.2/ RECEDING HORIZON CONTROL PROBLEM

The optimal control model is built in Section 4.2.3 as a nonlinear optimization methods
for solving the problem. However, the finite horizon length T in Eq.4.4 is sometimes
too large to obtain a feasible solution. Thus a data-driven Receding Horizon Control
(RHC) framework, which has the shorter horizon, is proposed to solve the dynamic control
problem, as shown in Fig.4.3.

Figure 4.3: The structure of data-driven receding horizon control model

To ensure the constraints Eq.4.5, the following constraints will be added to each control
interval,

τc
dst

dt
+ st = sp (4.27)

vi
(
t f
)

= vt = v j(t0) + a j(t0)∆t (4.28)

where τc is the time constant of desired controlled variable response, sp is the target
bounds to final set-point dead-band, st, vt is the desired location and velocity target, dmin

is the minimum safe distance with certain probability, which is calculated from (4.26). Then
in order to solve this nonlinear receding horizon control problem, the optimization suite for
Python named Gekko [83] is employed in this work, which is a powerful toolbox to perform
estimation, optimization, and predictive control via multiple solvers, including active set
solver (APOPT) and interior point solver (IPOPT). For more details, please refer [45], and
one of the simultaneous approaches for solving nonlinear control problems is to convert
dynamic equations to algebraic equations by orthogonal collocation on finite elements. In
this strategy, the dynamic optimization is converted to LP, quadratic programming (QP),
nonlinear programming (NP), MILP, or mixed-integer nonlinear programming problems
(MINLP) that large-scale solvers can solve.

4.5/ DATA DESCRIPTION

The NGSIM Peachtree dataset was collected from an arterial segment on Peachtree in
Atlanta, Georgia; the arterial segment was approximately 640 meters (2100 feet) in length
with 4 signalized intersections. It includes the spatial and temporal information of all the
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vehicles as well as the traffic light information from 12:45 p.m. to 1:00 p.m.and 4.00 p.m.
to 4.15 p.m. on November 8, 2006 [1]. For data preparation, the traffic data between
12th Street NE and 14th Street NE, as shown in Fig. 4.4, will be used for training and
testing the relative distance prediction and evaluation. The intersection of 14th St. NE
and Peachtree St. NE is 600 meters from the first intersection, and the distance from
the intersection of 12th NE to the stop line of 14th St. NE is measured to be about 221
meters (726 feet). In addition, to simplify as much as possible, the final selection of the
number of host vehicles in the study area meets the requirements in the presence of the
previous vehicle restrictions, and no lane change, overtaking, and other driving behavior
is 44. The SPaT information at the 14th St. NE is also obtained based on the phase
start/end time provided in the data. Then we record the relative speed and the position
of the host vehicle from the signalized intersection at t moment, as well as the relative
distance at the future t + ∆t timestep. The latter record variable includes both spatial and
temporal information.

Figure 4.4: Study area schematic
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4.6/ RESULTS AND ANALYSIS

4.6.1/ SIMULATION RESULTS OF REVIEW METHOD

According to the previous method, the simulation scenario is built with traffic light at 200m
intervals on a single lane urban road. The case is settled considering standard deviation
of uncertainty increasing over time to model the prediction uncertainty as the Eq.4.14
described.

(a) Results without gaussian planner (Baseline)

(b) Results with gaussian planner (Gaussian Planner)

Figure 4.5: Simulation Results
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Fig.4.5 shows the tractive force, velocity and distance profiles without/with gaussian plan-
ner, respectively. We use the MPC based fuel efficient controllers without gaussian plan-
ner as baseline methods, compare the fuel consumption and the average computation
time per iteration. As expected, with the gaussian sampling planner limit the initial value
for the MPC controller, the computation time and fuel consumption are both decreased as
the Table.4.1 recorded. Fig.4.6 shows the details of the distance-time diagram for the host
car and the leading car, from which we can see that the control of the host car relative
distance is more conservative when using the gaussian sampling planner compared with
the baseline relative distances, and because the speed range of the initial limit minimize
the tractive force adjustment and thus reduce the fuel consumption based on gaussian
sampling planner method, which verifies the effectiveness of the reviewed method.

Figure 4.6: Distance-time diagram comparison

Table 4.1: Simulation results with time varying standard deviation

Method Fuel Consumption (ml) Average Time/Iteration (s)
Baseline 2603.82 8.75

Gaussian Planner 2032.88 3.75

4.6.2/ SIMULATION RESULTS FOR PREDICTION

According to the proposed method, we train the real-world traffic data after processing for
modeling the probability of relative distances. The prediction results for relative distance
are presented in this subsection. As shown in Fig.3.11, the speed difference between
the host vehicle and the preceding vehicle and the distance to intersection are used as
inputs to predict the relative distance between the preceding vehicle and the following ve-
hicle after ∆t time steps.For simplicity, the relative distance is normalized for the standard
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minimum safe distance, which is calculated as the followings,

Dst =


30, V ≤ 40
40, 40 < V ≤ 50
V, V > 50

(4.29)

ytr =
ytr − Dst

Dst
(4.30)

where Dst is the standard minimum safe distance, V is the velocity km/h, ytr is the nor-
malized relative distance. Then in order to select the appropriate forecasting time step as
well as the size of the training data, the mean absolute error (MAE) is adopted to measure
the accuracy of, which is defined as

MAE =

∑N
i=1 |ŷ − y|

N
(4.31)

where N is the number of observations, ŷ is predicted value and y is the observed value.

A summary of the comparative results of different training sizes and forecasting times can
be seen in Table 4.2. In terms of computational cost for training, when the prediction time
is set to 3 seconds or 5 seconds, and the scale of the training data only accounts for 10%
of the total sample size, the computational time for training is the shortest. Nevertheless,
once the prediction accuracy is considered, it is observed that the best results are ob-
tained when the prediction time is set to 5s, and 30% of the total sample data is used for
training. Therefore, compared to the 50% and 70% training scale, 30% training time is
acceptable, and with the highest accuracy, it will be chosen to do the subsequent calcula-
tion. For example, fig 4.8 shows the slices of the GPR model with 30% of the training data
at a distance of 80m from the intersection for different horizons (3s and 5s), respectively,
from which we can see more intuitively that compared to the 3s prediction horizon, 5s
prediction horizon covers more data points within the 95% confidence interval.

(a) 10% training with prediction time = 3s (b) 10% training with prediction time = 5s

Figure 4.7: Relative distance prediction for different horizons by 10% training
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(a) 30% training with prediction time = 3s (b) 30% training with prediction time = 5s

Figure 4.8: Relative distance prediction for different horizons by 30% training

(a) 50% training with prediction time = 3s (b) 50% training with prediction time = 5s

Figure 4.9: Relative distance prediction for different horizons by 50% training

(a) 70% training with prediction time = 3s (b) 70% training with prediction time = 5s

Figure 4.10: Relative distance prediction for different horizons by 70% training

4.6.3/ SIMULATION RESULTS FOR OPTIMIZATION

To evaluate the performance of optimization results, the parameters for simulation are
designed uniformly with host vehicle as shown in Table 4.3. Next, based on the input
variables and prediction horizon selected in the previous subsection, we obtain the sim-
ulation results of energy consumption corresponding to different β values. Required in
the constraint (4.26), the probability that the relative distance between the host and the
preceding vehicle is then less than the threshold dmin in each time step to be less than β

for avoiding a potential collision.
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Table 4.2: Comparative results of relative distance prediction model

Prediction Time(s) MAE(m) Training Time(s)

10% Training
3 0.2 2.25

5 0.144 2.41

30% Training
3 0.183 21.98

5 0.123 17.21

50% Training
3 0.155 71.92

5 0.136 68.75

70% Training
3 0.172 180.64

5 0.131 152.1

Table 4.3: List of vehicle parameters

Definition Symbol Value

vehicle mass M 1200

frontal vehicle area Av 2.5

drag coefficient Cd 0.32

air density ρ 1.184

rolling resistance µ 0.013

gravity acceleration g 9.8

consumption parameters

b0 0.1569

b1 0.0245

b2 −7.415e−04

b3 5.975e−05

c0 0.0722

c1 9.68e−02

c2 1.075e−03

The simulation scenario uses accurate trajectories of 44 cars, with the time step of the
original dataset resampled from 0.1s to 1s. It is important to note that driving behaviors,
such as no overtaking and lane changing, are restricted only for the host vehicle, as men-
tioned in Section 4.5, however, the corresponding preceding vehicle(s) in the specified
study area are not subject to these restrictions.

This leads to a range of situations. At times, there may be only one preceding vehicle,
with its trajectory serving as the safety constraint. In other instances, there may be more
than one preceding car. For example, the first vehicle might temporarily change lanes,
causing the second car to suddenly appear. Alternatively, a car in another lane may
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Figure 4.11: A comparison of different time-space trajectories for host vehicles

abruptly switch lanes and become the host vehicle’s preceding car, making the safety
distance between the preceding vehicle and the host car highly uncertain. To explore the
relationship between driving trajectories and fuel consumption of host vehicles, we set
different values for the parameter β.

Table 4.4: Performance of the proposed prediction-based strategy

Fuel consumption(ml/m)

Vehicles
Original

trajectory
Optimized trajectory

with β = 0.05
Percentage
reduction

Optimized trajectory
with β = 0.15

Percentage
reduction

Optimized trajectory
with β = 0.25

Percentage
reduction

vehicle0 2.32 1.53 33.97% 1.70 26.62% 1.73 25.45%
vehicle1 4.44 3.69 16.95% 3.55 20.02% 3.74 15.66%
vehicle2 3.76 2.82 24.86% 4.43 -17.82% 3.40 9.56%
vehicle3 2.83 3.50 -23.70% 2.78 1.89% 2.77 2.21%

From the above dataset, 10% of the host vehicles are randomly selected for simula-
tion. Fig ?? displays the comparison of trajectories for 4 different host vehicles driven
by the driver and calculated using the proposed strategy, while Fig 4.12 shows their cor-
responding fuel consumption performance, and the specific fuel consumption values are
presented in TABLE 4.4.

As mentioned earlier, the safe constraint in Fig.4.11 may be a set of a complete trajec-
tory or may be determined by the position of multiple preceding vehicles. Moreover, we
can also observe that as the parameter β increases, the relative distance between the
optimized trajectory and the safety constraint slightly expands, indicating a higher poten-
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Figure 4.12: Fuel consumption performance of different host vehicles with different β
values

tial crash risk due to the relaxation of β, However, there are no safety issues within the
studied road segment.

From the viewpoint of fuel consumption, the fuel consumption per unit distance of all
optimized trajectories (with β = 0.05, β = 0.15 and β = 0.25) are smaller than the original
trajectory from data set for vehicle0 and vehicle1, with a maximum reduction of 33.97%
and a minimum reduction of 15.66%, but for vehicle2 and vehicle3, the overall reduction
in fuel consumption per unit distance after optimization is not as significant as that of
vehicle0 and vehicle1, the maximum reduction is 22.86% and the minimum reduction is
only 2.21% and even the fuel consumption per unit distance of the optimized trajectory
increases with β = 0.05 and β = 0.15.

It can be observed from the original host vehicle trajectories that when there is a long
waiting time, the relative distance prediction (part of the proposed strategy) tends to be
more stable, resulting in more effective fuel consumption optimization. In contrast, for
vehicles without waiting or with shorter waiting times (vehicle2 and vehicle3), the accuracy
of the predicted values significantly impacts the subsequent optimization calculations.

4.7/ CONCLUSION

In this chapter, we proposed a data-driven trajectory planning strategy for connected ve-
hicles, taking into account the uncertainty in shared information. Initially, we reviewed the
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Gaussian sampling-based method, which effectively handles chance constraints in trajec-
tory planning problems. Inspired by this, we developed a strategy that solves the optimal
control problem by converting the chance constraint into a deterministic equivalent inter-
val at each time step, based on a Gaussian Process Regression prediction model. To
evaluate the effectiveness of our proposed strategy, we utilized the Next Generation SIM-
ulation (NGSIM) dataset, simulating various scenarios and examining vehicle trajectory
and fuel consumption performance under different probability values. The results show-
case improvements in fuel economy, proving the merit of our approach. As for future
research directions, expanding this strategy to longer routes featuring a larger number
of signalized intersections could be considered. This would further test and refine the
proposed method in more complex traffic situations, potentially leading to even greater
efficiency improvements.



5
CONCLUSION AND FUTURE WORK

5.1/ CONCLUSION

In this thesis, we have explored various strategies for improving energy efficiency and re-
ducing emissions in transportation sector across four chapters. Each focusing on different
aspects of optimization and control.

In chapter 1, a comprehensive introduction is provided about HEV/PHEV/PEV, as well
as a review of the state-of-the-art EMS for HEV/PHEV, eco-driving strategies for CAVs,
and cooperative optimization approaches for CAHEVs. This chapter set the stage for our
contributions to the field by identifying the gaps and challenges in existing methods.

In chapter 2, a velocity planning strategy for PHEB is presented, focusing on energy and
time savings. By simplifying a 3D-DP to 2D-DP with optimal SOC from empirical data, we
developed a deterministic spatial-discrete nonlinear optimization problem. Our simulation
results demonstrated a 3.98% reduction in energy consumption and a 4.84% time saving.
However, the premise of such a case assumes that the traffic signal information under a
fixed route can be obtained completely and accurately in the context of ITS. However,
in the absence of full ITS, more often than not, we do not have access to very accurate
information of surrounding traffic information, and one of the solutions to this situation is
to combine historical data to predict or extrapolate possible scenarios for better control.

In chapter 3, we try to combine data and model-driven strategies and proposed a stochas-
tic eco-driving system for a power-split HEV, featuring co-optimization of vehicle dynamics
and hybrid powertrain operations. The system comprises a dual-driven upper-level deci-
sion subsystem that suggests optimal set speeds or predicts trajectories and a rule-based
hybrid powertrain control subsystem for optimizing energy consumption at intersections.
Simulations in the SUMO traffic environment showed energy reductions of 6.49% and
4.17% compared to groups without the system, highlighting the system’s independence
from full traffic infrastructure connectivity, which could reduce to some extent the invest-
ment in traffic infrastructure renewal.

In chapter 4, similar to chapter 3, our goal was to optimize eco-driving strategies using a

91
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data-driven model. However, in this chapter, we went a step further by employing data that
is more representative of real-world conditions. By utilizing the NGSIM dataset, we were
able to simulate various traffic scenarios and examine the performance of our proposed
strategy in terms of vehicle trajectory and fuel consumption under different probability
values. Firstly we reviewed the Gaussian sampling-based method for handling chance
constraints in trajectory planning and developed a strategy using Gaussian Process Re-
gression prediction models to transform chance constraints into deterministic equivalent
intervals. The use of the NGSIM dataset allowed us to account for uncertainties in shared
information, making our data-driven trajectory planning strategy more robust and adapt-
able to real-world situations. As a result, we were able to demonstrate improvements in
fuel economy, validating the effectiveness of our approach in a more realistic context.

Moving forward, the successful implementation of our data-driven trajectory planning
strategy using the NGSIM dataset paves the way for further research and development in
this area. By refining our approach and extending it to other datasets or real-world traf-
fic data, we can continue to enhance the energy efficiency and eco-friendliness of con-
nected vehicles in increasingly complex traffic situations. Overall, this thesis has made
significant contributions to the development of novel strategies and methodologies for
energy-efficient and eco-friendly vehicle control, showcasing the potential for substantial
advancements in fuel economy and traffic management.

5.2/ ONGOING RESEARCH

5.2.1/ EXPLORING LATERAL VEHICULAR INTERACTIONS AND HETEROGE-
NEOUS TRAFFIC FOR ENHANCED EMS AND ECO-DRIVING STRATEGIES

In the Chapter 1, literature analysis highlights that the integration of various data sources,
such as traffic data, routes, and vehicle information presents opportunities for cooperative
optimization of vehicle dynamics and powertrain systems, with a considerable potential to
reduce emissions and energy consumption. However, despite the wealth of research on
this topic, there is a notable gap in the literature regarding the rigorous mathematical treat-
ment of lateral vehicular interactions and their implications for trajectory planning along
multi-lane road segments near signalized intersections. In realistic traffic conditions, lane-
changing and merging maneuvers occur frequently. To address these challenges, several
methods [78, 99, 120] have been proposed for legacy vehicles, which adopt stochastic
controls to minimize the risk of collisions. The focus on safety can also be extended to
connected HEV/PHEVs. As a result, how to manage the single/double-vehicle or pla-
toon considering the lateral vehicular interaction behaviors in the future ITS environment,
while ensuring safety and achieving better fuel economy simultaneously, will be one of
the future research trends.
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In addition, the heterogeneous traffic environment in the future will become another inter-
esting subject to explore. According to [50], full market penetration of CAV technologies is
not expected until the 2060s. Consequently, mixed traffic streams consisting of Human-
Driven Vehicles (HDVs) and connected PEV/HEV/PHEVs will face heterogeneous dy-
namics and stability. Recent studies have made progress for the platoon with the con-
sideration of lateral vehicular interactions. For example, [122] proposed distributed MPC
method for a heterogeneous platoon, and [116] addresses control problems for heteroge-
neous vehicle platoons subject to disturbances and modeling errors. Nevertheless, it is
crucial to develop a controller that can respond effectively to real-world traffic conditions
while maintaining string stability to ensure safe transitional platoon maneuvers. This has
been the main goal of the control algorithms proposed in most research to date and into
the future.

5.2.2/ HARNESSING MACHINE LEARNING AND EDGE COMPUTING FOR AD-
VANCED EMS AND ECO-DRIVING SOLUTIONS

As the level of sophistication of cooperative optimization of EMS and Eco-driving is grad-
ually advancing, to address many human factors-related issues, machine learning meth-
ods have become popular. These data-driven models integrated predictive models that
the driver’s compliance with speed advice systems or other interactions with V2I and
V2V services. By doing so, these models provide a more realistic representation of how
these services may affect systems. In addition, leveraging empirical observations that
encompass different driver types, vehicle types, and traffic conditions can enable accu-
rate predictions regarding the performance of co-optimization applications. An example
like [110], deep learning is used to model state transitions based on an offline-trained
graphical model, significantly reducing the time complexity. Further, hybrid two or more
learning algorithms will be the direction of approaches for solving the cooperative op-
timization problem with more and more data sources, one of the applications direction
of the learning algorithm is to extract useful traffic information and perceive the behav-
ioral characteristics of human-related factors from huge amounts of data, which makes
the ”brain” of connected HEV/PHEVs smarter, and another is application is the onboard
implementation of EMS, which makes their ”behavior” more reliable.

Besides, online control requirements need more powerful calculation and processing ca-
pacity. To improve working efficiency, cooperative optimization frameworks must be able
to allocate computing resources reasonably according to different calculation tasks. With
the advent of the Internet of Things and 5G communications, centralized mobile cloud
computing has given way to Mobile Edge Computing (MEC) in recent years. The pri-
mary feature of MEC is to push mobile computing, network control, and storage to net-
work edges, enabling computation-intensive and latency-critical applications on resource-
limited mobile devices [71]. Therefore, the analysis and study of cooperative optimization
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under the mobile edge computing architecture represent another important research di-
rection.

5.2.3/ ASSESSING THE REAL-WORLD IMPACT OF EMS AND ECO-DRIVING

STRATEGIES

Ultimately, experimental validation of any proposed controllers is essential for evaluating
their efficacy in real-life scenarios. While simulation tests are the primary validation tool in
most reviewed works, they may not provide a precise approach that can be implemented
and improved upon in a real-life environment. Although simulation tests satisfy the essen-
tial requirement of initial evaluation, several testing-related elements, including commu-
nication devices (sensors, V2V/V2I equipment), trajectory planning algorithms, and EMS
for determining the optimal power-split for HEVs/PHEVs, pose a challenge to evaluating
the real performance of proposed methods. To address this challenge, some researchers
have developed HIL testing for relatively simple traffic conditions [80, 123, 125]. There-
fore, there is a need to systematically investigate efficient approaches (such as those that
are low-cost and easy to implement) to validate the co-optimization performance.
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