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ABSTRACT

Over the past two decades, superconducting circuits have emerged as a
promising platform for building a quantum computer. However, they remain
limited by their coherence time which is still insufficient to demonstrate a
practical quantum advantage.

Quantum error correction (QEC) offers an approach to counter these
errors. Its fundamental principle consists of introducing redundancy in order
to define a so-called logical qubit. Thus, if an isolated physical qubit suffers
an error, it can be detected and corrected without affecting the information
stored within the logical qubit. One of the most intuitive approaches, and
one that comes closest to conventional error correction, is to use an array of
physical qubits to achieve the desired redundancy.

This thesis explores an alternative approach, based on encoding quantum
information in superconducting cavities, where the redundancy is provided
by the infinite dimension of the Hilbert space. Specifically, we use cat
qubits for which the logical |0i and |1i states are coherent states |±↵i of a
harmonic oscillator. These states are stabilized by leveraging dissipation to
our advantage so that photon exchanges between the harmonic mode and its
environment predominantly occur in pairs. In this way, "bit-flip" errors are
exponentially suppressed as a function of the number of photons contained
by the mode, at the modest cost of a linear increase in "phase-flip" errors.
These errors could then be corrected by an additional layer of correction,
such as a repetition code of cat qubits.

At the heart of this thesis work is the introduction of a self-parametric
superconducting circuit that non-linearly couples a mode containing the cat
qubit to a dissipative mode whose frequency is set to twice that of the cat
mode. Unlike previous implementations, this passive coupling does not require
a parametric pump and achieves a high two-photon dissipation rate 2/2⇡
of around 2 MHz. Bit-flip errors are then avoided for a characteristic period
of up to 0.3 s, with a moderate impact on phase-flip errors. In addition, we
demonstrate universal control of this qubit using the two-photon dissipation
to implement X̂, Ŷ and Ẑ logic gates of arbitrary ✓ angle.
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RÉSUMÉ

Au cours des deux dernières décennies, les circuits supraconducteurs se
sont imposés comme une plateforme prometteuse pour la construction d’un
ordinateur quantique. Cependant, ils demeurent limités par leur temps
de cohérence qui reste insuffisant pour démontrer un avantage quantique
pratique.

La correction d’erreur quantique offre une approche pour contrer la déco-
hérence, le principe fondamental étant d’introduire de la redondance afin de
définir un qubit dit logique. Ainsi, si un qubit physique isolé subit une erreur,
celle-ci peut être détectée et corrigée sans affecter l’information contenue
dans le qubit logique. L’une des approches les plus intuitives, se rapprochant
le plus de la correction d’erreur classique, consiste à utiliser une multitude
de qubits physiques pour réaliser la redondance recherchée.

Cette thèse explore une approche alternative, basée sur l’encodage de
l’information quantique dans des cavités supraconductrices, la redondance
étant alors simplement fournie par la dimension infinie de l’espace de Hilbert.
Nous utilisons des qubits de chat pour lesquels les états logiques |0i et
|1i sont des états cohérents |±↵i d’un oscillateur harmonique. Ces états
sont stabilisés en utilisant la dissipation à notre avantage, de sorte que les
échanges de photons entre le mode harmonique et son environnement se
fassent principalement par paires. Ainsi, les erreurs de type « bit-flip » sont
supprimées exponentiellement avec le nombre de photons contenus dans le
mode, au prix d’une augmentation linéaire des erreurs de type « phase-flip
». Ces erreurs pourraient alors être corrigées par une couche supplémentaire
de correction, tel qu’un code de répétition de qubits de chats.

Le coeur de ce travail de thèse consiste à introduire un circuit supraconduc-
teur autoparamétrique qui couple de manière non-linéaire un mode contenant
le qubit de chat à un mode dissipatif dont la fréquence est réglée au double
de celle du mode du chat. Contrairement à de précédentes réalisations, ce
couplage passif ne nécessite pas de pompe paramétrique et atteint un fort
taux de dissipation 2/2⇡ d’environ 2 MHz. Les erreurs de bit-flip sont alors
évitées pendant une période caractéristique pouvant aller jusqu’à 0.3 s, avec
un impact modéré sur les erreurs de phase-flip. De plus, nous démontrons
un contrôle universel de ce qubit en utilisant la dissipation à 2 photons pour
réaliser des portes logiques X̂, Ŷ et Ẑ d’un angle ✓ arbitraire.
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1INTRODUCTION

The theoretical framework of quantum mechanics emerged at the dawn
of the 20th century, originally as an attempt to explain experiments on
blackbody radiation, the photoelectric effect, or solar emission spectra. This
framework gave physicists a new understanding of the microscopic world1,
and paved the way for what’s known as the first quantum revolution. This
revolution resulted in the emergence of new technologies that have since
become widely adopted and an integral part of our society, with notable
advancements such as lasers or transistors. The latter was invented at Bell
Labs as a replacement for the vacuum tube [2], exploiting the wave function
associated with electrons in a semiconductor. Through decades of refinement,
as these components shrank in size and increased in efficiency, they became
the cornerstone of modern computing and can be found in the billions in
any processor.

The breakthroughs of this first quantum revolution relied on the collective
behavior of an ensemble of quantum systems, as opposed to isolated systems
and the precise control of their degrees of freedom. This was actually thought
to be impossible until the second half of the 20th century, with Erwin
Schrödinger writing in 1952 "[...] we never experiment with just one electron
or atom or (small) molecule. In thought-experiments we sometimes assume
that we do; this invariably entails ridiculous consequences [...]" [3]. Only in
the 1980’s did experiments on Rydberg atoms and trapped ions demonstrate
the measurement and manipulation of individual quantum systems, resulting
in 2012 to the Physics Noble Prize being awarded to Serge Haroche and
David Wineland [4]. This paved the way to the second quantum revolution,
where effects such as superposition or entanglement2 are now exploited in

1 The world of isolated objects would be more accurate. While originally thought of as
a description of molecules, atoms, or subatomic particles, the framework of quantum
mechanics actually applies to any object isolated from its environment whose properties
can be quantized. For instance, despite weighting nearly 40 kg, the mirrors in the LIGO
and VIRGO experiments present degrees of freedom which are described by Quantum
mechanics [1].

2 Experiments on entanglement led to the attribution in 2022 of the Physics Nobel Prize
to Alain Aspect, John Clauser, and Anton Zeilinger. These experiments notably proved
the violation of Bell’s inequalities [5, 6], disproving local hidden-variable theories as an
interpretation of quantum mechanics.
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introduction

the fields of quantum sensing, metrology, communication, cryptography, and
quantum computing.

This thesis focuses on the field of quantum computing, whose origin can
be traced back to an article from Richard Feynman in 1982 [7]. In this
work, Feynman postulates that a quantum computer would be the optimal
tool for simulating the behaviors of large quantum systems, a task that
classical computers struggle with due to the size of the Hilbert spaces. Other
applications for quantum computers later emerged, including Shor’s [8] or
Grover’s [9] algorithms which could offer exponential speed-up for challenges
such as integer factorization and unstructured searches. These developments
sparked the interest of physicists who took on the challenge of building such
a quantum computer, with industrial players becoming increasingly involved
in recent years.

The concept of what constitutes an ideal quantum computer was formalized
in 2000 by David DiVincenzo [10], consisting of the 5 DiVincenzo’s criteria.

A scalable physical system with well-characterized qubits. At the heart of
a quantum computer are its qubits, the quantum analog of classical bits. It
corresponds to a two-level system, used to store and manipulate the quantum
information, whose state is described as the superposition of a ground state
|gi and excited state |ei (also symbolized as |0i and |1i). The notion of
scalability is associated with the ability to add more and more of these
qubits to the quantum computer, without incurring an exponential cost in
physical resources. This scalability allows a quantum computer composed
of N qubits to operate within a Hilbert space of dimension 2N , a stark
contrast to the linear scaling of classical bits, which is what makes quantum
computers so appealing.

The ability to initialize the state of these qubits. At the beginning of each
algorithm, a quantum computer comprising N qubits is initialized into a
known state, usually its ground state |gi ⌦ |gi ⌦ |gi ⌦ ... = |ggg...i.

Long relevant decoherence times. Qubits in a quantum computer are suscep-
tible to errors that corrupt the quantum information, with the decoherence
time characterizing the time during which this information remains intact.
In order to perform accurate operations that do not suffer from decoherence,
the decoherence time must significantly exceed the duration of any operation
performed.

A universal set of quantum gates. Similar to classical computers, a minimal
set of universal gates can be defined which allows the execution of any multi-
qubit gate on a quantum computer. The experimental implementation of
these gates depends on the specific physical realization of the quantum
computer.

2



1.1 superconducting circuits for quantum computing

A qubit-specific measurement capability. Because performing operations
without having access to the result can be quite infuriating, experimenters
need to have access to the state of these N qubits.

Building such a device proves extremely challenging, particularly when it
comes to conciliating the need for long coherence times and the ability to
measure and manipulate qubits. The dilemma arises from the necessity to
access quantum information for manipulation and readout, which entails a
coupling of the N qubits with their surrounding environment, resulting in
decoherence. Striking a balance between minimizing this coupling to preserve
coherence times and achieving efficient operations and measurements is a
complex task.

1.1 superconducting circuits for quantum computing

Despite being investigated for more than two decades, no clear consensus
emerged among the scientific community regarding the most suitable platform
for quantum computing. As a consequence, several technologies are currently
being developed in a race to build the first quantum computer, such as
Rydberg atoms [11], trapped ions [12], quantum dots [13], nuclear spins [14,
15] or photonic qubits [16, 17]. These technologies rely on existing two-level
systems to encode the quantum information, achieving coherence times as
high as 40 ms using nuclear spins [18] or 1 h with trapped ions [19]. However,
their operations are typically slow, and scalability remains a challenge.
Moreover, since these qubits rely on naturally occurring physical objects,
their Hamiltonian and energy spectrum are more or less fixed and cannot
be freely adjusted to meet specific requirements.

These issues can be mitigated using superconducting circuits that behave
as an artificial atoms when cooled under a critical temperature Tc

3. At
such temperatures, electrons in the superconducting metal bind to form
Cooper pairs [20] due to an attractive interaction, for instance mediated by
phonons. These Cooper pairs, composed of two spin 1/2 particles, obey a
bosonic statistic which allows them to occupy the same fundamental state
and exhibit a collective behavior. This Cooper-pair condensate is described
by a single degree of freedom [21, 22] whose potential can be controlled by
macroscopically defined inductances and capacitances. Harmonic potentials
can be realized using superconducting circuits with microwave resonators or
cavities, while qubits are fabricated using Josephson junctions [23].

3 Superconductors such as tantalum and aluminum, routinely used in superconducting
circuits, have a respective critical temperature of Tc(Ta) = 4.5 K and Tc(Al) = 1.2 K
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Figure 1.1: Evolution of lifetimes (T1) and coherence times (T2) of superconducting
qubits. Bold fonts indicate the first demonstration of a given design.
JJ-based qubits correspond to qubits where the quantum information is
stored in a qubit made out of one or several Josephson junctions. On the
opposite, bosonic qubits encode the information in the multiple energy
levels of a quantum harmonic oscillator, with Josephson junctions being
used to control and read this information. Figure adapted from [24],
adding the realizations of [25, 26, 27, 28].

In comparison to alternative quantum computing platforms, superconduct-
ing circuits offer distinct advantages, notably in terms of scalability. Multiple
qubits can be manufactured and interconnected on the same chip, making it
an easily scalable approach. Initialization of these qubits to their ground state
is ensured by working at a low temperature T ⌧ Tc such that thermal noise
does not induce unwanted excitations, resulting in the condition ~! � kbT
where ~! represents the energy difference between the qubit’s two energy
states. Considering the typical frequencies of superconducting qubits, which
are around !/2⇡ ⇡ 0.1�10 GHz4, these qubits are operated at temperatures
T ⇡ 10 mK within dilution fridges. Furthermore, a universal set of gates can
be tailored to the specific type of qubits in use, with operations that can

4 Frequencies exceeding 10 GHz can be impractical due to microwave sources and components
being outside their usual operational range. Additionally, the maximum frequency is
constrained to a few 10s of GHz due to the bound imposed by the superconducting gap
and the plasmon frequency of Josephson junctions.
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be performed in just a few nanoseconds due to the large dipole exhibited
by these artificial qubits. Lastly, the readout of superconducting qubits has
been demonstrated in a quantum-non-demolition (QND) manner by coupling
them to a microwave mode [29, 30].

The primary drawback of superconducting qubits is their limited coherence
time. Despite the absence of resistive power loss, which prevents the use of
ordinary electrical circuits, the large number of conductive electrons in the
Cooper-pair condensate (⇠ 1010) results in an increased decoherence rate
compared to more microscopic systems [31].

As a result, the first superconducting qubits [32] were limited to a coherence
time of a few nanoseconds. This was later improved by introducing new
designs of Josephson junction-based qubits, notably the transmon [33] and
fluxonium qubit [34], or encoding the information in bosonic modes (Fig. 1.1).
Additionally, progress in fabrication techniques, noise filtering, and cryogenic
methods, have led to a Moore-law-like improvement of the lifetime T1 and
coherence time T2 (see Sec. 2.2.1 for a proper definition of these 2 quantities),
with recent implementations achieving coherence times of a few milliseconds.
Nevertheless, such coherence times are still insufficient in order to perform
any useful quantum computation before losing the quantum information.
While further improvements based on material science are still possible,
notably preventing the detrimental impact of quasiparticles [35], another
axis of research emerged based on the design of logical qubits: Quantum
Error Correction.

1.2 quantum error correction with superconducting
circuits

The concept of quantum error correction has its roots in the historical
development of classical error correction techniques in the late 1940s. This
field emerged as a response to the unreliable computers of that era, which
utilized vacuum tubes in their circuitry. These early computers, especially
when executing lengthy algorithms that relied on numerous logical gates,
were prone to bit-flip errors which could transform a 0 into a 1 or vice versa
during computation. This could lead to erroneous results when such bit-flip
errors went undetected, and even cause the computer to abruptly halt in
the middle of a computation. Frustrated by this, Richard Hamming [36]
and Marcel Golay [37] independently developed the first error-correcting
codes, at the same time Claude Shannon laid the groundwork for the field
of information theory [38].
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The fundamental idea behind these error-correcting codes was to redun-
dantly store the same information across multiple physical systems. This
redundancy allowed for the detection and correction of bit-flip errors af-
fecting one or more of these systems by measuring the entire ensemble of
systems. Errors could then be rectified, effectively reducing the error rate
and restoring the stored information.

When considering the application of these error-correcting codes to quan-
tum computers with imperfect qubits, susceptible to decoherence, the ques-
tion naturally arising is whether these codes can be adapted. While the
answer is fortunately yes (as evidenced by the existence of this thesis), a
few features of quantum mechanics must be taken into account in order to
understand the challenge this represents.

One such feature is the ’no cloning’ theorem, which asserts it is impossible
to create an identical copy of a quantum system in an arbitrary state. The
redundancy required for error correction thus cannot be provided by simply
duplicating the same quantum state over multiple qubits and instead requires
changing the encoding itself to define logical qubits.

Another challenge arises from the projective nature of measurements in
quantum mechanics, which inherently destroys the information contained in
a quantum system. However, while this may appear problematic at first for
detecting error syndromes, this phenomenon can actually be exploited in
order to design syndrome measurements that project a quantum computer
into its logical space or some known error spaces. As the measured syndrome
indicates in which subspace the system is projected, the error is then dis-
cretized and can then be corrected, bringing the computer back to its logical
encoding. Alternatively, measurement-free techniques based on the constant
removal of entropy from the system were designed which do not suffer from
this measurement challenge. This work presents such a technique.

1.3 outline of this thesis

The structure of this thesis is divided into two primary sections: an ini-
tial theoretical presentation of the cat qubit, followed by its experimental
realization and potential expansion of its encoding.

The initial two chapters serve as a theoretical foundation, providing
the necessary background to understand the subsequent experiments. In
Chapter 2, we give a more detailed presentation of the different concepts
introduced in this chapter. This includes a detailed examination of the
representation of a single qubit state, an analysis of the sources of errors
that impact these qubits, and an exploration of how various quantum error
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correction schemes can be devised to combat decoherence in logical qubits.
We also explore the use of biased noise qubits for simplifying existing QEC
protocols when gates are available that can effectively preserve bias noise
for the chosen qubit architecture. Cat qubits are highlighted as a prominent
example of this approach.

Chapter 3 then focuses on cat qubits, comparing them with alternative
options for bosonic qubits. We discuss different methods for stabilizing cat
qubits such as measurement back action, Hamiltonian engineering, and
dissipation engineering. We follow the approach of dissipation engineering
and improve on existing techniques by introducing a novel circuit that allows
us to stabilize cat qubits by engineering a strong 3-wave mixing interaction
between the qubit and its surrounding environment.

The subsequent two chapters shift the focus toward the practical realiza-
tion of this circuit, nicknamed the autoparametric-cat or Auto-cat. Chap. 4
presents the calibration procedure of this device, notably improving on exist-
ing measurement protocols by taking advantage of the strong 3-wave mixing
interaction. We demonstrate the enhanced performance of this stabilized log-
ical qubit, showcasing an exponential increase in the bit-flip time. Numerical
simulations are performed which notably highlight how the measurement
apparatus limits this bit-flip time to TX ⇠ 0.3 s.

Chapter 5 then focuses on the operations conducted on the stabilized
cat qubit. We present the successful execution of a bias-preserving Ẑ gate
and a holonomic X̂ gate, enabling universal control over a single cat qubit.
Additionally, we showcase the preparation of squeezed cat states, unique
states that hold potential interest in quantum error correction codes and
quantum sensing.

Lastly, Chapter 6 serves as the concluding segment of this thesis, intro-
ducing a proposal for a fully protected qubit. Building upon the Auto-cat
architecture, we discuss the possibility of engineering a 5-wave mixing interac-
tion, enabling the stabilization of a 4-dimensional Hilbert space. The addition
of an extra parity stabilization, performed through either measurement-based
feedback or dissipation engineering, results in the stabilization of a sub-2-
dimensional manifold which constitutes a fully protected logical qubit.

7



introduction

1.4 publications

• W. C. Smith, M. Villiers, A. Marquet, J. Palomo, M. R. Delbecq,
T. Kontos, P. Campagne-Ibarcq, B. Douçot, Z. Leghtas, "Magnifying
Quantum Phase Fluctuations with Cooper-Pair Pairing", Phys. Rev.
X (2022).

• U. Réglade, A. Bocquet, R. Gautier, A. Marquet, E. Albertinale, N.
Pankratova, M. Hallén, F. Rautschke, L. A. Sellem, P. Rouchon, A.
Sarlette, M. Mirrahimi, P. Campagne-Ibarcq, R. Lescanne, S. Jezouin,
Z. Leghtas, "Quantum control of a cat-qubit with bit-flip times exceeding
ten seconds", arXiv 2307.06617 (2023).

• A. Marquet, A. Essig, J. Cohen, N. Cottet, A. Murani, E. Abertinale, S.
Dupouy, A. Bienfait, T. Peronnin, S. Jezouin, R. Lescanne, B. Huard,
"Autoparametric resonance extending the bit-flip time of a cat qubit up
to 0.3 s", arXiv 2307.06761 (2023).

• A. Marquet, S. Dupouy, U. Reglade, A. Essig, J. Cohen, E. Abertinale,
A. Bienfait, T. Peronnin, S. Jezouin, R. Lescanne, B. Huard, "Strong
2-photons dissipation for measurement and universal control of a cat
qubit", In preparation

8



Part I

CAT QUBITS AND THE IR USE FOR
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2QUANTUM ERROR CORRECTION 10 1

2.1 introduction to qubits and the notion of decoher-
ence

2.1.1 Bloch sphere representation of a qubit

A qubit represents the quantum counterpart of classical bits of information
and serves as the fundamental component of a quantum computer. From
an experimental perspective, any two-level system can be used as a qubit
when considering its two orthogonal states, referred to as |0i and |1i, as the
computational states of the system. Examples of such qubits are the "up" and
"down" states of an electron spin, the "vertical" or "horizontal" polarization
of a single photon of light, the "presence" or "absence" of a photon in the
mode of a transmission line, or the "ground" and "excited" states of an
artificial atom constructed using superconducting circuits. Regardless of
the chosen encoding method, the Hamiltonian of an isolated qubit can be
expressed as

Ĥq = �~!q

2
�̂z (2.1)

where ~!q represents the energy difference between |0i and |1i. The computa-
tional states are the eigenstates of the Pauli operator �̂z with corresponding
eigenvalues of +1 and �1. This operator �̂z belongs to the SU(2) group
and, along with the other Pauli operators, forms a basis for all operations
performed on a qubit. Using the representation

|0i =
✓
1
0

◆
, |1i =

✓
0
1

◆
, (2.2)

the Pauli operators can be represented as 2⇥ 2 matrices

1 =

✓
1 0
0 1

◆
, �̂x =

✓
0 1
1 0

◆
, �̂y =

✓
0 �i
i 0

◆
, �̂z =

✓
1 0
0 �1

◆
. (2.3)
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The two states |0i and |1i define the computational space span {|0i , |1i}
of the qubit, which is a 2-dimensional complex Hilbert space. By virtue of
the superposition principle, any state

| i = ↵ |0i+ � |1i (2.4)

with ↵, � 2 C and |↵|2 + |�|2 = 1 belongs to this computational space and
is a valid state for the qubit. Because | i is normalized to unity, and fixing
the global phase to 0, the qubit state can be described by two variables
denoted as ✓ and �. Eq. (2.4) can then be reformulated in terms of these
two variables as

| i = cos

✓
✓

2

◆
|0i+ ei' sin

✓
✓

2

◆
|1i , (2.5)

which defines the Bloch sphere representation of a qubit. In Figure 2.1, we
illustrate this representation, depicting states such as |0i, |1i, |+i, |�i, and
| i.

Figure 2.1: Bloch sphere representation of a qubit state, parameterized using the
angles ✓ and ' as | i = cos

�
✓
2

�
|0i+ ei' sin

�
✓
2

�
|1i

2.1.2 Description of a qubit coupled to its environment

While this description of a qubit using wavefunctions in a complex Hilbert
space holds true for isolated quantum systems, it proves insufficient when
dealing with a qubit entangled with its environment. The correct tool
in this context is that of density matrices, which extends the concept of

12
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wavefunctions to consider effects such as decoherence, open quantum systems,
or the preparation of statistical mixtures.

Mathematically, considering the system S composed of a qubit coupled
with its environment as an isolated quantum system, we can fully describe it
by its wavefunction | Si =

P
�
�� | E,�i⌦ | Q,�i1. For such a pure quantum

state, its density matrix is expressed as

⇢̂S = | Si h S | . (2.6)

The qubit density matrix is then obtained from ⇢̂S by tracing out the
environment E

⇢̂Q =
X

i

h E,i| Si h S | E,ii , (2.7)

where {| E,ii} corresponds to any chosen basis for the environment’s Hilbert
space. The resulting matrix ⇢̂Q usually describes a mixed state which, in
contrast to a pure state, cannot be expressed in the form of ⇢̂Q = | Qi h Q|.

Irrespective of whether the system is in a pure or mixed state, density
matrices are Hermitian operators on a Hilbert space H, positive semi-definite,
and of trace 1. The average value of any observable Ô acting on the qubit is
given by

hÔi⇢̂Q = Tr
⇣
⇢̂QÔ

⌘
, (2.8)

which generalizes to any density matrix and operator acting on a com-
mon Hilbert space. The unitary evolution of a density matrix ⇢̂(t), which
generalizes the Schrödinger equation [39], is given by

d

dt
⇢̂(t) = � i

~

h
Ĥ, ⇢̂(t)

i
(2.9)

where Ĥ is the Hamiltonian of the isolated system under study. To account
for errors originating from the weak coupling of a quantum system to its
environment, dissipation channels are introduced and incorporated as loss op-
erators into Eq.(2.9). This corresponds to the Lindblad master equation [40],
which we present and illustrate in Sec. 3.2.4.

1 This expression for | Si corresponds to the canonical Schmidt decomposition, with��� E,�
↵ 

(resp
��� Q,�

↵ 
) forming a basis for the environment (resp qubit) Hilbert space.

13



quantum error correction 101

2.1.3 Errors affecting a qubit

The density matrix describing a qubit can be conveniently expressed using
the Pauli matrices as

⇢̂ =
1

2
(1+ h�̂xi�̂x + h�̂yi�̂y + h�̂zi�̂z) , (2.10)

where h�̂xi, h�̂yi, and h�̂zi represent the mean value of the operators �̂x, �̂y
and �̂z. They correspond to the coordinates of the qubit inside of the Bloch
sphere, which is described by a vector u = (h�̂xi, h�̂yi, h�̂zi), with |u|  1.
The norm of this vector u serves as a measure of the information known
about the state, with pure quantum states corresponding to the limit where
|u| = 1.

One crucial quantity derived from the qubit’s density matrix is the Von
Neumann entropy, expressed as

S = �Tr (⇢̂ log (⇢̂)) . (2.11)

In the case of a qubit in a pure quantum state, its density matrix is idempotent
(⇢̂ = ⇢̂2) resulting in an entropy of 0. Any deviation of the entropy from this
vanishing value quantifies the deviation of the qubit from such a pure state. To
illustrate how decoherence can increase the entropy of a system, we consider
the example of a qubit initially prepared in the state |+i = (|0i+ |1i) /

p
2.

Its density matrix can be expressed as

⇢̂ = |+i h+| = 1

2
(|0i h0|+ |0i h1|+ |1i h0|+ |1i h1|) = 1

2

✓
1 1
1 1

◆
(2.12)

and its entropy S = 0. However, due to the interaction of this qubit with its
environment, the off-diagonal terms of ⇢̂ (referred to as coherences) decay to
zero. The entropy associated with the resulting density matrix

⇢̂ =
1

2
(|0i h0|+ |1i h1|) = 1

2

✓
1 0
0 1

◆
(2.13)

then increases to S = ln(2), corresponding to the Shannon entropy of
a maximally undetermined classical bit of information2. This increase in

2 It is noteworthy that despite the Von Neumann entropy predating the Shannon entropy
by almost 20 years (introduced in 1932 compared to Shannon’s work in 1948), the Von
Neumann entropy serves as an extension of the latter to the quantum realm. These two
quantities only coincide after decoherence, when the density matrix describes a statistical
superposition of orthogonal quantum states.
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entropy corresponds to a loss of information about the qubit state, lost to the
environment. The characteristic time over which these coherences disappear
to the environment is called the decoherence time, denoted as T2. Using
the Bloch-Redfield model of decoherence [41, 42], which assumes that noise
sources are only weakly coupled to the qubit with correlation times shorter
than the system dynamics, this decoherence time can be decomposed as

1

T2

=
1

2T1

+
1

T'

. (2.14)

The time T1 is called the energy decay time and T' the pure dephasing time.
Note that in the context of quantum computing, T1 and T2 are related to
the bit-flip and phase-flip time.

Figure 2.2: a. Energy decay of a qubit resulting from energy exchanges with a
bath of temperature T . When the qubit is in |0i, it can absorb energy
from its environment which excites it to |1i at a rate �1". Similarly,
when the qubit is in its excited state |1i, it can emit energy at a rate
�1#. For a cold enough bath where ~!q � kBT , the absorption process
is suppressed since �1" = e�~!q/kBT�1#, and the energy decay time is
limited by the relaxation of the qubit to its ground state. b. Diffusion
at a rate �' of the phase ' of a qubit, resulting from fluctuations in
the qubit frequency.

2.1.3.1 Energy decay time T1

The energy decay time characterizes the typical time it takes for a qubit to
relax to equilibrium. It originates from the interaction between the qubit
and its environment, considered as a bath of temperature T , leading to
energy exchanges. Such energy exchanges are described by an excitation
rate �1" (transitions from |0i to |1i) and a relaxation rate �1# (transitions
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from |1i to |0i), represented in Fig. 2.2a. Together, these two rates define
the longitudinal relaxation rate

�1 =
1

T1

= �1" + �1#. (2.15)

The ratio between �1" and �1# is given by the Boltzmann equilibrium
statistics, which leads to the detailed balance relationship

�1"
�1#

= e�~!q/kBT . (2.16)

There, kB = 1.38.10�23 J.K�1 is the Boltzmann constant and ~!q the energy
difference between |0i and |1i. At equilibrium, when the populations in the
ground and excited states stabilize, the population in the ground state is
expressed as

p(|0i) = tanh (~!q/2kBT ) , with p(|1i) = 1� p(|0i). (2.17)

For typical superconducting qubits with !q/2⇡ ⇠ 5 GHz, operated in a
dilution refrigerator at 10 mK, p(|1i) ⇡ 0.1% and the qubit is often considered
in its ground state at equilibrium. Furthermore, when simulating the dynamic
of a qubit using the Lindblad master equation, excitations �1" are often
neglected and only energy decay �1# is considered.

2.1.3.2 Pure dephasing time T'

While the energy decay time can be understood from the point of view
of statistical physics, the pure dephasing time T' is a purely quantum-
mechanical phenomenon that describes the loss of information about the
phase of a quantum superposition. It originates from any process that can
be described, using the Lindblad equation, by the dissipator

L̂' =

p
'
2

�̂z. (2.18)

Notable example of such processes are uncontrolled fluctuations in the qubit
frequency !q, eventually leading to a diffusion of the phase ' (Fig. 2.2b.),
or unread measurements performed by the environment.

Considering the uncontrolled oscillations of a qubit’s frequency, no in-
formation is lost to the many degrees of freedom of a bath during this
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process, contrary to energy relaxation. As a result, while we don’t know
the exact unitary operation required to compensate for the uncontrolled
fluctuations of !q, some operations such as spin-echo [43] or dynamical
decoupling pulses [44] can still be applied. The degree to which information
can be retrieved depends on the noise structure, the dephasing rate �', or
the speed at which these unitary operations can be performed.

2.2 reducing the decoherence rate in superconducting
qubits

As previously mentioned, errors affecting a qubit originate from its coupling
with a noisy environment. Following the demonstration of [45], we model
this coupling by an interaction Hamiltonian

Ĥint = g Ôq �̂ (2.19)

with g the coupling strength of the interaction and Ôq an operator impacting
the qubit degrees of freedom. The environment, considered as a source of
noise, is represented by an operator �̂ which produces fluctuations ��. The
coupling strength is proportional to the qubit sensitivity to variations in a
parameter � which describes the environment (such as an external flux or
charge offset), resulting in the relation

g Ôq =
@Ĥq

@�
. (2.20)

The Hamiltonian Ĥq corresponds to the qubit Hamiltonian, depending on
the parameter �. Noise originating from the environment is described by a
power spectral density S(!), which depends on its exact physical origin. It
is linked with the time average of the correlation function of � as [46, 47]

S(!) =

Z 1

�1
ei!th��(t)��(0)i dt. (2.21)

2.2.1 Limitation of the qubit lifetimes from external noise

2.2.1.1 Energy decay time T1

Noise originating from the environment at the qubit frequency !q can cause
unwanted transitions between the qubit ground and excited state. This
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is a stochastic process that, when averaging multiple trajectories of the
qubit over several experiments, appears as an exponential decay towards
the equilibrium state given by Eq. (2.17) with a characteristic timescale
corresponding to the relaxation time T1. The relaxation rate �1 = 1/T1 is
expressed as a function of the power spectral density at the qubit frequency
using Fermi’s Golden rule

�1 =
1

~2

�����h0|
@Ĥq

@�
|1i

�����

2

S (!q) =
g2

~2
���h0| Ôq |1i

���
2

S (!q) . (2.22)

This formula can be decomposed into two main contributions. A first term,
S (!q), which simply characterizes the noise amplitude at !q. The second

term g2
���h0| Ôq |1i

���
2

then represents the ability of the operator Ôq to induce
transitions between |0i and |1i. This second contribution is maximized in
the case of a transverse coupling, corresponding to Ôq / �̂x.

2.2.1.2 Pure dephasing time T'

Now considering the case of a longitudinal coupling with Ôq / �̂z, noise from
the environment results in a stochastic modulation of the qubit frequency

Ĥq =
~
2
(!q + �!(t)) �̂z, with �!(t) =

@!q

@�
��(t). (2.23)

This results in an accumulated phase

�'(t) =
@!q

@�

Z
t

0

��(t
0
) dt

0
(2.24)

which, as was the case for energy decay, depends on the realization of the
experiment. In order to describe experimentally measured evolutions, based
on the averaging of multiple trajectories, we are interested in the mean value
of this accumulated phase. To be more precise, we consider the quantity
hei�'(t)i, which is given by

hei�'(t)i = e�
1
2 h�'(t)

2i, (2.25)

considering the stochastic process ��(t) follows a Gaussian distribution3. We
then compute

3 Owing to the central limit theorem.
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h�'(t)2i =
✓
@!q

@�

◆2⌧Z t

0

��(t
0
) dt

0
Z

t

0

��(t
00
) dt

00
�

=

✓
@!q

@�

◆2 Z t

0

Z
t

0

dt
0
dt

00
D
��(t

0
) ��(t

00
)
E
.

(2.26)

We introduce the power spectral density in this equation by inverting
Eq. (2.21), yielding

h�'(t)2i =
✓
@!q

@�

◆2 Z 1

�1
S(!)

����
Z

t

0

e�i!t
0

dt
0
����
2

d!

= t2
✓
@!q

@�

◆2 Z 1

�1
S(!) sinc (!t/2)2 d!.

(2.27)

From Eq. (2.27), we see that noise at all frequencies now contributes to the
dephasing rate. The function sinc (!t/2)2 then acts as a filter function on
the noise S(!), preferably selecting low-frequency noise. This is particularly
detrimental when noises such as the 1/f noise are the dominant source of
errors, in which case the filter function can be modified by applying the
previously mentioned spin-echo or dynamical decoupling sequences [45].

2.2.2 Sources of noise

Several sources of stochastic noise can limit the coherence time of supercon-
ducting qubits, with several reviews exploring in detail their microscopic
origin [45, 48, 49]. In this section, we briefly present 3 of the major physical
sources of errors and the expression of the corresponding power spectral
density.

2.2.2.1 Charge noise

Charge noise originates from charge fluctuations at the interface of the
superconductor, inside the Josephson junction oxide (see Sec. 3.1.2), or in
the bulk of the superconducting material. Microscopically, it can be attributed
to the fluctuations of charge carriers, often modeled as an ensemble of Two-
Level Systems (TLS) interacting with the circuit’s electric fields, or bulk
dielectric loss. The spectral density at low frequencies takes the form

SQ(!) = A2

Q

✓
2⇡ ⇥ 1Hz

!

◆�Q

(2.28)
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with A2

Q
= (10�3e)2/Hz and �Q ⇠ 1. Early realizations of superconducting

qubits based on the design of the Cooper Pair Box [32, 50] were particu-
larly sensitive to such noise, which limited their coherence time to a few
microseconds.

2.2.2.2 Flux noise

Another source of stochastic noise is fluctuations of the magnetic field that
biases flux tunable qubits4. For superconducting loops with large areas
(typically greater than 1 mm2), such fluctuations can originate from external
magnetic sources such as the microwave in the coffee room or neighbors
playing with magnets. Reducing this area to 100 � 10 µm2, the impact
of these external sources becomes negligible, although flux noise is not
completely suppressed. The noise spectral density actually becomes relatively
independent of the loop area, given by an effective model [45]

S�(!) = A2

�

✓
2⇡ ⇥ 1Hz

!

◆��

(2.29)

with A2

Q
= (1 µ�0)2/Hz and 0.8 . �� . 1. This noise is attributed to the

random reversing of spins located at the surface of the superconducting
metal. Computation regarding the average dipole coupling strength leads to
an estimation of the surface spin density � = 5⇥ 1017/m2, corresponding to
a spin per 2 nm2. The exact nature of these spins remains unclear, although
absorbed molecular 02 appears to be a significant contributor [51], with active
research investigating their properties and how to mitigate their effect [52,
53]

2.2.2.3 Quasiparticles poisoning

Finally, a last source of noise is quasiparticles tunneling through the Joseph-
son junctions of the circuit (see Sec. 3.1.2), which could lead to both energy
relaxation and pure dephasing errors. These quasiparticles physically corre-
spond to unpaired electrons, originating from broken Cooper pairs. While
the BCS theory indeed predicts such isolated electrons, owing to a thermal
equilibrium between the spontaneous breaking of Cooper pairs and their re-
combination, it only predicts a density of ⇠ 10�23 quasiparticles per Cooper
pair at 40 mK. This drastically underestimates the observed density, which
generally falls in the 10�8/10�6 range [35].

4 Flux tunable qubits contain in their design a superconducting loop which can contain
one or several Josephson junctions. The flux threading these loops is quantified and is
necessarily a multiple of the magnetic flux quantum �0 = h/2e.
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2.2 reducing the decoherence rate in superconducting qubits

The origin of this excess of quasiparticles is still unclear. Different sources
outside the superconducting device appear as potential candidates, among
which pair-breaking photons [54] or phonons generated by extrinsic sources.
Such phonons are most likely generated in the substrate of superconducting
devices (See Appendix. c) due to high energy particles passing through it.
These high-energy phonons then quickly propagate throughout the sample,
with an energy large enough to break Cooper pairs by exciting them higher
than the superconducting gap. These can lead to correlated errors across
multiple qubits of the same chip, which is particularly detrimental for
quantum error correction using the approach of surface codes [55] (See
Sec.2.4.2.2).

2.2.3 Mitigating these errors by improving the hardware

2.2.3.1 Decreasing the noise power spectral density

An effective strategy for reducing decoherence is to simply reduce the noise
seen by superconducting qubits. Specifically, in cases of charge or flux noise,
this entails reducing the density of two-level systems, charge-trapping sites, or
spurious spins, by improving existing fabrication techniques and introducing
new materials.

Surface cleaning is critical to mitigate the presence of such TLS, notably
by removing organic residues that are deposited on the sample surface during
fabrication [56, 57] (see Appendix. c which details the fabrication process at
ENS de Lyon). Alternatively, one could improve the coherence time of charge
qubits with substrate annealing [58]5, or optimize the materials used for the
substrate and the superconducting ground plane [57]. Because the microscopic
origin of flux noise remains unknown, experiments are still performed that
seek to characterize the properties of these magnetic defects [59, 60, 53],
with optical surface treatment being explored as a way to remove them [51].

Additionally, to prevent thermal noise from reaching the sample, particular
attention is given to the attenuation and the filtering of the lines reaching the
qubit. This includes working with well-thermalized attenuators with good
anchoring to their stage within the dilution refrigerator, the use of ecosorb
filters that absorb high-frequency noise (!/2⇡ & 12 GHz), and narrow-band
filters centered around the frequency of the corresponding qubit or resonator.

5 Substrate annealing consists of heating a material above its recrystallization temperature
and maintaining this temperature for an appropriate amount of time before cooling it
down. During this process, atoms are free to migrate in the crystal lattice which allows to
correct defects in the crystalline structure.
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An overview of these techniques can be found in [61] with the cryogenic
setup used in this thesis represented in Appendix .b.

Finally, the detrimental impact of quasiparticles can be mitigated by using
phonon traps, whose goal is to prevent phonons from propagating in the
substrate and generate quasiparticles by breaking Cooper pairs. The role of
these traps is to absorb these propagating phonons before the qubit does,
before releasing this excitation as low-energy particles that is unable to break
Cooper pairs. Such traps were demonstrated using normal metal, depositing
metals such as Au or Cu directly in contact with the superconductor [62,
63]. However, a possible drawback of these normal metal traps is their
Ohmic losses which can lead to additional relaxation for neighboring qubits.
While their design can be optimized in order to limit the impact of such
losses, this issue can be solved by using superconducting traps, made with a
superconductor with a lower energy gap than the rest of the circuit [64].

2.2.3.2 Improving qubit design, making them insensitive to noise

A second approach, further reducing the noise spectral density, involves
reducing the sensibility of superconducting qubits to noise. This entails the
introduction of new qubit designs whose Hamiltonian is tailored to suppress
relaxation errors or pure dephasing.

Such a protected qubit is the transmon, introduced in 2007 by Koch et
al. [33], whose design and Hamiltonian are presented in Sec. 3.1.2. Its design
makes the transition frequency between its ground and first excited state, !01,
exponentially insensitive to charge noise in a parameter EJ/Ec. However,
the charge operator n̂c can still induce undesired transitions between the two
computational states as |h0| n̂c |1i| 6= 0, leading to relaxation. Improvements
in the transmon’s lifetime, reaching T1 ⇠ 500 µs as shown in Fig. 1.1, were
the result of noise filtering.

Another somewhat noise-insensitive qubit is the fluxonium, introduced
in 2009 by Manucharyan et al. [34], which displayed a coherence time
T2 = 1.48 ms in a recent experiment [65]. Mainly sensible to flux noise due
to the superconducting loop present in its design, it can be protected against
either dephasing or bit-flip errors depending on the external flux at which it
is operated [47].

Finally, a design that aims at protecting quantum information against
both dephasing and bit-flip errors, originating from both charge and phase
noise, is the so-called "0� ⇡" qubit [66]. However, while a recent realization
of this qubit [67] managed to reach a bit-flip time T1 = 1.56 ms, coherence
time was still limited to T2 = 8.5 µs, notably due to a spurious mode inherent
of the design.

22



2.3 quantum error correction

2.3 quantum error correction

While improving the design, fabrication, and shielding of superconducting
circuits has led to an improvement of the coherence time by more than seven
orders of magnitude (Fig. 1.1), current devices are still prone to errors and
unable to run any useful quantum algorithms. Further improvements can
still be made to superconducting devices in order to continue extending this
lifetime, further reducing the noise amplitude and designing new protected
qubits, but this strategy proves increasingly challenging.

Alternatively, instead of focusing on the superconducting hardware, soft-
ware protection can be envisioned based on the design of logical qubits. These
are made of several physical qubits which redundantly store the quantum
information such that, if one of these physical qubits were to fail, this error
can be detected and corrected to restore the logical information.

2.3.1 The spirit of error correction

2.3.1.1 Introduction to the repetition code

The field of quantum error correction finds its origins in the classical error-
correcting codes invented at the beginning of the 20th century. They work
by introducing new physical bits to store the logical information, defining
logical bits that are more robust against errors affecting each of their physical
components. An example of such a code is the phonetic alphabet, used by
pilots to communicate with their traffic control centers, where letters are
replaced with the commonly known expressions "Alpha", "Beta", "Charlie",
etc... Although one is more likely to slightly mispronounce "Alpha" than just
the letter "a", the increased distance between code words in the phonetic
alphabet makes it easier to distinguish and prevents miscommunications due
to noise from the radio or a strong french accent from the pilot.

The first error-correcting code targeted at correcting errors in a classical
computer was developed at Bell Laboratories by Richard Hamming [36] in
1950. In this protocol, four bits of information are encoded using seven phys-
ical bits in such a way that any individual bit-flip affecting a physical qubit
can be detected and corrected while preserving the logical information. Sub-
sequent development of classical error-correcting codes then improved their
density, requiring fewer bits of redundancy to store the logical information,
and increased the number of errors a code could correct.

This section introduces the simplest example of an error-correcting code:
the repetition code. Such a code uses dX = 2n+1 physical bits to encode one
logical bit, protected against n physical bit-flip errors. The logical states 0L
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Figure 2.3: The code space C defining the encoding of the distance three repetition
code is defined by the two logical states 0L = 000 and 1L = 111. All
three physical bits have the same probability p of undergoing a bit-flip
error, which would bring the system from the code space to one of the
corresponding error spaces. After a majority vote, a recovery operation
is applied which brings the system back onto C. This recovery operation
induces a logical bit-flip error if more than 1 error has occurred, flipping
the correct bit otherwise.

and 1L which define the code space C then physically correspond to having
all of these physical bits in either 0 or 1,

0L = 000...00, 1L = 111...11. (2.30)

When trying to store or transmit this logical information, we consider that
each physical bit can suffer a bit-flip error with a probability p, bringing the
system out of the code space and onto an error space. Such errors can be
detected by measuring the state of each physical bit, a majority vote then
indicating which bits are the most likely to have suffered from a bit-flip error.
A recovery operation can then be applied whose goal is to flip the erroneous
bits, recovering the initial logical state if less than n bit-flip errors occurred
and inducing a logical bit-flip error otherwise. An illustration of this process
for a distance three repetition code (dX = 3) is represented in Fig. 2.3. The
question that naturally arises is, was it worth it to complexity the system by
introducing more bits? Is the bit-flip error rate of the logical qubit smaller
than the physical error rate p?

The probability of a logical bit-flip error corresponds to the probability
for at least n+ 1 physical bits to undergo a bit-flip error
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The dependence of pLogical on the physical error rate p is shown in Fig. 2.4
for different code distance dX . These curves illustrate that for large error
rates, the repetition code performs worse than an isolated physical qubit due
to an increased number of physical errors that the code is unable to correct.
Only when p goes below an error threshold, pTh = 0.5 for the repetition
code, does the logical bit outperform its physical components. Below this
threshold, going to a larger size for the repetition code further decreases the
logical bit flip probability, improving the performance of the error-correcting
code.

Figure 2.4: Logical error probability pLogical as a function of the physical error
probability for different distances of the repetition code dX . An error
threshold pTh = 0.5 is observed, below which the performance of
the repetition code improves for larger code distance, with a sharper
transition at pTh.

2.3.1.2 The challenges of the quantum world

Quantum error correction uses the same fundamental ideas to extend the
coherence time of qubits, encoding the information into larger Hilbert spaces
so that errors affecting physical qubits can be detected and corrected. How-
ever, some key features of quantum mechanics must be taken into account
when adapting classical error-correcting codes to the quantum world [68].
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First is the no-cloning theorem [69] which states that no quantum operation
Ô can operate the mapping

Ô (| i ⌦ |�i) = | i ⌦ | i (2.32)

for an arbitrary state | i. This is the result of the linearity of quantum
mechanics as, considering an initial state

| i = (↵ |0i+ � |1i)⌦ |0i , (2.33)

the application of such an operation Ô would result in a state

Ô | i = ↵2 |00i+ ↵� (|01i+ |01i) + �2 |11i . (2.34)

While Eq. (2.33) is linear in ↵ and �, Eq. (2.34) is quadratic in these same
parameters which is only possible if the operator Ô itself depends on ↵ and
�. These 2 quantities being unknown for an arbitrary initial state, such
an operator cannot be constructed. While this theorem does not prevent
the demonstration of quantum error correction, it limits the strategies that
can be employed, notably preventing the strategy of duplicating quantum
information during an algorithm.

A second key feature of quantum mechanics is the measurement back
action that collapses the state of a quantum system after a measurement.
This effect, if not taken into consideration when designing the encoding,
leads to unrecoverable errors which corrupt the quantum information. An
illustration of this effect is the "naive" quantum counterpart of the distance
three-repetition code, where the logical encoding is defined as

|0Li = |000i , |1Li = |111i . (2.35)

Considering the state

| i = ↵ |0Li+ � |1Li , (2.36)

the quantum information is stored in the complex coefficients ↵ and �. When
strictly following the protocol of the classical repetition code, we first measure
the state of the first physical qubit. Assuming that no error occurred, this
measurement would project the system in |0Li with probability |↵|2 and |1Li
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with probability |�|2, after which these coefficients are no longer accessible.
Thankfully, this issue can be solved by designing syndrome measurements
which make use of these projective measurements to collapse the logical
qubit into a known error space without learning anything about the stored
logical information.

Finally, a fundamental difference being classical and quantum error cor-
rection lies in the type of errors that we need to correct. While classical bits
are only impacted by bit-flip errors, a qubit suffers from both bit-flip and
phase-flip errors! This additional error, which does not have any classical
counterpart, makes quantum error-correcting codes particularly challenging
to implement.

2.3.2 The fundamental theorems of Quantum Error Correction

2.3.2.1 Using Kraus maps to model error channels

Errors impacting a qubit during a time interval6 ⌧ are modeled using a
Kraus map E , acting on the density matrix through the relation

E (⇢̂) =
X

µ

M̂µ⇢̂M̂
†
µ
. (2.37)

This operation is trace-preserving, which is ensured by the relation
P

µ
M̂†

µ
M̂µ =

1. In the context of quantum information, the Kraus operators M̂µ are re-
ferred to as the noise operators or error operators, each of them representing
an error channel due to the coupling with a noisy environment7. The goal of
QEC is then to design a recovery operation R such that [70]

8⇢̂ 2 C, (R � E) (⇢̂) = ⇢̂. (2.38)

2.3.2.2 Knill-Laflamme condition for QEC

Under which conditions does such a recovery operation exist? The Knill-
Laflamme condition [71, 72] precisely answers this question, providing a
necessary and sufficient condition for the existence of R. Considering a code

6 This time interval typically corresponds to the duration of an error-correcting cycle. In the
example of the repetition code, this would be the time required to measure the syndrome
measurements and perform the recovery operation.

7 Kraus operators are not unique as any set
n
N̂µ

o
, verifying N̂µ =

P
⌫ �µ⌫M̂µ with �µ⌫ the

coefficients of a unitary matrix, define the same Kraus map
P

µ N̂µ⇢̂N̂
†
µ =

P
µ M̂µ⇢̂M̂

†
µ.
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space C and the associated projector ⇧̂C, affected by an error channel E
described by the Krauss operators

n
M̂µ

o
, a recovery operation R exists if

and only if

⇧̂CM̂
†
µ
M̂⌫⇧̂C = ↵µ⌫⇧̂C , (2.39)

with ↵µ⌫ the coefficients of a Hermitian matrix ↵. Alternatively, considering
a basis of the computational space {| ii}, this condition can be expressed as

h i| M̂†
µ
M̂⌫ | ji = ↵µ⌫ �ij . (2.40)

To gain some intuitive understanding of this condition, we start by simply
considering the image of the code space under an error M̂µ. From C, a state
| ii is projected into the error space Eµ, with M̂µ | ii representing some
distorted image of the input state. Eq. (2.40) then ensures two orthogonal
states | ii and | ji of the code space remain orthogonal in Eµ

h i| M̂†
µ
M̂µ | ji = ↵µµ �ij = 0, (2.41)

with ||M̂µ | ii ||2 = ||M̂µ | ji ||2 = ↵µµ. All errors M̂µ then produce a faithful
image of the code space, proportional to a unitary transformation, which can
be corrected after determining the error that affected the system. However,
how can we be sure that we will be able to know which error M̂µ impacted
the system?

The easy case to consider is when the matrix ↵ is diagonal, with ↵ij = 0
for i 6= 0. Under this condition, we see from Eq. (2.40) that two error spaces
Eµ and E⌫ corresponding to two distinct errors M̂µ and M̂⌫ are orthogonal

8 | i 2 C, h | M̂†
µ
M̂⌫ | i = 0. (2.42)

A syndrome measurement can then be designed in order to distinguish the
different error spaces, without acquiring information about the state within
the corresponding error space. The situation is slightly more complex when
considering the general case where the matrix ↵ has non-zero non-diagonal
elements, corresponding to a situation where error spaces are not necessarily
orthogonal. What could then happen is that after an error M̂µ projects the
system onto the error space Eµ, we measure if the system is in E⌫ . Because
Eµ and E⌫ are not orthogonal, our measure could indicate that the system is
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Figure 2.5: Illustration of the Knill-Laflamme theorem for non-orthogonal error
spaces {Eµ}. After an error M̂2, a syndrome is measured which projects
the system into ⇧̂E1M̂2 | i / M̂1 | i. A recovery operation that corrects
for the error M̂1 then brings the system back into the code space and
restores the quantum information.

indeed in E⌫ , after which we correct for the error M̂⌫ although it was M̂µ

that generated an error.
In this case, the Knill-Laflamme condition ensures that during the syn-

drome measurement, the state M̂µ | i is projected in E⌫ onto a state pro-
portional to M̂⌫ | i. The constant of proportionality ↵µ⌫ does not depend
on the initial state | i 2 C. Correcting for the error M̂⌫ , although this error
never physically occurred, then brings the system back to C while preserving
the initial state (see Fig. 2.5). Being able to work with non-orthogonal
error spaces is specific to quantum mechanics, illustrating how projective
measurements can be exploited to design new error-correcting codes.

2.3.2.3 Error discretization theorem

The Knill-Laflamme condition ensures the existence of a recovery operation
for a given set of error operators

n
M̂µ

o
affecting a quantum system. Con-

sidering the case of a qubit, what set of error operators should we consider?
Naively, one could consider

n
M̂µ

o
= SU(2) as a qubit can be affected by

any operator of this group. However, considering such a continuous ensemble
of errors isn’t efficient, notably when designing error-correcting codes.

The error discretization theorem [72] states that, for a given set of errorsn
Êµ

o
correctable by a recovery map R, the set

n
F̂µ

o
where operators

F̂µ are linear combinations of Ê⌫ is also correctable by R. All operators
in SU(2) being a linear combination of the Pauli matrices, the design of
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error-correcting codes then reduces to designing codes robust against Pauli
errors. Furthermore, because �̂x�̂z = �i�̂y, a code that can correct for any
2 Pauli errors can correct for any error in the SU(2) group.

This justifies the classification, already introduced in this chapter, where
errors are referred to as either bit-flip or phase-flip errors. Bit-flips correspond
to a �̂x error, inducing swap between |0i and |1i while phase-flips refer to
�̂z errors which flip |+i and |�i.

2.4 quantum error correction using arrays of qubits

2.4.1 Quantum version of the repetition code

We demonstrate the application of this framework in the context of quan-
tum error correction, particularly focusing on quantum error-correcting
codes constructed from an array of physical qubits. The most basic il-
lustration of such a code is the distance three repetition code which, as
defined in Eq. (2.35), protects the quantum information against any single-
qubit errors with

n
M̂µ

o
= {1, �̂x1 , �̂x2 , �̂x3}. Starting from the code space

C = span {|000i , |111i}, such an error would either leave the system in the
code space or transition it into one of the error spaces E1, E2 and E3, respec-
tively corresponding to the first, second and third qubit flipping. Considering
the state

| i = ↵ |000i+ � |111i (2.43)

for instance, a bit-flip error impacting the first qubit would change the state
into ↵ |100i+ � |011i that belongs to E1. By measuring the two commuting
observables (�̂z1 �̂z2 , �̂z2 �̂z3) the different error spaces can be distinguished
(see Table. 2.1) without projecting the quantum information. A recovery
operation can then be applied which returns the system back into the code
space, reducing the probability of a logical bit-flip from the physical bit-flip
probability p to pL / p2

Similar to the classical case, the logical bit-flip rate can be further reduced
by increasing the number of qubits dX in the repetition code, resulting in an
exponential decrease of the logical error rate, with pL / (2p)dX/2 (Fig. 2.4).
However, this exponential decrease in bit-flip errors comes at the (modest)
cost of a linear increase in phase-flip errors, which are not protected by the
encoding. These phase-flip errors are addressed by the dual version of the
repetition code, defined in its three-qubit form as
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|+Li = |+++i , |�Li = |���i . (2.44)

Measuring the syndromes �̂x1 �̂x2 , �̂x2 �̂x3 enables the detection and correction
of phase flip errors, while bit-flip errors remain unprotected.

Space Syndrome measurement

C 1, 1
E1 -1, 1
E2 -1, -1
E3 1, -1

Table 2.1: Syndrome measurements corresponding to the different error subspaces,
with C being defined as the eigenspace with eigenvalue one of the
syndromes �̂z1 �̂z2 , �̂z2 �̂z3 .

2.4.2 Extension of the encoding, simultaneously correcting bit-flip and
phase-flip errors

2.4.2.1 Bacon-Shor codes

To protect a qubit against both bit-flip and phase-flip errors, it becomes nec-
essary to increase the redundancy, notably achieved in superconducting cir-
cuits by increasing the dimensionality of the code. From the one-dimensional
architecture of the repetition code, we then consider two-dimensional con-
figurations that define a single logical qubit. The natural extension of the
repetition code using this two-dimensional architecture was developed in
2005 by Bacon [73], now commonly known as the Bacon-Shor code family.
These can be envisioned as two separate repetition codes pieced together, one
designed to mitigate bit-flip errors and the other tailored to address phase-
flip errors. The layout corresponding to a Bacon-Shor code with parameters
dX = 5 and dZ = 3 is shown in Fig. 2.6.

This code can be intuitively comprehended by considering an inner and
outer layer of error correction. Using the bit-flip repetition code as the inner
layer of protection, each row of the code defines a partially protected qubit
where bit-flip errors are exponentially suppressed, albeit at the cost of a
linear increase in phase-flip errors. These are then corrected by the outer
repetition code, defining the logical encoding as
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|+Li =
1

p
2
dZ

⇣
|0i⌦dX + |1i⌦dX

⌘⌦dZ

|�Li =
1

p
2
dZ

⇣
|0i⌦dX � |1i⌦dX

⌘⌦dZ

.

(2.45)

The stabilization is ensured by measuring the syndromes �̂zi �̂zi+1 between
pairs of neighboring qubits in the same row, and �̂xi �̂xi+1 between the
partially protected qubits defined in two consecutive rows. Note that another
approach for this code can be envisioned where the inner repetition code
corrects for phase-flip errors while the outer one corrects for the remaining
bit-flips. The logical states are then defined as

|0Li =
1

p
2
dX

⇣
|+i⌦dZ + |�i⌦dZ

⌘⌦dX

|1Li =
1

p
2
dX

⇣
|+i⌦dZ � |�i⌦dZ

⌘⌦dX

.

(2.46)

Figure 2.6: Layout of the Bacon-Shor code for dX = 5 and dZ = 3. The logical
operators X̂L and ẐL are built from products of operators �̂x and �̂z

acting on the physical qubits in a column (red) or row (blue).

Irrespective of which repetition layer is the inner or outer one, the logical
error rate of the corresponding logical qubit depends on dX and dZ as

pXL /
�
2 dZ pXphysical

�dX/2

pZL /
�
2 dX pZphysical

�dZ/2
.

(2.47)
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Here pXphysical and pZphysical represent the probabilities for one of the physical
qubits to suffer from a bit-flip or phase-flip error. This equation might suggest
that going to an arbitrarily low bit-flip and phase-flip error rate is achievable
by simply increasing dX and dZ , the exponential suppression of pXL and
pZL compensating the small linear increase. However, it is crucial to note
that this exponential suppression only occurs when each of the repetition
codes is operated below its threshold (see Fig. 2.4). In the Bacon-Shor code,
the probability of a given error (bit-flip or phase-flip) increases linearly with
the distance of the dual repetition code, thus potentially pushing its error
rate beyond threshold8. This would for instance correspond to the situation
where pZphysical dX > 0.5, after which the outer repetition layer becomes
ineffective and actually degrades the system by introducing additional errors.

Due to the competition between reducing the logical error rate and staying
below the threshold of a repetition code, Bacon-Shor codes themselves do not
possess a threshold. Instead, an optimal code size (dX , dZ) can be determined
for a given set of physical error rates

�
pXphysical , pZphysical

�
. As a result, these

codes have mainly been explored in the context of relatively small code sizes,
often serving as the foundational layer within a larger concatenated coding
scheme [74, 75]. However, it should be noted that large Bacon-Shor codes,
used independently as a logical qubit without concatenation, can provide
remarkable protection when the physical error rate is sufficiently low. For
instance, if we consider a physical error rate of pXphysical = pZphysical = 0.1%,
a Bacon-Shor code with dimensions 173⇥ 173 is projected to have a logical
error rate as low as pXL = pZL ⇡ 2.10�28 [76].

2.4.2.2 The CSS surface code

Another promising approach using two-dimensional arrays of superconducting
qubits is the CSS surface code, originally developed in 1996 by Calderbank,
Shor, and Steane [78, 79]. In this encoding scheme, qubits are categorized
as either data or measurement qubits, represented in Fig. 2.7a as open or
filled circles. Measurement qubits are used in order to stabilize the quantum
information stored in the data qubits, with syndromes corresponding to the
local product �̂z,a�̂z,b�̂z,c�̂z,d or �̂x,a�̂x,b�̂x,c�̂x,d between four neighboring
data qubits.

The pulse sequence used to measure these syndromes is represented in
Fig. 2.7b and Fig. 2.7c. For the Z-measurement qubit, the sequence begins

8 This is in contrast to a simple repetition code where the error probability is fixed by the
physical qubit implementation.
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Figure 2.7: a. Layout of the CSS surface code and its corresponding stabilizers
for a distance five surface code. Data qubits are represented by open
circles and measurement qubits by filled circles. Qubits responsible for
measuring the syndrome �̂x,a�̂x,b�̂x,c�̂x,d are positioned at the center of
the yellow regions, while those measuring �̂z,a�̂z,b�̂z,c�̂z,d are located
in the green regions. b. Pulse sequence mapping the Z-stabilizer’s
value onto the corresponding measuring qubit. The measurement qubit
is prepared in its ground state and CNOT gates are applied with
the data qubits serving as the controls. c. Pulse sequence mapping
the X-stabilizer’s value onto the corresponding measuring qubit. The
measurement qubit is prepared in |+i using a Hadamard gate, after
which CNOT gates are applied with the measurement qubit as the
control. Figure adapted from Fig. 1 of [77].

by initializing it in its ground state |0i before applying four CNOT gates9

which use the four nearest-neighbor data qubits as the control. A readout
of the measurement qubit then projects the system into an eigenstate of
�̂z,a�̂z,b�̂z,c�̂z,d with eigenvalue ±1. A similar pulse sequence is employed
for the X-measurement qubit, with the addition of Hadamard gates applied
before and after the CNOT gates. In this case, the CNOT gates use the
measurement qubit as the control. This circuit is effectively equivalent to
replacing the CNOT gates in Fig. 2.7b with Controlled-Z gates, resulting
in the projection of the system into an eigenstate of �̂x,a�̂x,b�̂x,c�̂x,d after
measurement.

Since all these local syndromes commute, even though data qubits are
involved in multiple syndrome measurements, they can all be simultaneously
measured in a single round of error correction. This leads to the determina-
tion of 40 syndromes with values ±1 for the code illustrated in Fig. 2.7a,
corresponding to 240 ⇡ 1012 possible subspaces within the system’s total

9 A CNOT or controlled-not gate applies a gate �̂x to a target qubit if the control qubit is
in its excited state |1i, and stays idle if it is in |0i.
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Hilbert space. The code space C is then defined as the subspace where all
syndromes equal 1, with the logical operators ẐL and X̂L corresponding to
the product of local �̂z and �̂x operators acting on data qubits.

All syndromes are regularly monitored during an operation of this logical
qubit to detect deviation from their desired value of 1. When an error is
identified, the challenge then lies in determining which error affected the
array. This task is relatively straightforward when errors are sufficiently rare,
resulting in spatially and temporally isolated errors that can be matched to a
specific physical qubit error. Such errors can then be immediately corrected
before the next round of correction, or alternatively, they can be tracked
and corrected in software at the end of the computation. However, when
a significant number of errors occur within a correction cycle, especially
when resulting in chained errors involving adjacent qubits, decoding the
measured syndromes becomes trickier. Because of this, minimum weight
perfect-matching (MWPM) algorithms [80, 81] are used which automatically
estimate the best choice of recovery operation based on the measured set of
syndromes.

Using these algorithms as decoders, simulations were conducted to assess
the performance of the resulting logical qubit as a function of a physical
error rate p [77]. This physical error rate encompasses various error sources,
including errors in the preparation and measurement of single qubits, infi-
delities in single and two-qubit gates, as well as the natural decay of the
physical qubits. In contrast to Bacon-Shor codes, a threshold pTh ⇡ 0.5%
was identified below which an exponential reduction in the logical error rate
was observed, depending on the code distance d as

pL ⇡ 0.03

✓
p

pTh

◆(d+1)/2

. (2.48)

The remaining logical errors correspond to occurrences where a large amount
of errors resulted in an erroneous decoding by the MWPM algorithm, result-
ing in an erroneous correction that compromised the logical information.

2.4.2.3 Physical implementations of the CSS surface code

The CSS surface code is amongst the most popular quantum error-correcting
codes, with multiple experiments coming from both academic groups and
industrial players. In this section, we present three of these realizations and
the achieved performances. A summary of the device’s parameters for each
experiment is presented in Table. 2.2.
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distance 3 surface code using zurich’s sample

The first successful implementation of a distance three surface code using
superconducting qubits, capable of correcting any single Pauli error that may
occur during a correction cycle, was demonstrated in 2021 at ETH Zurich by
Krinner et.al [82]. In this experimental setup, a logical qubit was encoded
using a grid of seventeen qubits, nine of which served as data qubits while
the remaining eight functioned as auxiliary qubits responsible for measuring
X-type or Z-type stabilizers.

The stabilizers of the surface code were measured for up to n = 16 cycles,
any changes in their values signaling an error affecting one of the physical
qubits. By monitoring the evolution of these syndromes, a MWPM algorithm
can then be used which exploits spatial and temporal correlations in the
measured syndromes to infer the necessary recovery operation after the
final error-correction cycle. Discarding instances where leakage was detected
during the operation10, corresponding to 8% of the data, a bit-flip error
probability per cycle of "3,X = 3.2% was measured, along with a phase-
flip error probability "3,Z = 2.9%. Given the associated cycle duration
⌧cycle = 1.1 µs, these error rates translates into logical bit-flip and phase-flip
times

TX,L =
⌧cycle
2 "3,X

= 16.4 µs,

TZ,L =
⌧cycle
2 "3,Z

= 18.2 µs.
(2.49)

These are notably shorter than the average coherence time of the physical
qubits that constitute the surface code, indicating the code was not operated
below its threshold.

distance 3 surface code with the zuchongzhi 2.1

Just two months after the experiment conducted by Krinner et al., another
experiment showcased the operation of a distance three surface code using a
subset of seventeen qubits extracted from the 66 qubits of the Zuchongzhi
2.1 chip [84, 85]. However, there were notable differences in this experiment’s
performance. While the fidelity of one and two-qubit gates was similar to the
previous experiment, the measurement infidelity experienced a significant

10 Such a leakage would correspond to a data or measurement qubit getting excited higher
than its first excited state. This could be attributed to quasiparticles causing correlated
errors across the chip [55] or excitations induced by the readout of measurement qubit [83].
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increase, reaching approximately 4.752%, as opposed to the 0.9% measured
in [82]. Additionally, the average coherence time of the physical qubits was
relatively brief with T2 = 5.3 µs and the duration of an error correction
relatively long at Tcycle = 4.153 µs, primarily limited by the duration of the
readout ⇡ 3.9 µs.

These physical parameters translate to an increased logical error per cycle
with "3,X = "3,Z = 26% when applying the recovery operation after the
final error-correction cycle. Although this represented a 20% enhancement
compared to the uncorrected surface code’s error rate of "3,X = 32% and
"3,Z = 33%, the associated coherence time Tcycle/2"3,Z = 7.98 µs remained
significantly shorter than the average lifetime of the physical qubits.

distance 3 & 5 surface code with the sycamore chip

Seven months later, in July 2022, Google AI introduced its own adaptation
of the surface code, using subsets of the Sycamore chip with its interconnected
ensemble of 72 qubits [86]. Selecting the desired array of qubits, a distance
three surface code was operated. This encoding was then extended to a
distance five surface code, whose layout is represented in Fig. 2.7a.

In terms of the performance of the code’s physical components, Google’s
results were similar to [82], featuring slightly improved fidelity for one and
two-qubit gates but at the expense of increased readout infidelity. This
similarity in physical components naturally led to a comparable logical error
rate per cycle, yielding "3 = 3.028 ± 0.023%. There, "3 corresponds to an
averaged value of the error rate over the cardinal states of the Bloch sphere.
Given a cycle duration of Tcycle = 0.931 µs, this resulted in a logical coherence
time of ⇡ 15 µs which remained shorter than the average coherence time
of the physical qubits. This observation indicates that the physical error
rate remained above the code threshold, despite the gate fidelities and qubit
lifetimes being close to state-of-the-art standards.

However, an intriguing shift occurred when expanding the code to a
distance five surface code, consisting of 25 data qubits and 24 measure-
ment qubits. In this scenario, the logical error rate per cycle decreased to
"5 = 2.914± 0.016%, despite the system remaining above threshold. This
phenomenon can be attributed to the existence of a crossover regime, evi-
denced in simulations, corresponding to the physical error rate approaching
the error threshold within a few percentage points. Within this regime, finite
size effects lead to an initial reduction of the logical error rate for increasing
code distance, only to see it rise later on.
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Parameter ETH Zurich Zuchongzhi 2.1 Sycamore

Single qubit gate errors 0.09% 0.098% 0.01%

Two qubits gate errors 1.5% 1.035% 0.5%

Measurement infidelity 0.9% 4.752% 2.0%

Average physical T1 32.5 µs 28.4 µs 20 µs
Average physical T2 37.5 µs 5.3 µs 30 µs

Correction cycle duration
⌧cycle

1.1 µs 4.153 µs 0.931 µs

Logical error per cycle "3 3 % 26 % 3.026%

Logical error per cycle "5 2.914%

Table 2.2: Physical parameters of the different surface codes.

2.4.3 Easing the hardware requirements using biased noise qubits

These experiments showcase the difficulty of operating a CSS surface code
below its error threshold, despite the efforts dedicated to increasing the
lifetime of physical qubits, the fidelity of one and tow-qubit gates, or the
accuracy of qubit readout. Furthermore, even after reaching this error thresh-
old, operating a logical qubit on which useful algorithms can be performed
would require at least 105 � 106 physical qubits per logical qubit [77], far
beyond what is currently feasible with superconducting circuits. To ease
the error threshold of the CSS surface code, leading to fewer qubits being
necessary to define a single logical qubit, an alternative variant of the surface
code was introduced in 2020: the XZZX surface code [87].

2.4.3.1 The XZZX surface code

The XZZX surface code [87] is similar in its structure to the conventional
CSS surface code, the primary distinction between these two encodings lying
in the structure of their syndromes. While the CSS surface code employs
two types of measurement qubits responsible for measuring X-type or Z-type
syndromes, all measurement qubits in the XZZX surface code are dedicated
to measuring the same syndrome �̂z,a�̂x,b�̂x,c�̂z,d between four neighboring
data qubits (Fig. 2.8a.). These syndromes are measured similarly to the
X-stabilizers of the CSS surface code, replacing the CNOT gates between
the measurement qubit and the data qubits a and b with controlled-Z gates.
The pulse sequence shown in Fig. 2.8c. is executed simultaneously on all
measurement qubits, ensuring that no data qubit is simultaneously engaged
in two gates during the operation
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This local change of basis leads to the XZZX surface code reacting to
Pauli errors differently than the CSS surface code. In particular, a key
feature of this encoding is that bit-flip errors occurring on a data qubit
lead to vertically aligned syndrome measurements indicating a value of �1.
Similarly, phase-flip errors affecting data qubits would result in horizontal
error patterns (Fig. 2.8b.). This property can be exploited when designing
the decoder, particularly when the physical qubits exhibit a significant noise
bias11

⌘ =
pz

px + py
(2.50)

where px, py and pz respectively correspond to the probability of a physical
X, Y, and Z Pauli-error. A decoder can then be tailored to assign greater
importance to vertical error patterns when determining the appropriate
recovery operation. This leads to a more unambiguous identification of errors,
particularly when compared to the CSS surface code or an unbiased XZZX
code where all directions are equally weighted, resulting in an increased error
threshold. Note that in the limit ⌘ ! 1, bit-flip errors can be completely
discarded and the XZZX surface code effectively behaves as a repetition code,
protecting the logical information against phase-flip errors. This intuition is
confirmed by the error threshold increasing with ⌘, reaching pTh = 0.5.

2.4.3.2 What biased-noise qubit to use in such architecture ?

Several biased noise qubits can be envisioned as the building blocks of
an XZZX surface code, including qubits based on technologies such as
trapped ions or Rydberg atoms. However, a crucial feature lacking in these
technologies is the ability to perform operations that preserve the bias
in the noise characteristics of the physical qubits12. These operations are
essential for preventing bit-flip or phase-flip errors from being converted into
their respective conjugate errors. In the absence of such gates, the unique
advantage of the XZZX surface code would quickly disappear as the noise
bias vanishes after a few rounds of error correction.

11 A large noise bias corresponds to scenarios where physical bit-flip errors are largely
suppressed, leaving phase-flip as the primary source of logical errors within the surface
code. Small biases ⌘ ⌧ 1 can also be exploited, which in the limit of ⌘ ! 0 would make
the code equivalent to a repetition code correcting for bit-flip errors.

12 A no-go theorem demonstrated in the appendix of [88] shows that no bias-preserving
two-qubit gates exist for two-level systems. An extra degree of freedom is necessary in
order to continuously deform the encoding, such as the complex amplitude ↵ describing a
cat qubit.
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Figure 2.8: a. Layout of the XZZX surface code and its corresponding stabilizers
for a distance five surface code. Data qubits are depicted as open cir-
cles, while measurement qubits are shown as filled circles. b. Graphic
representation illustrating the propagation of logical errors affecting
data qubits. Vertical error strings indicate bit-flip errors, while horizon-
tal strings represent phase-flip errors c. Pulse sequence mapping the
code stabilizer’s value onto the corresponding measuring qubit. The
measurement qubit is prepared in |+i using a Hadamard gate, after
which controlled-Z and CNOT gates are applied using the data qubits
as the control.

A particularly appealing design is that of cat qubits, with recent proposals
exploring their use in an XZZX surface code [89] or in a simple repetition
code [88, 90] for a sufficiently large detuning ⌘. Similar to a repetition code,
cat qubits exhibit an inherent protection against bit-flip errors which are
exponentially suppressed with a parameter ↵, at the expense of a linear
increase of the phase-flip error rate. A repetition code of cat qubits would
then effectively behave as a Bacon-Shor code.

2.5 chapter summary

In this chapter, we formalized the notion of what constitutes a qubit and
how its state can be described using a pure state | i when isolated, or a
density matrix ⇢̂ when entangled with its surrounding environment. We
presented how this interaction between a qubit and a noisy environment can
lead to decoherence, which we decompose into bit-flip and phase-flip-errors.
Focusing on the physical sources of decoherence, strategies can be imple-
mented that reduce the power spectral density of these external sources of
noise. Alternatively, new qubit designs can be envisioned that exhibit greater
resilience to such noise sources and are less sensitive to decoherence. Over
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the past two decades, both of these strategies have been pursued, resulting in
a remarkable improvement in the coherence time of superconducting qubits.
This improvement spans seven orders of magnitude, with coherence times
increasing from a few nanoseconds in the early days of the Cooper-pair
box [32] to tens of milliseconds in recent experiments [28].

Despite these impressive advancements, the current coherence times still
fall short of what is required to effectively demonstrate practical quantum
algorithms, motivating the use of quantum error-correcting codes. The
fundamental idea behind QEC is to redundantly store the logical information
across many physical qubits, providing redundancy to the system. By doing so,
even if a physical qubit encounters an error, the logical information can still
be retrieved by monitoring the ensemble. Various encoding schemes have been
developed which depend on the arrangement of physical qubits, including
the repetition code, the CSS surface code, and the XZZX surface code. In
this thesis, we particularly focus on the XZZX surface code, envisioned
in the limit ⌘ ! 1 where it can effectively be replaced by a repetition
code. To be more precise, we only consider the physical qubits from which
such a code can be built: the cat qubits. These cat qubits are introduced
in Chapter 3, which broadly explores the concept of bosonic qubits stored
within superconducting cavities.
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Bosonic codes encoded using superconducting circuits offer a promising ap-
proach towards quantum error correction [91, 92]. Using continuous-variable
systems, such as a harmonic oscillator realized in superconducting circuits,
these codes compactly encode the quantum information in multi-photon
states of a memory mode [93, 94, 95]. Unlike the previously presented
strategies which rely on numerous physical two-level systems to define logi-
cal qubits, bosonic codes exploit the infinite-dimensional Hilbert space of
the harmonic oscillator to store and protect the logical information. This
hardware-efficient approach drastically reduces the required number of phys-
ical elements, although registers of harmonic oscillators might be needed
depending on the encoding. This simplifies both the design and operation
of these devices. More essentially, it mitigates the performance degradation
caused by uncontrolled cross-talks or error propagation that can arise when
using interconnected physical elements in traditional repetition or surface
codes.

From the infinite-dimensional Hilbert space of the harmonic oscillator,
bosonic qubits are defined by selecting a suitable 2-dimensional subspace.
Various encoding strategies have emerged, each capitalizing on different
symmetry properties of the logical state’s Wigner functions [92]. Notable
examples include the kitten code [96], the GKP code [97], and the cat code
coming in either its 2-legged [98, 99, 100, 101, 102] or 4-legged version [103,
104].

To prevent leakage of logical information into the larger memory Hilbert
space, several strategies can be employed which all aim to prevent the buildup
of entropy in the superconducting cavity. One approach involves biasing
the memory phase space through Hamiltonian engineering, creating local
minima in its potential. By increasing the potential barrier between these
minima, the system’s exploration of phase space is restricted thus actively
preventing the generation of entropy. Alternatively, the entropy created in
the memory can be continuously removed using either measurement-based
feedback or dissipation engineering. Measurement-based feedback entails
measuring a syndrome to identify and correct errors that corrupted the
logical information, leveraging the symmetries of the state to design the
proper syndrome. Dissipation engineering on the other hand involves tailoring
the coupling between the memory and its environment to induce an effective
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dissipation that stabilizes the desired states. This method continuously
removes entropy from the system, similar to measurement-based feedback,
but does not require any external intervention. The experiments presented
in this thesis focus on this method.

This chapter presents various bosonic encodings, with particular emphasis
on the stabilization of 2-legged cat qubits through Hamiltonian and dissipa-
tion engineering. We begin by introducing the fundamental components of
a bosonic code, followed by an introduction of the Wigner function and its
role in graphically representing quantum states and the impact of memory
errors. We then introduce the kitten, GKP, and cat codes, before illustrating
how Hamiltonian engineering, measurement-based feedback, and dissipation
engineering can be employed to stabilize cat qubits. Finally, we present
advancements in the stabilization of cat states through dissipation engineer-
ing, modifying the interaction between the memory and its environment to
achieve higher dissipation rates.

3.1 building blocks of a bosonic code

3.1.1 The quantum Harmonic Oscillator

Bosonic quantum error correction relies on encoding logical information in
harmonic oscillators. In circuit QED, these modes can notably be hosted by
three-dimensional (3D) cavities or two-dimensional (2D) resonators, each
with unique characteristics for preserving quantum information.

3D cavities are typically bulky structures, ranging from approximately 2
to 10 centimeters in size when operating in the 2 to 12 GHz frequency range.
This bulkiness is imposed by the dielectric constant of the vacuum that
encompasses the electromagnetic mode. While this presents certain technical
challenges, it also allows to reach high-quality factors due to the spread of the
mode throughout the cavity’s volume, resulting in a low peak electric field
at the cavity surface. Remarkably, rectangular cavities can achieve quality
factors as high as Q = 107 [105], whereas niobium superconducting radio
frequency (SRF) cavities employed in particle accelerators for high-energy
physics can reach Q values as high as 1010 to 1011 [106].

On the other hand, 2D resonators are fabricated by patterning super-
conducting thin films on top of substrates with relatively large dielectric
constants. This enables them to be more compact compared to their bulky
3D counterparts for a given frequency range. However, this compactness
comes at the cost of an increased peak electric field amplitude, rendering
the resonator more susceptible to material defects or organic residues and
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limiting the quality factor to approximately Q = 107 [47, 107]. Although this
relatively low-quality factor introduces decoherence and limits the lifetime of
logical information, the heightened peak electric field allows for stronger cou-
pling between the harmonic mode and its environment. This characteristic
becomes particularly advantageous when designing quantum error-correcting
codes as it enables to drastically modify the memory’s properties by in-
teracting with its environment, preventing the accumulation of entropy.
Additionally, 2D resonators provide a versatile platform that facilitates swift
design modifications and can be easily fabricated using standard lithography
techniques.

Harmonic oscillators encoded in superconducting circuits are effectively
described by an LC circuit 3.1. Bellow the superconductor critical tem-
perature Tc, electrons bond to form Cooper pairs in the superconducting
metal [20] and the circuit opposes no resistance to DC currents. Small losses
originating from AC currents are usually ignored, and no resistance is then
added to the equivalent electrical circuit. Furthermore, the bath of cooper
pairs acts as an effective collective mode which can be characterized by two
conjugate variables: the magnetic flux � winding through the inductor and
the charge Q across the capacitor. Following the derivation of [108, 109],
these quantities relate to the circuit voltage V and current i as

8
>>><

>>>:

� (t) =

Z
t

�1
V (⌧) d⌧

Q (t) =

Z
t

�1
i (⌧) d⌧.

(3.1)

Expressed as a function of �, the capacitance energy writes 1

2
CV 2 = 1

2
C�̇2

and the inductance energy 1

2L
�2. Interpreting the former as the circuit

kinetic energy and the latter as its potential energy, the Lagrangian can be
expressed as

L =
1

2
C�̇2 � 1

2L
�2 (3.2)

with C the circuit capacitance and L its inductance. Replacing �̇ by Q = C�̇,
the Lagrangian becomes

L =
1

2C
Q2 � 1

2L
�2 (3.3)

and takes the same form as that of a mechanical oscillator, describing an
object of mass C connected to a spring with a constant 1/L. The frequency
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of the LC circuit describing the memory mode is given by !m = 1/
p
LC,

and its characteristic impedance by Z =
p
L/C. The Hamiltonian is then

obtained from the Legendre transform of the Lagrangian

H =
�L
��̇
�̇� L =

1

2C
Q2 +

1

2L
�2, (3.4)

The quantum version of this Hamiltonian is derived by promoting the two
classical variables � and Q to quantum operators �̂ and Q̂, which verify the
commutation relation

h
�̂, Q̂

i
= i~1. (3.5)

This expression can be made more intuitive by introducing the creation and
annihilation operator â† and â, defined by the relation

(
Q̂ = iQZPF

�
â† � â

�

�̂ = �ZPF

�
â† + â

�
.

(3.6)

There, QZPF =
q

~
2Z

and �ZPF =
q

~Z
2

. The Hamiltonian then takes the
form

Ĥ = ~!m

✓
â†â+

1

2

◆
(3.7)

with
⇥
â, â†

⇤
= 1. From this expression, we can recognize the form of a quan-

tum harmonic oscillator with â and â† the corresponding ladder operators.
The eigenstates of this circuit are the Fock states {|ni , n 2 N}, defined by
the relation

â†â |ni = n |ni . (3.8)

These states physically correspond to having n quanta of energy ~!m,
called photons, in the electromagnetic field. The operators â and â† respec-
tively destroy or create an excitation in the harmonic oscillator. By employing
Eq. (3.8), the energy of the system can be expressed as En = n~!m + 1/2
with n the number of mode excitations.

While these resonators serve as fundamental components for quantum
error correction and are ideal for storing quantum information, they cannot
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Figure 3.1: a. Representation of a superconducting resonator or cavity as an
equivalent LC circuit. The electromagnetic mode is described by the
conjugates variables � and Q, their link with the circuit current and
voltage is given by Eq. (3.1). b. Potential of the Harmonic oscillator as
a function of �, and energy spacing of the resonator eigenstates. Each
Fock states |ni has an energy En = n~!m + 1/2.

be used alone in a bosonic code. This limitation stems from the regular
energy spacing, En+1 � En = ~!m remaining constant regardless of the
photon number n. Consequently, it becomes impossible to target a specific
transition between two Fock states starting from the vacuum state. The only
states that can be encoded by driving the memory at its frequency !m/2⇡
are coherent states |↵i, ↵ 2 C, defined as

|↵i = D̂(↵) |0i = e�|↵|2/2
X

n

↵n

p
n!

|ni . (3.9)

Here, D̂(↵) = e↵â
†�↵

⇤
â represents the displacement operator, and |0i denotes

the vacuum state of the memory. Coherent states are Gaussian states, and
their Wigner function follows a Gaussian distribution in the memory’s phase
space. However, as discussed in Sec. 3.2, these states alone are insufficient
for quantum computing, as any algorithm based solely on Gaussian states
can be efficiently simulated by a classical computer [110, 111]. Therefore, in
order to encode and stabilize quantum states that exhibit greater inherent
quantum characteristics and offer a real quantum advantage, we need to
introduce a non-linear element to the system: the Josephson junction.
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3.1.2 A source of nonlinearity: the Josephson junction

The Josephson junction, originally introduced by Brian Josephson in 1962
[23], plays a pivotal role in circuit quantum electrodynamics (QED) by
providing nonlinearity to the system. It consists of two superconducting
islands separated by an insulating barrier that enables coherent tunneling
of Cooper pairs. This phenomenon is mathematically described by the two
Josephson equations:

8
<

:
V (t) =

�0

2⇡

d'(t)

dt
I(t) = Ic sin ('(t)) .

(3.10)

These equations establish a connection between the voltage across the junc-
tion, denoted by V (t), and the current flowing through it, denoted by I(t),
with the phase difference '(t) between the two superconducting islands. Here,
�0 = h/2e represents the superconducting flux quantum and Ic the critical
current that can flow through the junction. Using Eq. (3.1), the variable
'(t) can be related to the generalized magnetic flux as '̇(t) = 2⇡

�0
�̇(t). The

energy associated with the junction can then be determined by integrating
the dissipated power over time

E =

Z
V (t)I(t)dt =

Ic�0

2⇡

Z
sin ('(t))

d'(t)

dt
dt = �EJ cos('(t)), (3.11)

with EJ = Ic�0
2⇡

the energy associated with the Josephson junction. To
establish a quantum description of the Josephson junction, the variable ' is
promoted to a quantum operator '̂. The potential energy of the Josephson
junction can then be expressed as �EJ cos ('̂). Alternatively, this potential
energy can be written in terms of n̂c, the conjugate operator to '̂, and its
eigenstates |Ni representing the number N of Cooper pairs on one side of the
junction. Using the commutation relation

h
'̂, N̂

i
= 1, it can be shown [108]

that ei'̂ =
P

N2Z |N � 1i hN |. This leads to a potential energy of the form

ÛJ = �1

2
EJ

X

N2Z

|N + 1i hN |+ |Ni hN + 1| , (3.12)

clearly highlighting the origin of this potential energy to be the tunneling of
Cooper pairs across the insulating barrier of the Josephson junction. This
non-linear potential of the Josephson junction can be used to tailor the
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coupling between a resonator and its environment. This is of particular
interest for bosonic codes in order to have universal control of the memory
and encode non-Gaussian states [112, 113, 114], reach large squeezing of
coherent and cat states using parametric pumping [115, 116], and tailor
the coupling between 2 resonators [117, 102]. Furthermore, replacing the
inductance of an LC circuit with a Josephson junction defines a resonant
mode whose two lowest energy levels can be used as a qubit.

Figure 3.2: a. Representation of a Transmon qubit. The inductance of Fig. 3.1 is
replaced by a Josephson junction acting as a non-linear inductance. b.
Potential of the transmon qubit as a function of ', and energy spacing of
the transmon eigenstates. To first order, the energy difference between
2 successive energy levels decreases as En+1 � En = ~!q � nEc.

The Hamiltonian of this circuit (Fig. 3.2a.) can be expressed as

Ĥ = 4Ec (n̂c � ng)
2 � EJ cos (') (3.13)

with Ec = e
2

2(C+CJ )
the capacitive energy of the system and ng a charge

offset due to a voltage source or parasitic charges on the superconducting
islands. CJ ⇠ 1 fF is the junction parasitic capacitance while C ⇠ 1 pF is
the added parallel capacitance. As introduced in [33], operating this device
in the regime EJ � Ec defines the transmon regime where the qubit is
insensitive to charge noise, ie. noise in the value of ng. This historically
allowed to increase the qubit coherence time while keeping a simple design,
making the transmon the most widely used qubit in superconducting circuits.
In particular, surface codes at IBM and Google all use transmons as their
physical two-level systems. In the transmon regime EJ � Ec, the phase of
the transmon is localized at ' ⇡ 0 and the cosine function appearing from
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the Josephson junction potential can be truncated to its 4th order expansion.
The Hamiltonian in Eq. (3.13) can then be expressed as a function of the
transmon’s creation and annihilation operators q̂† and q̂ as [118]

Ĥ =
⇣p

8EJEc � Ec

⌘
q̂†q̂ � Ec

2
q̂†2q̂2, (3.14)

giving a transmon frequency !q =
p
8EJEc � Ec and an anharmonicity

Ec. This allows the transmon transitions to each have a different frequency
(Fig. 3.2b.), but sets a limit on the minimal value of Ec which allows us to
address them separately. In practice, Ec is chosen to be in the 100�300 MHz
range while keeping the condition EJ/Ec & 50. This gives a transmon
anharmonicity larger than the qubit decoherence rate �2/2⇡, typically in
the 1� 100 kHz range, hence a good spectral resolution of the transmon two
lowest energy states. The transmon can then be approximated as a two-level
system with a Hamiltonian Ĥ = ~!q

2
�z.

Our experiments make use of a transmon qubit for tomography purposes,
using it to directly measure the memory Wigner function (see measures in
Chap. 4 and Chap. 5), and to stabilize the memory parity using a parametric
pumping scheme (see Chap. 6).

3.1.3 Coupling a transmon with a Harmonic Oscillator

3.1.3.1 Capacitive coupling under the Rotating Wave Approximation

Figure 3.3: Representation of a transmon qubit capacitively coupled to a resonator
through a capacitor Cg. An input line is used to drive the harmonic
mode.
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3.1 building blocks of a bosonic code

The transmon can be coupled to a resonator through a capacitive cou-
pling, using a capacitance Cg which couples the charge of both modes. This
coupling can be understood as an additional charge offset on the trans-
mon’s superconducting islands. Using a similar form as in Eq. (3.13), the
Hamiltonian describing the circuit of Fig. 3.3 can be written as [30]

Ĥ = 4Ec

✓
n̂c �

Cg

2eC
Q̂

◆2

� EJ cos ('̂) + ~!mâ†â. (3.15)

The operator Q̂ is the charge operator of the resonator, and Ec =
e
2

2(Cshunt+CJ )

with the notations introduced in Fig. 3.3. Note that this Hamiltonian is only
valid if the coupling can be treated as a perturbation, which amounts to the
condition Cg ⌧ C, CJ + Cshunt. Truncating once again the cosine potential
of the Josephson junction to its 4th order, which is valid in the transmon
regime EJ � Ec, this Hamiltonian becomes

Ĥ = ~!
0

m
â†â+ ~!q q̂

†q̂ � Ec

2
q̂†2q̂2 � ~g

�
â† � â

� �
q̂† � q̂

�
. (3.16)

There, !
0

m
is the normalized frequency of the resonator and g the coupling

rate between the two modes, expressed as [119]

g =
!mCg

CJ + Cshunt

✓
EJ

2Ec

◆1/4
r
⇡Z

R
, (3.17)

with, Z the characteristic impedance of the resonator and R = h/e2 the
quantum of resistance. This Hamiltonian can be further simplified when
the coupling rate is small compared to the two modes resonant frequencies
g ⌧ !q, !

0

m
. Under this condition, the Rotation Wave Approximation can

be applied (see Appendix. a) and Eq. (3.16) becomes

Ĥ = ~!
0

m
â†â+ ~!q q̂

†q̂ � Ec

2
q̂†2q̂2 + ~g

�
â†q̂ + âq̂†

�
. (3.18)

This form highlights the role of the capacitive coupling as an interaction
where quanta of energy are exchanged between the transmon and resonator.
Restricting the transmon to its first 2 energy levels, it can be treated as a
qubit and Eq. (3.18) takes the form of the well-known Jaynes-Cummings
Hamiltonian [120]:

ĤJC = ~!
0

m
â†â+ ~!q

2
�z + ~g

�
â�+ + â†��

�
. (3.19)
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3.1.3.2 The dispersive regime and readout of the transmon qubit

Superconducting circuits are most often operated in the dispersive regime,
defined by the condition g ⌧ !q � !m = �. Under this condition, the trans-
mon’s non-linearity �Ec

2
q̂†2q̂2 in Eq. (3.18) can be treated as a perturbation

while the linear part of the Hamiltonian

Ĥlin = ~!mâ†â+ ~!q q̂
†q̂ + ~g

�
â†q̂ + âq̂†

�
(3.20)

is diagonalized using a Bogoliubov transformation

ÛDisp = e
g
� (â

†
q̂�q̂

†
â). (3.21)

The resonator and transmon modes hybridize as

ˆ̃a = Û†
Disp

âÛDisp = cos
⇣ g

�

⌘
â+ sin

⇣ g

�

⌘
q̂

ˆ̃q = Û†
Disp

q̂ÛDisp = cos
⇣ g

�

⌘
q̂ � sin

⇣ g

�

⌘
â,

(3.22)

with the operators ˆ̃a and ˆ̃q describing the hybridized resonator and transmon
modes after the Bogoliubov transformation. Note that these hybridized
modes are the ones we probe experimentally, the bare modes being usually
inaccessible. The dispersive Hamiltonian is then expressed as

ĤDisp/~ = !̃m
ˆ̃a†ˆ̃a+ !̃q

ˆ̃q† ˆ̃q��q,q
ˆ̃q†2 ˆ̃q2��m,m

ˆ̃a†2ˆ̃a2��q,m
ˆ̃q† ˆ̃qˆ̃a†ˆ̃a. (3.23)

The normalized frequencies and non-linearities are given (in first order in
the perturbation development) by

!̃m =
1

2

⇣
!m + !q �

p
�2 + 4g2

⌘
, !̃q =

1

2

⇣
!m + !q +

p
�2 + 4g2

⌘

�q,q =
Ec

2
, �m,m =

Ec

2

⇣ g

�

⌘4
, �q,m = 2Ec

g2

� (�� Ec/~)
.

The non-linearities �q,q, �m,m are respectively called the transmon and mem-
ory self-Kerr rates, with �q,m being the cross-Kerr coupling rate between
the two modes. While the qubit anharmonicity Ec

2
remains unchanged after

this transformation, it is interesting to notice that the hybridized "resonator"
mode inherits some non-linearity. This nonlinearity is small however, being
of 4th order in the parameter g/� ⌧ 1, and the resonator mode remains
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only weakly non-harmonic. The cross-Kerr term of this Hamiltonian can be
thought of as a resonator frequency shift that depends on the number of
excitations in the transmon mode. This is evident by rewriting Eq. (3.23) as

ĤDisp/~ =
⇣
!̃m � �q,m

ˆ̃q† ˆ̃q
⌘
ˆ̃a†ˆ̃a+ !̃q

ˆ̃q† ˆ̃q��q,q
ˆ̃q†2 ˆ̃q2��m,m

ˆ̃a†2ˆ̃a2, (3.24)

with the resonator frequency shifting by ��q,m for every quanta of energy in
the transmon. The dispersive regime is particularly interesting when �q,m is
larger than both the relaxation and decoherence rates of the resonator and
qubit modes. Under this condition, it becomes possible to control the memory
state conditionally on the transmon state. This enables the preparation of
Fock states (see Sec. 3.2.3.2), memory displacements conditioned on the
transmon’s state, or more generally the preparation of any arbitrary state
using gradient ascent pulse engineering (GRAPE) [121]. Alternatively, one
could control the transmon conditionally on the memory state, which is
crucial in order to measure Wigner functions (see Sec. 3.2)

Figure 3.4: a. Spectroscopy of a resonator in reflection. A drive is sent to the
resonator with the transmon initialized in its ground |gi or excited
state |ei. The reflected signal is measured, and its phase is shown as a
function of the drive frequency b. Histogram of 107 measurements of
the resonator quadrature for a transmon initialized in |gi, |ei or |fi
with equal probability.

We measure this frequency shift experimentally using the device introduced
in Chap. 4. A drive at varying frequency !d is sent to the resonator (the
readout resonator in the device) using the input line represented in Fig. 3.3.
The reflected signal r(!d) is then measured, which evolves with the drive
frequency as (see Appendix. d)
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r(!d) =

*
m,c � m,i + 2i

⇣
!d �

⇣
!̃m � �q,m

ˆ̃q† ˆ̃q
⌘⌘

m,c + m,i � 2i
⇣
!d �

⇣
!̃m � �q,m

ˆ̃q† ˆ̃q
⌘⌘
+
. (3.25)

There, m,i corresponds to the resonator intrinsic loss due to surface or
radiative losses, while m,c is the rate at which the resonator decays through
the input line. The resonator frequency !̃m � �q,m

ˆ̃q† ˆ̃q is probed by fitting
the phase of the reflected signal using Eq. (3.25). A frequency shift of
�q,m/2⇡ = 3.5 MHz can indeed be measured when the transmon gets excited
(Fig. 3.4a.).

A common use of this frequency shift is to readout the state of the
transmon by probing the resonator mode. Driving the resonator with a
signal of amplitude ↵in at a frequency !d, and neglecting here �m,m, the
resonator state can be described by a classical field of complex amplitude

↵(!d) =
2
p
m,c

(m,c + m,i)� 2i
⇣
!d �

⇣
!̃m � �q,m

ˆ̃q† ˆ̃q
⌘⌘ ↵in(!d). (3.26)

We measure the outgoings field amplitudes at a fixed drive frequency !d =
!̃m � �q,m. Owing to the resonator frequency shift, the field amplitudes
corresponding to a transmon in its ground, first or second excited states
can then be distinguished, which allows to readout the transmon state
using the resonator (Fig. 3.4b.). Note that from Eq. (3.26), we see that the
separation between the different Gaussian distributions can be increased
by increasing the amplitude of the propagating field ↵in. However, even for
relatively low numbers of photons in the resonator, this can lead to spurious
effects such as unwanted excitations of the transmon which limit the readout
fidelity [122]. Techniques such as cavity cloaking [123] are currently developed
to circumvent this issue.

3.2 representing the cavity state: the wigner function

3.2.1 Mathematical definition

To graphically represent the quantum state encoded in the memory and
gain intuition on the inner workings of various bosonic codes, we use the
Wigner-Weyl transformation [124, 125]. This transformation directly gives
a bijection between the density matrix ⇢̂ describing the memory mode and
a real function on the memory phase space W (�). The position x̂ and
momentum p̂ quadratures are respectively defined as
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8
>><

>>:

x̂ =
â+ â†

2

p̂ =
â� â†

2i
.

(3.27)

The corresponding basis in position and momentum are denoted {|xi , x 2 R}
and {|pi , p 2 R}. The Wigner function can then be expressed by projecting
the memory density matrix ⇢̂ into either one of these bases [40]

W (� = x+ ip) =
1

⇡

Z

R
e�2ipy hx+ y/2| ⇢̂ |x� y/2i dy

=
1

⇡

Z

R
e2ixu hp+ u/2| ⇢̂ |p� u/2i du.

(3.28)

This function is commonly interpreted as a quasi-probability distribution as
it is normalized to unity

Z

C
W (�)d� = Tr (⇢̂) = 1, (3.29)

but can still present negative values. Only when integrating the Wigner
function along any axis do we obtain a proper probability distribution for
the corresponding variable. For instance, defining the function

f(x) =

Z

R
W (x, p)dp (3.30)

gives the probability distribution of the position quadrature. This function
is immediately normalized to 1 according to Eq. (3.29), and it can be shown
that f(x) � 0 irrespective of the value of x. f(x) is the distribution of
outcomes one would obtain using a homodyne measurement to measure
x̂ when the system is in ⇢̂. A similar probability distribution g(p) can be
defined in momentum by integrating the Wigner function along the position
quadrature. The Wigner function providing a complete description of ⇢̂, it
can be used to compute the mean value of any operator Ô acting on the
memory Hilbert space

D
Ô
E
=

Z

C
W (�)O(�)d�,

with O(� = x+ ip) =
1

⇡

Z

R
e�2ipy hx+ y/2| Ô |x� y/2i dy.

(3.31)
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This expression can be understood as an averaging of the physical quantity
O(� = x+ip) over the memory phase space, weighted by the quasi-probability
distribution W (�). Experimentally, Eq. (3.31) can be used to reconstruct the
memory density matrix ⇢̂ using the measured Wigner function to estimate
the mean value of |ni hm|. Here |ni refers to Fock state n, and the mean
value h|ni hm|i

⇢
directly gives the value of ⇢n,m = hn| ⇢̂ |mi.

3.2.2 The importance of negativities in the Wigner function

Gaussian states are states whose Wigner function is a Gaussian function
in the memory phase space. These states are commonly encountered with
coherent states |↵i, ↵ 2 C, being a prominent example. The Wigner function
of such a coherent state, obtained by driving a harmonic oscillator at its
resonant frequency, is a Gaussian function centered around ↵ with a width
of 1/2 (Fig. 3.5a.). An important theorem [110, 111] gives some insight into
the use of Gaussian states for quantum computing. It states that any process
whose initialization, evolution, and measurement, can be fully described using
only Gaussian states, can be efficiently simulated by a classical algorithm.
This makes non-Gaussian states an important tool for quantum computing
in order to obtain any sort of quantum advantage.

Another theorem worth mentioning is Hudson’s theorem [126] which
proves that a single-mode pure quantum state is non-Gaussian if and only if
its Wigner function presents negative values. This theorem has later been
extended to multimode states by Soto and Claverie [127]. This makes Wigner
negativities a key property to determine the usefulness of a state for quantum
computing, with the Wigner negativity volume becoming an indicator of
a state’s non-classical nature [128]. In particular, the different encodings
presented in Sec. 3.3 all present negativities in the Wigner function of most
of their states.

3.2.3 A few commonly encountered Wigner functions

To illustrate the concept of the Wigner function, we introduce that of some
commonly encountered states. More specifically we focus on the represen-
tation of coherent states, squeezed states, and Fock states, all of which are
encountered in the measurements later presented.
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3.2.3.1 Coherent and squeezed states

Already introduced in Sec. 3.1.1, coherent states are encoded by driving
a harmonic oscillator with a classical drive at its resonant frequency. This
dynamic is captured by the following Hamiltonian

Ĥ = i~
�
✏dâ

† � ✏⇤
d
â
�
, (3.32)

with ✏d a dimentionless drive amplitude. After a time t, the memory initially
in its vacuum state |0i evolves towards

|↵i = e�
i
~ Ĥt |0i = e✏dtâ

†�✏
⇤
dtâ |0i , (3.33)

which indeed correspond to the coherent states as defined in Eq. (3.9). For
a constant drive amplitude ✏d, we find ↵ = ✏dt, and in the more general
scenario of a time-varying drive, ↵ =

R
t

0
✏d(u)dt. The Wigner function of a

coherent state |↵i is a Gaussian function on C of standard deviation � = 1/2
centered at ↵ (Fig. 3.5a.) The drive amplitude ✏d can then be understood
as the speed at which this Gaussian pattern moves across the phase space.
Interestingly, these states 1 saturate the Heisenberg uncertainty relation.
Consequently, their Wigner function has the smallest possible spread in the
memory phase space.

Squeezed coherent states can then be defined from these coherent states
by introducing the squeezing operator Ŝ(r) = e

1
2 (r

⇤
â
2�râ

† 2), with r = |r| ei✓
the squeezing parameter. Mathematically, these states can be expressed in
one of two 2 ways depending on the order of the displacement and squeezing
operations

|↵, ri = D̂(↵)Ŝ(r) |0i

= Ŝ(r)D̂(�) |0i ,
(3.34)

with � = ↵ cosh(|r|) + ↵⇤ei✓ sinh |r|. From now on we will use the first
convention, squeezing the vacuum before the displacement. The resulting
Wigner function of these states resembles that of a coherent state compressed
into an ellipse of the same area, still saturating the Heisenberg bound. The
compressed quadrature exhibits reduced fluctuations, visible in the Wigner
function by a reduced standard deviation e�|r|/2. In the opposite direction,
fluctuations are amplified and the standard deviation increases to e|r|/2. An
example is shown in Fig. 3.5b., for a squeezing of r = 0.75 and ↵ = 2.

1 The Heisenberg uncertainty relation is saturated if and only if the state is a pure Gaussian
state |↵, ri
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Figure 3.5: a. Wigner function W (�) of a coherent state |↵i with ↵ = 2. b. Wigner
function of a squeezed coherent state |2, 0.75i, obtained by applying
the squeezing operator Ŝ(r) with r = 0.75 on the vacuum |0i, before
applying a displacement D̂(↵) with ↵ = 2.

These squeezed states are particularly useful in metrology due to their
ability to enhance the sensitivity of measurements beyond the standard
quantum limit (SQL). In gravitational wave detection for instance, squeezed
states were used to increase the sensitivity of interferometric measurements,
enabling the detection of faint gravitational wave signals that would otherwise
remain undetectable with traditional techniques [129]. Squeezed states are
now routinely implemented in circuit QED [130, 131, 115], and recent
proposals highlight their benefit for improving on existing bosonic codes
[132, 133, 134]

However, these states by themselves -without considering the superposition
of coherent or squeezed states- do not present any negativities. Some of the
more naturally encountered states that do present non-Gaussian Wigner
functions are Fock states.

3.2.3.2 Fock states

As discussed in Sec. 3.1.1, Fock states are eigenvectors of the Hamiltonian
governing a harmonic oscillator:

Ĥ = ~!m

✓
â†â+

1

2

◆
. (3.35)

To give them a physical interpretation, the Fock state |ni corresponds to
having n excitations in the oscillator’s electromagnetic field, resulting in
an associated energy En = ~!mn+ 1/2. With the exception of the vacuum
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state |0i, these states are non-classical in the sense that they can not be
prepared by simply applying a coherent drive to the memory hosting the
harmonic mode.

Interestingly, being eigenstates of the memory Hamiltonian allows their
preparation through the back-action of an energy measurement. Alternatively,
one can leverage the dispersive coupling between the memory and an auxiliary
qubit. When the coupling rate g is smaller than both the memory and
qubit frequencies, i.e., g ⌧ !m,!q, the Rotating Wave Approximation (see
Appendix.a) can be applied and the system is accurately described by the
Jaynes-Cummings model [120]

ĤJC/~ = !mâ†â+
!q

2
�z + g

�
â�+ + â†��

�
. (3.36)

Figure 3.6: Wigner function W (�) of a. Fock state |0i, b. Fock state |1i, c. Fock
state |2i d. Fock state |3i.

The non-linear coupling can then be used to inject or remove photons from
the memory, using the auxiliary qubit. The Wigner function of Fock state
|ni is given by:

Wn (�) = (�1)n
2

⇡
e�2|�|2Ln

⇣
4 |�|2

⌘
, (3.37)

where Ln(x) represents the Laguerre polynomial of order n. Notably, for
n > 1, the Wigner functions of Fock states exhibit negativities (Fig. 3.6),
revealing their non-classical nature and making them interesting candidates
for quantum computing applications.

One particularly relevant code based on Fock states is the 0/1 code,
employing |0i and |1i as the two logical states of a qubit. This encoding,
despite being vulnerable to photon loss which induces a bit-flip type of error
(see Sec 3.2.4), is often used as a benchmark for other bosonic qubits.

59



bosonic codes

3.2.4 Impact of common errors affecting the resonator

The Wigner function serves not only as an intuitive representation of a
quantum state2 and a mean to gauge its "quantum usefulness" but also as
a tool to illustrate the effects of errors affecting the memory. For a weak
enough coupling to a large environment, such errors are described using the
formalism of the Lindblad master equation [40]. This equation describes the
expected evolution of the memory density matrix ⇢̂(t), taking into account
both the Hamiltonian evolution and the impact of errors, modeled as an
ensemble of jump operators

n
L̂µ

o
. This equation reads

d

dt
⇢̂ = � i

~

h
Ĥ, ⇢̂

i
+
X

µ

D
⇣
L̂µ

⌘
⇢̂,

with D
⇣
L̂µ

⌘
⇢̂ = L̂µ⇢̂L̂

†
µ
� 1

2

⇣
L̂†
µ
L̂µ⇢̂+ ⇢̂L̂†

µ
L̂µ

⌘
.

(3.38)

D
⇣
L̂µ

⌘
is the Lindblad super-operator describing the impact of errors on the

memory, while the commutator
h
Ĥ, ⇢̂

i
captures the Hamiltonian evolution of

the system. Note that in the case of a pure quantum state and in the absence
of jump operators, Eq. (3.38) reduces to the usual Schrödinger equation [39].
In this section, we focus on two processes that can impact the memory
state: single-photon loss described by the jump operator L̂1 =

p
1â and

memory self-Kerr characterized by an additional term in the Hamiltonian
�~�m,mâ†2â2. Crucially, we show that in both cases the impact on the
Wigner function is only a local deformation in the memory phase space. This
feature holds true for all physical errors commonly affecting the memory.
Keeping that in mind gives a better understanding of bosonic codes’ inner
workings.

3.2.4.1 Single-photon loss

The most common error impacting a Harmonic oscillator is the loss of a
single photon, described by the jump operator

L̂1 =
p
1â (3.39)

2 Quantum mechanics can be completely described using the phase-space formalism, inde-
pendently introduced in 1946 by Hilbrand Groenewold [135] and in 1947 by Joe Moyal [136].
Wave functions or density matrices are replaced by quasiprobability distributions, and
the product between two operators by a star product.
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with 1 the single photon loss rate and â the memory annihilation operator.
The single photon loss rate relates to the memory lifetime T1 through the
relation 1 = 1/T1. Going to the interaction picture rotating at the memory
frequency !m, the Lindblad master equation takes the form

d

dt
⇢̂ = D

⇣
L̂1

⌘
⇢̂. (3.40)

From this equation, one can derive the evolution of the memory starting
from an initial state | 0i. In particular, starting from a coherent state |↵i,
the state remains a coherent state with an exponentially decaying amplitude���↵e�

1
2 t

E
(Fig. 3.7). As mentioned, this evolution simply corresponds to a

local deformation of the Wigner function in phase space, decaying to the
memory vacuum at a rate 1/2.

Figure 3.7: Simulated evolution of the memory Wigner function over time. The
system starts in the coherent state |↵i with ↵ = 2 and is submitted to
single-photon loss at a rate 1.

This evolution can initially seem counter-intuitive as coherent states
have the unique property of being eigenstates of the annihilation operator
â |↵i = ↵ |↵i. It can however be understood via the thought experiment
of placing a photon detector in the memory environment, which registers
whenever a photon is lost [40]. If a photon is detected, the coherent state
is indeed unchanged and remains in the same state. Conversely, when no
photon loss is detected, the measurement back action updates the memory
state to a coherent state of lower amplitude. This updating logic stems from
the notion that, if no photon loss is detected during a time interval t, the
memory likely contained fewer photons than initially believed.
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3.2.4.2 Memory self-Kerr term

A second effect that impacts the memory state can be modeled as an extra
contribution to the Hamiltonian of a harmonic oscillator: the memory self-
Kerr term. It originates from the coupling of the memory to a non-linear
element - typically a transmon - in order to encode, readout and stabilize non-
trivial states. The harmonic mode then inherits some nonlinearity through
this coupling, captured at first order by an additional term �~�m,mâ†2â2 in
the Hamiltonian. It induces a frequency difference between the transitions
|ni ! |n+ 1i depending on the initial photon number n, which can be seen
as a memory frequency dependence on its average photon number.

The simulated impact of this term on the memory, starting from an
initial state |↵i, is shown in Fig. 3.8a.. We compare this simulation with
an experiment performed on the device later presented. This measurement
was performed at �tomo in order to cancel the two-photon dissipation (see
Chap. 4 for more details). Using the value 1/2⇡ = 14 kHz, independently
calibrated, the memory self Kerr was fitted to �m,m/2⇡ = 220kHz. Note
that a detuning of �/2⇡ = 1MHz was added in simulation to match with
the experimental data (Fig. 3.8b.). The Lindblad equation describing the
memory in the interacting frame finally reads

d

dt
⇢̂ = �i

⇥
�â†â� �m,mâ

†2â2, ⇢̂
⇤
+D (

p
1â) ⇢̂. (3.41)

The impact of this self-Kerr effect is to induce a rotation in the memory
phase space, faster for larger amplitudes |�|. Once again, this corresponds to
a local deformation in phase space, with no population "teleporting" from
one side of the phase space to another.

Interestingly, if well-controlled, this effect can be used as a means to control
quantum information. Indeed, as can be seen in Fig. 3.8b., negativities
appear in the system even when starting from a coherent state, which
highlights the quantum nature of the prepared state. Furthermore, it can be
noted that superpositions of 4, 3, or 2 coherent states can be prepared by
stopping the evolution at times ⇡/2�m,m, 3⇡/4�m,m, or ⇡/�m,m. This was
first demonstrated by Kirchmair et al. in 2013 [137]. As introduced in [138]
it can notably be exploited to perform bias-preserving gates on cat qubits
(see Sec. 3.3.3)).

We observe that the re-focused states obtained at 1120ns, 1520ns, and
2380ns in Fig. 3.8a. differ significantly from the ideal superposition of coherent
states. Particularly visible in the fringes at 2380ns, this is due to a relatively
small value of �m,m compared to 1. The memory then loses photons during
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Figure 3.8: a. Simulated Wigner function of the memory over time. The system
is initialized in the coherent state |↵i with ↵ = 1.9, and its evolution
is simulated using Eq. (3.41). The parameter �m,m is fitted to best
reproduce the measured evolution. b. Measured Wigner function over
time.

the time ⇡/�m,m, distorting the final state. This can easily be corrected by
increasing �m,m, but would result in a larger memory nonlinearity causing
other issues for bosonic codes. Finally, it can be noted that the measurements
slightly differ from simulations, which can be attributed to other error
channels not taken into account in the model of Eq. (3.41).

3.3 small zoology of bosonic codes

In this section, we present a short zoology of the bosonic codes most widely
used in superconducting circuits. For each code, we introduce the logical
states defining the logical qubit. Using the symmetry properties of their
Wigner functions, we highlight the types of errors against which each code
is protected. Sec. 3.4 then introduces 3 different methods used to stabilize
these bosonic qubits, with Sec. 3.5 focusing on using dissipation to stabilize
cat qubits. This section takes inspiration from [92].

3.3.1 Kitten code

The Kitten code, or Binomial code, is arguably the simplest bosonic code
protecting the logical information from the loss of a single photon. Introduced
in [96], it was notably implemented in [139] nearly reaching the break-even
point, meaning that the code almost decreased one error below that of any
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of its physical components. A recent experiment [140] then managed to go
beyond break-even, beating the cavity lifetime by 16%. The logical states
defining this encoding are

|0Kitteni =
|0i+ |4ip

2
, |1Kitteni = |2i , (3.42)

with |0i, |2i and |4i being the Fock states 0, 2 and 4. With this encoding, the
loss of a single photon maps a logical state with an even parity | Kitteni =
↵ |0Kitteni + � |1Kitteni to an error state with an odd parity | Errori =
(↵ |3i+ � |1i). The error space is then orthogonal to the code space, a
prerequisite to fulfill the Knill-Laflamme conditions (see Sec. 2.3.2.2). Error
can be detected by measuring the memory parity ⇧̂ = (�1)â

†
â. The recovery

operation then consists in mapping |3i and |1i back to the logical states
|0Kitteni and |1Kitteni, restoring the logical information. Note that for this
scheme to work, it is necessary for the two logical states to have the same
mean number of photons

h0Kitten| â†â |0Kitteni = h1Kitten| â†â |1Kitteni = 2. (3.43)

An intuitive explanation for this condition comes from the environment,
which should be incapable of distinguishing these two states. Otherwise,
after the loss of a single photon, the state with the larger photon number is
favored as it was the most likely to lose one. This introduces a bias before
the recovery operation, which can not be corrected and corrupts the logical
information.

The ability of the Kitten code to correct for single photon loss can also be
understood through the symmetry properties of the logical states’ Wigner
function (Fig. 3.9a.). Indeed, this code belongs to the broader family of
Rotation-Symmetric bosonic codes [141], where the discrete rotation operator
ẐN = ei⇡â

†
â/N corresponds to the logical ẐL, here with N = 2. Consequently,

Ẑ2

N
= e2i⇡â

†
â/N acts as the identity on the code space, or equivalently, the

Wigner function of any state within the code space remains invariant under
a rotation of 2⇡/N . A code satisfying this condition ensures that the support
of a state | Li belonging to the code space is the space generated by all the
Fock states multiple of N , i.e

| Li =
1X

k=0

ck |kNi . (3.44)
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It follows that the code can be protected against the loss of up to N � 1
photons. In the case of the Kitten code, although the Wigner function of
|0Kitteni and |0Kitteni is invariant under rotations of ⇡/2, their superposition
is only invariant under rotations of ⇡. This corresponds to the situation
where N = 2, and it can be verified that ẐN = ei⇡â

†
â/2 indeed acts as the

logical ẐL operator. The code is then protected against N � 1 = 1 photon
loss.

Figure 3.9: a. Wigner functions of the Kitten code logical states |0Kitteni and
|0Kitteni. b. Wigner functions of the GKP code logical states |0GKPi
and |0GKPi

3.3.2 GKP code

The GKP code, named after Gottesman, Kitaev, and Preskill [97], exploits
translation symmetries to protect quantum information. In its simplest
version, known as the square lattice GKP code (Fig. 3.9b.), the logical states
|0GKPi and |1GKPi are eigenstates of the two commuting operators

Ŝx = e2i
p
⇡x̂ = D̂

⇣
i
p
2⇡
⌘

Ŝp = e�2i
p
⇡p̂ = D̂

⇣p
2⇡
⌘
,

(3.45)

with eigenvalue 1. The 2 quadratures x̂ and p̂ are defined in Eq. (3.27). A more
general definition of the GKP code can be provided as being the eigenstates
of D̂ (i�) and D̂ (�), with the condition �� = 2k⇡, k 2 N⇤. This condition
ensures these two operators commute. Since the two stabilizers Ŝx and Ŝq

commute they can be simultaneously measured, which amounts to measuring
their phase 2

p
⇡x̂ and �2

p
⇡p̂ modulo 2⇡. In turn, this is equivalent to

measuring the two quadratures x̂ and p̂ modulo
p
⇡. Any translation in phase

space smaller than
p
⇡ can thus be detected by simultaneously measuring
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Ŝx and Ŝq. A counter-displacement can then be applied, bringing the system
back to the code space. Because errors affecting the memory only generate
local deformation of the Wigner function, this method is efficient if the
correcting procedure is fast enough so that no displacement larger than

p
⇡

has time to occur, and if no additional errors are generated by the correction
protocol.

This code has been implemented using post-selection in a trapped-ion
mechanical oscillator [142], and using superconducting circuits [143]. More
recently, an experiment using reinforcement learning to optimize the op-
eration of a GKP code managed to go beyond the break-even point [144],
extending the coherence of the logical information by a factor 2.27± 0.07.

3.3.3 Cat code, superposition of 2N coherent states.

The cat code is another Rotation-Symmetric bosonic code, based on the
superposition of 2N coherent states distributed equidistantly around a circle
of radius ↵. By tracking the memory parity, these states can be protected
against the loss of N � 1 photons. This is the encoding investigated in this
thesis.

3.3.3.1 N = 1, the 2-component cat code.

The first case to consider simply corresponds to a qubit whose code space
is generated by the two coherent states |↵i and |�↵i (Fig. 3.10a.). This
encoding does not protect against any photon loss event, which becomes
evident when developing the states |C±

↵
i (Fig. 3.10b.) in the Fock basis

��C+

↵

↵
= N+ (|↵i+ |�↵i) /

X

k

↵2k

p
2k!

|2ki

��C�
↵

↵
= N� (|↵i � |�↵i) /

X

k

↵2k+1

p
2k + 1!

|2k + 1i .
(3.46)

The coefficients N+ and N� are normalisation factors, exponentially close
to 1/

p
2 as |↵|2 increases. From Eq. (3.46), we see that losing a single

photon induces a phase-flip error which can not be corrected as the system
remains in the code space. Furthermore, the rate at which phase-flip errors
occur increases linearly with n̄ = |↵|2 due to the effective memory lifetime
decreasing as T1,e↵ = T1/n̄ when the number of photons increases.

Despite this flaw, the 2-component cat code remains a strong candidate for
quantum error correction due to bit-flip errors being exponentially suppressed
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Figure 3.10: a. Bloch sphere defining the 2-component cat code, the logical states
are the coherent states |±↵i. Bit-flip errors are exponentially sup-
pressed with |↵|2 at the cost of a linear increase of the phase-flip
error rate. b. Wigner function of

��C+
↵

↵
and

��C�
↵

↵
, ↵ = 2.25, having

respectively an even and odd parity. c. Bloch sphere defining the
4-component cat code. Logical states are

��C0 mod 4
↵

↵
and

��C2 mod 4
↵

↵
,

each of them having a given parity modulo 4. Phase-flip errors are
exponentially suppressed with |↵|2, and bit-flips can be corrected as
in the Kitten code. d. Wigner function of

��C0 mod 4
↵

↵
and

��C2 mod 4
↵

↵

for ↵ = 2.25.

with |↵|2. This property can be intuitively understood thanks to the local
nature of errors impacting the memory. As the two coherent states separate
for increasing values of |↵|, the probability of a physical error to induce a
bit-flip exponentially decreases as the overlap h↵|�↵i / e�4|↵|2 . Note that
in an actual experiment, the bit-flip error rate decreases as �X / e��|↵|2 ,
the factor �  4 depending on the experimental implementation.

The 2-component cat, in the regime of large |↵|, exhibits a large noise
bias. As explained in Sec. 2.4.3, this can be exploited to simplify existing
quantum error correction protocols. In particular, assuming bit-flip errors
can be completely ignored, a simple repetition code can be used to correct
the remaining phase-flip errors [88, 145, 146, 70]. Crucially, bias-preserving
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gates have been designed for the 2-component cat qubit [138, 147], without
which no repetition code could be implemented.

3.3.3.2 N = 2, the 4-component cat code.

The previous encoding can be extended by considering the Hilbert space
generated by the four coherent states {|↵i , |�↵i , |i↵i , |�i↵i}. From this
4-dimensional Hilbert space, one can define a qubit whose logical states (see
Fig. 3.10d.) are defined as

|0Li =
��C0 mod 4

↵

↵
= N0 (|↵i+ |�↵i+ |i↵i+ |�i↵i) /

X

k

↵4k

p
4k!

|4ki

|1Li =
��C2 mod 4

↵

↵
= N2 (|↵i+ |�↵i � |i↵i � |�i↵i) /

X

k

↵4k+2

p
4k + 2!

|4k + 2i ,

(3.47)

with N0 and N2 being normalisation factors. Due to the overlap between
the corresponding |+Li = |C+

↵
i and |�Li =

��C+

i↵

↵
(Fig. 3.10c.) decreasing

exponentially with |↵|2, we can immediately deduce that phase-flips are
exponentially suppressed in this encoding. The reasoning explaining this
exponential decrease is the exact same as with bit-flips in the case of the
2-component cat code. Additionally, because

��C0 mod 4
↵

↵
and

��C2 mod 4
↵

↵

respectively have a parity of 0 and 2 photons modulo 4, this code can be
protected against the loss of a single photon, similarly to the Kitten code.
Assuming the parity protection performs well enough, this could protect the
4-component cat against both phase-flip and bit-flip errors.

This qubit was stabilized in 2016 by Ofek et al. [104] using measurement-
based feedback. It is the first experiment to reach the break-even point with
bosonic qubits. However, the exponential decrease in phase-flip rate is yet
to be seen. Using dissipation to stabilize the 4-component cat code could
allow one to do so, as was the case for the exponential increase of bit-flip in
the 2-component cat qubit. Adding a parity stabilization protocol such as
in [148] could then lead to a fully protected qubit.

It is worth mentioning that the 4-component cat qubit is expected to have
similar performance as the pair-cat code [149, 150], which encodes the logical
information in the difference between the photon number of 2 harmonic
modes.
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3.4 stabilisation of logical bosonic qubits

Figure 3.11: a. Protection of a bosonic code using measurement-based feedback.
After an error, the memory state is in an error subspace which a
syndrome measurement can distinguish from the code space C. A re-
covery operation is then applied to bring the memory back to the code
space. b. Schematic representation of the Hamiltonian engineering
protection method. By engineering the memory Hamiltonian, leakage
from the code space is prevented. c. Schematic representation of the
dissipation engineering method. By tailoring a dissipation channel,
entropy is constantly being removed from the system to stabilize the
code space.

3.4 stabilisation of logical bosonic qubits

Different methods can be used in order to stabilize these states and protect
the logical information. Irrespective of the specific approach chosen, the
fundamental idea revolves around preventing the accumulation of entropy
in the memory. This objective can be achieved using active measurement-
based feedback, or through passive techniques involving Hamiltonian or
dissipation engineering. Moreover, a combination of different stabilization
methods can be envisioned, such as in the case of a repetition code of 2-
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component cat qubits or the joint application of Hamiltonian and dissipation
engineering to stabilize a single cat [151]. In this section, we briefly review
the measurement-based feedback method before focusing on the 2 passive
approaches. Additionally, we illustrate how both passive approaches can be
used to stabilize a 2-component cat qubit.

3.4.1 Measurement based feedback

Measurement-based feedback involves the active intervention of an exper-
imenter to extract entropy from the system. The fundamental idea is to
encode logical information within a memory code space C, with various
error operators

n
Êi

o
mapping the code space to distinct orthogonal error

spaces {Ei}. These different sub-spaces being orthogonal, a syndrome can
be designed that effectively differentiates C from the error spaces Ei, while
preserving the quantum information. Note that this is only possible for
error channels verifying the Knill-Laflamme criteria (see Sec. 2.3.2.2). Conse-
quently, a recovery operation can be implemented to bring the memory back
into the code space. The entropy is expelled into the environment during
the syndrome measurement. A schematic of this process is represented in
Fig. 3.11a..

Measurement-based feedback stands as the most widely employed ap-
proach, with several prominent examples being the repetition code, surface
code, Kitten code, or GKP code. Note that, up to this point, all experiments
achieving the break-even point of QEC have relied on measurement-based
feedback [104, 140, 144].

3.4.2 Hamiltonian engineering

A second approach involves tailoring the memory Hamiltonian to ensure
that states within the code space C are ground states of this modified
Hamiltonian. The Hamiltonian can be engineered using parametric pumping,
which allows for the selection of desired terms in the Hamiltonian expansion
while neglecting other terms through the Rotation Wave Approximation (see
Appendix.a). By creating a significant energy gap between the ground and
excited states, unwanted excitations out of the code space become unlikely,
thereby protecting the stored logical information (Fig. 3.11b.). The maximal
speed of logical gates is set by this energy gap. In essence, this approach
can be seen as biasing the memory phase space, creating local minima that
restrict the memory’s ability to explore its phase space and prevent the
generation of entropy.
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A prominent application of this Hamiltonian engineering method is the so-
called Kerr-cat code [98, 99, 152], which combines the effects of self-Kerr and
squeezing Hamiltonian terms to stabilize cat qubits. In the implementation
of [153], the memory hosting the logical information is physically realized
using an array of charge-driven SNAIL transmons, driven by a pump at
frequency !p/2⇡. This non-linear system is described by the Hamiltonian

Ĥ/~ = !mâ†â+
1X

k=3

gk
�
â+ ✏pe

�i!pt + h.c
�k

, (3.48)

with gk the non-linear coupling term of order k and ✏p the pump amplitude. In
the rotating frame generated by the operator Û = e�i

!p
2 â

†
â, this Hamiltonian

becomes

Ĥ/~ = �â†â+
1X

k=3

gk
⇣
âe�i

!pt

2 + ✏pe
�i!pt + h.c

⌘k
, (3.49)

with � = !p

2
� !m. This detuning is set to 0 by enforcing the condition !p =

2!m. Considering the limit of small nonlinearity, terms of order k � 5 can
be neglected due to the non-linear coupling decreasing as gk / O('k

ZPF,m
),

with 'ZPF,m < 1 the zero point fluctuation of the memory mode. Keeping
only non-oscillating terms according to the 1st order RWA, the Hamiltonian
becomes

Ĥ/~ = ��m,mâ
†2â2 +

�
✏2â

†2 + ✏⇤
2
â2
�
, (3.50)

with �m,m the memory self-Kerr and ✏2 = g3✏p the amplitude of the effective
squeezing drive. Eq. (3.50) can then be factorized as

Ĥ/~ = ��m,m

✓
â†2 � ✏2

�m,m

◆✓
â2 � ✏⇤

2

�m,m

◆
+

|✏2|2
�m,m

. (3.51)

This form makes evident that the two coherent states |±↵i, ↵ =
p
✏⇤
2
/�m,m,

are eigenstates of Ĥ with the corresponding energy ~|✏2|2/�m,m. More pre-
cisely, they are the two degenerate ground states3 of the Hamiltonian,
separated from the rest of the spectrum by an energy gap

3 The negative sign in the Hamiltonian of Eq. (3.50) seems to indicate that these coherent
states correspond to a maximum of energy of the system. This Hamiltonian is actually
written in the rotating frame where it is described by quasienergy eigenstates with negative
energies [154].
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Egap/~ = 4�m,m|↵|2 = 4|✏2|2. (3.52)

Increasing the pump amplitude then widens the gap between the ground and
excited states, preventing the leakage of the memory out of the code space C.
However, experiments using this Kerr-cat architecture did not demonstrate
the expected exponential increase in bit-flip time. Instead, a staircase pattern
is observed where the bit-flip time increases in steps as a function of |↵|2,
resulting from spectral kissing in the excited-states spectrum [99]. Note that
this approach can be extended for the stabilization of 2N coherent states
using the Hamiltonian

Ĥ/~ = ��m,mâ
†2N â2N +

�
✏2â

†2N + ✏⇤
2
â2N

�
. (3.53)

3.4.3 Dissipation engineering

Another approach, explored in detail in this thesis, is to tailor an effective
loss operator that stabilizes the desired states. To engineer this dissipation,
an additional lossy mode called buffer is introduced in the system which
couples to the memory through a designed non-linear coupling (Fig. 3.12).
The memory and buffer dynamics is governed by

Ĥ/~ = gÂb̂† + g⇤Â†b̂

L̂b =
p
bb̂,

(3.54)

with b the buffer single-photon loss rate, g the non-linear coupling rate and
Â an operator acting on the memory. In the limit b � |g| the buffer can be
adiabatically eliminated, resulting in an effective dynamics of the memory
described by

L̂e↵ =
p
e↵Â, with e↵ =

4|g|2
b

. (3.55)

Choosing the appropriate operator Â, this effective dissipation can stabilize
the code space by passively and continuously dumping entropy from the
memory into the environment, using the buffer mode as an intermediate
(Fig. 3.11c.).
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Figure 3.12: Schematic of the memory - blue - coupled to a buffer - green - mode
through a non-linear coupling. The buffer is strongly coupled to the
environment, resulting in a photon loss rate much stronger than the
non-linear coupling b � |g|.

3.4.3.1 Adiabatic elimination of the buffer mode

Eq. (3.55) is obtained using a technique called adiabatic elimination [117,
155, 156], which makes use of the condition b � |g| to obtain the effective
dynamics of the memory. The bipartite memory & buffer system is described
by the density matrix ⇢̂, evolving according to the Lindblad equation

d

dt
⇢̂ = �i

h
gÂb̂† + g⇤Â†b̂, ⇢̂

i
+D(

p
bb̂)⇢̂. (3.56)

To separate the buffer and memory dynamics, the density matrix ⇢̂ is written
as

⇢̂ = ⇢̂00 ⌦ |0i h0|
+ � (⇢̂10 ⌦ |1i h0|+ ⇢̂10 ⌦ |1i h0|)
+ �2 (⇢̂11 ⌦ |1i h1|+ ⇢̂20 ⌦ |2i h0|+ ⇢̂02 ⌦ |0i h2|) +O

�
�3
�
.

(3.57)

� is a small parameter of order |g|/b, and ⇢̂ij = hi| ⇢̂ |ji is an operator
acting on the memory with |ii and |ji being Fock states of the buffer
mode b̂. This form is justified by the condition |g| ⌧ b which ensures that
photons are removed from the buffer faster than the non-linear coupling
rate, guaranteeing only a low number of photons are present in the buffer.
The adiabatic elimination then aims at finding the dynamic of

⇢̂m = Trb (⇢̂) =
X

i2N

hi| ⇢̂ |ii ⇡ ⇢̂00 (3.58)

at first order in �. To do so, we project Eq. (3.56) in the buffer Fock state
|0i which yields

1

b

d

dt
⇢̂00 = �i

�

b

⇣
g⇤Â†⇢̂10 � g⇢̂01Â

⌘
+ �2⇢̂11 +O(�3). (3.59)
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We then compute the evolution of ⇢̂10, ⇢̂01, and ⇢̂11 which all appear in the
dynamic of ⇢̂00

1

b

d

dt
⇢̂01 = i

g⇤

�b
⇢̂00Â

† � 1

2
⇢̂01 +O(�) (3.60a)

1

b

d

dt
⇢̂10 = �i

g

�b
Â⇢̂00 �

1

2
⇢̂10 +O(�) (3.60b)

1

b

d

dt
⇢̂11 =

i

�b

⇣
g⇤⇢̂10Â

† � gÂ⇢̂01
⌘
� ⇢̂11 +O(�) (3.60c)

We see that Eq. (3.60a) and Eq. (3.60b) share the same structure, with
a term proportional to ⇢̂00 that can be viewed as an external drive and
a second damping term. The variation of ⇢̂00 being of order O(�2) - see
Eq. (3.59) - compared to the damping term of order O(�), we can make
the adiabatic approximation and consider ⇢̂01 and ⇢̂10 to continuously be in
their steady state. This gives the system of equations

⇢̂01 = 2i
g⇤

�b
⇢̂00Â

† (3.61a)

⇢̂10 = �2i
g

�b
Â⇢̂00. (3.61b)

Both ⇢̂01 and ⇢̂10 being proportional to ⇢̂00, the same reasoning can then be
applied to Eq. (3.60c), giving the approximate expression

⇢̂11 = 4
|g|2
�b

Â⇢̂00Â
†. (3.62)

Injecting these relations in Eq. (3.59) finally yields

d

dt
⇢̂00 =

4|g|2
b

✓
Â⇢̂00Â

† � 1

2

n
Â†Â, ⇢̂00

o◆

= D

0

@
s

4|g|2
b

Â

1

A ⇢̂00.

(3.63)

As previously stated in Eq. (3.55), the dynamics of the memory is then
indeed approximated by an effective dissipation L̂e↵ =

p
e↵Â after adiabat-

ically eliminating the buffer.
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mode

3.4.3.2 Stabilization of 2-component cat qubits

This result is very general and works irrespective of the operator Â appearing
in the non-linear coupling. A notable application, studied in this thesis, is
the stabilization of 2-component cat qubits using the dissipation operator

L̂2 =
p
2
�
â2 � ↵2

�
. (3.64)

It is experimentally realized by engineering a 2-to-1 photon exchange Hamil-
tonian between the memory and buffer modes. A classical drive of amplitude
✏d is then applied to the buffer, with the injected photons being converted
into pairs of photons in the memory mode. This system is described by the
Hamiltonian

Ĥ/~ = g2â
†2b̂+ g⇤

2
â2b̂† + ✏db̂

† + ✏⇤
d
b̂

= g2

✓
â†2 +

✏⇤
d

g2

◆
b̂+ g⇤

2

✓
â2 +

✏d
g⇤
2

◆
b̂†.

(3.65)

After adiabatically eliminating the buffer mode, the memory dynamics
is governed by the dissipator of Eq. (3.64) with ↵2 = �✏d/g⇤2 and 2 =
4|g2|2/b. The coherent states |±↵i are unaffected by this dissipation, with
all other states in the memory Hilbert space being projected to the manifold
span (|↵i , |�↵i). Reaching large values for the two-photon rate 2 - and
thus for the 2-to-1 exchange rate g2 - is critical in this strategy. First, in
order to observe the exponential improvement of bit-flip time, it should
overcome any parasitic processes affecting the memory such as dephasing,
thermal excitation, Kerr effect, frequency shifts due to a thermally populated
auxiliary qubit [102, 157] or gate drives. Second, its value sets a higher bound
on cat qubit gate speed, to avoid non-adiabatic errors, and needs to be large
compared to the residual single-photon loss rate 1, the main cause of phase-
flip errors [145]. Besides, a repetition code made of a chain of cat qubits can
protect against phase-flip errors under the condition 2/1 & 102 [146, 88,
145].

3.5 engineering the coupling between memory and buffer
mode

3.5.1 4-wave mixing nonlinearity

The first experiments which stabilized cat qubits through dissipation relied
on a 4-wave mixing element to mediate the 2-to-1 photon interaction. To
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Figure 3.13: a. A 4-wave mixing coupler such as a transmon or ATS swaps pairs of
photons of a memory mode at !m for single photons of a buffer mode
at !b at a rate g2 owing to a pump at |!b � 2!m|. The buffer loss
rate b thus leads to an effective two-photon dissipation rate 2 that
scales with pump amplitude. Driving the buffer mode on resonance at
a displacement rate ✏d stabilizes a cat code {| ± ↵i}. b. A three-wave
mixing coupler passively performs the same photon exchange when
!b = 2!m.

activate the desired Hamiltonian, this non-linear element is driven by a pump
at frequency !p = !b�2!m, with !b and !m the frequency of the buffer and
memory modes respectively (Fig. 3.13a.). This frequency-matching condition
ensures that energy is conserved during the process. Applying a classical
drive of amplitude ✏d to the buffer, the bipartite system memory & buffer is
then described to first order by the Hamiltonian of Eq. (3.65), neglecting for
now spurious terms in the Hamiltonian.

The first realizations at Yale University [117, 101] relied on a transmon
qubit to generate the nonlinearity. In this scheme, the coupling rate g2 is
given by

g2 = �m,b

✏⇤
p

2
, (3.66)

with ✏p the dimensionless pump amplitude (see Sec. 3.2.3.1 which introduced
the concept of a dimensionless pump driving a harmonic mode) and �m,b

the cross-Kerr coupling between the memory and buffer. This coupling
corresponds to an additional term ��m,bâ†âb̂†b̂ in the system’s Hamiltonian.
Maximizing g2 then amounts to working at large pump amplitudes ✏p.
However, pushing ✏p to excessively high values leads to higher states of
the transmon being excited, effectively killing the stabilization. This sets a
limit to the maximal attainable value of g2. In the first paper of 2015 [117]
demonstrating such a stabilization, a pump amplitude of ✏p = 1.1 was
achieved, leading to a 2-to-1 coupling rate g2/2⇡ = 111 kHz. Stabilization of
a cat qubit was observed, but not the exponential increase in bit-flip time TX.
This was primarily due to parasitic terms such as the cross-Kerr coupling
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�m,b/2⇡ = 206 kHz being comparable to the two-photon dissipation rate
2/2⇡ = 50 kHz. A later experiment improved on this design [101], reaching
a two-photon dissipation rate 2/2⇡ = 176 kHz, which was remarkably 100
times larger than the single photon-loss rate 1/2⇡ = 1.7 kHz. However,
parasitic terms still prevented observing the exponential increase of TX.

This issue was later solved using an ATS as the coupling element [102].
This circuit exhibits a flux sweet spot where parasitic terms can be inhibited.
There, the 2-to-1 coupling rate reads

g2 =
Ej

2~ ✏p'
2

ZPF,m
'ZPF,b, (3.67)

with 'ZPF,m and 'ZPF,b the zero point fluctuation of the memory and
buffer mode. Despite a coupling rate g2/2⇡ = 0.36 MHz similar to previous
experiments, the purer Hamiltonian allowed to see an exponential increase in
bit-flip time, reaching TX ⇡ 1 ms for |↵|2 ⇡ 5. The limiting element was no
longer the coupling element itself but an auxiliary transmon used to perform
the Wigner tomography of the memory. Removing this transmon, bit-flip
times of 100 s were observed [157], with a recent experiment I participated
in showing both bit-flip times exceeding 10 s and the coherent manipulation
of a cat qubit [158].

3.5.2 Switching to a passive 3-wave interaction

In order to increase the 2-to-1 coupling rater, we introduce a new design
relying on 3-wave mixing instead. This additionally alleviates the need for
an additional pump to mediate the 2 photon interaction, thus simplifying
the design. The frequency-matching condition becomes

2!m = !b, (3.68)

so that energy is preserved during the conversion (Fig. 3.13b.). This condition
is characteristic of autoparametric systems so that the buffer field passively
performs a parametric driving of the memory [159]. We nicknamed this
circuit as the autoparametric cat, or alternatively the Auto-cat to highlight
its ease of use.

3.5.3 Introduction of the circuit

The Auto-cat can be understood as a limit case of a degenerate parametric
amplifier [160, 161, 162]. These are usually made of a resonator m connected
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to a pump mode c via a nonlinear element such that their interaction
Hamiltonian reads ~g2m̂2ĉ† + h.c..

Driving the pump mode c at 2!m with a large enough power, parametric
oscillations spontaneously occur when the number of photons in the pump
mode exceeds the threshold nthr = 2

m
/(4g2)2. This threshold corresponds

to the number of photons at which the gain process compensates the losses
of mode m. Above threshold, two possible mechanisms prevent the number
of photons from indefinitely increasing: the Kerr effect or pump depletion.
The mode m then emits radiation with two possible phases [163, 164, 165],
corresponding to two coherent states |↵i and |� ↵i of the resonator m.

The first limiting mechanism is the self-Kerr effect in the resonator m,
induced by the nonlinearity used to generate the interaction. As the number of
photons in the resonator increases, the mode resonance frequency shifts until
the pump at 2!m is so far detuned that the gain and loss processes balance
each other. This Kerr limitation is the most standard one in Josephson
junction amplifiers and is crucial for the stabilization of Kerr cats [152,
98, 99, 166]. The second limiting mechanism is pump depletion, which is
more common at optical wavelength. The stiff pump approximation breaks
down if the number of photons in the pump mode is affected by how fast
pump photons are consumed to generate photons in mode m. The rate at
which pump photons are regenerated by the drive is then not fast enough to
produce pairs of photons in mode m.

The autoparametric design is not impacted by the Kerr limitation and
instead operates in the pump depletion limit. The resonator m is used as
the memory and the far-detuned pump mode is replaced by a buffer mode b
that resonates at the memory frequency 2!m, satisfying Eq. (3.68). The high
Q limit of the memory mode lowers the parametric oscillation threshold to
nthr ⌧ 1, while a resonant driving on mode b ensures the regeneration rate of
pump photons in the buffer mode is minimal. In the steady state, the buffer
is subject to two opposing driving forces: the buffer drive and the action of
the memory mode on the buffer via the 2-to-1 photon exchange Hamiltonian.
These 2 compensate exactly and the buffer reaches a steady state close to
the vacuum, while the memory state converges to a superposition of |↵i and
|� ↵i.

This realization is at the origin of the Auto-cat design. We started from a
superconducting circuit widely used for degenerate parametric amplification:
a resonator comprising a DC flux biased SQUID that is flux pumped at
twice its frequency and acts as our memory mode [161]. Other non-linear
elements could be chosen from the variety of Josephson amplifiers that have
been designed over the past two decades. In this particular circuit, there
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exists another mode associated with the flux degree of freedom which has
a differential symmetry with respect to the SQUID junctions but is often
ignored for its very high frequency [167]. In this experiment, this mode is
used as our buffer mode and is brought down in frequency while preserving
its symmetry. This is done by adding a weak junction EW in the SQUID
loop (Fig. 3.14) and splitting the capacitance on either side of the SQUID.
The symmetry is preserved and used advantageously to be able to couple
preferentially to the buffer mode without needing frequency selective filtering
to protect the memory lifetime. This basis structure is then diluted with
open and shorted stubs as shown in Fig. 4.1 to tune the modes 'ZPF.

3.5.4 Hamiltonian derivation

The simplified circuit of the autoparametric cat, neglecting the added stubs
used to tune the zero point fluctuations of the phase 'ZPF of the modes, is
represented in (Fig. 3.14). The mixing element consists of two main Josephson
junctions with energy EJ symmetrically arranged within a superconducting
loop that is threaded with an external magnetic flux �ext. These two junctions
in parallel configuration have a common mode serving as a memory mode
and a differential mode, associated with the flux degree of freedom of the
loop, and serving as a buffer mode. A third Josephson junction with energy
EW is added in the loop in order to lower the relatively high frequency of
the buffer mode and increase its flux tunability. This configuration is similar
to previously realized circuits [167, 168, 169, 170, 171]

We derive this system’s Hamiltonian by first computing the effective
inductance of each junction with the flux bias. We then find the eigenmodes
of the linear part of the Hamiltonian and compute the circuit’s nonlinearities.

Figure 3.14: Simplified circuit diagram of the device. Only the modes of the ring
of junctions are considered for simplicity. For each junction, the phase
drop 'x is decomposed as the sum of an oscillating part and an
equilibrium part 'x = '̃x + '̄x.
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3.5.4.1 Equilibrium phase configuration

First, we compute the effective inductance of the central mixing element.
This element comprises 2 identical main junctions with Josephson energy EJ

and one weaker junction with energy EW = �JEJ with �J < 1. Following
the procedure detailed in [172], we compute the equilibrium phase drop
across each junction '̄1, '̄2 and '̄W . Note that each phase drop 'x is
decomposed as a sum of a constant part '̄x and a dynamical part '̃x. Using
the second Josephson relation Eq. (3.10) and current conservation inside
the loop imposes that '̄1 = �'̄2. This justifies the notation '̄J = '̄1 as the
main junction phase drop. Current conservation further dictates that

'̄J = arcsin(�J sin '̄W ). (3.69)

The phase drop around the whole loop '̄ = '̄W + '̄1 � '̄2 then reads

'̄ = '̄W + 2arcsin(�J sin '̄W ). (3.70)

Besides, the superconducting loop is threaded by an external flux �ext =
'ext'0, which leads to the constraint '1 + 'W � '2 = 'ext. This translates
into

'̄ = 'ext and '̃1 + '̃W � '̃2 = 0 . (3.71)

Finding the configuration of phase drops at equilibrium thus consists in first
determining '̄W ('ext) by solving the equation 'ext = '̄('̄W ), of which a
graphical representation is shown in Fig. 3.15a. The value of '̄J is then
deduced from Eq. (3.69), and the effective inductive energies of each junction
ĒJ = EJ cos('̄J), ĒW = EW cos('̄W ) can then be calculated. The effective
inductances follow as L̄J = '2

0
/ĒJ and L̄W = '2

0
/ĒW . In the case �J > 1/2,

the function '̄W ('ext) is multi-valued [172] as shown in Fig. 3.15b. In
order to avoid hysteresis effects or instabilities, we chose �J < 1/2 which is
equivalent to EW < EJ/2.

This mixing element can be further studied to determine the presence of
a flux sweet spot where memory flux noise is canceled. It is defined as the
flux '0'

(sweet)

ext
such that

d!m

d'ext

����
'

(sweet)
ext

= 0. (3.72)

We focus on the case where '(sweet)

ext
2 [0,⇡] because of the 2⇡ periodicity

of the solutions and by symmetry around 'ext = 0. The symmetry of the
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circuit of Fig. 3.14 implies that the memory mode, the common mode of this
circuit, does not participate in the weak junction. The memory frequency !m

is then proportional to ĒJ('ext) = EJ cos('̄J), which gives an immediate
solution for Eq. (3.72) at 'ext = 0. This solution is discarded however since
we require '̄J 6= 0 at the sweet spot in order to preserve a non-zero 3-wave
mixing interaction rate. The flux sweet spot is, therefore, a local extremum
of '̄J ('ext). From Eq. (3.69), we deduce that '(sweet)

ext
is close to '̄W = ⇡/2

since this is where sin('W ) is maximal. Finally, the condition 'ext < ⇡
imposes an upper bound on �J since, for '̄W = ⇡/2, Eq. (3.70) comes down
to ⇡/2 + 2 arcsin�J < ⇡ and thus �J < 1/

p
2.

Figure 3.15: Flux sweet spots of the mixing element. a. Sum '̄ of the phase
differences across the three junctions as a function of the phase
difference '̄W across the weak junction, calculated using Eq. (3.70)
for �J = EW /EJ = 0.46 as in the experiment (blue), �J < 1/

p
2

(orange) and �J > 1/
p
2 (green). A flux bias imposes 'ext = '̄ so

that these curves show which values of '̄W are possible. b. Phase
differences '̄J (solid-dotted) and '̄W (dashed-dotted) as a function
of 'ext. Same color code for the values of �J as in a.. Dotted lines
correspond to extensions of the solutions that are stable but not
the lowest energy configuration. a./b. The black vertical/horizontal
line corresponds to '̄W = ⇡/2. In a. it crosses '̄ at '(sweet)

ext (thin
horizontal colored lines). In b. it crosses '̄W where '̄J has a sweet
spot at the same values of '(sweet)

ext (thin vertical colored lines). The
blue and orange closed circles correspond to sweet spots in the lowest
energy configuration. The open green circle emphasizes that while
the sweet spot exists, it is not the lowest energy configuration. At
this value of 'ext (vertical green line) another configuration is favored
(green closed circle) which is not a flux sweet spot.

The condition EW < EJ/
p
2 then ensures a sweet spot is visible at

'(sweet)

ext
= ⇡/2 + 2 arcsin�J (blue and orange closed circle in Fig. 3.15b.).

Close to the sweet spot, at first order, '̄J is constant and '̄W = ⇡/2+ �'ext
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where �'ext = 'ext�'(sweet)

ext
is the flux offset from the sweet spot. At second

order, '̄J is then given by

'̄J = arcsin(�J sin(⇡/2 + �'ext))

= arcsin

✓
EW

EJ

(1� �'2
ext

2
)

◆
.

(3.73)

Note that the single minimum condition �J < 1/2 verified in the experi-
ment - see Table. 4.1- is well within this limit. On the opposite, the regime
1/2 < �J < 1/

p
2 comprises a sweet spot in the lowest energy flux configura-

tion (orange closed circle in Fig. 3.15b.) but the existence of another higher
energy minimum might be detrimental. Finally, for �J > 1/

p
2, there exists

a sweet spot which is however not the lowest energy phase configuration
(green open circle in Fig. 3.15b.).

3.5.4.2 Eigenmodes

After finding the equilibrium phase differences and the effective inductive
energies ĒJ and ĒW , we determine the eigenmodes of the system and
compute the zero point fluctuation of the phase across each dipole of the
linear equivalent circuit. The potential energy of the linear system modeling
the circuit reads Ulin = ĒJ '̃2

1
/2+ ĒJ '̃2

2
/2+ ĒW '̃2

W
/2. Hence, incorporating

the constraints of Eq. (3.71), we find

Ulin ('̃1, '̃2) =
ĒJ

2
'̃2

1
+

ĒJ

2
'̃2

2
+

ĒW

2
('̃1 � '̃2)

2

T
�
˙̃'1, ˙̃'2

�
=

~2
16EC

˙̃'2

1
+

~2
16EC

˙̃'2

2

(3.74)

where T is the kinetic energy of the system and EC is the charging energy
of each capacitor. We diagonalize the system by performing the change of
variable

8
><

>:

'm =
'̃1 + '̃2

2

'b =
'̃1 � '̃2

2
,

where 'm and 'b correspond to the common and differential modes of the
circuit, respectively corresponding to the memory and buffer modes. The
potential and kinetic energies of the circuit then read
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Ulin ('m,'b) =
EL,m

2
'2

m
+

EL,b

2
'2

b

T ('̇m, '̇b) =
~2
8EC

'̇2

m
+

~2
8EC

'̇2

b
.

with EL,m = 2ĒJ and EL,b = 2ĒJ + 4ĒW . The mode frequencies and
zero-point fluctuations of the buffer and memory mode are given by

!b =
p
4ECEL,b'ZPF,b = (EC/EL,b)

1/4

!m =
p

4ECEL,m'ZPF,m = (EC/EL,m)1/4
(3.75)

so that, in second quantization, the linear part of the Hamiltonian is

Ĥlin/~ = !mâ†â+ !bb̂
†b̂. (3.76)

The annihilation operators are defined by their relation to the phase differ-
ences

'̂m = 'ZPF,m

�
â+ â†

�

'̂b = 'ZPF,b

⇣
b̂+ b̂†

⌘
.

(3.77)

The frequencies of both the memory and buffer modes depend on �ext
through the dependency of '̄J and '̄W .

Note that, as the equilibrium phase '̄W associated to the weak junction
EW is more sensitive to the external flux, we see from Eq. (3.75) that
!b has an increased susceptibility to the external flux compared to the
memory frequency. Since the memory mode does not participate in the
central inductive element of the SQUID, adding this weak junction then
increases the buffer susceptibility to flux without increasing the memory
self-Kerr rate. This makes the buffer responsible for meeting the frequency
matching condition 2!m = !b while the memory can afford a much weaker
dependence on flux, hence limiting the impact of flux noise.

In the actual circuit, stub resonators are connected to the ring of junctions
so that the mode frequencies and zero point fluctuations are modified. The
external flux �ext is then chosen to verify the condition !b = 2!m, defining the
Quantum Error Correction flux �QEC. Simulations were performed to match
�QEC with �(sweet)

ext
, although a deviation can experimentally be observed.

Numerically fitting the frequency dispersion versus flux (see Fig. 4.4d.) with
the full model gives 'ZPF,m = 0.0305 and 'ZPF,b = 0.0648 at �QEC.
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3.5.4.3 Nonlinearities

Around the DC solution of the system, the full potential

U('̃1, '̃2) = �EJ cos('̃1 + '̄J)� EJ cos('̃2 � '̄J)� EW cos('̃2 � '̃1 + '̄W )

(3.78)

can be used to compute the nonlinearities. Using the former change of
variable we get

U ('m,'b) = �2EJ cos ('m) cos ('b + '̄J)� EW cos (2'b � '̄W ). (3.79)

The potential energy is represented in Fig. 3.16 for the experimental circuit
parameters EW /h ⇡ 115 GHz and EJ/h ⇡ 250 GHz (see Table. 4.1) for
several values of the external flux bias �ext. As expected from the change
of variable, the global minimum is located at ('m,'b) = (0, 0) for any flux
bias 'ext. Other minima exist owing to the periodicity of the Josephson
potential but there is a potential barrier of 2EJ ⇡ kB ⇥ 22 K to overcome
in order to transit from one solution to the other as can be seen in Fig. 3.16.
Expanding the sin and cos function up to 4th order in the phases then gives
the Hamiltonian parameters.

3rd order terms We now consider working at �QEC yielding the
condition !b = 2!m and restrict our analysis to terms surviving the Rotating
Wave Approximation (see Appendix. a). The only 3rd order terms to consider
is then

Ĥ3rd/~ = EJ sin ('̄J)'ZPF,b '
2

ZPF,m

⇣
b̂ â† 2 + b̂†â2

⌘
.

This Hamiltonian corresponds to the 2-photon exchange Hamiltonian, re-
sponsible for converting single photons in the buffer into pairs of photons in
the memory mode and back. Plugging in the value of '̄J around the sweet
spot Eq. (3.73), we obtain ~g2 ⇡ EW

�
1� �'2

ext
/2
�
'2

ZPF,m
'ZPF,b. Compar-

ing this expression to the 2-to-1 coupling rate of the ATS, Eq. (3.67), the
dimensionless pump ✏p is then replaced by the term

�
1� �'2

ext
/2
�
. Operating

at �'ext = 0, i.e at �QEC = �(sweet)

ext
, we expect to increase the value of g2

which was previously limited by relatively low pump amplitudes ✏d. From
the frequency dispersion versus flux (Fig. 4.4d) we expect g2/2⇡ = 6.2 MHz,
very close to what is experimentally extracted from Fig. 5.4b..
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Figure 3.16: Potential energy U ('m,'b) /EW for EW /h = 115 GHz and EJ/h =

250 GHz at six different flux biases. For each flux bias, an offset
Umin('ext) is subtracted to Eq. (3.79) in order to set the potential
global minimum to 0 and better highlight the height of the potential
barrier.

4th order terms Expanding even further the Hamiltonian to 4th order
terms leads to the expression of the memory and buffer self-Kerr rates, as
well as the cross-Kerr coupling rate between these 2 modes

~�m,m = ĒJ'
4

ZPF,m

~�b,b = ĒJ'
4

ZPF,b
+ 8ĒW'4

ZPF,b

~�m,b = 2ĒJ'
2

ZPF,m
'2

ZPF,b
.

(3.80)

Note that it is the equivalent Josephson energies (ĒJ , ĒW ) that appear
and not the bare ones (EJ , EW ). The corresponding Hamiltonian reads

Ĥ4th/~ = ��m,m

2
â† 2â2 � �b,b

2
b̂† 2b̂2 � �m,b (â

†â)(b̂†b̂).

3.6 chapter summary

This chapter introduced the notion of bosonic codes, taking advantage of
the infinite-dimensional Hilbert space of a harmonic oscillator to store and
protect the logical information. We presented the notion of the Wigner
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function as both a tool to graphically represent the memory state, and gain
intuition on the impact of errors as being local deformations of the memory
phase space. Taking advantage of the states’ Wigner function symmetries,
different quantum error-correcting codes can be envisioned, each protecting
against different types of errors. Amongst these codes, the cat code emerges
as particularly appealing due to its ability to exponentially suppress an error
channel. Several experiments already demonstrated the stabilization of a cat
qubit, using measurement-based feedback [104], Hamiltonian engineering [141,
99, 166], or dissipation engineering [117, 101, 102, 157, 158]. In this thesis, we
introduce a new design to stabilize cat qubits through dissipation engineering,
using a 3-wave interaction to mediate the interaction between memory and
buffer. This design should yield increased 2-to-1 photon coupling compared to
previous experimental implementations, allowing for improved gate fidelities
and making the cat qubit robust to larger error channels. Chap. 4 presents the
experiential realization of the Auto-cat and the obtained evolution of bit-flip
time and phase-flip rate, with Chap.5 focusing on the coherent manipulation
of this qubit.
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4STAB IL IZAT ION AND MEASUREMENT OF CAT
STATES

The coupling element introduced in Sec. 3.5.3 was realized using super-
conducting circuits, with added stubs used to tune the modes zero point
fluctuations 'ZPF and lower the buffer mode frequency. A single input line
couples to the circuit in order to provide both fast flux bias and drive the
buffer mode. Additionally, a transmon qubit is inductively coupled to the
memory with �q,m/2⇡ = 170 kHz to perform the Wigner tomography of the
memory mode [173, 174, 175].

This chapter details the experimental implementation of this device, with
a particular focus on the design of the input line that leverages circuit
symmetries to achieve a strong coupling with the buffer mode while preserving
the quality factor of the memory. The corresponding microwave simulations
were realized by Antoine Essig from the company Alice & Bob. We then
characterize the circuit parameters and find the quantum error correction
flux �QEC by studying the evolution of !b and !m with the external flux.
After detailing the method used to measure Wigner functions using a second
tomography flux denoted as �tomo, we estimate the obtained two-photon
dissipation rate 2 using the relaxation of cat qubits towards the manifold
span (|0, |1ii) at �QEC. The obtained ratio 2/1 ⇡ 150 is the highest value
obtained so far and proves useful in order to improve on the existing Wigner
measurement method. Finally, we present the evolution of bit-flip time TX

and phase-flip rate �Z with the memory photon number |↵|2. The phase-
flip rate exhibits the expected linear increase at a rate of 21, whereas TX

increases exponentially until reaching 0.3 s. We explain this saturation by
the transmon higher excited states getting populated, which was observed
experimentally.

Remark: The main results presented in this chapter can be found in [176].

4.1 experimental implementation of the auto-cat

4.1.1 Design of the input line

From the simplified circuit presented in Fig. 3.14, open and shorted stubs are
added to lower the buffer mode frequency (Fig. 4.1a.), while preserving the
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symmetry (respectively anti-symmetry) of the memory mode (respectively
buffer mode) with respect to the circuit symmetry axis (blue in Fig. 4.1b.).
A transmon with its dedicated readout resonator is then added to perform
the tomography of the memory mode. Additionally, a single input line (red
in Fig. 4.1b.) is used to both set the flux �ext threading the coupling element
and apply the classical drive

Ĥd = ✏db̂
† + ✏⇤

d
b̂ (4.1)

of Eq. (3.65). However, designing this input line to preferably couple to the
buffer mode while preserving the memory quality factor proves challenging.
This is notably due to the frequency tunability of the circuit which makes
it difficult to engineer a filter that protects the memory lifetime. Instead,
we leverage the symmetries of the circuit (Fig. 4.1a.) so that two propagat-
ing modes of the input line have opposite coupling to the memory mode,
effectively canceling the leakage of the memory through this line.

Figure 4.1: a. Scheme of the autoparametric cat. The three-wave mixing coupler is a
ring of three Josephson junctions threaded by a flux �ext = 'ext'0, with
'0 = ~/2e, Josephson energies EW /h ⇡ 115 GHz and EJ/h ⇡ 250 GHz.
The buffer (green) and memory (blue) mode geometries are represented
as field vectors. b. Optical image of the device. False colors highlight the
input buffer/flux line (green), the tomography transmon and coupling
capacitor to its readout resonator (red) as well as the three-wave
mixing coupler (purple) (see Appendix. b). The device symmetry axis
is highlighted in blue and the offset of the input line with respect to
the symmetry axis in orange.

A first design for the input line design that can benefit from these symme-
tries is a slot-line made of a gap separating two ground planes [177]. This
transmission line has a single propagating mode, which is anti-symmetric
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since opposed currents flow in the two ground planes. When the slot line
is aligned with the circuit symmetry axis, only the buffer mode is coupled
to the transmission line while the memory mode is protected by symmetry.
However, if this input line design is optimal from a point of view of memory
filtering, it is not compatible with fast flux bias as it cannot bring a DC
current close to the Josephson junction loop.

In contrast, a co-planar waveguide (CPW) transmission line contains a
center track so that it can be used for fast flux biasing the loop. A CPW
transmission line contains two quasi-transverse electromagnetic propagating
modes [178]. One is symmetric with respect to the transmission line axis with
identical currents in the ground planes but an opposite one in the central
line. We call it the co-planar waveguide mode. The other is anti-symmetric
with respect to the transmission line axis with opposing currents in the two
ground planes and no current in the central line. We call it the slot line
mode. Importantly, the slot line mode is suppressed by increasing the density
of wirebonds that connect the two ground planes.

When the CPW transmission line is aligned on the circuit symmetry axis,
the buffer (respectively memory) mode is only coupled to the slot-line mode
(respectively co-planar waveguide mode) by symmetry. To reduce the memory
coupling rate, an offset is introduced between the CPW transmission line
and the circuit symmetry axis (orange arrow in Fig. 4.1b.). The buffer mode
stays dominantly coupled to the slot-line mode whereas the memory mode
now couples to both slot-line and co-planar waveguide modes. This can be
seen in the electromagnetic simulations of Fig. 4.2 by looking at the currents
of the memory mode around the input line. The memory mode coupling to
the co-planar waveguide (respectively slot-line) mode decreases (respectively
increases) with the shift length, which is observed in the dominant geometry
of the memory currents around the input line (see Fig. 4.2).

The memory coupling rate to the transmission line is then given by the sum
of the coupling rates to the co-planar waveguide and slot-line modes and can
be simulated. Fig. 4.3a. shows the variation of the simulated memory coupling
quality factor Q as a function of the input line offset for different positions of
the first wirebond. While the wirebond position has only a minimal impact,
two optimal offsets can be observed (a positive one l+ = 425 µm and a
negative one l� = �175 µm for the chosen wirebond distance of 600 µm) for
which the total coupling rate to the slot-line and co-planar waveguide modes
is minimized leading to an enhanced Q factor of the memory. If the l+ offset
leads to a slightly higher memory Q factor, it is however not compatible
with fast flux bias as the mutual inductance is too small. On the contrary,
the l� offset has a large enough mutual inductance (about 2 pH) for fast
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Figure 4.2: Electromagnetic simulations (using Ansys HFSS) of the current field
of the memory mode around the input line for various offsets of the
input line with respect to the circuit symmetry axis. Colors indicate
surface currents according to the legend. For large offsets (-500 µm

and 500 µm), the current field is characteristic of a slot-line geometry
(opposite current in the two ground planes) indicating that the memory
is mostly coupled to the slot-line propagating mode. For zero offset,
the current field is characteristic of a co-planar geometry (identical
current on the two ground planes and opposite current in the central
track) indicating that the memory is mostly coupled to the co-planar
waveguide propagating mode. For the two optimal offsets (-175 µm

and 425 µm) leading to the highest memory coupling quality factor,
the current field is a mix of slot-line and co-planar geometries.

flux bias. Besides, when choosing the buffer quality factor by tuning the
distance dw between the circuit and the first wirebond (Fig. 4.3b.), the l+
offset increases with dw whereas l� is almost constant. Thus, using the offset
l�, one can improve the memory quality factor while preserving the buffer
quality factor tunability with wirebond position and a mutual inductance
compatible with fast flux bias.

4.1.2 Flux dependence of !m and !b

In order to calibrate the value of �QEC at which the frequency matching
condition !b = 2!m is verified, we perform a spectroscopy of the buffer and
memory mode for various values of the external flux �ext. Besides, fitting the
dependencies !b (�ext) and 2!m (�ext) gives access to the device parameters
using the model of Sec. 3.5.4.
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Figure 4.3: Simulated memory (a.) and buffer (b.) quality factors (Q) as a function
of the input line offset with respect to circuit symmetry axis for various
distances dw between the circuit and the first wirebond. Choosing the
distance at which the first wirebond is bonded enables tuning the buffer
quality factor. If the positive optimal input line offset depends strongly
on the first wirebond position, it is not the case for the negative optimal
input line offset.

To measure the buffer frequency at a specific flux �ext, we applied a
simultaneous DC and RF pulse through the input line of the device, as
illustrated in Fig.4.4a. Both signals are square pulses, with the DC drive
setting the external flux, while the RF pulse frequency !d was varied in the
range of 7 to 8.3GHz. By measuring the reflection coefficient of the RF pulse
r (!d) and fitting its dependence on !d for each value of �ext (Fig.4.4b.), we
were able to reconstruct !b (�ext). Note that the function used for fitting
r (!d) strongly depends on the detuning between the memory and buffer,
|!b � 2!m|, as explained in Appendix. d.

The memory spectroscopy is performed using the readout transmon,
galvanically coupled to the memory with a cross-Kerr rate of �q,m/2⇡ =
170 kHz. While a DC drive sets the desired external flux �ext, a pulse at
varying frequency !d is applied to the memory. This leads to a displacement
D̂ (�) of the memory if the drive is resonant with the memory frequency,
!d = !m (�ext), otherwise leaving it in its vacuum state. A selective ⇡ pulse
is then applied to the transmon, which excites the qubit to its 1st excited
state |ei if the memory remained in its vacuum state, leaving it in |gi if
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stabilization and measurement of cat states

the memory displacement was ineffective (Fig. 4.4c.). The transmon is then
measured using the readout resonator with the dispersive readout scheme
discussed in Sec. 3.1.3.2. This pulse sequence effectively amounts to asking
the circuit " Is the drive frequency !d resonant with the memory frequency
!m? ", encoding the answer into the transmon population. By finding the
drive frequency that leaves the transmon in its ground state |gi for each
external flux, we could !m as a function of �ext.

The measured !b (�ext) and 2!m (�ext) are represented in Fig. 4.4d.,
with the frequency matching being verified at �QEC = 0.312�0 at which
!b (�QEC) = 2!m (�QEC) ⇡ 2⇡⇥7.896 GHz. The sample parameters slightly
deviate from what was simulated, notably evident from the difference between
�QEC and �(sweet)

ext
which were designed to coincide. These deviations can in

particular be attributed to fabrication issues. Additionally, we introduce a
third flux �tomo = 0.168�0, which was used for the Wigner tomography of
the cat qubit (see Sec. 4.2.2 for further details)

4.1.3 Summary of the device parameters

Using the dependence of the buffer and memory frequencies with the external
flux, several parameters of the device can be estimated by employing the
theoretical model introduced in Sec. 3.5.4. Note that the added stubs used
to tune the modes 'ZPF were added to the theory in order to best reproduce
the experimental results in Fig. 4.4d. A summary of the device parameters
is provided in Table. 4.1, along with the corresponding measurement or
estimation method employed for each parameter.

4.2 measuring the wigner function of a cat qubit

Having characterized the device parameters and identified the flux �QEC

where the frequency matching condition is verified, the preparation of a
cat state is quite straightforward. Starting from the vacuum state in the
memory at �QEC, we simply turn on a drive with an amplitude |✏d| = |↵|2g2
(Fig. 3.13b.) at twice the memory frequency !d = 2!m for a time of ⇡ 300 ns.
The effective dissipation acting on the memory during that time

L̂2 =
p
2
�
â2 � ↵2

�
(4.2)

stabilizes the cat qubit manifold span (|↵i , |�↵i), and the memory evolves
towards |C↵

+
i / |↵i + | � ↵i, the state in the cat manifold with the same

parity as the initial vacuum state. Indeed, the memory parity is preserved
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4.2 measuring the wigner function of a cat qubit

Figure 4.4: a. Schematic of the complete device. The autoparametric coupler
mediates the 2-to-1 photon interaction between the memory and buffer
at a rate g2. On the buffer side, the input line is used to set �ext and
drive the buffer mode with drive amplitude ✏d. Finally, a tomography
transmon is galvanically coupled to the memory and can be read out
using a readout resonator at !r b. Pulse sequence used to perform
the spectroscopy of the buffer at a flux �ext c. Pulse sequence used
to perform the spectroscopy of the memory at a flux �ext d. Dots:
measured resonance frequency of the buffer !b (green) and twice the
measured resonance frequency of the memory 2!m (blue) as a function
of the flux threading the ring. Dashed lines indicate the flux biases where
the circuit is operated. Solid lines: Best fit of the circuit parameters
(see Sec. 3.5.4).

during this process as it only exchanges pairs of photons with its environment.
The time of ⇡ 300 ns is chosen to be shorter than the characteristic time
1/|↵|21 of a photon loss, yet long enough for the two-photon dissipation
and drive to stabilize the memory into the cat qubit manifold.
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Table 4.1: Estimated parameters of the device.
Parameter Value Method of determination

Quantum Error Correction flux
�QEC

0.312 �0 Memory and buffer spectroscopy

Tomography flux �tomo 0.168 �0
Optimization of the memory

displacements D̂ (�)

Sweet spot �(sweet)
ext 0.4 �0 Memory and buffer spectroscopy

Memory frequency !m
�
�QEC

�
/2⇡ 3.948 GHz Memory and buffer spectroscopy

Buffer frequency !b
�
�QEC

�
/2⇡ 7.896 GHz Memory and buffer spectroscopy

Transmon frequency !q/2⇡ 5.387 GHz Ramsey interferometry at �tomo

Readout resonator frequency !r/2⇡ 6.967 GHz Reflection measurement, Fig. 3.4a.
Effective inductive energy

ĒJ
�
�QEC

�
/~ 228 GHz Memory and buffer spectroscopy

Effective inductive energy
ĒW

�
�QEC

�
/~ 51 GHz Memory and buffer spectroscopy

Effective inductive energy
ĒJ (�tomo) /~

242 GHz Memory and buffer spectroscopy

Effective inductive energy
ĒW (�tomo) /~

97 GHz Memory and buffer spectroscopy

Memory participation ratio 'ZPF,m 0.0305 Memory and buffer spectroscopy
Buffer participation ratio 'ZPF,b 0.0648 Memory and buffer spectroscopy

Predicted two-to-one coupling rate
g2/2⇡

6.2 MHz Memory and buffer spectroscopy

Memory self-Kerr �m,m 0.220 MHz Coherent state deformation,
Fig. 3.8

Buffer self-Kerr �b,b 10 MHz Estimated using Eq. (3.80)
Transmon to memory cross-Kerr

�q,m
0.170 MHz Ramsey interferometry with a

displaced cavity, Fig. 4.8a.
Buffer to memory cross-Kerr �b,m 1.6 MHz Estimated using Eq. (3.80)
Transmon to readout cross-Kerr

�q,r
3.5 MHz Reflection measurement, Fig. 3.4a.

Two-to-one coupling rate g2/2⇡
6±

0.5 MHz
Fidelity of logical Ẑ rotations,

Fig. 5.4
Memory single photon loss 1/2⇡ 14 kHz Decay |1i ! |0i, Fig. 4.11b.

Memory effective 2 photons loss
2/2⇡

2.16 MHz Decay
���C+

↵

E
! |0i or

���C�
↵

E
! |1i,

Fig. 4.9b.

Memory dephasing rate m' /2⇡ 0.08 MHz
Ramsey interferometry Zeno

blocked on the manifold
span (|0i , |1i)

Buffer single photon loss b/2⇡ 40 MHz Reflection measurement, Fig.d.2
Readout resonator linewidth r/2⇡ 1.8MHz Reflection measurement, Fig. 3.4a.

Transmon T1 18 µs Standard decay measurement
Transmon T2 15 µs Ramsey interferometry

Memory thermal population nth,m
0.011

photon Ramsey interferometry

Transmon thermal population nth,q
0.015

photon Standard transmon readout
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4.2 measuring the wigner function of a cat qubit

While this preparation is extremely simple, using a single tone to stabilize
a cat qubit, measuring the Wigner function of this state cannot be performed
at �QEC due to the strong two-photon dissipation. To circumvent this issue,
we define an alternative flux �tomo at which the two-photon dissipation is no
longer active. The fast flux line is then used to quickly switch from �QEC,
where the cat states are prepared, to �tomo where they are measured. This
is detailed in Sec. 4.2.2.

This section introduces the standard protocol used to measure the Wigner
function of the memory, using the dissipatively coupled transmon, and how
it can be improved using the fast flux line to measure cat qubits at �tomo.
After presenting how the phase of a cat state can be stabilized over time
using our measurement protocol, we present 3 methods used to calibrate the
memory displacement amplitudes.

4.2.1 Standard measurement of the Wigner function

To have an intuition on how to measure the memory Wigner function, we
use an alternative definition from that provided in Sec. 3.2

W (�) =
2

⇡

D
D̂ (�)† ⇢̂ D̂ (�) ei⇡â

†
â

E
, (4.3)

with ⇢̂ the memory density matrix and P̂ = ei⇡â
†
â the parity operator. The

equivalence between this expression and Eq. (3.28) is demonstrated in the
Appendix of [40]. This expression gives a direct interpretation of the Wigner
function as the expectation value of the memory photon number parity, after
a displacement by an amplitude ��. To measure the value of the Wigner
function at a point �, we use the technique first introduced in 1997 by
Lutterbach and Davidovich [179], first implemented in the context of cavity
QED in 2002 [174] and in circuit QED in 2013 [175]. This method exactly
follows the physical intuition given by Eq. 4.3 by first displacing the memory
before using a dispersively coupled qubit to measure its parity. We present
alternative parity measurements protocol in Sec. 4.3.3.

The displacement D̂ (��) is realized by driving the memory at the fre-
quency !m for 20 ns. The relatively short pulse duration ensures that the
memory self-Kerr effect does not have time to deform the memory state, and
that the pulse is effective irrespective of the memory photon number. The
transmon is then prepared in an equal superposition of ground and excited
states by applying an unconditional ⇡/2 pulse, after which the system is left
idle for a duration Tparity = ⇡/�q,m ⇡ 2.8 µs. During this idle time, the super-
position accumulates a relative phase dependent on the number of photons
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stabilization and measurement of cat states

Figure 4.5: a. Pulse sequence used to measure the Wigner function of the mem-
ory through a dispersively coupled qubit. b. Illustration of the qubit
evolution during the idle time between the two ⇡/2 pulses. Starting
from the superposition |+i = (|gi+ |ei)

p
2, a relative phase n�q,mt

is accumulated after a time t, with n the memory photon number
c. Energy levels of the transmon qubit, dispersively coupled to the
memory. The energy of the transmon first excited state |ei depends
on the memory photon number, with a separation of �q,m. When the
two-photon dissipation L̂2 =

p
2â

2 is activated, the energy levels are
broaden by 2 and overlap in the regime 2 � �q,m.

n inside the memory (Fig. 4.5b.). This phase accumulation stems from the
qubit frequency which depends on the memory photon number as !q�n�q,m,
with !q the bare qubit frequency. After a time Tparity = ⇡/�q,m ⇡ 2.8 µs,
even and odd numbers of photons are respectively mapped onto the |+i and
|�i states of the transmon. An unconditional ±⇡/2 pulse is then applied to
the transmon, mapping the memory parity into the population of its ground
and excited states, and the transmon is finally readout using the readout
cavity [174, 40]. The signals corresponding to a positive and negative final
⇡/2 pulses are subtracted to obtain W (�). Note that this subtraction is
theoretically unnecessary as this measurement could be performed using
successive ⇡/2 pulses only. However, doing so allows to remove unwanted
offsets that could originate from the experimental setup.
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4.2 measuring the wigner function of a cat qubit

4.2.2 Using the fast flux line

This measurement protocol would be ineffective at �QEC due to the strong
two-photon dissipation. Indeed, the engineered dissipation mechanism that
stabilizes the manifold span (|↵i , |�↵i) impedes proper displacements D̂ (��),
the very first step of the pulse sequence shown in Fig. 4.5a. Furthermore, it
would also render impossible the parity measurement using the transmon
qubit by inhibiting the dissipative coupling. As this dissipation broadens
the memory energy levels by 2, the qubit energy levels all overlap in the
regime 2 � �q,m (Fig. 4.5c.) reached in this experiment. Ultimately, this
prevents the qubit from having the desired dynamics during the idle step of
the protocol.

To overcome these challenges, the Wigner tomography is performed at
�tomo where |!b,tomo � 2!m,tomo| > 1 GHz. At this flux, two-photon dis-
sipation is inactive due to the 2-photon exchange Hamiltonian not being
preserved in the rotating wave approximation, enabling the usual Wigner
tomography. To rapidly switch between �QEC and �tomo, we make use of
the fast flux line that sets the desired magnetic flux in approximately 20 ns.

While the memory dynamics at �tomois primarily dominated by the self-
Kerr rate �m,m/2⇡ ⇡ 220 kHz, which only marginally affects the state during
the 20 ns it takes to switch the flux, it is crucial to keep the drive ✏d (↵) on
before shifting from �QEC to �tomo. The memory dynamics at �QEC is indeed
dominated by the 2-photon dissipation with a rate 2, which significantly
impacts the system in 20 ns. To prevent state distortion prior to the Wigner
tomography, the drive ✏d (↵) is thus maintained during the flux change. This
drive at !b,QEC does not affect the memory at �tomo, where the frequency
matching condition is no longer satisfied.

4.2.3 Phase correction of the stabilized cat

Owing to the change in memory frequency when the flux is switched between
�QEC and �tomo, a carefully designed driving sequence must be followed in
order to track the reference frame of the cat qubit. We set a local oscillator
at !LO,m = 2⇡ ⇥ 3.988481 GHz and another one at twice this frequency
!LO,b = 2!LO,m (see Fig. 4.6). They are generated using 2 channels of an
Anapico APUASYN20 so that their phases are locked (see Appendix. b).

The memory displacement pulse applied for Wigner tomography at the
flux �tomo is generated by mixing the local oscillator at !LO,m with a pulse
generated by the AWG at exactly !IF,m,tomo/2⇡ = 40 MHz. In contrast, at
the flux �QEC, the cat qubit is stabilized with a buffer drive at a frequency
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stabilization and measurement of cat states

Figure 4.6: Repartition of the frequencies of local oscillators generated by the
APUASYN20 synthesizer, intermediate frequencies generated by the
OPX DACs, and resonance frequencies of the device.

!b,QEC = 2!m,QEC that is not given by 2(!LO,m � !IF,m,tomo) owing to the
frequency change of the memory between the two flux working points. The
drive at !m,QEC is in fact generated by mixing the local oscillator at 2!LO,m

with a pulse generated by the AWG at !IF,b,QEC = 2(!LO,m � !m,QEC) ⇡
2⇡ ⇥ 120 MHz.

Figure 4.7: Wigner Tomography of the cat state
��C+

↵

↵
with ↵ = 2 for 3 stabilization

times: 300, 304 and 308 ns. a. Evolution of the cat state when no phase
compensation is applied. b. Evolution of the cat when the accumulated
phase between the 2 local oscillators is taken into account before
memory displacement.

Owing to the detuning of about 20 MHz between !IF,b,QEC/2 and !IF,m,tomo,
the stabilized coherent states |±↵i of the cat qubit are offset by a time increas-
ing phase in the frame of the displacement pulses used for Wigner tomography.
When trying to perform the desired displacement D̂(��) = D̂(�|�|ei✓) for
the Wigner tomography, this accumulated phase induces a displacement
with an angle
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4.2 measuring the wigner function of a cat qubit

✓o↵set(t) = ✓ + (!IF,b,QEC/2� !IF,m,tomo) t,

where t is the time spent at �QEC. This can be seen as cat states whose
orientation in phase-space changes over time (Fig. 4.7a.). Taking this phase
offset into account, we compensate the accumulated phase directly on the
AWG to keep the orientation of the cat qubit states constant in phase
space when reconstructing their Wigner Tomography (Fig. 4.7a.). This is of
particular interest for the measurement of TX where we need to measure the
evolution of W (±↵), which can then be done by measuring only 2 points
of the Wigner function, greatly speeding up this already time-consuming
measurement.

4.2.4 Calibration of the memory displacements

The displacements D̂(��) applied on the memory during Wigner tomography
are performed by applying a drive at frequency !m, tomo. We calibrate how
the displacement amplitudes � depend on the voltage amplitude Vd at the
level of the DAC by 3 methods (Fig. 4.8). We then verify how good is the
match between the proportionality factor µ = d�/dVd they provide.

4.2.4.1 Ramsey interferometry

The first calibration method relies on a Ramsey sequence [180, 181]. Starting
from the memory in its vacuum state, a drive of amplitude Vd is applied
to displace the memory to a coherent state |�i. Accounting for the residual
thermal occupation of the memory mode, the mean number of photons is
n̄ = �2 + nth. The dispersively coupled qubit is then prepared in an equal
superposition of ground and excited states by applying an unconditional
⇡/2 pulse. After a varying time t, the superposition accumulates a phase
�q,m

⌦
â†â
↵
t that depends on the memory photon number

⌦
â†â
↵
. A second

unconditional ±⇡/2 pulse is applied on the qubit, which is then measured to
give 2 average signals S±. The signal s(t) is defined as the difference between
these two 2 signals

s(t) = S+ � S�. (4.4)

We first estimate the thermal population in the memory nth from the
evolution of the signal when no displacement is applied, i.e. Vd = 0 mV. The
memory density matrix can then be written as a Boltzmann distribution
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Figure 4.8: a. Ramsey interferometry. Dots: measured signal S+ � S� between 2
Ramsey-like experiments for various voltages Vd = 0, 10, 20, 30, 40, mV

from top to bottom. Lines: Fit of the measurements to Eq. (4.8) leading
to a photon number n̄ = 0.011, 0.10, 0.35, 0.81, 1.45. The residual
thermal population is thus nth = 0.01. b. Measured Wigner function
of the memory in thermal equilibrium with its environment. The
conversion used between Vd and |�| to plot it is made by a Gaussian
fit of the measurement with the Wigner function of a thermal state
with nth = 0.011 ± 0.002 photons on average. c. Dots: Cuts of the
Wigner tomography of a stabilized cat qubit along � 2 R after 100 µs

of dephasing. Line: Theoretical prediction. d. Same plot along � 2 iR,
500 ns after the buffer drive is turned on.

⇢̂th =
X

n

nn

th

(1 + nth)
n+1

|ni hn| (4.5)

and s(t) evolves as [180]

s(t) = e�t/T2
X

n

nn

th

(1 + nth)
n+1

cos(n�q,mt) (4.6)
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4.2 measuring the wigner function of a cat qubit

Under the condition nth ⌧ 1, Eq. (4.7) reduces to

s(t) = e�t/T2 (1 + nth (cos(�q,mt)� 1)) . (4.7)

We use this form to extract1 the thermal population from Fig. 4.8a, yielding
nth = 0.017± 0.002.

When applying a displacement D̂(�) to the memory, with |�|2 � nth, the
thermal population can be ignored and the memory state approximated to
a coherent state |�i. The signal then evolves as [181]

s(t) = cos
�
|�|2 sin (�q,mt)

�
e|�|

2
(cos(�q,mt)�1)�t/T2 . (4.8)

From the measurements shown in Fig. 4.8a, for Vd > 0 mV, we can extract
the cross-Kerr coupling rate �q,m/2⇡ = 170 kHz between memory and
transmon qubit. We also obtain the dependence of |�|2 on Vd, from which we
deduce µ = 31.33± 0.85 V�1. Note that this calibration method is similar
to the parity measurement sequence for varying idle time.

4.2.4.2 Thermal state tomography

Another calibration method is to perform a Wigner tomography of the
memory thermal state, using the independently measured average occupa-
tion nth = 0.017. From the expression of the memory density matrix as a
Boltzmann distribution, the associated Wigner function writes

Wth (�) =
X

n

nn

th

(1 + nth)
n+1

Wn (�) , (4.9)

where Wn (�) = (�1)n 2

⇡
e�2|�|2Ln

⇣
4 |�|2

⌘
is the Wigner function of Fock

state |ni. Laguerre polynomials obey the following rule

X

n

tnLn

⇣
4 |�|2

⌘
=

1

1� t
e4t|�|

2
/(1�t).

Therefore, we obtain

1 The cross-Kerr coupling rate appearing in the equation is obtained using coherent states
instead of thermal states as discussed below.
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Wth (�) =
2

⇡ (1 + nth)
e�2|�|2

X

n

✓
�nth

1 + nth

◆n

Ln

⇣
4 |�|2

⌘

=
2

⇡ (1 + 2nth)
e�2|�|2/(1+2nth).

(4.10)

Using a conversion factor µ = 31.49± 0.14 V�1 rescales the displacement
amplitudes from voltages Vd into complex amplitudes � for the measured
Wigner function in (Fig. 4.8b.), in such a way that the standard deviation
�, of this Gaussian distribution is � =

p
1 + 2nth/2, with nth = 0.01.

4.2.4.3 Measurement of cat states fringes

Our last method to calibrate the conversion factor is based on the Wigner
tomography of a cat state [28]. The particular features of the cat Wigner
function allow us to directly estimate µ, assuming the distortion due to
memory self-Kerr or thermal population is negligible. The Wigner function
of an even cat state of size ↵, |C+

↵
i, can be written as

W+

↵
(�) =

1

⇡

⇣
e�2|↵��|2 + e�2|↵+�|2 + 2 cos (4Im (↵⇤�)) e�2|�|2

⌘
. (4.11)

Introducing �V↵ and �VI the drive voltages corresponding to respectively
a displacement of 2↵ (distance between the two Gaussian distributions in
Fig. 4.8c.) and the periodicity of the fringes ⇡/2↵ (seen in Fig. 4.8d.), this
yields

8
<

:

2↵ = µ �V↵

⇡

2↵
= µ �VI

Therefore µ =
p
⇡/ (�V↵�VI). The values of �V↵ and �VI are measured

via cuts of the Wigner function in the direction and orthogonal to the cat
state (Fig. 4.8c.,d.). The conversion factor obtained via this method is
µ = 31.41± 0.04 V�1, once again compatible with the previous calibrations.
With the conversion factor being calibrated, this method can actually be used
in order to estimate the cat size by simply looking at the fringes periodicity,
as has been done in [28].
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4.2.4.4 Calibration

To conclude this section, the three methods are compatible with µ = 31.4±
0.1 V�1. We use this value of µ = 31.4 V�1 for all measurements in the
Auto-cat.

4.3 estimation of 2 and 1 , using the large ratio 2/1 ⇡
150

Before studying the performance of the stabilized cat qubit, i.e the evolution
of the bit-flip time and phase-flip rate with |↵|2, a key figure of merit to look
at is the effective two-photon dissipation rate acting on the memory. We
measure this two-photon loss rate 2 in Sec. 4.3.1 by monitoring the memory
decay once the drive ✏d(↵) has been turned off. Comparing the obtained value
of 2/2⇡ ⇡ 2.16± 0.1 MHz at �QEC with 1, measured in Sec. 4.3.2 using
the relaxation of Fock state |1i to vacuum, yields a ratio 2/1 ⇡ 1.5⇥ 102

much larger than in previous implementations of two-photon dissipation
using four-wave mixing [117, 101, 102, 157]. We present in Sec. 4.3.3 how to
take advantage of this large ratio to improve on the previously presented
Wigner measurement protocol, and in particular better reconstruct the cat
fringes.

4.3.1 Determination of 2 using engineered relaxation of cat qubits

In order to measure the rate 2, we first prepare |C+
↵
i or |C�

↵
i by driving

the buffer with a drive ✏d (↵) at �QEC. Turning off ✏d (↵) while remaining at
�QEC then ensures the memory loses pairs of photons to the environment at
the rate 2. |C±

↵
i then converges to a state in the manifold span (|↵i , |�↵i)

with the same parity as the initial state. An example of such an evolution
starting from |C+

↵
i, ↵ = 2.5, is shown at a few decay times in Fig. 4.9b. The

complete list of measured decay times for this evolution is t = 0, 4, 8, 12,
20, 28, 40, 60, 100, 160, 240 and 320 ns.

In order to extract the rate 2 from these dynamics, the initial density
matrix describing the memory is approximated by

⇢ = p
��C+

↵

↵ ⌦
C+

↵

��+ (1� p)
��C�

↵

↵ ⌦
C�

↵

�� . (4.12)

↵ is extracted by fitting the initial measured Wigner tomography, while p
is deduced from the value of W (0) which fully characterizes the parity of
the state. The obtained description of the initial density matrix is however
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Figure 4.9: a. Dots: Measured two-photon relaxation rate 2 as a function of
flux bias close to �QEC. Error bars represent statistical uncertainties.
Inset: pulse sequence used for the measurement. The detuning between
buffer frequency and twice the memory frequency is indicated on the
top axis. b. Top: Measured Wigner functions of the memory after
the decay times indicated on the figure for |↵| = 2.5 and at the flux
indicated by the star in a.. Bottom: results of the simulation using
2/2⇡ = 2.16 MHz.

only an approximation as it does not take into account possible leakage out
of the code space due to the memory self Kerr effect, dispersive coupling
to transmon and buffer modes, or potential heating effect. From this initial
state, Eq. (4.12), the evolution of the memory state is then simulated using
the Hamiltonian and loss operators

Ĥ/~ = ��m,m

2
â†2â2

L̂1 =
p
1â, L̂2 =

p
2â

2.
(4.13)
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The single photon loss rate 1/2⇡ ⇠ 14 kHz is extracted from the decay
of the single photon state |1i ! |0i (see Sec. 4.3.2). Using the memory
self-Kerr rate �m,m = 2⇡ ⇥ 220 kHz measured at �tomo (see Fig. 3.8) and
its predicted flux dependence Eq. (3.80), we estimate the self-Kerr rate at
�QEC, �m,m/2⇡ ⇠ 206 kHz. Minimizing the difference between experimental
and simulated Wigner functions at all times t

X

t

Z

C
|Wexp (�, t)�Wsim (�, t)| d� (4.14)

then allows us to fit the value of 2 that best reproduces the memory
dynamics. This procedure is repeated for various flux biases around �QEC

in Fig. 4.9a., which shows the range of detuning !b � 2!m over which the
two-photon loss rate decreases.

The uncertainty shown in Fig. 4.9a. is then calculated using the result of
the minimization method �2 

p
tol ⇥ H�1, with tol being the tolerance

given for the convergence of the algorithm and H�1 the inverse of the Hessian
matrix. It should be noted that, due to the large two-to-one photon coupling
g2/2⇡ = 6 MHz, the condition for the adiabatic elimination of the buffer

8g2↵ < b (4.15)

is not verified as soon as ↵ & 1. This results in a deviation between the
measured Wigner functions in Fig. 4.9b. and the evolution predicted by
the simple model of Eq. (4.13). The impact of this non-adiabacity on the
cat qubit stabilization is described in Sec. 4.4.1.2. Actually, due to the
breakdown of Eq. (4.15), the buffer mode gets populated during the two-
photon dissipation. In turn, the memory sees an effective drive originating
from this buffer population, inducing small deformations of the Wigner
function. Particularly visible at 8 ns where the buffer is close to being
maximally populated, this effect vanishes at 40 ns after the memory loses
enough photons for the system to re-enter the adiabatic regime. This effect
can be taken into account in the simulation by including the buffer dynamics
without adiabatic elimination (Fig. 4.10). However this bipartite evolution
does not provide an effective value of 2 acting on the memory mode, hence
the benefit of sticking with the simpler model.

Note that we have tried other methods to estimate 2, in particular by
extracting n̄ =

⌦
â†â
↵

from the measured Wigner function

n̄ =

Z

C
Wexp (�)�

2d� � 0.5 (4.16)
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Figure 4.10: Evolution of the Wigner functions of the memory starting close to a
cat state

��C+
↵

↵
and under the effect of two-photon dissipation at �QEC

without driving the buffer. First and third lines: measured Wigner
functions at various times indicated on the figure. Second and fourth
lines: simulated Wigner functions of the memory without the adiabatic
elimination of the buffer, and assuming a two-photon coupling rate
g2/2⇡ = 6 MHz (Fig. 5.4b).

and compare it with the theoretical expression given in [182]. However,
reconstructing n̄ with this method has proven quite challenging due to the
measurement noise of the Wigner tomography, which would have made it
necessary to use Maximum Likelihood Estimation (MLE) [183] in order to
circumvent this issue.

4.3.2 Determination of 1 using the relaxation of a single photon

The single-photon dissipation rate 1 is measured by observing the decay
from Fock state |1i to the memory vacuum. The Fock state |1i is prepared in
the memory by first preparing the state |C�

↵
i, which we then let evolve under

the action of the two-photon dissipation at a rate 2 � 1 (Fig. 4.11a.). The

108
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parity of the memory is preserved during this process so that the memory
state ends up in the subspace generated by {|0i , |1i} with the same parity as
|C�

↵
i: that is the Fock state |1i. In practice, we start in 0.7 |1i h1|+0.3 |0i h0|.

All that is necessary to measure 1 is then to monitor the memory parity
⇡W (0)/2 as it evolves towards 1, here corresponding to the vacuum state.

Figure 4.11: a. Measured Wigner functions of the memory starting close to
��C�

↵

↵

after the decay times indicated on the figure. b. Dots: Measured
evolution of W (0) as a function of the time t spent after the memory
has been prepared close to

��C�
↵

↵
. Note the much longer timescale

for this single photon decay compared to the sub µs time needed
to prepare Fock state |1i in a. Dashed line: Fit of the exponential
relaxation to vacuum.

In order to prepare |C�
↵
i, we prepare |C+

↵
i as in Fig. 4.9 and then apply

a Z gate (see Sec 5.1.2). Even if the preparation and gate are not optimized,
as in this measurement, the decay rate can still be extracted with excellent
accuracy as it only affects the initial value of W (0) during the decay from
|1i to |0i (Fig. 4.11b.).

The evolution of W (0) in Fig. 4.11b. is fitted by an exponential relaxation
at a rate 1/2⇡ = 14 kHz. Repeating this measurement over the course of
months, we found that the rate 1/2⇡ typically varies by ±2 kHz around this
average value. Note that |1i could have been prepared using the dissipatively
coupled qubit, but the relatively low value of the cross-Kerr coupling �q,m

compared to 1 prevented preparing it with good fidelity.
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4.3.3 Improving on the usual parity measurement protocols

This large ratio 2/1 ⇡ 150 can be leveraged to improve the Wigner
measurement by removing pairs of photons from the memory after the
initial displacement D̂(��). This prevents several problems in the parity
measurements arising from a large number of photons in the memory. In
this section, we introduce 2 alternative methods to the parity measurement
protocol introduced in Sec. 4.2.1, based on estimating the probability Pn for
the memory to contain n photons. We then present how both these parity
measurement protocols and the interferometric approach can benefit from
the evacuation of pairs of photons from the memory, and how we implement
it in the Auto-cat. Additionally, we discuss prospective methods (yet to be
realized) that could take full benefit of this alternative approach.

4.3.3.1 Coherent oscillations with an auxiliary qubit

The Fock states being eigenstates of the parity operator ⇧̂ = ei⇡â
†
â, with

eigenvalue 1 for even Fock states and �1 for odd ones, an alternative definition
of the Wigner function is given by

W (�) =
2

⇡

X

n

(�1)n Pn (�) . (4.17)

There, Pn (�) is the probability for the memory to contain n photons after
the displacement D̂(��). Physically, this formula simply says that the parity
measurement can be performed by measuring the population in each Fock
state.

This method of measuring the parity was first demonstrated in 2009 by
Hofheinz et al. [184], using a method they introduced in 2008 [185]. The
probabilities Pn (�) are measured by coupling an auxiliary qubit to the
memory, this system being described by the Jaynes-Cummings Hamiltonian

ĤJC/~ = !mâ†â+
!q

2
�z +

g

2

�
â�+ + â†��

�
. (4.18)

Bringing the qubit at resonance with the memory after the initial displace-
ment, i.e. setting !q = !m, coherent oscillations take place between the
states |g, ni (describing a qubit in its ground state and n photons in the
memory) and |e, n� 1i with an angular frequency ⌦n =

p
ng. In the absence

of decoherence and dissipation impacting the system, the probability of
finding the qubit in its excited state after an interaction time ⌧ then reads
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Pe(⌧) =
1X

n=1

Pn (�)
1� cos(⌦n⌧)

2
. (4.19)

Pe oscillates at a frequency ⌦n/2⇡ when the memory is in a pure Fock state
|ni, with a more complex evolution when different Fock states are occupied
due to the irrational ratio between the different oscillation frequencies. The
probabilities Pn (�) can be obtained from the evolution of Pe(⌧) using a
Fourier transform, owing to the functions {cos(⌦n⌧)}n2N being orthogonal.

From the measurement of Pn (�), the Wigner function can be directly
estimated using Eq. (4.17). Alternatively, denoting as {�m} the ensemble
of displacements experimentally measured, one could solve the set of linear
equations

Pn (�m) = hn| D̂(��m) ⇢̂ D̂(�m) |ni =
X

i,j

Mn,m,i,j⇢i,j (4.20)

with ⇢i,j = hi| ⇢̂ |ji and Mn,m,i,j = hn| D̂(��m) |ii hj| D̂(�m) |ni. Measuring
Pn (�m) for an appropriate set of displacement {�m} (which can be optimized
in order to better reconstruct the quantum information, see the Appendix
of [186]), the density matrix of the memory can be estimated from Eq. (4.20)
using a least square regression. This regression is performed by imposing
that the memory density matrix is Hermitian, positive semi-definite and of
trace one.

To effectively reconstruct the probabilities Pn (�m) up to a cutoff nc, the
time step ⌧step between two successive points in the trajectory Pe(⌧) has to
be smaller than ⇡/pncg in order to verify Shannon criteria. Assuming the
total timescale of the measurement correspond to at least 1 period of the
oscillation at ⌦1, which corresponds to a minimal number of measurement
2
p
nc. Note that this parity measurement is not QND.

4.3.3.2 Estimation of Pn using a selective X̂n

⇡
pulse

Another method used for the parity measurement, still based on the mea-
surement of the probabilities Pn (�m), uses selective X̂n

⇡
pulses instead of the

continuous trajectory Pe(⌧) of the qubit. First implemented in 2013 [137],
the auxiliary qubit is here coupled to the memory in the dispersive regime
(see Sec. 3.1.3.2). The Hamiltonian of this system reads

ĤDisp/~ = !mâ†â� �m,mâ
†2â2 +

1

2

�
!q � �q,mâ

†â
�
�z, (4.21)
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where the cross-Kerr term is included in the Hamiltonian as a frequency shift
of the qubit frequency depending on the number of photons in the memory.
In the regime where �q,m is larger than both the relaxation and decoherence
rates of the memory and qubit modes, a pulse of duration ⌧ > 1/�q,m can
be applied to the qubit during which no errors have time to occur (for small
photon number). Setting the frequency of this drive to !d = !q �N�q,m,
N 2 N, it induces coherent oscillations between the states |g,Ni and |e,Ni.
The condition ⌧ > 1/�q,m ensures the drive has no impact on the states
|g, ki for k 6= N . The drive is calibrated to act as a selective X̂n

⇡
pulse on

the qubit, bringing it to its excited state |ei only if resonant with the qubit
frequency. Measuring Pe after applying this pulse directly gives the value of
Pn. The parity can then be estimated by applying these selective X̂n

⇡
to the

qubit at frequencies !q � n�q,m, n 2 N, until a cutoff nc, and measure the
qubit population.

Because it probes each frequency one after another, this protocol requires
nc measurements to estimate the probabilities {Pn}n<nc

. Note that the
interferometric method used in this thesis further improves on this figure,
only requiring a single measurement to estimate the parity.

4.3.3.3 Issues arising at large photon number

Both these methods, as well as the interferometric approach to the parity
measurement, are prone to errors when the memory contains a large number
of photons. This is mainly due to single-photon loss errors occurring during
the parity measurement protocol, the effective dissipation rate scaling linearly
with the number of photons in the memory 1,e↵ = n1.

Regarding the first method used for the measurement of Pn (Sec. 4.3.3.1),
this linear scaling of the single photon loss rate is to be compared with
the oscillation rate ⌦n of each transition, scaling as ⌦n /

p
n. In order for

Eq. (4.19) to be valid and see the oscillations from which the probabilities
Pn are deduced, ⌦n needs to be larger than n1. The difference of scaling
however indicates that, even in the regime where g > 1, the oscillations
predicted by Eq. (4.19) will be damped at large photon number which will
prevent the reconstruction of Pn.

A similar effect can be seen with the selective X̂n

⇡
pulses approach or the

interferometric method used in this thesis. In the first case, the selective
pulses have a fixed duration Tselective > 1/�q,m in order to induce the desired
selective X̂n

⇡
pulse. Because losing a photon during this time leads to a

measurement error, it imposes that Tselective < 1/n1. These 2 conditions
cannot be simultaneously verified when n > �q,m/1, preventing the measure
of Pn for large photon number. The same logic can be applied to the
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interferometric approach where the idle time Tparity = ⇡/�q,m of the parity
measurement needs to be shorter than 1/n1.

These issues can be mitigated by working in the regime g,�q,m � 1,
pushing the maximum photon number at which single-photon loss prevents
the parity measurement. In our system however, �q,m was specifically chosen
to be small relative to the two-photon dissipation so that the thermal
population of the transmon first excited state does not affect the stabilization
of cat states [102, 157, 158, 176]. The measured value �q,m/2⇡ = 170 kHz is
then only about 11 times that of 1, inducing a noticeable loss of contrast
in the reconstruction of the coherences of |C+

↵
i for large photon numbers

(Fig. 4.12b.).
Furthermore, working with a large cross-Kerr �q,m poses another challenge

in our parity measurement protocol. In this regime of parameter, the desired
unconditional X̂⇡/2 pulses applied on the qubit can become selective if n̄�q,m

is greater than the X̂⇡/2 pulse bandwidth. This limitation is not observed in
our system due to the low cross-Kerr coupling.

4.3.3.4 Solving these issues using 2-photon dissipation

These issues can be effectively addressed through minor adjustments to
the pulse sequence used for the parity measurement. Following the ini-
tial displacement operation D̂ (��) at the phase �tomo, the flux is quickly
turned back to �QECwhere the memory loses pairs of photons to the buffer
(Fig. 4.12a.). Leveraging the substantial ratio 2/1 ⇡ 150, we introduce
a time delay 1/1 � t > n̄/2 during which the memory decays to the
manifold span (|0i , |1i) while preserving its parity. Given that the memory
contains, at most, a single photon, occurrences of single photon losses are
now significantly suppressed by a factor of n̄ compared to the pre-deflation
scenario. A better reconstruction of the cat coherences can then be achieved,
increasing the contrast of the cat fringes by e1(n̄�1)⇡/�q,m ⇡ 14 for |↵| = 3.35
(Fig. 4.12c.).

In this experiment, we leverage the robust two-photon dissipation effect
offered by the Auto-cat system to eliminate photon pairs. Alternatively, one
could use a transmon qubit, as discussed in Section 3.5, to achieve the
same outcome. Specifically, the engineered dissipation operator L̂2 =

p
2â2

can be generated by driving a four-wave mixing term within the transmon
Hamiltonian [117, 101]. Although the resulting two-photon dissipation rate
2 is considerably lower than what is demonstrated in this thesis, a ratio
of 2/1 ⇡ 100 was obtained in [101] through the use of 3D cavities, which
provide a lower dissipation rate 1. Such a ratio should allow to remove
pairs of photons without suffering from single photon loss. Moreover, the
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Figure 4.12: a. Modified pulse sequence used to perform the Wigner tomography of��C+
↵

↵
. After applying a drive ✏d(↵) at �QEC to stabilise

��C+
↵

↵
, the flux

is quickly switched to �tomo where the memory is displaced by D̂ (��).
The flux is then quickly switched back to �QEC for a time t = 300 ns.
The standard parity measurement is then applied at �tomo during
which the transmon acquires information on the memory parity before
being finally measured. b. Wigner tomography of

��C+
↵

↵
, ↵ = 3.35,

without the 300ns of two-photons removal. c. Wigner tomography of��C+
↵

↵
using the modified pulse sequence.

same transmon qubit could be exploited for both photon pair removal and
parity measurements, initially applying a pump tone to activate the 2-to-1
photon coupling and subsequently performing the desired parity measurement
protocol.

4.3.3.5 Alternative parity measurements taking advantage of the deflation

Following the deflation process, once the memory decayed to the manifold
span (|0i , |1i), the task of measuring the parity simplifies considerably. It
simply amounts to differentiate the states |0i and |1i, or equivalently the
measurement of P0 or P1. This procedure is far simpler than measuring the
parity of an arbitrary memory state, and new protocols can be envisioned
that simplify previous measurements.

One approach is to adapt the two protocols introduced in Section 4.3.3 and
only measure P0, thereby significantly reducing the measurement overhead.
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The condition g,�q,m � 1 would remain essential, which could be an issue
in future iterations of the Auto-cat as a large cross-Kerr rate is shown to
limit the bit-flip time (see Sec. 4.4.4).

An alternative approach is to use a gate recently introduced in [114], the
Conditional not displacement or CNOD gate. This gate was first envisioned
in order to displace a resonator conditioned on an auxiliary qubit not being
in a given state, |ei for instance, without relying on narrow-band pulses at
selected frequencies. This is achieved by shaping the pulse drive used for the
displacement such that its Fourier transform is antisymmetric around the
frequency !|ei

m = !m � �q,m. Crucially, the selectivity being provided by the
pulse’s symmetry properties, large-frequency bandwidths are no longer an
issue and the pulse duration is not limited by the cross-Kerr coupling rate.

Within the context of parity measurement, the CNOD gate can be used
by treating the deflated memory as an effective qubit and applying a drive
to an auxiliary qubit or a resonator for a duration shorter than 1/�q,m.
While applying a selective X̂⇡ on an auxiliary qubit proves challenging in
simulations, large buffer displacements |�i conditioned on the memory state,
with � � 1, should be feasible. Measuring the state of this resonator and
distinguishing between |�i and its vacuum state |0i then gives access to
the parity. Notably, the buffer mode of the Auto-cat could serve as this
auxiliary resonator, elevating the need for the auxiliary transmon and a
separate readout cavity.

4.4 bit-flip time and phase-flip rate, experiments vs
simulations

4.4.1 Experimental data

4.4.1.1 Measurement of TX and �Z at a given cat size

The phase-flip rate corresponds to the loss of coherence of the cat qubit,
through which any superposition of |±↵i decays to a mixture of these 2
coherent states 2. In order to probe it, a cat state |C+

↵
i is first prepared in the

memory by applying a drive ✏d(↵) at �QEC, starting from an empty cavity.
The cat qubit decoherence towards (|↵i h↵|+ |�↵i h�↵|) /2 is then monitored
by simply measuring W (0). Fitting this evolution with an exponential decay
at a rate �Z gives the value of the phase-flip rate (Fig. 4.13a.). Note that this
measurement could have been performed starting from |C�

↵
i, theoretically

yielding the same phase-flip rate as

2 This is valid in the case where �Z � 1/TX

115



stabilization and measurement of cat states

Figure 4.13: Determination of Tx and �Z for ↵2 ⇡ 6.5. For each measurement the
associated pulse sequence is shown above the experimental results,
the Wigner tomography protocol used is presented in Fig. 4.12. a.
Dots: measured W (0) as a function of cat stabilization time t. Solid
line: fit with an exponential decay e��zt where �z/2⇡ = 0.16 MHz. b.
Dots: measured W (�↵), W (↵) and W (↵)�W (�↵) as a function of
cat stabilization time t. Solid line: fit with an exponential decay, the
bit-flip time TX = 60 µs is deduced from the fit of W (↵)�W (�↵).
Insert: associated pulse sequence.

⌦
C+

↵

�� â†â
��C+

↵

↵
=
⌦
C�

↵

�� â†â
��C�

↵

↵
+O

⇣
e�|↵|2

⌘
. (4.22)

The bit-flip time TX characterizes how fast the coherent state |↵i decays
to an equal mixture of | � ↵i and |↵i. In order to measure it, the flux is
first set to �tomo so that a memory drive can prepare the state |↵i. The
flux is then turned back to �QEC and the buffer drive is immediately turned
on with an amplitude ✏d(↵) (Fig. 4.13b.). The state |↵i is then protected
by the two-photon dissipation which should prevent leakage to |�↵i. We
measure the Wigner functions W (±↵) for various waiting times and fit their
difference by an exponential decay W (↵) � W (�↵) / e�t/TX , giving the
value of TX.

4.4.1.2 Dependency of TX and �Z with |↵|2

Measuring the bit-flip time and phase-flip error rates for varying values of
|↵|2, we observe the dependence of TX and �Z with |↵|2 shown in Fig. 4.14.
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As expected the phase-flip rate increases linearly as �Z = 2|↵|21, with 1
being independently measured (Fig.4.11b.), until it goes above 20 photons.

The bit-flip time is shown in Fig. 4.14b. and rises exponentially with the
photon number |↵|2 until up to 12 photons. There, TX grows by a scaling
factor of about 3.5 per added photon, smaller than the limit of 7.4 predicted
in case of pure dephasing alone (solid line) [145].

We explain this discrepancy by the breakdown of the approximation of
adiabatic elimination of the buffer, Eq. (4.15). Indeed simulation of the
evolution of the buffer-memory bipartite system predicts smaller scaling
factors (dashed blue line in Fig. 4.14b.). Using the experimentally measured
pure dephasing rate of the memory m

'
/2⇡ = 0.08 MHz (see Sec.4.4.3.1) is

key to obtaining a good match between simulations and experiment before
saturation. Besides the simulated bit-flip times strongly depend on the flux
�ext and we set a detuning 2!m � !b = 2⇡ ⇥ 3.5 MHz in order to better
reproduce the measured bit-flip times. This corresponds to a flux offset
of 3 ⇥ 10�4�0, which could be attributed to flux drifts during the month
that separates the measurements of Fig. 4.9a., used to calibrate �QEC by
maximizing 2, and Fig. 4.14. This notably highlights the stability of our
system, whose flux was not re-tuned for a month resulting only in a small
detuning, still allowing to stabilize a cat qubit.

The bit-flip time saturates at 0.36 ± 0.15 s, reached for |↵|2 ⇡ 20.
Simulations reveal that while the transmon first excited state no longer
limits TX [102], residual excitation of the transmon higher states sets a
higher bound to the bit-flip time. Despite a relatively small dispersive shift
�q,m/2⇡ = 170 kHz, these higher excited states of the transmon exit the
dispersive regime yielding a large frequency shift on the memory comparable
to 2|↵|2, effectively turning off the cat qubit stabilization and inducing a
bit-flip error. We measure the higher excited states of the transmon while
stabilizing cat qubits of various mean photon numbers |↵|2 (see Sec. 4.4.3.2),
and infer the rate at which they get populated (red dots in Fig. 4.9b.). The
measured saturation in bit-flip time seems to reach this upper bound, indi-
cating that the excitation of transmon higher states is the dominant limiting
mechanism. The intermediate regime 10 < |↵|2 < 15 shows a sub-exponential
increase of TX that could be attributed to self-Kerr effect and pure dephas-
ing of the buffer mode. In this region, we observe that the variance of the
two peaks at � = ±↵ in W (�) is larger than for a coherent state. This is
consistent with a thermalization of the memory by a thermal occupation of
the buffer mode, owing to self-Kerr effect combined with pure dephasing.

We detail the simulations used to obtain the blue and red curves of
Fig. 4.9b. in Sec. 4.4.4. As mentioned, key ingredients of these simulations are
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the bare memory phase flip rate and the transmon excited states population,
independently measured in Sec.4.4.3.

Figure 4.14: a. Dots: measured phase flip rate �Z (linear scale) of the cat code as
a function of photon number |↵|2. All values are obtained by fitting
W (0) to an exponential decay in time. Error bars represent statistical
uncertainties. Line: expected rate 2|↵|21. b. Dots: measured bit flip
time (log scale) of the cat code as a function of photon number |↵|2.
All values are obtained by fitting the difference W (↵)�W (�↵) to an
exponential decay in time. Error bars represent statistical uncertainties.
Solid black line: expected bit-flip time with m

' /2⇡ = 0.08 MHz under
the adiabatic elimination of the buffer: e2|↵|2/(|↵|2m

' ). Dashed blue
line: simulated bit-flip time with the same m

' , assuming a detuning
2!m � !b = 2⇡ ⇥ 3.5 MHz. Red dots: predicted limitation of TX

imposed by the measured excitation of higher states of the transmon
(see Sec. 4.4.3.2).

4.4.2 Dependence of TX and �Z on the drive frequency !d

The cat stabilization works by driving the buffer on resonance at �QEC. Now,
what would happen if we drive it off-resonantly?

Figure 4.15 shows the measured W (0) as a function of flux and drive
frequency !d after 5 µs of stabilization. The red regions where W (0) ⇡ 2/⇡
correspond to a memory unaffected by the drive so that it remains in its
vacuum state. In contrast, a white region where W (0) ⌧ 1 corresponds
to regions where a mixture of coherent states has formed in the memory.
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Note that the stabilization time of 5 µs was chosen so that the formed cat
states have time to decohere to a mixture of |±↵i. Otherwise, due to the
2-to-1 coupling preserving the memory parity, the white region would not
be observed. The figure, reminding of an avoided level crossing, actually
corresponds to the autoparametric version of that between !b(�ext) and
2!m(�ext).

Figure 4.15: Anticrossing of the autoparametric memory-buffer system. Measured
W (0) after applying a buffer drive at !d for 5 µs while at �ext. Dots:
frequencies and flux corresponding to the data presented in Fig.4.16.

The dependence of Tx and �Z on mean photon number ↵2 is measured for 4
buffer drive frequencies at �QEC (dots in Fig. 4.15). The same initial behavior
for �Z

�
↵2
�

can be seen for all 4 curves, with an initial linear increase of
the phase-flip rate (Fig. 4.16a.). The slope of the linear increase is given by
�Z = 2 |↵|2 /T1,e↵ , with T1,e↵ the effective memory lifetime. This effective
lifetime matches the memory lifetime measured by looking at the decay from
|1i to |0i at the optimal drive frequency, with a drastic deterioration as the
detuning of the drive frequency increases.

The dependence of Tx

�
↵2
�

is measured for the same four drive frequencies
(Fig. 4.16b.). A similar behavior for Tx

�
↵2
�

can be seen for the 4 different
drive frequencies, with an initial exponential increase before reaching a
maximum for some optimal cat size (Fig. 4.16b.). This optimal bit-flip time
strongly depends on the chosen drive frequency, with the curves shown in
Fig. 4.14 corresponding to the frequency that gives us the largest measured
bit-flip time TX.

Note that the 1D-cuts of the Wigner functions W (�) from which are
extracted the bit-flip times (Fig. 4.19d.), exhibit a broadening of the Gaus-
sian distribution around ±↵ with increasing ↵ and with increasing drive
detuning. This can result from a distortion of the cat qubit manifold and/or
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a thermalization of the memory. As discussed in Sec. 4.4.4.3, based on reason-
able assumptions, we show numerical evidence that both the shorter bit-flip
times at other detuning and the broadening of the Wigner distribution can
originate from the dephasing and the self-Kerr effect of the buffer mode.

Figure 4.16: a. Dots: measured �Z as a function of ↵2 for 4 different drive
frequencies. Dashed line: Linear fit of the measured data with
�Z = 2 |↵|2 /T1,e↵ . where the fit parameter T1,e↵ is shown as an
inset b. Dots: measured Tx as a function of ↵2 for 4 different drive
frequencies.

4.4.3 Complementary measurements

4.4.3.1 Memory dephasing rate

The memory pure dephasing rate m
'

, used for numerical simulations of
the bit-flip time evolution, is measured with a Ramsey-like experiment. A
state close to (|0i+ |1i) /2 is prepared in the memory by first displacing the
memory to the coherent state |↵i, with ↵ = 2.1, and letting it decay under
the loss operator L̂2 =

p
2m̂2. By Zeno effect, the 2-photon loss constraints

the memory dynamics to the {|0i , |1i} manifold, hence acting as a qubit
whose basis states are 0 and 1 photon in the memory. This state is then
left idle for a time t, during which it rotates around the Z axis of the Bloch
sphere at the detuning � between the memory drive frequency and !m,QEC,
in the frame of the drive frequency. The memory state evolves under the
Hamiltonian and loss operator
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Ĥ/~ = ��
2
(|1i h1|� |0i h0|)

L̂1 =
p
1 |0i h1| , L̂' =

r
m
'

2
(|1i h1|� |0i h0|) .

(4.23)

The readout is performed by mapping the obtained state onto the manifold
span (|↵i , |�↵i) by driving the buffer mode with a drive ✏d (↵). This maps
the eigenvectors of (|1i h0|+ |0i h1|) onto the two coherent states. The Wigner
function W (±↵) (Fig. 4.17) is then measured, and the data fitted to extract
the detuning �, and the dephasing rate m

'
/2⇡ ⇡ 0.08 MHz.

Figure 4.17: Ramsey-like experiment on the memory manifold span (|0i , |1i).
Dots: measured Wigner tomography W (±↵). Dashed line: Fit used
to extract the dephasing rate m

' /2⇡ = 0.08 MHz and detuning
�b = !b � !d = �3 MHz.

4.4.3.2 Population of the higher excited states of the transmon

The transmon used for Wigner tomography, dispersively coupled to the
memory mode, has been shown to be one of the main factors limiting the
bit-flip time TX at large photon numbers. In this experiment, the 2 photon
dissipation rate 2 is much greater than the dispersive shift 2 � �q,m.
This ensures that the population in the qubit first excited state only has a
negligible detrimental impact on the cat qubit stabilization, and does not
introduce additional bit-flip errors [102, 157].

However, simulations show that populations of higher excited states of the
transmon have an impact on the bit-flip time. The transmon populations are
probed by measuring the transmon state, while a cat qubit is stabilized in
the memory mode. The drive frequency of the readout resonator is chosen in
order to resolve the transmon states up to its 5th excited state. In contrast,
the readout frequency used everywhere else in this work was optimized to
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distinguish between the transmon ground and first excited states. A cutoff
is then calibrated to separate the states |0i , |1i , |2i , |3i, and |4i from the
others, allowing to measure the transmon population for each amplitude ↵
of the cat qubit (Fig. 4.18b.).

Figure 4.18: a. Histogram of 107 measurements of the readout quadratures when
the transmon and memory are in thermal equilibrium with the cold
environment. Each bin is (10 µV)2 b. Same histogram when a cat
qubit space is stabilized for 100 µs with a mean photon number
|↵|2 ⇡ 30. c. Dots: measured occupation of the transmon states as
a function of the stabilized mean number of photons in the memory.
Excitation numbers are indicated by colors of increasing brightness.
Black dotted line: sum of the populations in states higher than |3i.

As can be seen in Fig. 4.18c., the transmon populations in states of higher
energy than |3i get excited for |↵|2 > 10. This increase in transmon higher
excitations is clearly correlated with the occupation of the memory mode.
Besides it does not follow a Boltzmann distribution.

We attribute the increase of the occupation of transmon states above |3i to
a resonance between the memory and the higher levels of the transmon. The
negative anharmonicity !12 �!01 = �2⇡⇥ 181 MHz of the transmon results
in a transition frequency between the 6th and 7th excited states being close
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to that of the memory. Note that such a resonance usually occurs when the
resonator frequency is placed below that of the transmon. This phenomenon,
which also happens with a simple Duffing oscillator, was recently investigated
theoretically in Ref. [187] and experimentally in Ref. [188]. As the number
of photons in the resonator increases, the states below and above the 6th

and 7th states of the transmon also hybridize.
In the steady state, we expect these hybridized states to be equally

populated [189, 187], and this population to increase with the number of
photons in the resonator. This qualitative signature of a growing number
of hybridized states is observed in Fig. 4.18c. Note that this is in contrast
with an overall increase in the temperature, where one would expect the
hierarchy of populations to roughly follow the Boltzmann distribution.

We simulate the coupling between the memory and the transmon higher
excited states to study how a finite population of these hybridized states
sets an upper bound on the bit-flip time TX.

4.4.4 Simulations

The theoretical blue and red curves shown in Fig. 4.9b., which predict the
evolution of the bit-flip time, were obtained using numerical simulations
reproducing our system. These simulations were performed by Joachim
Cohen from Alice & Bob. In this section, we introduce the theoretical model
used to predict the initial dependency of TX on |↵|2 for |↵|2 . 10. We
briefly summarize how the Hamiltonian and the dissipation parameters were
experimentally obtained, and highlight the impact of the memory dephasing
D[
p
m
'
â†â] (⇢̂) and buffer photons on the bit-flip time.

Finally, using the measured population of the transmon’s higher excited
states, we present how they limit the bit-flip of the stabilized cat to about
time to TX ⇡ 0.3 s.

4.4.4.1 Model used for the simulations

The master equation used to simulate the density matrix ⇢̂ of the memory
and buffer modes in the Auto-cat can be written as

d⇢̂

dt
=� i

~ [Ĥ, ⇢̂]

+D[
p
1â](⇢̂) +D[

p
m
'
â†â](⇢̂)

+D[
p
bb̂](⇢̂) +D[

q
b
'
b̂†b̂](⇢̂)

(4.24)
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where D[L̂]⇢ = L̂⇢L̂† � L̂†L̂⇢/2 � ⇢L̂†L̂/2 is the Lindblad superoperator.
The four last terms respectively model the single photon dissipation of the
memory, the pure dephasing of the memory, the single photon dissipation of
the buffer, and the pure dephasing of the buffer. The effective Hamiltonian
of the system takes the form

Ĥ

~ =�mâ†â+�bb̂
†b̂

� �m,m

2
â†2â2 � �b,b

2
b̂†2b̂2 � �m,bâ

†â b̂†b̂

+ g2(â
2 � ↵2)b̂† + g⇤

2
(â†2 � ↵⇤2)b̂.

(4.25)

There, �b = !b � !d is the detuning of the drive ✏d (↵) with respect to the
buffer frequency, and �m = !m � !b/2 +�b/2. This detuning is taken into
account in order to consider a small miscalibration or drift of the external
flux �ext, resulting in a deviation from the frequency matching condition
!b = 2!m.

We estimate �m,m/2⇡ = 0.206 MHz at �QEC, deduced from the memory
self-Kerr rate �m,m/2⇡ = 0.220 MHz at �tomo (Fig. 3.8) using Eq. (3.80).
The single photon decay rates 1/2⇡ = 14 kHz, and b/2⇡ = 40 MHz
were respectively deduced from the decay of a single photon in the memory
(Fig. 4.11b.) and a reflection measurement of the buffer (see Appendix.d).
The memory pure dephasing Tm

'
= 1/m

'
= 2 µs was estimated using a

Ramsey-like experiment on the memory (see Sec. 4.4.3.1), which also gave an
estimation of �b/2⇡ = �3 MHz from the oscillations of Fig. 4.17. From this
memory dephasing rate, the buffer dephasing can be estimated assuming
that the dephasing rate on the memory is mostly due to flux noise

b
'

m
'

=

��� @!b
@�ext

(�QEC)
���

��� @!m
@�ext

(�QEC)
���
= 60. (4.26)

Finally, the self-Kerr of the buffer �b,b/2⇡ ⇡ 10 MHz and the cross-Kerr
between the memory and buffer �m,b/2⇡ ⇡ 1.6 MHz were estimated using
Eq. (3.80).

This leaves us with two fit parameters, g2 and �m. Let us first estimate
the uncertainty on �m. Using the measured value of �b leads to �m/2⇡ =
!m � !b/2� 1.5 MHz. The resonance condition 2!m = !b being sensitive to
the external flux threading the loop, we estimate that |2!m�!b|/2⇡ < 5 MHz
from the width of the peak 2('ext) in Fig. 4.9a., leading to �m/2⇡ = �1.5±
2.5 MHz. This parameter was optimized, within this range of uncertainties,
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to better reproduce the measured bit-flip times in Fig. 4.14b. This yields a
detuning from the frequency matching condition

(2!m � !b) /2⇡ = 3.5 MHz, (4.27)

and a corresponding detuning �m/2⇡ = 0.25 MHz. The experimental value
of the 2-to-1 coupling rate g2/2⇡ = 6± 0.5 MHz was obtained by measuring
the fidelity of Z gates on this cat qubit. Note that it matches the value
predicted by the theoretical model (see Sec. 3.5.4).

4.4.4.2 Impact of memory dephasing on bit-flip time TX

We expect pure dephasing of the memory to impact the bit-flip time TX. In the
adiabatic regime 8|↵|g2 ⌧ b, the bit-flip time scales as Tm

'
|↵|�2 exp

�
2|↵|2

�
[103,

145]. However, in our case, the adiabaticity condition is not respected for
|↵| & 1. While the memory dephasing noise limits the scaling of TX with
the photon number, we observe numerically that it is not strong enough to
lead to the observed saturation.

4.4.4.3 Impact of buffer photons on bit-flip time TX

During the stabilization, although the driven buffer ideally stays in the
vacuum state, a finite buffer amplitude � = hb̂iss 6= 0 in the steady state can
result in unwanted sources of bit-flip errors. The first mechanism that can
limit the bit-flip time originates from the dephasing noise on the buffer. Via
the drive photons, this noise can be upconverted into thermal photons in
the buffer, which in turn are converted into thermal photons in the memory
by the two-photon exchange term, thus creating a heating term of the form
D̂(â†2). The expected thermal population is given by nb

th
= b

'
|�|2/b.

Second, the large expected self-Kerr rate of the buffer �b,b/2⇡ ⇡ 10 MHz
can result in a squeezing on the buffer when the latter is displaced. The single
photon loss channel on a squeezed buffer then yields an effective non-zero
thermal occupation given by nb

th
= sinh2(r), where r is the effective squeezing

parameter. Besides, the squeezing on the buffer results in an anti-squeezing
term on the memory, which is likely to decrease the bit-flip time.

Let us estimate the displacement on the buffer. In the interaction picture,
the master equation on the memory mode Eq. (4.24) reads

d

dt
â =� i�mâ� i2�mmâ

†â2 � i�m,bâb̂
†b̂�

m
'
+ 1
2

â� i2g2â
†b̂. (4.28)
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Assuming a steady-state solution of the form ⇢ = |↵i h↵| ⌦ |�i h�|, with
↵ 6= 0, and taking the trace of the above equation, we obtain

� = ei2✓m
��m � 2�m,m|↵|2 � �m,b|�|2 + i(m

'
+ 1)/2

2g2
,

where ✓m = arg(↵).
In the limit m

'
,1 ⌧

���m + 2�m,m|↵|2 + �m,b|�|2
��, the amplitude �

becomes

� = �ei2✓m
�m + 2�m,m|↵|2 + �m,b|�|2

2g2
.

The displacement amplitude on the buffer depends on the effective memory
detuning, which in turn depends on the cat size due to the self-Kerr effect.
The amplitude of the buffer field in the steady state thus depends on the
effective detuning of the memory, and consequently the detuning of the
buffer drive �b = !b � !d and the photon number in the memory.

Before addressing the impact of a populated buffer on the bit-flip time,
let us first outline the experimental observations that cannot be explained
solely by the heated transmon. As presented in Sec. 4.4.4.4, the transmon
excited state population sets an upper bound around 1 s for the bit-flip
time. However, measurements taken at various drive detunings reveal earlier
saturation of the bit-flip time, almost two orders of magnitude below 0.3 s
(see Fig. 4.16b.). This cannot be explained by the 1 s bound imposed by
the transmon. Besides, the measured 1D-cut of the Wigner functions along
the cat axis displays a broadening of the coherent states along this axis
(Fig. 4.19b.). This distortion of the coherent states cannot be explained by
the weak occupancy of the excited transmon states (below 1 % for the first
excited state and below 0.1 % for the states above). It rather results from a
local distortion of the code space and/or a thermalization of the memory.

Interestingly, we find that both of these experimental observations can be
corroborated by the large expected self-Kerr rate of the buffer and its pure
dephasing. Fig. 4.19a. shows the bit-flip times extracted from the simulation
of Eq. (4.24), at the values of the drive detunings �d corresponding to
the experimental values of Fig. 4.16b. We observe a qualitatively similar
behavior of the bit-flip times, in particular for the curves corresponding to
larger detunings. In order to see a notable similar effect, the dephasing rate
is here set to b

'
= 180m

'
which is three times larger than what can be

inferred from the flux dependence of the transition frequencies. We note that
this parameter is not directly measured in the experiment so a larger buffer
dephasing rate than predicted is conceivable.
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Figure 4.19: a. Simulated bit-flip times for various values of the drive detuning
�b = !b�!d, corresponding to the values of Fig. 4.16b. The dephasing
rate is set to b

' = 180m
' , and the memory detuning from the

buffer is 2!m � !b = 2⇡ ⇥ 3.5 MHz. As a reference, we indicate
the measured optimal bit-flip times (black crosses) and the bound
independently set by the transmon (red dots). b. Corresponding
amplitudes of the buffer mode in the steady state as a function of
average photon number |↵|2 in the memory for the same detunings.
The imaginary part is zero. c. Simulated probability distributions of
the quadrature defined by the direction of ↵ in the memory phase space
P(Re(�)) = |hRe(�)| i|2, plotted for several values of |↵|2. A shift is
applied between each distribution for readability. The detuning is set to
�b/2⇡ = �8.5 MHz. As the photon number increases, the distribution
broadens. d. Corresponding measurements at �b/2⇡ = �8.5 MHz.
Dots: measured Wigner function W (�). Dashed lines: Gaussian fit of
the experimental data from which the mean photon number |↵|2 is
deduced. The same broadening can be observed for increasing photon
numbers.
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In Fig. 4.19b. are shown the corresponding amplitudes of the buffer mode.
As expected, the amplitude correlates with the detuning and the maximal
bit-flip time of each curve. The linear increase or decrease with |↵|2 is due
to the self-Kerr effect on the memory and to the cross-Kerr effect between
buffer and memory, which modify the effective detuning on the memory as
|↵|2 and |�|2 grow. The increasing amplitude combined with the self-Kerr
effect and dephasing rate of the buffer mode leads to the thermalization of
the memory and eventually limits the bit-flip time.

Finally, Fig. 4.19c. and Fig. 4.19d. shows a comparison between the
simulated and measured probability distribution of the memory state along
the cat axis for �b/2⇡ = �8.5 MHz. The distribution broadens as |↵|2
increases due to buffer thermal photons, leading to a saturation of the
bit-flip time for this detuning.

4.4.4.4 Impact of high excited states of the transmon on bit-flip time TX

Populating the higher excited states of the transmon is another mechanism
that can limit the bit-flip time of the stabilized cat qubit. Indeed, this
population results in a shift of the memory frequency which, if exceeding
the tolerance of the stabilization scheme, could limit a bit-flip time as high
as hundreds of milliseconds even for a small population. In this section, we
evaluate the magnitude of the frequency shifts that can be reached when
the memory field drives the transmon.

In our system, the transmon is inductively coupled to the memory and
capacitively coupled to a readout resonator. For simplicity, we do not consider
the Purcell filter of the readout resonator. The Hamiltonian of this system
reads

Ĥ =4EC(n̂q � ng)
2 � EJ cos ✓̂q + ~!mâ†â+ ~!r r̂

†r̂

+ ~gq,m sin ✓̂q(â+ â†)� i~gq,rn̂q(r̂ � r̂†), (4.29)

where n̂q and ✓̂q are the transmon charge and phase operators, ng is a charge
offset, r̂ is the annihilation operator of the readout resonator, !r the fre-
quency of the readout resonator. The coupling rates gq,m/2⇡ and gq,r/2⇡ are
respectively the coupling rates between the transmon and the memory/read-
out resonator. We find the values of the charging energy EC/h = 169.4 MHz
and the Josephson energy EJ/h = 22.85 GHz, as well as that of the coupling
rates gq,r/2⇡ = 67 MHz and gq,m/2⇡ = 225 MHz, by fitting the measured
low energy spectrum of the system which includes frequencies, anharmonic-
ity and dispersive shifts of the system. Note that, although we are only
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concerned about the interaction between the memory and transmon, the
readout resonator is included in the simulated dynamics to correctly fit the
spectrum of the system.

Figure 4.20: a. Dots: simulated memory frequency shift as a function of mean
photon number n̄ in the memory for various transmon states. The
vertical lines are due to state mistracking. Inset: zoom on the small
dispersive shifts for low transmon excitation. b. Effect of memory
detuning �m on the bit-flip time TX . The bit-flip time is plotted
as a function of the drive amplitude for several values of �m. The
drive amplitude is converted to the corresponding photon number at
�m = 4 MHz, which approximately corresponds to the detunings set
for Fig. 4.14b. The black crosses indicate the experimentally measured
bit-flip times shown in Fig. 4.14b.

From Eq. (4.29), we compute the frequency shifts of the cavity as a
function of the transmon state and the number of photons in the resonator
(see Fig. 4.20a.) by diagonalizing the Hamiltonian. In the inset, one recognizes
the dispersive shift �q,m/2⇡ = 0.170 MHz when the transmon is in its first
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excited state |1i. This is notably the regime where the parity measurement
is performed during the Wigner tomography, after having removed pairs of
photons from the memory using the 2-photon dissipation. While populating
one of the first 3 excited states of the transmon causes small enough frequency
shifts of the memory (inset) which can be handled by the stabilization
scheme, populating higher excited states can result in frequency shifts as
large as 30 MHz. Such large frequency shifts are due to the non-perturbative
hybridization of the transmon states, thus exiting the dispersive regime of
the coupling between transmon and memory (see Sec.3.1.3.2).

For small frequency shifts, the state remains confined to a manifold spanned
by two coherent states, although the cat size might slightly vary. Indeed, using
a semi-classical analysis (Eq. (S22) of [157]), in the limit where 1 ⌧ |�m|
and b � |�b|, the photon number reads |↵�|2 = |↵0|2 � |�m|b

4|g2|2 , where
|↵0|2 is the photon number at zero detuning at the same drive amplitude.
This equation has a solution if |�m| < 4|g2|2|↵0|2/b. Using the measured
and extracted values b/2⇡ = 40 MHz and g2/2⇡ = 6 MHz leads to |�m| <
3.6|↵0|2 MHz, that is the minimal condition for a 2D-manifold to be stabilized.
The impact of the detuning �m on the bit-flip time is illustrated in Fig. 4.20b,
where the bit-flip time is plotted for various detunings as a function of the
drive amplitude. The drive amplitude is converted to the photon number
corresponding to the detuning �m/2⇡ = 4 MHz.

The detuning associated with the first and second excited states (below
20 photons) is below 1 MHz, making the condition |�m| < 3.6|↵0|2 MHz
largely satisfied. This is numerically verified in Fig. 4.20b.. In this case,
the bit flip rate takes the form T�1

X
=
P

i,|�i|<�max
piT

�1

X
(�i). The small

detunings associated with the first and second excited states make the
weighted contribution piT

�1

X
(�i), i = 1, 2 negligible compared to p0T

�1

X
(�0).

However, detunings as large as 30 MHz become difficult for the dissipation
scheme to compensate. For |�m| = 30 MHz, the minimal condition to
generate a cat state in the cavity is |↵0|2 > 8.5 photons. Moreover, even
if the memory becomes populated, this large detuning comes with a large
displacement on the buffer mode, � ⇠ �m/2g2 = 2.5 (see previous section)
which can also limit the bit-flip time. Combined with its dephasing noise
and large Kerr nonlinearity, the resulting bit-flip time of such a cat qubit is
low. This is illustrated in Fig. 4.20b., where the bit-flip time corresponding
to a detuning of 9 MHz does not improve over the bare memory lifetime
until |↵0|2 = 12.5. For simplicity, we assume that a bit-flip occurs every
time the system is subject to such a large detuning for the range of photons
considered here, which leads to a lower bound on the bit-flip time.
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From the analysis of the transmon, it is likely that populating the layer of
hybridized states will result in a large detuning and therefore a bit-flip. This
allows us to derive a simple upper bound on the induced bit-flip time TX from
the measured values of the state population: it is given by the inverse rate at
which this layer of states is populated �hyb. Let us call phyb the population
of the hybridized states, represented as a black dotted line in Fig. 4.18c., and
p1 the population of the first excited state. Note that the state |2i merges
with the rising plateau of states around |↵|2 = 20 photons. The rate at which
the hybridized layer gets populated thus reads �hyb = �hyb!1phyb. Using the
measured ��1

1!0
= 18 µs and assuming �hyb!1 ⇡ �2!1 = 2�1!0, we obtain

the red dotted line in Fig. 4.14b.

4.5 chapter summary

This chapter introduced the experimental realization of the Auto-cat design,
implementing the two-to-one photon coupling using a 3-wave mixing element.
We presented how this device can be controlled using a single input line, which
makes use of the circuit symmetries to preferably couple to the buffer mode
while preserving the memory quality factor. We show that this approach
to engineering the two-photon exchange can significantly enhance the two-
photon dissipation rate 2, exceeding the values previously obtained with
parametric pumping strategies. This can notably be leveraged to improve
the Wigner measurement protocol for states containing a large number of
photons. Remarkably, the autoparametric scheme does not seem to activate
extra relaxation processes as indicated by the linear increase of phase-flip
rate up to 20 average photons.

While we achieved a notable bit flip time TX of up to 0.3 s, we show
that the pure dephasing induced by flux noise currently limits the scaling
rate with respect to the photon number. This issue could be mitigated by
operating closer to the flux sweet spot through improved design choices so
that �QEC = �(sweet)

ext
. Additionally, measurements and simulations single out

the transmon as the main limitation of the bit-flip time for large values of
|↵|2. Removing it from the device should then alleviate the limitation on the
photon number at which TX reaches a saturation point. Consequently, the
readout of the memory could be conducted via the buffer mode, leveraging
the sizable two-to-one photon exchange rate [158].
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The benchmark commonly used to characterize the performance of a stabi-
lized cat qubit is the ratio between the engineered two-photons dissipation
rate and the natural single-photon loss rate 2/1. Notably, it is estimated
that a ratio of a few hundred would be necessary in order to operate a
repetition code of cat qubits below threshold, thus correcting the remaining
phase-flip errors [146, 90]. Reaching a regime where useful quantum com-
putation can be performed would be more challenging, requiring a ratio as
large as 2/1 ⇠ 105 [190].

From a physical standpoint, reaching a large ratio of 2/1 is not only
necessary to reach a large noise bias for the cat qubit, as showcased in the
previous chapter, it is also required to manipulate and perform gates on the
cat qubit with good fidelities. Indeed, when using dissipation engineering for
stabilization, the gate is necessarily slower than �1

2
so that the operation

remains adiabatic. During this operation, errors that mostly originate from
single photon loss accumulate and corrupt the logical information at a rate
1. Consequently, making the gate faster by increasing 2 or reducing the
error rate by decreasing 1 both result in improved gate fidelities. Note that,
to increase the gate speed without necessarily increasing 2, a Hamiltonian
confinement can be applied during the gate [151].

This chapter introduces two gates that we experimentally perform using
the Auto-cat design (see Chap. 4). First, we demonstrate a Zeno gate Ẑ (✓)
of an arbitrary angle ✓ by applying a displacement to the memory while the
dissipation

L̂2 =
p
2
�
â2 � ↵2

�

stabilizes the cat manifold span (|↵i , |�↵i). This results in visible oscillations
of the cat’s fringes, reaching a fidelity of 96.5% for a Ẑ (⇡) gate lasting 28 ns.
We then demonstrate a gate Ŷ (✓) and X̂ (✓) using two distinct methods.
Similarly to the Ẑ (✓) gate, the Ŷ (✓) gate can be realized by applying
a displacement to the memory while the dissipation p

2â2 stabilizes the
manifold span (|0i , |1i). Another possibility introduced by Albert et al. in
2016 [191] is the holonomic approach, which we use to demonstrate the gate
X̂ (✓). This method relies on a collision of the 2 coherent states to induce a
coherent population transfer.
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Additionally, we show how working in the non-adiabatic regime (see
Sec. 4.4.1.2) allows the preparation of squeezed cat states which have recently
been investigated in the context of quantum error correction or quantum
sensing [116, 133, 134].

Remark: The main results presented in this chapter are the core of an
article in preparation.

5.1 demonstration of a bias-preserving Ẑ (✓) gate

5.1.1 Calibration of the gate

5.1.1.1 Zeno Ẑ (✓) gate using two-photon dissipation

We perform a Ẑ (✓) gate on the stabilized cat qubit, consisting of a rotation
around the z axis of the cat qubit Bloch sphere (Fig. 5.1a.). This gate is
realized by using quantum Zeno dynamics [192, 193, 194, 195, 196], leveraging
the large ratio 2/1 of the Auto-cat. Starting for instance from |C↵

+
i, with

the buffer drive ✏d(↵) turned on, we continuously drive the memory on
resonance [101], effectively implementing a displacement whose Hamiltonian
reads

Ĥz(t)/~ = �i✏Z(t)e
i✓z â+ h.c.,

where ✓z and ✏Z(t) are the drive phase and amplitude. The drive phase is
chosen so that, without two-photon loss, the memory drive would induce a
displacement (arrow in Fig. 5.1c.) perpendicular to ↵ in the memory phase
space. Depending on the measurements, we alternatively used a square or a
Gaussian waveform. The constant amplitude in the case of the square pulse
is simply written as ✏Z , and the mean amplitude in the Gaussian case is
denoted as ✏̄Z .

Applying this drive while simultaneously driving the buffer at �QEC

(Fig. 5.1b.) implements a quantum Zeno dynamics of the cavity, the two-
photon dissipation preventing leakage from the cat manifold span (|↵i , |�↵i).
The effect of the memory drive ✏Z is then to rotates the phase ✓ of the
quantum superposition (|↵i+ei✓|�↵i)/

p
N , which can be seen as translated

fringes in the Wigner function (Fig. 5.1c). Note that for the Zeno dynamic
to be effective, the drive amplitude needs to be small compared to the
confinement rate [102] which stabilizes the cat qubit manifold

✏Z ⌧ conf = 2|↵|22. (5.1)
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Figure 5.1: a. Bloch sphere of the cat qubit, whose computational basis is
|↵i , |�↵i. The effect of a Z rotation is illustrated by the blue ar-
row. b. Pulse sequence for Z rotation characterization. c. Effect of a
drive �i✏Ze

i✓zm̂+ h.c. acting on the state
��C+

↵

↵
of the memory.

This condition ensures the displacement does not overcome the dissipation
rate, and does not induce unwanted population transfer between the two
coherent states. This notably sets a maximum speed at which the gate can
be performed, which increases with |↵|2 and 2.

5.1.1.2 Calibration of the drive phase

We calibrate the phase ✓z of this gate in order to set ✓z = ⇡. This maximizes
the gate speed for a given drive amplitude ✏Z , improving the gate fidelity
by decreasing the time during which single-photon dissipation affects the
memory.

This optimization is done by sweeping the phase of the memory drive
and doing a vertical cut of the memory Wigner tomography. Looking at
how fast the Wigner function fringes shift over time allows us to extract the
oscillation rate ⌦z. Note that measuring W (0) alone would leave the sign
of ⌦z undetermined, which is why we measure a vertical cut of the Wigner
function (Fig. 5.2a.).

Doing this measurement for different value of ✓z, (Fig. 5.2b.) shows an
evolution ⌦z (✓z) / cos (✓z). This is expected as only the vertical component
of the drive Re

�
✏Zei✓z

�
effectively displaces the fringes of the cat Wigner

function. The horizontal component Im
�
✏Zei✓z

�
is disabled by the 2 photon

dissipation and does not affect the system, which can be seen as a cancellation
of ⌦z for ✓z = ±⇡/2.
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Figure 5.2: a. Measured Wigner function W (�) of the memory as a function
of � 2 iR and time t. The displacement is a square pulse which
drive parameters are ✏Z/2⇡ = 1.25MHz and ✓z = ⇡/2 b. Measured
oscillation frequency ⌦z around the z axis of the Bloch sphere as a
function of ✓z.

5.1.2 Demonstration of the Ẑ (✓) gate

5.1.2.1 Experimental realization

The measured Wigner functions of the memory are shown in Fig. 5.3a.
after three different waiting times, while the memory is driven with a mean
amplitude ✏̄z/2⇡ = 1.625 MHz. Oscillations of the cat fringes are clearly
visible, with a transition from |C�

↵
i to |C+

↵
i. The associated measured value

of W (0) as a function of time is shown in Fig. 5.3a, which exhibits decaying
oscillations around the Z axis of the cat qubit at a frequency ⌦Z and decay
rate Z .

The rotation frequency is expected to be given by

⌦Z = 4Re(✏Z↵) (5.2)

which is precisely what is observed in Fig. 5.4a. The real part appearing
in Eq. (5.2) mathematically corresponds to the sole action of the drive
component that is orthogonal to the cat fringes. The proportionality of ⌦Z

with ✏Z and ↵ can be intuitively understood, as the memory displacement is
proportional to the drive amplitude and the distance between two consecutive
fringes is inversely proportional to |↵|.

The decay rate Z has a more subtle dependence on photon number |↵|2
and memory drive ✏Z as seen in Fig. 5.4b.. In the ideal case and for constant
✏Z , the rate is expected to decay as [146, 158]

Z = 21|↵|2 + b✏
2

Z
/(2|↵|2g2

2
). (5.3)
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Figure 5.3: a. Measured Wigner functions W (�) after a Z rotation of angle ✓ = 2⇡,
3⇡/2, and ⇡ from top to bottom. b Dots: Measured oscillations of
W (0) as a function of time t using the pulse sequence of Fig. 5.1b.
where the cat code is stabilized with a photon number |↵|2 = 9.3. An
additional displacement drive at !m starts 240 ns after the buffer drive
is turned on. Here, its amplitude ✏Z(t) is Gaussian shaped with a mean
amplitude ✏̄Z/2⇡ = 1.625 MHz. Line: fit to decaying oscillations at a
frequency ⌦Z/2⇡ = 19.8 MHz, and decay rate Z/2⇡ = 0.62 MHz.

The first term of this sum corresponds to phase-flip errors occurring at
a rate �Z , and the second to an induced leakage out of the confined cat
qubit Hilbert space when the drive amplitude ✏Z is too strong to be Zeno
blocked. Notably, this expression remains valid even outside of the adiabatic
elimination regime [147].

In practice, the experiment deviates from this simple picture owing to the
self-Kerr effect on the memory, slight detuning of the drive frequency, and
resonance frequency detuning induced by drifts in the flux bias. Furthermore,
as simulations of Z (↵) are sensitive to the two-to-one photon coupling
rate g2, we use these measurements to determine the two-to-one coupling
rate. Adjusting this parameter to g2/2⇡ ⇡ 6 ± 0.5 MHz leads to a good
match between measurement and simulations (see Fig. 5.4b). With such a
coupling, the adiabatic elimination of the buffer predicts a larger two-photon
dissipation rate 4g2

2
/b ⇡ 3.6⇥ 2⇡ MHz than what is measured in Fig. 4.9b.,

which is expected since the condition 8g2|↵| < b is not met for |↵|2 & 1 [158].
Interestingly, despite the observed limitation on TX in the non-adiabatic
regime, it is still possible to improve gate speed and fidelity by going to large
values of g2|↵|.
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Figure 5.4: a. Dots: Inferred rotation frequency ⌦Z as a function of cat code
amplitude ↵, and for various mean drive amplitudes ✏̄Z/2⇡ =

0.32, 0.625, 0.965, 1.295, 1.625, 1.955, 2.285, and 2.66 MHz from bright
to dark orange. Lines: expected rotation frequency ⌦Z = 4Re(✏̄Z↵)

around Z. b. Dots: Inferred decay rate Z as a function of |↵| for the
same drive amplitudes. Lines: simulated decay rate with g2/2⇡ = 6MHz

as a fit parameter and the same detuning �b as in Fig. 4.14b.

5.1.2.2 Comparison of Z with the theoretical model

In this section, we detail the simulations of the decay rate Z(|↵|)) shown
in Fig. 5.4b, performed by Joachim Cohen from Alice & Bob. We use the
master equation already introduced in Sec. 4.4.4.1

d⇢̂

dt
=� i

~ [Ĥ, ⇢̂] +D[
p
1â](⇢̂) +D[

p
m
'
â†â](⇢̂)

+D[
p
bb̂](⇢̂) +D[

q
b
'
b̂†b̂](⇢̂),

(5.4)

with D[L̂]⇢ the Lindblad superoperator. The dissipation channels considered
in this model are the single photon loss and pure dephasing of both the
memory and buffer modes. The effective Hamiltonian of the system can be
written as

Ĥ

~ =�mâ†â+�bb̂
†b̂� �m,m

2
â†2â2 � �b,b

2
b̂†2b̂2 � �m,bâ

†â b̂†b̂

+ g2(â
2 � ↵2)b̂† + g⇤

2
(â†2 � ↵⇤2)b̂+ i✏Ze

�i✓z â† � i✏Ze
i✓z â

(5.5)

The value of the different parameters is summarized in Sec. 4.4.4.1 and
Table.4.1. Compared to the model used to simulate the bit-flip time depen-
dence on |↵|2, the last drive term is added to the Hamiltonian to take into
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5.1 demonstration of a bias-preserving Ẑ (✓) gate

account the memory displacement. The Gaussian drive envelope used for
the simulations reads

✏Z(t) = ✏̄Z
6p
2⇡

exp

⇢
� (t� T/2)2

2w2

�
,

where the time window T is the total duration of the pulse, ✏̄Z corresponds
to the average drive amplitude, and w = T/6 is the variance of the Gaussian
pulse. The case of a square pulse is easily extended by choosing ✏Z(t) = ✏̄Z
over the same time window. As for the experiment, we fit the decaying
oscillations of the photon number parity to extract the rotation frequency
⌦Z and decay rate Z corresponding to each drive amplitude ✏Z .

The decay rate Z strongly depends on g2 justifying its use to extract
this parameter experimentally. For perfect frequency matching 2!m = !b,
the best fit to the simulation is obtained for g2/2⇡ = 6 MHz (solid line in
Fig. 5.5a.). To illustrate the sensitivity of the simulations to the value of g2,
we also compute Z(↵) for g2/2⇡ = 5.5 MHz and g2/2⇡ = 6.5 MHz. The
clear deviations in Fig. 5.5a. show that under the assumption that 2!m = !b,
g2 can be determined with much better precision than 2⇡ ⇥ 0.5 MHz from
the measured decay rates Z .

The uncertainty on g2 is actually dominated by the values it can take over
the range of conceivable detunings �m/2⇡ = �1.5±2.5 MHz. In order to get
a higher bound on this uncertainty, we choose three values for the resonance
condition, (2!m � !b)/2⇡ = �5, 0, 5 MHz, and search the rate g2 that best
reproduce the experiment. The fitted g2 rates are between 2⇡⇥6.0 MHz, and
2⇡ ⇥ 6.5 MHz (Fig. 5.5b.). We therefore claim that g2/2⇡ = 6± 0.5 MHz.

Note that in the simulations of the bit-flip time (Fig. 4.14b.) and in the
simulations of the Z gate (Fig. 5.4b.), we have used the value g2/2⇡ =
6 MHz which best fits the gate oscillations and decay rate for the detuning
(2!m � !b)/2⇡ = 3.5 MHz.

5.1.2.3 Bias preserving nature of the gate

In order to preserve the benefit offered by bit-flip protection in cat qubits, it
is crucial for logical gates to be bias-preserving [138], meaning that they do
not convert phase-flip errors into bit-flip errors.

To verify the bias-preserving nature of the Ẑ(✓) gate, we measure the
dependence of TX when continuously driving the memory with a varying
drive amplitude ✏Z . Similarly to the measurement presented in Fig. 4.14b.,
the flux is first set to �tomo and the memory displaced by D̂ (↵) in order
to prepare the desired state |↵i. The flux is then changed to �QEC and
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Figure 5.5: a. Triangles: measured decay rate Z of the oscillations around Z as a
function of |↵|2 for four drive amplitudes ✏Z corresponding to distinct
colors as in Fig. 5.4b. Lines: simulated decay rates Z using Eq. (5.4)
with three values of the rate g2/2⇡ indicated as an inset. b. Triangles:
same measurement as above. Lines: simulated Z for three values of the
detuning between buffer and memory (2!m � !b)/2⇡ = �5, 0, 5 MHz

covering its uncertainty range, and the corresponding optimal values
of g2/2⇡ = 6.5, 6.0, 6.0 MHz.

2 drives are sent to the buffer and memory modes, with an amplitude of
✏d (↵) and ✏Z . The role of the drive acting on the buffer is to stabilize
the cat qubit, preventing bit-flip errors from happening, while the drive
acting on the memory performs the desired Ẑ(✓) gate. The Wigner function
W (±↵) is finally measured for various waiting times, and their difference
W (↵)�W (�↵) / e�t/TX is fitted to extract TX (Fig. 5.6b).
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5.1 demonstration of a bias-preserving Ẑ (✓) gate

Figure 5.6: a. Pulse sequence for the TX measurement, while continuously applying
the Z gate on the memory with an average drive amplitude ✏̄Z . b. Dots:
Measured TX as a function of the average memory drive amplitude
✏̄Z for different cat qubit sizes ↵ = 2, 2.4, and 2.7 (yellow to brown).
Lines: measured TX at ✏̄Z = 0.

The measured dependence of TX on ✏̄Z is shown in Fig. 5.6b. for different
amplitudes ↵. Despite a rather large measurement uncertainty, no visible
decrease of TX can be observed for |✏̄Z/2⇡| < 6 MHz, after which the
displacement becomes strong enough to overcome the stabilization provided
by the 2 photon dissipation. This induces an increased number of bit-flip
errors, leading to a decrease of TX.

The Z rotation presented in Fig. 5.3 is measured with ✏̄Z/2⇡ = 1.625MHz.
It can thus be assumed that the drive did not induce additional bit-flip
errors. Comparing the measured TX ⇠ 10 ms for ↵2 = 9.3 with the Z (⇡)
gate duration, we can estimate that bit-flip errors alone contribute to a
probability 3.10�6 of the gate error. The obtained gate fidelity, limited by
the phase-flip error rate, is computed in the next section.

5.1.3 Fidelity of the gate

In a classical computer, the gate fidelity of a gate G applied on a single bit
of information is characterized by the confusion matrix

C (G) =

✓
P (0|0) P (0|1)
P (1|0) P (1|1)

◆
(5.6)

with P (output j|input i) the probability of measuring the output j knowing
the system was initially in i. For instance, the ideal confusion matrix for the
identity is P (i|j) = �i,j and P (i|j) = 1� �i,j for the NOT gate. However,
due to the additional complexity of a quantum bit of information and the
additional degree of freedom, this formalism is insufficient to fully characterize
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a quantum gate. To do so we introduce the quantum counterpart of the
confusion matrix, the standard process matrix � [72, 197], and use it to
characterize the gate fidelity.

5.1.3.1 Formalism of the standard process matrix �

A quantum operation is fully characterized by a set of Kraus operators {Êi}
and their effect on an arbitrary density matrix ⇢̂

E (⇢̂) =
X

i

Êi⇢̂Ê
†
i
. (5.7)

There, E (⇢̂) is the density matrix of the system after application of the gate,
starting from ⇢̂. Expressing it as

E (⇢̂) =
1

2

⇣
1+

D
X̂
E
X̂ +

D
Ŷ
E
Ŷ +

D
Ẑ
E
Ẑ
⌘

(5.8)

provides a direct experimental state tomography protocol where
D
X̂
E
,
D
Ŷ
E

and
D
Ẑ
E

are estimated from the Wigner functions, which contain all the
information about the state of the memory. These Kraus operators are
decomposed into a fixed set of operators {F̂i}, typically corresponding to
the Pauli operators in the case of a qubit. These constitute a basis for the
ensemble of operators acting on the cat qubit. The Kraus operators can be
expressed in this basis as

Êi =
X

j

ei,jF̂j , (5.9)

and Eq. (5.7) is rewritten as

E (⇢̂) =
X

i,j

�i,j F̂i⇢̂F̂
†
j
. (5.10)

This defines the standard process matrix �, with �i,j =
P

k
ei,ke⇤k,j . From the

completeness relation of the Kraus operators
P

i
Ê†

i
Êi = 1, it can be shown

that this matrix is Hermitian with trace 1 and contains d4 � d2 independent
real parameters for a system of dimension d (with d = 2 in the case of a
qubit). Determining the Kraus map then amounts to finding the expression
of � which completely describes the quantum operation.
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To estimate � we introduce a basis for the space of d⇥ d density matrices,
{⇢̂j}0jd2 , and experimentally measure the impact of our operation on this
basis

E (⇢̂j) =
X

k

�j,k⇢̂k. (5.11)

The parameters �j,k are experimentally determined by applying the quantum
operation on ⇢̂j and measuring the resulting memory Wigner function.
Furthermore, because {⇢̂j}0jd2 is a basis for the space of the memory
density matrices, we may write

F̂m⇢̂jF̂
†
n
=
X

k

�m,n

j,k
⇢̂k. (5.12)

There, �m,n

j,k
are complex coefficients that can be determined using standard

linear algebra, {F̂i} and {⇢̂j} being both fixed by the experimentalist. The
two previous equations can be combined with Eq. (5.10), yielding

X

k

X

m,n

�m,n�
m,n

j,k
⇢̂k =

X

k

�j,k⇢̂k. (5.13)

This simplifies to

X

m,n

�m,n�
m,n

j,k
= �j,k (5.14)

using the independence of the matrices {⇢̂j}. This equation can be viewed
in a matrix form, considering the action of a matrix � of size d4 ⇥ d4 on a
vector of size d4

�� = �. (5.15)

This relation can then be inverted, giving the expression for the standard
process matrix

� = ��1�. (5.16)

We quickly summarize how � is experimentally estimated. First, a set
of operators {F̂i} and a basis {⇢̂j} are arbitrarily chosen, usually in order
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to ease following calculations, from which the matrix � is computed. The
quantum operation under study is then applied to the memory, starting from
all density matrices in the basis {⇢̂j}. Finally, the matrix � is experimentally
estimated by measuring the resulting memory Wigner function and � is
computed using Eq. (5.16).

5.1.3.2 Expression of � for a qubit

Considering the case of a qubit [72], a convenient choice for {F̂i} and {⇢̂j}
allows to find an expression for � as a simple matrix multiplication. The
operators {F̂i} considered are

F̂0 = 1, F̂1 = X̂, F̂2 = �iŶ , F̂3 = Ẑ (5.17)

and the density matrices {⇢̂j}

⇢̂0 = |gi hg| , ⇢̂1 = |gi he| , ⇢̂2 = |ei hg| , ⇢̂3 = |ei he| . (5.18)

The state |gi corresponds to the qubit ground state and |ei to its excited state.
While E (⇢̂0) and E (⇢̂3) can directly be measured, preparing the qubit in its
ground or excited state and applying the desired operation, we introduce the
states |+i = (|gi+ |ei) /

p
2 and |+ii = (|gi+ i |ei) /

p
2 to estimate E (⇢̂1)

and E (⇢̂2). These quantities can then be expressed as1

E (⇢̂1) = E (|+i h+|) + iE (|+ii h+i|)� 1 + i

2
(E (|gi hg|) + E (|ei he|))

E (⇢̂2) = E (|+i h+|)� iE (|+ii h+i|)� 1� i

2
(E (|gi hg|) + E (|ei he|)) ,

(5.19)

and the � matrix reads in terms of block matrices as

� =
1

4

✓
1 �x
�x �1

◆ 
⇢

0

0
⇢

0

1

⇢
0

2
⇢

0

3

!✓
1 �x
�x �1

◆
. (5.20)

In this last equation, the expressions ⇢̂
0

i
are to be understood as 2⇥2 matrices

representing the density matrices E (⇢̂i).

1 Note that we correct here an error of [72]
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5.1.3.3 Fidelity of the Ẑ (⇡) gate

The fidelity of a quantum gate is defined from the � matrix as F =
Tr (� �opt), with �opt being the � matrix describing an ideal gate. In the
case of a Ẑ (⇡) gate, this ideal � matrix reads

�opt =

0

BB@

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

1

CCA , (5.21)

which corresponds to a matrix with all its terms null except for �opt

3,3
= 1

(we use the same convention as in the previous section, with F̂3 = Ẑ ).
The fidelity is then directly given by �3,3, estimated using Eq.(5.20) as the
element (1, 1) of the 2⇥ 2 matrix

M =
1

4

⇣
�x⇢

0

0
�x � �x⇢

0

1
� ⇢

0

2
�x + ⇢

0

3

⌘
. (5.22)

We experimentally determine this 2 ⇥ 2 matrix using the evolution of
W (�) shown in Fig. 5.3a, from which we estimate the evolution of the logical
Bloch coordinates h�̂x,Li, h�̂y,Li and h�̂z,Li. These operators are defined in
the cat encoding as

�̂x,L =
��C+

↵

↵ ⌦
C+

↵

���
��C�

↵

↵ ⌦
C�

↵

�� (5.23)
�̂y,L =

��C+i

↵

↵ ⌦
C+i

↵

���
��C�i

↵

↵ ⌦
C�i

↵

�� (5.24)
�̂z,L = |↵i h↵|� |�↵i h�↵| , (5.25)

with |C±
↵
i = (|↵i± |�↵i) /

p
2 and

��C±i

↵

↵
= (|↵i± i |�↵i) /

p
2. The mea-

sured evolution of the three logical Bloch vector coordinates is shown in
Fig. 5.7a. First, the gate being bias preserving as evidenced in Fig. 5.6b,
we know it has no significant impact on the cat qubit ground and excited
states |±↵i in the few tens of ns it takes to perform a Ẑ (⇡) gate. We can
then estimate

E (|↵i h↵|) = |↵i h↵| E (|�↵i h�↵|) = |�↵i h�↵| , (5.26)

which directly gives

⇢
0

0
=

✓
1 0
0 0

◆
, ⇢

0

3
=

✓
0 0
0 1

◆
. (5.27)
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Figure 5.7: a. Trajectory of the cat qubit during the Z gate estimated from
the Wigner functions of Fig. 5.3a. b. Dots: Mean value of �̂z,L as
a function of the gate time. Line: Linear fit of h�̂z,Li (t). c. Dots:
Mean value of �̂x,L as a function of the gate time. Line: fit used in
Fig. 5.3b. to oscillations at a frequency ⌦Z/2⇡ = 19.8 MHz, decaying
at a rate Z/2⇡ = 0.62 MHz. A scaling factor of ⇡/2 is applied since
W (0) = 2 h�̂x,Li /⇡. d. Dots: Mean value of �̂y,L as a function of gate
time. Line: fit used in c. dephased by ⇡/2.

Interestingly, the evolution of h�̂z,Li (t) during the gate shows no visible
evolution (Fig. 5.7b.), which is expected from its bias preserving property.

We then estimate ⇢
0

1
and ⇢

0

2
using Eq. (5.19). The density matrices

E (|C+
↵
i hC+

↵
|) and E

���C+i

↵

↵ ⌦
C+i

↵

��� are deduced from the dynamics shown
in Fig. 5.7c. and Fig. 5.7d. The evolutions of h�̂x,Li and h�̂y,Li are fitted to
a damped oscillation at a frequency ⌦Z/2⇡ = 19.8 MHz, decaying at a rate
Z/2⇡ = 0.62 MHz. From this, we can deduce

E
���C+

↵

↵ ⌦
C+

↵

��� = 1

2

⇣
1 � e�⇡Z/⌦Z �̂x,L

⌘

E
���C+i

↵

↵ ⌦
C+i

↵

��� = 1

2

⇣
1 � e�⇡Z/⌦Z �̂y,L

⌘
,

(5.28)

which yields
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E (|↵i h�↵|) = �e�⇡Z/⌦Z

2
(�̂x,L + i�̂y,L)

E (|�↵i h↵|) = �e�⇡Z/⌦Z

2
(�̂x,L � i�̂y,L) ;

(5.29)

The matrix M defined in Eq. (5.22) then finally reads

M =
1

2

✓
0 0
0 1 + e�⇡Z/⌦Z

◆
. (5.30)

From this expression we obtain the gate fidelity as F = (1 + exp(�⇡z/⌦z)) /2.
Using Gaussian pulses for the memory drive leads to Ẑ (⇡) gate fideli-
ties F = 95 ± 2% in 26 ns for |↵|2 = 9.3 and for a drive amplitude
✏̄Z/2⇡ = 1.625 MHz. Note that the ±2% uncertainty is much larger than
the error incurred from our assumption in Eq. (5.27). We further improve
the gate fidelity by using square pulses. Indeed, for a fixed average drive
amplitude ✏̄Z , the square pulse has the smallest maximum amplitude, hence
induces the least non-adiabatic errors. We then reach F = 96.5±2% in 28 ns
for the Z gate.

5.1.3.4 Evolution of the fidelity depending on the drive parameters

The gate Ẑ (✓) is implemented for varying values of ✏̄Z and ↵. For each
parameter set, an oscillation similar to Fig. 5.3b. is observed, from which
the corresponding decay rate Z and oscillation frequency ⌦Z are extracted.
Fig. 5.8a. displays the fidelity F = (1 + exp(�⇡z/⌦z)) /2 as a function
of ✏̄Z and ↵, computed from the fitted values of Z and ⌦Z. Two distinct
regions can be observed, corresponding to a regime of high drive, small cat
or low drive, large cat.

In the first regime where ✏̄Z � 2 and ↵ ⇠ 1, the drive amplitude is
so large that the Zeno dynamics is not strong enough to prevent leakage
from the cat qubit manifold. The memory state is then free to evolve after
escaping from the dissipative confinement, and the parity of the refocused
state (the drive is turned off so that the memory decays back to the cat
manifold under the dissipation L̂2 =

p
2
�
â2 � ↵2

�
) is not preserved. This

limits the fidelity as evidenced by the blue region in Fig. 5.8a.
This issue can be mitigated by increasing the size |↵| of the cat, which

in turn increases the confinement rate conf = 2|↵|22 [102]. This makes
the system resilient against larger drive amplitudes so that increasing ⌦Z

produces fewer non-adiabatic errors. This is the regime of interest in order to
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reach the largest fidelities, as evidenced by the dark red region in Fig. 5.8a.
and the star indicating the parameters yielding the best fidelity F = 96.5±2%
in 28 ns.

We show in Fig. 5.8b. a simulation of the fidelity, where Z and ⌦Z are
computed using their theoretical expressions in Eq. (5.2) and Eq. (5.3).
It closely matches the experimental data, indicating that even this simple
model (which does not take into account effects such as the memory self-
Kerr or possible detunings), provides an accurate description of the gate
imperfections. Larger values of |↵| could have been explored to improve the
fidelity even further. However, simulations indicate this would only result in
marginal improvements.

Figure 5.8: a. Measured fidelity F = (1 + exp(�⇡z/⌦z)) /2 depending on drive
amplitude ✏̄Z and size of the cat ↵. The star indicates the parameters
of the gate with the largest fidelity, shown in Fig. 5.3. b Predicted
fidelity using Eq. (5.2) and Eq. (5.3) to predict Z and ⌦Z from ✏̄Z and
↵.

5.2 demonstrations of the gates Ŷ (✓) and X̂ (✓)

Following the implementation of the Ẑ (✓) gate, we now focus on the ex-
perimental realization of the gates X̂ (✓) and Ŷ (✓) with the Auto-cat, thus
demonstrating the universal control of a cat qubit.

The gate X̂ (✓) has already been realized experimentally for the special
case ✓ = ⇡, which simply amounts to inverting |↵i and |�↵i. To do so
in a bias-preserving way [138], the encoding is continuously deformed by
sweeping the phase � of the buffer drive ✏d from 0 to 2⇡. As ↵ = ±

p
�✏d/g⇤2 ,

this induces a phase shift in the stabilized cat state, increasing from 0 to ⇡.
Consequently, the coherent states undergo the desired inversion, as shown in
Fig. 5.9. Note that for this scheme to be effective, the timescale of this sweep
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needs to be slower than �1

conf
= 1/(22|↵|2), which ensures the memory

remains in the state
��±|↵|ei�/2

↵
of the deformed cat encoding2. Implementing

this gate in a bias-preserving way is crucial, notably in order to implement
CNOT gates between two neighboring cat qubits in a repetition code [88].

Figure 5.9: Representation of the bias preserving X̂ (⇡) gate. If implementing this
gate while remaining in the Bloch sphere of the cat, phase flip errors
(green arrow) are free to occur during the operation of the gate (blue
arrows), which are then converted into bit-flip errors. This is prevented
by going out of the code space, continuously deforming the encoding
(red arrow) such that the memory remains in the state

���+|↵|ei�/2
E
,

with � increasing from 0 to 2⇡ in a time t & �1
conf .

The same approach cannot be extrapolated to implement a gate X̂ or Ŷ of
an arbitrary angle ✓, which requires a coherent population transfer between
|↵i and |�↵i. For instance, applying the gate X̂ (⇡/2) on the coherent state
|↵i should lead to an equal superposition of |↵i and |�↵i, which cannot be
realized by simply deforming the cat encoding. Intrinsically, this population
transfer is incompatible with the engineered dissipation L̂2 =

p
2
�
â2 � ↵2

�
,

with ↵ > 0, which was specifically designed to prevent transitions from one
coherent state to another. To circumvent this issue, we use the mapping
shown in Fig. 5.10 between the cat manifold span (|↵i , |�↵i) and the deflated
manifold span (|0i , |1i).

2 Considering a single cat qubit, this gate can actually be simply performed with a virtual
rotation. The described physical rotation only becomes necessary when considering two
entangled cat qubits
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Slowly turning off the buffer pump ✏d over a timespan t & �1

2
, the

memory adiabatically decays to span (|0i , |1i) while preserving its parity
due to the large ratio 2/1 = 150. In this manifold, population transfer
can be performed by either applying a coherent drive Zeno blocked by the
two-photon dissipation (Sec. 5.2.1) or via a Holonomic approach based on
the collision of the two coherent states (Sec. 5.2.2). After performing the
desired operation, ✏d is turned back on and the memory state is mapped
back to the cat qubit manifold.

Because the memory transitions through span (|0i , |1i) during the opera-
tion of this gate, it can suffer from bit-flip errors which are not suppressed
in this manifold. As a consequence, the designed gate X̂ (✓) is not bias-
preserving. This cannot be avoided however as, in order to have a population
transfer between |↵i and |�↵i, a channel has to be created which allows for
bit-flip errors.

Figure 5.10: Mapping between the manifolds span (|↵i , |�↵i) and span (|0i , |1i).
Turning on and off the buffer drive ✏d, the memory transitions between
these two manifolds while preserving its parity.

5.2.1 Zeno blocked oscillations in the manifold span (|0i , |1i)

We first implement the gate Ŷ (✓) on the cat qubit by driving the memory
on resonance at �QEC (Fig. 5.11a), after turning off the buffer drive to
adiabatically map the cat qubit to span (|0i , |1i). The memory evolution is
described in this deflated manifold by the master equation
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d⇢̂

dt
=� i

~ [Ĥ, ⇢̂] +D[
p
1â](⇢̂) +D[

p
m
'
â†â](⇢̂) +D[

p
2â

2](⇢̂), (5.31)

with

Ĥ

~ = ��m,m

2
â†2â2 +

�
✏Ye

i✓Y â† + h.c
�
. (5.32)

The dephasing rate m
'
/2⇡ = 80 kHz is estimated using a Ramsey like exper-

iment (see Sec. 4.4.3.1), while the memory self-Kerr �m,m/2⇡ = 0.206 MHz
and single photon decay rate 1/2⇡ = 14 kHz were respectively deduced from
Fig. 3.8 and the decay of a single photon in the memory (Fig. 4.11b). As the
memory contains at most 1 photon when applying the displacement drive,
the condition 8g2|↵| < b is verified. This justifies the adiabatic elimination
of the buffer mode and the effective two-photon dissipation p

2â2, with
2 ⇡ 2 MHz, appearing in the master equation.

Applying the memory displacement while at �QEC implements the desired
quantum Zeno dynamic, with the two-photon dissipation preventing the
memory from leaking out of the deflated manifold. Furthermore, ensuring
the drive is parallel to the direction of the stabilized cat (✏Y 2 R and ✓Y = 0)
results in coherent oscillations between |0i and |1i as the memory state
rotates around the y axis of the Bloch sphere. The buffer drive is then
turned back on, which maps the memory back onto the cat manifold. The
experimental realization of this gate is shown in Fig. 5.11b-d. for a fixed
displacement amplitude ✏Y and varying duration t. When no displacement
is applied for t = 0, the memory remains in |0i which is then mapped to
|C+

↵
i after turning the buffer drive back on. When applying the displacement

drive for 1.6 µs and 2.6 µs, the desired Zeno dynamic is observed with the
memory evolving towards (|0i+ |1i) /

p
2 and |1i respectively. These states

are then mapped onto the cat manifold to states resembling |↵i and |C�
↵
i.

However, a noticeable deviation from these ideal states can be seen after the
gate, which is particularly visible in the poorly contrasted fringes of what
should be |C�

↵
i.

These errors can be explained by the relatively long duration of the displace-
ment pulse during which memory dephasing makes the state superposition
decohere. Indeed, for the Zeno dynamic to be effective and prevent leakage
from the deflated manifold span (|0i , |1i), the displacement amplitude ✏Y
needs to be smaller than the two-photon dissipation rate 2. This constraint
is notably much stricter than for the Ẑ (✓) gate previously presented, as in
this case, the Zeno dynamic is effective even for 2 < ✏Z < conf . A gate
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Figure 5.11: a. Pulse sequence for the gate Ŷ (✓). After turning off the buffer
drive, and mapping the memory state onto the deflated manifold, a
displacement of amplitude ✏Y is applied to the memory that induces
the desired Zeno dynamic. The memory is then mapped back onto the
cat encoding by turning the buffer drive back on. Wigner tomography
is performed after the displacement or at the end of the pulse sequence
b. Memory vacuum state |0i when no memory displacement is applied
(left) and the corresponding mapping to

��C+
↵

↵
. c. Memory state

⇡ (|0i+ |1i) /
p
2 after displacing the memory for t = 1.6 µs while at

�QEC (left). The memory should then be mapped to |↵i (right) d.
Memory state ⇡ |1i after applying the drive ✏Y for t = 2.6 µs (left),
ideally mapped to

��C�
↵

↵
in the cat encoding (right).

Ŷ (⇡) would then take at least around 1 µs. In contrast, working at large
values of |↵| for the Ẑ (✓) gate allows us to increase ✏Z and perform Ẑ (⇡)
gate in tens of ns. The main source of errors during this 1 µs spent in the
deflated manifold is not single-photon loss, as is the case for the Ẑ (✓) gate,
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but memory dephasing. While dephasing does not impact the fidelity of the
Ẑ (✓) gate thanks to the phase space separation between |↵i and |�↵i, the
manifold span (|0i , |1i) does not benefit from this protection. As a conse-
quence, memory dephasing induces decoherence during the displacement
at a rate m

'
, resulting in decohere cat states after re-inflation. We see in

particular in Fig. 4.17 that quantum information is almost completely lost
after 5 µs. Note that, as m

'
⇠ 61, the memory dephasing is indeed the

main source of decoherence and not single-photon loss.
This issue could be mitigated by reducing the memory dephasing rate,

in particular by making sure that �QEC = �(sweet)

ext
(see Sec. 3.5.4) in future

iterations of this device. Alternatively, one could use an alternative approach
for the gate which does not rely on Zeno dynamic and does not require
spending significant time in span (|0i , |1i). We use such an approach in the
following section and implement a Holonomic X̂ (✓) gate.

5.2.2 Holonomic approach

5.2.2.1 Optimisation of the gate

We implement the proposal of [191] to realize a holonomic X̂(✓) gate on
a cat qubit. This gate relies on the observation that, applying a rotation
R̂ (✓) = ei✓â

†
â on a superposition of well-separated coherent states, does not

impact the phase of the superposition. On the opposite, doing the same
operation on the superposition of |0i and |1i does. Following this property,
the gate X̂(✓) is realized by simply modulating the buffer drive amplitude
✏d(↵) (Fig. 5.12a.).

The memory state is first mapped onto the deflated manifold span (|0i , |1i),
after which the buffer drive is immediately turned back on with an additional
phase 2✓. This additional phase acts as a R̂ (✓) rotation while the memory is
in the manifold span (|0i , |1i), which is then compensated by a final counter-
rotation R̂ (�✓). This final rotation brings the memory back onto the initial
code space while preserving the phase of the superposition. The evolution of
the memory in phase space starting from |↵i is represented in Fig. 5.12b.
Compared to the Ŷ (✓) gate, the memory does not remain for a prolonged
time in the deflated manifold as the buffer drive is immediately turned back
on. This limits the amount of time during which memory dephasing corrupts
the logical information, which should yield better fidelities.
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Figure 5.12: a. Pulse sequence used to prepare an initial state |↵i in the memory,
apply the holonomic X̂ (✓) gate for an arbitrary angle ✓, and measure
the memory Wigner function. The Holonomic gate consists in the
modulation of ✏d (↵) to deflate the cat state to span (|0i , |1i), apply
a virtual rotation of 2✓ by changing the phase of the buffer drive, and
re-inflate the cat back to the cat manifold. A final virtual rotation
R̂ (�✓) is applied by adding a phase �✓ to the memory displacement
drive, which stabilizes the direction of the cat. b. Evolution in the
memory phase space of a coherent state when applying the holonomic
X̂ (✓) gate.

We describe the evolution of the joint memory & buffer system using the
master equation3

d⇢̂

dt
=� i

~ [Ĥ(t), ⇢̂] +D[
p
1â](⇢̂) +D[

p
m
'
â†â](⇢̂)

+D[
p
bb̂](⇢̂) +D[

q
b
'
b̂†b̂](⇢̂),

(5.33)

with the time-dependent Hamiltonian expressed as

Ĥ(t)

~ = ��m,m

2
â†2â2 � �b,b

2
b̂†2b̂2 � �m,bâ

†â b̂†b̂

+ g2â
2b̂† + g⇤

2
â†2b̂+ ✏d(t)b̂

† + ✏⇤
d
(t)b̂.

(5.34)

The values of the different parameters are summarized in Table. 4.1. To
optimize the gate fidelity, we perform numerical simulations for various
shapes of the buffer drive ✏d(t), while enforcing some conditions on the drive.
First, because the gate starts and finishes in the cat manifold, this gives a
first constraint on ✏d(t)

|✏d(0)| = |✏d(Ttot)| = |✏↵|, (5.35)

3 We do not adiabatically eliminate the buffer as, in order to optimize the gate, we are inter-
ested in the transition period between the manifolds span (|↵i , |�↵i) and span (|0i , |1i)
during which the condition 8g2↵ < b is not necessarily verified.
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with Ttot the total duration of the gate and |✏↵| the drive amplitude stabilizing
a cat state of size |↵|. The second constraint comes from the necessity for
the memory to transit through span (|0i , |1i) in order to realize the desired
population transfer. This can be mathematically expressed as

9 ⌧, 0  ⌧  Ttot, ✏d(⌧) = 0. (5.36)

We choose ⌧ = Ttot/2 due to the symmetry between the deflation and re-
inflation step of the gate. Furthermore, using the same symmetry argument,
we impose that the evolution of ✏d(t) is symmetric around ⌧ . Finally, we
choose a Gaussian edge shape for the evolution of the buffer drive for
0  t  ⌧ . This choice is motivated by the observation that, while ✏d(t)
needs to evolve on timescales longer than �1

conf
in order for the gate to

remain adiabatic, faster evolutions are allowed for large |↵| at the beginning
and end of the gate. The buffer drive is then parameterized as

✏d(t) =
✏↵

1� e�⌧2/(2�2)

⇣
e�t

2
/(2�

2
) � e�⌧

2
/(2�

2
)

⌘
for 0  t  ⌧,

✏↵e2i✓

1� e�⌧2/(2�2)

⇣
e�(2⌧�t)

2
/(2�

2
) � e�⌧

2
/(2�

2
)

⌘
for ⌧  t  2⌧.

(5.37)

Figure 5.13: a. Evolution, as a function of ⌧ and ⌧/�, of the trace distance between
the simulated density matrix after application of the gate and the ideal
desired state. The star indicates the optimal parameters chosen for the
following experiments. b. Evolution of |✏d(t)| for the chosen parameters
⌧ and �. A final stabilization time of 100 ns is added after the gate
to ensure the memory converges to the manifold span (|↵i , |�↵i).

We optimize the parameters ⌧ and � of this pulse by simulating the
evolution of the memory according to Eq. (5.33). Starting from |↵i, we
compare the simulated density matrix ⇢̂ after the gate for ✓ = ⇡/2 with the
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target ⇢̂t = X̂ (⇡/2) |↵i h↵| X̂† (⇡/2). The metric used to compare these two
density matrices is the trace distance [72], defined as

T (⇢̂, ⇢̂t) =
1

2
Tr

✓q
(⇢̂� ⇢̂t)

2

◆
(5.38)

The optimization shown in Fig. 5.13a. provides the parameters ⌧ = 300 ns
and � = ⌧/1.2 = 250. The corresponding waveform for |✏d(t)| is presented in
Fig. 5.13b. and is used for the following measurements.

5.2.2.2 Dynamic of the Holonomic gate

Figure 5.14: Measured evolution of the memory Wigner function, starting from
the coherent state |�2.27i, during the holonomic X̂ (⇡/2) gate. The
evolution of ✏d(t) is that shown in Fig. 5.13b.. The final rotation
R̂(�✓) is not applied to highlight the dynamic of the memory during
the gate.

We experimentally realize the gate X̂ (⇡/2) starting from the coherent state
|�↵i, ↵ = 2.27, without applying the final rotation R̂(�✓) (see Fig. 5.12a.).
The coherent state |�↵i is encoded by resonantly driving the memory at
�tomo for 20 ns, effectively inducing the displacement D̂ (�↵), after which
the flux is immediately set to �QEC while driving the buffer with a drive
amplitude ✏d(↵). The system is then left idle for 100 ns to ensure the
memory converges to the manifold span (|↵i , |�↵i), correcting for small

156



5.2 demonstrations of the gates Ŷ (✓) and X̂ (✓)

miscalibration of the initial memory displacement. As TX ⇠ 50 µs for
|↵| = 2.27, we assume a perfect preparation of |�↵i before applying the
gate.

We show in Fig. 5.14 the Wigner tomography of the memory for 6 different
times during the gate. Between 0 ns and 300 ns, the memory adiabati-
cally decays from the the coherent state |�↵i to the corresponding state
(|0i � |1i) /

p
2 in the deflated manifold. After applying a phase shift ei⇡, the

buffer drive is slowly turned back on in 300 ns (Fig. 5.13b.) and the memory
adiabatically evolves towards the state

���ei⇡/2↵
↵
� i
���ei⇡/2↵

↵�
/
p
2. This

state would be brought back to (|↵i � i |�↵i) /
p
2 by a rotation R̂(�⇡/2),

thus performing the desired X̂ (⇡/2) gate.

5.2.2.3 Fidelity of the gate

We repeat the operation presented in Sec. 5.2.2.2 for varying values of ✓
and characterize the performance of the gate. Because we only performed
the gate X̂ (✓) starting from the coherent state |�↵i, we cannot use the
formalism of the process � matrix to characterize the gate fidelity4. Instead,
we use the trace distance between the memory density matrix ⇢̂ estimated
after the gate and ⇢̂t = X̂ (⇡/2) |�↵i h�↵| X̂† (⇡/2). The density matrix ⇢̂
is estimated from the measured Wigner function shown in Fig. 5.15a. using
Maximum Likelihood Estimation (MLE). We impose that the density matrix
belongs to the cat qubit manifold span (|↵i , |�↵i), with ↵ being deduced
from the position of the coherent states in the Wigner function.

The dependence of the trace distance with ✓ is shown in Fig. 5.15b.. A non-
trivial evolution can be observed with a trace distance T (⇢̂, ⇢̂t) ⇡ 0.18 for
✓ = ±⇡, 0 and T (⇢̂, ⇢̂t) ⇡ 0.23 for ✓ = ±⇡/2. We attribute this degradation
for ✓ = ±⇡/2 to phase-flip errors occurring during the re-inflation step of
protocol and the final 100 ns of stabilization (see Fig. 5.13b.). Indeed, while
for ✓ = ±⇡, 0 the memory ends up in the coherent states |±↵i which are
unaffected by phase flip errors, the states C±i

↵
do not benefit from the same

protection and lose their coherence at a rate �Z = 2n̄1.
We simulate the evolution of the trace distance according to the master

equation Eq. (5.33), with the optimized buffer drive amplitude shown in

4 We actually expect the gate to perform the best when starting from
���C+

↵

E
and

���C�
↵

E
which

are respectively mapped to |0i and |1i. Both these states are unaffected by dephasing
errors, the main source of decoherence in the manifold span (|0i , |1i), which isn’t the case
for other cardinal states of the Bloch sphere. The other error channel affecting the memory,
single photon loss, would induce a decay |1i ! |0i with a probability p = 1� e�t0/11 .
There, t0/1 is the time during which the memory transitions to the deflated manifold,
estimated to t0/1 ⇡ 200 ns (see Fig. 5.13b.), which gives p = 0.003.
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Figure 5.15: a. Measured Wigner function W (�) after performing the gate X̂ (✓),
starting from the coherent state |�↵i. The angle ✓ corresponding to
each Wigner function is indicated as an inset. b. Dots: Trace distance
between the density matrices ⇢̂ estimated from the Wigner functions
of a. and ⇢̂t = X̂ (✓) |�↵i h�↵| X̂† (✓). Lines: Simulated trace distance
for m

' /2⇡ = 0.08 MHz (brown line) and m
' /2⇡ = 0 MHz (blue line).

Fig. 5.13b. Using the measured dephasing rate m
'
/2⇡ = 0.08 MHz, we

qualitatively reproduce the experimental results, the trace distance being
slightly underestimated for ✓ = ±⇡/2. Additional simulations for m

'
/2⇡ = 0

indicate that reducing to dephasing rate5 could reduce the trace distance by
⇡ 0.08 using the same pulse parameters. Note that, as the optimization of
✏d(t) was performed using the measured value of m

'
, it is not optimal for

m
'
= 0.

We finally study the trajectory of the memory in the Bloch sphere of the
cat qubit, shown in Fig. 5.16a.. It presents the desired rotation around the
logical x axis, with h�̂x,L(✓)i showing no visible dependence on ✓ (Fig. 5.16b.).
Its small mean value h�̂x,Li = 0.02 can be attributed to single-photon loss.
Indeed, during a ⇡ 200 ns spent in the manifold span (|0i , |1i), single-photon

5 For instance by ensuring �QEC = �
(sweet)
ext in future iterations of the Auto-cat.
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Figure 5.16: a. Trajectory of the cat qubit during the X̂ (✓) gate estimated from the
Wigner functions of Fig. 5.15 b. Mean value of �̂x,L as a function of
the parameter ✓. c. Mean value of �̂y,L as a function of the parameter
✓. d. Mean value of �̂z,L as a function of the parameter ✓.

loss induces the decay |1i ! |0i which increases the population of even
Fock states once the state is mapped back onto the cat manifold. The
two remaining quadratures h�̂y,L(✓)i and h�̂z,L(✓)i exhibit the expected
oscillations (Fig. 5.16c-d.), with a phase shift of ⇡/2 between the 2 curves. A
small phase shift of 0.12 rad is observed, particularly noticeable in Fig. 5.16d.
where h�̂z,L(✓)i is not symmetric around the axis ✓ = 0. This can be explained
with an additional detuning �mâ†â, �m/2⇡ = 90 kHz to the Hamiltonian
of Eq. (5.34). This induces a rotation in the memory phase space when in
the manifold span (|0i , |1i), with no impact when the 2-photon dissipation
stabilizes span (|↵i , |�↵i) at a rate 2 � �m.

5.3 preparation of squeezed cat states

In this brief section, we shift our focus to the dynamics of the memory during
its decay towards span (|0i , |1i) under two-photon dissipation. This particular
evolution was already observed experimentally in Fig. 5.14, starting from the
coherent state |�↵i where ↵ = 2.27. The observed evolution then corresponds
to what is expected from a cavity losing pairs of photons to its environment
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under the loss operator p
2â2. The situation changes however for larger cat

states where coherent states exhibit noticeable squeezing throughout the
decay. Indeed, for cat states with ↵ & 2.5, the system of memory & buffer is
deep in the non-adiabatic regime where 8 |g2|↵� b, making it necessary
to take the buffer dynamic into account.

Figure 5.17: a. Impact of the two-photon loss on the memory and buffer mode.
While the memory loses pairs of photons to the buffer at a rate g2↵

2,
the buffer cannot evacuate these photons quickly enough leading to
an effective displacement D (�) of mode b̂. This creates an effective
squeezing Hamiltonian acting on the memory during its decay to the
{|0i , |1i} manifold. b. Wigner functions of the memory at 3 different
times of its evolution towards the deflated manifold, starting from��C+

↵

↵
. The data (top) are compared with numerical simulations made

with no free parameters (bottom).

We characterize this process by looking at the impact of two-photon
dissipation on |C+

↵
i. After preparing the state |C+

↵
i in the memory, the

drive ✏d(↵) is turned off while remaining at �QEC. After a varying time t,
the memory state is then measured using the modified Wigner tomography
sequence, with the resulting Wigner functions shown in Fig. 5.17b. for
three different times. Initially, with the cavity in |C+

↵
i and the buffer in its

ground state, the system is described by the Hamiltonian and loss operators
of Eq. (5.33). As the memory releases photon pairs to the buffer, it can
be described as an effective drive acting on mode b̂, characterized by an
amplitude

⌦
g2â2

↵
= g2↵2 This drive, which should not have an impact on
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the buffer if b � 8g2↵, then displaces mode b̂ to a coherent state |�i whose
amplitude is proportional to ↵2 (Fig. 5.17a). In turn, the memory sees a
squeezing Hamiltonian

Ĥm,e↵/~ = g2
D
b̂
E
â†2 + h.c, (5.39)

which compresses the superposition of coherent states. As the memory
evolves, it reaches a maximal compression at a time depending on the initial
photon number, after which the buffer decays to vacuum suppressing the
effective squeezing Hamiltonian. A maximal compression of 3.88 dB was
observed after a time t = 16 ns, starting from a state |C+

↵
i where ↵ = 2.9

(Fig. 5.17b). We compare the evolution predicted by our theoretical model
with the measured Wigner functions of the memory, which yields a good
qualitative correspondence. While bigger compression is expected starting
with a larger photon number, we experimentally observe that going to larger
values of ↵ leads to a deformation of the initial cat state (see Sec. 4.4.4.3),
preventing the observation of larger maximal squeezing.

5.4 chapter summary

In this chapter, we presented how the large 2-to-1 photon coupling of the
Auto-cat can be leveraged to perform gates on the cat qubit, allowing
full control of a single cat qubit. Using Zeno dynamics, with two-photon
dissipation preventing leakage from the stabilized manifold while driving
the memory, we demonstrate a Ẑ and Ŷ gate. While the Ŷ gate has a
relatively low fidelity, mainly due to the memory dephasing which induces
decoherence during the gate, we perform a gate Ẑ (⇡) with 96.5 % fidelity in
28 ns. This fidelity was achieved for a cat with |↵|2 = 9.3, which increases
the confinement rate conf = 22|↵|2 and allows us to perform fast gates,
thus limiting the impact of dissipation channels. We additionally implement
a proposal from [191] and demonstrate a holonomic X̂ gate, based on the
collision of 2 coherent states. We observe the desired oscillations around the
x axis of the logical Bloch sphere and a trace distance T (⇢̂, ⇢̂t) ⇡ 0.2 with the
desired theoretical density matrix. This figure could be improved by operating
closer to the memory sweet spot, thus decreasing the memory dephasing
rate. Finally, we demonstrate how working deep in the non-adiabatic regime
enables the preparation of squeezed cat states, reaching a maximal squeezing
of 3.88 dB.
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In this thesis, we investigated the role of Quantum Error Correction in
preserving the quantum information stored within superconducting circuits.
By redundantly encoding this information across many physical qubits, thus
defining a logical qubit, this approach ensures that errors impacting an
isolated physical qubit can be detected and corrected without collapsing the
state of the logical qubit. Various encoding schemes have been envisioned,
with the CSS surface code emerging as a leading contender, notably investi-
gated by industry giants like Google and IBM. However, the error threshold
of this encoding remains relatively high, with no experiment reaching the
break-even point so far. This motivates using an alternative encoding, cap-
italizing on noise biases within the physical qubits to increase the code’s
threshold. Such a code would be the XZZX surface code when the bias re-
mains moderate, or a simple repetition code when the noise bias is sufficiently
large so that either bit-flip or phase-flip errors can be neglected.

A promising qubit candidate showcasing the necessary noise bias is the
cat qubit, which encodes information in the superposition of the coherent
states |↵i and |�↵i of a superconducting cavity. The redundancy required
for QEC is then provided by the infinite dimension of this Hilbert space,
easing the hardware requirement of error-correcting codes by compactly
encoding the quantum information into multi-photon states of a memory
mode. When stabilized, using measurement-based feedback, Hamiltonian
engineering, or dissipation engineering, these states exhibit an exponential
suppression of bit-flip errors with |↵|2 at the modest cost of a linear increase
in the phase-flip rate. However, despite having observed this exponential
suppression in dissipative cat qubits, the achieved bit-flip time and gate
fidelities remained limited by the two-photon dissipation rate 2/2⇡ which
did not exceed 200 kHz.

We improve on this figure by introducing the Auto-cat design, leveraging an
autoparametric 3-wave mixing interaction to induce the desired dissipation.
We measure a dissipation rate 2/2⇡ ⇡ 2 MHz, which we exploit in order
to improve on the usual parity measurement protocol. This alternative
measurement method does not rely on the autoparametric approach and can
be used whenever 2 � 1, which was previously achieved using a transmon
mediating a 4-wave mixing interaction.
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The cat qubit stabilized using the Auto-cat exhibits the expected ex-
ponential improvement of TX, reaching TX ⇡ 0.3 s for |↵|2 ⇡ 20 photons.
Additionally, we harnessed the strong two-photon dissipation to perform fast
gates, demonstrating a Holonomic X̂ gate of an arbitrary angle ✓ in 600 ns.
Furthermore, we execute a Zeno-blocked Ẑ (⇡) gate with 96.5 % fidelity in
28 ns.

The natural evolution of this experiment as we look ahead, other than
further improving this design so that �QEC = �(sweet)

ext
and increasing 2, is

to correct for the remaining phase flip-errors. This could notably be done
by using a repetition code of cat qubit, with several theoretical proposals
exploring the performance of such a code. In the conclusion of this thesis, we
present an alternative approach that employs frequency combs to preserve
the parity of the memory mode. This project was the initial focus of my
research during the first year of my PhD. Still, fabrication issues yielding poor
transmon lifetimes prevented us from seeing the expected parity stabilization.

6.1 parity stabilization

The states |C+
↵
i and |C�

↵
i of a two-component cat qubit each possess a

distinct photon number parity, as evidenced by Eq. (3.46) which provides
their expansion in the Fock basis. Phase-flip errors induced by single photon
loss thus cannot be corrected by stabilizing a given photon number parity,
and would for instance require the use of a repetition code of cat qubits. The
situation changes however when considering four-component cat qubits. Here,
stabilizing the manifold of even or odd Fock states protects the encoding
against bit-flip errors, phase-flips being exponentially suppressed by an
engineered dissipation. In this section, we first describe how the parity can
be stabilized using measurement-based feedback or dissipation engineering,
before explaining how this protection can be combined with a 4-photon
dissipation to autonomously stabilize a fully protected logical qubit.

In measurement-based feedback, the parity of the memory is regularly
measured after which a recovery operation is applied if any change in the
parity is detected. To ensure the effectiveness of this method, the time interval
between two parity measurements should verify ⌧ ⌧ 1/1 so that no pairs
of single photon loss can occur while remaining unnoticed. Alternatively,
photon loss events can be corrected by engineering a dissipation whose
operator is expressed as

⇧̂ =
X

k

|2ki h2k � 1| . (6.1)
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6.1 parity stabilization

As represented in Fig. 6.1, this dissipation autonomously stabilizes the
subspace of even Fock states, adding a photon wherever one is lost to the
environment. Conversely, we can opt for an alternative dissipation choice
that stabilizes the odd subspace by choosing ⇧̂ =

P
k
|2k + 1i h2k|.

Figure 6.1: Stabilisation of even Fock states using the dissipation operator defined
in Eq. (6.1). Whenever a photon is lost to the environment at a
rate 1, a recovery operation is applied which adds a photon to the
memory, bringing it back into the even Fock states manifold. Erroneous
excitations from the even manifold due to the stabilization scheme are
represented by the dashed blue arrows.

6.1.1 Frequency combs to stabilize the parity of a memory

Such a dissipation was experimentally demonstrated in [148, 198], using a
transmon qubit dissipatively coupled to a memory and buffer modes (Fig. 6.2).
When operated in the photon number resolved regime, two frequency combs
can then be applied to the transmon which induce the desired dynamic. The
first comb adds a photon to the memory whenever it initially contains an
odd number of photons, simultaneously exciting the transmon to its second
excited state |fi. However, because information about the memory photon
number is now encoded in the transmon’s frequency, an unread measurement
of the transmon by the environment would collapse the memory to the
corresponding Fock state. This can be prevented by erasing this information,
using a second frequency comb which transfers the excitation to a buffer mode.
This lossy mode finally quickly decays at a rate b through a transmission
line. The effect of these frequency combs is represented in Fig. 6.31.

The Hamiltonian describing the system of Fig. 6.2 can be written as
1 The pulse sequence used in [148] was different from the one proposed in this section. An

unconditional ⇡ pulse was first used to excite the transmon to its first excited state |ei
before a frequency comb induced the transition |2n+ 1, e, 0i ! |2n, g, 1i.
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conclusion and perspectives

Figure 6.2: Scheme of the experiment. The memory (blue) is coupled to a lossy
buffer mode (green) through a transmon qubit. Two frequency combs
are applied which effectively induce the desired dissipation after adia-
batically eliminating the buffer mode.

Ĥ

~ = !q q̂
†q̂ + !mâ†â+ !bb̂

†b̂� Ej

~

✓
cos ('̂) +

'̂2

2

◆
, (6.2)

with '̂ = 'q

�
q̂† + q̂

�
+ 'm

�
â† + â

�
+ 'b

⇣
b̂† + b̂

⌘
. The modes q̂, m̂, and

b̂ respectively refer to the transmon, memory, and buffer modes. Similar
to [148], the drives applied on the transmon qubit are taken into account
through a modification of the transmon’s operator

q̂ ! q̂ +
X

j

⇠je
i!jt, (6.3)

considering an ensemble of drives of amplitude ⇠j and frequency !j/2⇡. Going
into the rotating frame with the transformation Û(t) = ei(!q q̂

†
q̂+!mâ

†
â+!bb̂

†
b̂)t,

this Hamiltonian becomes

Ĥ
0

~ = �Ej Û(t)

✓
cos ('̂) +

'̂2

2

◆
Û(t)†

⇡ �Ej

4!
Û(t)'̂4Û(t)†

⇡ �Ej

4!

0

@'m â†ei!mt + 'b b̂
†ei!bt + 'q

0

@q̂†ei!qt +
X

j

⇠je
i!jt

1

A+ h.c.

1

A
4

.

We expand this Hamiltonian as a function of q̂, m̂ and b̂, restricting
our analysis to terms surviving the Rotating Wave Approximation. The
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6.1 parity stabilization

resulting self-Kerr and cross-Kerr couplings can then be expressed through
the Hamiltonian

ĤKerr =� �m,m

2
â† 2â2 � �b,b

2
b̂† 2b̂2 � �q,q

2
q̂† 2q̂2

� �m,b (â
†â)(b̂†b̂)� �q,m (â†â)(q̂†q̂)� �q,b (q̂

†q̂)(b̂†b̂),
(6.4)

with

~�m,m =
1

2
EJ'

4

m
, ~�b,b =

1

2
EJ'

4

b
, ~�q,q =

1

2
EJ'

4

q
,

~�m,b = EJ'
2

m
'2

b
, ~�q,m = EJ'

2

m
'2

q
, ~�q,b = EJ'

2

q
'2

b
.

(6.5)

Additionally, considering terms involving the drives applied on the trans-
mon, a Stark-shift is observed where the frequency of each mode is shifted
proportionally to the drive’s energy

ĤStark =
X

n2{m, b, q}

�Ej '
2

q
'2

n
n̂†n̂

X

j

|⇠j |2 . (6.6)

Finally, the impact of the two frequency combs is captured by the Hamiltonian

ĤCombs = �1

4
Ej

0

@'3

q
'm q̂†2â†ei(2!q+!m)t

X

j

⇠⇤
j
e�i!jt

+'3

q
'b q̂

2b̂†ei(!b�2!q)t
X

j

⇠je
i!jt

1

A+ h.c.

(6.7)

The first term of this sum corresponds to the first desired transition, adding
a photon to the memory while exciting the transmon to its second excited
state. It is selected by the 1st order RWA under the condition that a drive
at !j is resonant with the transition frequency between |2n� 1, g, 0i and
|2n, f, 0i2. These correspond to frequencies

!j 2 {!m + !g�f � 4n�q,m, n 2 Z} , (6.8)

represented by blue arrows in Fig. 6.3. Note that non-resonant transitions
can still induce some erroneous population transfer despite being suppressed
by the RWA. The second frequency comb is made of frequencies

2 States are written using the convention:
|memory photon number, transmon state, bu↵er photon numberi
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!j 2 {!g�f � 2n�q,m � !b, n 2 Z} , (6.9)

which are resonant with the transition frequency between |n, f, 0i and |n, g, 1i
for all n � 1.

Figure 6.3: Effect of the two frequency combs ⌦1 and ⌦2. The first comb adds a
photon to the memory mode when it initially contains an odd number
of photons, while exciting the transmon to its second excited state
|fi. The second comb then transfers this excitation from the transmon
to the buffer mode, preventing the environment from performing an
unread measurement of the transmon’s frequency. Finally, the buffer
mode quickly decays at a rate b through a transmission line.

6.1.2 Reducing erroneous excitations of the memory

The frequencies chosen for the second frequency comb might seem counter-
intuitive at first, notably considering frequencies !j = !g�f�2(2n+1)�q,m�
!b which induce transitions |2n+ 1, f, 0i ! |2n+ 1, g, 1i unnecessary to
stabilize the even manifold. Actually, these additional frequencies are added
to the second frequency comb in order to mitigate erroneous excitations
induced by the first comb, adding a photon while the memory is already in
the manifold of even Fock states.

To understand the effect of these added frequencies, we consider the time
evolution of ⌦1(t) and ⌦2(t) represented in Fig. 6.4. Because the Fourier
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6.2 coupling the parity stabilization and multi-photonic
dissipation

transform of a frequency comb remains a comb, both these signals present
sharp peaks regularly spaced in time. The corresponding period depends
on the spacing between the frequencies of each comb as T⌦1 = 2⇡/(4�q,m)
for ⌦1(t) and T⌦2 = 2⇡/(2�q,m) for ⌦2(t). The additional frequencies in the
second comb allow us to double the period of ⌦2(t) compared to what is
strictly necessary for our scheme, with two peaks of ⌦1(t) occurring in one
period of the second frequency comb. This feature is particularly appealing
when looking at the impact of ⌦1(t) on non-resonant states, corresponding
to transitions |2n, g, 0i ! |2n+ 1, f, 0i. Indeed, a kick/counter-kick dynamic
induced by non-resonant drives of the comb is observed which compensates
for erroneous excitations of the memory before ⌦2(t) transfers this excitation
to the buffer.

6.2 coupling the parity stabilization and multi-photonic
dissipation

6.2.1 Pulsing the multi-photonic dissipation

Figure 6.4: Time evolution of the drives ⌦1(t) and ⌦2(t) for 50 frequencies in
the combs. ⌦1(t) is represented for resonant (blue) and non-resonant
(dashed blue) states, the second frequency comb (green) is resonant
with every transition. The purple regions correspond to time periods
during which neither ⌦1 nor ⌦2 impact the memory. The two or four-
photon dissipation can be activated during the purple time interval,
regularly projecting the memory into the corresponding cat manifold
without disturbing the parity stabilization.

Because this parity stabilization scheme relies on a dispersive coupling
between the memory mode and an auxiliary transmon, it is fundamentally
incompatible with the two-photon dissipation required to stabilize cat qubits.
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The reason is similar to why the Wigner tomography cannot be performed at
�QEC using the Auto-cat. The two-photon dissipation broadens the energy
levels by 2 which then overlap in the regime 2 � �q,m (see Fig. 4.5c.),
condition necessary to ensure that excitations of the transmon do not disturb
the cat qubit stabilization. Fortunately, this issue can be easily solved by
pulsing the two-photon dissipation during the dead times of the combs, repre-
sented by the purple regions in Fig. 6.4, using the fast flux line demonstrated
in the Auto-cat experiment. As neither ⌦1 nor ⌦2 impact the memory during
this period, the dispersive coupling can be inhibited by the two-photon
dissipation without any detrimental effect on the parity stabilization.

A few conditions must be verified for this scheme to be effective. First, in
order for the memory not to lose pairs of single photons during a period T⌦1 ,
we require �q,m � 1. Additionally, because the two-photon stabilization is
only activated for a fraction of 1/�q,m, the rate 2 needs to be large enough
so that the system is effectively projected onto the cat qubit manifold,
yielding the condition 2 � �q,m. Finally, the buffer linewidth b needs to
be large enough to ensure that photons are evacuated between two peaks of
⌦2(t), resulting in the condition b � �q,m.

6.2.2 Extending the encoding to 4-component cat states

The proposed scheme combining parity stabilization and two-photon dissipa-
tion does not actually stabilize a qubit but a single quantum state, |C+

↵
i if

even Fock states are stabilized and |C�
↵
i otherwise. In order to stabilize a

qubit, we slightly change the encoding and consider the 4-component cat
qubit introduced in Sec. 3.3.3. Using four-photon dissipation described by
the loss operator

L̂4 =
p
4
�
â4 � ↵4

�
, (6.10)

superposition of |±↵i and |±i↵i are stabilized in the memory. Four distinct
states can be defined from these coherent states, each having a distinct parity
modulo 4. Choosing the states with a parity of 0 and 2 modulo 4 as the
logical states of a qubit,

|0Li =
��C0 mod 4

↵

↵
= N0 (|↵i+ |�↵i+ |i↵i+ |�i↵i) /

X

k

↵4k

p
4k!

|4ki

|1Li =
��C2 mod 4

↵

↵
= N2 (|↵i+ |�↵i � |i↵i � |�i↵i) /

X

k

↵4k+2

p
4k + 2!

|4k + 2i ,
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dissipation

(6.11)

all states belonging to the code space C would have an even number of
photons. The loss of a single photon would then map the qubit into an error
manifold defined by

|0Errori =
��C3 mod 4

↵

↵
= N3 (|↵i � |�↵i+ i |i↵i � i |�i↵i) /

X

k

↵4k+3

p
4k + 3!

|4k + 3i

|1Errori =
��C1 mod 4

↵

↵
= N1 (|↵i � |�↵i � i |i↵i+ i |�i↵i) /

X

k

↵4k+1

p
4k + 1!

|4k + 1i .

(6.12)

Such an error is corrected by the parity stabilization, adding a photon to
the memory and bringing it back into the code space while preserving the
qubit’s logical information. This is the fully autonomous version of the
measurement-based feedback experiment of [104]. Using the convention of
Fig. 3.10c., the phase-flip rate of the defined 4-component cat qubit would be
exponentially suppressed with |↵| by the four-photon dissipation, while the
parity stabilization provides a first-order protection against bit-flip errors.

A four-photon dissipation has not been demonstrated yet, notably due
to the difficulty of engineering a large rate 4 while keeping other non-
linear terms under control. The Auto-cat design could be used for this task,
being specifically designed to reach large dissipation rates. Ensuring the
frequency-matching condition !b = 4!m in future iterations of the device, a
strong 4-to-1 photon coupling could be achieved with a buffer mode, yielding
the desired four-photon dissipation after adiabatic elimination. Adding the
already demonstrated parity stabilization [148, 198] should then lead to the
stabilization of a fully protected cat qubit.
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a
APPENDIX : ROTATING WAVE APPROXIMATION

a.1 the rotating wave approximation

In this section, we consider a quantum system described by a Hamiltonian
Ĥ0, driven by an external drive. Its dynamics is described by the Schrödinger
equation [39, 199]

i~ d

dt
| i

t
=

 
Ĥ0 +

mX

k=1

uk(t)Ĥk

!
| i

t
, (a.1)

with | i
t

the state of the quantum system at time t and
P

m

k=1
uk(t)Ĥk the

Hamiltonian describing m independent control drives. Solving this equation
to obtain the expression of | i

t
is challenging, and in most cases actually

proves impossible without relying on numerical methods. This is particularly
problematic in the optic of having precise control of a qubit state. To tackle
this issue, we simplify the previous Hamiltonian using the Rotating Frame
Approximation (RWA), finding an approximate dynamics resembling that of
the exact system.

For the sake of clarity, we consider the case of a single drive m = 1. Ex-
tending the following calculations to the case where m > 1 is straightforward
as all operations are linear. Following the demonstration in [199], we first go
to the interaction frame using the change of variables

|�i
t
= e�iĤ0t/~ | i

t
. (a.2)

In this new frame, the dynamics of the system is described by the equation

i~ d

dt
|�i

t
= u1(t)e

�iĤ0t/~Ĥ1e
iĤ0t/~ |�i

t
. (a.3)

Assuming the time-dependent drive u1(t) to have a small amplitude compared
to the frequency of the quantum system, and be almost-periodic 1, it can be
written as

1 An almost periodic function is a function of a real parameter f(t) that can be written as
a function g(!1t, ...,!rt), 2⇡-periodic in each of its arguments.
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u1(t) = ✏
rX

j=1

�
uje

i!jt + u⇤
j
e�i!jt

�
, (a.4)

with ✏ > 0 a small parameter and r the number of different frequencies !j .
To simplify the notations we then introduce

K̂(t) =
u1(t)

✏
e�iĤ0t/~Ĥ1e

iĤ0t/~. (a.5)

This operator has an almost-periodic time dependence and can then be
decomposed as

K̂(t) =
D
K̂
E
+

d

dt
K̂osc(t), (a.6)

with
D
K̂
E
= limT!1

R
t

0
K̂(t)dt the mean value of the operator and K̂osc(t)

the time integral of its oscillating part. Eq. (a.1) then reads

i~ d

dt
|�i

t
= ✏

✓D
K̂
E
+

d

dt
K̂osc(t)

◆
|�i

t
. (a.7)

a.1.1 1st order

The 1st order approximation of the RWA consists in approximating Eq (a.7)
by

i~ d

dt

����1
st

rwa

E

t

= ✏
D
K̂
E ����1

st

rwa

E

t

. (a.8)

Only valid on time intervals of length O(1/✏), this approximation can be
physically understood as neglecting fast oscillating terms which average out
to zero on reasonable timescales. It can be justified by changing to another
frame using the transformation

|�i
t
=
⇣
1� ✏ K̂osc(t)

⌘
|�i

t
. (a.9)

Note that despite the operator
⇣
1� ✏ K̂osc(t)

⌘
not being Hermitian, this

transformation is valid for small ✏ as this operator is invertible
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⇣
1� ✏ K̂osc(t)

⌘⇣
1+ ✏ K̂osc(t)

⌘
= 1+O

�
✏2
�
.

The dynamics of |�i
t

then reads

i~ d

dt
|�i

t
= ✏

✓D
K̂
E
+ ✏
hD

K̂
E
, K̂osc(t)

i
� ✏K̂osc(t)

d

dt
K̂osc(t) +O

�
✏2
�◆

|�i
t
.

(a.10)

The 1st order RWA then simply consists in neglecting terms of order O
�
✏2
�
.

Going back to the interaction frame we recover Eq (a.8), which can then be
solved to give the approximate evolution of

����1
st

rwa

E

t

.

a.1.2 2nd order

To present the 2nd order RWA, we start by introducing the 2 notations

K̂osc(t) =
d

dt
Êosc(t)

K̂osc(t)
d

dt
K̂osc(t) =

D
F̂
E
+

d

dt
F̂osc(t).

(a.11)

Eq. (a.10) can then be rewritten as

i~ d

dt
|�i

t
= ✏

✓D
K̂
E
+ ✏
D
F̂
E
+ ✏

d

dt

⇣hD
K̂
E
, Êosc(t)

i
� F̂osc(t)

⌘
+O

�
✏2
�◆

|�i
t
.

(a.12)

Once again, the RWA consists in only considering the non-rotating terms of
this Hamiltonian. Another change of frame, not performed here, shows the
remaining oscillating terms correspond to corrections of order O

�
✏3
�

in the
dynamics. Once again going back to the interaction frame, the second-order
approximation reads

i~ d

dt

����2
nd

rwa

E

t

=
⇣
✏
D
K̂
E
� ✏
D
F̂
E⌘ ����2

nd

rwa

E

t

. (a.13)
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a.2 example of a driven qubit

To give some intuition on the RWA, we show how it can be applied to the
simple system of a qubit driven by a single external drive. This system is
described in the laboratory frame by the Hamiltonian

Ĥlab/~ =
!0

2
�z +

u1

2
cos (!1t)�x, (a.14)

corresponding to a situation with m = r = 1 previously. We go to the
rotating frame associated with the drive frequency !1 doing the change of
variable |�i = ei

!1t
2~ �z | i. In this frame, the dynamics is governed by the

Hamiltonian

Ĥrot/~ =
�

2
�z +

u1

4
(�x + cos (2!1t)�x � sin (2!1t)�y) , (a.15)

with � = !0 � !1 the detuning between the qubit and drive frequency. This
detuning is taken to be 0 as the drive is usually resonant with the qubit
frequency. The rotating wave approximation applies under the condition
u1 ⌧ !0, in which case the rotating terms can be neglected and the qubit
dynamic approximated to

i~ d

dt

����1
st

rwa

E

t

=
u1

4
�x
����1

st

rwa

E

t

. (a.16)

This corresponds to a situation where the qubit simply revolves around the
x axis of the Bloch sphere. A comparison of the qubit trajectories, starting
from its ground state, is shown in Fig. a.1 for !0/2⇡ = 5 GHz and u1/2⇡ =
300 MHz. We see that despite local deviations, the 1st order RWA manages
to capture the qubit dynamics. Note that in a typical superconducting
experiment, u1/2⇡ is of the order of a few MHz, and deviations from the 1st

order RWA are negligible.

178



a.2 example of a driven qubit

Figure a.1: Simulated evolution of a qubit state | (t)i driven by an external
drive over 3ns, with no approximation (blue) and approximating the
trajectory with 1st order RWA (orange). The 2 insets show zoom
on these 2 trajectories, highlighting the different behaviors occurring
during the dynamic.
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This appendix introduces the cabling used to measure the autoparametric
cat, nicknamed the Auto-cat.

The transmon qubit, readout resonator, memory, and buffer modes are
driven by pulses whose envelope is generated using an Arbitrary Wave-
form Generator (AWG), an OPX by Quantum Machine in this experi-
ment. These pulses are respectively modulated at !IF,q/2⇡ = 100MHz,
!IF,r/2⇡ = 75MHz, !IF,m,tomo/2⇡ = 40MHz , with the relations

!IF,m,QEC = (!m,tomo + !IF,m,tomo)� !b,QEC/2

!IF,b,QEC = 2!IF,m,QEC.
(b.1)

!IF,m,tomo and !IF,m,QEC are the modulation frequencies used to respectively
drive the memory at �tomo or �QEC, !m,tomo and !b,QEC are the frequencies
of the memory mode at �tomo and the buffer mode at �QEC. The above
condition on !IF,m,QEC and !IF,b ensures the phase stability of the encoded
cat in the frame rotating at the memory frequency.

These signals are up-converted using single sideband mixers for the trans-
mon qubit and readout resonator, and IQ mixers for the memory and buffer
mode, with Radio Frequency signals generated by a 4-channel Anapico
APUASYN20. The signals at frequencies !q, !r, and !m,tomo/!m,QEC are
all combined and then sent via the readout port of the device using a
6 GHz frequency diplexer. The memory drive subsequently goes through the
transmon qubit, readout resonator, and its Purcell filter before reaching the
memory cavity. Given this intricate path, employing a room-temperature
amplifier is needed for achieving displacements D̂(�) where � � 2.

The signal driving the buffer mode at !b is sent through the buffer port
of the device. It is combined with a DC tone directly generated by one DAC
of the OPX using a 3 GHz frequency diplexer, facilitating a swift transition
from �tomo to �QEC. We attempted to drive the memory through this port
to bypass the previously described elements, but the protection from the
symmetry of the non-linear coupler is excessively effective and prevented the
achievement of large enough displacements.

The two reflected signals from the buffer and readout modes merge at the
mixing chamber. The latter is first pre-amplified by a Travelling Wave Para-
metric Amplifier (TWPA) from Lincoln labs [200]. Further amplification is
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performed by a High Electron Mobility Transistor at the 4K stage, and then
a room-temperature amplifier. Subsequently, the signal is down-converted
using an image reject mixer, followed by filtering, amplification, and acquisi-
tion by an ADC of the OPX. With its capacity for real-time digitization and
demodulation, the OPX allows for real-time feedback and implementation
of the transmon qubit reset at the beginning of each pulse sequence. The
complete setup is depicted in (Fig. b.1).
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Buffer Memory

Figure b.1: Schematic of the setup. Each electromagnetic mode in the circuit is
driven by an RF source detuned by the modulation frequency and
whose color matches that of the corresponding mode.
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c
APPENDIX : SAMPLE FABRICAT ION AT ENS DE
LYON

We detail in this section the fabrication process developed at the ENS de
Lyon, presenting both optical and electrical lithography techniques. These
are used to create patterns or deposit structures on a thin layer of tantalum,
sputtered onto a sapphire chip with typical dimensions of 9⇥ 8 mm. These
chips are diced in the Nanolyon clean room from 2 inch wafers, and the
sputtering is performed by the company StarCryo directly on these wafers
following a piranha cleaning.

c.1 optical lithography

Optical lithography is used to pattern structures directly onto the tantalum
film, the smallest dimension of these structures typically being a few mi-
crometers. This would for instance be suited for the fabrication of microwave
resonators, capacitances, or inductances.

Figure c.1: Representation of the optical lithography process. a. The sample ini-
tially consists of a thin layer of tantalum sputtered on top of a sapphire
substrate. b. A layer of optical resist is deposited on top of the tanta-
lum.c. UV light is shined through a mask in order to expose the desired
regions, breaking chains of polymers and weakening the degrading the
photo-sensitive material. d. The sample is exposed to a developer,
MF319 for the S1813 resist, which dissolves away the exposed regions.
e. The exposed tantalum is etched. f. Finally, the resist is removed
using a cleaning protocol.
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appendix: sample fabrication at ens de lyon

An optical resist is first deposited on top of the tantalum layer, consisting
of a light-sensitive organic material. The desired regions are then exposed to
light, using either a LASER or a mask through which light is shined1, after
which a developer is applied to the surface. In the case of positive optical
resists, the photo-sensitive material is degraded when exposed to light and
the developer dissolves away the regions exposed to light. On the opposite,
a negative resist is strengthened by light so that the developer only removes
regions that were not exposed. The exposed regions of tantalum are then
removed using a dry or wet etch, after which the resist is removed to reveal
the patterned structure. This process is represented in Fig. c.1 in the case of
a positive optical resist. In the following, I detail the recipe that I developed
together with other Ph.D. students during the first months of this thesis.

c.1.1 Cleaning

Clean the sample in a beaker filled with NMP (also called PG remover).
The beaker is placed in a sonicator for at least 30 min with the sonication
activated. Rinse with IPA and dry the sample with nitrogen on a cleanroom
wipe.

c.1.2 Coating

Take out the resist bottle from the fridge at least 15 min before spin-coating
in order to consistently have the same viscosity. The bottle is kept in the
fridge to avoid degradation of the resist. Dry the sample for at least 3 min
on a hotplate at 115° C. Let it cool down for 1 min and spin of few drops of
S1813 at 500 RPM for 5 s then 4000 RPM for 55 s, this should yield a resist
thickness of 1.7 � 1.8 µm. Bake the resist at 115° C for 1 min in order to
give it its structural integrity. From this point and until development, the
sample should not be exposed to light. Cover the sample with aluminum of
necessary.

c.1.3 Exposure to light

During this thesis, a Smart Print was used for the lithography which uses a
projector to expose the resist. Mask are exported from GDS files to bitmap,

1 This mask can be a physical mask as is standard in the industry, usually yielding the best
precision, but requiring the fabrication of multiple chips so that the fabrication of the
mask is made profitable. Alternatively, one could use a simple projector as was initially
the case at the ENS, which provides more modularity at the cost of a degraded precision.
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c.2 fabrication of the josephson junctions

turning on or off the corresponding pixel. This allowed us to easily design
new masks, the smallest feature allowed measuring ⇡ 2 µm. The dose was
not calibrated (the intensity of the emitted light was not measured) and an
exposure time of 0.5 s was experimentally determined instead.

Because the regions exposed by the projector are much smaller than the
dimensions of the chip, multiple expositions must be performed. The sample
is moved between each exposition, leading to potential stitching issues. This
issue was mitigated by having a small overlap of ⇡ 2.5 µm between each
exposition window, as slightly overexposed lines are less detrimental to the
chip than a gap between two exposed regions.

c.1.4 Development

The resist is developed using MF319, taken straight from the fridge. Having
a cold MF319 is useful to slow down the development, allowing for larger
margin of errors from the experimentalist. The sample is emerged and
smoothly agitated in the developer for 50s, then immediately rinsed in DI
water for at least 30s in order to stop the development and dried with
nitrogen.

c.1.5 Etching

The sample is etched using HF, emerging the sample and smoothly agitating
for 19 s. The water is then abundantly rinsed with water and dried with
nitrogen. Finally, after an inspection under a microscope to check if the etch
was successful, the optical resist is removed using a bath of NMP in the
sonicator at 60° C for at least 30 min.

c.2 fabrication of the josephson junctions

Josephson junctions have a typical dimension of 200 ⇥ 200 nm2 and are
therefore too small to be fabricated using optical lithography. Instead, a
scanning electron microscope (SEM) is used with allows to reach a precision
of ⇡ 2 nm.

These junctions are fabricated using a Dolan bridge technique [201],
which uses shadow evaporation to deposit two layers of aluminum separated
by an insulating oxide layer. The wafer is covered by a bi-layer of resist
polymethylglutarimide (PMGI) and PMMA, with the PMMA layer sitting
on top of the PMGI. The pattern represented in Fig. c.2a. is exposed using
the SEM, which degrades the electron-sensitive PMMA resist. The electron-
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Figure c.2: a. Pattern exposed during the electrical lithography at the SEM. The
widths W1 and W2 fix the dimensions of the resulting junction. The
dimensions of the bridge are experimentally fixed to 300 nm and
120 nm in order to guarantee its structural integrity, notably preventing
vibration modes from collapsing it. b. Cut along the green axis of
a. showing the two step evaporation and the resulting evaporated
aluminum. The first (dark grey) and second (light grey) layers are
separated by an insulating barrier of AlOx (dark line), created by
introducing O2 to the evaporation chamber between the two aluminum
evaporations. c. Top view of the resulting evaporated aluminum layers,
the color scheme is consistent with b. The Josephson is indicated by
the dashed red box, the separation between the two layers depends on
the resin thickness and evaporation angle.

insensitive PMGI layer is not affected by this process. Development is then
performed in two steps, first dissolving away the exposed PMMA layer and
in a second time the PMGI. This creates the desired bridge of PMMA and
an undercut in the PMGI shown in Fig. c.2b. aluminum is then evaporated
at ±22° in a Plassys evaporator, with an oxidation step separating the
two evaporations. This defines the Al/AlOx/Al structure of the Josephson
junction. The area of the Josephson junction (red box in Fig. c.2c.) is fixed
by the width of the two overlapping fingers W1 and W2, the thickness of the
aluminum oxide being controlled by the duration of the oxidation process
and the pressure of O2. In the following, I detail the recipe that I developed
together with other Ph.D. students during the first months of this thesis. A
picture of the chip after developing the resists is shown in Fig. c.3a., and an
SEM image of a Josephson junction in Fig. c.3b.
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c.2.1 Cleaning

The surface of the sample is thoroughly cleaned before depositing the resists
in order to remove organic residues and limit the presence of two-level
systems near the Josephson junctions. First, we perform a toluene-methanol-
acetone-IPA (TAMI) cleaning where the sample is successively emerged in
a beaker containing these four solvents, and placed in a sonicator at room
temperature for 5 min each.

The sample is then cleaned in a piranha solution for 5 min (without
agitation, the sample is lying at the bottom of the beaker), rinsed with DI
water, and dried with nitrogen.

c.2.2 Spin coating PMGI and PMMA

We first deposit the PMGI at the surface of the sample. The chip is dried
on a hotplate at 200° C for 5 min before cooling down for 2 min. A few
drops of PMGI are then deposited at the surface and the chip is spin-coated
at 500 RPM for 3 s then 2000 RPM for 60 s. This yields a layer thickness
of ⇡ 550 nm. The resist is then baked at 200° C for 5 min. Because we
experienced issues regarding the adherence of the PMGI on the substrate,
this was later increased to 210° C for 10 min.

A few drops of PMMA are then deposited and the chip spin coated at
500 RPM for 3 s then 4000 RPM for 60 s, yielding a thickness of ⇡ 150 nm.
The resin is then baked at 180° C for 15 min.

c.2.3 Electronic lithography

Before the electrical lithography, a thin layer of 10 nm of aluminum is
evaporated at the surface of the non-conductive PMMA resist. This prevents
electrons from accumulating in a localized spot of the resist, which could
then deflect the electron beam.

The lithography is performed using a Zeiss Supra 55VP, the relevant
parameters of the lithography being the tension of 30 keV, working distance
of 7 mm, aperture of 7.5 µm, and dose of 350 µCµm�1. This typically leads
to a pixel size of 2⇥ 2 nm.

c.2.4 Development

The thin aluminum layer is removed using a bath of KOH. The duration of
the dip depends on the concentration of the solution, a visible shift of color
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Figure c.3: a. Picture taken under microscope of the sample after the development
of the PMMA and PMGI. The two pads on the side are made of
tantalum, as the crosses that are used for the alignment during the
electrical lithography. The blue background corresponds to exposed
sapphire. The removed PMMA layer corresponds to the horizontal dark
connecting the two pads, the green halo surrounding it being the PMGI
undercut. b. SEM picture of a Josephson junction for a designed W1

and W2 of 120 nm. The structure of Fig. c.2b. can be easily recognized.

indicating that all aluminum has been removed and the PMMA is visible.
The chip is then rinsed with DI water and dried with nitrogen.

PMMA is developed by emerging and gently stirring the chip in a solution
of 1:3 in volume of MIBK/IPA for 60 s. The MIBK was diluted with IPA in
order to slow down the development of the PMMA. Rinse in IPA for at least
20 s and dry with nitrogen. The PMGI is then developed with cold MF319
for 30 s, after which the sample is rinsed with DI water and blowdried with
nitrogen.

c.2.5 Aluminum evaporation

The sample is placed in the load chamber of a Plassys MEB550S electron
beam evaporator. First, in order to remove the tantalum oxide and have
good contact between the tantalum and the deposited aluminum, argon
milling is performed. Then, a first layer of 20 nm aluminum is deposited at
a rate of 0.5 nm/s while the sample is tilted at 22°. 1 mbar of O2 is then
admitted to the chamber for 50 min which grows the AlOx layer. Finally, a
second layer of 40 nm aluminum is evaporated at the same rate of 0.5 nm/s
with a sample tilted at �22°.
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c.2.6 Lift-off

The remaining resist is removed by placing the sample in a bath of NMP
for about 1 hour at 60°. After this time, the layer of aluminum evaporated
on top of the PMMA (now floating above the surface of the sample in the
NMP), is dispersed by sonicating for a few seconds. The sample is finally
rinsed one final time with DI water and blowdried with nitrogen.

Figure c.4: Picture of the JAWS sample Holder, an Auto-cat chip is placed at
the center. The sample Holder is connected inside the fridge using the
outside SMA ports, and the chip is connected to the sample holder
using wirebonds (not shown here, the chip is simply deposited at its
corresponding location). Once the lid is put in place, a 3D cavity is
defined around the chip which hosts harmonic modes. These are pushed
to large frequencies (� 15 GHz) by reducing the dimensions of the
empty space surrounding the sample, ensuring they do not couple to
modes of the chip.

If the room-temperature resistance of the Josephson junctions is satisfying,
the sample is mounted using wirebounds to a PCD, placed in a sample holder,
and mounted inside a dilution fridge where it will be measured. Otherwise,
junctions are removed using a bath of KOH or aluminum etchant and the
fabrication process is started again. The sample holder used is called a JAWS
(Joint Assembly for the Wiring of Superconducting circuits), developed by
Marius Villiers at ENS Paris, and is represented in Fig. c.4.

c.2.7 Junction resistance

The Josephson energy EJ of a junction can be deduced from its resistance
using the Ambegaokar–Baratof relation, which links the normal state re-
sistance of a junction at zero temperature R(0) and the critical current
Ic = EJ/'0 as
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R(0) =
⇡�

2eIc
. (c.1)

The parameter � is the superconducting gap, with � ⇡ 180 µeV for alu-
minum. The room temperature resistance R(300 K) is measured at a probe
station after the fabrication, from which we deduce R(0) that is typically
10� 20% larger than R(300 K). The room temperature resistance is propor-
tional to 1/W1, 1/W2, and

p
P0t, with P0 the oxidation pressure and t the

time of oxidation. We calibrate the resistance of our junction by fixing P0

and t to the parameters given in the recipe, W2 to 120 nm, and sweep the
value of W1. The dependence of R(300 K) on W1 is represented in Fig. c.5,
from which the necessary width to reach an arbitrary resistance is deduced.

Figure c.5: Dependence of R(300 K) on the junction’s width W1. Average resistance
values are indicated with an orange dot.
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dAPPENDIX : SPECTROSCOPY OF THE BUFFER
MODE

This appendix describes the spectroscopy introduced in Sec. 4.1.2 and used
to reconstruct the evolution of the buffer frequency with the external flux.
The desired value of �ext is first set using a DC pulse, after which an RF tone
is sent to drive the buffer mode at !d. Looking at the signal reflection r(!d),
the buffer frequency !b can be extracted for a particular flux. Repeating
this experiment for different values of �ext gives the evolution of !b (�ext).

The buffer drive is described in this experiment by a propagating field
b̂in(t), with the outgoing signal denoted as b̂out(t). These two fields are linked
by the input/output relation [162]

p
b,c b̂[!] = b̂in[!] + b̂out[!], (d.1)

with b̂[!], b̂in[!] and b̂out[!] the Fourier transform of b̂(t), b̂in(t) and b̂out(t)1.
Note that the buffer loss rate can be decomposed as b = b,i + b,c. The
first term b,i corresponds to the intrinsic loss of the buffer due to surface or
radiative losses for instance, while b,c is the rate at which the buffer decays
through the input line.

The evolution of the buffer field amplitude is given in the Heisenberg
picture by the Langevin equation [202]

@

@t
b̂(t) = � i

~

h
b̂(t), Ĥ

i
� b

2
b̂+

p
b,c b̂in(t), (d.2)

which can alternatively be written in a time-reversed version

@

@t
b̂(t) = � i

~

h
b̂(t), Ĥ

i
+
b
2
b̂�p

b,c b̂out(t). (d.3)

In these equations,
h
b̂(t), Ĥ

i
represents the natural Hamiltonian evolution of

the mode and b
2
b̂ the natural decay of the buffer. The last term p

b,c b̂in(t)

or �p
b,c b̂out(t) originates from the interaction between the propagating

modes of the input line and the buffer mode. To compute the reflection

1 Beware of subtleties in taking this transform [162]
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coefficient r(!d) =
D
b̂in[!d]

E
/
D
b̂out[!d]

E
, we use the Langevin equation

with the Hamiltonian

Ĥ/~ = !mâ†â+ !bb̂
†b̂+ g⇤

2
â†2b̂+ g2â

2b̂†. (d.4)

The 2-to-1 coupling g⇤
2
â†2b̂+ h.c depends on the external flux and is notably

suppressed by the RWA (see Appendix. a) when !b 6= 2!m

Figure d.1: Schematic of buffer spectroscopy measurement. A drive at !d described
by the propagating field b̂in is sent to the buffer through the input line,
and the outgoing signal b̂out is measured.

d.1 !b 6= 2!m , the usual reflection on a cavity

When !b 6= 2!m, the two-to-one coupling Hamiltonian can be neglected,
as well as the memory which no longer couples to the buffer mode. The
Hamiltonian then reduces to

Ĥ/~ = !bb̂
†b̂, (d.5)

and the Langevin equation reads

@

@t
b̂(t) = �i!bb̂(t)�

b
2
b̂+

p
b,c b̂in(t). (d.6)

Going to the frequency space, this equation becomes

⇣
�i�+

b
2

⌘
b̂[!] =

p
b,c b̂in[!] (d.7)

with � = !d � !b. The state of this driven buffer is known to be a coherent
state, which can be treated classically by replacing the operator b̂[!] by a
complex amplitude �[!]. This yields

⇣
�i�+

b
2

⌘
�[!] =

p
b,c �in[!], (d.8)
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which finally gives the reflection coefficient using the input/output relation

r(!) =

p
b,c �

�in
� 1

=
b,c � b,i + 2i�

b,c + b,i � 2i�
.

(d.9)

d.2 !b = 2!m , reflection in presence of 2 photon cou-
pling

When the frequency matching condition of the Auto-cat is verified, the
two-to-one photon coupling cannot be ignored and the full Hamiltonian
of Eq. (d.4) must be considered. For simplicity, the intrinsic loss of the
buffer and memory modes are neglected and the corresponding loss rates are
written as b and m. The system is then described by 2 Langevin equations,
respectively describing the evolution of the buffer and memory mode

@

@t
â(t) = �2ig⇤

2
â(t)†b̂(t)� i!mâ(t)� m

2
â(t) (d.10a)

@

@t
b̂(t) = �ig2â(t)

2 � i!bb̂(t)�
b
2
b̂+

p
b b̂in(t). (d.10b)

Going to the frequency space through a Fourier transform, the Langevin
equations become

✓
i
�

2
� m

2

◆
â[!] = 2ig⇤

2
â[!]†b̂[!] (d.11a)

⇣
i�� b

2

⌘
�[!] +

p
b b̂in[!] = ig2â[!]

2. (d.11b)

� = !d�!b keeps the same definition as in the previous section. Once again,
knowing that the drive displaces the buffer mode to a coherent state, it can
be treated classically and the operator b̂[!] replaced by a complex amplitude
�[!]. The same reasoning cannot be applied to the memory mode however,
whose state converges to a cat state

| mi = µ |↵i+ ⌫ |�↵i . (d.12)

Here, the metastable solution corresponding to the memory remaining in its
vacuum state is neglected. The complex coefficients µ and ⌫ are normalized
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to unity |µ|2 + |⌫|2 = 1, and the cat amplitude ↵ is to be determined. An
equation on ↵[!] is obtained by projecting Eq. (d.11) in the cat manifold
h m| (...) | mi, which yields

�[!] =
1

2g⇤
2

✓
i
m
2

+
�

2

◆
e2iarg(↵[!]) (d.13a)

↵[!]2 =
i

g2

⇣⇣b
2

� i�
⌘
�[!]�

p
b�in[!]

⌘
. (d.13b)

Note that we neglect h↵|�↵i ⌧ 1 to find Eq. (d.13), which is valid for large
↵ only. The photon number in the memory being proportional to the drive
amplitude, this equation is then only valid for large drive amplitudes �in.
Furthermore, we can deduce from Eq. (d.13a) that the amplitude of the
coherent field in the buffer is small at resonance, �[!b] ⌧ 1, due to the large
two-to-one coupling |g2| � m. The reflection coefficient is obtained from
Eq. (d.13a) as

r(!) =

p
b �

�in
� 1

=

p
b

2g⇤
2
�in

✓
i
m
2

+
�

2

◆
e2iarg(↵[!]) � 1.

(d.14)

For large drive amplitudes �in, this coefficient becomes independent of !,
which is verified experimentally. The phase of the memory, arg (↵[!]), is
finally deduced from Eq. (d.13b) as

arg (↵[!]) = ± 1

2g2

⇣
arg
⇣⇣b

2
� i�

⌘
�[!]�

p
b�in[!]

⌘
+
⇡

2

⌘
. (d.15)

The phase of the reflected signal has a specific pattern at ! = !b = 2!m.
A 4⇡ phase shift can be seen, corresponding to the sum of two 2⇡ phase
drops. A first phase drop comes from the term

�
b
2
� i�

�
in the argument

of ↵[!], with a frequency width of b. And inside this phase drop, another
one occurs due to the term 1

2
(im +�), with a width given by m.

d.3 experimental results

The buffer mode’s spectroscopy was performed at different external flux
�ext, to characterize the evolution of !b (�ext). Additionally, this measure-
ment provides a straightforward method to identify �QEC by observing the
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Figure d.2: a. Unwrapped phase of the reflected signal as a function of the drive
frequency !d/2⇡. The corresponding values of �ext are indicated in
the inset. b. Amplitude of the reflected signal as a function of drive
frequency. Same color code for the values of �ext as in a. c. Trajectories
of r(!d) from which a. and b. are obtained.

transition between the two previously described regimes, as illustrated in
Figure d.2.

Ramping up the external flux from �ext = 0.291�0 to 0.333�0, a clear
difference can be seen at �ext ⇡ 0.312�0 where the frequency matching
condition !b = 2!m is verified. There, a 4⇡ drop can be observed in the
phase of the reflected signal, corresponding in Fig. d.2c.iii and c.iv to a
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trajectory circling twice around the point (0,0). Close to �QEC, the system
is in an intermediate regime where the two-to-one photon interaction is only
weakly suppressed by the 1st order RWA. While this interaction still impacts
the reflected signal as evidenced by the secondary loop visible in Fig. d.2c.ii,
c.v and c.vi, it does not result in the characteristic 4⇡ phase drop. Finally,
for �ext = 0.291�0, the buffer is far detuned from the frequency 2!m and
the reflection coefficient r(!d) is well described by Eq. (d.9).

Regarding the buffer linewidth, a significant evolution can be observed
in Fig. d.2a for varying external flux. We attribute this evolution to the
interaction of the buffer with the microwave background or spurious modes
of the device. For our simulations, the value of b was determined at �QEC by
decomposing the 4⇡ phase drop into two distinct 2⇡ phase drops occurring
at the same frequency. These phase drops had respective widths of m/2⇡ =
14 kHz (independently measured) and b/2⇡ = 40 MHz.
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