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Résumé

La these porte sur les géodésiques en percolation de premier passage. On se place sur le
graphe Z? et on considére une famille de variables aléatoires positives, indépendantes et
identiquement distribuées indexées par ’ensemble des arétes, appelées temps de passage.
On définit le temps de tout chemin fini comme la somme du temps de passage de chacune
de ses arétes. Les géodésiques sont alors les chemins de temps minimaux. On s’intéresse
a la question suivante. Considérons une propriété locale de I’environnement des temps de
passage. On appelle cela un motif. Combien de fois une géodésique emprunte un translaté
de ce motif?

Sans hypotheése de moment sur la loi des temps de passage, et en autorisant un atome
en l'infini, on montre que pour un motif donné, en dehors d’un événement de probabilité
exponentiellement faible en la distance entre les extrémités des géodésiques, le nombre de
translatés de ce motif empruntés par les géodésiques est linéaire en la distance entre les
extrémités. On donne également quelques applications de ce résultat.

Mots clés : Percolation de premier passage; Géodésiques.
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Abstract

The thesis focuses on geodesics in first-passage percolation. We consider the graph Z¢ and
a family of nonnegative, independent, and identically distributed random variables indexed
by the set of edges, called passage times. The time of a finite path is defined as the sum of
the passage times of each of its edges. Geodesics are then the paths with minimal time. We
are interested in the following question. Consider a local property of the time environment.
We call it a pattern. How many times does a geodesic cross a translate of this pattern?

Without assuming any moment assumption on the distribution of passage times and
with possibly infinite passage times, it is shown that, apart from an event with exponentially
small probability in the distance between the geodesic endpoints, the number of translates
of the pattern crossed by the geodesics is linear in the distance between the endpoints. Some
applications of this result are also provided.

Keywords: First-passage percolation; Geodesics
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CHAPTER 1

Introduction

1.1 Le modeéle de percolation de premier passage

La percolation de premier passage a été introduite par Hammersley et Welsh en 1965 dans
[11]. Une interprétation de ce modele est I’étude de I’écoulement d’'un liquide dans un milieu
poreux & travers le temps. On consideére que les arétes du graphe Z¢ représentent des canaux
microscopiques et on leur associe un temps de passage aléatoire modélisant le temps que le
liquide met pour s’écouler le long de ce canal. Une question naturelle qui mene a 1’étude de
la percolation de premier passage est alors : combien de temps faut-il attendre avant qu’une
zone donnée du graphe ne soit atteinte par le liquide ?

Si on se place du point de vue plus formel des mathématiques, la percolation de premier
passage est I’étude de distances aléatoires sur un graphe.

Parmi les références classiques sur le sujet, citons le cours de Saint-Flour de Kesten [14]
et la revue plus récente de Auffinger, Damron et Hanson [2]. Cette derniére revue rassemble
notamment de nombreuses questions et conjectures sur la percolation de premier passage.

1.1.1 Définition du modele

Fixons d > 2. Dans ce manuscrit, le modeéle est défini sur le graphe Z¢ classique. Notons &
I’ensemble des arétes du graphe. Les arétes de £ sont celles reliant les sommets x et y tels
que ||z — y||l1 = 1. L’objet aléatoire basique considéré est une famille T'= {T'(e) : e € £}
de variables aléatoires a valeurs dans [0, 00), indépendantes et identiquement distribuées,
définies sur un méme espace probabilisé (€2, F,P). Pour une aréte e, la variable aléatoire
T(e) est appelée temps de passage de l'aréte e. On note £ la loi commune des variables
aléatoires de la famille T' et on note F' sa fonction de répartition. Une extension de ce
modele autorisant les temps de passage a pouvoir étre égaux a oo est présentée dans la



section [[LT.4]

Temps de passage d’un chemin. On appelle chemin une suite 7 = (zo,...,x) de
sommets adjacents du graphe Z4, c’est-a-dire tels que pour tout i = 0, ..., k—1, [|[z;1—2i|[1 =
1. On dit que 7 va de xy a xi. En écrivant m = (ey,...,ex), ou pour tout ¢ = 1,... k,

e; = {x;_1,x;} est I'aréte reliant les sommets z;_; et x;, on peut identifier un chemin entre
deux sommets avec la suite des arétes qu’il emprunte. On dit que k est la taille du chemin
défini précédemment et on note |7| = k. Un chemin est dit auto-évitant s'il visite chaque

sommet au plus une fois. Le temps de passage d'un chemin 7 = (e, ..., ex) est défini par
k
T(r) = Z T(e;)
i=1

Dans I'exemple de ’écoulement d'un liquide dans un milieu poreux, cela peut s’interpréter
comme le temps que met le liquide a traverser le chemin de canaux microscopiques considéré.

Temps géodésique et géodésique entre deux sommets. Pour deux sommets x et y,
on définit le temps géodésique de x a y :

t(z,y) = inf{T(7) : 7w est un chemin de = a y}. (1.1.1)

En remarquant que le temps géodésique satisfait 'inégalité triangulaire, on obtient que ¢(-, -)
est une pseudo-distance aléatoire sur le graphe Z2. Si de plus £(0) = 0, c’est une distance
aléatoire.

Si on cherche une nouvelle fois a illustrer ces premieres définitions avec I’exemple donné
en introduction de cette section, le temps géodésique entre deux sommets s’interprete comme
le temps que le liquide met, partant de x, pour atteindre y la premiere fois.

Un chemin auto-évitant v de x a y tel que T'(y) = t(z,y) est une géodésique entre z et

y. Sans hypothese supplémentaire sur la loi £, on ne peut pas affirmer que les géodésiques
existent entre deux sommets avec probabilité 1. Nous y reviendrons dans la section [1.2]

Boules pour les temps géodésiques. Pour z et y dans RY, on définit également t(z,y)
le temps géodésique entre = et y comme étant égal a t(x’,y') ou a’ (resp. ') est I'unique
sommet de Z? tel que x € 2/ + [0,1)¢ (resp. y € v + [0,1)%). Pour z € Z% et r un réel
strictement positif, on définit alors les boules aléatoires

B(z,7) ={y € R : t(z,y) <r}et B(z,7) = Z? N B(z,7).

La boule B(z,r) définie ci-dessus est la boule de rayon r et de centre z pour la pseudo-distance
aléatoire t(-, -).



1.1.2 Approximation au premier ordre du temps géodésique sous
une hypothése de moment

1.1.2.1 Constante de temps.

Une approximation au premier ordre du temps ¢(0,ne1), ol £, est le premier vecteur de la
base canonique, est donnée par le théoreme suivant.

Théoréme 1.1.1 (Théoreme 2.18 in [I4]). Supposons que
Emin[Tl,...,ng] < 00, (112)

ot les wvariables T; sont des copies indépendantes de T(e). Alors, il existe une constante
w(er) € [0,00) (appelée la constante de temps) telle que

lim t(0,ney)
n—oo n

= u(ey) p.s. et dans L'

Notons que I'hypothese ((1.1.2)) est nécessaire pour avoir la convergence presque siire ou
dans L'. En effet, sans cette hypothése, on peut montrer rapidement que pour tout ¢ > 0,

avec probabilité 1,
t(0, ne
lim sup 40, ne1) > c.
n n

La preuve du théoréme est une application du théoréme ergodique sous-additif (le
théoreme 2.2 dans [2]) a la famille de variables aléatoires (Xyn)gc,ne, définie pour tout
0 <m <npar X,,, =T (me1,ner). Toujours sous I'hypothese ([1.1.2), la preuve s’adapte a
tout x € Q% et on obtient une fonction homogene 1 : Q¢ — R telle que, pour tout x € Q,

lim t(0, nx)

n—o0 n

= u(z) p.s. et dans L'. (1.1.3)

Cette application peut étre prolongée sur RY par continuité et ce prolongement, noté
également, est une semi-norme sur R¢ qui fournit une approximation de la distance aléatoire
t(-,-). Lorsque £(0) = 0, les temps de passage sont tous strictement positifs et I"application
i est une norme sur RY. La condition pour savoir si ;4 est une norme ou simplement une
semi-norme est donnée par le théoreme suivant dii a Kesten. Notons p, la probabilité critique
de percolation sur Z? (on peut se référer & [10] pour plus d’informations sur la percolation).

Théoréme 1.1.2 (Théoréme 6.1 dans [14]). Si £(0) > p., alors pour tout x € Z4, u(z) = 0.
Si £(0) < pe alors u est une norme sur RY.

1.1.2.2 Théoreme de forme asymptotique.

Une question naturelle est de savoir si la convergence de ((1.1.3)) est uniforme dans toutes les
directions. Le théoreme suivant répond a cette question.



Théoréme 1.1.3 (Cox-Durrett [7]). Supposons que
Emin[T¢, ..., T5] < oo, (1.1.4)
ot les variables T; sont des copies indépendantes de T'(e). Alors,
t(0,z) = p(z) + o(z) quand ||x|; — oo p.s.

Lorsque g est une norme, cela permet de décrire le comportement au premier ordre de
la boule B(0,7) quand 7 tend vers I'infini. C’est I'objet du théoréme de forme asymptotique
ci-dessous. Notons B, = {z € R? : u(z) < 1} et pour tout sous-ensemble S de R? et tout
reR,rS={rs:seS}

Théoréme 1.1.4 (Cox-Durrett [7]). Supposons que l’hypothése (1.1.4]) est satisfaite et que
L(0) < p.. Alors, pour tout € > 0,

B(0
P ((1 —¢)B, C (0.7) C (1 +¢)B, pour tout r assez gmnd) = 1.
r

Notons que dans cette these, on se placera dans le cadre ou u est une norme.

1.1.3 La semi-norme

1.1.3.1 Continuité de la constante de temps comme fonction de la loi des temps
de passage

La sous-additivité permet d’obtenir I'existence de la constante de temps définie ci-dessus
mais elle ne donne aucune idée de la valeur de p. Déterminer le role de la loi £ dans la
description du temps géodésique, et en particulier ici déterminer p(e1) en fonction de L, est
un probléme difficile et fondamental en percolation de premier passage. Ainsi, aucune loi
non triviale permettant un calcul exact de la constante de temps n’est connue. Une question
reliée & ce sujet est la suivante : pour deux lois £ et £ données, quelle est la différence entre
leurs constantes de temps pu(eq) et fi(e1) 7 Plusieurs résultats existent a ce propos et 'un des
plus importants est le suivant.

Théoréme 1.1.5 (Cox-Kesten [§], Kesten [14]). Si une suite (L), de lois converge fai-
blement vers une loi L, en notant (u,(e1)), p(e1) leurs constantes de temps respectives, on
a

dim yu(e1) = p(e).

Notons que dans ce résultat, aucune hypothese de moment n’est faite sur les lois. La

t(0,ne
constante de temps est définie dans ce cadre élargi comme la limite en probabilité de M
n

L’existence et le caractere fini de cette constante sont établis par Cox et Kesten dans [7].
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1.1.3.2 Principe de comparaison de van den Berg-Kesten.

Un autre résultat permettant de comparer les constantes de temps de deux lois elles-mémes
comparables selon un ordre partiel précisé ci-dessous a été prouvé par van den Berg et
Kesten dans [I8]. Nous reviendrons sur ce résultat dans la section puisque le résultat
principal de cette these, le théoréme[1.3.5] permet d’en donner une preuve simple ainsi qu’une
extension dans le cadre plus général de la section [I.1.4]

Une motivation. Pour motiver le résultat de van den Berg et Kesten énoncé ci-dessous
dans le théoreme commencons par l'observation suivante. Considérons deux lois £ et
L distinctes telles que pour tout t € Ry, F(t) < F(t) o F (resp. F) est la fonction de
répartition de la loi £ (resp. £~) En couplant les temps de passage des arétes du graphe de
sorte que pour tout e € Z?, T(e) < T(e), on obtient immédiatement que fi(e1) < u(e1) (ot
fi(e1) est la constante de temps pour la loi £). Une question naturelle est : a-t-on stricte
inégalité ? Sous les hypotheses précisées ci-dessous, le principe de comparaison de van den

Berg-Kesten permet de répondre par I'affirmative a cette question.

Lois utiles et ordre partiel sur les lois sur [0,00). Deux définitions sont nécessaires
pour énoncer le résultat. La premiere fait partie des hypotheses sur la loi et la deuxieme
donne un ordre partiel entre les lois sur [0, c0).

Définition 1.1.6. Une loi L sur [0,00) est dite utile si les deuz conditions suivantes sont
satisfaites :

E(tmin) < Pe qUﬁmd tmin = 07

L(tmin) < Do quand tpi, > 0,

ol tyin désigne le minimum du support de la loi, p. est la probabilité critique de percolation
sur Z% est ]7(:) est la probabilité critique en percolation orienté sur Z (voir section 12.8 de

[10)).

Définition 1.1.7. Soient £ et L deuz lois sur [0,00). On dit que L est plus variable que L
si pour toute fonction croissante et concave ¢ : R — R,

[ede< [wac

quand les deuz intégrales existent. Si de plus £ # L, on dit que L est strictement plus variable
que L.

Exemple 1.1.8. Si £ domine L, ¢’est-d-dire si pour tout x, F(x) < F(z), alors L est plus
variable que L.

Le théoréme 2.6 de [I8] et le lemme 6.1 de [16] garantissent que £ est plus variable que £
si et seulement si I’hypotheése suivante est satisfaite il existe un couple de variables aléatoires



(7,7) définies sur un méme espace probabilisé, de lois marginales respectives L et L et telles
que
E[7|r] < 7.

Résultat de van den Berg-Kesten.

Théoréme 1.1.9 (Théoreme 2.9 de [I8]). Soient £ et £ deuz lois sur [0,00), toutes deux
d’espérances finies, telles que L est utile, L # L et telles qu’il existe un couple de variables
aléatoires (1,7) définies sur un méme espace probabilisé, de lois marginales respectives L et
L telles que

E[7|r] < 7.

Alors, en notant p(ey) (resp. ji(1)) la constante de temps pour la loi £ (resp. L),
fi(e1) < pler).

Remarque 1.1.10. Le théoréme[I.1.9 est énoncé pour €1 mais la preuve est identique lorsque
g1 est remplacé par n'importe quel x € Z2 tel que x # 0.

Remarque 1.1.11. L’inégalité large dans le résultat du théoréme[I.1.9 est élémentaire. Elle
est montrée dans la section |1.3.4.4)

Une conséquence de ce résultat est 'observation suivante. Soit £ une loi sur [0, co) utile
et d’espérance finie. Supposons pour ce paragraphe que le support de la loi £ est non borné
et notons pour tout x € R, £, la loi obtenue en tronquant la loi £ a x. Autrement dit, si T
est de loi £, alors £, est la loi de min(7, z). Pour tout z € R, notons pu,(e1) la constante
de temps pour la loi £,. La continuité de la constante de temps comme fonction de la loi
des temps de passage donne que

1z (€1) PR 1(e1).
Une question naturelle est alors de savoir si pour un z assez grand on peut avoir

pe(€1) = p(er).

Sous les hypotheses du théoreme [1.1.9] le principe de comparaison de van den Berg-Kesten
prouve que ce n’est pas possible et qu’on a pour tout z € R,

pa(e1) < pler). (1.1.5)

Généralisation de Marchand [16]. Deux conditions sont présentes dans la définition
de loi utile. Comme cela est précisé dans la remarque 2.14 de [18], la condition £(0) < p.
est nécessaire. En effet, sinon £(0) > p. et pu(e1) = 0 par le théoréme [1.1.2] On peut alors
en déduire que fi(e1) = 0. En revanche, le résultat de Marchand dans [16] énoncé ci-dessous
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permet, en dimension 2, de supprimer la condition
L(tmin) < 176> quand t,;, > 0. (1.1.6)

Lorsque tin > 0 et que L(tmin) > 173, le probléme fait intervenir la percolation orientée. Dans
ce cas, la plus grande partie de chaque géodésique reliant 'origine a un point tres éloigné
appartenant au cone de percolation est un chemin orienté empruntant des arétes de temps
minimal. Pour un sommet = dans ce cone, on a alors () = tmia||2||1 et si de plus tumin = fmin
(0l Zmin est le minimum du support de £) on a aussi ji(z) = ty||z|. On ne peut alors pas
espérer de généralisation du principe de comparaison de van den Berg et Kesten. Pour plus
d’explications, on peut se référer a [16].

La généralisation de Marchand énoncée ci-dessous est plus forte que le théoreme [1.1.9]
sur deux aspects : en plus de 'aspect développé ci-dessus, I’hypothése de moment sur £ et
L est supprimée.

Théoréme 1.1.12 (Théoreme 1.2 de [16]). Supposons que d = 2. Soit L une loi sur [0,00)
telle que £(0) < p.. Soit L une loi sur [0,00) telle que £ # L et telle qu’il existe un couple
de variables aléatoires (1,7) définies sur un méme espace probabilisé, de lois marginales
respectives L et L telles que

E[7|r] < 7.

Alors
fi(e1) < p(er)-

1.1.4 Extension du modéle en autorisant un atome en ’infini

Supposons maintenant que 'on autorise que L£(oco) > 0. On peut alors définir le temps de
passage d’un chemin et le temps géodésique entre deux sommets exactement de la méme
fagon que dans la section [I.I.1} Une des premiéres questions qui intervient est également de
savoir si on peut obtenir une approximation au premier ordre du temps géodésique.

Pour commencer, si le poids de ’atome en 'infini est trop grand, alors les arétes dont le
temps de passage est fini ne percolent pas et pour tout sommet z € Z%, pour tout y € Z¢
tel que ||z — y||; est assez grand, t(x,y) = 0o. C’est pourquoi I’hypothese suivante, que 'on
suppose satisfaite dans toute la suite, est naturelle :

£L([0,00)) > pe. (1.1.7)

En disant qu’'une aréte e est ouverte si son temps de passage T'(e) est fini et fermée sinon,
alors nous donne que ce modele de percolation est sucritique. Ainsi, presque stirement,
il existe un unique cluster infini d’arétes dont le temps de passage est fini que I’on note C.

Ce cadre est étudié par Cerf et Théret dans [5]. Nous décrivons ci-dessous quelques
uns de leurs résultats. Commencons par quelques notations. Par , il existe M > 0
tel que L([0, M]) > p.. Fixons un tel M. On note Cys le cluster infini pour la percolation

(]IT(G)SM,G € 5) sur Z%, qui existe et est unique p.s. Pour tout x € R, on note p(x) le

7



sommet aléatoire de Z? tel que p(x) € Cys et tel que ||z — p(x)||; est minimal. S’il existe
plusieurs sommets de Cy; & une distance minimale de x, on choisit ¢(z) en suivant une regle
déterministe. Le théoréeme suivant permet alors de définir la constante de temps dans ce
cadre.

Théoréme 1.1.13 (Théoreme 1 de [5]). Supposons que L([0,00)) > p.. Alors il existe une
fonction déterministe p = R? — [0, 00) telle que

vr € Z¢, lim t(¢(0), p(nz))

n—oo n

= u(z) p.s. et dans L.

Puis le théoreme suivant permet de déterminer dans quel cas la fonction p donnée par le
théoréme [LIT.13] est une norme.

Théoréme 1.1.14 (Théoreme 2 de [5]). Supposons que L([0,00)) > pe.
e Si L(0) > pe, alors p est nulle.

o Si L(0) < pe, alors p est une norme.

La fonction i dépend de la dimension d et de la loi £ des temps de passages des arétes
mais ne dépend pas du réel M fixé tel que L£([0, M]) > p.. Cela découle du théoreme 4 de
[5] énoncé ci-dessous. Pour tout x € R? on note p.o(x) le sommet aléatoire de Z? tel que
Voo(T) € Cx et tel que ||z — poo(x)]|1 soit minimal. S’il existe plusieurs sommets de C,, & une
distance minimale de x, on choisit ¢ () en suivant une régle déterministe.

Théoréme 1.1.15 (Théoreme 4 de [5]). Supposons que L([0,00)) > p.. Alors

(90(0), oo (n))

n

Vr € 7%, nll_g)lot = u(x) en probabilité.

Par conséquent, la fonction p du théoréme ne dépend pas de la constante M vérifiant
L([0, M]) > p. choisie dans la définition de .

Le théoreme |1.1.15/garantit également que lorsque 'hypothese ([1.1.2)) est vérifiée, la semi-
norme obtenue grace au théoreme [I.1.1] coincide avec celle obtenue dans la section [[.1.2.1]
Dans [5], Cerf et Théret établissent également différents résultats de forme asymptotique.

Continuité de la constante de temps comme fonction de la loi des temps de
passage dans ce cadre. Dans [9], Garet, Marchand, Procaccia et Théret montrent une
généralisation du théoreme [I.1.5 dans ce cadre.

Théoréme 1.1.16 (Théoreme 1.2 de [9]). Soient L et (L), des lois sur [0, 00] telles que pour
tout n € N, £,,([0,00)) > p. et L([0,00)) > p.. Notons (u,), i les semi-normes respectives
données par le théoréme|1.1.15. Si (L), converge faiblement vers L, alors

lim -~ sup |pn(2) — p(z)| =0,

n—00
reSd—1

ou St ={xr e R : ||z|, = 1}.



Caractere lipschitzien de la constante de temps pour la percolation de Bernoulli.
Pour tout p > p., notons £, = pd; + (1 — p)ds et p1, la norme donnée par le théoreme
pour la loi £,. Comme corollaire du théoréme , on a que l'application p — p, est
continue sur (p, 1]. Dans [4], Cerf et Dembin obtiennent un meilleur résultat de régularité
énoncé ci-dessous.

Théoréme 1.1.17 (Théoreme 1.2 de [4]). Soit py > p.. Alors il existe une constante ko qui
dépend seulement de d et py, telle que

Vp,q € [po, 1], sup |pp(x) — pre(x)] < Kolg — pl.

reSd—1

1.2 (Géodésiques en percolation de premier passage

Cette these porte sur les géodésiques, qui font partie des objets centraux en percolation de
premier passage. Commencons par rappeler la définition. Pour z et y deux sommets de Z,
une géodésique de x & y est un chemin auto-évitant v de z a y tel que T(v) = t(z,y). On
présente dans cette section quelques résultats sur les géodésiques.

1.2.1 Existence et unicité

Existence des géodésiques. Revenons pour le moment au cadre défini en section [I.1.1],
autrement dit supposons que L£(oco) = 0. La toute premiere question qui vient apres la
définition de géodésique est celle de son existence. Une partie de la réponse est donnée par
le théoreme ci-dessous.

Théoréme 1.2.1 ([14],[19],[20]). Lorsque L(c0) = 0, presque sirement, pour tout x,y € Z,
il existe au moins une géodésique entre x et y des que ['une des conditions suivantes est
satisfaite :

1. d=2,

2. L(0) < pe,

3. L(0) > p.,

4. L((0,h)) =0 pour un certain h > 0.

Prouver 'existence presque stire des géodésiques en dimension d > 3 lorsque £(0) = p,
reste encore une question ouverte. Le résultat du théoreme ci-dessus est donné par le
corollaire 1.3 de l'article [19] de Wierman et Reh dans le cas de la dimension d = 2 et par le
théoréme 2 de l'article [20] de Zhang dans le cas £(0) > p.. Pour le cas £(0) < p,, le lecteur
peut se référer a la section 9.23 de [14] ou a la proposition 4.4 de [2]. Enfin, la preuve dans
le cas ou L£((0,h)) = 0 pour un certain h > 0 est assez courte et écrite dans la remarque 1.3
de [3].

Lorsque L(o0) > 0, £([0,00)) > p. et L(0) < p., la preuve de [2] s’adapte facilement.
Une preuve est donnée dans l'annexe [3.A]



Unicité des géodésiques. Une condition suffisante pour qu’entre tout couple de sommets,
il existe une unique géodésique est que la loi £ soit une loi continue. En revanche, lorsque
la loi possede un atome, il n’y a pas forcément unicité des géodésiques. Le théoreme 1
de [I7] affirme que lorsque £ est une loi utile sur [0,00) et posséde un atome, le nombre
de géodésiques entre deux sommets a une croissance exponentielle en la distance entre les
sommets. On revient sur ce résultat dans la section [.3.4.1]

1.2.2 Taille des géodésiques.

La taille des géodésiques est controlée par le résultat suivant lorsque £(0) < p..

Théoréme 1.2.2 (Théoréme 4.6 de [2]). Supposons que L(0) < p. et L(o0) = 0. Alors il
existe deur constantes strictement positives M et C' telles que

1
P(m(z) > M|z||y) < exp <—C’Hx||f> pour tout x € 72,

ot m(x) = max {|y| : v est une géodésique de 0 d x}.

L’étude de la différence de taille entre les géodésiques entre deux sommets dans un cadre
ou il n’y a pas unicité est 'objet de la section [1.3.4.2

1.2.3 Résultat d’Andjel et Vares

Rappelons . Lorsque la loi £ est une loi sur [0, 00), utile et d’espérance finie, en notant
iz (g1) la constante de temps pour la loi obtenue en tronquant la loi £ a x, on obtient pour
tout z € R

pa(€1) < plen).

Cela suggere qu’il est plus efficace pour aller d'un sommet a un autre sommet distant d’em-
prunter une certaine proportion strictement positive d’arétes avec un temps de passage tres
grand plutdt que d’essayer de toujours les éviter. Le résultat suivant d’Andjel et Vares [I]
confirme et précise cette vision.

Théoréme 1.2.3 (Théoreme 2.3 de [1]). Supposons que L soit une loi utile sur [0, 00) avec
un support non borné. Alors, pour tout M strictement positif, il existe € = (M) > 0 et
a = a(M) > 0 tel que pour tout x € 72,

ecy

P (EI une géodésique y de 0 a x telle que Z]lT(e)zM < Oé||:v||1) < e~eliel

1.2.4 Mesure empirique des temps le long des géodésiques

Bates [3] établit plusieurs énoncés du type suivant. Fixons une direction ¢ € S 1. Pour
une loi £ générique et raisonnable, il existe une mesure de probabilité v(&) telle que, avec
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probabilité 1, la mesure empirique

1
Lo

> Ore)

B |’7n| eEYTn

converge vers v(£) ou, pour tout n, v, est I'une des géodésiques de 0 a |n&|.

Les mesures v(£) que l'on obtient ainsi sont nécessairement absolument continues par
rapport a L. Le résultat principal de cette these (le théoreme donne immédiatement
que L est absolument continue devant toute mesure v(£) apparaissant ainsi.

1.3 Résultats de la these

1.3.1 Cadre

Soit £ une loi sur [0,00). Lorsque le support de la loi £ est non borné, le théoreme m
d’Andjel et Vares garantit sous certaines hypotheses qu’en dehors d’un événement de probabi-
lité exponentiellement faible en la distance entre les sommets qu’elles relient, les géodésiques
empruntent une proportion positive d’arétes plus grandes que n’importe quel seuil qu’on s’est
fixé. Supposons maintenant que la loi £ posséde un atome que I'on note . Alors, presque
stirement, la configuration de 4 arétes de temps égaux a « de la figure apparait dans le
graphe une infinité de fois. On peut se poser la question suivante.

K UA

ur K
FIGURE 1.1 : Motif utilisé pour prouver le théoréme 1 de [I7] a l'aide du théoréme Les
temps de passage des quatre arétes du carré sont tous égaux a k.

(Q) : A-t-on également qu’en dehors d’'un événement de probabilité exponentiellement faible,
toute géodésique emprunte un nombre linéaire de configurations identiques a celle de

la figure [I.1]7

Pour répondre a cette question, il faut commencer par donner un sens a "emprunter la
configuration". Lorsque 'on dit qu’un chemin emprunte une aréte e, la signification est
claire : cela signifie que 'aréte apparait dans la suite d’arétes qui compose le chemin. En
revanche, pour la configuration de la figure [1.1] cela doit étre précisé. Dans cet exemple,
disons qu'un chemin emprunte cette configuration s’il passe par u® et v™ et si la portion
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de ce chemin entre u” et v* emprunte consécutivement I’aréte du bas puis celle de droite
ou consécutivement 'aréte de gauche puis celle du haut. Supposons que la réponse a la
question (Q) soit positive. Alors, puisqu’a chacune de ces configurations empruntée par une
géodésique v on obtient une autre géodésique en remplacant la partie de ~ reliant u” et
v) par lautre chemin de la configuration, on obtient que le nombre de géodésique entre
deux sommets croit exponentiellement en la distance entre ces sommets. C’est le résultat du
théoreme 1 de Nakajima dans [I7] et cela est présenté plus en détail dans la section [1.3.4.1]

D’autres résultats de ce type pour d’autres configurations particulieres ont été montrés
par van den Berg et Kesten dans [I8] et par Krishnan, Rassoul-Agha et Seppaldinen dans
[15]. L'un des objectifs de cette these est d’unifier et de généraliser ces résultats. La premiére
étape pour cela est de définir la notion de motifs.

Motifs. De facon informelle, un motif est composé de quatre éléments :

« une boite, c¢’est-a-dire I'ensemble de sommets (ou d’arétes) dans lequel on spécifie
Ienvironnement. Dans 'exemple précédent : I’ensemble des quatre arétes formant le
carré de la figure [1.1],

o un événement qui ne dépend que des arétes de la boite donnée ci-dessus. Dans I'exemple
précédent : 'événement sur lequel toutes les arétes du carré de la figure[I.Tont un temps
de passage égal a k,

o deux sommets qui appartiennent au bord de la boite et que ’on appelle points d’entrée
et de sortie du motif. Ces derniers servent a donner un sens a "emprunter le motif".
Dans I'exemple précédent : les sommets u® et v* sur la figure [1.1]

Formellement, la définition d’'un motif est donnée ci-dessous. On se place dans cette
section dans le cadre ou on autorise £(oc0) a éventuellement étre strictement positif. Pour
un ensemble B de sommets, on note 0B son bord, c’est-a-dire ’ensemble des sommets qui
sont dans B et qui sont reliés par une aréte a un sommet qui n’est pas dans B. On fait un
abus de langage en disant qu’une aréte e = {u, v} appartient & un ensemble de sommets si
u et v sont dans cet ensemble.

Définition 1.3.1. On dit que P = (A, u’, v™, AD) est un motif si les trois conditions sui-
vantes sont satisfaites :

o il existe Ly,..., Ly des entiers positifs tels qu’au moins ['un d’entre euz est non nul
(pour éviter les trivialités) et tels que

d
A: H{077L1}7
i=1

o ul et v sont deux sommets distincts appartenant au bord de A,

o AN est un événement qui ne dépend que des temps de passage des arétes de A.

12



Chemin empruntant un motif. Un motif est par définition ancré en 0. On s’intéresse a
I’ensemble de ses translatés. Les translations portent a la fois sur la boite, les points d’entrée
et de sortie et I’événement. De fagon informelle, on dit qu’un chemin emprunte un translaté
donné du motif s’il passe par ses points d’entrée et de sortie (dans n’importe quel ordre) et si
entre ces deux sommets, il est contenu dans la boite. Dans la suite, par commodité, lorsque
le motif original est fixé, on désigne également par "le motif' n’importe quel translaté de
celui-ci. De fagon formelle, on le définit de la maniere suivante.
Soit x € Z%. On définit :

o poury € 2%, 0,y =y — x,
e pour e = {u, v} une aréte reliant deux sommets u et v, 0,e = {0,u,0,v}.

De fagon similaire, si m = (zo, . .., ) est un chemin, on définit 8,7 = (6,0, . . ., 0,2%). Enfin,
on définit #, T comme ’environnement 7" translaté de —zx, c¢’est-a-dire la famille de variables
aléatoires indexée par les arétes de Z? définie pour tout e € £ par

(6.T)(e) = T(6—.0).

Définition 1.3.2. Soit P = (A, ud, v, AY) un motif. Soit @ un chemin auto-évitant et
r € Z%. On dit que x satisfait la condition (m;B) si les deux conditions suivantes sont
satisfaites :

1. 0,7 visite les sommets u™ et v™, et le sous-chemin de 0,7 entre u™ et v™ est contenu
dans A,

2.0, T € AN,

Quand le motif est fixé et qu’il n’y a pas d’ambiguité, on dit aussi "7 emprunte le motif
dans _,A" au lieu de "z satisfait la condition (7;9)". Notons que lorsque le chemin 7 est
une géodésique, s’il emprunte le motif dans #_, A, alors le sous-chemin de 0,7 entre u® et v*
est 'un des chemins optimaux entre u® et v* dans I'environnement 6,7 parmi les chemins
contenus dans A.

Pour tout chemin fini auto-évitant 7, on note :

Nm(ﬂ—) = Z 12 satisfait 1a condition (m,P)- (131)

x€Z4

Autrement dit, N¥®(r) est le nombre de fois que 7 emprunte le motif. Quand le motif
B est fixé et quand N¥*(7) > 1, on dit simplement que le chemin 7 emprunte le motif.
Avec ces définitions, 1'objectif est alors d’étudier le comportement de N*¥(v) pour toutes les
géodésiques v de 0 & = quand ||z||; devient grand.

Motif valable. Pour commencer, remarquons qu’il existe des motifs que les géodésiques
ne peuvent pas emprunter. Un exemple d'un tel motif, représenté dans la figure [1.2] est le
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1 1
suivant. Prenons d = 2 et £ = 551 + 554. Considérons le motif P = (A,uAmA,AA) ou

A={0,1} x{0,1,2,3}, u* = (0,2), v* = (0,1) et A* est 'événement sur lequel toute aréte
de A adjacente & u® ou & v a un temps de passage égal & 4 et toute autre aréte de A a un
temps de passage égal a 1. En utilisant les notations de la figure [1.2] on remarque que le
seul chemin optimal entre u* et v* contenu dans le motif est le chemin (u*,v*). Or, aucun
chemin parmi (a,u®,v?), (b,u®,v"), (u*,v*,e) et (u?,v*,d) n’est une géodésique. Ainsi,
toute géodésique qui emprunterait ce motif devrait contenir le chemin (c, u®,v*, f) mais ce

chemin n’est pas une géodésique puisque le chemin (¢, f) a un temps de passage plus court.

a
A
ce u b
fe e
UA
d

FIGURE 1.2 : Exemple d’un motif non valable. Les temps de passage des arétes rouges valent 4
et ceux des arétes vertes valent 1.

Cela nous conduit a définir la notion de motif valable qui sont des motifs ne présentant pas
une incompatibilité & étre empruntés par une géodésique. Nous avons choisi une définition
simple a vérifier, peu contraignante et assurant que le motif valable peut étre emprunté par
une géodésique. Signalons néanmoins que ce n’est pas une condition nécessaire et suffisante.

Définition 1.3.3. Notons {e1,...,eq4} les vecteurs de la base canonique. Un vecteur normal
unitaire extérieur associé a un sommet z du bord de A est un élément o de [’ensemble
{%e1, ..., £eq} tel que z + a nappartienne pas a A.

Définition 1.3.4. Un motif B = (A, u™,v™, A*) est valable si les trois conditions suivantes
sont satisfaites :

o A" est réalisé avec probabilité strictement positive,

o quand A est réalisé, il existe un chemin entre u® et v™, contenu dans A, dont le temps
de passage est fini,

o ['une des deux conditions suivantes est satisfaite :

— L a un support non borné,

— 4l existe deux vecteurs normauz unitaires extérieurs distincts, l'un associé a u®,

Pautre o v™.
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Notons que la deuxieme condition est toujours satisfaite lorsque L£(oco) = 0. La troi-
sieme condition permet d’éliminer les motifs qui ne pourraient pas étre empruntés par une
géodésique, a l'image de celui de la figure [1.2]

1.3.2 Résultat principal de la these

Nous pouvons maintenant énoncer le résultat principal de la these. On se place dans le cadre
ou L est une loi sur [0, co]. On étend la définition de loi utile a ce cadre : une loi £ sur [0, o0
est utile si les deux conditions de la définition [1.1.6] sont satisfaites. Puisqu’on n’exclut pas
le cas L(00) > 0, il peut exister des sommets entre lesquels tous les chemins ont un temps
de passage infini. On définit donc ’ensemble aléatoire suivant :

¢ = {(z,y) € Z* x Z* : 3 un chemin 7 entre z et y tel que T'(1) < 00.}

Le résultat principal de la these est le suivant.

Théoréme 1.3.5. Soit P = (A, ud, 0™, AY) un motif valable. Supposons que L est utile
(définition et que L([0,00)) > p.. Alors il existe a« > 0, py > 0 et P > 0 tels que pour
tout v € 77,

P ((O,a:) € ¢ et 3 une géodésique v de 0 a x telle que N*(y) < aH:EH1> < Brelel,

On retrouve comme cas particulier le théoréme [I.2.3] en prenant le motif constitué d’une
seule aréte P = ({ud, v}, u, v, AY) ot v = (0,...,0), v* = (1,0,...,0) et A" est
I’événement sur lequel 'unique aréte a un temps plus grand que M.

Comparaison avec d’autres résultats existant. Montrer 'existence d’une constante
¢ > 0 telle que, pour tout n assez grand,

E[N*(y(n)] > en, (1.3.2)

ou P est un motif particulier fixé et ou y(n) est la premiere géodésique de 0 a ne; (ou les
géodésiques sont ordonnées dans un ordre quelconque donné), a été un résultat intermédiaire
clé pour montrer plusieurs propriétés en percolation de premier passage. Le premier résultat
établi suivant ce plan est le principe de comparaison de van den Berg et Kesten [I8] énoncé
dans le théoreme [[.1.9) C’est donc également dans cet article que le premier résultat de
type est établi. Puis, dans [I7], Nakajima prouve une version de pour le
motif de la figure [I.1 pour montrer que le nombre de géodésiques entre deux sommets croit
exponentiellement en la distance entre les sommets si la loi possede un atome. Enfin, les
résultats les plus récents de ce type apparaissent dans un article de Krishnan, Rassoul-Agha
et Seppaldinen [I5] (théoremes 5.4 et 6.2 de [I5]). Ils montrent pour différents motifs
et pour des géodésiques spécifiques puis utilisent ces résultats pour obtenir des propriétés
sur la taille des géodésiques et sur la stricte concavité de la constante de temps vue comme
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une fonction du décalage des temps de passage. Ces résultats sont exposés plus en détails
dans la section et le théoreme [1.3.5] y est utilisé pour les renforcer.

Le théoreme est un résultat plus fort que les résultats du type (1.3.2)) de [I5], [17]
et [I8] sur trois aspects développés ci-dessous :

1. Il donne un résultat pour des motifs généraux alors que les résultats dans [15], [17] et
[18] sont prouvés dans chaque cas pour un motif spécifique.

2. Dans le cas ou il n’y a pas unicité des géodésiques, il donne un résultat pour toutes les
géodésiques et pas seulement pour une géodésique particuliere.

3. Il donne une croissance au moins linéaire du nombre de motifs empruntés par les
géodésiques en dehors d’un événement de probabilité exponentiellement faible, et pas
uniquement un résultat en espérance.

Depuis la preuve donnée par van den Berg et Kesten, il est envisagé que doit
étre vrai pour tout motif raisonnable. Comme cela a été expliqué ci-dessus, a en
effet été démontré pour plusieurs motifs spécifiques dans [I5], [I7] et [I8]. Dans une partie
de la preuve de , on crée un nouvel environnement dans lequel les géodésiques sont
contraintes d’emprunter le motif. Lorsque le support de £ est non borné, I'argument est
relativement simple. Cependant, lorsque le support de £ est borné, cela devient beaucoup
plus complexe. Ainsi, dans [I5], [17] et [18], lorsque le support de £ est borné, chaque preuve
est technique et utilise des propriétés spécifiques du motif considéré. La généralisation a
tout motif valable, bien que naturellement attendue, présente des difficultés significatives
et nécessite de développer de nouveaux arguments. Grace au théoréme [1.3.5] on peut par
exemple, en exploitant la souplesse sur le choix du motif fournie par la théoreme [1.3.5]
généraliser le théoreme 6.2 de [I5] (voir le théoréme et en particulier la remarque a la
fin de la section [1.3.4.2]).

Dans [15], [17] et [18], est seulement prouvée pour une géodésique spécifique.
Cela n’a pas de conséquence sur les résultats principaux de [I7] et [I8]. Cependant, obtenir
le résultat pour toute géodésique permet de renforcer un des résultats principaux de [15]
dans le cas ou le support de £ est borné. En effet, Krishnan, Rassoul-Agha et Seppélainen
s'intéressent au nombre minimal ou maximal d’arétes des géodésiques mais ne peuvent pas
prouver pour les géodésiques ayant un nombre maximal d’arétes. Avec le théoreme
[1.3.5] on peut renforcer le théoréme 5.4 de [I5] (voir le théoreme [1.3.12)).

La derniere différence avec les résultats de [15], [17] et [18] est que le résultat du théoréme
[1.3.5] est plus fort qu'un résultat en espérance. Il faut noter qu'un résultat en espérance est

suffisant pour les applications de [I7] et [18]. En revanche, il permet d’améliorer le théoréme
6.2 de [I5], ce qui est détaillé dans la section |1.3.4.2
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1.3.3 Quelques remarques sur la preuve

Renormalisation. Donnons-nous un motif ¢ et x € Z? avec ||z||; grand. Considérons
I’événement

M = {(0,z) € € et il existe une géodésique de 0 & z qui n’emprunte pas le motif}.

L’objectif est de prouver que
1

PM) < ——. (1.3.3)
[Ed
Le théoreme [1.3.5] se déduit facilement de ce résultat par un argument standard de renor-
malisation.

Idée générale. Pour simplifier les explications, plagons-nous dans le cas ou L(oo) = 0.
Pour obtenir (1.3.3), 'idée est de définir une suite bien choisie d’événements M (¢) pour
0 < /¢ < g, telle que, pour une certaine constante positive ¢ < 1,

1. g > c|lz||,
1
2. M C M(Q) U B ou ]P)(B) < W,
L1
3. pour tout £ > 1,
P(M(0)) < cP(M(L —1)). (1.3.4)

Si les trois propriétés ci-dessus sont vraies, on obtient P(M) < ccllt + P(B), puis (1.3:3).
Le complémentaire de ’événement B est approximativement 'chaque géodésique emprunte
suffisamment de bonnes boites" et ces bonnes boites sont des boites dans lesquelles ’envi-
ronnement et les géodésiques se comportent de facon typique. Cela nous permet d’essayer de
modifier 'environnement a l'intérieur de ces bonnes boites pour forcer toutes les géodésiques
de 0 & = a y emprunter le motif. L’événement M () est approximativement "il existe une
géodésique de 0 a x qui n’emprunte pas le motif jusqu’a une distance d’ordre ¢", avec un
sens & préciser pour "distance d’ordre ¢". Pensons pour le moment a une définition du type

M(?) ~ {la premiere géodésique (dans l'ordre lexicographiqueED n’emprunte pas le motif
dans les ¢ premieres bonnes boites qu’elle emprunte. }

(1.3.5)

La définition précise des événement M (¢) est choisie de sorte a avoir M(¢) C M({—1) pour

1
tout £. Ainsi (1.3.4) est équivalent a l’existence d'une constante 7 > 0 (en prenant n = — —1)
c

telle que
PM(— 1)\ M(£)) > nP(M(?)). (1.3.6)

'L’ordre lexicographique est basé sur les directions des arétes consécutives empruntées par les géodésiques.
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Pour obtenir ([1.3.6]), nous faisons une modification dans un environnement dans lequel M(?)
est réalisé pour obtenir un environnement dans lequel M(¢ — 1) \ M(¥) est réalisé.

Il est naturel de faire la modification pour obtenir dans la f-ieme bonne boite
empruntée par I'une des géodésiques de 0 a x et ainsi de forcer toutes les géodésiques de 0 a
x a emprunter le motif dans cette /-ieme boite. Lorsque les temps de passage des arétes sont
non bornés, on peut jouer sur des écarts arbitrairement grands entre petits et grands temps
pour forcer une géodésique a suivre un chemin précis. En revanche, lorsque le support de £
est borné, la modification est beaucoup plus complexe. C’est une des principales difficultés
de la preuve du théoreme et les idées de la modification dans ce cas sont exposées dans
la section 2.3.4.71

Revenons maintenant a la définition des événements M(¢). Une définition du type de
permet d’obtenir un résultat pour la premiere géodésique dans 'ordre lexicographique,
mais ne permet pas d’obtenir un résultat pour toutes les géodésiques. La définition de M(¥)
est donc nécessairement différente. De plus, il ne suffit pas de s’assurer que, dans ’envi-
ronnement modifié, toutes les géodésiques de 0 a = empruntent le motif dans la boite dans
laquelle on a modifié I’environnement. Il s’agit de s’assurer que I’événement M (£ —1)\ M ()
est réalisé. Cela nécessite de controler 'influence de la modification sur ’ensemble des géo-
désiques et des boites qu’elles croisent. Cette difficulté n’apparait pas lorsque I'on cherche a
montrer seulement un résultat en espérance du type . Elle apparait d'une part pour
obtenir que le nombre de motifs empruntés par une géodésique est linéaire en dehors d’un
événement de probabilité exponentiellement faible mais aussi pour obtenir un résultat pour
toutes les géodésiques.

Résultats des chapitres [2] et [3l La preuve du théoreme[I.3.5] est en fait séparée en deux
preuves distinctes selon les hypotheses que ’on met sur la loi £. Ces deux preuves mettent
en place la stratégie décrite ci-dessus de deux manieres différentes et sont indépendantes.
Les chapitres |2 et [3| correspondent a deux articles ([13] et [12]) et sont autonomes.

Une de ces deux preuves est mise en place dans le chapitre [2] et donne le résultat suivant.
Les idées spécifiques a la stratégie développée dans cette preuve sont exposées dans la section
2.1.0l

Théoréme 1.3.6. Soit L une loi sur [0,00). Soit B = (A, u’, v AY) un motif valable,
supposons que la loi L est utile et que ['une des deux conditions suivantes est satisfaite :

(1) le support de L est borné,

(II) le support de L est non borné et
E min [Tld, o ,TQdd] < 00, (1.3.7)

ou T, ... Ts, sont des variables aléatoires indépendantes de loi L.

Alors, il existe a > 0, B1 > 0 et By > 0 tels que pour tout x € 72,

P (EI une géodésique v de 0 a x telle que NP () < 04||:L’||1) < Brelel
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L’autre preuve est donnée dans le chapitre |3| et permet d’obtenir un résultat lorsque I'une
des deux conditions suivantes est satisfaite :

L(o0) >0 et L([0,00)) > pe,

1.3.8
ou L(00) =0 et le support de £ est non borné, ( )

On obtient le théoreme suivant. Les idées de preuve spécifiques de ce cas sont exposées dans

la section [3.1.4]

Théoréme 1.3.7. Soit £ une loi sur [0,00]. Soit P = (A, u,v*, AY) un motif valable.
Supposons que L est utile et vérifie (1.3.8)). Alors il existe a > 0, f1 > 0 et Sy > 0 tels que
pour tout x € 7.2,

P ((O,x) € € et 3 une géodésique v de 0 a x telle que N¥(v) < a||x||1) < BrePeliell

1.3.4 Applications

On détaille quelques résultats des articles [15], [I7] et [I8] qui sont ici renforcés par I'utilisa-
tion du théoreme [1.3.5]

1.3.4.1 Nombre de géodésiques lorsque la loi £ posséde un atome

Dans [17], lorsque la loi £ est utile, possede un atome et vérifie £(oco) = 0, Nakajima prouve
une version de pour montrer que le nombre de géodésiques entre deux sommets
croit exponentiellement en la distance entre les sommets. On se place ici dans le cadre ou
L(oc0) >0, L([0,00)) > p. et L possede un atome fini. On a alors le résultat suivant.

Théoréme 1.3.8 (Renforcement du théoreme 1 de [I7]). Supposons que L est utile, posséde
un atome fini et que L([0,00)) > p.. Alors il existe « > 1, f; > 0 et B > 0 tels que pour
tout x € 74,

P ((O,:z:) € ¢ et il existe moins de oI géodésiques de 0 d :c) < BrePelell,

On donne une preuve de ce théoréme a 'aide du théoréme [1.3.5] Supposons que L vérifie
les hypotheses du théoreme [I.3.8f Notons + un atome fini de £. On considére le motif a
quatre arétes P = (A, u, v™, AM), représenté par la figure , ou

e A={0,1} x {0,1} x 1:[3{0},

e ut=(0,...,0) et v =(1,1,0,...,0),
o AN est I'événement sur lequel le temps de passage de chaque aréte de A est égal a k.

Le théoreme [1.3.5] assure que, en dehors d'un événement de probabilité exponentiellement
faible en la distance entre les sommets qu’elle relie, toute géodésique emprunte un nombre
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e :

X1

FIGURE 1.3 : Schéma illustrant I'idée de la preuve du théoréme a l'aide du théoreme m
Les translatés du motif sont en vert et rouge. On a ici 8 géodésiques entre x1 et xo. Chacune d’entre
elles est obtenue en suivant le chemin noir issu de x; puis le chemin rouge ou le chemin vert dans
le premier carré puis le chemin noir entre le premier et le deuxieme carré, et ainsi de suite.

linéaire de ce motif. Cette situation est représentée par la figure [I.3] La clé est la remarque
suivante : a chaque fois qu'une géodésique emprunte le motif, elle peut choisir, pour traverser
ce motif, de suivre le chemin qui passe par 'aréte du bas (le chemin rouge sur la figure
ou celui qui passe par 'aréte du haut (le chemin vert sur la figure . Ainsi, si le nombre
de motifs empruntés par les géodésiques est au moins linéaire, le nombre de géodésiques est
au moins exponentiel. Le résultat s’en déduit.

1.3.4.2 Taille des géodésiques.

Considérons les deux hypotheses suivantes concernant la loi £ :

(H1) 11 existe des entiers strictement positifs k et £ et des atomes de £ finis 7/,..., 77,4, €t
s, ..., S, (non nécessairement distincts) tels que
k+2¢ k
dYori=> s (1.3.9)
i=1 j=1

(H2) £ a un atome en 0 ou il existe des entiers strictement positifs k£ et ¢ et deux atomes
finis r < s tels que (k + 20)r = ks.

Notons que I’hypothese est strictement plus restrictive que . Pour = € Z¢, on note
Ly, (resp. Lgg) la taille minimale (resp. maximale) des géodésiques de 0 a x. Dans [I5],
Krishnan, Rassoul-Agha et Seppéldinen prouvent le théoréme suivant.
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Théoréme 1.3.9 (Théoreme 6.2 de [15]). Supposons que L(tmin) < pe, L(c0) = 0 et que

pour des variables aléatoires indépendantes Ty, ..., Tog de loi L, il existe p > 1 tel que
Emin[TY,...,Th] < oo. De plus, supposons que l'une des deux hypothéses suivantes est
satisfaite :

o le support de L est non borné et|(H1) est satisfaite,
o le support de L est borné et|(H2) est satisfaite.

Alors, il existe des constantes 0 < D, 0, M < oo telles que
P(Loy — Lo, = Dljz|l1) > 6 pour ||z||; > M. (1.3.10)
Le théoréme [1.3.5] permet d’obtenir 'amélioration suivante.

Théoréme 1.3.10. Supposons que L est utile, que L(]0,00)) > p. et que U’hypothése |(H1)
est satisfaite. Alors il existe des constantes 0 < (1, Ba, D < oo telles que

P((0,2) € € et Lo, — Lo, < Dl|z]l1) < By, (1.3.11)

Cela améliore le théoreme m puisque la majoration dans est exponentielle-
ment proche de 0 en la distance au lieu d’'une minoration uniforme dans , puisque
I’hypothése de moment est supprimée, puisque dans le cas ou le support de la loi £ est
borné, on a une hypothese moins restrictive, et puisque ’hypothése £ utile est moins forte
que 'hypotheése L(tmin) < pe-

Lorsque Emin[T¢, ... Tg,] < oo, le théoréme est prouvé dans la section On
se propose de donner ici, en guise d’illustration des idées de preuve, une esquisse de la preuve
dans un autre cadre qui n’est pas détaillé par la suite.

Esquisse de preuve Cette preuve est basée sur celle du théoréme 6.2 de [I5]. On suppose
que I'une des deux hypotheses suivantes est satisfaite :

L(00) > 0 et L([0,0)) > pe,

1.3.12
ou L(00) = 0 et le support de L est non borné, ( )

On suppose que L est utile et que I'hypothese est satisfaite. On a donc des entiers k et
{ strictement positifs et des atomes finis 7}, ..., 7}, .,5], - - ., s, tels qu'on ait I'égalité (1.3.9).
L’idée est de créer un motif rectangulaire B = (A, u?, v*, A*) de longueur k et de hauteur ¢
a I'image de celui de la figure puis de se servir de pour créer I'événement A", Si
on reprend les notations de la figure , on peut définir 'événement A* comme 1'événement

sur lequel
k+2¢ k

T(rt) =T(r"") =3 ri=2_s)
i=1 j=1
et sur lequel toutes les arétes en noir sur la figure
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k4-2¢
e ont un temps strictement plus grand que Z 7 lorsque L£(00) = 0,

i=1
« ont un temps égal a I'infini lorsque £(o0) > 0.

Par (1.3.9) et par (1.3.12), I’événement A défini ci-dessus a une probabilité strictement
positive. Le motif est valable.

++

A

uA ot 'UA
FIGURE 1.4 : Motif utilisé pour montrer le théoreme|1.3.10} Le rectangle A est de longueur k et de
hauteur £. Le chemin 7T en rouge emprunte un coété du rectangle et est de longueur k. Le chemin
7t en vert emprunte les trois autres cotés et est de longueur k + 2¢. Ces deux chemins relient u?
et v,

Pour tout x € Z2, lorsque (0,7) € €, on note y(x) la premiére géodésique de 0 & x
dans l'ordre lexicographique parmi celles qui ont un nombre d’arétes minimal. On note
NZF(y(x)) le nombre maximal de motifs disjoints empruntés par la géodésique v(z). Deux
motifs sont dits disjoints s’ils correspondent a deux translatés du motif original n’ayant
aucun sommet en commun. On fixe une telle liste de N (y(x)) motifs disjoints. De simples
considérations géométriques fournissent une constante ¢ > 0 telle que pour tout chemin 7,
NF(m) > eN¥(m).

D’aprés la définition du motif B, lorsque 'événement A* est réalisé, 7+ et 7+ sont les
deux seuls chemins de u®* & v" entierement contenus dans A dont le temps de passage est
optimal. Par conséquent, 7" est I'unique chemin optimal en temps et en nombre d’arétes
entiérement contenu dans A et reliant u* et v*. Ainsi, pour chaque motif rencontré par v(z),
v(z) emprunte le chemin 7.

Lorsque (0,z) € €, on peut alors définir, a partir de v(z), un nouveau chemin de 0 a z,
que l'on note (x), en remplagant dans chaque motif disjoint emprunté par (z) le chemin
7" par le chemin 7*. Supposons de plus que la propriété suivante soit vraie :

P : Lorsque 7(z) emprunte le motif, v(x) n’emprunte aucun sommet du chemin 74" autre
que ut et vh.
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UA it UA

FIGURE 1.5 : Motif utilisé en dimension 2 pour obtenir la propriété P dans la preuve du théoréme

[3.10

Alors, le chemin 7(x) est auto-évitant. De plus, 7(x) a le méme temps de passage que ().
Par conséquent, () et J(x) sont deux géodésiques et on obtient

Lo, > [A(x)| > [y(2)] + 2N ¥ (y(x)) > Lo, + 2N ¥ (y(2)). (1.3.13)

Puis appliquant le théoreme [1.3.5] on obtient a > 0, 8; > 0 et By > 0 tels que pour tout
x € 79,

P((0,z) € € et 3 une géodésique v de 0 & z telle que N¥ () < al|z||;) < freP2lelh,
Alors, en prenant D = 2ac et en utilisant (1.3.13]), on obtient

P((0,2) € € et Lo, — Lo, < Dl|z]l1) <P ((0,2) € € et NP (v(x)) < callz])
<P ((O,x) e € et N¥(y(x)) < OéHfﬂHl) < BrePelzl

Propriété P. Lorsque £(0) = 0, la propriété P est vraie car dans ce cas un chemin de
temps optimal est automatiquement auto-évitant. En revanche, lorsque £(0) > 0, cela n’est
plus vrai si certaines arétes du chemin 7+ ont un temps nul.

Supposons 7(x) n’est pas un chemin auto-évitant, alors il existe un sommet w appartenant
au chemin 77" d’un motif de la liste des motifs empruntés par y(z) qui est emprunté deux
fois par J(x). Il existe alors un sous-chemin de J(z) empruntant au moins une aréte reliant
w & w. D’une part, ce chemin est de temps nul puisque 7(x) est de temps optimal et d’autre
part, il emprunte une aréte reliant 7" a4 un sommet hors de 77 U 7"+,

Ainsi, si on s’assure que toutes les arétes d’'un sommet de 77+ & un sommet hors de
7t Ur™t sont de temps non nul, (x) est auto-évitant. Pour avoir cette propriété, on inclut
le motif précédent dans un sur-motif (voir la figure [L.5).

Voici une description formelle. On définit le motif P = (A, u*, v, AY) de la maniere
suivante. On fixe Ly = k+ 2, Ly =+ 2 et si d > 3, pour tout i € {3,...,d}, L; = 2. On
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d
prend A = []{0,..., L}, v = 3¢ , &; et v = v* 4+ (k +2)e;. On note 7+ le chemin allant
i=1
de u® & v en faisant k + 2 pas dans la direction €, et 77+ le chemin allant de u® & u® + ;
en faisant un pas dans la direction e;, puis jusqu’a u® + ¢, + e, en faisant ¢ pas dans la
direction &5, puisque jusqu’a u® + (k + 1)e; + fe, en faisant k pas dans la direction ey, puis
jusqu’a u® + (k + 1)e; en faisant ¢ pas dans la direction —e5 et enfin jusqu’a v en faisant
un pas dans la direction ;. On définit A* comme ’événement sur lequel :

k420
o« T(nM)=T(r"t) =2r + Z ri=2r] + Zsj,

=1 7j=1

k+2¢
 pour tout e € A qui n’est pas dans 7T Ut T'(e) = 0o si L(oo) > 0 et T'(e Z T

si L(o0) =

On a bien que A" a une probabilité positive puisqu’on a supposé que et m
étaient satisfaites, et on a bien que 7t et 7+t sont les deux seuls Chemlns de vt a v
entierement contenus dans A dont le temps de passage est optimal. De plus, toutes les arétes
d’un sommet de 7" & un sommet hors de 7t U 7" sont de temps non nul, ce qui permet
d’obtenir la propriété P pour ce nouveau motif et donc de conclure.

Remarque sur le cas ol le support de £ est borné. Définir un événement A" sur
lequel 7+ et 7+ F font partie des chemins de u® & v™ entiérement contenus dans A dont le
temps de passage est optimal est plus compliqué lorsque le support de la loi £ est borné.
C’est 'absence de preuve pour une propriété de ce type qui donne le résultat seulement
avec [’hypothese lorsque le support de £ est borné dans le théoreme de [15]. Pour
obtenir cette propriété dans le cas borné avec I’hypothese dans le théoreme on
modifie la taille du motif et 1’événement A”. Pour plus d’explications sur ce cas, on renvoie

au lemme [2.4.T) et a la figure 2.5

1.3.4.3 Stricte concavité de ’espérance des temps de passage comme fonction
du décalage des temps de passages.

Pour b € R, on définit les temps de passage b-décalés par
D ={T®(e) : e e &} avec T®(e) = T(e) 4+ b pour tout e € £.

En suivant les notations de [I5] (et plus précisément celles de la section 2.2 de [I5]), on
note toutes les quantités associées aux temps de passage T avec (b) en exposant. Pour b
négatif, certains temps de passage peuvent étre négatifs. Cela conduit a adapter la définition
du temps géodésique t®)(z, y) entre deux sommets z et y (donnée en (I.1.1))) en ne prenant
I'infimum que sur la famille des chemins auto-évitants de 0 a x. Nous renvoyons a [15] et
notamment & son annexe A pour les propriétés des temps t®)(0,z) lorsque les temps de
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passage des arétes peuvent étre négatifs. Ci-dessous, la constante gy est la constante ¢ pour
laquelle (4.10) de [I5] est vérifiée et la constante dy est celle qui apparait dans le lemme 5.2
de [15] (ou dans le lemme 5.5 de [1§]). Dans [I5], Krishnan, Rassoul-Agha et Seppéldinen
prouvent le résultat suivant.

Théoréme 1.3.11 (Théoreme 5.4 de [15]). Supposons que L(tmin) < pe. De plus supposons
que l'une des deux hypothéses suivantes est satisfaite :

(a) le support de L est non borné et Elmin(T,...,T5)] < oo, ou Ti,...,Tey sont des
variables aléatoires i.i.d. de loi L,

(b) le support de L est borné et il existe un réel ri dans le support de L qui vérifie

0< r < tmin"f‘&)?

Alors il existe une constante finie strictement positive M et une fonction D(b) > 0 de b > 0
telles que pour tout b € (0, tmin + €0) et tout |||y > M :

(i) dans le cas (a) ci-dessus,

E [tC9(0,2)] < E[#(0,2)] — bE [Lo0| — D(b)b]ls, (1.3.14)

(7i) dans le cas (b) ci-dessus,

E [t{9(0,2)] < E[#(0,2)] — bE [Ly,.| — D(b)b]l1- (1.3.15)

Ce résultat est utilisé dans [I5] pour montrer la stricte concavité de la constante de temps
vue comme fonction du décalage b (voir le théoréme 2.2 de [15]). La preuve du théoréme[1.3.11]
dans [15] repose sur un résultat du type (|1.3.2)). Dans le cas ou le support de la loi est borné,
en combinant le théoreme et la stratégie de [I5], on obtient immédiatement le léger
renforcement suivant. Notamment est vraie dans les deux cas.

Théoréme 1.3.12. Supposons que L(tmin) < pe €t que
E[min(77,. .., )] < oo,

ou Ty, ..., Toy sont des variables aléatoires i.i.d. de loi L. Supposons de plus que le support de
L contient au moins deux réels distincts strictement positifs. Alors, il existe une constante
strictement positive finie M et une fonction D(b) > 0 de b > 0 telle qu’on ait 'inégalité
suivante pour tout b € (0, tmin + €0) et tout ||x||; > M,

E [t9(0,2)] < E[t(0,2)] — bE [Lo.0| — D(b)b]]:. (1.3.16)

Le renforcement ci-dessus est rendu possible par le fait que le théoreme donne un
résultat pour toutes les géodésiques, et donc en particulier pour la géodésique de 0 a x qui
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possede le plus d’arétes. Dans [I5], la géodésique pour laquelle un résultat du type (1.3.2)
est montré doit vérifier certaines conditions, ce qui ne permet pas de choisir celle qui possede
le plus d’arétes.

Le théoréme permet également de sortir du cadre ot ’hypothese
E[min(Ty,...,Te)] < 00

est satisfaite. Cependant, dans ce cas ’énoncé ne s’exprime plus en terme d’espérance du
temps géodésique (0, x).

Schéma de preuve. Nous exposons dans ce paragraphe les idées de la preuve dans le
cadre ou le support de la loi £ est borné. Nous reprenons plus précisément 1’étape 3 de la
preuve du théoréme 5.4 de [I5]. On se place dans un cadre ot L(tyin) < pe et pour simplifier
ce schéma de preuve, on suppose de plus que L possede deux atomes strictement positifs
r < s. Fixons b € (0, tym]|. Autrement dit on se limite, pour simplifier, au cas ou les temps
de passage restent positifs. Le lemme 5.5 dans [I5] fournit deux entiers strictement positifs
k et ¢, fixés pour le reste de la preuve, tels que

ks < (k+20)r < ks+ (20— 1)b. (1.3.17)

L’idée est encore de créer un motif P = (A, u?, v*, A*) rectangulaire de longueur k et de
largeur ¢ comme celui de la figure [1.4l Le chemin 7+, en rouge, posséde k arétes et le chemin
7tF, en vert, en possede k + 2¢. Ici, 'événement A” est I’événement sur lequel les arétes
du chemin 77" ont un temps de passage égal a r et toutes les autres arétes ont un temps
de passage égal a s. Dans ce cas, en utilisant , on peut montrer que 7+ est I'unique
chemin optimal en temps reliant u” et v* et étant entiérement contenu dans A.

Pour tout z, notons «(z) la premiére géodésique de 0 & = dans l'ordre lexicographique
parmi celles qui possédent le plus d’arétes. Notons N*(y(z)) le nombre maximal de mo-
tifs disjoints empruntés par v(z). On fixe une telle liste de N*(vy(z)) motifs disjoints. On
construit alors un nouveau chemin 4(x) de 0 & = en remplagant dans chacun des N*(y(z))
motifs disjoints empruntés par () le chemin 7% par le chemin 77*. Considérons mainte-
nant les temps de passage (—b)-décalés. Dans chaque motif, par la définition du motif et en

utilisant ((1.3.17)), on obtient les inégalités suivantes concernant les temps des chemins 7 et
++ .
Tt

T(=b) (7t ) =T (7)) = b|lat | < T(#x%) + (20 — 1)b — blxtTF| = 70 (7t) —b.  (1.3.18)
On en déduit

TEVG() < T ((2)) = bAVF (4(x))
=T (v(x)) = bly(2)] — LA (7(2))
= 1(0,2) — Lo, — AN (()), (1.3.19)
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car |y(z)| = Lo, puisque y(z) fait partie des géodésiques de 0 a x qui possédent le plus
d’arétes. Puisqu’on a fixé b de sorte que ty,;, — b > 0, méme si §(x) n’est pas auto-évitant,
on a t=(0,2) < TY(5(x)), ce qui, combiné avec (1.3.19)), donne

t9(0,2) < t(0,2) — bLo, — DNF(y(z)). (1.3.20)

Puisque 7 et s sont des atomes pour la loi £, le motif est valable. Par conséquent, on peut
appliquer le théoréme [1.3.5] et on obtient, en utilisant un argument géométrique pour se
ramener a des motifs disjoints, ’existence d’une constante C' > 0 telle que

E [Nm(v(x))} > C'||z||y pour tout ||z||; assez grand.

Ainsi, en prenant 'espérance dans ([1.3.20)), on obtient (|1.3.16) pour D(b) = C.

Lorsqu’on n’a pas ty, — b > 0, on modifie le motif donné ici pour obtenir un chemin
7(x) auto-évitant. Pour plus de détails et pour un cadre plus général, on renvoie a la section
2.4.2l

1.3.4.4 Application au principe de comparaison de van den Berg-Kesten

Le premier résultat de type a été démontré par van den Berg et Kesten dans [18]. Leur
objectif était de montrer le théoreme qui est le résultat principal de [18]. Le théoréme
1.3.5| permet de prouver aisément le théoréme et d’en étendre le cadre d’application.
Cette extension permet de comparer les constantes de temps de deux lois £ et £ données
par le théoreme [1.1.13] et est énoncée dans le théoréme suivant.

Théoréme 1.3.13. Soient £ et L deus lois sur [0, 00] telles que
o L est utile,
« L([0,00)) > pe et L([0,00)) > p,
« L#L,

o il existe un couple de variables aléatoires (1,7) définies sur un méme espace probabilisé,
de lois marginales respectives L et L, et telles que E[T|T] < 7.

Alors, en notant pi (resp. fi) la constante de temps donnée par le théoréme pour la loi
L (resp. pour la loi L), on a pour tout v € Z% tel que x # 0,

f(z) < p(x). (1.3.21)

Rappelons que Marchand [16] a étendu le théoreme dans une autre direction en
affaiblissant ’hypothese £ utile (voir le théoréme . Pour obtenir ce résultat, Marchand
a utilisé des résultats spécifiques, en particulier des grandes déviations pour la percolation
orientée surcritique. Nous renvoyons aux commentaires du paragraphe sur la généralisation
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de Marchand dans la section [I.1.3.2] Nous avons choisi pour l'instant de ne pas explorer
cette direction.

La preuve du théoréme est donnée dans la section [3.3] Le schéma général de la
preuve est le méme que dans [I§8]. Signalons néanmoins que les motifs utilisés sont plus
élémentaires et permettent une preuve plus directe.

Dans la suite de cette section, nous esquissons cette preuve en nous plagant, pour sim-
plifier, dans le cadre de [I8]. Ainsi, on se donne deux lois £ et £ sur [0,00) vérifiant les
hypotheses suivantes :

(A1) L est utile,

(A2) L et £ ont une espérance finie,

(A3) L#AL

(A4) il existe un couple de variables aléatoires (7, 7) définies sur un méme espace probabilisé,
de lois marginales respectives L et L et telles que

E[7|r] <. (1.3.22)

En notant p(e;) (resp. fi(e1)) la constante de temps pour la loi £ (resp. pour la loi £),
I’objectif est de montrer que
fie1) < p(er).

Notons que la preuve est identique en remplacant £, par n’importe quel x € Z? tel que x # 0.

En utilisant [(A4)} on peut se donner un couple (7,7) de variables aléatoires de lois
marginales respectlves L et L, satisfaisant (1.3:22). On considére ensuite une famille (7, T) =
{(T(e), T(e)) : e € E} de variables aléatoires i.i.d. définies sur un méme espace probabilisé
telles que, pour tout e € £, (T(e),T(e)) suit la méme loi que (7, 7).

Commengons par montrer I'inégalité large ji(e1) < p(eq). Pour tout n € N* notons 7, la
premiere géodésique de 0 a ne; dans 'environnement 7" dans un ordre arbitraire fixé. Notons
G la tribu engendrée par la famille (7'(e))cce. Alors 7, est G-mesurable et

E{(O nal)\g}<E[ ()] }
= 2 E[TOIT()

e€Yn
< 3" T(e) car pour tout e € &, (T(e),T(e)) satisfait (1.3.22),
eEYn

=T(vn) = t(0,ney).
En prenant ’espérance, on obtient

E [£(0,ne1)| < E[t(0,ne1)]. (1.3.23)
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Puis, puisque

plen) = lim M et fi(e1) = lim E[f((),n&tl)}’

n—oo n n—oo n

on obtient que fi(e1) < u(ey).
Pour avoir I'inégalité stricte dans ([1.3.23)), une solution serait d’obtenir, par un raison-
nement se basant sur ce qui vient d’étre fait, une constante n > 0 telle que

E [£(0,ne1)] < E[#(0,ne1)] — nn. (1.3.24)

Pour cela, I'idée est d’utiliser un motif pour créer, a partir de ,,, un chemin qui soit presque
identique a 7, sauf en un nombre linéaire en n d’endroits distincts ou il y a un raccourci.
Chacun de ces raccourcis, emprunté dans 'environnement 7', permet de gagner du temps
par rapport au temps dans ’environnement 7" de la portion de 7, qui n’emprunte pas le
raccourci.
Dans le cas ou I'hypothese

E[F|r] =7 ps. (1.3.25)
n’est pas satisfaite, il existe un borélien I C [0,00) tel que P(7 € I) > 0 et tel que sur
I'événement {7 € I},

E[7|r] < T —n.
La preuve du théoreme[1.1.9|est alors beaucoup plus simple et utilise le motif qui n’a qu’une
seule aréte P = ({u®, v}, ut,vr, AY) ot v = (0,...,0), v* = (1,0,...,0) et A" est
I’événement sur lequel le temps de passage de 'unique aréte du motif appartient & I. On

se concentre dans la suite sur le cas le moins évident, c’est-a-dire que l'on suppose que
I’hypothese (|1.3.25) est satisfaite. On obtient le lemme suivant.

Lemma 1.3.14. Lorsque (1.3.25)) est satisfaite, il existe un borélien I C (0,00) et une
constante n > 0 tels que P(t € I) > 0 et

E [min(7y + To, T3 + T4) |71, T2, T3, Ta] < min(m + 72,73 + 74) — 7

sur Uévénement T = {ry,..., 74 € I}, ot (11,71),...,(T4,Ts) sont des copies indépendantes
de (1,7).

L’idée de la preuve du lemme [1.3.14) est d’exploiter le fait que la loi £ est plus variable
que L. La preuve de ce lemme est simple mais légerement technique. Elle est donnée dans
la section [3.3.1.3. Nous nous contentons ici de la donner dans un cas particulier trés simple

qui permet de comprendre la clé du lemme et, par 1a, le résultat de [18]. Supposons qu’on
ait P(7 =2) > 0 et de plus

P(r=1r=2)=P(7=3]r=2)==.
On prend dans ce cas I = {2}. Un rapide calcul permet de montrer que sur Z = {r; = --- =
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FIGURE 1.6 : Motif utilisé pour montrer le théoréme a l'aide du théoréme lorsque
E[7|r] = T p.s.

74 =2}, on a

13

E [min(7y + 7o, T3 + T4) |71, T2, T3, Ta] = R < 4 =min(r + 79, T3 + T4).

Fixons le borélien I C (O,oo) et la constante n > 0 donnés par le lemme [1.3.14, On
définit le motif q3 (A, u™, v, AY) ott A est Iensemble de 4 sommets défini par A =

{0,1} x {0,1} x H{O} ud = (0,...,0), v& = {1,1,0,...,0} et A" I’événement sur lequel

T(e) € I pour chaque aréte e € A. Ce motif est représenté par la figure u Les trois
conditions pour que P soit valable sont satisfaites puisque :

o u’ et de v™ ont été choisis sur des faces différentes,
e [ C[0,00),
o I’événement A” est réalisé avec probabilité strictement positive puisque P(7 € I) > 0.

Pour tout n € N*, notons AN*(7,,) le nombre maximal de motifs disjoints empruntés par ,,.
Le théoreme s’applique. En effet, £ est utile d’apres , L(00) =0 et le motif P est
valable. Des arguments géométriques simples donnent alors l’existence d'une constante ¢ > 0
telle que pour tout n assez grand,

E [N¥(1,)] > en. (1.3.26)

Notons e; = {uh, u® + &1}, ea = {ul + 1,01}, e3 = {ud,u + &2} et ey = {ud + &9, 0},
Ces arétes sont représentées sur la figure . Fixons une liste de N*(v,) motifs disjoints
empruntés par ,. Puis, pour i € {1,..., N¥(v,)} et j € {1,...,4}, notons €/ le translaté
de 'aréte e; appartenant au i-ieme des N¥(7,,) motifs disjoints empruntés par v,.

Pour i € {1,...,N®(y,)}, 7, emprunte successivement e} et e}, ou successivement e} et
e} (c’est-a-dire soit le chemin rouge, soit le chemin vert sur la figure . On note E%(v,)
I’ensemble des arétes qui appartiennent a 7, mais pas a I'un des chemins précédents emprun-
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té par 7,. L’ensemble £¥(v,) est 'ensemble des arétes de v, qui ne sont pas remplacées
par un raccourci dans notre argument. Pour tout n € N*, on obtient d’une part

Nm('Yn)
HO.me) =T() = 3 T(e)+ 3 min (T(e)) + T(), T(eh) +T(c}), (1327
e€EP (1) i=1
et d’autre part
~ ~ N‘B('Yn) ~ . ~ . ~ . ~ .
(0,ne)) < Y Tle)+ Y. min(T(e}) + T(eh), T(eh) + T(eh))- (1.3.28)
e€E¥ (n) =1

Alors, pour tout n € N*, puisque ~,,, N¥(7,,) et £E¥(7,,) sont G-mesurables,

W('Yn)
E[{(0,ne)g] < Y E|T(e)IG]+ Y. E|min(T(e}) +T(eh), T(ey) + T(eh))|G]

e€EF (vn) i=1

NB(yn) o o o
= Y T(e)+ Y E[min(T(e}) +T(e}), T(eh) + T(e}))|G]
e€EF (1) =1

MEGn) | o |
< Y T+ Y min(T(e}) +T(eh), T(eh) + T(eh) —
e€EF (vn) i=1

= T(’Vn) - UW(%)
= (0, ne1) — nNF (7).

Notons que

I'inégalité de la premiere ligne vient de (|1.3.28)),

o Dégalité de la deuxiéme ligne du fait que pour tout e € &, le couple (T'(e), T(e)) a la
méme loi que (7,7) qui vérifie ([1.3.25),

o l'inégalité de la troisiéme ligne du fait que, pour tout i € {1,..., N¥(~,)}, le translaté
de I'événement A* est réalisé dans I'ensemble des sommets reliés par les arétes e, eb,

e} et e}, et donc par le lemme |1.3.14}

E [min (T(e}) + T(e), T(eh) + T(e}))|G] < min (T(e}) + T(eh), T(es) + T(e})) —n,

les égalités de la derniere ligne viennent de (|1.3.27]).

2La géodésique +,, emprunte un chemin si elle emprunte chacune des arétes du chemin.
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En prenant ’espérance, on obtient pour tout n assez grand,

E {f(O,nsl)} < E[t(0,ne1)] — nE {pr(%)}
< E[t(0,ne1)] — enn d’apres (1.3.26).

En divisant par n et en prenant la limite, on trouve

fi(e1) < p(er),

et le théoréme [1.1.9) est prouvé.
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CHAPTER 2

Geodesics in first-passage percolation cross any pattern

Ce chapitre correspond a l'article [13].

Abstract

In first-passage percolation, one places nonnegative i.i.d. random variables (7'(e)) on the
edges of Z?. A geodesic is an optimal path for the passage times T'(e). Consider a local
property of the time environment. We call it a pattern. We investigate the number of times
a geodesic crosses a translation of this pattern. Under mild conditions, we show that, apart
from an event with exponentially small probability, this number is linear in the distance
between the endpoints.

2.1 Introduction and main result

2.1.1 Settings

Fix an integer d > 2. In this article, we consider the model of first passage percolation on
the hypercubic lattice Z¢. We denote by 0 the origin of Z? and by & the set of edges in this
lattice. The edges in £ are those connecting two vertices x and y such that ||z —yl; = 1. A

finite path 7 = (o, ..., 2%) is a sequence of adjacent vertices of Z<, i.e. for alli = 0,...,k—1,
|xiv1 — x|t = 1. We say that 7 goes from xy to xp. Sometimes we identify a path with
the sequence of the edges that it visits, writing 7 = (eq,...,ex) where for ¢ = 1,...,k,

e; = {x;_1,z;}. We say that k is the length of 7 and we denote |7| = k.
The basic random object consists of a family 7" = {T'(e) : e € £} of i.i.d. non-negative
random variables defined on a probability space (2, F,P), where T'(e) represents the passage
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time of the edge e. Their common distribution is denoted by F. The passage time T'(7) of
a path m = (eq,...,e) is the sum of the variables T'(e;) for i =1,... k.
For two vertices x and y, we define the geodesic time

t(z,y) = inf{T(7) : 7 is a path from z to y}. (2.1.1)

A self-avoiding path v between x and y such that T'(y) = t(z,y) is called a geodesic between
x and y.

For the following and for the existence of geodesics, we need some assumptions on F'.
Let ¢y, denote the minimum of the support of F. We recall a definition introduced in [I§].
A distribution F' with support in [0, 00) is called useful if the following holds:

F(tmin) < D¢ when tmin = 0,
F(tmin) < ]72 when ¢, > 0,

where p. denotes the critical probability for the Bernoulli bond percolation model on Z¢ and
]73 the critical probability for the oriented Bernoulli bond percolation.
In the whole article, we assume that F' has support in [0, 00), is useful, and that

Emin [T{,..., Tg] < oo, (2.1.2)

where T1, ..., Ty, are independent with distribution F'.
As F'is useful, F'(0) < p.. By Proposition 4.4 in [2], we thus know that geodesics between
any points exist with probability one.

2.1.2 Patterns

For a set B of vertices, we denote by 0B its boundary, this is the set of vertices which are in
B and which can be linked by an edge to a vertex which is not in B. We say that an edge
e = {u, v} is contained in a set of vertices if u and v are in this set.

Let Lq,..., Ly be non-negative integers. To avoid trivialities we assume that at least one

d
of them is positive. We fix A = []{0,...,L;} and two distinct vertices u* and v* on the

=1
boundary of A. These points u* and v” are called endpoints. Then we fix an event A*, with
positive probability, depending only on the passage times of the edges joining two vertices
of A. We say that B = (A, u™,v?, A) is a pattern. Let = € Z?. Define:
e foryeZ Oy=y—x,

o for an edge e = {u,v} connecting two vertices u and v, 0,¢ = {0,u, 0, v}.

Similarly, if 7 = (zo,...,zx) is a path, we define 0,7 = (0,x,...,0,x;). Then 6,T
denotes the environment 7" translated by —zx, i.e. the family of random variables indexed by
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the edges of Z¢ defined for all e € £ by
(0,T)(e) =T (0_e).

Let 7 be a self-avoiding path and x € Z?. We say that x satisfies the condition (;*R) if
the following two conditions are satisfied:

1. 0,7 visits ©® and v*, and the subpath of 8,7 between u* and v* is entirely contained
in A,

2. 0, T € A",

Note that, if x satisfies the condition (7;B) and 7 is a geodesic, then (0,7),a ,a is one of
the optimal paths from u® to v™ entirely contained in A in the environment #,7. When
the pattern is given, we also say "7 takes the pattern in §_,A" for "x satisfies the condition

(m;9B)". We denote:

N‘B (7T> = Z ]l{m satisfies the condition (m;}3)}- (213>

z€Z4

Note that the number of terms in this sum is actually bounded from above by the number
of vertices in . If N¥(r) > 1, we say that 7 takes the pattern. The aim of the article is
to investigate, under reasonable conditions on B, the behavior of N¥(v) for all geodesics v
from 0 to x with ||z||; large. The first step is to determine these reasonable conditions, that
is why we define the notion of valid patterns.

Definition 2.1.1. Denote by {e1,...,eq4} the vectors of the canonical basis. An external
normal unit vector associated to a vertex z of the boundary of A is an element o of the set
{*e1, ..., xeq} such that z + o does not belong to A.

Definition 2.1.2. We say that a pattern is valid if the following two conditions hold:
o A" has a positive probability,

o the support of F is unbounded or there exist two distinct external normal unit vectors,
one associated with u and one associated with v™.

Remark 2.1.3. The existence of the two distinct vectors in the second condition of Definition
is equivalent to the fact that the endpoints of the pattern belong to two different faces.
Note that a real obstruction can appear when this second condition is not satisfied. For
example, take d = 2, F = %51 + %54, A ={0,1} x {0,1,2,3}, v = (0,2), v* = (0,1), and
AN the event on which for all edges e € A such that e is adjacent to u™ or v, T(e) = 4
and for all other edges e of A, T(e) = 1. This is the pattern of Figure and in what
follows in this remark, we use the notations of this figure. The only geodesic from u™ to v*
entirely contained in the pattern is (u™,v™). However, neither (a,u™,v™), nor (b,u®, v™),
nor (u®, v, e), nor (uh,v*,d) is a geodesic. Hence, every geodesic taking the pattern would

contain the path (c,u™,v™, f) but this path is not a geodesic.
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Figure 2.1: Example of a pattern which cannot be taken by a geodesic. The passage times of the
edges in red are equal to 4 and those of the edges in green are equal to 1.

2.1.3 Main result

The main result of this paper is the following.

Theorem 2.1.4. Let P = (A, u®, 0™, A) be a valid pattern and assume that F is useful and
satisfies (2.1.2)). Then there exist o > 0, 31 > 0 and 3y > 0 such that for all x € 72,

P (EI a geodesic vy from 0 to x such that N¥* () < a||x]|1) < Brelel
Showing the existence of a constant ¢ > 0 such that, for all large n,
E[N¥(7(n))] > cn (2.1.4)

where 8 is a properly designed pattern and where 7(n) is the first geodesic from 0 to ne;
(geodesics are ordered in an arbitrary way), has been a key intermediate result to show
several properties in first-passage percolation. The first result of this kind appears in an
article by van den Berg and Kesten [I8]. Let us recall their setting. Assume that F is a
finite mean distribution on [0, +00). Denote by p(F') the time constant associated to F, that
is
. E[t(0,ne)]
plE) = lim, ===
Let F be another finite mean distribution on [0, +00). Assume F useful, F # F and d > 2.
If F is more Variabl than F, then j(F) < pu(F). This is the main result of [I8] and estimate
(2.1.4)) is the content of their Proposition 5.22. The proof relies on a modification argument.
In [17], Nakajima proves a version of to show that the number of geodesics between
two vertices has an exponential growth if the distribution has an atom. The result can be

deduced from Theorem [2.1.4] as follows. Denote by x an atom of the distribution. Consider
the pattern P = (A, u, o™, AY) where:

1O~ne says that F' is more variable than F if there exists two random variables T' — with distribution F' —
and T — with distribution F' — such that E[T|T] < T'. See Definition (2.1) and Theorem 2.6 in [I§].

36



e A={0,1} x {0,1} x 1:[3{0},

e u*=(0,...,0) and v* = (1,1,0,...,0),
« A* the event on which the passage time of every edge of A is equal to x.

The key fact about this pattern is the following: each time a geodesic takes the pattern, the
geodesic can chose any of the two optimal paths between the endpoints.

Then, one of the most recent results of this kind appears in an article by Krishnan,
Rassoul-Agha and Seppéldinen in [I5] (see Theorem 5.4 and Theorem 6.2). They use (2.1.4))
for some specific geodesics in order to get results about the Euclidean length of geodesics
and the strict concavity of the expected passage times as a function of the weight shifts.

We explain in this section the differences between our result and the ones in [15], [17]
and [I8] but we give more details about [15] below in Section as we wish to strengthen
some of their results to illustrate the use of Theorem [2.1.4, Theorem [2.1.4] is stronger on
three aspects that are commented below:

1. Tt deals with general patterns while the results in [15], [I7] and [I§] are stated for
specific patterns.

2. In the case of non-uniqueness of geodesics, it gives the result for all geodesics and not
only for a specific one.

3. It provides an at least linear growth of the number of crossed patterns out of an event
of exponentially small probability.

Since the proof given by van den Berg and Kesten, it has been clear that should
be true for any reasonable pattern. As explained above, has indeed been proven for
several specific patterns in [I5], [I7] and [I8]. In some part of the proof of (2.1.4)), one needs
to design a new environment in which the geodesics have to cross the pattern. When the
support of F'is unbounded, the argument is relatively straightforward. However, when the
support of F' is bounded, this is more involved. Actually, in [I5], [I7] and [I8], when the
support of F is bounded, each of the proofs is technical and makes use of specific properties of
the considered pattern. The extension to any reasonable pattern, while naturally expected,
actually requires new arguments and is a significant difficulty in the proof of Theorem 2.1.4]
Thanks to Theorem [2.1.4] we can for example generalize Theorem 6.2 in [15]. See Theorem
below. Let us note however that the strategy developed in the bounded case in Section
to remove the restriction in Assumption 6.1 in [I5] could be used in the proof of
Theorem 6.2 in [15].

In [15], [I7] and [18], (2.1.4)) is proven only for a specific geodesic. This has no consequence
on the main results of [17] and [I8]. However obtaining a result for all geodesics enables to
strengthen one of the main results of [I5] in the bounded case. See Remark [2.1.10] Dealing
with all geodesics is obtained thanks to a new idea using concentric annuli to define and
localize good boxes (see Section [2.2.1)).
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The last difference with the results of [I5], [17] and [I§] is that our result is stronger than
a result in expectation. However, notice that the result in expectation is sufficient for the
applications in [I7] and [I8]. We refer to Section for comments on [15].

A result fulfilling items [2| and |3| above appears in an article by Andjel and Vares [I] for
the number of edges with large time crossed by a geodesic.

Theorem 2.1.5 (Theorem 2.3 in [I]). Let F be a useful distribution on [0,400) with un-
bounded support. Then, for each M positive there exists ¢ = (M) > 0 and o = «(M) > 0
so that for all x, we have

P (EI geodesic w from 0 to x such that Y Lre>m < 04||93H1> < ecllel, (2.1.5)

ecm

Theorem is a generalization of this theorem since, to get this result, we can take
the pattern (reduced to one edge) B = ({u®, v}, u, vh, A*) where u* = (0,...,0), v* =
(1,0,...,0) and A" is the event on which the passage time of the only edge of the pattern is
greater than M. The proof of Theorem [2.1.4]is partly inspired by the proof of this theorem
and by the proof of in [I§].

Even if it is stated for distributions with unbounded support, one can check that Theorem
2.3 in [I] holds for F' with bounded support with the same proof. As we need this extension
in the proof of Theorem we state it below.

Theorem 2.1.6. Let F' be a useful distribution on [0, 4+00) with bounded support. Then, for
each M positive such that F([M,+o00)) > 0, there exists e = (M) > 0 and o = a(M) > 0
so that for all x, we have (2.1.5)).

2.1.4 Some applications

Several of the main results recently obtained in [I5] are based on modification arguments
leading to results of the type . We take advantage of Theorem to slightly improve
some of these results. The purpose of this section is primarily to illustrate the use of Theorem
[2.1.4] the details of the proofs are postponed to Section [2.4]

Euclidean length of geodesics

Consider the following two assumptions on the distribution F"

(H1) There exist strictly positive integers k£ and ¢ and atoms r{,...,7} 4, S7,...,s) (not

necessarily distinct) such that
k+2¢ k

dori=> s (2.1.6)
i=1 j=1

(H2) There exist strictly positive integers k and ¢ and atoms r < s such that (k+20)r = ks,
or F' has an atom in 0.
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Note that |(H2)|is strictly stronger than [(H1)| For z € Z%, we denote by Ly, (resp. Lo) the
minimal (resp. maximal) Euclidean length of self-avoiding geodesics from 0 to z. In [I5],
Krishnan, Rassoul-Agha and Seppélédinen prove the following theorem.

Theorem 2.1.7 (Theorem 6.2 in [I5]). Assume that P(T'(e) = tmin) < pe and that for
independent random variables Ty, . .., Tog with distribution F, Emin [T7, ..., T8, < 0o with
p > 1. Furthermore, assume one of the following two assumptions:

o the support of F' is unbounded and is satisfied,
o the support of F' is bounded and 1s satisfied.
Then, there exist constants 0 < D,d, M < oo such that
P(Lox — Loo > Dlall) > 6 for |lzlls > M. (21.7)

We use Theorem [2.1.4] to prove the following result. It generalizes in a way Theorem [2.1.7]
since in the case of bounded support, we have a less restrictive assumption and since the lower
bound in is exponentially close to one in the distance instead of the uniform lower
bound in . However, the assumption on the moment is less restrictive in Theorem
217

Theorem 2.1.8. Assume that F' is useful and Emin [Tfl,...,TQdd} < 00. Furthermore,
assume [(H1). Then there ezist constants 0 < [31, B2, D < oo such that

P(Lox — Loy > Dlalli) > 1= pre I, (2.1.8)

The proof of this theorem is the aim of Section [2.4.1]

Strict concavity of the expected passage times as a function of the weight shifts

For b € R, define the b-shifted weights by
T® = {TO(e) : e € £} with TP (e) = T(e) + b forall e € £.

Following the notations of [15] (see Section 2.2 in [I5]), all the quantities associated with
the passage times T® acquire the superscript. Further, the geodesic time t®)(z,y) between
x and y is defined similarly to but taking the infimum only over the family of self-
avoiding paths from x to y. Theorem A.1 in [15] gives the existence of a constant eq > 0 with
which we have an extension of the Cox-Durett shape theorem for the shifted weights 7(-%
for b < tmin + €0 (note that here the weights can be negative). Note that (ii) in Theorem A.1
in [15] guarantees that E[t(=?)(0, z)] is finite if b € (0, tyin + €0)-

Theorem 2.1.9. Assume F useful. Furthermore, assume that the support of F is bounded
and that it contains at least two strictly positive reals. Then, there exists a finite positive
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constant M and a function D(b) > 0 of b > 0 such that the following bounds hold for all
b e (0,tmin + o) and all ||z]|y > M:

E[t0(0,2)] < E[H(0,)] — bE[Lo.] — D(b)b]l]1. (2.1.9)

Remark 2.1.10. In Theorem we slightly strengthen Theorem 5.4 in [15] in the bounded
case. Indeed, E[Ly,] in [15] is replaced by E[Ly,] in (2.1.9). This strengthening is made
possible by the fact that Theorem[2.1.4) gives a result for all geodesics and thus, in particular,
for the geodesic of mazximal FEuclidean length. We focus on the bounded case in Theorem

since Theorem 5.4 in [15] already contains (2.1.9)) in the unbounded case.

2.1.5 Sketch of the proof

In what follows, we give an informal sketch of proof of Theorem [2.1.4] Fix a pattern 3 and
r € Z4 with ||z large. Consider the event:

M = {there exists a geodesic from 0 to x which does not take the pattern}.

The aim is to prove that M has a probability small enough in ||z||. More precisely, we want

to prove
1

]l =
From this result, by a standard re-normalization argument, we easily get that, out of a very
low probability event, every geodesic from 0 to x takes a number of patterns linear in ||z||

(see Proposition [2.1.11]in Section for a formal statement of (2.1.10)).

P(M) < (2.1.10)

General idea. The idea is to define a suitable sequence of events M(¢) for 0 < ¢ < g such
that, for some positive constant ¢ < 1,

L g2 cfz],
2. M C M(Q) U B where ]P)(B) < W,
3. forall £ > 1,
P(M(£)) < P(M(0 —1)). (2.1.11)

If the above holds, we get P(M) < ¢“I#lt + P(B), which allows us to get (2.1.10). The event
M({) is approximately "there exists a geodesic from 0 to z which does not take the pattern
until a distance of order ¢", where we have to precise the sense of "distance of order ¢". The
complementary event of B is approximately "each geodesic crosses enough good boxes" and
these good boxes are the boxes in which the environment and the geodesics behave in a
typical way. This enables us to try to modify the environment to ensure that all geodesics
from 0 to z take the pattern inside. We take a good definition for the event M(¢) to have
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M(l) € M(¢ — 1) and thus ([2.1.11)) is equivalent to the existence of a constant n > 0 (by
taking = £ — 1) such that

P(M(L — 1) \ M(0)) > nP(M(0)). (2.1.12)

To get (2.1.12), we would like to make a modification in an environment where M(¢) occurs
to get a new environment in which the event M(¢ — 1) \ M(¥) occurs. This requires some
stability in the definition of the events M(-) under the modification. This will be made
clearer later.

Associated geodesics. We need the notion of associated paths. For the remaining of the
sketch of the proof, "geodesic" means "geodesic from 0 to z". Let B be a set of vertices (it is
intended to be the "selected box", i.e. the box where we make the modification). Two paths
7t and 72 from 0 to x are B-associated if there exist a,b € B such that:

1. w! and 72 visit successively a and b,

2

1 _ .2 1
2. o0 = Toa and Tow = Thas

1 2 . . .
3. m,p and m; , are entirely contained in B,

where 7 , (vesp. 7, m ) denotes the subpath of 7 between 0 and a (resp. a and b, b and
x), for i = 1,2. In particular the two paths coincide outside B. With this definition, we can
clearly enumerate the properties we want after the modification. Imagine we have a geodesic
v "selected" in a certain way and a "good" box B (where we want to make the modification)
such that v crosses B. The aim is to modify the environment in B such that:

1. Every geodesic in the new environment takes the pattern in B.

2. Every geodesic in the new environment is B-associated with a geodesic in the original
environment.

3. The geodesic v is B-associated with at least one geodesic in the new environment.

If we identify two geodesics B-associated, the last two properties can be rephrased as follows:
we have not won new geodesics, we have not lost the geodesic v. It is one of the keys of
the stability. Getting these properties in the unbounded case is elementary but it is a

significant difficulty in the bounded case (see Section [2.3.4.1| where we give the main ideas
of the modification).

Definition of the sequence M({). We would like to get a result on every geodesic (in
the case where there is no uniqueness, which is a case we do not want to eliminate). A
definition of the type:

M({) = {the first geodesic (in the lexicographical order) does not take the pattern
in its first £ good boxes}
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does not provide a result for all geodesics. However, it is possible to get a result for the first
geodesic in the lexicographical order with this definition.

If every box crossed by geodesics were a good box, we could define a sequence of large
concentric annuli centered in the origin and use a definition of the type:

M({) =~ {there exists a geodesic which does not take the pattern in the ¢ first annuli}.

Thus, we could choose one of these geodesics (let us denote it by «) and choose a box crossed
by 7 in the ¢-th annulus (let us denote it by B.) By making a modification giving the three
properties stated above in the paragraph about the associated geodesics in the box B, in the
new environment, the event M(¢ — 1) \ M(¢) would occur. Indeed, M(¢) would not occur
since every geodesic in the new environment would take the pattern in B and thus in the /-th
annulus. However, M (¢ — 1) would occur: this crucially uses the fact that + is B-associated
with a geodesic in the new environment (and the fact that the environment outside B, and
thus outside the f-annulus, is not modified).

We could use the above definition if every geodesic crossed a good box in every annulus.
Since it is not the case, we have to use a definition of the type:

M(£) = {there exists a geodesic v which does not take the pattern in the union
of the first ay(y) annuli}

where a,(7) is the index of the (-th annulus in which  crosses a good box (see Section [2.2.1]
and Section |2.3.2)).

Modification. Fix a positive integer £. Now, the aim is to define a general plan to prove
(2.1.12)). Here we do not discuss the modification itself (see Section [2.3.4.1] in the bounded
case). Recall that we define the sequence M(¥) to have

M(l) € M(£—1). (2.1.13)

We denote by T' the environment (i.e. the family of passage times on the edges) and by
T’ an independent copy of T. The basic idea consists in creating a modified environment
T* = o(T,T') where T*(e) = T(e) for some edges (whose passage times do not change)
and T*(e) = T'(e) for the other edges (whose passage times are re-sampled). In other
words, we define a random set of edges R(T) (the edges we want to re-sample) and we set
T* = o(T,T") = rer) (T, T") where, for every set of edges r, ¢, (T,T")(e) is equal to T"(e) if
e € r and to T'(e) else.

In a utopian situation, imagine that we could define a new environment 7% = (T, T")
and an event A (ensuring the success of the modification) such that:

e T and T have the same distribution,
e n:=P(T" € A) >0,
o and {T'e M({) and T" € A} C {T* e M({ — 1)\ M({)}.
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Then we would have

P(T € M({ — 1)\ M(0)) = P(T* € M({ — 1)\ M(0))

>P(T e M()NT" € A) =nP(T € M(0)),
which is ([2.1.12).

However, this situation is unrealistic since the set of re-sampled edges R(7T") depends on
T, and thus the distribution of T™ is different from the distribution of 7. But when r is
fixed, . (T,T") and T have the same distribution. It is possible to rely on this fact as soon
as, observing only the modified environment, we can guess approximately in which box we
performed the modification (see the use of the S'-variables and S?-variables in Lemma
and Lemma [2.3.3)).

In the case where the passage times are bounded, we use two independent copies of T’
and we make a two-steps modification. The way we actually perform the modification in the
bounded case is sketched in Section [2.3.4.1] The ideas described in this paragraph can be
adapted to this two-steps modification without difficulties.

Comparison with the plan of the proof of Proposition 5.22 in [I8]. Let us compare
the above strategy with the plan used in [I8] to prove Proposition 5.22. Fix z in Z% In
[18], van den Berg and Kesten also start by associating with some specific geodesic v some
sequence of ¢ = C||z||; good boxes. By simple geometric arguments, they then get some
family B of boxes such that

E[number of boxes of B which are good and crossed by ] > ¢||z|s

where c is a positive constant. Fix some box B € B. Then they also define a new environment
T* by resampling the times of the edges in B. It is then sufficient (this is the technical part
of the proof in the bounded case) to prove

P(every geodesic in T™* crosses the pattern in B |in the environment T,

7 crosses B and B is good) > 7

for some positive constant n > 0. In particular, and contrary to what happens in our
framework, it is not necessary in this setting to control what happens to geodesic(s) outside
the considered box when we resample the times of the edges in the box. This is not a problem
if the geodesic in the new environment completely changes.

Comparison with the plan of the proof of Theorem 2.3 in [I]. In [I], the main
difference with the strategy described above is the use of penalized geodesics. Indeed, Andjel
and Vares only consider geodesics which do not take edges whose passage time is greater than
M and it allows them to get a result on all geodesics from 0 to z thanks to the modification
argument. However, it seems difficult to use penalized geodesics with the patterns, that is
why we use the strategy of concentric annuli developped in Section [2.2.1]
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2.1.6 Reduction

One can check that, using a standard re-normalization argument, Theorem is a simple
consequence of the following proposition (see for example the proof of Theorem 2.3 in [1]).

Proposition 2.1.11. Let P = (A, u®, o™, A) be a valid pattern and assume that F is useful
and satisfies (2.1.2). Then there exist C > 0 and D > 0 such that for alln > 0, for all x

such that ||z||; = n,

P (3 a geodesic vy from 0 to x such that N¥(y) = 0) < De= ", (2.1.14)

Thus, the aim of the paper is now to prove Proposition Although they share some
similarities, the proofs of Proposition differ according to whether the support of F is
bounded or unbounded. As the proof is easier in the unbounded case, we decide to first give
the proof in the unbounded case in Section 2 and then give the proof in the bounded case
in Section 3.

2.1.7 Some tools and notations

In this subsection, we recall some results and fix some notations. First, we denote by N the
set of all non-negative integers, by N* the set N\ {0}, and by R the set of all z € R such
that x > 0.

For a self—avoidingﬂ path 7 = (zo, ..., %) going from z( to xy, we say that x; is visited
by m before x; if i < j; we say that an edge {x;, x;11} is visited before an edge {x;, z;41} if
i < j. A subpath of 7 going from z; to x; (where i,7 € {0,...,k} and i < j) is the path
(zi,...,2;) and is denoted by 7y, o,

For a set B of vertices, we denote by 0B its boundary, this is the set of vertices of B
which can be linked by an edge to a vertex which is not in B. Note that when we define a
set of vertices of Z?, sometimes we also want to say that an edge is contained in this set.
So, we say that an edge e = {u, v} is contained in a set of vertices if u and v are in this set.
Since now a subset B of Z? can be seen as a set of vertices or as a set of edges, we denote
by |B|, the number of vertices of B and by |B]|. its number of edges.

Then, we define different balls in Z¢ or R?. For all ¢ € Z¢ and r € R, we denote

Buole,r) = {u € Z% : Ju— o <7},
Bie,r) = {u € Z* : Ju—df <},

and for n € N*, we denote by I';, the boundary of B(0,n), i.e.

I, ={uecz: ||ul =n} (2.1.15)

2The definition can be extended to not necessarily self-avoiding paths by saying that a vertex x is visited
by m before y if there exists ¢y € {0,...,k} such that z;, = = and for all j € {0,...,k}, z; = y implies that
7 >1o0.
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Also for ¢ € Z¢ and r € R, , we denote by B(c,r) the random ball
Ble,r) ={ue€Z : t(c,u) <r}.

Then, for z and y in R?, we define t(x,y) as t(2',y') where 2’ is the unique vertex in Z? such
that € 2’ 4 [0,1)¢ (similarly for 3'). For ¢ € Z¢ and r € R, we denote by B(c,r) the
random ball

B(e,r) ={y eR? : t(c,y) <r}. (2.1.16)

Let z in R%. Thanks to (2.1.2)), we can define

u(x) = lim 40, nz)

n—o0 n

(2.1.17)

Thanks to the hypothesis (2.1.2) and since F(0) < p.(Z%), for all z € R4\ {0}, we have
,u(x) € (0, 00). Furthermore, p is a norm on R¢ and describes the first order of approximation
of B(0,7) when r goes to infinity. For ¢ € Z¢ and r € R, we denote

Bu(e,r) ={y € R : p(c—y) <r}.

Fix B = B,(0,1), then the Cox-Durett shape theorem (Theorem 2.16 in [2]) guarantees that
for each ¢ > 0,

B(0,t
P ((1 —¢)BC <(2’ ) C (14 ¢)B for all large t) =1 (2.1.18)

One can easily prove that the result (2.1.18)) is equivalent to

i H0.2) = @)

=0 a.s. 2.1.19

Since  is a norm, we can fix two constants ¢, > 0 and C,, > 0 such that for all y in R?,

cullylly < uy) < Cullylla

Finally, since F' is useful, by Lemma 5.5 in [I8], there exist 6 = 6(F) > 0 and Dy = Dy(F)
fixed for the remaining of the article such that for all u, v € Z¢,

P(t(u,v) < (tmin + 0)|Ju — v|)) < e Poluvl, (2.1.20)

Notice that, using the Borel-Cantelli lemma with this result, we get that for all u € Z¢
different from 0,

(1) > (tin + 0)Ju] (2.1.21)
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2.2 Unbounded case

2.2.1 Proof of Proposition [2.1.11| in the unbounded case

Let B = (A, u™,v?, A) be a valid pattern. It is convenient to reduce to the case where there
exists an integer /A > 0, fixed for the remaining of the proof, such tha A = Bo(0,0%).
There is no loss of generality (see Lemma in Appendix . Let us begin with
the definitions of a typical box and of a successful box. To this end, we have to fix some
constants.

Boxes and constants. Recall that the minimum of the support of F' is denoted by t.,in

and that ¢ comes from (2.1.20)). Since

lim P (.AA is realized and for all edges e € A, T'(e) < M) =P(AY) >0,

M —o0

there exists a positive constant M» fixed for the rest of the proof such that

P (AA is realized and for all edges e € A, T'(e) < MA) > 0.

Although we may need to replace A* by A* N {Ve € A, T(e) < M*}, we can now assume
that
AN c {Ve e A, T(e) < MM}, (2.2.1)

We fix
™ = MMu® — vy, (2.2.2)

which is an upper bound for the travel time of an optimal path (for the passage time) going
from u® to v* and entirely contained in A on the event A%

For i € {1,2,3} and s € Z% B,y is the ball in Z¢ of radius r;N for the norm ||.||;
centered at the point sN where the constants r; are defined as follows. We fix r; = d.
Denote by K the number of edges in By (0, /* + 3). Then, fix r, an integer such that

790 — 71 (tmin + 0) — Ktmin — 7 > 0. (2.2.3)
Let 753 be a positive real such that
Byo1 C B, (0, 733’) nze,
then we fix r3 an integer such that
B,(0,9753) N Z* C Bsg,.

These choices for ry and r3 will become transparent in the proofs.

3We make a very slight abuse of notation: we also consider patterns where 0 is in the center of A.
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We use the word "box" to talk about Bs,y. Recall that we denote by 0B, n the
boundary of B;, n, that is the set of points z € Z? such that ||z — sN||; = r;N. For u and
v two vertices contained in Bj s, we denote by ¢35 s x(u,v) the minimum of the times of all
paths entirely contained in Bs, y and going from u to v.

Crossed boxes and weakly crossed boxes. We say that a path
 crosses a box Bs, v if it visits a vertex in By 5 n,

« weakly crosses a box Bs , v if it visits a vertex in By s n.

Paths associated in a box. We say that two paths v and +' from 0 to the same vertex
x are associated in a box Bs, n if there exist two distinct vertices s; and sy such that the
following conditions hold:

o v and v visit s; and so,
o
* 7,51 — 707517
) . . .
* Ysi,s, and 7, o, are entirely contained in Bs g v,

A
° 782@ - 782,"2‘

In particular, these two paths coincide outside Bs s .

Typical boxes. We define a sequence (v(N))ycy- such that for all N € N*, v(N) > M4
and

N—o0
ecBy o N

lim IP( > T(e) > V(N)) = 0. (2.2.4)

Note that F((v(N),+o00)) > 0 for all N € N* since the support of F' is unbounded.
We can now define typical boxes. A box Bz is typical if it verifies the following
properties:

(i) 7 (s;N) is realized, where T (s; N) is the following event:

2€B2 5 N Bs,s,N

{ sup t3sn(Ns,z) < 7"2,3]\7} N { inf  t3,n(Ns,2) > 47“273N} ,
zEe
(ii) every path 7 entirely contained in Bs gy from u, to v, with ||Juz — vgll1 > (ra — 1) N
has a passage time verifying:

t(ﬂ-> > (tmin + 5) ||u7r - U7rH17 (225)

(iii) > T(e) < v(N).

6632’07]\]
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Lemma 2.2.1. We have the following three properties about typical bozes.

1. Let s € Z% and N € N*. If Bs s n is a typical box, for all points ug and vy in By s N,
every geodesic from ug to vy is entirely contained in Bs s v.

2. Let s € Z% and N € N*. The typical box property only depends on the passage times of
the edges in Bs s n.

3. We have
lim P(Bson is a typical box) = 1.

N—oo

This lemma guarantees that the properties of a typical box are indeed typical ones and
that they are also local ones. Its proof is in Section [2.2.2] Let us now introduce some further
definitions.

Successful boxes. For a fixed z € Z¢, a box Bs y is successful if every geodesic from 0
to x takes a pattern which is entirely contained in By y, i.e. if for every geodesic 7y going
from 0 to z, there exists z., € Z¢ satisfying the condition (;B) and such that Be(z.,, *) is
contained in B, y. Note that the notion of successful box depends on some fixed x € Z°.

Annuli. Now, we define the annuli mentioned in Section [2.1.5] Fix
r=2(r;+rs+1), (2.2.6)
and for all integers ¢ > 1, let us define

Aix={y ez |lyll € [(i — )rN,irN)}.

For any annulus A; v, we call {y € Z? : ||y|l; = (i — 1)rN} its inner sphere and {y € Z¢ :
|lylls = irN} its outer sphere. Then, we give two definitions about these annuli which are
useful in the proof of Lemma [2.2.3

o For i > 1, we say that a path from 0 to a vertex of Z? crosses (resp. weakly crosses) a
box Bs sy in the annulus A; y if the following two conditions are satisfied:

— it crosses (resp. weakly crosses) this box before it visits for the first time the outer
sphere of A, v,
— DBj v is entirely contained in the annulus, i.e. every vertex of Bs ¢ n is in A; y.
« We also say that a path takes a pattern in the annulus A; y if it takes a pattern which
is entirely contained in A; y, i.e. if every vertex of this pattern is in A; y. Here, we do

not require that the path takes a pattern before it visits the outer sphere of A; 5 for
the first time.
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Note that the choice of r guarantees that every path passing through an annulus has to cross
a box in this annulus.

For all integer p > 2 and all N € N*, we denote by GP(N) the event on which for all x
in the outer sphere of the p-th annulus, every geodesic from 0 to x crosses a typical box in
at least EJ annuli. The following lemma, whose proof is given in Section [2.2.2 gives us a

useful bound on the probability of the complement of GP(N).

Lemma 2.2.2. There exist two positive constants Cy and Dy, and an integer No > 1 such
that for all p > 2 and N > Ny,

1

P (GP(N)¢) < Dye 1?7,

Setup for the proof of Proposition [2.1.11] For the rest of the proof, we fix C7, D;
and Ny given by Lemma [2.2.2, Recall that K is the number of edges in Bu, (0, ¢* +3). Then
we fix &' > 0 such that

9(6 — 0') — 71 (tmin + 0) — K (tmin + ') — 7% > 0. (2.2.7)
Note that it is possible since we have taken ry large enough (see (2.2.3))). Then, fix

N > maX(No,EA +3),n>2rN and z € [, (2.2.8)

where I'), is defined at (2.1.15))). Fix p = o and g = a Note that x belongs to the
N 2
r
(p + 1)-th annulus.

M-sequences. Let us now define some random sets and variables which are useful for sta-
bility questions for the modification argument. Unless otherwise specified, in the remaining
of this section, we write geodesic as a shorthand for geodesic from 0 to x.

First, let us associate a sequence of 0 to p — 1 typical boxes to every geodesic from 0 to
x. For a geodesic v, the deterministic construction is what follows.

Initialize the sequence as an empty sequence. For j from 1 to p — 1, do:

e let aj(y) be the index of the first annulus such that v crosses a typical box in this
annulus and such that a;(y) > a;_1(y) (where ag(y) = 1). If there is no such annulus,
then we stop the algorithm.

o Add the first typical box crossedﬂ by v in the annulus Ay, (,)n to the sequence. Note
that, since this typical box is crossed before v leaves A, ().~ by the outer sphere for

the first time, the j-th box of the sequence is crossed by ~ after the (j — 1)-th one.

So, we get a sequence of at most p — 1 boxes crossed by the geodesic. These boxes are all
in different annuli. Furthermore, every box of this sequence is crossed by ~ before 7 leaves

41f a path crosses two boxes B3 s, ~ and B3 s, n, we say that it crosses B3 5, v before Bs 5, n if it visits
a vertex of B; s, n before one of By 5, n.
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the annulus containing it for the first time by the outer sphere. If the event GP(N) occurs,
we know that all these sequences have at least ¢ elements. For j € {1,...,p — 1}, we define
a set of geodesics I'V. A geodesic v from 0 to = belongs to I'V if:

» the lengths of its sequences defined above is greater than or equal to j,
7 does not take the pattern in any annuli A, y with k& < a;(7).

We call the sequences defined above the M-sequences.

Selected geodesic and S!'-variables. Then, for j € {1,...,p— 1}, if [V is not empty, we
define the selected geodesic among the geodesics of IV as the one which minimizes the index
of the annulus containing the j-th box of its sequence. If there are several such geodesics, the
selected one is the first in the lexicographical ordelﬂ. Then, the random variable S ]1 is equal
to the vertex s such that the box Bs sy is the j-th box in the M-sequence of the selected
geodesic. When j is fixed, we say that the box By SN is the selected box. Finally, if IV is

empty, set 5]1 = 0 and there is no selected geodesic.

S%-variables. Let j € {1,...,p— 1}, we define S? as follows. For every geodesic v € [V 71,
we define, if it is possible, S7(7) as the vertex s corresponding to the box B, x where Bs gy
is the first successful box crossed by 7 in an annulus (in the sense given with the definition
of the annuli above). If it is not possible, S7(y) = 0. We denote by a/;(7) the index of the
annulus containing By g2(,) v. Then, 5% is equal to the vertex S?(7) where 7 satisfies the
following three conditions:

- aj(7) > 1,
o for all geodesic v € IV~! such that a/(y) # 1, we have a/(v) > a(7),

e 7 is the first geodesic in the lexicographical order among the geodesics v such that
/

a;(v) = a;(7)-
If it is not possible, S? = 0.

Modification argument. Finally, for j € {1,...,p — 1}, we define M(j) as the event on
which every geodesic v from 0 to = has at least j typical boxes in its M-sequence and there
exists one geodesic which does not take the pattern in any annuli Ay y with & < a;(y). We
also define M(0) as the event on which there exists a geodesic from 0 to z. Its probability is
equal to 1 (see Section[2.1.1)). Now, the aim is to bound from above P(M(g)) independently
of x since we have:

P (there exists a geodesic v from 0 to 2 such that N¥(y) = O)

(2.2.9)
<P(T € G°P(N)°) +P(T € M(q)).

5The lexicographical order is based on the directions of the consecutive edges of the geodesics.
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In the sequel, we introduce an independent copy 7" of the environment 7', the two being
defined on the same probability space. It is thus convenient to refer to the considered
environment when dealing with the objects defined above. To this aim, we shall use the
notation {T" € M(j)} to denote that the event M(j) holds with respect to the environment
T. In other words, M(3) is now seen as a subset of (R, )¢, where & is the set of all the edges.
Similarly, for i € {1,2} we denote by S%(T”) the random variables defined above but in the
environment 7".

Fix £ € {1,...,q}. On {T € M({)}, T* # () and Bs 511w s a typical box crossed by
the selected geodesic. We get a new environment 7™ defined for all edge e by:

% - T(e) ife¢ B2,Sl(T),N
T(e) = { T'(e) else. e

For y and z in Z¢, we denote by t*(y, 2) the geodesic time between y and z in the environment
T*. Note that T" and 7™ do not have the same distribution.

Lemma 2.2.3. There exists n = n(N) > 0 such that for all ¢ in {1,...,q}, there exist
measurable functions E% : RS — P(E) and E* : RS — P(E) such that:

(i) E(T) N E*(T) =0 and E5(T) U E* (T) C By g1y v

(it) on the event {T' € M({)}, we have P (T € B*(T)|T) > n where {T" € B*(T)} is a
shorthand for

{Ve € EL(T), T'(e) = v(N), Ve € EX(T),T'(€) < tumm + 0", Onsa 1" € AN,
(iii) {T € M(O)}n{T" € BX(T)} C {T* € M({—1)\M(€)} and ||SF(T*) = SH(T)|1 < 2r3.

Lemma[2.2.3]is a consequence of Lemma [2.2.4 below whose proof is given in Section [2.2.3]
Recall the definition of associated paths given page [A7]

Lemma 2.2.4. There exists n = n(N) > 0 such that for all ¢ in {1,...,q}, there exist
measurable functions E% : RS — P(E) and E* : RE — P(E) such that (i) and (it) of
Lemma [2.2.9 are satisfied and such that if the event {T € M({)} N {T" € B*(T)} occurs,
then we have the following properties:

(i) in the environment T*, every geodesic from 0 to x takes the pattern inside BQ’Sl;(TLN,

(7i) for all geodesic ¥* from 0 to x in the environment T™, there ezists a geodesic ¥ from 0
to x in the environment T such that 7 and 5* are associated in B375§(T)7N7

*

(7ii) there exists a geodesic v* in the environment T* from 0 to x such that v* and the
selected geodesic vy in the environment T' are associated in Bz,s(}(T), N-
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Proof of Lemma[2.2.3 Let ¢ € {1,...,¢q}. Consider E* and E* given by Lemma . Let
s € Z¢ and assume that the event {T" € M(£)} N {SHT) = s} N{T" € B*(T)} occurs. To
prove that the event {T* € M(¢ — 1)\ M()} occurs and that [|SZ(T*) — s|j; < 2r3, it is
sufficient to prove that we have the following four points in the environment 7™:

1.

2.

4.

every geodesic from 0 to z has at least ¢ — 1 typical boxes in its M-sequence,

there exists a geodesic from 0 to x which does not take the pattern in the annuli up to
and including the one containing its (¢ — 1)-th box,

every geodesic from 0 to x whose M-sequence contains at least ¢ elements takes the
pattern in an annulus whose index is smaller than or equal to the one containing its

(-th box,

there exists s’ such that S?(7*) = s’ and ||s — §'[|; < 2r3.

Let us start with a few remarks. We denote by a, the index of the annulus which contains

B3,S;(T),N-

(a)

The environments 7" and T™ coincides outside the box By, S1(T),N- As this box is included
in the annulus A,, y, the environments 7" and 7™ are the same in all the other annuli.
In particular, any box contained in an annulus A; 5 for ¢ # a, is typical in 7" if and
only if it is typical in T™.

Similarly, every path 7 takes a pattern which is outside the box B&S}(T% N in the
environment 7' if and only if it takes this pattern in the environment 7. In particular,
for any ¢ # a,, m takes the pattern in the annulus A; y in the environment 7' if and
only if it takes the pattern in the annulus A; 5 in the environment 7.

Let ¥ and 7* be as in item (i) of Lemma By definition of associated paths, there
exist two vertices s; and s, in Bg}s}(TL N Vvisited by the two geodesics, such that 7 and
7* coincide except maybe for the part between s; and s5. To sum up:

— —x — —% —
70,51 = 70,31 and 782,90 = Vsz,x and 751752 - BS,S}(T),N C Aag,N

B (2.2.10)
and "}/:1752 C B3,S}(T),N C Aag,N-

Furthermore, by remark (b), we have that for any i # a,, 77 takes the pattern in the

annulus A; x in the environment 7 if and only if 7* takes the pattern in the annulus

A; y in the environment 7. The same property holds for the selected geodesic v and

for the associated geodesic v* (in the environment 7%) given by item (iii) of Lemma

224

Let again 7 and 7* be as in item (i7) of Lemma . Let us compare the M-sequence
of 7 (which is built in the environment 7') with the M-sequence of ¥* (which is built
in the environment 7%). By (a) and (2.2.10)), we get that any box which belongs to the
M-sequence of 7, with the possible exception of a box contained in A,, n, also belongs
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to the M-sequence of 7*. The same property holds for the selected geodesic v and
for the associated geodesic v* (in the environment 7%) given by item (iii) of Lemma
. In particular the first £ — 1 elements of the M-sequence of v (which is built in
the environment 7") are the same as the first £ — 1 elements of the M-sequence of ~*
(which is built in the environment 7%).

Let us now proceed to the proof of item 1. We assume ¢ > 2 otherwise there is nothing
to prove. Let 7" be a geodesic from 0 to z in the environment T*. Let 7 be the associated
geodesic in the environment 7" given by item (i) of Lemmal[2.2.4] Since the event {T" € M(()}
occurs, the M-sequence (in the environment 7') of 7 contains at least ¢ typical boxes. By
remark (d) above, the M-sequence (in the environment 7%) of * contains at least ¢ — 1
typical boxes.

Let us consider item 2. We can again assume ¢ > 2. Let v* be the geodesic given by item
(ii) of Lemma Recall that v is the selected geodesic and that v € I'*. In particular,
we have the following properties: its M-sequence contains at least ¢ boxes; the /-th box of
its M-sequence belongs to A,, n; 7 does not take the pattern in any annulus whose index
is smaller than or equal to a,. Therefore, by remark (d) above, the first £ — 1 boxes of the
M-sequence of v and v* are the same. By remark (c) above, we conclude that v* does not
take the pattern (in the environment 7*) in any annulus whose index is smaller than the one
containing its (¢ — 1)-th box.

Let us prove item 3. Let 7* be such a geodesic. Assume that the ¢-th box of the M-
sequence of ¥* is in an annulus whose index is strictly smaller than a,. Let 7 be a geodesic
in the environment 7' given by item (ii) of Lemma[2.2.4 Assume, aiming at a contradiction,
that 7* does not take the pattern in an annulus until the one containing its /-th box. By
remark (d), the ¢ first boxes of the M-sequences of 7* and 7 are the same. By remarks
(b) and (c), ¥ does not take the pattern until the annulus containing its ¢-th box. This
contradicts the definition of S}, so it is impossible. Thus the ¢-th box of the M-sequence of
7* is in an annulus whose index is greater than or equal to a,. By item (i) of Lemma ,
7* takes the pattern in the annulus whose index is ay,. Therefore it takes the pattern in an
annulus whose index is smaller than or equal to the one containing its ¢-th box and the third
point is satisfied.

Finally, let us prove item 4. Note that since Bj y is a successful box, SZ(T*) # 0. There
are two steps. First, we prove that NS?(T*) is the center of a box contained in the annulus
Aq,,n and then we prove that B, n N Bs g2(p+) n 7 (), which gives the result. Assume that
NSZ(T*) is not the center of a box contained in A,, y. Let again v* be the geodesic given
by item (izi) of Lemma and recall that v is the selected geodesic in the environment
T. Since Bs gy is successful, we have aj(y) < a, and thus the definition of S7(7*) implies
that NSZ(T*) is the center of a box contained in an annulus Ay, y such that k& < ay. So v*
takes the pattern in this annulus in the environment 7. By remark (c), v takes the pattern
in this annulus in the environment 7* and then in the environment 7" by remark (b). This
is impossible since v does not take the pattern in any annuli A, y with & < ay.

To conclude, assume, aiming at a contradiction, that Bs, y N Bs g2(p+) n = 0. It implies
that v* takes a pattern outside B3 n in the environment 7™ and the portion of v* taking
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this pattern is a portion of 76“73/1 or 7;‘/2@. By remark (b), the portion of v* taking this pattern
also takes this pattern in the environment 7. By remark (c), it implies that v takes the
pattern in the environment 7" in the annulus A,, , which is a contradiction. O

Now, thanks to Lemma [2.2.3| we can adapt Lemma 3.8 from [1].

Lemma 2.2.5. There exists A € (0,1), which does not depend on n and on x € T, such
that
P(T € M(q)) < M.

Proof. Let ¢ be in {1, ...,q}. For every s € Z%, let us consider the environment 77 defined
for all edge e by:

| T(e) ifeéd Bygn
Tile) = { T'(e) else.

Thus T* and T have the same distribution and on the event {T" € M({)} N {SHT) = s},
T = TY. So, using this environment and writing with indicator functions the result of
Lemma [2.2.3], we get:

Liremey sy m=spLirres-)y < Lyrreme-n\menlyy,  (s2an=s1

INS

where s’ ~ s if ||s — §||; < 2r3. We compute the expectation on both sides. The right side
yields

P (T; e Ml —1)\ M(0), J{S}(T7) = 8’}>

s'xs

—P(TeM(ﬁ—l \ M(0), | {SE(T —s’}>.

s'xs

For the left side, we have
E []1{TeMm}]l{sl%(T):s}]l{T'eB*(T)}} =E []l{TeMw)}]l{sl —s) []1{T'66* T)}\ TH

Since on the event {T' € M ()} N{S}(T) = s}, we have P (T" € B*(T)|T) > n, the left side
is bounded from below by nP(T € M({),S}(T) = s). Then, by summing on all s € Z¢ and
writing K a constant which bounds from above for all s’ € Z? the number of vertices s € Z¢
such that s’ ~ s, we get

LP(T € M(0) < B(T € M(¢— 1)\ M(1).

Now, since M(¢) C M(¢ — 1),

P(T € M({ — 1)\ M(0)) =B (T € M({ —1)) —P(T € M(()).

Thus,
P(T € M(0)) < X\P(T € M(L —1)),

o4



where \ = € (0,1) does not depend on x. Hence, using P(T" € M(0)) = 1, we get by

[
induction

P(T € M(q)) < A“.
O

Proof of Proposition [2.1.11. Recall that N, z (and then n and p) are fixed at (2.2.8) but
that Cy, Dy and X does not depend on z, n and p. Then, by Lemma and Lemma [2.2.5]

using the inequality (2.2.9)),

P (there exists a geodesic v from 0 to x such that N*(v) = O)
<P(T € GP(N)) +P(T € M(q))
< Dle_clp% + ALEL

As Cy > 0 and A € (0,1), and as this inequality holds for any n > 2rN and any x € T, we
get the existence of two constants C' > 0 and D > 0 such that for all n, for all z € [',,

P (there exists a geodesic v from 0 to x such that N¥(y) = 0) < Dexp(—C’né).

2.2.2 Typical boxes crossed by geodesics

Let us first begin with the proof of the lemma stated in the paragraph of typical boxes in
Section 2.2.1]

Proof of Lemma [2.2.1].

1. Let B3,y be a typical box. Then the event 7 (s, N) occurs. Let uy and vy be two
vertices in By 5 y. We have

t3.s N (U0, v0) <2 sup t3,n(Ns,2) < 2ry3N.

ZGBQ’S’N

Let my be a path from wug to vy which is not entirely contained in Bs s n. Let zy denote
the first vertex on the boundary of Bs , y visited by my. Then

T(my) > tss.n(uo, 20) > tasn(20, NS) — tss 5 (o, Ns)

>
> inf  t3sN(Ns,z) — sup tssn(INs,2) > 3ra3N > 2ry3N
2€0Bson By ’

> t3.5 N (o, o).
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Hence, every geodesic from ug to vy has to be entirely contained in Bs ; v.

. The properties (i7) and (i¢7) only depend on the time of edges in By, . The event
T (s; N) only depends on edges in Bs ¢ x by the definition of 5 ¢ y.

. First,
lim P(7(0;N)) = 1.

N—o00
Indeed, recall the definition of the random ball B(c,r) given at ([2.1.16) for any ¢ € Z?
and r € R,. Then, by (2.1.18]),

P (BM (0, ?N) C B(0,ry5N) for all large N) =1,

and
P (B(0,4r23N) C B,(0,8r55N) for all large N) = 1.

Thus, since By o1 C B, (O, % NZ%* and B,,(0, 9r2,3)ﬁZd C Bsp.1, almost surely there
exists Ny € N* such that for all N > N,

32707]\] C B(O, 7“273N), 3(0,47"273]\[) C 337071\[ and for all Yy < 6337071\], Yy §é 3(0,47"273]\7).
So, for all N > N,

sup t30n(0,2) <resN and inf  t30n(0,2) > 43 N.
ZeaBQ’O’N ZeaBB,O,N

Note that, for the first inequality, we use the fact that for all z € By n, t30n5(0,2) =
t(0, z) thanks to the first point of Lemma proved above.

The probability that (iii) is satisfied by Bsgn goes to 1 by (2.2.4). Then, let us
prove that the probability that (i7) is satisfied by B3 n goes to 1. Let | B3 x| denote
the number of vertices in Bs y and Il denote the set of self-avoiding paths entirely

contained in Bs o y. Then, using (2.2.3)), we have that 7, > r, and by (2.1.20)),

P(Bs,o,n does not satisfy (ii))
< Z P ((2.2.5)) is not satisfied by a path of Ty from u, to v, )

Ur,Ur€EB3 0, N
lur—vall1>(ra—r1) N

< > P ((2.2.5) is not satisfied by a path from u, to v, )

Ur,Ur€B3 0, N
lur—vr|l1>(ra—r1)N

<| By g n|?e PolramrIN Y 0,
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since |Bs o n| is bounded by a polynomial in N.
O

Proof of Lemma[2.2.7. To begin this proof, one needs an upper bound on the Euclidean
length of geodesics. Using Theorem 4.6 in [2], we have two positive constants K7 and Cy
such that for all y € Z,

1
B (m(y) > Kilyls) < e”=IT,

where m(y) = max {|o|. : o is a geodesic from 0 to y} and where for a path o, |o|. means
the number of different edges taken by o. For all p € N*| we define the event N?(N) on
which every geodesic from 0 to the outer sphere of the p-th annulus takes less than KyprN
distinct edges. Note that r = 2(r; + r3 + 1) is fixed at and rN corresponds to the
width of the annuli. Then,

1
PNP(N)) < Y P(m(y) > Killyllh) < 2prN + 1)%e”@ere,
y:llylli=prN

Hence, we obtain two positive constants C's and D3 depending only on r, d and F' such that
for all p € N*, for all N € N*,

1

P(NP(N)®) < Dge™ %P7,

Now, we assume that the event N?(N) N GP(N)¢ occurs. So, every geodesic from 0 to the
outer sphere of the p-th annulus takes a number of distinct edges which is between pr N and
KiprN. Let us consider a re-normalized model. We introduce the meta-cubes

1 1
B;’f’N:{wEZd: (3—2)N§w<(3+2>N}, for all s € Z4,

(where v < w means v; < w; for 1 <i < d and v < w means v; < w; for 1 <i < d.) These
meta-cubes form a partition of Z?. Furthermore, the meta-cubes and the boxes defined
above have the same centers (which are the vertices Ns for s € Z%), and for all s € Z¢,
B C Bisn. So, we can define typical meta-cubes. A meta-cube By is typical if Bs,
is a typical box.

For a geodesic v from 0 to the outer sphere of the p-th annulus, we associate the set of
meta-cubes visited by v, that is

() = { By | v visits at least one vertex of By}
This set can be identified with the subset of the re-normalized graph NZ:
A (7) = {sN| BXy € A(7)}-

Note that, if we consider the set AZ(y) of edges of NZ linking vertices which are both in
2AZ(~), then the pair of sets (A(7), A(7)) forms a lattice animal, denoted by A7 (vy). Recall
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that a lattice animal 2 in NZ? is a finite connected sub-graph of NZ9 that contains 0. We
denote by A the set of lattice animals in NZ? associated with a geodesic going from 0 to
the outer sphere of the p-th annulus.

Let us bound the size of these lattice animals. By the size of a lattice animal A®, denoted
by |2%|,, we mean its number of vertices in the re-normalized model. Recall that, since the
event N?(N) occurs, every geodesic from 0 to the outer sphere of the p-th annulus takes a
number of distinct edges which is between pr N and KiprN. Then, in the meta-cube set ()
associated to such a geodesic v, since r; = d and thanks to the choice of r, there are p — 1
meta-cubes associated to boxes crossed by « in distinct annuli. In particular (considering
also the meta-cube centered at the origin), the size of every lattice animal A¥ € AF is
bounded from below by p. For an upper bound, Lemma 3.4 in [9] gives

e+ 1
A (7)1, < 37 (1 + |7|N+ ) , (2.2.11)

for all geodesic vy from 0 to the outer sphere of the p-th annulus, where |v|. still denotes the
number of edges taken by v and where [21%(v)[, is the number of vertices of 2%(v). Thus,
writing Ky = [3%(Kr + 2)] (which does not depend on p and N), for every lattice animal
AR € AR |2F|, is bounded from above by Ksp. Furthermore, for j € {p,..., Kyp}, using
(4.24) in [10], we have that

HQ[R c A% . |Af, = ]H < |{lattice animals in Z? of size j}| < 7¥. (2.2.12)

Now, let us consider the random variables (X}¥),cz4 such that X = 1 if the meta-cube By
is typical and X}’ = 0 otherwise. By Lemma

I}E}%OIP’(XZ =1)=1
Thus, we can fix N large enough such that
2(1-P(X)Y =1))* 7 < 1. (2.2.13)

Denote n; = 1 — P(X} =1).

Then, the width of the annuli is such that every path passing through an annulus has to
cross a box in this annulus. Furthermore, using again Lemma , for every s; € Z¢ and
so € Z% such that B3 s, n N Bsgs, v =0, the random variables X é\lf and X 5\27 are independent.
Thus, for every lattice animal A® € A associated with a geodesic from 0 to the outer sphere

of the p-th annulus, we can find a sequence of p—1 i.i.d. random variables (Y;Q[R) - such
1=2,...,p

that for every i € {2,...,p}, there exists s € Z? such that Y?‘R = XY, sN € A" and Bs, n
is entirely contained in the i-th annulus.

Now, for every p > 2, when GP(N )¢ occurs, there exists a geodesic v from 0 to the outer

sphere of the p-th annulus which crosses a typical box in strictly less than VgJ annuli, and
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thus there are strictly more than Pﬂ — 1 annuli A; y with 7 > 1 such that v does not cross a

typical box in them. Hence, there exists a lattice animal 2A® € A such that at least Pg -1

random variables of the family (YZQIR) ) are equal to 0. Denote by § the set of subsets
i=2,...,p

Bt I

of {2,...,p} containing Bw — 1 elements. We have |§| < 2P~1. Then we get for every p > 2,

PNP(N)NGP(N)Y)
<P (3A" € A" such that p < |A|, < Kop, IF €, Vi€ F,¥*" =0)
< Y |{lattice animals in Z? of size j}| [§| () (5]

p<j<Kap

< Foproror=1(y)[51-1 (by @2.12))
Ksp 1 aKk,1P

< =P o, )z 7K

< g (2T

< Dyexp (—Cup),

for some constants Cy > 0 and D, > 0 since 2(771)%7“(2 <1 by (2.2.13).
Thus, we get a constant Ny such that for all p > 2, for all N > Nj,

P(G7(N)") < BINP(N) N GP(N)) + BNP(N)") < e=O% 4 Dy Cor",

So, there exist two positive constants C; and D; such that for all p > 2, for all N > Ny,

P(GP(N)°) < DyeCiwd.

2.2.3 Modification argument

The aim of this subsection is to prove Lemma 2.2.4 Let ¢ € {1,...,q}. On {T ¢ M(()},
we set E*(T) = 0 and E*(T) = 0. Let s be in Z%. We now define E% and E* on the event
{T € M)} N{S}(T) = s}. So assume that this event occurs. On the event {T' € M({)},
I is not empty and thus there is a selected geodesic. We denote this selected geodesic by
7. We define the entry point (resp. the exit point) of a self-avoiding path in a set of vertices
as the first (resp. the last) vertex of this path belonging to this set. Let u denote the entry
point of v in By s x and v the exit point.

We call entry point and exit point of the pattern (centered at 0) the endpoints denoted
by u® and v* in the introduction. Note that, if a self-avoiding path takes the pattern, its
entry and exit points in the set B, (0,¢*) are not necessarily the entry and exit points of
the pattern (as it can visit the set before and after taking the pattern).

Here, we want to put the pattern centered at sN. The vertex s being fixed, we keep the
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notation u* and v* to designate the entry and the exit points of the pattern centered at sN.

Construction of .
We have the following inclusions:

o Boo(sN,0") C Boo(sN, A +3) C By, since 1 = d and N > (A + 3 (see (2.2.8)),
o Bisn C By n since 15 > 11 by (12.2.3)).

For the modification, we need a path 7, constructed in a deterministic way and satisfying
several properties, whose existence is guaranteed by the following lemma.

Lemma 2.2.6. We can construct a path 7 in a deterministic way such that:

(i) 7 goes from u to u™ without visiting a vertex of Bso(sN, ("), then goes from u™ to v™
in a shortest way for the norm ||.||1 (and thus being contained in By (sN, ")) and then
goes from v to v without visiting a verter of Bao(sN, (M),

(ii) 7 is entirely contained in By, n and does not have vertices on the boundary of B s n
except u and v,

(iii) m is self-avoiding,

(iv) the length of m, ,a Uy, is bounded from above by 2roN + K, where K is the number
of edges in By (0, (M + 3).

The proof of this lemma is given in Appendix but the idea is to construct two
paths, one from u to sN and the other from sN to v which minimize the distance for the
norm ||.|[; and such that the only vertex belonging to both paths is sN. Then, we denote
by ug the first vertex of By (sN,¢* + 3) visited by the path from u to sN and v, the last
vertex of By (sN, (A +3) visited by the path from sN to v. We construct two paths entirely
contained in By (sN, (A + 3) from ug to u* and from v* to vy which do not take vertices of
Boo(sN, (M) except u® and v* and which have no vertices in common and we consider the
concatenation of the path from u to wug, the one from wuy to u*, a path from «* to v™ in a
shortest way, the path from v* to vy and the one from vy to v (see Figure .

Let 7 be the path given by Lemma [2.2.6]

Definition of £}, E* and B*. Define E*(T) as the set of edges e such that e €
7\ Boo(sN, %) and E%(T) as the set of edges which are in B,y but which are not in
Boo(sN, ) U . Recall that {T" € B*(T)} is a shorthand for

{Ve € EX(T), T'(e) > v(N), Ve € EX(T),T'(e) <7 + 0, OnsiinT" € AN

Fix n = plP2s~IP(T € A), where p = min(F ([tmin, tmin +0']), F([V(N), tmax])). Thus, 1 only
depends on F', the pattern and N and we have

P(I" € B (T)|T) 2 pVP(T € AY) =1,
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v
u
™
ul - ‘
|
|
|
Uo : 1 Vo
| [ Bao(sN, 2 L]
o A
Boo(sN, " + 3)
B2,s N

Figure 2.2: Example of the construction of 7 in dimension 2.

Consequences of the modification. We denote by +* the path 7, U7 U7, . Note that

*

~* is a self-avoiding path.
Lemma 2.2.7. We have T*(v*) < T'(7).

Proof. We have that -, , visits at least one vertex in B; 5 x. Denote by w the first of these
vertices. Then, v,,, and 7, , are two geodesics, both between two vertices in Bj 5 y. Using
item 1 in Lemma [2.2.1] 7, and 7, are entirely contained in Bs, n. Thus, since Bs v is a
typical box, using and the fact that ||u—wl|; > (ro—71)N and ||[v—wl|; > (re—7r1)N,
we have

T(Yuw) = 2N(r2 — 71) (tmin + 0).

Then, by the construction of 7 and of B*(T),
TH(m) < (2rsN + K)(tmin + ') + 7,
where 7" is fixed at (2.2.2)). Thus,
T(y) =T (") = 2N (r2(8 = 0') = ri(tmin +0)) = K (tmin +6') = 7"
By and since 2N > 1, we get T'(y) — T*(v*) > 0. O

Lemma 2.2.8. Let 7 be a geodesic from 0 to x in the environment T*. Then 7* weakly
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crosses the box Bs sy and the first vertex of Bsgn wisited by ¥* is w and the last is v.

Furthermore, 7* takes the pattern in Boo(SN, M), % = Tuun and Yx | = Ty,

Proof. Let 7* be a geodesic from 0 to x in the environment 7*. By Lemma 2.2.7, T*(7*) <
T(7*). Thus 7* takes an edge of By, y and by item (7ii) of the definition of a typical box
and since there is no edge whose time has been modified outside Bs ; v, 7* cannot take any
edge of time greater than v(N) in Bs s . Indeed, assume that 7* takes an edge e such that
T*(e) > v(N). Then, denoting by £(7*) the edges of 7* and using property (iii) of typical
boxes,

)= > T+ X THzvi+ > T(f)

FEEF)NBaon FEEFINBS, 5 FEEFNBS , 5

> Y T(H+ > T(f)

f€B2 s N FEEF)NB2,s,N

> TH+ X TH=TF),

fEE( )NB2,s,N FEE")NBS , N

v

which is impossible. Hence, 7* has to take edges of 7 or of the pattern and cannot take other
edges of By s n.

Since m does not visit any vertex on the boundary of B;, 5 except u and v, ¥* has to
visit # and v and to follow 7 between v and u® and between v™ and v. If Fia a leaves the
pattern, it takes an edge whose time is greater than v(N), which is impossibfe. So, WZA,’UA
is a path entirely contained in B (sN, ") and is optimal for the passage time since 7* is a
geodesic.

To conclude, let us show that u is visited by 7* before v. Assume that it is not the case.
Then, there exists 7} a geodesic from 0 to v and 75 a geodesic from « to  in the environment
T™ which does not take any edge in B 5 y. Thus, there are also geodesics in the environment
T. Then,

TH) 4+ T(vs) <t*(0,2) < t(0,2) by Lemma [2.2.7

By concatenating 7, and 73, we obtain a path from 0 to z. Thus,
T(you) +T(72) = (0, z).

So T'(7%) < T(70.u), which implies

T +T(ve) <T(vou) + T(V0) < 80, ),
which is impossible since 77 U 7, , is a path from 0 to z. [

Using Lemma [2.2.8 we can prove Lemma [2.2.4] Indeed, by this previous lemma, every
geodesic from 0 to = takes the pattern inside By, 5 and the first item holds. For the third
item, one can check that the concatenation of g, m,,a, one of the optimal paths for the
passage time between u* and v* entirely contained in B, (sN, "), Tpr, and 7y, . gives a
geodesic v* which is associated to v in B v (with s; = u and sy = v). Finally, let us prove
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the second item. If 7 is a geodesic from 0 to x in the environment 7™, then 7}, , is contained
in By s y. Furthermore,

T(vou) =T (o) = T" (Vo) = T(Vou) = T(Y0);

80 T'(¥5..) = T(70,4) and 75 ,, is a geodesic in the environment 7'. Similarly, 7; , is a geodesic
in the environment 7. Hence, we get a not necessarily self-avoiding optimal path for the
passage time by considering 7' = 75, U 0 U7, .. We get a geodesic 7' which satisfies the
properties of this item by cutting the loops of 7’ using a standard processﬂ

2.3 Bounded case

In this section, we assume that the support of F' is bounded. In this case, Theorem [2.1.4] also
follows from Proposition Our proof of Proposition [2.1.11] still follows the strategy
given in the preceding section, but the modification argument is more involved. Let B =
(A, u?, v™, AM) be a valid pattern. We set ¢y, = sup(support(F)). Remark that, because of

(2.1.20), we have ty,in + 0 < tmax-

2.3.1 Oriented pattern

The proof in the bounded case uses a modification argument in which we have to connect
the pattern to a straight path in a given direction. It is convenient to show the feasibility of
this construction before starting the modification. The following lemma, whose proof is in
Appendix 2.B] shows that it is indeed feasible by proving that a pattern can be associated to
d patterns (with a larger size), each having endpoints aligned in a distinct direction, and each
having the original pattern as a sub-pattern. By direction, we mean one of the d directions

d
of the canonical basis which is denoted by {e1,...,eq4}. Recall A = []{0,..., L;}.
i=1
Lemma 2.3.1. There exists o > max(Lyq, ..., Lq) such that the following holds. Set Ay =
{—lo, ..., b} Forallje€{1,...,d}, there exists a pattern P/ = (Ao, —Llog;, bog;, Aﬁo) such
that:
e P (A?O) is positive,
e on A

5%, any path from —loe; to log; optimal for the passage time among the paths
entirely inside Ao contains a subpath from u® to v entirely inside A,

o A oAr,

%Note that 7} ,,, Yu,w and 7, , are three self-avoiding paths and that 77, and 7} , do not have vertices in
common. So we can consider s; the last vertex belonging to both path 7, and 7y, in the order in which
they are visited by 7y, and sz the first vertex belonging to both paths v, , and 7, , in the order in which
they are visited by 7,,,. Thus, since v, , is entirely contained in Bs 5 n, s1 and s are two vertices contained
in B3 s v and we can take v =75 o, UYs, s, U7, o
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We fix {y, A¢ and the patterns ;, for j = 1,...,d, for the remaining of the proof. By
definition, for all j € {1,...,d}, N¥(x) > N¥(r), and actually

Nm(ﬂ) > Z ]l{there exists j € {1,...,d}, = satisfies the condition (7;3;)}-
z€Z4

From now on, we forget the original pattern and only consider the oriented patterns 3; for
all directions j € {1,...,d}. We talk about oriented patterns when their orientations are
specified and we simply say "pattern' when talking about one of the oriented patterns 3;.
Consistently with these conventions and to lighten notations, we write A instead of £}, A
instead of Ay and A;-\ instead of A?O.

Now, several parameters related to the distribution F' have to be introduced. First, we
fix a positive real v such that:

* tmin + J <V < tmax,
o F([v,+00)) >0,
o the event A* N {Ve € A, T(e) < v} has a positive probability.

Notice that, if F' has an atom, one could have v = t,,,. Although we may need to replace
Al by AR {Ve € A, T(e) < v}, we can now assume that

A} C {Ve € A, T(e) < v}

Further, we set 7* = 2/*v, which can be interpreted as an upper bound for the passage
time of an optimal path from ¢*¢; to —¢*¢; on the event Aﬁ»\. Finally, we denote by 7" the
constant K™ (tmax — tmin) Where K* is the number of edges in an oriented pattern. We will
use it as an upper bound for the time that a path can save using edges of a pattern after a
modification.

2.3.2 Proof of Proposition [2.1.11] in the bounded case

We keep the overall plan of the unbounded case. Unlike in the unbounded case, we cannot
use edges of prohibitive time and thus the modification argument is more elaborate here.
This section follows the structure of Section but the one step modification is replaced
by a two-steps modification. To this aim, we slightly change the structure of our boxes and
our definition of typical boxes. Let us begin by fixing some constants.

Constants. Note that we keep the notations introduced in Section and that 7% and
TA are fixed in Section In the next two paragraphs, we introduce the constants used
in the proof. Before looking at their definitions below, one can keep in mind that we fix

1
e land r € - K V K€ 1ry € r3 KL ry, where "<" means that the ratio is large enough

€
and only depends on the dimension d and on the distribution F'.
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(s 4
. WeﬁX5 —m1n<4,1_|_d>.

« We fix L; given by Lemma [2.3.11{depending only on d and ¢*, and Ly = L;+(10+d)¢*.

o Using Theorem with M =t + 0, we get two constants a > 0 and C, fixed for
the rest of the proof, such that for all n € N* and u,v € Z¢ such that |[|ju — v|; = n,

P (EI a geodesic ¥ from u to v such that Z Lire)>tmmtsr < cm) <e " (23.1)
ecy

e Fix € > 0 such that

< mi 1 )
min | — )
c 11’ 240,

e Fix V such that

4(1 + timax)Cl 6L,C 8C, T
9 73

V > max < ECN T

, 40, (2t max + TA)> : (2.3.2)

We give here other lower bounds for V that we need for the sequel and which are

consequences of (2.3.2)).
. 4C, 1
— Using the fact that ¢, < C,, we get V. > —= > —.
ec, €
A(1 + tmax)Cy
ecy,

1
— From the inequality V > , using the fact that ¢ < IR we have

1+ 2tmax 4(1 + tmax
1—5>1—35>1—105>5andthenv>+7,v>g

1—¢ 1 —10¢
3 + 2tmax
1—3¢

and

Vv >

. 5 1 24C,,
— Smce€<mandv>g,wegetv>7.
A 20, T
p 1
25 thatV>5_6/.

36
— Finally, since 6 — 0" > 7 e have from V >

Boxes. With these constants, we can now define boxes. For i € {1,2,3,4}, as in the
unbounded case, B; ¢y is the ball of radius 7; for the norm ||.||; centered at the point sN
with:

* " = da
e 75 an integer such that

,T1+L1+7+
Cu Cu

(2.3.3)

( 2(V +2) 3V 2tma(1+(1 +d)€A)>
ro >max |r; + —— ,
14
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e 73 an integer such that
7T2(4tmax + O{(S)

Note that r3 > ro + 1.

» 74 an integer such that
T3 (tmin +0 + tmaX>

tmin + 5

ry > (2.3.4)

Note that r4 > r3 + 1.

We use the word "box" to talk about By n. Recall that we denote by 0B, s y the boundary
of B n, that is the set of points z € Z? such that ||z — sN||; = 7 N.

Crossed boxes and weakly crossed boxes. We say that a path
e crosses a box By y if it visits a vertex in B 5 n,

« weakly crosses a box By, n if it visits a vertex in Bs, y.

Paths associated in a box. We say that two paths v and +' from 0 to the same vertex
x are associated in a box By, y if there exist two distinct vertices s; and sy such that the
following conditions hold:

o v and v visit s; and so,
_ /
* 70,51 = V0,51
/ . . .
* Ysi,so and 7, o, are entirely contained in By v,
_ /
* Usox = Wsz,m‘

In particular, these two paths coincide outside By s v.

Typical boxes. By, n is called a typical box if it verifies the following properties:

(i) every geodesic v, from u to v entirely contained in Bj, x with ||u —v||; > N has at
least af|u — vl|; edges whose time is greater than or equal to ¢y, + 0,

(ii) every path 7 from u to v entirely contained in By ¢ y with |ju —v||; > N has a passage
time verifying:
t(m) > (tmin +9) ||lu — v]|1, (2.3.5)
(iii) for all w and v in Bs sy, we have

(1—e)pu(u—v)— N <t(u,v) < (1+e)u(u—v)+ N.
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As in the unbounded case, we need properties which are guaranteed with the definition
of typical boxes. We state them in the following lemma whose proof is given in Section [2.3.3]

Lemma 2.3.2. We have the following three properties about typical boxes.

1. If Bysn 1s a typical box, for all points ug and vy in Bssn, every geodesic from wy to
vg 15 entirely contained in By N.

2. The typical box property only depends on the time of the edges in Bys n.

3. We have
lim P (Byon s a typical box) = 1.

N—o0

Successful boxes. For a fixed z € Z%, a box B, s v is successful if every geodesic from 0
to x takes a pattern which is entirely contained in By, y, i.e. if for every geodesic v going
from 0 to z, there exist j € {1,...,d} and z., € Z? satisfying the condition (vy;3’) such that
Boo(w.,, %) is contained in By v.

Annuli. Following the proof in the unbounded case, we define the annuli A; x with r =
2(ry +r4 + 1) and GP(N) as in Section but with the definitions of crossed and typical
boxes defined here in Section 2.3.2l The bound on P(GP(N)¢) of Lemma also holds
here. The proof is exactly the same in this case thanks to Lemma [2.3.2] For the rest of the
proof, we fix '}, Dy and Ny given by Lemma [2.2.2

Modification argument. Fix K’ =T" +2(C, Ly + tmax(¢* + 1)). Then, fix

120, K’
Y

N > max (NO, ) ,n>2rN and z €', (2.3.6)

(where T, is defined at (2.1.15))). Fix p = {&J and ¢ = BJ For j € {1,...,q}, we define
r

s, s ]1, Sj2 and M (j) as in Section but with the notions of typical and successful boxes
defined here in Section As in the unbounded case, the aim is to bound from above
P(T € M(q)) independently of z. For the sequel, we use a two-steps modification. So we
introduce two independent copies 7" and T” of the environment 7', the three being defined
on the same probability space.

Fix £ € {1,....,q}. On {T" € M(0)}, Bysir)n is a typical box crossed by the selected
geodesic. From this configuration, as a first step, we shall associate a set of edges E7(T)
which is contained in Bj SH(T).N \ B27S}(T), ~- It corresponds to the edges for which we want
to reduce the time. Then, we get a new environment 7™ defined for all edge e by:

TO={ 1) e 27
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From this environment, as a second step, we get three new subsets £7*(T,T"), E*(T,T")
and E3(T,T") of edges of By, si(r),v Which are respectively the edges for which we want to
reduce the time, to increase the time and the edges of the location where we want to put
the pattern. We get a third environment 7%* defined for all edge e by:

v [ Te) ifee EX(T,T)UE™(T,T')UES(T,T")
() _{ T*(e) else. (2:38)

Note that 7** and T' do not have the same distribution. For y and z in Z¢, we denote by

t*(y,z) (resp. t*™*(y,z)) the geodesic time between y and z in the environment 7™ (resp.
T**). Similarly, we define for ¢ € Z¢ and t € R,

B*(c,t) = {u e Z* : t*(c,u) <t} and B*(c,t) = {u € Z% : t*(c,u) < t}. (2.3.9)

We formalize this modification in the next lemma and we will describe precisely the con-
struction of £, EY*, E™ and K7 in the next subsection.

Lemma 2.3.3. There existsn = n(N) such that for all ¢ in {1,...,q}, there exist measurable
functions E% : (Ry)¥ — P(E), B : (RE)? = P(E), B : (RE)?— P(€), EF : (RY)?* —
P(E) and O : (RE)? — {1,...,d} such that:

(1) E3(T), EX(T,T"), EX(T,T") and EE(T,T") are pairwise disjoint and are contained
in B s1r),

(i7) on the event {T € M({)}, P(T" € B*(T)|T) > n and on the event {T € M(£)}N{T" €
BX(T)}, P(T" € B*(T,T")|T,T") > n, where {T" € B*(T)} is a shorthand for

{Ve € EL(T), T'(€) < tmin + '},
and {T" € B*(T,T")} is a shorthand for
{Ve € EY(T,T'), T"(€) < tuin + 0, Ye € E™(T,T"), T"(e) > v,

OnsinyT" € A<A9(T,Tf)} :

(iti) {T € M(O)} N{T" € B(T)}N{T" € B*(T,T")} C {T* € (M({ —1)\ M({))} and
ISHT™) = Sg(T)[lh < 274

The proof of Lemma [2.3.3] is left to the reader. It is the same as the proof of Lemma

2.2.3] replacing the use of Lemma by the following one.

Lemma 2.3.4. There existsn = n(N) such that for all € in {1,..., q}, there exist measurable
functions E% : (Ry)¢ = P(E), B« (RE)? = P(E), B : (RE)2— P(E), Ep : (RE)? —
P(E) and O : (RE)? — {1,...,d} such that items (i) and (ii) of Lemma are satisfied
and such that if the event {T' € M)} N{T" € BY(T)} n{T" € B*(T,T")} occurs, then we
have the following properties:
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(i) in the environment T**, every geodesic from 0 to x takes the pattern inside By s1(1).n

(ii) for all geodesic 7** from O to x in the em}zmnment T, there exists a geodesic 7§ from
0 to x in the environment T such that 7y and 7** are associated in B4»5§( T),N>

(7ii) there exists a geodesic v*™* in the environment T** from 0 to x such that v** and the
selected geodesic vy in the environment T' are associated in B4’SI}(T), N

The proof of Lemma [2.3.4] is the aim of Section 2.3.40 We now conclude the proof of
Proposition [2.1.11] in the bounded case. The following lemma is the counterpart of Lemma
2.2.5in this case.

Lemma 2.3.5. There ezists A € (0,1) which does not depend on n and on x € T',, such that

P(T e M(q)) < A%

Proof. Let £ be in {1,...,q}. For every s € Z% and £** subset of edges of Bs,n, let us
consider the environment 7;%.. defined for all edge e by:

T"(e) ife€ &N Basn
T;z** = T’(e) if e € 5** N (BS,&N \ BQ,S,N)
T(e) else.

We define E*(T,7") = E5.(T) U EXX(T,T") U E*(T,T") U EE(T,T"). Thus, for every s and
E*, T} and T have the same distribution and on the event {T" € M({)} N {S{(T) =
st NA{E(T,T") = £}, T** = T;%... Using this environment and writing with indicator
functions the result (ii7) of Lemma we have:

Liremoyl{sym=sy Liresaplis=@r)=e=y Lirres~ a1
= ]l{T****GM(Z 1)\M(£ } Usms {S3(T750)=s'}
We take the expectation on both sides. The right side yields

]P’(Sg**ej\/l(ﬁ—l \ M(0), | {S3(T })

s'~s

<T6M(€—1\M NUREHVA _s’}>.

s'~s
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For the left side, we have

E L wemenl{symy=sp Lresaplip@ o=y lirres, T’)}]

=E [E

r.rj7]
gl

Since on the event {T" € M(0)} N {SHT)=s} N{T" € B*(T)} N {E*(T,T") = &},
P(T" € B*(T,T")| T,T") is bounded from below by 7, the left side is bounded from be-
low by

TH .

Then, by summing on all £** subsets of edges of Bs s v and writing K a constant which does
not depend on s and which bounds from above the number of different subsets of edges of
Bs s n, we get

]E |:]1{T€M(g)}]l{sl} }]}‘{TIGB* )}]]'{E**(TT/) 5**}]]-{T” B**(TT/)}

=K ]I{TGM(Z)}]I{Sl}(T)ZS}E []1{T’eB*(T)}]I{E**(T,T’):g**}]P) (T” c B**<T, T/)| T, T/)

e []I{TEM(K)}]I{S}(T):s}E | Lrvene oy L gmes(rr=e=+)

n y .
% E [Lremenlsin =\ P (T" € B (T)IT)}
<IP<T€M(€—1\M ,J{si(T _s’}>.

Now, on the event {T' € M)} N{S}T) = s}, P(T' € B*(T)|T) is bounded from below by
7, so the left side is bounded from below by

%1@ (T € M(0), SHT) = 5).

Then, by summing on all s € Z¢ and writing K’ a constant which bounds from above for all
s € Z% the number of vertices s’ € Z? such that s’ ~ s, we get
2
[:K/]P’(T € M(0)) <P(T € M(L—1)\ M(0)).

Now, since M(¢) C M({ — 1),

P(T € M({— 1)\ M(0)) =P (T € M({ —1)) —P(T € M(0)).

Thus,
P(T € M(0)) < \P(T € M(¢ —1)),

where \ = € (0,1) does not depend on x. Hence, using P(T' € M(0)) = 1, we get

. ) KK’
by induction

P(T € M(q)) < \°.
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[l
From Lemma [2.3.5] the proof of Proposition is the same as in the unbounded case.

2.3.3 Properties of a typical box

In this section, we state and prove the following lemma, which gives us properties of typical
boxes useful for the modification argument, and the proof of Lemma [2.3.2]
Lemma 2.3.6. If By, n is a typical box, we have the following properties.

1

1) For all u and v in Bs s ny with ||lu —v||1 = where = — >0,
) F ll dvin Bsg, th K"N wh K" 0
gcy,

(1 —=28)p(u —v) <t(u,v) < (1+2e)p(u—v).
(it) For all z € Bs s n, for allT >0, for all N € N*,

N+ 1
BMNHB@JWﬁCBMNmBHG,(T+)>,

1—¢

and if T > — — 2

)

N(F+1 N7
Bs v N B, (Z, (r—l—)) C B3 v N B, <z r > )

1
£

1—c¢ "1 —2¢
(iii) For all z € By, for all 7> 0, for all N € N*,

BS,s,N N BM(Z, NF) C 83,57]\[ N B (Z, N((l —+ 6)7—{— 1)) ,

1
and if T > —
€

B3 nNB(z,N(1+e)T+1)) C By, nNB(z,(1+2)NT).

Proof. (i) Let uw and v be in B; 4 x with |ju — v||; > K”N. Then, since By x is a typical
box, we have

(1—e)pu(u—v) = N <t(u,v) < (1+e)u(u—v)+ N.

The requirement on u and v implies

N
— <ellu—vl,
i

so ep(u —v) > N.
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(ii) and (iii) In both cases, it is easy to check that the first inclusion follows from property
(iii) of a typical box and that the second inclusion is a consequence on the bound on

T.
[l

Proof of Lemma[2.3.2,

1. Let Bysn be a typical box and ug and vy two points of Bs, n. Then, taking paths
minimizing the distance for the norm ||.||; between uy and sN and between vy and sV,
we have t(ug, vg) < 2rsNtpax. Then, if a geodesic 7y, ., takes an edge which is not in
By s N, since ry > r3 + 1, using the item (4i) of the definition of a typical box leads to

T('Yuo,vo) Z 2(7"4 - 7a3>]V<trnin + 5)7
r3 (tmin + 5 + tmax)

tmin + 5
the definition of a typical box to prove this property.

which is impossible since 4, > . Note that we only use item (ii) of

2. It is clear that the first property only depends on the time of edges in Bs x and the
second only depends on the time of edges in B, . For the third property, by the
preceding item, we know that for all points w; and wy in Bs, n, the knowledge of
the time of all edges in By s n allows us to determine t(wy, wsy), so to know if the two
inequalities are satisfied.

3. For each item of the definition of a typical box, we show that the probability that
By N satisfies this item goes to 1. To show that the probability that item (ii) of the
definition of a typical box is satisfied goes to 1, we use the same proof as for (i7) in
the proof of Lemma [2.2.1] replacing ro — r; by 1 and Bs sy by By s n. Further, using
and a similar computation as for item () in the proof of Lemma[2.2.1] we get:

P(B, v satisfies (7)) = 1.

To prove that
P(By v satisfies (iii)) — 1,

N—o0

1
recall that ¢ is fixed in Section [2.3.2/and fix p = . Let us consider
P 2d((14¢)Cp + tmax)
0:

the following property for N large enough to have |pN | #

Vu',v' € [pN|Z4 N Bag oy, |Hu!,0)) — p(u’ — o) < ep(u’ — o). (2.3.10)
By (2.1.19), by stationarity, and since “pNJ 74N Bgyo’N’ is uniformly bounded in N,
we get
P ((2.3.10]) holds) = 1.
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Finally, the proof is completed by showing that (2.3.10) implies that B,y satisfies
(73). Assume (2.3.10) and let v and v be two vertices in B3 y. The aim is to show

|t(u,v) — pw(u —v)| < ep(u—v)+ N. (2.3.11)
Let v/,v" € |pN|Z* N By y such that |[u — «||; < dpN and ||u —u/||; < dpN. Thus,
[, v) = p(u—v)| < [t(u,v) = t(u', )]+ [t(u',0) — p(u’ =) + |p(u’ = o') = p(u—v)].
By (2.3.10)), [t(v/,v") — p(u' — ') < ep(u’ —0'). Furthermore,
(u—v) = p(u’ =) < plu—u') + plv =) < (lu = vl + lv=0'[[1)Cp < 2dpNC.
Similarly

[, v) — (', 0)| < t(u, o) + 1w, 0') < ([Jlu = |y + [Jo = v']]1)tmax < 2dpNtmax,
Thus, we get
[t(u, v) — p(u = v)| < ep(u —v) + 2dpN (tmax + (1 +€)Cy).

We get (2.3.11]) thanks to the choice of p.

2.3.4 Modification argument

In this section, we prove Lemma [2.3.4]

2.3.4.1 Mains ideas of the proof

2.3.4.1.1 Framework. Before proving in detail Lemma [2.3.4], we give the main ideas of
the proof of the modification argument. We consider a geodesic 7 crossing a typical box.
Recall that this box is composed of four concentric balls of different sizes, denotedﬂ by B,
B,y, B; and By, and that v visits at least one vertex in B;. Recall also that the radii of the
balls satisfy ry < ry < r3 < r4. The aim is to modify the environment to get the following
properties:

1.

2.

3.

Every geodesic in the new environment takes the pattern in Bs.

Every geodesic in the new environment is associated in B, with a geodesic in the first
environment.

The geodesic 7y is associated in B, with at least one geodesic in the new environment.

"We denote B; instead of B; s v to lighten the notations in this subsection which is less formal than the

proof.
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2.3.4.1.2 First modification. Let us begin with some notations.
o We denote by Dyerore the set of edges e verifying the following three conditions:

— v takes e between its first entry in B3 and its first entry in Bs.
— e belongs to B3 but e does not belong to Bs.
- T(e) > tmin + 0.

We denote by s; the vertex visited by ~ just before its first edge of Dpetore-

o D.ser and s, are symmetrically defined. In particular, s, is the vertex visited by v just
after its last edge of D,ger-

o We set D = Dyetore U Dafter-

The first modification simply consists in reducing the passage times of edges in D below
tmin + 0" (with 0 < ¢’ < 6 properly chosen). This provides a localization of the geodesics in
the new environment 7*: they all take all edges of D (see Lemma where D is called
E%(T)). Note also that v remains a geodesic in the environment 7*. One could easily
deduce that any geodesic in this new environment visits s; and s, and then that properties
2 and 3 about associated geodesics hold. The point is that these properties will be preserved
by the second modification whose influence on time is negligible with respect to the first
modification.

2.3.4.1.3 Second modification.

Framework and overall plan. The selected geodesic v visits at least one vertex of
By, let us denote by ¢ the first of them. We denote by u; the first vertex of v such that
w(up —cg) < VN and vy the last vertex of v such that u(cog—v1) < VN (see ) Since
r1 and V are small enough compared with 7, all that we consider (here and in what follows)

takes place in By where the environments 7" and 7™ coincide (see Lemma [2.3.8)).
The rough plan is to modify the environment between u; and v;:

1. We consider an oriented path 7 from u; to v; and we make the passage times on its
edges very small: this is our highway.

2. We put the pattern somewhere on 7.

3. We make the passage times on the other edges in a certain neighborhood (to be defined)
very large: these are our walls.
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Requirements for 7. It is quite simple and it is stated in Lemma [2.3.11] We want it
to be close to the segment [u,v;] of R?: this will allow us to have good estimates on the
relevant times. We also require that the path contains towards its middle a sequence of steps
in the same direction: this will allow us to place the pattern there. We call this sequence
of steps the central segment of w. There is, however, a small difficulty: we cannot choose
the orientation of the central segment. That is why we need to be able to place the original

pattern in an overlapping pattern of arbitrary orientation (this is the purpose of Lemma
2.3.1)).

Requirements for the neighborhood of the walls. This point is less simple. We
do not want to put walls on edges of 7 \ 7y, ., but we also do not want that these edges
affect our estimates. Ideally, we would like the only relevant edges, apart those from 7 and
the pattern-location, to be walls. This can be done in a non technical way as follows. Set

B*(0) = B*(0,t*(0,uy)) and B*(z) = B*(z,t*(z,vy)).
There are three types of edges:
o The "before" edges: the ones belonging to B*(0).
o The "after" edges: the ones belonging to B*(x).
o The "intermediate" edges: all other edges.

Since 7 is a geodesic in the environment 7™, v takes "before" edges, then "intermediate" edges
and then "after" edges. Note that the edges of Dyerore are "before" edges and that the edges
of Dasier are "after" edges.

We can then define the neighborhood on which we put walls: this is the set of "interme-
diate" edges of By which do not belong to 7 and to the pattern-location. We call these edges
the "wall" edges. The idea is that, as explained at , if 7 is a part of a geodesic from
0 to x in the environment 77 linking two vertices outside B*(0) and B*(x), then 7 only
takes "intermediate" edges. Hence, if in addition 7 does not take edges of 7 and is entirely
contained in Bs, then 7 only takes "wall" edges or edges of the pattern-location: this will
ensure in the end that every geodesic takes the pattern.

It makes sense. For any z € B*(0), by the triangle inequality,
t*(z,c0) > t*(0,c) — t7(0, 2).

Furthermore, since v is still a geodesic in the environment 7™ and visits u; and then cy,
t*(0,¢o) = t*(0,u1) + t*(uy, ¢p). Using the definition of B*(0), t*(0,z) < t*(0,uy). Thus, we
get

t*(B*(0), co) > t*(uy, co) = t(ug, o) = VN.
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In particular, the distance for the norm || - [|; between B*(0) and ¢y is at least of order V.V.
The same applies to the distance for the norm || - ||; between B*(x) and ¢y. Thus there
is enough room for the central segment and the pattern since their size is of order 1 (see

Lemma [2.3.13)).

The second modification.
o We put the pattern somewhere on the "central segment’.

« With the exception of the edges of 7 connected to B*(0) or B*(z), we put the time of
every "intermediate" edge of m which is not in the pattern below t;, + ¢’

o We put the time of every other "intermediate" edge of By which does not belong to =
and whose time is lower than v greater than or equal to v (recall that in particular we
take v such that, in the pattern, the passage time of every edge is lower than or equal
to v).

Consequences. In what follows, we denote by 7** a geodesic in the environment 7™*.

1. Since the passage times of the "before" and "after" edges have not been modified and
since the passage times of the 'intermediate' edges touching B*(0) or B*(z) have
not been reduced, B*(0) remains a ball centered in 0 for the passage times of the
environment 7 and similarly for B*(z) (see again Lemma [2.3.13)). Hence,

7 takes "before" edges, then "intermediate" edges and then "after" edges. (2.3.12)

2. The creation of the highway on m makes the passage time from 0 to = lower (as stated
in Lemma [2.3.14] it allows to save a time of order VN; it can be seen by taking a
geodesic from 0 to the last vertex of 7 belonging to B*(0), then following 7, then
taking a geodesic from the first vertex of m belonging to B*(z) to x). Hence 7** takes
an edge whose time has been reduced during the second modification and thus

7** takes an edge of m whose time has been reduced or an edge (23.13)
of the pattern (and thus an "intermediate" edge of By). o

3. The time saved during the first modification (of order r3) is such that every geodesic in
the environment 7% from 0 to a vertex w in By has to take an edge of D (i.e. an edge
whose time has been reduced during the first modification). If it was not the case, a
path following v until By and then taking edges of By to go to w would have a passage
time smaller (we use here that r5 > ry). This is similar for a geodesic between a vertex
of By and z. Hence, as stated in Lemma [2.3.17]

7** takes an edge of D before and after visiting Bs. (2.3.14)
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4. Recall that D = Dyetore U Dagter, that the edges of Dyesore are "before" edges and that
those of D,ger are "after” edges. Combining (2.3.12)), (2.3.13)) and (2.3.14]) we get that

7 takes an edge of Dyefore then an edge of m whose time has been reduced

or an edge of the pattern and then an edge of Dagier.
(2.3.15)

We can easily deduce from this that 7** visits s; just before taking the first edge whose
time has been modified and visits sy just after taking the last edge whose time has
been modified (see Lemma . Then we can deduce the desired properties about
associated geodesics. It remains to prove that 7** takes the pattern in Bs.

5. Let us now prove that

7 takes an edge of m whose time has been reduced before (with respect to )

the pattern and after (with respect to ) the pattern.
(2.3.16)

This is the purpose of Lemma [2.3.20 By symmetry it is sufficient to prove the first
part of this property. To this aim, it is sufficient to consider a vertex w in the pattern
or on 7 between the pattern and B*(x) and to prove

t**(B*(0),w) < t*(B*(0),w).
But t*(B*(0),w) > t*(B*(0), B*(z)) — t*(B*(z), w) and
t*(B*(0), B*(z)) = t"(u1,v1) = t(u1,v1) =~ p(ug — vy)

while
t*(B*(z),w) < t*(vy,w) = t(vy,w) = p(v; —w).

Thus (since the three vertices are roughly aligned in the correct order):
t*(B7(0),w) 2 p(ur — v1) — p(vr — w) = p(uy — w).
But (following 7) we have
£ (B*(0), w) S (tmin + ") [w — |

and the result holds.

6. By (2.3.16)) and the remark made after the definition of walls, we can easily deduce
that 77** takes the pattern we have put on 7 (see Lemma [2.3.21)).
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2.3.4.2 First modification

Let us go back to the proof. For the rest of Section we fix £ € {1,...,q} and s € Z¢,
and we assume that the event {T" € M({)} N {S}(T) = s} occurs. In particular, By, v is a
typical box in the environment 7.

As explained above, the first modification is used to get that any geodesic from 0 to
z in the new environment goes from 0 to a specific vertex in By y, then follows v to
another specific vertex in By s x and then goes to . It is useful to get the properties about
associated geodesics after the second modification. We denote by 7 the selected geodesic in
the environment 7T'. Recall the definition of entry and exit points given at the beginning of
Section [2.2.3] Let u denote the entry point of v in Bz, and v the exit point, and let ug
denote the entry point of v in By x and vy its exit point. Then, we set

E%(T) = {edges of B; s n that belong to vy, Or Yy, and satisfy T'(e) > tpm + 0} .
(2.3.17)
We denote the first edge of v that belongs to £ (T") by e; and the last one by e;. Moreover,
s1 denotes the first vertex of e; visited by v and s, the last vertex of e, visited by 7. Assume
that the event
{T e M)} N {Sl}(T) = 3} N{T" € B*(T)} occurs,

where B*(T') is defined in (i) of Lemma [2.3.3] Recall the definition of 7% in (2.3.7). Note
that:

« only the time of the edges of £ (T") have been modified,
« these edges belong to v and to Bssn \ Ba,s.n,
o for all edges in E% (T'), we have T*(e) < tyin + 0" < tmin +6 < T'(e),

o for all other edges e, we have T*(e) = T'(e).

Lemma 2.3.7. We have the following properties.

(1) There are at least a(rs —r2)N edges of Yyu, and a(rs —r2)N edges of vy, that belong
to E(T). Thus,

min (T(’YO,UO) - T*(/VOMO)’ T(’Yvo,m) -7 (’7110,90)) > O_/(Tg - TZ)N((S - 6/)

(it) In the environment T*, every geodesic from 0 to x wvisits every edge of E*(T').
112) In the environment T, v is a geodesic from 0 to x.
Y )

Proof. (i) This item follows from the first property of a typical box applied to the portion
of vy, entirely contained in Bs ¢ x going from B3 s v to uy and to the portion of v, ,
entirely contained in Bs ¢ v going from vy to 0Bs s y (note that these two portions does
not have edges in common).
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Figure 2.3: Elements involved in the first modification. The edges whose time can be modified by
the first modification are represented in red.

(ii) To prove the second point, let v* be a geodesic from 0 to = in the environment 7.
Assume that there exists an edge of £ (T") which is not an edge of v*. Then

T =T'(v") <T(y) = T*(7).

Since 7 is a geodesic from 0 to z in the environment 7', we have T'(y) < T'(y*), which
implies
0<T()=T(y) <T"(v") =T*(7).

Thus T*(y) < T*(v*), which contradicts the fact that v* is a geodesic from 0 to z in
the environment 7.

(iii) Let us now assume that «y is not a geodesic in the environment 7. Hence, if we denote
by v* a geodesic from 0 to x, we have T*(~v*) < T*(v). By item (i),

T(y) =T(v") =T(y) =T"(7).
Thus, T'(v*) < T(y), which contradicts the fact that « is a geodesic in the environment
T.
]
2.3.4.3 Construction of 7

Here, we shall identify an oriented path m between two vertices of v in Bs 5 . This oriented
path is later used to place the pattern. Let ¢y denote the entry point of v in B; ; 5 and recall

\Y
the definition of V in (2.3.2)). Since by (2.3.3), 72 > r1 + —, B,(co, NV) N Z% is entirely
Cu
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contained in B¢ n. We introduce

uy the entry point of v in B,(cy, NV) N Z* and v; the exit point. (2.3.18)

Lemma 2.3.8. We have p(u; —vy) > NV and vy, », s contained in B s y.

Remark 2.3.9. The idea of the proof is that p(uy — vy) is roughly equal to t(uy,vy). Fur-
thermore, since v is a geodesic visiting uy, co and vy in this order, we have t(uy,vy) =
t(uy,co) + t(co,v1). So p(uy —v1) = p(ug — o) + p(vr — co) = 2NV. We have a sufficient
control over the approximations to guarantee a lower bound by NV.

Proof. Using item (ii) of Lemma with z = ¢g and 7 = V(1 —¢) — 1 leads to

B(co, N(V(1 —¢) — 1)) N Bson C Bu(co, NV) N By o n = Bu(co, NV)NZ%  (2.3.19)

Since u; is the entry point of a path in B,(co, NV), there exists a vertex w; € Bs 4y such
that ||ﬂ1 — U1||1 =1 and Uy ¢ BM(C(), NV) By 23].9, t(Co,ﬂl) Z N(V(]_ — 8) — ].)7 SO

t(Co, ul) Z t(Co,ﬂl) — t(ﬂh ul)
———
S”al_ulHltmax

The same argument holds for ¢(cy, v1). Hence
t(ug,v1) = t(ug, co) + t(co,v1) = 2N(V(1 —€) — 1) — 2t ax. (2.3.20)

3 2tmax . . o . o
Thus, since V > ;_3, by the third item of the definition of a typical box,
— 3¢
N2Vl —¢e)—3)—2t
1+¢

v

max > NV.

oy — vy)

For the second part of the proof, using the third item of Lemma [2.3.6| with z = ¢y and 7 = V
leads to
B(co, NV)NZ* C Bley, (14¢)V + 1)N).

2(V+2
Then, by (2.3.3) we have ro > + g So, for all z € B, (co, 2N (V +2)), we have
Cu
2(V+2
|z — sN|1 < ||z = colli + ||lco — sN||1 < <( . ) +r1> N < ryN.
m

So, we have B, (co, 2N (V +2)) NZ* C By, n and since € < 3, we have

(14+e)V+2

B‘u‘ (Co,N 1—¢

) C B,(co, 2N(V +2)).
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Thus, by the second item of Lemma with z = ¢y and 7 = V, we get

(1+¢)V+2
— &

B(co, (14+¢)V + N)) C B, <c0, N ) NZ* C B,(cy, 2N(V +2)) N Z“.

To sum up,

B(co, NV)NZ* C B(ey, (1 + )NV + N) C Bon-

Now, assume that -, ,, visits a vertex which is not in By ; y. Let denote by z such a vertex
and assume for example that z is visited by 7, ¢, Then, we have, thanks to these inclusions,
t(co, z) > t(co,u1), which is impossible since 7,, , is a geodesic. O

Lemma 2.3.10. Recall the definition of B* given at (2.3.9) and that T*(vpu,) = t*(0,u1)
and T*(Vy, ) = t*(v1, ).

(i) We have the following inclusions:

B*(0, T (o)) C B(0,t(0,u1)) and B*(x, T (Yo, 2)) C B(x,t(v1,x)).

(i) We have
B*(0,T* (o)) N B (2, T" (Yo, ) = 0.

Proof. (i) Let s’ be a vertex in B*(0,7*(7p.4,)). The aim is to show
t(0,s") < (0, uy).

Let 7* be a geodesic from 0 to s’ in the environment 7*. We denote by s* the last
vertex visited by 7 among those visited by v (note that 0 is such a vertex). First, since
Ve o does not take an edge of v, T*(7i. o) = T(7i- o). Then, by Lemma , Va1
is entirely contained in Bs sy, 50 T*(Vur,er) = T(Yure, ). Thus, also by Lemma [2.3.8
T*(Yuy o) > 0. So 7* does not take an edge of ~,, ,. Otherwise, since 7 is a geodesic
in the environment 7%, t*(0,s") > T™(Y0,) > T* (Y04, ). Hence, the time saved by 7*
after the modification comes only from the edges of vy,,. So,

T(o,5) = T"(Vo,6) < T (Vo) = T (Y0,1)- (2.3.21)

Hence,
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t<0’ S,) (Wé,s*) + T(Wz*,s’)

(Your) = T (Vo) + T*(Fo,-) + T*(75-,») by ([2:3:21)),
=t*(0,s’)

t°(0,5") + T(Youu) = T (o)

T*(You,) + T(Your) — T (0,u, ) since s € B*(0, T*(Yo,u1))

t(0,uy),

T
T

IN N

IN

which proves the inclusion and the same proof gives us the second inclusion.
(ii) Let s’ be a point of B*(0, T (vo,u,)) N B*(z, T*(Y4y »))- Then

t(0,2) < t(0,s") + t(s', x)
< t(0,uy) + t(vy, z) by (3)
< t(0,x)

since 7 is a geodesic visiting 0, uy, v; and z in this order and since ¢(uq,v;) > 0, which
is a contradiction.
O

Now, we can make the construction of w, which is the path on which we would like to
put the pattern that the geodesics have to take. We begin by two definitions:

o We say that a path between two vertices y; and y, is oriented if its number of edges is
equal to ||ly1 — yz||1-

o A step of length ¢ is a path of ¢ consecutive edges in the same direction.

We state the following lemma whose proof is left to the reader and where [ui,v1] is the
segment in R? and ||.||; is the norm on R¢.

Lemma 2.3.11. We can construct a path m with a deterministic rule such that:
(i) w is an oriented path connecting uy and vy,

(ii) 7 is the concatenation of steps of length 100* except in By (vi, 106%), where 7 takes
steps of length 1,

(iii) there exists a constant L, € R, depending only on (* and d such that for all z € 74
which is in 7, the distance for the norm ||.|[1 between z and [uy,vq] is bounded by L,
and for all y € [uy,v1], the distance for the norm .||y between y and m (seen as a set
of vertices in Z2) is bounded by Ly .
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Let 7 be the path given by Lemma [2.3.11] We introduce

uy the first vertex of 7 starting from vy in B*(0,7"(Y0.4,)), (2.3.22)
vg the first vertex of 7 starting from uy in B*(x, T" (7y, 2))- (2.3.23)

Remark that t*(0, uz) < t*(0,u;) and t*(ve, x) < t*(vy, ).
Lemma 2.3.12. The path 7 is contained in By s n.

Proof. Let z be a vertex of m. Using Lemma [2.3.11], there exists y € [u1,v;1] such that
|z — y|li £ Ly. The vertices u; and v; belong to B,(co, NV) which is convex, thus y €
B, (co, NV). So, we have

Iz = sNlli < |2 = yll +[ly = colls + [lco — s NI
———

SLI <H(y*00> ST‘lN
> u

N
<L+ NV + 1N since y € B,(co, NV),

Cu
< roN by (2.3.3)),

which proves that z € By 4 n. O

2.3.4.4 Second modification

Now, let us define B}, E**, E** and O. Let ¢; € R? denote the midpoint of [u,v;] and let
us consider the set of all vertices of m,, ,, at distance at most L for the norm ||.||; from ¢;.
This set is not empty, hence we can choose one such vertex with a deterministic rule. Recall
that Ly = Ly + (10 + d)¢*. Since V > 6dL>C,, (see (2.3.2))), we have that the distance for
the norm ||.||o. between the chosen vertex and v; is greater than 10/*. So, using item (ii)
of Lemma , there exist one or two steps of the path 7 of length 10¢* that contain the
chosen vertex. We chose one step (between these one or two steps) with a deterministic rule
to put the pattern. We denote the midpoint of this chosen step by cp. Then,

O(T,T") is equal to the direction of this step, (2.3.24)

and E5 (T, T") = {edges connecting vertices belonging to By (cp, EA)} : (2.3.25)

Note that by the direction of a step, we mean the integer j such that for every distinct
vertices z; and 2, of this step, 21 — 20 = %£||21 — 22]/1¢;. Note also that for all vertex z in
BOO(CP,EA),

|z —cilli < Lo.

We define uz and v3 as the endpoints of the oriented pattern such that 7 visits ug, usz, vs
and vy in this order. Recall that for a pattern, the entry and exit points correspond to the
endpoints given by the definition of this pattern. Note that, thanks to the construction, us
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and v3 are two vertices of the chosen step of length 10*. Then, we have to define E**(T,T")
and E*(T,T"):

E7(T,T") = {edges of Ty, u, U Ty, 0, except the one connected to uy and
the one connected to vy}, (2.3.26)

E**(T,T") = {edges e in By y such that T'(e) < v and which are not
in B (T.T), My Uogg B0, T (h0)) 01 B* (2. T (yur))}. (2.327)

For all the sequel, we assume that the event
{T € M)} {SHT) = s} n{T" € BN(T)} N {T" € B*(T,T")} occurs.

Recall the definition of the environment 7" given at (2.3.8]) and of B**(T',T") given in Lemma
2.3.3l In particular,

o forallee EL(T), T (e) =T*(e) < T'(e),
e forall e € B (T, T"), T** () < tuin + 0,
o forallee E*(T,T"), T*(e) > v > T(e) = T*(e),

+ since by Lemma [2.3.12) 7 is contained in By, n, we have that E*(T,T"), E**(T,T")
and Ep(T,T") are pairwise disjoint and are contained in By, . Thus, since E7% (T') is

contained in Bs s v \ Ba s, item (i) of Lemma is satisfied.

In what follows, when we talk about edges whose time has been reduced, it means the edges
e such that 7**(e) < T'(e). Before proving item (ii) of Lemma [2.3.3| we state the following
lemma which completes the vision of the sets E*(T,1"), E**(T,1") and Ep(T,T"). Recall
the definition of B** given at (2.3.9).

Lemma 2.3.13. We have
B**(()? T*(’YO,m)) = B*(O’ T*('VO,M)) and B**(I, T*(’Yvhm)) = B*(I’ T*(7v17$))7
and there is no edge of E3 (T, T") in any of these balls.

Proof. We begin by proving that there is no edge of Ep(7,7") in B*(0,7*(v04,)). To
this aim, we prove that there is no vertex of By (cp,¢*) in this ball. Let z be a vertex
of By(cp, ™). The idea is the following. Since v is a geodesic in the environment T* by

item (iii) of Lemma [2.3.7] since the time of the edges of v, ., is not modified by the first
modification and since By, n is a typical box in the environment 7', for every w vertex of

fyulﬂ)l )

t*(0,w) = t*(0,u1) + t*(ug, w) = t*(0,uy) + t(ur, w) = (0, u1) + p(u; — w).
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Figure 2.4: The construction of 7, of the vertices w1, us, us, v1, v2, v3 and of the pattern-location
in dimension 2.

We cannot guarantee that z is a vertex of 7,, ,, but using a similar argument:
t*(0,2) > t*(0,v1) — t*(v1,2) = (0, uy) + " (ug, v1) — t*(v1, 2),
since 7y is a geodesic in the environment 7™. But
t*(uy,v1) = t(ug,v1) = 2NV and t*(vy,2) < t*(vy,¢1) +t*(c1,2) = NV,
since t*(cq, 2) is negligible compared to NV, which gives that t*(0, z) is roughly greater than

t*(0,u1) + NV.

Now, we make the proof rigorous. Since z € By (cp, (*), we have z € B,(c1,C,Ly). Since

NV
by (2.3.2), V > 2C,Ls, z € B, (cl, 2). Furthermore, since ¢; is the midpoint of [ug, v1]

1
and p(uy —v1) < 2NV, we have pu(v; —¢1) < NV. Thus, since V > — (by (2.3.2))), using
5

the third item of Lemma with z =v; and 7 = %, we have

N
z € B, (vl, 3V> 7 C B (Ul,

2

3NV(1+ 25)>
—]
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Hence, using the lower bound ([2.3.20)) for ¢(us,v;) of the proof of Lemma and since by

4(1 tmax
g3, v > 2T fma)

T~ 10c we have
3NV(1+2
t(0,v1) — (0, u1) = t(ug,v1) > 2N(V(1 —¢) — 1) — 2tax > V<2+€)7
NV(1+2
and thus, using also that z € B <v1, ?)V(2—|—55)>7
3NV(1+2
t(0,2) > t(0,vy) — t(vy,2) > t(0,v1) — (2—'—5) > (0, u1).

The first item of Lemma [2.3.10] allows us to conclude.

Then, let us prove the first equality. The proof of the second one is the same. The in-
clusion B*(0, T*(vou,)) C B™(0,T* (70,4, )) is easy to check. Let us take z € B*(0,T*(vo,u,))
and 7 a geodesic from 0 to z in the environment 7. Then %F* is entirely contained in
B*(0,T*(v0.4,)) and there are no edges of E**(T,T") or E5(T,T") in B*(0,T*(v0.,)), SO

£7(0,2) <T(V) < T°(7) < T (Youn)-

For the other inclusion, assume that there exists a vertex z € B**(0, T* (70,4, ))\B* (0, T* (Yo,u1))
and let ¥** be a geodesic from 0 to z in the environment 77*. Let w be the first vertex of
7** which is not in B*(0,T*(70,,)). By construction, there is no edge of 7%, in E7(T,T")
or EX(T,T") and thus:

t*(0,2) > t(0,w) > t*(0,w) > T (Yo.uy )5

which is a contradiction. ]

Now, to get item (ii) of Lemma [2.3.3) fix n = min P (T € A;‘) B3N where
je{1,....d}

p = min(F([tmin, twin + 0]), F([V(N), tmax])) > 0.
Thus, n only depends on F', the pattern and N and we have that
P(T' € BY(T)|T) > pP=~l >
and

.....

We denote by 4 the path composed by the first geodesic in the lexicographical order from
0 to ug in the environment 7™, then m,, ,, and then the first geodesic in the lexicographical
order from vy to x in the environment 7. We end this section with two lemmas, one giving a
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lower bound on the time saved by the geodesics from 0 to x thanks to the second modification
and the other on the distance between u; and any vertex of m,, ,,.

Lemma 2.3.14. For all N € N*, we have
T () = T™(Y") = 5+ (0 = d&') > T

Proof. This result is an easy consequence of Lemma Since V > C, (by (2.3.2))) and
all edges of 7, ,, are contained in By, n, which implies that there is no edge of ~,, ., whose
time has been reduced between the environment 7" and T,

() 2 T (Youm) + lur — vil1(fmin +6) + T (Y0, 2),

where we used of the definition of a typical box. Further, recall the definitions of us and

v given at (| and m We have
T(77) < T (V) + luz = v2lly (fuin + 6) + T (77, ) + 2bmax + 77,

where the term 2t,,,, is an upper bound for the time for both, the edge connecting uy to
E**(T,T") and the one connecting vy to E**(T,T"), and the term 7* is an upper bound for
the time collected by 7™ in EF(T,T"). Since we have T**(7f,,) = T (W w,) < T*(Yo.u1),
T+ (732,1) =T"(7},.) <T* (Yor.z), lue — vall1 < [Jus — v1|; since 7 is an oriented path, and
V > 4C, (2t max + ™) (by (2:3:2)), and using Lemma m we obtain for all N € N¥,

NV
T*(y) = T7(V") 2 [lur = 011 (8 = ') = 7% = 2ty > 2, S (0= 0").
. . 20, T
Finally, since by (2.3.2)), V > we have the result. O

0—10
Lemma 2.3.15. For all N € N*, for all w vertex of my, .,, we have

U — v
g — wl; > ”131"1

Proof. Let us note that since 7 is an oriented path, for all w vertex of m,, ,, U my, ., after
E3(T,T"), we have [[u; — w||; > |Jug — vs]|1. So

1
|ur —wlly > fJug — ey = [[er — vsl[1 > §HU1 —v1][1 — Lo.

N
Then, since by (2.3.2), V > 6L,C,, we have ()’Cv > L and using Lemma [2.3.8| leads to

o
the result. O
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2.3.4.5 Proof of the second and third items of Lemma [2.3.4]

Recall that we assume that
(T € M)} N {SHT) = s} N{T" € BN(T)} N {T" € B*(T,T")} occurs.

The aim of this section is to prove the following properties (which are the second and third
items of Lemma [2.3.4)):

(ii) for all geodesic 7** from 0 to x in the environment 7**, there exists a geodesic 7 from
0 to x in the environment 7" such that 77 and 7™ are associated in B, S1(T).N

(iii) there exists a geodesic v** in the environment 7% from 0 to z such that v** and the
selected geodesic v in the environment 7" are associated in By S1(T).N-

To prove this, we use the following sequence of lemmas.

Lemma 2.3.16. Every geodesic from 0 to x in the environment T™* takes at least one edge

of Tug,ug Y g0, -

Proof. Let v** be a geodesic from 0 to x in the environment 7**. Since ~ is a geodesic in
the environment 7%, we have the following inequalities

(™) <T™(") < T*(y) <T*(v"™).

So, using Lemma [2.3.14],

It means that v** has to take at least one edge whose time has been reduced during the
second modification which is not in E5(T,7"). Hence, since the only edges which are not in
EF(T,T") whose time has been reduced are edges of 7y, 4y U Ty 0, the result follows. O

Lemma 2.3.17. Every geodesic from 0 to x in the environment T™* takes at least one edge
of v whose time has been reduced before taking its first edge of B s n, and takes at least one
edge of v whose time has been reduced after taking its last edge of Ba s v

Proof. The idea is to use that the time saved by the geodesics from 0 to x after the first
modification is much greater than the geodesic time between any two vertices of By v in
any environment. Let v** be a geodesic from 0 to x in the environment 7%*. Let u** be the
first vertex in By, n that v visits. Its existence is guaranteed by Lemma [2.3.16, The aim
of the proof is to show

T (Vo) < T(Vouer)-

Indeed, the definition of u** and the fact that the only edges whose time has been reduced
which are in B3 s x but not in Bj ;v are edges of «y gives us the result. Recall that u is the
entry point of v in By, . First, since v** is a geodesic in the environment 7,

T (Vo) < T (Youo) + 272 Ntmax.
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Then, using the first item of Lemma [2.3.7] we obtain
T (Vore) < T (Youuo) + 272 Ntmax — a(rz — 1) N (6 — ).
Finally, using the fact that v is a geodesic in the environment 7" leads to
T (Vorurs) < T (Vo) + 4r2Ntimax — a1z — r2) N (6 — 0').

Tro(4tmax + @)

To conclude, it is sufficient to observe that the condition r3 > implies that

Q
a(rg—r9)N(§ —0¢') — 4r9Ntymax > 0, so we have the desired strict inequality. The same proof
gives us the second part of the lemma. O]

Recall that e, es, s; and s, are defined at the beginning of Section [2.3.4.2]

Lemma 2.3.18. Let v** be a geodesic from 0 to x in the environment T**. Then the first
edge of v** whose time has been reduced is e; and the last is e5. Moreover, the first vertex of
e1 taking by v** is sy and the last of ey is ss.

Proof. Let v** be a geodesic from 0 to x in the environment 7%*. Let z** denote the last
vertex visited by v** before it takes for the first time an edge of v whose time has been
reduced. We know by the construction and by Lemma that 2z** is a vertex visited by
Yauuo OF Yuow, and thus it is a vertex visited by v, ., or 74, .. Let us prove that it is a vertex
visited by 7,.,. Assume, aiming at a contradiction that z** is a vertex visited by 7y, »-

On the one hand, by Lemma Yo+ does mot take edges in By, y and since by
Lemma , 7 is contained in By v, 755 does not take any edge of My, u; U Ty v, -

On the other hand, all edges of ,, , are in B*(x, T™(7Vy,.2)). So, if 2** is visited by Yy, 2+
we have z** € B*(x,T*(Yu,2)). But B** (2, T*(Yp,2)) = B*(2, T*(V0,,)) by Lemma [2.3.13|
Since y** is a geodesic in the environment 7™, it implies that 7.  is entirely contained in
B*(x, T*(Vv,,2)). Thus 73% , does not take any edge of 7y, ., U Ty, ., since there is no edge
Of Ty g U Mg 0y 10 B (2, T (Y, 1))

Combining these two conclusions, we get that v** does not visit any edge of 7., v, Uy v,,
which contradicts Lemma [2.3.16] So z** is a vertex visited by 7,.,. Knowing this, we can

complete the proof. By the definition of z** and by Lemma [2.3.17], we have

T(go) = T (g ee)-

Since v** is a geodesic,
T (g ) < T (0,2 ).

Now, let us assume 2** is not s;. Then, by the definition of sy, 2™ is visited by 7,,,, after
s1 and thus,

T (y0,20+) < T(0,20+)-

Combining these three inequalities yields
T(7g5e) < T(0,2 ),
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which is impossible because vy .+~ is a geodesic in the environment 7". So, the result is proved
and the same proof leads to the second part of this lemma. O

We can now prove the two properties stated at the beginning of this subsection. For item
(17), let 7** be a geodesic from 0 to x in the environment 7**. By Lemma and Lemma
[2.3.18 like 7, ** visits s; and before that 7** does not visit any edge whose time has been
changed when replacing 7" by T%*. Hence,

T(v0.s) = T (0.0) 2 T (Fois,) = T(03s1) = T(0.51)- (2.3.28)

This proves that T'(vo,5,) = T(75%,) and 7%, is a geodesic in the environment 7T'. Similarly,
Ver 18 @ geodesic in the environment 7" and the path 7 = 75% U7, 5, U7G, . 18 a geodesic in
the environment 7' that satisfies (i¢) in Lemmal[2.3.4)if we prove that it is a self-avoiding path
and it is contained in By, y. Assume, aiming at a contradiction that g7, visits a vertex
of 74 ¢, Which is not s; and denote it by s3. Then 75% U7, » is an optimal path for the
passage time in the environment 7' since 7g%, is a geodesic in this environment. It implies
that 7% | U7, has at least one edge which is e; and that T'(F% ., U7, s,) = 0, which is
impossible since T'(e;) > 0. The same proof gives that 77, does not visit a vertex of v, ,
and thus 7 is self-avoiding. To get item (i), it remains to prove that 7%, is contained
in Bysn. This comes from the fact that, in any environment, the geodesic time between
two vertices of Bs ¢ n is bounded by 2rsty.x, and, since the edges in By n \ Bssn have
the same times in the environments 7" or T**, by property (i) of a typical box, the geodesic
time to reach a vertex outside By, y and to come back in Bs v is bounded from below by
2(ry — 73)(tmin + 0). The condition on ry insures that (r4 — r3) (tmin + 0) > T3tmax-

For item (iii), observe that from ([2.3.28]), we also get

T (ois) = T (Y0,.s1) and T (75 1) = T (Ysp.a)-

Thus, the path o s, U5 o, U7s,., is an optimal path for the passage time in the environment
T**. 1If it is not self-avoiding, we get a geodesic that satisfies the requirement of (7ii) in
Lemma by cutting its loops with the same process as in the proof of Lemma in
the unbounded case. If we denote by s} and s}, the two vertices such that o o U o Usa
is a geodesic in the environment T** obtained by cutting the loops, we have to justify that
Vs, s, 18 entirely contained in By, n. We know that 7, 5, is entirely contained in By, n.
Let us show that vy s, is also entirely contained in By n, the proof for v, o is the same.
Since yo,5, U Vir s, U Va2 18 an optimal path for the passage time in the environment 7™,
we have T**(jﬁis,l) +T"* (7 5,) = 0 and thus in particular 7" (v, ,,) = 0. Since s; belongs
to Bs s n, if Vs, ViSits a vertex outside By n, there exist two vertices z and 2’ of Vs, 51
such that z € 0B; N, 2’ € 0By~ and 7, except for z is contained in Bysn \ Bssn. S0
T (7vs,5,) = 0 implies that T** (. ./) = 0 but T(7..1) = T"*(7.,-) = 0 since the time of the
edges of Bysn \ Bssn has not been changed. It makes a contradiction with since
ry —rs > 1Dy ([2.3.4).
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2.3.4.6 Every geodesic takes the pattern.

Recall that we assume that
{T'e MO}y N{S}HT) = s} N{T" € B(T)} N {T" € B*(T,T")} occurs.

The aim of this last subsection is to show that every geodesic in the environment 7** takes
the pattern in E5(T,T"). The proof is decomposed in two steps. The first step is to show
that every geodesic takes an edge of m,, ,, and an edge of m,, ,,. The second step is to show
that every geodesic verifying this property takes the pattern in E3(T,T"). We begin with a
technical lemma.

Lemma 2.3.19. For all w vertex of Ty, u; U Tyy v,
[w(ur — w) + p(vr — w) — p(ur — v1)| < 20, Ly
Proof. Let w be a vertex of m,, 4, U Ty, 0,. Then, by the construction of 7, there exists a
W € [ug,v;] C R such that |Jw —wl||; < L;. We have
p(ur —v1) = plur — w) + p(vr — ).
Then
i = w) = plin = 03) + (o = w)| < (s = w) =l = W)+ Ja(y = w) — ey — )|

< 20, [lw — ]
<20,L,.

]

Lemma 2.3.20. Let v** be a geodesic from 0 to x in the environment T**. Then v** visits
a vertex of Ty, and one of Ty, .. More precisely, the first vertex of v** that belongs to
Tz J Togve DElONGS 10 Ty, 4, and the last belongs to my, ., .

Proof. Let v** be a geodesic from 0 to x in the environment 7**. By Lemma [2.3.16| there
exists at least one vertex of my, 4, Uy, 4, Visited by v**. Let w be the first vertex of 4** that

*

belongs t0 My, uy U Tyy0, and assume that w belongs to 7y, .,. Note that 4g7%, does not visit
any other vertex of m,, y; U Tys,- The aim of the proof is to show that

T (16,) < T (Yo5);
which is impossible since v** is a geodesic in the environment 7**. We start with

T (Vo) = (0, w)
Z t*(oa vl) - t*(vl) w)
=t"(0,u1) + t*(uy,v1) — t*(vy, w),
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since, by Lemma [2.3.7], v is a geodesic in the environment 7*. By construction, there is no
edge of 7, », whose time has been changed at the first modification, thus t*(uy,v1) = t(uy, v1).
Furthermore, since there is no edge whose time has been increased at the first modification,
t*(v1, w) < t(vg,w), so

T (YVorw) = t7(0,ur) + t(uy, v1) — t(vr, w).

We now want to bound from below T**(v5%,). The only edges whose time has been reduced
at the second modification are among those of 7y, y; Uy, ., and of Ep(T,T"). So, since 757,
does not take any edge of Ty, 43 U Ty, 0y, it can only save time taking edges of Ep(T,1"). So,

T (Vo) = (0, ur) + t(uy, v1) — t(v1, w) — ™.

Then, using the definition of a typical box, Lemma [2.3.19 and the inequality t*(0,u;) >
t*(0,u2) (which comes from the definition of uy) leads to

T (Yom) = (0, uz) + p(ur — w) — e(p(ur — v1) + p(vr —w)) — 2N =20, Ly — TA,

On the other hand, note that, 7 being an oriented path, ||u; — wl|; > [Jus — w||1, so, using
the knowledge of T** on edges of T,

T (W) = T (W) + T (Vi)
S t*(O, Ug) + thax + 2tmax€A + (tmin + 5,)““1 - ’lU||1

To conclude, let us show that we have the inequality

t* (07 Ug) + 2tmax + thang + (tmin + 5/)”“1 - w”l
< (0, u2) + p(uy — w) — e(p(uy — v1) + p(vy —v)) — 2N — 20, Ly — T (2.3.29)

First, combining Lemma and Lemma [2.3.15|leads to

NV
— >,
|ur —wll; > 3C,

(2.3.30)
Then, by (2.1.21]), we have

p(ur —w) > (tmin +96) [Jur — w1
Recall that K’ = T + 2(C, Ly + tmax + tmaxl™), it is sufficient to have

8 <6 —eC fos —wifh Al —wly 2N K
1%

[ — wl|y lur —wlly flus —wlly
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Then, by Lemma [2.3.15], e = vl + ffon = el < 6. So, since € < ———, we have
Jur — w|y 24C,
ECNHUI — vl fln —wfp 6
[ur = wlx 4
. Y 12C, K’ .
By (2.3.30) and since 1 < 540 (by (2.3.2)) and N > 5o (by (2.3.6)), the condition
w
)
§ < 2 gives us (2.3.29). Hence T**(7f,,) < T™ (15%)- O

Finally, let us prove the following lemma which completes the proof of Lemma [2.3.4]
Lemma 2.3.21. Any geodesic from 0 to x takes the pattern at the pattern-location E3 (T, T").

Proof. Let v** be a geodesic from 0 to x in the environment 7**. By Lemma[2.3.20] ** visits
a vertex of m,, ., and one of m,,,,. As a consequence, there exist a vertex uy of m,, ., and
a vertex vy of m,, ,, such that v** goes from w4 to vy without taking edges of my, 5 U Ty 4, -
Let us remember that for all edge e of E5*(T,1"), we have T**(e) < v. We prove successive
properties.

o The edges of 7, which are not in Ep'(T,T') have a passage time greater than or

equal to v.

Since there is no edge of ;7 ,, in B**(0, T* (You1))s B (2, T* (Yoy.2)) OF Ty g U Ty 16
is sufficient to prove that ~;7  is entirely contained in By, y. By convexity, we have

that all points of [uy, v1] are contained in B),(cy, NV), so by Lemma|2.3.11} |[us—col|1 <

N
—V + Ly, and thus,

Cu
\Y%
||U4—SN||1§N f—l—’l“l +L1
Cu
So, if vy 18 TOT entirely contained in Bs sy, the number of edges whose time is greater
than or equal to v that a4 has to travel to leave B, v is bounded from below by

(r2 — % — rl) N —2d/* — Ly, and we get

Ty ) > (( _y._ ) N _ ot L1> N

Cu
but 2NV
T**(717Lr4,v4) S Ci(tmin + 5/) + thax(]- + EA),
m
: tmax tmin + J
and since N > 1, > 1, <1 and by (2.3.3)),
v v
3V 2tnax
ro >t Lt —+ = (14 (LA,
mn
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we have T (v, ,,) < T (7, ,), Which is impossible since 7,7, is a geodesic in the

environment 77,

V4

We have that ||uy — usl|; < 40% and ||vy — vs|; < 402,

Assume that it is not the case. Let us show that T**(y;* ) — T**(my, ) > 0, which
is a contradiction since 7,7, is a geodesic in the environment 7**. To this aim, let us
compare the time that can save each path compared with the other in any direction.
Recall the notation introduced in the proof of Lemma [2.4.1} for ¢ € {1,...,d} and a
path 7, T7*(7) denotes the sum of the passage times of the edges of 7 Wthh are in the
direction €;. In the direction O(T,T"), since |juy —uzl|; > 404 or ||vg — vs||; > 4¢*, and
by the construction, we have that

To o(T, T’)(’Vu4 i) ~ T&T,T')(Ww,m) > 40ty — 4gA(tmin +9') + 20 i — 20",

where the term 202, — 20V comes from the time potentially saved by 7 T 04Dy taking
edges of EX(T,T"). Then, in any other direction, 7,7 , can save a time lower than or
equal to 202§’ compared with T, ,, thanks to the edges in E3(T,T"). Hence,

T (it 50) = T (Tugn) = 200 + 20M i — A (i 4+ 6') — 2(d — 1)E46
> 2 — 2M i — (4% 4 2(d — 1)) > 0

since tyin + (1 4+ d)d" < typin + 0 < v.
We have that uy = us and vy = vs.

Assume that it is not the case. First, assume that ~;} , does not take any edge of
EF(T,T"). According to the first property, 7% (% ) > [|ug — vaf[1v. Then, since 7 is
an oriented path,

T (Vpon) < (g = vally = 20%) (binin + ') + 20",
Since uy # u3 or vy # vs, we have that ||uy — vyl]; > 2¢* and we obtain

T (Viyws) < T (Varoa)s

which is a contradiction since 7,7, is a geodesic in the environment 7**. So ;7
takes an edge of E3(T,T"). Let ug* be the first entry point of ;¥ ~in Ep(T,T") and
consider the path 7** following 7, .,, then going from us to ug* in one of the shortest
way for the norm ||.[[; and then following ;. . Then the number of edges of 777 -
is lower than or equal to the number of edges of ;7 FPes for all e € w7 s T(e) < v,
there exists €’ € m; .- such that T (¢') <ty + (5’ and for all e € Vorzer 17 (€) Z v
So we have T**(7**) < T™*(v;~ ), which is impossible since v** is a geodesic in the
environment 7**. The same proof gives vy = v3.
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o ** takes the pattern at the pattern-location E3 (T, T").

Assume that ;7 is not entirely contained in Ep(T,7T"). Let vg* be the first exit
point from E**(T T') of 757, and uy™ the first entry point after vg*. Let us consider
the shortcut 7** going from v§* to uj* in one of the shortest way for the norm ||.||;.
Then let vy*, denote the first vertex visited by v after vg*, then

lur® = vyl = llur™ = vg" [l + 1.

Indeed, we have that [jui* — vé‘i”l — JJui* — 3|1 is equal to 1 or —1, and if it is
equal to —1, it implies that UO s in ER(T,T' ), which is impossible. So, %g*,uf* has
strictly more edges than 7**. Furthermore, all edges of 7;‘61‘*7“?* have a time greater
than or equal to v although all edges of 7** have a time lower than or equal to v.
So, T**(m**) < T**(fy:g*7u,{*) which is a contradiction since & . is a geodesic in the
environment 7.

Thus v, ,, is a path entirely contained in E(7T,1"), going from u3 to v and with an
optimal time. So, we have the result.

]

2.4 Proofs of generalizations of modification arguments
in [15]

2.4.1 Modification proof for the Euclidean length of geodesics

To prove Theorem [2.1.8, we begin by defining the valid pattern in three different cases.
Recall that k and ¢ are given by the assumptions of this theorem and that (&)ie{l,...,d} are
the vectors of the canonical basis.

Case where zero is an atom. In addition to the assumptions of Theorem [2.1.8 we
assume that zero is an atom for F'. We set L; = k —|— 2, Ly = 0+ 2 and if d > 3, for all
i €{3,...,d}, Ly = 2. We define a pattern in A = H{O ,Li}. We take the endpoints

u=%,¢ and v = u+ (k +2)e;. We denote by 7T+ the path going from u to v by k + 2
steps in the direction £; and by 7+ the path going from u to u + £; by one step in the
direction &1, then to u + €1 + feo by £ steps in the direction e, then to u + (k + 1)1 + ley
by k steps in the direction €1, then to u+ (k + 1)e; by ¢ steps in the direction —e5 and then
to v by one step in the direction £;. We define A" as follows:

o foralle e rtUn™t T(e) =0,

o for all e € A which is not in 7t Un™+ T(e) > 0.
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Note that A" has a positive probability. Then, 7+ and 7+ are the only two optimal self-
avoiding paths from u to v entirely contained in the pattern. Furthermore, for every vertex
z € mTUn Tt different from u and v, there exists no path from A\ {u, v} to z whose passage
time is equal to O.

Unbounded case. Here, in addition to the assumptions of Theorem [2.1.8] we assume
that zero is not an atom and that the support of F'is unbounded. We set Ly =k, Ly = ¢
d

and if d > 3, for all i € {3,...,d}, L; = 0. We define a pattern in A = H{O, ..., L} We
i=1

take the endpoints u = 0 and v = ke;. We denote by 7+ the path going from 0 to ke; by k

steps in the direction £; and by 7+* the path going from 0 to £z, by /£ steps in the direction

€9, then to key + le5 by k steps in the direction €7 and then to v by ¢ steps in the direction

—&5. Then, we index the edges of 71 and the ones of 7% in the order in which they are

taken by these paths. We respectively denote them by (€;)icq1,..xy and (€7)ieq1,. k+20p. We

fix M > Z s; and we define A® as follows:
=1

o forallie {1,...,k}, T(e}) =5, and for alli € {1,... k+ 20}, T(e?) =1l
o for all e € A which are not in 7% or 7, T'(e) > M.

Since the support of F' is unbounded, P(A") is positive. Furthermore, we have
T(rH)y=T(x"").

Since M > T'(x"), the optimal paths from u to v entirely contained in the pattern cannot
take other edges than those in 77 U7+, Hence 7+ and 7t are the only two optimal paths
from u to v entirely contained in the pattern.

Bounded case. In addition to the assumptions of Theorem [2.1.8, we assume that zero
is not an atom and that the support of F' is bounded. We set ty,x = sup(support(F)).
We denote amax = max(ry,..., 7 90, 51,...,5;). Then, there are at least 2¢ integers j €
{1,...,k+2¢} such that 7 < Gmax. Indeed, assume that this is not the case. Then, we have

k20 k
Z i > (k4 1)amax > k@max > > s
i=1

and this contradicts (2.1.6). Thus, although we may need to change the indexes, we can
assume that for all ¢ € {1,...,20}, r} < amax and we denote t,, = Gpax —max(ry, ..., r5,) > 0.
We fix o > 0 an integer such that:

a > max ( (2.4.1)

k kamax
200 0ty |
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Figure 2.5: Paths 77 and 7+ with their passage times in the pattern for the proof of Theorem
in the bounded case with d =2, k =4, £ =2 and a = 4.

We set k' = ak, ! =al, Ly =k, Ly = ¢ and if d > 3, for all i € {3,...,d}, L; = 0. We

d
define a pattern in A = JJ{0, ..., L;}. We take the endpoints v = 0 and v = ke;. Let 7" be
i=1
the path going from u to v by &’ steps in the direction £; and 7™ be the path going from u
to u' = l'e5 by £’ steps in the direction e,, then to v/ = k’ey + ¢'e5 by k' steps in the direction
1 and then to v by ¢ steps in the direction —e,. Then we index the edges of 7, WI 5, qu,jf),
and 7T;CJ; in the order in which they are taken by these paths. We respectively denote them
by (€Dicqwy (€Dicqr. o (€)icq,wy and (€))icry. - The idea for the event A" is just
to alternate the atoms on every boundary of the rectangle whose vertices are u, ', v' and
v. It allows us a better control of the time of a path taking both vertices of 71 and vertices
of 7%, (see Figure .
So, we define A" as follows:

o foralli € {1,...,k'}, T(e;) = sjyy and T'(e}) = 15,y where i[k] is the integer in
{1,...,k} such that ¢ — i[k] is divisible by &,

o forallie {1,....0}, T(ef) = riyy and T(e}) = rj 0,
o for all other edges e € A, T'(€) = amax-
Note that A* has a positive probability and that on this event, T(7*) = T(7+7).

Lemma 2.4.1. On the event A, the paths 7+ and 7+ belong to the family of optimal paths
from u to v which are entirely contained in the pattern.

Proof of Lemma[2.4.1. Let us begin by introducing some notations. For i € {1,...,d} and
a path m, T;(m) denotes the sum of the passage times of the edges of m which are in the
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direction €;. So we have T'(w) = Ty(w) + - -+ + Ty(mw). Furthermore, for j € {0,...,¢ — 1},
we denote by Sg the set of edges of A which can be written {z,z + 5} where the second
coordinate of x is equal to j.

Now, to prove the lemma, assume for a contradiction that there exists an optimal self-
avoiding path 7 entirely contained in A such that

T(m) <T(x")=T(xt7). (2.4.2)

First step: 7 takes at least one edge in ﬁj;,. Indeed, assume that it is not the case.
Then
T(m) = Ty(m) = Ti(n") = T(n™),

which contradicts (2.4.2)). Note that the second inequality comes from the fact that edges
in the direction £; whose passage time is strictly smaller than those in 7 must belong to

o
7Tu 'U
Second step: We denote by  (resp. y) the first (vesp. last) vertex of m %, visited by
7. Let us prove that m,, = 7. Note that, since 7 is a self-avoiding path from u to v and

since every path entirely Contalned in the pattern can only take edges of directions ; and
€2,

o x (resp. y) is also the first (resp. last) vertex of 7 visited by 7.}

u’ v
e 7,y does not take any edge of mf + and 7} \.

Assume for a contradiction that m,, # 7T++ Denote by 2’ and ¢’ two distinct vertices of
+ N7y, such that m, , does not take any edge of 7+ and such that 2’ is visited by 7",
before y'. We have || > |77, ] and thus 7, has to take at least one edge in 77, else

T(Tyy) = |7Tz’,y’|amax > |7T2_’:Z'|amax > T(W;L’)v

which contradicts the fact that 7 is an optimal path. Since 7,/ , has to take edges in 7,
and since it cannot take edges of 771, we get

T2 (ﬂ-x’,y’) Z 2€,amax-

Furthermore, for each edge e in W;/Z,, Ty has to take an edge in the direction €; such that
this edge is the edge e — £'s, € ©" or such that its passage time is equal to aya,. Hence

Tl(ﬂ-a:’y’) Z V’x yHlJzk:

But,
. k+2¢
T1(7T+/+/) S ’VH‘%.]{:yl—‘ Z ’I“,;.

=142/



Thus, since Y 7 <> ) < kamax, we have

k
T(mft) = T(mary) <Y 85— 20lamax < (k — 20l)amax < 0 by (2.4.1)),

i=1

which contradicts the fact that 7 is an optimal path.

Third step: One of the keys of this step is planarity. We have just proven that m,, =
T Hence, (2.4.2) implies that T'(7,,,) < T'(m, 1) or that T'(m,,) < T'(m, ). Assume for a
contradiction that

T(Tue) < T(my3), (2.4.3)

the other case being the same. First, we have x # u’ else, using again that 7 is a self avoiding
path from u to v and the fact that every path entirely contained in the pattern can only take
edges of directions ¢; and €9, T, cannot take any edge of 7", we have Ts(m,,w) > Ts (7T:Lr Z,)
and thus

T(Tuz) = T(Tur) = To(Tuu) > T2(7TII’) = T(”II) T(m 11_;_)
which contradicts ([2.4.3]).

Denote by 2" the last vertex of m /, visited by 7, (note that we can have z” = u). We
have that z” ;é u, else 2”7 = x = u/. Now, since 7 is a self—avoiding path and using the
definitions of 2" and z, we get that 7.~ , cannot take any edge of 7, . Hence, 7.~ , takes at

least one edge of 77. Indeed, if it is not the case, we have T} (m», m) > Ty (7, +x) and we get
(using that ||z" — u'[|; > 0):
T(myn o) = Ti(7en o) + To(men ) > Th (W;ﬁ,—x) + 12" — || 1 Gmax
> Ty(miit) + o — ol max(rh, .. rh) > Ta(wbt,) + To(mhit) = T(wkits),

which contradicts the fact that 7 is an optimal path.

Now, since 7, , takes edges of 7T, m,~ , has to take at least ¢ edges in the direction e,
of passage time equal t0 apay. Thus,

T2 (’ﬂ—x”,x) 2 glamax .

Then, for each edge e in 7@;, T 2 has to take an edge in the direction ; such that this

edge is the edge e — ey € ™ or such that its passage time is equal to apax. We get

Ty () = Wlu _leJZi:

On the other hand, we have
k+-2¢

Tt >4"” x” S

i=142¢
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and

Ty(ryt,) < |la” — /[y max(ry, ..., rh,) < £ max(r, ..., 75) < € (Gmax — tw)-
k2 k
Hence, since Z rh < ng,
i=112¢ i=1
T(rnt,) = T(man o) < Ta(mpt,) = Ta(men o) + To(mi",) — To(man o)
k
< ZS/Z —l't,
i=1
Skalllax

< Kkmax — alt, < 0 by (2.4.1),

which contradicts the fact that 7 is an optimal path. Thus, there is no optimal self-avoiding
path 7 entirely contained in A such that (2.4.2)) holds and the proof is complete. ]

Conclusion in the three cases.

Proof of Theorem[2.1.8, For x € Z¢, we denote by m(x) the first geodesic from 0 to z in
the lexicographical order among those who have the minimal number of edges. We say that
two patterns are disjoint if they have no vertex in common. We denote by N¥(m(z)) the
maximum number of disjoint patterns defined above in the three cases visited by 7(z). Simple
geometric considerations provide a constant ¢ > 0 such that for all path 7, N¥ (1) > cN¥ (7).
Further, note that, in each pattern visited by 7(z), 7(z) takes the 71 segment since the 7+
segment belongs to the set of optimal paths entirely contained in the pattern and is the only
optimal path for the norm ||.|[;. We can define a self-avoiding path 7(z) from 0 to z by
replacing each 7 segment of (x) with the 77+ segment in each disjoint pattern visited by
m(x). This path 7(x) has the same passage time and hence both 7(z) and 7(x) are geodesics.
Note that in the case where zero is not an atom, 7 is obviously self-avoiding (since every
geodesic is self avoiding), and in the case where zero is an atom, 7 is self-avoiding since in
the patterns, the passage times of all edges which are not in the 7 or 7™ segments are
strictly positive, and thus 7(z) cannot visit vertices in the 77" segments except those which
also belong to the corresponding 7+ segment. In the three cases, we have:

7 (2)] = |m(2)| + 2N ¥ (7 (2)).
Finally, we get:
Loo > [7(z)] 2 |n(@)| + 2M P (n(2)) = Lo, + 2N ¥ (n(2)). (2.4.4)

The hypothesis of Theorem [2.1.4] are satisfied, thus there exist & > 0, §; > 0 and By > 0
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such that for all z € Z¢,

P (3 a geodesic v from 0 to z such that N%(y) < a||:1c||1) < BrePelizl

Then, taking D = 2ac, we get by (2.4.4)),

P(Lox — Lo, > Dlialh) > B (N¥(n(2)) > callz]1) > P (N¥(n(x)) > all2lls)
>1— 516752”%”1.

]

2.4.2 Modification proof for the strict concavity of the expected
passage times as a function of the weight shifts

Proof of Theorem[2.1.9 Recall that we assume that the support of F' is bounded and that
there are two different positive points in this support. We set t,,.x = sup(support(F')). Let
0 < r < s be two points in the support of F. Fix b € (0,r). Applying Lemma 5.5 in [15], we
get positive integers k, ¢ fixed for the rest of the proof such that

k(s+0) < (k+20)(r—06) < (k+20)(r+9) <k(s—0)+(20—1)b (2.4.5)

holds for sufficiently small 0 > 0. Fix L=k+/{¢+1, Ly =k+2L, Ly = ¢+ 2L and if d > 3,
d

for all i € {3,...,d}, L, = 2L. We define a pattern in A = J[{0,...,L;}. We take the

i=1

d
endpoints u® = > Le; and v™ = u™ 4 (k + 2L)e;. Then we define
=2

AO:{L,...,kJrL}><{L,...,€+L}><f[{L}. (2.4.6)

With this definition, every path from the boundary of A to the boundary of Ay has to take
at least L edges of A\ Ag. We take 7+ the path going from u” to v* by k + 2L steps in
the direction &1, and 7+* the one going from u” to uy = u® + Le; € Ay by L steps in
the direction €7, then going to us = uy + les € Ay by ¢ steps in the direction &5, then to
us = ug + key € Ag by k steps in the direction e, then to uy = us — fe5 € Ag by £ steps in
the direction —e,, and then to v* by L steps in the direction ;.

For a deterministic family (t.)ece, of passage times on the edges of A and for a path
m, we use the abuse of writing T'(7) to denote » t.. For all § > 0, we consider the set

ecT

G(6) of families (t.)ccg, of passage times on the edges of A which satisfy the following two
conditions:

o foralle e ™t NAg, t. €[r—4r+94],
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o for all other edges e in A, t. € [s — §,s+ 4.
Then, consider the set H of families (f)ecg, such that:
(P1) 7 is the unique optimal path from u” to v among the paths entirely contained in A,

(P2) for all path m; from a vertex w; of the boundary of A to a vertex of the boundary of
A, for all wy in Ay, for all path 7y, optimal for the norm |||, going from w; to wsy, we
have T'(mq) < T'(my).

Note that for all § > 0, since r and s belong to the support of F', we have that P((7'(e))ces, €
G(6)) > 0. Let us prove that G(0) C H. Consider a family (t.)ces, € G(0). So there are
only two different passage times in A which are r and s. Assume for a contradiction that
does not hold. Then there exists an optimal path m going from u” to v*, different from
7+, Recall the notation T; for i € {1,...,d} introduced in the proof of Lemma [2.4.1] Since
7t is the unique path between u® and v™ taking only edges in the direction €; and since
there is no passage time equal to zero in A, we have T7(7) < T'(w). Hence

Ti(7")=T(x%) > T(r) > Ty (7).

++

u2,us’? T

Since the only edges in the direction €; whose passage time is smaller than s are in m
takes an edge of wt —and thus Ty(7) > 2¢r. Furthermore

Ty(m) > Ty(xt) — k(s — 7).
Hence we get
T(r) > Ti(rm) + To(m) > Ti(nt)+20r — k(s —7r) > Ty(r") =T(r"),

where the strict inequality comes from ([2.4.5)). Thus, it contradicts the fact that 7 is an
optimal path and holds. Now, to prove that holds, let m; be a path from a vertex
wy of the boundary of Ay to a vertex of the boundary of A and let ws a vertex of Ag. Let
7o be an optimal path for the norm |.||; going from w; to we. Then, by the definition of A,
(see ), 7 has to take at least L edges whose passage time is equal to s although
takes at most k + ¢ edges whose passage time is smaller than or equal to s. Thus

T(m) > Ls > (k+{)s > T(m,)

where the strict inequality comes from the fact that L = k + ¢ + 1. Hence holds and
G(0) C H.

Furthermore, H is an open set since for a family (¢.).cs, to belong to H, it is required
that the time of a finite family of paths is strictly smaller than the time of every path of
another finite family of paths. Hence, for § > 0 small enough, we have

G(8) C H. (2.4.7)
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Fix ¢ > 0 such that (2.4.5) and (2.4.7) hold. Consider the pattern ¢ = (A, u*, v*, AY) with
AN = {(T(e))eee, € G(6)}. Now, we denote by 7(z) the first geodesic from 0 to z in the
lexicographical order among those of maximal Euclidean length and we denote by N™¥ (7 (z))
the maximum number of disjoint patterns visited by m(x). Recall the existence of a constant
¢ > 0 small enough such that for all path =, N¥(r) > ¢N¥(7). Since P(A*) > 0, we can
apply Theorem 2.1.4l Let a, 31, 52 > 0 be the constants given by Theorem [2.1.4l Then, we
have

Leallz|[ JEWF(n(2)) > callz||)

Leallz ]\ JP(N¥(n(2)) = allz]) > [eallz]J(1 = pre”150) > Clz]),.
Now, let us follow the end of Stage 3 of the proof of Theorem 5.4 in [I5]. By|(P1)| 7 (x) takes
the 7t segment in each pattern that it takes. Furthermore, by , 7(x) does not take any
edge in the 771 segment which is not in the 7™ segment. So, we can define a self-avoiding
path 7(z) from 0 to z by replacing each 71 segment with the 77+ segment in each pattern
visited by 7(z). Reduce the weights on each edge e from T'(e) to ("% (e) = T(e) — b. By

the definition of the pattern, the T(~Y-passage times of the segments 7+ and 7+* obey the
inequality:

TED () = T(rtH) —b|n ™| < T(n™) 4+ (20 — )b — b|r ™| = TV (2 T) — b
Then, following the proof of Theorem 5.4 in [15], we get

tD(0,2) < T (R(2)) < TV (x(x)) — bNF (n ()
= T(r(x)) — blm()| — bA¥ (7 ()
= 1(0,2) — bLo, — bN* (7 (). (2.4.8)

Since b € (0, tmin +€0), E[t7(0, x)] is finite. Thus, taking expectation in (2.4.8)), we get the
result. O

2.A Unbounded case

2.A.1 Assumptions on the pattern in the proof of the unbounded
case

Lemma 2.A.1. Let B = (A, u®,v*, AY) be a valid pattern. There exists a positive integer
0% and a valid pattern Bo = (Mo, uiy, v, AY) such that:

° AO = BOO(O7£A)?
o for every self-avoiding path =, N* (1) > N¥(x).
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d
Proof. Denote by Ly, ..., Ly the integers such that A = []{0,..., L;}. Fix

i=1
A = max(Ly,..., Lq).

Let M* > 0 such that
P (AN {Ve € A, T(e) < M*}) > 0.
Consider the pattern By = (Ao, ujy, v5, Ay) defined by:

o Mo = B,(0,0")

o u) (resp. v}) one vertex of OAy such that there exists a path 7, (resp. ,) fixed for

the remaining of the proof linking v} and u* (resp. v} and v*) which satisfies the
following two conditions:
— . (resp. m,) does not visit any vertex of A except u® (resp. v!),
— m, (resp. m,) only takes edges in the direction of one external normal unit vector
associated with u* (resp. v*) chosen arbitrarily if there are several such vectors,

« A{ the event such that:

— AAn{Ve € A, T(e) < M*} occurs,
— for all e belonging to 7, Um,, we have T'(e) < M*,
— for all e which does not belong to A U, Um,,

T(@) > ‘A()’eMA,
where |[Ag|. is the number of edges in Ay.
Note that, since u* and v* are distinct, 7, and 7, are disjoint. We get:

o P(A2) is positive since B is valid and since the support of F' is unbounded, and then
By is a valid pattern.

o On Aj, any path from u to v} optimal for the passage time among the paths entirely
inside Ay contains a subpath from u” to v entirely inside A. Indeed, let my be a
path from u} to v which does not contain a subpath from u* to v* entirely inside
A. Tt implies that m takes an edge whose time is greater than |Ag|.M™. Let 7} be a
path following 7,, then going from u* to v* inside A, and then following 7,. We have
T(m) < |Ao|eM? < T(mp) and thus 7 is not an optimal path. Hence, for every path
7, if a vertex z € Z¢ satisfies the condition (7;B), = satisfies the condition (7;3).

Thus we get that N¥ (1) > N¥(n). O
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2.A.2 Construction of the path 7 for the modification in the un-
bounded case

Recall that, here, u® and v™ are the vertices defined at the beginning of Section [2.2.3, The
aim is to prove that we can construct a path 7 in a deterministic way such that:

(i) 7 goes from u to u® without visiting a vertex of By (sN, ("), then going from u* to
v™ in a shortest way for the norm ||.|[; (and thus being contained in B, (sN, ")) and

then goes from v* to v without visiting a vertex of By (s, %),

(ii) 7 is entirely contained in By 4y and does not have vertices on the boundary of By s v
except v and v,

(iii) = is self-avoiding,

(iv) the length of 7, ,a U, , is bounded from above by 2r, N 4 K, where K is the number
of edges in By (0, ¢* + 3).

As it is said in Section [2.2.3] we want to construct a path from u to sN and a path
from sN to v which have no vertex in common except sN and such that their lengths are
bounded from above by roN. To get them, we use the following lemma whose proof is left
to the reader.

Lemma 2.A.2. Let m € N* and x, y two vertices of Z¢ such that ||z||; = ||y|li = m and
x #y. Then we can build in a deterministic way two paths 7, and m, linking respectively
and y to 0 and such that their length is equal to m, they have only 0 as a common vertex
and they have respectively only x and y as vertices whose norm ||.||y is greater than or equal
tom.

Using this lemma and replacing 0 by s/N using a translation, we get two paths linking u
to sN and v to sN with the stated properties. Recall that By, (sN,¢* +3) C By, n and let
ug (resp. vg) denote the first vertex in By, (s, 2 +3) visited by the path going from u to sN
(resp. the one going from v to sN). Then we get two paths m, ., and m,, , respectively from
u to up and from vy to v both constructed in a deterministic way such that m, ,, and m,, , do
not have any vertex in common, are entirely contained in By s 5, have only u or v as points
on the boundary of By, y, and their lengths are bounded from above by 7o N — (0 + 3).

Then we build two paths m, 1 and m, ,, respectively from ug to v and from v to vy
contained in Bu,(sN, (A +3)\ Boo(sN, ") except for u® and v*, such that they do not have
any vertex in common. By the definition of K, this implies that the sum of their lengths
is bounded from above by K (recall that K is the number of edges in B, (0, + 3)). To
get these paths, assume first that [Jug — v*|; > 3 or [Jvg — u®|; > 3. Assume that we have
|vg — u™|]; > 3, the other case being the same. We begin by considering a path # going in
a shortest way from vy to a vertex of the boundary of B, (s, (" + 2), denoted by vj. This
path has at most d edges. Then, let ™Y be a vertex on the boundary of By (sN, (" + 3)
such that ||u® —u*0||; = 3. We get 7, . by going from ug to u*? in a shortest way on the

UQ ,U
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Figure 2.6: Example of the construction of the portion of 7 which is contained in Ba(sN, /A +
3) \ Boo(sN, /) in dimension 2. On the left, this is an example of the case where |Jug — v*|; > 3
or |lug — u™||; > 3 and on the left the other case.

boundary of By (sN, ¢ + 3) avoiding all vertices of 7, and then by going from u*° to u* by
three steps. This is possible since [|vg — u*||; > 3. To get m,, ,a, we begin by following 7.
Let v™° be a vertex on the boundary of By (sN, * + 2) such that ||[v* — v*0||; = 2. Then,
Ty gO€s from v) to v in a shortest way on the boundary of By (sN, /A +2) avoiding the
unique vertex of 7, ,a belonging to B, (sN, ¢* +2). Finally, Tyt g0es from ™0 to v by
two steps (see the left side of Figure for an example of this construction in dimension 2).

Now, if |Jug — v*||; = 3 and |Jvg — u”||; = 3, the construction has to be slightly different.
From ug, m,, , goes to a vertex ug belonging to the boundary of By (sNV, ¢* + 3) and such
that ||uj — voll; = 1 in a shortest way on the boundary of B, (sN,¢* + 3). After, it makes
one step to go to the boundary of By, (sN, * +2) and goes to u® in a shortest way by taking
only one vertex in By (sN, (" + 1). Then, 7, , goes on the boundary of B, (sN, (" + 3)
to a vertex v{ belonging to the boundary of B, (sN, " + 3) and such that |[vf — uoll; = 1
by avoiding every vertex which belongs to m,, ,a, and then makes two steps to go to the
boundary of By (sN,¢* 4+ 1) and goes to v* in a shortest way (see the right side of Figure
for an example of this construction in dimension 2). In this case, we also have that the
sum of their lengths is bounded from above by K.

Finally, 7 is the path obtained by concatenating m, ., T,,.s, a path going from uM to
v* in a shortest way for the norm ||.||;, m ,, and 7, , in this order. We have that 7 is a

self-avoiding path contained in By s y and has only u and v on the boundary of Bs 4 .
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2.B Overlapping pattern in the bounded case

Proof of Lemma[2.3.1] Recall that v is fixed at the beginning of Section and that §' =
min <g, —id> Then, we fix a positive real 1 such that:

¢ fmin+0 <1 SV < lax,

o the event A N {Ve € A, t, < 14} has a positive probability,

o F([w,v]) > 0.

Notice that, if F' has an atom, one could have vy = v, or even 1y = v = t.«. Then, fix

* =max(Ly,..., Ly), (2.B.1)

4d€A (VO — tmin — 6*,)

2

14 2.B.2
e Vo — Zfmin -0 ’ ( )
AM(2d+1 2d — 1)tmin + 2d6’ m + 46
and £ > A ((2d 4 1vg + (2d — V)tgin + 2d8) + €1 (vo + 3tmin + 5)' (2.8.3)
y — 2(:min — 20
Fix also ;

" . ; Y0 — Umin
—_— . 2.B4
0" < min (5 T ) ( )

Let j € {1,...,d}. Let us construct the overlapping pattern in Ag = {—4y, ..., (o} with
endpoints {ye; and —lye;. We denote by us and v3 the endpoints of the original pattern. The

first step is the construction of an oriented path going from the face of A containing fye; to
d

the face containing —/ye; and visiting u3 and vs. We denote by A; the set H{—él, oo L+
i=1
¢1}. Then we define ug (resp. vq) the vertex of dA; which can be linked to ug (resp. v3) by a
path using exactly ¢; edges in only one direction (the direction of the external normal vector
associated to ug (resp. v3)). If ug or vs are associated to several external normal unit vectors,
then the choice of the direction is not unique. We choose one external normal unit vector in
an arbitrary way but we ensure that the two normal unit vectors chosen to build us and vy
are different. Note that this is possible since the pattern is valid (recall Definition . For
a vertex z € Z%, denote by z2(j) its j-th coordinate. Although we may need to exchange the
roles of uz and v, we can assume that us(j) > v2(j). Then, we define u; = ug+ (fo—u2(j))e;
and v; = vy — (€p + v2(j))e;. Note that u; (resp. vy) belongs to the face of Ay containing
loej (resp. —loej). We define a path 7 going from fye; to uy in a shortest way, then to us in
the shortest way, then to us in the shortest way, then to v3 in a shortest way, then to vy in
the shortest way, then to v; in the shortest way and to vy in a shortest way. Note that 7, ,,
is an oriented path. Indeed, 7, ., is an oriented path. Extending it outside A following the
direction of an external normal unit vector preserves the fact that it is oriented. Thus 7, 4,
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Figure 2.7: Example of the construction of 7 in an overlapping pattern in dimension 2.

is an oriented path. Then, we assume that us(j) > v2(j) on purpose to guarantee that, with
the definitions of u; and vy, the path 7,, ,, remains an oriented path.

The event (whose probability is positive) of the overlapping pattern, denoted by .A;»XO is
the following;:

o forall e € Tyye;us and € € Ty; —gpe;, T'(€) < tmmin + 0",
o the event A* N {Ve € A, T'(e) < 1y} is realized,
o forallein Ag \ (FUA), vy <T(e) <.

On this event, let 7 be one of the fastest path from fye; to —{ye; among the path entirely
contained in Ag and let us show that 7 visits uz and v3 and that %,, ,, is entirely contained
in A. We proceed by proving successive properties.

o There exist one vertex ag of Ty, v, and one vertex by of Ty,., visited by 7. Further,

/}/foaj,ao = 7T€06j,a0 and 760,—@08]‘ = 7Tb07—fo€j .

Let us assume that 7 does not visit any vertex of 7, ,,, the other case being the same.
The path 7 has to take at least £, — /* — ¢, edges connecting vertices such that at least
one of them has its j-th coordinate strictly between ¢* + ¢; and ¢,. The only edges in
this set whose passage time is smaller than v, are those of 7, ,,. Hence

T(W) Z (60 - €A - gl)VO + (60 + KA + ‘€1>tmin-
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But, thanks to our construction, we have
T(7)
<T ﬁfo@wm) + T(ﬁvl,*foq) + T(ﬁ-ulﬂl&) + T(ﬁvz,m) + T(ﬁ-uzﬂw) + T(ﬁvs,m) + T(ﬁuf,,vs)
§(2d£A+2€1 ) (tmin +6//) S2€0 (trrlin+6//) SQZl (tl‘[lin+6//) SdeAVO
< 2(dl™ + 20y + lo) (tmin + 0') + 2d0 vy since 67 < .

So, (2.B.3) leads to T'(7) < T'(7), which is impossible.

To prove that 7. o = Tee;,09, We use the fact that by the construction, if 7. o +
Tge;,a0> Veoe, a0 1N8S tO take at least one edge whose time is greater than or equal to vp.
Hence,

T (FVtye;,00) = Vo + (1ogj — aollt — 1)tmin,

although
T (Toge;a0) < 1o — aoll1(tmin +6”).

Since |[log; — aoll1 < 2dly, (2.B.4) leads to T'(7see;00) < T (Veye, 00), Which is impossible
sing 7 is an optimal path.

o Ifar (resp. by) is a vertex of Tuyus (T€Sp. Tuyw,) visited by 7, then Ny, oy = Ttoe;an
(7’68]). ’Vbl,—éoej = 7T517*fo€j)'

Indeed, let a; be such a vertex and let ay be the vertex of the preceding property.
We only have to prove that %, ,, = Ta,a and the proof is the same as the one for

7(06]'7&0 - ﬂ-foej,lm'

Among the vertices visited by 7, we denote by a (resp. b) the last vertex of 7y, u,
(resp. the first vertex of 7y, _¢,). Then, 7,;, does not visit any vertex of Ty, us U Tus,—toe;
(except a and b). Indeed, by the two properties above, we have that Veoe;a = Ttozjya and
Vb,—toe; = Tb,—toe; a0 Y, cannot visit a vertex of g u; U Ty, p thanks to the definition of a
and b.

o The vertex a (resp. b) belongs t0 Tuyuy (T€SP. Tugws)-

Assume that a or b does not satisfy this property. Then ||a—us||; > ¢; or [[b—wvs||1 > ¢5.
Since 7, is oriented and since ||uz — vsl]; < 2d¢*,

T(7ap) < ([la— by — 2d0™) (tmin + 6") 4+ 2d0 vy < ([Ja — b]|y — 2d0™) (tin + ') + 2d0 1.
Then, since the edges whose time is smaller than 14 taken by 7, , are those in A,

T(Vap) = (la—bllx — 2d6*)vg + 2d0 .

Using (2.B.2)), we get T'(7,,) > T(%as), which is impossible.
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o We have that a = uz and b = vs.

Assume that a # ug, the other case being the same. We have
T(Fap) < (lla = bllx — llus — vs[[1) (tmin + 0) + [lus — v3]l1v0,

and thus 7,, takes at least one edge of A otherwise T'(7,;) > |la — bllivo > T'(7ap)
since |la — b||y — [|us — v3|l1 > 0. Let ug be the first entry point of 7,;, in A and let
us consider the path 7 following 7, ,,, then going from us to g in a shortest way and
then following 7%, ,- Then, the number of edges of 7, is lower than or equal to the
number of edges of 7, ., for all e € 744, T'(e) < g, there exists €’ € 74,4, such that
T(€') <tmin+ ¢ and for all e €75, ., T(e) > 5. So, we have T'(m) < T'(7,,;) which is
impossible since 7 is an optimal path among paths entirely contained in Aq.

* Y, takes the original pattern.

Assume that 7, , is not entirely contained in A. Let v be the first exit point from A
of 7,, and ug the first entry point after vo. Let us consider the shortcut 7 going from
Vg to ug in a shortest way. Then, using the same argument as in the proof of Lemma
, we have that 7, . has strictly more edges than 7. Furthermore, all edges of
Voo Nave a time greater than or equal to vy although all edges of 7 have a time lower
than or equal to vy. So, T(7) < T'(7,,.,,), Which is impossible since 7 is an optimal
path among paths entirely contained in Ag. Since 7%, is a path entirely contained in
A, going from us to vz and with an optimal time, so we have the result.

O

Acknowledgments. The author thanks the two referees for their careful reading and their
comments that helped to improve the presentation of the article.

110



CHAPTER 3

Geodesics cross any pattern in first-passage percolation without any
moment assumption and with possibly infinite passage times

Ce chapitre correspond a l'article [12].

Abstract

In first-passage percolation, one places nonnegative i.i.d. random variables (T'(¢)) on the
edges of Z?. A geodesic is an optimal path for the passage times T'(e). Consider a local
property of the time environment. We call it a pattern. We investigate the number of times
a geodesic crosses a translate of this pattern. When we assume that the common distribution
of the passage times satisfies a suitable moment assumption, it is shown in [Antonin Jacquet.
Geodesics in first-passage percolation cross any pattern, arXiv:2204.02021, 2023] that, apart
from an event with exponentially small probability, this number is linear in the distance
between the extremities of the geodesic. This paper completes this study by showing that
this result remains true when we consider distributions with an unbounded support without
any moment assumption or distributions with possibly infinite passage times. The techniques
of proof differ from the preceding article and rely on a notion of penalized geodesic.

3.1 Introduction

3.1.1 Settings

Fix an integer d > 2. In this paper, we consider first passage percolation on the hypercubic
lattice Z¢. We denote by 0 the origin of Z¢ and by &€ the set of edges in this lattice. The
edges in & are those connecting two vertices x and y such that ||z — y|l; = 1. The basic
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random object consists of a family ' = {T'(¢) : e € £} of i.i.d. random variables taking
values in [0,00] and defined on a probability space (€2, F,P). The random variable T'(e)
represents the passage time of the edge e. Their common distribution is denoted by L.

A finite path 7 = (zo,...,2) is a sequence of adjacent vertices of Z¢, i.e. for all i =
0,....,k =1, [|[z;y1 — x;][1 = 1. We say that 7 goes from z( to x;. Sometimes we identify
a path with the sequence of edges it visits, writing m = (eq, ..., ex) where for ¢ = 1,... k,

e; = {z;—1,2;}. We say that k is the length of 7 and we denote || = k. The passage time
T(m) of a path m = (eq, ..., e) is the sum of the variables T'(e;) fori =1,... k.

We do not exclude the case £(o0) > 0. In this case, there are vertices between which all
paths have an infinite passage time. Thus, we define the following random set:

¢ ={(z,y) € Z* x Z% : 3 a path 7 from z to y such that T'(r) < co}.
Throughout the article, we assume that
L([0,0)) > pe, (3.1.1)

where p. denotes the critical probability for Bernoulli bond percolation model on Z¢. We
refer to [I0] for background on percolation. Say that an edge e is open if its passage time
T(e) is finite and closed otherwise. Thanks to , this percolation model is supercritical.
Therefore there exists a unique infinite component which we denote by Co,. When L(o0) = 0,
note that every couple of vertices belongs to € and that C., is equal to the whole graph.

Now, for two vertices x and y, we define the geodesic time
t(z,y) = inf{T(7) : 7 is a path from z to y}. (3.1.2)

Note that € = {(x,y) € Z¢ x Z¢ : t(z,y) is finite}. A self-avoiding path ~ from x to y such
that T'(y) = t(x,y) is called a geodesic between z and y.

For the following and for the existence of geodesics, we need some assumptions on L. Let
tmin denote the minimum of the support of £. We extend a definition introduced in [I§]. A
distribution £ with support in [0, oo] is called useful if the following holds:

L(tmin) < pe when tpm =0,

3.1.3
E(tmin) < ]72 when tmin > 0, ( )

where p. has been introduced above and where ]73 is the critical probability for oriented
Bernoulli bond percolation on Z¢ (see Section 12.8 in [10]). Throughout the article, we also
assume that £ is useful.

Geodesics between any pair of vertices belonging to € exist with probability one. This is
Proposition 4.4 in [2] when £(c0) = 0 and Proposition in Appendix when L(0c0) >
0. Thus, geodesics between any pair of vertices belonging to C., exist with probability one.
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3.1.2 Patterns

For a set B of vertices, we denote by 0B its boundary, this is the set of vertices which are
in B and which are linked by an edge to a vertex which is not in B. We make an abuse of
notation by saying that an edge e = {u, v} belongs to a set of vertices if u and v are in this
set.

Let Lq,..., Ls be non-negative integers. To avoid trivialities we assume that at least one

d
of them is positive. We fix A = H{O, ..., L;} and two distinct vertices u* and v* on the
i=1
boundary of A. These points u* and v* are called endpoints. Then we fix an event A%,
with positive probability, only depending on the passage time of the edges of A. We say that

B = (A, uh, v, AY) is a pattern. Let z € Z?. Define:
o foryeZ? 0,y=y—uz,
o for e = {u,v} an edge connecting two vertices u and v, ¢ = {0,u,0,v}.

Similarly, if 7 = (xo,...,z;) is a path, we define 0,7 = (0,0, ...,0,x;). Then 6,T
denotes the environment 7" translated by —x, i.e. the family of random variables indexed by
the edges of Z¢ defined for all e € £ by

(62T () = T (0-ze) -

Let 7 be a self-avoiding path and x € Z?. We say that x satisfies the condition (;*R) if
these two conditions are satisfied:

1. 9,7 visits v and v*, and the subpath of 8,7 between u* and v" is entirely contained
in A,

2. 0, T € A,

Note that, if x satisfies the condition (7;3) when 7 is a geodesic, then the subpath of 6,7
between u® and v* is one of the optimal paths from u® to v* entirely contained in A in the
environment 6,7. When the pattern is given, we also say "m takes the pattern in §_,A" for
"z satisfies the condition (7;)". We denote:

N¥ (7T> = Z ]l{:c satisfies the condition (m;)} (314)

xcZ4

Note that the number of terms in this sum is actually bounded from above by the number
of vertices in . If N¥(r) > 1, we say that 7 takes the pattern. The aim of the article is
to investigate, under reasonable conditions on B, the behavior of N¥(v) for all geodesics v
from 0 to x with ||z||; large. The first step is to determine these reasonable conditions, that
is why we define the notion of valid patterns.

Definition 3.1.1. Denote by {e1,...,cq4} the vectors of the canonical basis. An external
normal unit vector associated to a vertex z of the boundary of A is an element o of the set
{xe1,...,£eq} such that z + a does not belong to A.
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Definition 3.1.2. We say that a pattern is valid if the following three conditions hold:
o A has a positive probability,

o when A™ occurs, there exists a path between the two endpoints, entirely contained in
A, whose passage time is finite,

o one of the following two conditions holds:

— the support of L is unbounded,

— there exist two distinct external normal unit vectors, one associated with u” and
one associated with v™.

Remark 3.1.3.
o The second condition is always satisfied when L(o0) = 0.

o The existence of the two distinct vectors in the third condition of Definition 18
equivalent to the fact that the endpoints of the pattern belong to two different faces. As
explained in Remark 1.3 in [13], a real obstruction can appear when the support of L
is bounded and this third condition is not satisfied.

3.1.3 Main result and applications

Here is our main result. We assume that one of the following two conditions is satisfied:

L(c0) > 0 and L([0,00)) > pe,

3.1.5
or L(oc0) = 0 and the support of £ is unbounded. ( )

Theorem 3.1.4. Let P = (A, u®,v*, AY) be a valid pattern, assume (3.1.5) and that L is
useful. Then there exist o > 0, 31 > 0 and By > 0 such that for all x € Z¢,

P ((O,x) € € and 3 a geodesic v from 0 to x such that N¥(y) < oz||m||1) < BrePeliell

In [13] we proved the following result.

Theorem A (Theorem 1.4 in [13]). Let P = (A, u®, v, A*) be a valid pattern, assume that
L is useful, L(c0) =0 and one of the following two conditions is satisfied:

(I) L has a bounded support,

(II) L has an unbounded support and we have
Emin [T{,..., Tg] < oo, (3.1.6)
where T, ..., TS, are independent with distribution L.
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Then there exist a > 0, B1 > 0 and By > 0 such that for all x € 7.2,
P (EI a geodesic vy from 0 to x such that N¥*(y) < oz||:v||1> < BrePeliell

Combining Theorems and [A] we immediately get:

Theorem 3.1.5. Let P = (A, u™, v, AY) be a valid pattern, assume that L is useful and
L([0,00)) > p.. Then there exist a« > 0, B, > 0 and By > 0 such that for all x € 72,

P ((O,x) € ¢ and 3 a geodesic y from 0 to x such that N¥(v) < a||x\|1) < BrePelell

Theorem [3.1.5]is a generalization of Theorem 2.3 in [1] (stated below as Theorem [B)) since,
to get this result, we can take the pattern (reduced to one edge) P = ({u?, v}, u?, vt AY)
where u* = (0,...,0), v® = (1,0,...,0) and A" is the event on which the passage time of
the only edge of the pattern is greater than M.

Theorem B (Theorem 2.3 in [I]). Let £ be a useful distribution on [0, +00) with unbounded
support. Then, for each M positive there exists e = e(M) > 0 and o = a(M) > 0 so that
for all x, we have

P (EI geodesic w from 0 to x such that Y Lres>m < oz||x||1> < e~ellel, (3.1.7)
ecT

The proof of Theorem [3.1.4] is given in Section [3.2] It is partly inspired by the proof
of Theorem 2.3 in [I]. The proofs of Theorems and [A| are independent and the only
intersection between these two theorems is the case above. Theorem is an extension
of Theorem 1.4 in [I3]. We refer to [13] for an account of the history of such results and
for applications. As an example of application we prove the following result, which is a
generalization of the main result of [18§].

The van den Berg-Kesten comparison principle without any moment assumption.
Let £ and £ be two distributions taking values in [0, oo] such that:

(H1) L is useful,

(H2) L([0,00)) > p and L([0,00)) > pe,

(H3) L #L,

(H4) there exists a couple of random variables 7, 7 on some probability space, with marginal
distributions £ and £, respectively, and satisfying

E[7|T] < 7. (3.1.8)

We consider a family 7' = {T'(e) : e € £} of i.i.d. random variables with distribution
L and another family 7' = {T'(e) : e € £} of i.i.d random variables with distribution L.

115



The geodesic time defined at (3.1.2) is denoted by ¢ in the environment 7" and by t in the
environment 7. With these assumptions, a time constant for each distribution can be defined

thanks to [5]. We refer to [5] for an extensive account. Here we recall what we need for our
purpose. By |(H2)|, there exists M € R such that

L([0, M]) > p. and L([0, M]) > pe. (3.1.9)

Fix such a M. Let Cy (vesp. Cps) be the infinite cluster for the Bernoulli percolation
(Lire)<ry, € € E) (resp. (Lyze)<nrys € € €)) which exists and is unique a.s. To any = € R,
we associate a random point ¢(z) (resp. @(x)) in Cys (resp. in Cpr) such that ||z — ¢(z)||y
(resp. ||z — @(x)||1) is minimal, with a deterministic rule to break ties.

Theorem 1 in [5] gives the existence of two deterministic functions p : R? — [0, 00) and
it : RY— [0, 00) such that

t(¢(0), p(nz))

Vo € 2%, lim "2 = i(7) a.s. and in L,
n—o0 n
(EORD) 0
and lim LR AU fi(z) a.s. and in L'.
n—oo n

Theorem 4 in [5] ensures that the functions g and fi do not depend on the choice of the
constant M satisfying (3.1.9)). Furthermore, when

Emin[ry, ..., 7] < 00, (3.1.11)
where 71, ..., Toq are i.i.d. copies of 7, Theorem 4 in [5] also ensures that for all z € RY,
t(0
lim 40, [nz)) = u(r) a.s. and in L' (3.1.12)
n—00 n

This is the usual definition of the time constant. We refer to Theorem 2.18 in [I4] and
Section 2.1 in [2] for more details on the result (3.1.12)). The same holds for the environment

T if (3.1.11)) holds for 2d i.i.d. copies of 7.

Remark 3.1.6. We warn the reader that notations T and ji are used in [3] with a different
meaning. We refer in particular to Remark 2 in [J] for explanations.

We can now state the van den Berg-Kesten comparison principle for these time constants.

Theorem 3.1.7 (Extension of the van den Berg-Kesten comparison principle). Let £ and
L be two distributions taking values in [0, 00] satisfying [(H1), |(H2), |(H3) and |(H4). For
all x € Z¢ such that x # 0,

f(z) < p(x). (3.1.13)

The proof of Theorem is given in Section In [18], van den Berg and Kesten
prove the following theorem.
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Theorem C (Theorem 2.9 in [I8]). Let £ and L be two distributions taking values in [0, 00),
having a finite first moment, satisfyindl|[(H1), [(H3) and [(H4), Then,

fi(e1) < p(er)-

Theorem is an extension of Theorem|C] With Theorem 1.2 in [I6], Marchand extends
Theorem |C] in another direction.

Theorem D (Theorem 1.2 in [16]). Assume that d = 2 and let £ and L be two distributions
taking values in [0,00), such that £(0) < p,, satisfyindf|[(H3) and [(H4). Then,

fi(e1) < p(er)-

In dimension 2, the result of Marchand is stronger than Theorem [C| on two aspects: on
the one hand, there is no moment assumption and on the other hand, the condition

L(tmin) < Po when tyi, > 0 (3.1.14)

is removed. When t.,;, > 0 and L(tmin) > 172, the problem involves oriented percolation,
where the open edges correspond to those with the smallest time values. In this context,
the largest part of each geodesic linking the origin to a distant point within the cone of
percolation is a directed path made of minimal edges, highlighting a distinct behavior.

For a point z inside this cone, ju(z) = tyu||z||i. Moreover, when i, = tmin and the
condition is met, fi(z) = tml||z|1 as well. Notably, does not apply to such
x values. Establishing for x outside the cone, like €1, requires specific arguments,
in particular large deviations for supercritical oriented percolation. We have opted not to
explore this case in this article. We refer to [16], and more specifically to Theorem 1.5 in
[16], for further explanations.

3.1.4 Sketch of the proof

In this section, we give an informal sketch of the proof of Theorem [3.1.4] Fix a pattern
and x € Z¢ with ||z|| large. Consider the event:

M = {(0,z) € € and there exists a geodesic from 0 to x which does not take the pattern}.

The aim is to prove that M has a probability small enough in ||z||. More precisely, we want
to prove

P(M) < (3.1.15)

4=

Tt is stated in [I8] with the definition of a distribution more variable than another, but Theorem 2.6 in
[18] ensures that the fact that £ is more variable than £ is equivalent to when £ and £ have a finite
first moment.

2t is also stated in [I6] with the definition of a distribution more variable than another, but Lemma 6.1
in [I6] ensures that this definition is also equivalent to when £ and £ takes value in [0, 00).
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From this result, by a standard re-normalization argument, we easily get Theorem (see

Proposition in Section for a formal statement of (3.1.15])).

General idea. As in [I3], to get (3.1.15)), the idea is to define a suitable event G and a

suitable sequence of events M(¢) for 0 < ¢ < g such that, for some positive constant ¢ < 1,

Log = ¢z,
2. M C M(q) UG® where P(G°) < ||33||1dl’
3. for all £ > 1,
P(M(0)) < cP(M(L—1)). (3.1.16)

If the above holds, we get P(M) < cl#lh 4+ P(G¢), which allows us to conclude.

Penalized geodesics. We now introduce the notion of penalized path. This is an idea
which comes from the article [1] by Andjel and Vares in their proof of Theorem [3.1.7 A
penalized path is a path which does not take the pattern. In other words, this is a path w
such that N¥(7) = 0. This allows us to define the penalized passage time for every z € Z%:

tp(0,z) = inf{T'(r) : 7 is a penalized path from 0 to z},

with the convention inf ) = co. Then, for every z € Z, if it exists, a penalized geodesic from
0 to z is a penalized path v from 0 to z such that T'(y) = tp(0, z). With these definitions,
we have

M C{(0,z) € € and tp(0,2) = t(0,x)}. (3.1.17)

Shortcuts. A good way to get that the event {(0,z) € € and tp(0,z) = t(0,z)} does not
occur is to prove that a penalized geodesic has a shortcut. The formal definition of a shortcut
is given in Section [3.2.1.4] Informally, a shortcut for a penalized geodesic 7 is a path going
from a vertex u of v to another vertex v of 7 which takes the pattern and which has a
passage time lower than the passage time of the subpath of v going from u to v. Hence, if
a penalized geodesic v from 0 to x has a shortcut, it implies that there exists a path from 0
to x which is not penalized and such that its passage time is strictly lower than the passage
time of v. It gives t(0,z) < tp(0, ).

Events G and M({). A successful box for a path 7 is a box satisfying one of the following
two conditions:

e it is a typical box,

o the path 7 has a shortcut taking the pattern inside the box.
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We say that a box is shortcut-equipped for a path 7 or not shortcut-equipped for 7 depending
on whether the second condition is satisfied or not. We define G as the event on which
(0,2) € € and there exists a penalized geodesic m whose passage time is finite and which
crosses at least ¢ successful boxes for . On this event, we define the selected penalized
geodesic denoted by ~: it is the first (for an arbitrary deterministic order) of the penalized
geodesics satisfying the condition which appears in the definition of G. We define the sequence
of successful boxes crossed by ~ as the sequence of the first ¢ successful boxes crossed by
v indexed in the order in which they are crossed by . It allows us to define, for every
te{l,...,q} the event

M(€) = GN{the ¢ first successful boxes of the sequence of v are not shortcut-equipped for ~}.

This gives us ¢ opportunities to modify the environment in each of these ¢ typical boxes to
create a shortcut for v. The aim is now reduced to proving (3.1.16)).

k-boxes. We describe a small change of the plan above. This change does not create any
complications. In particular, the entire plan describe above works with these new objects.
The advantage is to avoid a number of complications, such as, for example, those related to
what happens at the boundary of a box when we modify the environment in it.

The idea is to only consider a family of boxes (called the k-boxes, see Section that
partitions Z¢. We also replace "penalized paths" -the paths which does not take the pattern-
by "k-penalized paths" -the paths which does not take any pattern contained in a k-box-.
We similarly replace "penalized geodesics" by "k-penalized geodesics" : the geodesics which
does not take any pattern contained in a k-box. We say "k-geodesic" instead of "k-penalized
geodesic" for short.

Modification and stability. For all ¢, we have M(¢) C M(¢ — 1). Thus (3.1.16) is
equivalent to the existence of a constant n > 0 (by taking n = % — 1) such that

P(M(C — 1)\ M(£)) > nP(M(L)). (3.1.18)

Fix ¢ € {1,...,q} and denote by B the ¢-th successful k-box crossed by v. The aim is to
prove . The idea is to resample the passage times of edges of By in an environment
in which M () occurs to get a new environment in which M (¢ —1)\ M (¢) occurs. When the
resampled passage times satisfy good conditions (to be determined), the following properties
are satisfied:

1. The event G still occurs and the selected k-geodesic is still v in the new environment.
2. The box By is shortcut-equipped for v in the new environment.
3. The sequence of successful boxes crossed by + is the same in the two environments.

4. The event M(¢ — 1) \ M({) occurs in the new environment.
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By the fourth property, we get roughly
P(M(¥))P(good conditions on the resampled passage times) < P(M (£ — 1)\ M(¥)).

Since 7 is fixed according to the probability of the good conditions on the resampled passage
times, which is positively bounded from below independently of the box, we get .
See the proof of Lemma (3.2.12 using Lemma in Section [3.2.2.1

The third property follows from the first two. Indeed, the box By is typical in the first
environment (since it is a successful box for v and it is not shortcut-equipped for vy as M ({)
holds) and is shortcut-equipped for «y in the new environment. Furthermore, the other boxes
have the same status (successful or not for 7) in the two environments since the passage
times of the edges of the other boxes have not been modified.

The fourth property follows from the first three by similar ideas. We thus see that, in
order to get the fourth property, we do not only need to get the second one. We also need
the first and the third ones. We call these two additional properties "stability properties".
The proof is thus reduced to getting the first two properties.

Some more details. Recall that we assume (3.1.5)). There are two cases to be considered
differently:

(INF) £(c0) > 0,
(FU) L(c0) = 0 and the support of £ is unbounded.

(INF) stands for "infinite" and (FU) stands for "finite unbounded".

In what follows, when we say "after the modification" or "in the new environment", we
mean "in the new environment where passage times of the edges in the box B, have been
resampled and on the event where the resampled passage times satisfy some good properties
that we do not explicit here". In this paragraph, we focus on the first property of the previous
paragraph. To get it, it is sufficient to prove the following properties:

(i) The path ~ still has a finite passage time in the new environment. There are no
difficulties with this property.

(ii) The path 7 remains a k-penalized path in the new environment. Since the passage
times of the k-boxes different from B, have not been modified, it is sufficient to prove
that v does not take the pattern in By in the new environment. This is based on the
two following ideas.

o We identify forbidden zones which are subsets of Bs where v can not go. In the
case the forbidden zones are simply balls whose edges have infinite passage
time. In the case we refer to Lemma m By definition, a typical box
possesses many forbidden zones (see the third item of the definition of a typical

box in Section |3.2.1.2)).
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(iii)

(iv)

o We make sure that, after a successful modification, there is a unique pattern inside
B,. The uniqueness is ensured by replacing the original pattern by a new larger
pattern, containing the original one, and by requiring that the behavior of passage
times in the boundary of the new pattern is very atypical (see Lemma and in
particular its last item). In the case we just require that the passage times
on the boundary of the new pattern are very high and contained in a special
interval (see Remark and (AF-4")). These will be the unique edges with
passage times in this interval after the modification. In the case we require
the existence of a large connected component of edges with finite passage time
(see Definition and (AI-4)). This will be the unique such large component
not touching the boundary of B, after the modification.

We place the pattern in a forbidden zone. By this we mean that, after the modification,
the pattern lies in what was a forbidden zone before the modification. Recall that the
pattern is unique in By and that v does not enter into forbidden zones. Therefore v
does not take the pattern in B, after the modification.

A k-penalized path 7 with finite passage time in the new environment is also a k-
penalized path in the initial environment. Once again, it is sufficient to prove that =
does not take a pattern entirely contained in B, in the initial environment. The proof

differs between the case and the case [(FU)|

o In the case|(FU)| this is a consequence of the fact that By is a typical box and that
there is no pattern is a typical box. Indeed, the passage times on the boundary
of the pattern are bigger (in the case [(F'U)|) than they can be in a typical box.

e In the case , it comes from the fact that, in the new environment, a path
with a finite passage time taking edges in B, is very constrained (see Figure
where a path with a finite passage time can only take edges of the green, red, blue
and orange parts). If 7 does not take the pattern in the new environment, it can
only take edges of 7. Since v does not take a pattern entirely contained in Bj in
the initial environment, neither does .

A k-penalized path in the new environment has a passage time greater than or equal
to the passage time of v in the new environment. The proof comes from the fact that
a path with a reasonable passage time in the new environment is very constrained in
B,. The edges that do not belong to v, the shortcut for v or the unique pattern in
B, have a prohibitive passage time in the case and an infinite passage time in
the case . Based on this observation and on the fact that v has a lower passage
time in the new environment than in the initial environment, we simply prove that a
k-penalized path can not save more time than ~ during the modification.

With the same ideas as above, we also prove that a k-geodesic in the new environment
is also a k-geodesic in the initial environment.
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Indeed, by (i), (ii) and (iv) we get that ~ is a k-geodesic with a finite passage time in the
new environment. Using the same arguments as before, we get that v crosses at least ¢ suc-
cessful k-boxes in the new environment. Hence, the event G occurs in the new environment.
Furthermore, we also get that every k-geodesic crossing at least ¢ successful k-boxes in the
new environment crosses at least ¢ successful k-boxes in the initial environment. Adding
(iii) and (v), we get that the set of potential selected k-geodesics in the new environment is
contained in the set of potential selected k£ geodesic in the initial environment, and then ~
remains the first geodesic (and thus the selected one) among the geodesics of this set.

Advantages of a strategy using penalized geodesics. In [13] the proof does not rely
on penalized geodesics. Using penalized geodesics has two main advantages:

o In [13], proving the result for all geodesics (and not only for one selected geodesic)
requires further technicalities (see the use of concentric annuli in Section 2.1 in [13]).
Here, it comes for free from the fact that the existence of one k-geodesic having a
shortcut implies that £(0,z) < tp(0,x) and thus that every geodesic from 0 to z takes
the pattern.

o It allows us to remove Assumption (3.1.6). Indeed, in item 3 in the paragraph on
the modification and stability above, we need to have the same sequence of successful
boxes crossed by v in the two environments. Assume that we do not use penalized
geodesics and, to make things easier, assume (only in this item) that we are in the case
where there is a unique geodesic between any couple of vertices. Then the modification
consists in replacing a subpath (denoted by 7¥) of the geodesic from 0 to = (denoted
by v) by a path (denoted by 7) with a shorter passage time which takes the pattern.
It implies that in the new environment, 7 does not belong to the new geodesic (which
is the concatenation of the part of v from 0 to 7, then 7 and then the part of v from
7 to x). It can create a problem of stability if a box of the sequence of successful
boxes crossed by v was crossed by 7: the sequence of successful boxes crossed by the
geodesic from 0 to = would not be the same in the two environments. To avoid this
problem when we do not use penalized geodesics, we use the Cox-Durett shape theorem
(Theorem 2.16 in [2]) in order to control the length of geodesics excursions from a box
(see for example the proof of Lemma 2.1 in [13]). This is why we need Assumption

(3.1.6) in the strategy developed in [13].

Hence, by making a modification which guarantees that the penalized geodesic is the
same in the initial environment as in the modified one, we avoid this problem without
using the Cox-Durett shape theorem and thus without requiring Assumption (3.1.6)).

3.1.5 Organization of the proof of Theorem [3.1.4

Recall that, in this article, we assume (3.1.5)). One can check, using a standard re-normalization
argument, that Theorem is a simple consequence of the following proposition (see for
example the proof of Theorem 2.3 in [I]).
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Proposition 3.1.8. Let B = (A, u™, 0™, AY) be a valid pattern. Assume (3.1.5) and that £
is useful. Then there exist C' > 0 and D > 0 such that for all n > 0, for all x such that
[zl = 7,

P ((O, z) € € and 3 a geodesic v from 0 to x such that N*(vy) = 0) < De %" (3.1.19)

Thus, the aim is now to prove Proposition [3.1.8 Recall that there are two cases to be
considered differently:

(INF) £(co) > 0,
(FU) L(o0) = 0 and the support of £ is unbounded.

The proof of Proposition is the aim of Section [3.2] This section is divided in two
parts.

Section is devoted to patterns and typical boxes. We replace the original pattern by
a larger pattern containing the original one and which satisfies several assumptions. Some
of the assumptions are simply convenient: they simplify some parts of the proof. The
assumption on the boundary is more crucial as explained in item (ii) in the paragraph "Some
more details" in Section . In the case , the requirement on the passage times on
the boundary depends on the size of the boxes we consider in the proof. But the size of the
boxes depends on the notion of typical boxes which in turn depends on parts of the definition
of the pattern we consider. The definitions are thus intertwined. This is why we first start
defining the new pattern in Section (postponing the boundary conditions in the case
(FU)|), we then define and study typical boxes in Section and we finally choose the
boundary of the pattern in the case in Section . We then introduce the notions
of k-penalized paths, shortcuts and successful boxes in Section [3.2.1.4]

The second part of Section [3.2]is divided in four parts. In Section [3.2.2.1] the proof of
Proposition [3.1.8]is reduced to the proof of a key lemma : Lemma [3.2.13] In this lemma, we
introduce some sets of edges which correspond to the edges whose passage times have to be
modified. The exact definitions of these sets are postponed to Section [3.2.2.2 It corresponds
to the modification we want to make. The more difficult part in the proof of Lemma [3.2.13
is item (iii), which is the key to get (3.1.18)). To get this item and also item (i), we state and
prove several properties which are consequences of the modification in Section before
using them to conclude in Section [3.2.2.4]

3.1.6 Some tools and notations

In this subsection, we recall some results and fix some notations. First, we denote by N the
set of all non-negative integers, by N* the set N\ {0}, and by R the set of all z € R such
that x > 0.

For a self—avoidingﬂ path 7 = (zo, ..., zx) going from zy to xy, we say that x; is visited

3The definition can be extended to not necessarily self-avoiding paths by saying that a vertex x is visited
by m before y if there exists ¢y € {0,...,k} such that z;, = = and for all j € {0,...,k}, z; = y implies that
7 >1o0.
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by m before x; if i < j; we say that an edge {x;, x;11} is visited before an edge {x;, z;41} if
i < j. A subpath of 7 going from z; to z; (where i,j € {0,...,k} and i < j) is the path
(z4,...,2;) and is denoted by 7y, 4.

We say that a path, whose endpoints are denoted by u and v, is oriented if this path has
exactly ||lu — v||; edges. In other words, its number of edges is minimal among those of all
the other paths linking u and v.

For a set B of vertices, we denote by 0B its boundary, this is the set of vertices of B
which can be linked by an edge to a vertex which is not in B. We denote by B¢ the set of
all vertices which does not belong to B. When we define a set of vertices of Z?, sometimes
we also want to say that an edge belongs to this set. So we make an abuse of notation by
saying that an edge e = {u,v} belongs to a set of vertices if u and v are in this set. Since
now a subset B of Z¢ can be seen as a set of vertices or as a set of edges, we denote by |B],
the number of vertices of B and by |B|. its number of edges.

Then, for all ¢ € Z% and r € R, we denote

Bu(e,r) ={u € Z% : |lu—cll < 1},
Bi(e,r) ={u€Z : ||u—cl; <r},

and for n € N*, we denote by I',, the boundary of B;(0,n), i.e.

T, ={uecz: ||ul =n} (3.1.20)

Constants related to the distribution. One can check that Lemma 5.5 in [I8] can be
adapted for a useful distribution £ such that £(co) > 0 and £(]0,00)) > p.. Thus there
exist § = 0(L) > 0 and Dy = Dy(L) fixed for the remaining of the article such that for all
u, v € 74,

P(there exists a path 7 from u to v such that T(7) < (tmin + 0)|Ju — v||;) < e Pollu=vl,
(3.1.21)

Furthermore, when t.,;, = 0,

« even if it means reducing §, in the cases [INF)|and [[FU)| we assume that § > 0 is such
that £([0,d]) < pe,

« cven if it means reducing d, in the case |(INF)| we can fix 1 such that
v > and L((0,15)) > 0. (3.1.22)

Note that it is possible since in the case [(INF)|, we have £(0) + £(o0) < 1. Indeed, it
comes from the fact that £ is useful and that £([0,00)) > p..

Then, still in the case where t,,;, = 0, we fix

B>0,8 >0and p>0 (3.1.23)
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such that (3.1.24)) below holds with 7 = §. The existence of such constants is guaranteed by
Lemma below whose proof is given in Appendix [3.B]

Lemma 3.1.9. Assume that L is useful and that tyin = 0. Let 7 > 0 such that L([0, 7]) < p.
Then there exists 3> 0, B’ > 0 and p > 0 such that for all v,w € Z7,

P(there exists a self-avoiding path from v to w taking at most p|lv — wl|y edges e such that

T(e) > 1) < fle Plv=vl,
(3.1.24)

3.2 Proof of Proposition 3.1.8

Let B = (A, u”, v, AY) be a valid pattern. We assume and that £ is useful. Thus
one of the cases [(INF)| or [FU)| stated in Section is realized. The proofs in these two
cases are almost the same. However, throughout this section, it will sometimes be necessary
to distinguish the cases.

3.2.1 Settings for the proof
3.2.1.1 Assumptions on the patterns

We begin by making some assumptions on P for the remaining of the proof. At first sight,
these assumptions can be seen as a restriction but Lemma guarantees that we can make
them with no loss of generality.

In the case [(INF)|

Definition 3.2.1 (Boundary condition). For every s € Z¢ and ¢* > 3, define the set
S.ea as the set of edges belonging to the path going from s — (¢* — 1)ey + (€% — 1)ey to
s+ (IA —1)e; + (02 — 1)ey in the shortest way by 2(¢* — 1) steps in the direction ¢,.

Then, we say that Bu(s, (") satisfies the boundary condition in the environment T if for
all edges e belonging to Buo(s,(*) but not to Boo(s, I* —3),

o cither e belongs to S, U (s + Zey) and T(e) is finile,

« orT(e) is infinite.
Remark 3.2.2. Let s € Z% and (* > 3. If By (s, (") satisfies the boundary condition in the
environment T, then there is no path from 0By (s, ") to OBy (s, (™) with finite passage time

which takes an edge of S, (see Figure for a representation of the boundary condition
in two dimensions).

Let us consider the following assumptions:
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Figure 3.1: Example of a ball satisfying the boundary condition. The set S, ja is represented in
red. The edges of the gray area have an infinite passage time and the edges in green and red have
a finite passage time.

(AI-1) there exists an integer ¢* > 3, fixed for the remaining of the proof, such thatEl A =
Boo(0,£4),

(AI-2) uh = —(Pe; and v™ = ey,

(AI-3) there exist a constant 7® > 0 and a path 7, from u® to v* entirely contained in A
such that, when A" occurs,
T(ms) < T (3.2.1)

(AI-4) if AN occurs, A satisfies the boundary condition

In the case [(FU)l Let us consider the following assumptions:

(AF-1) there exists an integer /* > 0, fixed for the remaining of the proof, such that A =
Boo (0, 41,

(AF-2) u® = —2¢; and v* = (Pey,

(AF-3) when A* occurs, there exists a constant M* such that for every edge e belonging to A
but not to A, T'(e) < M2,

(AF-4) for all M > 0, the event A" N {Ve € DA, T(e) > M} has a positive probability.

Remark 3.2.3. The aim of wanting the pattern to satisfy the condition |(AF-4) above is to
be able to choose the passage times of the edges on its boundary once we have fixed some con-

stants. Thus, from Section onwards the condition|(AF-4) is replaced by the condition
(AF-4’) stated at this point.

4We make a very slight abuse of notation: we also consider patterns where 0 is in the center of A.
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In the two cases.

Lemma 3.2.4. Let Py = (Ao, uiy, v, AY) be a valid pattern. There exists a pattern B =
(A, u?, vr, AN) such that:

. AO C A,
e P (AA> is positive,

o on A™, any path from u® to v* optimal for the passage time among the paths entirely
inside A contains a subpath from ud to vl entirely inside Ao,

o AN C AL,

o in the case|(INF), B satisfies the conditions [(Al-1), |(AI-2), |(AI-3) and [(Al-4), and
in the case|[(FU), B satisfies the conditions[(AF-1), [(AF-2), [(AF-3) and [(AF-4),

Consider a valid pattern By and a pattern B satisfying the conditions of Lemma (3.2.4]
above. Then, by this lemma, for every path =, if a vertex x satisfies the condition (7;g),
x satisfies the condition (;%). Thus we get N¥o(7) > N¥(r) and to prove Proposition
for the pattern 3y, it is sufficient to prove it for the pattern 3. That is why from now
on, we can assume that the pattern 3 introduced at the beginning of Section |3.2] satisfies
the conditions |(AI-1), [(AI-2)} [(AL-3)} [(AI-4)] in the case and the conditions ,
[(AF-2)] [(AF-3)] and [(AF-4)| in the case [[FU)} The proof of Lemma is postponed in
Appendix 3.C]

For the remaining of the proof, fix £* given by |(Al-1)|and [(AF-1)| In the case fix

T* given by and in the case , fix
M* satisfying [[AF-3)] and T* > |A|.M*. (3.2.2)

3.2.1.2 Typical boxes
Recall that ¢ is fixed at (3.1.21)) and that, when t,,;, = 0, vy is fixed at (3.1.22)).

Technical lemma. We state in this paragraph the lemma used to create a "forbidden
zone" in the case [(F'U)| (see item (ii) of the seventh paragraph of Section 3.1.4]).

Fix rp an integer such that

2 BOO A 1 e\ lmin 1 TA Boo A 1 e(tmin 1 TA 1
7’P>max<£/\+27 (1Boo 0, £ + Dle(tuin + 1) +T%) |Boo(0,6% + lelbmun +1) + T2 + >

0 2tmin
(3.2.3)

Lemma 3.2.5. In the case |[(FU), we can define an event T, whose probability is positive,
only depending on the edges of Boo(0,7p) and such that for all x,y € 0B« (0,7p), for every
self-avoiding path m going from x to y and using only edges in 0By (0,7p) and every path 7

127



going from x to y using edges of By (0,7p) and at least one edge which is not in 0B (0,7p),
we have
T(m) <T(m).

Proof. Fix
v > |aBoo(07TP)|e(tmin + 1)

Define the event 7 as the event on which for all edge e € B, (0,rp),
o T(e) <tmm+1lif e € dB(0,7p),
e T(e) > v else.

Since the support of F' is unbounded, the event T has a positive probability. Assume that
T occurs. Then, let z,y € 0B, (0,7p). Let 7 be a self-avoiding path going from x to y and
using only edges in 0B, (0,7p) and 7 be a path going from x to y using edges of B, (0,7p)
and at least one edge ¢’ which is not in B, (0,7p). We get

T(m) < |0Boo(0,7p)|e(tmin + 1),

and
T(7) > T(e') > v > |0Bs(0,7p)]e(tmin + 1)

Hence, T'(7) < T'(7). O
Boxes. Recall that, when t,,;, = 0, p is fixed at (3.1.23). Fix

ry =1, ry > 4drp and
when tyin > 0,73 > 2d(rs + 1) (3.2.4)

2
when ¢, = 0,73 > max <2d(r2 +1), ?) )
p

Note that, in particular, we have the following inequalities:
o 19 >4ry > 2ry since r; =1 and rp > 1,

e 73> 2ry and r3 > ry + 1.

Then, for all N > 1, we define

Bson={veEZ": (s—r3)N<z<(s+713)N}.
and for i € {1,2}, we define

Bion={veZ": (s—r)N<z<(s+7)N}.

We use the word "box" to talk about Bs s . For i € {1,2,3}, 0B, v is the set of vertices of
B; s v having an adjacent vertex not contained in B, 5 v-.
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BZ,s,N BZ,S,N B2,s,N

BlsN

Id)

v

(r2 —27'1)1\ +drp

(a) (b) ()

Figure 3.2: Representation of the objects defined in Definition in two dimensions. (a) The
directed path 7(u,v) is in red. (b) The straight segment 7[u,v] is in red. (c) The selected straight
segment between u and v is in red.

Definition 3.2.6 (Directed path and its selected straight segment). Let uw € 0B n and
NS aBLS’N.

o We fix in an arbitrary way 7(u,v) an om'entecﬂ path from u to v with a subpath 7[u, v]
between 0Bs sy and v using only edges in the same direction. We say that 7(u,v) is
the directed path between u and v. The subpath 7[u,v] is called the straight segment
between uw and v and its length is greater than or equal to (ro —r1)N.

o We define the selected straight segment between u and v as the set of vertices ¢ belonging
to the straight segment between u and v and such that the distance for the norm |||

(7”2 — T1>N

between ¢ and (Ba s n)¢ is at least +drp.

Remark 3.2.7. The selected straight segment is not the empty set since v belongs to it.
Indeed, the distance between v and (Basn)¢ is equal to (ro — r1)N and (ro — )N >

—r)N
%;0 + drp since ro > 2r; and ro > 4drp by (3.2.4).

Typical boxes in the case m In these cases, a box Bs sy is typical if it verifies the
following properties:

(i) if tmin = 0, every path 7 entirely contained in Bj  x from u, to v, with ||ur —vg|1 > N
has at least p||u, — v,||; edges whose passage time is greater than 0,

(ii) every path m entirely contained in Bj, y from u, to vy with ||uz — vg||s > N has a
passage time verifying:
T(ﬂ-) > (tmin + 5)||u7r - U7r||17 (325)

®Recall that, as it is defined in Section a path, whose endpoints are denoted by u and v, is oriented
if this path has exactly ||u — v||; edges.
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(iii) for all vertices u € 0Bs,n and v € 0B 4y, there exists a vertex ¢ belonging to the
selected straight segment between u and v such that for every edge e € B (c,7rp),
T(e) = oo.

Typical boxes in the case |(FU)| Fix T the event given by Lemma [3.2.5| We define a
sequence (v1(N))yen+ such that:

o forall N € N*, v(N) > T if tyn > 0 and vy (N) > max(vy, T?) if tm = 0,

e we have

lim P ( > T(e) > Vl(N)) = 0. (3.2.6)

N—o0
e€EB30,N

Note that by and by the first item above, for all N € N*, when A" occurs, v1(N) is
strictly greater than the passage time of every edge belonging to A but not to OA. Note also
that L((v1(N),00)) > 0 for all N € N* since the support of £ is unbounded.

In this case, a box Bs s v is typical if it verifies the following properties:

(i) if tmin = 0, every path 7 entirely contained in Bj ¢ x from u, to v, with ||uz —vg|1 > N
has at least p||u, — v,||; edges whose passage time is greater than 0,

ii) every path 7 entirely contained in Bz, y from u, to v, with ||[u, — v:||1 > N has a
y y .5,
passage time verifying:
T(7) = (tmin + 6)[lux — vxll1, (3.2.5)

(iii) for all vertices u € 0By and v € 0By, v, there exists a vertex ¢ belonging to the
selected straight segment between u and v such that 6.7 € T,

(iv) > T(e) <wvi(N).

e€B3 s N

Properties of typical boxes in both cases.
Lemma 3.2.8. We have these two properties about typical bozes.

1. Let s € Z% and N € N*. The typical box property only depends on the passage times of
the edges in Bs s n.

2. We have
lim P (Bson @s a typical box) = 1.

N—oo

Proof.

1. Properties (i) and (ii) in the two cases and property (iv) in the case|(F'U)| only depend
on the edges of Bs . Then, for all vertices v € 0By sy and v € 0B; s N, every
vertex ¢ belonging to the selected straight segment between u and v has a distance
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(ro —ry)N

with (Ba s n)¢ greater than or equal to + drp. Hence, property (iii) only

depends on the edges of By s y and By s v C B3 s n-

. First, let us prove that, in the two cases, the probability that (¢) is satisfied by Bso n
goes to 1. For this item, assume that t,;, = 0. Let II denote the set of self-avoiding
paths entirely contained in Bsy y. For a path 7 going from a vertex u, to a vertex v,
we say that 7 satisfies the property Pjs if 7 takes at least p|ju, — v, |1 edges e such that
T(e) > 4. Then, using Lemma [3.1.9]

P(B;0 v does not satisfy (7))
Z P (Ps is not satisfied by a path of II whose endpoints are u, and v,)

Ur,vr€B30,N
lur—vx|1>N

IN

< Y P(Psis not satisfied by a path whose endpoints are u, and v,)

u7‘r7v7\'€B3,O,N
[ur—vrll1 2N

_BN
§|B3,0,N|12,6,e A m 0,

since |Bs o n|, is bounded by a polynomial in N.

Now, for the remaining of this proof, ¢,,;, can be positive. Using (3.1.21)) and a similar
computation as above, we get that

P(B; 0 v does not satisty (ii)) —— 0.

N—oo

Recall Definition To prove that the probability that (iii) is satisfied by Bsgo n
goes to 1, we begin by associating in a deterministic way to each couple of vertices
(u,v) € 0Bag N X O0B1on a set of vertices, denoted by V(7 (u,v)) such that:

o every vertex of V(7(u,v)) belongs to the selected straight segment between v and
U’

o forall 21,25 € V(7(u,v)), Boo(21,7p) N Boo(22,7p) = 0,

» there can be no other set satisfying the two conditions above containing strictly
more vertices than V(7 (u,v)).

Note that there exists a constant K; only depending on ry, ro and rp such that
|V(#(u,v))| > KiN. In the case [(INF)| we denote by 7. the event on which for
all e € Boo(0,7p), T'(e) = co. We use the notation 7 to designate the event 7 in the
case and to designate 7., in the case , which allows us to conclude this part
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of proof in the two cases. We have

P(Bs o does not satisfy (i77)) < > P (Vc € @(u,v), 6. T does not occur>

UE(‘)BQ,OJ\]
UeaBl,O,N

< > P (Vc € V(7(u,v)), 6. T does not occur) :
uEaBQ’O,N
UeaBl,O,N
Fix u € 0Byon and v € 0By y. Since for all 21,20 € V(7(u,v)), B(z1,7p) N
Boo(z2,7p) = 0, the family of events ({9077‘ does not occur})
and thus

. are independent
eV (7(u,v))

V(7 (u,0))|

P (Vc € V(7(u,v)), 6. T does not occur) < (1 - ]P’(77‘))| ( )KlN.

< (1-P(T)

Since P(T) > 0, we get the existence of a constant K3 not depending on u, v and N
such that:
P (VC € V(7(u,v)), 6. T does not occur> < e f2N,

Hence,

3.0.N dO€S NOot satls 211 ~ 2.0.N v 1.0.N [v€
P(Bsonv d t satisfy (iii)) < [0Baonlul0Bronlve™ " —0,
—00

since |0Bs o n|y|0B1o.n|y is bounded by a polynomial in N.

Finally, in the case [[FU)|, we get that the probability that (iv) is satisfied by Bsg n
goes to 1 by (3.2.6)).

]

Crossing a box. A self-avoiding path crosses a box B, v if it visits one vertex of B3 s v,
then one of B; ; y and then another one of 0Bs  n.
The following lemma is a consequence of Lemma 5.2 in [1I8] which applies using Lemma

B.28

Lemma 3.2.9. For any N sufficiently large, we can take Dy > 0 and o > 0 such that for
alln > 1,

P(3z € T, such that (0,z) € € and 3 a path from 0 to z that crosses

_ i (3.2.7)
at most |an| typical boxes) < e” 71",
Using Lemma [3.2.9 above, we fix
N > 1 large enough and D; > 0, a > 0 such that (3.2.7)) holds. (3.2.8)

For the remaining of the proof, since N is fixed, we write v; instead of v4(V) in the case

132



(FU)l We fix ¢’ > 0 such that
1

R

Note that, in particular, since N > 1, we have §' < 1.

3.2.1.3 Boundaries of the patterns in the case |(FU)
In the case [(FU), we fix v5 > 11 such that

AM N {Ve € OA, T(e) € (11,15)} has a positive probability. (3.2.10)

It is possible since by the condition in Section [3.2.1.1} for all M >, A% N {Ve €
OA, T'(e) > M} has a positive probability.

AF-4") For the remaining of the proof, we now replace A* b
g Y

AM N {Ve € OA, T(e) € (11, 15)}.

As announced in Remark [3.2.3] from now on, the event A" of the pattern B has been
modified. The assumption is not satisfied by this new event but it satisfies the
assumption (AF-4") above.

Remark 3.2.10. In the case|(FU), since there is no edge whose passage time is greater than
vy in a typical box, there can be no pattern in a typical boz.

3.2.1.4 k-penalized paths, shortcuts and successful boxes

Recall that rj is fixed at and that N is fixed at . We partition Z¢ with boxes
Bs sy in K = K(r3) = |Bs 1|, ways as follows. For each z € B, the partition associated
with z is

{B3,5,N7 S—z € 2’/’3Zd} .

For convenience, we index these different partitions from 1 to K. For k € {1,..., K}, the
boxes belonging to the k-th partition are called k-boxes.

Recall that we say that a self-avoiding path 7 takes the pattern if there exists z € Z¢
satisfying the condition (7;B). For k € {1,..., K}, we say that a self-avoiding path 7 takes
a pattern entirely contained in a k-box if there exists z € Z? such that:

2z satisfies the condition (7,),

o there exists a k-box containing By (z, (*).

k-penalized paths. For k € {1,..., K}, a k-penalized path is a self-avoiding path which
takes no pattern entirely contained in a k-box.
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Penalized passage time. For all x € Z¢, and for k € {1,..., K}, we define
tr(0,2) = inf{T'(7) : 7 is a k-penalized path from 0 to x},

with the convention inf ) = oo.

k-geodesics. Forallz € Z% forallk € {1,..., K}, a k-geodesic from 0 to x is a k-penalized
path v from 0 to x such that T'(y) = tx(0, x).

Shortcuts. For all boxes Bs s n, we say that a path 7 has a shortcut in Bs s x if m crosses
Bs ¢ n and if there exist two vertices u and v of m and a path 7’ going from u to v such that:

o 7' is entirely contained in B v,
e T, and 7 have only v and v as vertices in common,
« 7' takes a pattern entirely contained in Bs g v,

o T(n") < T(myw N Bssn).

Successful boxes. Let B3, n be a box and 7 a self-avoiding path. We say that Bz n is
successful for the path 7 if the following two conditions hold:

e T crosses B3 n,

e DBj s n is a typical box or 7 has a shortcut in Bs 5 n.

Sk-sequences. For every k € {1,..., K}, for every k-geodesic v between two vertices, the
Sk_sequence of 7 is the sequence of different k-boxes successful for by order of first visit by
7. Note that the boxes of this S*-sequence are pairwise disjoint by the definition of k-boxes.

3.2.2 Proof
3.2.2.1 Reduction

We begin the proof with some definitions. Recall that « is fixed at (3.2.8]) and that K is
fixed at the beginning of Section [3.2.1.4] For all n > 1, write

an
- %
Fix
n>1landzel, (3.2.11)
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From now on, when we talk about a path, a geodesic or a k-geodesic without specifying its
extremities, we mean that it is from 0 to . For all k € {1,..., K}, we define

G" = {(0,2) € ¢ and there exists a k-geodesic whose passage time is finite having

at least @, boxes in its S*-sequence}.

Selected k-geodesic and S*-variables. For all k € {1,..., K}, on the event G,

o we define the selected k-geodesic as the first k-geodesic in the lexicographical ordelﬁ
among those having at least Q,, boxes in their S*-sequences,

o forall j € {1,...,Q,}, we define the random variable SJ’? as the vertex s such that
Bj ¢ v is the j-th box of the S*-sequence of the selected k-geodesic.

Events M*. Forallke {1,...,K}andall j € {1,...,Q,}, we define

MP*(5) = G* N {the selected k-geodesic does not have a shortcut in any of the first

j boxes of its S*-sequence}.
To make the end of this proof easier to read, we define the events

A ={(0,z) € € and there exists a geodesic from 0 to z which does not take the pattern},
B = {every path from 0 to I',, crosses at least |an] + 1 typical boxes},

Note that A is the event considered in Proposition [3.1.8 and B the complementary event to
the one considered in Lemma [3.2.9] The proof of Proposition is based on the following

two lemmas.

K
Lemma 3.2.11. We have AN B C | J M"(Q,).
k=1

Lemma 3.2.12. There exists A € (0,1) which does not depend on x and n such that for all
ke{l,..., K},
P (MF(Qn)) < A9,

Proof of Proposition using Lemma[3.2.11) and[3.2.19. Recall that N is fixed at (3.2.8))
and that n and z are fixed at (3.2.11)) but that D; and A do not depend on = and n. We

6The lexicographical order is based on the directions of the consecutive edges of the geodesics.
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have
P(A) < P(AN B) + P(B°)
< fj P (Mk(Qn)) + P(B°) by Lemma [3.2.11
k=1

< KA9 + P(B°) by Lemma [3.2.12,
< KX9 4+ e P by Lemma [3.2.9]

As Dy > 0and A € (0,1), and as this inequality holds for any n > 1 and any x € T,,, we get
the existence of two constants C' > 0 and D > 0 such that for all n, for all x € T',,

P(A) < Dexp(—Chn).
[l

Proof of Lemma[3.2.11 Assume that A occurs. Then there exists a self-avoiding path v
from 0 to x such that:

o v does not take the pattern,

e« T(v) =t(0,2) < oc.
For all k € {1,..., K}, we get that:

e 7 is a k-penalized path,

o T(v)=1(0,2) = t;(0,2) < occ.
Thus, for all k € {1,..., K}, v is a k-geodesic from 0 to x and no k-geodesic has a shortcut in
any box. Assume that B also occurs. Then ~y crosses at least [an|+ 1 typical boxes. Hence,

there exists k € {1,..., K} such that v crosses at least @, = {C;?J typical boxes. Since

every typical k-box crossed by v is a successful box for 7, v is a k-geodesic having at least
Q,, boxes in its S*-sequence. Hence the event G* occurs and the selected k-geodesic (which
is not necessarily ) does not have a shortcut in any of the first @Q,, boxes of its S*-sequence
since it does not have a shortcut in any box. So the event M*(Q,,) occurs. O]

Now, for the remaining of the proof, the aim is to prove Lemma

Modification argument. We introduce an independent copy 7" of the environment T,
the two being defined on the same probability space. It is thus convenient to refer to the
considered environment when dealing with the objects defined above. To this aim, we shall
use the notation {T" € MP*(j)} to denote that the event M¥(j) holds with respect to the
environment 7. In other words, M¥(j) is now seen as a subset of [0, c0]® where € is the set
of all the edges. Similarly, we denote by S]”-€ (T") the random variables defined above but in
the environment 7".
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Fix k€ {1,...,K}and £ € {1,...,Q,}. On {T € M*({)}, the event G* occurs and
Bg st(ry v is the (-th box of the Sk_sequence of the selected k-geodesic. From this new
environment, we associate a set of edges Ej q4;(7) which is contained in B grpy n. It
corresponds to the edges for which we want to modify the time. We get a new environment

T defined for all edges e by:

ro-{ 70 a5

For y and z in Z¢, we denote by t*(y, 2) the geodesic time between y and z in the environment
T*. Note that 7" and T* do not have the same distribution as the set E _..+(T) depends on
T.

The proof of Lemma [3.2.12 relies on the following lemma whose proof is given in the next
subsection. Recall that, in the case [(FU)| v is fixed at (3.2.10) and that, if ¢,,;, = 0 in the

cases= |(INF)| vy is fixed at (3.1.22)).

Lemma 3.2.13. There exists n = n(N) > 0 such that for all ¢ in {1,...,Q,}, for all
ke {l,...,K}, there exist measurable functions E*, E,,. E*, E* all from [0,00]¢ to P(E)

(T) ?

mid’
and a measurable function C : [0,00]¢ — Z% such that:

mid
pairwise disjoint and are contained in B3 st(1) n

(i) on the event {T € M* ()}, E*(T), E:(T), E*(T), Ex(T) and Bo(C(T), (") are

(i) on the event {T € M*(0)}, we have P(T" € B*(T)|T) > n, where {T" € B*(T)} is a
shorthand for the event on which:
e Ve e Ei(T), T/(e) S tmin + 5,7
Ve € £ (T), T’(e) S (tmin + (5, V(]),

mid
Ve € EX(T), T'(e) > va,
Ve e EX (T), T'(e) = oo,
. QC(T)T/ e A*.

(iii) {T € M*(0)} N {T" € BN(T)} € {T* € M*(¢ — 1)\ M*(0)} and SE(T*) = SK(T).

Remark 3.2.14. Several of the functions of the previous lemma can be equal to the empty
set depending on the cases. Thus this does not prevent us from having P (T" € B*(T)|T) > n.
In particular, for every environment T':

e in the casem EL(T) =0,
e in the case|(FU), E* (T) =0,
o in the two cases, if tymm >0, EX.,(T) = 0.

mid
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Proof of Lemma using Lemma[3.2.15 Let £ € {1,...,Q,} and k € {1,...,K}. For

every s € Z% and £* subset of edges of Bs gy, let us consider the environment 7, g+ defined
for all edges e by:

. | T'(e) ifee&”,
Togele) = { T(e) else.

We define EZ (7)) = E*(T) U Efy(T) U EX(T) U EX(T) U Boo(C(T'), ¢*). Thus, for every
s and £, Tt ¢. and T have the same distribution and on the event {T" € M*(()} N {Sy(T) =
st N {E}qi(T) = £}, T* = T;¢.. So, using this environment and writing with indicator

functions the result of Lemma [3.2.13] we get:

Liremroy List ry=sy Ly, (=3 Lizress )y < ]I{TS*’E*eM’“(ﬁfl)\Mk(f)}]l{Sf(Ts*’g*):s}a (3.2.12)

modif

We compute the expectation on both sides. For the left side, we have

E[]1{TeMk(f)}ﬂ{sg(T):s}]l{E* (T):S*}]l{T’eB*(T)}}

modif

=K [ll{Teww)}ll{sg(n:s}]l{fs* (1)=¢+E []l{T'eB*(T)}’ TH -

modif

Since on the event {T' € M*(¢)} N{SF(T) = s}, we have P (T" € B*(T)|T) > n, the left side
is bounded from below by nP(T" € M*((), S}(T) = s, E} qi(T) = £). Since T}¢. and T
have the same distribution, using (3.2.12)), we get:

nP(T € M*(0), S{(T) = s, E,

modif

(T) =€) <P (T € ME(L—1)\ MM(0), S{(T) =5).

Then, by writing K’ the number of subsets of edges of B y and by summing on all subsets
E* of edges of By, n, we get for all s € Z4,

TLB(T € MH(0), SE(T) = ) <P (T € MH(C— 1)\ MH(0), SH(T) = s).
Finally, by Summingﬂ on all s € Z4, we get
%IP’(T e MF(0) < P(T € MF(£— 1)\ MF(0)).

Now, since M*(¢) ¢ M*(¢ — 1),

P(T € MF(L = 1)\ MF(0)) =P (T € MH(—1)) =P (T € MH0)).
Thus,
P(T € M*(0)) < \P(T € MF(¢ - 1)),
1

[

where \ = € (0,1) does not depend on x and n. Hence, using P(T' € M*(0)) = 1,

"Note that here, we must have the event {S§ (T7 ¢+) = s} on the right side of the inequality (3.2.12)) to
sum on all s € Z4.

138



we get by induction

P(T € MH(Q)) < 2.

3.2.2.2 Proof of Lemma [3.2.13t modification

Let £ € {1,...,Qu}, k € {1,...,K} and s € Z% such that Bz, y is a k-box. Assume that
the event {T' € M*(0)} N {SF(T) = s} occurs. Note that (0,z) € €. We denote by ~ the
selected k-geodesic. We know that:

(H1) v has at least @, boxes in its S*-sequence,
(H2) v does not have a shortcut in any of the first £ boxes of its S*-sequence,

(H3) Bjsn is the (-th box of the S*-sequence of v and is a typical box.

Construction of the forbidden zone and definition of C(T"). Let uy (resp. uy) be the
entry point of v in By sy (resp. Bysn). Since Bj s n is a typical box, we can define:

« 7 as the path 7(ug,u;) defined in Definition [3.2.6]

o C(T) the first vertex belonging to the selected straight segment between uy and u; and
satisfying property (iii) of a typical box. Such a vertex exists by Remark and
since B3 s n is a typical box in the environment 7. Recall that in the case , for
every edge e € Bo(C(T),rp), T(e) = 0o and in the case , O_cT €T.

We use the expression "forbidden zone' to refer to B (C(T),rp)\OBs(C(T'),rp). This is the
place where we want to place the pattern taken by the shortcut in the modified environment.

Properties of the forbidden zone.
Lemma 3.2.15. 1. The path v does not visit any vertex of the forbidden zone.
2. The ball Bo(C(T), (") is contained in the forbidden zone.

3. The forbidden zone is contained in By, n and for every c in the forbidden zone and
every z € OBy s N,

(7“2 — Tl)N

—

Proof. 1. In the case|(INF)| every edge of the forbidden zone has an infinite passage time
although ~ has a finite passage time. In the case [[FU)] it follows from Lemma [3.2.5]
and the fact that v crosses this box and is a geodesic in the environment 7.

|z —clh =

2. It comes from the inequality rp > ¢* + 1 by (3.2.3)).
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3. By Definition C(T) belongs to By s y and the distance between C(T") and (Bs s )¢

ro —1r1)N
is at least ||z — c[|; > <221) We get the result using that, for every ¢ in the

forbidden zone, ||c — C(T)||y < drp.
[

Us Bas,n
¢
u’TI'
.
7
|
|
Ur
Bl,s,N <
<
Uy

Figure 3.3: Example of construction of the shortcut 7’/ in two dimensions. The shortcut =’ is
represented in green, the path + in gray, the ball B (C(T),¢") in orange and the forbidden zone
by the hatched area.

Construction of the shortcut 7’. Let u, be the last vertex of = belonging to 7 before
7 visits the forbidden zone and v, be the first vertex of m belonging to v after the forbidden
zone. One can check that we can build a path, denoted by 7’ for the remaining of the proof,
such that:

o 7 is a self-avoiding path from wu, to v,,

o 7’ is the concatenation of the subpath of m between u, and the forbidden zone, then of
a path entirely contained in the forbidden zone and then of the subpath of 7 between
the forbidden zone and v,

o 7 visits Boo(C(T), (*) for the first time in 6_¢¢ryu® and for the last time in 6_cyv?,
and between these two vertices, ' is entirely contained in B, (C(T'), ¢*). Furthermore,
in the case|(INF)| between these two vertices, 7’ is equal to O¢(p) 7o, Where T4 is defined
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in Assumption (AI-3)l Note that, if 7" € B*(T") (where B*(T) is defined in Lemma
3.2.13), then 01T has finite passage time in the environment 7™,

o we have an upper bound for the number of edges in 7’:

7'le < lur = vally 4 [Boo (0, € + 1) . (3.2.13)

Note that, by the second item above and the definition of u, and v,, 7" only has u, and v,
in common with 7. See Figure for an example of construction of the shortcut 7.

3.2.2.2.1 Beginning of the modification. There are two cases for the beginning of
the modification depending on whether ¢,,;, = 0 or t,,;;, > 0 and on the number of edges in
Vurwn, denoted by |Yu, . le. We have to distinguish two cases because we must be able to
have a lower bound on the passage time of v, ,,.. To this aim, if v, ,, takes enough edges,
we can use the second property of a typical box and if it is not the case, we can have a
lower bound using the number of edges of 7, . and tyin if tmin > 0. If ¢ = 0 and if we
can not use the second property of a typical box, then we use the modification to increase
the passage times of 7, ,,. We describe the modification in each case. See Figure [3.4] for a
representation of the objects involved in the modification.

Case A: assume t,,;, = 0 and |y, . |e < N. The beginning of the modification is the
following.

o The edges of E,4(T') are the edges e belonging to 7, ., and such that T'(e) < ty, +0.

 Recall that C(T) is defined at the beginning of Section

o The edges of E*(T) are the edges e of Bs, v satisfying the following two conditions:
— e belongs to (v \ Yu, ., or to ') but not to B (C(T), ),
— T(e) > tumin + 0.

Case B: assume t,,i, > 0 or |y, 0, |c > N. The beginning of the modification is the

following.

« ELa(T) =0.

« Recall that C(T) is defined at the beginning of Section

o The edges of E*(T) are the edges e of Bs, y satisfying the following two conditions:

— e belongs to 7’ but not to B (C(T), "),
- T(@) > tmin + o'
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)

Vgt

[
Ug Uy ﬁw L] i U = Vg
v

~—

Case A: when t,,;, =0 and |v,, ,.|c < N.* Case B: when t,,;, > 0 or |y, ,.|c > N.

Figure 3.4: The modification. In the cases A and B, the pattern centered in C(T) is represented in
orange and the forbidden zone by the hatched area. In the case A, v is the path composed by the
edges in green up to u,, then the edges in red and then the edges in green from v,. In the case B,
«v is the path composed by the edges in blue. In the cases A and B, every edge of E* (T) belongs
to the green part of the figure. When the modification is successful, the passage times of the edges
in green which are greater than or equal to tyin + &' are replaced by passage times smaller than
tmin + ¢'. In the case A, every edge of E* . (T) belongs to the red part. When the modification is
successful, the passage times of the edges in red which are smaller than ¢,;, + 0 are replaced by
passage times belonging to (tmin + 0,29). In the case B, the passage times of the edges in blue are
not modified. The boundary of B3 s x is not represented even if By v is included in B3 s n. The
edges of EX (T) or E%(T) (depending on the case or are all edges which are not in

green, red, orange and blue.

3.2.2.2.2 End of the modification. Up to now, we have defined E* (T), E},4(T) and
C(T). Note that E* (T') and E}4(T) disjoint sets included in B¢y N (y U n'). It remains
to define £ (T) and EX (7). There are two cases depending on whether there can be edges
with infinite passage times or not.

In the case In this case, E7% (T') = () and the edges of E’ (T') are the edges of
Bs . x which does not belong to B, (C(T), *), to 7' or to 7.

In the case [(FU)| In this case, EZ (T) = ) and the edges of E%(T) are the edges of
Bs ¢ n which does not belong to B, (C(T), "), to 7 or to 7.
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3.2.2.3 Proof of Lemma [3.2.13; consequences of the modification
Assume for the remaining of the proof that the event
{T e MO} N{SH(T) = s} N{T" € B*(T)} occurs,
where B*(T) is defined in (ii) of Lemma [3.2.13] We now state some consequences of the
modification useful for the following.

(@) If |Yu, onle < N, every edge in 7, ,, belongs to Bs ¢ n. Thus, every edge belonging to

E¥.a(T) belongs to Bs s v

(b) Boo(C(T), ") is entirely contained in Bs, y.

(¢) We have T*(y) < T'(y). Furthermore, for all vertices v and v in 0Bs s y visited by 7,
T*(Yuw) < T(Vuw)-

(d) T*(ﬂ-/) < T* (’yuwfvw N B3,57N).

(e) There is only one pattern entirely contained in Bj 4 y in the environment 7%, which is
the one centered in C(7)).

(f) Let m be a self-avoiding path from 0Bs s y to 0Bs v entirely contained in Bs ¢y such
that in the environment 7™:

o in the case [(INF)| it has a finite passage time,
o in the case|(FU)| it does not take any edge whose passage time is greater than v,
« in the cases |(INF) and |[(FU)| it does not take any pattern contained in Bj s y.

Then every edge of Bs; y belonging to m belongs to .

(g) Let 7 be a k-penalized path from 0 to « in the environment 7 with 7*(7) finite. Then
T(m) =T"(7) < T(y) =T"(7).
In other words, no k-penalized path can save more time than v during the modification.
Proof 0f. Since 7 is included in By s N, ur € By s n. Thus
|ur — sN||; < raN. (3.2.14)
Assume that |y, .| < N and let z be a vertex visited by v, ... We have

|z — ur|1 < N. (3.2.15)

Combining (3.2.14) and (3.2.15]) gives
|z = sN|1 < (rs+1)N < rgN,
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since r3 > 15+ 1 by (3.2.4]). Hence 2z belongs to Bs s y. For the second part of the property,
in the case B of the modification, there is no edge in E¥,;(7) and in the case A of the

modification all the edges of E?.,(T") belong to v, 4, - O

Proof of[(b) By Lemma [3.2.15] Bo(C(T),¢") is contained in the forbidden zone and the
forbidden zone is contained in By s n. Since 13 > 19, By s n is contained in Bs s v. O

Proof of . In the case B of the modification, the passage time of every edge of v in T™
is equal to its passage time in 7. Thus, property holds. Now, assume the case A of
the modification and recall that in this case t,,;, = 0. The only edges of v whose passage
times in 7™ are strictly greater than their passage times in 7" are those in 7, ,, and all of
these edges are contained in Bs, n by property @ above. Hence, to prove property it
is sufficient to prove that T*(v,.,) < T'(Yun) When u is the last vertex in 0Bj; v visited by
7 before it visits u, and v is the first vertex in 0B5 s v visited by v after it visits v,. So, let
u and v be these vertices. First, since u, belongs to By s v and u to 0B3 5 v, we have

|lu —uglls > (r3 —12)N > N,

since 3 > 19 + 1 by . Hence, by the first property of a typical box, 7,., takes at
least p(rs — ro) N edges whose passage times is greater than 6. Since § > ¢’ by , all of
these edges belongs to E* (") and there are no edges of 7, ., whose passage times have been
increased. Thus

T*('Vu,uw) - T(’Yu,uw) < —0(7’3 - TQ)N((S - 5,) (3'2'16)

The same arguments give

T* (You ) = T(Vorw) < —plrs —r2) N(3 — ). (3.2.17)
Furthermore, since the only edges of v, ., whose passage times have been modified belong
to E:nid(T)7
T*(,yuﬂ,vw) - T(’Y'Mﬂ-,’l)ﬂ—) S NVO‘ (3.2.18)
Thus, we get

T (Vu,v) - T('Vu,v) =T ('Yu,uw) - T(Vu,uw) + T (’Vumvn) - T(’Vumvn) + T (va,v) - T(%}w,v)
< N(vg—2p(6 — ') (r3 —12)) by (3.2.16), (3.2.17) and (3.2.18)),

<0,

since rg > 21y, 0 > 20’, 3 is large enough compared to vy by (3.2.4) and N > 1 by (3.2.8). O

Proof of[(d) First, in all cases, by (3.2.13)), and by (3.2.1) and (3.2.2),
T* (") < (JJur — valli + | Boo (0, £* 4+ 1)|e) (tmin + &) + T (3.2.19)

To conclude this proof, we distinguish three cases.
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Figure 3.5: A picture to illustrate . The legend is the same as in Figure In this example
in two dimensions, when ¢y, > 0 and |V, ., e < N (a special case of case B of the modification),
Yun v, has to take ||ur — vr|l1 edges in the direction €1 and also at least 2rp edges in the direction
€9 to avoid the forbidden zone.

If |Yu, v.le > N (case B of the modification). First, let us prove that
T‘*(’)/umy7T N B375’N) Z ||U7r — ’l)ﬂ”l(tmin —|— 5) (3220)

Since this is the case B of the modification, the edges of v, ,, have not been modified. Thus,
if vy, 0, is entirely contained in Bs v the second property of the typical boxes gives .
If v, 0, is not entirely contained in Bj, y, let v’ be the first vertex of 0By visited by
Yurwn- Lhe vertex u, is in By n, 0 ||t/ — ugl[s > (rs —re) N > N since r3 > 75 by .
Using that ||u; — vel[1 < d(r2 + 71)N, the fact that r3 —ry > d(re + r1) by and the
second property of a typical box gives:

T*(’Yuw,vw N B3,S,N) Z ||ul - uﬂ”l(tmin + 5) Z (T?) - r2)N(tmin + 5) Z ||u7r - UTr“l(tmin + 5)
—_——

>(r3—r2)N

This concludes the proof of (3.2.20). Then, combining (3.2.19) and (3.2.20)), and using that

lur — vl > 7p, we have
T* (Vg oy N Baan) — TH(7) > |Jtr — v][1(6 — &) — | Boo(0, 6 + 1)|o(tugin + 0') — T
> rp(6 = 6') — | Boo (0, % + 1)|o(tmin + 0') — T > 0,
by (3.2.3) and since § > 24"

If tin = 0 and |y, .. |c < N (case A of the modification). In the environment 7,
all the edges e belonging to 7,, ., have a time greater than ¢, + ¢ and the property @,
Vumwe B35 N = Vupw,- Hence

T*(Yu o O Bas ) > |t — |1 (fain + 6). (3.2.21)
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We conclude the proof of this case as the previous one combining ([3.2.19)) and ( m
If tin > 0 and |y, .. |c < N (case B of the modification). In thls case, since C(T)
belongs to the selected straight segment between uy and u; and since v, is visited by 7 after

the forbidden zone, v, belongs to the selected straight segment. Thus, the distance between

rg — 1) N
vr and (B n)¢ is greater than or equal to M
|ur —vr|l1 < N. Since ro > 47y by (3.2.4), u, does not belong to 0By s y N7 and thus m,, ,,
takes edges in only one direction: the direction of the selected straight segment. Denote this

direction by ¢;. Then 7, ., has to take ||u, — v,||; edges in the direction ¢; but it can not
take edges of the forbidden zone (see Figure |3.5)). Hence

. Then, since |y, v, |e < N, we have

Yamsrle = [t = x|l + 27p. (3.2.22)
By the property [(a)l we have |7y, v, le = [Yurr N Bssnle and thus
T* (’Y’Um,vﬂ- M B3757N) Z (HUW - U7T||1 + 2TP>tmin- (3223)

Combining (3.2.19) and m ) gives

T*(’yuw,’uﬂ N B3,S,N) - T*(T‘J> Z 2TPtmin - ||u7r - UW||15, - |Boo(0a£A + 1)|e<tmin + 6/) -
> 2rptiin — N — | Boo (0, % 4+ 1)|o(tin + ') — T* > 0,

since N¢' <1 by (3.2.9) and since rp is large enough by (3.2.3)). ]

Proof of|(¢)] In the case [(INF) Recall that the pattern satisfies the boundary condition
(see Definition [3.2.1)). Thus, if there is a pattern entirely contained in Bj s centered in a
vertex z, it implies that there exists a path of length 2(¢* — 1) such that:

o it goes from z — (/A — 1)e; + ((* — 1)eg to 2+ ((* — 1)e; + (¢* — 1)ey only using edges
in the direction 1,

o its passage time is finite,
« there exists no path with finite passage time from 0Bs ¢ x to one of its vertices.

In the environment 7%, the only edges with finite passage times are edges belonging to
v, ©, Seryen and Boo(C(T), #* — 3). For every vertex z belonging to v and 7', there exists
a path from 0Bj sy to z with finite passage time. Furthermore, there is no path of length
2(¢* —1) with finite passage time using only edges in the direction £; having at least one edge
in Boo(C(T), " —3) and which does not visit any vertex of «’. Thus, the only path of length
2(¢A — 1) satisfying the three conditions above is the one from C(T) — (£* — 1)e; + (I* — 1)e,
to C(T) + (¢* —1)e; + (¢* — 1)ey and the only pattern entirely contained in Bs, v is the one
centered in C(T).

In the case If, in the environment 7%, there is a pattern entirely contained in
Bs s n centered in a vertex z, then for every edge e € OBy (2,0%), T(e) € (v1,12) by the
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assumption (AF-4") in Section [3.2.1.3] Since Bs x is a typical box in the environment T,
for every edge e € Bs v, T'(e) < v4. The only edges e such that T*(e) > T'(e) are:

o the edges of Ef, (T) when tyi, = 0 but for every edge e € Ef(T), T*(e) < vy < 14
since v1 > 1y,

o the edges of E*(T') but for every edge e € E(T), T*(e) > v,
o some edges in B, (C(T), ().

Thus, if an edge e € Bs 4 v is such that T*(e) € (1, vy), this edge belongs to B (C(T), ").
Thus there is only one pattern entirely contained in Bs, y which is the one centered in

C(T). O

Proof of[(f] Let my be a path from dBs , n to Bs, n entirely contained in Bs g v such that
in the environment 7, it has a finite passage time in the case and it does not take any
edge whose passage time is greater than v; in the case Then the only edges of Bs v
that 7y can take are edges of vy, 7’ and some edges of B, (C(T),¢*). Furthermore, since by
Lemma [3.2.15] v does not take any edge of the forbidden zone, if 7y links two vertices of
without taking edges of 7, then 7y is exactly v between these two vertices.

Now, assume that 7, does not take any pattern entirely contained in Bs, y. Since mg
can not take edges of B, (C(T), ") without taking the pattern centered in C(T), it remains
to prove that 7y does not take any edge of n’. But since 7’ is a self-avoiding path entirely
contained in By ¢ y which takes the pattern centered in C(T’), and which has only two vertices
in common with ~, if 7 takes an edge of 7/, my takes the pattern centered in C(7"), which is
impossible. O

Proof of . Let 7@ be a k-penalized path from 0 to z in the environment 7™ with finite
passage time in the environment 7. There are three cases.

First case. If 7 does not take edges of Bs sy, T*(7) = T'(7) since the only edges whose
passage time have been modified are edges of Bs, y. Property follows from

Second case. Assume that we are in the case and that 7 takes an edge ¢’ € B3,
such that 7*(¢’) > vy. Then,

TR =Y T()= Y T+ Y T

ecT e€RNB3 s, N eEfrﬂBg’s’N

Since ¢’ € N B, vy and since Bs ¢ x is a typical box, we have using the fourth property of

a typical box
Yo THe)zwvi> Y, Tle)> > Tle).
e€TNB3 s, N e€B3 s N e€m™NBs3 ¢ N
Furthermore, the passage times of the edges outside Bj s xy have not been modified. Hence,

> = Y T

e€RNBS | e€RNBY | v
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Thus,

T ®) = Y. Te)+ Y. T(e)> > T+ Y. Tle)=T(7). (3.2.24)

eeﬁ—mBS,s,N eefrﬂBg’s’N EEﬁ'ﬂB;g’SyN eEﬁﬂBg’s’N

In this case, property follows from (j3.2.24)) and from property .

Third case. Now assume that 7 takes at least one edge in Bs, 5 and that in the case
, 7 does not take any edge in B3 s x having a passage time greater than or equal to v;.
Since 7 has a finite passage time in the environment 7™, in the case 7 does not take
any edge ¢ in Bs ¢y such that T7*(e¢’) = oo. Since 7 is a k-penalized path, it does not take
any pattern entirely contained in Bj . Hence, using , the only edges in Bs, y that 7
can take are edges of v. So, let uy, vy, ..., u., v, be the successive entry and exit points of 7
in B3y, we get for all i € {1,..., K}, Ty, 0, = Yus;- Furthermore, we also get that T'(7) is
finite. Indeed, since the only edges whose passage time have been modified are the edges in
Bs ¢y and since T*(7) is finite, the only edges with infinite passage time in the environment
T that 7 can take are edges in B3, y. But these edges being edges of v which has a finite
passage time in the environment 7', T'(7) is finite.

Thus, using again that the only edges whose passage time have been modified are the
edges of Bs s n, we have

T(ﬁ) - T*(ﬁ) = ' Z T(ﬁui,vi) - T*(ﬁui,vi) = ' Z T(Vui,vi) - T*(fyui,vi)' (3'2'25)

ie{1,...,k} ie{l,...,x}
Now, using [(c)]
T Yuiws) = T* (Vi) < T(7) = T (7). (3.2.26)
1€{1,...,x}

Thus, combining ((3.2.25)) and (3.2.26)), we also get in this last case that
T(7) - T*(7) < T(y) - T ().

3.2.2.4 End of the proof of Lemma [3.2.13
We prove Lemma (3.2.13| with the sets E*(T'), E%;y(T), E5(T) and E’ (T) and the vertex
3.2.2.2

C(T) defined in Section . Let us first prove item (i) of this lemma. E} . (7T") is contained

mid

in By, n by property in Section [3.2.2.3| Using property @ of Section |3.2.2.3] we get
that B (C(T), (") is contained in By n. E*(T), EX(T) and E*(T') are contained in B v

by their definitions. To get that these sets are pairwise disjoint in both cases, we only have
to prove that:

* Vu,w, does not visit any edge of B, (C(T'), ¢*). This comes from the fact that B..(C(T), ") C
B(C(T),rp), which comes from the fact that rp > ¢* + 1 by (3.2.3). By prop-
erty (iii) of a typical box, in the case , in the environment 7', for every edge
e € Boo(C(T),rp), T(e) = 0o but T'(yy, »,) < 0o. Hence, v, ., does not take any edge
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in Boo(C(T),rp). In the case , by property (iii) of a typical box, the event ¢y T
holds with respect to the environment 7. Recall Remark there is no pattern
in Bs, . Since T satisfies the second condition in Lemma and since v, ., is a
k-geodesic, v, », does not visit any edge of the forbidden zone. So 7, ., does not visit
any edge of B (C(T), (").

* Yu,w, and 7 do not have any edge in common by the definition of u,, v, and 7'
To get item (ii), fix n = P(T € AY)plBss~1 where, in the case and if ¢ = 0,
p = min(L([tmin, twin + ), £((tin + 6, ), £(00)),
in the case and if £;, > 0,
P = min(L([tmin, tmin + 8), £(00)),
in the case and if £, = 0,
p = min(L([tmin, tmin + ), L((tmin + 6, 10)), L((v2,00))),

and in the case and if £, > 0,

p = min(L([tmin, tmin + ")), L((v2,00))),
Thus, n only depends on L, the pattern and N and we have that

P(T' € B(T)|T) > P(T € A)pBssnl = .

Now, let us prove item (iii) of Lemma [3.2.13] Let 7* be the selected k-geodesic in the
environment 7™ if it exists. The aim is to prove the following properties in the environment
T

C1) v* exists, i.e. there exists a k-geodesic having at least Q),, boxes in its S*-sequence,
) v* does not have a shortcut in the first £ — 1 boxes of its S*-sequence,

C3) ~* has a shortcut in the ¢-th box of its S*-sequence,

C4) Bs,n is the (-th box of the S*-sequence of v*.

To get these four properties, we use the following ones:

(P1) a k-box different from Bs gy is a typical box in the environment T if and only if it is
a typical box in the environment 7™,

(P2) a path has a shortcut in a k-box different from Bj v in the environment 7 if and only
if it has a shortcut in this box in the environment 7,
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(P3) v has a shortcut in Bj, v in the environment 7 and then, Bs, y is successful in the
environment 7™ for -,

(P4) ~* exists and v* = .

To conclude the proof, we have to prove (P1)] |(P2)} |(P3) and |(P4)} Indeed, by and
, a k-box different from Bs, y is successful for a path 7 in the environment 7" if and
only if it is successful for 7 in the environment 7. Thus, since Bs s v is a typical box for 7
in the environment 7', using , the successful boxes crossed by v in the environments T’
et T* are the same. Furthermore, if we have then v is a k-geodesic in the environment
T* and we can define its S*-sequence in this environment. We get that the S*-sequence of
v is the same in the environments 7" and 7. Hence, using again we get , we get
by and we get |(C3)| and |(C4)| by [(H3)| using again |(P3)}

At this stage of the proof, we easily get [P1)] and [(P3)| (which is the aim of the
following paragraph) but the proof of is a bit longer (this is the aim of Section [3.2.2.4.2)).

3.2.2.4.1 Proof of properties |(P1), ((P2) and [(P3). We get|(P1)|using that the fact
that a box is typical only depends on the edges of the box (by Lemma [3.2.8]), that every

k-box different from Bj s n does not have edges in common with Bs, 5 and that the only
edges whose time has been modified are edges belonging to Bs s n.

uses the same arguments than above. The fact that a path has a shortcut in a k-box
only depends on the edges of the box.

We get by considering the path 7" defined at the beginning of Section . By
construction 7’ is entirely contained in B3 SN, T and ~ only have u, and v, in common, 7’
takes the pattern and T (7, v, N Bssn) > T*(7') by @

3.2.2.4.2 Proof of |(P4)} 7 is the selected k-geodesic in the environment 7. To
prove this property, we prove the following ones in the last four lemmas of this section:

e 7 is a k-penalized path in the environment 7™,

o every k-penalized path from 0 to x in the environment 7™ has a passage time greater
than or equal to the passage time of ~,

o if a path is a k-geodesic from 0 to x in the environment T, it is also a k-geodesic in
the environment 7',

o if a k-geodesic from 0 to x in the environment T has at least ), boxes in its S*-
sequence, it has also at least @,, boxes in its S*-sequence in the environment 7.

We can conclude with these properties. Indeed, with the first two properties above, v is a
k-geodesic in the environment 7*. As a consequence of [(P1), [(P2){and |(P3)] it has the same
Sk_sequence in the environments T and 7. Thus « has at least Q,, boxes in its S*-sequence
and it can be the selected k-geodesic. By the last two properties above, we have that the set
of the k-geodesics having at least @,, boxes in their S*-sequences in the environment 7% is
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included in the set of the k-geodesics having at least (Q,, boxes in their S*-sequences in the
environment 7. Since 7 is the first path in the lexicographical order among the paths of this
last set, it is also the first path in the lexicographical order in the first set.

It remains to prove the four properties above. Before proving them, we begin by the
following lemma.

Lemma 3.2.16. A k-penalized path in the environment T with finite passage time in the
environment T is also a k-penalized path in the environment T'.

Proof. Let 7 be a k-penalized path in the environment 7* with 7*(7) finite. Since the
edges outside Bs ; xy have not been modified, 7 takes a pattern entirely contained in a k-box
different from Bs v in the environment 7' if and only if it takes a pattern entirely contained
in this box in the environment 7. It remains to prove that 7 does not take a pattern entirely
contained in Bj, v in the environment 7.

In the case , since the time of 7 is finite and since 7 is a k-penalized path in the
environment 7™, by property the only edges of Bs ;v that 7 can take are edges of v. It
implies that, in the environment 7', if 7 takes a pattern entirely contained in Bj 5 v, v also
takes this pattern, which is impossible since 7 is a k-penalized path in the environment 7.

In the case it is impossible since Bs ; y is a typical box in the environment 7" and
there is no pattern in a typical box by Remark [3.2.10] ]

Lemma 3.2.17. v is a k-penalized path in the environment T™.

Proof. The fact that a path takes a pattern entirely contained in a k-box only depends on the
passage times of the edges of this k-box. Since v is a k-penalized path in the environment 7',
it does not take a pattern entirely contained in a k-box in this environment. Since the edges
of the k-boxes different from Bj ¢ x have not been modified, v does not take a pattern entirely
contained in a k-box different from Bj ¢ v in the environment 7*. To conclude, it remains to
prove that v does not take a pattern entirely contained in Bs s x in the environment 7. By
@, there is only one pattern entirely contained in Bj 4y which is the one centered in C(T).
By Lemma [3.2.15] v does not take any edge of the forbidden zone and the pattern centered
in C(T) is entirely contained in the forbidden zone, which gives the result. O

Lemma 3.2.18. Every k-penalized path from 0 to x in the environment T has a passage
time for T™ greater than or equal to the passage time of v for T™.

Proof. Let 7* be a k-penalized path in the environment 7%. By Lemma [3.2.16], 7* is also a k-
penalized path in the environment 7'. Thus, since 7* is a k-penalized path in the environment

T and since 7 is a k-geodesic, we get T'(y) < T'(5*). Hence, using in Section |3.2.2.3|

(7)) 2T (v)+TH) = T(y) 2T (7).

]

Lemma 3.2.19. If a path from 0 to x is a k-geodesic in the environment T, it is also a
k-geodesic in the environment T .
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Proof. Let 7* be a k-geodesic in the environment 7" from 0 to z. By Lemma v is
a k-penalized path in the environment 7%. Thus, since T%(7y) is finite, 7*(7*) is also finite
and by Lemma |3.2.16, 7* is a k-penalized path in the environment 7. Moreover, using |(g)]

in Section [3.2.2.3] we get
TH) <TH)+T°() =T (7).

Since 7* is a k-geodesic, by Lemma [3.2.17| and Lemma [3.2.18, T*(7*) = T*(y). So T'(7*)

<
T(v) and 7* is a k-geodesic in the environment 7. O

Lemma 3.2.20. If a k-geodesic from 0 to x in the environment T has at least (Q,, bozes in
its S*-sequence, it has also at least Q,, bozes in its S*-sequence in the environment T .

Proof. Let 7* be a k-geodesic in the environment 7™ from 0 to z having at least (),, boxes in
its S*-sequence. Using and by the construction of the S*-sequence, each box different
from Bj 4y belonging to the S*-sequence of 7* in the environment 7* belongs to its S*-
sequence in the environment 7. If Bz, x belongs to its S*-sequence in the environment 7%,
since Bs sy is a typical box in the environment 7', then Bs s x belongs to its Sk_sequence in
the environment 7', which allows us to conclude. O

3.3 Extension of the van den Berg-Kesten comparison
principle

This section is dedicated to the proof of Theorem [3.1.71 Let £ and £ be two distributions
taking values in [0, co] such that:

(H1) L is useful,
(H2) L([0,00)) > p and L([0,00)) > p,
(H3) L #L,
(H4) there exists a couple of random variables (7, 7) on some probability space, with marginal
distributions £ and £, respectively, and satisfying
E[7|T] < 7. (3.3.1)
In what follows, (7,7) is a couple of random variables with marginal distributions £ and
L, and satisfying . Such a couple exists by Note that by , we have
{T <0} C {7 < 0} as. (3.3.2)

Then, we consider a family (T,T) = {(T'(e),T(e)) : e € £} of i.i.d. random variables defined
on the same probability space such that for all e € €, (T'(e), T'(e)) has the same distribution

as (1,7).
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The proof of Theorem [3.1.7] is an application of Theorem [3.1.5] We begin by defining a
valid pattern in Section [3.3.1] and then, we apply Theorem [3.1.5] with this pattern in Section
0.0. 2l

3.3.1 Definition of the valid pattern

The fact that a pattern is valid or not depends on the distribution of the passage times of
the environment. Here, we use Theorem [3.1.5 only in the environment 7. Thus, when we
define a pattern B = (A, u?, v*, A*) below, we consider that the event A* only depends on
the family (7'(e))een.

Now, for a valid pattern B = (A, u™,v*, A%), denote by IT¥ the set of all self-avoiding
paths going from u® to v* and which are contained in A. Denote by G the o-field generated
by the family (7'(e))ces. Section is devoted to the proof of the following lemma.

Lemma 3.3.1. There exist a valid pattern S = (A, u™, v, AY) and a constant n > 0 such
that on the event AN,

E

min T<7r)|g] < min T(7) — 7. (3.3.3)

Tell® well®

To prove Lemma [3.3.1] there are three different cases to be considered. Noting that, if
P(7 < oo and 7 = 00) = 0, using (3.3.2), we get

{r <0} ={7 < 0} as,
these three cases can be written as follows:
e« P(7 <ooand 7=00)>0,
o {1 <00} ={7 < oo} as. and P(E[7|T] < T) >0,
o {1 <0} ={7 <o} as and P(E[7|7] =7) = 1.

The most technical case is the third one.

3.3.1.1 First case: when P(7 < oo and 7 =00) >0

Proof of Lemma in the first case.
Assume that P(7 < co and 7 = 00) > 0. Let v € (0, 00) such that

L([v, 50)) > 0. (3.3.4)

Such a constant exists since we have £(0) + L£(c0) < 1 since £ is useful by Assumption |(#1)
and L(]0,00)) > p. by Assumption |(H2)| Let M € [0, 00) such that

P(7T < M and 7 = o0) > 0. (3.3.5)
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Let ny > 0. Fix

M +ng
> . 3.3.6
m 5y (3.3.6)

Then, define the pattern P = (A, ut, 0", A*) where A = {0,1} x {0,...,m} x [1{_3{0},
ud = (0,...,0), v® = (1,0,...,0) and A" is defined as follows. Denote by 7" the path
going from u® to mey, by m steps in the direction €5, then to & + me, by one step in the
direction ¢; and finally to v5 by m steps in the direction g,. The event A" is the event on
which for every e € 71", v < T'(e) < oo and for every edge e € A but not in 7 T'(e) = oo.
This pattern is valid since the event A” has a positive probability by and , and
since the path 7" is a path between u* and v* with a finite passage time in the environment
T when the event A* occurs.

Now, denote
=P(T < M|t=00).

By (3.3.5), 8 > 0. Then, on the event A", we have

E

min T(w)|g} < T(x™) = B(T(x™) - M). (3.3.7)

Tell¥

Indeed, denote by e the edge {u®*, v} and by 7 the path going from u” to v* by taking
only this edge. Then, on the event A", since A* C {T'(e®) = o},

E

min T(W)]Q] <E [rnin(f(wﬁn)7 T(ﬂ_oo))‘g}

mcll®
< E [ M1 z(emyarny + T L gmy>00 |9 ]
<MB+ Y E [T(e)]lf(eM)sz ' (3.38)

But, for every e € 7",

E |T(e)LgysulG] = B |[T(e)|T(e)] P (T(e*) > M|T(e™))
<E|T(e)|T(e)] (1 = B) since A* C {T(e) = o0},
<T(e)(1 - p), (3.3.9)

since (T(e),T(e)) has the same distribution as (7,7) which satisfies (3.3.1)). Thus, combining
(3.3.8) and (3.3.9), we get, on the event A",

E | min T(n)|g] < M5+ (1 = AT(x™) = T(x™) = AT(") - M),

and ([3.3.7) is proved.

Now, by the definition of the pattern, on the one hand, T(7™) = m%[% T(m) and on the
S
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other hand, T(7*) > 2mv. This gives, using (3.3.6)),

T (7™ — M > .

Hence,
E | min 7 < min T'(7) —
min (w)lg} miy () = B1o,
which allows us to conclude since gy > 0. [

3.3.1.2 Second case: when {7 < 0o} = {7 < o0} a.s. and P(E[7|7] < T) >0

Proof of Lemma in the second case.
Assume that P(E[7|7] < 7) > 0 and that {7 < co} = {7 < 0o} a.s. Then there exist
n > 0 and a Borel set I C [0,00) such that P(7 € I) > 0 and on the event {7 € I},

E[f|r] <7 —n. (3.3.10)

Now, define the pattern B = ({u®,v*}, u®, v?, AY) where v = (0,...,0), v* = (1,0,...,0)
and A" is the event on which the passage time of the only edge of the pattern, denoted by e,
belongs to I. Then, this pattern is valid since the event A" has a positive probability since
P(r € I) > 0 and since the passage time of the path (u*,v") in the environment T is finite
when A" occurs since I C [0, 00). Furthermore, on the event A*,

E | min 7(r)|6] = E [T(0)|6] = E [F(IT(e)] < T(e) - y by (310),
— min T(r) — 1.
min T(r) —n
[
3.3.1.3 Third case: when {7 < 00} = {7 < >} a.s. and P(E[7|7] =7) =1
Assume that
PE[Fr] =7) =1, (3.3.11)
and that
{T <0} ={7 < 0} as. (3.3.12)
Lemma 3.3.2. In this case, there exist § > 0 and > 0 such that
IP’(T < oo and P(7 <7 —=26|1) > and P(7 > 7|1) > B) > 0. (3.3.13)

Proof. Denote A = {7 < 0o and P(7 < 7|7) > 0} and B = {P(7 > 7|7) > 0}. To prove the
lemma, it suffices to prove that
P(ANB) > 0. (3.3.14)
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Let K be a transition probability kernel such that for every measurable function ¢ : [0, co] x
0, 0] — [0, 00,

E[o(r, 7)|7] = / o(r, D) K (7, di).

[0,00]

(3.3.15)

The existence of such a K is given by Theorem 2.19 in Chapter 4 in [0].
First, let us prove that P(B) = 1. We have

B¢ =A{E[Ls<;|7] = 1} = {K(7,[0,7)) = 1} using (3.3.15),
={K(r,][0,7)) =1 and 7 < oo} using ([3.3.12)

- {/[o,oo] tK(r,dt) < 7'}

={E[7|T] < T}.

Now, since P(E [7|7] < 7) = 0 by (3.3.11]), we get P(B°) = 0 and thus P(B) = 1.
So, to get (3.3.14)), it remains to prove that P(A) > 0. To this aim, we shall prove that

A°={r=7}as., (3.3.16)
which leads to P(A¢) < 1 by |(H#3), and thus P(A) > 0. To prove ({3.3.16]), observe that
A={r=ocor P(7 < 7|7) =0}
={r =00} U{T < o0 and P(7 < 7|7) = 0},
={r =00} U{7 < oo and K(7,[r,00]) = 1} using (3.3.15)),
={r =00} U{r < o0 and K(1,{7}) =1},
since
{7 < o0, K(7,[r,00]) =1 and K(,(1,0]) > 0} C {E[F|7] > 7}
and P (E[7|7] > 7) = 0 by (3.3.11]). Thus, using again (3.3.15)), we get
A°={r =0} U{r <ocoand P(7 =7|1) =1}

={r=o00}U{r <ocand 7 =7} as.
Now, since {7 = 0o} = {7 = 7 = oo} a.s. by (3.3.12), we get (3.3.16]. Hence, holds
and the lemma is proved. O
Lemma 3.3.3. In this case, there exists a bounded Borel set I C (0,00) andn > 0 such that
« P(r€l)>0,

e and
E[min(7 + 72, 73 + 74)|F] < min(my + 72,73 + 74) — 0

on the event T = {ry,..., 74 € I}, where (11,71),...,(74,74) are independent copies of
(1,7) and F = o(7,...,T4).
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Proof. Let (11,71), ..., (71, 71) be independent copies of (7,7). Denote F = o (7, ...,74). Fix

B > 0and ¢ > 0 given by Lemma Using ((3.3.13)), we can find a Borel set I, C (0, 00),
fixed for the remaining of the proof, such that P(7 € Iy) > 0 and on the event {7 € Iy},

T <ooand P(7 <7 —260|1) > and P(7 > 7|7) > . (3.3.17)
Now, fix n > 0 such that n < 263% and then fix

208 =1

0<dy < 1

(3.3.18)

)
Note that this gives dy < 5 a8 B < 1. Let yo € Iy such that P(r € InN (yo — o, Yo+ o)) > 0.

Such a y exists because P(7 € Iy) > 0. Set I = Iy N (yo — do, Yo + o).
Then, we have

mln(%l + 722, %3 + %4) + 26]]'{7:3§7~'1—6 and 7~'4§7~'2—6} S 7’11 + ,?“_2.
Thus, on the event Z = {r,...,74 € I}, since (11, 71) and (72, 72) satisfy (3.3.1)),

S T +7'2 — 25]?(%3 S %1 — 6|f>]P><7:4 S %2 —(5|.F)
< 2supl — 20P(73 < 713 — 20 and 7 > 71| F)P(74 < 74 — 20 and T > 7| F),

since the diameter of I is lower than ¢ by (3.3.18)). Then, by (3.3.17)

E[min (7 + 7, 73 + 74)|F] < 2sup I — 263"
< 2inf I —n,

since 2(sup I —inf I') < 48y < 263* —n by . Hence, since on the event Z,
min(7y + 79,73 + 74) > 2inf [,
we get, on the event Z,
E[min(7 + 72, 73 + 74)|F| < min(7y + 7, 73 + 74) — 0.

]

Proof of Lemma in the third case. Fix I C (0,00) and i > 0 given by Lemma |3.3.3]
Define the pattern ¢ = (A, u®, v, AY) where A is the set containing 4 vertices defined by
A ={0,1} x {0,1} x [19_3{0}, ut = (0,...,0), v} = (1,1,0,...,0) and A" is the event on
which for every edge e € A, T'(e) € I. This pattern is valid since the event A* has a positive
probability since P(7 € I) > 0 by Lemma @, and since on the event A%, every edge of
the pattern has a finite passage time.
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Now denote e; = {ud, u® + g1}, ex = {ud +&,0%}, e3 = {u®,ud + &} and ey =
{u® 4 &5,v*}. Since there are only two paths in IT¥, the one taking e; and then e, and the
one taking ez and then ey, we get

E

min T(w)yg] — E [min (T(e1) + T(ez), Tes) + T(en) IG]

=K [min (T(e1) + T(e2), T(es) + T(ea) ) [o(T(ex), T(e2), T(es), T(ea)))]
< min(7T(ey) + T(e2), T(e3) + T(ey)) — n by Lemma [3.3.3]

= 7{21%13 T(m) —mn.
[
3.3.2 End of the proof of Theorem [3.1.
By and (3.3.2)), we can fix M > 0 such that
P(r < M and 7 < M) > p.. (3.3.19)

Let C and C be the clusters defined respectively as the clusters Cy; and C~M in Section m
for M fixed above. Recall the definitions of ¢, ¢, u and i also given in Section [3.1.3] and

the convergence given at .

Let x € Z%\ {0}. For any n € N, we define the random path 7, as the first geodesic
in the lexicographical order from ¢(0) to ¢(nz) in the environment 7. As stated in Section
3.1.1] almost surely, there exists at least one geodesic from (0) to p(nx). Recall that G is
the o-field generated by the family (T'(e)).ce. Note that =, is G-measurable.

Lemma 3.3.4. We have E {f(gp(()), gp(a:))} < 00.

Proof. Since 7, is G-measurable,

_ ez E[T(e)|T(e)]
< ; T(e) =T(m) = t(¢(0), ¢(z))

Note that the last inequality comes from the fact that for every e € £, E {TN(e)|T(e)} < T(e).
Then, taking expectation, it gives

E [i(p(0), ¢())] < E[t(#(0), o (2))].
Since by Proposition 2 in [5], E [t(¢(0), ¢(z))] < oo, we get E {f((p(O), <p(a:))] < 0. O
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With Lemma [3.3.4) we can use the Subadditive Ergodic Theorem (see for example The-
orem 2.2 in [2]), and thus we get the existence of a finite constant 7i(x) such that

o H(0), o)

n—oo n

= 7i(z) a.s. and in L'.

Remark 3.3.5. There are two main differences between the definitions of u(x) and fi(x):

o p(x) is defined with the passage times in the environment T although fi(z) is defined
with the passage times in the environment T,

o u(x) is defined with geodesic times between vertices obtained with ¢ although fi(x) is
defined with geodesic times between vertices obtained with (.

In order to compare p(x) and fi(x), it is therefore natural to introduce fi(x), an intermediate
object which has one difference with p(z) and one difference with fi(x) in its definition.

Remark 3.3.6. The proof of Theorem given in this section also holds in the case
originally proven by van den Berg and Kesten in [18], i.e. when we assume that T has a
finite first moment. However, it is simpler in this case since we do not need the clusters C

and C to define pu(x) and fi(z). In this case, for everyy € Z°, we can take p(y) = ¢(y) =y
and f(x) = f(x), and thus in the sequel, we do not need Lemma and the proof of

Lemma is much simpler.

The following lemma is based on elementary arguments of percolation.
Lemma 3.3.7. We have ji(x) < f(x).

Proof. Let C be the infinite cluster for the Bernoulli percolation (1 {T(e)<M and Te)<M}> € € )

which exists and is unique a.s. by (3.3.19 m Note that C is included in C and in C. For any
y € R% we define $(y) the random point of C such that ||y — @(y)|; is minimal, with a
deterministic rule to break ties. For any n € Z, we have

H@(0), ¢(nz)) < (p(0), $(0)) +HH(0), p(0)) + H(p(0), p(nz)) + t(p(nz), p(nz)) + H(H(nz), p(nz))
= A(0) + t(¢(0), p(nz)) + A(nzx), (3.3.20)

by writing for any y € Z%, A(y) = t(o(y), #(y)) + HP(y), ¢(y))-

Now, for any y € Z%, there exists a path between ¢(y) and @(y) contained in C. Thus,
it only takes edges with finite passage times in the environment 7', and thus with finite
passage times in the environment 7T by (3.3.2) - Furthermore, there exists a path between
@(y) and @(y) contained in C, which gives that #($(y), $(y)) is also finite. Hence A(y) is a

finite random variable. It gives that
A(0)

n
converges almost surely, and thus in probability, towards 0. Hence

A(nz)
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also converges towards 0 in probability. We get that

A(0) +£(¢(0), p(nx)) + A(nz)

converges towards fi(z) in probability. Using (3.3.20)), this gives fi(z) < 7i(x). ]

Let n > 0 and ‘P the pattern given by Lemma m For any path m we denote by N¥ ()
the maximum number of disjoint translations of the pattern P8 crossed by .

Lemma 3.3.8. There exists a constant ¢ > 0 such that for any n sufficiently large,
E [./\fm(%)} > cn.

Proof. Recall the definition of N¥(7) given for any path 7 at (3.1.4]). Since the pattern 9 is
valid by Lemma L is useful by [(H1)land L([0,00)) > p. by |(H2)} we can use Theorem

3.1.5land thus there exist a > 0, #; > 0 and B, > 0 such that for every n € N and for every
y € By (O, an’l) and z € B (nx, HnZ’h),

P ((y, z) € € and 3 a geodesic v from y to z such that N¥(v) < om) < Bre " (3.3.21)

Denote by V,, the set By (O, Hnijl> X B (na:, anh) Then, for every n € N,

P (N®(3) < an) < P ((9(0), p(na)) ¢ Vi)

+ Y P ((y, z) € € and 3 a geodesic v from y to z such that N¥(y) < an) . (3.3.22)
(4,2)€Vn

Since x # 0, by Theorem 8 in [3], there exist 83 > 0 and 34 > 0 such that for every n € N,
P ((¢(0), o(nx)) ¢ V) < Bze” ™.

Hence, using (3.3.21)) and since |V, | is bounded by a polynomial in n, there exist 55 > 0 and
B¢ > 0 such that for every n € N,

P (Nm(%) < om) < BseFom,
Thus, there exists ¢ > 0 such that for any n sufficiently large
E [Nm('yn)} > dn.

We conclude the proof by observing that simple geometric considerations provide a constant
¢’ > 0 such that for all path =,
NF(7) > "'N¥(n).
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Figure 3.6: Tllustration of the proof of Lemma m The translations of the pattern 3 are in gray.
The path =, is the concatenation of the blue parts and of the red parts. In each pattern, the green
part corresponds to the optimal path in the environment T among the paths between the endpoints
of the pattern and entirely contained in the pattern. The idea is to bound from above the geodesic
time between (0) and ¢(nz) in the environment T by the passage time in the environment T' of
the concatenation of the blue parts and the green parts.

Lemma 3.3.9. We have fi(x) < p(x).

Proof. For any n > 1, denote by S¥(v,,) the set, chosen according to a deterministic rule if
there are several such sets, of N¥(v,) disjoint translations of B crossed by 7,. Denote by
E¥(v,) the set of all edges of v, which are not in a subpath of v, between the endpoints of
a pattern of S¥(v,). Recall that we denote by II¥ the set of all self-avoiding paths going
from u* to v* and which are contained in A. For a pattern ' € S¥(v,,), we can associate a
unique s € Z? such that s satisfies the condition (7,;%) and such that B’ is located at 6,A.
Then, we denote by II¥ the set of all self-avoiding paths 7 such that #_ 7 € II*. Denote
by T#(v,) the set of all paths from »(0) to p(nz) following 7, outside all the patterns of
S*(7,) and following a path of II¥ for every pattern P’ of S¥(v,). With these definitions,
we immediately get that

min T(m)= > Tle)+ Z min T(r"). (3.3.23)

!

Let n be sufficiently large such that Lemma holds and let ¢ > 0 be the constant
given by this lemma. Recall that G is the o-field generated by the family (7'(e))cce. Then,
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Yy S*(7,) and E¥(7,) are G-measurable and we get

E [i(¢(0), ¢(nz))/9] SE[ min T(wﬂ@]

el ('Yn)

= Y E[T@ITE)]|+ X ]E[min T(W/),g] by B3.29).

cCEP (4n) PesH(y,)  LTETY
< > T+ > ( min T(7') — 77) .
€% (1) PSP (y,) \TETF

The first inequality comes from the definition of the geodesic time. For the first sum, the
last inequality comes from the fact that for every edge e € &, (T'(e),T(e)) has the same
distribution as (7,7) and thus satisfies E[T(e)|T(e)] < T(e). For the second sum, it comes
from Lemma B.3.11

Then, by the definitions of E¥(v,) and S¥(v,),

Y. Tle)+ > min T(x) =T(y) = t(e(0), p(nz)).

e€EP (vn) P'ESP (1) w/€Il¥’
Furthermore, recall that N¥(v,) is the number of elements of IT¥. Thus, we get

E [#(¢(0), ¢(n2))|G] < t(2(0), p(nz)) = 1A (7).

Now, taking expectation and dividing by n gives

E[f(e0). ()] _ Elte(0). olna)] _ EN*00)] _ Efte0) o))

by Lemma [3.3.8] We conclude the proof using that

E |t(¢(0), o(nz
lim {t(gp( -l ))] = 7i(z) and lim £ = pu(x).

n—oo n n—o0 n

Now, we conclude the proof of Theorem by combining Lemma [3.3.7] and Lemma
9.0.91

3.A Existence of geodesics

Proposition 3.A.1. Assume that £(0) < p.. With probability one, for all x, y such that
(x,y) € €, there exists a geodesic between x and y.

To prove the above proposition, we begin by the following lemma.
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Lemma 3.A.2. Assume that L(0) < p.. There exists § >0, ' >0 and p > 0 such that for
alln > 1,

P(3 a self-avoiding path @ from 0 which contains at least n edges but has T(w) < pn) < e,

Proof of Lemma [3.A.3. For each environment 7', we define a new environment 7" defined for
all edges e by

fio = {0 5719

Since £(0) < pe, we have P(T(e) = 0) = P(T(e) = 0) < p,. Thus, we can use Proposition
(5.8) in [14] and we get 3 > 0, 3 > 0 and p > 0 such that for all n > 1, for all z € Z¢,

P(3 a self-avoiding path 7 from z which contains at least n edges but has T(7) < pn) < f'e "
Now, for every edge e, T((e) < T'(e). Therefore,

P(3 a self-avoiding path 7 from 0 which contains at least n edges but has T'(7) < pn)
< P(3 a self-avoiding path 7 from z which contains at least n edges but has T'(7) < pn),

which allows us to conclude. O

Proof of Proposition[3.A.1] 1t is sufficient to prove that for every = and y, with probability
one, there exists a geodesic between z and y if (x,y) € €. Fix x and y in Z¢. Fix 3, ' and
p given by Lemma [3.A.2] For every n > 1, denote by A,, the event on which every path 7
from x which contains at least n edges has T'(7) > pn. By the Borel-Cantelli Lemma and
by Lemma [3.A.2] with probability one, for all n large enough, A,, occurs. We work on this
probability one event. Assume that (z,y) € €. Let m,, be a path between x and y such
that T'(m,,) < co. Fix n large enough such that A, occurs and

n> 1) (3.A1)

p

Then, every path from x to the boundary of Bj(z,n) has a passage time greater than or
equal to pn since the event A, occurs, and thus a passage time strictly greater than 7'(m,,,)

by (3.A.1). Hence, the infimum in the definition of ¢(z,y) is over the finite set of paths
contained in Bj(x,n), and there must be a geodesic between z and y. O

3.B Edges with positive passage times taken by self-
avoiding paths

Proof of Lemma[3.1.9. Assume that £ is useful and that ¢, = 0. Let 7 > 0 such that
L([0,7]) < p.. For each environment 7', we define a new environment 7" defined for all edges

163



e by

T(e) = { (1) ;flsjcj.(e) =7

We have P(T'(e) = 0) = P(T'(e

() < 7) < pe. By Proposition (5.8) in [14], we get 3 >0, 5/ >0
and p > 0 such that for all n > 1,

P(3 a self-avoiding path 7 from 0 which contains at least n edges but has T'(7) < pn) < fe™?".

Thus,

P(3 a self-avoiding path 7 from 0 which contains at least n edges but containes at most
pn edges e such that T'(e) > 7) < Ble™"",

and we get (3.1.24) for all v, w € Z%. O

3.C Overlapping patterns

Proof of Lemma[3.24. Let PBo = (Ao, ud, v}, A)) be a valid pattern. Denote by Ly, ..., Ly
d

the integers such that Ay = [[{0,..., L;}. Fix
i=1

(* =max(Ly,..., Lqg) + 4. (3.C.1)
Let M{ > 0 such that
P(AS N {Ve € Ay, T(e) < M{ or T(e) = oc0}) > 0. (3.C.2)
In the case Consider the pattern ¢ = (A, u?, v*, A) defined as follows:
o A= DB,(0,0").
o ul = —(e; and v = Pey.
« Let 7o be a path from u® to v* such that:

— T is a self-avoiding path.
— In A\ Boo(0, /A — 3), T4 uses only 6 vertices, all in the set {kei, —¢* < k < (A},

— oo Visits ud and v, and the portion of 7, between these two vertices, denoted
by a0 is entirely contained in Ag. Furthermore, when A% occurs, T ) < oo.
Note that this is possible since By is valid.

— Moo \ Too,o does not take any edge of Ag.

Then, A" is the event such that:
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— Ay n{Ve € Ay, T(e) < M or T(e) = oo} occurs,

— for all e belonging to S, T'(e) < o0,

— for all e belonging to Te \ Moo, () < ME,

— for all e which does not belong to Ag U s, T'(e) = 0.

We get that 3 satisfies|[(Al-1)| [(Al-2)|and [(Al-4). Then, since 7, takes only edges whose pas-
sage time is smaller than or equal to M, 9B satisfies [(AL-3)| by taking T* > |Bso (0, £*)]c M.

Furthermore, we have A* C A} by the definition of A*, Ay C A by 7 A? has a
positive probability by and when A% occurs, every path from u* to v* whose passage
time is finite is equal to m \ Tso 0 Outside Ay, visits uf)\ and v{)\ and is entirely contained in

Ao

‘In the case . Let M* > |B,(0,¢*)|. M} + 1 such that
LM =1, MY)) > 0. (3.C.3)
Consider the pattern B = (A, u?, v*, A") defined as follows:
o A= B, (0,0").
o ul = —(e; and v = Pey.
e Let m¢ be a path from u™ to v such that:

— my is a self-avoiding path.
— 7 does not visit any vertex in A except u® and v¥.

— 7y visits u) and v} and the portion of 7y between these two vertices, denoted by
s, is entirely contained in Ay.

— 7p \ 7y does not take any edge of A,.
Then A" is the event such that:

— Ay n{Ve € Ay, T(e) < M{}} occurs,

— for all e belonging to 7 \ 77, we have T'(e) < M,

— for all e which does not belong to A U Ag Uy, T'(e) € (M™ — 1, M),
— for all e € 9A, T(e) > M™.

We get that B satisfies [(AF-1)| [((AF-2)| [(AF-3)| and |[(AF-4), Furthermore,

« Ao CAby B.CI).
o P(A%) is positive by (3.C.2) and (3.C.3), and then B is a valid pattern.
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« On A*, any path from u® to v* optimal for the passage time among the paths entirely
inside A contains a subpath from u} to v} entirely inside Aq. Indeed, let 7 be a path
from u* to v which does not contain a subpath from u” to v* entirely inside Aq.
Since ¢ is a self-avoiding path, it implies that 7 takes an edge whose time is greater
than M* — 1 > |A|.M. But we have T(rf) < |A|.M} < T(w) and thus 7 is not
an optimal path. Hence, for every optimal path =, if a vertex v € Z¢ satisfies the
condition (m;By), x satisfies the condition (;B).

o A* C A) by the definition of A*.
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Etude des géodésiques en percolation de premier passage

Résumé

La these porte sur les géodésiques en percolation de premier passage. On se place sur le graphe Z% et on considére
une famille de variables aléatoires positives, indépendantes et identiquement distribuées indexées par ’ensemble des
arétes, appelées temps de passage. On définit le temps de tout chemin fini comme la somme du temps de passage
de chacune de ses arétes. Les géodésiques sont alors les chemins de temps minimaux. On s’intéresse a la question
suivante. Considérons une propriété locale de ’environnement des temps de passage. On appelle cela un motif.
Combien de fois une géodésique emprunte un translaté de ce motif?

Sans hypotheése de moment sur la loi des temps de passage, et en autorisant un atome en l'infini, on montre
que pour un motif donné, en dehors d’un événement de probabilité exponentiellement faible en la distance entre
les extrémités des géodésiques, le nombre de translatés de ce motif empruntés par les géodésiques est linéaire en la
distance entre les extrémités. On donne également quelques applications de ce résultat.

Mots clés : Percolation de premier passage; Géodésiques.

Abstract

The thesis focuses on geodesics in first-passage percolation. We consider the graph Z¢ and a family of nonneg-
ative, independent, and identically distributed random variables indexed by the set of edges, called passage times.
The time of a finite path is defined as the sum of the passage times of each of its edges. Geodesics are then the paths
with minimal time. We are interested in the following question. Consider a local property of the time environment.
We call it a pattern. How many times does a geodesic cross a translate of this pattern?

Without assuming any moment assumption on the distribution of passage times and with possibly infinite
passage times, it is shown that, apart from an event with exponentially small probability in the distance between
the geodesic endpoints, the number of translates of the pattern crossed by the geodesics is linear in the distance
between the endpoints. Some applications of this result are also provided.

Keywords: First-passage percolation; Geodesics
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