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1 Introduction

De nos jours, de plus en plus de données sont collectées dans tous les domaines tels
que l’administration publique, la finance, le commerce et la médecine. La capac-
ité d’analyser ces ensembles de données peut améliorer les produits d’assurance,
fournir un avantage concurrentiel pour un service commercial et des connais-
sances nouvelles pour les chercheurs. Cependant, dans de nombreuses situations,
toutes les informations nécessaires à l’analyse peuvent ne pas être contenues dans
une seule base de données, tandis que la collecte de variables supplémentaires
est fastidieuse, longue et coûteuse. Le couplage d’enregistrements, aussi appelé
appariement de données, est un processus qui consiste à combiner des données
provenant de différentes bases et se rapportant à la même entité. C’est une méth-
ode très utilisée pour enrichir, mettre à jour ou améliorer les informations stockées
dans des bases de données, pour étudier la relation entre des variables provenant de
différentes sources, ou encore pour éliminer les doublons dans une base de données.

Avec la disponibilité croissante de grandes bases de données sur les soins de santé
provenant par exemple de sources administratives, la demande pour que ces bases
soient fusionnées est également en augmentation, avec pour objectif d’améliorer
les systèmes de santé. Par exemple, GETBO (Groupe d’Etude de la Thrombose de
Bretagne Occidentale) est un registre des cas de thromboembolie veineuse (VTE)
survenues entre 2013 et 2015 à Brest (France). Dans ce registre ne sont enregistrés
que les informations démographiques de chaque patient (date de naissance, sexe,
code de résidence) ainsi que quelques dates et types d’actes médicaux. Ces infor-
mations sont insuffisantes pour construire un modèle d’analyse tel qu’un modèle de
prédiction permettant d’identifier précocement les VTE symptomatiques (Noboa
et al., 2006). Le Système National des Données de Santé (SNDS) français collecte
tous les dossiers de santé longitudinaux et les informations d’assurance pour la
plus grande partie de la population française (Bezin et al., 2017). Les données du
SNDS peuvent être utilisées pour enrichir le registre, ce qui devrait permettre aux
chercheurs d’acquérir des connaissances nouvelles et précieuses. Cela nous motive
à relier les données GETBO et les données SNDS afin de pouvoir obtenir plus
d’informations médicales sur les patients pour l’analyse souhaitée.

1



Chapter 1. Introduction

Le processus d’appariement est simple si nous pouvons accéder aux identifiants
uniques des patients. Cependant, l’utilisation de cet identifiant peut ne pas être
autorisée pour des raisons éthiques, ou un tel identifiant peut simplement ne pas
être disponible. Par conséquent, nous pouvons uniquement utiliser d’autres iden-
tifiants partiels qui sont communs à ces bases de données, tels que le sexe, le
code postal ou les dates des traitements médicaux, pour identifier les paires ap-
pariées des deux bases de données. Ces variables sont souvent appelées variables
d’appariement. Deux approches courantes pour l’appariement des données sont les
méthodes déterministe et probabiliste de couplage d’enregistrements. Les méth-
odes déterministes exigent que toutes les variables d’appariement d’une paire ap-
pariée soient les mêmes. Bien que cette approche soit rapide et facile à mettre en
œuvre, un grand nombre de paires appariées peuvent être manquées si des iden-
tifiants uniques ne sont pas disponibles et s’il y a des erreurs dans les données
d’appariement. Dans ce contexte, le processus de couplage probabiliste des enreg-
istrements s’avère être une approche intéressante (Zhu et al., 2015). Elle vise à
fournir à chaque paire d’enregistrements un score ou une probabilité de correspon-
dance. Fellegi and Sunter (1969) ont proposé un cadre mathématique qui est à
la base de la plupart des méthodes de couplage probabiliste d’enregistrements,
aujourd’hui encore. Dans ce cadre, nous calculons les scores de concordance
pour toutes les paires d’enregistrements candidats sur la base de leurs vecteurs
de comparaison. Le vecteur de comparaison d’une paire d’enregistrements est un
vecteur binaire qui ne prend en compte que l’accord ou le désaccord des variables
d’appariement.

1.1 Extension du modèle d’appariement de

Fellegi-Sunter à des données mixtes -

Application au SNDS

Bien que cette méthode soit largement utilisée et développée depuis plusieurs dé-
cennies, la comparaison binaire présente certaines limites. Tout d’abord, la simple
comparaison binaire ne suffit pas à rendre compte des caractéristiques des vari-
ables d’appariement à faible prévalence, comme les codes de diagnostic de cancer
(Hejblum et al., 2019). Par exemple, deux patients atteints tous deux d’un cancer
du poumon auront probablement plus de chances d’être appariés que deux patients
sans cancer. Cependant, la comparaison binaire conduit à la même probabilité de
correspondance pour les deux cas. Deuxièmement, cette comparaison binaire n’est
pas en mesure de tenir compte des tolérances dans les variables d’appariement con-
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tinues, telles que le retard dans la date des traitements déclarés dans différents
secteurs en raison de la procédure administrative. Ce sont les types de variables
d’appariement les plus courants dans les données de santé ainsi que dans les bases
de données GETBO ou SNDS.

Par conséquent, nous avons étendu le modèle de Fellegi-Sunter de manière à
ce qu’il soit plus performant pour l’utilisation de différents types de variables
d’appariement pour identifier les paires d’enregistrements. Deux approches de
comparaison sont proposées. Pour les variables d’enregistrements catégorielles à
faible prévalence, l’approche de comparaison proposée permet de distinguer la con-
cordance des valeurs de faible prévalence avec les autres. Pour les variables de cor-
respondance continues, la fonction de comparaison proposée peut tenir compte de
décalages. Parallèlement à la comparaison proposée, la distribution hurdle gamma
est pour la première fois utilisée pour modéliser des valeurs de comparaison con-
tinues. Les simulations montrent que le modèle étendu est plus performant que
le modèle standard dans la plupart des scénarios. Ce modèle permet d’améliorer
l’appariement entre les bases de données GETBO et SNDS. Il s’agit de la première
contribution de la thèse.

Contributions du Chapitre:

• Extension du modèle de couplage d’enregistrements de Fellegi-
Sunter pour des variables d’appariement de différents types.

• Deux nouvelles approches de comparaison pour des variables
d’appariement catégorielles à faible prévalence (par exemple, code
de diagnostic), et pour des variables d’appariement continues (par
exemple, date des actes médicaux).

• Utilisation d’une distribution "hurdle gamma" pour modéliser des
valeurs de comparaison continues.

• Application aux bases de données GETBO et SNDS.

1.2 Régression de Cox avec des données appariées

Dans la plupart des applications, le but du couplage d’enregistrements est d’obtenir
un ensemble de données pour réaliser une analyse statistique. Dans certains cas,
le couplage et l’analyse sont faites par la même équipe de personnes, et toute
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l’information sur l’appariement est disponible et peut être utilisée dans l’analyse
statistique. On parle alors d’analyse primaire ("primary analysis") du fichier de
données apparié. Dans d’autres cas, l’appariement est confié à un tiers de confi-
ance, et les équipes réalisant l’analyse statistique n’ont qu’une connaissance lim-
itée du processus d’appariement, et en particulier les variables d’appariement ne
sont pas connues. On parle alors d’analyse secondaire ("secondary analysis") du
fichier de données apparié. Dans le cas d’une analyse secondaire, si des identifiants
uniques ne sont pas accessibles et si les variables d’appariement contiennent des
erreurs, alors les faux liens sont presque inévitables, quelles que soient les méth-
odes d’appariement. Par conséquent, les analystes secondaires qui travaillent avec
des données appariées doivent être conscients de ces erreurs et choisir une stratégie
d’analyse appropriée.

Neter et al. (1965) ont insisté sur les risques possibles de biais liés aux erreurs
d’appariement, qui sont de deux types : les faux liens et les liens manqués. Les
faux liens sont des enregistrements considérés comme liés, alors qu’ils ne se réfèrent
pas réellement à la même entité. Les liens manqués sont des enregistrements qui
se réfèrent à la même entité, mais qui ne sont identifiés comme étant liés lors
de l’appariement. De nombreux auteurs (e.g. Lahiri and Larsen, 2005; Cham-
bers, 2009; Zhang and Tuoto, 2021; Chambers et al., 2022) se sont penchés sur
ce problème et ont proposé différentes méthodes pour tenir compte de ces erreurs
de liaison. Cependant, elles sont principalement conçues pour les modèles de ré-
gression linéaire et logistique. Dans la recherche médicale, le modèle à risques
proportionnels de Cox (1972) est l’un des plus utilisés pour étudier la relation
entre des variables et une durée de vie. Cependant, dans la littérature, l’étude
de l’effet du taux de faux liens dans l’estimation de la régression de Cox n’a pas
suscité un grand intérêt.

S’il n’y a pas d’erreurs de couplage, l’estimation des coefficients du modèle de
régression de Cox est simple et approximativement sans biais (Andersen and Gill,
1982). Cepndant, des simulations montrent qu’un petit taux d’erreurs de liai-
son peut entraîner une estimation biaisée des paramètres du modèle de Cox. En
adoptant le modèle d’erreur de liaison hit-miss (Copas and Hilton, 1990), nous
avons proposé une équation estimante ajustée pour la régression de Cox avec des
données appariées. Ce modèle permet de corriger le biais de l’approche naïve qui
ignore les erreurs dues aux faux liens. Nous proposons également un estimateur
de variance pour le coefficient de régression estimé. Cet estimateur de variance
permet de capturer l’ensemble de la variabilité, y compris celle due aux erreurs de
liaion. Il s’agit de la deuxième contribution de cette thèse.
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Contributions du Chapitre:

• Une équation estimante permettant d’obtenir une estimation sans
biais des paramètres du modèle de Cox, en utilisant des données
appariées.

• Un estimateur de variance pour ces paramètres estimés tenant
compte des trois sources de variabilité :

– la variabilité (usuelle) associée à la résolution d’une équation
estimante basée sur un échantillon,

– la variabilité associée au processus d’appariement,

– la variabilité associée à l’estimation des vraies probabilités de
couplage.

1.3 Plan de la thèse

Nous venons de présenter un bref aperçu des deux principales contributions de
cette thèse ainsi que leurs motivations. Nous consacrons le chapitre 2 à la re-
vue des méthodes d’appariement probabiliste d’enregistrements et à l’analyse de
données appariées proposées dans la littérature. Tout d’abord, nous décrirons un
processus général d’appariements d’enregistrements. Ensuite, nous présentons le
cadre fondamental de l’appariement probabiliste d’enregistrements de Fellegi and
Sunter (1969) et le développement de ce modèle dans la littérature. Ensuite, nous
examinons deux modèles courants pour les erreurs d’appariement, et la manière
dont les analystes les utilisent pour améliorer l’analyse de données appariées. Ce
chapitre se termine par les préliminaires de l’analyse de survie et le modèle des
risques proportionnels de Cox. Dans le chapitre 3, nous présentons la première
contribution : "Extending the Fellegi-Sunter record linkage model for mixed-type
data with application to the French national health data system". La deuxième
contribution : "Cox regression with linked data" est présentée dans le chapitre 4.
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Nos travaux de thèse ont donné lieu à deux articles et conférences dont:
Articles

✍ T.H. Vo, V. Garès, L-C. Zhang, A. Happe, E. Oger, S. Paquelet, G. Chauvet.
Cox regression with linked data, Under review at Statistics in Medicine,
2022.

✍ T.H. Vo, G. Chauvet, A. Happe, E. Oger, S. Paquelet, V. Garès. Extending
the Fellegi-Sunter record linkage model for mixed-type data with application
to the French national health data system, Computational Statistics & Data
Analysis, 2022.

Conférences

☞ T.H. Vo, V. Garès, A. Happe, E. Oger, S. Paquelet, G. Chauvet. Cox re-
gression with linked data. The 43rd Annual Conference of the International
Society for Clinical Biostatistics (ISCB). Newcastle upon Tyne, UK, 21-25
August 2022.

☞ T.H. Vo, V. Garès, A. Happe, E. Oger, S. Paquelet, G. Chauvet. Cox
regression with linked data. Les 53èmes Journées de Statistique. Lyon,
France, 13-17 June 2022.

☞ T.H. Vo, G. Chauvet, A. Happe, E. Oger, S. Paquelet, V. Garès. An exten-
sion of Fellegi-Sunter record linkage model for mixed-type data with appli-
cation to SNDS. The 42rd Annual Conference of the International Society
for Clinical Biostatistics (ISCB). Lyon, France, 18-22 July 2021.

☞ T.H. Vo, G. Chauvet, A. Happe, E. Oger, S. Paquelet, V. Garès. An ex-
tension of Fellegi-Sunter record linkage model for mixed-type data with ap-
plication to SNDS. Les 52èmes Journées de Statistique. Nice, France, 7-11
June 2021.
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Introduction (English version)

We are living in an era where data are collected everywhere and in every field, such
as public administration, finance, commercial and medical fields. The ability of
analyzing these datasets can improve insurance products, providing a competitive
edge for a commercial service and novel knowledge for researchers. However, in
many situations, a single dataset may not contain all necessary information for
analysis, while collecting data on additional variables is burdensome, time consum-
ing, and costly. Record linkage, a.k.a data matching, is a process of combining
data from different databases that refer to the same entity. It is widely performed
in order to enrich, update or improve the information stored in different sources,
to study the relationship among variables reported in different sources, and to
eliminate duplicates within a data frame, for example.

With increasing availability of large health care databases derived from adminis-
trative and other sources, scientists and healthcare workers increasingly demand
for the successful linking of these databases, to provide rich sources of data for
analysis and improve the healthcare systems. For example, the GETBO project
(Groupe d’Étude de la Thrombose de Bretagne Occidentale) is a registry of ve-
nous thromboembolism (VTE) cases between 2013 and 2015 in Brest, France.
This project only recorded the demographic information for each patient (date of
birth, gender, residency code) along with some dates and types of medical acts.
These informations are not sufficient to build an analysis model such as a pre-
diction model which can early identify symptomatic VTE (Noboa et al., 2006).
The French Système National des Données de Santé (SNDS) is the national health
data system which collects all the longitudinal health records and insurance in-
formation of most of French population (Bezin et al., 2017). The valuable data
in SNDS can be used to enrich the registry, which is expected to lead to valuable
knowledge for researchers. This motivates us to link the GETBO and SNDS so
that we can get more medical information for GETBO patients for the desired
statistical analyses.

The record linkage process is straightforward if we can access to the unique iden-
tifiers of the patients. However, it is often not allowed due to ethical reasons. In
such situation, we can only use other partial identifiers which are common to both
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databases (e.g., gender, postal code or dates of medical treatments) to identify
matched pairs from the two databases. These variables are often referred to as
matching variables. The deterministic and the probabilistic method are two com-
mon approaches for record linkage. The deterministic methods requires that all
matching variables of a matched pair are the same. Although this approach is fast
and easy to carry out, a large amount of matched pairs can be missed if unique
identifiers are unavailable and if there are some errors in the matching variables.
In this context, the probabilistic record linkage approach is preferable (Zhu et al.,
2015). This approach aims at providing each record pair with a matching score
or a probability of matching. Fellegi and Sunter (1969) proposed a mathemati-
cal framework which laid the foundation for most of probabilistic record linkage
methods even today. This framework enables to compute the matching scores for
all candidate record pairs, based on their comparison vectors. The comparison
vector of a record pair is a binary vector which only accounts for the agreement
or disagreement of matching variables.

1.4 Extending the Fellegi-Sunter record linkage

model with application to SNDS

Although the Fellegi-Sunter method has been widely used over the last decades,
the binary comparison has some limits. Firstly, the simple binary comparison is
not sufficient to account for the characteristics of low prevalence matching vari-
ables such as cancer diagnosis codes (Hejblum et al., 2019). For example, two
patients which both have lung cancer are more likely to match than two patients
without cancer. However, the binary comparison leads to the same matching prob-
ability for the two cases. Secondly, this binary comparison is not able to account
for tolerances in the continuous matching variables, such as the delay in the date
of treatments reported in different sectors due to administrative process. These
are the common types of matching variables in health data as well as in GETBO
and SNDS.

Therefore, we have extended the Fellegi-Sunter model to account for various types
of matching variables for the identification of matched pairs. Two comparison
approaches are proposed. For low prevalence categorical matching variables, we
propose to distinguish the agreement of low prevalence values with others. For
continuous matching variables, the proposed method enables to account for pos-
sible fluctuations. Along with the comparison proposed, the mixture of hurdle
gamma distributions is, for the first time, used to model the continuous compari-
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son values. Simulations show that the extended model outperforms the standard
model in most scenarios. The improvement of this model in application of linking
SNDS and GETBO has been recognized. This is the first contribution of the PhD
thesis.

Contributions of the Chapter:

• Extending the Fellegi-Sunter record linkage model for mixed-type
comparison values.

• Two novel comparison approaches for low prevalence categorical
matching variables (e.g. diagnosis code) and continuous matching
variables (e.g. date of medical acts).

• Using the mixture of hurdle gamma distributions to model the con-
tinuous comparison values.

• Application in SNDS and GETBO.

1.5 Cox regression with linked data

In most applications, the ultimate goal of record linkage is to obtain a linked
dataset for a statistical analysis. In some cases, the persons performing the record
linkage and the analysis may be the same, which is referred to as primary analy-
sis. In other cases, the record linkage is performed by a trusted third party, and
the person performing the statistical analysis has a limited knowledge about the
record linkage. Since matching variables are likely to contain errors, false links are
inevitable, regardless of the record linkage method used. This may enduce some
bias in the analysis. Therefore, the secondary analysts should be aware of linkage
errors, and choose a suitable strategy to avoid biased estimators.

Neter et al. (1965) first raise awareness of possible biases caused by linkage er-
rors (false links or missed links). A false link corresponds to a couple of record
identified as a match, while the two records actually do not refer to the same
entity. A missed link corresponds to a couple of records which is not identified
as a match, while the two records actually refer to the same entity. Many au-
thors (e.g. Scheuren and Winkler, 1993, 1997; Lahiri and Larsen, 2005; Chambers,
2009; Zhang and Tuoto, 2021; Chambers et al., 2022) have considered this problem
and have proposed different methods to deal with linkage errors. However, these
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methods are mostly designed for linear and logistic regression models. In medical
research, the Cox proportional hazard model (Cox, 1972) is one of the most used
to study the relationship between covariates and time-to-event data. However,
there has not been much interest in the literature in studying the effect of false
links on Cox regression estimation.

If there is no linkage errors, the estimation for coefficients of the Cox regression
model is straightforward and approximately unbiased (Andersen and Gill, 1982).
However, some simulations results show that even a small amount of linkage errors
can lead to biased estimators of the parameters of the Cox model. By adopting
the hit-miss linkage error model (Copas and Hilton, 1990), we propose an adjusted
estimating equation for Cox regression with linked data. This model corrects the
bias obtained under the naive approach which ignores the linkage errors. An
approximately unbiased variance estimator for the adjusted estimators of Cox re-
gression coefficients is also proposed. This is the second contribution of this thesis.

Contributions of the Chapter:

• A bias-corrected estimating equation for Cox regression analysis
with linked data.

• A variance estimator for the adjusted estimation of Cox regression
coefficients accounts for three sources of variability:

– the (usual) variability associated to solving a sample-based es-
timating equation.

– the variability associated to the linkage process.

– the variability associated to the estimation of the true linkage
probabilities.

1.6 Plan of the thesis

We devote Chapter 2 to the review of probabilistic record linkage methods, and
to the analysis of linked data in the literature. Firstly, a general record linkage
process is described. Then we present the fundamental probabilistic record link-
age framework of Fellegi and Sunter (1969), and the development of this model
in literature. After that, we consider two common linkage errors models, and we
explain how the analysts use them to improve the analysis of linked data. This
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chapter ends with the preliminaries of survival analysis and Cox proportional haz-
ard model. In Chapter 3, we present our first contribution, entitled "Extending
the Fellegi-Sunter record linkage model for mixed-type data with application to
the French national health data system". The second contribution, entitled "Cox
regression with linked data", is presented in Chapter 4.

This thesis has contributed for 2 articles and 4 oral presentations at the confer-
ences:

Articles

✍ T.H. Vo, V. Garès, L-C. Zhang, A. Happe, E. Oger, S. Paquelet, G. Chauvet.
Cox regression with linked data, Under review at Statistics in Medicine,
2022.

✍ T.H. Vo, G. Chauvet, A. Happe, E. Oger, S. Paquelet, V. Garès. Extending
the Fellegi-Sunter record linkage model for mixed-type data with application
to the French national health data system, Computational Statistics & Data
Analysis, 2022.

Conferences

☞ T.H. Vo, V. Garès, A. Happe, E. Oger, S. Paquelet, G. Chauvet. Cox re-
gression with linked data. The 43rd Annual Conference of the International
Society for Clinical Biostatistics (ISCB). Newcastle upon Tyne, UK, 21-25
August 2022.

☞ T.H. Vo, V. Garès, A. Happe, E. Oger, S. Paquelet, G. Chauvet. Cox
regression with linked data. Les 53èmes Journées de Statistique. Lyon,
France, 13-17 June 2022.

☞ T.H. Vo, G. Chauvet, A. Happe, E. Oger, S. Paquelet, V. Garès. An exten-
sion of Fellegi-Sunter record linkage model for mixed-type data with appli-
cation to SNDS. The 42rd Annual Conference of the International Society
for Clinical Biostatistics (ISCB). Lyon, France, 18-22 July 2021.

☞ T.H. Vo, G. Chauvet, A. Happe, E. Oger, S. Paquelet, V. Garès. An ex-
tension of Fellegi-Sunter record linkage model for mixed-type data with ap-
plication to SNDS. Les 52èmes Journées de Statistique. Nice, France, 7-11
June 2021.
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2.1 Record linkage

Record linkage is the process of combining information about an individual, event
or object in one or more databases. There exists several kinds of linkage algo-
rithms, among which deterministic record linkage and probabilistic record linkage
are two basic approaches. They both use available common information between
databases such as name, age and postal code to identify matched pairs. The
variables which are used for linking process are called matching variables. In de-
terministic record linkage, a pair of records is classified as a link if the two records
agree exactly on some or all selected matching fields according to specified rule.
Such methods are often applied when high discriminating matching variables are
available with good quality. For example, deterministic linkage may be attempted
using Social Security Number (SSN) for linking people. Since the SSNs may con-
tain errors, one can use additional identifiers such as last name and date of birth
to avoid incorrect links (see Grannis et al., 2002; Mao et al., 2019). However, due
to confidentiality reasons, such identifiers are often unavailable for researchers.

Compared with the deterministic approach, the probabilistic record linkage only
deems a record pair with certain probability of matching. This method can solve
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problems caused by bad quality data, and can be helpful when no identifier infor-
mation is available. It is more accurate with low quality data, while deterministic
linkage is a comparable and faster method with high quality data (see Zhu et al.,
2015). For example, Avoundjian et al. (2020) obtained better recalls (i.e., sen-
sitivity, proportion of true matches identified by the method) with probabilistic
linkage, and comparable results in terms of precision (i.e., positive predictive value,
proportion of matches identified by the algorithm that were true matches) than
with deterministic linkage. In some cases, depending on the aims of the whole link-
age project, the deterministic and the probabilistic approaches can be combined
in a two-step process (e.g. Larsen and Herning, 2023). Firstly, the deterministic
method can be performed on the high quality variables. The probabilistic ap-
proach is then applied on the remaining individuals, which have not been linked
during the first step (e.g. K Taylor et al., 2014).

In this thesis, we are interested in probabilistic record linkage. In Section 2.1.1,
we describe a standard process of a record linkage problem. Then, a fundamental
probabilistic record linkage model will be summarized in Section 2.1.2.

2.1.1 A general record linkage process

In general, there are five major steps in a record linkage process (Christen, 2012):
data pre-processing, indexing (blocking), record pair comparison, record pair clas-
sification and evaluation of matching quality.

Data pre-processing

ID Last name Date of birth Gender Postal code
Lung

cancer

Annual

income ($)

a1 Martin 04/07/1990 Male 35000 0 42000

a2 Robert 06/08/1992 Female 35170 1 30000

a3 Richard 05/03/1993 Male 35510 0 32000

a4 Michel 08/03/1993 Male 35510 0 48000

a5 Robert 07/04/1990 Female 35170 0 60000

(a) Database A

ID Last name Date of birth Gender Postal code
Lung

cancer
Education

b1 Simon 02 September 1993 F 35510 No Doctoral

b2 Martin 04 July 1990 M 35170 No Master

b3 Robern 07 August 1992 F 35170 Yes Bachelor

(b) Database B

Table 2.1: An example of two raw databases

Databases which need to be linked often come from different sources. Therefore,
they can have different designs or different type of errors, since matching variables
may have different formats. To fix ideas, two small databases sharing information
on last name, date of birth, gender and lung cancer with different formats are
presented in Table 2.1. There is also information of income observed only in
Database A and Education observed only in Database B. A researcher who is
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interested in the relation between education and income is motivated to link these
two databases.

Therefore, the first step in a record linkage process is pre-processing, which assures
that data have a well-defined structure and the same format. This is a crucial step
for an efficient record linkage. This step includes, for instance, converting dates
into the same format, or removing unexpected punctuation and letters for string
variables. Christen (2012) introduced various data cleaning and standardisation
techniques for different types of matching variables. The databases A and B after
a pre-procesing step are presented in Table 2.1.

ID Last name Date of birth Gender Postal code
Lung

cancer

Annual

income ($)

a1 Martin 04/07/1990 1 35000 0 42000

a2 Robert 06/08/1992 0 35170 1 30000

a3 Richard 05/03/1993 1 35510 0 32000

a4 Michel 08/03/1993 1 35510 0 48000

a5 Robert 07/04/1990 0 35170 0 60000

(a) Database A

ID Last name Date of birth Gender Postal code
Lung

cancer
Education

b1 Simon 02/09/1993 0 35510 0 Doctoral

b2 Martin 04/07/1990 1 35170 0 Master

b3 Robern 07/08/1992 0 35170 1 Bachelor

(b) Database B

Table 2.2: Two databases after pre-processing to obtain the same formats for the
common variables

Indexing or blocking

The second step is called indexing. It aims to reduce the number of record pairs
that need to be compared afterwards, by removing pairs that are unlikely matches.
At the same time, all record pairs that possibly correspond to true matches need
to be kept for future evaluation. Potentially, all record pairs from two datasets
are considered as matched candidates. However, this leads to a huge number of
record pair comparison which is often impracticable. For example, matching two
databases containing respectively 1 000 and 1 000 000 records results in 1 000 ×
1 000 000 = 109 possible record pair comparisons. There are various indexing
techniques. One of the most common indexing techniques is called blocking. It
consists in separating both files in blocks, according to the values of some so-called
blocking variables. In this case, records are considered as matched candidates
only if they belong to the same block (see Herzog et al., 2007; Christen, 2012). In
the previous example from Table 2.1, we consider the postal code as a blocking
variable. The candidate pairs are therefore:
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Candidate pairs Postal code

(a3, b1), (a4, b1) 35510

(a2, b2), (a2, b3), (a5, b2), (a5, b3) 35170

Table 2.3: Candidate record pairs for matching two databases in Table 2.2 if the
postal code is used as a blocking key

If we choose a different blocking key such as the gender, we obtain a different set
of candidate pairs as shown in Table 2.4. Overall, the numbers of candidate record
pairs in Table 2.3 (6 pairs) or Table 2.4 (7 pairs) are all much smaller than the
total number of possible pairs (15 pairs).

Candidate pairs Gender

(a1, b2), (a3, b2), (a4, b2) 1

(a2, b1), (a2, b3), (a5, b1), (a5, b3) 0

Table 2.4: Candidate record pairs for matching two databases in Table 2.2 if the
gender is the blocking key

However, blocking is a trade-off between the computation tile and the rate of
false non-matches (i.e., the rate of true matched pairs which are classified as non-
links). Indeed, records which disagree on the blocking keys are inside different
blocks and are therefore automatically classified as non-links. Therefore, blocking
fields should have high quality and contain a large number of possible values. It
is also helpful that the blocking variables are distributed as uniformly as possible
(Herzog et al., 2007).

Record pair comparison

In the third step, which is called record pair comparison, several attributes called
matching variables are compared in detail for each candidate record pair remain-
ing after the indexing step. The matching variables (which need to be chosen
by the practitioner) contain the information that is in common between the two
databases, such as the last name, the date of birth or the gender. A vector of
comparison values is generated for each record pair. The set of all comparison
vectors is our new working data (e.g. Table 2.5), where classification techniques
will be applied to find matched and unmatched pairs.

The matching variables are of various types, depending on the application under
consideration. They can be string fields such as last name, first name and ad-
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dress; binary fields such as gender or disease presence; categorical fields such as
postal code, code of hospital initial care; dates and numerical attributes, such as
the date of treatment effects or salary. Each type of matching variables requires
specific comparison methods. The most common method is a 0-1 comparison,
considering only 1 for exact agreement and 0 for disagreement. However, even
if matching variables have been cleaned and standardized, they may still contain
errors, causing true matched pairs to have different attribute values. In the exam-
ple presented in Table 2.1, the records a2 and b3 are likely to correspond to the
same entity, but there is a slight difference on both the last name and the date
of birth. Therefore, it is essential to introduce some similarity measures between
comparison fields, instead of conducting matching in case of exact agreement only.

For string variables, there are various similarity measures such as the Levenshtein
edit distance, or the Jaro and Winkler string comparison (Herzog et al., 2007).
Some surveys have been conducted to evaluate the performances of these metrics
(Yancey, 2005; Snae, 2007). Generally, these similarities return a value between
0 and 1, indicating how similar the strings are (1 standing for exact agreement,
and 0 for total disagreement). For example, let s = sim(s1, s2) be the Jaro string
comparator metric defined as follows

s(s1, s2) = W1 ·
c

L1

+W2 ·
c

L2

+Wt ·
c− τ

c
(2.1)

where

• L1, L2 are the lengths of the first and second string, respectively,

• W1,W2 are some weights assigned to the first and second string, respectively,

• c is the number of characters that these two strings have in common. Two
characters from s1 and s2 respectively, are considered common only if they
are the same and not farther than max(L1,L2)

2
− 1,

• Wt is some weight assigned to the transposition,

• τ is the number of common characters which are transposed.

It is required that the weights sum to 1 (W1+W2+Wt = 1). We define s(s1, s2) = 0

if c = 0, i.e. if the two strings have no character in common.

For example, if we take W1 = W2 = Wt = 1/3 and s1 = ”Robert”, s2 = ”Robetrn”,
we have

s(s1, s2) =
1

3

6

6
+

1

3

6

7
+

1

3

6− 2

6
≈ 0.84.
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The similarity values are then often categorized into a pre-defined number of
similarity levels (Winkler, 1990; Enamorado et al., 2019). For example, if we
choose 0.85 as a cutoff, then a similarity value of two strings larger than 0.85 will
be equal to 1, and to 0 otherwise. Other approaches are also possible for calculating
similarities between numerical values such as salaries, expenses (Christen, 2012).

Last name Date of birth Gender Postal code Lung cancer

γ11 0 0 0 0 1

γ12 1 1 1 0 1

γ13 0 0 0 0 0
...

...
...

...
...

...

γ51 0 0 1 0 1

γ52 0 0 0 1 1

γ53 1 0 1 1 0

Table 2.5: A comparison matrix for the two databases presented in Table 2.2 using
Jaro metric with a 0.85 cutoff for the last name and exact comparison
for the other matching variables

Record pair classification

Once the candidate pairs have been compared, we aim to classify them into two
or three classes: matches, non-matches and possible matches, which depends on
the linkage model (Fellegi and Sunter, 1969; Herzog et al., 2007). The first class
contains record pairs that are predicted to refer to the same entity. In the second
class, the two records in a pair are assumed not to refer to the same entity. If
candidate record pairs have been classified as possible matches, they require an
additional manual review to decide their final status (matches or non-matches).
The classification step is mainly based on the comparison vectors that are gen-
erated in the comparison step. In general, the more similar two records are, the
more reasonable they refer to the same real-world entity.

Over the past eight decades (Dunn, 1946), there have been various classifica-
tion techniques developed for record linkage including supervised, unsupervised
or semi-supervised approaches (Christen, 2012). When the candidate record pairs
only need to be classified into matches and non-matches, we can consider this
classification as a binary classification problem. If some training data are avail-
able under the form of record pairs with their true status (match or non-match),
a supervised classification method can use them to train a classification model.
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Then, this trained model is used to classify the remaining record pairs with un-
known status. For example, one can mention two popular supervised classification
techniques which have been applied in the field of record linkage: support vector
machines (Bilenko and Mooney, 2003; Christen, 2008), and decision trees (Cochin-
wala et al., 2001).

Since training data are rarely available and are expensive to obtain, unsupervised
methods which do not require the training data are the most preferable in practice.
Fellegi and Sunter (1969) first proposed a probabilistic record linkage framework
which can be employed as an unsupervised method. This model provides each
candidate record pair with a matching score or a probability of matching which
are also helpful for the analysis of linked data (Lahiri and Larsen, 2005). Since
this model is widely used in applications and fundamental for most of probabilistic
record linkage methods, we study it with more details in the next section. Besides,
Larsen and Rubin (2001) suggested some clerical reviews and then re-estimating
latent class model parameters.

Software and packages API GUI Link Dedup
Supervised

learning

Unsupervised

learning

Active

learning

Atylmo PySpark No Yes Yes ? ? ?

Dedupe Python No Yes Yes Yes No Yes

fastLink R No Yes ? No Yes No

FEBRL Python Yes Yes Yes No No No

FRIL Java Yes Yes No ? Yes No

FuzzyMatcher Python No Yes No No Yes No

JedAI Java Yes Yes ? Yes ? ?

PRIL SQL No Yes ? ? ? ?

Python Record Linkage Toolkit Python No Yes Yes Yes Yes No

RecordLinkage R No Yes Yes Yes Yes No

RecLin2 R ? Yes Yes Yes No No

RELAIS No Yes Yes ? ? Yes No

ReMaDDer No Yes Yes Yes No Yes No

RLTK Python No Yes Yes Yes No No

Splink PySpark No Yes Yes No Yes No

Table 2.6: List of freely available and open source data matching software and
packages. The ? indicate for Unknown information (https://github.
com/J535D165/data-matching-software/).

In practice, there are various software/packages which were developed for imple-
menting record linkage. A comprehensive list of open source and freely software
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and packages for data matching is available at: https://github.com/J535D165/
data-matching-software/, and is attached in Table 2.6. The list provides a
dense overview of data matching software properties: Application Programming
Interface (API), Graphical User Interface (GUI), Linking, Deduplication, and
the implemented record linkage approaches (Supervised Learning, Unsupervised
Learning and Active Learning). In addition, some national statistical agencies
have developed their own specialized record linkage and data editing systems such
as Big Match1 from U.S. Census Bureau , CAN LINK2 from Statistics Canada

Evaluation of matching quality

Finally, we need to evaluate the linkage quality. We introduce four indicators
which are commonly used to evaluate the performance of a binary classifier. Note
that these indicators may be exactly computed only if the true matches are known.

• True positives (TP): These are record pairs which are predicted as matches
and which are indeed true matches.

• True negatives (TN): These are record pairs which are predicted as non-
matches and which are indeed non-matches.

• False positives (FP): these are record pairs which are predicted as matches
while they are actually non-matches.

• False negatives (FN): these are record pairs which are predicted as non-
matches while they are actually matches.

A 2 × 2 table reporting the numbers for each of these four categories is called a
confusion matrix, as shown in Table 2.7.

Predicted status

Total

(Matches + Non-matches)
Matches Non-matches

A
ct

ua
ls

ta
tu

s

Matches
True matches

(True positives: TP)

False non-matches

(False negatives: FN)

Non-matches
False matches

(False positives: FP)

True non-matches

(True negatives: TN)

Table 2.7: Confusion matrix for the outcome of the classification of record pairs

1https://www.census.gov/library/working-papers/2002/adrm/rrc2002-01.html
2https://www150.statcan.gc.ca/n1/en/catalogue/10H0036
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Based on the confusion matrix, there are different evaluation criteria which can
be calculated to assess the performance of the classification (Christen, 2012). Some
common measures are:

• Accuracy (ACC): this is the proportion of pairs which are correctly predicted,
computed as

ACC =
TP + TN

Total
.

• True negative rate (TNR): this is the proportion of non-matches which are
correctly predicted as such. It is calculated as

TNR =
TN

TN + FP
=

True Predicted Non-matches
True Non-matches

.

It is commonly referred to as specificity in medical fields.

• True positive rate (TPR): this is the proportion of matches which are cor-
rectly predicted as such. It is calculated as

TPR =
TP

TP + FN
=

True Predicted Matches
True Matches

.

This measure is also known as the recall, or sensitivity in epidemiological
studies.

• Positive predictive value (PPV): this is the proportion of predicted matches
which are indeed matches. It is commonly used in medical literature and is
calculated as

PPV =
TP

TP + FP
=

True Predicted Matches
Predicted Matches

• F-score: it is defined as the harmonic mean of the TPR and the PPV, and
is calculated as

F-score =
(λ2 + 1)× PPV × TPR

λ2TPR + PPV
.

where λ is a value defined by the user, which is related to the importance of
TPR over PPV in the harmonic mean (Dusetzina et al., 2014). If we wish
to assign equal weight to TPR and PPV, then λ = 1.

The accuracy is not only widely used for binary classification problems, but also
for multi-classes problems. However, it is usually effective when the classes are
balanced, i.e. when the numbers of units per class are approximately the same.
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In the record linkage problems, since the vast majority of record pairs are non-
matches, the matches and non-matches are extremely imbalanced even if indexing
or blocking is applied.

For example, let us consider a matching problem where two databases A and B

have 100 and 1, 000 individuals respectively, which leads to 100, 000 possible record
pairs. Assume that blocking is applied and leads to the decrease of the number
of candidate record pairs to 10, 000, among which there are 100 true matches
and 9, 900 true non-matches. Now, assume that the linkage method classified 120

record pairs as matches but that among them 70 pairs only are truly matches.
Consequently:

TP = 70, FP = 50, TN = 9850 and FN = 30.

Then, the accuracy is calculated as ACC = 70+9850
10 000

= 99.2% which is very
good. Similarly to the accuracy, the true negative rate is also dominated by
true negatives (true non-matches). For instance, we obtain a true negative rate of
TNR = 9850

9900
≈ 99.5% for the above example. Thus, Christen and Goiser (2007)

argued that linkage quality measures which include the true negatives (such as
the accuracy and the true negative rate) are skewed and not suitable to evaluate
a data matching method.

In record linkage problems, since we aim to find records that belong to the same
entities, we are only interested in matches. Thus the TPR and PPV, which are
not influenced by the domination of true negatives, are most commonly used to
assess the matching quality (Grannis et al., 2003; Hejblum et al., 2019). While the
TPR is calculated as the proportion of true matches which are correctly classified,
the PPV is a measure of how often predicted matches are truly matches. In the
above example, though accuracy and true negative rate are extremely high, the
true positive rate is only TPR = 70

100
= 70%, and the positive predictive value is

only PPV = 70
120

≈ 58.3% only. This means that we are able to find only 70%

of the true matched pairs, and that 58.3% of pairs classified by the algorithm as
matches are indeed true matches.

Depending on the objectives of each problem, investigators may focus on different
criteria. If they study a rare disease, they may want to emphasize true positive
rate to maximize the sample size, while a researcher studying a more frequently
occurring disease may seek to emphasize PPV to ensure that matches identified by
the linkage methods are true matches. However, those who wish to maximise true
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positive rate may increase their false positives, which leads to a smaller positive
predictive value. The F-score can be considered as a trade-off between TPR and
PPV. What are acceptable values for these measures depends on the context of
the study. However, a good linkage algorithm is expected to have TPR, PPV, and
F-score larger than 95 % (Dusetzina et al., 2014).

Knowing which pairs are indeed matches is rarely possible in practice. In some
cases, a dataset where the matching status is known under reasonable conditions
is available. It can therefore be used to evaluate the record linkage methods: this
is referred to as a gold standard. For example, it can be obtained by a clerical
review, but this is usually an expensive approach. Blakely and Salmond (2002)
proposed a method to estimate the PPV when a gold standard is not feasible,
assuming that there is only one match per record. Although there are some public
data sources of data which are created to evaluate record linkage methods, there
are some limitations such as their small size and the fact that these data are quite
specific (Christen, 2012). Therefore, to evaluate and compare different methods
in this work, synthetic datasets for which the true match status is known will be
generated. These data will be generated so as to mimic as closely as possible real
data where the methods are applied. In particular, the artificial data will match
the real data in terms of types of variables, and frequencies for their modalities.

2.1.2 Fellegi-Sunter record linkage framework

Fellegi and Sunter (1969) proposed a framework which laid a mathematical foun-
dation for many probabilistic record linkage methods, and has been widely used
until today. Under this framework, all possible realizations in the comparison space
are fitted by a mixture model of two classes, namely Matches and Non-matches.
They are then ranked with respect to a defined matching score which is small
(resp., large) for pattern more compatible with non-matches (resp., matches).
Two thresholds are then defined to partition the records into three classes: those
predicted as matches (link), those predicted as non-matches (non link), and those
which remain undecided (possible link). The partition is defined so as to respect
predetermined error levels, and so as to minimize the number of undecided record
pairs.

Formally, let ai, i = 1, . . . , nA and bj, j = 1, . . . , nB be nA and nB elements of two
databases A and B, respectively. We assume that some elements are common to
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A and B. The product space

A×B = {(a, b); a ∈ A, b ∈ B)

is the union of two disjoint sets

M = {(a, b); a = b, a ∈ A, b ∈ B} (2.2)

and
U = {(a, b); a ̸= b, a ∈ A, b ∈ B} (2.3)

which we call the true Matched and true Unmatched sets, respectively.

Let K be the number of matching variables and XA,i = (X1
A,i, . . . , X

K
A,i), i =

1, . . . , nA be the records of nA individuals in A, XB,j = (X1
B,j, . . . , X

K
B,j), j =

1, . . . , nB be the records of nB individuals in B. We define the comparison vector
for each pair of individuals (ai, bj) as a vector function of (XA,i,XB,j):

γij =
{
γ1ij, . . . , γ

k
ij, . . . , γ

K
ij

}
, (2.4)

where γkij = hk(Xk
A,i, X

k
B,j) and hk is a comparison function for the k−th matching

variable. The set of all possible realizations of γ is called the comparison space
and is denoted by Γ.

In some cases, the comparison vectors may not be computed for some records, due
to missing data in matching variables. In such cases, one can choose to ignore or
eliminate the corresponding records. Although this is the most simple approach,
it fails to take advantage of other available data to match records. Another com-
mon approach assumes that if one of the two records being compared is missing,
the comparison value for this variable could be an agreement or disagreement de-
pending on each application. For example, if Xk

A,i = "Male" and Xk
B,j is missing,

one can assign γkij = 1 for agreement or γkij = 0 for disagreement, which should
be carefully decided depending on the application. If the amount of missing data
is significant, more advanced techniques should be used to improve the linkage
performance (Harron et al., 2015). For example, Ong et al. (2014) proposed three
novel methods which are weight redistribution, distance imputation, and linkage
expansion to improve record linkage performance in the presence of missing link-
age data. In this work, unless explicitly specified, possible missing data problems
are ignored.
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Considering all candidate record pairs, Fellegi and Sunter (1969) proposed to order
them with respect to a matching score, defined as

wij =
P [γij ∈ Γ|(ai, bj) ∈M ]

P [γij ∈ Γ|(ai, bj) ∈ U ]
. (2.5)

This ratio is large for values of γ that are found frequently among matches, but are
rarely found among non-matches. This corresponds to record pairs that primarily
consists of agreements in γ. It follows that these record pairs are more likely
designated as matches. On the other hand, record pairs which mainly consist of
disagreements have small matching scores, and are therefore reasonably designated
as non-matches. Instead of using the matching score, other authors (Larsen and
Rubin, 2001) consider the posterior probability of matching. It is defined as

qij = P [(ai, bj) ∈M |γij ∈ Γ] .

It follows that,

qij =
P [γij ∈ Γ|(ai, bj) ∈M ]P(M)

P [γij ∈ Γ|(ai, bj) ∈M ]P(M) + P [γij ∈ Γ|(ai, bj) ∈ U ] [1− P(M)]
(2.6)

=
wijP(M)

wijP(M) + [1− P(M)]
= 1− 1− P(M)

wijP(M) + [1− P(M)]
.

Therefore, qij is increasing with wij and it is equivalent to rank the record pairs
by the matching scores or by the posterior probabilities.

In order to partition the records into three assignment classes, Fellegi and Sunter
(1969) proposed an optimal decision rule which is as follows:

(ai, bj) is designated as a link if Tµ ≤ wij,
(ai, bj) is designated as a possible link if Tλ ≤ wij < Tµ,

(ai, bj) is designated as a non-link if wij < Tλ,

where Tµ and Tλ are two thresholds. They are determined by two given error
bounds: the rate of false matches µ, and the rate of false non-matches λ. For
more details on the construction of these thresholds, see Fellegi and Sunter (1969).
This rule is optimal in the sense that it minimizes the number of units which are
undecided (i.e. possible links) for given values of µ and λ. This seems a rea-
sonable approach, since in applications handling the set of possible links would
require expensive manual reviews. However, various simplifying assumptions are
usually involved in the estimation of wij or qij, and may lead to estimation errors.
The optimality may therefore not be attained in practice (Belin and Rubin, 1995;
Binette and Steorts, 2022).
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Because it is usually difficult and expensive to conduct some manual review to
make a decision for possible links, other practitioners consider only two assign-
ment classes (links or non-links). In such case, a single threshold needs to be
determined (Grannis et al., 2003). In some cases, each individual in a database
is expected to have at most one match in another database, which is known as
one-to-one matching. For example, suppose that database A corresponds to a
cohort sample, where each patient is unique and therefore with a single record.
Each patient in the cohort can therefore match at most one patient from database
B. In such cases, using a threshold can not guarantee for the one-one matching.
If the optimal score is not demanded, a simple approach is to sort all candidate
pairs according to their estimated posterior probabilities of matching, and to select
matched pairs in a greedy approach (Christen, 2012). At each step, the greedy
algorithm selects candidate record pairs with highest matching weights/matching
probabilities, until no more un-assigned records can be matched. To optimize the
sum of matching weights/matching probabilities, Jaro (1989) proposed a linear
sum assignment problem.

We explain briefly the principles of the linear assignment problem. Formally,
let W = (wij)nA×nB

(respectively, Q = (qij)nA×nB
) be the matrix containing the

matching scores (respectively, the posterior probabilities) of matching for all pairs.
The problem may be formulated as

max
l

nA∑
i=1

nB∑
j=1

wijlij or max
l

nA∑
i=1

nB∑
j=1

qijlij

under the nA + nB constrains:

nB∑
j=1

lij ≤ 1 for i = 1, . . . , nA,

nA∑
i=1

lij ≤ 1 for j = 1, . . . , nB,

where lij is an indicator variable, equal to 1 if (ai, bj) is designated as a link and
to 0 otherwise.

The most important step in a probabilistic record linkage procedure consists in esti-
mating the probabilities P [γij ∈ Γ|(ai, bj) ∈M ] ,P [γij ∈ Γ|(ai, bj) ∈ U ] and P(M),
see equation (2.5). The optimal property of Fellegi and Sunter’s method heavily
depends on the accuracy of the estimates of these matching parameters. In a
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basic probabilistic record linkage approach when exact comparisons only are con-
sidered (binary values, 1 for exactly agreement and 0 for disagreement), there will
be 2K different patterns for the comparison vector γ. For example, the possible
comparison vectors for K = 3 matching variables are (0, 0, 0) (all disagreements),
(0, 0, 1), (0, 1, 0), (1, 0, 0) (agree on 1 variable), (0, 1, 1), (1, 0, 1), (1, 1, 0) (agree on 2
variables) and (1, 1, 1) (all agreements). Thus, the number of parameters that need
to be estimated (2K) may be impracticable if the number of matching variables
K is appreciable and if the databases are of moderate size. For ease of computa-
tion, it is usually assumed that the comparison patterns of matching variables are
conditionally independent (Fellegi and Sunter, 1969; Herzog et al., 2007; Sayers
et al., 2015), namely:

P [γij ∈ Γ|(ai, bj) ∈M ] =
K∏
k=1

P
[
γkij|(ai, bj) ∈M

]
, (2.7)

P [γij ∈ Γ|(ai, bj) ∈ U ] =
K∏
k=1

P
[
γkij|(ai, bj) ∈ U

]
. (2.8)

In applications, it is possible to have some dependencies between matching vari-
ables. For example, records that have the same postal code are more likely to have
the same street name. However, the method showed that a good matching quality
can be achieved even though the conditional independence assumption is probably
invalid in practice (Herzog et al., 2007; Sayers et al., 2015). Some authors proposed
an extension of the model to allow for dependencies between matching variables
(e.g. Larsen and Rubin, 2001; Schürle, 2005; Sadinle, 2017; Daggy et al., 2014),
and Xu et al. (2019) investigated the implications of this assumption through a
simulation study.

Under this assumption, 2K + 1 parameters only need to be estimated for the
binary comparison approach, namely:

mk ≡ P
[
γkij = 1|(ai, bj) ∈M

]
, k = 1, . . . , K,

uk ≡ P
[
γkij = 1|(ai, bj) ∈M

]
, k = 1, . . . , K, (2.9)

and pM ≡ P(M).

Fellegi and Sunter (1969) proposed two methods for the estimation of these pa-
rameters. The first approach considers detailed comparison vectors which involves
both an agreement or disagreement of matching variable and a value of the match-
ing variable in the case of an agreement. For example, "agreement on first name
and the name is John". This was originally designed for simple realizations of
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γ such as list of names. The method requires the frequency distribution of the
matching variable and prior information about error rates to estimate m and u.
For general matching variables, the authors proposed a second approach consid-
ering binary comparison. They provided formulas to estimate all parameters in a
particular case of only three matching variables.

Winkler (1988) extended the above estimation methods by proposing an unsuper-
vised approach using the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977; Wu, 1983). It has now become widely used in most probabilistic record
linkage methods. The EM algorithm is a widely used probabilistic algorithm for
obtaining maximum likelihood estimates of unknown parameters under a latent
class model. Given an observed dataset with a missing variable g, and a model
for the incomplete data characterized by a parameter set θ, the fundamental goal
of EM is to determine θ such that the probability P(γ, g|θ) is maximized. In case
of record linkage, the observed dataset corresponds to the set of all comparison
vectors γ, the missing variable g corresponds to the vector with the true match or
non-match statuses, the parameters to be estimated are given in equation 2.9. The
EM algorithm makes use of an initial set of parameters θ to calculate an expected
likelihood in the expectation step, providing estimates for the missing values. In
the maximization step, the expectation is maximized with respect to θ. The E
and M steps are repeated until convergence. More formally, at the (t + 1) − th

iteration of the EM algorithm:

• E-step: the conditional expectation Eg|γ,θ(t) {lnP(γ, g|θ)} is determined,

• M-step: some value θ̂(t+1) maximizing the conditional expectation is deter-
mined.

Generally, the convergence is ensured because the likelihood is guaranteed to be
non-decreasing at each iteration (McLachlan and Krishnan, 1996).

In the context of record linkage, because there are two classes (Matches and Un-
matches) in the comparison space Γ, the distribution of the comparison vectors γ
is assumed to follow a mixture model

P(γ) = P(γ|M)P(γ ∈M) + P(γ|U) [1− P(γ ∈M)] . (2.10)

The construction of the likelihood function requires the crucial assumption that
all comparison vectors in Γ are independent. This assumption of independence
usually does not hold in practice (Binette and Steorts, 2022). A counterexam-
ple is given by Tancredi and Liseo (2015): after comparing record pairs (a1, b1),
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(a1, b2) and (a2, b1), the result for the comparison between a2 and b2 is often al-
ready known. Despite that, this assumption is widely used in most probabilistic
record linkage models, and may provide acceptable results in practice. To avoid
this assumption, Zhang and Tuoto (2020) have proposed a maximum entropy clas-
sification for record linkage.

Let

gij =

1 if (ai, bj) ∈M,

0 if (ai, bj) ∈ U,

be a binary variable indicating whether the record is a true match or not. This
is a latent variable, since this information is unknown. Under the assumption of
independence between all comparison vectors, the full likelihood and the associated
log likelihood may be written as follows:

L(g,γ|m,u, pM) =

nA∏
i=1

nB∏
j=1

[P(γij|M)pM ]gij [P(γij|U)(1− pM)]1−gij , (2.11)

where m = (m1, ...,mK) and u = (u1, ..., uK). Then,

ln [L(g,γ|m,u, pM)] =

nA∑
i=1

nB∑
j=1

gij ln [P(γij|M)pM ] + (1− gij) ln [P(γij|U)(1− pM)]

=

nA∑
i=1

nB∑
j=1

gij ln [P(γij|M)] +

nA∑
i=1

nB∑
j=1

(1− gij) ln [P(γij|U)]

+

nA∑
i=1

nB∑
j=1

gij ln (pM) + (1− gij) ln(1− pM).

(2.12)

The first step in the implementation of the EM algorithm is to define initial es-
timates of the unknown parameters m,u and pM . The initial values for these
parameters are often chosen by experience, depending on the linkage context and
the data quality. For example, in the simulation study by Grannis et al. (2003),
initial values for all mk, uk and p equal to 0.9, 0.1 and 0.5, respectively, were cho-
sen. From here, the expectation (E) step, followed in turn by the maximization
(M) step is implemented repeatedly, until the algorithm produces estimates that
attain the desired tolerance. Because this is an iterative method, the algorithm
may also stop when it attains a maximum number of iterations. For example, we
can define a tolerance ϵ > 0 (e.g., ϵ = 10−6) and stop the EM algorithm if the
relative difference between estimated parameters from two successive steps is less
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than ϵ, i.e.
∣∣∣θ(t+1)

i − θ
(t)
i

∣∣∣ / ∣∣∣θ(t)i

∣∣∣ < ϵ for all parameters θi ∈ θ.

In the expectation step, the EM algorithm wishes to find the estimates for the
unknown values gij. The expectation of gij is

E (gij|γij) = P [(ai, bj) ∈M |γij] =
P(γij|M)P(M)

P(γij|M)P(M) + P(γij|U)P(U)
. (2.13)

From the conditional independence assumption between comparison fields (see
equations 2.7 and 2.8), the EM algorithm replaces unknown parameters in (2.13)
with their estimator at the current step, leading to

ĝij =
p̂M
∏K

k=1 (m̂
k)

γk
ij(1− m̂k)1−γk

ij

p̂M
∏K

k=1 (m̂
k)γ

k
ij(1− m̂k)1−γk

ij + (1− p̂M)
∏K

k=1 (û
k)γ

k
ij(1− ûk)1−γk

ij

.

For the maximization step, we find the maximum likelihood estimates for the log-
likelihood function (2.12) where the value of latent variables is obtained from the
expectation step. The estimates may be written as follows:

m̂k =

∑nA

i=1

∑nB

j=1 ĝijγ
k
ij∑nA

i=1

∑nB

j=1 ĝij
, (2.14)

ûk =

∑nA

i=1

∑nB

j=1(1− ĝij)γ
k
ij∑nA

i=1

∑nB

j=1(1− ĝij)
, (2.15)

p̂ =

∑nA

i=1

∑nB

j=1 ĝij

nAnB

. (2.16)

Once all parameters are estimated, the matching weights or the posterior proba-
bilities of matching for all record pairs q̂ij are computed from (2.6), and applied
for linking decision. For analysis of linked data, the estimated matching proba-
bility matrix Q̂ = (q̂ij) can be helpful to reduce the bias in analysis models, such
as linear or logistic regression (Lahiri and Larsen, 2005; Hof and Zwinderman,
2012; Chambers, 2009; Kim and Chambers, 2012c). An introduction to the way
by which the matching probabilities may be used in analysis models is presented
in Section 2.2.

2.2 Statistical analysis with linked data

In case of record linkage, because of the unavailability of unique identifiers and
since the matching variables are likely to contain errors, linkage errors are un-
avoidable, regardless of record linkage methods. There are two types of linkage
errors (Harron et al., 2015):
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• Missed links: a true matched pair fails to be identified by the record linkage
method. This may occur when there are errors in matching variables (e.g.,
typographical errors or missing data) which prevent records from agreeing.

• False links: a false matched pair is linked erroneously. This may occur when
the matching variables are not sufficiently distinguishable (e.g., different
individuals sharing the same gender, year of birth and postal code).

Neter et al. (1965) first raised awareness of substantial bias in response error anal-
ysis, which may be caused even by a small amount of incorrect links. It is therefore
important to account for linkage errors in a statistical analysis.

Suppose that we are interested in analyzing the relationship between a response
variable Y and a set of covariates X, while Y and X are stored in two separate
databases A and B, respectively. Since the true pairs (Yi,Xi) are not observable,
a record linkage process is needed to obtain data pairs for analysis. We note
(Zi,Xi) the linked pairs obtained from the record linkage step. While the objec-
tive of record linkage is to obtain Zi = Yi, this may not occur in some cases due to
linkage errors. For the sake of simplicity, suppose that the two databases have the
same size nA = nB = n, and have no duplicates. Also, suppose that the linkage is
complete (i.e., all the units are linked) in a one-to-one matching.

There are two common positions for analysis of linked data: the primary analysis
and the secondary analysis. In the primary analysis, the analysts can access to
both linked data and information on the linking process. In the secondary analysis,
they can access only to the linked data. In what follows, we review works on these
two kinds of analysis, along with two corresponding linkage error models. We end
with describing the Cox regression model in the context of linked data.

2.2.1 The primary analysis

In a primary analysis, people can not only access to the linked data, but also to
some information about the record linkage process (matching variables, estimated
matching probabilities, ...). Based on the knowledge of the record linkage process,
Scheuren and Winkler (1993) proposed a linkage error model where

Zi =

Yi with probability qii,

Yj with probability qij for j ̸= i = 1, . . . , n,
(2.17)

with
∑n

j=1 qij = 1 for any i = 1, . . . , n. This model allows the probability of
being a true match to vary across record pairs. Depending on the available in-
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formation about the record linkage process, specific assumptions can be made to
facilitate the estimation of qij. For example, Scheuren and Winkler (1993) as-
sumed that qij only depends on its matching weight wij. This matching weight
can be transformed to estimate the probabilities qij by using a two-class Gaussian
mixture model proposed by Belin and Rubin (1995). However, the transformation
requires a clerical-review sample, which is not always available. Lahiri and Larsen
(2005) simplify the estimation of qij by assuming that the matching probability of
a record pair depends only on its comparison vector, which can be obtained from
probabilistic record linkage methods.

Consider the following linear regression model:

Yi = X⊤
i β + ϵi, i =, . . . , n (2.18)

where Xi = (X1
i , . . . , X

p
i )

⊤ is a column vector of p known covariates and β is a
column vector of p unknown regression coefficients. In addition, we assume that
E(ϵi) = 0,Var(ϵi) = σ2 and Cov(ϵi, ϵj) = 0 for i ̸= j = 1, . . . , n. Because the true
pairs (Yi,Xi) are unknown, we observe only (Zi,Xi) where Zi is a proxy value
for Yi, obtained from the record linkage process. The naive ordinary least squares
estimator for β, which ignores the linkage errors, is obtained as:

β̂naive = (X⊤X)−1X⊤Z. (2.19)

This naive estimation may be seriously biased if the linkage is not perfect (Neter
et al., 1965). Under a primary analysis with the linkage error model (2.17),
Scheuren and Winkler (1993, 1997) proposed an unbiased estimator for β by ad-
justing the bias of the naive estimator (2.19). Lahiri and Larsen (2005) have
adopted the approach of Scheuren and Winkler (1993), and proposed an exact
unbiased estimator, assuming that linkage errors depends only on the comparison
vectors. The estimator of the vector of regression coefficients is:

β̂LL =
(
X⊤Q⊤QX

)−1
X⊤Q⊤Z, (2.20)

where X = (X1, . . . ,Xn)
⊤ is an n×p matrix, Z = (Z1, . . . , Zn)

⊤ and Q = (qij)n×n

is a matrix of matching probabilities obtained from the Fellegi-Sunter record link-
age model. A variance estimation for β̂LL needs to capture both the variability
of sample estimation and also the variability in estimating Q. Lahiri and Larsen
(2005) proposed a bootstrap procedure for that. Hof and Zwinderman (2012)
extended the method by Lahiri and Larsen (2005) for linked data obtained from
more than two sources, and also proposed alternative estimators based on weighted
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least square methods, both for linear and logistic regression models. Recently, Han
and Lahiri (2019) adapted the approach by Lahiri and Larsen (2005) for a more
practical scenario when nA ≤ nB. They provide a system of estimating equations
which may lead to unbiased estimators for a generalized linear model.

2.2.2 The secondary analysis

In a secondary analysis, the analysis step is separated from the record linkage
because matching variables often contain confidential information. The linkage is
carried out by an independent team, often referred to as a Trusted Third Party.
Thus, the data analyst can access only to the linked data, and no information on
the matching variables is available. In addition to the complete and one-to-one
matching assumptions, Chambers (2009) assumed that records in two databases
A and B can be partitioned error-free into V distinct blocks, and that the linkage
errors only occur within blocks. For each block v = 1, . . . , V , Chambers (2009)
proposed the exchangeable linkage errors (ELE) model as

Zi =

Yi with probability αv

Yj with probability 1−αv

nv−1
for j ̸= i = 1, . . . , nv,

(2.21)

where nv is the number of individuals in block v. In practice, we need access to
a random audit sample to estimate αv for each block. In this audit sample, we
know whether the predicted links are correct or not. Under a secondary analysis,
due to the unavailability of information on the record linkage, the non-informative
linkage assumption is usually required. In linear and logistic regression models,
this assumption states that the linkage are independent of Y , conditionally on X.
Formally, for any units belonging to block v, let lij, i, j = 1, . . . , nv be an indicator
variable, which is equal to 1 if units i and j are linked, and to 0 otherwise. Then,

E(Zi|X) = E

(
nv∑
j=1

lijYj|X

)

=
nv∑
j=1

E(lij|X)E(Yj|X) (2.22)

Chambers (2009) proposed an approach of correcting estimating functions for
linkage error. In this approach, we estimate the p-vector of unknown parameters
β by solving a p-dimensional unbiased estimating equation:

H(β) = 0, (2.23)
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where H(β) is a function of observed data such that

E(H(β0)|X) = 0, (2.24)

with β0 the true value of β. Under appropriate smoothness conditions, the es-
timator β̂ obtained by solving equation (2.24) is approximately unbiased for β0.
Indeed, from a one-term Taylor expansion around β0, we have

H(β̂) ≈ H(β0) +
∂H(β0)

∂β
(β̂ − β0) = 0. (2.25)

Assuming that ∂H(β0)
∂β

is of full rank, it follows that

β̂ − β0 ≈ −
(
∂H(β0)

∂β

)−1

H(β0), (2.26)

and therefore from equation (2.24)

E(β̂ − β0|X) ≈ −
(
∂H(β0)

∂β

)−1

E(H(β0)|X) = 0. (2.27)

In addition, we obtain from equation (2.26) that

Var(β̂|X) ≈
(
∂H(β0)

∂β

)−1

Var(H(β0)|X)

[(
∂H(β0)

∂β

)−1
]⊤

.

We can therefore obtain a sandwich variance estimator for β̂, given as

V̂(β̂) =

(
∂H(β̂)

∂β

)−1

V̂(H(β̂)|X)

(∂H(β̂)

∂β

)−1
⊤

, (2.28)

where V̂(H(β̂)|X) is usually a plug-in estimate of Var(H(β0)|X), i.e. Var(H(β0)|X)

evaluated at β0 = β̂ (Chambers, 2009; Kim and Chambers, 2012c).

In his work, Chambers (2009) considered a typical form of H(β) as:

H(β) =
n∑

i=1

Gi(β) [Yi − fi(β)]

=
V∑

v=1

nv∑
i=1

Gi(β) [Yi − fi(β)] , (2.29)

where fi(β0) = E(Yi|Xi) and Gi(β) is a p-vector function of Xi and β, but not Yi.
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Clearly, this is a unbiased estimating equation for β0. Although fi is arbitrary,
the linear and logistic regression are of interest to the author.

In the context of secondary analysis for linked data, we can only observe the linked
value Zi instead of the true value Yi. If we treat Zi as if it was correctly linked, a
naive estimating equation can be defined by simply replacing Yi in (2.29) with Zi

as follows:

Hnaive(β) =
V∑

v=1

nv∑
i=1

Gi(β) [Zi − fi(β)] . (2.30)

Then,

E [Hnaive(β0)|X] =
V∑

v=1

nv∑
i=1

Gi(β0)E

[
nv∑
j=1

lijYj − fi(β0) | X

]
.

Under the non-informative linkage assumption (2.22) and the linkage error model
(2.21), we have

E [Hnaive(β0)|X] =
V∑

v=1

nv∑
i=1

Gi(β0)

[
nv∑
j=1

E(lij|X)E(Yj|X)− fi(β0)

]

=
V∑

v=1

nv∑
i=1

Gi(β0)

[
αvE(Yi|X) +

nv∑
j ̸=i,j=1

1− αv

nv − 1
E(Yj|X)− fi(β0)

]

=
V∑

v=1

nv∑
i=1

Gi(β0)

[
(αv − 1)fi(β0) +

nv∑
j ̸=i,j=1

1− αv

nv − 1
fj(β0)

]
,

which differs from 0 if there are linkage errors, i.e. αv < 1. Therefore, the use of
the naive estimating equation may lead to biased estimation. Given the value of
αv, Chambers (2009) proposed an adjusted estimating equation which can correct
for this bias. The equation is defined as:

Hadj(β) = Hnaive(β)−
V∑

v=1

nv∑
i=1

Gi(β)

[
(αv − 1)fi(β) +

nv∑
j ̸=i,j=1

1− αv

nv − 1
fj(β)

]

=
V∑

v=1

nv∑
i=1

Gi(β)

[
Zi −

(
αvfi(β) +

1− αv

nv − 1

nv∑
j ̸=i,j=1

fj(β)

)]
. (2.31)

In practice, suitable forms of G(β) and fi(β) would be defined depending on each
application model. For example, for the linear regression model, we have fi(β) =
XT

i β and by setting Gi(β) by an adjustment Gi,adj(β) =
(
G1

i,adj, . . . , G
p
i,adj

)⊤
where Gk

i,adj = αvX
k
i + 1−αv

nv−1

∑nv

j ̸=i,j=1X
k
j for k = 1, . . . , p, the adjusted estimating
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equation would lead to the same unbiased estimator as (2.20) of Lahiri and Larsen
(2005). This approach can also be applied on logistic regression models.

Following this work, Kim and Chambers (2012c,b) developed methods for multi-
ple databases linkage and incomplete matching space. Chambers and Kim (2015)
reviewed recent developments for the inference on linear or logistic regression pa-
rameters, using linked data. Chambers et al. (2019) studied the domain estimation
under informative linkage context. Chambers and Diniz da Silva (2020) provided
an empirical study of the effect of linkage errors in secondary analysis of linked
data and new estimation methods which allow for linkage errors under the ELE
framework. Recently, Zhang and Tuoto (2020) proposed a pseudo ordinary least
square method for secondary linkage-data linear regression analysis, which can
accommodate heterogeneous linkage errors and incomplete match space problem.
Chambers et al. (2022) provided the robust inferences for linked data.

2.2.3 Cox regression analysis with linked data

The Cox proportional hazard model

Survival data, a.k.a. time-to-event data, is a common type of outcome in epidemi-
ological and clinical studies. The Cox proportional hazard model (Cox, 1972) is
the most popular method to assess the effect of covariates (e.g., age, gender or
blood pressure) on the survival time. For example, this may be the duration of
treatment until death. Survival data also occur in a variety of fields, such as the
duration of unemployment for active people, or the duration until failure of an
electronic device. An example of survival data in medical studies is presented in
Table 2.8. The dataset registered survival time (expressed in days) of patients with
lung cancer from different institution (inst) of the North Central Cancer Treat-
ment Group. There are also informations about age (in years), Gender (Male =
1, Female = 2), calories consumed at meals (meal.cal), weight loss in the last six
months (wt.loss) and different performance scores such that ECOG (ph.ecog,
equal to 0 if the patient is asymptomatic, 1 if the patient is symptomatic but
completely ambulatory, 2 if the patient is in bed < 50% of the day, 3 if the patient
is in bed > 50% of the day but not bed bound, 4 if the patient is bed bound),
Karnofsky performance score rated by a physician (ph.karno, from 0 (bad) to 100

(good)) and rated by the patient (pat.karno). Researchers may be interested in
the relationship between the survival time and these covariates, in order to im-
prove patients’ healthcare.

A typical characteristic of survival data is censoring. Due to time or financial
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id inst time status age gender ph.ecog ph.karno pat.karno meal.cal wt.loss

1 3 306 2 74 1 1 90 100 1175 NA

2 3 455 2 68 1 0 90 90 1225 15

3 3 1010 1 56 1 0 90 90 NA 15

4 5 210 2 57 1 1 90 60 1150 11

5 1 883 2 60 1 0 100 90 NA 0

6 12 1022 1 74 1 1 50 80 513 0
...

...
...

...
...

...
...

...
...

...
...

Table 2.8: Survival duration time (in days) of 228 patients with lung cancer from
the North Central Cancer Treatment Group. Source: Loprinzi et al.
(1994)

constraints, data are usually collected over a finite time period. This means that
we can only observe the exact survival time for the subjects for which the event
of interest occurs during the follow-up period. For the other subjects, we obtain
so-called censored observations. For example, in Table 2.8, the status variable is
equal to 1 if the patient is censored, and to 2 if the patient is dead. There are three
major types of censoring: right, left and interval censoring. The most common
type of censoring is right censoring, i.e. when we only know that the event happens
posterior to the observed time. This may occur when a patient drops out or is lost
to follow-up before the end of the study (e.g. patient 4 in Figure 2.1), or when a
patient is event free during the observation period (e.g. patient 3 in Figure 2.1).
In contrast to right censoring, an observation is left censoring if the true survival
time is less than or equal to the observed time. A typical example for this situation
is the virus testing, e.g. the testing of virus SARS-CoV-2 which caused COVID
19 pandemic. If an individual gets positive results, we can only know that they
are exposed to the disease before the recorded time, which is the time of testing.
However, suppose that the individual had the first test with negative results at
time t1, and was recorded positive at the second test of time t2. In this case, we
may know that the individual was exposed to the virus between t1 and t2, but
we do not know the exact time of the disease. This case is referred to as interval
censoring. Censored observations still provide partial information on the event
time, which differs from missing observations. Ignoring this information implies
bias in the inference.

Let T̃ denote a non-negative random variable, which stands for the duration be-
tween a time origin and the time of occurrence of some event of interest. It is
assumed to be right censored: we observe the event only if it occurs before a
certain time C. Suppose that we have a random sample of n observations, with
T̃i and Ci the latent survival time and the censoring time for unit i. For units
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Figure 2.1: Example of right censoring observations (Patient 3 and 4)

i = 1, . . . , n, we observe only the censored time Ti = min(T̃i, Ci) and the non-
censoring indicator δi = 1{T̃i≤Ci}, where 1 is the indicator function. The vector

of covariates is denoted as Xi = (X1
i , . . . , X

p
i )

T .

According to the Cox model, the conditional hazard function of an event at time
t is given by

λ(t|Xi) = lim
dt→0

P{t ≤ T < t+ dt | T ≥ t}
dt

= λ0(t) exp
(
XT

i β
)
, (2.32)

where β = (β1, . . . , βp)
T is a vector of p × 1 unknown parameters, and λ0(t) is a

common baseline hazard function which can be interpreted as the hazard function
for subjects with X = 0. The baseline hazard function can take any shape as a
function of t, but needs to be non-negative.

For any values X0 and X1 for the vector of covariates, the hazard ratio

λ (t | X1)

λ (t | X0)
=
λ0(t)e

XT
1 β

λ0(t)e
XT

0 β
0

= e(X1−X0)
Tβ, for all t ≥ 0

is constant over time, hence the proportional hazard model denomination. In
clinical trials, hazard ratios are often used to compare survival times of two differ-
ent groups. For example, consider two groups differ only in treatment condition,
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a hazard ratio of 2 means that a group has two times the probability that the
event occurs, as compared to the comparison group. For continuous explanatory
variable, the hazard ratio indicates the change in risk of event when this variable
increases by 1 unit assuming all other covariates are fixed. For example, the risk
of death if the patient is one year older given all other conditions are the same.
Assume that the data are observed on a finite interval, and that C is indepen-
dent of T̃ conditionally on X. An estimator of β may be obtained by solving the
estimating equation (Hu and Lin, 2002):

H0(β) ≡
1

n

n∑
i=1

δi

{
Xi −

∑n
j=1 Yj(Ti) exp

(
XT

j β
)
Xj∑n

j=1 Yj(Ti) exp
(
XT

j β
) }

= 0, (2.33)

where Yj(t) = 1(Ti≥t) is an at-risk indicator. We call (2.33) the theoretical esti-
mating equation. This is also the partial likelihood score equation (Andersen and
Gill, 1982). Since there is no closed-form solution, the Newton-Raphson algorithm
is often used to solve this equation (Dennis and Schnabel, 1996).

Under some mild assumptions, the estimator β̂ obtained by solving equation (2.33)
is consistent and asymptotically normal (see Andersen and Gill, 1982). This is also
the maximum partial likelihood (mpl) estimation. A consistent estimator of the
covariance matrix of β̂ is given by

V̂mpl(β̂) =
{
−n∇H0(β̂)

}−1

, (2.34)

see Andersen and Gill (1982).

Cox regression analysis with linked data

Although the Cox model has become the most used model for modeling the re-
lationship of covariates to a survival outcome, there have been very few research
works on using this model with linked data. Baldi et al. (2010) performed a simu-
lation study emphasizing that incomplete record linkage is potentially leading to
inefficient and biased estimation for parameters of Cox regression model, particu-
larly in presence of medium or small sample sizes. However, there is no solution
suggested.

Under the primary analysis situation, Hof et al. (2017) proposed a joint model-
ing for survival analysis and probabilistic record linkage framework of Fellegi and
Sunter (1969). In their article, they considered a scenario under which the time-
to-event variable has been registered in one database for a set of individuals, and
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the covariates needed for modelling are registered in a separate database. These
two databases also have some common partially identifying variables, which are
used for matching purpose. In a two-stage approach, the set of matching indica-
tors is firstly estimated by a record linkage method in which the probability of a
match is assumed to depend only on the comparison vectors. After that, we fit
the survival model to the linked data. In this approach, any errors in the first
stage may lead to biased estimates in the regression model. Unlike this two-stage
model, Hof et al. (2017) proposed a joint likelihood for both record linkage and
survival model, which allows the matching distribution to depend on both the co-
variates and the time-to-event data. Simulation results show that the joint model
gives unbiased regression parameter estimates for a Poisson process, with a good
coverage of the confidence interval. However, their proposed variance estimation
should be used as an acceptable approximation. A formal proof for the asymptotic
normality remains challenging.

In other situations, where access to the partially identifying variables is restricted
due to confidential issues, it is essential that the two stages are separated and
performed by independent teams. In this case, the joint model of Hof et al. (2017)
can not be applied. In Chapter 4, we propose a method to account for linkage
errors in Cox regression model from this secondary analysis position.
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3 Extending the Fellegi-Sunter
record linkage model for
mixed-type data with application
to the French national health
data system

Probabilistic record linkage is a process of combining data from different sources,
when such data refer to common entities and identifying information is not avail-
able. Fellegi and Sunter have proposed a probabilistic record linkage framework
that takes into account multiple non-identifying information, but is limited to sim-
ple binary comparison between matching variables. An extension of this method is
proposed for mixed-type comparison vectors. A mixture model for handling com-
parison values of low prevalence categorical matching variables, and a mixture of
hurdle gamma distribution for handling comparison values of continuous match-
ing variables have been developed. The parameters are estimated by means of
the Expectation Conditional Maximization (ECM) algorithm. Through a Monte
Carlo simulation study, both the posterior probability estimation for a record pair
to be a match and the prediction of matched record pairs are evaluated. The
simulation results indicate that the proposed methods outperform existing ones
in most considered cases. The proposed methods are applied on a real dataset,
to perform linkage between a registry of patients suffering from venous throm-
boembolism in the Brest district area (GETBO) and the French national health
information system (SNDS).
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3.1 Introduction

Electronic health records have become more and more prevalent in medical fields,
and the ability to exchange this information can help in providing better care for
patients as well as richer sources for researchers. Record linkage is a process of
combining data from different sources that refer to the same entity. The process is
straightforward if each record contains a unique identifier such as Social Security
Number (Zhu et al., 2015). However, some large health databases may not contain
such identifying information. In other cases, this information is available but may
contain errors, or may not be used for record linkage due to ethical reasons. Fel-
legi and Sunter (1969) proposed a probabilistic framework that takes into account
multiple quasi-identifiers such as name, address and postal code. It has become
widely used in applications when unique identifiers are unavailable or when data
contain errors (e.g. Grannis et al., 2003; Sayers et al., 2015).

The French SNDS (Système National des Données de Santé) is the national health
data system including the national health insurance information (SNIIRAM: Sys-
tème National d’Information InterRégimes de l’Assurance Maladie) of around 99%
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of the French population (Bezin et al., 2017). This data system also includes in-
formation on all health care expenses, as well as private and public hospital data
collected in the medical information system (see Tuppin et al., 2017a). There is
therefore an increasing demand of getting this information from SNDS, to enrich
research datasets in epidemiology or public health. However, due to ethical rea-
sons, the SNDS database is anonymous. This means that personal identifying
information such as Social Security Number, Name or Address is not available.
We are therefore interested in proposing a probabilistic record linkage model using
other variables in common represented by the so-called matching variables. They
can be of various types (categorical, binary, continuous) depending on the research
study. For example, the matching variables may include postal code (categorical),
date of treatment (continuous) and medical diagnosis (binary).

The Fellegi-Sunter probabilistic record linkage model laid the foundation for most
record linkage models until now (Christen and Winkler, 2017). Although this
model is useful for many applications in sample surveys and epidemiology, it has
a limitation when some matching variables are binary and with a low prevalence
(e.g., medical diagnoses). In that case, the simple binary comparison method
proposed by Fellegi and Sunter (1969) can not distinguish the agreement of low
prevalence values, which is much more informative than the agreement of high
prevalence values. Such cases are considered in Hejblum et al. (2019), who propose
a Bayesian linkage framework outperforming the Fellegi-Sunter model. However,
their model is restricted to binary matching variables only.

Another limitation is that most probabilistic record linkage models only make use
of simple binary or categorical comparison values (see Christen, 2012) even if the
matching variables are continuous. Some authors introduced continuous similarity
measures for comparing string data, but then comparison values are transferred
to categorical values representing different levels of agreement (e.g., Herzog et al.,
2007; Sadinle, 2017; Enamorado et al., 2019), which may result in a loss of infor-
mation.

In this work, we propose a new linkage model adapted from the framework of
Fellegi and Sunter, which handles such situations. We aim at better taking into
account the nature of matching variables (e.g., low-prevalence binary, or con-
tinuous), so as to improve the performances of record linkage. The chapter is
organized as follows. In Section 3.2, we review the Fellegi-Sunter probabilistic
record linkage model and some relevant problems. We then propose two com-
parison strategies for low prevalence binary or continuous matching variables in
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Section 3.3. An extended mixture model taking into account both categorical and
continuous comparison values is also introduced in Section 3.3. In Section 3.4, we
evaluate the proposed methods through simulation studies. In Section 3.5, a real
data application is proposed, where we perform record linkage between SNDS and
the GETBO (Groupe d’Etude de la Thrombose de Bretagne Occidentale) registry.
Finally, possible further research is discussed in Section 3.6.

3.2 Probabilistic record linkage

Consider two databases A and B containing nA and nB records respectively, and
with elements in common. Following the terminology in Fellegi and Sunter (1969),
each possible pair of individuals (ai, bj) with ai ∈ A, i = 1, . . . , nA and bj ∈ B, j =

1, . . . , nB either belongs to the set of true matched pairs

M = {(a, b); a = b, a ∈ A, b ∈ B},

or to the set of true unmatched pairs

U = {(a, b); a ̸= b, a ∈ A, b ∈ B}.

Because an identifying variable is not available, other less discriminant data are
used in the probabilistic record linkage procedure, such as the name, date of birth,
postal code, or some diagnosis codes. This information needs to be registered in
both data sets and is referred to as matching variables. The matching variables
in two databases are required to have the same format (Christen, 2012).

It is supposed that there is no prior knowledge on how likely the matches are,
which is often the case in practice. The strategy therefore begins by comparing
K matching variables for all records XA,i = (X1

A,i, . . . , X
K
A,i), i = 1, . . . , nA of nA

individuals in A, with all records XB,j = (X1
B,j, . . . , X

K
B,j), j = 1, . . . , nB of nB

individuals in B. This leads to nA × nB comparison vectors γij such that

γij =
{
γ1ij, . . . , γ

k
ij, . . . , γ

K
ij

}
, (3.1)

where γkij = hk(Xk
A,i, X

k
B,j) and hk is a comparison function for the k−th matching

variable.

Because the number of all record pairs is quadratic in the number of individuals in
each database, making the comparison for all possible record pairs is often imprac-
ticable in applications. One of the most popular methods to reduce the number
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of record pairs that need to be compared is blocking, in which only records from
the two databases that are in a same block (i.e., sharing the same values for the
blocking variables) are compared with each other. Record pairs disagreeing on the
blocking variable are automatically classified as non-matches. Therefore, blocking
is a trade-off between computational cost and the proportion of missed matches
(matched pairs are missed because of errors in the blocking variable), see Herzog
et al. (2007).

The set of all possible realizations of γ is called the comparison space and denoted
by Γ. The comparison function γk for the k-th matching variable can be defined
in different ways depending on the type of matching variable (Christen, 2012).
The most common way consists in a binary comparison, i.e.

γkij = hk(Xk
A,i, X

k
B,j) =

1 if Xk
A,i = Xk

B,j,

0 if Xk
A,i ̸= Xk

B,j.
(3.2)

If there is no error in the matching data, all components of a comparison vector
of a matched pair are equal to 1. However, application data usually contain er-
rors (e.g., typographical), and some similarity measures that can take them into
account have been developed in the literature for string variables (Herzog et al.,
2007).

Once all candidate pairs are compared, various approaches are possible to classify
the set of comparison vectors into matches and non-matches (Christen, 2012). If
training data where we observe the true matched status of record pairs is available,
supervised classification methods (Christen, 2008) can be used to find a classifi-
cation rule. If there is no training data but some clerical review is possible, some
semi-supervised approaches (e.g. Enamorado, 2018) may be applied. However,
the exact knowledge of matches is rarely possible in real world situations, and the
clerical review is costly. Unsupervised methods (e.g. Winkler, 1988; Mamun et al.,
2016) are therefore the more common approaches. From a Bayesian perspective,
Tancredi and Liseo (2011) introduced a paradigm for probabilistic record linkage,
and Steorts et al. (2016) proposed a Bayesian approach to graphical record linkage.

In the frequentist view, Fellegi and Sunter (1969) assumed that each record pair
belongs to one of the two latent classes. The distribution of comparison vector γ

for each pair is assumed to follow a mixture model

P(γ) = P(γ|M)P(γ ∈M) + P(γ|U) [1− P(γ ∈M)] . (3.3)
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If we do not make additional assumptions on the joint agreement pattern, the
comparison vector γ may take 2K different values, each of which corresponds to
a parameter that we need to estimate. To reduce this number, some authors
(e.g. Fellegi and Sunter, 1969; Winkler, 1988) have proposed to make the so-called
conditional independence assumption between fields of the comparison vector.
Under this assumption, we obtain:

P
[
γ = (γ1, . . . , γK)|M

]
=

K∏
k=1

P(γk|M), (3.4)

P
[
γ = (γ1, . . . , γK)|U

]
=

K∏
k=1

P(γk|U). (3.5)

The conditional independence assumption is common in most probabilistic record
linkage models (Winkler, 1988), although it may not hold in some practical cases.
For example, if some records agree on a chronic disease, they are more likely to
agree on the drug used. Although the assumption is invalid in some cases, the
linkage result is still quite robust, in the sense that we may have a good linkage
performance even if the conditional independence assumption does not hold (Win-
kler, 1988; Grannis et al., 2003; Sayers et al., 2015). Some authors (e.g. Xu et al.,
2019) relaxed this assumption and showed better record linkage results in some
specific scenarios.

Under the conditional independence assumption, we only need to estimate 2K+1

parameters which are the marginal probabilities of agreement for matched and
unmatched pairs mk ≡ P(γk = 1|M) and uk ≡ P(γk = 1|U), and the over-
all matching probability pM ≡ P(γ ∈ M). Winkler (1988) proposed to ap-
ply the expectation maximization (EM) algorithm (Dempster et al., 1977; Wu,
1983), to find the maximum likelihood estimates for the vector of parameters
θ ≡

{
p,mk, uk, k = 1, . . . , K

}
. It has become widely used in probabilistic record

linkage (Grannis et al., 2003; Christen, 2012). Once all the parameters are esti-
mated, the record pairs may be ordered by either matching weights

ŵij =
P(γij|M, θ̂)

P(γij|U, θ̂)
,

see Fellegi and Sunter (1969); Belin and Rubin (1995), or by posterior probabil-
ities of matching q̂ij ≡ P(M |γij, θ̂) (Larsen and Rubin, 2001). Then, the pairs
are classified into matches, non-matches or possible matches based on two de-
fined thresholds (Fellegi and Sunter, 1969). Because the possible matches require
manual review which is sometimes not available, Grannis et al. (2003) propose to
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establish only a single threshold to avoid human review. Although the matching
scores and the posterior probabilities produce the same ordering for record pairs
(Larsen and Rubin, 2001), the posterior probabilities are preferable in our case
because they may be useful for further analyses (Lahiri and Larsen, 2005; Kim
and Chambers, 2012a; Hof and Zwinderman, 2012; Zhang and Tuoto, 2020).

In some applications, a one-to-one matching restriction may be needed; namely,
that each record in B can be matched to one and only one record in A, and
conversely. One possible approach to respect a one-to-one matching is to solve a
linear sum assignment problem proposed by Jaro (1989). If the optimal score is
not demanded, a simple approach is to sort all candidate pairs according to their
estimated posterior probabilities of matching, and to select matched pairs in a
greedy approach (Christen, 2012).

3.3 An extension of the Fellegi-Sunter model

In this section, we extend the Fellegi-Sunter model by making better use of low
prevalence categorical matching variables and of continuous variables. Two new
comparison approaches and a mixture model for mixed type of comparison values
are introduced.

3.3.1 Comparison approaches

For a categorical matching variable, it is likely that the proportions for each cat-
egory are different, and accounting for these differences in a record linkage model
may help to improve the linkage results. This idea was proposed by Fellegi and
Sunter (1969); Winkler (1989), and is applied on a real clinical data in Zhu et al.
(2009). These authors use the same model for simple agreement/disagreement
comparison, but the matching weights are rescaled a posteriori, using a frequency-
based correction. We introduce a new comparison approach for categorical match-
ing variables, which differs from simple binary comparison and may naturally han-
dle different proportions for categories.

Let Xk be a categorical matching variable taking L different values, which means
that the comparison function for this variable may take up to L2 values. For
example, the comparison for a binary matching variable may lead to four possible
realizations {(0, 0), (0, 1), (1, 0), (1, 1)} and a comparison function can be defined
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as follows

hk(0, 0) = c1, hk(0, 1) = c2, hk(1, 0) = c3 and hk(1, 1) = c4, (3.6)

where c1, c2, c3 and c4 stand for four different categories. It should be noted that
the values taken by the comparison function have no ordinal meaning. If this is a
low prevalence binary matching variable (e.g. a rare disease) such that only 5%

(say) of the values in the dataset are equal to 1, the agreement on the value "1"
is much more informative than the agreement on the value "0". Our comparison
approach aims at using this information while the simple agreement comparison
method does not, leading to poor performance. Hejblum et al. (2019) propose
a Bayesian record linkage framework making use of a similar idea, and which is
efficient in case of a large number of low-prevalence binary matching variables.
However, their model is designed for binary variables only.

If the number of matching variables and/or the number of categories is large,
the number of parameters to be estimated is L2 − 1, which may be too large in
practice. This number may be reduced by assigning the same comparison value
for the agreement/disagreement of categories which have a close meaning. For
instance, we may reduce the comparison values given in (3.6) as

hk(0, 0) = c1, hk(0, 1) = hk(1, 0) = c2 and hk(1, 1) = c3. (3.7)

In general, the number of comparison values depends on which realizations we
would like to distinguish. Suppose that we are interested in a categorical match-
ing variable Xk with categories 1, 2, . . . , L. If the first category seems particularly
meaningful, we may distinguish whether we have an agreement on the first cat-
egory, an agreement on another category, or a disagreement. In such case, the
comparison function would be defined as

hk(i, j) =


c1 if i = j = 1,

c2 if i = j ̸= 1,

c3 if i ̸= j = 1, . . . , L.

The objective of this comparison approach is to distinguish the agreement of low
prevalence values from other agreements, which differs from multiple levels of
agreement introduced in (Sadinle, 2017) and (Enamorado et al., 2019).

Now, let us consider the case of a continuous variable Xk. For example, date
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variables (e.g., admission to the hospital, or medical act) are common in medical
datasets. By converting each date into a duration from a specified origin, they
may be treated as continuous counting variables. Even if an individual is present
in both datasets, a lag between dates is likely to appear. The simple binary
comparison is therefore not appropriate. In this work, if the kth matching variable
is continuous, we propose to consider

γkij = hk(Xk
A,i, X

k
B,j) = d(Xk

A,i, X
k
B,j), (3.8)

where d is a distance which can be used to measure the difference between two
dates of events, in which case it can be interpreted as a time lag. By using the
distance, the continuous comparison values γk of matching pairs (Xk

A,i, X
k
B,j) can

be described as

γkij|(XA,i, XB,j) ∈M =

0 with probability 1− ek,

ϵkij > 0 with probability ek,

where ek is the proportion of error, and ϵkij is the error term of the kth matching
variable among matched pairs. For example, two patients who refer to the same
individual should have the same day for a medical act, up to some errors in the
registration process, and the distance should therefore be equal to 0 or to a small
error term ϵkij. Therefore, γkij|M follows a hurdle distribution in which the positive
part depends only on the distribution of errors. On the other hand, the distribution
of γkij|U depends mostly on the distribution of the kth matching variable, since ϵkij
is often small compared to the distance between records for two unmatched units.

3.3.2 Estimation of parameters

Let

γij =
(
γ1ij, . . . , γ

K1
ij , γ

K1+1
ij , . . . , γK1+K2

ij

)
(3.9)

be a mixed type comparison vector which includes K1 categorical comparison
values γ1ij, . . . , γ

K1
ij and K2 continuous distances γK1+1

ij , . . . , γK1+K2
ij . Following the

Fellegi-Sunter framework, these comparison vectors are assumed to follow the mix-
ture model (3.3).

Under the conditional independence assumption between the different fields in the
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comparison vector for both the matched and the unmatched sets, we have

P(γij|M) =

K1∏
k=1

P(γkij|M)︸ ︷︷ ︸
P 1M
ij

K1+K2∏
k=K1+1

P(γkij|M)︸ ︷︷ ︸
P 2M
ij

, (3.10)

P(γij|U) =
K1∏
k=1

P(γkij|U)︸ ︷︷ ︸
P 1U
ij

K1+K2∏
k=K1+1

P(γkij|U)︸ ︷︷ ︸
P 2U
ij

, (3.11)

for i = 1, . . . , nA and j = 1, . . . , nB. For both equations (3.10) and (3.11), the
first term in the right hand side involves K1 categorical comparison values of the
comparison vector γij. We define

mk
s = P(γkij = s|M) and uks = P(γkij = s|U) for s ∈ Sk, (3.12)

with Sk the set of all possible categorical comparison values for the kth variable.
Then

P 1M
ij =

K1∏
k=1

P(γkij|M) =

K1∏
k=1

∏
s∈Sk

(mk
s)
1
γk
ij

=s ,

P 1U
ij =

K1∏
k=1

P(γkij|U) =
K1∏
k=1

∏
s∈Sk

(uks)
1
γk
ij

=s ,

for i = 1, . . . , nA and j = 1, . . . , nB, and with
∑

s∈Sk mk
s =

∑
s∈Sk uks = 1.

The second part in the right hand side of equations (3.10) and (3.11) involves K2

continuous values of the comparison vector γ. We define

P 2M
ij =

K1+K2∏
k=K1+1

P(γkij|M) with P(γkij|M) ∼ fk
M(ϕk

M),

P 2U
ij =

K1+K2∏
k=K1+1

P(γkij|U) with P(γkij|U) ∼ fk
U(ϕ

k
U),

(3.13)

for i = 1, . . . , nA and j = 1, . . . , nB. The distributions fk
M and fk

U need to be
postulated, depending on the characteristics of the matching variables and on the
chosen distance.

To find the maximum likelihood estimates for parameters, we apply the Expec-
tation Maximization (EM) algorithm (Dempster et al., 1977) or the Expectation
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Conditional Maximization (ECM) algorithm (Meng and Rubin, 1993), depending
on the distribution fk. In Appendix A.1, we present the details of the ECM algo-
rithm, when both fk

M and fk
U correspond to a hurdle gamma distribution (Cragg,

1971), which is used in the next part.

Once all parameters are estimated by means of the EM/ECM algorithm, the
posterior probabilities qij = P(M |γij) are estimated for all record pairs by the
Bayes formula

q̂ij =
p̂M P̂

1M
ij P̂ 2M

ij

p̂M P̂ 1M
ij P̂ 2M

ij + (1− p̂M)P̂ 1U
ij P̂

2U
ij

. (3.14)

These estimated posterior probabilities are then used to find proper matched pairs.

3.4 Simulation studies

In this section, our proposed approaches are evaluated and compared to other
existing approaches. To facilitate interpretation, two simulation studies are per-
formed to evaluate the properties of the proposed methods for binary and continu-
ous variables separately. A simulation study for a combination of both categorical
and continuous matching variables is presented in Appendix A.4. All the simula-
tions are implemented in a R program, which is available on Github repository:
https://github.com/thanhhuanVO/Extending-FellegiSunter-Record-linkage.git.

3.4.1 Simulation designs

In the following simulations, we consider two databases A and B containing
nA = 500 and nB = 200 individuals and K matching variables. We assume
that there is no duplicate in both databases, and that all individuals in B have
corresponding individuals in A. The number of individuals in both databases
remains fixed in our simulations. However, different sizes are considered in addi-
tional simulations available as a supplement in Appendix A.

We first generate the observations in A, and a random subset of nB units is used
to obtain the database B. For i = 1, . . . , nA and j = 1, . . . , nB let us denote by

XA,i =
(
X1

A,i, . . . , X
K
A,i

)
and XB,j =

(
X1

B,j, . . . , X
K
B,j

)
(3.15)

the ith and jth individual in A and B, respectively. Without loss of generality, we
assume that the first unit in B is the first unit in A, . . . , the nth

B unit in B is the
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nth
B unit in A. The full comparison matrix γ =

{
γkij
}

contains nA × nB = 100 000

lines and K columns.

Once the posterior matching probabilities are estimated for all possible record
pairs, a pair is classified as a match if q̂ij (see equation 3.14) is larger than a
predefined threshold τ , and is classified as a non-match otherwise. The choice of
the threshold depends on the objectives of the study, a higher threshold leading
to a lower number of false matches.

Scenario 1: binary matching variables

Data generating process In this scenario, each variable Xk
A,i is first generated

according to a Bernoulli distribution with parameter pk, for k = 1, . . . , K. To
account for possible errors in the matching variables, the variablesXk

B,j in database
B are then obtained as

Xk
B,j =

Xk
A,j with probability 1− ek,

1−Xk
A,j with probability ek.

(3.16)

Simulation parameters Since the binary matching variables are less discrim-
inant, all the methods tested require a large number K of matching variables,
in order to have sufficient information for achieving acceptable linkage results.
We therefore used K ∈ {30, 40, 50}. The probability of error is chosen as ek ∈
{0.02, 0.04, 0.06}. For simplicity, the probability pk for each Bernoulli variable is
fixed to 0.2.

Methods Once the variables in the databases were generated, we considered
four possible record linkage methods: FS, the Fellegi-Sunter model with simple
binary comparison as described in (3.2); FS3, the Fellegi-Sunter model using a
comparison with 3 categories, as described in (3.7); FS4, the Fellegi-Sunter model
using a comparison with 4 categories, as described in (3.6); Bayesian, the bayesian
method described in Hejblum et al. (2019). With the methods FS, FS3 and FS4,
the parameters pM , mk

s and uks (see equation 3.12) are estimated by means of the
EM algorithm, and some initial values are required. We initialize with 1/nA for
pM . The formulas to compute the initial values for mk

s and uks and the stopping
criteria are given in Appendix A.2. The Bayesian method is performed by means
of the package ludic of Hejblum et al. (2019), where we used 0.01 as the discrepancy
rates needed for the method.
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Scenario 2: continuous matching variables

Data generating process In this scenario, each variable Xk
A is generated ac-

cording to an exponential distribution with parameter λk, for k = 1, . . . , K. To
account for possible errors in the matching variables, the variablesXk

B,j in database
B are then obtained as

Xk
B,j =

Xk
A,j with probability 1− ek,

Xk
A,j + ϵkj with probability ek,

(3.17)

where the ϵkj ’s are iid, generated according to an exponential distribution of pa-
rameter λke .

Simulation parameters We used K = 3 matching variables and λk = 0.02

for k = 1, . . . , K. Because small lags are likely to happen in the registration
process, we considered as possible proportions of errors ek ∈ {0.1, 0.2, 0.3} and
λke ∈ {1/2, 1/3, 1/4}. This leads to a mean value of approximately 50 days for Xk,
and a mean value of approximately 2, 3 or 4 days for the lag value ϵkj .

Methods Once the databases were generated, we compared three possible record
linkage methods: FS, the Fellegi-Sunter model with simple binary comparison
as described in (3.2); FS3, the Fellegi-Sunter model using a comparison with 3

categories defined as follows:

γkij =


0 if |Xk

B,j −Xk
A,i| = 0,

1 if 0 < |Xk
B,j −Xk

A,i| ≤ 3,

2 if 3 < |Xk
B,j −Xk

A,i|,

(3.18)

for k = 1, . . . , K; FS-HGa, the Fellegi-Sunter model using the absolute distance for
comparison defined as:

γkij = d(Xk
A,i, X

k
B,j) = |Xk

B,j −Xk
A,i|. (3.19)

For the FS-HGa method, we used the hurdle Gamma distribution

f(γk; pk0, α
k, βk) =


pk0 if γk = 0,

(1− pk0)

(
γk
)(αk−1)

e−γk/βk

(βk)(α
k)Γ(αk)

if γk > 0,
(3.20)
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for both fk
M , f

k
U in equation (3.13) where αk, βk ∈ R+ and Γ(αk) is the gamma

function for k = 1, . . . , K. This is the true distribution for γk|M under our
simulation set-up, since

γkj,j|M = |Xk
B,j −Xk

A,j| =

0 with probability 1− ek,

ϵkj with probability ek,
(3.21)

and since ϵkj follows an exponential distribution, which is a particular case of the
Gamma distribution with parameters αk = 1 and βk = 1/λk. On the other hand,
it is more complicated to describe the true distribution of γk|U . For j ̸= i, we
have

γki,j|U = |Xk
B,j −Xk

A,i| =

|Xk
A,j −Xk

A,i| with probability 1− ek,

|Xk
A,j −Xk

A,i + ϵkj | with probability ek.
(3.22)

Since Xk
A,j and Xk

A,i are independent for i ̸= j, γki,j|U follows an exponential dis-
tribution with probability 1 − ek. With probability ek, the distribution of γki,j|U
also involves that of the error ϵk. Since this error is typically small compared to
the difference Xk

A,j −Xk
A,i, we may also consider that γk|U approximately follows

an exponential distribution.

With the FS-HGa method, we propose using the hurdle gamma distribution for f ,
since it adds more flexibility to the modeling. The histogram of γki,j values on one
sample is given in Figure 3.1a for the matched pairs, and in Figure 3.1b for the
unmatched pairs. They decidedly indicate that the hurdle gamma distribution fits
well to these values in this example. The robustness of our modeling with different
families of distributions for Xk and ϵk is studied in Appendix A.3.6.

While the parameters for FS and FS3 are estimated by the EM algorithm, the
parameters for FS-HGa are estimated by the ECM algorithm, which is presented
in Appendix A.1. The starting values and stopping criteria for all methods are
presented in Appendix A.3.

Since the matching variables are interpreted as durations (in days) in the applica-
tion presented in Section 3.5, the generated values Xk

A and ϵk values are rounded
to the smallest larger integer in this simulation. For example, patients may get
a medical act at different times (days, hours and minutes), but the durations are
registered in days only.
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Figure 3.1: Histogram of the positive values of γki,j for the matched pairs (left
side) and the unmatched pairs (right side) and fitted gamma density
estimation (red curve) when λke = 1/2 and ek = 0.2

3.4.2 Performance criteria

All the methods tested for record linkage are evaluated by means of the True
Positive Rate

TPRτ = P {qij ≥ τ |(XA,i, XB,j) ∈M} ,

and the Positive Predictive Value

PPVτ = P {(XA,i, XB,j) ∈M |qij ≥ τ} .

The True Positive Rate (a.k.a sensitivity or recall) is the proportion of matched
pairs which are correctly identified. The Positive Predictive Value (a.k.a. preci-
sion) is the proportion of predicted matched pairs which are correctly identified.
These are the most common criteria in an imbalanced binary classification prob-
lem, which is the case when the overall set of record pairs is extremely dominated
by non-matches. In this work, these criteria are estimated by means of 1, 000

independent Monte Carlo simulations. To save time, all the results are obtained
by using the package simsalapar (Hofert and Mächler, 2016) for parallelizing the
estimation of all combinations of simulation parameters. A server with 2 Intel(R)
Xeon(R) CPU E5-2687W v4 @ 3.00GHz with 12 cores in each has been used.

In the simulations, the EM/ECM algorithm is used for the estimation of parame-
ters, with a convergence tolerance of 10−6 before reaching the maximum number
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of iterations (set equal to 500). We observed convergence issues for record linkage
methods, more particularly for the usual Fellegi-Sunter method in the Scenario 1:
that is, there are some simulations for which the tolerance value is not reached
after 500 iterations. The Monte Carlo approximation of the TPR and PPV for
any method is therefore obtained from the subset of simulations for which the
convergence is attained for all methods. The proportion of cases for which the
convergence is attained is presented for all methods in Appendix A.2.2 and A.3.2.

The Monte Carlo approximation for the TPR and PPV are presented in Section
3.4.3 for the methods considered, with a threshold τ = 0.5. This is the most natu-
ral threshold, since it is equivalent to classify a pair as a match if P(M |γ) ≥ P(U |γ).
In practice, the choice of the threshold τ corresponds to a trade-off between TPR
and PPV: a more stringent threshold may increase PPV, but decrease TPR. For
a particular case of each scenario, we therefore plotted in Figures 3.3 and 3.5 the
PPV-TPR curve (a.k.a. precision-recall curve) for different values of τ . Two types
of curves are plotted. The "observed" curves correspond to the (theoretical) situa-
tion when the parameters are directly estimated by maximizing the full likelihood,
assuming that the true status (matched/unmatched) is known for each pair. The
"estimated" curves correspond to the (practical) situation when this status is not
known, and the parameters are estimated by the EM/ECM algorithm as described
in Section 3.4.1. The difference between an observed curve and its estimated coun-
terpart is helpful to separate the effect in parameter estimation when using the
EM/ECM algorithm.

3.4.3 Results

Scenario 1

The Monte Carlo estimates for the TPR and the PPV are presented in Figure 3.2.
We first note that for all the methods considered, both criteria improve when the
number of matching variables K increases and/or when the probability of error
e decreases, as could be expected. In terms of TPR, FS3 is preferable, followed
by FS4; Bayesian and FS show comparable results for K ≤ 40, but FS performs
better for K = 50. In terms of PPV, FS4 and Bayesian are preferable, with
almost identical results; FS3 performs slightly worse, while FS performs poorly,
but both methods improve as K increases. Overall, FS3 performs better than
FS in both TPR and PPV. As explained in Hejblum et al. (2019), FS has many
false matches, leading to the smallest PPV. In comparison to FS4 and Bayesian,
FS3 improves the TPR substantially with a slight decrease of the PPV. FS4 and
Bayesian show a similar behavior when e = 0.02. However, when the error
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increases, FS4 has a better TPR with a minimal decrease in PPV as compared to
Bayesian. In addition, we have also reported the proportion of convergence and
the average execution time in Table A.1 in Appendix A. Generally, the FS3 and FS4

have a higher chance of convergence since their comparison vectors provide more
information for the algorithm. However, they require a longer computation time
than FS, since more parameters need to be estimated. In this specific scenario,
the execution time of Bayesian is much faster than with other linkage methods,
because it was performed by package ludic which is optimally designed for this
specific scenario.
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Figure 3.2: Monte-Carlo estimates of TPR and PPV with binary matching vari-
ables only and sample sizes nA = 500 and nB = 200, pk = 0.2
for the parameter of the Bernoulli distribution, a number of match-
ing variables K ∈ {30, 40, 50}, and a proportion of errors ek ∈
{0.02, 0.04, 0.06}.

To evaluate the impact of the choice of the threshold τ in the performances of
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the methods, we consider the particular scenario with the parameters K = 40,
pk = 0.2 and e = 0.04. We plot in Figure 3.3 the PPV in function of the TPR for
different thresholds. The Figure 3.3 indicates that the observed FS4 performs bet-
ter among the observed methods, while the estimated FS3 performs better among
the estimated methods.

Additional simulations with a fixed number of matching variables K = 40 and
different values for the probability pk were performed in Appendix A.2.3. The
results showed that all methods improve significantly when pk rises from 0.1 to 0.3.
Also, the results in Appendix A.2.4 indicate that all methods gradually improve
as the ratio nB/nA increases.
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Figure 3.3: PPV-TPR curves for the observed/estimated version of the methods
considered with binary matching variables only, with sample sizes nA =
500 and nB = 200, K = 40 matching variables, pk = 0.2 for the
parameter of the Bernoulli distribution, and a proportion of errors
ek = 0.04.

Scenario 2

The Monte Carlo estimates for the TPR and the PPV are presented in Figure
3.4. For each method, both the TPR and the PPV decrease as the proportion
of errors e increases. We note that the slower decrease is observed for FS-HGa,
which is also the method which gives both the best TPR and the best PPV in
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all cases. We also observe that for FS-HGa and FS3, both the TPR and the PPV
decrease with λe, but the decrease is very limited for FS-HGa. On the other hand,
FS is not affected by λe: this is likely due to the fact that FS only considers exact
agreement/disagreement in comparison step, while FS3 accounts for an additional
category when the time lag is no greater than 3 days. Therefore, FS3 performs
better than FS when the proportion of error is large (e = 0.3) and the mean value
of the error is small (λe = 1/2; 1/3).
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Figure 3.4: Monte-Carlo estimates of TPR and PPV over different simulation cases
when there are only continuous matching variables with sample sizes
nA = 500 and nB = 200, K = 3 matching variables, λk = 0.02 for
the parameter of the Exponential distribution, a proportion of errors
ek ∈ {0.1, 0.2, 03}, and a parameter λke ∈ {1/2, 1/3, 1/4} for the error
lag.

We have also reported the proportion of convergence and the average execution
time of each method in Appendix A.3.2. Since the implementation of the ECM
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algorithm in FS-HGa has 2 maximization steps, it requires a longer computation
time.

To evaluate the impact of the threshold τ , we consider the particular scenario with
the parameters K = 3, λk = 0.02, e = 0.2 and λe = 1/2. We observe in Figure
3.5 that the PPV-TPR curves obtained for a given estimated method and for its
observed counterpart are very similar. Also, FS-HGa performs significantly better
than FS3 and FS.
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Figure 3.5: PPV-TPR curves for the observed/estimated version of the methods
considered with continuous matching variables only, with sample sizes
nA = 500 and nB = 200, K = 3 matching variables, λk = 0.02 for
the parameter of the Exponential distribution, a proportion of errors
e = 0.2, and a parameter λe = 1/3 for the error lag.

To evaluate the robustness of FS-HGa, we performed additional simulations pre-
sented in Appendix A.3.6. In these simulations, Xk is generated according to a
uniform distribution and ϵ according to a normal distribution. The results indicate
that even when the model is misspecified, FS-HGa is robust and performs better
than the other methods. Also, we considered different values for K and λk in
Appendix A.3.4 and A.3.3. In general, under the fixed sample sized nA and nB,
all methods perform better with more matching variables (larger K) and/or when
the matching variables are more informative (smaller λk). Finally, the results in
Appendix A.3.5 indicate that all methods gradually improve as the ratio nB/nA

increases.
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3.5 Application

3.5.1 Description of SNDS and GETBO databases

The French national health information system SNDS was first created mainly
based on the national register of health insurance information (SNIIRAM), which
is currently one of the largest claims database in the world (Bezin et al., 2017).
The SNDS includes information such as socio-demographic data, real-life use of
drugs, chronic medical conditions (ICD10 codes), date and duration of hospital
admissions. These databases are therefore of major interest, and their study has
already led to several useful findings (e.g. Tuppin et al., 2017b,a). Because of this
interest, there is an increasing demand for using this database to enrich existing
cohorts or medical registers. However, most of the time, no common identifier
is available in the database. Our objective is therefore to link the de-identified
GETBO database to the SNDS, when no common individual identifier is available.

The GETBO database results from a data management process of the raw data
of the GETBO registry. It is built as a list of documented cases of venous throm-
boembolism (VTE) recorded between 2013 and 2015 in Brest metropolitan area
(Delluc et al., 2016). A given patient may have several events, and the database
contains 1, 404 VTE events concerning 1, 332 distinct patients. For each docu-
mented case, the diagnostic or therapeutic medical acts were recorded with their
type and the precise date, as well as the demographic information for each patient
(date of birth, gender, residency code). Linked data consisting of VTE cases from
GETBO and corresponding valuable health information from SNDS are used to
build a prediction model, which can identify symptomatic VTE early for French
people (Noboa et al., 2006; Delluc et al., 2016).

In this application, the so-called SNDS database results from a data extraction
process of the raw data from SNDS, including the health insurance data from
SNIIRAM and the national hospital discharge databases. The complete extrac-
tion was designed to select patients living in the Brest area, and having at least
one care reimbursement between 2013 and 2015. It concerned 369, 695 distinct
individuals. We selected patients having, during the studied period, at least one
medical act either prescribed for diagnosis purposes of VTE (echodoppler, scintig-
raphy, tomoscintigraphy and angiography), or for therapeutic purposes (vena cava
filter and thrombolysis) that were supposed to be recorded in the GETBO registry.
This led to a list of 48, 102 timestamped medical acts concerning 32, 382 distinct
patients with all the related demographic information (date of birth, gender, resi-
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dency code). This database is expected to contain all medical acts in the GETBO
database.

3.5.2 Probabilistic record linkage process

Since some VTE events in GETBO can relate to several medical acts, we first
restructure this database such that each row contains only one medical act. This
results in a new GETBO database with 1, 919 medical acts associated to 1, 332 pa-
tients. There are 6 available matching variables: year of birth, month of birth, res-
idency code, gender, type and date of medical act. A full Cartesian product of the
GETBO and SNDS databases requires computing 1, 919 × 48, 102 = 92, 307, 738

comparison vectors. Therefore, we need to choose a blocking variable to reduce
computational time. A good blocking variable should have high quality, and mul-
tiple categories distributed as uniformly as possible (Herzog et al., 2007). The
gender variable has only two categories and is therefore not very successful in re-
ducing the dimension of the comparison space. Besides, the year of birth is not
uniformly distributed and the residency code is likely to change due to moves,
for example. Therefore, the month of birth seems the more reasonable choice. It
should also be noted that only records with the same type of medical acts should
be compared. By employing this scheme, there remains 4, 308, 847 candidate pairs
that need to be compared in terms of year of birth, residency code, gender and
date of medical act.

We use the simple binary comparison function (3.2) for the year of birth and
residency code variable. For the gender variable, since there is an imbalance be-
tween male and female in SNDS database (36.6% compared to 63.4%), we choose
(3.7) as the comparison function. Finally, we choose the absolute distance (3.19)
for the dates of medical acts variable. The comparison step results in a set of
4, 308, 847 mixed-type comparison vectors. They are fitted by our proposed ex-
tension of Fellegi-Sunter model for mixed-type data, denoted by FS-ext. The
ECM algorithm is applied to estimate all the model parameters. It stopped after
5 iterations when the relative difference of log-likelihood values of two successive
steps was less than 10−7. Once all parameters are estimated, we compute the
estimated posterior probabilities of matching (3.14) for all record pairs of medical
acts. Finally, we define a threshold τ = 0.5, and a pair with a greater estimated
posterior probability is predicted as a match.

In Figure 3.6, we present two histograms of comparison values of the dates of
medical acts for our predicted matched/unmatched pairs. The red line is the
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Figure 3.6: Histogram of the comparison values for dates of medical acts of pre-
dicted matched pairs (a) and unmatched pairs (b), and the fitted dis-
tribution (red line) of our model.

hurdle gamma distribution fitted by our model. Figure 3.6a indicates that there
are more than 90% predicted matches with the same dates, and the others have 1
to 5 days in difference between dates.

3.5.3 Results

The observation unit is a medical act, and the matching variables are therefore
observed at this level. On the other hand, the outcomes are needed at the patient
level. We therefore report the application results in two steps. In the first one, we
identify record pairs which refer to the same medical act, by applying the record
linkage method on the observed data. In the second one, an ad-hoc procedure is
performed to get corresponding pairs of patients from the pairs of medical acts.

Firstly, after performing the linkage method on the two databases of medical
acts, we get 1, 810 pairs of medical acts that have estimated posterior matching
probabilities no smaller than a threshold of 0.5. It is required that one patient in
GETBO may be linked to one patient only in SNDS, and conversely. Therefore, if
different pairs of medical acts lead to more than two candidates for one patient, we
only keep the pairs of medical acts with the highest estimated probabilities, and
suppress the others. Eventually, there remains 1, 627 pairs of medical act predicted
as matches. The distribution of their (estimated) posterior matching probabilities
is presented in Table 3.1. Among the predicted matched pairs, 1, 410/1, 627 = 87%

have estimated posterior probabilities larger than 0.9.
From the 1, 627 pairs of medical acts predicted as matches, we obtain 1, 146 cor-
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q̂ (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 0.95] (0.95, 1]

Number of pairs

of medical acts
4 9 18 186 188 1,222

Table 3.1: Frequency distribution table of estimated posterior probability of
matching for predicted matched pairs of medical acts

responding pairs of patients, since one patient may have several medical acts.
Among them, 13 patients in GETBO have two different matched candidates in
SNDS with the same probability. A random choice between two SNDS candidates
is made for these patients. We also consider two different approaches for linking
the two databases: the Fellegi-Sunter model FS with a binary comparison (3.2),
and the deterministic method. Under the latter, a pair of medical acts is classified
as a match if both records share the same type of medical act, month, year of birth,
gender, residency code, while the date of medical act is compared with a tolerance
of 3 days. Some manual review is required for pairs that link an individual in
the database to more than two individuals in another database. We compare the
three approaches in terms of predicted matched pairs of patients.

We summarize the linkage results of the different methods in Table 3.2. As could
be expected, the set of predicted matched pairs of patients obtained under both
FS-ext and FS include all the pairs identified by the deterministic record linkage.
All 867 pairs predicted as matches by the deterministic method have a very high
average posterior probability of matching for both FS-ext (q̂FS-ext = 0.993) and FS

(q̂FS-ext = 0.996). Among the 247 remaining pairs which are classified as a match
by FS, 245/247 ≈ 99.2% are also identified by FS-ext. Besides, 34 additional pairs
of patients are identified as matches by FS-ext, with a high average probability
(q̂FS-ext = 0.868). From a look at the data, these pairs are not predicted by FS

because they often correspond to a difference of 1 to 5 days in the date of medical
acts. Consequently, the proposed method FS-ext predicts 1, 146 matched pairs
for 1, 332 patients in GETBO, which represents 86% of the patients. On the other
hand, the deterministic and FS only account for 65% and 83.6% respectively.

3.6 Discussion

In this contribution, we proposed two comparison approaches for low prevalence
categorical and continuous matching variables. The proposed comparison func-
tions aim to make a more extensive use of the matching variables in the compar-

64



3.6. Discussion

Classified as a match by

FS-ext FS
Deterministic

method

Number of

pairs of patients
q̂FS-ext q̂FS

X X X 867 0.993 (0.003) 0.996 (0)

X X 245 0.900 (0.045) 0.911 (0)

X 34 0.868 (0.136)

X 2 0.911 (0)

Total 1146 1114 867

Table 3.2: Comparison of three different record linkage methods with the number
of pairs, the average estimated posterior probability of matching q̂ and
the standard deviation (in parentheses)

ison vectors. We propose an extension of the Fellegi-Sunter probabilistic record
linkage model, for comparison vectors containing both categorical and continuous
comparison values. This model allows for using a variety of comparison func-
tions, which can reflect matching data more accurately. We also suggest the use
of a mixture of hurdle gamma distributions, for modeling the absolute difference
between continuous variables such as dates. This distribution has never been for-
merly considered in the record linkage literature. In practice, the distribution for
comparison values of continuous matching variables should be considered and val-
idated a posteriori.

The simulation studies show that our proposed model outperforms the simple
model with binary comparison in all the scenarios considered. For categorical
matching variables, in Scenario 1, we have showed that the proposed model is
more efficient than the standard model, especially when there are low prevalence
values. However, if the frequencies of the different categories of a matching vari-
able are similar, then there is not much difference between our approach and the
standard one. In that case, the model with binary comparison should be con-
sidered due to its simplicity. For continuous matching variables, in Scenario 2,
the proposed mixture of hurdle gamma distributions performs better than the
standard model, and is robust to some misspecification of the distribution of the
comparison function (see Appendix A.3.6). However, our evaluation remains spe-
cific to the fact that we are dealing with continuous time variables, which may be
naturally modelled by Gamma distributions. A similar approach could be pursued
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for other types of matching variables (e.g., string variables), but would require a
different modelling for the similarity measure between strings.

We also conducted a simulation with mixed-type data in Appendix A.4. Con-
sistently with the previous simulation results, the proposed model has a better
performance than the standard model. In the application on real data, the per-
formance is also better. We obtain a larger number of patients matched between
the SNDS and the GETBO datasets, with high matching probabilities.

In practice, the matching variables that can be used for record linkage may include
missing data. Also, dates of events may be censored. It would be of great practi-
cal interest to develop a joint modeling for record linkage and handling of missing
values, to improve the performance of the record linkage process in this case. This
is an important matter for further research. In a different approach, Copas and
Hilton (1990) described a hit-miss model for record linkage which can accom-
modate the frequency distribution and missing values of the matching variables.
However, this approach is not as commonly used in practice as the Fellegi-Sunter
model due to its specific context (Goldstein et al., 2017). Besides, we did not con-
sider matching variables varying over time. A study of Li et al. (2011) suggests
that considering matching variables along with their time stamp (if applicable)
may improve matching quality.

A problem of most probabilistic record linkage models lies in the imbalance be-
tween matched and non-matched pairs in the set of all comparison vectors, which
may cause bias in parameter estimation. Blocking methods have been introduced
to reduce the number of non-matched pairs, along with the computational cost.
However, some true matched pairs may be overlooked if the blocking variable con-
tains errors. Recently, Fortini (2020) introduced a robust approach where the EM
algorithm is modified to obtain unbiased estimates of parameters in this context.
However, this approach is designed for binary comparison values only.

The construction of the complete likelihood function rests on the assumption that
the comparison vectors are independent. Such assumption may not be valid in
practice, especially when there are matching restrictions, such that each record in
a database can be linked to only one record in another database. Lee et al. (2020)
recently proposed a maximum entropy classification for record linkage which over-
comes this assumption.
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4 Cox regression with linked data

Record linkage is increasingly used, especially in medical studies, to combine data
from different databases that refer to the same entities. The linked data can bring
analysts novel and valuable knowledge that is impossible to to obtain from a sin-
gle database. However, linkage errors are usually unavoidable regardless of record
linkage methods and ignoring these errors may lead to bias estimates. While
different methods have been developed to deal with the linkage errors in the gen-
eralized linear model, there is not much interest on Cox regression model although
this is one of the most important statistical models in clinical and epidemiological
research. In this work, we propose an adjusted estimating equation for secondary
Cox regression analysis, where linked data have been prepared by someone else
and no information on matching variables is available to the analyst. Through
a Monte Carlo simulation study, the proposed method has significantly corrected
the parameter estimate bias of the Cox model caused by false links. An asymp-
totically unbiased variance estimator for the adjusted estimators of Cox regression
coefficients is also proposed. Finally, the proposed method will be applied to a
linked database from the Brest stroke registry in France.
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4.1 Introduction

Record linkage, also known as data matching, is a process of combining data from
different sources that refer to the same individuals or entities. Nowadays, data are
collected everywhere by different sectors, and the ability of combining information
from several databases can lead to novel knowledge for analysts. For example,
record linkage is widely used in epidemiology and medical studies to enrich data
on clinical performance and other health-related information (e.g. Harron et al.,
2016; Padmanabhan et al., 2018). In national censuses, population data files ob-
tained at different times can be linked to create longitudinal data sets (Zhang
and Campbell, 2012). Record linkage may also be applied early in a survey to
link the sampling frame and administrative data (e.g. Winkler and Thibaudeau,
1987). The linked data allows for statistical analysis (e.g., Cox regression) which
would not be possible with data collected solely by means of the survey.

The record linkage process is straightforward if unique identifiers (e.g. Social Se-
curity Number) are available and free of error in both databases. However, this
information is often not available, or sometimes cannot be used due to ethical
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reasons. In such cases, record linkage methods may only use partial identifying
information shared between databases, such as name, address, and gender. The
variables used for comparison are called matching variables. Over the last decades,
several methods have been developed to link data efficiently (Herzog et al., 2007;
Christen, 2012), such as the frequentist approach (Fellegi and Sunter, 1969; Win-
kler, 1988; Vo et al., 2022) and the Bayesian approach (Tancredi and Liseo, 2010;
Sadinle, 2017). However, because the matching variables are not unique and are
likely to contain inaccuracies, linkage errors are unavoidable. The two kinds of
record linkage errors are false links (false positives, i.e. a non-matched pair pre-
dicted as a link), and missed links (false negatives, i.e. a matched pair failed to
be predicted as a link). Ignoring these errors may cause substantial bias in the
analysis model (Neter et al., 1965), causing misleading inference. It is therefore
important to account for linkage errors in statistical analysis.

In published literature, two positions are usually considered to account for link-
age errors in statistical analysis. Under the primary analysis framework, the data
analyst is supposed to be granted access to the full linkage process, including
knowledge of matching data. From this perspective, Scheuren and Winkler (1993)
made use of the two highest matching weights of each record pair to reduce the bias
of ordinary least square estimators under a linear regression model. However, the
proposed estimators are not unbiased in full generality. Lahiri and Larsen (2005)
discussed this problem and proposed unbiased estimators in the same context,
using the posterior matching probabilities obtained from the Fellegi-Sunter record
linkage model. Hof and Zwinderman (2012) extended the method by Lahiri and
Larsen (2005) for multiple links, and also proposed alternative estimators based
on weighted least square methods, both for linear and logistic regression mod-
els. Recently, Han and Lahiri (2019) adapted the approach by Lahiri and Larsen
(2005) to provide a system of estimating equations, which may lead to unbiased
estimators under a generalized linear model.

In some applications, the analysis step is separated from the record linkage, e.g.
when the matching variables contain confidential information. This is the sec-
ondary analysis framework, under which the data analyst is only provided access
to the final linked data, whereas the (unknown) record linkage process has been
performed by a third-party operator (see for example Zhang, 2019). Starting from
this perspective, Chambers (2009) proposed the exchangeable linkage error (ELE)
model, and bias-corrected estimating equations for both linear and logistic regres-
sion modeling. Under the ELE model, it is assumed that linked records may be
split into distinct blocks inside which the probability of correct linkage and the
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probability of incorrect linkage are constant. Following this work, Kim and Cham-
bers (2012b,c); Chambers and Kim (2015); Chambers et al. (2019); Chambers and
Diniz da Silva (2020) developed methods for secondary analysis of linked data. Re-
cently, Zhang and Tuoto (2020) proposed a pseudo ordinary least square method
for secondary linkage-data linear regression analysis, which can accommodate het-
erogeneous linkage errors and incomplete match space problems. Chambers et al.
(2022) proposed robust estimation for linear regression with linked data.

Although the Cox proportional hazard model (Cox, 1972) is of routine use for
survival analysis, comparatively very few papers have focused on accounting for
record linkage errors in this context. Baldi et al. (2010) performed a simulation
study emphasizing the impact of incomplete record linkage errors on the parameter
estimation of the Cox model, but did not propose any solution to obtain unbiased
estimators for the model parameters. Hof et al. (2017) proposed a joint modeling
for survival analysis and probabilistic record linkage. However, this analysis model
is developed under a primary analysis viewpoint, while in many applications, a
secondary analysis is more likely. In this work, we reason from the secondary
analysis position. We propose a model to account for record linkage errors, and
an estimation method to correct for the bias caused by false link errors in the Cox
regression model.

This chapter is organised as follows. In Section 4.2, we propose a new estimating
equation, which leads to an approximately unbiased parameters estimation of the
Cox model with linked data. A variance estimator is also proposed. In Section 4.3,
we evaluate the proposed estimator and the associated variance estimator through
simulation studies. In Section 4.4, an application on a real dataset is presented.
Finally, possible further research is discussed in Section 4.5.

4.2 Cox regression analysis with linked data

4.2.1 Cox regression model

The Cox proportional hazard model (Cox, 1972) is the most popular method to
assess the effect of covariates X on a survival time. This is therefore one of the
most important models in medical research. Suppose that a random sample of n
units is available. For each unit i = 1, . . . , n, we let T̃i be a non-negative random
variable, which denotes the duration between a time origin and the time of occur-
rence of some event of interest. We suppose that T̃i is right censored, which means
that the event is observed only if it occurs before censoring time Ci. For units
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i = 1, . . . , n, we therefore observe Ti = min(T̃i, Ci). We let δi = 1{T̃i≤Ci} denote
the variable indicating whether the duration time is observed prior to censoring.
The vector of covariates is denoted as Xi = (X1

i , . . . , X
p
i )

T . In this section, we
first suppose that Xi is observed for any unit in the sample.

According to the Cox model, the hazard function of an event at time t is given by

λ(t|Xi) = λ0(t) exp
(
XT

i β0

)
, (4.1)

where β0 = (β01, . . . , β0p)
T is a p-vector of unknown parameters and λ0(t) is a

common baseline hazard function. Assuming that the survival times are observed
on a finite interval, and that C is independent of T̃ conditionally on X, a consistent
estimator β̂ of β0 may be obtained by solving the estimating equation:

H0(β) ≡
1

n

n∑
i=1

δi

{
Xi −

∑n
j=1 Yj(Ti) exp

(
XT

j β
)
Xj∑n

j=1 Yj(Ti) exp
(
XT

j β
) }

= 0, (4.2)

where Yj(t) = 1(Ti≥t) is an at-risk indicator (see for example Andersen and Gill,
1982). We call (4.2) the theoretical estimating equation. This is also the maximum
partial likelihood (mpl) estimation. Under some mild assumptions, a consistent
estimator of the covariance matrix of β̂ is given by

V̂mpl(β̂) =
{
−n∇H0(β̂)

}−1

, (4.3)

see Andersen and Gill (1982).

4.2.2 Linkage error model

Suppose that we have a dataset A of nA time-to-event data. If the covariates
Xi were known for any unit i ∈ A, the parameter of the Cox model would be
estimated by solving the theoretical estimating equation (4.2). However, if the co-
variates are not known in database A, equation (4.2) may not be solved in practice.

In order to obtain the needed covariates, a linkage is performed with a dataset B
of size nB ≥ nA, containing in particular the auxiliary variables Xi. For any unit
i in A, we note Zi for the vector of auxiliary values resulting from the linkage pro-
cess. The notations are summarized in Table 4.1. Reasoning from the secondary
analysis perspective, we do not have access to the matching variables and do not
know the actual linkage process.
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(a) File of interest A

T δ Z ∈ Rp

i = 1 Z1

...

i = nA Zn

(b) Linking data file B.

X ∈ Rp

j = 1
...
...

j = nB

Table 4.1: Record linkage context.

We assume that the linkage error is non-informative of the regression model, i.e.
may depend on the errors in the matching process, but not on the model covariates
nor on the survival time (e.g. Chambers et al., 2019). This is the key assumption of
most secondary analysis approaches in the literature, for which Zhang and Tuoto
(2020) have proposed a diagnostic test. Adopting the modelling approach in Copas
and Hilton (1990), we suppose that both databases are partitioned into blocks Av

and Bv, v = 1, . . . , V , and that the record linkage is performed independently in
these blocks. Also, we suppose that for any entity i ∈ Av, we have:

Zi =


Xi with probability αv,

X(j) with probability 1− αv,

(4.4)

where (j) stands for some unit randomly selected in database Bv. In other words,
it is supposed that for any i ∈ Av, the correct entity is linked to i with probability
αv, otherwise the unit j linked to i is randomly selected in Bv. We suppose that
the linkage is performed independently for any unit i ∈ Av, conditionally on the
Xj’s for j ∈ Bv.

It should be noted that we implicitly assume that A is a subset from B, and that
all entities in A can therefore have some matching records in B. Also, we assume
that there is at most one link for each record of both databases. In practice, there
will often be some entities of A which remain unlinked after the linkage process.
This may be due to errors in the matching variables, or to the fact they are not
sufficiently discriminant for identifying links. Such incomplete record linkage can
be problematic for further analysis if the missed links are not at random (Baldi
et al., 2010). For more discussion on this incomplete matching space problem,
see Kim and Chambers (2012b); Goldstein et al. (2012); Zhang and Tuoto (2020).
This problem is out of the scope of our work. We therefore assume that the linkage
is complete, or alternatively that any missing links are independent on the time
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of event and model covariates.

4.2.3 Adjusted estimating equation

By naively treating the linked covariates Zi as if they were the true covariates Xi

for the units i ∈ A, an estimator of β0 may be obtained by solving the following
equation:

Hnaive(β) ≡
1

nA

V∑
v=1

∑
i∈Av

δi

{
Zi −

∑V
v=1

∑
j∈Av

Yj(Ti) exp(Z
⊤
j β)Zj∑V

v=1

∑
j∈Av

Yj(Ti) exp(Z⊤
j β)

}
= 0. (4.5)

We call (4.5) the naive estimating equation. Since some units are incorrectly
linked, it may lead to biased estimates, see the simulation results in Section 4.3.

We propose a bias-corrected estimating equation, accounting for the fact that
from the hit-miss model (4.4), the covariates may be incorrectly linked. We first
introduce some notations. Let us define

g(β,Xi) = exp(X⊤
i β) and h(β,Xi) = exp(X⊤

i β)Xi.

Also, let X̄Bv , ḡBv(β) and h̄Bv(β) denote the means of Xi, g(β,Xi) and h(β,Xi)

over Bv, respectively. The linkage-error adjusted estimating equation (AEE) is
given by

H̄(β) ≡ 1

nA

V∑
v=1

∑
i∈Av

δi

{
X∗

i (αv)−
∑V

v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (αv,β)

}
= 0 (4.6)

where, for any i ∈ Av,

X∗
i (αv) = α−1

v Zi − (α−1
v − 1)X̄Bv ,

g∗j (αv,β) = α−1
v g(Zj,β)− (α−1

v − 1)ḡBv(β), (4.7)

h∗j(αv,β) = α−1
v h(Zj,β)− (α−1

v − 1)h̄Bv(β).

We prove in Appendix B.1 that H̄(β) is an (approximately) conditionally unbiased
estimator for the function H0(β) involved in the theoretical estimating equation.
Solving the proposed AEE therefore leads to a consistent estimator of β, see the
simulation results in Section 4.3.

Since there is no closed-form solution for the estimating equations considered
above, an iterative method like the Newton-Raphson algorithm is commonly used
in practice. Also, the probabilities αv may be (somewhat arbitrarily) specified by
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the record linkage practitioner, or estimated from a validation sample (Chambers,
2009; Zhang and Tuoto, 2020) if their true values are unknown.

4.2.4 Variance estimator

In this section, we discuss variance estimation for the estimator of the parameter
β0 obtained by solving the AEE given in (4.6). We first note that several sources of
variance need to be accounted for: a) the (usual) variability associated to solving
a sample-based estimating equation, b) the variability associated to the linkage
process, and c) the variability associated to the estimation of the probabilities
αv, v = 1, . . . , V . Using the variance estimator given in (4.3) fails to account for
all these sources of variability, and therefore leads to an underestimation of the
variance, see the simulation results in Section 4.3.

We propose a sandwich-like variance estimator, which reads as follows:

V̂AEE(β̂) ≡ {∇H̄(β̂)}−1 × V̂{H̄(β0)} × {∇H̄(β̂)}−1, (4.8)

with V̂{H̄(β0)} = V̂1{H̄(β0)}+ V̂2{H̄(β0)}. (4.9)

The first component V̂1{H̄(β0)} in (4.9) accounts for the variability in (c). Under
the assumption that the validation samples Sv used for such estimation are selected
in the datasets Av through simple random sampling without replacement, this
variance estimator is

V̂1{H̄(β0)} =
V∑

v=1

H̄2,v(α̂v, β̂){H̄2,v(α̂v, β̂)}⊤ ×
(

1

nSv

− 1

nAv

)
nSv

nSv − 1

1− α̂v

α̂3
v

,

where nSv is the sample size of the validation set Sv, and

H̄2,q(αv,β) =
1

nA

∑
i∈Av

δi{(Zi − X̄Bv )

−
∑

j∈Av
Yj(Ti)

{{
h(β,Zj)− h̄Bv

(β)
}
−R∗

i (αv,β) {g(β,Zj)− ḡBv
(β)}

}∑
j∈Av

Yj(Ti)g∗j (αv,β)
}.

with

R∗
i (αv,β) =

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)∑

j∈Av
Yj(Ti)g∗j (αv,β)

.

The second component V̂2{H̄(β0)} in (4.9) accounts for both the variability in (a)
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and (b). We have

V̂2{H̄(β0)} =
s2H(β̂)

nA

where

s2H(β) =
1

nA − 1

V∑
v=1

∑
i∈Av

{
Hi(β)−

1

nA

V∑
v=1

∑
j∈Av

Hj(β)

}2

and

Hi(β) = δi

{
X∗

i (α̂v)−
∑V

v=1

∑
j∈Av

Yj(Ti)h
∗
j(α̂v,β)∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (α̂v,β)

}
.

The derivation of this variance estimator is explained in detail in Appendix B.2.
It is evaluated empirically in the next section through a simulation study.

4.3 A simulation study

In this section, we evaluate the performance of the proposed estimator for the
parameter of the Cox model, and the associated variance estimator. The data
generation process is first presented in Section 4.3.1. The estimation methods
that we evaluate are presented in Section 4.3.2, along with the performance in-
dicators. The simulation results are given in Section 4.3.3. To facilitate inter-
pretation and to study the influence of different simulation parameters, we first
consider in Section 4.3.3 scenarios with a single block. Scenarios with multiple
blocks and different levels of linkage quality are considered in Section 4.3.3. All
R programs for simulation are available in https://github.com/thanhhuanVO/

Cox-regression-with-linked-data.

4.3.1 Data generation

Assume that there are two datasets A with nA individuals, and B with nB ≥ nA

individuals. We first generate the nB units in database B with p = 2 covari-
ates, including a continuous variable X1 ∼ N (0, 1) and a binary variable X2 ∼
Bernoulli(0.7). Given the p-vector of coefficients β = (β1, β2)

⊤ = (0.5,−0.5)⊤, the
true survival time T̃B is generated as

T̃B = − log(U)

λ exp (X⊤β)
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where U follows a standard uniform distribution (Bender et al., 2005), and λ is
fixed as equal to 1 for simplicity. A constant censoring time is chosen (from 100 000
independent data generation runs) to yield a censoring rate of approximately 0.25

over all the simulation runs.

Without loss of generality, we suppose that the units in dataset A are the nA first
ones in dataset B. In other words, a pair of individuals (ai, bj) for i ∈ A and j ∈ B

is a match if i = j = 1, . . . , nA. The survival times TA
i for i ∈ A are therefore

obtained as TA
i = TB

i for i = 1, . . . , n. Given the number of blocks v and the
probabilities αv for V = 1, . . . , V , the linked values Z for covariates in database A
are obtained according to the linkage error model (4.4). Inside each block Av, an
audit sample of 10% of the units is selected by simple random sampling without
replacement, and used for the estimation of α̂v.

4.3.2 Methods and performance indicators

For each scenario, we consider the following estimation methods. The Theoretical
is obtained by solving the theoretical estimating equation (4.2) with the true val-
ues of covariates X. This is a benchmark estimation strategy, since it cannot be
applied on linked data in practice. The Naive is obtained by solving the naive
estimating equation (4.5) with linked data. The Validation is obtained by solv-
ing the theoretical estimating equation (4.2) with only correct linked pairs in the
validation set. Note that, contrarily to Theoretical, this method may be used
in practice if an audit sample is available. For each of these three methods, the
variance of the estimator of the parameter in the Cox model is estimated by using
the variance estimator V̂mpl(β̂) in equation (4.3), implemented by means of R

survival package.

For each scenario, we also consider estimation methods making use of the pro-
posed approach. The TAEE (theoretical adjusted estimating equation) is obtained
by solving the proposed estimating equation (4.6) with the theoretical value of αv.
The AEE (adjusted estimating equation) is obtained by solving the proposed esti-
mating equation (4.6), where αv is estimated by taking the proportion of correct
links in the audit sample. For each method, the Newton-Raphson algorithm is ap-
plied with a maximum of 20 iterations and an initial parameter value β = (0, 0)⊤.
We also report the number of time (Fails) when the Newton-Raphson algorithm
does not converge. For AEE, the variance is estimated by using V̂(β̂) in equation
(B.23). For TAEE, the variance is estimated by setting V̂1{H̄(β0)} = 0 in V̂(β̂).
For both TAEE and AEE, we also compare to the variance estimator V̂mpl(β̂) in
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equation (4.3).

The data generation and the estimation process are repeated R = 1, 000 times.
Over these simulations, we compare the estimation methods in terms of the Monte
Carlo bias

BMC(β̂) =
1

R

R∑
r=1

(
β̂(r) − β

)
,

with β̂(r) the estimator computed on the r-th sample. We also compute the Monte
Carlo standard deviation:

SdMC(β̂) =

√√√√ 1

R− 1

R∑
r=1

(
β̂(r) − ¯̂

β
)2
.

For the variance estimation methods, we compute the Monte Carlo estimates of
standard deviation

Ŝd =

√√√√ 1

R

R∑
r=1

V̂(r)(β̂(r)),

with V̂(r) a variance estimator computed on the r-th sample. The Monte Carlo
estimate of standard deviation is compared to the true standard deviation Sd(β̂),
approximated by SdMC(β̂).

4.3.3 Simulation results

One block situation

In this section, we consider the situation when the data sets are generated as
presented in Section 4.3.1, with V = 1 block only. We consider two cases. In
the first one, the sample sizes nA = 1, 000 and nB = 2, 000 are held fixed, and
we let the probability of correct link α vary in {0.75, 0.85, 0.95}. In the second
one, the probability of correct link is held fixed, equal to 0.85. We let nA vary in
{500, 1000, 2000}, with nB = 2nA.

The simulation results obtained in Case 1 are presented in Table 4.2. As expected,
the Theoretical method leads to an unbiased estimation of the parameters. The
Naive method leads to severely biased estimators, especially with the smaller
value α = 0.75. The bias decreases as the probability of correct link increases,
as expected. The proposed methods TAEE and AEE lead to approximately unbi-
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ased estimation of the parameters, with a larger variability for AEE as expected.
We note that the variability is but only moderately increased, as compared to
Theoretical. The Validation method also leads to unbiased estimators of the
Cox regression coefficients, but with a larger variability than both TAEE and AEE.

β̂1 β̂2

α Methods Fails BMC SdMC Ŝdmpl ŜdAEE CP BMC SdMC Ŝdmpl ŜdAEE CP

* Theoretical 0 0.000 0.039 0.040 0.961 0.003 0.080 0.080 0.950

0.75 Naive 0 0.147 0.041 0.039 0.050 0.143 0.081 0.081 0.577

Validation 0 0.017 0.160 0.156 0.941 0.003 0.318 0.302 0.936

TAEE 0 0.007 0.072 0.041 0.069 0.945 0.013 0.124 0.081 0.129 0.957

AEE 4 0.009 0.082 0.041 0.085 0.962 0.015 0.131 0.081 0.138 0.962

0.85 Naive 0 0.092 0.040 0.039 0.347 0.088 0.081 0.080 0.799

Validation 0 0.016 0.149 0.146 0.955 0.000 0.296 0.283 0.931

TAEE 0 0.002 0.055 0.041 0.059 0.964 0.007 0.103 0.080 0.113 0.969

AEE 0 0.005 0.063 0.041 0.066 0.969 0.010 0.110 0.080 0.118 0.972

0.95 Naive 0 0.033 0.041 0.040 0.862 0.029 0.083 0.080 0.928

Validation 0 0.015 0.139 0.137 0.961 0.004 0.276 0.266 0.939

TAEE 0 0.001 0.045 0.040 0.051 0.965 0.003 0.089 0.080 0.101 0.977

AEE 0 0.000 0.048 0.040 0.054 0.973 0.004 0.090 0.080 0.103 0.981

Table 4.2: Simulation results in Case 1 with three different values for the proba-
bility of correct link α ∈ {0.75, 0.85, 0.95}

We now turn to the variance estimators. The variance estimator V̂mpl(β̂) (4.3)
performs well for Theoretical, Naive and Validation, but underestimates the
variability of the estimators obtained under TAEE and AEE. This is due to the fact
that this variance estimator only accounts for the variability of the sample-based
estimating equation. On one hand, the proposed variance estimator performs well,
except for β1 when α = 0.75, in which case the variance is underestimated. Be-
sides, by assuming that the estimated coefficients β̂ are asymptotically normally
distributed, we reported the coverage probability for confidence intervals with a
nominal level of 95%. The coverage probability of our proposed methods is close
to 95% and it is a bit larger when α = 0.95 because of the positive bias of the
variance estimator.

The simulation results obtained in Case 2 are presented in Table 4.3. We observe
no qualitative difference compared to Case 1. The TAEE and AEE lead to almost
unbiased estimations of the regression coefficients, and the proposed variance es-
timator performs well for both methods. The bias obtained under the Naive

method does not decrease as the sample size increases. As could be expected,
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the variability obtained under any estimation method decreases as the sample size
increases.

β̂1 β̂2

nA Methods Fails BMC SdMC Ŝdmpl ŜdAEE CP BMC SdMC Ŝdmpl ŜdAEE CP

500 Theoretical 0 0.002 0.056 0.057 0.954 0.005 0.113 0.114 0.955

Naive 0 0.089 0.057 0.056 0.636 0.087 0.113 0.114 0.876

Validation 0 0.033 0.222 0.215 0.951 0.024 0.435 0.419 0.949

TAEE 0 0.009 0.078 0.058 0.085 0.963 0.010 0.145 0.114 0.161 0.972

AEE 1 0.015 0.104 0.058 0.104 0.976 0.015 0.161 0.114 0.172 0.977

1000 Theoretical 0 0.000 0.039 0.040 0.961 0.003 0.080 0.080 0.950

Naive 0 0.092 0.040 0.039 0.347 0.088 0.081 0.080 0.799

Validation 0 0.016 0.149 0.146 0.955 0.000 0.296 0.283 0.931

TAEE 0 0.002 0.055 0.041 0.059 0.964 0.007 0.103 0.080 0.113 0.969

AEE 0 0.005 0.063 0.041 0.066 0.969 0.010 0.110 0.080 0.118 0.972

2000 Theoretical 0 0.000 0.028 0.028 0.945 0.000 0.056 0.057 0.960

Naive 0 0.092 0.029 0.028 0.111 0.092 0.056 0.057 0.640

Validation 0 0.006 0.103 0.100 0.932 0.003 0.197 0.197 0.948

TAEE 0 0.001 0.039 0.029 0.041 0.953 0.000 0.071 0.057 0.080 0.971

AEE 0 0.002 0.043 0.029 0.046 0.964 0.001 0.075 0.057 0.082 0.969

Table 4.3: Simulation results in Case 2 with three different values for the sample
size nA

Multiple blocks

In this section, we consider the situation when the data sets are generated as
presented in Section 4.3.1, with V = 3 blocks only. We take (nA1 , nA2 , nA3) =

(250, 500, 250) and (nB1 , nB2 , nB3) = (500, 1000, 500). Also, we consider a first
scenario where (α1, α2, α3) = (0.8, 0.9, 1.0); a second scenario where (α1, α2, α3) =

(0.7, 0.8, 0.9); a third scenario where (α1, α2, α3) = (0.6, 0.7, 0.8).

Let ᾱ be the weighted average of α1, . . . , αv defined as

ᾱ =

∑V
i=1 nAvαv∑V
i=1 nAv

.

This leads to a percentage of correct links approximately equal to ᾱ = 90% in
Scenario 1, ᾱ = 80% in Scenario 2 and ᾱ = 70% in Scenario 3. In this context,
we also consider two additional versions of our proposed methods, when we are
unable to access to the value αv of each block, but we have only access to their
weighted average: TAEE-ᾱ where the AEE is used with V = 1 and true value of ᾱ,
and AEE-ᾱ where the AEE is used with V = 1 and estimated value of ˆ̄α.
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The simulation results are presented in Table 4.4, and confirm the good results of
the proposed methods observed in the situation of one block. Scenario 2 and 3
are the cases when the behaviour of the Naive method is particularly poor, with
a very large bias due to a larger number of false links. On the other hand, AEE
performs well in reducing the estimation bias even in this situation. The proposed
variance estimator also performs well in these cases.

β̂1 β̂2

Scenario Methods Fails BMC SdMC Ŝdmpl ŜdAEE CP BMC SdMC Ŝdmpl ŜdAEE CP

* Theoretical 0 0.002 0.040 0.039 0.953 0.002 0.078 0.078 0.944

1 Naive 0 0.060 0.041 0.040 0.662 0.061 0.082 0.080 0.882

Validation 0 0.016 0.143 0.140 0.945 0.006 0.272 0.275 0.950

TAEE 0 0.005 0.052 0.041 0.056 0.965 0.004 0.097 0.080 0.108 0.967

AEE 0 0.007 0.058 0.041 0.062 0.973 0.006 0.102 0.080 0.112 0.971

TAEE-ᾱ 0 0.004 0.051 0.041 0.055 0.965 0.004 0.096 0.080 0.107 0.972

AEE-ᾱ 0 0.005 0.055 0.041 0.060 0.970 0.005 0.099 0.080 0.109 0.973

2 Naive 0 0.118 0.041 0.039 0.167 0.120 0.084 0.080 0.660

Validation 0 0.018 0.151 0.150 0.948 0.002 0.294 0.293 0.946

TAEE 0 0.007 0.066 0.041 0.064 0.952 0.003 0.118 0.080 0.122 0.953

AEE 1 0.015 0.086 0.041 0.081 0.969 0.010 0.129 0.080 0.135 0.961

TAEE-ᾱ 0 0.007 0.064 0.041 0.063 0.955 0.003 0.116 0.080 0.120 0.959

AEE-ᾱ 0 0.009 0.073 0.041 0.075 0.966 0.006 0.123 0.080 0.127 0.963

3 Naive 0 0.171 0.041 0.039 0.010 0.171 0.082 0.081 0.440

Validation 0 0.021 0.161 0.161 0.961 0.002 0.322 0.315 0.945

TAEE 1 0.018 0.097 0.042 0.136 0.944 0.013 0.143 0.081 0.144 0.947

AEE 17 0.030 0.136 0.042 0.128 0.961 0.022 0.177 0.081 0.183 0.960

TAEE-ᾱ 0 0.017 0.086 0.043 0.139 0.943 0.013 0.139 0.081 0.141 0.951

AEE-ᾱ 9 0.021 0.108 0.042 0.144 0.964 0.016 0.153 0.081 0.168 0.963

Table 4.4: Simulation results with 3 blocks with different linkage quality

When the block-specific true link rate is not correlated with the block-specific
distribution of T and X, e.g. this multiple blocks simulation set up, a single-
ᾱ adjustment (TAEE-ᾱ and AEE-ᾱ) can still perform well. Moreover, they can
have a smaller variance. In practice, this is very helpful when the analyst cannot
conduct auditing, and when the linker can only provide a single overall estimate
of α. Although this is a favourable condition for secondary analysis, block-specific
adjustment is the default approach as long as one cannot be sure whether such
non-informativeness is the case in a given situation. Thus, obtaining block-specific
αv is much more demanding in the real world.
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4.4 Application

4.4.1 Data description

The proposed model is fitted to a linked dataset between a registry of strokes, de-
noted by AVC ("Accident Vasculaire Cérébral"), and an extraction of the national
health information system of France, denoted by SNDS ("Système national des
données de santé"). The AVC recorded all stroke cases of patients aged 15 years
and older, who have lived in the Brest area from 2008 to the end of 2018. SNDS
is an extraction from the French health information system, and contains patients
for whom at least one medical service or hospitalization were recorded since 2008
while they were living in the Brest area. Due to the limited information in the
registry, there is a demand of linking AVC and SNDS to enrich the registry for
further analyses.

Steps
Number of agreements

among 9 matching variables
Number of record pairs

1 9 1,792

2 8 170

3 7 11

4 6 1,500

5 5 58

6 4 4

Total 3535

Table 4.5: Description of the linkage process

The linkage was performed by a separate team, and due to confidentiality restric-
tions, we were not allowed to access to the matching data and have limited knowl-
edge about the linkage. A deterministic record linkage method was used. This
is the simpler linkage approach, which ideally requires agreement on all matching
variables, or otherwise on a (large) subset of these variables. In the linkage pro-
cess, there are 9 matching variables, and the linkage is implemented sequentially.
In the first step, it is required that the 9 matching variables agree for a pair to
be viewed as a link. The corresponding pairs are then suppressed, and among the
remaining ones it is asked that 8 matching variables agree for a pair to be viewed
as a link. The procedure continues on similarly. The process is summarized in
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Table 4.5.

After performing the linkage process, a dataset of 3, 535 patients has been ob-
tained. It contains the survival time, the censoring indicator and three covariates
(age, gender, type of stroke). We suppose that these covariates were obtained from
SNDS by the linkage process, and may therefore be affected by linkage errors. A
description of the dataset is presented in Table 4.6. In this application, we are
interested in comparing the risk of death after the first stroke between males and
females, taking into account the age and the type of stroke.

Variable Description Source

Time
Time (in days) between the first stroke

and death or end of follow-up (31/12/2018)
AVC

Censoring
If the patient died before 01/01/2019:

1 = Yes, 0 = No
AVC

Age Age (in years) at the first stroke SNDS

Gender Sex: 0 = Male, 1 = Female SNDS

Type AVC Type of stroke (0 = Ischemic, 1 = Hemorrhagic) SNDS

Table 4.6: Description of the linked database

4.4.2 Cox regression analysis

In this application, we use the Cox regression model (4.1) to model the relation-
ship between the survival time and three explanatory variables (age, gender, type
of stroke). We consider AVC as database A and SNDS as database B in our pro-
posed model. In the naive approach, we use the linked data as if it was directly
observed. However, the simulation results in Section 4.3.3 show that linkage errors
lead to biased estimators of the regression coefficients. Therefore, we also use the
adjusted estimating equation (4.6).

For the record pairs obtained at each step, the percentage of matching variables,
which are in agreement are seen as a proxy of the probability that the matching is
correct. For example, for the 1, 500 pairs obtained at step 4, the probability that
the matching is correct is estimated as 6/9 = 0.667. We suppose that the linked
dataset is comprised of two blocks, and the estimates of αv for each block v are
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obtained as follows:

• Block 1: 1,792 record pairs are obtained from Step 1, with α̂1 = 9/9 = 1.

• Block 2: 1,743 remaining record pairs, with

α̂2 =
170× 8/9 + 11× 7/9 + 1500× 6/9 + 58× 5/9 + 4× 4/9

1743
≃ 0.694.

Besides, because the covariates are not available for any units in the SNDS, the
adjustment terms in (4.7) cannot be computed since the proposed approach re-
quires full access to the set of covariates in database B. We therefore use the
proxy solution suggested in equation (B.26), which requires that the covariates
are known on database A only. Simulations in Appendix B.3.2 show that if the
database A may be seen as a random sample from the database B, or when the
sampling leading to A is independent of the covariates, this method leads to com-
parable results as the method proposed in Section 4.2.3.

In Table 4.7, we present the estimations arising from both the Naive and the AEE

methods. The two methods decidedly lead to different estimations. If the Naive

method is used, the hazard ratio of sex is 0.887, which means that given the same
age and the same type of stroke, the female’s risk of death after the first stroke
is 0.887 times smaller than male’s. On one hand, this ratio from the adjusted
estimating equation approach is just 0.865.

Naive method AEE

coef sd hr coef sd hr

Age 0.059 0.002 1.061 0.070 0.001 1.073

Sex -0.120 0.047 0.887 -0.145 0.067 0.865

Type AVC 0.773 0.058 2.165 0.846 0.082 2.330

Table 4.7: Estimated coefficients (coef), estimated standard deviation of the esti-
mated coefficients (sd), and the hazard ratio (hr = exp(coef)) of the
naive method and the AEE method from linked data.

4.5 Discussion

In this work, our simulations proved that the naive use of linked data may lead to
substantial bias in a Cox regression model. Therefore, under the secondary analy-
sis position where the analyst can access to linked data only, we have proposed an
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adjusted estimating equation for linked data, which can correct the bias from the
naive estimating equation. A variance estimator, which can capture three sources
of variability has also been proposed. However, proving the asymptotic normality
of the resulting estimators remains challenging.

Through various simulation scenarios with one block and also multiple blocks, the
proposed adjusted estimating equation is shown to have significantly corrected the
bias of the naive estimating equation. We have also proposed different variants of
the approach for scenarios where information is limited. For example, when the
block-specific linkage rate αv is not available for each block, our method still works
well by using the average true link rate ᾱ. If the analysts are not able to fully
access the covariates in database B, we proposed to use the adjustments in (B.26),
which still maintain the good performance of the AEE if A is a random sample
from B. In addition, a linear approximated estimating equation (LAEE), which
can provide better estimation than AEE with small sample, is given in Appendix
B.4.

Although the proposed method has improved on the naive estimation, there are
perspectives that need to be developed. In this work, we assumed that obser-
vations on survival time are already available and all explanatory variables are
obtained from another database. In practice, there are some cases when a part
of the covariates is also available in A, and only a part of the covariates is ac-
quired from B by linkage. In addition, the covariates can be obtained from several
sources with different linkage processes. The proposed model should be developed
to adapt to these cases.

We also supposed that the survival time and the censoring indicator are observed
in database A, while the explanatory variables are obtained from database B by
a linkage process. However, the opposite situation may occur in practice: the
covariates may be available for the units in A, while the survival time needs to
be obtained from another database B by a linkage process. In this case, the
proposed estimating equation may not be applied and different adjustments need
to be developed.
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5.1 Conclusions

In this thesis, we have extended the Fellegi-Sunter record linkage model for mixed-
type data. The Fellegi-Sunter model has shown to be an effective method and is
widely used in probabilistic record linkage. However, the simple binary comparison
approach has some limitations on dealing with low prevalence categorical variables
and continuous matching variables. We therefore proposed a mixture model which
can accommodate both categorical and continuous comparison values. We have
also proposed two comparison approaches for low prevalence categorical match-
ing variables and continuous matching variables, which are common in health
databases: e.g., diagnosis code (low prevalence binary) and date of medical acts
(continuous).

The mixture of hurdle gamma distribution has been used for the first time to
model the comparison value of dates. Throughout various simulation scenarios,
the extended model has been shown to improve on the standard Fellegi-Sunter
model, especially when there are low prevalence values in categorical matching
variables and noise in continuous matching variables. It also showed a better per-
formance on linking to real databases GETBO and SNDS.

Secondly, we proposed an adjusted estimating equation to correct the bias for Cox
regression analysis of linked data. Due to the lack of unique identifiers in the
matching process, errors are usual in linked data. We have shown that the naive
use of such linked data may result in bias for the estimation of the parameters
in the Cox model. Although the Cox model is one of the most used models in
medical study, this problem has not been studied in the literature. Adopting a
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secondary analysis viewpoint, we have proposed an adjusted estimating equation
which can correct the bias from the naive estimating equation. In addition, a
variance estimator for estimators of Cox regression coefficients which can account
for the variability of the whole linkage process is also proposed.

5.2 Limitations and future works

Although our works improved on the existed methods for record linkage and ana-
lyzing of linked data, there are still several perspectives that can be developed. In
this section, we discuss some remaining problems of the proposed methods, and
suggest possible directions for future works.

One of the most common type of matching variables which has not been investi-
gated is that of string variables, such as a name or an address, for example. Since
this type of variable is not available in SNDS and GETBO, it has not been consid-
ered in this work. In the literature, various similarity measures were designed to
compare string variables (Herzog et al., 2007). Generally, these measures return
numerical comparison values between 0 and 1, where 1 indicates exact agreement
and 0 means total disagreement. However, the numerical comparison values are
often discretized before they reach the classification step. This discretization may
result in a loss of information. Finding a continuous distribution which can model
directly the continuous similarity measure between string variables would be a
perspective for future research.

In addition, we have not considered the missing data problem in record linkage.
In practice, if the proportion of missing data is significant, suitable techniques
should be made to account for them (Ong et al., 2014). For example, imputation
methods can be used to impute the comparison values corresponding to missing
data. Besides, the implementation of the proposed record linkage model with
large and dynamic databases is also a limit of our work. Dynamic databases are
cases where new records can be added in the database, and existing records can
be modified. For example, since data from both private and public services are
regularly updated online, there is an increasing demand for real-time linkage such
as online identity verification. In that case, specific techniques for efficient and
fast record linkage are required (Ramadan et al., 2015).

In most applications, the main objective of doing record linkage is to obtain a
database large enough for a statistical analysis. From this work and also from the
literature, researchers should be aware of linkage errors which causes bias in any
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statistical analysis (Harron et al., 2015). Although linked data become more and
more popular in different fields, most works in the literature are mainly concerned
with the case of a generalized linear model. Therefore, there remains various per-
spectives to develop methods for the statistical analysis of linked data.

Concerning Cox regression with linked data, we proposed an adjusted estimat-
ing equation which can account for linkage errors. However, there are still some
limitations. For example, although we have proposed a variance estimator which
can capture all sources of variability, the asymptotic properties of the proposed
estimator need to be investigated conscientiously. Besides, we have assumed that
the survival time is already available and only some explanatory variables are ob-
tained from the linkage process. In practice, this may not be the case. There may
be cases when the covariates are available, while the survival time is obtained by
a linkage process. In that case, the current proposed adjusted estimating equa-
tion may not be used, and a different adjustment should be investigated. Also, the
model needs to be developed if linkage is performed from more than two databases.
Recently, Slawski et al. (2021) proposed a pseudo-likelihood approach for robust
linear regression with shuffled data, which could be an alternative to the proposed
method for Cox regression with linked data.
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A Appendix for Chapter 3

This Appendix is divided into five Sections. The first provides details on ECM
algorithm that has been used for the simulation with continuous comparison val-
ues in Chapter 3. Section A.2, A.3 and A.4 provides complementary simulation
results for scenarios with only binary, continuous and mixed-type matching vari-
ables respectively. Finally, in Section A.5, a naive example for implementation of
the proposed method has been introduced.

A.1 ECM algorithm

In Chapter 3, with the proposed comparison method for dates variables, fk is
chosen as the density function of a hurdle Gamma distribution. It is characterized
by three parameter pk0 and αk, βk ∈ R+ as follows:

f(γk; pk0, α
k, βk) =

[
pk0
]1{γk=0}

[
(1− pk0)v(γ

k;αk, βk)
]1{γk>0} , (A.1)

where v(γk;α, β) is the density function of a Gamma distribution.

Let θ be the vector of all parameters, which are pM (one parameter); mk
s , u

k
s for k =

1, . . . , K1 and s ∈ Sk is the set of all possible comparison values (
∑K1

k=1 2(|Sk|− 1)

parameters with |Sk| is the number of elements in Sk); pk0M , pk0U , αk
M , α

k
U , β

k
M , β

k
U for

k = K1+1, . . . , K1+K2 (6K2 parameters). By assuming the independence between
all comparison vectors in Γ, the likelihood function for all observed comparison
vectors is

L(θ|g, γ) =
nA∏
i=1

nB∏
j=1

[
pMP

1M
ij P 2M

ij + (1− pM)P 1U
ij P

2U
ij

]
, (A.2)

and

ℓ(θ) =

nA∑
i=1

nB∑
j=1

ln
[
pMP

1M
ij P 2M

ij + (1− pM)P 1U
ij P

2U
ij

]

89



Appendix A. Appendix for Chapter 3

is the corresponding log-likelihood function. Let also

gij =

1 if (XA,i, XB,j) ∈M,

0 if (XA,i, XB,j) ∈ U,
(A.3)

be a latent variable indicating whether the record is a true match or not. The
complete likelihood may be written as follows:

Lc(θ|g, γ) =
nA∏
i=1

nB∏
j=1

[
pMP

1M
ij P 2M

ij

]gij [
(1− pM)P 1U

ij P
2U
ij

]1−gij
, (A.4)

and the complete log-likelihood function ℓc(θ) is

ℓc(θ) =

nA∑
i=1

nB∑
j=1

gij ln
[
P 1M
ij

]
+

nA∑
i=1

nB∑
j=1

(1− gij)
[
lnP 1U

ij

]
+

nA∑
i=1

nB∑
j=1

gij ln
[
P 2M
ij

]
+

nA∑
i=1

nB∑
j=1

(1− gij)
[
lnP 2U

ij

]
+

nA∑
i=1

nB∑
j=1

gij ln (pM) + (1− gij) ln(1− pM).

It can be rewritten as

ℓc(θ) =

K1∑
k=1

∑
s∈Sk

[
nA∑
i=1

nB∑
j=1

gij ln(m
k
s)1γk

ij=s

]
+

K1∑
k=1

∑
s∈Sk

[
nA∑
i=1

nB∑
j=1

(1− gij) ln(u
k
s)1γk

ij=s

]

+

K2∑
k=K1+1

nA∑
i=1

nB∑
j=1

1{γk
ij>0}gij ln v(γ

k
ij;α

k
M , β

k
M)

+

K2∑
k=K1+1

nA∑
i=1

nB∑
j=1

1{γk
ij>0}(1− gij) ln v(γ

k
ij;α

k
U , β

k
U)

+

K2∑
k=K1+1

[
nA∑
i=1

nB∑
j=1

1{γk
ij=0}gij ln

(
pk0M

)
+

nA∑
i=1

nB∑
j=1

1{γk
ij>0}gij ln

(
1− pk0M

)]

+

K2∑
k=K1+1

[
nA∑
i=1

nB∑
j=1

1{γk
ij=0}(1− gij) ln

(
pk0U
)
+

nA∑
i=1

nB∑
j=1

1{γk
ij>0}(1− gij) ln

(
1− pk0U

)]

+

nA∑
i=1

nB∑
j=1

gij ln (pM) + (1− gij) ln(1− pM).

We iteratively maximize the above complete log-likelihood function. The expec-
tation conditional maximization (ECM) algorithm (Meng and Rubin, 1993) is a
variant of the EM algorithm. Young et al. (2019) showed that the ECM algo-
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rithm needs to be rather used, because we do not simultaneously update all of the
parameters, but rather make a conditional maximization to update the values of
the shape and scale parameters. For simplicity of presentation and without loss
of generality, we assume that K1 = K2 = 1.

E-step For iteration t = 0, 1, . . . , we compute the expectation of the latent
variable which is also the posterior matching probabilities as follows:

gij =
P(γij|M)P(M)

P(γij|M)P(M) + P(γij|U)P(U)

=
pMP

1M
ij P 2M

ij

pMP 1M
ij P 2M

ij + (1− pM)P 1U
ij P

2U
ij

=
pM

(∏
s∈Sk{m1

s}
1
γ1
ij

=s

)
f(γ2ij,θ

2
M)

pM

(∏
s∈Sk{m1

s}
1
γk
ij

=s

)
f(γ2ij,θ

2
M) + (1− pM)

(∏
s∈Sk{u1s}

1
γ1
ij

=s

)
f(γ2ij,θ

2
U)

where θ2
M = (p20M , α

2
M , β

2
M) and θ2

U = (p20U , α
2
U , β

2
U).

Therefore, we can estimate the posterior probabilities at step t as

g
(t)
ij =

c
(t)
M

c
(t)
M + c

(t)
U

where

c
(t)
M = p

(t)
M

(∏
s∈Sk

m1,(t)
s

1
γ1
ij

=s

)
f(γ2ij,θ

2,(t)
M ),

c
(t)
U = (1− p

(t)
M )

(∏
s∈Sk

u1,(t)s

1
γ1
ij

=s

)
f(γ2ij,θ

2,(t)
U ),

and the superscripts (t) refer to the value of parameters at iteration t. The values
at iteration t = 0 for all parameters are starting values specified by practitioners.

First CM-step We substitute the estimated value of gij in the E step into
the log-likelihood function. Then we fix the value of β2

M , β
2
U and set all partial

derivatives equal to zero. We obtain the estimates for other parameters as follows

p
(t+1)
M =

1

nAnB

nA∑
i=1

nB∑
j=1

g
(t)
ij ,

m1,(t+1)
s =

∑nA

i=1

∑nB

j=1 g
(t)
ij 1γ1

ij=s∑nA

i=1

∑nB

j=1 g
(t)
ij

,

91



Appendix A. Appendix for Chapter 3

u1,(t+1)
s =

∑nA

i=1

∑nB

j=1(1− g
(t)
ij )1γ1

ij=s∑nA

i=1

∑nB

j=1(1− g
(t)
ij )

,

p20M =

∑nA

i=1

∑nB

j=1 1{γ2
ij=0}gij∑nA

i=1

∑nB

j=1 gij
,

p20U =

∑nA

i=1

∑nB

j=1 1{γ2
ij=0}(1− gij)∑nA

i=1

∑nB

j=1(1− gij)
.

The updated value for the parameters α2,(t+1)
M , α

2,(t+1)
U are given by the solutions

of the following equations (Young et al., 2019):

0 =
∂ℓc(θ)

∂α2
M

=

nA∑
i=1

nB∑
j=1

1{γ2
ij>0}g

(t)
ij

[
ln(γ2ij)− ln(β

(t)
M )− ψ(α2

M)
]
, (A.5)

0 =
∂ℓc(θ)

∂α2
U

=

nA∑
i=1

nB∑
j=1

1{γ2
ij>0}(1− g

(t)
ij )
[
ln(γ2ij)− ln(β

(t)
U )− ψ(α2

U)
]
, (A.6)

where ψ(·) is the digamma function. The solutions may be found using iterative
methods such as Newton-Raphson.

Second CM-step Maximizing ℓc(θ) with respect to β2
M , β

2
U while all other pa-

rameters are fixed at their current values. The scale parameters are updated as
follows:

β
2,(t+1)
M =

∑nA

i=1

∑nB

j=1 1{γ2
ij>0}γ

2
ijg

(t)
ij

α
(t+1)
M

∑nA

i=1

∑nB

j=1 1{γ2
ij>0}g

(t)
ij

, (A.7)

β
2,(t+1)
U =

∑nA

i=1

∑nB

j=1 1{γ2
ij>0}γ

2
ij(1− g

(t)
ij )

α
(t+1)
U

∑nA

i=1

∑nB

j=1 1{γ2
ij>0}(1− g

(t)
ij )

. (A.8)

The above ECM algorithm stops if the relative difference between estimated pa-
rameters from two successive steps is less than some ϵ > 0, i.e.

∣∣∣θ(t+1)
i − θ

(t)
i

∣∣∣ / ∣∣∣θ(t)i

∣∣∣
< ϵ for all parameters θi ∈ θ or if the relative difference between log-likelihood
calculated at successive estimates of parameters is less than some ϵ′ > 0, i.e.∣∣ℓ(θ(t+1))− ℓ(θt)

∣∣ / |ℓ(θt)| < ϵ′.

When all parameters are obtained from the ECM algorithm, the posterior proba-
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bilities qij = P(M |γij) are estimated for all record pairs as

q̂ij =
p̂M P̂

1M
ij P̂ 2M

ij

p̂M P̂ 1M
ij P̂ 2M

ij + (1− p̂M)P̂ 1U
ij P̂

2U
ij

.

These posterior probabilities are then used to find proper matched pairs.

A.2 Evaluation of the model for binary matching

variables

In this section, under the same setting at Section 3.4, we consider some additional
simulation scenarios when there are only binary matching variables.

A.2.1 Initial values and stopping criteria for EM algorithm

To run the EM algorithm, we have to define a set on initial values for all pa-
rameters. We describe here the approach which has been used in the simulation
to initiate the EM algorithm. We first consider the comparison method with all
possible configuration of FS4 as

γkij =



c1 if (Xk
A,i, X

k
B,j) = (0, 0),

c2 if (Xk
A,i, X

k
B,j) = (0, 1),

c3 if (Xk
A,i, X

k
B,j) = (1, 0),

c4 if (Xk
A,i, X

k
B,j) = (1, 1),

(A.9)

for k = 1, . . . , K, i = 1, . . . , nA and j = 1, . . . , nB. The comparison vectors are
then assumed to follow a mixture distribution of γk|M and γk|U .

The γk|M follows a discrete distribution with parameters mk
1,m

k
2,m

k
3 and mk

4 =

1−mk
1 −mk

2 −mk
3. We have

mk
1 = P(Xk

A,i = 0, Xk
B,i = 0)

= P(Xk
B,i = 0|Xk

A,i = 0)P(Xk
A,i = 0) = (1− ek)(1− pk).

By similar argument, we have mk
2 = ek(1− pk),mk

3 = ekpk.

The γk|U follows a discrete distribution with parameters uk1, uk2, uk3 and uk3 = 1−
uk1−uk2−uk3. As in this caseXk

A,i andXk
B,j, with i ̸= j, are independent (correspond

to two different individuals), we have
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uk1 = P(Xk
A,i = 0, Xk

B,j = 0)

= P(Xk
A,i = 0)P(Xk

B,j = 0)

= (1− pk)
[
(1− ek)P(Xk

A,j = 0) + ekP(Xk
A,j = 1)

]
= (1− pk)

[
(1− ek)(1− pk) + ekpk

]
.

Similarly, we have

uk2 = (1− pk)[(1− ek)pk + ek(1− pk)],

uk3 = pk
[
(1− ek)(1− pk) + ekpk

]
.

To obtain initial values for parameters mk
s and uks of FS4, we substitute ek = 0.01

and pk by its empirical estimate from A. In a similar way, we find initial values
for parameters mk

s and uks of FS3 and FS.

In each method, the algorithm only stops when the relative difference between
estimated parameters from two successive steps is less than 10−6 or when the
number of iterations reaches 500.

A.2.2 Complementary results for the article

Proportion of convergence before the maximum number of iteration in
EM algorithm

In Table A.1, we can see the proportion of convergence of each method over dif-
ferent simulation scenarios considered in Section 3.4. In this simulation, all the
results are obtained by using the package simsalapar (Hofert and Mächler, 2016)
for parallelly running all combinations of simulation parameters. A server with
2 Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz with 12 cores each has been
used.

Boxplots

Figure A.1 shows the boxplots for all simulation results.

F-score

Let’s define

f-score =
TPR + PPV

2
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A.2. Evaluation of the model for binary matching variables

K e Methods Proportion of convergence Average execution time (s)

30 0.02 FS 0.720 37.5

FS3 0.995 63.0

FS4 0.931 188.6

Bayesian 1.00 3.3

0.04 FS 0.385 61.6

FS3 1.00 51.7

FS4 0.922 186.1

Bayesian 1.00 3.3

0.06 FS 0.148 116.2

FS3 0.997 70.9

FS4 0.935 173.4

Bayesian 1.00 3.3

40 0.02 FS 0.977 18.6

FS3 1.00 30.8

FS4 0.984 122.7

Bayesian 1.00 3.4

0.04 FS 0.853 32.8

FS3 1.00 34.7

FS4 0.979 130.2

Bayesian 1.00 3.3

0.06 FS 0.538 43.3

FS3 1.00 42.7

FS4 0.970 170.6

Bayesian 1.00 3.2

50 0.02 FS 0.998 11.7

FS3 1.00 30.7

FS4 0.994 102.2

Bayesian 1.00 3.4

0.04 FS 0.983 17.8

FS3 1.00 34.5

FS4 0.989 138.8

Bayesian 1.00 3.3

0.06 FS 0.864 28.2

FS3 1.00 39.6

FS4 0.980 200.7

Bayesian 1.00 3.2

Table A.1: Proportion of convergence of EM algorithm and average execution time
(seconds) of each method over 1000 repeated simulation with nA =
500, nB = 200, pk = 0.2 and K ∈ {30, 40, 50}, e ∈ {0.02, 0.04, 0.06}.
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Figure A.1: Boxplots of TPR and PPV over different simulation cases when there
are only binary matching variables with nA = 500, nB = 200, pk = 0.2
and K ∈ {30, 40, 50}, e ∈ {0.02, 0.04, 0.06}.

To evaluate the impact of the choice of the threshold τ in the performances of
the methods, we consider the particular scenario with the parameters K = 40,
pk = 0.2 and e = 0.04. We compute in Figure A.2 the Monte Carlo estimates
of TPR (top left part A) and PPV (top right part B) for several values of τ .
Both the TPR and PPV of observed FS3 and FS4 are close and far better than
observed FS, as expected. Although the observed FS4 has the best TPR and PPV,
the estimated FS4 has a slightly lower TPR and a slightly higher PPV. On the
other hand, the estimated FS3 and the observed FS3 behave very similarly, in both
TPR and PPV. We also plot in Figure A.2 the f-score (bottom part C). With the
threshold τ = 0.5, the observed FS4 performs better among the observed methods,
while the estimated FS3 performs better among the estimated methods.
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Figure A.2: TPR, PPV and f-score of estimated and observed methods over dif-
ferent thresholds when there are only binary matching variables with
K = 40, pk = 0.2, e = 0.04.

A.2.3 Affectation of prevalence

In this scenario, we vary prevalence keeping nA = 500, nB = 200, K = 40, e = 0.04

when the prevalence pk ∈ {0.1, 0.2, 0.3} for k = 1, . . . , K. The boxplots of TPR
and PPV obtained from 1000 repeated runs are presented in Figure A.3.

A.2.4 Affectation of ratio nB/nA

In this scenario, we vary nA ∈ {400, 800, 1200} when other simulation parameters
are fixed as nB = 200, K = 40, e = 0.04, pk = 0.2 for k = 1, . . . , K. Boxplots of
TPR and PPV obtained from 1000 repeated runs are presented in Figure A.4.
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Figure A.3: Boxplots of TPR and PPV over different prevalence of matching vari-
ables pk ∈ {0.1, 0.2, 0.3} for k = 1, . . . , K keeping nA = 500, nB =
200, K = 40, e = 0.04

TPR PPV
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Figure A.4: Boxplots of TPR and PPV over three different ratio nB/nA ∈
{2/3, 2/5, 2/10} keeping nB = 200, K = 40, e = 0.04, pk = 0.2 for
k = 1, . . . , K.

A.3 Evaluation of the model for continuous

matching variables

In this section, under the same setting at Section 3.4, we consider some additional
simulation scenarios when there are only continuous matching variables.
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A.3.1 Initial values and stopping criteria for EM and ECM

algorithm

In this scenario, the initial values for parameters of EM algorithm in FS and FS3

are assigned as follows. In FS,

pM =
nB

nAnB

,

mk
1 = 0.8,mk

0 = 1−mk
1,

uk1 = 0.1, uk0 = 1− uk1.

In FS3,

pM =
nB

nAnB

,

mk
0 = 0.8,mk

1 = mk
2 = 0.1,

uk0 = 0.1, uk1 = 0.2, uk2 = 1− uk0 − uk1.

In FS-HGa, we first assign the initial values for pM = nB

nAnB
and pk0M = 0.8. Then,

let’s define

Γk
0 =

{
γk : γk = 0

}
Γk
1 =

{
γk : γk > 0

}
and nk

0, n
k
1 are the number of elements in Γk

0,Γ
k
1 respectively. Then the initial

values for pk0U is computed as

pk0U =
nk
0 − pk0MnB

nAnB − nB

.

The set of positive distance Γk
1 is divided into two sets: Γk

1,M is the set of nB(1−
p0M) smallest positive values γij and Γk

1,U is the set of remained values. The initial
values for (αk

M , β
k
M) are the maximum likelihood estimates from Γk

1,M and and
(αk

U , β
k
U) are the maximum likelihood estimates from Γk

1,U . If Γk
1,M is constant, we

assign αk
M = 1, βk

M = 1.

In each method, the algorithm only stops when the relative difference between
estimated parameters from two successive steps is less than 10−6 or when the
number of iterations reaches 500.
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A.3.2 Complementary results for the article

Proportion of convergence before the maximum number of iteration in
EM and ECM algorithm

Table A.2 provides the proportion of convergence of each method in each simu-
lation scenario and the average execution times. All the results are obtained by
using the package simsalapar (Hofert and Mächler, 2016) for parallelly running all
combinations of simulation parameters. A server with 2 Intel(R) Xeon(R) CPU
E5-2687W v4 @ 3.00GHz with 12 cores each has been used.

Boxplots

Figure A.5 shows the boxplots for all simulation results.
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Figure A.5: Boxplots of TPR and PPV over different simulation cases when there
are only continuous matching variables with nA = 500, nB = 200, K =
3, λk = 0.02 and e ∈ {0.1, 0.2, 03}, λe ∈ {1/2, 1/3, 1/4}.
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e λe Methods Proportion of convergences Average execution time (s)

0.1 1/2 FS-HGa 0.906 183.9

FS3 0.935 71.2

FS 1.000 5.8

1/3 FS-HGa 0.938 162.2

FS3 0.973 46.9

FS 1.000 6.2

1/4 FS-HGa 0.955 173.3

FS3 0.981 39.1

FS 1.000 5.9

0.2 1/2 FS-HGa 0.950 189.5

FS3 0.959 65.4

FS 1.000 7.6

1/3 FS-HGa 0.983 160.7

FS3 0.993 36.9

FS 1.000 7.7

1/4 FS-HGa 0.979 150.9

FS3 0.996 25.8

FS 1.000 7.7

0.3 1/2 FS-HGa 0.953 175.1

FS3 0.953 68.9

FS 1.000 12.8

1/3 FS-HGa 0.981 170.0

FS3 0.993 39.1

FS 1.000 12.6

1/4 FS-HGa 0.970 183.4

FS3 1.000 31.6

FS 1.000 12.2

Table A.2: Proportion of convergence of EM/ECM algorithm and average ex-
ecution time (seconds) of each method in different simulation with
nA = 500, nB = 200, K = 3, λk = 0.02 and e ∈ {0.1, 0.2, 03},
λe ∈ {1/2, 1/3, 1/4}
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F-score

To evaluate the impact of the choice of the threshold τ , we consider the particular
scenario with the parameters K = 3, λk = 0.02, e = 0.2 and λe = 1/2. We
compute in Figure A.6 the Monte Carlo estimates of TPR (top left part A) and
PPV (top right part B) for several values of τ . We observe that for both the TPR
and PPV, the results obtained for a given estimated method and for its observed
counterpart are very similar. Also, we observe that FS-HGa performs significantly
better than FS3 and FS, both in terms of TPR and PPV. This is more clearly
illustrated by the plot of f-score (bottom part C).
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Figure A.6: TPR, PPV, f-score of estimated and observed methods over different
thresholds when there are only continuous matching variables with
K = 3, λk = 0.02, e = 0.2 and λe = 1/3.
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A.3.3 Affectation of range of matching variables

In this scenario, we vary λk ∈ {0.01, 0.02, 0.03} for k = 1, . . . , K, which means
the mean values for continuous variables are 100, 50, 25 respectively. A matching
variable having larger range is more distinguish and better for record linkage.
Other simulation parameters are fixed as nA = 500, nB = 200, K = 3, e = 0.2, λe =

1/3. The boxplots of TPR and PPV over 1000 simulations is presented in Figure
A.7 .

TPR PPV

0.01 0.02 0.03 0.01 0.02 0.03

0.5

0.6

0.7

0.8
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1.0

λk

Methods

FS−HGa

FS3
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Figure A.7: Boxplots of TPR and PPV over three different range of matching
variables with λk ∈ {0.01, 0.02, 0.03} for k = 1, . . . , K keeping nA =
500, nB = 200, K = 3, e = 0.2, λe = 1/3.

A.3.4 Affectation of number of matching variables

In this simulation, we varyK ∈ {2, 3, 4} when nA = 500, nB = 200, λk = 0.005, e =

0.2, λe = 1/2. Boxplots of TPR and PPV over 1000 simulations is presented in
Figure A.8.

A.3.5 Affectation of ratio nB/nA

In this scenario, we vary nA ∈ {400, 800, 1200} keeping nB = 200, K = 3, λk =

0.02, ek = 0.2, λke = 1/3 for k = 1, . . . , K. Boxplots of TPR and PPV over 1000
simulations is presented in Figure A.9.
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Figure A.8: Boxplots of TPR and PPV of different methods with different K ∈
{2, 3, 4} when nA = 500, nB = 200, λk = 0.005, e = 0.2, λe = 1/2.
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Figure A.9: Boxplots of TPR and PPV different ration of nB/nA with nA ∈
{300, 500, 1000} keeping nB = 200, K = 3, λk = 0.02, ek = 0.2, λke =
1/3 for k = 1, . . . , K.

A.3.6 Robustness of the hurdle gamma mixture model

We evaluate the robustness of the hurdle gamma mixture model for different dis-
tribution of continuous matching variables.

Uniform distribution for Xk and exponential distribution for ϵ

In this simulation, we generate Xk
A follows an Uniform distribution (0, zk) and the

error ϵ follows Exponential distribution with parameter λe. We consider different

104



A.3. Evaluation of the model for continuous matching variables

case with nA = 500, nB = 200, K = 3, zk = 100, λe ∈ {1/2, 1/3, 1/4} and the pro-
portion of error e ∈ {0.1, 0.2, 0.3}. Figure A.10 shows the Monte-Carlo estimates
and Figure A.11 shows the boxplots of all methods over 1000 repeated runs.

●

●

● ●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●●

● ●
●

●

●

●

●

●●

● ●
●●

●

●●

●

●

● ●
●●

●

●●

TPR PPV

λ
e =

1
2

λ
e =

1
3

λ
e =

1
4

0.1 0.2 0.3 0.1 0.2 0.3

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

ek

Methods ● ● ●FS−HGa FS3 FS

Figure A.10: Monte Carlo estimates of TPR and PPV when nA = 500, nB =
200, K = 3, zk = 100, λe ∈ {1/2, 1/3, 1/4} and the proportion of
error e ∈ {0.1, 0.2, 0.3}

Exponential distribution for Xk and normal distribution for ϵ

In this simulation, we generateXk
A follows an Exponential distribution (λk) and the

error ϵk follows Normal distribution (µk
e , σ

k
e ). We estimate TPR and PPV of dif-

ferent methods when nA = 500, nB = 200, K = 3, λk = 0.02, σk
e = 1, µk

e ∈ {1, 2, 3}
and the proportion of error ek ∈ {0.1, 0.2, 0.3}. Each case is repeated 1000 times.

Once the databases were generated, we compared four following record linkage
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Figure A.11: Boxplots of TPR and PPV when nA = 500, nB = 200, K =
3, zk = 100, λke ∈ {1/2, 1/3, 1/4} and the proportion of error ek ∈
{0.1, 0.2, 0.3}

methods: FS, the Fellegi-Sunter model with simple binary comparison; FS3, the
Fellegi-Sunter model using a comparison with 3 categories described as follows:

γkij =


0 if |Xk

B,j −Xk
A,j| = 0,

1 if 0 < |Xk
B,j −Xk

A,j| ≤ 2,

2 if 2 < |Xk
B,j −Xk

A,j|

(A.10)

for k = 1, . . . , K; FS-HGa, the Fellegi-Sunter model with the 1-norm comparison
method as

γkij = |Xk
B,j −Xk

A,j|,
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A.3. Evaluation of the model for continuous matching variables

and FS-HGa2, the Fellegi-Sunter model with the 2-norm comparison method as

γkij = |Xk
B,j −Xk

A,j|2.

In FS-HGa and FS-HGa2, we keep using the mixture of hurdle gamma distribution
model for the comparison data. Figure A.12 shows the Monte-Carlo estimates and
Figure A.13 shows the boxplots of all methods over 1000 repeated runs.
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Figure A.12: Monte Carlo estimates of TPR and PPV of 4 methods when nA =
500, nB = 200, K = 3, λk = 0.02, σk

e = 1, µk
e ∈ {1, 2, 3} and the

proportion of error ek ∈ {0.1, 0.2, 0.3}
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Figure A.13: Boxplots of TPR and PPV of 4 methods when nA = 500, nB =
200, K = 3, λk = 0.02, σk

e = 1, µk
e ∈ {1, 2, 3} and the proportion of

error ek ∈ {0.1, 0.2, 0.3}
.

A.4 Evaluation of the model for both categorical

and continuous matching variables

In this section, we design a simulation study to compare the performance of the
proposed model to the standard Fellegi-Sunter model, in case when both categor-
ical and continuous matching variables are used.

We consider two databases A and B containing nA = 500 and nB = 200 indi-
viduals. There are K = 6 matching variables with K1 = 2 categorical matching
variables, K2 = 2 low prevalence binary matching variables, and K3 = 2 con-
tinuous matching variables. Following the same process as in the other simula-
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variables

tions presented in the article, the values in database A is first generated. The
two categorical matching variables are generated according to a discrete uniform
distribution, where the number of categories are randomly selected in {30, 50}.
The two low prevalence binary matching variables are generated according to a
Bernoulli distribution of parameter 0.01. The two continuous matching variables
are generated from an exponential distribution with parameter 0.01.

A subset of 200 units is then selected in A to obtain the dataset B, and some
random perturbations are then introduced in the generated values. In case of the
binary matching variables, 2% of the records contain errors which are generated by
randomly replacing the true modality by the other modality. In case of the cate-
gorical matching variables, 10% of the records contain errors, which are generated
by randomly replacing the correct value with another category. In case of the con-
tinuous matching variables, the proportion of errors e varies in {10%, 20%, 30%},
and these errors are generated according to an Exponential distribution with pa-
rameter 0.5.

The data generation process is repeated 1000 times. For each generated dataset,
we perform two linkage methods: the standard Fellegi-Sunter model FS, and our
proposed model FS-ext. In FS, the binary comparison only is applied. In FS-ext,
the binary comparison is still applied for the two categorical matching variables,
but the proposed comparison function (7) is applied for the binary matching vari-
ables, and the absolute distance (19) is applied for the continuous matching vari-
ables. The threshold τ = 0.5 is used for the estimation of posterior probabilities
of matching from FS and FS-ext.

In addition, we considered another implementation of the standard Fellegi-Sunter
model by R RecordLinkage package, in order to compare our program to alter-
natives. This is denoted as FS-RecLink. Since this package orders the record
pairs with respect to the matching weights, we have to compute a threshold for
the matching weights equivalent to a threshold of 0.5 for the estimated posterior
probabilities of matching.

The matching weight is

w =
P(γ|M)

P(γ|U)
, (A.11)

for a value γ of the comparison vector, and the posterior probability of matching
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is

q = P(M |γ). (A.12)

Using the Bayes’s rule, we have

q =
P(γ|M)P(M)

P(γ|M)P(M) + P(γ|U)(1− P(M))
=

wP(M)

wP(M) + 1− P(M)
.

After some algebra, we obtain

w =
1− P(M)

1− q

q

P(M)
. (A.13)

In the RecordLinkage package, the matching weight is defined as log2(w). Under
our simulation setting, we have P(M) = nB

nAnB
= 1

500
= 0.002. By replacing q in

(A.13) with the threshold τ = 0.5, the threshold value for the matching weight in
FS-RecLink is log2

(
1−0.002
1−0.5

0.5
0.002

)
≈ 8.963.

e Methods TPR PPV Execution time(s)

0.1 FS 0.948 0.994 3.73

FS-RecLink 0.948 0.995 2.98

FS-ext 0.982 0.987 66.20

0.2 FS 0.892 0.995 4.29

FS-RecLink 0.892 0.995 3.38

FS-ext 0.976 0.984 62.6

0.3 FS 0.825 0.995 5.01

FS-RecLink 0.825 0.995 3.86

FS-ext 0.967 0.981 61.40

Table A.3: Summary of 1,000 Monte-Carlo simulation in case of having both cat-
egorical and continuous matching variables.

The Monte-Carlo estimations of the TPR and the PPV are presented in Table
A.3 for the three linkage methods, along with their standard error. It is clear that
both FS and FS-RecLink produce approximately the same results. Concerning the
proposed method FS-ext, the PPV is very similar to what is observed for both
FS and FS-RecLink. The TPR is much improved, especially when the proportion
of errors in the continuous matching variables increases.
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In this simulation, we also compute the mean execution time under the three link-
age models. The execution time is much larger for FS-ext, but remains very mod-
erate (no more than 70 seconds). This is due to the fact that the proposed model
requires more parameters to be estimated. Also, since the likelihood function is
more complex, the ECM algorithm is needed. In addition, the ECM algorithm
involves maximization steps, while the EM algorithm in FS involves only one.

A.5 Naive example for comparison step

In this section, we give an example of implementing the proposed comparison
approaches. Let’s consider in Tables A.4 and A.5 the case of patients for which
two data sets are available. Both of them contain the postal code (categorical
variable), an indicator for lung cancer (binary variable), and the date of admission
in hospital.

Postal code Lung cancer Date of admission

a1 35170 1 05/01/2020

a2 35510 0 22/01/2020

a3 35170 0 12/01/2020

Table A.4: Naive example of
database A

Postal code Lung cancer Date of admission

b1 35510 0 25/01/2020

b2 35170 1 05/01/2020

Table A.5: Naive example of
database B

Table A.6 is a comparison matrix associated to the example initiated in Tables
A.4 and A.5. In Table A.6, each row is a comparison vector γij of a record pair
(XA,i, XB,j).

γ1 γ2 γ3

γ11 0 0 0

γ12 1 1 1

γ21 1 1 0

γ22 0 0 0

γ31 0 1 0

γ32 1 0 0

Table A.6: A simple comparison ma-
trix for the data given in
Tables A.4 and A.5

γ1 γ2 γ3

γ11 0 1 20

γ12 1 2 0

γ21 1 0 3

γ22 0 1 17

γ31 0 0 13

γ32 1 1 7

Table A.7: A variant for the compar-
ison matrix given in Ta-
ble A.6 with mixed type
comparison values.
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For example, Table A.7 is a new comparison matrix for the data given in Tables A.4
and A.5. The simple binary comparison function is applied for the first matching
variable (postal code). The three categories comparison method is applied for the
binary matching variable (lung cancer). The distance

d(Xk
A,i, X

k
B,j) = |Xk

A,i −Xk
B,j| (A.14)

is applied for the continuous matching variable (duration of the hospital stay).
The set of all observed comparison vectors is fitted by a mixture model for mixed
type data.
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B Appendix for Chapter 4

In this appendix, we present some complementary materials for Chapter 4. The
appendix B.1 provides the expectation computation for the adjusted estimating
equation. In appendix B.2, we show detail formulas for the variance estimator.
Then, some additional simulation results are included in appendix B.3.

B.1 Expectation of the adjusted estimating

equation

The proposed adjusted estimating equation is given by

H̄(β) ≡ 1

nA

V∑
v=1

∑
i∈Av

δi

{
X∗

i (αv)−
∑V

v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (αv,β)

}
= 0. (B.1)

Let F = {(Ti, δi), i = 1, . . . , nA and Xj, j = 1, . . . , nB} denote the information re-
lated to the duration times and censoring indicators for the units in A, and to the
true values of covariates for all the units in B. We have

E{H̄(β) | F} =
1

nA

V∑
v=1

∑
i∈Av

E

{
δi

[
X∗

i −
∑V

v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (αv,β)

] ∣∣∣∣∣ F
}

=
1

nA

V∑
v=1

∑
i∈Av

δi

E(X∗
i | F)︸ ︷︷ ︸
E1

−E

(∑V
v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (αv,β)

∣∣∣∣∣ F
)

︸ ︷︷ ︸
E2


(B.2)

For each i ∈ Av and j ∈ Bv, let lij be an indicator equal to 1 if unit i and j are
linked, and to 0 otherwise. Then for each i ∈ Av, we have Zi =

∑
j∈Bv

lijXj, and

E(Zi | F) =
∑
j∈Bv

XjE(lij | F).

Under the non-informative assumption for the linkage process, we obtain from the
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hit-miss model (4.4) that

E(lii | F) = αv + (1− αv)(nB)
−1,

E(lij | F) = (1− αv)(nB)
−1 for j ∈ B \ {i},

which leads to

E(Zi | F) = αvXi + (1− αv)X̄Bv

From equation (4.7) and under the non-informative linkage assumption, we have

E1 = E
{
α−1
v Zi − (α−1

v − 1)X̄Bv | F
}

= α−1
v E (Zi | F)− (α−1

v − 1)X̄Bv

= α−1
v

[
αvXi + (1− αv)X̄Bv

]
− (α−1

v − 1)X̄Bv

= Xi.

(B.3)

By using a first order Taylor approximation, we have up to negligible factors of
order Op(n

−1
A ):

E2 ≈
E
{∑V

v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)

∣∣∣F}
E
{∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (αv,β)
∣∣∣F} (B.4)

where

E

{
V∑

v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)

∣∣∣∣∣F
}

=
V∑

v=1

∑
j∈Av

E
{
Yj(Ti)h

∗
j(αv,β) | F

}
=

V∑
v=1

∑
j∈Av

Yj(Ti)E
{
h∗j(αv,β) | F

}
=

V∑
v=1

∑
j∈Av

Yj(Ti)h(β,Xj).

Similarly:

E

(
V∑

v=1

∑
j∈Av

Yj(Ti)g
∗
j (αv,β)

∣∣∣∣∣F
)

=
V∑

v=1

∑
j∈Av

Yj(Ti)g(β,Xj).

Therefore,

E2 ≈
∑V

v=1

∑
j∈Av

Yj(Ti)h(β,Xj)∑V
v=1

∑
j∈Av

Yj(Ti)g(β,Xj)
(B.5)
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By plugging (B.3) and (B.5) into (B.2), we obtain

E
{
H̄(β)

∣∣F} ≈ 1

nA

V∑
v=1

∑
i∈Av

δi

{
Xi −

∑V
v=1

∑
j∈Av

Yj(Ti)h(β,Xj)∑V
v=1

∑
j∈Av

Yj(Ti)g(β,Xj)

}
= H0(β).

(B.6)

B.2 Computation of the variance estimator

In this section, the derivation of the variance estimator is explained. For simplic-
ity, we focus on the case V = 1 when a single block is used. The extension to
multiple blocks is straightforward.

We first recall the main notations. A database B of size nB is first obtained, and
the covariates Xi are observed for all the units in B. We use the notations

X̄B =
1

nB

nB∑
i=1

Xi,

ḡB(β) =
1

nB

nB∑
i=1

g(β,Xi),

h̄B(β) =
1

nB

nB∑
i=1

h(β,Xi).

We also note XB ≡ {Xi}i∈B for the set of auxiliary variables in B.

A subsample A of size nA is then selected in B, and the variable Ti is obtained
for any unit i ∈ A. We note TA ≡ {Ti}i∈A for the set of outcome values in A.
The auxiliary variables are obtained in A by using record linkage, leading to the
pseudo auxiliary variables Zi for any unit i ∈ A. We note ZA ≡ {Zi}i∈A for the
set of pseudo values in A.

Finally, a validation sample V of size nV is selected in A by simple random sam-
pling, and the true auxiliary variables Xi are obtained for the units i ∈ V . By
comparing the pseudo values Zi and the true values Xi in V , we obtain an unbiased
estimator α̂ for the parameter α.
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B.2.1 Global estimating equation

Using the unbiased estimator α̂ for the parameter α (see equation 4.4), the global
estimating equation for the parameter β is

H̄(β) ≡ 1

nA

nA∑
i=1

δi

{
X∗

i (α̂)−
∑nA

j=1 Yj(Ti)h
∗
j(α̂,β)∑nA

j=1 Yj(Ti)g
∗
j (α̂,β)

}
︸ ︷︷ ︸

Hi(β)

= 0, (B.7)

where

X∗
i (α̂) =

Zi

α̂
− 1− α̂

α̂
X̄B,

g∗j (α̂,β) =
g(β,Zj)

α̂
− 1− α̂

α̂
ḡB(β), (B.8)

h∗j(α̂,β) =
h(β,Zi)

α̂
− 1− α̂

α̂
h̄B(β).

Let us denote by β0 the true value of the parameter. Then we have

H̄(β̂)− H̄(β0) = −H̄(β0) ≃ {E∇H̄(β0)}{β̂ − β0},

with ∇H̄(β) the differential of H̄(β). We obtain

β̂ − β0 ≃ −{E∇H̄(β0)}−1 × H̄(β0).

It is thus sufficient to obtain a variance estimator for H̄(β0), from which we can
use the sandwich variance estimator

V̂(β̂) = {∇H̄(β̂)}−1 × V̂{H̄(β0)} × {∇H̄(β̂)}−1. (B.9)

The derivation of V̂{H̄(β0)} is explained in the next sections.

B.2.2 Accounting for the estimation of α

Since we have

1

α̂
=

1

α
× 1

1 + α̂−α
α

=
1

α

[
1− α̂− α

α
+ op(nV

−0.5)

]
=

1

α
− α̂− α

α2
+ op(nV

−0.5),
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we may rewrite the quantities in (B.8) as

X∗
i (α̂) =

1

α
(Zi − X̄B) + X̄B︸ ︷︷ ︸

X∗
i (α)

− α̂− α

α2
(Zi − X̄B) + op(nV

−0.5),

g∗j (α̂,β0) =
1

α
{g(β0,Zj)− ḡB(β0)}+ ḡB(β0)︸ ︷︷ ︸

g∗j (α,β0)

− α̂− α

α2
{g(β0,Zj)− ḡB(β0)}+ op(nV

−0.5),

h∗j(α̂,β0) =
1

α

{
h(β0,Zj)− h̄B(β0)

}
+ h̄B(β0)︸ ︷︷ ︸

h∗
j (α,β0)

− α̂− α

α2

{
h(β0,Zj)− h̄B(β0)

}
+ op(nV

−0.5).

(B.10)

Let us denote ϵ = α̂−α
α2 . By plugging (B.10) into equation (B.7), we have∑nA

j=1 Yj(Ti)h
∗
j(α̂,β)∑nA

j=1 Yj(Ti)g
∗
j (α̂,β)

=

∑nA

j=1 Yj(Ti)h
∗
j(α,β)− ϵ

∑nA

j=1 Yj(Ti)
[
h(β0,Zj)− h̄B(β0)

]∑nA

j=1 Yj(Ti)g
∗
j (α,β)− ϵ

∑nA

j=1 Yj(Ti) [g(β0,Zj)− ḡB(β0)]

+ op(nV
−0.5).

After some algebra, this leads to:

H̄(β0) = H̄1(β0)−
(
α̂− α

α2

)
H̄2(α,β0) + op(nV

−0.5), (B.11)

where

H̄1(β0) =
1

nA

nA∑
i=1

δi {X∗
i (α)−R∗

i (α,β0)}︸ ︷︷ ︸
H1i(β0)

(B.12)

with R∗
i (α,β0) =

∑nA
j=1 Yj(Ti)h

∗
j (α,β)∑nA

j=1 Yj(Ti)g∗j (α,β)
, and with

H̄2(α,β0) =
1

nA

nA∑
i=1

δi

[
(Zi − X̄B)

−
∑nA

j=1 Yj(Ti)
{[
h(β0,Zj)− h̄B(β0)

]
−R∗

i (α,β0) [g(β0,Zj)− ḡB(β0)]
}∑nA

j=1 Yj(Ti)g
∗
j (α,β0)

]
.

(B.13)
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By neglecting the terms which are op(nV
−0.5), we obtain from (B.11) that

V
[
H̄(β0)

]
= V

[
E
{
H̄(β0)

∣∣XB, TA,ZA

}]
+ E

[
V
{
H̄(β0)

∣∣XB, TA,ZA

}]
≃ V

[
H̄1(β0)

]
+ E

[
H̄2(β0)V

{
α̂− α

α2

∣∣∣∣XB, TA,ZA

}
{H̄2(β0)}⊤

]
. (B.14)

Under the assumption that the validation sample SV is selected in A by simple
random sampling without replacement, we have

α̂ =
1

nV

∑
i∈SV

µi where µi =

1 if linkage is correct,

0 otherwise.

Since µi is a binary variable, it follows from standard results in survey sampling
theory that an unbiased estimator for V { α̂|XB, TA,ZA} is

V̂(α̂) =
(

1

nV

− 1

nA

)
nV

nV − 1
α̂(1− α̂).

Hence the second term in the right-hand side of (B.14) may be estimated by

V̂1

[
H̄(β0)

]
= H̄2(α̂, β̂){H̄2(α̂, β̂)}⊤ ×

(
1

nV

− 1

nA

)
nV

nV − 1

1− α̂

α̂3
, (B.15)

where H̄2(α̂,β̂) is obtained from (B.13) by replacing β0 with β̂ and α with α̂. This
is the component of the variance estimator which accounts for the estimation of
α.

B.2.3 Accounting for the linkage and estimation error

In this section, we focus on the first term in the right-hand side of (B.14). We
have

V
[
H̄1(β0)

]
= V

[
E
{
H̄1(β0)

∣∣XB, TA
}]

+ E
[
V
{
H̄1(β0)

∣∣XB, TA
}]
.(B.16)

It follows from equation (B.6) in Appendix B.1 that

E
{
H̄1(β0)

∣∣XB, TA
}

≃ 1

nA

nA∑
i=1

δi

{
Xi −

∑nA

j=1 Yj(Ti)h(β0,Xj)∑nA

j=1 Yj(Ti)g(β0,Xj)

}
︸ ︷︷ ︸

Hti(β0)

, (B.17)

which is the function associated to the theoretical estimating equation that we
would solve if the covariates Xi were known without linkage error for the units
i ∈ A. Secondly, note that conditionally on XB and TA, the terms H1i(β0) are
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approximately uncorrelated for i = 1, . . . , nA. More precisely, it can be proved
after some algebra that for any i ̸= j = 1, . . . , nA, we have

Cov
(
δi {X∗

i (α)−R∗
i (α,β0)} , δj

{
X∗

j(α)−R∗
j (α,β0)

}∣∣XB, TA
)

= Op(n
−1
A ).

Therefore, we obtain that

V
{
H̄1(β0)

∣∣XB, TA
}

≃ 1

(nA)2

nA∑
i=1

V {H1i(β0)|XB, TA} . (B.18)

where H1i(·) is defined in (B.12). From (B.16), (B.17) and (B.18), we obtain that

V
[
H̄1(β0)

]
≃ V

(
1

nA

nA∑
i=1

Hti(β0)

)
+ E

[
1

(nA)2

nA∑
i=1

V {H1i(β0)|XB, TA}

]
. (B.19)

Now, we consider the sample dispersion term given by

s2H(β0) =
1

nA − 1

nA∑
i=1

{
Hi(β0)−

1

nA

nA∑
j=1

Hj(β0)

}2

=
1

2nA(nA − 1)

nA∑
i ̸=j=1

{Hi(β0)−Hj(β0)}2 . (B.20)

where Hi(·) is defined in (B.7). We have

E
{
s2H(β0)

nA

}
= EE

{
s2H(β0)

nA

∣∣∣∣XB, TA

}
(B.21)

= E

[
1

2n2
A(nA − 1)

nA∑
i ̸=j=1

E{Hi(β0)−Hj(β0)|XB, TA}2
]

+ E

[
1

2n2
A(nA − 1)

nA∑
i ̸=j=1

V{Hi(β0)−Hj(β0)|XB, TA}

]

≃ E

[
1

2n2
A(nA − 1)

nA∑
i ̸=j=1

{Hti(β0)−Htj(β0)}2
]

(whereHti(·) is defined in (B.17))

+ E

[
1

2n2
A(nA − 1)

nA∑
i ̸=j=1

V{Hi(β0)|XB, TA}+ V{Hj(β0)|XB, TA}

]
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= E

[
1

nA(nA − 1)

nA∑
i=1

{
Hti(β0)−

1

nA

nA∑
j=1

Htj(β0)

}2

+
1

n2
A

nA∑
i=1

V{Hi(β0)|XB, TA}

]
≃ V

[
H̄1(β0)

]
,

where the last line in (B.21) follows from a comparison with equation (B.19).
Therefore, V

[
H̄1(β0)

]
may be approximately unbiasedly estimated by replacing

in (B.20) the unknown parameter β0 with β̂, which leads to

V̂2

[
H̄(β0)

]
=

s2H(β̂)

nA

. (B.22)

This is the component of the variance estimator, which accounts for both the
linkage and estimation errors.

B.2.4 Global variance estimator

By plugging (B.15) and (B.22) into (B.14), we obtain:

V̂{H̄(β0)} = V̂1{H̄(β0)}+ V̂2{H̄(β0)}.

The global variance estimator is therefore obtained from (B.9) as:

V̂(β̂) = {∇H̄(β̂)}−1 ×
{
V̂1{H̄(β0)}+ V̂2{H̄(β0)}

}
× {∇H̄(β̂)}−1(B.23)

B.3 Additional simulation studies

We conduct several additional simulations to study the performance of the pro-
posed method. In Section B.3.1, we consider scenarios where linkage errors are
informative. In Section B.3.2, we study the affectation of non-random sample. A
sensitivity analysis of α̂ is present in Section B.3.3.

For ease of interpretation, we assume there is only one block V = 1. Data are also
generated by the scheme described in Section 4.3.1.
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B.3.1 Informative linkage error

In this section, we study the proposed methods when linkage errors are informative
of Cox model. We fix the sample size nA = 1000, nB = 2000 and let α vary in
{0.75, 0.85, 0.95} in the following simulations.

When α is dependent on X1

In this case, we generate Zi according to linkage model (4.4) as

Zi =


Xi if Xi,1 ≥ F−1

N (0,1)(1− α),

X(j) otherwise,
(B.24)

where F−1
N (0,1)(·) is the quantile function of the standard normal distribution. By

this way, there is a dependency between the linkage and the covariate.

β̂1 β̂2

α Methods Fails BMC SdMC Ŝd BMC SdMC Ŝd

* Theoretical 0 0.000 0.039 0.040 0.003 0.080 0.080

0.75 Naive 0 0.131 0.047 0.046 0.142 0.081 0.081

Validation 0 0.021 0.195 0.190 0.033 0.308 0.291

TAEE 0 0.095 0.088 0.085 0.001 0.119 0.128

AEE 0 0.099 0.122 0.116 0.001 0.128 0.138

0.85 Naive 0 0.085 0.048 0.045 0.091 0.082 0.080

Validation 0 0.023 0.167 0.166 0.016 0.281 0.276

TAEE 0 0.033 0.066 0.067 0.004 0.102 0.113

AEE 0 0.035 0.076 0.078 0.003 0.104 0.116

0.95 Naive 0 0.033 0.043 0.043 0.032 0.082 0.080

Validation 0 0.016 0.145 0.144 0.012 0.267 0.264

TAEE 0 0.002 0.048 0.054 0.001 0.088 0.101

AEE 0 0.003 0.051 0.057 0.000 0.090 0.102

Table B.1: Summary of 1000 Monte-Carlo simulations when there is only 1 block
with 2 covariates and α is dependent on X1.
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When α is dependent on T̃

In this case, we generate Zi according to linkage model (4.4) as

Zi =


Xi if T̃i ≥ F−1

T̃
(1− α),

X(j) otherwise,
(B.25)

where F−1

T̃
(·) is the quantile function of T̃B. By this way, there is a dependency

between the linkage and the survival time.

β̂1 β̂2

α Methods Fails BMC SdMC Ŝd BMC SdMC Ŝd

* Theoretical 0 0.000 0.039 0.040 0.003 0.080 0.080

0.75 Naive 0 0.146 0.038 0.040 0.140 0.078 0.082

Validation 0 0.014 0.181 0.173 0.019 0.352 0.336

TAEE 10 0.065 0.112 0.096 0.080 0.136 0.146

AEE 56 0.079 0.177 0.239 0.089 0.197 0.285

0.85 Naive 0 0.103 0.039 0.040 0.097 0.078 0.081

Validation 0 0.015 0.154 0.153 0.019 0.304 0.299

TAEE 0 0.001 0.055 0.064 0.010 0.100 0.117

AEE 0 0.006 0.065 0.077 0.015 0.108 0.125

0.95 Naive 0 0.040 0.039 0.040 0.036 0.080 0.081

Validation 0 0.014 0.142 0.139 0.020 0.277 0.271

TAEE 0 0.006 0.043 0.052 0.002 0.087 0.102

AEE 0 0.006 0.045 0.055 0.002 0.088 0.103

Table B.2: Summary of 1000 Monte-Carlo simulations when there is only 1 block
with 2 covariates and α is dependent on T̃ .

Simulation results in Table B.1 and Table B.2 indicate that there will be more bias
in TAEE and AEE when α is dependent on Cox model, especially when α is small
and dependent on T̃ (Table B.2). It reassures the necessity of the non-informative
linkage error assumption. However, in case the assumption may not hold, the
proposed methods are still better than the Naive method.
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B.3.2 Sampling affectations

To compute X̄Bv , ḡBv(β) and h̄Bv(β) in (4.7), the AEE requires access to all the X-
vectors in B. In some cases, this may not be possible due to confidentiality reasons.
In that case, we have access to only the linked dataset A. In this situation, we
propose to approximate

X̄Bv with Z̄Av =
1

nAv

∑
i∈Av

Zi,

ḡBv(β) with ḡAv(β) =
1

nAv

∑
i∈Av

exp(Z⊤
i β), (B.26)

h̄Bv(β) with h̄Av(β) =
1

nAv

∑
i∈Av

exp(Z⊤
i β)Zi.

Under this situation, we perform two methods TAEE-A and AEE-A using the same
equations as TAEE and AEE respectively except that (4.7) is replaced with (B.26).
If Av is a random sample of Bv, (B.26) can be a good approximation. In the
following simulations, we consider different type of sampling of Av. We first gen-
erate nB = 2000 units in database B with p = 2 covariates, a continuous variable
X1 ∼ N (0, 1) and a binary variable X2 ∼ Bernoulli(0.7). The value of α = 0.85 is
fixed.

Suppose that each individual i in Bv can be selected with probability pi following
the logistic regression model as

pi = P(Xi is chosen forAv) =
exp(X⊤

i ω)

1 + exp(X⊤
i ω)

(B.27)

where ω is a pre-defined vector of coefficients.

• Type 0: pi = 0.5 for all i = 1, . . . , nB. Av is random selected from Bv

• Type 1: pi =
exp(0.5X1)

1 + exp(0.5X1)

• Type 2: pi =
exp(0.4X1 + 0.1X2)

1 + exp(0.4X1 + 0.1X2)

• Type 3: pi =
exp(0.4Y1 + 0.4Y2)

1 + exp(0.4Y1 + 0.4Y2)
where Y1 ∼ N (−0.5, 1) and Y2 ∼

Bernoulli(0.6) are independent of X1 and X2.

From the simulation results in Table B.3, we can see that when the sampling
process is independent of model covariates (X1, X2) (Type 0 and 3), the AEE-A (or
TAEE-A) gives the same performance as AEE (or TAEE).
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β̂1 β̂2

Type Methods BMC SdMC Ŝdmpl ŜdAEE BMC SdMC Ŝdmpl ŜdAEE

0 Theoretical 0.000 0.039 0.040 0.003 0.080 0.080

Naive 0.092 0.040 0.039 0.088 0.081 0.080

Validation 0.016 0.149 0.146 0.000 0.296 0.283

TAEE 0.002 0.055 0.041 0.059 0.007 0.103 0.080 0.113

AEE 0.005 0.063 0.041 0.066 0.010 0.110 0.080 0.118

TAEE-A 0.001 0.055 0.040 0.059 0.006 0.102 0.080 0.113

AEE-A 0.004 0.062 0.041 0.066 0.010 0.108 0.080 0.118

1 Theoretical 0.001 0.040 0.040 0.003 0.081 0.078

Naive 0.092 0.040 0.040 0.087 0.080 0.079

Validation 0.013 0.151 0.145 0.013 0.286 0.277

TAEE 0.001 0.054 0.041 0.058 0.005 0.101 0.079 0.108

AEE 0.002 0.060 0.041 0.065 0.006 0.104 0.079 0.112

TAEE-A 0.006 0.056 0.041 0.058 0.012 0.102 0.079 0.108

AEE-A 0.007 0.063 0.041 0.065 0.013 0.106 0.079 0.112

2 Theoretical 0.001 0.039 0.040 0.003 0.081 0.078

Naive 0.091 0.039 0.039 0.089 0.079 0.078

Validation 0.021 0.144 0.143 0.018 0.283 0.277

TAEE 0.002 0.053 0.040 0.057 0.004 0.100 0.078 0.108

AEE 0.002 0.059 0.040 0.063 0.004 0.103 0.078 0.112

TAEE-A 0.007 0.054 0.040 0.057 0.009 0.101 0.078 0.108

AEE-A 0.007 0.061 0.040 0.063 0.009 0.105 0.078 0.112

3 Theoretical 0.002 0.037 0.040 0.003 0.081 0.079

Naive 0.090 0.038 0.039 0.091 0.079 0.080

Validation 0.019 0.156 0.144 0.019 0.288 0.281

TAEE 0.004 0.052 0.040 0.058 0.003 0.101 0.080 0.112

AEE 0.008 0.060 0.040 0.066 0.007 0.106 0.080 0.117

TAEE-A 0.004 0.051 0.040 0.058 0.003 0.101 0.080 0.112

AEE-A 0.008 0.059 0.040 0.066 0.006 0.105 0.080 0.117

Table B.3: Simulation results with different sampling type

However, when sampling process depends on the model covariates (Type 1 and
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2), the AEE-A (or TAEE-A) has larger bias and variability estimation than AEE (or
TAEE). However, the different is very small.

B.3.3 Sensitivity analysis

In this section, we study the affectation of α̂ on the performance of the proposed
methods. We consider a same above data generation with a fixed value of α = 0.85

and different sample size nA ∈ {500, 1000, 2000}. Then we examine following
methods:

• TAEE: Using the AEE with true α = 0.85

• TAEE-1: Using the AEE with α = α1 = 0.75

• TAEE-2: Using the AEE with α = α2 = 0.8

• TAEE-3: Using the AEE with α = α3 = 0.9

• TAEE-4: Using the AEE with α = α4 = 0.95

From the Table B.4, we can see that there will be more biased when α is poor
specified, especially in TAEE-1 and TAEE-4 . With a moderate bias of α, TAEE-2
and TAEE-3 still have smaller bias than the Naive method. The simulation results
also indicate that with a same level of bias in α̂, the larger estimate value of α
is better for the proposed method. For example, TAEE-4 is better than TAEE-1,
TAEE-3 is better than TAEE-2.

B.4 Linearly approximated estimating equation

We propose another version of the adjusted estimating equation. For each block
v and i ∈ Av, the expectation of the 2nd term inside the big parentheses of the
naive estimating equation (4.5) can be approximately given as ∆i,v below:

∆i,v :=

∑
v

∑
j∈Av

Yj(Ti)E(h(β,Zj))∑
v

∑
j∈Av

Yj(Ti)E(g(β,Zj))

=

∑
v

∑
j∈Av

Yj(Ti)
[
αvh(β,Xi) + (1− αv)h̄Bv(β)

]∑
v

∑
j∈Av

Yj(Ti) [αvg(β,Xi) + (1− αv)ḡBv(β)]

By linear expansion of ∆i,v around αv = 1 for any v, we have

∆i,v ≈
∑

v

∑
j∈Av

Yj(Ti)h(β,Xj)∑
v

∑
j∈Av

Yj(Ti)g(β,Xj)
−

V∑
v=1

∇i,v(1− αv), (B.28)

125



Appendix B. Appendix for Chapter 4

β̂1 β̂2

n Methods Fails BMC SdMC Ŝd BMC SdMC Ŝd

500 Naive 0 0.090 0.055 0.054 0.091 0.110 0.111

TAEE 0 0.009 0.078 0.085 0.010 0.145 0.161

TAEE-1 21 0.124 0.146 0.117 0.122 0.214 0.192

TAEE-2 1 0.058 0.094 0.099 0.059 0.164 0.175

TAEE-3 0 0.029 0.069 0.078 0.028 0.132 0.152

TAEE-4 0 0.061 0.062 0.072 0.060 0.122 0.144

1000 Naive 0 0.094 0.040 0.038 0.092 0.080 0.078

TAEE 0 0.002 0.055 0.059 0.007 0.103 0.113

TAEE-1 2 0.106 0.083 0.077 0.112 0.136 0.132

TAEE-2 0 0.047 0.065 0.065 0.053 0.116 0.121

TAEE-3 0 0.035 0.049 0.054 0.030 0.094 0.107

TAEE-4 0 0.066 0.044 0.050 0.061 0.087 0.101

2000 Naive 0 0.094 0.028 0.027 0.095 0.054 0.055

TAEE 0 0.001 0.039 0.041 0.000 0.071 0.080

TAEE-1 0 0.102 0.057 0.051 0.100 0.092 0.091

TAEE-2 0 0.045 0.046 0.045 0.044 0.079 0.085

TAEE-3 0 0.035 0.035 0.038 0.036 0.065 0.075

TAEE-4 0 0.065 0.031 0.035 0.066 0.060 0.071

Table B.4: Sensitivity analysis of α̂

where ∇i,v is the partial derivative ∂∆i,v/∂αv evaluated at αv = 1 and

∂∆i,v

∂αv

=

∑
j∈Av

Yj(Ti)
[
h(β,Xj)− h̄Bv(β)

]∑
j∈Av

Yj(Ti)E(g(β,Zj))[∑
j∈Av

Yj(Ti)E(g(β,Zj))
]2

−
∑

j∈Av
Yj(Ti)E(h(β,Zj))

∑
j∈Av

Yj(Ti) [g(β,Xj)− ḡBv(β)][∑
j∈Av

Yj(Ti)E(g(β,Zj))
]2
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When evaluated at αv = 1, we have E(g(β,Zj)) = g(β,Xj) = g(β,Zj) and
E(h(β,Zj)) = h(β,Xj) = h(β,Zj), as well as Xi = Zi. Thus, we obtain

∇i,v =

∑
j∈Av

Yj(Ti)
[
h(β,Xj)− h̄Bv(β)

]∑
j∈Av

Yj(Ti)g(β,Zj)[∑
j∈Av

Yj(Ti)g(β,Zj)
]2

−
∑

j∈Av
Yj(Ti)h(β,Zj)

∑
j∈Av

Yj(Ti) [g(β,Xj)− ḡBv(β)][∑
j∈Av

Yj(Ti)g(β,Zj)
]2

=

∑
j∈Av

Yj(Ti)
[
h(β,Xj)− h̄Bv(β)

]∑
j∈Av

Yj(Ti)g(β,Zj)

−
∑

j∈Av
Yj(Ti)h(β,Zj)∑

j∈Av
Yj(Ti)g(β,Zj)

∑
j∈Av

Yj(Ti) [g(β,Xj)− ḡBv(β)]∑
j∈Av

Yj(Ti)g(β,Zj)
.

Hence, we obtain∑
v

∑
j∈Av

Yj(Ti)h(β,Xj)∑
v

∑
j∈Av

Yj(Ti)g(β,Xj)
≈
∑

v

∑
j∈Av

Yj(Ti)h(β,Zj)∑
v

∑
j∈Av

Yj(Ti)g(β,Zj)
+

V∑
v=1

∇i,v(1− αv).

Writing Zi

αv
− ( 1

αv
− 1)X̄Bv = Zi + ( 1

αv
− 1)(Zi − X̄q), we obtain the linearly

approximated estimating equation (LAEE)

V∑
v=1

∑
i∈Av

δi

[
Zi −

∑
j∈A Yj(Ti)h(β,Zj)∑

j∈Av
Yjg(β,Zj)

+Wi(αv,β)

]
= 0 (B.29)

where Wi(αv,β) an adjustment of the naive estimating equation for i ∈ Av, given
by

Wi (αv,β) =

(
1

αv

− 1

)
(Zi − X̄Bv)−

V∑
v=1

∇i,v(1− αv).

B.4.1 Simulation results

In the simulation, we consider the following methods

• Theoretical: Using the theoretical estimating equation (4.2) with true values
of covariates X.

• Naive: Using the naive estimating equation (4.5) with linked data.

• AEE: Uisng the AEE with estimated value of α and when covariates X in
database B are avaialble.

• LAEE: Using the LAEE with estimated value of α and when covariates X

in database B are avaialble.
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β̂1 β̂2

n α Methods Fails BMC SdMC BMC SdMC

500 * Theoretical 0 0.003 0.055 0.005 0.109

0.75 Naive 0 0.144 0.052 0.147 0.116

AEE 24 0.033 0.168 0.024 0.219

LAEE 1 0.015 0.088 0.020 0.168

0.85 Naive 0 0.090 0.055 0.091 0.110

AEE 5 0.015 0.094 0.015 0.159

LAEE 0 0.002 0.078 0.004 0.141

0.95 Naive 0 0.029 0.055 0.028 0.110

AEE 0 0.007 0.066 0.009 0.124

LAEE 0 0.005 0.064 0.006 0.122

1000 * Theoretical 0 0.000 0.039 0.002 0.078

0.75 Naive 0 0.149 0.040 0.146 0.079

AEE 6 0.011 0.085 0.017 0.133

LAEE 0 0.026 0.065 0.023 0.113

0.85 Naive 0 0.094 0.040 0.092 0.080

AEE 0 0.006 0.065 0.011 0.111

LAEE 0 0.009 0.057 0.006 0.103

0.95 Naive 0 0.034 0.040 0.031 0.081

AEE 0 0.001 0.048 0.004 0.089

LAEE 0 0.001 0.047 0.002 0.088

2000 * Theoretical 0 0.000 0.028 0.000 0.054

0.75 Naive 0 0.149 0.028 0.147 0.055

AEE 0 0.007 0.058 0.011 0.092

LAEE 0 0.027 0.045 0.026 0.079

0.85 Naive 0 0.094 0.028 0.095 0.054

AEE 0 0.002 0.044 0.002 0.074

LAEE 0 0.011 0.040 0.012 0.069

0.95 Naive 0 0.033 0.028 0.033 0.055

AEE 0 0.001 0.033 0.001 0.061

LAEE 0 0.000 0.033 0.000 0.060

Table B.5: Simulation studies for comparing the linear approximated estimating
equation to the adjusted estimating equation and the naive estimating
equation.
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From the simulation results in Table B.5, we can see that LAEE is "easier" to
solve than AEE (only 1 fail when n = 500 and α = 0.75 with LAEE). In general,
the estimated parameters from LAEE have smaller variance than AEE. When α is
close to 1 (e.g. 0.95), the LAEE and AEE have the same bias. When α is far from
1 (e.g. 0.75 and 0.85), LAEE has larger bias than AEE due to the approximation
(B.28). However, with small sample size (n = 500), LAEE is better than AEE in
both bias and standard deviation with any α ∈ {0.75, 0.85, 0.95}.
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Titre: Couplage d'enregistrements et analyse des données couplées avec application dans le  
système national des données de santé  français. 

Mots clés: couplage d'enregistrements, analyse secondaire, régression de Cox, données de santé 

Résumé: Cette thèse a deux contributions prin-
cipales. Nous considérons le modèle d’apparie-
ment probabiliste de Fellegi et Sunter, et nous 
l’étendons à des données de type mixte. 
L’appariement probabiliste consiste à combiner 
des données de différentes sources, quand elles 
correspondent à une même entité mais qu’une 
variable d’identification n’est pas disponible. Le 
modèle de Fellegi et Sunter utilise  des variables 
partiellement identifiantes, mais se limite à une 
comparaison binaire pour ces variables. Dans la 
première contribution, nous proposons une ex-
tension du modèle pour les vecteurs de compa-
raison de type mixte. Nous développons un 
modèle de mélange pour comparer les valeurs 
des variables d’appariement catégorielles pré-
sentant des prévalences faibles, et un mélange 
de distributions “hurdle gamma” pour les valeurs 
des variables d’appariement continues. Nous 

appliquons ce modèle pour apparier les 
données du SNDS avec un registre de patients 
de l’aire urbaine de Brest, souffrant de 
thromboembolie veineuse.  Dans le second 
travail, nous proposons un modèle pour une 
régression de Cox avec des données appa-
riées. Des erreurs d’appariement sont presque 
inévitables quelle que soit la méthode utilisée, 
et ignorer ces erreurs peut conduire à des 
estimations biaisées. Nous proposons une 
équation estimante ajustée adaptée au modèle 
de Cox, quand l’appariement a été réalisé par 
un opérateur tiers et que l’analyste ne connaît 
pas les variables d’appariement. Nous propo-
sons un estimateur de variance asymptotique-
ment sans biais pour l’estimateur des para-
mètres du modèle de Cox. Le modèle proposé 
est appliqué à une base de données appariées, 
correspondant à des AVC survenus à Brest. 

 

Title: Record linkage and analysis of linked data with application in French national health data 
system. 

Keywords: record linkage, secondary analysis, Cox regression, health data 

Abstract: This thesis has two main contributions.  
Firstly, we extend the Fellegi-Sunter probabilistic 
record linkage model for mixed-type data.  
Probabilistic record linkage is a process of combi-
ning data from different sources, when such data 
refer to common entities and  identifying infor-
mation is not available. Fellegi and Sunter 
proposed a probabilistic record linkage frame-
work that takes into account multiple non-
identifying information, but is limited to simple 
binary comparison between matching variables. 
In the first contribution, we propose an extension 
of this model for  mixed-type comparison vectors. 
We develop a mixture model for handling 
comparison values of low prevalence categorical 
matching variables, and a mixture of hurdle 
gamma distribution for handling comparison 
values of continuous matching variables. The 
proposed model is applied to perform linkage 

between a  registry   of patients suffering  from 
venous thromboembolism in the Brest and the 
French national health data system. Secondly, 
we propose a model for Cox regression with 
linked data.  The linked data can bring analysts 
novel and valuable knowledge which is unable 
to obtain from a single database. However, 
linkage errors are usually unavoidable regard-
less of record linkage methods and ignoring 
these errors may lead to bias estimates.  In this 
work, we  propose an adjusted estimating 
equation for secondary Cox regression ana-
lysis, where linked data have been prepared by 
someone else and no information on matching 
variables are available to the analyst.  An 
asymptotically unbiased variance estimator is 
also proposed.   The proposed model is applied 
to a linked database from the Brest stroke 
registry. 
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