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Les protocoles de contrôle d’accès au support (MAC) distribués sont fondamen-
taux pour les communications sans fil, mais les protocoles traditionnels basés
sur l’accès aléatoire sont confrontés à des limitations importantes dans certains
cas d’usage de l’internet des objets (IoT). En effet, ils ont du mal à garantir des
critères de qualité de service exigents, ce qui les rend inadaptés aux communi-
cations ultra-fiables à faible latence (URLLC). Cette thèse aborde ces défis en
exploitant le potentiel de l’apprentissage par renforcement profond (DRL), un
paradigme dans lequel les agents optimisent leurs actions en interagissant avec
un environnement.

En particulier, cette thèse aborde les principaux enjeux du problème de l’accès
multiple (MA) pour les réseaux URLLC, incluant la latence excessive des proto-
coles centralisés, les collisions, les délais de retransmissions caractéristiques des
protocoles sans allocation (GF) ainsi que la complexité de gérer l’hétérogénéité
des appareils dans des environnements dynamiques. En outre, la thèse explore
l’intégration de nouvelles techniques de couche physique comme l’accès multi-
ple non orthogonal (NOMA) à des protocoles MAC dédiés aux communications
URLLC. Notre méthodologie applique le DRL pour développer des protocoles
intelligents, capables de s’adapter aux contraintes de l’URLLC.

Dans un premier temps, nous modélisons le problème de l’URLLC dans un
paradigme centralisé, où la station de base (BS) orchestre les transmissions
des appareils. Cette configuration présente l’avantage d’assurer une commu-
nication sans collision, mais introduit une observabilité partielle, car la sta-
tion de base n’a pas accès à la mémoire et à l’état du canal des utilisateurs.
Nous nous attaquons à ce problème en introduisant deux algorithmes : Fil-
teredPPO et NOMA-PPO. Alors que le premier surpasse les algorithmes de
référence dans les scénarios avec trafic quasi-périodique, le second démontre une
performance supérieure à l’état de l’art également dans les scénarios avec trafic
sporadique. Les troisième et quatrième contributions, SeqDQN et MCA-PPO,
étudient l’application de l’apprentissage par renforcement multi-agents (MARL)
pour l’URLLC où chaque appareil est équipé d’un algorithme DRL. Alors que
SeqDQN explore une méthode pour aborder la non-stationnarité, améliorer le
passage à l’échelle et l’apprentissage, MCA-PPO présente une solution théorique-
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ment robuste pour le défi de l’accès dynamique multicanal (DMCA) permettant
aux utilisateurs d’optimiser l’utilisation de la bande passante et donc d’améliorer
les performances URLLC.

Les sections suivantes traitent du contenu de chaque chapitre.

Chapitre 1: Introduction

L’Internet des Objets (IoT) désigne un réseau interconnecté d’appareils physiques,
de véhicules, de capteurs, de logiciels et d’autres technologies permettant de col-
lecter, d’échanger et d’agir sur des données via Internet. Ces technologies, en-
visagées comme un réseau omniprésent de milliards d’appareils allant des smart-
phones aux drones et capteurs industriels, devraient révolutionner le paysage
numérique. Toutefois, certaines applications de l’IoT présentent des contraintes
strictes de latence caractérisées par le standard du Projet de Partenariat de
Troisième Génération (3GPP) comme les Communications Ultra Fiables et à
Faible Latence (URLLC). Par ailleurs, les protocoles traditionnels peinent sou-
vent à répondre à ces exigences strictes, notamment en liaison montante, en
raison de la charge et du délai de signalisation significatifs. Une alternative est
l’accès aléatoire, mais cette méthode présente des inconvénients notables dans les
scénarios URLLC, augmentant les latences dues aux collisions et retransmissions.

La liaison montante URLLC pose des défis uniques en raison de la nécessité
de coordonner de manière décentralisée de multiples dispositifs IoT transmettant
simultanément. Les approches peuvent être divisées en protocoles avec et sans
allocation, chacun ayant ses propres avantages et inconvénients.

Les défis de l’accès multiple (MA) pour les réseaux URLLC se résument ainsi:

• Protocoles Centralisés : Ces protocoles facilitent la coordination des
dispositifs et la prévention des collisions mais génèrent un surcoût de com-
munication élevé, entraînant une latence substantielle. Le défi principal
est de développer des protocoles centralisés pour les réseaux URLLC qui
évitent la latence inhérente à l’établissement des liens.

• Protocoles Sans Allocation (GF) : Ces protocoles, potentiels candidats
pour l’URLLC, évitent la latence liée au protocole de poignée de main à
quatre temps. Cependant, ils introduisent une latence importante due aux
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collisions et aux retransmissions propres aux protocoles décentralisés. Le
défi est de concevoir des protocoles GF décentralisés qui atténuent efficace-
ment l’effet des collisions.

• Hétérogénéité des Dispositifs et Environnements Dynamiques :
La majorité des protocoles peinent à gérer l’hétérogénéité du trafic des
dispositifs et les conditions de canal, ainsi qu’à gérer de manière optimale
le trafic sporadique et les environnements dynamiques. Le défi est de con-
cevoir des protocoles exploitant l’hétérogénéité des dispositifs et s’adaptant
efficacement aux environnements dynamiques.

• Nouvelles Techniques de Couche Physique : Des techniques récentes
comme la NOMA ou la technologie SIC, bien qu’offrant des solutions
prometteuses pour répondre aux contraintes de l’URLLC, introduisent des
défis tels que la sélection des utilisateurs et la gestion des interférences. Le
défi est d’adapter les protocoles pour gérer la complexité accrue introduite
par ces nouvelles techniques de la couche physique.

Dans le cadre de cette thèse, nous investiguons l’utilisation de l’apprentissage
par renforcement afin de concevoir des protocoles de transmission sophistiqués,
capables de répondre efficacement aux exigences rigoureuses de l’URLLC.

Chapitre 2: Fondements en Apprentissage par Ren-

forcement Profond

Dans ce chapitre, nous introduisons le formalisme et les connaissances de base
qui constituent les prérequis essentiels pour le reste de la thèse. En particulier,
la section 2.1 présente les architectures de réseaux neuronaux employées tout au
long de la thèse, la section 2.2 offre un aperçu de l’apprentissage par renforcement
pour un agent unique et, enfin, la section 2.3 examine le cadre du multi-agent et
ses défis.
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Chapitre 3: FilteredPPO: une Approche Central-

isée d’Apprentissage par Renforcement Profond pour

le Trafic en Liaison Montante IoT

RL agent (Base station)

Environment (IoT devices)

reward
next observation

Action
(Polling)

Figure 1: Modèle de système

Dans ce chapitre, nous présentons une solution centralisée pour aborder le
problème d’accès multiple (MA) en liaison montante spécifique aux dispositifs
IoT avec des exigences strictes de latence. Dans ce cadre, les dispositifs peu-
vent accéder à un médium de communication commun, mais uniquement lorsque
la station de base (BS) choisit de les programmer. Cette orchestration assure
l’absence de collisions, un problème persistant avec les protocoles d’accès aléa-
toire conventionnels. Néanmoins, afin de minimiser les ressources allouées à la
coordination des appareils, la BS dispose d’une connaissance restreinte de la
mémoire des appareils. Par conséquent, la BS doit apprendre efficacement les
modèles de trafic des dispositifs pour maximiser le débit, étant donné son manque
de connaissances en temps réel sur le moment où un dispositif souhaite trans-
mettre. Notre modèle se classe dans la catégorie des protocoles centralisés avec
communication limitée et la complexité du modèle est linéaire avec la taille du
réseau. Dans ce chapitre, nous considérons un modèle de trafic probabiliste et
périodique et des paquets avec des échéances strictes.

Nous pouvons observer que notre méthode parvient avec succès à appren-
dre les modèles de trafic des appareils malgré l’observabilité partielle de notre



Résumé en français xxiii

10 20 30 40 50 60
Number of devices

0.1

0.2

0.3

0.4

0.5
Th

ro
ug

hp
ut

Random
Round Robin
Filtered PPO
Matching
Slotted ALOHA

Figure 2: Evolution du débit en fonction du nombre de dispositifs. Les dispositifs
sont synchrones. Les résultats sont calculés avec 5 graines.
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Figure 3: Evolution du débit en fonction du nombre d’appareils. Ces appareils
sont asynchrones. Les résultats sont calculés avec 10 graines.

problème, et ce, à la fois lorsque les émetteurs sont synchrones (Fig. 2) et asyn-
chrones (Fig. 3). Les résultats numériques montrent que notre solution surpasse
les protocoles traditionnels d’accès multiple et atteint une performance compa-
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rable à celle d’un algorithme optimal conscient des caractéristiques du trafic et
des échéances strictes.

Chapitre 4: NOMA-PPO: une Approche Central-

isée d’Apprentissage par Renforcement Profond pour

les réseaux NOMA-URLLC

Dans ce chapitre, nous étendons le cadre d’étude de la liaison montante avec
observabilité partielle introduit dans le Chapitre 3 aux réseaux NOMA-URLLC.
Nos investigations précédentes ont mis en évidence une limitation centrale des
approches de planification centralisée pour l’URLLC : la visibilité limitée sur
l’état des dispositifs. Cette contrainte entrave considérablement la capacité de
ce cadre à répondre aux exigences strictes de fiabilité de l’URLLC. Pour améliorer
la fiabilité, nous proposons une stratégie innovante permettant à la station de
base (BS) de sonder plusieurs utilisateurs dans le même intervalle temporel. Elle
est également équipée de la technologie NOMA pour atténuer efficacement les
interférences provenant des transmissions de paquets simultanées.

Cependant, cette approche introduit de nouvelles complexités. En effet, per-
mettre à plusieurs utilisateurs d’accéder au canal simultanément augmente ex-
ponentiellement l’espace d’action de l’agent de RL, transformant le problème de
sélection d’action en un problème combinatoire à chaque étape temporelle. De
plus, l’agent RL doit non seulement gérer l’observabilité partielle sur l’état de
la mémoire des utilisateurs, mais aussi faire face à une visibilité limitée sur l’
état des canaux. Ces états de canal sont cruciaux pour optimiser le processus de
décodage SIC dans l’implémentation NOMA.

Les contributions de ce chapitre sont les suivantes:

• Nous formulons un problème général d’accès multiple (MA) avec la con-
trainte URLLC, en considérant des paquets ayant des délais stricts et des
communications en liaison montante NOMA comme un POMDP.

• Nous introduisons la notion d’"agent state" afin d’aborder théoriquement la
formulation du POMDP. Nous démontrons que l’agent state est une statis-
tique suffisante pour l’historique des observations-actions passées, ce qui
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nous permet 1) d’exprimer les actions et observations passées de manière
compacte, et 2) de convertir le problème de POMDP en MDP et de béné-
ficier des propriétés de convergence des algorithmes DRL. Cette transfor-
mation peut être étendue à d’autres contextes sans fil où l’observabilité
partielle concernant le tampon ou l’évolution du canal doit être adressée.

• Nous proposons un algorithme DRL, NOMA-PPO, qui améliore l’algorithme
de pointe PPO avec deux composants : 1) une architecture de réseau de
politiques de branchement afin de gérer de manière linéaire les espaces
d’actions combinatoires. Cette idée est inspirée de l’architecture BDQ et
étendue aux méthodes PG. 2) Des politiques bayésiennes, qui incorporent
des informations préalables sur le problème MA dans l’agent DRL.

• Nous fournissons des preuves numériques que notre approche surpasse les
références traditionnelles MA et DRL dans des scénarios 3GPP en termes
de score URLLC (Fig. 4b and Fig. 4c), de vitesse de convergence (Fig. 4a),
et d’équité (Fig. 4d). De plus, nous montrons que notre algorithme est ca-
pable de gérer différents modèles de trafic, notamment un modèle de trafic
périodique déterministe et un modèle de trafic apériodique probabiliste.
Enfin, notre algorithme est très robuste à des changements de configura-
tion du canal. On montre qu’il sait exploiter les informations sur les canaux
qu’ils reçoit au fil du temps (Fig. 5).

Nos expériences ont été conduites avec un modèle de réseau sans fil réaliste
basé sur l’évaluation du SINR et du régime de longueur de bloc finie avec des
paramètres tirés des recommendations 3GPP. Chaque appareil transmet un sig-
nal subissant une atténuation liée à la distance, de l’évanouissement rapide et du
bruit thermique.

Nous considérons également deux types de modèles de trafic également décrits
dans les standards 3GPP: le modèle probabiliste périodique et le modèle proba-
biliste apériodique.
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Figure 4: Métriques de performance dans le scénario 3GPP.
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Figure 5: Évolution du score URLLC pendant l’entraînement sous différentes
conditions de canal.
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Chapitre 5: SeqDQN: une Approche Décentralisée

d’Apprentissage par Renforcement Profond Multi-

Agents pour les réseaux URLLC

Dans ce chapitre, nous proposons une approche entièrement décentralisée pour
résoudre le problème d’accès multiple en liaison montante avec des contraintes de
latence strictes. Nous équipons chaque appareil d’un algorithme d’apprentissage
multi-agents profond (MARL) afin d’apprendre un protocole de transmission par
interaction avec les autres dispositifs et l’environnement. Tout d’abord, nous
réalisons une analyse approfondie de la performance des algorithmes MARL
traditionnels, tels que iDQN et QMIX, appliqués à notre problème spécifique.
Cette analyse nous permet d’évaluer les forces et les faiblesses des algorithmes
les plus utilisés dans la littérature et de les utiliser comme références pour notre
problème. Ensuite, nous introduisons SeqDQN, une solution MARL distribuée
inspirée du paradigme d’entraînement à deux échelles temporelles où les agents
ne mettent pas à jour leurs Q-fonctions simultanément. Dans SeqDQN, les dis-
positifs mettent à jour leur Q-fonction séquentiellement, en commençant par
les dispositifs ayant l’exigence de latence la plus contraignante. Cette stratégie
d’entraînement vise à atténuer les défis posés par la non-stationnarité qui provient
de l’apprentissage indépendant lors de la formation d’agents décentralisés.

Nos contributions dans ce chapitre sont les suivantes:

• Nous formulons rigoureusement le problème multi-agents en liaison mon-
tante URLLC comme un Dec-POMDP, intégrant les caractéristiques et
contraintes du scénario URLLC.

• Nous implémentons et évaluons les algorithmes d’apprentissage multi-agents
renforcé (MARL) les plus couramment utilisés dans la littérature, à savoir
iDQN pour l’approche apprentissage indépendant (IL) et QMIX pour l’ap-
proche d’apprentissage centralisé avec execution décentralisée (CTDE),
dans le contexte de notre problème multi-agents en liaison montante URLLC.

• Nous introduisons SeqDQN, un algorithme MARL distribué où les agents
ne mettent pas à jour leurs Q-fonctions simultanément. Au lieu de cela,
ils mettent à jour leur Q-fonction séquentiellement, en commençant par les
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dispositifs ayant l’exigence de latence la plus contraignante. Les avantages
de cette méthode sont : 1) Nous réduisons la non-stationnarité causée
par l’apprentissage simultané de plusieurs agents, qui est un inconvénient
majeur de l’IL, 2) notre méthode proposée est plus évolutive pour un grand
nombre d’agents que le CTDE et 3) l’entraînement est beaucoup plus rapide
que les algorithmes MARL existants (iDQN et QMIX).

• Nous évaluons notre solution en comparaison avec des algorithmes références
traditionnels dans plusieurs scénarios au sein de notre modèle de sys-
tème, sous un trafic périodique probabiliste d’une part et déterministe
d’autre part. Nous montrons que non seulement notre méthode surpasse
les références d’accès multiple, mais elle atteint également ou dépasse les
performances URLLC des algorithmes MARL de référence.
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Figure 6: Évolution du score URLLC au cours de l’entraînement pour un trafic
périodique probabiliste dense avec 12 utilisateurs.
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Figure 7: Évolution du score URLLC en fonction du nombre d’appareils pour
différents modèles de trafic.
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Chapitre 6: Multi-Agent PPO pour l’Accès Dy-

namique Multi-Canal URLLC
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U: Uplink transmission
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User 1
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Figure 8: Modèle de système et structure de trame

Dans ce chapitre, nous développons l’étude de la liaison montante URLLC
introduite dans le chapitre 5, en étendant son application à l’Accès Dynamique
Multi-Canal (DMCA). Reconnaissant les défis posés par les modèles de trafic
apériodiques aux algorithmes d’apprentissage multi-agents renforcé (MARL),
nous exploitons la large bande passante de 40 MHz disponible dans les scénarios
IoT industriels, tout en concervant une probabilité d’erreur URLLC (Fig. 8).
En divisant cette bande passante en plusieurs sous-canaux de fréquence orthogo-
naux, nous enrichissons le modèle de système, fournissant un environnement plus
complexe et diversifié pour que les algorithmes MARL expriment leur potentiel.
Après avoir passé en revue la littérature sur le DMCA, nous avons constaté
que les recherches existantes n’ont pas encore pleinement résolu les complex-
ités du DMCA dans les réseaux URLLC, en particulier dans des conditions de
canaux hétérogènes variables dans le temps et de profils de trafic divers. Pour
combler cette lacune, nous introduisons une approche innovante basée sur le
MARL. Notre méthodologie tire parti du cadre théorique de TRPO dans un
contexte multi-agents pour répondre aux défis et exigences spécifiques du prob-
lème URLLC-DMCA. Dans ce chapitre, nos contributions sont les suivantes :

• Nous formulons un problème de DMCA dans un réseau URLLC avec des
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utilisateurs hétérogènes qui doivent livrer un court paquet dans un délai
strict en liaison montante, comme un Dec-POMDP.

• Nous considérons un cadre général où les paquets sont générés selon un
trafic soit probabiliste apériodique, soit probabiliste périodique. Dans ce
contexte, les utilisateurs observent plusieurs sous-canaux orthogonaux vari-
ant dans le temps selon le modèle Gilbert-Eliott.

• Nous introduisons deux solutions PPO pour résoudre le Dec-POMDP. La
première, MCA-PPO, est justifiée théoriquement et bénéficie de la garantie
d’amélioration monotone. La seconde, MCA-iPPO, est une approche en-
tièrement décentralisée qui, bien qu’elle manque de garanties théoriques
rigoureuses, montre de bons résultats empiriques et offre une procédure
d’entraînement simplifiée.

• Enfin, nous validons la supériorité des méthodes proposées sur différents
scénarios. Nos résultats surpassent systématiquement les références tradi-
tionnelles d’accès multiple et de DRL.
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Figure 9: Probabilité d’erreur de paquet en fonction de la distance à la BS.
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Figure 10: Evolution du score URLLC en fonction (a) du nombre d’épisodes
d’entraînement; (b) du nombre d’utilisateurs; (c) de la charge par trame.
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Chapitre 7: Conclusion et Perspectives Futures

Nous concluons la thèse avec ce chapitre et présentons des pistes pour étendre
ce travail. Ces dernières peuvent être de court ou de long terme.

Perspectives Court Terme

• Tester et appliquer les algorithmes de cette thèse dans des scénarios plus
réalistes, pour augmenter le réalisme et l’applicabilité de la recherche.

• Intégrer des mécanismes de contrôle de puissance pour les dispositifs, alignés
avec l’approche décentralisée de notre travail.

• Appliquer les algorithmes MCA-PPO au problème de l’Accès Aléatoire
Moderne, avec un focus sur la résolution de collisions.

• Étendre l’application de NOMA-PPO à un cadre multi-agents, explorant
l’interaction et la coordination entre plusieurs BSs pour améliorer la ca-
pacité URLLC.

Perspectives Long Terme

• Explorer le paradigme des agents en réseau permettant une communication
locale entre dispositifs IoT grâce à la technologie de communication de
dispositif à dispositif (D2D), prometteuse pour répondre aux exigences des
réseaux 5G, notamment dans les contextes mMTC et URLLC.

• Étudier le régime de champ moyen, où l’impact sur chaque agent provient
d’une mesure globale basée sur l’ensemble des autres agents. Ce principe
est particulièrement pertinent pour les environnements peuplés d’un grand
nombre d’appareils.

• S’orienter vers le cadre de la multi-connectivité, bénéfique pour améliorer
la couverture et la fiabilité en URLLC en permettant aux dispositifs de
transmettre des données dupliquées à plusieurs BS, tout en relevant les
défis de la coordination des transmissions et de gestion des interférences.





Chapter 1

Introduction

1.1 Context: New Challenges of the Internet-of-

Things

The Internet-of-Things (IoT) refers to the interconnected network of physical
devices, vehicles, sensors, software, and other technologies to collect, exchange,
and act on data over the Internet. They are expected to revolutionize the digital
landscape, envisaged as an omnipresent network of billions of devices, ranging
from smartphones to drones and industrial sensors [Bockelmann et al., 2018].
This massive interconnected ecosystem promises to bring in a myriad of disrup-
tive applications that will transform many aspects of our daily lives, such as
drone-based services, smart grids, healthcare, home automation, industrial mon-
itoring, and the development of smart cities [Chen et al., 2018, Mozaffari et al.,
2016, Dileep, 2020, Vishwakarma et al., 2019]. Many of these applications have
stringent latency constraints. For example, an IoT sensor might monitor indoor
temperatures and also need to report extreme events, such as fires, necessitating
both reliable and rapid transmission. Another illustrative scenario is in industrial
automation contexts [Brown et al., 2018], where IoT sensors in factories must
communicate emergencies swiftly and reliably to ensure immediate responses.
Such communication requirements are characterized by the Third Generation
Partnership Project (3GPP) standard [3GPP, 2016] as Ultra Reliable Low La-
tency Communications (URLLC). A classical URLLC reliability requirement
is for example to transmit a 32-byte packet with success probability 1 − 10−5

and with a latency deadline of 1 ms [3GPP, 2016]. Furthermore, a deadline is
said to be strict if the packet is lost beyond this delay. Additional URLLC use
cases are illustrated in Figure 1.1. In addition, IoT devices are expected to have
very limited wireless communication resources because of their limited battery



2 Chapter 1. Introduction

Industrial
Automation

Autonomous
vehicles

Smart Grids

Tele-surgeryAugmented Reality
Virtual Reality

Intelligent
Transportation

Figure 1.1: Potential URLLC use cases

life [Hägerling et al., 2014] and thus need to have minimal interaction with a
Base Station (BS) to operate. Therefore, Multiple Access (MA) protocols need
to operate autonomously with minimal control signalling in this type of systems,
commonly known as massive Machine Type Communications (mMTC) systems.

Nevertheless, traditional protocols often fall short in meeting these stringent
requirements, particularly on the uplink, i.e., from IoT devices to a central BS,
because the BS can acquire traffic and channel information only at the cost of
a significant signalling load and delay. As highlighted by the authors in [Chen
et al., 2018], one of the primary sources of latency in cellular networks is the link
establishment, including grant acquisition or random access, between a user and
the BS. This process can account for delays of up to a notable 10 ms. Deter-
ministic access protocols, such as Time Division Multiple Access (TDMA) [Miao
et al., 2016], Code Division Multiple Access (CDMA) [Simon et al., 1994], and
Orthogonal Frequency Division Multiple Access (OFDMA) [Hanzo et al., 2005],
are particularly susceptible to this limitation. Specifically, TDMA assigns dis-
tinct time slots to each user, while CDMA allocates unique codes for each user,
enabling concurrent transmissions within the same frequency band. OFDMA, a
core component of Fourth Generation (4G) and Fith Generation (5G) technolo-
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gies, divides the frequency spectrum into individual sub-carriers for each user.
In addition to the latency used to allocate the time, frequency, or code resources,
these methods struggle with scalability and fail to accommodate a vast number
of devices. Moreover, their deterministic nature makes them suboptimal for IoT
traffic, which is often characterized by its sporadic and unpredictable patterns.

An alternative to deterministic access protocols is random access methods,
based on ALOHA [Roberts, 1975] or Carrier Sense Multiple Access (CSMA)
[Bianchi, 2000]. A distinct advantage of these random access techniques is
that they circumvent the handshake protocol, thereby potentially reducing ini-
tial communication delays. However, these methods have notable drawbacks
when applied to URLLC scenarios. As the traffic load intensifies, the likelihood
of collisions — where multiple devices attempt to transmit simultaneously —
significantly increases, leading to retransmissions and, consequently, additional
latency. Over the years, significant research has been invested in refining these
methods by optimizing parameters like access probabilities and backoff timers
with the objective to minimize collisions. The primary goal has been to either
maximize throughput [Rajagopalan et al., 2009] or optimize a specific utility
function, a notable example being the alpha-fairness function [Mo and Walrand,
2000]. Yet, despite these enhancements, these methods have notable drawbacks
when applied to URLLC scenarios. The CSMA protocol is less effective in expan-
sive environments with many obstacles and distant users. This limitation arises
because CSMA depends on sensing the medium, a process that becomes unreli-
able in these conditions due to signal attenuation and propagation delays. Given
these limitations, ALOHA and CSMA, still struggle with latency issues caused
by collisions and retransmissions and, consequently, fail to meet the rigorous
latency and reliability standards set by the URLLC constraint.

1.2 Uplink URLLC Access Solutions

Uplink communication presents unique challenges compared to downlink, espe-
cially in meeting URLLC requirements. In uplink scenarios, the traffic dynamics
are characterized by multiple devices, often IoT-based, attempting to transmit
data to a BS concurrently. This simultaneous transmission can lead to potential
congestion and requires devices to coordinate in a decentralized manner, ensur-
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ing minimal communication overhead. Conversely, in downlink scenarios, the BS
acts as a central controller, broadcasting data to individual devices. Given its
centralized nature, the BS can adeptly manage and allocate resources. Another
difference lies in the power dynamics. While the BS in downlink operations ben-
efits from a consistent and robust power source, uplink devices, especially IoT
devices, struggle with stringent power constraints, making reliable transmissions
a challenge. These varying constraints are intrinsically linked to the specific ap-
plications of each communication type. On the one hand, uplink communications
often serve industrial automation systems, where sensors relay critical data to
central controllers. On the other hand, downlink communications are used for
applications like remote surgery and augmented reality. Therefore, given these
distinctions, the approaches to tackle downlink and uplink URLLC communica-
tions differ significantly [Bennis et al., 2018]. In this thesis, we exclusively study
uncoordinated MA for URLLC in the uplink context.

Uplink access schemes for URLLC can be divided in two main groups, namely
grant-based and grant-free protocols.

In the first set, the scheduling of the devices is performed by the BS, see
e.g. [Cuozzo et al., 2022, Nomeir et al., 2021]. Devices with a packet to transmit
first send a scheduling request on the uplink. The BS then allocates uplink re-
sources for the packet transmission. Uplink packets may include in their header
some scheduling information (like the buffer status) to avoid the scheduling re-
quest step. In this case, a scheduling algorithm is required at the BS to meet
the delay and reliability constraints without losing resources when a polled de-
vice has no packet to transmit. This is the baseline protocol adopted in 5G
New Radio (NR) [3GPP, 2017b]. The main drawback of the approach lies in
the duration of the four-way handshake that may be incompatible with URLLC
constraints as highlighted in the previous section. The advantage of the schedul-
ing, though, is to avoid interference between device transmissions and reduce the
latency resulting from retransmissions. However, one can leverage the scheduling
benefits while avoiding the handshake delay. In this framework, the BS can "in-
tuitively" schedule devices, without having any real time information regarding
their buffer status or channel conditions. Thus the polled devices transmit if
they have a packet ready for transmission. This approach eliminates the need
for users to seek transmission permission, and the BS can effectively coordinate
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resource allocation and manage interference. Nevertheless, the limitation of this
method, is the BS’s lack of insight into buffer and channel specifics, potentially
leading to inefficient resource use by scheduling users with either an empty buffer
or an unfavorable channel condition. We address this challenge by proposing two
Deep Reinforcement Learning (DRL) algorithms in Chapters 3 and 4.

In the second set of access schemes, the handshaking is removed by allow-
ing uplink transmissions to be Grant-Free (GF). This means that devices can
transmit without an explicit command from the BS. We can further distinguish
contention-free and contention-based GF access. In contention-free GF (also
called semi-persistent scheduling), the BS pre-allocates periodic orthogonal up-
link resources to the devices, so that there are no collisions [Feng et al., 2019].
When a device has a packet to send, it waits for the next opportunity. This access
scheme has been also adopted by 5G NR [3GPP, 2017b]. Contention-free GF is
however mostly adapted to periodic deterministic traffic, and becomes inefficient
when the traffic is sporadic or probabilistic because resources may be lost, if
there is no packet to be sent, or deadlines violated, when the packet arrival rate
is suddenly higher.

Several papers have studied contention-based GF, a family of protocols that
are versions of Slotted ALOHA (SA) enriched with smart retransmission schemes.
Contrary to other approaches, uplink transmissions are indeed here subject to
collisions. A typical example of this literature is the work presented in [Elayoubi
et al., 2019], where authors adapt SA to URLLC and industrial IoT use cases
by introducing retransmission schemes that depend on the traffic profile of the
devices. In [Mahmood et al., 2019a], authors summarize the classical retransmis-
sion schemes: the K-repetition GF scheme, in which a pre-determined number
of copies of the same packet are transmitted; the reactive GF scheme, in which
devices receive a feedback from the BS for every transmission; and the proactive
GF scheme, in which a packet is repeatedly sent until a positive acknowledge-
ment is received. A blind retransmission scheme has also been proposed [Abreu
et al., 2018] where devices retransmit on a shared resource without waiting for a
feedback. Yet, these techniques still struggle to simultaneously satisfy the relia-
bility and latency requirements under random traffics as the optimal parameter
settings may vary over time. To enhance these techniques, the study by [Mah-
mood et al., 2019a] suggests using repetitions with hybrid allocations. In this
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approach, the initial transmission occurs over a dedicated resource, while retrans-
missions use a shared resource pool. Another popular strategy is the use of the
Non-Orthogonal Multiple Access (NOMA) technology [Saito et al., 2013]. This
innovative transmission technique is based on Successive Interference Cancella-
tion (SIC) and allows the scheduling of multiple users on the same time-frequency
resource and therefore improves the spectral efficiency. Thus, NOMA has been
considered to enhance the GF access protocols with the goal of better using the
available resources and reduce the number of collisions for a given traffic load,
see e.g. [Mahmood et al., 2019a, Tegos et al., 2020, Shahab et al., 2020] and refer-
ences therein. However, with or without NOMA, all SA-based approaches suffer
from high collision rates when the load or the number of devices increases [Liu
et al., 2020] and fail to take advantage of the various traffic patterns or channel
conditions across the devices. In Chapters 5 and 6, we introduce two innovative
DRL algorithms tailored to enhance collision management in GF schemes. Ad-
ditionally, in Chapter 4, we present an algorithm that incorporates the NOMA
in a DRL-based protocol.

Another family of protocols that leverage the SIC decoding technique is mod-
ern random access [Berioli et al., 2016]. The idea is to allow devices to transmit
several replicas of their packet within a single frame to the BS. The BS then
addresses collisions using an iterative decoding process based on SIC. The main
challenge of this approach is to derive the optimal number of copies each user
should transmit within a frame. The two most studied approaches are Contention
Resolution Diversity Slotted Aloha (CRDSA) [Casini et al., 2007], that produces
two replicas of the same packet at random slots within a single radio frame; and
Irregular Repetition Slotted Aloha (IRSA), a protocol that generates multiple
replicas based on a pre-defined probability distribution, which is the same for all
users. The transmission slots for these copies are selected uniformly at random.
Nonetheless, a significant limitation in adapting modern random access protocols
for URLLC is the extended frame length. This issue arises, as replicas are sent
in the time domain, necessitating frames composed of numerous slots. There-
fore, this frame structure is not adapted to the stringent latency requirements of
URLLC environments, where rapid communication is crucial.

A promising approach to enhance the URLLC capacity is the multi-frequency
channel access, that divides the bandwidth into multiple orthogonal subchannels.
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This method is particularly advantageous in uplink URLLC scenarios, where
data packets are assumed to be typically small [3GPP, 2018b], and the available
bandwidth quite large [3GPP, 2017a]. A user is thus able to transmit packet
replicas over the different subchannels without introducing delay costs, effectively
leveraging the wide bandwidth. However, a trade-off exists: while this approach
improves resource utilization, the allocation of less bandwidth per transmission
might reduce robustness and decrease the decoding probability. Each packet
transmission, having a smaller bandwidth portion, may become more susceptible
to errors and interference, underscoring the need for careful balance in resource
allocation to maintain reliability in URLLC systems. This technology is studied
in Chapter 6, where it is combined with DRL in a GF access framework.

An additional key feature in modern wireless communication systems with
potential to satisfy URLLC requirements is multi-connectivity. It enables a device
to maintain simultaneous connections to multiple network nodes, typically BSs.
Its integration into URLLC networks could significantly enhance reliability by
allowing devices to transmit packet replicas to various BSs and thus improve
reliability [Mahmood et al., 2019b, Segura et al., 2022, Kesava and Mehta, 2022].

The last technology that could significantly improve the development of
URLLC solutions is the massive Multiple-Input Multiple-Output (MIMO) tech-
nology. This technique uses multiple antennas on both transmission and re-
ception ends to enhance reliability and spectral efficiency [Biglieri et al., 2007].
Moreover, massive MIMO has been instrumental in augmenting GF access pro-
tocols, optimizing them for the stringent requirements of URLLC networks [Ding
et al., 2021]. This solution will not be included in the scope of the thesis.

The challenges of the MA problem for URLLC networks can be summarized
as follows:

• Centralized Protocols: These protocols are attractive for their capabil-
ity to coordinate devices, especially in avoiding collisions. However, they
introduce high communication overhead, leading to substantial latency due
to the information exchange required for device coordination. The primary
challenge here is: How can we develop centralized protocols for URLLC net-
works that bypass the latency inherent in link establishment?

• GF Protocols: Emerging as potential contenders for URLLC, these pro-
tocols circumvent the latency associated with the four-way handshake pro-
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tocol. Yet, they introduce an important latency, inherent to decentralized
protocols, due to collisions and retransmissions. The question then arises:
How can we design decentralized, GF protocols that effectively mitigate col-
lision?

• Device Heterogeneity and Dynamic Environments: The vast ma-
jority of protocols struggle to handle the heterogeneity in device traffic
and channel conditions. They also often fall short in optimally managing
sporadic traffic and dynamic environments. This leads to the following
challenge: How can we design protocols tailored to leverage device hetero-
geneity and adapt to dynamic environments effectively?

• New Physical Layer Techniques: Recent techniques such as NOMA
or the SIC technology have emerged as promising solutions to address
the URLLC constraint. However, they bring their own unique challenges
such as the user selection problem and managing interference in this new
paradigm. This leads to the problematic: How can protocols be adapted
to navigate the increased complexity introduced by these new physical layer
techniques?

In this thesis, we will tackle these challenges by exploring a new generation of
"intelligent algorithms", leveraging the latest advancements in Machine Learn-
ing, specifically DRL. Such algorithms have already shown significant promise
for IoT applications [Al-Garadi et al., 2020] and are promising to deal with the
URLLC constraint in the MA problem.

1.3 Reinforcement Learning for Uplink Access

DRL has emerged as a powerful tool in addressing complex problems in wireless
communications, particularly in the context of uplink multiple access challenges.
These applications can be broadly categorized into two different approaches:
Single-Agent Reinforcement Learning (SARL) and Multi-Agent Reinforcement
Learning (MARL).
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Single-Agent Reinforcement Learning

SARL can be used in the literature to optimize the parameters of the MA proto-
cols when the optimization problem is intractable. One of the main parameters
that researchers have tried to optimize is the transmit power. [Neto et al., 2021]
propose a power control framework for 5G networks, using SARL at the BS.
This algorithm aims to enhance total data rate and reduces neighbor cell inter-
ference in the uplink channel by adjusting the power level of the user equipment.
Regarding NOMA systems, [Ahsan et al., 2022] develop an intelligent resource
allocation scheme for uplink, utilizing SARL. This solution dynamically allo-
cates users and balances resources in order to maximize the average long-term
sum rate. Moreover, in massive URLLC networks, [Liu et al., 2021] optimizes
GF Access parameters such as the number of repetitions or the number of re-
sources in order to maximize the number of successfully decoded users. Finally,
[Ayoub et al., 2021] learn an optimal degree distribution thanks to DRL in IoT
networks.

While the optimization of parameters through SARL has shown promise in
enhancing network performance, it does not fully address the fundamental chal-
lenges inherent in the underlying MA protocols. Specifically, issues such as colli-
sions in GF access and the latency of handshake protocols in centralized sched-
ulers remain unresolved. An innovative solution of SARL is to model the BS as a
partially observable scheduler, a method that we are among the first to present.

Multi-Agent Reinforcement Learning

The other DRL framework that has been wildly used in wireless communication
networks is the MARL framework. A notable application of MARL is seen in
Dynamic Spectrum Access (DSA) where secondary users employ learning tech-
niques to derive transmission protocols. The effectiveness of MARL algorithms
in DSA has been proved by the work of [Chang et al., 2018, Xu et al., 2020, Xu
et al., 2018, Tan et al., 2021, Kassab et al., 2020], showing the ability of agents
to first coexist with established protocols like TDMA and ALOHA, and to learn
throughput-optimal strategies in such environments. Additionally, the work of
[Yang et al., 2020] transforms the URLLC constraint into a data rate constraint,
thus enabling the learning of transmission strategies that aim to maximize the
network energy efficiency. Finally, the study by [Lin et al., 2020] introduces a
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multi-connectivity application for their MARL algorithm, enabling users to col-
laborate with neighboring devices. This collaborative approach is designed to
optimize the selection of a BS, with the objective of maximizing the number of
successful transmissions in the network.

Even if several studies have employed MARL to address the MA problem,
they often overlook key scientific constraints inherent to this problem and di-
rectly apply the DRL algorithms. Specifically, they tend to disregard the non-
stationarity resulting from the concurrent learning of the multiple agents and
the partial observability issues arising from users only having access to their own
buffer and channel states.

In conclusion, only a small number of previous studies have explored the
application of both single-agent and multi-agent DRL in this field due to the
particular challenges involved in URLLC communications.

1.4 Contributions and Structure of the Thesis

In this thesis, we explore the application of SARL and MARL for learning efficient
transmission protocols in an industrial IoT scenario requiring URLLC.

We consider the MA problem where several heterogeneous devices have to
transmit to a BS on the uplink. In this study, we model the stringent latency
requirement with strict deadlines. Packets not delivered within this time con-
straint are discarded. Yet, they can be re-transmitted until their deadline is
reached. We examine both periodic [Hou and Kumar, 2013] and aperiodic traffic
[3GPP, 2018b] for packet generation in order to cover the majority of the factory
automation use cases of the 3GPP standards. For the channel model, we first
study a perfect channel model with collision, meaning that when two or more
devices try to transmit a packet, a collision occurs and none of the packets are
received. In a second step, we consider a more realistic interference model in line
with the 3GPP recommendations [3GPP, 2018b]. Here, packet decoding relies
on the Signal-to-Interference-plus-Noise Ratio (SINR) [Salaün et al., 2020] and
the finite block length regime [Ren et al., 2020].

The first contribution of this thesis is the development of a framework model-
ing the uplink MA problem as a centralized problem with limited communication
between the BS and the devices. In this setup, a device can only transmit when
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scheduled by the BS. The main advantage of this method is that it guarantees
no collisions, which are inherent to random access protocols. Nonetheless, the
BS lacks full observability into the devices’ buffers introducing partial observ-
ability. As a consequence, it needs to learn efficiently the traffic patterns of the
devices in order to maximize the throughput, as it does not know when a device
has a packet ready for transmission. In order to tackle this problem, we pro-
pose FilteredPPO in Chapter 3, a scheduling algorithm where the access point is
modelled as a DRL agent: it combines the Proximal Policy Optimization (PPO)
algorithm [Schulman et al., 2017] with deep Recurrent Neural Networks (RNN)
to handle partial observability. In addition, we incorporate invalid action mask-
ing [Huang and Ontañón, 2020] to speed up the training process and make our
algorithm more efficient with large number of devices. We demonstrate the su-
periority of our method over traditional benchmarks in heterogeneous periodic
traffics. However, the main limitation of our approach is that discernible traffic
patterns must exist for the learning algorithm to effectively leverage them. In
contrast, it struggles when it faces aperiodic traffic patterns.

Our second contribution extends this partially observable scheduling frame-
work to URLLC networks by incorporating the NOMA technology in Chapter 4.
This enhancement makes the framework more general, allowing it to accommo-
date various traffic models and a realistic interference model. In this setting, the
BS has the capability to schedule any subset of users within a single time frame.
The decoding of the active users then follows the SIC procedure. This formu-
lation introduces a combinatorial scheduling challenge as the potential subsets
that can be selected in each frame grow exponentially in the number of devices.
We address this complex problem by introducing the notion of agent state. We
demonstrate both theoretically and experimentally that this statistic is an effi-
cient way to cope with partial observability. We then propose a DRL algorithm,
NOMA-PPO, that enhances the state-of-the-art algorithm PPO [Schulman et al.,
2017] with a branching policy network architecture in order to linearly manage
combinatorial action spaces. The combination of the agent state and this DRL
algorithm allows us to define Bayesian policies in order to incorporate prior
information about the MA problem into the DRL agent [Titsias and Nikolout-
sopoulos, 2018]. We numerically show that our solution outperforms traditional
benchmarks in terms of URLLC performance.
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The third contribution of this thesis, presented in Chapter 5, is in the ap-
plication of deep MARL to our URLLC problem. We equip each device with a
deep MARL algorithm in order to learn a transmission protocol by interacting
with the other devices and the environment. We first assess the performance of
traditional Deep Q-learning frameworks [Tan et al., 2021, Rashid et al., 2018]
and then propose SeqDQN, a distributed MARL algorithm where agents update
their Q-function sequentially, starting with the devices with the most stringent
latency requirement. The advantages of this training method are: 1) We re-
duce the non-stationarity caused by multiple agents learning concurrently, which
is a major drawback of Independent Learning (IL), 2) our proposed method is
more scalable to a large number of agents than Centralized Training Decentral-
ized Execution (CTDE) and 3) training is much faster than the existing MARL
algorithms.

The fourth and last contribution of this thesis is about the Dynamic Multi-
ple Channel Access (DMCA) problem in a URLLC network with heterogeneous
devices that we study in Chapter 6. In this context, users monitor multiple
time-varying orthogonal sub-channels. Indeed, dividing the channel in multiple
orthogonal channels can enhance the URLLC capacity as the bandwidth is usu-
ally much larger than what is required to send a packet in IoT scenarios [3GPP,
2018b]. In each time frame, users select a subset of sub-channels to transmit
a replica of their ready-to-send packet. The complexity of this problem arises
from the need to learn distributed transmission protocols in a dynamic channel
environment. We present two PPO solutions to address this problem. MCA-
PPO, the first solution, is theoretically-justified and benefits from the monotonic
improvement guarantee. The second one, MCA-iPPO is a fully decentralized ap-
proach. While it may not have strong theoretical foundations, it displays a good
empirical performance and offers a simplified training procedure.

The thesis is organized as follows. In Chapter 2, we delve into the founda-
tional concepts of DRL, covering both single-agent and multi-agent frameworks,
providing the necessary algorithms and concepts for later chapters. Chapter 3
presents FilteredPPO, a centralized algorithm for scheduling uplink IoT traffic,
that bypasses coordination latency at the cost of introducing partial observ-
ability. Chapter 4 expands the centralized approach from Chapter 3, adopting a
more realistic system model in line with 3GPP guidelines for factory automation.
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This chapter also tackles the URLLC constraint within this context, proposing
NOMA-PPO, a DRL algorithm that is able to deal with the NOMA technology
and outperform existing benchmarks in terms of URLLC performance. Chap-
ter 5 evaluates conventional Q-learning based multi-agent state-of-the-art solu-
tions on our MA problem, and introduces SeqDQN, a distributed method where
agents sequentially update their Q-functions, reducing non-stationarity issues.
Chapter 6 studies distributed protocols tailored for URLLC networks in a dy-
namic multi-channel setting, offering a decentralized solution with theoretical
guarantees. Finally, Chapter 7 concludes the thesis and sheds light on potential
directions for future research.

Notations: For a finite set X, ∆(X) denotes the set of all probability distri-
butions over X. The indicator function is denoted 1{·}, diag(·) is the diagonal
operator that transforms a vector in a diagonal matrix and ⊙ is the Hadamard
product. The matrices are written in bold upper case and the vectors in bold
lower case. ⟨·⟩ refers to a tuple, [·] to the modulo operator and argB min(S)

returns a set of B elements in S having the lowest value (ties are broken at ran-
dom). k1:m denotes an ordered subset k1, . . . , km of J1, KK and −k1:m refers to
its complement.
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In this chapter we provide the formalism and background knowledge that
are essential prerequisites for the rest of the thesis. In particular, Section 2.1
introduces the neural network architectures employed throughout the thesis,
Section 2.2 provides an overview about single-agent reinforcement learning and
finally, Section 2.3 examines the multi-agent framework and its challenges.

2.1 Deep Learning

In this thesis, we use state-of-the-art Deep Neural Networks (DNN) to model both
policies and value functions. DNNs are a family of function approximators, with
a large number of parameters commonly referred to as θ. DNNs are trained using
backpropagation and stochastic gradient descent on mini-batches of data [Amari,
1993]. In this section, we introduce the two main network architectures that will
be used in the thesis: feedforward networks [Goodfellow et al., 2016, Chapter 6]
and recurrent networks [Goodfellow et al., 2016, Chapter 10].
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Figure 2.1: MLP with one hidden layer

2.1.1 Feed-Forward Neural Networks

Feedforward neural networks, or Multi-Layer Perceptron (MLP) are the most
common neural network architecture. An MLP can be represented by a vector
function fMLP (·; θ) parameterized by a vector of parameters θ that maps an
input x ∈ RN to an output y ∈ RK . An example of a MLP architecture with
one hidden layer h is given in Figure 2.1. In this figure, the output vector f is
obtained as follows:

• zh(x) = W hx + bh: the first operation is an affine combination of the
weight matrix W h ∈ RN×H and bias bh ∈ RH with the input vector x.

• h(x) = gh(zh(x)): the activation function gh transforms the latent vector
zh(x) to introduce non-linearity.

• zo(x) = W oh(x) + bo: this affine transformation combines the weight
matrix W o ∈ RH×K and bias bo ∈ RK with the hidden vector h.

• f(x) = go(zo(x)): the activation function go transforms the latent vector
zo(x) to introduce non-linearity and form the output of the neural network.

Activation functions are formally defined as element-wise operators, meaning
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they are applied individually to each element rather than to the entire vector, as
illustrated in Figure 2.1.

The parameters of this neural network are: (W h, bh,W o, bo). Activation func-
tions such as ReLU or sigmoids [Karlik and Olgac, 2011] enable the MLP to
capture and model complex non-linear relationships.

2.1.2 Recurrent Neural Networks

GRU unit

Figure 2.2: GRU cell

Another popular category of neural networks for processing sequential data
is RNN [Rumelhart et al., 1986]. Unlike MLPs, RNNs use shared parameters
across the sequence of inputs. This sharing mechanism, often referred to as
"memory cells", enables RNNs to make connections across various parts of the
input sequence.

The two main architectures of RNNs that will be used in this thesis are Long
Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] and Gated
Recurrent Unit (GRU) [Chung et al., 2014].

The architecture of a GRU cell is illustrated in Figure 2.2. We consider a
sequence of inputs of length T , (x1, x2, . . . , xT ). At each time t, the GRU cell
produces an "activation vector" ht based on the current input xt and the previous
activation ht−1. In particular, ht is computed as follows.
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The reset gate rt and the update gate zt are computed using the current input
xt and the previous hidden state ht−1:

rt = σ(Wrxt + Urht−1) (2.1)

zt = σ(Wzxt + Uzht−1) (2.2)

where σ is the sigmoid activation function. The candidate activation h̃t is then
computed:

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1)) (2.3)

Finally, the activation ht is obtained by linear interpolation between the pre-
vious activation ht−1 and the candidate activation h̃t:

ht = (1− zt)ht−1 + zth̃t (2.4)

To summarize, while the update gate defined in equation (2.2) represents how
much of the past information needs to be transmitted to future states, the reset
gate (equation (2.1)) determines how much of the past information to forget.
Equation (2.3) creates a candidate activation vector by combining the current
input with the past hidden state, modulated by the reset gate. Ultimately, equa-
tion (2.4) defines the actual next activation by combining the previous hidden
state and the candidate activation, weighted by the update gate.

Overall, the update gate chooses how much of the candidate activation vector
to include in the new activation, whereas the reset gate determines how much of
the previous activation to remember or forget.

The weights of the GRU cell are (Wr,Wz,Wh, Ur, Uz, Uh).

While LSTM and GRU units are very similar in their ability to selectively
retain or disregard information throughout time, they have a few differences
[Chung et al., 2014]. The major one is their respective approach to manage the
memory cell state. LSTM units maintain a memory cell state distinct from the
hidden state, which is regulated by three distinct gates, called: input, output,
and forget. GRU units, on the other hand, use a "candidate activation vector"
instead, which is updated using only two gates: the reset gate and the update
gate.
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As a consequence, the GRU architecture is simpler than the LSTM, with
fewer parameters, making it more computationally efficient and easier to train.
Its performance is yet inferior to the LSTM, especially when the task requires
modeling very long-term dependencies.

2.2 Single-Agent Reinforcement Learning

Agent

Environment

Action

State, Reward

Figure 2.3: Diagram of a single-agent MDP

In SARL, an agent interacts with an environment in order to learn efficient
strategies maximizing the long-term reward [Sutton and Barto, 2018].

This problem is usually formulated as a Markov Decision Process (MDP).

2.2.1 Mathematical Framework

Markov Decision Process

Definition 2.1 ([Puterman, 1990]). (Markov Decision Process) A MDP is de-
fined by a tuple (S,A, T ,R, γ) where:

• S is the set of states.

• A the set of actions.
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• T : S ×A → ∆(S) the transition probability of reaching a new state s′ ∈ S
given the previous action a ∈ A and state s ∈ S. It verifies the Markov
property: s′ ∼ T (·|s(t) = s, a(t) = a),

• R : S × A × S → R the reward function that an agent gets from the
environment for reaching a new state s′ after taking an action a in a state s.

• γ ∈ [0, 1) the discount factor that models the agent’s preference for short-
term rewards over long-term ones.

Definition 2.2. We define a trajectory τ = (s0, a0, s1, a1, . . . sT−1, aT−1, sT ) such
that at each time t ∈ [0, T − 1], the agent obverses the state st and makes the
action at. The environment then transitions to the next state st+1 ∼ T (·|st, at)
and returns the instantaneous reward R(st, at, st+1).

In this thesis, we consider finite horizon MDP (T <∞) with finite state and
action sets.

The goal of the Reinforcement Learning (RL) agent is to find a policy π ∈
Π : S → ∆(A) that maximizes the expected sum of future discounted rewards:

Est+1∼T (·|st,at),at∼π(·|st)

[∑
t≥0

γtR(st, at, st+1)|at ∼ π(·|st), s0)

]
(2.5)

For convenience, let R(τ) =
∑T

t=1 γ
tR(st, at, st+1) the sum of discounted re-

wards obtained on a trajectory τ . R(τ) is also called the return.

Definition 2.3. (Value and advantage functions) [Puterman, 1990] Given a
MDP (S,A, T ,R, γ) and a policy π, we define the state-action function Qπ :

S ×A → R (also called the Q-function), the value function V π : S → R and the
advantage function Aπ: S ×A → R as:

Qπ(s, a) = Eτ∼(π,T )[R(τ)|s0 = s, a0 = a],∀s ∈ S, a ∈ A (2.6)

V π(s) = Eτ∼(π,T )[R(τ)|s0 = s],∀s ∈ S (2.7)

Aπ(s, a) = Qπ(s, a)− V π(s) (2.8)
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where Eτ∼(π,T ) is the expectation under the distribution of the probability measure
over the set of trajectories and over the policy.

The Q-function Qπ(s, a) represents the expected return from taking action a

in the state s and the value function represents the expected return of being in a
state s and following the policy π. The advantage function describes the relative
value of an action with respect to the value of the state (how much better or
worse it is to take this action).

An optimal policy π∗ exists in a finite MDP with finite horizon [Puterman,
1990] and can be obtained by dynamic programming [Bertsekas, 2012], typi-
cally with value iteration or policy iteration algorithms. However, this family
of algorithms assumes that the model of the environment (transition probability
and reward function) is known. RL is an alternative solution that is able to
learn an optimal policy without knowing the model, only based on the experi-
ences collected by interacting with the environment. Furthermore, when facing
high-dimensional state and action spaces, RL famously suffers from the "curse of
dimensionality" [Sutton and Barto, 2018]. DNNs can be used to overcome this
problem and can be combined with RL to handle high-dimensional MDPs [Mnih
et al., 2015].

Partially Observable Markov Decision Process

In certain scenarios, an agent may only have access to a partial observation
of the environment, rather than the full environmental state. This situation is
modeled through a framework known as Partially Observable Markov Decision
Process (POMDP) e.g. [Sondik, 1971, Kaelbling et al., 1998].

Definition 2.4 (POMDP). A POMDP can be described by a tuple (S, A, T ,
R, Ω, O, γ), where

• (S,A, T ,R, γ) is an MDP,

• Ω is the observation space, i.e., a finite set of observations,

• O : S ×A 7→ ∆(Ω) is the probability distribution of the observation o when
the environment is in state s′ and the agent has taken action a:
o ∼ O(·|st+1 = s′, at = a).
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The history ℏt at time t is defined as the sequence of actions taken by the
agent and observations from the environment ℏt = {o0, a0, o1, a1, ..., at−1, ot},
where at ∈ A and ot ∈ Ω for all t. The agent makes decisions using a stochastic
policy π that is a distribution over the actions knowing the history.

RL approaches can be classified in two categories: value-based and policy-
based methods.

2.2.2 Value-Based Solutions

Value-based methods are a family of algorithms that focus on finding the optimal
Q-function, maximizing (2.6). Given the optimal Q-function Q∗, we can derive
the optimal policy, taking the greedy action π∗(s) = argmaxa∈A Q∗(s, a).

The most popular value-based algorithm is Q-learning [Watkins and Dayan,
1992] where the agent updates an estimate of the optimal Q-function Q̂(s, a)

based on the Bellman equation. More concretely, let s′ be the next state an
agent reaches after taking an action a in a state s. The Q-learning update reads:

Q̂(s, a)← Q̂(s, a) + α

(
r + γmax

a′∈A
Q̂(s′, a′)− Q̂(s, a)

)
(2.9)

where r = R(s, a, s′) is the immediate reward and α > 0 the learning rate. The
Q-learning converges almost surely to the optimal Q-value with finite state and
action spaces [Szepesvári and Littman, 1999].

Deep Q-Networks (DQN)

With the advancement of DNNs, the authors of [Mnih et al., 2015] introduce
Deep Q-Networks (DQN), where the Q-function is approximated by a DNN,
called Q-network. In DQN, the decision maker selects an action a in the state
s according to an ε-greedy policy : it selects the action that maximizes the Q-
value Q(s, a) with probability 1− ε and chooses uniformly a random action with
probability ε so that the agent keeps exploring the environment. After each step,
the agent stores the system transitions (s, a, r, s′) in a so called replay buffer B
where the agent observes the next state s′ after taking the action a in the state s

and receiving the reward r. The Q-network’s parameters θ are learnt by sampling
batches of b transitions from the replay buffer and minimizing the following loss
called TD-error:
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L(θ) =
b∑

i=1

[(
ri + γmax

a′
Q(s′i, a

′
i; θ

−)−Q(si, ai; θ)
)2]

(2.10)

where θ− are the parameters of what the authors call the target network that are
used to stabilize the training procedure. These parameters are an old version of
the parameters θ and are periodically updated. The pseudo-code of DQN can
be found in Algorithm 1. In this pseudo-code, the function Uniform(A) draws
an action uniformly in the action space.

Algorithm 1: Deep Q-Networks
1 Initialize the replay buffer B to capacity C, the number of episodes M ,

the trajectory length T , the time at which training is starting Ts, the
period of updates of the target network Tu, the timestep t′ = 0

2 Initialize the Q-network with random weights θ ← θ0, θ− ← θ0
3 for episode = 1, 2 . . . ,M do
4 Reset the environment and receive the first state s1.
5 for t = 1, 2, . . . , T do
6 Increment t′ = t′ + 1
7 Select an action

at =

{
argmaxa∈A Q(st, a; θ) with probability 1− ε
a ∼ Uniform(A) with probability ε

8 Execute at in the environment; observe reward rt and the next
state st+1

9 Store transition (st, at, rt, st+1) in B and remove the oldest value
if the buffer is full.

10 Set the state to st = st+1

11 if t′ > Ts then
12 Sample a minibatch of B transitions {(sj, aj, rj, s′j)}j={1,...,B}

from B
13 Set yj ={

rj + γmaxa′∈A Q(sj+1, a
′; θ−) for non-terminal s′j

rj for terminal s′j
∀j

14 Compute the loss in (2.10) and perform gradient descent to
update θ

15 if (t′ mod Tu) == 0 then
16 Set θ− = θ
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2.2.3 Policy-Based Solutions

The second family of RL algorithms is called "policy-based". Instead of finding
the optimal policy by maximizing a Q-value, these algorithms directly search
over the policy space in order to find an optimal policy π∗ that maximizes (2.5).
In practice, π∗ is approximated by a parameterized policy πθ(·|s) where θ are
the parameters of a DNN. Thus, the Policy Gradient (PG) algorithms aim
at maximizing the expected return J(θ) = Eτ∼(πθ,T )[R(τ)]. This optimization
problem is usually solved using gradient ascent: θ ← θ + α∇θV

πθ(s0). The
gradient of the cumulative return is derived by the famous PG theorem [Sutton
et al., 1999]:

∇θV
πθ(s0) = Eτ∼(πθ,T )

[
T∑
t=0

∇θ log πθ(at|st)R(τ)

]
(2.11)

where T is the length of the trajectory τ . This theorem is derived thanks to the
log derivative trick and the proof can be found in [Sutton and Barto, 2018]. The
term

∑T
t=0∇θ log πθ(at|st) can be interpreted as the maximum log likelihood,

indicating how likely a given trajectory is under the current policy. Multiplying
it with the rewards increases the probability of a policy that yields trajectories
with high positive rewards.

In addition, one can observe that the transition function does not appear in
the PG theorem, suggesting that the Markov property is not required to compute
the gradient. This suggests that PG methods can be applied to a POMDP
without the need for adaptation. This can be simply achieved by substituting
the state st by the observation ot.

In most cases, the explicit computation of this expectation is impractical
due to its computational intractability. To get around this problem, we usually
approximate the expectation with Monte Carlo sampling, by generating N tra-
jectories {τ1, τ2, . . . , τN} and then estimate the expectation by calculating the
average of these trajectories as follows:

∇θV
πθ(s0) ≈

1

N

N∑
i=1

[
T∑
t=0

∇θ log πθ(ai,t|si,t)R(τi)

]
(2.12)

This vanilla PG algorithm is called REINFORCE [Williams, 1992]. In prac-
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tice, we do not compute the gradient explicitly, but we minimize the following loss
function with backpropagation: L(θ) = − 1

N

∑N
i=1

[∑T
t=0 log πθ(ai,t|si,t)R(τi)

]
.

However, vanilla PG algorithms often struggle with sample inefficiency, which
can lead to convergence to local optima and large policy steps. Consequently,
this creates estimators with high variance and, occasionally, a collapse in perfor-
mance. Indeed, the rewards obtained in a trajectory can be very inconsistent,
particularly in the early stages of training. Since the PG algorithm is directly
impacted by the return R(τ), this inconsistency leads to updates characterized
by high variance.

One initial improvement to enhance the efficiency of the gradient calculation
involves applying the principle of causality. This principle states that actions
taken at a future time t′ cannot affect the rewards at an earlier time t i.e. when
t < t′. In the context of our calculation in (2.12), this means reformulating the
gradient as follows:

∇θV
πθ(s0) ≈

1

N

N∑
i=1

[
T∑
t=0

∇θ log πθ(ai,t|si,t)
T∑

t′=t

γt′rt′

]
(2.13)

We continue our exploration of the PG method, until the derivation of the
PPO algorithm, a necessary background for the rest of the thesis.

Baselines

A popular approach to mitigate variance in the REINFORCE algorithm involves
the use of baselines. This technique aims to modify the trajectory probabili-
ties, focusing not only on trajectories with high returns, but also on those that
outperform the average.

Our gradient with a baseline b(st) becomes:

∇θV
πθ(s0) ≈

1

N

N∑
i=1

[
T∑
t=0

∇θ log πθ(ai,t|si,t)

(
T∑

t′=t

γt′rt′ − b(st)

)]
(2.14)

The integration of a baseline b into the policy gradient equation can be justi-
fied by showing that its inclusion does not alter the expected value of the gradient
i.e. Eτ∼(πθ,T ) [∇θ log πθ(at|st)b(st)] = 0, by linearity of the expectation.
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Eτ∼(πθ,T ) [∇θ log πθ(at|st)b(st)] = Es1:t,a1:t−1
Est+1:T+1,at:T [∇θ log πθ(at|st)b(st)]

= Es1:t,a1:t−1
[b(st)Eat [∇θ log πθ(at|st)]]

Besides, as:

Eat [∇θ log πθ(at|st)] =
∫
∇θπθ(at|st)
πθ(at|st)

πθ(at|st)dat

= ∇θ

∫
πθ(at|st)dat

= ∇θ1

= 0

we deduce that the gradient estimator with a baseline is unbiased:

Eτ∼(πθ,T ) [∇θ log πθ(at|st)b(st)] = 0 (2.15)

An intuitive good baseline is the expected return of being in a state st, which
is the value function at st: b(st) = V (st). This baseline allows us to use the advan-
tage in the gradient ascent update as we can notice that Eτ∼(πθ,T )[

∑T
t′=t γ

t′rt′ ] =

Qπ(st, at).

∇θV
πθ(s0) ≈

1

N

N∑
i=1

[
T∑
t=0

∇θ log πθ(ai,t|si,t)Aπ(si,t, ai,t)

]
(2.16)

On-policy and Off-policy learning

So far, we have described PG as an on-policy algorithm, meaning that the pol-
icy being learned is also the one used to make decisions and interact with the
environment. However, on-policy learning suffers from low sample efficiency be-
cause each update requires collecting new samples using the updated policy to
compute the policy gradient, making previously collected samples obsolete and
non-reusable.

A way to alleviate this problem is to use importance sampling. This method
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allows us to compute the expected reward using samples collected with another
policy. Let’s assume that we have samples from a policy πold instead of πθ. We
can write the PG objective as follows:

Let Pθ(τ) = P (s1)
∏

t=1T πθ(aT |st)p(st+1|st, at) the probability of a trajectory
associated with the policy πθ, and Q the trajectory distribution associated with
the policy πold. We can write:

J(θ) = Eτ∼Pθ(τ)[R(τ)] (2.17)

=

∫
R(τ)Pθ(τ)dτ (2.18)

=

∫
Q(τ)

Pθ(τ)

Q(τ)
R(τ)dτ (2.19)

= Eτ∼Q(τ)

[
Pθ(τ)

Q(τ)
R(τ)

]
(2.20)

Therefore, we can derive the PG with importance sampling:

∇θJ(θ) = Eτ∼Q(τ)

[
∇θ

Pθ(τ)

Q(τ)
R(τ)

]
(2.21)

= Eτ∼Q(τ)

[
Pθ(τ)∇θ logPθ(τ)

Q(τ)
R(τ)

]
(2.22)

= Eτ∼(πold,T )

[
T∏
t=1

πθ(at|st)
πold(at|st)

T∑
t=0

∇θ log πθ(at|st)R(τ)

]
(2.23)

Trust Region Policy Optimization (TRPO)

[Schulman et al., 2015a] introduced Trust Region Policy Optimization (TRPO),
a PG algorithm that not only integrates baselines and importance sampling but
also incorporates a Kullback-Leibler (KL) divergence constraint on each itera-
tion’s policy update. The idea is to update the policy by taking the largest step
possible to maximize the performance, maintaining training stability through a
KL divergence constraint that regulates the magnitude of policy updates. For-
mally, TRPO’s optimization problem reads:

max
θ

Es,a∼(πold,T )

[
πθ(a|s)
πold(a|s)

Aπold(s, a)

]
(2.24)

s.t. Es∼T
[
KL[πθ(·|s)||ππold(·|s)]

]
≤ δ (2.25)
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where πold is the policy before the update and KL is the Kullback–Leibler diver-
gence [Kullback and Leibler, 1951]. The advantage function Aπold is estimated
as usual and can be computed according to several methods that can be found
in [Schulman et al., 2015b]. They require a value function, that is represented
by a DNN Vφ, parameterized by φ. The main benefit of TRPO is its ability
to guarantee a monotonic improvement throughout policy iterations, meaning
each gradient update guarantees an enhanced policy. The theoretical proof of
this result is detailed in [Schulman et al., 2015a]. However, TRPO is a sec-
ond order method as it requires the computation of a second order matrix when
approximating the KL term which makes it computationally expensive.

Proximal Policy Optimization (PPO) is a family of PG methods intro-
duced by [Schulman et al., 2017] that benefits from the stability and reliability of
trust region methods, but with better sample complexity and a significantly sim-
pler implementation. PPO is primarily divided into two variants: PPO-Penalty
and PPO-Clip. PPO-Penalty uses a soft constraint on the KL-divergence in the
surrogate objective, penalizing large deviations in terms of KL-divergence be-
tween the new policy and the old one. On the other hand, PPO-Clip does not
have any constraint and applies policy ratio clipping to keep the new policy from
deviating too much from the old one.

For the remainder of the thesis, we will focus on the PPO-Clip variant of the
algorithm and refer to it as PPO, since it is the most often used version in the
literature due to its performance stability and ease of implementation.

The PPO objective reads:

Es,a∼(πold,T )

[
min

(
πθ(a|s)
πold(a|s)

Aπold(s,a), g(ν)Aπold(s,a)

)]
(2.26)

with g(ν) = clip
(

πθ(a|s)
πold(a|s)

, 1− ν, 1 + ν
)

and ν ∈ [0, 1) a hyperparameter that
indicates how far away the new policy can deviate from the old one. The clip
operator is defined as:

clip(x, lower, upper) =


lower if x < lower
upper if x > upper
x otherwise

The pseudo-code of the PPO algorithm can be found in Algorithm 2.
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Algorithm 2: Proximal Policy Optimization
1 Initialize the policy parameters θ0, the value function parameters φ0, the

number of episodes J .
2 for j = 0, 1, 2 . . . , J do
3 Collect a set of trajectories Dj by running the current policy πθj .
4 Compute the discounted reward for every step t for every trajectory

τ = (s0, a0, . . . , sT ) ∈ Dj: R̂t =
∑T

t′=t γ
t′r′t,∀t ∈ [0, T ]

5 Compute Ât using Vφj

6 Update the policy by maximizing the PPO surrogate objective:

θj+1 = argmax
θ

1

|Dj|T
∑
τ∈Dj

T∑
t=0

min

(
πθ(at|st)
πθj(at|st)

Ât(st, at), g(ν)Ât(st, at)

)
with stochastic gradient ascent.

7 Update the value function with the mean-squared error:

φj+1 = argmin
φ

1

|Dj|T
∑
τ∈Dj

T∑
t=0

(
Vφ(st)− R̂t

)2
with stochastic gradient descent.
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Other policy optimization approaches have also been wildly used in the liter-
ature. Among them, actor-critic methods, such as those proposed by [Konda and
Tsitsiklis, 1999, Peters and Schaal, 2008] approximate R(τ) with a Q-function
called critic Qω that is updated with Q-learning (2.9). Additionally, the Soft Ac-
tor Critic (SAC), introduced by [Haarnoja et al., 2018] optimizes the policy by
maximizing both the expected return and the entropy of the policy, encouraging
exploration and robustness. Since these methods are not employed in the thesis,
we will not go into detail about them.
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2.3 Multi-Agent Reinforcement Learning
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Figure 2.4: Diagram of a Markov Game

MARL is a paradigm where at least two agents concurrently interact with an
environment in order to solve a sequential decision making problem. As every
agent has an impact on the environment transitions and the reward function, it
is a much more difficult problem to solve. This problem is usually formulated as
a Stochastic Game (SG) [Shapley, 1953], also known as a Markov Game (MG)
[Littman, 1994].

2.3.1 Mathematical framework

Markov Game

Definition 2.5 ([Shapley, 1953, Littman, 1994]). (Markov Game) A MG is a
tuple
(N ,S,A = {Ai}i∈N , T , {Ri}i∈N , γ) where:

• N = {1, . . . , N} is the set of N ≥ 1 agents.



32 Chapter 2. Background: Deep Reinforcement Learning

• S the set of environmental states shared by all agents.

• Ai the set of actions of agent i.

• Ri : S ×A× S → R the reward function of agent i.

• T : S ×A → ∆(S) the transition probability function with
A = A1 × . . .AN the joint action space.

• γ ∈ [0, 1) the discount factor.

For an agent i ∈ N , we note −i = N \ {i} the set of all agents except i. For
example, we have a = (ai, a−i) ∈ A.

We define a trajectory τ = (s0,a0, . . . , sT−1,aT−1, sT ) such that at each
time t ∈ [0, T − 1], the N agents observe the state st and simultaneously make
the action at = (a1t , a

2
t , . . . , a

N
t ). The environment then transitions to the next

state st+1 ∼ T (·|st,at) and returns the instantaneous rewards for all agents
{Ri(st,at, st+1)}i∈N .

As for a single-agent MDP, each agent i ∈ N wants to find a policy πi ∈ Πi :

S → ∆(Ai) that maximizes its long-term reward.

V πi,π−i

(s0) = Est+1∼T (·|st,at),a−i∼π−i(·|st)

[
T∑
t=0

γtRi(st,at, st+1)|ait ∼ πi(·|st), s0

]
(2.27)

In game theory, πi is called a strategy. It can be a pure strategy (when πi is
a deterministic policy) or mixed strategy (when πi is a stochastic policy). The
main difference and difficulty compared to SARL, is that an agent’s objective is
influenced by the other agents’ policies. The most common solution concept for
non-cooperative MG is the Nash Equilibrium (NE) [Nash, 1951].

Definition 2.6. (Nash Equilibrium) A strategy profile π∗ = (πi,∗, . . . , πN,∗) is a
NE of the MG (N ,S,A = {Ai}i∈N , T , {Ri}i∈N , γ) if and only if:

V πi,∗,π−i,∗
(s0) ≥ V πi,π−i,∗

(s0),∀s0 ∈ S,∀i ∈ N ,∀πi ∈ Πi (2.28)

Conceptually, a NE is a joint policy π∗ where none of the agents has any
incentive to deviate, i.e, for each agent i ∈ N the policy πi,∗ is the best response
of π−i,∗.
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Partially Observable Setting

In real life multi-agent systems, agents do not always have access to the full
environmental state but only an observation of the state. In multiple access for
example, a device can observe its own buffer but not the buffers of the other
devices. A stochastic game thus becomes partially observable.

Definition 2.7. (Partially-Observable Stochastic Game (POSG)). A POSG is
defined by the tuple (N ,S,A = {Ai}i∈N , T , {Ri}i∈N , γ,O = {Oi}i∈N , O) where
(N ,S,A = {Ai}i∈N , T , {Ri}i∈N , γ) is a SG defined in Definition 2.5 and where:

• Oi is the observation set of agent i.

• O : S × A → ∆(O) the observation function such that O(o|a, s′) is the
probability of observing o ∈ O from the next state s′ given the action a ∈ A.

The policy of agent i now becomes πi ∈ Πi : O → ∆(Ai).

Introducing partial observability in a SG drastically increases the difficulty of
finding theoretically justified algorithmic solutions. A specific case of POSG is
the Decentralized Partially Observable Markov Decision Process (Dec-POMDP),
as described by [Oliehoek, 2012]. This is a wildly used framework in MARL where
agents share the same collective reward.

Definition 2.8. (Dec-POMDP) A Dec-POMDP is a subclass of POSG where
Ri = R for all agents i ∈ N .

Finding a solution for a finite horizon Dec-POMDP is NEXP-complete for
n ≥ 2 [Oliehoek, 2012]. NEXP is the set of problems that can be solved in a
non-deterministic exponential time. "Non-deterministic" means that it requires
a guess generated in a non-deterministic way and "exponential" means that it
takes exponential time to verify that the guess is a solution.

2.3.2 Independent Learning

Introduced by [Tan, 1993], IL is the most straightforward way to expand the RL
framework to multiple agents. The idea is to equip each agent in the MARL
problem with a single-agent RL algorithm, considering the actions of the other
agents as part of the environment.

Like in SARL, IL algorithms can be classified in value-based methods and
policy-based algorithms.



34 Chapter 2. Background: Deep Reinforcement Learning

Independent Deep Q-Networks (iDQN)

iDQN has been introduced by [Tampuu et al., 2017]. They combine independent
Q-learning [Tan, 1993] with DQN [Mnih et al., 2015]: each agent i maintains its
own Q-network Qi(s, ai; θi), and updates the DQN loss (2.10) independently and
simultaneously.

iPPO

Several PG counterparts have been proposed for IL. The one that has expressed
the best performance on the MARL benchmarks is Independent Proximal Policy
Optimization (iPPO) [de Witt et al., 2020]. They generalize the PPO algorithm
[Schulman et al., 2017] for a multi-agent setting. Each agent i updates its policy
πi
θi and maintains its own value network V i

φi(si) and performs PPO updates
following (2.26).

iPPO is originally designed for agents that are homogeneous (i.e. sharing the
same state space, action space and policy parameters). This design leverages
the benefits of uniform learning dynamics and the mutual relevance of shared
experiences among agents. However, the flexibility of IL allows its extension to
environments with heterogeneous agents like iDQN. This adaptation, however,
introduces additional layers of complexity. In particular, it not only complexifies
the optimization problem but also exacerbates the challenge of non-stationarity
due to the concurrent learning processes among diverse agents.

Both iDQN and iPPO take actions and maximize their cumulative return
without considering the influence of the other agents. Even if this approach has
the benefits of being fully distributed and decentralized by construction, it suffers
from various theoretical limitations that can result in instabilities during training
and convergence to sub-optimal policies [Tan, 1993]. Indeed, the environment in
this framework is non-stationary because other agents are learning at the same
time. Therefore, there is no theoretical guarantees for IL.

2.3.3 Centralized Training, Decentralized Execution

Recent research has been focusing on addressing these theoretical shortcomings.
One of the most common ways of achieving this is to use a centralized critic
during training, taking advantage of the fact that a lot of MARL problems can
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be trained in a centralized way (in a factory for example) before being deployed
in the real world. The benefit is to reduce or remove the issues of non-stationarity
and partial observability raised by IL, while learning decentralized policies.

Value Factorization Algorithms (VDN, QMIX)

The second framework using CTDE is value factorisation. For cooperative prob-
lems only (single collective reward), value factorisation aims to decompose the
joint state-action value function Qtot into individual observation-action value
functions Qi. The idea is that maximizing the total Q-value should lead to max-
imizing the individual Q-values. Two of the most famous algorithms are Value
Decomposition Network (VDN) [Sunehag et al., 2018] that learns a linear de-
composition of the joint Q-function and QMIX [Rashid et al., 2018] that learns
a more complex monotonic factorisation of it.

To go in more details, VDN assumes that the joint Q-function Qtot can be
additively decomposed into individual value functions Qi:

Qtot(o1, . . . , oN , a1, . . . , aN) =
∑
i∈N

Qi(oi, ai).

The individual Q-functions are updated by backpropagating gradients using the
joint reward through the total Q-value with the DQN loss (2.10).

QMIX, learns a more complex decomposition of the total Q-value. The au-
thors introduce a mixing network that combines all these individual Q-values
into a joint Q-value Qtot = Mixing_Network(Q1, Q2, . . . , Qn). As for VDN, the
total Q-function is used to minimize the DQN loss (2.10) and the gradient is
backpropagated to the individual Q-functions.

In practice, we want to factorize the total Q-value such that maximizing the
total Q-value gives the same result as maximizing the individual Q-values:

argmax
a

Qtot(s, a) =
[
argmax

an
Qn(s

n, an)
]
n=1,...,N

(2.29)

To do so, the mixing network enforces a monotonic constraint between Qtot

and Qn:

∂Qtot

∂Qn

≥ 0, ∀n (2.30)
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which is fulfilled by constraining the parameters of the mixing network to be
positive.

Policy Gradient with Centralized Critic

The second family of CTDE methods is PG based. This framework trains decen-
tralized policies, that make decisions solely on their own individual observation
and without any coordination. Yet, this framework uses a centralized critic dur-
ing training that has access to any information in the environment. The role
of the centralized critic is to leverage its global perspective to provide informed
feedback during training, thereby helping the decentralized agents in learning op-
timal or near-optimal policies that collectively enhance the overall performance.
Examples in this family include MADDPG and MAPPO, introduced by [Lowe
et al., 2017] and [Yu et al., 2022] respectively. These frameworks extend the
DDPG and PPO algorithms by incorporating a centralized critic in the gradient
calculation process.

Nonetheless, CTDE approaches face significant challenges, particularly in
scalability and computational complexity, which increases which the number of
agents. These challenges arise from the exponential growth of state and action
spaces, increased communication overhead, and the difficulties in managing par-
tial observability and non-stationarity in complex environments. Furthermore,
these algorithms also lack theoretical guarantees, making their deployment in a
real world system less reliable.

2.3.4 Complementary Multi-Agent Frameworks

In this thesis, we focus on MARL frameworks capable of training fully decen-
tralized policies.

Nevertheless, in order to offer a comprehensive overview about the field, we
explore complementary MARL frameworks in this section. While they offer
insightful perspectives, they were not explored in this work, and studying their
applicability and benefits in a URLLC context could be further investigated in
future works. First, the Networked Agents framework allows agents to exchange
local information with their neighbors over a communication network. Notable
examples are the Networked Actor Critic [Zhang et al., 2018], FQI [Zhang et al.,
2021], SAC [Qu et al., 2020] and DGN [Jiang et al., 2018] algorithm. Next, in the
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Learning to Cooperate framework, agents dynamically learn the most effective
message to exchange with their peers. This framework is particularly interesting
in scenarios where agents are constrained to exchange limited information, such
as a few bits, rather than their entire observations. A few examples in this
category include the RIAL and DIAL [Foerster et al., 2016] and the CommNet
architecture [Sukhbaatar et al., 2016]. Lastly, the Mean Field RL framework
presents a unique approach by aggregating the behaviors of multiple agents,
thereby simplifying the complexity inherent in managing large-scale interactions.
This method is particularly advantageous in scenarios with a very large number
of agents, although it relies on the assumption that agents can be effectively
represented by a aggregated value known as the "mean field". MF-Q, MF-AC
[Yang et al., 2018] and RL for LSMFE [Subramanian and Mahajan, 2019] are
such examples in this approach.

Table 2.1: Taxonomy of MARL algorithms

Category Advantages Disadvantages Algorithms
Independent
Learning

Decentralized al-
gorithms

No theoretical
guarantees iDQN, iAC, iPPO

Centralized
training with
decentralized
execution

Better theoreti-
cal guarantees

Not scalable to
many agents

VDN, QMIX,
MADDPG,
MAPPO

Networked
agents

Scalable to
many agents,
better theoreti-
cal guarantees

Constraining
hypothesis, need
agents to com-
municate

Networked Actor
Critic, FQI, SAC,
DGN

Learning to co-
operate

Agents learn
messages

No theoretical
guarantees, need
communication

RIAL, DIAL,
CommNet

Mean-field RL Aggregates
many agents

Aggregated by a
mean field

MF-Q, MF-AC,
RL for LSMFE





Chapter 3

FilteredPPO: a Deep
Reinforcement Learning Scheduler

for Uplink IoT Traffic.

Contents
2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Feed-Forward Neural Networks . . . . . . . . . . . . . . . 16

2.1.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . 17

2.2 Single-Agent Reinforcement Learning . . . . . . . . . . . 19

2.2.1 Mathematical Framework . . . . . . . . . . . . . . . . . . 19

2.2.2 Value-Based Solutions . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Policy-Based Solutions . . . . . . . . . . . . . . . . . . . . 24

2.3 Multi-Agent Reinforcement Learning . . . . . . . . . . . 31

2.3.1 Mathematical framework . . . . . . . . . . . . . . . . . . . 31

2.3.2 Independent Learning . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Centralized Training, Decentralized Execution . . . . . . . 34

2.3.4 Complementary Multi-Agent Frameworks . . . . . . . . . 36

3.1 Introduction

In this chapter, we present a centralized solution to address the uplink MA prob-
lem specific to IoT devices with strict latency requirements. In this framework,
devices can access a common communication medium, but only when the BS
chooses to schedule them. This orchestration ensures the absence of collisions,
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a persistent issue with conventional random access protocols. However, within
this paradigm, the BS has limited visibility into the devices’ buffers in order to
minimize the channel resources dedicated to the optimization of scheduling. As
a consequence, the BS needs to efficiently learn the traffic patterns of the devices
in order to maximize the throughput, given its lack of real-time knowledge about
when a device wants to transmit. Our model falls in the category of centralized
protocols with limited communication and the model complexity is linear with
the network size. In this chapter, we consider a probabilistic traffic model and
packets with strict deadlines.

3.1.1 Related Work

Centralized solutions usually require a central controller to gather relevant in-
formation from every device every time it wants to allocate the medium. This
constant communication is very heavy in energy and communication resources
and thus is very impractical for IoT scenarios. However, centralized protocols
have the advantage of allowing transmissions without collisions and potentially
achieve a higher throughput when the load is high. One way to use a central-
ized approach while being energy efficient is by exploiting historical data with
Machine Learning (ML) [Bi et al., 2015] to learn an optimal scheduling strategy.
Yet, the biggest limitation of these data-based methods is to constitute a proper
dataset, let alone getting a labeled training set if we intend to apply supervised
learning. Another way to tackle this substantial limitation is to consider cen-
tralized solutions with very limited communication where the BS tries to predict
the traffic of the devices. A popular method to learn an optimal scheduling pol-
icy under uncertainty is Multi-Armed Bandits [Slivkins, 2019, Yu et al., 2018],
but unlike RL, actions are not conditioned to states and do not have impact on
the environment. In RL, the authors in [Hribar et al., 2019] model a network
controller with a deep Q-network to determine the next update time at which
each sensor should transmit its observations. Similarly, and closest to our work,
[Zhong et al., 2018] tackles the dynamic multi-channel access problem with an
actor-critic model where the agent (the access point) can only sense the chosen
channel at each iteration. However, the multi-channel selection problem tackled
by the authors is much easier than the multiple access problem we tackle in this
chapter as we assume the traffic arrivals of each device to be independent and
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consider strict deadlines.
Even if previous studies has been done to propose centralized solutions for

multiple access, to the best of our knowledge this approach is the first that offers
a centralized approach tackling partial observability and latency constraints with
DRL.

3.1.2 Contributions

Within this chapter, we approach the uplink MA problem with time-sensitive
traffic as a partially observable problem. We address it by introducing a DRL
algorithm and our key contributions can be summarized as follows:

• We formulate the general uplink MA problem as a POMDP. In this frame-
work, the BS can only observe the state of the last polled device. To
incorporate the strict latency constraint in our model, we impose the de-
vices to transmit their packets within a given deadline δ so that if a packet
is not sent before, it is discarded. This framework captures the practical
challenges of real-time wireless networks [Hou and Kumar, 2013].

• We present FilteredPPO, a novel DRL algorithm designed to address the
challenges posed by our MA problem. Our solution models the BS as a DRL
agent: it combines the PPO algorithm [Schulman et al., 2017] with a RNN
to handle partial observability [Hausknecht and Stone, 2015]. In addition,
we incorporate invalid action masking [Huang and Ontañón, 2020] to speed
up the training process and make our algorithm more efficient with large
number of devices.

• We provide numerical evidence of the superior performance of our approach
in terms of throughput over the traditional MA benchmarks. We demon-
strate the effectiveness of our method in scenarios where packets are gen-
erated according to an heterogeneous periodic traffic, where users are syn-
chronous and asynchronous.

3.2 System Model

We consider a network of K devices communicating with a BS over a wireless
shared channel on the uplink. The wireless channel is supposed to be time-
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slotted and at every slot, the BS polls one of the devices for a potential uplink
transmission. We operate under the assumption of slot synchronization, meaning
that all devices are aligned with a common slot start time. This synchronization
is facilitated by the BS, which sends downlink signals to coordinate the timing
across devices. All packets are supposed to require the same transmission time
of one time slot and propagation delay is assumed to be negligible.

3.2.1 Traffic Model

We assume the traffic pattern of every device to be periodic, i.e. every period
of Np time slots, a device k has a probability ξk of receiving a new packet. All
packets are supposed to require the same transmission time of one time slot.
Each device has an individual constraint δk, such that when a packet has not
been transmitted before the constraint δk, it is dropped. We allow the devices
to be heterogeneous in the following sense:

• They can have different packet arrival probabilities ξk.

• They can have different packet delivery constraints δk.

• They are not synchronous: each device is assigned an offset parameter
f̄k ∈ [0, Np].

However, the traffic period Np is assumed to be the same for every device and
is known by the BS. At every slot t ≥ 0, the probability for a device k ∈ [1, K]

of having a new packet is:

ξ̄k(t|f̄k, ξk, Np) = 1{t[Np]=f̄k}ξk (3.1)

An illustration of the traffic model is shown in Figure 3.1.

3.2.2 Problem Formulation

Compared to traditional MA protocols like ALOHA [Roberts, 1975], devices do
not decide when to transmit their packets. In our case, the BS is a central
controller that decides whether or not a device can transmit. At every time step
t, the BS schedules a sensor to send its packet. If the latter has indeed a packet
to send, the transmission is successful. On the other hand, if it does not have a
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Device 1

Receives a packet with probability 

0 drop drop

Device 2

Receives a packet with probability 

0 drop drop

Figure 3.1: Traffic model of 2 heterogeneous devices. Every period Np, they
receive a packet with probability ξk and need to deliver it within δk slots. They
are also not synchronous: they have an individual offset f̄k, k ∈ {1, 2}.

packet, it remains idle. We illustrate these interactions in Figure 3.2. The main
advantage of this model is that it guarantees no collision as all decisions are
made by the BS. However, in order to minimize the control overhead, we only
allow the controller to have access to partial information, that is the information
received by the device after polling it, which explains why the BS can poll a
device that has no packet to send. Indeed, assuming a centralized agent that
can gather relevant information before allocating the communication resources
is not realistic to meet the strict performance requirements of the IoT. As a
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RL agent (Base station)

Environment (IoT devices)

reward
next observation

Action
(Polling)

Figure 3.2: Multiple access problem modeled as a polling problem where the BS
is the RL agent. The IoT devices share a common communication channel with
the BS.

consequence, many packets can be lost and the throughput will be sub-optimal
if the RL agent is not able to learn the traffic patterns successfully.

3.2.3 Partially Observable Markov Decision Process

We model the problem as a POMDP where an agent observes an environment
and interacts with it. We define s = (s1, s2, . . . , sK) the environmental state
where sk ∈ {0, 1, . . . , δk} is the time a packet has spent in device k’s buffer.
For example, sk = 0 means k’s buffer is empty. The action set of the agent
is A = {1, 2, . . . , K}: at each time, the BS schedules a device a ∈ A that can
transmit its packet if its buffer is not empty. When a sensor i is scheduled, in
addition to the main message, it also transmits the number of discarded packets
ηkt since the last time it was scheduled as an additional message. We thus define
the reward of the agent rt as a trade-off between maximizing the throughput
(number of successful transmissions) and minimizing the number of discarded
packets:
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rt(st, a) = β1{sat>0} + (1− β)
1

1 + ηat
(3.2)

where β ∈ [0, 1] is a hyperparameter balancing the preferences of the agent
between both quantities. Note that even if maximizing the throughput and min-
imizing the number of dropped packets seem equivalent, the agent has different
incentives depending on the load. Indeed, if a few devices have very high arrival
probabilities, the agent is almost certain to get a strictly positive reward when
scheduling these devices. If the number of available slots is limited (inferior to
the number of devices), only these devices will be scheduled and the learned
policy would not be fair. Thus, balancing the number of successful transmis-
sions with the number of discarded packets is a way to ensure fairness while also
maximizing the throughput.

Every step t, the agent can only observe ot = (at−1, s
at−1

t−1 ) ∈ A× N, which is
the device chosen at time t − 1 and its corresponding state. The agent keeps a
history of the H most recent observations, ℏt = (ot, ot−1, . . . , ot−H+1). An action
is selected following the policy π(·|ℏt), which is a probability distribution over
the action space A given the H most recent observations ℏt.

Finally, we can write the transition from a state st to a state st+1. A compo-
nent k ∈ {1, 2, . . . , K} of a new state, knowing the action and the previous state
is:

skt+1|a, skt =


0 if a = k

0 if a ̸= k and skt > δk

skt + 1 if a ̸= k and 0 < skt ≤ δk

Xk ∼ B(ξk) if skt = 0 and t[Np] = f̄k

(3.3)

where B(·) is the Bernoulli distribution.

In other words, the next state of a device k becomes 0 if it has been polled
in the last time slot or if the last state reached the constraint δk. If it has not
been polled and has not reached the constraint yet, we increment the last state.
Finally, if the last state was 0, we draw a new packet according to a Bernoulli
distribution with parameter ξk if t[Np] = f̄k.



46 Chapter 3. FilteredPPO: DRL Scheduler for Uplink IoT Traffic

3.3 FilteredPPO: a RL Approach for Access with

Strict Deadlines

We propose FilteredPPO: a policy gradient algorithm that combines the PPO
algorithm [Schulman et al., 2017] with invalid action masking [Huang and On-
tañón, 2020] and the LSTM architecture [Hochreiter and Schmidhuber, 1997] to
solve this POMDP problem.

The objective we aim at maximizing is the same as in (2.26)
However, the full state s is unknown to the RL agent as it can only see

the states of the devices it has previously selected. We adapt the PPO theory
to the partially observable setting by using the approach of [Hausknecht and
Stone, 2015]. We use a recurrent architecture that approximates the underlying
system state at time t, st based on past action-observation pairs we denote ℏt.
For the recurrent architecture, we chose a LSTM architecture to alleviate the
vanishing gradient problem that usually exists by using an RNN [Hochreiter and
Schmidhuber, 1997].

We can define the policy loss based on (2.26):

Lπ(θ) = −ÊB

[
min

(
πθ(at|ℏt)
πold(at|ℏt)

Ât, g(ν)Ât

)]
, (3.4)

where ÊB is the empirical average over a finite batch of trajectories, g(ν) =

clip
(

πθ(at|ℏ)
πold(at|ℏ)

, 1− ν, 1 + ν
)

and ν ∈ [0, 1).
To estimate the advantage function, we chose to use the simplest one using

the empirical rewards [Schulman et al., 2015b]:

Ât = R̂t − V̂θ(ℏt) (3.5)

with R̂t =
∑T

t′=t γ
t′rt′ the sum of future rewards obtained on the trajectory and

V̂θ(ℏt) an estimate of the value function with a neural network. Note that the
value and policy network share the same parameters θ.

The neural network we use is the one described in Figure 3.3. All hidden
layers have 100 neurons. It takes the action-observation history as input and
returns the policy vector and the value of the corresponding input. To update
the head corresponding to the value estimator, we minimize the Mean Square
Error (MSE) between our value estimator and the sum of future rewards:
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LV (θ) = ÊB(V̂θ(ℏt)− R̂t)
2. (3.6)

Therefore, the total loss we minimize is:

L(θ) = Lπ(θ) + LV (θ). (3.7)

LSTM Linear

Linear

Linear

Linear

Linear

ReLU

ReLU

ReLU Softmax

policy

value

Action-observation
history

a0 o0

a1 o1

… …

ad od

Figure 3.3: Neural network architecture

3.4 Speeding up the learning process with Action

Masking

When the number of devices increases, the action space becomes larger, therefore
training a policy becomes slower and sometimes requires a deeper architecture
(more layers, more neurons) to learn the optimal policy. In order to address this
issue, we use a solution called invalid action masking [Huang and Ontañón, 2020]
to provide an algorithm, namely FilteredPPO, able to solve the polling problem
for any number of agents with the same architecture and the same parameters.

The idea is to speed up the training process by masking actions which we
know that are suboptimal for the agent because of the structure of the problem.
Indeed, the traffic is periodic so one device cannot have more than one packet to
transmit during the arrival period Np. Thus, we mask the κ last actions made by
the agent in the policy by setting their probability to 0. The authors of [Huang
and Ontañón, 2020] theoretically and experimentally studied the action masking
methodology for policy gradient algorithms and prove that it leads to valid policy
gradient updates. In our experiments, we took κ = Np.
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Algorithm 3: PPO for centralized multiple-access.
1 Input Initial policy parameters θ0 number of updates J
2 for k = 0, 1, 2, . . .J do

1. Run the policy πθk and collect a set of trajectories

2. Compute the advantage estimates Ât with (3.5)

3. Compute the policy loss Lπ(θ) and the value loss LV (θ) from (3.4) and
(3.6)

4. Minimize the total loss L(θ) = Lπ(θ) + LV (θ)
with multiple steps of stochastic gradient descent.

3.5 Experiments

We test our algorithm with different number of devices ranging between 6 and
60, with and without offsets. The environment parameters are chosen as follows:

• The arrival probabilities are chosen from {0.2, 0.5} with probabilities (0.5, 0.5)
respectively.

• The deadlines are chosen from {5, 10, 15, 20} with probabilities (0.1, 0.1, 0.4, 0.4)
respectively.

• The period is equal to Np = 20 for all devices.

In the scenario with offsets, the offsets are chosen uniformly in [0, Np]. Oth-
erwise, they are all set to 0. In the following, the figures show the mean and
standard deviation over multiple seeds.

3.5.1 Benchmarks

To evaluate the performance of our algorithm, we benchmark it against the
following algorithms:

• Random agent: schedules a device uniformly at random.

• Round Robin agent: schedules devices in a cycle so that the resource is
shared equally among the devices.
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• Slotted ALOHA: all devices can access the medium with the same prob-
ability p. As it is not trivial to derive the optimal probabilities analytically,
we set the transmission probabilities experimentally, such that the through-
put is maximal.

• Matching Agent: in the scenario where all offsets are equal to 0, it is
possible to derive the optimal scheduler if the statistics of the model are
known (arrival probabilities, constraints, period). We call this algorithm
the Matching agent. The idea is to model the scheduling problem as a
bipartite graph matching problem where we need to match K devices with
Np slots. There is an edge between a device k and a slot t if the latter is
inferior to the device’s constraint, i.e. t < δk. We set the weight of device
k to ξk in order to maximize the throughput. Note that this scheduling
method is completely unfair when the number of devices is greater than
the number of slots Np. To alleviate this issue, we could set the weights in
order to maximize an α-fairness objective but this is beyond the scope of
this thesis and we leave this for future work. In our experiments, we solve
the maximum weighted matching problem using the Hungarian algorithm
[Mills-Tettey et al., 2007].

3.5.2 Simulation results

The parameters of our algorithm are given in Table 3.1.

Table 3.1: Parameters of the experiments

Parameter Value
Episode length 50

Discount factor: γ 0.8
Learning rate 0.002

Clipping hyperparameter: ε 0.1
Number of epochs 4

Preference parameter: β 0.3
History length H K

We train our algorithm on 200000 timesteps (4000 episodes) and test it on
20000 timesteps (400 episodes). We update the neural network every 200 steps (4
episodes). The neural network weights are initialized with a random orthogonal
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matrix as described in [Saxe et al., 2013].
Synchronous setting: First, in Figure 3.4, we test our algorithm on a

scenario where all devices are synchronous. This allows us to benchmark it
against the optimal scheduler knowing all the environment parameters (matching
agent).

10 20 30 40 50 60
Number of devices

0.1
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0.5

Th
ro

ug
hp

ut

Random
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Figure 3.4: Evolution of the throughput with the number of devices. The devices
are synchronous. The results are computed on 5 seeds.

Asynchronous setting: Second, we test our algorithm in the more general
asynchronous setting. The results are shown in Figure 3.5, including the version
of our proposed algorithm without invalid action masking, called No-filter PPO.

We can notice that in both scenarios, Filtered PPO successfully exploits the
heterogeneity in the devices to outperform Round Robin, ALOHA and the Ran-
dom agent for every number of transmitters in terms of throughput. In the syn-
chronous setting, the performance of our algorithm is close to the performance
of the matching algorithm. This is achieved despite the fact that our algorithm
is not aware of the traffic probabilities and deadlines. Our algorithm still out-
performs Round Robin, ALOHA and Random scheduling in the asynchronous
setting where the matching agent cannot be applied. We also note that in the
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Figure 3.5: Evolution of the throughput with the number of devices. The devices
are not synchronous. The results are computed on 10 seeds.

asynchronous setting, ALOHA performs better than Round Robin, unlike the
synchronous one, because the probability of having a collision is smaller when
devices are not synchronous.

Finally, we show the impact of invalid action masking on the throughput in
the asynchronous setting. One the one hand, we can see in Figure 3.5 that when
the number of devices increases, learning a good policy becomes more difficult
for No-filter PPO, leading to a lower throughput than FilteredPPO. On the
other hand, Figure 3.6 shows the evolution of the throughput during training for
36 asynchronous devices. We can see that FilteredPPO outperforms No-filter
PPO quite fast and keeps increasing this difference until it converges to a high
throughput.
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Figure 3.6: Evolution of the throughput during the training phase of PPO with
and without invalid action masking. The experiment was made with 36 devices
and with offsets. The dark curves show the moving average over 70 episodes.

3.6 Conclusion

In this chapter, we modelled the centralized uplink multiple access problem with
strict deadlines in IoT as a polling problem with imperfect information and
proposed a DRL algorithm for the BS to learn the polling strategy. We extended
the PPO algorithm to the partially observable setting using a RNN and improved
its performance on a large number of agents with invalid action masking. We
showed that our method successfully manages to learn the traffic patterns of
the transmitters despite the partial observability of our problem. Numerical
results show that our solution outperforms traditional MA protocols and reaches
a performance comparable to the performance of an optimal algorithm aware of
the traffic characteristics and of the strict deadlines.

However, this approach is not without its limitations. A significant challenge
arises from the inherent lack of real-time observability in the centralized polling
system. This limitation becomes particularly evident in scenarios where devices
with low arrival probabilities compete for the same slot, leading to occasional
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suboptimal scheduling decisions by the polling agent. In such cases, a decen-
tralized approach might offer a more efficient solution, reducing the likelihood of
collisions due to the sparse traffic. To enhance the centralized polling method,
one potential strategy is to enable the central agent to poll multiple devices si-
multaneously. While this could increase the throughput, it also introduces the
risk of collisions and expands the action space for the scheduling agent into a
combinatorial problem. Another critical aspect to consider is the dependency of
our approach on discernible traffic patterns. In environments characterized by
unpredictable traffic, such as those with Poisson arrivals, our model may struggle
to develop effective scheduling policies. Addressing these challenges, Chapter 4
explores an innovative centralized solution where the BS is equipped to poll mul-
tiple devices in a single slot, adapting to environments with Poisson arrivals and
enhancing the system’s overall efficiency. On the other hand, Chapter 5 and
Chapter 6 delve into decentralized solutions that could potentially circumvent
the limitations of the centralized approaches.
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4.1 Introduction

In this chapter, we extend the partially observable uplink scheduling framework
introduced in Chapter 3 to NOMA-URLLC networks. Our previous investiga-



56 Chapter 4. NOMA-PPO: DRL Scheduler in NOMA-URLLC

tions highlighted a central limitation in centralized scheduling approaches for
URLLC: the limited visibility over the devices’ state. This constraint signif-
icantly hinders the ability of this framework to meet the stringent reliability
requirements of URLLC. To enhance reliability, we propose an innovative strat-
egy where the BS is enabled to poll multiple users within the same time frame. It
is also equipped with the NOMA technology to effectively mitigate interference
from simultaneous packet transmissions.

However, this approach brings some new complexities. Indeed, enabling the
polling of multiple users exponentially increases the action space of the RL agent,
transforming the action selection problem into a combinatorial one at every time
step. Furthermore, the RL agent not only has to deal with partial observabil-
ity over user’s buffer status but also faces limited visibility over the channel
states. These channel states are crucial for optimizing the SIC decoding process
in NOMA implementation.

To tackle these challenges, we present a novel DRL algorithm, named NOMA-
PPO. This algorithm is specifically designed to tackle the uplink NOMA-URLLC
scheduling challenge.

4.1.1 Related Work

Recent advances in DRL [Mnih et al., 2015] have been applied to solve several
limitations in IoT systems [Chen et al., 2021] and could be potential solutions
for the NOMA-URLLC problem. The approach of [Yang et al., 2020] models the
massive access problem by transforming the URLLC constraint into a data rate
constraint and learns a transmission strategy in order to maximize the network
energy efficiency using cooperative MARL. However, the authors do not consider
strict deadlines and do not address the theoretical limitations of decentralized
MARL like the non-stationarity during training.

At last, several strategies leveraging DRL have been put out to deal with
the URLLC constraint in NOMA systems. The authors of [Ahsan et al., 2022]
propose Deep-SARSA to tackle the resource allocation problem at the BS for
minimizing the error probability in uplink transmissions. Yet, the proposed
solution does not take into account the packet arrival processes, assumes full
observability of the system and does not impose strict deadlines. Additionally,
the work of [Liu et al., 2021] optimizes a NOMA based GF protocol with DRL.
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The authors use DRL to dynamically adjust the number of repetitions and radio
resources in the proactive GF scheme. Yet, the approach, which is based on SA,
still suffers from a high collision rate as the load increases, is not designed for
handling both deterministic and sporadic traffic and fails to take advantage of
channel correlations.

In this chapter, we consider a system in which the BS semi-blindly schedules
the devices for their uplink transmissions, as it is done in grant-based access,
however without the need for scheduling requests. Thanks to NOMA, the BS is
able to poll multiple devices for a transmission in the same resource. We thus
tackle a partially observable scheduling problem where the BS should strike a bal-
ance between acquiring scheduling information and avoiding excessive collisions.
Our problem is characterized by two challenges, namely a combinatorial action
space and a partially observable environment, that conventional DRL algorithms
fail to handle.

4.1.2 DRL challenges for uplink URLLC

First, allowing the BS to poll multiple devices in a frame drastically increases
the action space. For k devices, the decision maker needs to choose between
2k actions, which is exponential in k. Few solutions have been proposed to
address this problem in the literature. The most common one is proposed in
[Dulac-Arnold et al., 2015]. The authors’ idea is to project the large discrete
action space in a continuous action space and thus solve a continuous action
RL problem with the traditional Deep Deterministic Policy Gradient algorithm
[Lillicrap et al., 2015]. However, this approach assumes that the discrete action
space can be embedded in a continuous space, which is not straightforward for
our MA problem. An alternative is the work of [Metz et al., 2017]. The authors
solve a high dimensional action space RL problem with a RNN to sequentially
predict the action vector, one dimension after the other. Nevertheless, not only
does this algorithm assume that we know how to order the action dimensions,
but the Q-value estimated for the last dimension is very noisy, especially when k

is large. An extension of this paper is the Branching Dueling Q-Network (BDQ)
[Tavakoli et al., 2018]. The authors solve a RL problem with a k-dimensional
action space using a dueling architecture where there is a value network common
for all dimensions and k advantage networks, one for every dimension. Yet, not
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only is this solution ill-suited to manage partial observability, but it also cannot
account for any prior knowledge the agent might have regarding the dynamics
of the environment.

Second, as the BS is not aware of the whole environment and takes decisions
solely based on partial observations of the environmental state, our problem can
be modeled by a POMDP [Sondik, 1971]. When observations are not Markovian,
traditional RL algorithms work with history dependent policies, an approach that
can be rapidly computationally intractable as the number of possible histories
grows exponentially with the horizon. A way to alleviate this problem is to
introduce belief states, a probability distribution over the states, which is also
a sufficient statistic for the past history and the initial state distribution. A
POMDP can be then reformulated as a MDP in which the state space is the
continuous belief state space. Traditional RL methods like Q-learning or policy
gradient algorithms can finally be used on the resulting belief-MDP [Kaelbling
et al., 1998].

Three main methods are proposed in the literature to derive or estimate a
belief state: 1) the belief update formula [Kaelbling et al., 1998], 2) a RNN
[Hausknecht and Stone, 2015] and 3) a generative model [Igl et al., 2018]. How-
ever, all these methods suffer from major drawbacks. While the belief update
formula requires the knowledge of the environment dynamics (transition and ob-
servation function), using a RNN or a generative model introduces a new layer
of complexity since there are now two phases involved: the belief estimation and
the computation of the optimal policy. Additionally, since DNNs are black boxes,
it is impossible to add any prior knowledge that the agent might have about the
environment. Moreover, the learned beliefs are difficult to interpret and error
might be propagated to the policy optimization phase.

An alternative to the belief state is the notion of information state [Subra-
manian et al., 2022] or internal state [Wiering and Van Otterlo, 2012, Section
12.4.2]. The idea is to derive a function of the history which is a sufficient statis-
tic for estimating the environmental state. However, learning such a sufficient
representation of the history is difficult as it is often task-specific.

4.1.3 Contributions and outline

The contributions of this chapter can be summarized as follows:
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• We formulate a general MA problem with the URLLC constraint, consid-
ering packets with strict deadlines and NOMA uplink communications as
a POMDP.

• We introduce the notion of agent state in order to theoretically address the
POMDP formulation. We show that the agent state is a sufficient statistic
for the past observation-action history that allows us to 1) express past
actions and observations in a compact way, and 2) convert the POMDP
problem to an MDP and benefit from the convergence properties of the
DRL algorithms. This transformation can be extended to other wireless
settings where partial observability regarding the buffer or channel evolu-
tion needs to be addressed.

• We propose a DRL algorithm, NOMA-PPO, that enhances the state-of-
the-art algorithm PPO [Schulman et al., 2017] with two components: 1)
a branching policy network architecture in order to linearly manage com-
binatorial action spaces. This idea is inspired by the BDQ architecture
[Tavakoli et al., 2018] and extended to PG methods. 2) Bayesian policies,
that incorporate prior information about the MA problem into the DRL
agent [Titsias and Nikoloutsopoulos, 2018].

• We provide numerical evidence that our approach outperforms traditional
MA and DRL benchmarks across 3GPP scenarios in terms of URLLC score,
convergence speed, and fairness. Furthermore, we show that our algorithm
is able to cope with different traffic models, a deterministic periodic and
a probabilistic aperiodic traffic model in particular. Finally, our algorithm
exhibits robustness against different channel configurations and demon-
strates a successful exploitation of time-varying channel information.

In Section 4.2, we define the system model. Section 4.3 formulates the
POMDP problem. Section 4.4 presents the NOMA-PPO approach and finally,
Section 4.5 exposes the simulations and numerical results. To enhance read-
ability, time is denoted in parentheses rather than as a subscript, differing from
the convention used in the other chapters. We also provide two tables of nota-
tions, for the system model and the RL algorithms in Table 4.1 and in Table 4.2
respectively.
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4.2 System Model

4.2.1 Network Model

We consider a time-slotted wireless network of K heterogeneous devices commu-
nicating with a BS over a wireless shared channel on the uplink. Every device
has a single antenna and the BS is equipped with na antennas. The time is
divided into radio frames of duration Tf and every frame is divided into five
time-slots of duration Ts (see Figure 4.1). This division represents the minimum
time required for the processes of polling, transmitting and acknowledging. The
time synchronization among all devices is performed by the BS using downlink
signals. During the first slot of every radio frame, the BS is allowed to poll a
number of devices for a potential uplink transmission, described by the vector
a = (a1, a2, . . . , aK) ∈ {0, 1}K , where ak = 1 when the device k is polled and
ak = 0 otherwise. It also allocates orthogonal resources for uplink pilot trans-
missions from the polled devices. After a guard interval, a polled device with
at least a packet in its buffer becomes active and transmits during the third
slot. Its transmission includes a pilot signal for channel estimation, sent using
the orthogonal resource allocated by the BS. Its transmission also includes the
buffer status of the device. We assume that all packets have the same size of
L bits. After a guard interval, the BS acknowledges the reception of successful
transmissions.

D G U A/NG

Tf = 5Ts

D =downlink allocation
G = guard symbol
U = uplink transmission
A/N = downlink ACK/NACK

Figure 4.1: Radio Frame Structure.

The set of active users at frame t ∈ N is denoted U(t) and the number of
active devices is denoted U(t), i.e., |U(t)| = U(t). We denote also u(t) ∈ {0, 1}K

the vector of active users at frame t such that uk(t) = 1{k ∈ U(t)}. Besides, we
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define τ p(t), τ a(t), τ s(t) vectors of size K, where each component k represents
the number of frames since the last time device k has been polled, active and
successfully decoded, respectively.

We assume that the system is using NOMA [Saito et al., 2013] to improve the
spectral efficiency of the network. NOMA allows several users to use the same
frequency and time resources by superposing their signal in the power domain.
At the receiver side, the BS applies SIC to decode the superposed signals.

Table 4.1: System Model Parameters

Notation Description
K, na Number of devices, number of antennas.
Ts, Tf Slot length, radio frame length.
U(t), u(t) Set and vector of active devices at t.
sk(t), pk(t) Transmitted signal, power of k at t
gk(t), hk(t) Large scale fading, fast fading of k at t

rs(t) Received signal from active users.
yk(t) Combined signal for k at t.
α(t) Decoding order permutation.
ϕk(t) Indicator for successful decoding of k.
ηk(t) Received power for k at t.

γno-SIC
k (t), γSIC

k (t) SINR for k without SIC, with SIC at t.
εk(t) Error probability of k at t.

n, M∗(n, ε) block length, maximum code size.
B SIC limitation.

fk, Np Offset, period of packet generation for k.
dhk, δk Head-of-line delay, latency constraint of k.

ξ̄k(t|fk, ξk, Np) Probability that k generates a new packet at t.
λk Rate of packet generation at k.

B(t), bk(t) Buffer status matrix and vector of k at t.
dh(t) Head-of-line delays of users at t.
T B, T H Buffer and channel state transition operators.

4.2.2 Interference Channel Model

We adopt a realistic channel model that has been adopted in the literature, based
on the evaluation of the SINR [Salaün et al., 2020] and the finite block length
regime, see e.g. [Ren et al., 2020].
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Received Signal

In this model, a device k ∈ U(t), active in frame t, transmits a signal sk(t) of
power pk(t) = E[||sk(t)||2], where the expectation is taken over possible symbols.
In a general formulation, transmit power could be controlled. However, for the
sake of simplicity, this work focuses on scenarios with a fixed transmit power. The
BS is supposed to receive the signal with na antennas and to perform Maximum
Ratio Combining (MRC). The transmission of user k experiences a large scale
fading gk(t), which accounts for the distance-dependent path-loss and shadowing,
fast fading hk(t) = [hk1(t), · · · , hkna(t)]

T ∈ Cna×1 and thermal noise n ∈ Cna×1.
The signal received by the BS at frame t from all active devices can thus be
written as a superposition of s1(t), . . . , sU(t)(t) and thermal noise:

rs(t) =
∑

k∈U(t)

hk(t)
√

gk(t)sk(t) + n(t) (4.1)

where ni(t), i = 1, . . . , na is an independent circularly symmetric white Gaussian
process with distribution CN (0, σ2

nI). Thanks to the orthogonal pilots sent on
the uplink, the BS is able to estimate the channel realizations of active devices.
From now on, we assume that the BS has a perfect channel state information for
decoding. In MRC, the signals received on the na antennas are combined using
a weight vector wH

k = hk for device k. The combined signal yk(t) = wH
k rs for

device k is thus:

yk(t) = hH
k (t)hk(t)

√
gk(t)sk(t) + hH

k (t)n(t) +
∑

j∈U(t)\{k}

hH
k (t)hj(t)

√
gj(t)sj(t)

(4.2)

We assume that BS antennas are sufficiently spaced so that the fading coeffi-
cients at every antenna are spatially uncorrelated and thus hk ∼ CN (0, I) for all
k. The fast fading process hki(t), for k = 1, ..., K and i = 1, ..., na, is supposed
to follow a time-correlated Gauss-Markov model [Kobayashi and Caire, 2007]:

hki(t) = ākhki(t− 1) + zk(t) (4.3)

where zk(t) ∼ CN (0, 1− ā2k). The fading correlation coefficient āk is modeled us-
ing the Jakes’ model [Jakes and Cox, 1994]: āk = J0(2πvkfcTf/c), where J0 is the
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Bessel function of the first kind and order 0, vk is the speed of device k, fc is the
carrier frequency, c is the speed of light and hki(0) ∼ CN (0, 1). The coherence
time for a device moving at speed v is Tc = c/(8fcv) [Tse and Viswanath, 2005].
The channels are supposed to be mutually independent across devices and con-
stant during a frame (following a block fading channel model [Goldsmith, 2005]).
We assume a rich scattering environment with stationary scatterers, as detailed
in [Kobayashi and Caire, 2007, Goldsmith, 2005, Jakes and Cox, 1994]. We de-
note H(t) ∈ Cna×K the matrix of all channel realizations at time t and T H the
evolution process, i.e., H(t+ 1) ∼ T H(H(t)).

Decoding Order

The SIC decoding order at each frame t can be seen as a permutation function
α(t) over the set of active devices, i.e., α(t) : [1 : U(t)] → U(t). For any
i = 1, ..., U(t), αi(t) is the i-th decoded device’s index and for any k ∈ U(t),
α−1
k (t) is the rank of user k in the decoding process. When the BS tries to

decode device αi(t), it has already tried to decode all devices α1(t),..., αi−1(t).
Each decoding might have been successful or not. Let ϕk(t) be the indicator
whether an active device k ∈ U(t) has been successfully decoded by the BS
(ϕk(t) = 1) or not (ϕk(t) = 0) and ϕ(t) = (ϕ1(t), . . . , ϕK(t)) the vector of
all indicators. As a consequence, the signal received at the BS from αi(t) is
subject to the interference of αj(t), j > i, i.e., from devices that have not been
yet considered for decoding by the BS, and to the interference of αj(t), j < i

whenever ϕαj(t) = 0, i.e., from devices that have not been successfully decoded
by the BS.

We now assume the decoding order that minimizes the total transmit power,
given target rates on the uplink [Tse and Viswanath, 2005]: active devices are
sorted in decreasing order of their received power at the BS, as follows:

ηα1(t) ≥ ηα2(t) ≥ · · · ≥ ηαU(t)
(t) (4.4)

where ηk(t) = pk(t)gk(t)||hk(t)||2. We denote η(t) = (η1(t), η2(t), . . . , ηK(t)) the
vector of received powers. We denote ηo(t) the vector of powers received by the
BS from the active devices, observed at time t thanks to the transmitted pilots,
i.e., ηo(t) = diag(u(t))η(t).
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Signal to Interference plus Noise Ratio

In absence of SIC, the signal (4.2) results in a SINR at the output of the com-
biner [Tokgoz and Rao, 2006]:

γno-SIC
k (t) =

ηk(t)∑
j ̸=k ηjk(t) + σ2

n

(4.5)

where ηjk(t) = pj(t)gj(t)
|hH

k hj |2
||hk||2

.
With SIC however, we decode in the decreasing order of ηk(t), so that part of

the interference is potentially successively removed. The SINR with SIC writes
now:

γSIC
k (t) =

ηk(t)∑
j∈J1

(1− ϕj(t))ηjk(t)︸ ︷︷ ︸
before k in decoding order

+
∑
j∈J2

ηjk(t)︸ ︷︷ ︸
after k

+σ2
n

(4.6)

where J1 = {j ∈ U(t), α−1
j (t) < α−1

k (t)} is the set of devices that are considered
for decoding before k and J2 = {j ∈ U(t), α−1

j (t) > α−1
k (t)} is the set of devices

that are decoded after k. Note that ϕj is determined iteratively: we are able to
compute the SINR of device k, only once we know the outcome of the decoding
for devices j ∈ J1.

Achievable Rate with Finite Block Length

As the URLLC messages are often supposed to be very small [3GPP, 2018b]
(in the factory automation scenario for instance), we adopt a finite block-length
regime [Polyanskiy et al., 2010] for the calculation of the achievable rate. In this
model, an encoder maps every L-bit message m ∈ [1 : M̂ ] to a codeword cm ∈ Cn,
where M̂ = 2L is the size of the message space and n is the block length, also
known as the number of complex channel uses. Codewords are subject to an
average power constraint, i.e., 1

M̂

∑
m ||cm||2 = nη, where η is the received power

per channel use. The codeword is transmitted over an Average White Gaussian
Noise channel with noise variance σ2. At the receiver, a decoder maps the channel
output to an estimate m̃ of the message. The average error probability is defined
as ε = P[m̃ ̸= m]. A codebook {cm ∈ Cn,m ∈ [1 : M̂ ]} and a decoder whose
average error probability is less than ε are called a (M̂, n, ε)-code. For given
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ε and n, the maximum code size is denoted M∗(n, ε). Authors of [Polyanskiy
et al., 2010] provide a normal approximation of the maximum achievable code
rate:

log2M
∗(n, ε)

n
≈ C(γ)−

√
V (γ)

n
Q−1(ε) (4.7)

where γ = P
σ2 is the Signal-to-Noise Ratio (SNR), P is the received power,

C(γ) = log2(1+γ) is the Shannon capacity1, V (γ) = γ
2

γ+2
(γ+1)2

log22 e is the channel
dispersion and Q(x) = 1/

√
2π
∫∞
x

exp(−t2/2)dt. Although (4.7) is an asymptotic
approximation when n tends to infinity, it is tight for n as small as 200 [Polyan-
skiy et al., 2010]. When considering a block fading channel with channel real-
ization h, (4.7) is valid conditionnally to the channel realization with γ = P |h|2

σ2 .
In our study, we further treat interference as noise, as it is usually done in the
literature [Goldsmith, 2005, Chapter 15], and apply (4.7) with the SINR in (4.6).
As a consequence, a packet of device k, transmitted at frame t, is not successfully
decoded with probability:

εk(t) = Q

(√
n

V (γSIC
k (t))

(
C(γSIC

k (t))− L

n

))
(4.8)

The downlink allocation and the acknowledgment are supposed to be error free.

SIC Limitation

We define an upper limit B on the number of possible multiplexed users which
is characteristic of the SIC performance [Tse and Viswanath, 2005]. More specif-
ically, a necessary condition for a device k to be decoded is that the number of
active devices is less than B, i.e.

|U(t)| ≤ B (4.9)

Finally, at frame t and for a user k, we can write ϕk(t) as a Bernoulli random
variable of parameter 1 − εk(t), i.e., ϕk(t) ∼ B(1 − εk(t)) when (4.9) is satis-
fied, and ϕk(t) = 0 otherwise. The SIC decoding procedure is summarized in

1Note that contrary to [Polyanskiy et al., 2010], which considers the capacity per real
dimension, we use a complex representation of the signal. As a consequence, C is the capacity
per complex dimension [Tse and Viswanath, 2005, Chapter 5].
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Algorithm. 4

Algorithm 4: SIC Decoding Procedure
input : U(t), η(t)
output: ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕK(t))

1 Initialize: ϕk(t) = 0,∀k.
2 if |U(t)| ≤M then
3 foreach k ∈ U(t) in decreasing order of η(t) do
4 Compute the SINR γk(t) using (6) and ϕ(t)
5 Compute εk(t) using γk(t) according to (8)
6 Draw ϕk(t) from the Bernoulli distribution: ϕk(t) ∼ B(1− εk(t)),

i.e. decode the packet with probability 1− εk(t)

4.2.3 Traffic Models

Packets are generated at the devices according to models of either probabilis-
tic periodic traffic or probabilistic aperiodic traffic and are subject to a strict
deadline constraint.

Probabilistic periodic traffic

In this model, directly inspired by [Hou and Kumar, 2013], a device k generates
packets periodically every Np radio frames with probability ξk. Devices are not
synchronous, i.e., each device is assigned an offset parameter f̄k ∈ [0, Np] such
that, at every radio frame t ≥ 0, the probability for a device k of generating a
new packet is: ξ̄k(t|f̄k, ξk, Np) = 1{t[Np]=f̄k}ξk. Note that a specific case for this
model is the deterministic periodic traffic as defined in [3GPP, 2018b, Annex A]
for various use cases including for example factory automation, where ξk = 1 and
f̄k = 0 for all k. Periodic transmissions may correspond to the periodic update
of a position or the repeated monitoring of a characteristic parameter [3GPP,
2017h].

Probabilistic aperiodic traffic

This traffic model is defined in [3GPP, 2018b] and is based on the File Transfer
Protocol (FTP) model 3 defined in [3GPP, 2015], however with a fixed packet
length. At every device k, packets are generated according to a Poisson process
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of rate λk. An aperiodic transmission may correspond to process, diagnostic or
maintenance events that trigger the transmission [3GPP, 2017h].

Deadlines

Every device k has an individual latency constraint δk ∈ N∗ expressed in number
of radio frames, such that a packet that has not been transmitted after δk radio
frames is dropped. Let δ = maxk δk. When a transmission fails, a device is
allowed to retransmit the packet as long as it has not expired.

Buffers

We assume that devices have an infinite buffer and packets in the queue are
delivered in a “first come, first served" manner. For every device k, the buffer
at time t can be represented by a vector bk(t) = [bk,1(t), ..., bk,δ(t)] ∈ Nδ where
bk,d(t) = i when device k has i packets with time-to-deadline d at time t. We
denote B(t) the matrix of all buffer status at time t. The head-of-line delay
dhk(t) of user k at frame t is defined as bk,dhk(t)(t) ̸= 0 and bk,d(t) = 0 for all
d < dhk(t). This is the smallest time-to-deadline in the buffer of device k. We
note dh = [dh1 , d

h
2 , . . . , d

h
K ] the vector of all head-of-line delays. When a device is

polled, it chooses for transmission one of the packets associated to its head-of-line
delay at random.

For a device k, the buffer status transits as follows: (a) Successfully decoded
packets are removed from the buffer, i.e. bk,dhk(t)−1(t + 1) = bk,dhk(t)(t) − 1 if
ϕk(t) = 1; (b) Other packets see their time-to-deadline decreased by one, i.e.,
bk,d−1(t+ 1) = bk,d(t) for all d > 1. If d = 1, the packets expire and are removed
from the buffers; (c) If m new packets are generated at the device, they enter
the buffer with a deadline δk, i.e., bk,δk(t+ 1) = m.

We denote this operation T B, i.e.,

B(t+ 1) ∼ T B(B(t),ϕ(t)) (4.10)

When an active device is successfully decoded, its buffer status is known (or
observed) to the BS. We thus denote Bo(t) the matrix of observed buffer status
at time t.
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4.3 Problem Formulation

4.3.1 Optimization Problem

The objective of the BS is to maximize the expected number of successful trans-
missions with respect to the policy π that maps the current observation history
at frame t: (Bo(t),ηo(t), . . . ,Bo(0),ηo(0)) to the vector of devices to schedule
a(t). Moreover, buffers and channels are subject to the dynamics T B and T H ,
respectively. The optimization problem (P) can thus be formulated as:

max
π

E
(T B ,T H ,π)

 ∞∑
t=0

∑
k∈U(t)

γtϕk(t)


s.t. B(t+ 1) ∼ T B(B(t),ϕ(t))

H(t+ 1) ∼ T H(H(t))

(P)

where γ ∈ [0, 1) is the discount factor that determines the importance of future
rewards compared to immediate ones.

4.3.2 POMDP Formulation

To solve our problem, we adopt the POMDP framework, and we define its com-
ponents as follows:

State space

At each step t, a state s(t) is defined as the concatenation of the buffer status
B(t), the received powers η(t), and the observation o(t) obtained from the active
users at the previous step:

s(t) = ⟨B(t),η(t),o(t)⟩ (4.11)

where o(t) = ⟨u(t − 1),ϕ(t − 1),Bo(t − 1),ηo(t − 1), r(t − 1)⟩ is the vector of
active users, the vector of decoded packets, the observed buffers, the observed
received power and the reward at t− 1 respectively.
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Table 4.2: Algorithms Parameters

Notation Description
s(t), o(t) State and observation at t.
Bo(t) Observed buffers at t.
ηo(t) Observed received power at t.

τ p(t), τ a(t), τ s(t) Last time the devices have been polled, ac-
tive, successfully decoded.

a(t) Action of the agent at t.
r(t− 1) Reward at step t− 1.

fA Transition function for the agent state.
BA(t) Buffers representations by the agent.
ηA(t) Last known received power by the agent.
ℏ(t) History of observations and actions at t
πθ Policy parameterized by θ.

Aπθold ,V πθold Advantage and value functions.
Vφ Value network parameterized by φ

ÂGAE(t) Generalized Advantage Estimator.
ν Clipping parameter for PPO.
γ Discount factor.

EDF EDF prior.
fch Channel prior.
f Bayesian prior over the agent state.
q Posterior policy

Action space

The agent has the possibility to poll any subset of devices at every frame. The
action space is thus defined as A = {0, 1}K . For a = (a1, a2, . . . , aK) ∈ A,
ak = 1 if the agent polls device k and ak = 0 otherwise. Note that the action
space grows exponentially with the number of devices.

Transition function

When the system is in state s(t) at the beginning of a radio frame t, it transits
to state s(t+ 1) at the end of the radio frame. The received power η(t) evolves
with the channel realizations H(t) and is governed by T H . Finally the evolution
of the buffers is described by T B. The next observation o(t + 1) is computed
using the observation function defined in the next subsection.
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Observation space and observation function

At every frame t, the RL agent can only observe the last feedback from the
active users: the set of active users, their channel realizations, the buffer status
of successfully decoded devices and the reward. From the state s(t + 1) and
action a(t), the observation at time t+ 1 is deterministic and defined by:

o(t+ 1) = O(s(t+ 1),a(t)) (4.12)

= ⟨u(t),ϕ(t),Bo(t),ηo(t), r(t)⟩ (4.13)

In particular, ϕ(t) ∼ B(1−ε(t)), Bo(t) = diag(u(t)⊙ϕ(t))B(t) and ηo(t) =

diag(u(t))η(t). Note that when a device k is active but its packet is not decoded,
the agent still has the information that this device has a packet to transmit
through uk(t) = 1.

Reward function

We define the reward function as the number of successfully decoded packets:

R(s(t),a(t)) =
∑

k∈U(t)

ϕk(t) (4.14)

Note that unlike most RL approaches for multiple access [Xu et al., 2020,
Chang et al., 2018, Guo et al., 2022], we do not penalize the agent when there
is a collision or interference. The reason is that we want the agent to learn a
tradeoff between sensing and transmitting. In our experiments, we have noticed
that using a penalty for collisions did not improve the performance.

The POMDP formulated above aims at maximizing the optimization prob-
lem (P). In general, POMDP problems are known to be PSPACE-complete [Pa-
padimitriou and Tsitsiklis, 1987], which means that they can be solved using
a polynomial amount of memory space and are at least as hard as every other
PSPACE problem. In order to solve this POMDP, we introduce a sufficient
statistic for the history of past actions and observations, that we call the agent
state, and that allows us to transform the POMDP problem into an MDP.
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Agent State for Solving a POMDP

Definition 4.1 (Agent state). At the beginning of each frame t ≥ 1, we define
the agent state A(t) after the agent receives its observation o(t) as:

A(t) = ⟨BA(t),ηA(t), τ p(t), τ a(t), τ s(t), r(t− 1)⟩, (4.15)

where τ p(t), τ a(t) and τ s(t) are the number of frames from t since the last time
the devices have been polled, active and have successfully transmitted respectively.
ηA(t) is the last known received power of the active devices, i.e., its k-th column
is ηk(t − τak (t) − 1). The matrix BA(t) is a representation of the buffers given
the observations made by the BS at time t and is defined as follows. If an active
user k has been successfully decoded in the previous frame, we update bAk (t) with
the new observation, i.e., bAk (t) = bok(t − 1). For all devices, we decrease the
deadlines of the packets in the buffers representation at time t − 1 by 1 and we
remove the expired packets.

While Bo(t) is an immediate observation of the buffers of the active users at t,
BA(t) is a compact representation of all past buffer observations at t. Introducing
BA(t) allows us to incorporate the knowledge of the dynamics of the buffers in
the agent. Yet, the agent is still not aware of the new arrivals. To summarise, the
agent state at frame t, A(t), can be written as a function fA of the observation
o(t), the previous action a(t− 1) and the previous agent state A(t− 1), i.e.,

A(t) = fA(A(t− 1),o(t),a(t− 1)) (4.16)

Proposition 4.2. A is a sufficient statistic for the action-observation history,
i.e.,

P (s(t)|ℏ(t)) = P (s(t)|A(t)) (4.17)

Proof. Let s(t) = ⟨B(t),η(t),o(t)⟩. We need to prove that A(t) is a sufficient
statistic for the history ℏ(t) in order to predict s(t) i.e.:

P (s(t)|ℏ(t)) = P (s(t)|A(t)) (4.18)

According to the Bayes rule, we have:
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P (s(t)|ℏ(t)) = P (B(t),η(t),o(t)|ℏ(t))

= P (B(t)|η(t),o(t), ℏt)

× P (η(t)|o(t), ℏ(t))× P (o(t)|ℏ(t))

Besides, as ℏ(t) = {a(0), o(1), a(1), ..., a(t− 1), o(t)} and B(t) is independent
of η(t), we have:

P (s(t)|ℏ(t)) = P (B(t)|ℏ(t))P (η(t)|ℏ(t))

Each channel is independent so let’s compute P (ηk(t)|ℏ(t)). For a device k,
ηk(t) is conditionally independent of ak(t), b

o
k(t) and r(t− 1) given ηok(t). Thus,

we can write:

P (ηk(t)|ℏ(t)) = P (ηk(t)|ηok(t− 1), . . . , ηok(0))

(a)
= P (ηk(t)|uk(t− 1)ηk(t− 1), . . . , uk(0)ηk(0))

(b)
= P (ηk(t)|ηk(τak (t)), τak (t))
(c)
= P (ηk(t)|A(t))

where (a) comes from the definition of ηok (see Section 4.2.2-2); (b) comes from the
fact that the channel realizations are Markovian and that ηk(τ

a
k (t)) is the last

observed channel realization for the device k; (c) results from the conditional
independence of ηk(t) from BA(t), τ a(t), τ s(t), r(t− 1) given ηAk (t) and τak (t).

Finally, as each user’s buffer is independent, we are going to prove by in-
duction that P (bk(t)|ℏ(t)) = P (bk(t)|A(t)),∀k,∀t ≥ 0. First, P (s(0)|ℏ(0)) =

P (s(0)| o(0)) = P (s(0)|A(0)). Let t ≥ 0 and k ∈ [1, K]. Let’s assume that
P (bk(t)|ℏ(t)) = P (bk(t)|A(t)). By definition of the agent state (see Defini-
tion 4.1) and as bk(t+ 1) only depends on bAk (t+ 1), we have:

P (bk(t+ 1)|A(t+ 1)) = P (bk(t+ 1)|bAk (t+ 1)) (4.19)

bAk (t+ 1) =

{
bok(t+ 1) if ϕk(t) = 1

bAk (t) if ϕk(t) = 0
(4.20)
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Therefore,

P (bk(t+ 1)|bAk (t+ 1)) =P (bk(t+ 1)|bok(t+ 1)), if ϕk(t) = 1,

P (bk(t+ 1)|bAk (t)), if ϕk(t) = 0,
(4.21)

Besides, as bk(t + 1) is conditionally independent of r(t), Ho(t + 1),u(t)

given ϕ(t), bok(t+ 1) we can write P (bk(t+ 1)|bok(t+ 1)) = P (bk(t+ 1)|o(t+ 1)).
Therefore:

P (bk(t+ 1)|bAk (t+ 1))
(c)
= P (bk(t+ 1)|bAk (t),o(t+ 1))

(d)
= P (bk(t+ 1)|A(t),a(t),o(t+ 1))

(e)
= P (bk(t+ 1)|ℏ(t+ 1))

where (c) comes from merging the equations in (4.21) and noticing that ϕk(t) ∈
o(t+1); (d) comes from the fact that bk(t+1) only depends on A(t),a(t),o(t+1)

through bAk (t) and o(t+1). Finally, (e) comes from the induction hypothesis.

Proposition 4.3. The tuple (SA,A, T A,RA) forms an MDP where T A : SA ×
A 7→ ∆(SA) is the agent state transition function and RA : SA × A 7→ R the
agent state reward function such that:

T A(A(t),a(t)) =
∑

o(t+1)∈Ω

fA(A(t),a(t),o(t+ 1))P (o(t+ 1)|a(t),A(t))

RA(A(t),a(t)) =
∑

s(t)∈S

P (s(t)|A(t))R(s(t),a(t))

where:

P (o(t+ 1)|a(t),A(t)) =
∑
s∈S

O(o(t+ 1)|s,a(t))
∑
s∈S

T (s(t+ 1)|s,a(t))

Proof. The expressions of T A and RA are directly derived using the law of total
probability and the Bayes formula.
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The problem formulation is summarized in Figure 4.2.

1. At the beginning of frame t, the system is at state s(t).

2. The agent can observe o(t) = O(o(t)|s(t),a(t− 1)).

3. It then computes the agent state using (4.16).

4. It makes an action a(t) ∼ π(a(t)|A(t)).

5. The system then transitions to the next state as follows: s(t+1) ∼ T (s(t+
1)|s(t),a(t)) and the agent receives: R(s(t),a(t)),u(t),ϕ(t),ηo(t),Bo(t).

Transforming the POMDP problem in an MDP allows us to leverage DRL
algorithms in order to solve the optimization problem (P).

4.4 Deep Reinforcement Learning Approach

4.4.1 Proximal Policy Optimization algorithm

Our approach is based on the PPO algorithm, as detailed in 2.2.3. We employ the
highly efficient Generalized Advantage Estimation (GAE) method for advantage
estimation, as described in [Schulman et al., 2015b]. This algorithm uses the
temporal difference residuals δV (t) = r(t) − γV (s(t + 1)) − V (s(t)) in order to
define the Generalized Advantage Estimator ÂGAE(t):

ÂGAE(t) =
∞∑
l=0

(γλGAE)
lδV (t+ l) (4.22)

where λGAE ∈ [0, 1] adjusts the bias-variance tradeoff. This method manages to
reduce the variance of the gradient estimate and stabilizes training at the cost of
introducing a bias. In practice, the value function V is approximated by a DNN
with parameters φ: Vφ.

4.4.2 Exploiting Prior Knowledge

In our scheduling problem, the Earliest Deadline First (EDF) scheduler, which
schedules pending packets in the increasing order of their deadline, intuitively is
a good heuristic when the environment is fully observable by the scheduler. EDF
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The agent observes:

The reward R( )
The active users 
The decoded packets: 
The channel information of the active users  
The buffer information of the successful users  

Figure 4.2: Formulation of the NOMA-URLLC problem.

is indeed known to be optimal in various deterministic [Stankovic et al., 1998]
and stochastic (see e.g. [Moyal, 2013]) settings. We thus adapt it to NOMA as
follows: given the devices’ buffers estimates, BA(t), EDF schedules the B users
with the smallest head-of-line delay dhk(t).

EDF(BA(t)) = (a1, . . . , aK), (4.23)

where ak =

{
1 if k ∈ argB min({dh1(t), . . . , dhK(t)})
0 otherwise
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Note that in our POMDP problem, EDF cannot be implemented in practice,
as it requires full observability of the system, but can serve as a valuable bench-
mark. We can further allow the scheduler to take into account the channel state,
by introducing a prior regarding the channel quality. In particular, we define a
prior on the channel fch as follows:

fch(η
A(t), τa) = (a1, . . . , aK), (4.24)

where ak =

{
0 if ηAk ≤ η∗ and τak ≤ τ ∗

1 otherwise

where η∗ ≥ 0 and τ ∗ ≥ 0 are hyperparameters to determine the quality of a
channel. Typically, η∗ is the threshold that indicates when a user will not be
decoded with a high probability, regardless of the others’ channels and τ ∗ is
the coherence time that indicates whether the last information we have on the
channel is relevant or outdated. The intuition behind this prior is that a user
should remain inactive if it experiences a very “bad" channel.

The resulting prior f is thus a combination of the EDF and channel prior:

f(a;A) = EDF (BA(t))⊙ fch(η
A(t), τa) (4.25)

In order to incorporate this prior knowledge into the RL agent, we introduce
a Bayesian policy inspired by [Titsias and Nikoloutsopoulos, 2018]. We express
the posterior policy q(a|A; θπ) as a function of the prior over the agent state
f(a;A) and the task specific policy π(a|A; θπ) parameterized by θπ with the
Bayes rule:

q(a|A; θπ) ∝ π(a|A; θπ)⊙ f(a;A) (4.26)

4.4.3 Algorithm Overview and Architecture

The neural network architecture is described in Figure 4.3. NOMA-PPO uses
two neural networks, one for the policy and one for the critic. The input vector is
the concatenation of the preprocessed buffer information BA(t), the normalized
timing information τ p(t), τ a(t), τ s(t), the channel information ηA(t) and the
last reward r(t− 1). Its size is thus 5K + 1.

Following a branching architecture, the policy network produces activation
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probabilities for each user, generating K outputs as follows:
πθ(a|A) = (πθ(a1|A), πθ(a2|A) . . . , πθ(aK |A)). Inspired by the BDQ architec-
ture [Tavakoli et al., 2018], which employs this approach for Q-learning, we
handle the combinatorial action space in a manner that scales linearly with
the number of users and adapt it to the PPO algorithm. These K outputs
are then coordinated by a first block of hidden layers that are shared by all
branches. This design balances the complexity of the model with the need to
capture inter-dependencies among actions. While the single-layer branches sim-
plify the model and enhance efficiency, the shared layers ensure that the critical
inter-dependencies of our scheduling problem are captured.

On the other hand, the value network follows the same architecture of the
policy network, except that it outputs a single value for the state value estima-
tion. The procedure for training NOMA-PPO is developed in Algorithm 5. The
training process for the algorithm consists of two phases: an initial offline train-
ing using synthetic data until satisfactory performance is achieved, followed by
the deployment in the real environment where continuous updates of the policy
and value network are performed in parallel, based on data collected during op-
eration. Moreover, as system parameters evolve or change, periodic maintenance
or retraining of the algorithm is necessary, either on a scheduled basis or when
a decline in performance is observed.

4.5 Experiments

4.5.1 Simulation Settings and Implementation Details

Simulations are conducted at the MAC layer. Our simulation settings (see Ta-
ble 4.3) adopt the parameters of the factory automation use case of the 3GPP 5G
NR specifications on URLLC [3GPP, 2018b] and industrial IoT [3GPP, 2018a].
Our radio frame is made of five time-slots (Tf = 5Ts), whose duration Ts is
equivalent to an OFDM symbol in NR. It can be decomposed into an informa-
tion part of duration Ti and a cyclic prefix of duration Tcp, which both depend
on the subcarrier spacing ∆f : Ts = Ti + Tcp with Ti = 1/∆f . From the sig-
nal bandwidth we substract the subcarriers dedicated to uplink pilots, so that,
when there are U polled devices and np pilots per device, the number of complex
channel uses is n = (W −npU∆f)Ti [Tse and Viswanath, 2005, Chapter 5]. The
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Figure 4.3: Architecture of the NOMA-PPO agent.

number of pilots per device can be obtained as follows: np = ⌈W/Wc⌉, where
Wc = 1/(2Td) [Tse and Viswanath, 2005, Chapter 2] is the coherence bandwidth
and Td is the delay spread.

Regarding the traffic model, we consider either a deterministic periodic traffic
with period 1/λ or a probabilistic aperiodic traffic with average inter-arrival
time 1/λ. A packet can be decomposed into an information part of length Li,
a header part of length Lh, and a buffer description of length Lb, so that L =

Li+Lh+Lb. In URLLC, headers cannot indeed be neglected with respect to the
message length. We assume that the information part, the header and the buffer
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Algorithm 5: NOMA-PPO for URLLC uplink scheduling in NOMA
systems.
1 Input: prior f , initial parameters of the policy network πθ0 and the

value network Vφ0 ;
2 for j = 1, 2, . . . , J do
3 Run the posterior policy qθj and collect a set of β trajectories
{(Ab(t), πθj(ab(t)|Ab(t)), rb(t))t=1,...,T}b=1...β.

4 Compute the rewards-to-go R̂b(t) for each trajectory:
R̂b(t) =

∑T
t′=t γ

t′rb(t
′)

5 Compute the values Vϕj
(Ab(t)) using the value network.

6 Compute the advantage estimates ÂGAE
b (t).

7 Update the policy network by maximizing (2.26) with the Adam
algorithm [Kingma and Ba, 2014]:

θj+1 = argmax
θ

1

βT

[
β∑

b=1

T∑
t=1

min

(
πθ(ab(t)|Ab(t))

πθj(ab(t)|Ab(t))
ÂGAE

b (t), g(ν)ÂGAE
b (t)

)]
8

9 Update the value network by minimizing the mean-squared error with
the Adam algorithm:

φj+1=argmin
φ

1

βT

β∑
b=1

T∑
t=1

(
Vφ(Ab(t))−R̂b(t)

)2
(4.27)

information are jointly encoded [Popovski et al., 2019]. The traffic parameters of
Table 4.3 are taken from the factory automation use case of Release 16 [3GPP,
2018b].

For realistic numerical experiments, we partly adopt the scenario proposed
in [3GPP, 2018b, Table A.2.2-1] for the factory automation use case, with a
single BS. The network layout is a rectangle of size ℓ×ℓ′; the BS is positioned at
its center at a height h̃b and serves devices, each at height h̃d and moving with
velocity v. Devices are uniformly distributed within the network area. Devices
and BS benefit from antenna gains Gb and Gd respectively. For a speed of
v = 3 km/h, we obtain a coherence time of Tc = c/(8fcv) = 11.2 ms, which
corresponds to 63 radio frames. We choose an episode length of 200 frames that
allows us to consider speeds below 1 km/h. The path-loss model is the ITU InH
NLOS [3GPP, 2017g]. The BS has a noise figure NF , so that the noise power
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Table 4.3: Network Simulation Settings.

Parameter Notation Value

Carrier frequency fc 4 GHz
Bandwidtha W 38.16 MHz

Subcarrier spacing ∆f 30 kHz
Delay spreadb Td 100 ns

OFDM symbol information part Ti 33.33 µs
OFDM symbol cyclic prefixc Tcp 2.34 µs

SIC limitation B 3

Information length Li 32 bytes
Headersd length Lh 46 bytes

Buffer informatione Lb 14 bytes
Average inter-arrival rate 1/λ 2 ms

Deadline δ 1 ms
Network layout ℓ× ℓ′ 50× 120 m2

Noise Power Spectral Density N0 −174 dBm/Hz
BS noise figure NF 5 dB

BS antenna height h̃b 3 m
BS antenna gain Gb 5 dBi

BS number of antennas na 4
Device transmit power p 23 dBm
Device antenna height h̃d 1.5 m
Device antenna gain Gd 0 dBi

Device speed v 3 km/h
a For a channel bandwidth of 40 MHz, the signal occupies

38.16 MHz after having excluded guard bands [3GPP, 2017a].
b Typical delay spread for an indoor hot-spot scenario with carrier
frequency 4 GHz [3GPP, 2018b].

c Normal cyclic prefix duration for symbols not at the start or in
the middle of the subframe [3GPP, 2017e].

e Size of an array of size 56 corresponding to a maximum deadline
of 56 frames, i.e., 10 ms, with 3 bits entries giving the number of
packets for every deadline.

d Headers include 2 bytes of CRC [3GPP, 2017c], 1 byte for
MAC [3GPP, 2017b], 0 byte for RLC [3GPP, 2017f], 2 bytes for
PDCP [3GPP, 2017d], 0 byte for SDAP [3GPP, 2020] and
40 bytes for IPv6 [Deering and Hinden, 2017].

is σ2
n = N0WNF , where N0 is the noise power spectral density. Typical values

for the channel parameters are given in Table 4.3. We express the deadlines and
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inter-arrival time in term of frames. Indeed, given the frame duration Tf , we can
deduce that the average inter-arrival time of 2 ms corresponds to 11.2 frames
and that the deadline of 1 ms to 5.6 frames.

The parameters of the DRL algorithms are given in Table 4.4. We preprocess
the agent state as follows. In order to reduce the dimension of the buffer infor-
mation, the matrix BA(t) is transformed into a vector of size K of head-of-line
delays for each agent. In order to improve stability of speed up training, we
normalize τ p, τ a, τ s between 0 and 1 by taking 1/τ p, 1/τ a, 1/τ s. Finally, the
channel threshold η∗ is calculated using (4.8) such that the error probability in
absence of interference corresponding to η∗ is equal to 10−5.

Table 4.4: Parameters of the DRL algorithms.

Parameter Value
Input size (Hin) 5K + 1
Hidden size (H) 256

Discount factor (γ) 0.3
Learning rate actor 10−4

Learning rate critic 10−3

Batch size 128
History length K

Episode length (T ) 200 slots
Training length (J) 10k episodes
Activation functions ReLU

Number of seeds 5
λGAE 0.95

URLLC score

In order to compare our algorithm to the traditional benchmarks, we define the
URLLC score as the number of successfully transmitted packets over the number
of received packets. In the following experiments, the URLLC score is computed
over 500 episodes which corresponds to approximately 2 · 105 generated packets
according to the traffic parameters in Table 4.3. Therefore, a URLLC score of 1
means that the reliability is greater than 1− 105.
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4.5.2 Benchmarks

For all baselines, when the BS receives two or more packets at the same time,
we use the SIC procedure described in Section 4.2.2 to decode the packets.

• Random Scheduler: This scheduler schedules a subset of B devices uni-
formly at random.

• EDF: This scheduler schedules pending packets in the increasing order of
their deadlines, see (4.23). Again, it cannot be implemented in practice on
the uplink because of the assumed full observability of the device buffers.

• SA-NOMA-SIC: This baseline is a grant-free approach that follows the
work of [Tegos et al., 2020]. It combines SA with SIC. At each frame,
devices transmit their packet with the same probability p. Regarding re-
transmissions, we use the proactive scheme [Mahmood et al., 2019a]: a user
can re-transmit the same packet with probability p until it is delivered or
expired. The probability p is empirically optimized such that the URLLC
score is maximized for every scenario.

• RDQN-NOMA Scheduler: The standard DQN algorithm proposed by
[Hausknecht and Stone, 2015] is the traditional approach to solve POMDP
problems. The idea is to use an RNN to handle partial observability. We
directly apply this algorithm in order to solve (P). The action space of the
RL agent is the set of combinations of B or more devices to poll.

• Branching DQN (BDQ): this baseline is a version of the Dueling Double
DQN algorithm from [Tavakoli et al., 2018] that uses a branching architec-
ture in order to handle a combinatorial action space.

• iDRQN-NOMA: This baseline is a fully distributed MARL algorithm
for grant-free multiple access that follows the solution of [Xu et al., 2020]
where each device is modeled by a Deep Q-network and decides to access
the medium based on its local information: the state of its buffer and its
channel state. This baseline uses a RNN, a GRU layer [Chung et al., 2014]
in particular, as it is a standard approach to tackle partial observability.
Additionally, we extend the work of [Xu et al., 2020] to NOMA systems by
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adapting the reward function as follows: at the end of every frame t, every
user k receives the same reward:

Rk(sk(t), ak(t)) =

{ ∑
i∈U(t) ϕi(t) if |U(t)| ≤ B

−1 otherwise
(4.28)

• NOMA-PPO-no-prior: This baseline is the proposed approach, however
without using prior information over the agent state.

• NOMA-PPO-no-agent-state: this approach is our NOMA-PPO algo-
rithm without the agent state. It deals with partial observability using the
action observation history as the input to the policy. It then processes it
using a recurrent neural network (RNN) [Hausknecht and Stone, 2015].

In order to be fair in the experiments, we modify the frame structure of the
two grant-free approaches SA-NOMA-SIC and iDRQN-NOMA and divide it into
four time-slots of duration Ts: an uplink transmission symbol, a guard symbol,
a downlink ACK/NACK and a guard symbol.

4.5.3 Study of the Channel Model
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Figure 4.4: Packet error probability ε as a function of the distance to the BS.

In this section, we study the behavior of the channel. In Figure 4.4a, we show
the channel error probability ε as a function of the distance between a device and
the BS, involved in a point-to-point transmission without interference. Results
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are shown for different number of antennas at the BS and with or without the
pilot signals. We see that there are roughly three regimes that can be distin-
guished. When the distance is small, the error probability is very small (less than
10−6). When the distance to the BS is too large, the error probability is close
to 1. In this regime, there is no hope to guarantee URLLC requirements. In an
intermediate regime that depends on the number of antennas and the number of
decoded devices, the error probability is not negligible but the URLLC require-
ments could be met with an appropriate scheduling. In this case, the SINR model
is required to benefit from the channel evolution for every device. As expected,
increasing the number of antennas at the BS improves the reliability. At last,
reserving some resource for pilots has a negligible influence on the performance.

In Figure 4.4b, we show the error probability as a function of the distance
of the three devices from the BS. The three devices transmit simultaneously
to the BS, which performs SIC. The resulting error probabilities are shown for
the first, second and third decoded signals respectively. We again observe the
three regimes, however with an offset according to the rank of decoding. The
intermediate regime ranges here approximately between 150 m and 300 m.

4.5.4 Convergence Analysis

In Figure 4.5a, we show the evolution of the URLLC score during the training
of 18 learning agents under the probabilistic aperiodic traffic. First, we can see
that NOMA-PPO converges the fastest and with the smallest variance to its
asymptotic value. Second, we see that not only does the prior help NOMA-PPO
reach a better optimum, it also increases the convergence speed and reduces
the variance. Third, we can observe that NOMA-PPO-no-prior’s performance
closely aligns with NOMA-PPO-no-agent-state. This suggests that utilizing the
agent state achieves the same benefits as managing partial observability with a
RNN, but with reduced complexity. However, we can see that training NOMA-
PPO-no-agent-state is longer, primarly due to the higher number of parame-
ters in the GRU layer. Fourth while the MARL grant-free approach, iDRQN-
NOMA, reaches the second best optimum in terms of URLLC score, it converges
slower than NOMA-PPO and with a larger variance. This can be accounted
for by the fact that agents must coordinate independently, solely using the BS’s
feedback. Furthermore, we observe that the DRQN-NOMA scheduler does not
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manage to converge due to the combinatorial action space. Indeed, there are
2K−

∑B−1
k=0

(
K
k

)
= 261, 972 possible actions for K = 18 and B = 3, thus choosing

the appropriate action is challenging. In light of the lack of convergence of this
algorithm, we exclude it from future experimental baselines. Finally, we observe
that the BDQ algorithm comes third in term of asymptotic URLLC score but
suffers from high variance. We notice that for the DRQN-NOMA scheduler and
iDRQN-NOMA, the score does not evolve in the first thousand episodes. It is
because of the “warm up" stage where we collect trajectories in order to fill the
replay buffer of the agents without updating them.

4.5.5 Performance in the 3GPP Scenario

In Figure 4.5, we study the performance of our algorithm in the 3GPP scenarios
with two different traffic models. On the one hand, we study in Figure 4.5b
the evolution of the URLLC score as a function of the number of devices on the
deterministic periodic traffic and on the other hand, the evolution of the URLLC
score and the Jain’s Index on the probabilistic aperiodic traffic in Figure 4.5c
and Figure 4.5d respectively. The Jain’s index is computed with the URLLC
scores.

We observe that our approach, NOMA-PPO, consistently outperforms all
benchmarks in URLLC score and fairness across various scenarios, with the ex-
ception of the EDF scheduler, which benefits from full observability over devices’
buffers. This superior performance can be explained by our technical contribu-
tions to better handle partial observability and the combinatorial action space,
augmented with prior knowledge. Indeed, we first observe that our proposed
solution surpasses the BDQ algorithm, particularly in high-density device sce-
narios, where it often converges to suboptimal policies. While BDQ can handle
large action spaces, its inability to effectively manage partial observability leads
to the convergence to suboptimal policies as the number of users increases. In
contrast, NOMA-PPO successfully mitigates the issues of partial observability
thanks to the integration of the agent state. Regarding grant-free methods,
we observe distinct behaviors under different traffic patterns. For instance, the
iDRQN-NOMA algorithm, for instance, struggles to converge with over 30 de-
vices in deterministic periodic traffic but outperforms SA-NOMA-SIC for up to
18 users in probabilistic aperiodic traffic. After exceeding this user threshold, the
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Figure 4.5: Performance metrics in the 3GPP scenario.

performance deteriorates as coordinating a high number of users becomes chal-
lenging. This complexity leads to instabilities inherent to independent learning,
that suffers from non-stationarity arising from concurrent learning processes. In
comparison, NOMA-PPO offers a central control mechanism for transmissions,
which proves advantageous over distributed methods, especially as these tend
to result in increased collisions with a growing number of users. Additionally,
its capability to incorporate prior information about the wireless system enables
the discovery of more effective policies in scenarios with an increasing number of
users. This feature ensures not just efficient scheduling of devices with favorable
channel conditions but also prioritization of packets close to their deadlines.

Finally, it is important to note that the DRL baselines, despite their po-
tential, often get trapped in local optima, leading to suboptimal policies that
even underperform compared to a random scheduler when the number of users
increases.
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Figure 4.6: Evolution of the URLLC score during training under different channel
conditions.

4.5.6 Performance in Different Channel Conditions

In this subsection, we analyze the behavior of NOMA-PPO under diverse channel
conditions.

Figure 4.6 shows the evolution of the URLLC score during the training as a
function of the number of iterations in the probabilistic aperiodic traffic of the
3GPP scenario where parameters are listed in Table. 4.3, for 10 devices. Besides,
we test two different values for the deadline-coherence time ratio where packets
have a deadline of 10 ms, a coherence time of 1.4 ms (Figure 4.6a) and 0.34 ms
(Figure 4.6b).

We compare the NOMA-PPO agent with:

• NOMA-PPO (full CSI): the version of NOMA-PPO where the channel
information of all users is observable.

• NOMA-PPO (no CSI): the version of the algorithm where we remove
the channel information from the agent state.

First, we can see on all figures that the complete observability of the users’
channels enriches the agent state and results in superior performance compared
to the versions lacking this feature. Second, as depicted in Figure 4.6a, when the
coherence time is long enough, NOMA-PPO manages to accurately estimate the
true channel based on the agent state. This enables it to reach similar perfor-
mance to NOMA-PPO with full CSI. Third, we observe in Figure 4.6b, when the
coherence time is too short, that NOMA-PPO fails to reach the performance of



88 Chapter 4. NOMA-PPO: DRL Scheduler in NOMA-URLLC

NOMA-PPO with full observability but still outperforms the one with no CSI.
The reason is that the coherence time must be large enough compared to the
deadline so that the algorithm has time to both sense the channel and schedule
the packet when the channel conditions are favorable. Furthermore, we notice
that NOMA-PPO outperforms the EDF scheduler in Figure 4.6a. The reason for
this difference stems from the inherent design of EDF scheduler which focuses
on serving packets based purely on their deadlines, neglecting the variability in
channel conditions. Indeed, we observe that in Figure 4.6a, where the coherence
time is longer, the channel remains relatively stable over several frames, which
enables NOMA-PPO to exploit the channel conditions, thus demonstrating su-
perior performance over EDF. In contrast, when the coherence time is short, as
in Figure 4.6b, the rapidly fluctuating channel conditions render channel-based
decisions less predictable and less exploitable. In such scenarios, the straightfor-
ward deadline-driven approach of EDF showcases robust performance.

Finally, we noted through simulations not depicted here, that when the num-
ber of users is too small, NOMA-PPO (no CSI) attains equivalent performance
to both NOMA-PPO (full CSI) and NOMA-PPO. This can be explained by a
multi-user diversity gain that increases with the number of devices.

4.5.7 Complexity Analysis

Table 4.5: FLOPs for the Deep Neural Networks.

Algorithm FLOPs
NOMA-PPO 3, 072K + 263, 424

BDQ 4, 096K + 394, 496
iDRQN-NOMA (1 agent) 406, 528K

We evaluate the complexity of our Deep Learning architecture in terms of
Floating Point Operations (FLOP)s that occur during a single forward pass of the
neural network. Given that a connection between 2 neurons involves 2 operations
(a multiplication and an addition) the FLOPs of a linear layer operation is 2×
input size × output size. The GRU layer is made of four operations: the reset
gate, the update gate, the candidate hidden state and the new gate [Chung
et al., 2014], each being made of matrix multiplications, additions, and activation
functions. Let Hin the size of the input and H the size of the hidden layer. We
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can express the FLOPs of each unit:

• The reset and update gate have the same structure: 2 matrix multipli-
cations, 3 additions and 1 sigmoid activation. The resulting number of
FLOPs for both gates is thus: 4H(Hin +H) + 6H.

• The new gate contribution includes 2 matrix multiplications, a Hadamard
product, a tanh activation and the addition of the bias terms: 2H(Hin +

H) + 4H.

• Finally, the new hidden state involves two Hadamard products, and two
additions: 4H.

In addition, the complexity of the GRU depends on the size of the history.
In our problem, we set the history size to the number of users K. In total, the
number of FLOPs of a GRU layer is 6HK(Hin +H) + 10HK.

The number of FLOPs of the learning algorithms are given in Table 4.5 (using
the numerical values of Table 4.4). First, we can see that all algorithms have a
linear complexity in the number of users and differ by their slope. Second, the
BDQ algorithm has a complexity greater than NOMA-PPO due to the use of
an advantage and a value network during inference. Third, the complexity of
one iDRQN agent is larger than the complexity of the centralized approach we
propose due to the use of a GRU layer to process the action-observation history.

4.6 Conclusion

In this chapter, we propose a novel approach for satisfying URLLC requirements
and strict deadlines in IoT networks, employing NOMA for uplink communica-
tions.

Our proposed approach, NOMA-PPO, addresses the challenges posed by the
NOMA uplink URLLC scheduling problem, namely the combinatorial action
space and the partial observability. NOMA-PPO tackles these challenges by
bringing three technical contributions. First, it formulates the NOMA-URLLC
problem as a POMDP, and introduces the concept of agent state, as sufficient
statistic for the past actions and observations. This reformulation allows us to
extend the state-of-the-art PPO algorithm to handle a combinatorial action space
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thanks to a branching policy network. Finally, NOMA-PPO is able to incorpo-
rate prior knowledge over the system into the learning algorithm by employing a
Bayesian policy. We demonstrate that our approach outperforms traditional MA
and DRL benchmarks in 3GPP scenarios for different traffic models (probabilis-
tic aperiodic and deterministic periodic) in terms of URLLC score, fairness, and
convergence speed. Finally, we show that our algorithm is robust under diverse
channel configurations and is capable to leverage channel information.

In the next two chapters, we explore how the GF access framework and how
MARL can be applied to our URLLC problem.
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5.1 Introduction

In this chapter, we propose a fully decentralized approach to solving the uplink
MA problem with strict deadlines we have considered so far. We equip each
device with a deep MARL algorithm in order to learn a transmission protocol
by interacting with the other devices and the environment. First, we conduct a
thorough analysis of the performance of traditional MARL algorithms, such as
iDQN and QMIX, when applied to our specific problem. This analysis allows
us to evaluate the strengths and weaknesses of the most used algorithms in the
literature and use them as benchmarks on our problem. Second, we introduce
SeqDQN, a distributed MARL solution inspired by the two-timescale training
paradigm [Arslan and Yüksel, 2017] where agents do not update their Q-functions
concurrently. In SeqDQN, devices update their Q-function sequentially, starting
with the devices with the most stringent latency requirement. This training
strategy aims to mitigate the challenges posed by non-stationarity emerging from
IL when training decentralized agents.

Considering each user as a RL agent is the most natural approach to apply
RL to MA. Several studies have investigated this problem. We can classify
them in two categories: independent learning (IL) and centralized-training with
decentralized execution (CTDE).

5.1.1 Independent Learning

Because of its ability to train fully decentralized agents, IL is the most used
framework in MA. For instance, [Chang et al., 2018, Xu et al., 2020, Xu et al.,
2018] apply IL to Dynamic Spectrum Access (DSA), where secondary users use
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RL to learn a transmission protocol. Regarding coexistance with existing proto-
cols such as TDMA and ALOHA, the authors of [Yu et al., 2019] show that iDQN
can learn a throughput-optimal strategy while other nodes are traditional MA
protocols. However, none of these papers take into consideration the theoretical
shortcomings mentioned earlier. Furthermore, no previous work has applied IL
to a MA problem to tackle a URLLC problem on the uplink with deadlines.

5.1.2 Centralized-Training with Decentralized-Execution

The other major MARL framework is CTDE and it has also been applied to
MA. Tan et al. [Tan et al., 2021] justify the use of the CTDE architecture
and in particular the centralized training by leveraging mobile edge computing.
They apply the QMIX algorithm to tackle the DSA problem, modelling it as
a Dec-POMDP problem [Oliehoek, 2012]. Another application of CTDE is the
work of [Kassab et al., 2020] that applies the MADDPG algorithm [Lowe et al.,
2017] to a DSA problem for event monitoring by IoT devices. In spite of the
potential of CTDE for MA, it hasn’t been applied to a problem with a strict
latency constraint and the way to train a centralized critic remains an issue for
the IoT because of the communication overhead.

5.1.3 Contributions

In this chapter, we tackle the uplink MA problem in the context of URLLC with
a decentralized approach. We consider heterogeneous devices, modeled with a
DRL agent, that need to transmit short packets to a BS on the uplink given a
strict deadline. Our contributions are the following:

• We rigorously formulate the uplink URLLC multi-agent problem as a
Dec-POMDP, incorporating the characteristics and constraints of the
URLLC scenario.

• We implement and evaluate the most commonly used MARL algorithms
in the literature, namely iDQN and QMIX, in the context of our uplink
URLLC multi-agent problem.

• We introduce SeqDQN, a distributed MARL algorithm where agents do
not update their Q-functions simultaneously. Instead, they update their
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Q-function sequentially, starting with the devices with the most stringent
latency requirement. The advantages of this method are: 1) We reduce the
non-stationarity caused by multiple agents learning concurrently, which is
a major drawback of IL, 2) our proposed method is more scalable to a
large number of agents than CTDE and 3) training is much faster than the
existing MARL algorithms (iDQN and QMIX).

• We evaluate our solution against traditional MA baselines and MARL al-
gorithms across multiple scenarios within our system model, under a prob-
abilistic and deterministic periodic traffic. We show that not only does our
method outperform the MA baselines but it also reaches a URLLC perfor-
mance equal to or surpassing those of established MARL benchmarks.

5.2 Problem formulation

IoT devices

Base station (BS)

Feedback information

Uplink Communication

Figure 5.1: System Model With Heterogeneous Devices.
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5.2.1 System model

We consider a network of K devices communicating with a BS over a wireless
shared channel on the uplink (Figure 5.1). Time is slotted and at every slot,
devices can choose to transmit a packet or to remain idle. All packets are sup-
posed to require the same transmission time of one time slot and the propagation
delay is assumed to be negligible. We assume that all devices are synchronized,
i.e. aligned with a common slot start time. The BS provides downlink signals
to facilitate this synchronization. Moreover, each device has an individual air
interface latency constraint δk, such that a packet is dropped if it has not been
transmitted within δk slots after its arrival in the buffer. We assume slot syn-
chronization, i.e. all devices are aligned on a common start of each slot. Finally,
we consider a collision channel model: if a collision occurs, the packets are not
delivered to the BS but can be re-transmitted until their deadline is reached.
After each slot, the users have access to what happened in the slot, i.e., whether
a transmission was successful, the channel was idle or a collision occurred. This
information is obtained by a feedback signal (ACK/NACK) broadcast from the
BS to all the devices. In order to evaluate the different MARL algorithms, we
define a URLLC score as the number of packets delivered before expiry divided
by the number of generated packets.

5.2.2 Traffic model

We study the performance of MARL using two traffic models based on the frame-
work of [Hou and Kumar, 2013] and the 3GPP [3GPP, 2018b].

Probabilistic Periodic Traffic

Inspired by [Hou and Kumar, 2013], we first consider a framework where the
traffic pattern of every device is periodic, i.e., every period of Nk

p time slots,
device k receives a packet with probability ξk. We allow the devices to be het-
erogeneous in the sense that they can have different packet arrival probabilities
ξk, different periods Nk

p and they are not synchronous: Each device is assigned
an offset parameter f̄k ∈ [0, Nk

p ], so that packet arrivals can occur only at time
instants f̄k +mNk

p , where m is an integer. At every slot t ≥ 0, the probability
for a device k ∈ [1, K] of having a new packet is ξ̄k(t|f̄k, ξk, Nk

p ) = 1{t[Nk
p ]=f̄k}ξk.



96 Chapter 5. SeqDQN: MARL for uplink URLLC

This traffic model is the same as the one in Chapter 3 with the difference
that we now consider individual packet generation periods.

Deterministic periodic traffic

Defined in [3GPP, 2018b, Annex A], the deterministic periodic traffic is a special
case of the previous framework with all arrival probabilities equal to 1. The main
challenge of this framework is for the devices to learn the optimal schedule. This
optimal schedule can be used subsequently by a contention-free grant-free access
algorithm as standardized in 3GPP Release R15 for URLLC [3GPP, 2018b].
In the probabilistic and deterministic periodic traffic models, we assume that
δk ≤ Nk

p for all k and thus all devices have a one-packet buffer.

5.2.3 Decentralized Partially Observable Markov Decision

Process

We formulate our URLLC problem as a Dec-POMDP [Oliehoek, 2012] where
agents cannot see the full state and take actions based on their own observations.

In our case, let S = S1 × S2 × · · · × SK be the set of environmental states
where st = (s1t , s

2
t , . . . s

K
t ) ∈ S is the concatenation of all individual observations.

The devices have a buffer of size 1 and the local state of a device k at slot t

is skt = (dkt , ct−1), where dkt ∈ N is the time in number of slots that the packet
has already spent in the buffer and ct−1 is the last feedback from the BS. We
set ct−1 = 1 if at t − 1 a packet was successfully transmitted, −1 if a collision
occurred and 0 if the channel was idle.

A local action of a device k is akt ∈ Ak = {0, 1}, where akt = 1 if the device
transmits and 0 otherwise. A device k makes an action according to a policy
function πk : Sk → ∆(Ak). This function can be probabilistic or deterministic.

We now specify the reward functionR : S×A→ R. In a Dec-POMDP, agents
have identical interests, which means that they have the same reward function.
Users collectively want to maximize the URLLC score by maximizing the number
of successful transmissions. At each slot t, agents get as reward rt = R(st,at) the
ACK/NACK feedback from the BS (+1 if a packet is successfully transmitted,
−1 if a collision occurred, 0 if the channel was idle). In other words, rt = ct.
The objective for each agent k is to find a policy πk that maximizes the expected
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cumulative discounted reward over a finite horizon T :

Est+1∼T ,a−k∼π−k

[
T∑
t=0

γtR(st, (akt , a−k
t )|akt ∼ πk(·|skt ), s0

]
(5.1)

with γ ∈ (0, 1] the discount factor, and T : S × A 7→ S the transition function.
In our problem, we consider a finite horizon Dec-POMDP where an episode is of
length T slots.

Note that it is also possible to model this system with a more general frame-
work where agents have individual interests. However, we have chosen the
Dec-POMDP framework as: 1) The main CTDE algorithms have been designed
for Dec-POMDP only [Lowe et al., 2017, Sunehag et al., 2018, Rashid et al.,
2018]; 2) We experimentally have observed that the performance of IL algo-
rithms with our system model is very similar whether we use an individual or a
collective reward.

5.3 Sequential DQN (SeqDQN)

Our proposed algorithm, called SeqDQN, is inspired by the idea of two-timescale
training [Arslan and Yüksel, 2017] which tries to take advantage of iDQN without
the non-stationarity issue. In SeqDQN, n DQN agents update their Q-function
sequentially on different Exploration Phase (EP). During one EP, only one agent
updates its policy while the others take actions according to their last learnt pol-
icy. Thus, we remove the non-stationarity caused by the other learning decision
makers and each agent solves a POMDP problem during each EP in order to learn
a best response to the others. The authors of [Arslan and Yüksel, 2017] show
that this methodology provides a decentralized Q-learning framework where al-
gorithms converge to equilibrium policies almost surely in fully observable weakly
acyclic games.

To tackle our MA problem, we combine the two-timescale training with three
elements. First, we use a GRU [Cho et al., 2014] to address partial observability
in POMDP [Hausknecht and Stone, 2015]. Second, we create clusters of devices
with the same deadline. Clusters are then trained sequentially from the smallest
deadline to the largest one. When a cluster is trained, the users it includes
update their policy one after the other until convergence. Third, devices that
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have not been trained so far do not transmit to remove stochasticity during the
EP and speed up the learning.

The pseudo-code of SeqDQN is shown in Algorithm 6. Inside a cluster, agents
are trained sequentially G cycles. In an EP, when the policy of the learning agent
has not improved in L episodes, we consider that the agent has converged and
end the EP. We set the Q-function of the agent to the best one learnt during
this EP in terms of total reward. We train the clusters J rounds so that the first
trained clusters can adjust their policies to the ones with a larger deadline. At
each round, the learning rate is decreased by a factor α. In practice, we set up the
training sequence and clusters of users once at the beginning of the experiment.
The BS groups the users by deadline and assigns them an ID corresponding to an
EP where a device is allowed to update its Q-network. When an EP is finished,
the BS communicates what device starts its EP via the feedback signal. There is
no additional information exchange during an episode. The sequential training is
a pre-processing set up that does not need to be repeated once the network is in
operation. During the network operation, the decisions are fully decentralized.

Algorithm 6: SeqDQN for distributed multiple access
1 Initialize the Q-networks Q1, Q2, . . . , QN ;
2 Cluster the users in subsets C1, C2, . . . Cd with users in Ci having a

deadline δi such that δi < δi+1∀i.
3 for j = 1, 2, . . . , J do
4 η ← η × α
5 for i = 1, 2 . . . , d do
6 if i = 1 then
7 Set the policies of clusters c > i to not transmit.
8 Fix the policies of clusters c < i to their current policy.
9 for cycle = 1, 2, . . . , G do

/* Sequentially train the users of Ci G times */
10 for m ∈ Ci do

/* EP of agent m */
11 Run DQN for agent m and fix π−m.
12 Update Qm with (2.10) and learning rate η.
13 if πm has not improved in L episodes then
14 End EP
15 Set the policy of πm to the best one.
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5.4 Experiments

5.4.1 Baselines

We compare the above algorithms to two baselines:

• Contention-based grant-free access (GF) [Mahmood et al., 2019a]:
All devices with a packet to transmit access the channel with the same
probability p. We optimize the transmission probability p experimentally
for every number of agents such that the URLLC score is maximised. We
consider the reactive scheme so that when a device receives a NACK feed-
back from the BS after transmitting, it will re-transmit the same packet
with probability p until the reception of an ACK feedback or the expiry of
the packet.

• Round Robin (RR) scheduler: This algorithm schedules devices in a
cycle, so that the time resource is fairly shared between them. Devices are
ranked in ascending order with deadlines plus offsets.

5.4.2 Simulation settings

We consider the three different settings for our experiments: a dense probabilistic
periodic traffic, a sparse probabilistic periodic traffic and a deterministic periodic
traffic from 4 to 28 users depending on the scenario. The parameters of these
traffic models are given in Table 5.1 and the parameters of the MARL algorithms
are given in Table 5.2. These numbers of devices are in line with the 3GPP
recommendations for URLLC [3GPP, 2018b], where the use cases consider up to
10 users per cell. For every traffic model, periods Nk

p are chosen uniformly under
the condition δk < Nk

p . In Table 5.1, U designates the uniform distribution over
a finite set or an interval. The hyper parameters have been optimized with grid
search.

5.4.3 Convergence speed of MARL algorithms

We analyze in Figure 5.2 the evolution of the performance of the three MARL
algorithms during the training phase for the dense probabilistic periodic traffic
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Table 5.1: Parameters of the traffic models

Parameters Probabilistic Probabilistic
Deterministic

Dense Sparse
Arrival U{0.2, 0.4, 0.6, 0.8} U{0.05, 0.1} 1

Probabilities
Deadlines U{5, 10, 15, 20} U{2, 4} U{4, 6, 8, 10}

Periods (Nk
p ) U{10, 20} U{5, 10} U{8, 10}

Offsets U [0, 4] U [0, 4] U [0, 4]

with 12 devices. The conclusions are similar for other traffic models and numbers
of devices. Instead of comparing the algorithms as a function of the number of
episodes, we present results as a function of the number of gradient updates in
the x-axis. The reason is that iDQN and QMIX perform as many updates as
the number of devices in every episode, whereas SeqDQN trains a single device.
The number of gradient updates is thus more representative of the convergence
speed.

First, we can see that SeqDQN manages to reach a better optimum at the
end of the training. Second, we can see that it is the fastest algorithm to con-
verge. This can be explained by two arguments. When a cluster of devices is
being trained, the devices with a higher deadline are inactive. Therefore, the
stochasticity of the environment is removed so it is easier for the learning devices
to converge. Moreover, as only one agent explores at the same time, exploration
is not affected by the noise caused by the concurrent learning of other agents
as it is the case for iDQN and QMIX. Third, we observe that the training of
SeqDQN has more variance than QMIX’s. This can be explained by the fact
that training is not centralized and devices are not trained simultaneously. Ad-
ditionally, when a new agent starts its EP, it needs to adapt to the new policies
of the other devices which creates variance. Reducing the learning rate at every
round helps mitigating this effect. Finally, we notice that QMIX outperforms
iDQN in terms of convergence speed and optimum attained, which is expected
as centralized training is supposed to encourage cooperation.
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Table 5.2: Parameters of the Q-learning algorithms

Parameter Value
Discount factor (γ) 0.9

Initial learning rate (η) 10−3

Learning rate decrease factor (α) 0.2

Batch size 128
History length 20

Episode length (T ) 200 slots
Training length 50k episodes

Final exploration rate (ε) 0.1
Number of cycles (G) 5

Convergence criterion (L) 300
Training rounds for clusters (J) 3

Q-network architecture 1 GRU layer + 3 Linear layers
Activation functions ReLU

Linear layer 100 neurons
GRU layer 100 neurons

Number of seeds 5

5.4.4 URLLC score

We run simulations with a dense probabilistic periodic traffic (Figure 5.3a), a
sparse probabilistic periodic traffic (Figure 5.3b) and a periodic deterministic
traffic (Figure 5.3c). We show the evolution of the URLLC score as a function of
the number of devices. First, it is clear that the MARL algorithms outperform
the MA baselines (GF and RR) in every scenario. We observe that the GF
protocol performs very poorly in dense settings when the load is high (Figure 5.3a
and Figure 5.3c) while it performs very well in a sporadic traffic when the load
is lower (Figure 5.3b). Indeed, the larger the number of packets to transmit,
the larger the number of collisions, thus the lower the performance of the GF
protocol. On the contrary, we can see in Figure 5.3a and Figure 5.3c that the
RR scheduler performs better when the load is high as 1) it schedules one packet
at a time and thus avoids collisions; 2) the probability of scheduling a user
with a packet is higher. Nevertheless, it performs very poorly in the sparse
periodic traffic (Figure 5.3b) as it is not aware when a device has a packet to
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Figure 5.2: Evolution of the URLLC score during the training for the dense
probabilistic periodic traffic with 12 devices.

transmit. Furthermore, we can notice that in all three scenarios, SeqDQN not
only outperforms iDQN and QMIX, but it also has less variance when we change
the initialization of the neural networks. This can be explained by the fact that
in SeqDQN, only one agent explores at a time whereas in iDQN and QMIX, all
agents explore concurrently which makes an equilibrium harder to reach. We
also observe that the variance of iDQN increases with the number of devices.
Indeed, positive rewards become quite sparse as they are obtained when one
device is active while all other ones remain idle. This problem is known in the
literature on MARL, see e.g. [Lowe et al., 2017]. Finally, we note that in some
cases, QMIX’s performance is similar to SeqDQN’s. The centralized training
that encourages agent coordination can explain this. However, it necessitates
a lot of communication during training, whereas SeqDQN avoids this problem
because training is decentralized.
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(a) Dense periodic probabilistic traffic.
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(b) Sparse periodic probabilistic traffic
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(c) Periodic deterministic traffic.

Figure 5.3: Evolution of the URLLC score with respect to the number of devices
for various traffic models.
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5.5 Conclusion

In this chapter, we model the uplink MA problem in the context of URLLC,
characterized by strict deadlines as a Dec-POMDP. We investigate distributed
solutions around the application of MARL to learn efficient transmission proto-
cols tailored to this URLLC context. We assess the performance of two promi-
nent MARL algorithms, iDQN and QMIX, and in response to the challenges
posed by scalability and non-stationarity inherent to multi-agent environments,
we introduce our novel distributed algorithm SeqDQN.

SeqDQN offers three advantages over existing MARL frameworks. First, by
prioritizing devices with the most time-critical information to learn their trans-
mission protocols first, SeqDQN attains a superior operating point. Second, the
introduction of sequential agent training accelerates the overall training process.
Third, the progressive training of agents and policy fixing for the already trained
agents allow us to handle a larger number of devices.

However, even if the MARL approaches exhibit promising results for uplink
URLLC, they suffer from substantial limitations. First, all three MARL algo-
rithms suffer from the absence of theoretical guarantees which raises concerns
regarding their real-world deployment, as algorithms may exhibit divergence as
we increase training steps or the number of devices. Second, as mentioned in
Chapter 3, the learning algorithms are not adapted when the traffic patterns
become less predictable, with Poisson arrivals for instance. Indeed, coordinating
with other devices becomes more complex, as individual devices lack knowledge
about the other’s state.

We try to address these challenges in Chapter 6 by extending our uplink
URLLC framework to Dynamic Multi-Channel Access.
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6.1 Introduction

In this chapter, we build upon the uplink URLLC framework introduced in Chap-
ter 5, extending its application to Dynamic Multi-Channel Access (DMCA).
Recognizing the challenges posed by aperiodic traffic patterns to MARL algo-
rithms, we exploit the expansive 40 MHz bandwidth available in industrial IoT
scenarios [3GPP, 2017g]. By dividing this bandwidth into multiple orthogonal
frequency subchannels, we enrich the system model, providing a more complex
and diverse environment for MARL algorithms to express their potential. After
reviewing the literature about DMCA, we found that existing research has yet
to fully resolve the complexities of DMCA in URLLC networks, especially under
conditions of time-varying heterogeneous channels and diverse traffic profiles. To
address this gap, we introduce an innovative approach based on Deep MARL.
Our methodology leverages the theoretical framework of TRPO in a multi-agent
setting to meet the specific challenges and requirements of the URLLC-DMCA
problem.

6.1.1 Related Work

Traditional random access protocols have been extended to the DMCA problem
in order to meet the URLLC requirements. For example, the work of [Qi et al.,
2020] proposes a multi-channel ALOHA-type GF algorithm. However, the au-
thors assume that the users are aware of all the channel states and thus only
good channels are selected. Furthermore, this approach does not adapt to the
dynamics of the environment and is therefore sub-optimal.

DRL approaches have also been considered to tackle the DMCA problem. The
most natural way to extend single-agent DRL to multi-agent DRL is IL [Tan,
1993] as mentioned in the previous chapters. The most notable examples of IL
applied to the DMCA problem are the work of [Zhong et al., 2019] that introduces
an actor critic algorithm for DMCA, the P-DDPG algorithm [Wang et al., 2020],
where the authors predict the channel state with a Channel Prediction Module
and use this predicted value as prior information for the DRL agent. Some other
works tackle the Multi-Channel Access (MCA) aspect without the time-varying
aspect of the channels. For example, the work of [Sohaib et al., 2021] allows users
to access multiple channels in one frame thanks to a branching architecture and
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the authors of [Ye et al., 2021] combine Q-learning with a RNN in order to tackle
the MCA problem for heterogeneous networks. However, these studies assume a
single multiple-frequency channel, i.e. all users observe the same channel state
which is not realistic in a wireless context. Moreover, they do not address the
theoretical limitations of IL such as the non-stationarity caused by the concurrent
learning of all agents and do not provide any convergence guarantees to their
approaches.

Futhermore, IL has been applied to DSA where the channel state is good
when it is not used by a primary user and bad otherwise. For instance, the work
of [Naparstek and Cohen, 2019] proposes Q-learning based agents equipped with
a RNN similarly to [Ye et al., 2021] to maximize the network utility in DSA. One
alternative to address the limitations of IL is CTDE where agents are allowed
to exchange information during training in order to reduce the issues of non-
stationarity. The authors of [Tan et al., 2022] apply CTDE to the DSA problem.
However, the users adopt the listen-before-talk mechanism to access the spectrum
which is not suitable to URLLC networks due to the strigent latency requirements
and the small packet size. Besides, even if CTDE approaches can help agents
learn more effectively by leveraging global information, convergence guarantees
are still an active area of research and agents do not necessarily converge to an
optimal or even stable policies.

To summarize, prior research has not tackled the DMCA problem in URLLC
networks under time-varying heterogeneous channels and traffic profiles. In addi-
tion, existing studies have predominantly explored off-policy algorithms (such as
Q-learning or actor-critic approaches) for the DMCA problem and these methods
suffer from theoretical guarantees in the multi-agent context. In contrast, TRPO
techniques have showcased superior performance across a variety of tasks in both
single-agent [Duan et al., 2016] and multi-agent DRL, be it in a IL paradigm with
iPPO [de Witt et al., 2020] or a CTDE framework with Multi-Agent Proximal
Policy Optimization (MAPPO) [Yu et al., 2022]. Yet, those approaches still lack
the monotonic improvement guarantees, characterizing the TRPO methods. One
reason for their good empirical success may be the parameter sharing and homo-
geneous agents. Recent work of [Kuba et al., 2021], provides a TRPO algorithm
with monotonic improvement guarantees within the multi-agent framework. In
this chapter, we adapt their theoretical model to address the URLLC-DMCA
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problem, tailoring the approach to meet its specific challenges and requirements.

6.1.2 Contribution and Outline

In this chapter, our contributions can be summarized as follows:

• We formulate a DMCA problem in a URLLC network with heterogeneous
users that need to deliver a short packet within a strict deadline on the
uplink as a Dec-POMDP.

• We consider a general framework where packets are generated according
to either a probabilistic aperiodic or a probabilstic periodic traffic. Within
this context, users observe multiple time-varying orthogonal sub-channels.

• We introduce two PPO solutions to solve the Dec-POMDP. The first one,
MCA-PPO, is theoretically-justified and enjoys the monotonic improve-
ment guarantee. The second one, MCA-iPPO is a fully decentralized ap-
proach, which, while lacking rigorous theoretical assurances, exhibits good
empirical results and offers a simplified training procedure.

• Finally, we validate the superiority of our proposed methods on different
scenarios. Our results consistently surpass traditional MA benchmarks and
established off-policy DRL algorithms.

6.2 System Model

6.2.1 Network Model

We consider a network with K users communicating with a BS over N time-
varying orthogonal wireless channels on the uplink. We assume that time is
slotted, and that a single packet can be transmitted within the duration of one
time slot. Moreover, all devices maintain slot synchronization, aligning them on
a consistent start for every slot. At every slot, a user can select one or several
channels to send one or several replicas of its packet along with a pilot to facilitate
the decoding process.

Finally, at the end of every frame, the BS broadcasts a feedback message
α ∈ {−1, 0, 1}N to the users detailing the outcomes of the transmissions on



6.2. System Model 109

U G D G

U G D G

U G D G

1 frame

Good channel

Bad channel

U: Uplink transmission
G: Guard symbol
D: Downlink feedback

Channel 1

Channel 2

Channel 3

User 1

User 2

Figure 6.1: System model and slot structure

every channel. In particular, they receive an ACK (αn = 1) if a packet has
been successfully transmitted with channel n, a NACK message (αn = −1) if
the BS did not manage to decode the packet, and an IDLE message (αn = 0) to
indicate that the channel was idle. Operating within a Time Division Duplexing
(TDD) framework, our system is able to utilize channel reciprocity, a principle
asserting that the wireless channel characteristics are symmetric, meaning that
they provide identical responses in both forward and reverse communication
directions [Tang et al., 2021]. By leveraging this principle, the feedback message
from the BS conveys necessary information, enabling users to ascertain the state
of their respective communication channels during a given frame.

6.2.2 Traffic Model

Devices initiate packet generation following either a deterministic or probabilistic
traffic.
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Periodic Traffic

In this model inspired by [Hou and Kumar, 2013], each device k generates pack-
ets periodically every Np radio frames with probability ξk. Devices are not syn-
chronous, and are assigned an offset parameter f̄k ∈ [0, Np] such that, at every
radio frame t ≥ 0, the probability for a device k of generating a new packet is:
ξ̄k(t|f̄k, ξk, Np) = 1{t[Np]=f̄k}ξk.

Aperiodic Traffic

This model comes from 3GPP specifications [3GPP, 2018b] and is based on the
File Transfer Protocol (FTP) model 3 defined in [3GPP, 2015], but with a fixed
size for each packet. At every device k, packets are generated according to a
Poisson process of rate λk.

In order to model the strict latency constraint of URLLC networks, each user
k needs to deliver its packet within an individual air interface latency constraint,
δk; if a packet has not been transmitted before δk slots after its arrival in the
buffer, it is discarded. If a transmission fails (due to a collision or a decoding
error), the packet can be retransmitted up until its deadline is met.

We assume that the devices have unlimited buffer capacity and that the
packet queue operates on a “first come, first served" principle. For any device
k, we define the buffer status at a time t by the vector bkt ∈ Nδk , where bk,dt = i

indicates that device k has i packets with a deadline duration of d at time t. The
matrix of the buffers of all devices at time t is represented by Bt. The buffer
status of a device k transits as follows: (a) Successfully decoded packets are
removed from the buffer (b) Other packets see their time-to-deadline decreased
by one. Expired packets are removed from the buffers; (c) New generated packets
enter the buffer with a deadline δk.

6.2.3 Channel Model

Every channel between a user and the BS follows the Gilbert-Elliot channel model
[Gilbert, 1960]: at any given slot each channel can be in one of two states: a good
channel state, ensuring successful transmission, or a bad channel state, leading
to a transmission failure.

The state switching pattern is represented by a Markov chain. For each slot
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t, the channel state is represented by ηt ∈ {0, 1}K×N where ηk,nt represents the
state of the n-th channel of user k in slot t. We assume that each channel state
can only change at the beginning of each frame and remains constant during the
frame. The channel n of a user k evolves according to the transition matrix:(

1−pk,n pk,n
p̃k,n 1−p̃k,n

)
where pk,n is the probability that the state of the n-th channel of

k changes from bad to good and p̃k,n the probability that it switches from good
to bad.

We adopt a collision channel model: when the BS receives a single packet via
the good channel resource n, it can successfully decode it. When several users
transmit on the same channel during the same frame, a collision occurs and no
packet is delivered to the BS whatever their respective channel state.

6.3 Problem Formulation

This problem can be formulated by a Dec-POMDP [Oliehoek, 2012].
A Dec-POMDP is a cooperative MG where agents take decisions based on in-

dividual observations about the environment. In our problem, the Dec-POMDP
elements are defined as follows:

• The state st ∈ S is the concatenation of the current buffer status and the
current channel state i.e. st = (Bt,ηt).

• Each user k observes ok
t , which is made of its own buffer bkt , the last

channel observation ηk
t−1 and the last ACK/NACK from the BS αt−1: ok

t =

(bkt ,η
k
t−1,αt−1).

• At every slot t, each agent k selects an action ak
t ∈ {0, 1}N based on its

observation ok
t and policy πk(·|ok

t ) where akn,t = 1 if agent k transmits a
packet using the channel n. We denote the global action At ∈ {0, 1}K×N ,
this is the concatenation of all individual actions.

• The next state of the system is drawn with the transition function T : S ×
A 7→ ∆(S). This function follows the buffer and channel state’s dynamics
defined in Sections 6.2.2 and 6.2.3.

• Finally, we define the reward rt at frame t as the total number of successful
transmissions across all channels.
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rt =
N∑

n=1

1(αn
t =1) (6.1)

Each user k aims to optimize the following objective:

Est+1∼T ,a−k∼π−k

[
T∑
t=0

γtrt|akt ∼ πk(·|ok
t ), s0

]
(6.2)

where γ ∈ (0, 1] is the discount factor that allows the agents to balance immediate
rewards with future ones.

In order to compare the performance of the MA protocols for the URLLC
problem, we define a URLLC score as the ratio between the number of packets
delivered before expiration and the number of generated packets.

6.4 Multi-Agent Deep Reinforcement Learning

6.4.1 Policy Gradient for Multi-Agent Systems

TRPO algorithms [Schulman et al., 2015a], have been introduced in SARL in
order to ensure the monotonic improvement property, which guarantees a non-
decreasing performance of the policy at every iteration.

This property has been extended to MARL in [Kuba et al., 2021] thanks to
the Multi-Agent Advantage Decomposition lemma:

Lemma 6.1 (Multi-Agent Advantage Decomposition [Kuba et al., 2021]). In
any cooperative Markov game, given a joint policy π, for any state s, and any
agent subset k1:m, the global advantage Ak1:m

π (s,ak1:m) can be decomposed into a
summation of each agent’s local advantages A

kj
π :

Ak1:m
π (s,ak1:m) =

m∑
j=1

Akj
π (s,ak1:j−1 , akj) (6.3)

Lemma 6.1 gives us a methodology for the agents to update their local poli-
cies while guaranteeing monotonic improvement. Indeed, let agents take actions
sequentially by following an arbitrary order k1:K . Agent k1 takes action āk1 such
that Ak1

π (s, āk1) > 0. Agent k2 selects action āk2 such that Ak2
π (s, āk1 , āk2) > 0.
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For the remaining m = 3, . . . , K, each agent km selects an action ākm such that
Akm

π (s, āk1:m−1 , ākm) > 0. Thus, Lemma 6.1 guarantees that the global advantage
Aπ(s,A) is positive and therefore the performance is guaranteed to improve.

To summarize, the work of [Kuba et al., 2021] demonstrates that the mono-
tonic improvement property holds in Multi-Agent TRPO when each agent up-
dates its local policy sequentially and taking into account all previous agents’
updates.

6.4.2 Multi-Channel Access Proximal Policy Optimization

The PPO algorithm [Schulman et al., 2017] is a TRPO algorithm that lever-
ages the principle of limiting the magnitude of policy updates, using first-order
optimization techniques only. In a multi-agent setting where the monotonic im-
provement property holds, each agent km is equipped with a PPO algorithm and
aims to maximize the following objective with respect to parameters θkm and
ϕkm :

Es,a∼(πθold ,T )

[
min

(
πkm
θkm

(akm|okm)

πkm
old(a

km |okm)
Âϕkm , g(ν)Âϕkm

)]
(6.4)

with g(ν) = clip
(

π
θkm

(akm |okm )

πold(akm |okm )
, 1− ν, 1 + ν

)
and ν ∈ [0, 1) a hyperparameter

that indicates how far away the new policy can deviate from the old one and
where Âϕkm is a global advantage estimator with parameters ϕkm .

We propose two different methods to estimate the global advantage.

• MCA-PPO, a multi-agent PPO version where the monotonic improve-
ment property holds. We have:

Âϕkm = Mk1:m (6.5)

where Mk1:m is the compound policy ratio introduced by [Kuba et al., 2021].
It is a joint advantage estimator that takes into account the previous policy
updates and allow us to apply Lemma 6.1.

It is defined as follows:

Mk1:m =
πk1:m−1(ak1:m−1|ok1:m−1)

π
k1:m−1

old (ak1:m−1|ok1:m−1)
AGAE

ϕ (s,A) (6.6)
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with AGAE
ϕ (s,A) the global advantage estimate, parameterized by ϕ and

computed at the BS with GAE [Schulman et al., 2015b]. Details of the
algorithm are provided in Algorithm 7. Note that contrary to IL and CTDE
versions, only one global advantage estimate is required for all agents.

In order to train MCA-PPO, we use the on-policy property of policy gra-
dient algorithms. This property divides the algorithm’s operation into 2
phases: an execution phase and a training phase. During the execution
phase, MCA-PPO runs the current joint policy and stores trajectories while
using the communication resources for data transmission to the BS. During
the training phase, data transmission is stopped and the communication
resources are used to share the compounded policy ratios between devices
in order to update the policy. The training phase is described in Figure 6.2.

• MCA-iPPO. As training the DRL agents offline may be inconvenient in
some cases, we propose an IL alternative, MCA-iPPO, where

Âϕkm = AGAE
ϕkm (okm ,akm) (6.7)

where AGAE
ϕkm (okm ,akm) is the global advantage estimate of agent km. Train-

ing this method follows the single-agent PPO algorithm [Schulman et al.,
2017] and considers the other agents as part of the environment.

Finally, in order to tackle the partially observable aspect of our problem,
we use a RNN [Hausknecht and Stone, 2015] to enable agents to take actions
based on their previous actions and observations as we have done in the previous
chapters as well. The intuition is that the RNN’s hidden states estimate a belief
state over the underlying system state. We use the GRU architecture [Cho et al.,
2014] for both of our MCA-PPO variants.

6.5 Simulation Results

6.5.1 Simulation Settings

The parameters of our traffic model are adopted from the factory automation
use case of the 3GPP 5G NR specifications on URLLC [3GPP, 2018b] where we
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Downlink Communication

Uplink Communication

Figure 6.2: Training phase of MCA-PPO. Communication resources are used to
train the agents. 1) The BS draws a permutation of the agents k1:3, computes
the global advantage function, and sends it to user k1; 2) User k1 updates its
policy, computes Mk1:2 and sends it to the BS; 3) The BS sends Mk1:2 to user k2
which updates its policy, computes Mk1:3 , and transmits it to the BS; 4) The BS
sends Mk1:3 to user k3 that updates its policy, knowing all previous updates.
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Algorithm 7: MCA-PPO
1 Initialize policy parameters θ10, . . . , θ

K
0 for each agent and the global

value function parameters ϕ
2 for iteration i = 1, . . . , I do
3 Switch the devices to execution mode and execute the joint policy

πθi(π
1
θi
, . . . , πK

θi
).

4 Save trajectories {(ok
b,t,a

k
b,t,o

k
b,t+1, rb,t)}b=1,...,β∀k ∈ J1, KK,∀t ∈ J1, T K

in the buffer.
5 Compute the rewards-to-go R̂b,t for each trajectory:

R̂b,t =
∑T

t′=t γ
t′rb,t′

6 Switch the devices to training mode.
7 for epoch e = 1, . . . , E do
8 Compute the global advantage function AGAE(s,A) with Vϕ and

GAE.
9 Draw a random permutation of the agents k1:K

10 Set Mk1 = AGAE(s,A).
11 for agent km = k1, . . . , kK do
12 Update actor km and derive θkmi+1 by maximizing the following

objective with the Adam algorithm [Kingma and Ba, 2014]

max
θ

1

βT

[
β∑

b=1

T∑
t=1

min

(
πkm
θ (akm

b,t |o
km
b,t )

πkm
θkmi

(akm
b,t |o

km
b,t )

Mk1:m
b,t , g(ν)Mk1:m

b,t

)]

13 Compute (unless m = K):

Mk1:m+1 =
πkm
θkmi+1

(akm
b,t |o

km
b,t )

πkm
θkmi

(akm
b,t |o

km
b,t )

Mk1:m

14 Update the global value network by minimizing the mean-squared
error with the Adam algorithm:

ϕi+1=argmin
φ

1

βT

β∑
b=1

T∑
t=1

(
Vϕ(sb,t)−R̂b(t)

)2
(6.8)
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consider deadlines of 1ms and an inter-arrival time of 2ms. Every slot is made
of 1 OFDM symbol for a subcarrier spacing of 30kHz so that its time duration
is equal to Ts = 35.67µs [3GPP, 2017e]. We consider the two following settings
for our experiments:

• An homogeneous setting where all users’ traffic is aperiodic with the same
rate λ and the same deadlines δ. Given that our radio frame is made of four
time-slots, we can express realistic values of λ and δ in terms of number
of frames i.e. λ = 1/14 = 0.07 packet per user and per frame and δ = 7

frames. The channel switch probabilities pk,n and p̃k,n are equal to 0.8.

• An heterogeneous setting with 6 users and 16 channels. Devices have a
deadline chosen uniformly in the subset {1ms, 2ms}. Half of them have a
periodic traffic with arrival probabilities chosen uniformly in {0.2, 0.4, 0.6, 0.8}
and no offset. The other half an aperiodic one. The channel switch prob-
abilities pk,n and p̃k,n are equal and chosen uniformly in {0.2, 0.4, 0.6, 0.8}.
The parameters of the learning algorithms are given in Table 6.1.

Table 6.1: Parameters of the learning algorithms

Parameter Value Algorithm
Discount factor (γ) 0.4 All

E 5 MCA-PPO, MCA-iPPO
I 2000 MCA-PPO, MCA-iPPO

Learning rate policy 3 · 10−4 MCA-PPO, MCA-iPPO
Learning rate critic 10−3 MCA-PPO, MCA-iPPO

Batch size 64 All
History length K All

Update target frequency 100 iDRQN
Episode length (T ) 200 slots All

Final exploration rate 0.1 iDRQN

6.5.2 Baselines

In order to assess the performance of our algorithms, we introduce the two tra-
ditional baselines:



118 Chapter 6. Multi-Agent PPO for URLLC Dynamic MCA

• Contention-based grant-free access (GF access): All devices with
a packet to transmit can simultaneously access multiple channels. Each
channel is accessed with the same probability p. This access probability
is empirically optimized for every user at every experiment in order to
maximize the URLLC score. We employ a reactive scheme: when a device
receives a NACK feedback from the BS, it will re-transmit the same packet
with probability p until an ACK feedback is received or the time to deadline
of the packet expires.

• Independent Deep Recurrent Q-Networks (iDRQN): This baseline
represents a widely-adopted DRL algorithm where each agent is modeled
by a Deep Q-network and selects what channel to access through to a RNN
specifically composed of a GRU layer. This standard approach has been
previously employed in [Ye et al., 2021] for example.

6.5.3 Study of the Subchannel Assumption
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Figure 6.3: Packet Error Probability as a Function of the Distance to the BS.

First of all, we test the assumption regarding the division of the bandwidth
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in several orthogonal subchannels for URLLC scenarios to confirm its feasibility
and realism. This study is depicted in Figure 6.3 where we analyze the evolution
of the packet error probability as a function to the distance to the BS under
the 3GPP scenario defined in Chapter 4. The specific parameters employed
for this figure can be found in Table. 4.3. We compute the error probability
for 1, 8, 16 and 32 subchannels. We observe that for the factory automation
scenarios [3GPP, 2018b] where devices are located within 200m of the BS, the
error probability remains below 10−5 for 32 orthogonal subchannels aligning to
the URLLC requirements. This confirms our hypothesis and our choice to split
the bandwidth for URLLC applications.

6.5.4 Convergence Speed of the Algorithms

We show in Figure 6.4a the evolution of the URLLC score during the training
of 16 DRL agents under the homogeneous setting. First, we can see that both
PPO approaches have similar training behavior and reach the same optimum.
They both outperform the Q-learning approach in terms of convergence speed
and asymptotic URLLC score.

6.5.5 URLLC Score

On the one hand, in Figure 6.4b, we investigate the performance of our proposed
methods within a homogeneous environment, varying the number of users from
4 to 16. On the other hand, Figure 6.4c examines the influence of the load per
frame on the URLLC score.

First, we can see in both scenarios that MCA-iPPO reaches the same per-
formance as MCA-PPO in spite of its theoretical shortcomings. The surprising
performance of iPPO has been highlighted in the MARL literature [de Witt et al.,
2020]. Second, we can see that while iDRQN outperforms the GF access algo-
rithm, it remains inferior to the methodologies proposed in this work. Finally,
we observe in the heterogenous setting, that the gap between our methods and
the GF access baseline increases as we increase the load. Indeed, while the GF
access algorithm treats all agents homogeneously, MCA-PPO and MCA-iPPO
manage to exploit the heterogeneity and the diversity in the users’ characteristics
and learn a better transmission protocol.
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Figure 6.4: Evolution of the URLLC score as a function of (a) the number of
training episodes; (b) the number of users; (c) the load per frame.
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6.6 Conclusion

This work introduces a novel approach to the DMCA problem in URLLC net-
works, a challenge pertinent to various IoT applications. The DMCA problem is
formulated as a Dec-POMDP accommodating devices with heterogeneous traf-
fic models and system parameters. We introduce two PPO algorithms, namely
MCA-PPO and MCA-iPPO, to handle the complexities of the URLLC environ-
ment with strict deadlines. While the MCA-PPO is theoretically robust and
benefits from the monotonic improvement property, it requires offline training.
On the contrary, MCA-iPPO, in spite of its theoretical limitations, employs
a more straightforward training process and empirically achieves a performance
comparable to MCA-PPO. Our proposed algorithms have been validated in both
homogeneous and heterogeneous scenarios, consistently outperforming the tra-
ditional GF access baseline and iDRQN algorithm. Further work may explore
more complex channel models using SIC for example.

In addition to the advancements in DMCA for URLLC networks, the MCA-
PPO approach is also promising for a broad spectrum of applications regard-
ing MA. In particular, it presents significant potential in the field of multi-
connectivity where each device has the capability to send replicas of its packet
to multiple BS [Segura et al., 2022]. Furthermore, our methodology can be
adeptly applied to Modern Random Access strategies, where devices transmit
packet replicas across several time slots of a single frame [Berioli et al., 2016].
This scenario can essentially be conceptualized as a DMCA problem, but within
the time domain.
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7.1 Conclusion

This thesis explores the application of DRL, both from a single-agent and a
multi-agent perspective to develop efficient transmission protocols within an in-
dustrial IoT environment, under the stringent constraints of URLLC. Indeed,
traditional MA protocols struggle with several significant challenges when dealing
with the URLLC requirements. On the one hand, centralized protocols, despite
their effectiveness in device coordination and avoiding collisions, are hindered by
significant communication overhead and the resultant latency from the coordina-
tion process. On the other hand, GF protocols, although promising alternatives
for URLLC due to their ability to bypass the latency of traditional four-way
handshake protocols, face collisions. Additionally, the current protocols are not
tailored to handle the diversity in device and the sporadic nature of the traffic
in dynamic environments. This thesis aims to address these challenges through
the innovative application of DRL strategies.

Our research initially focuses on a framework modeling the uplink MA prob-
lem as a centralized problem where the BS schedules devices in order to prevent
collisions. To minimize latency, we eliminate the usual coordination communica-
tions between devices and the BS, a move that introduced partial observability
into the system. We tackle this problem by developing FilteredPPO, a novel
scheduling algorithm. By integrating PPO with RNN and invalid action masking,
FilteredPPO demonstrates superior performance over conventional benchmarks
in scenarios with periodic traffic.

As FilteredPPO struggles to meet the URLLC requirements under aperi-
odic traffic, we extend our scheduling framework by incorporating the NOMA
technology, allowing the BS to poll multiple users within a single frame. We
introduce the concept of agent state, to better manage partial observability and
develop NOMA-PPO, a DRL algorithm that efficiently deals with the combina-
torial action space using a branching policy network and can incorporate prior
knowledge about the system evolution through a Bayesian prior. Our experi-
ments, conducted under realistic 3GPP conditions confirm the effectiveness of
NOMA-PPO in terms of URLLC performance, fairness, and convergence speed,
outperforming traditional MA and DRL benchmarks across various scenarios.

We then move to the decentralized version of our MA problem and explore the
application of deep MARL to tackle it, leading to the creation of SeqDQN. This
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distributed MARL algorithm updates Q-functions sequentially, starting with de-
vices having the strictest latency requirements. SeqDQN presents advantages in
scalability and training speed over traditional MARL approaches, and reduces
non-stationarity issues.

Finally, we extend the decentralized framework by efficiently utilizing the
bandwidth through orthogonal channel division. This transforms our URLLC
problem into a DMCA problem with heterogeneous devices. We solve it by
proposing two PPO solutions: MCA-PPO and MCA-iPPO. While MCA-PPO
offers a theoretically grounded approach with monotonic improvement guaran-
tees, MCA-iPPO provides a decentralized, empirically effective alternative with
a simpler training process. We show that our approach outperforms the existing
MA and DRL benchmarks on different scenarios.

7.2 Future Work

In this section, we explore potential directions for future research related to DRL-
based protocol for uplink access in URLLC networks. These perspectives can be
classified in two categories: short-term directions that increment the founda-
tions laid in this thesis, and long-term objectives addressing more fundamental
scientific challenges associated with the application of DRL to uplink URLLC.

7.2.1 Short-Term Research Directions

• First of all, future work could aim to apply and test the algorithms devel-
oped in this thesis within more realistic and complex settings. For instance
these algorithms could be evaluated using a network digital twin, similar
to the work of [Vilà et al., 2023] that use this simulator to train a DRL
solution for the radio access network problem. Additionally, incorporating
more sophisticated environmental assumptions, such as complex scatter-
ing or advanced mobility models for users can also be an alternative to
complexify the system and enhance the realism and applicability of the
research.

• Another direct extension of this thesis would be to incorporate power con-
trol mechanisms for the devices. The integration of power control aligns
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naturally with the decentralized approach envisioned in our work, where
the action of each device could be defined in terms of transmit power, cho-
sen from either a continuous or discrete set of values. This concept can
also be adapted to fit within the centralized framework. With the assumed
frame structure, the BS has indeed the possibility to control this power
by including in the polling message a transmit power control command
for the device. Importantly, the duration of our frame is designed to be
shorter than the coherence time, thus enabling effective and timely power
control even in the context of time-varying channels. While the application
of DRL to power optimization has already been investigated ([Tan et al.,
2020, Zhang et al., 2020, Zhang and Liang, 2020]), its specific application
and implications in the context of URLLC networks remain an open area
for exploration.

• In Chapter 6, we mentioned that MCA-PPO algorithms presented in this
thesis could be directly applied to the Modern Random Access problem.
This particular problem involves selecting a subset of time slots within a
frame for a device to transmit replicas of its packet. The main difference in
this context lies in the decoding procedure, which is essential for resolving
collisions that may occur within any given time slot.

• Finally, an intuitive direction for future research involves expanding the
scope of NOMA-PPO to a multi-agent setting. While we have successfully
demonstrated the efficiency of our centralized solution involving a single
BS, exploring the dynamics of multiple BSs, each employing the NOMA-
PPO algorithm, is a promising way to improve the URLLC capacity. This
investigation would focus on how these BSs could interact and coordinate
their scheduling decisions to effectively mitigate inter-cell interference and
enhance overall URLLC performance.

7.2.2 Long-Term Research objectives

• This thesis has investigated the application of MARL from the IL and
CTDE perspectives in order to learn fully decentralized policies. The
third popular framework that we have not explored is the networked agents
paradigm that allows agents within a short range to communicate and ex-
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change information. This assumption can be realistic as IoT devices are
able to communicate with neighbors within a limited communication range
as highlighted in [Park and Saad, 2019]. A key enabler for such localized
communication among IoT devices is Device-to-Device (D2D) communica-
tions. The potential of this technology in fulfilling IoT requirements for 5G
networks, particularly in mMTC and URLLC, has been underscored in var-
ious studies [Militano et al., 2015, Chang et al., 2021, MB et al., 2020]. In
the MARL context, D2D communications could facilitate the sharing of lo-
cal states, actions and rewards, within a neighborhood before accessing the
communication channel. This would allow the application of the networked
agents’ framework, which has significantly stronger theoretical foundations
compared to IL and CTDE. Several works, such as those by Lin et al. and
Yang et al. [Lin et al., 2020, Yang et al., 2020], have already demonstrated
the benefits of leveraging information exchange in wireless networks for
MARL applications. However, D2D communications bring their own set
of challenges such as devices discovery, interference management or mode
selection [Asadi et al., 2014]. Therefore, combining the networked agents
MARL framework with the D2D communication technology is a promising
and interesting direction for future research.

• A second interesting framework yet to be explored in this thesis, which
shows considerable promise for addressing the MA problem is the mean-
field regime. In this regime, each individual agent in a vast population is
influenced by a cumulative measure derived from all other agents. This
approach is utilized both for evaluating the performance of established
protocols, as seen in studies on ALOHA and CSMA [Bordenave et al.,
2008, Duffy, 2010], and in the context of mean field games [Cousin et al.,
2011], which are employed to develop control policies for individual devices.
The latter has been applied to multiple access in wireless systems [Huang
et al., 2003, Bertucci et al., 2018], particularly in scenarios where system
dynamics are known. Mean-field regimes have started to be investigated
in relation to RL [Subramanian and Mahajan, 2019, Elie et al., 2020, Yang
et al., 2018]. Learning in mean field models is especially adapted in en-
vironments with a massive number of devices. While this area remains
largely unexplored in the context of wireless communications, it holds sig-
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nificant potential. Future work could focus on mean field models not only
in deriving learning policies but also in providing analytical insights and
guarantees about system behavior in scenarios with high density of devices,
in mMTC scenarios for example.

• A final promising framework for long-term future work is multi-connectivity,
which holds significant potential for uplink URLLC. This technology is par-
ticularly beneficial in enhancing coverage, especially in environments with
obstacles and in scenarios involving user mobility. Multi-connectivity can
also substantially improve both reliability and latency by enabling devices
to transmit duplicate data to multiple BS. However, it presents certain
challenges. One major challenge is coordinating user transmissions across
different BS, ensuring efficient and collision-free communication. Besides,
mitigating interference in this context is a complex issue, especially when
D2D communications are integrated into the system, adding an additional
layer of complexity. In addressing these challenges, RL emerges as a promis-
ing solution, offering potential strategies to effectively manage the intricate
dynamics of multi-connectivity in uplink URLLC scenarios.
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Titre : Apprentissage par Renforcement pour l’Accès Multiple Non-Coordonné.
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Résumé : Les protocoles de contrôle d’accès au
support (MAC) distribués sont fondamentaux dans la
communication sans fil, mais les protocoles tradition-
nels basés sur l’accès aléatoire sont confrontés à des
limitations importantes dans le cas d’utilisation de l’in-
ternet des objets (IoT). En effet, ils ont du mal à garan-
tir la latence, ce qui les rend inadaptés aux commu-
nications ultra-fiables à faible latence (URLLC). Cette
thèse aborde ces défis en exploitant le potentiel de
l’apprentissage par renforcement profond (DRL), un
paradigme dans lequel les agents optimisent leurs ac-
tions en interagissant avec un environnement.
Cette thèse aborde les principaux défis du problème
de l’accès multiple (MA) pour les réseaux URLLC, in-
cluant la latence des protocoles centralisés, les col-
lisions et retransmissions des protocoles sans al-
location (GF) ainsi que les complexités pour gérer
l’hétérogénéité des appareils et les environnements
dynamiques. En outre, la thèse explore l’intégration
de nouvelles techniques de couche physique comme
l’accès multiple non orthogonal (NOMA).
Notre méthodologie applique le DRL pour développer
des protocoles intelligents, qui ont déjà montré leur
efficacité dans les applications IoT. Dans un pre-

mier temps, nous modélisons le problème de l’URLLC
dans un paradigme centralisé, où la station de base
(BS) orchestre les transmissions des appareils. Cette
configuration présente l’avantage d’assurer une com-
munication sans collision, mais introduit une observa-
bilité partielle, car la station de base n’a pas accès
à la mémoire et à l’état du canal des utilisateurs.
Nous nous attaquons à ce problème en introdui-
sant deux algorithmes : FilteredPPO et NOMA-PPO.
Alors que le premier surpasse les algorithmes de
référence dans les scénarios avec trafic périodique,
le second démontre une performance supérieure à
l’état de l’art dans les scénarios avec trafic spora-
dique. Les troisième et quatrième contributions, Se-
qDQN et MCA-PPO, étudient l’application de l’ap-
prentissage par renforcement multi-agents (MARL)
pour l’URLLC où chaque appareil est équipé d’un
algorithme DRL. Alors que SeqDQN explore une
méthode pour réduire la non-stationnarité et améliore
la scalabilité et l’apprentissage, MCA-PPO présente
une solution théoriquement robuste pour le défi de
l’accès dynamique multicanal (DMCA) permettant aux
utilisateurs d’optimiser l’utilisation de la bande pas-
sante et donc d’améliorer les performances URLLC.

Title : Reinforcement Learning for Uncoordinated Multiple Access

Keywords : Multiple Access, Reinforcement Learning, Multi-Agent Systems, Wireless Networks.

Abstract : Distributed Medium Access Control (MAC)
protocols are fundamental in wireless communication,
yet traditional random access-based protocols face si-
gnificant limitations dealing with the Internet-of-Things
(IoT) use cases. Indeed, they struggle with latency
guarantees, making them unsuitable for Ultra Reliable
Low Latency Communications (URLLC). This thesis
addresses these challenges by leveraging the poten-
tial of Deep Reinforcement Learning (DRL), a para-
digm where decision-makers optimize actions by in-
teracting with an environment.
This thesis tackles key challenges in the Medium Ac-
cess (MA) problem for URLLC networks, including the
latency in centralized protocols, the collision and re-
transmission issues in Grant-Free (GF) protocols, the
complexities to handle device heterogeneity and dy-
namic environments. Furthermore, the thesis explores
the integration of new physical layer techniques like
Non-Orthogonal Multiple Access (NOMA).
Our methodology applies DRL to develop intelligent
protocols, which has already shown effectiveness in
addressing IoT applications. Initially, we model the

URLLC problem within a centralized paradigm, where
the Base Station (BS) orchestrates device transmis-
sions. This setup has the benefit to ensure collision-
free communication but introduces partial observabi-
lity as the BS does not have access to the users’
buffer and channel state. We tackle this problem by
introducing two algorithms: FilteredPPO and NOMA-
PPO. While the former outperforms the benchmarks
in scenarios with periodic traffic patterns, the latter
demonstrates superior performance over the state-of-
the-art baselines on scenarios with sporadic traffic.
The third and fourth contributions, SeqDQN and MCA-
PPO, study the application of Multi-Agent Reinforce-
ment Learning (MARL) for URLLC where each device
is equipped by a DRL algorithm. While SeqDQN ex-
plores a method to reduce non-stationarity and en-
hances scalability and training efficiency, MCA-PPO
presents a theoretically robust solution for the Dyna-
mic Multi-Channel Access (DMCA) challenge allowing
users to optimize bandwidth utilization, and thus en-
hancing the URLLC performance.

Institut Polytechnique de Paris
91120 Palaiseau, France


	List of Acronyms
	Résumé en français
	Introduction
	Context: New Challenges of the Internet-of-Things
	Uplink URLLC Access Solutions
	Reinforcement Learning for Uplink Access
	Contributions and Structure of the Thesis
	List of Publications

	Background: Deep Reinforcement Learning
	Deep Learning
	Feed-Forward Neural Networks
	Recurrent Neural Networks

	Single-Agent Reinforcement Learning
	Mathematical Framework
	Value-Based Solutions
	Policy-Based Solutions

	Multi-Agent Reinforcement Learning
	Mathematical framework
	Independent Learning
	Centralized Training, Decentralized Execution
	Complementary Multi-Agent Frameworks


	FilteredPPO: a Deep Reinforcement Learning Scheduler for Uplink IoT Traffic.
	Introduction
	Related Work
	Contributions

	System Model
	Traffic Model
	Problem Formulation
	Partially Observable Markov Decision Process

	FilteredPPO: a RL Approach for Access with Strict Deadlines
	Speeding up the learning process with Action Masking
	Experiments
	Benchmarks
	Simulation results

	Conclusion

	NOMA-PPO: Deep Reinforcement Learning for Uplink Scheduling in NOMA-URLLC Networks
	Introduction
	Related Work
	DRL challenges for uplink URLLC
	Contributions and outline

	System Model
	Network Model
	Interference Channel Model
	Traffic Models

	Problem Formulation
	Optimization Problem
	POMDP Formulation

	Deep Reinforcement Learning Approach
	Proximal Policy Optimization algorithm
	Exploiting Prior Knowledge
	Algorithm Overview and Architecture

	Experiments
	Simulation Settings and Implementation Details
	Benchmarks
	Study of the Channel Model
	Convergence Analysis
	Performance in the 3GPP Scenario
	Performance in Different Channel Conditions
	Complexity Analysis

	Conclusion

	SeqDQN: Multi-Agent Deep Reinforcement Learning for Uplink URLLC with Strict Deadlines
	Introduction
	Independent Learning
	Centralized-Training with Decentralized-Execution
	Contributions

	Problem formulation
	System model
	Traffic model
	Decentralized Partially Observable Markov Decision Process

	Sequential DQN (SeqDQN)
	Experiments
	Baselines
	Simulation settings
	Convergence speed of MARL algorithms
	URLLC score

	Conclusion

	Multi-Agent Proximal Policy Optimization for Dynamic Multi-Channel URLLC Access
	Introduction
	Related Work
	Contribution and Outline

	System Model
	Network Model
	Traffic Model
	Channel Model

	Problem Formulation
	Multi-Agent Deep Reinforcement Learning
	Policy Gradient for Multi-Agent Systems
	Multi-Channel Access Proximal Policy Optimization

	Simulation Results
	Simulation Settings
	Baselines
	Study of the Subchannel Assumption
	Convergence Speed of the Algorithms
	URLLC Score

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work
	Short-Term Research Directions
	Long-Term Research objectives


	Bibliography

