
HAL Id: tel-04526940
https://theses.hal.science/tel-04526940

Submitted on 29 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing an Automated Concurrent Tableau-Based
Theorem Prover for First-Order Logic

Julie Cailler

To cite this version:
Julie Cailler. Designing an Automated Concurrent Tableau-Based Theorem Prover for First-Order
Logic. Logic in Computer Science [cs.LO]. Université de Montpellier, 2023. English. �NNT :
2023UMONS050�. �tel-04526940�

https://theses.hal.science/tel-04526940
https://hal.archives-ouvertes.fr

i

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’UNIVERSITÉ DE MONTPELLIER

En Informatique

École doctorale Information Structure et Système (ED166)

Unité de recherche LIRMM (Laboratoire d’Informatique, de Robotique et de
Microéléctronique de Montpellier - UMR5506)

Designing an Automated Concurrent Tableau-Based Theorem
Prover for First-Order Logic

Présentée par Julie CAILLER
le 13 décembre 2023

Sous la direction de David DELAHAYE

Devant le jury composé de

Hinde Lilia BOUZIANE

Maître de conférences, Université de Montpellier
Co-encadrante de thèse

Simon ROBILLARD

Maître de conférences, Université de Montpellier
Co-encadrant de thèse

Gilles DOWEK

Directeur de recherche, Inria
Rapporteur

Philipp RÜMMER

Professor, University of Regensburg
Rapporteur

Marie-Laure MUGNIER

Professeure des universités, Université de Montpellier
Présidente du jury

Serenella CERRITO

Professeure des universités, Université Paris-Saclay
Examinatrice

Damien DOLIGEZ

Chargé de recherche, Inria
Examinateur

Olivier HERMANT

Professeur, Mines Paris, Université Paris Sciences et Lettres
Invité

Abstract

This thesis describes the design and implementation of a concurrent tableau-based
theorem prover called Goéland. Its main feature is the concurrent processing of
branches, where each branch searches for its own solution and closes as soon as
possible, relying on the agreement mechanism at the parent node.

The main idea behind this prover is to use concurrency to ensure the fairness
of a proof-search algorithm in a tableau-based theorem prover. Indeed, multiple
choices happen at each step of a tableau proof search, such as the choice of extending
a branch, computing a formula, or applying a substitution. While some of them
are easy to handle, others are more difficult and require advanced techniques such
as backtracking, branch management, and iterative deepening to ensure fair proof
search, which makes it challenging to achieve fairness in these conditions. Thanks to
its concurrent nature, Goéland overcomes many known fairness issues by providing
an elegant approach to manage them. This thesis describes the concurrent proof-
search procedure and its key mechanisms for ensuring fairness, including free variable
management and eager closure.

Beyond fairness, the completeness of such a procedure is also a crucial ele-
ment in automated reasoning. In spite of the presence of various provers based
on tableaux, only a few of them have demonstrated the completeness of their proof-
search procedures, particularly in the context of first-order logic. This thesis provides
a completeness proof of the tableau-based calculus implemented in Goéland.

In addition to this solid basis, the prover is also equipped to perform theory
reasoning, which plays an active role in current automated reasoning research. Thus,
two background reasoners have been developed: an equality reasoner and a module
for deduction modulo theory. The former handles reasoning related to equality, while
the latter enables Goéland to reason efficiently in any axiomatized theory by utilizing
rewrite rules. These rules act as a pre-processor, capturing only the relevant axioms
and reducing the search space, resulting in shorter proofs and significant time savings.

In order to expand the capabilities of Goéland, several enhancements have been
made. Firstly, polymorphism has been introduced to enable Goéland to reason about
typed statements and allow for quantification over types. This improvement proves
particularly valuable in certain fields, such as arithmetic reasoning. Furthermore, a
proof translation feature has been implemented, enabling Goéland to produce proofs
checkable by Coq and Lambdapi.

This thesis presents the design and implementation of Goéland and its various
features. It demonstrates the effectiveness of the concurrent proof-search procedure
in addressing fairness issues, ensuring its completeness, handling theories through

background reasoners, and incorporating enhancements such as polymorphism and a
proof-checkable output. These advancements contribute to the overall efficiency and
reliability of Goéland as an interesting tool in the realm of automated reasoning.

Acknowledgements

First of all, I would like to thank my supervisors, David Delahaye, Hinde Lilia

Bouziane, and Simon Robillard, for entrusting me with a PhD position and for

their support throughout the last three years. Words are probably not enough to

express the gratitude and admiration I feel towards you, but I feel very lucky to

have the chance to be guided by you through the puzzling yet entertaining world of

research. Surprising as it may seem, you even managed to convince me (perhaps

involuntarily) to stay in this world.

I extend my thanks to Gilles Dowek and Philipp Rümmer for graciously reviewing

my thesis. Thank you very much for the time you spent on my manuscript, for your

feedback, and for the subsequent discussions. I also want to thank Marie-Laure

Mugnier, Serenella Cerrito, Damien Doligez, and Olivier Hermant for agreeing to

be part of my jury. For some of you, additional thanks for the work accomplished

or yet to be done in connection with this thesis!

This PhD wouldn’t have been one of the best moments of my life without an

inspiring environment. I thank all my colleagues at LIRMM, especially the MaREL

team, as well as other — far less cool and more obscure — teams like ALGCo or

BORÉAL. A special thank to fellow (and sometimes former) PhD students of those

teams (I’m not mentioning the permanent staff; doctoral students should have certain

privileges too): Giannos, Gaétan, Amadeus, Laure, Bachar, Selena, Guy, Vincent,

Nicolas, Pascal, and many others.

Among my colleagues, a special thanks to Maël for his preliminary work on

this thesis and for being the only person outside my supervision team to grasp my

endeavors during the first year of my PhD. You’ve got a unique place, and I am so

glad it was you. Surprisingly, some students, interns, and engineers ended up making

this list grow, so I would like to thank Cédric, Margaux, Matthieu, Dylan, Isaac, and

likely many others I may have inadvertently omitted for their work on Goéland. I am

also grateful to the students I have had the privilege of teaching, especially Charlotte,

Benoît, Robin, Corentin, Josh and Noah. The moments shared with you inspire me to

continue in this way, and I hope to consider some of you as colleagues in the future.

Fortunately, some of my longstanding friends have accompanied me throughout

all the way. I want to thank Ami, Thibault, Zeta, Fiel, Flo, Maëlle, Xavier, and others

I already regret having forgotten (or omitted to keep these acknowledgments from

rivaling the thesis length). I let you guess the order in which I put those names

:). Thank you for your support, for keeping me in touch with reality, for all the

cooking (and eating) times we had, and for being there after all those years. I also

thank my family, who may not necessarily understand everything I have done but
keep supporting me anyway!

On top of everything else, a special thank you to Thomas, for being there every
day, listening to my complaints, feeding me, and being the worst enemy of my writing
progress. Thank you for being an endless source of motivation and inspiration and
for carrying me around with you in everything you do. If those years are the best
of my life, it is undoubtedly thanks to you.

Finally, thank you Johann, for your unwavering presence, commitment, support,
for our thought-provoking discussions, and so much more. If I could only keep one
thing from this journey, it would definitively be you.

vii

Contents

List of Figures x

List of Tables xiii

Introduction 1

1 Preliminary Notions 6
1.1 First-Order Logic . 7

1.1.1 Syntactic Definitions . 7
1.1.2 Free Variables and Substitutions 8
1.1.3 Semantic and Truth Value of a Formula 10

1.2 Method of Analytic Tableaux . 11
1.2.1 Free-Variable Tableaux Calculus . 11
1.2.2 Terminology and Optimizations . 13

1.3 Concurrent Algorithmics . 16
1.3.1 Challenges of Multi-Process Architectures 17
1.3.2 Communication Between Processes and Memory Management . 19
1.3.3 Semantic for Concurrency . 20

2 State of the Art 23
2.1 Optimizations and Completeness in Tableaux 23

2.1.1 Proof-Search Variations in Tableau-Based Methods 23
2.1.2 Completeness of Proof-Search Procedures 24

2.2 Parallelism and Concurrency in Automated Deduction 26
2.2.1 Theorem Proving Strategies for First-Order Logic 26
2.2.2 Parallel Theorem Proving . 29

2.3 Theory Reasoning in Tableaux . 32
2.3.1 Equality Handling in Tableaux . 32
2.3.2 Other Theories and General Theory Management 34

3 Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 38
3.1 Fairness Management in Tableau-Based Theorem Prover 39

3.1.1 Incompleteness Induced by Fairness Issues 39
3.1.2 Sequential Approaches and Existing Solutions 44

3.2 The Use of Concurrency for an Efficient Fairness Management 44
3.2.1 State of the branches and Closure Management 45

viii Contents

3.2.2 Tableau Representation and Abstract Procedure Rules 46

3.2.3 A Concurrent Proof-Search Procedure 48

3.2.4 A Better Handling of Fairness Issues 58

3.3 Conclusion . 59

4 A Complete Proof-Search Procedure for Free-Variable Tableaux with Eager

Closure 63

4.1 Proof Tree and Characteristics of the Proof Search 64

4.1.1 Structure of a Proof Tree and Mappings 64

4.1.2 γ-rule Application Limit and Higher Bound 66

4.1.3 Canonicity and k-Completeness . 68

4.2 Completeness of the Proof-Search Procedure 69

4.2.1 l-Completeness Behaviors . 69

4.2.2 Agreement Mechanism and Completeness 71

4.3 Conclusion . 74

5 Handling Theories in Tableau-Based Automated Reasoning Methods 75

5.1 Equality Reasoning . 76

5.1.1 Equality Reasoning in Tableau-Based Systems 77

5.1.2 Extraction of a Rigid E-Unification Problem 79

5.1.3 Handling Problems with Equality in a Tableau-Based Proof-

Search Procedure . 81

5.2 Deduction Modulo Theory . 83

5.2.1 Motivation, Definition and Rewriting 84

5.2.2 Useful Variants for a Tableaux Proof-Search Procedure 89

5.2.3 Key points of the Interaction with the Proof-Search Procedure . 94

5.3 Conclusion . 98

6 Goéland: A Concurrent Tableau-Based Theorem Prover 100

6.1 Implementation of the Concurrent Proof-Search Procedure 100

6.1.1 Key Mechanisms and Data-Structure 101

6.1.2 Variations of the Proof Search . 105

6.2 Handling Typed Problems with Polymorphism 106

6.2.1 Type Definitions and Context . 107

6.2.2 Typing Process and Inference Rules 112

6.2.3 Integration into an Automated Theorem Prover 115

6.3 Conclusion . 116

Contents ix

7 Toward Certification: an Output for Checkable Proofs 117
7.1 From Tableau Proofs to Sequent Proofs: GS3 118
7.2 The Challenges of a Proof Translation . 119
7.3 A Deskolemization Strategy . 121
7.4 Soundness of the Translation over Inner Skolemization 124
7.5 Extensions to δ+

+
. 129

7.6 Coq and Lambdapi Output From GS3 . 132
7.7 Conclusion . 133

8 Experiments and Analysis 135
8.1 Comparison Between the Variants of Goéland 135
8.2 Comparison with Other Provers . 138
8.3 Scale-Up Tests . 140
8.4 Typed Problems . 141
8.5 Expansion of the Proof Size with Deskolemization Strategy 143
8.6 Conclusion . 145

Conclusion 146

Résumé de la thèse en français 150

Appendices

A Coq’s GS3 Embedding. 162

B Detailed Results of Goéland, Goéland+DMT, Goéland+DMT+EQ, Zenon,
Princess, E and Vampire over a Subset of FOF 164
B.1 Detailed Results of Goéland over a Subset of FOF 165
B.2 Detailed Results of Goéland+DMT over a Subset of FOF 166
B.3 Detailed Results of Goéland+DMT+EQ over a Subset of FOF 167
B.4 Detailed Results of Zenon over a Subset of FOF 168
B.5 Detailed Results of Zenon Modulo over a Subset of FOF 169
B.6 Detailed Results of Princess over a Subset of FOF 170
B.7 Detailed Results of Vampire over a Subset of FOF 171
B.8 Detailed Results of E over a Subset of FOF 172

References 173

x

List of Figures

1 A prover takes a logical statement and outputs an information about
its truth value. 1

1.1 Free-variable tableau rules. 12
1.2 Two ways to represent a tableau. 13
1.3 Inefficient instantiation (with free variables). 14
1.4 The scope of a variable in free-variable tableau. 15
1.5 Proof of ∃x(P(x)⇒ (P(a)∧ P(b))). 16
1.6 Sequential vs. concurrent executions of two operations, write(0) and

read(), on one resource. 17
1.7 Concurrent accesses to a shared resource R that can lead to undesired

behaviors. 17
1.8 Distinction between concurrency and parallelism. 18
1.9 Comparison of memory management between shared memory and

message exchanges. 19
1.10 Node structure and local vision. 20
1.11 Example of communication. 21

3.1 Proof and proof search illustrating the select branch problem. 40
3.2 Proof and proof search illustrating the select formula problem. 41
3.3 Proof and proof search illustrating the select pair problem. 42
3.4 Proof and proof search illustrating the select mode problem. 43
3.5 Interaction and application conditions of the abstract procedure rules. 48
3.6 The proof-search procedure executed by individual processes 49
3.7 Node structure and local vision extended to twin processes. 50
3.8 Agreement layer mechanism. 51
3.9 Twin behavior in the proof search. 57
3.10 Proof search and resulting proof for P(a),¬P(b),∀x . P(x)⇔∀y P(y). 59
3.11 Process view of the proof search for P(a),¬P(b),∀x . P(x)⇔∀y P(y). 60
3.12 Proof search and resulting proof of ¬P(a),¬Q(b),¬R(c),∀x . (P(x)∨

Q(x))∧ ∂ R(x). 61
3.13 Process view of the proof search for ¬P(a),¬Q(b),¬R(c),∀x . (P(x)∨

Q(x))∧ ∂ R(x). 62

4.1 S is an initial segment, S′ is a branch, and S v S′. 64
4.2 The branch B′ is mapped to the initial segment m(B′), which means B′

contains at least all the formulas of m(B′). 65

List of Figures xi

4.3 Mapping ordering between m and m′ such that m′ <Map m. 65

4.4 Generable free variables for one branch given a limit l. 67

4.5 Upper bound for the number of applicable rules given a limit l. 68

5.1 Equality problem. 78

5.2 Equality rule application with optimizations. 82

5.3 Equality reasoning combinatorics for simultaneous equality problems. 83

5.4 Comparison between a standard tableau proof and a proof that use a

rewrite system thanks to deduction modulo theory. 85

5.5 Proof-search tree with additional constraints due to atomic rewriting. . 88

5.6 Free-variable tableau rules modulo in a rewrite system R. 90

5.7 Improvement of proof search by preprocessing formulas. 93

5.8 Loss of cut-free completeness due to the use of deduction modulo theory. 95

5.9 Loss of completeness on equational axiom rewrite. 97

5.10 Double backtracking points: substitutions and rewrite rules. 98

6.1 A set of atoms and the corresponding discrimination tree. 101

6.2 Unification management and global unifier in the proof-search procedure.104

6.3 Syntactic categories of polymorphic first-order logic. 110

6.4 Contexts for polymorphic first-order logic. 111

6.5 Contexts for polymorphic first-order logic. 113

6.6 Typing rules for polymorphic first-order logic. 114

7.1 Rules of the GS3 calculus. 119

7.2 Proof of the drinker paradox in outer and inner Skolemization. 120

7.3 Translation into GS3 of the drinker paradox in outer Skolemization. . . 120

7.4 Incorrect proof yielded by a naive translation in GS3 of the tableau

proof of the drinker paradox in inner Skolemization. 121

7.5 Sound translation into GS3 of the drinker paradox in inner Skolemiza-

tion using the algorithm. 123

7.6 Mapping conservation after reapplication of a β-rule. 124

7.7 Formula that makes the translation algorithm diverge. 130

7.8 Translation of the δ+
+

proof to the δ+ proof. 131

7.9 Coq proof of the drinker paradox, translated from the GS3 output. . . . 133

7.10 Lambdapi proof of the drinker paradox, translated from the GS3 output.134

8.1 Cumulative time per problem solved on the SYN category between

Goéland, Goéland+EQ, Goéland+DMT, Goéland+DMT+EQ and Goé-
land+DMT+Polarized. 137

xii List of Figures

8.2 Cumulative time per problem solved on the SET category between
Goéland, Goéland+EQ, Goéland+DMT, Goéland+DMT+EQ and Goé-
land+DMT+Polarized. 137

8.3 Cumulative time per problem solved between Goéland, Goéland+DMT(GDMT),
Goéland+DMT+EQ(G+DMT+EQ), Zenon, Zenon Modulo, Princess,
Vampire and E. 139

8.4 Scale-up results of Goéland on the SYN category. 141
8.5 Scale-up results of Goéland on the SET category. 142
8.6 Scale-up results of Goéland+DMT on the SYN category. 142
8.7 Scale-up results of Goéland+DMT on the SET category. 143
9.8 Un prouveur prend un problème et retourne une information à propos

de sa valeur de vérité. 151

A.1 Coq’s GS3 embedding — lemmas. 162
A.2 Coq’s GS3 embedding — reversed lemmas to follow tableau rules. . . . 163

xiii

List of Tables

6.1 Translation of P(f (X , a), X) with the subsumption machine and the
unification machine . 103

8.1 Experimental results of the different versions of Goéland over the SYN
and SET categories of the TPTP library. 136

8.2 Experimental results of Goéland, Goéland+DMT, Goéland+DMT+EQ,
Zenon, Zenon ModuloPrincess, Vampire and E over a subset of first-order
problems of the TPTP library. 139

8.3 Scale-up experimental results of Goéland over the SYN and SET cate-
gories of the TPTP library according to the number of cores. 140

8.4 Scale-up experimental results of Goéland+DMT over the SYN and SET
categories of the TPTP library according to the number of cores. 141

8.5 Experimental results of Goéland+DMT, Goéland+DMT+EQ, Zenon
and Zenon Modulo over a subset of the TFF problems of the TPTP library.143

8.6 Comparison between the different Skolemization strategies and their
proof-size increase. 144

B.1 Detailed experimental results of Goéland over a subset of first-order
problems of the TPTP library. 165

B.2 Detailed experimental results of Goéland+DMT over a subset of first-
order problems of the TPTP library. 166

B.3 Detailed experimental results of Goéland+DMT+EQ over a subset of
first-order problems of the TPTP library. 167

B.4 Detailed experimental results of Zenon over a subset of first-order
problems of the TPTP library. 168

B.5 Detailed experimental results of Zenon Modulo over a subset of first-
order problems of the TPTP library. 169

B.6 Detailed experimental results of Princess over a subset of first-order
problems of the TPTP library. 170

B.7 Detailed experimental results of Vampire over a subset of first-order
problems of the TPTP library. 171

B.8 Detailed experimental results of E over a subset of first-order problems
of the TPTP library. 172

xiv

1

Introduction

With the increasing prevalence and complexity of computer systems, their reliability
has become a crucial concern, particularly for critical systems. Any bug or malfunction
in these systems can have severe consequences, both in financial and, more importantly,
human terms. Some notable examples of bugs include the European Space Agency’s
Ariane 5 rocket failure and Intel’s Pentium FDIV bug.

While testing is a standard method to detect and mitigate bugs in a system, it is
not exhaustive and cannot guarantee the absence of all defects. On the other hand,
formal methods provide a means to rigorously demonstrate, through mathematical
reasoning, that a system operates precisely as intended without any deviation. Despite
being more expensive and time-consuming, formal methods remain the only way to
ensure the correctness of a system within its entire operating space.

This assessment hinges on the existence of a proof for a given problem. A proof is
a sequence of deductive steps aimed at unfolding the reasoning mechanism, leading to
the validation of the initial property. Historically, proofs were carried out by a human
using traditional pen-and-paper methods. Nevertheless, over time, new techniques
have emerged, and now proofs can be established in collaboration with computers,
featuring various levels of automation. These degrees of automation span from proof
assistants, which guide human users in constructing a proof while ensuring error-free
derivations, to theorem provers that independently and algorithmically generate proofs.

Interactive reasoning tools act like assistants, directing human users in the con-
struction of proofs while guaranteeing the accuracy of the generated derivations.
Interactive reasoning plays a significant role in mathematics, assisting mathematicians
in proving theorems and verifying essential components in systems with critical
implications for human safety. For instance, the seL4 operating system was verified
using the Isabelle/HOL proof assistant, and the proof assistant HOL Light was a
key tool in settling the long-standing Kepler conjecture in 2017.

Automated reasoning tools are able to reason fully or partly automatically about
logical formulas. Such reasoning tools also called theorem provers (Figure 1), are used
extensively in areas including program verification and testing, scheduling, and also
to solve problems in mathematics. As an illustration, the B-Method was employed to
verify the functionality of Paris Metro Line 14. Interactive and automated reasoning

prover

Ø

×

Logical statement

Figure 1: A prover takes a logical statement and outputs an information about its truth value.

2 List of Tables

tools can be used in combination, for example, by outsourcing simpler parts of a proof
that is constructed interactively to automated theorem provers.

Although proofs enable us to achieve a satisfactory degree of confidence in our
systems, the complexity of the tools for generating them has historically confined
their usage to a narrow group of specialists. However, contemporary developments in
automated deduction, increased computational capabilities, and efforts to enhance
the accessibility of theorem-proving software have popularized these techniques.
While it is now easier than ever to collaborate with computers to construct proofs,
there is a need to (i) improve usability for end-users and (ii) develop automated
tools capable of producing certified proofs. These developments will allow a broader
application of formal methods in program verification, contributing to the creation
of safer software systems.

This thesis focuses on the design and development of an automated theorem
prover. Provers rely on two main characteristics: what they reason about and how
they do it. The first aspect relates to the choice of language employed to describe
problems, whereas the second refers to the reasoning techniques.

Indeed, automated theorem provers cannot directly engage with software or
mathematical problems and first require a translation of these real-world problems into
a common computer-readable language, which allows various tools to communicate.
Logic is such a language. Owing to the wide range and diversity of logics, a myriad
of concepts can be represented, spanning from mathematical concepts to real-world
scenarios. These logics can be distinguished based on their level of expressiveness
and the efficiency of the related reasoning methods.

Certain logics, like propositional logic, are decidable and endowed with effective
techniques. However, they may be constrained by a limited degree of expressiveness.
In contrast, higher-order logics offer greater expressiveness but often pose challenges
for automated reasoning tools. Ultimately, in the context of automation, first-order
logic strikes a favorable balance, enabling the representation of individuals and
propositions about them. Although semi-decidable, it can be reasoned about efficiently,
facilitating deductions from both real-world and mathematical problems, which are
translated into logical statements, also called formulas.

Language selection significantly influences the choice of the reasoning techniques
employed. Different techniques are not universally applicable to all logics, depending
on factors such as whether they transform the initial formula. These reasoning
techniques are called proof-search procedures. As the name suggests, they aim to
search for a proof by applying a set of rules on possibly modified versions of the initial
formulas, exploring the proof-search space to find a proof.

There exists a multitude of techniques for automated reasoning, each with its
unique characteristics. Some of these techniques are known for their efficiency,
whereas others possess some properties that can be advantageous in a certain context,
such as a specific input or suitability for a broader spectrum of logics.

One of those techniques is the method of analytic tableaux. This method operates
syntactically by deconstructing the initial formula into subformulas until reaching

List of Tables 3

axioms known to be true. Notably, this method works with the initial formula, without
transformation, making it suitable for interactions with proof assistant and usable in
other types of logics. In the context of first-order logic, its primary strength lies in its
ability to output a proof, which can be easily translatable to a machine-checkable one.

Challenges

Fairness in Tableau-Based Proof Search

The method of analytic tableaux faces some challenges, which can prevent it from find-
ing a proof. The tree structure generated by breaking down the original formulas into
subgoals may introduce dependencies between branches, increasing the complexity of
the proof search. Moreover, the variety of choices available at each proof step makes it
prone to fairness issues, as stated by Hähnle: “At the present time, no strongly complete,
destructive tableau proof procedure is known that works well in practice” [208].

Moreover, most textbooks describe eager closure as the standard way to manage
closure in free-variable tableaux. In addition to the fairness issue that can be induced
by this rule, proving the completeness of a proof-search procedure with eager closure
remains difficult since it involves backtracking and, thus, non-monotonicity. However,
completeness stands as a critical challenge for every proof-search procedure, as a
complete tool instills confidence in its results. In the context of standard completeness
proofs for first-order tableau-based procedures, they often involve considering the
(infinite) proof tree that would result if the procedure failed to terminate on an
unsatisfiable formula, ultimately leading to a counter-model and refutation. However,
constructing this infinite derivation is not straightforward for proof-search procedures
with backtracking. It is thus hard to achieve a fair, complete, and efficient proof-
search procedure in tableaux.

Theory Reasoning in First-Order Logic

Beyond the proof-search procedure itself, certain problems are inherently challenging
or demand tailored approaches for specific contexts. This case is particularly present
in industrial applications, which often involve explicit constraints or data structure,
such as arrays or heaps, or in mathematical theorems pertaining to specific theories,
such as set theory. Those problems involve a wide set of axioms, which provide the
context necessary to prove the formula, as well as specific semantics or dedicated
reasoning techniques, such as those for equality or arithmetic reasoning. With the
increase in complexity of the systems, the ability to deal with theories is a crucial
concern for any contemporary automated theorem prover.

In the context of first-order logic, theory reasoning is difficult but nonetheless
essential. While there are effective methods to tackle specific domains, there is no
one-size-fits-all approach to address all possible theories. Moreover, including axioms
of theories in problem hypotheses is rarely practical in real-world scenarios, as it

4 List of Tables

often implies a thoughtless use of axioms that overload the proof-search process.
However, strategies have emerged to tackle these challenges. Specifically, although
primarily focused on specific theories, deduction modulo theory has evolved and can
be used as an optimization for automated theorem provers. Transforming axioms
into rewrite rules allows to trigger only the relevant ones, leading to a smaller search
space and thus to a more efficient proof search. Nonetheless, its integration into a
tableau-based proof search is not straightforward, as it closely interacts with critical
mechanisms such as free-variable dependencies.

Proof Certification

In a way, automated theorem provers can be seen as oracles, generating an answer for
a given formula. While some of them attempt to provide a trace, they can also yield a
binary yes/no answer in the worst-case scenario. The trustworthiness of the answer
now depends solely on the confidence level we have in the respective ATP. Nevertheless,
these tools are typically complex, extensive software in constant evolution, comprising
thousands of lines of code and employing sophisticated heuristics. Moreover, since
they are developed by humans, they are susceptible to bugs and are inherently error-
prone. In such tools, bugs can be disastrous, causing them to prove non-theorems and,
consequently, compromising the reliability of the answers they produce. Fortunately,
there are two ways to avoid inconsistencies in automated theorem provers: by fully
certifying the kernel of the prover using a proof assistant, which is a time-consuming,
arduous, and long-term work [212], or by producing machine-checkable proofs,
which is generally easily accessible.

The latter relies on the notion of proof certificates. These are proofs generated by
an automated theorem prover that an external proof checker can verify. Indeed, in
contrast with ATP, proof assistants rely on a certified kernel, ensuring the correctness
of proofs checked. Therefore, it is natural to seek a way to combine the strengths
of both worlds by producing checkable proofs, thereby instilling full confidence in
the results of the ATP. Moreover, relying on an external proof checker to validate
proofs significantly enhances the trust we place in them and establishes a common
framework for expressing proofs. One advantage of this shared language is the ability
to exchange proofs from various theorem provers that may employ different proof
systems. However, not all first-order reasoning methods can be readily translated
into checkable proofs, especially when advanced heuristics are used.

Contributions

This thesis aims to address a wide range of challenges with the ambition of advancing
the field of automated deduction using first-order tableaux. The main contributions
encompass both theoretical and practical aspects, the latter leading to developments
that implement our theoretical results into a new tool called Goéland. This tool
comprises the following key components:

List of Tables 5

• A tableaux-based concurrent proof-search procedure that ensures fairness by
construction. Since the tree structure fits well with concurrent processing, we
designed a procedure that explores branches in parallel, addressing fairness
issues by leveraging information from one branch to eliminate certain subspaces
more quickly. This procedure was proven complete, which is, as far as we know,
the first completeness proof of a procedure based on the method of analytic
tableaux in first-order logic with eager closure.

• An implementation of two background reasoners to handle theories: an equality
reasoner and a deduction modulo theory module. In this thesis, we delve into
the incorporation of both a dedicated reasoning module and a more general
one, examining their respective interactions with a concurrent tableau-based
proof-search procedure.

• A translation procedure from tableaux proofs to a generic machine-checkable
proof structure, namely, GS3, as well as two outputs towards dedicated proof
assistants: Coq and Lambdapi.

Our main contributions, in addition to the pure implementation work, are mani-
folds and consequently detailed in separate chapters. Thus, the manuscript is orga-
nized as follows. Chapter 1 introduces preliminary notions of logic and concurrency,
whereas the related work is available in Chapter 2. The main procedure is offered
in Chapter 3 and proved complete in Chapter 4. In order to extend the range of
possibilities of Goéland, Chapter 5 presents the theory reasoning embedded into the
prover, and Chapter 6 its implementation, as well as that of some other features.
Finally, Chapter 7 introduces a strategy to output checkable proofs, which is tested,
together with all the functionalities of Goéland, over the TPTP library in Chapter 8.

6

Chapter 1
Preliminary Notions

Contents

1.1 First-Order Logic . 7
1.1.1 Syntactic Definitions . 7
1.1.2 Free Variables and Substitutions 8
1.1.3 Semantic and Truth Value of a Formula 10

1.2 Method of Analytic Tableaux . 11
1.2.1 Free-Variable Tableaux Calculus 11
1.2.2 Terminology and Optimizations 13

1.3 Concurrent Algorithmics . 16
1.3.1 Challenges of Multi-Process Architectures 17
1.3.2 Communication Between Processes and Memory Management 19
1.3.3 Semantic for Concurrency . 20

Logic serves as a means to represent the world, with various types available,
each differing in expressiveness and efficiency. For instance, propositional logic is
decidable, enabling quick computation of answers but with limited expressiveness.
On the other hand, first-order logic is semidecidable, allowing the representation of
almost any reasonable notion, although certain problems may remain unprovable.
Higher-order logic possesses greater expressiveness power but presents challenges in
reasoning efficiently, as some key operations in automated reasoning are undecidable
in these logics [139].

The choice of logic also influences the reasoning method employed. Usually,
automated reasoning is dominated by two main techniques: the resolution-based ones
and the tableau-based ones. Both start with an initial formula and apply reasoning
rules to deduce information about it. Resolution-based methods modify the initial
formula to gain efficiency, whereas tableau-based ones carry a tree structure and
produce a proof of the original problem at the end of its reasoning mechanism.

The characteristic structure of tableau-based methods fits naturally with a concur-
rent approach. Thus, we are interested in a method allowing us to work on all the
branches simultaneously. In order to do this, this chapter introduces some notions of
concurrent algorithmic and then delves into a mechanism to ensure communication
between branches. A specific concurrent semantic is also presented and used to
describe the procedure in Chapter 3.

This chapter presents the basic material for this thesis. It begins by defining

1. Preliminary Notions 7

first-order logic in Section 1.1 and then focuses in Section 1.2 on a particular proof
method, the method of analytic tableaux. Lastly, Section 1.3 introduces elements
of concurrent algorithmic.

1.1 First-Order Logic

Thanks to its high level of expressiveness, first-order logic is considered a standard
way to represent the world, from mathematical problems to software specifications.
These problems are translated into logical sentences [126] that can be either true or
false regarding a specific context. However, it is important to note that first-order logic
is semidecidable [86, 232], meaning there is no procedure capable of automatically
deciding on the truth value of certain sentences.

1.1.1 Syntactic Definitions

First-order logic is a language, composed of words — also called terms — on which
are built statements — the formulas. Together with the elements allowing words to
be combined, a first-order logic language, denoted L , can be defined as an alphabet
composed of the four following disjoint sets (inspired by [90]):

• An infinitely countable set of variables V , usually denoted by lowercase letters
from the end of the alphabet, possibly indexed, such as x , x ′, x1, y .

• A set regrouping propositional logic connectives, quantifiers, brackets, dots,
and commas {¬,∧,∨,⇒,⇔,∃,∀, (,), .}, as well as the two specific symbols
> and ⊥. The precedence convention among logical operators is as follows:
{¬} ≺ {∧,∨} ≺ {∃,∀} ≺ {⇒,⇔}.

• A set of function symbols SF in which each symbol is associated with its arity.
Elements of this set are usually split between the constants, which are functions
of arity 0 which use letters at the start of the alphabet a, a′, a1, b, and functions,
denoted as usual with f , f ′, f1, g. More formally, SF can be defined as the
union of the family (S i

F)i∈N in which S k
F represents a symbol of arity k, i.e.,

SF =
⋃

n∈N
S n

F .

• A set of relational symbols and their arity SP , also called predicates, defined
similarly as SF . They are denoted by uppercase letters such as P,Q, and R.

From these sets derives the notion of term, on which are built formulas, often
denoted by the uppercase letters F and G, possibly indexed. The set of terms T
is the smallest subset of words over L , which contains constants and variables
and is stable by associating any n-uple (for n ≥ 1) of words to be the arguments
of a function symbol of S n

F .

8 1.1. First-Order Logic

Definition 1.1: Term

The set of terms of first-order logic T over L is recursively defined by the
family (Tn)n∈N:

• T0 = V ∪S 0
F where S 0

F denotes the functions of arity 0.

• Tn =Tn−1 ∪
�

f (t1, . . . , tk) | k ∈ N∧ f ∈S k
F ∧ t1, . . . , tk ∈Tn−1

	

.

• T =
⋃

n∈NTn

Atomic formulas also play the role of words in a logical sentence. The collection
of atomic formulas consists of predicates and the two special symbols > and ⊥.
By connecting atomics formulas with connectors, the sentences, or formulas, of
this language can be defined.

Definition 1.2: Formula

The set of formulas of first-order logic F over L is recursively defined by the
family (Fn)n∈N:

• F0 is the set of atomics formulas, i.e., the word W such that either (i)
there exists n ∈ N∗, an n-ary relational symbol R of SP and n terms of
L t1, . . . , tn such that w= R(t1, . . . , tn) or (ii) W is > or ⊥.

• Fn = Fn−1 ∪ {¬F | F ∈Fn−1} ∪ {F1 ⊕ F2 | F1, F2 ∈Fn−1} ∪
{Qx F | F ∈Fn−1} where ⊕ ∈ {∧,∨,⇒,⇔}, Q ∈ {∀,∃} and x ∈ V .

• F =
⋃

n∈NFn.

Formulas will be denoted by capital or Greek letters such as A, B, F, G,φ, etc. For
the quantifier case, the vector notation ∀~x and ∃~x represents an indistinct set of
quantified variables. The dot notation [∀,∃]x . F allows the quantification to hold
for the rest of the formula, i.e., t is equivalent to ∀x(F).

In addition, we can also extract a particular subset of formulas, the literals,
composed of atomics formulas and their negation.

1.1.2 Free Variables and Substitutions

In a formula, variables can be quantified using an existential (∃) or a universal (∀)
binder or can appear without being bound. Throughout this thesis, two types of
variables are distinguished: the bound variables, denoted as defined in Section 1.1.1
by letters such as x , x ′, x1, y, and the free variables, which use the same letters but
capitalized, i.e., X , X ′, X1, Y . The set of unbound variables of a formula F is called
the free variables of F and denoted FV(F). Formulas containing free variables can be
syntactically manipulated to perform a substitution, which replaces them by terms
following a mapping usually denoted σ. Last, a formula can be devoid of free variable
and is subsequently called a sentence or said to be closed, and open otherwise.

1. Preliminary Notions 9

Definition 1.3: Term Substitution

A substitution σ : V → T is a function from variables to terms and its
application over a term t is denoted σ(t). The domain of the function is
the set dom(σ) = {x ∈ V | σ(x) 6= x}. The image of the function is the set
img(σ) = {σ(x) | x ∈ dom(x)}. Thus, a substitution is defined by induction
over t as follows:

• If t is a variable x then there are two cases:

– if x ∈ dom(σ), then σ(t) = σ(x) ;

– else, σ(t) = x .

• If t is an n-ary function f (t1, . . . , tn) then σ(t) = f (σ(t1), . . . ,σ(tn)).

Having established the definition of substitution for a single term, the definition
can now be extended to encompass an entire formula.

Definition 1.4: Formula Substitution

A substitution σ : V → T over a formula F is denoted σ(F) and defined by
structural induction over F :

• If F is an n-ary predicate P(t1, . . . , tn) then σ(F) = P(σ(t1), . . . ,σ(tn)).

• σ(>) => and σ(⊥) =⊥.

• If F = ¬G then σ(F) = ¬(σ(G)).

• If F is a binary formula with the connectives ⊕ ∈ {∧,∨,⇒,⇔} F1 ⊕ F2

then σ(F) = (σ(F1)) α (σ(F2)).

• If x ∈ V and F is a formula quantified by Q ∈ {∀,∃} Qx . G then σ(F) =
Qx ′. σ(G[x 7→ x ′]) with x ′ 6∈ dom(σ)∪

⋃

t∈img(σ) FV(t)∪ (FV(G) \ {x}).

The assignment of a variable X to a term t is denoted X 7→ t. Thus, a sub-
stitution that maps X to a and Y to b is denoted σ = {X 7→ a, Y 7→ b}. Using
substitutions, two formulas can become syntactically equal through instantiating
their free variable(s) with the same term(s). As such, if for two formulas F and G
there exists a substitution σ such that σ(F) = σ(G), these two formulas are said
unifiable with σ being their unifier.

Furthermore, for every pair of unifiable formulas, there exists a most general unifier
θ (modulo renaming), denoted mgu. θ has the property that for every unifier τ
of F and G, there exists τ′ such that τ = τ′ ◦ θ .

Furthermore, two formulas are said α-equivalent if they are syntactically identical
when renaming the bound variables “properly”. For example, ∀x . P(x) is α-equivalent
to ∀y. P(y), but ∀x . Q(x , y) and ∀y. Q(y, y) are not α-equivalent, as y is free in
the first formula and not in the second.

10 1.1. First-Order Logic

1.1.3 Semantic and Truth Value of a Formula

The end goal of writing formulas is twofold — express the world through a universal
and logical language and reason over the sentences of this language. In order to do
this, we must define the truth value or logical value of a formula, which can vary based
on the conditions established within the particular environment and interpretation
in which it is evaluated.

An interpretation contains information about the predicates and the terms for
which they hold. An environment enhances an interpretation by giving a value
to free variables. Then, it is possible to evaluate the value of a formula for a
given environment.

Definition 1.5: Interpretation of formulas

Let I be an interpretation of L , F a formula of L , D the domain of I and e
an environment.
An interpretation is a function that takes an element of L and an environment
and returns an element of {0, 1}, 0 meaning that the formula does not hold in
these conditions, and does otherwise. In particular, the interpretation of F in e
is denoted ValI(F, e) and defined as follows:

1. ValI(⊥, e) = 0.

2. ValI(>, e) = 1.

3. ValI(R(t1, . . . , tn), e) = 1 iff (ValI(t1), . . . , ValI(tn)) ∈ RI .

4. ValI(¬F, e) = 1− ValI(F, e).

5. ValI(F1 ∧ F2, e) = ValI(F1, e)× ValI(F2, e).

6. ValI(F1 ∨ F2, e) = max(ValI(F1, e), ValI(F2, e)).

7. ValI(F1→ F2, e) = max(1− ValI(F1, e), ValI(F2)).

8. ValI(∀x F, e) = 1 iff for all a ∈D, ValI(F, e[x := a]) = 1.

9. ValI(∃x F, e) = 1 iff there exists a ∈D such that ValI(F, e[x := a]) = 1.

Thanks to this definition, the semantics of a formula can now be deduced. This
value can fluctuate depending on the environment, hence the need to define the
notion of a model (resp. a counter-model) for a sentence, which is an interpretation
that makes the formula true (resp. false) for all environment. For the rest of this
thesis, we will focus on the value of a formula for any interpretation and then on the
notion of logical theorem, usually shortened to theorem. A formula F is a theorem if
every interpretation of F is a model. Conversely, a formula is said to be unsatisfiable
if every interpretation is a counter-model.

Recall that logic is used as a way to describe and manipulate the world. Now that
this language has been defined, we can expand toward logical reasoning, by utilizing

1. Preliminary Notions 11

this logic in a specific reasoning method: the method of analytic tableaux.

1.2 Method of Analytic Tableaux

Although clausal proof techniques [11, 96, 97, 186, 209] have enjoyed success
in automated theorem proving [225], some applications benefit from reasoning
on unaltered formulas (rather than Skolemized clauses), while others require the
production of proofs. Thanks to its equivalence to Gentzen’s sequent calculus [134],
these roles are fulfilled by provers based on the tableau method [166], as initially
designed by Beth and Hintikka [41, 148], and later extended by Fitting [124] to
be usable in automated deduction.

1.2.1 Free-Variable Tableaux Calculus

The tableau method proceeds by refutation, i.e., we take the negation of the formula
and try to prove its unsatisfiability, and thus that the original formula is valid. A
tableau (T,σ) for a formula F is a pair of a tree rooted in F , whose nodes are decorated
with a set of formulas, and a substitution σ over the free variables of these formulas.
A tableau is either (i) a single-node tree with the empty substitution, or (ii) obtained
by application of an inference rule R on a tableau (T ′,σ′). These rules are part of
a (refutationally complete) set of inference rules (Figure 1.1), and can be applied
to a formula f to generate a new formula f ′, denoted f R f ′. Thus, R can be
one of the following:

• R is a unary (α, γ or δ) rule with premise P and conclusion C , and T is obtained
from T ′ by adding C to a leaf of a branch that contains P,

• R is a n-ary (β) rule with premise P and conclusion Ci(1≤i≤n)
, and T is obtained

from T ′ by extending a branch that contains P with n nodes decorated with
{Ci(1≤i≤n)

},

• R is a closure rule that extends the substitution σ′.

Note that in this setting, proof trees are n-ary, as only β-rules create new nodes.
A branch in a tableau (T,σ) is said to be closed if it contains two literals L and L′

such that σ(L) = σ(¬L′), otherwise it is open. The set of open branches of T is
denoted openσ(T). The tableau is closed if openσ(T) = ;. The notion of inference
rule can be extended to tableaux themselves: thus, passing from a tableau (T,σ) to
a tableau (T ′,σ′) thanks to an inference rule R is denoted T ,→R T ′. Finally, this
derivation is called the method of analytic tableaux.

The process of applying rules on a tableau T rooted in a formula F to close the
branches is called a proof search for F . The specification of the rules used, the order
they are applied, or other parameters define the proof-search procedure. In the end, a
proof for a formula F is a closed tableau. A proof-search procedure is said to be fair if
each and every available rule has been applied at least once while no proof is found.

12 1.2. Method of Analytic Tableaux

⊥ �⊥�
¬> �¬>�

F,¬G �σ�σ

where σ(F) = σ(G)
(a) Closure rules.

¬¬F α¬¬F

F ∧ G α∧F
G

¬(F ∨ G)
α¬∨¬F

¬G

¬(F ⇒ G)
α¬⇒F

¬G
(b) α-rules.

F ∨ G β∨F G
¬(F ∧ G)

β¬∧¬F ¬G
F ⇒ G β⇒¬F G

F ⇔ G β⇔F
G

¬G
¬F

¬(F ⇔ G)
β⇔¬G

F
G
¬F

(c) β-rules.

∃x . F δ∃F[x 7→ sko(Y1, . . . , Yn)]
¬∀x . F δ¬∀¬F[x 7→ sko(Y1, . . . , Yn)]

Where sko is a fresh (e.g., never previously used in the proof) Skolem symbol and
Y1, . . . , Yn are the free variables in the branch.

(d) δ-rules.

∀x . F γ∀F[x 7→ X]
¬∃x . F γ¬∃
¬F[x 7→ X]

Where X does not appear elsewhere in the proof.
(e) γ-rules.

Figure 1.1: Free-variable tableau rules.

Definition 1.6: Fairness

A proof-search procedure is fair if and only if each formula on which a non-γ-rule
can be applied occurs in a subsequent step, and every γ-rule will be computed
an arbitrary number of times. More formally, for each formula f part of a
tableau T :

• Every closure, α-, β-, δ-formula occurrence in T eventually has the
appropriate tableau expansion rule applied to it, on each branch on
which it occurs.

• Every γ-formula occurrence in T has the corresponding rule applied to it
arbitrarily often, on each branch on which it occurs.

1. Preliminary Notions 13

¬P(a)
P(b)

∀x . P(x)∨ (∀y ¬P(y)∨∀z ¬P(z))
γ∀P(X)∨ (∀y ¬P(y)∨∀z ¬P(z))

β∨P(X)
�σ

σ = {X 7→ a}
∀y ¬P(y)∨∀z ¬P(z)

β∨∀y ¬P(y)
γ∀

¬P(Y)
�σ

σ′ = {Y 7→ b}

∀z ¬P(z)
γ∀

¬P(Z)
�σ

σ′′ = {Z 7→ b}

(a) Tableau — focus on formulas. (b) Tableau — focus on structure.

Figure 1.2: Two ways to represent a tableau.

This notion is a requirement for one of the two main characteristics of a tableau
calculus: completeness. It guarantees that if a proof can be found, the procedure
will eventually find it. The other one, the soundness of the calculus, ensures that
it only produces legal proofs.

Definition 1.7: Soundness

A proof-search procedure P is sound when if P finds a proof for a formula F ,
then F is valid.

Definition 1.8: Completeness

A proof-search procedure is complete when if F is valid then P finds a proof of
F .

Throughout this thesis, a tableau (or a proof-search tableau) will be represented
either as in Figure 1.2a, to highlight its formulas, or as in Figure 1.2b, to focus on the
general structure of the tree. Unlike sequent calculus, formulas are not duplicated
at each step, and the root of a tableau is at its top.

In addition, the special symbol ∂ (F) denotes the delay of the treatment of a
formula F in the calculus. In other words, a delay is an interference in the regular rule
application order of the proof-search procedure. The delayed formula is hidden from
the proof search, waiting to become computable. It allows for a formula to be processed
out of its usual place, i.e., after (resp. before) those with a higher (resp. lower) priority.

1.2.2 Terminology and Optimizations

The tableau method presented in the previous section is an enhancement of the original
(ground) version of tableaux as first introduced by Beth and Hintikka [41, 148]. The
main difference lies in the lack of free variables, impacting directly the instantiation
rule: in the ground version, a variable has to be instantiated by a ground term.

14 1.2. Method of Analytic Tableaux

P(a)
P(b)
¬P(c)

∀x P(x)∨ P(c)
β∨∀x P(x)

γ∀P(a)
∀x P(x)

γ∀P(b)
∀x P(x)

γ∀
P(c)

��

P(c)
��

Figure 1.3: Inefficient instantiation (with free variables).

Ground tableaux provide an elegant way to present proofs, but its calculus is not
suitable to efficiently search for one. In practice, considering that the free variable
can be instantiated by a theoretically infinite number of terms, trying to guess the
“right” term can be quite inefficient. For example, in Figure 1.3, the formula ∀x P(x)
instantiates x twice by the wrong terms (a and b) before trying c. This mechanism
can be extended to a larger set of constants, resulting in a long chain of unsuccessful
instantiations. [124] overcomes this issue by introducing the concept of free-variable
tableaux, which allows delaying the instantiation of free variables, which are now
used as a placeholder waiting for an instantiation. In this way, formulas become
unifiable and the search for instantiation candidates is facilitated.

Scope of Free Variables and Substitutions The notion of the scope of a free variable
for a node n in a proof tree defines the free variables to which n has access. For
n, a free variable is called local if it was introduced by a formula F and there is no
branching rule between F and n, and non-local otherwise. In Figure 1.4, the free
variable X is considered as local for n0, since it is introduced by ∀x . P(x)∨Q(x), and
non-local after the disjunction, i.e., for n1 and n2. A free variable can also have multiple
occurrences if the gamma that has generated it has been applied multiple times.

A substitution is said to be local to a node n if it only maps local variables, non-
local otherwise. In case of a substitution closing the whole tree, this substitution
is called global. An eager closure denotes the action for a branch to find a closure
before all the rules have been applied.

Skolemization New challenges arise from free variables being part of the proof-
search tree. The first one is the consistency of free variables between different branches
of the tree, i.e., if a free variable X is substituted by a in a branch, it has to be substituted
in the whole tree. The other one is directly related to δ-rules. Indeed, with free
variables in the tree, it becomes harder to instantiate new Skolem symbols on the fly,

1. Preliminary Notions 15

¬P(a)
¬Q(a)

∀x . P(x)∨Q(x)
γ∀P(X)∨Q(X)

β∨P(X)
�σ

σ = {X 7→ a}
Q(X)

�σ
σ = {X 7→ a}

(a) Variable scope — tableau representation.

n0

¬P(a)
¬Q(a)

∀x . P(x)∨Q(x)
P(X)∨Q(X)

n1

P(X)

n2

Q(X)

(b) Variable scope — node representation.

Figure 1.4: The scope of a variable in free-variable tableau.

since the “final value” of the free variable is not yet known. To address this issue, the
standard solution is the use of Skolemization, which uses a fresh Skolem symbol, i.e.,
a function symbol taking a set of free variables as parameters. In the case of a branch
without free variables, the Skolemization function results in a constant.

Definition 1.9: Skolemization

Let S be a subset of F and FV′ a subset of FV(S). Let F ∈S be such that F is
of the form ∃x F ′. The Skolemization function s : (F , T)→F of a formula
is defined as follows: s(F) = F ′[x 7→ f (Y1,...,Yn)]

where FV′ = {Y1, . . . , Yn} and f is a
fresh function symbol not occurring anywhere else in S .

Skolemization is one of the key mechanisms of free-variable tableaux. Intuitively
speaking, FV′ correspond to a subset of free variables of FV(S) that can fluctuate
according to the chosen Skolemization strategy. Those strategies vary in terms of
the free variables used as parameters for the Skolem symbol (δ-, δ+-, δ∗-rules [8,
144, 218]), and the Skolem symbol itself, which can be reused if introduced by the
same formula more than once (δ+

+
and δ∗

∗
-rule [36, 81]). More optimized strategies

also involve the use of ε-term (δε-rule [137]), which is a meta-term that gives a
constant that satisfies the Skolemized formula.

Destructive and Non-Destructive Versions By instantiating a free variable, applying
a substitution affects the whole tableau. This step is said to be destructive because it
may alter open branches sharing variables. Despite the replacement of free variables,
the destructive version of tableaux maintains the proof confluency of the proof-search
procedure. A calculus is said to be proof confluent [142] if it can derive a proof for any
unsatisfiable set of formulas and from any given tableau, provided that the tableau
itself has been generated using the calculus’ rules. In simpler terms, a confluent tableau
calculus never gets stuck in situations where the sequence of rules leads to a dead end.

Conversely, the non-destructive version of tableaux does not replace free variables,
but instead reintroduces a specific γ-formula and instantiates it by a term previously

16 1.3. Concurrent Algorithmics

¬(∃x(P(x)⇒ (P(a)∧ P(b))))
γ¬∃¬(P(X)⇒ (P(a)∧ P(b)))

α¬⇒P(X),¬(P(a)∧ P(b))
β¬∧¬P(a) �σ

σ = {X 7→ a}
¬P(b)

γ¬∃¬(P(Y)⇒ (P(a)∧ P(b)))
α¬⇒P(Y),¬(P(a)∧ P(b)) �σ

σ = {Y 7→ b}

(a) Destructive version.

¬(∃x(P(x)⇒ (P(a)∧ P(b))))
γ¬∃¬(P(X)⇒ (P(a)∧ P(b)))

α¬⇒P(X),¬(P(a)∧ P(b))
β¬∧¬P(a)

γ¬∃¬(P(a)⇒ (P(a)∧ P(b)))
α¬⇒P(a),¬(P(a)∧ P(b)) ��

¬P(b)
γ¬∃¬(P(b)⇒ (P(a)∧ P(b)))
α¬⇒P(b),¬(P(a)∧ P(b)) ��

(b) Non-destructive version.

Figure 1.5: Proof of ∃x(P(x)⇒ (P(a)∧ P(b))).

found by a substitution. The differences between these two versions are illustrated
in Figure 1.5, where Figure 1.5a is a proof in a destructive tableau calculus and
Figure 1.5b a non-destructive proof.

1.3 Concurrent Algorithmics

The widespread adoption of multi-process systems in all aspects of computer sciences
has led to significant advancements as well as new challenges. These architectures
enable better handling of the system resources and open a way for improved im-
plementation of concurrent algorithms. However, they encounter specific issues,
particularly when coordination is required. When multiple processes collaborate on a
shared task, there is often a need to synchronize their actions and keep them informed
about the overall task’s progress. Without such coordination, certain processes might
redundantly repeat work already completed by others or even attempt to operate
on data that is no longer available.

This section introduces standard concepts of concurrent algorithmic, inspired
by [140], and the main challenges it faces in Section 1.3.1. Subsequently, it dives into
the topic of communication and memory management in Section 1.3.2 and concludes
in Section 1.3.3 by introducing a semantic to represent a concurrent execution.

1. Preliminary Notions 17

p1 write(0) read()

(a) Sequential execution of two operations on a resource R by the process p1.

p1 write(0)

p2 read()

(b) Concurrent execution of two operations on a shared resource R: write(0) by p1 and read() by
p2.

Figure 1.6: Sequential vs. concurrent executions of two operations, write(0) and read(),
on one resource.

p1 write(0)

p2 read()

Figure 1.7: Concurrent accesses to a shared resource R that can lead to undesired behaviors.

1.3.1 Challenges of Multi-Process Architectures

We consider a system that consists of a finite set of n processes, denoted by lowercase
letters such that p, q, and r, possibly indexed, i.e., pi. In the following, we use the
notion of process to define indistinctly any type of concurrent unit (processes, threads,
. . .). Beyond accessing local variables, processes can execute an operation on shared
objects or resources, such as reading from or writing to a variable. It is through such
objects that processes achieve synchronization in their computations.

In a single process, operations are performed one after the other in a sequential
way, as presented in Figure 1.6a. Let us consider a resource R, on which processes
can perform two operations: write(x), which writes the value x in R, and read(),
which returns the current value of R. In this figure, the process p1 first executes
write(0) and then read().

However, when it comes to multiple processes, they may naturally want access
to the same resource, as illustrated in Figure 1.6b. In this case, p1 first alters the
value of R by executing the operation write(0), and thus p2 retrieves this new
value with the read().

In this situation, and without further restrictions, things can quickly get out of
control. For instance, in Figure 1.7, both p1 and p2 attempt simultaneous accesses to
R, aiming to respectively execute the write(0) and read() operations. This can lead
to an incoherent behavior, in which either the R cannot be updated, or an erroneous
value is returned after the reading operation. This management of shared data is
the basis of all the concurrent algorithmic challenges [146].

To be able to properly deal with a large number of processes, sequential algorithms
must be completely redesigned to take into account the concurrent accesses to
shared data. In particular, synchronization mechanisms need to be implemented
in order to prevent inconsistencies. Moreover, multi-process approaches encounter
challenges such as deadlock [88] and the need to manage synchronous or asyn-

18 1.3. Concurrent Algorithmics

p1 write(0) write(1)

p2 read()

(a) Concurrent but not parallel.

p1 read() (on R1)

p2 read() (on R2)

(b) Parallel but not concurrent.

p1 write(0) read()

p2 read() write(1)

(c) Concurrent and parallel.

Figure 1.8: Distinction between concurrency and parallelism.

chronous behaviors [176].
Before going further, it is important to make a distinction between the concepts of

concurrency and parallelism. Although these two concepts are closely intertwined, the
former concerns the structure of a program, whereas the latter refers to its execution.
Figure 1.8 illustrates and distinguishes these two concepts. The scenario involves a
system with two processes, p1 and p2, which can perform the two previous operations.

Let us begin with the setup presented in Figure 1.8a. In this configuration, each
process performs an operation on the resource R one after the other, such that there
is only one process accessing R at a given time. This configuration is said to be
concurrent due to the simultaneous accesses of the same resource by two processes,
but not parallel because the accesses did not occur at the same time.

In the system described in Figure 1.8b, each process accesses a distinct resource,
R1 for p1 and R2 for p2. Since there is no shared resource, the processes can work at
the same time, making this configuration parallel but not concurrent.

Conversely, in Figure 1.8c, the resource R is shared between all the processes. Thus,
since the read() operation could not cause any malfunction in the system, it can
be performed by the two processes at the same time, making this configuration
parallel and concurrent.

In the literature of automated deduction, the term parallelism is often used as
a general term to design the parallelization of an algorithm, which indiscriminately
combines both parallelism and concurrency. Therefore, for the remainder of this
thesis, we will adopt this interpretation of parallelization and clarify its usage when
referring to parallel execution.

1. Preliminary Notions 19

Shared Memory

p1 p2 . . . pn

(a) Shared memory.

p1 p2 p3 p4

(b) Message exchanges.

Figure 1.9: Comparison of memory management between shared memory and message
exchanges.

1.3.2 Communication Between Processes and Memory Manage-
ment

One of the primary techniques to implement the synchronization between processes
is to make them communicate, as first introduced in [149]. By being aware of what
others are doing, they will be able to manage their own actions to maintain a coherent
system. Thus, the ability to broadcast and receive information among different
processes is a fundamental principle of concurrent programming. There are two
common approaches to dealing with concurrent systems: employing a shared memory,
where all processes have access to a single common memory, or restricting memory
to individual processes and enabling information exchange through message passing.

In a shared memory architecture (Figure 1.9a), the main memory is shared among
all processing elements within a single address space. This setup includes specific
segments called critical regions that are safeguarded against concurrent accesses.
This involves the use of mechanisms such as mutual exclusion [111], which permits
only one process to access these regions, as well as the use of a fair scheduler [158],
ensuring eventual access to the resource for every process and preventing starvation.
This type of architecture is commonly used in computers with multiple processors or
cores. The advantages of this approach are fast access to shared data for all processes
and efficient memory utilization, allowing efficient work with an important amount
of data. However, it also introduces challenges such as race conditions, which need
to be addressed with locks, potentially leading to parallel slowdowns or deadlocks,
making implementations error-prone.

Conversely, in message exchanges (Figure 1.9b), each process is envisioned as a
separate entity, akin to a software agent, with its own address space. Communication
is achieved through message passing, i.e., by sending and receiving information among
processes. These processes can have a uniform behavior or, conversely, each might
have a distinct role and available actions (sending, receiving, or both). This approach
can be used in both single computers and distributed systems such as grids or clusters
of computers, and can easily manage the memory limitation issue.

Recall that the goal of the use of concurrency in this context is the design of a
procedure based on a tree structure in which branches are explored in a simultaneous
way. Each branch carries its own set of data, although the vast majority is shared with
others. Interactions between branches are limited to parent-child communications.
Even though a shared-memory architecture could have been envisaged, due to a large
amount of common data, the limited interactions between processes (i.e., one-to-one

20 1.3. Concurrent Algorithmics

current
node

πparent

child1 child2 Πchildren

Figure 1.10: Node structure and local vision.

propagation, no broader broadcast) and the nature of these interactions have directed
us toward the choice of message exchanges. This architecture also presents a large
advantage when it comes to extension to distributed systems.

1.3.3 Semantic for Concurrency

In order to describe the behavior of concurrent processes, a dedicated semantics is
needed. This section describes a simple WHILE language augmented with instructions
for concurrency, in the style of CSP [149]. This semantic focuses on message exchanges
and relies on strong parent-children communications.

In this language, each process has its own variable store, as well as a collection of
process identifiers used for communication: πparent denotes the identifier of a process’s
parent, while Πchildren denotes the collection of identifiers of active children of that
process. A node can have an arbitrary number of children, but only one parent. This
representation (illustrated in Figure 1.10) describes the local view of a process, which
has a special relationship with its parent and children.

Given a process identifier p and an expression e, the command p ! e is used to send
an asynchronous message with the value e to the process identified by p. Conversely,
the command p? x blocks the execution until the process identified by p sends a
message, which is stored in the variable x . Lastly, the instruction start creates a new
process that executes a function with some given arguments, while the instruction
kill interrupts the execution of a process according to its identifier. Let p, q, and
r be tree processes. Thus, the following communication primitives, illustrated in
Figure 1.11, are allowed:

• p!msg: the current process sends the message msg to p.

• p?msg: the current process is waiting for a message from p. Once received, this
message is stored in the variable msg.

• start fun: a new process starts, running the function fun.

1. Preliminary Notions 21

p
q!msg

q
p?msg

(a) p sends the message msg to q, which receives
and stores it into the variable msg

p
q?msgQ
r?msgR

q
p!msgQ

r
r!msgR

(b) p receives the message msgQ from q (resp.
msgR from r) and stores it into msgQ (resp. msqR).

Figure 1.11: Example of communication.

Procedure 1: Procp

Data:
1 begin
2 for 1 to 10 do
3 start Procc

4 while ∃ π ∈ Πchildren do
5 π? v
6 if isEven(v) then
7 kill π

8 return 0

• kill p: the process p is killed.

An example of a concurrent algorithm written with this semantic is given in
Procedure 1 and Procedure 2. The idea of this procedure is to create ten children
that choose an arbitrary number and to kill them when they send an even one. In
detail, Procp starts by creating ten processes running the procedure Procc (Line 3).
The new processes executing Procc choose randomly a number (Line 3) and send it to
the parent process (Line 4) over and over again. Since the ! operation is blocking, a
child is put on hold until its message has been read by the parent. In the meantime,
the parent process waits for answers from its ten children (Lines 4-5) and stores them
into the variable v. If v is even, the corresponding child process is killed (Line 7),
which is automatically removed from Πchildren. Otherwise, the parent will later receive
another message from this child, until the number becomes even.

This notation is used to represent the concurrent procedures in Chapter 3.

22 1.3. Concurrent Algorithmics

Procedure 2: Procc

Data:
1 begin
2 while true do
3 v← random()
4 πparent ! v

5 return 0

23

Chapter 2
State of the Art

Contents

2.1 Optimizations and Completeness in Tableaux 23
2.1.1 Proof-Search Variations in Tableau-Based Methods 23
2.1.2 Completeness of Proof-Search Procedures 24

2.2 Parallelism and Concurrency in Automated Deduction 26
2.2.1 Theorem Proving Strategies for First-Order Logic 26
2.2.2 Parallel Theorem Proving . 29

2.3 Theory Reasoning in Tableaux . 32
2.3.1 Equality Handling in Tableaux 32
2.3.2 Other Theories and General Theory Management 34

This chapter presents the state of the art of the different notions discussed in
this thesis, allowing contributions to be positioned in relation to existing work. In
particular, it details variations of the tableau methods and delves into optimizations
and properties of the calculus, as well as the completeness of some implementa-
tions. Then, it introduces other reasoning methods in automated deduction and
categorizes automated theorem-proving strategies through the prism of parallelism.
Finally, it presents theory management in tableaux, with a particular emphasis on
equality reasoning.

2.1 Optimizations and Completeness in Tableaux

This section focuses on the variations of tableau-based proof-search procedures, which
can lead to multiple closure behaviors. Then, it presents some completeness proofs
of actually implemented procedures, which are rather rare in the literature. Indeed,
in order to have a competitive approach, some provers choose to drop completeness
to achieve better in-practice results [120].

2.1.1 Proof-Search Variations in Tableau-Based Methods

This part introduces some of the main variations and optimizations of a tableau-based
proof-search procedure. They can work in a local way or involve a global vision of a
tableau, to take advantage of information coming from the different branches.

24 2.1. Optimizations and Completeness in Tableaux

Skolemization Strategies A key mechanism in first-order logic is Skolemization [221].
The usual Skolemization strategy, introduced by Fitting in [124], takes all the free
variables in the branch and creates a fresh Skolem symbol parametrized by those
variables. This rule is referred to as δ-rule or outer Skolemization.

Through the years, optimized strategies have been developed to deal with ex-
istentially quantified formulas. Most of the optimizations rely on a finer choice of
the free variables involved in the mechanism. The δ+-rule [144], also known as
inner Skolemization, optimizes standard outer Skolemization by solely keeping the
free variables of the Skolemized formula as arguments, which ensures a more local
solution and an exponential gain in proof-search size over outer Skolemization. The
δ∗-rule [8] relies on a selection function to keep only the relevant formulas without
affecting the integrity of the branch.

Other strategies involve refinements on the Skolem symbol itself. The δ+
+
-

rule [36], or pre-inner Skolemization, as its name suggests, builds over inner Skolem-
ization and adds a restriction: the Skolem symbol yielded by applying a δ+

+
–rule can

avoid the freshness condition if it has already been instantiated by an α-equivalent
formula. The δ∗

∗
-rule [81] extends the δ∗ by delaying the Skolemization until the end

of the proof search, attempting to perform a global Skolemization [82] and reducing
the number of Skolem symbols and of variables dependencies in the proofs.

More advanced strategies also involve the use of ε-term (δε-rule [137]), which
is a meta-term that gives a constant that satisfies the Skolemized formula.

Pruning A method commonly implemented in tableau-based theorem provers is
pruning [188]. This technique aims to reduce the proof-search space as well as the
size of the proof tree [167, 194].

The idea behind the mechanism is to use the whole tree to remove irrelevant or
redundant subtrees. In practice, the procedure attempts to detect branches that are
similar to already closed ones and to eliminate them by grafting the corresponding
branch in place of the deleted one. More specifically, they compare different subtrees
and attempt to show that one of them (together with its successors) is redundant in
the presence of the other. A natural approach here is to exploit subsumption between
tableaux, in a similar manner to the way subsumption between clauses is used in
formula saturation procedures such as resolution. Such a pruning mechanism is
implemented into tableau-based solvers such as Zenon [65] and Ramcet [79].

This mechanism can be extended even in the context of iterative deepening.
In this case, previously locally closed branches are memorized [6]. However, this
technique is very memory-consuming, and cannot be extended to global substitution or
unsuccessful substitution attempts because the new bound can lead to new solutions.
SETHEO [181], together with the algorithm described in [168], implements a
variation of this method for connection tableau with a local failure cache mechanism.

2.1.2 Completeness of Proof-Search Procedures

Many texts on free-variable tableaux feature a discrepancy between calculi and proof
search procedures. Indeed, the completeness of the calculus does not imply the

2. State of the Art 25

completeness of its adaptation by various proof-search procedures. Some tableau-
based procedures, mainly working with a global closure rule, some procedures have
proven to be complete.

In tableaux, a global closure refers to finding a substitution that closes the whole
tableau and applies it at once, whereas the notion of eager closure embodies the
mechanism of closing branches one after the other, propagating the substitutions
to the other branches.

Global Closure One of the first procedures in this vein can be found in [124]. It
describes an “MGU atomic closure rule” that corresponds to what we call eager closure,
but later gives a proof search procedure that performs global closure. This procedure
relies on a fair expansion of the tableau and iterative deepening where the closure of
the whole tableau is tested when the γ-rule limit has been reached. This technique,
while it has the merit of being one of the first, is not very effective in practice since
it requires waiting until reaching the limit to test the closure.

Some approaches avoid eager closure and backtracking entirely. [136] proposes
an incremental closure rule, which keeps track of substitutions for each branch and
eventually closes the whole tableau at once. This technique is implemented in the
prover Princess [211] and proved complete.

Clausal Tableaux In the context of clausal tableaux, [30] uses a notion of tableau
subsumption to avoid fairness issues, together with reconstruction steps to get around
the destructive nature of closure. [44] and [25] both provide proof-confluent cal-
culi that avoid destructive instantiation and discuss the issue of fair proof search.
ME(LIA) [26] provides a completeness proof of the calculus augmented by additional
rules to handle linear arithmetic.

Compiled Tableaux Alternatively, [201] describes an approach to perform a proof
search on a compiled proof tree. The basic idea is to compile a fully expanded
tableau into a program that carries out the proof search at runtime. First, an arbitrary
first-order formula is transformed into a graph representation of a fully expanded
tableau for it. Then, the graph is compiled into a program that shows the formulas’
inconsistency when it is executed. The execution reflects the proof search in semantic
tableaux and tries to close every branch in the tableau. The advantage of this approach
is that some of the efforts for the proof search (namely, expanding the tableau)
can be moved to a preprocessing phase that derives the graph and generates the
program for it. This results in a more efficient proof search since the tableau does
not need to be expanded anymore.

Eager Closure In [94], a definition of the eager closure rule is given, which explicitly
points out the risk of unfair proof search. It mentions tableaux enumeration with
backtracking and iterative deepening as a solution but without an explicit procedure.
[38] describes an implementation of a prover with eager closure, yet the completeness
proof given is for a variant of that prover with global closure. The prover Zenon [65]
adds the required instances to a branch instead of instantiating the free variables,

26 2.2. Parallelism and Concurrency in Automated Deduction

and implements a pruning mechanism to avoid duplicated work for branches that
share variables. One of the reasons behind the lack of completeness proof with
eager closure is that the mechanism is more related to the non-destructive version
of tableaux, for which completeness is harder to achieve, as stated by Hähnle: “At
the present time, no strongly complete, destructive tableau proof procedure is known
that works well in practice” [208].

2.2 Parallelism and Concurrency in Automated Deduc-
tion

Automated reasoning aims to automatically produce a proof of mathematical theorems.
The large search spaces explored through the proof search have motivated early
parallelizing endeavors. Parallelization in automated deduction was first used between
the end of the 1980s and the beginning of 1990 both for satisfiability in propositional
logic (SAT) [1, 16, 172, 222] and first-order automated theorem proving [53, 57, 63,
106, 214, 229]. While the latter has known a drop in interest, research in the former
continues nowadays [145, 157, 171], recent improvements have led to renewed
interest in the first-order case, especially for model-based methods [60].

Usually, classifications of reasoning techniques split them according to their
logical inference type [208], i.e., resolution or analytic rules, while others focus
on the proof search itself [53, 54, 59]. In this thesis, as we focus on first-order
classical logic, we present two main paradigms: the resolution-based methods and
the tableau-based ones.

On the other side, parallelization in automated deduction can arise from all the
layers of those techniques, from inference rule to apply to the proof-search plan itself.
Whereas the former suggests the parallel exploration of the proof-search space, the
latter can technically describe a theorem prover running different variations of the
proof-search procedure at the same time [56, 59].

In this section, we focus on introducing reasoning techniques in first-order logic
and distinguish the different approaches in parallel automated deduction. We start
by categorizing theorem-proving strategies, and then we study the parallelization
of these techniques, from the improvement of the actual methods with parallelism
to parallelism by design strategies.

2.2.1 Theorem Proving Strategies for First-Order Logic

In automated theorem proving, the best-known methods are either resolution-based
or tableau-based. Resolution-based methods transform the goal formula into a clausal
normal form and then perform a sequence of derivation steps on this set of clauses
using a saturation algorithm. In contrast, tableau-based methods work directly on
the original formula by reducing goals into subgoals and attempting to resolve these
subgoals. Both of them work by refutation, i.e., attempt to prove that the negation of
the original formula is unsatisfiable (by generating the empty clause for the former,
and closed tree for the latter).

2. State of the Art 27

The main differences come from the form of the initial statement, their adaptability
to other theories or logics, and the output. Coarsely, the resolution mechanism can
be seen as a system working on a base of facts that tries to generate new facts until
reaching a given goal. Conversely, tableaux start with a goal and subdivide it into
subgoals, applying inferences rules until reaching two contradictory formulas. Some
hybrid methods also borrow attributes from both of the approaches. For example,
the inverse method attempts to saturate a base fact such as resolution but works
directly with formulas instead of clauses.

Resolution-Based Methods

Resolution-based methods rely on a saturation process, aiming to produce new elements.
This term refers to a wide range of techniques based on the resolution rule and
improved by multiple optimizations. Inspired by the ideas presented in [97], a
refutationally complete calculus was introduced by Robinson in 1965 [209].

Resolution Rule The central element in resolution is the notion of clause, which
is a finite disjunction of literals, viewed as a multiset. Variables can be part of a
clause and are therefore interpreted as universally quantified. This method transforms
the initial formula to prove into clausal form and proceeds iteratively by applying
a resolution rule between two clauses which contains two complementary literals,
generating a new clause called resolvent. The resolution rule is as follows, l meaning
that the literal l is selected in the clause:

C1 ∨ l ′ C2 ∨ l
σ(C1 ∨ C2)

where C1 and C2 are two clauses and σ is a mgu between l and l ′. Since the
rule attempts to find a resolvent between two clauses, it is called binary resolution.
The calculus generates a chain of derivation until either (i) it generates the empty
clauses, denoted �, meaning the validity of the original formula or (ii) it saturates the
facts base, leading to a failure. This calculus serves as a base for various automated
theorem provers as Otter [177], Vampire [163], or Waldmeister [71], including the
best state-of-the-art ones.

Improvements of the Original Method In order to improve the in-practice efficiency
of the method, the original calculus has undergone numerous refinements and
optimizations. This has led to ordered resolution, which endows the resolution calculus
with an order over literals and a selection function [164], limiting the number of
clauses that can be generated and reducing the search space.

Another improvement comes from the resolution rule itself. While binary reso-
lution manages to find a resolvent between two clauses, hyper-resolution attempts
to find one between an arbitrary number of clauses [210], but this approach has
led to only a few implementations [192].

28 2.2. Parallelism and Concurrency in Automated Deduction

Equality Management: Paramodulation and Superposition The equality pred-
icate plays a central role in many first-order logic problems. However, its addition
in an axiomatic way to the problem is subject to the generation of too many (and
most of the time useless) clauses, making it space and time-consuming. Conversely,
paramodulation [186, 237] offers to handle it directly in the language itself, as a
dedicated inference rule. Thus, the paramodulation calculus corresponds to the
resolution calculus improved by the following rule:

C1 ∨ s ≈ t C2

σ(C1 ∨ C2[t]p)

where C2|p is the subterm of C2 at position p, and C2[t]p denotes the result of
replacing in C2 this subterm by t. This method is mostly used by resolution-based
theorem prover to deal with equality, and can also be implemented as a purely
equational paradigm, simulating non-equational inferences via appropriate equality
inferences, such as in the E [213] theorem prover.

Just as the original resolution, paramodulation can be improved by redundancy
management techniques [169, 197, 219, 238] and further restrictions [187]. When
used with a reduction ordering on terms, the resulting calculus is called superpo-
sition [10, 151, 159] and is implemented in provers such as Zipperposition [93]
or Spass [236].

Tableau-Based Methods

For first-order logic, tableau-based methods were first designed to work with formulas
and thus extended to the clausal case. However, tableaux is still the major reasoning
method used in some non-classical logic, for which a clausal normal form is unknown.

Analytic Tableaux The method of first-order analytic tableaux and its variations,
as introduced in Section 1.2, differs from resolution by reasoning on the original
formula, allowing the output of a sequent-like proof. Multiple automated theorem
provers based on this method or its variations have been developed: 3T AP [35],
HARP [188], leanT AP [38], tableau [92], or Zenon [65] (which implements the
non-destructive version of tableaux) to name a few. An overview of tableau-based
theorem provers is available in [215].

Regular tableaux are tableaux in which none of the branches contain more than
one occurrence of the same formula [27]. They are designed to avoid redundancy,
but their implementation requires attention to a few points, especially due to the
definition of the α-rule (i.e., not applicable in case of the generation of multiple
formulas) and its interaction with the closure rule which instantiates free variables.

Clause Tableaux and Refinements Tableaux can also make use of formulas in
clausal form, resulting in clause tableaux [141, 143, 166]. Clause tableaux mainly
constitute a syntactic simplification of full first-order tableaux, which makes the
mechanism closer to resolution and thus more suitable for automated deduction.

2. State of the Art 29

Moreover, due to the uniform structure of formulas in clausal form, it is much easier
to detect additional refinements and redundancy elimination techniques than for the
full first-order format. The mechanism is thus reduced to three rules: the branching-
(β-) expansion rule, the instantiation- (γ-) rule, and the closure rule.

Clause tableaux can follow the same refinement as resolution, i.e., by constraining
the choice of applicable rules or using a selection function and a term ordering. These
refinements can be applied to usual tableaux or clausal tableaux, leading to connection
tableaux, pioneered by Andrews [3] and Bibel [42]. This variant of tableaux is closely
related to model elimination [169], which relies entirely on a restriction on the rule
application: the next selected clause needs to have at least one literal in common
with the one in the parent node. This control mechanism aims to guide the proof,
avoiding potentially useless steps. Those methods are currently the most implemented
in tableau-based theorem provers, with CPTHEO [127], leanCoP [191], METEOR [5],
PARTHENON [67], PARTHEO [216], and SETHEO [181] for instance. A variant of
the connection calculus without clausal form [189] has also been developed, based
on matrices, and implemented into nanoCoP [190].

Regular tableaux can also be adapted to the clausal case, i.e., when none of the
branches contains more than one occurrence of the same literal. In parallel, the n-
ary rule of hyper-resolution can also be applied to the tableau case, resulting in
hyper tableaux [27].

The Inverse Method

Less known than its predecessors, the Inverse Method [101] lies somewhere in be-
tween, borrowing characteristics from both resolution-based reasoning techniques and
tableau-based ones. Just as tableaux, it deals with first-order formulas, but instead of
trying to reduce the goal into subgoals, it attempts to construct goals from previously
proved subgoals. The inverse method was first designed by [134] and used to prove the
decidability of intuitionistic propositional logic and then extended in [174, 175, 180].

This method is mostly used in the case of non-standard logics [234]. For example,
[85] presents an automated theorem prover for first-order intuitionistic linear logic
based on the inverse method. However, it has generally received little attention
in terms of implementation.

2.2.2 Parallel Theorem Proving

Concurrency and parallelism in automated deduction have been widely studied
over the years. Concurrency has been used as the basis of a generic framework
to present various proof strategies [122], to facilitate cooperation between proof
systems with complementary strengths [39], or to allow distributed calculations over
a network [239]. A lot of research has also been carried out on the parallelization
of proof search procedures [59]. This has led to a fine classification of the parallel
behaviors [53] to distinguish the different parallelization levels: parallelism at the
term level, parallelism at the clause level, and parallelism at the search level.

Parallelism at the term level means that multiple processes can attempt to access
the same term or literal, for example, when distinct inferences can be applied

30 2.2. Parallelism and Concurrency in Automated Deduction

simultaneously to different literals of a clause.
Parallelism at the clause level refers to parallel access to distinct clauses or subgoals.

For tableau-based theorem provers, this method implies that multiple processes
progress on different branches or clauses, whereas a sequential version would have
tested one after the other via backtracking. This kind of strategy is employed by
some provers [5, 67, 216], and requires communication between processes. For
resolution-based methods, the main idea is to parallelize the choice of a clause and
update cooperatively the set of available clauses. The idea was implemented in
Roo [170], a parallelization of Otter [177].

The first two categories are subject to a lot of conflicts, mainly due to concurrent
access (for example, variable replacement or clause deletion). Based on these
observations, the parallelization was directed toward the search level, pioneered
by the Clause-Diffusion method [57].

Parallelization of the Proof Search

Parallelism at the search level alters the whole derivation, as multiple processes
search in parallel for a proof. This type of parallelism involves parallel search and is
characterized by communication among the processes. Parallel search yields multi-
search, where different search plans are employed by the processes, and distributed
search, where the search space is divided among all the processes. Both of these
approaches can be combined, along with the other level of parallelism. This type
of parallelism allows more advanced strategies and is responsible for most of the
recent improvements of automated theorem provers.

The main idea of parallelization of the proof search is to generate n processes
that search in parallel for a proof, each of them managing its own derivation and
related data. In this configuration, the success of one process means the success of the
entire proof search. Since each process manages its own data, the issue of conflicts
of the previous levels disappears. While the two previous types of parallelization
aim at speeding up a given search, parallelism at the search level aims at finding a
proof sooner by searching in different ways. The counterpart of the per-process data
management is the redundancy implied by the duplication of information. Another
general issue with parallelism at the search level is the differentiation between the
various processes’ searches. Indeed, since the processes work from the same problem,
their searches could be close, but having two processes performing the exact same
search is useless. The idea is to minimize the overlap of the searches performed
by the parallel processes [52, 55–57, 63].

Thus, two approaches have emerged: applying different search plans, of working
on different data. This distinction was originally presented as competition versus
cooperation [106, 214, 229], and then renamed into multi-search and distributed
search [53, 56], highlighting their ability to be used together.

2. State of the Art 31

Multi-search

A multi-search method is a parallel search method within the proof-search processes
differ in terms of search plans. In a broader context, multi-search may also be extended
to processes applying different inference systems (such as two different resolution-
based systems, or a combination of tableau-based and resolution-based systems).
In multi-search with homogeneous systems, the processes have the same inference
system but different search plans. In multi-search approaches with heterogeneous
systems, the processes can differ either in the inference systems only or in search
plans and inference systems.

In tableau-based systems, different search plans can arise from the (non-exhaustive)
following elements: the limit for iterative deepening, the priority order on rules, the
selection rule, or any combination of thereof. Some examples of tableau-based
heterogeneous systems include CPTHEO [127], which launches SETHEO and the
resolution-based prover Delta [217], and HPDS [227].

For resolution-based strategies, multi-search homogeneous systems were intro-
duced by the Team-Work method [108]. The Team-Work method works with n
processes and one supervisor. All processes have the same inference system, input
problem, and time limit, but differ in search plans (for example, a different selection
function [2]). Every process builds its own derivation and evaluates its progression at
the end of the time limit. Then, the best one (w.r.t. the evaluation function) becomes
the supervisor for the next round, in which all the processes restart their search,
based on the derivation of the new supervisor. DISCOUNT [109] implements such
an approach. Heterogeneous case includes the TECHS system [107], which runs
DISCOUNT [109], SETHEO [181] and Spass [236] in parallel.

Distributed proof-search

A distributed-search method is a parallel search method within the search space is
divided among the parallel proof-search processes. The initial data are split and each
process works with its part. This division is made by knowing the type of rules that can
be applied by the processes, hence this method is usually paired with homogeneous
systems. Distributed search may also apply different search plans to the processes,
leading to methods that combines distributed search and multi-search.

In tableau-based methods, this separation of the proof-search space often refers to
branches. For instance, in HOT [161], a tableau-based automated prover for higher-
order logic, each branch is managed independently and cooperates concurrently to
build a proof after having fully developed (or closed) a branch.

For resolution-based methods, the Clause-Diffusion method [57] was a pioneer in
the field, even being the first parallel-search method for automated first-order theorem
proving [59]. In this method, all processes work with the same inference system
and search plan, whereas the clauses are partitioned among them. This method
pertains to the homogeneous category and was implemented in Aquarius [57, 61,
62], a parallelization of Otter [177], and Peers [64] provers. It was then extended
by Modified Clause-Diffusion [58] into Peers-mcd [56].

32 2.3. Theory Reasoning in Tableaux

2.3 Theory Reasoning in Tableaux

A theory represents knowledge from a given domain. In the realm of logic, it can be
translated as a set of satisfiable sentences and may incorporate dedicated reasoning
techniques. Whereas there exist efficient methods to deal with a specific theory, there
is no universal approach to handle them all, and the addition of theory axioms into
the problem hypotheses is rarely usable in practice. Indeed, some theories can have
an infinite number of axioms, and the resulting increase in the problem size does
not allow efficient reasoning, in addition to an incapacity to identify relevant axioms.
Conversely, the use of domain-specific knowledge to develop efficient reasoning
techniques gives better results and is currently the standard way to deal with a given
theory. This involves the interaction between a general-purpose foreground reasoner
and a specialized background reasoner designed for dealing with problems related to
a particular theory. This collaboration occurs during key moments of proof search,
guiding the process in the correct direction.

Following the pioneering work of Stickel on resolution [200, 224], theory reasoning
methods have been described for various tableau-based calculi: path resolution [183],
the connection method [29, 196], model elimination [23], connection tableaux [28,
29, 128], and the matrix method [184].

This section focuses on theory reasoning in first-order semantics tableaux. Due to
its expressiveness and its prevalence in the problems, equality stands out as a particular
theory. Handling equality reasoning in tableaux is notably challenging, leading to a
wide range of studies and techniques. Thus, a particular emphasis is put on equality
reasoning management in tableau-based methods in this section. Then, we shift to
other theories and present the general management of theory reasoning in tableaux.

2.3.1 Equality Handling in Tableaux

There are two primary techniques for handling equality semantic tableaux: partial
equality reasoning, the more straightforward method consisting of adding new rules
to the tableau calculus, and total equality reasoning, which hinges on E-Unification, a
decision procedure that determines branch closure without additional expansion rules.

Partial Equality Reasoning The earliest methods for incorporating equality into
the grounded version of semantic tableaux emerged in the 1960s [154], following
research on introducing equality into sequent calculi [156]. The idea of this method
is to apply the equality axioms on all the available formulas in order to generate
new terms and eventually find a closure. Thus, if a branch B contains a formula
P(a) and the equality a ≈ b holds, then the equality is “applied” on P(a), generating
P(b) which is added to B. However, these newly introduced expansion rules, while
based on grounded tableaux, present a significant drawback: they are symmetrical
and lack constraints on their application, resulting in a considerable amount of non-
determinism and an expansive search space, often leading to a multitude of irrelevant
formulas. Continuing, if B contains the formulas f (a) ≈ a and P(a), then all the
formulas P(f (a)), P(f (f (a))), . . . can be added to B.

2. State of the Art 33

Enhancements to these equality expansion rules were proposed in [205], aimed
at reducing the search space through strategic restrictions and a more goal-directed
approach. These refined rules selectively use potentially complementary literals for
expansion. [70] presented a set of rules implementing a completion procedure for
grounded tableaux, but these rules are intricate and do not extend well to free-
variable tableaux.
[124] extended this partial approach and adapted it to free-variable tableaux. The

key difference lies in the fact that equality rule applications may involve free variables’
instantiation, hence the need for unification. For instance, a branch containing
the inequality ¬(f (X) = f (a)) is closed when the substitution {X 7→ a} is applied.
However, this method faces the same challenges as the equality-free substitutions. If
a “wrong” substitution or an equality rule is applied, the proof search can continue
indefinitely until it reaches a γ-rule application point or initiates a backtracking
mechanism. While restrictions can be applied to this calculus to reduce the number
of used rules, this comes at the expense of completeness. Hence, applying equalities
to equalities is essential for achieving a complete calculus, but it induces considerable
noise and fills the proof-search space with a lot of unnecessary terms.

Efforts to transform more sophisticated and efficient methods, such as completion-
based approaches, into simple tableau expansion rules face difficulties. The shared
problem among these partial reasoning methods, based on extra tableau expansion
rules, is that equalities can be applied without any restriction. The symmetry of these
rules leads to extensive search space, making it challenging to solve even relatively
straightforward problems in a reasonable amount of time [32]. However, some
implementations of such partial equality reasoning methods have led to efficient
results in practice [65].

Total Equality Reasoning In contrast, total equality reasoning, by avoiding the
addition of equality expansion rules, transforms the task of finding a closing sub-
stitution in a tableau branch into solving an E-unification problem. This approach
permits the use of various algorithms for E-unification problem-solving. Additionally,
[33] demonstrated that E-unification-based methods significantly outperform those
based in additional rules.

The main idea behind this concept is to define an E-unification problem comprising
a pair of complementary literals s and t and an equality set E. Thus, by using the
equality of the branch, we search for a substitution θ such that θ(E) ` θ(s = t).
Multiple algorithms solve the E-unification problem, contributing to the efficiency of
this approach compared to the partial one. Moreover, different forms of E-unification
exist based on the type of tableau (grounded, free variables, etc). For free-variable
tableaux, the corresponding problem is known as the rigid E-unification problem.

In a tableau, solving an E-unification problem leads to close a single branch,
which makes it related to eager closure. Conversely, closing multiple branches (up
to the whole tableau) at once such as a global closure is achieved by simultaneous
E-unification. In the simultaneous case, all the branches attempt to find a common
solution to their own E-unification problems.

The decidability of a (simultaneous) rigid E-unification problem was a long-time

34 2.3. Theory Reasoning in Tableaux

running problem. While [160] established the decidability of the non-simultaneous
scenario and [129] its NP-completeness, the simultaneous case was ultimately proven
to be undecidable [102].

The first attempt to define the generalized unification problem for addressing
equality in rigid variable calculi can be found in [43]. Later, the importance of rigid
E-unification for automated theorem proving was initially outlined in [130], which
refines the former idea in [129] to suit equational reasoning in tableaux. A complete
procedure was then developed in [103], which uses E-unification to address equality
reasoning in tableau-based systems.

Despite the problem’s inherent NP-completeness [131], meticulous attention has
been dedicated to enhancing efficiency. The problem’s exponential nature largely
stems from the multitude of applicable rules and the checking of constraint satisfiability.
To address the latter, techniques such as those outlined in [135] have been employed,
leveraging backtracking and offering constrained literals. These constrained literals
involve linking a constraint that comprises the unification and superposition rule steps
necessary to derive a specific literal to the literal itself.

Recently, simultaneous bounded rigid E-Unification (BREU) [13–15] has emerged.
BREU represents a novel variant of rigid E-unification characterized by boundedness,
wherein variables exclusively represent terms from finite domains. This variant,
although NP-Complete, is decidable, and holds promise as an efficient implementation
candidate. The pursuit of even more efficient strategies for dealing with equality
within tableau-based proof-search procedures is still ongoing.

2.3.2 Other Theories and General Theory Management

The usual way to deal with a specific theory is to call a background reasoner, which
uses dedicated procedures for a given theory. This section classifies different types of
background reasoners, with various degrees of embodiment into the calculus itself.

SMT Solvers

The current standard way to deal with a theory includes the use of a SMT solver.
Satisfiability Modulo Theories (SMT) refers to the problem of determining whether a
first-order formula is satisfiable with respect to some logical theory. Over the years,
SMT solvers have proven to be the most efficient way to manage a theory [22].
The most famous examples of SMT solver are Z3 [99], CVC5 [17], Yices [118]
or Alt-Ergo [89].

Provers and SMT solvers usually interact in the following way: the prover applies
its deduction mechanism, which generates new instances, and calls the dedicated SMT
solver to solve them. Then, the solver checks the satisfiability of the given instances,
and if so, provides a model of this satisfaction. Following the answer, the prover can
either continue with the current instantiations or, conversely, try a different one. This
sequence of exchanges guides the proof search toward the final proof. Approaches
such as the ones in Avatar [45, 206], Sledgehammer [46] and Spass+T [203] make
use of SMT solver to reason with theories.

2. State of the Art 35

Historically, this driven-by-model approach often did not deal with quantification,
which is managed by the foreground reasoner. More recently, state-of-the-art SMT
solvers have been equipped with means to deal with quantification [98, 132, 133].

In the context of first-order semantics tableaux, calling a SMT solver can interfere
with the proof’s construction. Moreover, since SMT solvers work without quantifica-
tion, free variables reintroduction can lead to potentially redundant calls, requiring
particular attention to when the call to the background reasoner has to be made.

Theories Reasoning Integrated to the Calculus

Although SMT solver offers a modular way to handle theories, another approach in-
volves integrating theory reasoning directly to the calculus. For instance, some provers
have developed techniques to directly integrate Presburger arithmetic reasoning into
the tableau calculus, designing new rules that intertwine with the original ones. This
method offers a better handling of quantification and allows the production of a proof.

Zenon [77] integrates a decision procedure that relies on a Simplex and Branch
and Bound approach [21]. In the same vein, Princess [211] incorporates a sequent
calculus that combines ideas from free-variable constraint tableaux with the Omega
quantifier elimination procedure [204], and is used as a background reasoner, for
example, by the provers Elderica [150] and Tricera [119]. An approach to embed
algebraic constraints in tableau calculi is also described in [198]. A little further
away from our approach, the model-elimination prover ME(LIA) [26] works with a
calculus improved by a decision procedure for linear arithmetic.

Deduction Modulo Theory

Previous implementations offer an efficient way to deal with specific theories. However,
with the increase and diversification of theories (for instance, those coming from
industrial problems), the idea of an extensible background reasoner capable of
handling a multitude of theories has gained traction. Although a general-purpose
theory-handling background reasoner could not compete against a dedicated one,
the ability to reason in a generic way is an interesting property. Moreover, the two
approaches can be used in complementary ways.

This generic theory handling is the motivation behind Deduction Modulo The-
ory [115]. The main idea is to provide a generic framework that turns axioms into
computational rules, by removing them from the formula to prove and trigger only the
relevant ones. Similar approaches have already suggested the conversion of theory
axioms into deduction rules: [202] has suggested a generation of introduction and
elimination rules from axiom, and [199] has designed unification modulo associativity
in a resolution system. More recently, superdeduction [69] provided an extension of
[202] by compiling the introduction and elimination rules, performing the deduction
steps only once, and providing more compact rules.

These approaches serve the common purpose of getting rid of axioms and facil-
itating the proof search. While the previous approaches try to include axioms in
the deduction part of the system, Deduction modulo theory transforms axioms into
computation steps. Initially, designed to deal with specific theories such as simple

36 2.3. Theory Reasoning in Tableaux

type theory [114], arithmetic [117], and Zermelo’s set theory [116], this approach
was extended to be able to handle any axiomatized theory. The results yielded by
this approach on Zenon [65] gave birth to the provers Super Zenon [153] and Zenon
Modulo [104] and inspired iProver Modulo [72].

Incremental Theory Reasoning

In addition to considering the effectiveness of both the foreground and background
reasoners, interactions between them assume a pivotal role in optimizing the efficiency
of the integrated system. In particular, one of the key problems is to figure out the
right moment to call on the background reasoner and the resources to allocate, to
find a good balance between the two parts of the system. In general, addressing these
questions is as intricate as solving the theory reasoning problem itself, and even good
heuristics cannot completely overcome these challenges.

One way to mitigate this issue is to adopt incremental techniques for background
reasoning [37], as equality reasoning in 3T AP [35] or natural language processing in
E-KRHyper [195]. It implies the use of algorithms that allow recording the results
of the background reasoners computations and reusing this information for a later
call. Then, the background reasoner can be called more often without the risk of
processing useless computations. Moreover, an incremental background reasoner can
reuse previously computed data multiple times, especially when multiple variations
of a problem have to be solved.

Since incremental reasoning allows managing redundancy in the same branch,
by avoiding redoing work, it can also be used to avoid redundancy between multiple
branches. Indeed, by sharing information between the different calls to the back-
ground reasoner, previously computed solutions can be reused. For example, two
branches sharing common terms could have the same closure and do not require
any additional computation time. Moreover, keeping track of previous work can also
avoid useless triggering of the background reasoner, for example, by calling it only
when relevant axioms have been generated since the last call.

Finally, even if the cost to maintain such a structure is higher than a simple call
to a background reasoner, the gain of reusing precomputed information in several
branches offsets the overall cost. This incremental method, although suitable for
tableaux, is also available for resolution-based method [24].

Typed Theories

In the last decade, we have seen that the multiplicity and diversification of problems
have created the need to improve provers in order to be able to reason with theories.
This is also the case when we aim to reason in the presence of typed logics, in which all
the terms are typed. These logics are ubiquitous in industrial use and aim to provide
a more intuitive representation of the world.

Most of the state-of-the-art automated provers support untyped or monomorphic
logics, whereas specification languages or proof assistants are typically based on
polymorphic formalisms. In order to be able to deal with typed problems, two
approaches have emerged: erasing the types from the problem or, conversely, natively

2. State of the Art 37

managing types into a prover. The first one relies on an encoding of typed problems
into untyped first-order logic [47, 87], which makes them accessible to a wider range
of provers. For instance, the intermediate verification language Boogie 2 [165], which
features polymorphic maps and higher-rank polymorphism, and Why3 [49], based on
rank-1 polymorphism, which defines translations to a monomorphic logic [50, 91].

Conversely, the second option incorporates types directly into the terms themselves,
adding additional rules to guarantee the well-typedness of the formulas. Such a system
can be either monomorphic or polymorphic and is implemented in first-order logic
in provers such as Zenon Modulo [73, 78], Alt-Ergo [89], Zipperposition [93] and
ArchSAT [75], or the higher-order theorem prover LeoIII [223].

38

Chapter 3
Fairness Management in Tableau

Proof-Search Procedures: a Concurrent
Approach

Contents

3.1 Fairness Management in Tableau-Based Theorem Prover 39
3.1.1 Incompleteness Induced by Fairness Issues 39
3.1.2 Sequential Approaches and Existing Solutions 44

3.2 The Use of Concurrency for an Efficient Fairness Management . 44
3.2.1 State of the branches and Closure Management 45
3.2.2 Tableau Representation and Abstract Procedure Rules 46
3.2.3 A Concurrent Proof-Search Procedure 48
3.2.4 A Better Handling of Fairness Issues 58

3.3 Conclusion . 59

The method of analytic tableaux for first-order logic presented in Section 1.2 has
two main characteristics: a tree structure and the use of free variables. The former
allows us to easily produce a proof, whereas the latter have shown their efficiency in
the context of a proof-search procedure. However, the construction of a tableau relies
on some key points in the procedure, in which decisions have to be made [34]. These
choices have an impact on different aspects of the proof, ranging from selecting the
substitution that closes a branch to determining the next branch to explore. Due to
these multiple possibilities at each proof step, providing a fair, complete and efficient
proof search can become challenging.

Parallel exploration of the branches can overcome these issues. The idea is to
expand branches freely before trying to reconcile them and to find a common solution.
Given the tree structure produced during the proof search, the method of analytic
tableaux naturally fits with concurrent approaches. Moreover, concurrent computing
offers a way to implement a proof-search procedure that explores branches simulta-
neously. Chapter 2 already gives an overview of concurrent proof-search procedures.
However, they often focus primarily on parallel execution and performance and
do not address directly the challenges inherent to tableaux. In contrast, we use
concurrency not only as a way to take advantage of multi-core architectures but also
as an algorithmic device that is useful even for sequential execution.

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 39

This chapter is divided into two parts: a description of existing fairness issues
and a presentation of a concurrent solution. Section 3.1 offers a comprehensive
exploration of the fairness concerns that arise during the construction of a complete
proof-search procedure for free-variable tableaux and delves into the state-of-the-art
sequential solutions designed to address these problems. These challenges are rooted
in the intrinsic destructive nature of the closure rule, which in turn, by replacing
free variables in the whole tableau upon a branch’s closure, affects the unification
possibilities of the remaining branches. By carefully examining the scenarios where
unfairness arises, Section 3.2 introduces a concurrent proof-search procedure for
first-order analytic tableaux that overcomes these issues.

3.1 Fairness Management in Tableau-Based Theorem
Prover

The fairness challenges encountered in first-order tableaux stem from the existence
of multiple choices at each stage of the proof-search process. Four main sources
of unfairness have been introduced by [34], which can result in an unfair and
consequently incomplete proof-search procedure.

3.1.1 Incompleteness Induced by Fairness Issues

Typically, a considerable number of rules can be applied to any given free-variable
tableau in the first-order logic context. To be more specific, the process involves
selecting a branch B where a rule is to be applied, followed by the decision of whether
an expansion rule or a closure rule should be employed. Previous studies in [34, 141]
have explored the issues of unfairness in the proof-search procedure, identifying
four crucial decision points:

1. The selection of a branch B (select branch).

2. Determining whether B should be closed or expanded (select mode).

3. If B is to be closed, the choice of a pair of complementary literals and thus a
closing substitution (select pair).

4. If B is to be expanded, the selection of a formula to which an expansion rule is
applied (select formula).

In the propositional case, achieving a strongly complete tableau proof-search
procedure is straightforward, due to the finite number of choices available. To
close any (valid) tableau, it suffices to select each non-atomic formula exactly once
on each branch, in any order.

However, in the first-order case, the situation is more complex. Indeed, some
formulas can be applied more than once, and multiple instances of the same formulas
may be needed to close a tableau, making first-order logic undecidable. Proceeding
to an arbitrary choice for a computation rule generally leads to an incomplete proof

40 3.1. Fairness Management in Tableau-Based Theorem Prover

(P(a)∧¬P(a))∨⊥
β∨P(a)∧ P(a)

α∧P(a),¬P(a) ��

⊥
��

(a) Proof of (P(a)∧¬P(a))∨⊥.

(P(a)∧¬P(a))∨⊥
β∨P(a)∧ P(a)

α∧P(a),¬P(a) ��

⊥
. . .

(b) Incompleteness caused by an unfair select
branch.

Figure 3.1: Proof and proof search illustrating the select branch problem.

procedure. Hence, attaining completeness in the first-order case requires careful
consideration and strategies that go beyond simple arbitrary choices.

The phenomena of incompleteness arising from unfair selection strategies for
these key decision points are illustrated through examples. Needless to say, these
phenomena can also interact in intricate ways.

Select Branch

The first case of unfairness leading to incompleteness comes from the tree structure
itself, i.e., the branches spawn. This incompleteness case is called select branch and
happens when a branch is never expanded by the proof-search procedure.

Figure 3.1a and Figure 3.1b illustrate this case. In the proof (Figure 3.1a),
both branches are explored, leading to a closed tree. However, an unfair proof-
search procedure can fail to compute on of the branches (the right one in example
Figure 3.1b), resulting in an unfinished proof.

Nevertheless, to address this unfairness case, a fair proof-search procedure only
needs to ensure that it does not terminate arbitrarily without proper justification,
as all branches must be closed.

Select Formula

In order to expand the tableau, a formula is selected at each step of the proof search.
Moreover, γ-formulas have the particularity of being able to be applied multiple
times, i.e., to be put back into the set of available formulas. Due to these application,
incompleteness can arise when a formula F is never selected during the proof search,
i.e., when a set of formulas Γ is looped upon such that F /∈ Γ .

This unfairness over formula computation can lead to completeness issues, for
example, if F is involved in a closure rule, as shown in Figure 3.2a and Figure 3.2b.
In this example, P(a) ∧ ¬P(a) is needed to close the tree but the formula is never
chosen, as ∀x Q(x) is preferred during the proof search, delaying the expansion
of the former indefinitely.

Since a formula is considered as processed once computed, it is relatively straight-
forward to ensure the proper treatment of α-, δ- and β - formulas, and thus overcome
such incompleteness issue. However, specific attention must be given to γ-formulas,
to prevent looping on them.

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 41

P(a)∧¬P(a)
∀x Q(X)

α∧P(a),¬P(a) ��

(a) Proof of P(a)∧¬P(a),∀x Q(X).

P(a)∧¬P(a)
∀x Q(X)

γ∀Q(X)
γ∀

Q(X ′)
γ∀. . .

(b) Incompleteness caused by an unfair select for-
mula.

Figure 3.2: Proof and proof search illustrating the select formula problem.

Select Pair

A closure happens when two complementary literals, i.e., P and ¬Q, have been
unified by a substitution σ such that σ(P) = σ(Q). P and Q are thus called a pair
of complementary literal. Moreover, the destructive nature of free-variable tableaux
implies that the closure rule effectively replaces the free variables during the proof
search. Therefore, the select pair problem can occur when the same closing pair
of literals is consistently chosen, forbidding other pairs to be tried. This can lead
to conflicts as different possibilities to close a branch may be mutually exclusive.
Making the “wrong” choice, i.e., choosing a substitution which does not allow a global
closure, and applying the incorrect substitution to the tableau can make it impossible
to immediately perform the next branch closure, which could be more helpful.

This incompleteness case is illustrated in Figure 3.3a and Figure 3.3b. In this
example, exploring the left branch produces a substitution that prevents direct closure
of the right branch. Reintroducing the original quantified formula with a different free
variable is not sufficient to close the right branch, because an applicable (standard) δ-
rule creates a new Skolem symbol that will result in a different but equally problematic
substitution every time a left branch is explored. Thus, systematically exploring the
left branch before the right leads to choosing a closure between P(X) and ¬P(b),
and thus to a non-termination of the search. Conversely, exploring the right branch
first produces a substitution (which instantiates the free variable X with a rather
than b) that closes both branches.

To handle this case, it may be necessary to repeat the sequence of expansion rule
applications that led to the situation where the wrong choice was made. Additionally,
proof-search steps may also need to be replayed on other branches, possibly impacted
by the previous unfavorable choice. 1

Select Mode

Deciding whether or not a branch should be closed is a common problem when design-
ing a proof-search procedure. Typically, two approaches are considered: searching
for a global closure that closes all branches simultaneously [123, 136], or allowing

1Note that this specific example can also be avoided by using a more advanced Skolemization, as
presented in Section 2.1 and Chapter 7.

42 3.1. Fairness Management in Tableau-Based Theorem Prover

P(a)
¬P(b)

∀x . P(x)⇔∀y P(y)
γ∀P(X)⇔ (∀y P(y))

β⇔P(X),∀y P(y)
γ∀

P(Y)
�σ

σ = {X 7→ a, Y 7→ b}

¬P(X),¬(∀y P(y))
�σ

σ = {X 7→ a}

(a) Proof of P(a),¬P(b),∀x . P(x)⇔∀y P(y).

P(a)
¬P(b)

∀x . P(x)⇔∀y P(y)
γ∀P(X)⇔∀y P(y)

β⇔P(X),∀y. P(y)
�σ

σ = {X 7→ b}
¬P(X),¬∀y P(y)

δ¬∀¬P(f (X))
γ∀

P(X ′)⇔∀y P(y)
β⇔P(X ′),∀y P(y)

�σ
σ = {X ′ 7→ b}

σ′ = {X ′ 7→ f (X)}

¬P(X ′),¬∀y P(y)
δ¬∀¬P(f ′(X2)) γ∀. . .

(b) Incompleteness caused by an unfair select pair.

Figure 3.3: Proof and proof search illustrating the select pair problem.

a local closure that finds a substitution for only a specific subtree.
The select mode incompleteness case appears when branches are closed locally as

soon as possible, preventing a global closure. As illustrated in Figure 3.4a, Figure 3.4b
and Figure 3.4c, x is substituted by a or b whereas the desired substitution (i.e., the
one able to close the whole tree) is c. However, this substitution can only be reached
if ∂ R(X) was applied. Independently of which branch is closed first, the variable x
gets “used up” by a substitution that blocks the closure of the other branch. Although
it is possible to create a second instance of the γ-formula with a free variable, the
same issue arises at the next level and continues repetitively. This example highlights
one of the main problems of proof search in destructive free-variable tableaux.

This case of incompleteness is intrinsically linked to the eager closure, i.e., the
strategy consisting of closing a branch as early as possible. Delaying the closure rule
allows to overcome these issues, since this scenario cannot happen, but is also not
usable in practice. A good balance between closure and γ-rule application is thus
necessary to ensure the efficiency of the proof search.

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 43

¬P(a)
¬Q(b)
¬R(c)

∀x . (P(x)∨Q(x))∧ ∂ R(x).
γ∀(P(X)∨Q(X))∧ ∂ R(X)

α∧P(X)∨Q(X),∂ R(X)
β∨P(X)

∂
R(X)

�{X 7→ c}

Q(X)
∂

R(X)
�{X 7→ c}

(a) Proof of ¬P(a),¬Q(b),¬R(c),∀x . (P(x)∨Q(x))∧ ∂ R(x).

¬P(a)
¬Q(b)
¬R(c)

∀x . (P(x)∨Q(x))∧ ∂ R(x).
γ∀(P(X)∨Q(X))∧ ∂ R(X)

α∧P(X)∨Q(X),∂ R(X)
β∨P(X)

. . .
{X 7→ a}

Q(X)
. . .

{X 7→ b}

(b) Incompleteness caused by an unfair select mode — step 1.

¬P(a)
¬Q(b)
¬R(c)

∀x . (P(x)∨Q(x))∧ ∂ R(x).
γ∀(P(a)∨Q(a))∧ ∂ R(a)

α∧(P(a)∨Q(a)),∂ R(a)
β∨P(a)

�{X 7→ a}
Q(a)

∂R(a)
γ∀

(P(X ′)∨Q(X ′))∧ ∂ R(X ′)
α∧

(P(X ′)∨Q(X ′)),∂ R(X ′)
β∨P(X ′)

. . .
{X ′ 7→ a}

Q(X ′)
. . .

{X ′ 7→ b}

(c) Incompleteness caused by an unfair select mode — step 2.

Figure 3.4: Proof and proof search illustrating the select mode problem.

44 3.2. The Use of Concurrency for an Efficient Fairness Management

3.1.2 Sequential Approaches and Existing Solutions

Dealing with fairness issues mentioned in Section 3.1.1 is possible in a sequential way.
This section focuses on sequential provers and describes the mechanisms commonly
used to manage them: the closure style and the bounded search. Additionally, [34]
presents some improvements in this regard.

Closure Although the only way to close a tableau is to find a global substitution that
closes all the branches, finding such a substitution at once is highly inefficient. For
example, a naive approach attempting to find a global substitution at each step would
certainly be a complete approach, but cannot work in practice [124].

Instead, trying to close branches on the fly and propagate the information about
the substitutions is a more common approach, even if it is prone to completeness issues.
[136] proposes an incremental closure rule, which keeps track of substitutions for each
branch and eventually closes the whole tableau at once. This technique is implemented
in the prover Princess [211]. By adding the required instances to a branch instead of
instantiating the free variables, Zenon [65] avoids the destructive side of free-variable
tableaux, and thus the associated resulting completeness issues. It also implements a
pruning mechanism to avoid duplicated work for branches that share variables.

Breath-First Search and Iterative Deepening In order to design an efficient proof-
search procedure for a formula F , all the generative proof trees for F have to be
explored in a reasonable way. Unrestricted depth-first search is excluded because
of the fairness issues discussed above, i.e., the perpetual application of a rule on
a γ-formulas as presented on the select formula case or the never-chosen branch
of the select branch one. Thus it remains the breadth-first search (BFS) and the
iterative deepening depth-first search (IDDFS).

A fundamental advantage of IDDFS over BFS is that it can be implemented
efficiently using a γ-rule application limit and backtracking as in [38]. Although this
leads to acceptable performance of tableau-based automated theorem provers [162],
the asymptotic complexity of IDDFS is no worse than that of BFS, it should be stressed
that an IDDFS search is only a compromise as a complete selection strategy for
destructive free-variable tableaux without backtracking with local closure is not
yet available [34].

Since the select branch and select formula cases can be easily managed, in the
following we focus on the problem of an unfair select mode and select pair problems
and see how concurrency can address these fairness issues.

3.2 The Use of Concurrency for an Efficient Fairness
Management

This section describes a concurrent proof-search procedure which, by design, deals
with the two main sources of unfairness (and therefore incompleteness): the select

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 45

pair and the select branch problems. The key idea is to explore branches at the
same time, allowing simultaneous closure (possibly with incompatible substitutions).
Then, a reconciliation phase happens, which must lead to finding an agreement
between the substitutions returned by the different branches. However, the use of
concurrency also encountered challenges, such as the dependencies between siblings
caused by shared free variables, that can be tackled with multiple strategies such
as backtracking and forbidden substitutions.

3.2.1 State of the branches and Closure Management

First of all, we define the state of a branch used in the proof-search procedure, as it is
strongly connected to the concrete algorithms developed in the following section. A
branch state is conditioned by its closing status, i.e., not closed or closed with a local
or non-local substitution. Recall that, contrary to a non-local substitution, a local one
is necessarily compatible with the rest of the tree. Each step of the proof search can be
mapped to an abstract proof state denoted (T,σ), where T is the tree formed by the
union of the branches manipulated by the different processes and σ the composition
of all the substitutions used to close �-branches. The � state is part of three different
statuses that each node is additionally annotated with.

Definition 3.1: Closed Node

� indicates that the node is locally closed: the subtree rooted in this node has
been closed with a local substitution.

Definition 3.2: Stalled Node

./ indicates that the node is stalled: a non-local substitution has been found for
the subtree rooted in this node.

Definition 3.3: Active Node

ú indicates that the node is active: the subtree rooted in this node is still being
expanded by the proof-search procedure, or that no more expansion rules are
applicable.

With these definitions in place, the main procedures and the transitions between
these branch states can be described, detailing how the proof-search process operates
and how branches switch between different states.

46 3.2. The Use of Concurrency for an Efficient Fairness Management

3.2.2 Tableau Representation and Abstract Procedure Rules

This section implements the procedure rules seen in Section 1.2. Let (T,σ) and (T ′,σ′)
be two tableaux such that (T,σ) ,→R (T ′,σ′) by using a rule R. Let Γ be the set of sets
of formulas representing T . Let B be the branch (i.e., a set of formulas) and f the
formula of B on which the rule R has to be applied to generate (T ′,σ′). We denote
Ψ = Γ \ B the unprocessed set of sets of formulas on the other branches.

We describe an abstraction of the rule to represent the application of a rule in a
tableau proof-search procedure. This application is symbolized as a transition between
two states of a proof. A state of a proof is a quintuplet 〈Γ ,Θbacktrack,Θforbidden,Σ,χ〉with:

• Γ is the set of sets of formulas representing the tree.

• Θbacktrack a set of substitutions that may be applied subsequently.

• Θforbidden a set of substitutions that may be forbidden subsequently.

• Σ the function which takes a branch and returns the substitution currently
applied to the branch.

• χ the set of substitutions currently forbidden in T .

Informally, a state represents a tableau (T,σ) plus a set of substitutions Θbacktrack,
which haven’t been tested yet, and as set Θforbidden of substitutions which have to be
possibly forbidden in a subsequent step. χ is a set of substitutions which are currently
forbidden. It interferes directly with the closure rule.

We describe a rule system to explain the application of a rule in our procedure.
We implement the rule defined in Section 1.2, as well as two new rules to describe
the backtracking mechanism. Thus, considering a rule R, the transition between
two states is as follows:

• R is an α-rule and f R f ′:
〈Ψ ∪ {B ∪ { f }} ,Θbacktrack,Θforbidden,Σ,χ〉 →α

〈Ψ ∪ {B ∪ { f ′}} ,Θbacktrack,Θforbidden,Σ,χ〉

• R is a β-rule and f R f ′1 , . . . , f ′n:
〈Ψ ∪ {B ∪ { f }} ,Θbacktrack,Θforbidden,Σ,χ〉 →β

〈Ψ ∪
⋃n

i=1

�

B ∪
�

f ′i
		

,Θbacktrack,Θforbidden,Σ,χ〉

• R is a δ-rule and f R f ′[x 7→sko(FV)]:
〈Ψ ∪ {B ∪ { f }} ,Θbacktrack,Θforbidden,Σ,χ〉 →δ

〈Ψ ∪
¦

B ∪
¦

f ′[x 7→sko(FV)]

©©

,Θbacktrack,Θforbidden,Σ,χ〉

• R is a γ-rule and f R f ′[x 7→X]:
〈Ψ ∪ {B ∪ { f }} ,Θbacktrack,Θforbidden,Σ,χ〉 →γ

〈Ψ ∪
¦

B ∪
¦

f , f ′[x 7→X]

©©

,Θbacktrack,Θforbidden,Σ,χ〉

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 47

• R is a non-local closure rule. It generates a set of substitutions σ which close a
branch B of T (w.r.t χ). These substitutions are added to Θbacktrack to be tried
later as a global solution:
〈Ψ ∪ {B} ,Θbacktrack,Θforbidden,Σ,χ〉 →�non−local

〈Ψ ∪ {B} ,Θbacktrack∪ σ,Θforbidden,Σ,χ〉

• R is a global closure rule. It can be triggered when there exists a σ such that σ
is applied to all the branches and all the branches are closed. This rule closes
the whole tree.
〈Γ ,Θbacktrack,Θforbidden,∀B. Σ(B) = σ,χ〉 →�global

Success

• R is a choice rule. It chooses a substitution σ among Θbacktrack and applies it
to all the branches. It can lead to a common agreement or to choose another
substitution. Thus, σ is removed from Θbacktrack and added to Θforbidden. This
rule can be triggered when Θbacktrack is not empty, after that all the branches
have found a substitution, or when no other rule is applicable:
〈Γ ,Θbacktrack∪ {σ} ,Θforbidden,Σ,χ〉 →Choice

〈Γ ,Θbacktrack,Θforbidden∪ {σ} ,∀B ∈ Γ . Σ(B) = σ,χ〉

• R is a forbidden rule. It can be triggered when no other rule can be applied and
there exists at least one branch B such that Σ(B) = ;. This situation happens
when a branch cannot be closed with the current substitution. The rule can be
triggered if there is no backtracking option (i.e., Θbacktrack = ;) and if Θforbidden

is not empty. It takes all the substitutions stored in Θforbidden and transfers them
into χ to resume the proof search:
〈Γ ,;,Θforbidden,Σ,χ〉 →Forbidden

〈Γ ,;,;,∀B ∈ Γ . Σ(B) = ;,Θforbidden〉

• R is a global non-closure rule. It can be triggered when there is no backtracking
nor forbidden option, and where no extension rule is available. This rule leads
to a failure to find a solution.
〈Γ ,;,;,Σ,χ〉 →Oglobal

Failure

Intuitively, these rules try to find a solution for each branch individually and then
start an agreement process. The agreement is global, meaning that the solution of
every branch is tried on the whole tree. However, this procedure leads to a lot of
useless attempts, because the chosen substitutions are tried without any restriction.
Thus, we adapt these rules to work in a more local way, i.e., search to find an
agreement with their neighbors before broadcasting it in a larger way. To do so,
some changes are needed:

• The quintuplet is extended with an additional function ζ, which takes a branch
and returns the solutions found by the branch. The behavior of the non-local
closure rule is thus modified: the found substitution is no longer added to
Θbacktrack, but stored into ζ instead.

• Θbacktrack and Θforbidden are now functions, each one dedicated to a branch, just
as Σ and ζ.

48 3.2. The Use of Concurrency for an Efficient Fairness Management

α-, β-, δ-
and γ-rules

start

Global closure

∀B. Σ(B) = σ

Global open

Θbacktrack = ;
Θforbidden = ;

Choice

Θbacktrack[Bi] 6= ; Non-local closure Forbidden

Θbacktrack[Bi] = ;
Θforbidden[Bi] 6= ;

Agreement
Θbacktrack[Bi] = ;∧
Θbacktrack[B j] 6= ; Θforbidden[Bi] = ;∧

Θforbidden[B j] 6= ;

Figure 3.5: Interaction and application conditions of the abstract procedure rules.

• A new rule needs to be defined: the agreement rule. It can be triggered when
all the branches of a subset B1, . . . , Bn of T have all reached a non-local closure.
Thus, it takes all the solutions found in the corresponding ζ and performs a
local choice, in the same ways as before:
〈Ψ ∪ {B1, . . . , Bn} ,Θbacktrack,Θforbidden,Σ,χ,ζ〉 →Agreement

〈Ψ ∪ {B1, . . . , Bn} ,Θbacktrack(Bi) = ζ(Bi) (1≤ i ≤ n),Θforbidden,Σ,χ,;〉

• The choice rule can now be triggered locally after the application of the agree-
ment rule, no more a non-local closure one. Moreover, it can only be applied if
there is at least one backtracking option for the related subset of formulas.

• The forbidden rule also changes to be able to deal with a subset of branches.
It can be triggered when there is no backtracking option for this subset (and
forbidden option for it):
〈Ψ ∪ {B1, . . . , Bn} ,Θbacktrack,Θforbidden,Σ,χ,ζ〉 →Forbidden

〈Ψ ∪ {B1, . . . , Bn} ,Θbacktrack,Θforbidden(Bi(1≤i≤n)
) = ;,

Σ(Bi(1≤i≤n)
) = ;,χ(Bi) = Θforbidden(Bi) (1≤ i ≤ n),ζ〉

Interactions between these rules are presented in Figure 3.5. The lower part of
a node represents the application condition of the rule, with potentially additional
restrictions on the edges, and Bi and B j two sets of branches. These rules are used as a
base to implement an imperative proof-search procedure, presented in the next section.

3.2.3 A Concurrent Proof-Search Procedure

This section presents the concurrent proof-search procedure. The procedures are
described using the concurrent semantics defined in Section 1.3.3. The proof search
is carried out concurrently by processes corresponding to branches of the tableau
and relies solely on parent-children communications. Processes are started upon the

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 49

proofSearch

start

θ ∈Θforbidden

isLocal(θ)
process

end

Create children

waitForChildren Θbacktrack available

Θforbidden available

At least one θ
is empty

θ was sent
by this process

waitForParent

agreement(θ ,Πchildren)

Has children

Procedure Condition Final state
Case Case:process [! ?] message

α, δ, γ

β

No rule
ap

plic
ab

le:
π pare

nt
!;

θ found

No

Yes

Yes : πparent !θlocal

No : πparent !θlocal

Current process is Πchildren

C
ur

re
nt

pr
oc

es
s

is
π

pa
re

nt

Πchildren ?θ

Yes
No

No
Yes : Πchildren !θ

Yes : Πchildren !Θforbidden No : Πchildren !;

Ye
s

:
π

pa
re

nt
!θ

No : Πchildren !θ

π
pa

re
nt

?
θ

π
pa

re
nt

?
Θ

fo
rb

id
de

n

Current process is the root process

No

Ye
s

:
π

pa
re

nt
!θ

No — θ

No — Θforbidden

Yes: Πchildren !θ

Yes: Πchildren !Θforbidden

Figure 3.6: The proof-search procedure executed by individual processes

application of a β -rule, one for each new branch. Communications between processes
take two forms: a process may send a set of closing substitutions to its parent, or a
parent may send a pair of substitutions to its children. The first element of this pair is a
substitution that closes at least one of the children and needs to be tried by its siblings.
The second element is a set of forbidden substitutions, i.e., substitutions that were tried
by a parent node but cannot close a sibling branch. Such unsuccessful substitutions
are prohibited for the current node and its descendants for the rest of their proof
search. The proof search is performed by the proofSearch procedure (described in
Procedure 3), which calls the waitForParent and waitForChildren procedures (available
in Procedures 4 and 5, respectively). Their interactions are illustrated in Figure 3.6.

Agreement Mechanism The core of the following procedures is the agreement
mechanism. Coarsely, all the children of a node n search for their own solution,
and then n applies multiple agreement phases to find a solution that satisfies all the
children. This is obtained by choosing an arbitrary substitution among the answers,

50 3.2. The Use of Concurrency for an Efficient Fairness Management

current
node

πparent

child1 child2

Υtwin

Πchildren

Figure 3.7: Node structure and local vision extended to twin processes.

and by sending it to the other children. The final substitution is thus built from
one step to the next, by adding constraints coming from each child. This behavior
relies on a specific type of children, called twin and denoted Υtwin, as well as the
notion of layers of agreement.

A twin represents an “alternative version” of the node. This twin can in turn build
a sequence of twins, each one being an evolution of the previous one. A node can
only have two twins: the previous one and the next one in the sequence. The local
vision of a node enhanced by twins processes is available in Figure 3.7.

A layer is characterized by a pair (σ, ci(1≤i≤n)
) where ci are active twins (or children

for the initial layer) on which the substitution σ is applied. To give an insight, the
first layer contains all the children of the branch, the second one only those that have
not found the same substitution as the one selected during the first step, and so on.
The children that have already agreed are considered as sleeping, whereas those that
keep working to find a complementary substitution are denoted as active. At each new
layer, a twin of each active node is created, constrained by the substitution selected
at the previous layer. In case no agreement is reached, the children of the current
layer are killed, and the agreement mechanism restarts from the previous layer, with
another potential candidate. Some substitutions can also be forbidden for a given
layer, forcing the related nodes to submit other propositions. For this purpose, Πchildren

evolves to become a map of sets of processes, in which the index corresponds to the
agreement layer and the corresponding set to the active children of the layer. For
instance, Πchildren[0] corresponds to the active children of the initial layer.

An illustration of the agreement layer process is available in Figure 3.8. In this
example, three substitutions σ1, σ2 and σ3 are respectively found by c1, c2 and c3

during the initial agreement phase, i.e., the first layer (Figure 3.8a). Then,σ1 is chosen,
putting c1 to sleep and creating two twins: c′2 and c′3. This pair (σ1,

�

c′2, c′3
	

) represents
a second layer (by opposition the the first layer with no substitution and three children).
Unfortunately, the children cannot be closed if σ1 is applied, and both of them answer
an empty set, symbolizing the lack of substitution (Figure 3.8b). Then, a new layer (on
the second level too) is created, with a new candidate substitution σ2 and two twins:
c′1 and c′3 (Figure 3.8c). From this layer emerged two new solutions, complementary

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 51

n
σ

Sleeping node n
closed by σ

n
σ

σ′

Active node n with
applied substitution σ

and closed by σ′

Link to a node of the layer

Link to a node of
a previous layer

Generation of a twin

n

c1

σ1

c2

σ2

c3

σ3

(a) First layer of agreement — solution found by
the children.

n
σ1

c1

σ1

c2

σ2

c′2
σ1

;

c3

σ3

c′3
σ1

;
(b) Second Layer of agreement — instantiation by
σ1 — no solution found.

n
σ2

c1

σ1

c′1
σ2

σ2 ◦σ′1

c2

σ2

c3

σ3

c′3
σ2

σ2 ◦σ′3
(c) Second layer of agreement — instantiation by
σ2 — compatibles solutions found by the active
children.

n

σ2 ◦σ′1
σ2 ◦σ′1 ◦σ

′′
3

c1

σ1

c′1
σ2 ◦σ′1

c2

σ2

c3

σ3

c′3
σ2

σ2 ◦σ′3

c′′3
σ2 ◦σ′1

σ2 ◦σ′1 ◦σ
′′
3

(d) Second layer of agreement — instantiation by
σ2◦σ′1 — agreement found among all the children.

Figure 3.8: Agreement layer mechanism.

52 3.2. The Use of Concurrency for an Efficient Fairness Management

to σ2: σ2 ◦σ′1 and σ2 ◦σ′3. Then, an even more deeper agreement layer is created, by
selectingσ2◦σ′1 and the twin c′′3 . The node finds a substitutionσ2◦σ′1◦σ

′′
3 , that brings

agreement with all the children of the layer (itself only in this case) (Figure 3.8d).
The resulting substitution is a refinement of those selected within the previous layers,
the sleeping node necessarily agrees, and thus the whole subtree is closed.

Related Functions The procedures call some auxiliary functions for which the
detailed implementation is relatively straightforward. Then, instead of explaining
them in the detail, we solely give an overview of their behavior.

First of all, four functions are related to the rules and their applications:

• nextApplicableRule: this function computes the next applicable rule among the
α-,δ-,β- and γ-rules, following this priority order, as well as the formula on
which the rule has to be applied.

• applyRule: this function takes a rule and a branch of a tableau and applies the
given rule to the branch.

• applyClosingRule: this function takes a branch and searches for a closing rule,
excepting those belonging to Θforbidden.

• updateLimit: this function takes a branch B, a formula f and a γ-rule application
limit and return the new limit after the application of the formula. If all the
formula in B excepted f have been reintroduced n times, this function returns
n− 1, and n otherwise.

Then, two functions relate to the substitutions, either by giving information about
them or by helping the main procedure itself:

• isLocal: this function returns true if the given substitution contains solely local
variables, false otherwise.

• choice: this function chooses an arbitrary substitution among a set of substitu-
tions.

Some functions are designed to give information about the current process and
its links to others:

• hasParent: this function returns true if the current node has a parent process.

• isSleeping: this function returns true if the given process is sleeping, which is
made possible thanks to sleep operation. It takes another function as a parameter,
which represents the action to be performed after it wakes up.

• isConstrained: this function returns true if the current process is constrained by
a substitution at this layer, i.e., is currently trying a substitution on its children,
and false otherwise.

Finally, two functions allow us to interfere directly with the usual parent-child
communication:

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 53

• connect: this function creates a communication channel between two nodes
that are not parent and child. It is used to allow a parent node and a twin of a
child to communicate.

• update: this function takes a layer index i, the set of children Πchildren, the map
of backtrackingΘbacktrack and forbiddenΘforbidden substitutions and a substitution
σ, and processes multiple operations. First of all, for the layer of agreement
of index i, it kills all the open twins and wakes up all the children of the layer.
Secondly, it adds σ to the forbidden substitutions of the layer Θforbidden[i], and
removes it from the backtracking map Θbacktrack[i].

In contrast with the three main procedures that can be seen as a state of a process
(proofSearch, waitForParent and waitForChildren), the previous functions are strictly
subcomponents of the procedures and contribute to advancing toward the next step
in the proof search.

The Proof-Search Procedure The proofSearch procedure initiates the proof search
for a branch. It first attempts to apply the closure rule, excluding closing substitutions
that are subsumed by the ones in Θforbidden (Line 2). If one of the closing substitutions
is local to the node corresponding to that process, it is reported, and the process
terminates (Lines 4-6). If only non-local closing substitutions are found, they are
reported and the process executes waitForParent (Lines 7-9). Otherwise, the procedure
applies tableau expansion rules according to the priority: α ≺ δ ≺ β ≺ γ. If a β-
rule is applied, new processes are started, and each of them executes proofSearch
on the newly created branch, while the current process executes waitForChildren
(Lines 20-22). γ-rules are subject to a limit l to avoid unlimited application of a rule on
a universal formula (Line 26). When no more rules can be applied, a process indicates
the failure to close the tableau to its parent (Line 15). If the process has no parents,
i.e., this is the root process, the proof search restarts with a higher limit (Line 17).

The Child’s Procedure The waitForParent procedure is executed by a process P
after it has found closing non-local substitutions. Since such substitutions may
prevent closure in other branches, the parent will eventually send another candidate
substitution, or prohibit a set of substitutions. waitForParent waits until such a
substitution or restriction is received (Line 2). If a substitution σ′ is received, the
process controls the substitution. If σ′ was previously sent by P itself, it means
that the parent process is currently trying this substitution on the P ’s siblings. Thus,
it sends σ′ back, because it necessarily agrees with it (Line 6) and switches to a
sleeping state, meaning it does not carry an active proof search and wait for another
information from its parent (Line 7). Otherwise, the substitution is either sent to
the child processes (Line 9), or applied to the current process itself. In order to
keep the backtracking point unaltered, a new twin process is created, executing the
proof search on σ′(P). P is thus put into a sleeping state, waiting for its parent to
wake it up (Lines 13-16). To allow the twin and the parent to exchange messages,
a communication channel is created (Line 15). A twin process can only be created
by a leaf, and its behavior is illustrated in Figure 3.9.

54 3.2. The Use of Concurrency for an Efficient Fairness Management

Procedure 3: proofSearch

Data: a branch B, a map Θforbidden of forbidden substitutions, a limit l ∈ N on
the number of γ-rule applications.

1 begin
2 var Θ← applyClosingRule(B,Θforbidden)
3 for θ ∈Θ do
4 if isLocal(θ) then
5 πparent ! θ
6 return

7 if Θ 6= ; then
8 πparent ! Θ
9 waitForParent(B,Θ,;,;, l, 0)

10 else
11 var rule, f ← nextApplicableRule(B, l)
12 switch rule do
13 case No rule applicable do
14 if hasParent() then
15 πparent ! ;
16 waitForParent(B,;,;,;, 0, 0)

17 else proofSearch(B,;, l + 1)

18 case α,δ do
19 proofSearch(applyRule(rule, B),;, l)

20 case β do
21 for B′ ∈ applyBetaRule(B) do
22 start proofSearch(B′,;, l)

23 waitForChildren(B,;,;,;, l, 0)

24 case γ do
25 l ′← updateLimit(B, f , l)
26 proofSearch(applyRule(rule, B),;, l ′)

The other case available is the one in which a set Θforbidden of prohibited substi-
tutions has been received. Thus, P starts by updating Θbacktrack and Θsent with this
new information (Lines 18-19), to prevent the proof search for finding irrelevant
substitutions on this layer. Recall that the node is currently on an agreement mech-
anism, meaning that it has already found potential closures. Thus, if the previous
closures are compatible with the forbidden substitutions, they are returned (Line 21).
Otherwise, either the prohibition is sent to the children of the current process (Line 24),
either it resumes its proof search to find new closures (Line 27). It is important to
note that in this case, the proof search resumes on the process itself, not in a twin,
to increase the backtracking point. Thus, a node that has found a contradiction is

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 55

Procedure 4: waitForParent
Data: a branch B, a set Θsent of substitutions sent by this process to its parent,

a map Θbacktrack of set of candidate substitutions used for backtracking,
a map Θforbidden of set of forbidden substitutions, a limit l ∈ N on the
number of γ-rule applications, a level of layer i for the agreement
mechanism.

1 begin
2 πparent ? (σ′,Θforbidden

′)
3 switch σ′,Θforbidden

′ do
4 case σ′ 6= ; do
5 if σ′ ∈Θsent then
6 πparent ! {σ′}
7 sleep(waitForParent(B,Θsent,Θbacktrack,σ,Θforbidden, l, i))

8 else if Πchildren 6= ; then
9 for π ∈ Πchildren[i] do π ! (σ′,;)

10 Θforbidden[i]←Θforbidden[i]∪ {σ′}
11 waitForChildren(B,Θsent,Θbacktrack,Θforbidden, l, i)
12 else
13 B′ = σ′(B)
14 start proofSearch(B′,;, l)
15 connect(πparent,Υtwin)
16 sleep(waitForParent(B,Θsent,;,;, l, 0))

17 case Θforbidden
′ 6= ; do

18 Θbacktrack[i]←Θbacktrack[i] \Θforbidden
′

19 Θsent←Θsent \Θforbidden
′

20 if Θsent 6= ; then
21 πparent ! Θsent

22 waitForParent(B,Θsent,Θbacktrack,Θforbidden, l, i)

23 else if Πchildren[i] 6= ; then
24 for π ∈ Πchildren[i] do π ! (;,Θforbidden

′)
25 waitForChildren(B,Θsent,Θbacktrack,;,Θforbidden

′, l, i)
26 else
27 proofSearch(B,Θforbidden, l)

not locked into this step forever. The process may also be terminated by its parent
(via the kill instruction) during the execution of this procedure if another child
process from the same parent process cannot be closed, and no backtracking option is
available. That is to say, the proof search is interrupted as soon as a branch cannot
be closed, and either another substitution is tried or the process is killed and the
scheme repeats until reaching the root.

56 3.2. The Use of Concurrency for an Efficient Fairness Management

Procedure 5: waitForChildren
Data: a branch B, a set Θsent of substitutions sent by this process to its parent,

a map Θbacktrack of set of candidate substitutions used for backtracking,
a map Θforbidden of set of forbidden substitutions, a limit l ∈ N on the
number of γ-rule applications, a level of layer i for the agreement
mechanism.

1 begin
2 var subst← f⊥
3 while ∃ π ∈ Πchildren[i]. subst[π] =⊥ do
4 π ? subst[π]
5 if subst[π] = ; then
6 if ∃ θ ∈Θbacktrack[i] then
7 update(Πchildren,Θbacktrack,Θforbidden,θ , i)
8 for π ∈ Πchildren[i] do π ! (θ ,;)
9 waitForChildren(B,Θsent,Θbacktrack,Θforbidden, l, i)

10 else if isConstrained() then
11 update(Πchildren,Θbacktrack,Θforbidden,;, i)
12 for π ∈ Πchildren[i] do π ! (;,Θforbidden[i])
13 waitForChildren(B,Θsent,Θbacktrack,Θforbidden, l, i)
14 else if i > 0 then
15 update(Πchildren,Θbacktrack,Θforbidden,;, i − 1)
16 if ∃ θ ∈Θbacktrack[i − 1] then
17 for π ∈ Πchildren[i − 1] do π ! (θ ,;)
18 update(Πchildren,Θbacktrack,Θforbidden,θ , i − 1)
19 else
20 for π ∈ Πchildren[i − 1] do π ! (;,Θforbidden[i − 1])

21 waitForChildren(B,Θsent,Θbacktrack,Θforbidden, l, i − 1)
22 else
23 if hasParent() then
24 πparent ! ;
25 waitForParent(B,Θsent,Θbacktrack,Θforbidden, l, 0)
26 else
27 proofSearch(B,;, l + 1)

28 if isSleeping(π) then Πchildren[i]← Πchildren[i] \ {π}
29 if ∃ θ ∈Θbacktrack . agreement(θ ,Πchildren[i]) then
30 πparent ! {θ}
31 update(Πchildren,Θbacktrack,Θforbidden,θ , i)
32 waitForParent(B,Θsent∪{θ} ,Θbacktrack,Θforbidden, l, i)
33 else
34 σ′← choice(subst)
35 for π ∈ Πchildren[i] do π ! (σ′,;)
36 Πchildren[i + 1]← Πchildren[i]
37 Θbacktrack[i + 1]← subst \ {σ′}
38 Θforbidden[i + 1]←Θforbidden[i]∪ {σ′}
39 waitForChildren(B,Θsent,Θbacktrack,Θforbidden, l, i + 1)

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 57

Parent
X 7→ a

child1

X 7→ a

child2

X 7→ b
Twin
X 7→ a

Figure 3.9: Twin behavior in the proof search.

The Parent’s Procedure The waitForChildren procedure is executed by a process
after the application of a β-rule and the creation of child processes. The set of
substitutions sent by each child is stored in a map subst (Line 2), initially undefined
everywhere (f⊥). This case captures the agreement mechanism, i.e., it attempts to
find at least one common substitution between all the children.

The first cases that are managed are those in which at least one of the children
of the layer cannot close itself, which encompasses multiple situations. The first one
occurs when a child is unable to close its own branch even without any constraints
from its siblings, indicating a lack of solution. In this case, the parent process sends a
failure message (;) to its parent (Lines 24-25) or resumes the proof search with
a higher bound (Line 27).

Otherwise, three backtracking cases can happen. If there are substitutions at this
layer that have not been tried yet (stored in Θbacktrack), the node updates its children
(i.e., kills the open ones, and wakes up the others) and sends them a new proposition
of substitution. In this case, the node remains at the same agreement layer (Lines 6-9).

Recall that the agreement mechanism starts with the first answer of each child.
However, a common agreement can appear in a subsequent step, thus the need to
allow children to pursue their proof search deeper. In order to do this, the function
isConstrained checks if the node is currently trying a substitution on its children. If so,
and considering that no backtracking option is available, it means that the node has
run out of potential candidates for this layer. Thus, the children are killed or awakened
and the process sends them a message (;,Θforbidden) to resume their proof search locally,
forbidding the previously tried substitutions stored in Θforbidden (Lines 10-13).

This mechanism leads to either new substitutions or an open child, which invalidate
definitively the previously chosen substitution. Consequently, if no solution can be
found even without constraint on this layer, it means that the choices made at the
previous layer are wrong. Thus, all the children of this layer are killed and the previous
layer is woken up. An arbitrary substitution from this layer, or if not, children are
launched without constraint (Lines 14-21).

The second main case appears when all the children have returned a substitution.

58 3.2. The Use of Concurrency for an Efficient Fairness Management

At this point, the parent undertakes the task of harmonizing them, exploring all
possibilities stored in the answer structure (Line 2). If a common substitution σ is
found by all the children (Line 29), it is sent to the parent (Line 30). The untried
substitutions, stored in Θbacktrack (Line 31), are also reported to be (possibly) tried
later on this layer.

Otherwise, the agreement phase unfolds in layers: a substitution σ′ ∈ subst is
picked arbitrarily (Line 34) among Θbacktrack and sent to all the children (which are at
that point executing waitForParent) to restart their proof attempts (Line 35), creating
twins in turn. With the additional constraint of σ′, the new proof attempts may fail,
hence the necessity for backtracking among candidate substitutionsΘbacktrack (Line 37).

Subsequently, the new children thus produced can either readily agree, disagree,
or return complementary substitutions. All the children involved in the latter are
reclassified as active and undergo a subsequent layer of agreement, in which all
the substitutions tried are consistent with the initially chosen one. On the other
hand, the second case means that the applied substitution is a “bad” choice and the
process backtracks, thus trying one of the other substitutions previously sent and
triggering the reactivation of some previously sleeping children. This mechanism
is repeated until all the children agree.

3.2.4 A Better Handling of Fairness Issues

This section applies the previous procedure to the select pair and select mode examples,
showing how concurrency helps to ensure fairness. Figure 3.10 and Figure 3.12 use
the same formalism to represent a proof search. It describes the parent process, in the
top box, and below, the two child processes created upon application of the β-rule.
Dotted lines separate successive states of a process (i.e., Procedures 3, 4 and 5 seen
above), while arrows and boxes represent substitution exchanges. The number above
each arrow indicates the chronology of the interactions.

Select Pair Figure 3.10 and 3.11 illustrate the interactions between processes for
the select pair problem described in Figure 3.3b. In the former example, the problems
came from b always being chosen instead of a. With the concurrent procedure, after
both children have returned a substitution (1), the parent arbitrarily chooses one of
them, starting with X 7→ b, and sends it to the children (2). Since this substitution
prevents closure in the right branch (3), the parent later backtracks, discarding the
work done with the previous substitution, and sends the other substitution X 7→ a
(4), allowing both children (5) and then the parent to close successfully.

Select Mode Figure 3.12 and 3.13 illustrate the interactions between processes
for the select mode problem described in Figure 3.4b and Figure 3.4c. In the former
example, the problems came from R(X) never being developed, because of the closure
rule being applied eagerly. With the concurrent procedure, after both children have
returned a substitution (1), the parent arbitrarily chooses one of them, starting with
X 7→ b, and sends it to the children (2). Since this substitution prevents closure in the
right branch (3), the parent later backtracks and sends the other substitution X 7→ a

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 59

(1) (1)(2) (2)(3) (3)(4) (4)(5) (5)

P(a)
¬P(b)

∀x . P(x)⇔∀y P(y)
γ∀P(X)⇔∀y P(y)

β⇔

P(X),∀y P(y)
�σ

σ = {X 7→ b}
X 7→ b X 7→ a ¬P(X),¬∀y P(y)

�σ
σ = {X 7→ a}

P(b),∀y P(y)
�σ�

X 7→ b
X 7→ b

;

¬P(b),¬∀y P(y)
δ¬∀¬P(f (X))

γ∀. . .

P(a),∀y. P(y)
γ∀

P(Y)
�σ

σ = {X 7→ a, Y 7→ b}

X 7→ a

X 7→ a
Y 7→ b

X 7→ a ¬P(a),¬∀y P(y)
��

P(a)
¬P(b)

∀x . P(x)⇔∀y P(y)
γ∀P(a)⇔ (∀y P(y))

β⇔P(a),∀y P(y)
γ∀

P(b)
��

¬P(a),¬(∀y P(y))
��

Figure 3.10: Proof search and resulting proof for P(a),¬P(b),∀x . P(x)⇔∀y P(y).

(4), which cannot close the children either (5). Ultimately, the two previously tried
substitutions X 7→ a and X 7→ b are forbidden (6), and the proof search resumes with
X as, again, a free variable. Thus, R(X) can be developed and a contradiction can
be found with R(c), leading to the closing substitution X 7→ c (7).

3.3 Conclusion

We have developed a proof-search procedure for free-variable tableaux that effectively
addresses many common fairness issues. The concurrent nature of this procedure
enables branches to be explored in parallel, effectively solving the select pair problem,
avoiding unfairness that can arise from sequential exploration.

In addition to the concurrent computation of branches, the procedure also over-
comes the select mode problem. This problem typically occurs when the same sub-
stitution is repeatedly chosen and applied, leading to inefficiency and potentially
incompleteness. To tackle this issue, the procedure incorporates a mechanism for for-

60 3.3. Conclusion

P
X

C1

X 7→ b

C twin
1

X 7→ a

C2

X 7→ a

C twin
2

X 7→ b
Y

. . . Y 7→ b

×

Figure 3.11: Process view of the proof search for P(a),¬P(b),∀x . P(x)⇔∀y P(y).

bidding already tested substitutions. By keeping track of substitutions and disallowing
their reuse, the procedure avoids redundant exploration and improves efficiency.

The proof-search procedure and its associated techniques have been implemented
in a tool called Goéland, described in Chapter 6. The details of the implementa-
tion, features, and usage of Goéland are likewise discussed throughout this thesis,
providing further insights into the practical application of the developed proof-
search procedure.

3. Fairness Management in Tableau Proof-Search Procedures: a Concurrent
Approach 61

(1) (1)(2) (2)(3) (3)(4) (4)(5) (5)(6) (6)(7) (7)

¬P(a)
¬Q(b)
¬R(c)

∀x . (P(x)∨Q(x))∧ ∂ R(x)
γ∀(P(X)∨Q(X))∧ ∂ R(X)
α∧P(X)∨Q(X),∂ R(X)
β∨

P(X),∂ R(X)
�σ

σ = {X 7→ a}
X 7→ a X 7→ b Q(X),∂ R(X)

�σ
σ = {X 7→ b}

P(a),∂ R(a)
�σ�

X 7→ a
X 7→ a

;

Q(a),∂ R(a)
∂R(a)

γ∀. . .

P(b),∂ R(b)
∂R(b)

γ∀. . .

X 7→ b

;
X 7→ b Q(b),∂ R(b)

��

P(X),∂ R(X)
∂

R(X)
�σ

σ = {X 7→ c}

X 6∈ {a, b}

X 7→ c

X 6∈ {a, b}

X 7→ c

Q(X),∂ R(X)
∂

R(X)
�σ

σ = {X 7→ c}

¬P(a)
¬Q(b)
¬R(c)

∀x . (P(x)∨Q(x))∧ ∂ R(x)
γ∀(P(X)∨Q(X))∧ ∂ R(X)
α∧P(X)∨Q(X),∂ R(X)
β∨P(X)

∂
R(X)

�{X 7→ c}

Q(X)
∂

R(X)
�{X 7→ c}

Figure 3.12: Proof search and resulting proof of ¬P(a),¬Q(b),¬R(c),∀x . (P(x)∨Q(x))∧
∂ R(x).

62 3.3. Conclusion

P
X

C1

X 7→ a

C twin
1

X 7→ b

C2

X 7→ b

C twin
2

X 7→ a

.X 7→ c X 7→ c

××

Figure 3.13: Process view of the proof search for ¬P(a),¬Q(b),¬R(c),∀x . (P(x)∨Q(x))∧
∂ R(x).

63

Chapter 4
A Complete Proof-Search Procedure for

Free-Variable Tableaux with Eager
Closure

Contents

4.1 Proof Tree and Characteristics of the Proof Search 64
4.1.1 Structure of a Proof Tree and Mappings 64
4.1.2 γ-rule Application Limit and Higher Bound 66
4.1.3 Canonicity and k-Completeness 68

4.2 Completeness of the Proof-Search Procedure 69
4.2.1 l-Completeness Behaviors . 69
4.2.2 Agreement Mechanism and Completeness 71

4.3 Conclusion . 74

As presented in Chapter 1 and Chapter 2, the destructive nature of free-variable
tableaux and their closure rules can lead to some fairness, and thus completeness,
issues in a proof-search procedure. Nevertheless, destructive instantiation is the-
oretically harmless for the usual first-order tableau calculi, as it maintains proof
confluency: if T can be closed, so σ(T) can. Most textbooks on tableaux (e.g., [94,
124]) present eager closure (as defined in Chapter 1) as the standard closure rule
for free-variable tableaux. Indeed, by closing a branch as soon as possible, we can
hope to save resources, such as time or memory. The destructive version also avoids
redoing the work, in contrast with the non-destructive version.

However, proving the completeness of a proof-search procedure with eager closure
remains difficult. The main obstacle is the non-monotonicity of procedures that use
backtracking. Indeed, standard completeness proofs [124] for tableau construction
procedure typically proceed by considering the (infinite) proof tree that would occur if
the procedure did not terminate on an unsatisfiable formula, yielding a counter-model
and a refutation. For proof-search procedures with backtracking, it is not obvious
how to construct this infinite derivation.

This chapter aims to give a completeness proof of the tableau-based procedure
with eager closure introduced in Chapter 3. Section 4.1 presents the basic notions
and context of the proof, and in particular the key notion of comparison between
proof trees. Then, Section 4.2 uses this concept to prove the completeness of the

64 4.1. Proof Tree and Characteristics of the Proof Search

proof-search procedure introduced in Chapter 3 and implemented in the Goéland tool.

4.1 Proof Tree and Characteristics of the Proof Search

In order to understand the behavior of our method, we present the structure of a proof
tree, along with an extension of the states a branch can be in, which was previously
defined in Section 3.2.1. Since the tableau method allows us to reintroduce formulas,
we also consider a γ-rule application limit l which binds the maximum number of
terms and substitutions that can be generated with respect to l.

4.1.1 Structure of a Proof Tree and Mappings

In this chapter, we use the notion of tableau defined in Section 1.2, which is represented
as a pair (T,σ) of a tree T whose nodes are decorated with sets of formulas, and a
substitution σ over the free variables of these formulas. In a tree, we call a path from
the root to a leaf a branch, and a path from the root to a node an initial segment. An
initial segment S′ of a tree T ′ is an extension (resp. a strict extension) of an initial
segment S of a tree T if the formulas occurring in S are a subset (resp. a strict subset)
of those occurring in S′. This is denoted S v S′ (resp. S À S′). v is a partial order
relation, and À a strict partial order. These notions are illustrated in Figure 4.1.

S
S′

Figure 4.1: S is an initial segment, S′ is a branch, and S v S′.

We define the notion of mapping to identify and compare branches in two different
tableaux and establish an order relation over these mappings. The idea is, starting
from an open branch in a proof tree, to find the “equivalent branch” in the other
proof tree, and track its evolution w.r.t. the reference branch.

Definition 4.1: Mapping (Figure 4.2)

Let (T,σ) and (T ′,σ′) be two tableaux derived from F . A mapping m from T ′

to T is a function that associates all B′ ∈ openσ′(T
′) to an initial segment in T

such that m(B′)v B′ (up to renaming of free variables).

Note that only open branches of T ′ are mapped, at least to the root. Intuitively,
we want to use this notion to map a tableau generated by the procedure to a closed
one with the same root formula.

4. A Complete Proof-Search Procedure for Free-Variable Tableaux with Eager
Closure 65

We denote by img(m) the multiset image of a mapping m and multm(B) the number
of occurrences of a branch B in that image. Note that only open branches of T ′ are
mapped, in particular, if T is a closed tableau and m one of the “most extended”
mapping, img(m) effectively contains the remaining formulas needed to close T ′.

T

m(B′)

T ′

B′

m

m(B′)v B′

Figure 4.2: The branch B′ is mapped to the initial segment m(B′), which means B′ contains
at least all the formulas of m(B′).

Definition 4.2: Mappings Ordering (Figure 4.3)

Let (T,σ) be a tableau. We define the order <Map over mappings for tableaux
derived from T such that for any T ′ and T ′′ and any mapping m from T ′ to T
and m′ from T ′′ to T , m′ <Map m if and only if:

• img(m′) 6= img(m)

• for any B′ such that multm′(B′) > multm(B′), there exists B such that
B À B′ and multm′(B)<multm(B).

<Map compares the images of mappings according to the multiset extension [110,
152] of the relation À−1 over branches. As such, it is easy to show that <Map is a strict
partial order. Furthermore, because elements of the images are within the finite set
of initial segments of T , À−1 is well-founded, and so is <Map.

T T ′T ′′

mm′

Figure 4.3: Mapping ordering between m and m′ such that m′ <Map m.

66 4.1. Proof Tree and Characteristics of the Proof Search

Example 4.1: Mapping Ordering

Assume that branches A′, B′ are respective strict extensions of A, B (AÀ A′, . . .).
Given mappings m with img(m) = {A, A, B} and m′ with img(m′) = {A′, A′, A, B′},
we have m′ <Map m. Two mappings with images {A} and {B} are incomparable.

Definition 4.3: Mapped Tableau

Consider (T,σ) and (T ′,σ′) two tableaux. Among the possible mappings from
T to T ′, there is set a of minimal ones, that is to say, there exists a set of
mapping M s.t. for m ∈ M , there exists no mapping m′ s.t. m′ <Map m. A
pair composed of the tableau (T,σ) and a mapping m ∈ M is called a mapped
tableau.

This definition allows us to consider only the “most extended” mapping, and
to avoid dealing with irrelevant ones (for example, a mapping that maps every
branch to the root).

4.1.2 γ-rule Application Limit and Higher Bound

In order to prove the termination of the procedure, we need to specify two limits related
to the γ-rule application limit l. The first one is called rmax(T, l) and corresponds to
the number of rules that can be generated from a tableau with limit l. The second one
is denoted smax(T, l) and expresses the number of substitutions that can be generated
from a branch of a tableau with limit l. Although we can intuitively say that these
numbers are bounded, we nonetheless want to define them in detail.

Lemma 4.4: Upper Bound for Substitutions per Branch (Figure 4.4)

Let smax(T, l) be the number of substitutions that can be generated from a
tableau T rooted in a set of formulas F with a γ-rule application limit l. A
non-optimal upper bound for smax(T, l) can be computed thanks to the following
variables:

• t: the number of ground terms in F .

• d: the number of δ-rule in F .

• g: the number of γ-rule in F .

Let n= (t + d + l g)(l
g). Then smax(T, l) is bounded by O((n+ 1)!).

Proof. First of all, let us exhibit the number of values that can be assigned
to a variable. Since a γ-rule can generate other γ-rules, with their own γ-rule
application limit l, the number of potential free variables i l g . Then, a free variable
can be mapped to:

4. A Complete Proof-Search Procedure for Free-Variable Tableaux with Eager
Closure 67

• a ground term;

• a Skolem term;

• another free variable.

Thus, the number of potential candidates for one free variable is bounded by t+d+
l g .

Consider now that a substitution contains at most the number of free variables gen-
erable. Thus, the size of the larger generable substitution is bounded by (t + d + l g)l

g
.

Finally, since a substitution does not necessarily include all the free variables, we
have to take into account the combinatorics. Thus, the number of potential generable
substitutions can be upper bounded by:

n
∑

k=0

�

n
k

�

=
n
∑

k=0

n!
k!(n− k)!

<

n
∑

k=0

n!< (n+ 1)!

�

g distinct γ-rules

γ : ∀x .γ′ – l

γ′1 – l γ′2 – l . . . γ′l – l

Figure 4.4: Generable free variables for one branch given a limit l.

Lemma 4.5: Upper Bound for Applicable Rules in a Tableau (Figure 4.5)

Let rmax(T, l) be the number of rules that can be generated from a tableau
rooted in a set of formulas F with a γ-rule application limit l. A non-optimal
higher bound for rmax(T, l) can be computed thanks to the following variables:

• c: the number of connectives in F

• q: the number of quantifiers in F

Then rmax(T, l) is bounded by O(2(l
q×c)+1 × smax(T, l)).

Proof. First of all, recall that every time a β -rule is applied, the remaining formulas
have to be duplicated. Thus, the worst case happens when the tableau contains only
β-formulas, or at least when those formulas were computed before the others.

Moreover, one can imagine the case where all the quantifiers are universal, and
generate β-formulas only. Thus, the worst case arises when applying all the γ-rules,
generating lq new formulas, with lq × c β-connectives.

At this time, applying all the β-rules results in generating 2(l
q×c) − 1 nodes

and 2(l
q×c)−1 leaves. Then, in the worst case, each substitution can be tried at

68 4.1. Proof Tree and Characteristics of the Proof Search

most smax(T, l) on a leaf, which is equivalent to applying 2(l
q×c)−1 × smax(T, l) <

2(l
q×c) × smax(T, l) closure rules.
Finally, the number of rules applicable is bounded by:

O(2(l
q×c)+1 × smax(T, l))

�

lq γ-rules

lq × c β-connectives
⇒ 2(l

q×c) − 1 nodes/rules

2(l
q×c)−1 leaves

⇒ 2(l
q×c)−1 × smax(l) closure rules

γ

Figure 4.5: Upper bound for the number of applicable rules given a limit l.

Having established a higher bound for the rules and the substitutions, this argu-
ment can be used to show that a branch treatment is finite and to explain in detail
the behavior of the branch when it reaches its limit.

4.1.3 Canonicity and k-Completeness

To prove the completeness of the procedure, we need to better characterize the
branches of a tableau. The notations used here to describe a branch state correspond
to those of Subsection 3.2.1. Moreover, to facilitate the comparison of two branches,
we define the notion of canonical substitution, as well as two new branch states:
canonically instantiated and l-complete.

Definition 4.6: k-Complete Branch

For a given k ∈ N, a branch B is k-complete if every applicable rule on formulas
occurring in B has been applied, up to k application of the γ-rules.

This definition considers a branch until a certain limit of γ-rule application. It
finitely approximates the more usual notion of a complete branch for free-variable
tableaux, that corresponds to an∞-complete branch formed as the directed union
of k-complete branches extending one another.

4. A Complete Proof-Search Procedure for Free-Variable Tableaux with Eager
Closure 69

Definition 4.7: Canonical Branches and Substitutions

Let (T,σ) be a closed tableau rooted in F , a tableau (T ′,σ′) and a mapping m
from T ′ to T . We straightforwardly extend the notion of branch mapping to
variable mapping, i.e., we consider m(X) to be the variable X modulo alpha-
conversion in T .
A branch B′ of T ′ is canonically instantiated if T ′ is a mapped tableau, and
for any free variable X occurring both in B′ and σ′, σ′(X) is unifiable with
σ(m(X)). The substitution σ reduced to the free variables of B is also called
canonical.

This concept brings together two tableaux whose substitutions do not conflict
with one another.

4.2 Completeness of the Proof-Search Procedure

Our approach relies on a given arbitrary proof, which is used as a reference. We start
by studying the behavior of the procedure in specific cases, before switching to the
general case. In detail, we describe the implications of the l-completeness for a branch,
as well as the agreement mechanism and its layers. Most proofs of completeness
for tableau construction procedures rely on a notion of fairness (e.g., [124]). We
avoid this notion, which is difficult to define for non-monotonic tableau construction
procedures. A complete procedure is also necessarily fair in some sense since it must
be able to retrace the steps leading to an arbitrary closed tableau.

Across this section, we fix a given reference closed tableau (T,σ) rooted in a
formula F . All proof trees will be mostly implicitly rooted in F and mapped to T
along Definition 4.1. Among the possible mappings from a tableau to (T,σ), we will
consider the minimal ones, and thus the resulting tableau is mapped (Definition 4.3).
We also denote by l the number of applications of the most reused γ-rule in T .

4.2.1 l-Completeness Behaviors

This section uses the notion of k-completeness by applying it to l. In particular, we
observe that there is no branch in T which can be an extension of an l-complete
branch. When applying the procedure of Chapter 3 on F , it incrementally increases its
γ-rule application limit by iterative deepening and restarts the proof search, until one
of the following two things happens: either it finds a proof or it reaches a limit l ′ ≥ l.
The former case takes a finite amount of steps and immediately solves positively the
completeness question. So we focus on the latter case and assume that the procedure
is applied with a limit of at least l.

70 4.2. Completeness of the Proof-Search Procedure

Lemma 4.8: Layering of the Tableaux

Let T ′ be a tableau generated by the procedure and B′ a branch where some
γ-formula has been reintroduced l + 1 times. Then B′ is l-complete.

Proof. By the priority order of the proof-search procedure, a γ-rule is triggered for
the (l + 1)-th time only if there is no more α-δ-β rule to apply, and there is no γ-rule
left that has been introduced less than l times. �

Corollary: At most rmax(T, l) rules before l-completeness

If on a branch B′ of a tableau T rooted in F and generated by the procedure,
rmax(T, l) rules have been applied, then B′ is l-complete.

Proof. If some universal formula has been reintroduced l ′ > l times, B′ is l-
complete by Lemma 4.8. Otherwise, by definition of rmax(T, l) the maximal number
of rules within the limit l has been applied, therefore B′ is l-complete as well. �

Definition 4.9: Fully Mapped Branches and Subtrees

Let T ′ be a mapped tableau, and m be a mapping from T ′ to T . A branch
B′ ∈ T ′ is said to be fully mapped if m(B′) is minimal, that is to say, m(B′) is
a branch of T . A subtree of T ′ is fully mapped if each of its branches is fully
mapped.

Note that branches of T go, by definition of a branch, from the root to the leaves
and therefore are closed by hypothesis on T .

Lemma 4.10: l-Complete Branches are Fully Mapped

Let T ′ be a mapped tableau, and B′ an l-complete branch of T ′. Then the
mapping of B′ is full.

Proof. Let m be the (minimal by Definition 4.3) mapping from T ′ to T . Recall
that by definition of l-completeness, all the rules have been applied in B′, up to l
application of a γ-rule per γ-formula. Assume that the initial segment S = m(B′) is
not a branch, and consider its extension(s) by the next rule applied, in T , to G ∈ S.
Since S v B′ and because l is the maximum number of γ-rule applications in T , this
rule has also been applied to G ∈ B′. One of the children of S, say Bext, is included in
B′ and we can extend the mapping m to m{B′ 7→ Bext}<Map m. This contradicts our
assumption of minimality for m, therefore B′ is fully mapped. �

We can remark that the substitutions applied to B′ and m(B′) may differ, as they
are not taken into account in mappings.

4. A Complete Proof-Search Procedure for Free-Variable Tableaux with Eager
Closure 71

4.2.2 Agreement Mechanism and Completeness

This section explains the agreement mechanism described in Chapter 3, which involves
twins and agreement layers and proves the completeness of the proof-search procedure
for free-variable tableaux with eager closure introduced in the same chapter.

Lemma 4.11: Finite Number of Nested Agreement Layers

There is a finite number of nested agreement layers.

Proof. Let us consider a node or a layer that has n children. To create a nested
agreement layer, all the children must have answered a substitution. Then, a substitu-
tion σ is picked among the answers and sent to the nodes that have not answered σ
during the previous agreement phase. This leads to the creation of twins for the nodes
concerned. Since σ was returned by at least one child, the new deeper agreement
layer contains at most n − 1 children. Ultimately, for a node with n children, the
agreement layer at depth k contains at most n− k children and the maximal nesting
depth cannot exceed n. �

Lemma 4.12: Forbidden for the Subsequent Agreement Layers

Let us consider a layer L, and a substitution σ that has been forbidden by L. σ
is forbidden for all the subsequent agreement layers, that are descendants of L,
and cannot be submitted again in one of those layers.

Proof. By the procedure, when a substitution is forbidden in the children of a layer,
it remains forbidden in any twin of these children. Forbidden substitutions can only
be discarded in case the layer itself is open and discarded. Therefore it cannot be
returned as a solution, and neither can a substitution that refines it. �

Definition 4.13: Termination for a Node

Termination means that a node sends an answer to its parent: either the
node finds an agreement between its children, or it remains open without
a backtracking option, that is to say, at least one child is open without a
backtracking option.

With this definition, the termination of the root node or procedure termination
means tableau termination.

72 4.2. Completeness of the Proof-Search Procedure

Lemma 4.14: Termination

Given a γ-rule application limit l, the procedure of Chapter 3 terminates.

Proof. Remember that, within a given tableau and with a limit l, there is only a finite
number of available substitutions that can unify at least one branch. Moreover, there
is also a finite number of rules that can be applied (see Lemma 4.4 and Lemma 4.5).
In this context, the case of a leaf is immediate, since it either finds a substitution or
remains open. Thus, a non-branching tree terminates. Since a leaf terminates, the
non-termination may only stem from the agreement mechanism.

This termination of leaves also allows us to consider the lowest node such that
its children terminate but it does not: it never finds an agreement nor runs out of
potential candidates for backtracking. Let us consider the deepest agreement layer of
this node that does not terminate. By hypothesis, we know that all children in the
layer terminate. They all must answer some set of substitutions, because if one child
remains open, the agreement layer remains open as well and, so, it terminates.

We find a contradiction by induction on the number of possible substitutions,
that is to say, the number of substitutions that have not yet been forbidden by the
layer. If all substitutions are forbidden, then the children can return no substitution,
which is a contradiction. Otherwise, it means that at least one is available. Then,
it is picked and three cases can happen:

• The children unanimously accept the substitution, this directly contradicts the
non-termination hypothesis.

• The children accept the substitution, but some of them generate complementary
substitutions. This creates another deeper agreement layer. This layer termi-
nates by hypothesis. If this new layer returns a substitution, it means that the
original layer terminates by returning this substitution, which is a contradiction.
So this new layer has to remain open and reject the substitution.

• At least one child remains open, that is to say, the substitution is rejected.

In all cases, we see that any chosen substitution is rejected in the current layer.
Since there is a finite number of possible substitutions, they are rejected in finite
time and the layer has to forbid them and resume proof search (Lemma 4.12). But
since at least one substitution was forbidden, we can apply the induction hypothesis
for a contradiction.

Note that it makes sense to consider the deepest non-terminating agreement layer
because the number of nested layers is finite (Lemma 4.11). �

Lemma 4.15: Canonical Branch Finds a Substitution

Let T ′ be a mapped tableau with a γ-rule application limit l and B a branch
instantiated with a canonical substitution θ . If no canonical substitution is
forbidden, then B sends a substitution that closes the branch and B does not
forbid any canonical substitution by doing so.

4. A Complete Proof-Search Procedure for Free-Variable Tableaux with Eager
Closure 73

Proof. By induction on the number r of rules applicable in B. The result is clear
if r = 0: the branch is fully developed, and by Lemma 4.10 it is fully mapped.
In other words, it is mapped to a leaf of T , and since no canonical substitution is
forbidden, it generates, at least, the (canonical) substitution that closes the leaf
of T on which B is mapped.

Otherwise, it means that all the rules have not been applied. If B is stalled or
closed, it means that it has returned a substitution, so it is a successful case. If the
procedure applies an expansion rule, the proof progresses w.r.t. the ordering: if the
rule is α, δ, or γ, by induction hypothesis, the (unique) child of B has returned a
substitution, that B can also return to its parent (in the γ case, it may prune the
substitution to remove the local free variable introduced by the γ-rule).

In the last β case, B has several children (Ci)1≤i≤n. The agreement mechanism
steps in, so let us consider an initial layer L composed of these children. We prove,
by induction on the number of children n, that L finds an agreement. We apply
the original induction hypothesis on (Ci)1≤i≤n. The children return the substitutions
(σk)1≤k≤m (with m≥ n) without forbidding any canonical one. The node successively
attempts each substitution σk on twins of n− 1 of its children (all but the one that
has proposed σk). Here, either:

• σk is canonical. By induction hypothesis, the twins will generate substitutions
without forbidding a canonical substitution, and a new layer will be created,
with n− 1 (or fewer) children. By the latest induction hypothesis, they find
and return an agreement, without forbidding any canonical substitution, and
so does L and B.

• σk is non-canonical but the twins find an agreement: this is a success case, too.

• Otherwise, no σk is canonical and none fits all the children. A set of forbidden
substitutions is sent to (Ci)1≤i≤n, prohibiting the non-canonical (σk)1≤k≤m and
prompting the children to generate new substitutions. These nodes still comply
with the original induction hypothesis so they do generate new candidates. This
happens at most smax(T, l) times before we reach one of the previous cases.

�

Theorem 4.16: The Procedure of Chapter 3 is Complete

Let us suppose that there exist a tableau (T,σ) with a limit l which is a proof
for a formula F . Then, by applying the procedure with a limit l, a proof for F
is generated.

Proof. The root node is a canonical branch. By Lemma 4.15, the procedure finds a
proof for F . �

74 4.3. Conclusion

4.3 Conclusion

We have proven the completeness of the non-monotonic tableau construction pro-
cedure introduced in Chapter 3. This method works with a given proof, used as a
reference, and relies on the notion of mapping, which allows a proof-tree comparison.
To apply our results to a procedure that relies on iterative deepening, we have also
enhanced the description of the branch states with respect to a certain limit.

In detail, the notion of mapping establishes a correspondence between branches of
two proof trees, allowing us to analyze and compare their structures. By examining the
mappings at each step of the procedure, we can track the evolution and fluctuation
of the proof search towards the desired proof.

In order to give a bound to the proof-search procedure, we have specified the
notion of l-completeness, which permits us to regard a tree as completely developed
within a specific threshold. We have also examined the specificity of the proof-search
procedure, i.e., its agreement mechanism, to finally prove its completeness.

The concepts and conditions used in this proof fit well with those of backtrack and
eager closure, which are standard strategies for tableau-based theorem provers. Thus,
based on those specifications, we plan to develop a general method to prove the com-
pleteness of proof-search procedures for free-variable tableaux with eager closure.

75

Chapter 5
Handling Theories in Tableau-Based

Automated Reasoning Methods

Contents

5.1 Equality Reasoning . 76
5.1.1 Equality Reasoning in Tableau-Based Systems 77
5.1.2 Extraction of a Rigid E-Unification Problem 79
5.1.3 Handling Problems with Equality in a Tableau-Based Proof-

Search Procedure . 81
5.2 Deduction Modulo Theory . 83

5.2.1 Motivation, Definition and Rewriting 84
5.2.2 Useful Variants for a Tableaux Proof-Search Procedure 89
5.2.3 Key points of the Interaction with the Proof-Search Procedure 94

5.3 Conclusion . 98

In recent years, reasoning efficiently with theories has been of growing interest
in the community of automated theorem proving. This surge can be attributed to
the increasing number of real-world problems involving heavy theories, such as the
BWare set theory [105], or to those translated into firs-oder logic from other languages,
such as the proof obligations of an interactive theorem prover exported with a tool,
for instance, Sledgehammer [51]. This trend has forced theorem provers to adapt
themselves to these new challenges, developing new strategies to address them.

Whereas there exist efficient methods to deal with a specific domain, there is no
universal approach to handle them all, and the addition of theory axioms to problem
hypotheses is rarely usable in practice. Indeed, some theories can contain thousands
of axioms, and the resulting increase of the size of the problem does not allow efficient
reasoning, in addition to not being able to identify relevant axioms. Conversely,
leveraging the domain-specific knowledge to develop efficient reasoning techniques
gives better results and is currently the standard way to deal with a specific domain,
especially in tableaux, for example, with arithmetic [211]. This involves the interaction
between a general-purpose foreground reasoner and a specialized background reasoner
designed for dealing with problems related to a particular theory. This collaboration
occurs during key moments of proof search, guiding the process in the correct direction.

Among these theories, equality stands out due to its prevalence and its expres-
siveness. Yet, handling equality reasoning in tableaux is notably challenging, leading

76 5.1. Equality Reasoning

to a wide range of studies and techniques [28, 29, 128] aimed toward this goal:
handling equality in a tableau-based proof-search procedure. While some satisfactory
solutions have been found [103], the pursuit of more efficient equality handling
techniques continues [15].

Considering that each theory may require distinct treatment, one could envision
having a dedicated background reasoner for each theory, akin to the approach
taken with equality reasoning. This strategy is undoubtedly efficient but very time-
consuming and not very adaptable to new theories. In contrast, the concept of an
extensible background reasoner capable of handling a multitude of theories has gained
traction. This approach, known as Deduction Modulo Theory [115], extends predicate
calculus, enabling the rewriting of terms and propositions. It proves suitable for proof
search in axiomatic theories, converting axioms into rewrite rules. By automating
this transformation and meticulously managing interactions with the proof search
process, an efficient generic background reasoner can be established, resulting in
a polyvalent automated theorem prover.

The goal of this chapter is twofold: introduce state-of-the-art techniques to
handle theories in free-variable tableaux and discuss their implementation into an
automated concurrent tableau-based theorem prover. It starts by examining the theory
of equality in Section 5.1, and progresses toward a a complete equality reasoning
procedure. Following this, a universal approach for handling any axiomatized theory,
the deduction modulo theory, is described in Section 5.2. This method outlines
how the set of axioms representing a theory can be managed without requiring
additional resources. Since these methods have already been studied in the literature,
our contribution to this field is composed by their implementation in the context
of a concurrent tableau proof search, highlighting its pivotal interactions with the
main procedure.

5.1 Equality Reasoning

One of the main goals of automated deduction is to efficiently handle first-order logic
with equality. The incorporation of proficient equality reasoning into tableau and
sequent calculi poses a long-standing challenge, resulting in a plethora of theoretically
captivating but surprisingly few practically gratifying solutions. Given its potency,
expressive nature, and ubiquity in real-world problems, the inclusion of equality
reasoning is essential for any robust reasoning method.

In light of its distinctive characteristics, several techniques have been designed to
directly address equality within the framework of tableau-based calculi. Noteworthy
examples include the equality elimination method [100], the introduction of new
tableau rules into the calculus [135], and the application of transformations from
first-order logic with equality to the corresponding form without equality in the
input formulas [12, 68].

However, since equality remains a theory, conventional approaches designed
for managing theories can also be harnessed to integrate equality reasoning as a
background reasoner. Consequently, most strategies for handling equality can be
viewed as specific instances of general methods for theory reasoning within semantic

5. Handling Theories in Tableau-Based Automated Reasoning Methods 77

tableaux. Among these approaches, a family of methods employing incomplete
unification procedures in such a way that an overall complete first-order calculus is
obtained has been developed: the rigid E-unification.

This section focuses on presenting how rigid E-unification, as defined in [129],
can be used to efficiently handle equality in free-variable tableaux. It begins by
establishing the foundational principles of equality reasoning, subsequently illustrating
the process of extracting a problem from a tableau as well as an approach for its
resolution. Finally, it discusses its implementation and its interaction with a concurrent
proof-search procedure.

5.1.1 Equality Reasoning in Tableau-Based Systems

To formally initiate the definition of equality, it becomes necessary to distinguish
between syntactic meta-level equality and semantic equality, which pertains to the
theory of equality addressed here. In other words, when considering two terms
t and t ′, t = t holds true as they are syntactically identical terms, and t = t ′ do
not. Conversely, t ≈ t ′ implies that t and t ′ are semantically equivalent and can be
interchanged while maintaining the semantic integrity of the formula. Within this
section, the latter notion will be referred to as equality (and its negation as inequality).

The E Theory Intuitively, the concept of equality implies that two distinct terms,
even syntactically different, can be exchanged without altering the truth value of
the formula. Through these symbols, the theory of equality can be defined by its
fundamental axioms:

Definition 5.1: Equality Theory

The Equality theory, also denoted E , is composed of the following axioms:

(1) (reflexivity) x ≈ x

(2) (symmetry) x ≈ y ⇒ y ≈ x

(3) (transitivity) x ≈ y ∧ y ≈ z⇒ x ≈ z

(4) (monotonicity for function symbols) for all function symbols f ∈S n
F :

x1 ≈ y1 ∧ . . . ∧ xn ≈ yn⇒ f (x1, . . . , xn)≈ f (y1, . . . , yn)

(5) (monotonicity for predicate symbols) for all predicate symbols P ∈S n
P :

x1 ≈ y1 ∧ . . . ∧ xn ≈ yn⇒ P(x1, . . . , xn)≈ P(y1, . . . , yn)

A Tableau Proof Search Including Equality Axioms Figure 5.1 presents a first-
order problem with equality axioms in a tableau proof-search procedure. Similar to
usual tableaux, all the branches need to be closed in order to obtain a proof, possibly
with the help of a global unifier. In this specific example, the tableau splits into two

78 5.1. Equality Reasoning

branches, B1 and B2. The substitution {X 7→ a} immediately solves B2, thanks to
¬a ≈ a. A solution is also found for B1 with the application of equality reasoning
on P(g(g(a)), b) and ¬P(a, c), thanks to the equalities b ≈ c, f (X) ≈ g(X) and
g(f (Y))≈ Y . In details, b ≈ c allows the respective second elements of the predicates
to match, whereas g(g(a)) is first transformed into g(f (a)) due to f (X)≈ g(X) and
then into a thanks to g(f (Y))≈ Y , leading to P(a, c) and thus to the contradiction
with ¬P(a, c). Since the closure on B1 does not require any substitution, {X 7→ a}
is a global closure for the tableau.

∀x . g(x)≈ f (x)∨¬(x ≈ a)
∀y. g(f (y))≈ y

b ≈ c
P(g(g(a)), b)

¬P(a, c)
γ∀g(f (Y))≈ Y

γ∀(g(X)≈ f (X))∨¬(X ≈ a)
β∨g(X)≈ f (X)

B1

¬(X ≈ a)
B2

Figure 5.1: Equality problem.

Equality Reasoning Challenges While these types of problems may appear man-
ageable to human intuition, the computational aspect is considerably more intricate
due to the difficulty machines face in deducing the “correct” equality to apply. The
task of selecting the appropriate equality replacement at the outset of the proof search
can result in unfavorable choices, leading to a lot of useless proof-search steps before
potentially reevaluating the decision. Additionally, the straightforward approach of
exhaustively attempting all equality replacements without restriction can trigger an
unending sequence of term generation, rendering it unfeasible in practice.

Maintaining the coherence of the tableau presents yet another substantial chal-
lenge, akin to the complexities of managing substitutions and their interactions.
Specifically, when an equation such as X ≈ a is part of the tableau and X is affected by
a substitution, it becomes imperative to ensure that such alterations do not adversely
impact other branches or equations involving the variable X .

Reasoning Method to Handle Equality in Tableaux There are two primary tech-
niques for handling equality in semantic tableaux: partial equality reasoning, the more
straightforward method consisting of adding new rules to the tableau calculus, and
total equality reasoning, which hinges on E-Unification, a decision procedure that
determines branch closure without additional expansion rules.

5. Handling Theories in Tableau-Based Automated Reasoning Methods 79

Efforts to transform more sophisticated and efficient methods, such as completion-
based approaches, into simple tableau expansion rules face difficulties. The shared
problem among these partial reasoning methods, founded on extra tableau expansion
rules, is that equalities can be applied without any restriction. The symmetry of these
rules leads to extensive search space, making it challenging to solve even relatively
straightforward problems in a reasonable amount of time [32].

In contrast, the utilization of total equality reasoning, which avoids the addition
of equality expansion rules, transforms the task of finding a closing substitution
in a tableau branch into solving an E-unification problem. This approach permits
the use of various algorithms for E-unification problem-solving. Additionally, [33]
demonstrated that E-unification-based methods significantly outperform those based
on additional rules.

The main idea behind this concept is to define an E-unification problem comprising
a pair of complementary literals and an equality set E, which is then solved by
unifying the two literals using the available equalities in the branch. Multiple
algorithms facilitate the matching process, contributing to the efficiency of this
approach compared to the partial one. Moreover, different forms of E-unification
exist based on the type of tableau (grounded, free variables, etc.). For free variables
tableaux, the corresponding problem is known as the rigid E-unification problem.

The importance of rigid E-unification for automated theorem proving was initially
outlined in [130]. Later, [129] refined the concept of [43] to suit equational reasoning
in tableaux. A complete procedure was then developed in [103], which uses E-
unification to address equality reasoning in tableau-based systems.

5.1.2 Extraction of a Rigid E-Unification Problem

This kind of E-unification is called rigid due to its distinctive feature: contrary to
classical E-unification, it only allows a variable to be assigned to a single term [129].
Then, an E-unification problem can be defined as follows:

Definition 5.2: Rigid E-Unification Problem

A rigid E-unification problem
〈E, s, t〉

consists of a finite set E of equalities of the form (l ≈ r) and two terms s and t
such that r, l, s, t ∈T .

Intuitively, this problem represents the intent to establish equality between s and t,
leveraging the equalities present within E. A solution to a rigid E-unification problem
is a substitution containing the required instantiations of free variables, which have
been essential in demonstrating the equivalence of the two provided terms.

80 5.1. Equality Reasoning

Example 5.1: Rigid E-Unification Problem

Let 〈{g(Y)≈ Y, g(Z)≈ f (Z)} , g(g(a)), f (X)〉 be an E-unification problem.
The goal is to match g(g(a)) and f (X). To do so, g(g(a)) can be reduced
to g(a) with the use of the first equality, w.r.t. the substitution Y 7→ a. Then,
g(a) can be transformed into f (a) following the second equality, and improving
the current substitution by {Z 7→ a}. Finally, f (X) and f (a) are unifiable, which
leads to the final substitution {X 7→ a, Y 7→ a, Z 7→ a}. Other combinations of
rules also allow us to solve this problem.

An E-unification problem is the basic element for rigid E-unification. In detail, for
each par of complementary literal P(t0, . . . , tn) and ¬P(t ′1, . . . , t ′n), we extract n sub
E-unification problems in order to match the i th terms together. An inequality t 6= t ′

also leads to an E-unification problem, in which t and t ′ have to be matched.

Extraction of Rigid E-Unification Problems Recall the example of Figure 5.1.
There are two branches, B1 and B2, each of them with their own equality set. In
this example, the notation E(Bi) represents the set of equalities of the branch i and
P(Bi) the set of set of rigid E-unification problems corresponding to each pair of
complementary literals or inequalities.

Example 5.2: Simultaneous Rigid E-Unification Problem Corresponding to the
Proof Tree in Figure 5.1

The sets of simultaneous rigid E-unification problem of the figure Figure 5.1
are the following:

• B1 :

– E(B1) :

* b ≈ c

* g(f (Y))≈ Y

* g(X)≈ f (X)

– P(B1) :

* {〈E(B1), g(g(a)), a〉, 〈E(B1), b, c〉}

• B2 :

– E(B2) :

* b ≈ c

* g(f (Y))≈ Y

– P(B2) :

* {〈E(B2), g(g(a)), a〉, 〈E(B2), b, c〉}

* {〈E(B2), X , a〉}

5. Handling Theories in Tableau-Based Automated Reasoning Methods 81

Within this instance, B1 is associated with a single equality problem while B2 has
two of them. Moreover, B2 comprises two distinct closure types: a literal and its
opposite and the negation of an equality. The overarching objective is to identify a
substitution that both B1 and B2 can concur upon, ensuring the closure of the entire
proof tree. Once the problem is established, attention can then be directed towards
exploring different strategies for effectively resolving it.

5.1.3 Handling Problems with Equality in a Tableau-Based Proof-
Search Procedure

Resolution of a Rigid E-Unification Problem In [103], a method called rigid basic
superposition was introduced for computing a finite (albeit incomplete) set of solutions
for rigid E-unification problems. This approach adapts basic superposition (in the
formulation presented in [187]) to rigid variables. Despite being incomplete, these
solutions are sufficient to handle equality within rigid variable calculi. This method is
improved by a set of constraints as well as a term ordering relation and relies on two
rules (left and right), which influence either the equalities or the two terms to match.

Together with these rules, complete calculus for first-order logic with equality has
been constructed: the BSE calculus. The rules are integrated into the closure rule of
free-variable tableaux. This extension works as follows: each solution computed by
rigid basic superposition for one of the unification problems in P(B) can be used
to close the branch B.

In detail, recall that for two complementary literals, a set of E-unification problems
is extracted, each having the same set of equalities. For a single rigid E-unification
problem, multiple solutions can arise. Thus, for each identified term match, i.e., a
substitution σ such that σ(s) and σ(t), σ has to be compatible with the solution
returned by the others E-unification problem stemming from the same predicate. To
manage this, a mechanism similar to the one employed for the children management
in Chapter 3: each problem searches for a solution, and then an agreement phase
happens. If one problem is unable to be solved, the set of problem admit no solutions
and the closure mechanism start on the next pair of predicates. Another layer of
parallelization could also have occurred inside of the resolution of a problem itself:
in the basic rigid superposition rules, at each step, multiple right or left rules can
be applied. We prioritize the right ones [125], which are the ones leading to the
closure case, as illustrated in Figure 5.2. After this selection, only one type of rule
remains, and one could imagine launching them all in parallel. This obviously leads
to some redundant states, which could be pruned. However, this mechanism was
not implemented, since the generated goroutines would have downgraded too much
the proof search in terms of performance.

To control the rule application’s expansion, since one pair of complementary literals
is enough to close a branch, the reasoning stops once at least one set has a solution. The
state of the equality reasoning is saved, to be possibly re-opened in a subsequent step.

Integration into the Proof-Search Procedure We now study the interactions
between equality reasoning and the proof-search procedure. Two main strategies

82 5.1. Equality Reasoning

〈E, s, t〉

〈E′, s, t〉

〈E′′, s, t〉 〈E′, s′, t〉

〈E, s′, t〉

〈E′, s′, t〉 〈E, s′′, t〉

ER L

ER
L

ER
R

ER
R

ER
L

ER
R

Figure 5.2: Equality rule application with optimizations.

are usually employed: solving all the rigid E-unification problems of all the branches
at once, or closing branches sequentially, the first substitution found to close a
branch Bi being applied to the whole tableau. If, at a later point, the closure of
branch B j(j > i) becomes impossible, a backtracking process is triggered to compute
supplementary closing substitutions for Bi. This approach yields a calculus that is
both correct and complete, provided that the search for additional branch-closing
substitutions is bounded.

The first case is referred to as simultaneous rigid E-unification problem. This
problem takes a set of equalities and terms and attempts to find a global unifier,
which results in a closure for the whole tree.

Definition 5.3: Simultaneous Rigid E-Unification Problem

A finite set
{〈E1, s1, t1〉, . . . , 〈En, sn, tn〉}

of rigid E-unification problems is called a simultaneous rigid E-unification
problem. A substitution σ is a solution to the simultaneous problem iff it is a
solution to every component 〈Ei, si, t i〉(1≤ i ≤ n).

In simpler terms, every set of simultaneous rigid E-unification problems repre-
senting a branch must converge towards a common substitution. However, within
each individual branch, the need for only one set to achieve closure prevails. This
combinatorics is depicted in Figure 5.3.

Conversely, a more straightforward implementation relies on closing one branch
after another, sending the closing substitution to the sibling branches, just as usual
substitution management. However, when a substitution is found for a branch, it may
not necessarily fit with the other branches. In such cases, revisiting the previous branch
becomes necessary to explore potential new solutions. Hence the need for backtrack
points in the procedure, allowing the possibility to restart all the E-unification problems
that have returned a solution for a branch and reconsider a choice. By memorizing
work already done, the procedure can easily resume the proof search without redoing
work. However, if the proof search resumes with a substitution, the equality reasoning
has to restart too, because the previous equality reasoning step may not hold anymore
with this additional constraint.

5. Handling Theories in Tableau-Based Automated Reasoning Methods 83

B1

EPB1
1

EPB1
2

B2

EPB2
1

EPB2
2

EPB2
3

B3

EPB3
1

EPB1
1 ◦ EPB2

1 ◦ EPB3
1

EPB1
1 ◦ EPB2

2 ◦ EPB3
1

EPB1
1 ◦ EPB2

3 ◦ EPB3
1

EPB1
2 ◦ EPB2

1 ◦ EPB3
1

EPB1
2 ◦ EPB2

2 ◦ EPB3
1

EPB1
2 ◦ EPB2

3 ◦ EPB3
1

Figure 5.3: Equality reasoning combinatorics for simultaneous equality problems.

Another point intricately linked to proof search pertains to the timing of applying
equality reasoning. Applying it at every step is possible, but clearly inefficient.
An alternative approach involves waiting until a branch is fully developed before
attempting it, or at least, waiting for a set of branches to find at least one contradiction.
This solution is used for the simultaneous case. At the end of the day, a balanced
approach for the per-branch-closure case could involve applying equality reasoning
solely when a predicate is generated, akin to the style of closure rules. This integration
would augment the closure mechanism, resulting in a sound and complete calculus
for first-order logic with equality [31, 32]. In the end, equality reasoning is avoided in
cases where it is irrelevant, such as when the new predicate is not part of any equalities.

Moreover, unlike other predicates, ≈ receives direct interpretation during the
proof-search process: for any term t, ¬(t ≈ t) is assigned to ⊥. This aspect is
incorporated as a closure rule within the proof search.

Handling all (or multiple) branches of a tableau in parallel proves to be more
efficient [32]. This enables simultaneous utilization of the information contained
within the branches, obviating the need for backtracking and allowing for a constrained
search space. For instance, it’s often feasible to identify branches wherein only one
closing substitution exists. These substitutions can be promptly applied even before
other branches are closed. Although the per-branch method was originally unable to
combine information coming from different branches, the use of parallelization in
the proof search allows it to gain a communication level closer to the simultaneous
case, and thus enhance performance.

5.2 Deduction Modulo Theory

The goal of this section is to describe a general-purpose system designed to generically
handle theories and its interactions with the proof-search procedure presented in
Chapter 3: the deduction modulo theory (DMT). The main idea behind this system
is to transform axioms into computational rules, resulting in a congruence calculus

84 5.2. Deduction Modulo Theory

and a reduction in the proof-search space. The first ideas of this system appear
as early as 1965 [202], with the idea of replacing axiom by deduction rules, and
1972 [199], where the author replaces standard unification with unification modulo
associativity in a resolution-based system.

The issue raised is simple: an automated theorem prover might apply trivial
lemmas such as the associativity of addition a great number of times, thus leading to
an inefficient proof search. As heuristics and ad-hoc solutions do not lead to efficient
results, he found that orienting the terms in the right way gives a confluent rewrite
system. Consequently, the associativity axiom could be replaced by a computational
rule that keeps the completeness of the original system.

Over time, this technique gained widespread recognition and started encompassing
a broader range of theories. Initially, these extensions were focused on other theories
such as simple type theory [114], arithmetic [117], and Zermelo’s set theory [116].
Recently, its application field was extended to systematically transforming the axioms
of any theory into rewrite rules as a potential optimization for automated proof-
search procedures [104].

The results yielded by this approach on Zenon [65] give birth to the provers Super
Zenon [153], Zenon Modulo [104], and inspired iProver Modulo [72]. This section
first focuses on defining deduction modulo theory and the automatic translation of
an axiom into a rewrite rule. It then delves into useful variants of deduction modulo
theory in a tableau proof-search procedure and finishes by highlighting potential
pitfalls in managing interactions between the procedure and the rewrite system.

5.2.1 Motivation, Definition and Rewriting

Section 5.1 has highlighted an instance of a specific background reasoner dedicated
to equality reasoning. While deduction modulo theory could also handle equality in a
certain way, the present version excludes the equality predicate from the reasoning
and rather focuses on offering computation over propositions. Indeed, interactions
with the equality reasoner presented in the previous section are not trivial and could
lead to conflicts, as both mechanisms would like to work on the same set of terms.
Further investigation needs to be performed before combining the two tools.

The advantages of deduction modulo theory over the native proof-search procedure
can be seen fairly easily when considering the set theory’s theorem ∀a. a ⊆ a under
the following axiom:

∀a, b. a ⊆ b⇔∀x . x ∈ a⇒ x ∈ b

The tableau proof of this problem is pretty standard and developed in Figure 5.4a.
As can be seen, this proof needs to explore two branches to manage the axiom
corresponding to the inclusion. This case is pretty common in axiomatic theories,
where some of the axioms of a theory T define predicates introduced for reasoning
in T alongside their semantics. Thus, since they are equivalent, two branches need
to be managed: the predicate and its definition.

This kind of axiom presents a great bottleneck for a procedure based on the
tableau method, as the branching induced by disjunctions leads to an explosion of the

5. Handling Theories in Tableau-Based Automated Reasoning Methods 85

∀a, b. a ⊆ b⇔∀x . x ∈ a⇒ x ∈ b,¬(∀a. a ⊆ a)
δ¬∀¬(c ⊆ c)

γ∀,γ∀c ⊆ c⇔∀x . x ∈ c⇒ x ∈ c
β⇔c ⊆ c,∀x . x ∈ c⇒ x ∈ c ��

¬(c ⊆ c),¬(∀x . x ∈ c⇒ x ∈ c)
δ¬∀¬(c′ ∈ c⇒ c′ ∈ c)

α¬⇒
c′ ∈ c,¬(c′ ∈ c) ��

(a) Tableau proof that a ⊆ a.

¬(∀a. a ⊆ a)
δ¬∀¬(c ⊆ c)

c ⊆ c −→ ∀x . x ∈ c⇒ x ∈ c¬(∀x . x ∈ c⇒ x ∈ c)
δ¬∀¬(c′ ∈ c⇒ c′ ∈ c)
α¬⇒

c′ ∈ c,¬(c′ ∈ c) ��

(b) Tableau proof with deduction modulo theory that a ⊆ a.

Figure 5.4: Comparison between a standard tableau proof and a proof that use a rewrite
system thanks to deduction modulo theory.

proof-search space, necessitating the reconciliation of a substantial number of leaves.
Deduction modulo theory excels in its ability to convert these branching-inducing
axioms into computational rules, thereby reducing the size of the proof-search space.
For example, let us take the same theorem to prove as before, i.e., ∀a. a ⊆ a, but
now the set theory’s axiom describing the inclusion is picked out of the proof search
and transformed into the following rewrite rule:

A⊆ B −→ ∀x . x ∈ A⇒ x ∈ B

where A and B are free variables that await an instantiation through unification. It
leads to the proof of Figure 5.4b, in which the tableau is easily closed in a few steps,
without branching. With this intuition established, a formal definition of a rewrite
rule and a rewrite system can be given.

Definition 5.4: Rewrite Rule

A rewrite rule is a pair of formulas F, G such that FV(G) ⊆ FV(F). It is denoted
F −→ G.

In the state of the art, a rewrite rule can ether be applied on terms or propositions.
In this thesis, as only the propositional case is mentioned, we use the denomination
rewrite rule to talk about propositional rewrite rule.

86 5.2. Deduction Modulo Theory

Definition 5.5: Rewrite System

A rewrite system R is a set of rewrite rules. A rewrite rule F −→ G is part of a
rewrite system R if (F, G) ∈R and is denoted F −→R G.

Definition 5.6: Rewriting Relation

Let R be a rewrite system and A, B be formulas. A rewrites to B, denoted
A−→R B if and only if:

• either there exist a rewrite rule F −→R G and there exist a substitution
σ such that A= σ(F) and B = σ(G);

• or A and B are compound formulas with the same main connective or
quantifier, and exactly one pair of the corresponding subformulas rewrites
one to another, the rest being identical.

For any rewrite system R, we will denote −→∗R to be the reflexive and transitive
closure of −→R.

Definition 5.7: Confluence, Termination

A rewrite system R is said confluent if for a given formula F , for all formulas
F1, F2 such that F −→∗R F1 and F −→∗R F2 there exists F ′ such that F1 −→∗R F ′

and F2 −→∗R F ′. Furthermore, R is said terminating if there does not exist an
infinite chain of derivations.

It is important to note that−→R does not, in general, preserve the proof confluency
and thus may lead to an incomplete procedure if not properly handled. Moreover,
as deduction modulo theory can lead to the loss of cut-free completeness [112], we
need to pay specific attention to the design of a computational system.

A question to be asked is whether to develop a manual rewrite system or to use a
heuristic to automatically transform axioms into rewrite rules. The former has been
investigated in [78] and has been found to be greatly efficient in a given theory (the
set theory of the B method in particular). Moreover, it also allows us to study in
detail the rewrite system, for instance, its confluency, its termination, or its cut-free
completeness. However, this approach lacks the generality expected from deduction
modulo theory in an automated prover, as even if a great effort was spent on writing
a file containing the rewrite rules of numerous theories, there would surely come
a time when it would be rendered useless.

The choice for a general-purpose proof-search procedure has thus been to use a
heuristic to translate axioms into rewrite rules, effectively removing the translated
axioms from the original problem to prove. This approach has been thoroughly
investigated in [73], which outlines the main properties needed by a heuristic to

5. Handling Theories in Tableau-Based Automated Reasoning Methods 87

yield rewrite systems that are not naively non-terminating. The term “naively non-
terminating” is used because achieving a (theoretically) terminating rewrite system
without causing significant performance degradation is challenging.

For example, we should refrain from transforming an axiom expressing the
commutativity of an operation, as it inevitably leads to an endless sequence of rewrite
steps once triggered. Another easily avoidable pitfall when transforming axioms into
rewrite rules is to prevent the rewriting of a proposition P into another proposition A
if there exists a subformula of A unifiable with P. However, these solutions solely solve
special cases of a more general and pathological problem, and thus do not ensure
a theoretically terminating automatically-generated rewrite system. As a matter of
fact, let us take two axioms of a naive set theory.

∀a, b. a ⊆ b⇔ a = b ∨ a (b
∀a, b. a = b⇔ a ⊆ b ∧ b ⊆ a

As can be seen, the two cases observed in the previous paragraph do not hap-
pen in these axioms. Thus, they can “safely” be transformed into the following
rewrite system R.

A⊆ B −→R A= B ∨ A(B
A= B −→R A⊆ B ∧ B ⊆ A

where A and B are, as explained before, free variables awaiting an instantiation
by unifying these rewrite rules with formulas derived in the proof search. R is
non-terminating, as we can exhibit the following infinite rewriting chain:

A⊆ B −→R A= B ∨ A(B −→R (A⊆ B ∧ B ⊆ A)∨ A(B −→R · · ·

In this particular case, it is still easily checkable, even though more efforts need to
be made to detect the infinite potential chain. Nevertheless, in practical terms, it is
inefficient to verify the termination of such systems. Instead, it is more effective to
ensure termination by carefully rewriting during the proof-search procedure.

In state-of-the-art heuristics of deduction modulo theory in tableau-based theorem
provers, two types of axioms are usually chosen to be translated in rewrite rules:

∀~x . P
∀~x . P⇔ A

where P is an atomic proposition and A any non-literal. Furthermore, recall that by
definition, the last two types of axiom can only be translated into rewrite rules if
FV(P) ⊆ FV(A) ⊆ ~x . The following rewrite system is thus derived:

∀~x . P becomes P −→>
∀~x . P⇔ A becomes P −→ A

To manage the integration of rewrite rules into the proof-search procedure, the
portion of the substitution σ of Definition 5.6 that involves free variables belonging
to the proof-search tree is added as constraints to the proof search.

88 5.2. Deduction Modulo Theory

¬(∃y, z. (¬R(y, z)∨ R(y, y))∧ (¬Q(y, z)∨Q(a, b)))
γ¬∃,γ¬∃¬((¬R(Y, Z)∨ R(Y, Y))∧ (¬Q(Y, Z)∨Q(a, b)))

β¬∧¬(¬R(Y, Z)∨ R(Y, Y))
α¬∨R(Y, Z),¬R(Y, Y)

R(Y, Z) −→>> R(Y, Y) −→>¬> �{Y 7→ Z}

¬(¬Q(Y, Z)∨Q(a, b))
α¬∨Q(Y, Z),¬Q(a, b)

(?)

Figure 5.5: Proof-search tree with additional constraints due to atomic rewriting.

Example 5.3: Interaction between the Rewriting Relation and the Proof-Search
Procedure

Let us consider the following rewrite rules and incoming formulas:

• P(X , X) −→R > and P(a, a). Then, P(a, a) −→R > thanks to σ =
{X 7→ a}, > is added to the proof search and P(a, a) is removed without
additional constraint.

• P(a, a) −→R > and P(X , X). Then, nothing happens, as there is no
substitution σ such that P(X , X) = σ(P(a, a)).

• P(X , X) −→R > and P(Y, Z). Then, P(Y, Z) −→R > thanks to σ =
{Y 7→ X , Z 7→ X }, > is added to the proof search and P(a, a) is removed
with the additional constraint {Y 7→ Z}.

• P(X , X) −→R > and P(a, a)∧>. Then, P(a, a)∧> −→R >∧> thanks
to σ = {X 7→ a}, >∧> is added to the proof search and P(a, a)∧> is
removed without additional constraint.

However, constraints yields by the addition of rules of the form P −→ > into
the proof-search procedure can become challenging in the context of a free-variable
tableau-based theorem prover, as illustrated in Figure 5.5. In this example, the axiom
∀x . R(x , x) has been transformed into the rewrite rule R(X , X) −→R > using the
previous heuristics. Thus, in the left branch, two rewrite rules can be applied: one to
R(Y, Z), yielding the constraint {Y 7→ Z}, and one to R(Y, Y), leading to a closure. In
the case of a proof search without deduction modulo theory, a contradiction could
have been found between ∀x . R(x , x) and R(Y, Y), which disappeared from the initial
problem due to the creation of the rewrite system. As a result, the proof search
has to choose a predicate to be rewritten. If R(Y, Y) is chosen first, then the branch
can be closed and a proof s found as in the original situation. If R(Y, Z) is chosen
first, it generates > and the additional constraint {Y 7→ Z}. This does not prevent
the closure in the left branch, since the rewrite rule can still be applied on R(Y, Y),
but impacts the right one. Indeed, the node labeled (?) will attempt to close the
branch by substituting Y by a and Z by b, before checking the constraint from its

5. Handling Theories in Tableau-Based Automated Reasoning Methods 89

sibling branch. Consequently, the branch cannot be immediately closed anymore.
This second situation is illustrated on Figure 5.5.

As can be seen in this example, the constraints returned by the computation rule
may not be useful when closing a branch, especially when an atomic formula has
been rewritten into >. As such, we chose not to implement this first heuristics, and to
strictly stick to the second. It thus allows the rewriting steps to be fully enclosed inside
the rewrite system, and to keep the interactions with the proof-search procedure
to a minimum. This problem also highlights the need for a fairness management
over the rewriting mechanism, as well as the loss of completeness induced by the
application of deduction modulo theory with free-variable tableaux. Completeness
can be restored by the use of narrowing, i.e., the use of unification rather than pattern
matching in Definition 5.6. However, completeness is not necessarily desirable when
it comes to practical performances [73].

The previously described behaviors are the key to ensuring the in-practice ter-
mination of a heuristics-based rewrite system. As such, the following rewriting
algorithm is proposed:

1. When a literal (an atomic formula or a negated atomic formula) is generated,
check for closure.

2. If no closure is found, apply one step of proposition rewriting.

3. If the literal can be rewritten, continue the proof search with the updated
formulas.

With the chosen heuristics, if a literal is rewritten, then the resulting formula
is not a literal. As such, only one step of rewriting can be applied, thus leading to
the obvious termination of the rewrite strategy. The whole process is formalized in
Figure 5.6 where ≡R is the symmetric closure of −→∗R. The chosen formalization
follows closely the rewriting algorithm and the Poincaré principle [18] (which states
that computation’s traces should not be part of the proofs), thus rewriting silently
on a rule application if it yields a literal.

It is still important to note that theoretically non-terminating rewrite systems
crafted by the heuristics may still lead to a non-termination of the proof search despite
taking the aforementioned precautions, but such a system is rare and, in practice, this
algorithm is a good compromise between efficiency and simplicity of implementation.

5.2.2 Useful Variants for a Tableaux Proof-Search Procedure

The goal of deduction modulo theory is to transform as many axioms as possible into
rewrite rules, to reduce the proof-search space needed by trading proof steps for com-
putation steps. Given the effectiveness and practicality of transforming equivalences
such as ∀~x . P⇔ A, it is reasonable to question the feasibility of translating axioms of
different forms. With the basic principles of deduction modulo theory established,
this section delves into some optimizations for the deduction modulo theory reasoner:
the polarized deduction modulo theory and the preskolemization.

90 5.2. Deduction Modulo Theory

⊥ ��
¬> ��

F,¬G �σ,σ(F) = σ(G)
�/σ

(a) Closure rules.

¬¬F α¬¬, F ≡R A
A

F ∧ G
α∧,

F ≡R A
G ≡R BA

B

¬(F ∨ G)
α¬∨,

F ≡R A
G ≡R B¬A

¬B

¬(F ⇒ G)
α¬⇒,

F ≡R A
G ≡R BA

¬B
(b) α-rules.

F ∨ G β∨, F ≡R A
A B

¬(F ∧ G)
β¬∧,

F ≡R A
G ≡R B¬A ¬B

F ⇒ G
β⇒,

F ≡R A
G ≡R B¬A B

F ⇔ G
β⇔,

F ≡R A
G ≡R BA

B
¬A
¬B

¬(F ⇔ G)
β¬⇔,

F ≡R A
G ≡R BA

¬B
¬A
¬B

(c) β-rules.

∃x . F δ∃, F[x 7→sko (y1, . . . , yn)]≡R G
G

¬∀x . F δ¬∀, F[x 7→sko (y1, . . . , yn)]≡R G¬G
(d) δ-rules.

∀x . F γ∀, F[x 7→ X]≡R G
G

¬∃x . F γ¬∃, F[x 7→ X]≡R G
¬G

(e) γ-rules.

Figure 5.6: Free-variable tableau rules modulo in a rewrite system R.

Polarized Deduction Modulo Theory By remarking that P ⇔ A is actually a
shortcut for (P ⇒ A) ∧ (A ⇒ P), and that P −→ A is the rewrite rules yielded by
the original formula, then axioms of the form ∀~x . P ⇒ A appear to be promising
contenders for an effective translation into rewrite rules. This idea is behond the
concept of polarized deduction modulo theory [113].

The actual transformation follows closely this intuition, even though some care is
needed to retain the soundness of the proof. To formalize this, let us first define a
concept that will be subsequently needed: the polarity of a predicate.

5. Handling Theories in Tableau-Based Automated Reasoning Methods 91

Definition 5.8: Polarity Function

Let A be a formula and B be a subformula of A. The polarity function Pol takes
these two formulas as arguments and returns an integer in {0,1} such that
Pol(B, A) = 0 if B has a negative polarity in A and 1 otherwise. It is defined by
induction on A.

• If A= B then Pol(B, A) = 1.

• If A= ¬F , then Pol(B, A) = 1− Pol(B, F).

• If A= F1 ∨ F2 or A= F1 ∧ F2 then if B is a subformula of F1, Pol(B, A) =
Pol(B, F1). Otherwise, Pol(B, A) = Pol(B, F2).

• If A= F1⇒ F2 and B is a subformula of F1 then Pol(B, A) = 1−Pol(B, F1).
Otherwise, Pol(B, A) = Pol(B, F2).

• If A= ∀x F or A= ∃x F then Pol(B, A) = Pol(B, F).

The case of a predicate is clearly a subcase of the first case as if A is an atom,
then the only subformula of A is itself.

In short, a formula B has a positive occurrence in a formula A if it appears under a
negation an even number of times. Otherwise, it is said to have a negative occurrence.

Example 5.4: Polarity Function

Let us consider the formula (¬A)⇒ B. Then, the polarities of its literals are
the following:

• B has a positive occurrence:

Pol(B, (¬A)⇒ B) = Pol(B, B)
= 1

• A has a positive occurrence:

Pol(A, (¬A)⇒ B) = 1− Pol(A,¬A)
= 1− (1− Pol(A, A))
= 1− (1− 1)
= 1

• ¬A has a negative occurrence:

Pol(¬A, (¬A)⇒ B) = 1− Pol(¬A,¬A)
= 1− 1

= 0

92 5.2. Deduction Modulo Theory

With these new candidates for rewriting rules, an examination of the interaction
with the actual rewrite mechanism, based on equivalences, is needed. Thanks to
the notion of polarity, new rewrite rules can be deduced from implications (the
detailed procedure will be outlined subsequently). Moreover, structurally speaking,
equivalence can be seen as a combination of two implications, and thus two rules
can be extracted for the initial formula.

In terms of semantics, the first subformula implies that if P holds true, so does
A. Consequently, if P appears during the proof search, it can be rewritten into A.
However, with only P ⇒ A, this is not possible for ¬P as it does not imply ¬P ⇒¬A.
Nevertheless, the initial formula P⇔ A includes A⇒ P, which is, by contraposition,
¬P ⇒ ¬A. Thus, ¬P can be soundly rewritten into ¬A.

This semantics is hidden in the rewrite rule P −→ A, which might create the
impression that only P is subject to rewriting. Nevertheless, the underlying mecha-
nism is somewhat intricate, and even though polarity does not directly impact the
rewriting of equivalence, it is crucial to elucidate this aspect to effectively manage
implication rewriting.

As such, an axiom with an equivalence as its root connective naturally yields a
positive and a negative rewrite rule. Thus, the previously defined rewrite system
R can actually be split into two disjoint rewrite systems R+ and R−, where R =
R+ ∪R−. In this system, an axiom of the form P ⇒ Q pertains to R+ if and only
if Pol(P, P ⇒ Q) = 1, and to R− otherwise. These new systems are called polarized
rewrite systems, and a polarized rewrite relation can be defined analogously as it
had been for the standard rewrite system.

Definition 5.9: Polarized Rewrite System

Let R =R+∪R− be a rewrite system and A, B be formulas. A rewrites positively
(resp. negatively) in B and denoted A−→+ B (resp. A−→− B) iff there exists
(P,Q) ∈R+ (resp. R−) such that σ(A) = P and σ(B) =Q.

It can be remarked that A −→− B if and only if ¬A −→+ ¬B, i.e., polarities are
exchanged. As before, let −→∗+ and −→∗− be the reflexive and transitive closure
of their respective relations. As this formalization is at least as powerful as the
standard deduction modulo theory rewrite system, it is clear that in general, neither
confluency nor termination is ensured.

Nevertheless, heuristically turning axioms of this particular type into rewrite
rules offers a great increase in terms of number of rewrite rules computed over
standard deduction modulo theory:

∀~x . P ⇒ A becomes P −→− A
∀~x . A⇒ P becomes P −→+ A
∀~x . ¬P ⇒ A becomes P −→+ A
∀~x . A⇒¬P becomes P −→− A

where P is still a non-atomic and A anything other than a literal. It can be noted that in
this particular case, allowing A to be a literal in the heuristic does not immediately lead

5. Handling Theories in Tableau-Based Automated Reasoning Methods 93

∀x . ¬P(x)∧ (Q(x)∨Q(x))
γ∀¬P(X)∧ (Q(X)∨Q(X))
α∧¬P(X),Q(X)∨Q(X)

β∨Q(X)
Q(X) −→ ∃y P(y)

∃y P(y)
δ∃P(c1) �{X 7→ c1}

Q(X)
Q(X) −→ ∃y P(y)

∃y P(y)
δ∃P(c2) γ∀¬P(X ′)∧ (Q(X ′)∨Q(X ′))

α∧¬P(X ′),Q(X ′)∨Q(X ′) �
{X ′ 7→ c2}

(a) Lengthy proof in standard deduction modulo.

∀x . ¬P(x)∧ (Q(x)∨Q(x))
γ∀¬P(X)∧ (Q(X)∨Q(X))
α∧¬P(X),Q(X)∨Q(X)

β∨Q(X)
Q(X) −→ P(c)

P(c) �{X 7→ c}

Q(X)
Q(X) −→ P(c)

P(c) �{X 7→ c}

(b) Shorter proof in polarized deduction modulo by preskolemizing.

Figure 5.7: Improvement of proof search by preprocessing formulas.

to non-terminating systems, but it should be avoided as the proof-search procedure
will often get lost trying to compute these rules over searching for a proof. In a
nutshell, polarizing the heuristic allows more axioms to correspond to rewrite rules,
thus improving the overall efficiency of the proof-search procedure as some space is
again relieved of its load. Furthermore, in practice, as tableau rules keep the syntactic
integrity of the formulas processed, it suffices to pick the system corresponding
to the polarity of the literal when trying to rewrite, allowing a straightforward
implementation of the method.

Preskolemization However, the real gain of polarization does not solely lie in the
removal of some axioms from the proof-search space, but comes from the ability to
preprocess some specific rewrite rules. It is widely known that in every logic, the
complexity of searching for a proof is closely related to the presence of quantifiers in the
formula to (dis)prove. Indeed, any theory which admits the elimination of quantifiers,
such as the algebraically closed fields, is decidable. In first-order logic, research
towards eliminating quantifiers has led to the Skolem-Herbrand’s theorem [147, 218],
which states that any formula can be translated into either (i) a solely universally-
quantified formula or (ii) a uniquely existentially-quantified formula. Both methods
preserve some properties of the initial formula, such as the satisfiability for (i) and the
validity for (ii). In proving by refutation, the equisatisfiability of (i) is needed, and thus

94 5.2. Deduction Modulo Theory

existentially quantified formulas are Skolemized during the proof search. However, the
native process of Skolemization of an existentially bound variable has to yield a fresh
function symbol, which differs even when the same formula is Skolemized multiple
times. As such, it can prevent early closure of a branch when Skolemizing twice the
same formula in two different branches, as can be seen in Figure 5.7a. In this example,
the formula ∀x . Q(x)⇒∃y P(y) was turned into the rewrite rule Q(X) −→ ∃yP(y).

However, as polarizing a rewrite system allows us to know how to rewrite both
for positive and negative cases, it also enables us to know the polarity of the rewritten
formula. Thus, such a step could be avoided by preskolemizing positive occurrences of
existentially-quantified formulas and negative occurrences of universally-quantified
formulas, yielding the shorter proof of Figure 5.7b. In this example, the formula
∀x . Q(x)⇒∃y P(y), the occurrence of ∃yP(y) was preskolemized, resulting in P(c)
being directly integrated under this form. This leads to the rewrite rule Q(X) −→
P(c) and a shorter proof. This example makes use of inner Skolemization (i.e., the
Skolemization creates a function symbol that takes as parameters the free variables
within the predicate) although it also holds for other Skolemization strategies.

Applying this kind of preprocessing over the heuristically-generated polarized
rewrite system for the set theory’s axiom of inclusion ∀a, b. a ⊆ b⇔∀x . x ∈ a⇒ x ∈
b will thus generate the following rewrite rules, shortening the proof 5.4b by one step.

A⊆ B −→+ ∀x . x ∈ A⇒ x ∈ B
A⊆ B −→− f (A, B) ∈ A⇒ f (A, B) ∈ B

Thus, even though uniform Skolem symbols could be attained by smarter Skolem-
ization strategies, such as the δ+

+
rule [36] which natively handles the yielding

of the same symbol of Skolem for every formula in the same α-equivalence class,
preprocessing formulas by preskolemizing still offers a slight advantage over standard
deduction modulo theory, which scales up pretty well on problems generating an
important proof-search space.

5.2.3 Key points of the Interaction with the Proof-Search Pro-
cedure

As highlighted multiple times in Subsection 5.2.1, the key to building an efficient
rewrite system in an automated theorem-proving procedure lies in how the former
interacts with the latter. This subsection discusses some pathological problems arising
when setting up this interaction.

Loss of Cut-Free Completeness While deduction modulo theory offers numerous
advantages, it can potentially result in a loss of completeness, moreover if the calculus
does not incorporate the cut rule. The cut rule, originally designed in Gentzen’s
sequent calculus, can be adapted to the tableau format [220] as follows, where F
represents any first-order formula:

cutF ¬F

5. Handling Theories in Tableau-Based Automated Reasoning Methods 95

∀x . P(x)⇔ (P(x)⇒Q(x)),∀y ¬Q(y)
γ∀ × 2

(P(X)⇔ (P(X)⇒Q(X))),¬Q(Y)
β⇔P(X), P(X)⇒Q(X)

β⇒¬P(X)
��

Q(X)
�{X 7→ Y }

¬P(X),¬(P(X)⇒Q(X))
α¬⇒

P(X),¬Q(X)
��

(a) Tableau proof that ∀x . P(x)⇔ (P(x)⇒Q(x)),∀y ¬Q(y).

∀y ¬Q(y)
γ∀¬Q(Y)
γ∀¬Q(Y ′)
γ∀. . .

(b) Tableau proof with deduction modulo theory that ∀x . P(x)⇔ (P(x)⇒Q(x)),∀y ¬Q(y).

∀y ¬Q(y)
γ∀

¬Q(Y)
cut∀x . P(x)⇔ (P(x)⇒Q(x)) �

Similar
to 5.8a

¬(∀x . P(x)⇔ (P(x)⇒Q(x)))
δ¬∀¬(P(c)⇔ (P(c)⇒Q(c)))

β⇔¬P(c), P(c)⇒Q(c)
β⇒¬P(c)

?
¬(P(c)⇒Q(c))

α¬⇒
P(c),¬Q(c)

��

Q(c)
��

P(c),¬(P(c)⇒Q(c))
α¬⇒P(c),¬Q(c)

?
P(c)⇒Q(c)

β⇒¬P(c)
��

Q(c)
��

With ?= P(X) −→ (P(X)⇒Q(X)).
(c) Tableau proof with deduction modulo theory and the cut rule that ∀x . P(x)⇔ (P(x)⇒Q(x)),∀y ¬Q(y).

Figure 5.8: Loss of cut-free completeness due to the use of deduction modulo theory.

Unfortunately, as observed in Figure 5.8, inspired by [112], deduction modulo
theory does not preserve completeness in the cut-free case. In this example, the
original proof with the tableau method is presented in Figure 5.8a, whereas in
Figure 5.8b and Figure 5.8c, the axiom ∀x . P(x)⇔ (P(x)⇒Q(x)) was transformed
into the rewrite rule P(X) −→ (P(X)⇒ Q(X)). In the first case, as only ∀y ¬Q(y)
remains in the tableau, the only available rule is the application of a γ-rule that
generates ¬Q(Y), and no proof can be found. However, by adding the cut rule in
Figure 5.8c, we can introduce two new elements, P(X)⇔ (P(X)⇒ Q(X)) and its
negation, and recover the proof.

However, for a given theory, it is undecidable to know whether or not the cut rule
is needed [74]. Moreover, since this rule can theoretically introduce any axiom into
the proof search and be triggered at any time, it is not well-suited for automated
deduction, although some restrictions can be applied [95].

96 5.2. Deduction Modulo Theory

Non-Confluency As said in Subsection 5.2.1, in general, a heuristically-generated
rewrite system is not confluent, and also non-terminating. Thus, when implementing
deduction modulo theory, losing completeness due to non-confluent systems happens
easily. Indeed, such systems often appear in most theories. For example, let us take
the usual naive set theory, where equality between two sets (also known as the axiom
of extensionality) can be expressed in the following ways:

∀a, b. a = b⇔ a ⊆ b ∧ b ⊆ a
∀a, b. a = b⇔ (∀x . x ∈ a⇔ x ∈ b)

The system for turning axioms into rewrite rules presented in the previous sub-
sections yields the following rewrite system for these axioms:

A= B −→ A⊆ B ∧ B ⊆ A
A= B −→ ∀x . x ∈ a⇔ x ∈ b

There are thus two different possibilities available when trying to rewrite atoms
expressing the equality of two sets, and the rewrite mechanism has to choose how
to rewrite the incoming formula. In this case, naive solutions by orienting the proof
search do not suffice to guarantee the completeness of the procedure and to ensure
it, rewriting has to become a backtrack point in the procedure.

Constraints-Yielding Rewriting with Narrowing The use of narrowing allows
us to preserve the completeness of the proof search. Those interactions have also
been briefly considered in Subsection 5.2.1 when rewriting atomic axioms to true
propositions. It should be clear that in general, rewriting an atom will lead to
additional constraints to be included in the subsequent proof-search steps. This
is especially true in case of narrowing instead of simple rewriting as defined in
Definition 5.6. As narrowing allows us to apply a substitution on both sides — left-
hand side part of the rewrite rule and the incoming atom — it necessarily leads to a
larger amount of constraints. For example, it is necessary to be extra-careful when
rewriting an atom P(t1, . . . , tn) where for some i, t i is a function f (t ′1, . . . , t ′k). This
principle can be illustrated fairly simply by using the following rewrite rule:

P(X , f (Y)) −→Q(X)∧ R(X , Y)

Then, the incoming atom P(a, Z) with Z being some free variable instantiated by the
proof search is rewritten into Q(a)∧ R(a, Y) with the constraint {Z 7→ f (Y)}. It thus
introduces a free variable in the proof search that is non-native to it. It is thus necessary
to pay specific attention to these free variables in order to keep the consistency of
the proof search. Moreover, narrowing may be costly and might be only sparingly
implemented, for example on certain predicates or at certain step of the proof search.

Interactions with Equality As equality and deduction modulo theory is intrinsically
distinct modules (i.e., no equational rewriting is done), they may clash if left alone
together. Indeed, rewriting systems integrate seamlessly into proof-search procedures

5. Handling Theories in Tableau-Based Automated Reasoning Methods 97

∀x . a = x ⇔ P(a)∨ P(x), P(a),¬(a = b ∧ P(b))
γ∀a = b⇔ P(a)∨ P(b)
β¬∧¬(a = b)

β⇔a = b, · · · ��
· · · ,¬(P(a)∨ P(b))

α¬∨¬P(a),¬P(b) ��

¬P(b)
β⇔a = b, · · · ��=

· · · ,¬(P(a)∨ P(b))
α¬∨¬P(a),¬P(b) ��

(a) Standard tableau proof with equality.

P(a),¬(a = b ∧ P(b))
β¬∧¬(a = b)

a = b −→ P(a)∨ P(b)¬(P(a)∨ P(b))
α¬∨¬P(a),¬P(b) ��

¬P(b) · · ·
...

(b) Open tableau-modulo due to loss of information.

Figure 5.9: Loss of completeness on equational axiom rewrite.

as they also reason syntactically over formulas, while equality reasoners care more
about the semantics involved in the relevant axioms. As such, rewriting those axioms
leads to a semantic loss of information and thus quickly yields an incomplete proof-
search procedure, as Figure 5.9 shows. Actually, this choice of not rewriting relevant
axioms should be kept for any theory integrated into the proof-search procedure
needing some kind of semantics reasoning.

Embodiment into the Proof-Search Procedure In the deduction modulo theory,
when an atomic formula is generated, an attempt is made to unify it with available
rewrite rules. If a match is found, the formula is rewritten, and the proof search
continues. The original formula, along with other possible rewrite options, is retained
as backtracking points. If none of them lead to a solution, the original formula is
tried in turn. The deduction modulo theory mechanism necessitates a shift in the
backtracking point from substitution to rewrite. Consequently, when a branch reaches
its limit, backtracking is performed at the last backtracking point (either rewrite or
substitution). A history of the backtracking point is also maintained.

Figure 5.10 illustrates two distinct types of backtracking points. Let us consider
the rewrite rule F −→ G. The first backtracking point appears in n3, when the
substitution found by n1 is applied to n2, generating a twin. Starting now, if a branch
reaches its limit, it should backtrack on σ′, the substitution found by n2. However,
n3 continues its proof search, generating two children. One of them, n5, generates
F , which is rewritten into G in a new node n6, thanks to the rewrite rule. From
this moment on, if the subsequent branch of n6 is open, the backtrack should be
performed on F rather than σ′.

Some heuristics can be envisioned in order to reduce the backtracking factor.

98 5.3. Conclusion

n0

n1

σ

n2

σ′

n3

σ(n2)

n4 n5

F

n6

G

σ

−→

Figure 5.10: Double backtracking points: substitutions and rewrite rules.

For example, at the current time, a rule that rewrites a proposition into ⊥ is always
preferred to others. In addition, we can imagine adding a ranking over rewrite rules
for the same axiom by carefully studying the rewrite system or limiting the backtrack
to the rewrite rules that add constraints to the proof search.

5.3 Conclusion

This chapter has presented a concrete example of a specific theory, equality, along
with a method to generalize theory handling using deduction modulo theory.

Given its widespread use, intuitive nature, and expressiveness, equality reasoning
has garnered global interest, leading to the development of various algorithms over
the years to manage it accurately. However, it remains one of the most challenging
theories to handle, influencing all branches during its application and having a huge
potential search area. Due to its unique characteristics and prevalence in problems,
equality reasoning can either be directly embodied into the proof-search process
or implemented externally as a background reasoner [33, 124]. Since this is a
fundamental but hard-to-handle theory, research into efficient equality reasoning
within tableau-based frameworks continues to evolve.

In a broader sense, we have presented deduction modulo theory, a general-purpose
technique tailored to reason within theories, its variants, and its integration in a free-
variable tableau-based automated theorem prover. This technique allies simplicity and
efficiency to yield shorter proofs in axiomatized theories. While performances cannot
challenge those of dedicated background reasoners, the advantage of handling any
theory is significant, striking a balance between efficiency and extensibility. Moreover,
these techniques are not mutually exclusive: a system based on deduction modulo
theory can coexist alongside specific background reasoners. As complex theories
continue to emerge, provers have been prompted to evolve in response.

The management of theories in tableau-based theorem prover is not uniform.
Whereas some of them can act in a very independent way, others require a high
degree of communication and fit well with concurrency. We have studied the imple-
mentation of the two previous background reasoners into a concurrent proof-search
procedure, highlighting the points that can be parallelized and the key interactions

5. Handling Theories in Tableau-Based Automated Reasoning Methods 99

with the proof search.
Ultimately, theory reasoning has evolved into an essential component of any

automated theorem prover, and this trend will continue as problems grow larger
and more specialized. The use of background reasoners and their collaboration with
foreground components plays a crucial role in the development of such tools, requiring
careful attention to their interaction with proof-search procedures.

100

Chapter 6
Goéland: A Concurrent Tableau-Based

Theorem Prover

Contents

6.1 Implementation of the Concurrent Proof-Search Procedure . . . 100
6.1.1 Key Mechanisms and Data-Structure 101
6.1.2 Variations of the Proof Search 105

6.2 Handling Typed Problems with Polymorphism 106
6.2.1 Type Definitions and Context 107
6.2.2 Typing Process and Inference Rules 112
6.2.3 Integration into an Automated Theorem Prover 115

6.3 Conclusion . 116

This chapter describes the implementation of a concurrent automated theorem
prover: Goéland [80]. It is available on GITHUB at the following link: https://
github.com/GoelandProver/Goeland. This section highlights the main points of
implementation and details its typing mechanism.

The implementation of the core of the prover, i.e., the procedure introduced in
Chapter 3, is presented in Section 6.1. This section places a particular emphasis on
key mechanisms and data structures, with the aim of facilitating its reproducibility.
The management of typed problems is exposed in Section 6.2. This extension broaden
the scope of Goéland, allowing it to tackle a wider range of problems.

6.1 Implementation of the Concurrent Proof-Search
Procedure

As the name suggests, Goéland is developed in the Go programming language. Go is
notable for its support of concurrency and parallelism, which is primarily facilitated
through lightweight execution threads known as goroutines [231]. Goroutines are
executed according to a so-called hybrid threading (or M:N) model: M goroutines
are executed over N effective threads and scheduling is managed by both the Go
runtime and the operating system. This threading model allows the execution of a
large number of goroutines with a reasonable consumption of system resources.

https://github.com/GoelandProver/Goeland
https://github.com/GoelandProver/Goeland

6. Goéland: A Concurrent Tableau-Based Theorem Prover 101

Formulas:

• P(g(a, x), c)

• P(g(x , b), x)

• P(g(a, b), a)

• P(g(x , c), b)

• P(x , y)

• P(x , z)

P

g

a

b

a

∗1

c

∗1

b

∗1

c

b

∗1

∗2

Figure 6.1: A set of atoms and the corresponding discrimination tree.

Goroutines use channels to exchange messages so that the implementation is close
to the presentation in Section 3.2. This being said, this section delves into the core
of the implementation of the prover, provides technical insights, and addresses the
management of various extensions previously mentioned.

6.1.1 Key Mechanisms and Data-Structure

In Goéland, the implementation of basic elements such as terms, formulas, and
substitutions is relatively straightforward and does not warrant specific explanations.
However, some other aspects requiring a more detailed treatment are explained below.

Unification The performance of unification relies heavily on the chosen term in-
dexing method and the unification algorithm itself. Consequently, selecting the
appropriate approach is a pivotal decision in designing an automated theorem prover.
Drawing from [185], we opted to implement code trees as described in [233], with
extensions tailored to unification. Code trees can be thought of as a compiled version
of discrimination trees, with both structures exclusively storing atoms.

Code trees have been originally designed to perform subsumption, but we have
adapted the mechanism to be able to deal with unification. In the subsumption
version, the goal is to determine whether one atom, say P2, subsumes another, P1,
which means finding a substitution σ such that σ(P1) = P2. In other words, every
element in σ(P1) belongs to P2. Conversely, our implementation seeks to find a
unifier between P1 and P2.

To get back to the original idea, discrimination trees treat terms as strings, sharing
common prefixes. Variables, represented by stars (∗), are indexed (i.e., ∗1, ∗2) to
distinguish them. A tree can be empty, a node, or a leaf. A node consists of a
tree element, such as a constant, function symbol along with its arity, or a star
variable. Leaves, which are a special type of node, additionally contain all the formulas
corresponding to the branch. An example of a set of formulas and the corresponding
discrimination tree can be seen Figure 6.1.

102 6.1. Implementation of the Concurrent Proof-Search Procedure

Code trees are based on an abstract subsumption machine, which converts discrim-
ination trees into machine instructions. We extended this subsumption machine by
incorporating additional operations, such as the beginning and the end of a function.
To achieve unification, each atom is translated into a sequence of instructions and
“applied” to the code trees. At the end of this process, if the sequence has been
successfully applied, the unification process returns a set of substitutions, or an empty
one if no solution has been found.

This machine is based on two arrays and a set of instructions. Put together, a code
tree is a sequence of instructions, describing an atom. The machine works with a
cursor q, indicating the current term. Two arrays follow the cursor and are updated
all along the unification process: post, which records the position of the next element
in the function or predicate, and subst, which keeps a trace of the substitution to
perform at the end of the sequence (i.e., the variable in the code tree are associated
to terms in the candidate atom). The original instructions are the following:

• Initialize: set q to the initial position.

• Check P: check that the term at position q is P.

• Down: go down the current position (i.e., from a term to its arguments).

• Right: go to the fight (i.e., from an argument in a term to its next argument).

• Push n: push the position to the right off the nth position in post.

• Pop n: set q to the nth position in post.

• Put n: put the current position on the nth position in subst (as the substitution
for the nth variable).

• Compare n m: compare terms at positions m and n in subst (both positions
correspond to the substitution for the same variable).

• Success: exit with success.

• Failure: exit with failure.

To be able to perform unification, two instructions have been added, Begin and
End. These instructions allow us to delimit a block, such as the argument of a function.
Moreover, three instructions were deleted compared to the original subsumption
machine: Initialise (replaced by Begin), Success and Failure (both replaced
by End). Moreover, we add another array variables to manage variables within the
candidate atom which needs to be associated with a term in the code tree.

6. Goéland: A Concurrent Tableau-Based Theorem Prover 103

Subsumption Unification

1 Initialize
2 Check P
3 Down
4 Check f
5 Push 0
6 Down
7 Put 0
8 Right
9 Check a
10 Pop 0
11 Put 1
12 Compare 0 1
13 Success

1 Begin
2 Check P
3 Begin
4 Down
5 Check f
6 Begin
7 Push 0
8 Down
9 Put 0
10 Right
11 Check a
12 Pop 0
13 End
14 Put 1
15 Compare 0 1
16 End
17 End

Table 6.1: Translation of P(f (X , a), X) with the subsumption machine and the unification
machine

Furthermore, in alignment with the Goéland philosophy, the search for unification
has been parallelized. Since the exploration of the branches is independent, the
process stops when all branches have been completely explored.

Proof Search Structure and Interaction with Processes In Goéland, each proof-
search node corresponds to a goroutine. The creation of a new node occurs under two
conditions: (i) when a twin is generated (as introduced in Section 1.3.3), typically
resulting from the application of a substitution or a rewriting rule, or (ii) when a
beta rule is applied, leading to the generation of two nodes. Nodes interact with
each other solely through parent-child communication, meaning that a node can
exclusively send messages to its parent or its children.

The messages exchanged between nodes encompass substitutions, lists of formulas,
or termination commands (referred to as kill orders). When a node is terminated,
it also terminates any potential child nodes it may have spawned. Furthermore,
due to the concurrent nature of Goéland, multiple executions of the system may not
necessarily yield identical outputs. This is because substitutions are managed using a
first received, first tried approach. Consequently, when multiple potential substitutions
are available, the final proofs may diverge.

Proof Construction Let us now focus on the mechanisms which lead to the final
proof. As mentioned earlier, Goéland launches its proof-search procedure in parallel
on each child when applying a β -rule. These children search autonomously until they
encounter a contradiction and discover a substitution. From the beginning of the proof

104 6.1. Implementation of the Concurrent Proof-Search Procedure

n0

n1

Y1

n2

Y2

[X 7→ a, Y1 7→ b] {X 7→ a}
[X 7→ b, Y1 7→ a] {X 7→ b}

{X 7→ a} [X 7→ a, Y2 7→ c]
[X 7→ a, Y2 7→ b]

{X 7→ a, Y1 7→ b}
{X 7→ b, Y1 7→ a}

�
{X 7→ a, Y2 7→ c}
{X 7→ a, Y2 7→ b}

�

X
{X 7→ a} [X 7→ a, Y1 7→ b, Y2 7→ b]

[X 7→ a, Y1 7→ b, Y2 7→ c]

Figure 6.2: Unification management and global unifier in the proof-search procedure.

search, each child maintains a record of the rules they have applied and transmits this
history to the parent when a solution is found. This sequence of rules constitutes the
local proof of a child, which is subsequently merged with those of the other children
by the parent node. The union of these local proofs forms the final proof.

As free variables are carried uninstantiated during the proof search, the final proof
also contains free variables, which have to be replaced to get a real proof. In order
to do this, a substitution is linked to each local proof, to build a global unifier and
apply it to the final proof. However, by moving upward inside the proof tree, some
variables become local, and are thus needed by the global unifier but not by the local
agreement mechanism, which only deals with non-local free variables. Thus, to keep
track of the local variable, the global unifier is composed of two parts: the non-local
part, which only contains non-local variables, and a set of substitutions resulting from
the combination of the answers from the children, including the local variables. It
ensures the consistency and the correct replacement of free variables at the end of
the proof, without involving useless substitution during the agreement mechanism.

Figure 6.2 illustrates this mechanism. The parent n0 selects the common answer
{X 7→ a} and thus, both n1 and n2 can be closed. Since free variables are instantiated at
the end, we merge all the compatible answer in order to keep track that, for instance, Y1

need to be mapped to b if {X 7→ a} is chosen. This mechanism offers at least one unifier
that closes it when the proof-search procedure ends, thus outputting a sound proof.

6. Goéland: A Concurrent Tableau-Based Theorem Prover 105

6.1.2 Variations of the Proof Search

This part presents the implementation of some variations of the proof-search proce-
dure.

Skolemization Three variants of Skolemization have been implemented into Goé-
land, in order to improve the management of Skolem symbols and free variables
dependencies. We implemented the δ, δ+ and δ+

+
-rules, as introduced in Section 2.1.

To achieve this, we need to keep track of free variables present in a branch as well
as in a predicate, along with the Skolem symbol associated with a specific γ-formula.
Managing the first two cases was relatively straightforward: we added methods to
the formula interface to store the internal free variables within it and within the
branch. This might initially appear redundant as free variables can usually directly
be found inside the formula in question. However, the proof-search of Goéland is
destructive by nature, which means that once a substitution is found, it is applied to
the whole tableau. Consequently, free variables are lost during this process, making
the storage of free variables necessary for correctly passing the required arguments
during Skolemization. Regarding the last aspect, it merely involves establishing a
mapping between γ-formulas and their corresponding Skolem symbols. Furthermore,
we have introduced two flags to control the Skolemization mode: -inner which
activates δ+-rules and -preinner that makes use of δ+

+
-rules.

Completeness Mode While completeness is an important characteristic for any
theorem prover, it may often slow down the proof-search procedure. In Goéland,
completeness is mostly ensured by the prohibition of certain substitutions in cases
where the agreement mechanism does not succeed on the first attempt. Empirically,
disabling completeness greatly enhances proof-search speed with only a minor loss in
problem-solving capability. This is primarily because, in most cases, the first solution
found by one of the branches suffices to solve the problem, and completeness delays
backtracking to higher nodes. To address this, we no longer consider forbidden
substitutions in the procedure described in Section 3.2. This prevents resuming the
proof search if no agreement has been found during the first attempt of reconciliation.
Instead, we return the message that no solution has been found to the parent node.
These substitutions prevent the resumption of proof search if no agreement is reached
during the initial reconciliation attempt, allowing faster backtracks, but also a loss
of completeness.

Interactive Mode An interactive mode, accessible through the -interactive flag,
has been implemented into Goéland. In this mode, a console interface allows the
user to make decisions at each step regarding which rule to apply, as opposed to
relying on the automated proof-search procedure to make the choice. This mode
serves various purposes, including comparing Goéland’s strategy, ensuring consistent
execution (which is not guaranteed due to parallelism), exploring alternative paths,
and identifying implementation issues.

106 6.2. Handling Typed Problems with Polymorphism

6.2 Handling Typed Problems with Polymorphism

In the last decade, we have seen that the multiplicity and diversification of problems
have created the need for provers to improve themselves in order to be able to reason
with theories. We have seen that some theories, such as equality, need dedicated
mechanisms to perform efficiently. This is also the case when we aim to reason
in the presence of typed logics.

In typed logics, we aim to provide a more intuitive representation of the world.
In these logics, all the terms are typed, i.e., they are associated to a type. Further-
more, by adding type restrictions on these terms, the proof search avoids irrelevant
instantiations and is thus guided in the right direction. A type can be a usual type,
such as integers or booleans, or a hand-made type designed for a specific theory. All
of them are distinct, with their own properties, and are not interchangeable, i.e.,
a set of booleans would not accept an integer.

In first-order logic, typing is managed in an ad-hoc way, thanks to typing pred-
icates. For instance, for two integers x and y, commutativity can be formally
defined as follows:

∀x , y. int(x)⇒ int(y)⇒ x + y = y + x

However, this typing method increases the formulas’ size, slowing down the proof
search. Moreover, it could be very redundant. For example, in order to define an
array of int and an array of boolean, all the properties have to be defined twice,
one for each type of array.

To overcome these challenges, research for a more general way to manage typed
formulas without overloading the problems has been carried out. Two approaches
have emerged: erase the types from the problem or, conversely, natively manage types
into a prover. The first one relies on an encoding of typed problems into untyped
first-order logic [47], which makes them accessible to a wider range of provers. The
second embodies types directly into the terms themselves, adding additional rules
to guarantee the well-typedness of the formulas.

We have decided to embed many-sorted logic [235] inside Goéland, as to natively
type a term. Thus, each term is assigned to a unique type. In particular, this embedding
allows Goéland to parse problems with quantification over types. Together with this
new notion, the commutativity of addition over integers can now be defined in
the following way:

∀x , y : int. x + y = y + x

Secondly, we want to be able to generalize properties to all the types. To do this, we
want to quantify over types, i.e., to make a predicate applicable to every type. This is
called polymorphism [138, 207]. This representation allows predicates and functions
to accept types as parameters. Thus, the following example holds for every type τ:

∀x : τ. x = x

The goal of this section is to present the implementation of a type system that
natively manages polymorphism and thus avoids the noise caused by predicate types,

6. Goéland: A Concurrent Tableau-Based Theorem Prover 107

enabling Goéland to reason on typed problems. The typing system was inspired by [73,
78] and implemented following the standard of TPTP library, more precisely the
TFF format [48, 228].

6.2.1 Type Definitions and Context

This section aims to define in detail the notion of type and their application on terms
by giving them a type signature. It also introduces the type system and characterizes
formulas regarding whether or not they are type-quantified: polymorphic if so,
monomorphic otherwise.

The first challenge is to build a prover able to reason with types to give a type
to terms, i.e., to the variables and functions. To achieve this, the following ele-
ments are required:

• A set of type constants: integer, boolean, custom types

• A symbol to type function: →

• A symbol to type tuples: ×

Variables are associated with a type (constant or tuple), whereas functions can
take a tuple of types, corresponding to the types of their parameters, and return
a type, the one of the function. All of this is summarized into a type signature,
illustrated in Example 6.1:

Example 6.1: Type Signature

• (x : int) : the term x has the type int.

• (y : bool) : the term y has the type bool.

• (f : int→ int) : the function f takes an int as parameter and return an
int. This allows us to write f (x).

• (g : (int × bool) → int) : the function g takes a pair of (int,bool) as
parameter and returns an int. This allows us to write g(x , y).

Having established the concept of signature for terms, the next step is to incor-
porate them into formulas. In practice, functions, constants, and predicates are
introduced alongside their respective type signatures in a context, usually denoted
Γ . In contrast, the type of variables is directly given within the formulas themselves,
as illustrated in Example 6.2:

108 6.2. Handling Typed Problems with Polymorphism

Example 6.2: Context and Formulas

Let us consider the following context, composed of types, function symbols,
and predicates and their associated type signatures:

• Two types int and list.

• A function cons: (int× list)→ list.

• A function head: list→ int.

• A predicate EqualsInt: (int× int)→ bool.

• A predicate EqualsList: (list× list)→ bool.

The previous context allows us to build the following formula:

∀(x : int)(`,`′ : list). EqualsList(`′,cons(x ,`))⇒ EqualsInt(head(`′), x)

Moreover, the TPTP format defines built-in types, which are recognized and
interpreted by the prover [228]. Thus, the following types and operators are natively
implemented into Goéland:

• i: type of individuals (variables, constants, . . .).

• o: booleans (in particular, the types of the formulas).

• Type : the type of the types.

• Arithmetic types and operators (int, double, +, -, =, . . .)

It is important to note that even with the addition of types, reasoning on pure first-
order logic is still possible: we only have to give the type i to every term, and o
to every formula.

However, we want to achieve greater expressiveness. For example, we would be
able to create a list of int or bool, or an equality predicate defined for every type. This
constitutes the main idea behind polymorphism. A polymorphic type system allows us
to quantify over types, i.e., to define properties that work for every type. To achieve
this, two new elements are needed: type constructors and type variables.

Definition 6.1: Type Constructor

A type constructor is a n-ary function building a type from types parameters.
It takes as an argument a tuple of types to yield a type. A type constructor of
arity m is denoted T :: m.

6. Goéland: A Concurrent Tableau-Based Theorem Prover 109

Example 6.3: Type Constructor

The following notation represents a list of a given type Type.

List : Type→ Type

It could be instantiated by a type, for example, int. It results in a type
representing a list of int.

List(int) : Type

Definition 6.2: Type Variables

A type variable is a variable representing a type. In contrast to a usual variable, a
type variable is instantiated with a type, not by a term. They are often denoted
by the symbol α and indexed.

The syntax of polymorphic first-order logic is given in Figure 6.3. It details the
structure of a type and a type scheme (that binds type variables) that are used for
polymorphic symbols, as well as terms, formulas, and type-quantified formulas. The
symbol α is used to denote a type, possibly indexed. Both predicates and functions can
be polymorphic and are also parametrized with a type. Consequently, the parameters
of functions and predicates are now divided into two parts: one containing the set of
types utilized within the function or predicate, and another containing terms employed
as parameters themselves. These two parts are separated by a semicolon. Finally,
formulas can be quantified over types, with the restriction that those quantifications
are universal and occur at the head of the formulas (i.e., in prenex form).

Figure 6.4 extends the notion of context by defining the local and global contexts,
as pairs composed of a symbol and a type. The global context ΓG contains function
symbols, predicate symbols, and constructors, while the local context ΓL contains
terms and type variables and is built through the typing process presented in the
next section. A typing context Γ is a pair ΓG; ΓL.

Finally, the previous grammar allows us to define a polymorphic formula, with
respect to a given context, as illustrated in Example 6.4. In this example, since we
only write a typed formula, the global context alone is sufficient. The next section
aims to allow us to actually type it.

110 6.2. Handling Typed Problems with Polymorphism

Type

τ ::= α (type variable)

| T (τ1, . . . ,τm) (type constructor application)

Type Scheme

σ ::= Πα1, . . . ,αm. τ1 × · · · ×τn→ τ (function type signature)

| Πα1, . . . ,αm. τ1 × · · · ×τn→ o (predicate type signature)

Term

t ::= x (variable)

| f (τ1, . . . ,τm; t1, . . . , tn) (function application)

Formula

A ::= > (true)

| ⊥ (false)

| A1 ∧ A2 (conjunction)

| A1 ∨ A2 (disjunction)

| A1⇒ A2 (implication)

| A1⇔ A2 (equivalence)

| P(τ1, . . . ,τm; t1, . . . , tn) (predicate application)

| ∃x : τ. A (existential quantifier)

| ∀x : τ. A (universal quantifier)

Type-Quantfied Formula

AT ::= A (formula)

| ∀α. AT (type quantification)

Figure 6.3: Syntactic categories of polymorphic first-order logic.

6. Goéland: A Concurrent Tableau-Based Theorem Prover 111

Local Context

ΓL ::= ; (empty context)

| ΓL, α : Type (type variable declaration)

| ΓL, x : τ (term variable declaration)

Global Context

ΓG ::= ; (empty context)

| ΓG, T :: m (type constructor declaration)

| ΓG, f : σ (function declaration)

| ΓG, P : σ (predicate declaration)

Figure 6.4: Contexts for polymorphic first-order logic.

112 6.2. Handling Typed Problems with Polymorphism

Example 6.4: Polymorphism

Let us consider the following global context:

• A type constructor list: Type→ Type.

• A polymorphic function cons: Πα. (α× list(α))→ list(α).

• A polymorphic function head: Πα. list(α)→ α.

• A polymorphic predicate Equal: Πα. (α×α)→ o.

The previous context allows us to build the following formula:

∀α∀(x : α)(`,`′ : list(α)).
Equals(list(α);`′,cons(α;`, x))⇒ Equals(α;head(α;`′), x)

6.2.2 Typing Process and Inference Rules

Once a type has been assigned to each term and predicate, we want to expand the
scope to cover the entire formula. Unlike the preceding elements, formulas do not
come with an explicitly declared type signature. Instead, the type must be inferred
based on the inner predicates within the formulas. This mechanism is called typing.

The typing mechanism uses a set of inferences rules and a context. Informally,
this mechanism decomposes the formula and collects values for the type of terms and
type variables until reaching a predicate. At this point, it checks that the inferred
type matches with the type schemes given by the context.

A context that is consistent is called well-formed, denoted wf(Γ), and the corre-
sponding rules are given in Figure 6.5. Analogously to this notion, a term or formula
that successfully passes the typing phase (w.r.t. a well-formed context Γ) is called
well-typed. The rules used to type a formula are presented in Figure 6.6. In the case
of TFF0 and TFF1, the typing of a formula for a given context is decidable.

Example 6.5 illustrates the typing of the formulas ∃(x , y : int). P(x , y) for a given
context Γ . In this example, the initial global context ΓG is composed of int of type
Type and a predicate P with a signature int× int→ o. The local context ΓL, initially
empty, becomes inhabited by x and y of type int at the end of the typing process.

6. Goéland: A Concurrent Tableau-Based Theorem Prover 113

WF1wf(;;;)

α 6∈ ΓL wf(ΓG; ΓL) WF3wf(ΓG; ΓL,α : Type)

x 6∈ ΓL ΓG; ΓL ` τ : Type
WF2wf(ΓG; ΓL, x : τ)

T 6∈ ΓG wf(ΓG;;)
WF4wf(ΓG; T :: m;;)

f 6∈ ΓG
ΓG;α1 : Type, . . . ,αm : Type `

τi1≤i≤n
: Type

ΓG;α1 : Type, . . . ,αm : Type `
τ : Type

WF5wf(ΓG, f : Πα1 . . .αm. τ1 × · · · ×τn→ τ;;)

P 6∈ ΓG ΓG;α1 : Type, . . . ,αm : Type ` τi1≤i≤n
: Type

WF6wf(ΓG, P : Πα1 . . .αm. τ1 × · · · ×τn→ o;;)

Figure 6.5: Contexts for polymorphic first-order logic.

114 6.2. Handling Typed Problems with Polymorphism

α : Type ∈ Γ wf(Γ)
VarTΓ ` α : Type

x : τ ∈ Γ wf(Γ)
Var

Γ ` x : τ

T :: m ∈ Γ Γ ` τi(1≤i≤n)
: Type

ConstrTΓ ` T (τ1, . . . ,τn) : Type

wf(Γ)
>

Γ ` > : o
wf(Γ)

⊥
Γ ` ⊥ : o

Γ ` A : o ¬
Γ ` ¬A : o

Γ ` A1 : o Γ ` A2 : o
∧

Γ ` A1 ∧ A2 : o

Γ ` A1 : o Γ ` A2 : o
⇒

Γ ` A1⇒ A2 : o

Γ ` A1 : o Γ ` A2 : o
∨

Γ ` A1 ∨ A2 : o

Γ ` A1 : o Γ ` A2 : o
⇔

Γ ` A1⇔ A2 : o

Γ , x : τ ` A : o
∃

Γ ` ∃x : τ. A : o
Γ , x : τ ` A : o

∀
Γ ` ∀x : τ. A : o

Γ ,α : Type ` AT : o
∀TΓ ` ∀α. AT : o

f : Πα1 . . .αn.
τ1 × · · · ×τn→ τ ∈ Γ Γ ` τ′i1≤i≤m

: Type Γ ` t i : ρ(τi)(1≤i≤n)
Fun

Γ ` f (τ′1, . . . ,τ′m. t1, . . . , tn) : ρ(τ)

P : Πα1 . . .αn.
τ1 × · · · ×τn→ o ∈ Γ Γ ` τ′i1≤i≤m

: Type Γ ` t i : ρ(τi)(1≤i≤n)
Pred

Γ ` P(τ′1, . . . ,τ′m. t1, . . . , tn) : o

With ρ = [α1 7→ τ′1, . . . ,αm 7→ τ′m]

Figure 6.6: Typing rules for polymorphic first-order logic.

6. Goéland: A Concurrent Tableau-Based Theorem Prover 115

Example 6.5: Formula Typing Process

Γ = {int : Type, P : int× int→ o}

π:

Γ ′ ` x : int Γ ′ ` y : int Γ ′ ` int : Type
Γ ′ = Γ , (x , y : int) ` P(x , y) : o

Γ ` int : Type
Γ , x : int ` int : Type

π
Γ , (x , y : int) ` P(x , y) : o

Γ , x : int ` ∃(y : int). P(x , y) : o
Γ ` ∃(x , y : int). P(x , y) : o

The tableau calculus retains the well-typedness of formulas [173], under the
condition to be cautious with substitutions. Consequently, once all the formulas
have been initially proven to be well-typed, there is no need for further verification
to be carried out.

6.2.3 Integration into an Automated Theorem Prover

Now that polymorphic types have been implemented and parsed by Goéland, our
focus shifts to examining the implications of these changes for proof search. While
adding types to terms is relatively straightforward, the rules governing quantifiers
and the handling of type variables necessitate additional considerations.

First of all, we deal with typed variables in the same way as usual variables, i.e.,
we create free type variables, of type Type, waiting for an instantiation. We also need
to be careful during type unification, to ensure the consistency of the proof.

In addition, we address the concept of Skolemized type variables. However, due
to TFF1 standards mandating the placement of type quantifiers ahead of any other
quantifiers, no free variables can precede type variables. Consequently, the type
Skolem generated can only be a constant. An example of a typed proof search can
be found in the illustration provided in Example 6.6.

Example 6.6: Typed Tableau Proof

∀(α : Type) ∀(x , y : α). P(α; x , y),¬P(τ; a, b)
∀T∀(x , y : A). P(A; x , y)

∀∀(y : A). P(A; X , y)
∀P(A; X , Y) �

ρ = {A 7→ τ} ,σ = {X 7→ a, Y 7→ b}

In Goéland, the typing process operates in three distinct phases. First, during
the initial typing pass, the system collects type constructors and type schemes. The
wf-rule is then triggered on ΓG for each addition, to ensure the consistency of the

116 6.3. Conclusion

formulas. This phase is performed iteratively during the parsing of the problem itself.
Once built, the global context cannot be altered.

In the second phase, the variables are gathered in pairs (term, type) to be endowed
by a type. The formulas are deconstructed thanks to the typing rule until reaching
an axiomatic rule, possibly adding elements to the local context. If so, a wf-rule is
triggered on ΓL only with this new pair. Then, each branch passes its new information
to rebuild the formula, along with the inferred type. During this phase, as there are
no dependencies between branches, we leverage the concurrent nature of the prover
to type each branch simultaneously. If the type-checking process succeeds, the proof
search can start. Otherwise, an error is returned.

In the final phase, the proof search proceeds as usual, with an additional unification
mechanism activated to ensure type consistency. Ultimately, in the case of pure
first-order logic, terms and predicates are typed by default, and the type-checking
pass is omitted.

6.3 Conclusion

Through 30 000 lines of code, Goéland has implemented a concurrent proof-search
procedure along with multiple features that enhance its capability to tackle various
problems. This chapter has described its architecture, aiming to provide a compre-
hensive grasp of intricate aspects and their relationship with parallelism. The various
extensions address a wide range of features, from debug mode to improve competitive
behavior, in order to improve the usability of Goéland.

The introduction of polymorphism into the prover has expanded its potential to
handle a wider range of problems. It relies on an embodiment of type directly in
the terms, and a two-phase preprocessing which parses the types and checks for the
consistency of the formulas in order to (un)validate the initial typing. Once checked,
and given that the tableau calculus preserves the well-typedness of formulas, the proof-
search procedure can be applied as usual. It results that despite its omnipresence,
the addition of types into the prover is relatively smooth. As typed problems are
expected to become more prevalent in the future, this extension ensures that Goéland
remains relevant and applicable in diverse contexts.

Ongoing efforts are aimed at enhancing existing functionalities, such as equality
reasoning and memory management, and conducting experiments on typed problems.
Additionally, a memory-shared version of Goéland is in development, along with a
plug-in for arithmetic reasoning.

117

Chapter 7
Toward Certification: an Output for

Checkable Proofs

Contents

7.1 From Tableau Proofs to Sequent Proofs: GS3 118
7.2 The Challenges of a Proof Translation 119
7.3 A Deskolemization Strategy . 121
7.4 Soundness of the Translation over Inner Skolemization 124
7.5 Extensions to δ+

+
. 129

7.6 Coq and Lambdapi Output From GS3 132
7.7 Conclusion . 133

The realm of theorem proving can be categorized into two major families: the
Automated (ATP) and the Interactive (ITP) approaches. Whereas the systems in the
former reason autonomously and provide an outcome regarding the truth value of a
given formula, the ones in the latter act as assistants for humans, building a proof
hand-in-hand. ITP systems also rely on a certified kernel to ensure the correctness
of any asserted proof and often work with proofs in a sequent style.

One of the significant strengths of tableaux is their ability to produce a proof,
as original tableau calculus is equivalent to sequent calculus. Then, it should be
reasonable for a tableau-based theorem prover to output a proof that is checkable
by a proof assistant. A variation of the sequent calculus has also been proposed,
that mirrors the tableau rules: GS3 [230]. Thus, we want to translate the tableau
obtained by the proof-search procedure into GS3.

However, due to the use of free variables, a free-variable tableau proof search
can produce a proof slightly different from the one obtained by the usual tableau
calculus, making it not trivially translatable into sequent. This difference increases
with the use of some optimized variants of the proof search, i.e., the Skolemization.
Indeed, most proof assistants do not accept advanced Skolemization strategies such as
those implemented in automated theorem provers. It results in a need for translating
free-variable tableau proof into sequent.

Translating tableau proofs into GS3 sequents appears as early as 1987 for the
connection tableaux [43]. These tableaux are a clausal and restricted version of the
original method, where formulas are preprocessed to apply a heuristic during the
branches’ exploration. Years later, [7, 9] have shown that deskolemizing functions

118 7.1. From Tableau Proofs to Sequent Proofs: GS3

in inner Skolemization results in a substantial increase in the proof size. [121] also
proposes a framework of proof deskolemization, but is aimed towards the resolution
method and as such does not preserve the syntactic integrity of the formula. Proof
deskolemizing for outer Skolemization in other sequent-based systems has also been
explored in [84] and [179]. Deskolemization of δε-rules have been implemented in
[65], but it is done during the proof-search procedure, thus enabling an immediate
one-to-one mapping over proof assistants languages and excluding the need for a
proof-to-proof translation. Lastly, [66] proposes a theoretic yet generic method to
translate standard tableaux into GS3 sequents. To the best of our knowledge, no work
has been conducted on deskolemizing proofs using pre-inner Skolemization rules.

This section outlines an improvement of the algorithm proposed in [66] capable
of translating tableau proofs into sequent proofs for various Skolemization strategies
as well as its implementation into Goéland. These sequent proofs serve as a base to
be translated into serval formats understandable by ITP. Such a translation toward
Coq [20] and Lambdapi [4] is also offered.

7.1 From Tableau Proofs to Sequent Proofs: GS3
In the tableau method, a proof is a ground tableau, i.e., a tableau without free
variables. Thus, since Goéland builds its proofs with free variables, we want to
find a way to translate these proofs into a general basis, itself reusable by proof-
checker: GS3. The Gentzen-Schütte calculus, presented in Figure 7.1 and conveniently
arranged in a way that mirrors the tableau rules of Section 1.2.1, is a variant of the
original Gentzen’s sequent calculus.

GS3 differs from the method of analytic tableaux as it is read from bottom to top as
the rules are abductive and make a copy of the formulas of a node instead of extending
it, such as the original sequent calculus. Furthermore, a sequent is used to label the
nodes, i.e., a two-sided system where hypotheses are at the left of the symbol ` and
conclusions at the right. Nevertheless, GS3 is also a refutational calculus and thus
only the left side, the hypotheses side, is used. It then suffices to find a contradiction
between hypotheses. As such, the tableau method sticks closely to this calculus, where
all the processed formulas are also kept in the branch.

One noteworthy difference to highlight between both methods lies in the first-
order rules, i.e., the rules involving quantifiers. GS3 functions as a non-automated
focused proof system, with no involvement of free variables during the proof search.
Consequently, it follows the rules of ground tableaux, instantiating variables to known
terms when dealing with γ-equivalent rules and Skolemizing with fresh constants.

This system is closely related to the usual systems implemented in interactive
theorem provers [40, 182, 193] and can thus easily be embedded inside such tools.
The main properties that those systems share is the way of dealing with quantifiers
and, as such, a translation of Skolemized formulas has to be devised in order to
formally certify tableau proofs.

However, as discussed in Section 1.2.2, ground tableaux provide an elegant way to
present a proof, whereas free-variables tableaux are built to efficiently search for one.
As a result, the proofs generated by these two tableau systems may differ, particularly

7. Toward Certification: an Output for Checkable Proofs 119

ax
∆,⊥ `

ax
∆,¬> `

ax
∆, F,¬F `

∆ ` w
∆, F `

(a) Structural and axiomatic rules.

∆,¬¬F, F ` ¬¬
∆,¬¬F `

∆, F ∧ G, F, G ` ∧
∆, F ∧ G `

∆,¬(F ∨ G),¬F,¬G ` ¬∨
∆,¬(F ∨ G) `

∆,¬(F ⇒ G), F,¬G ` ¬⇒
∆,¬(F ⇒ G) `

(b) Non-branching propositional rules.

∆, F ∨ G, F ` ∆, F ∨ G, G ` ∨
∆, F ∨ G `

∆, F ⇒ G,¬F ` ∆, F ⇒ G, G ` ⇒
∆, F ⇒ G `

∆,¬(F ∧ G),¬F ` ∆,¬(F ∧ G),¬G ` ¬∧
∆,¬(F ∧ G) `

∆, F ⇔ G,¬F,¬G ` ∆, F ⇔ G, F, G ` ⇔
∆, F ⇔ G `

∆,¬(F ⇔ G), F,¬G ` ∆,¬(F ⇔ G),¬F, G ` ¬⇔
∆,¬(F ⇔ G) `

(c) Branching propositional rules.

∆,∃x . F, F[x 7→ c] `
∃

∆,∃x . F `
∆,¬∀x . F,¬F[x 7→ c] ` ¬∀

∆,¬∀x . F `
(d) Skolemization rules, where c is a fresh constant.

∆,∀x . F, F[x 7→ t] `
∀

∆,∀x . F `
∆,¬∃x . F,¬F[x 7→ t] ` ¬∃

∆,¬∃x . F `
(e) Instantiation rules, where t is a ground term.

Figure 7.1: Rules of the GS3 calculus.

in terms of instantiation choices. Hence, the main challenge of this section is to
translate a free-variable tableaux proof into a GS3 proof.

7.2 The Challenges of a Proof Translation

The standard free-variable tableau calculus uses outer Skolemization for δ-rules, as
illustrated in Figure 7.2a. This strategy makes the final tableau totally equivalent to
an original tableau [124] and therefore to a GS3 proof, the processing needed for
a translation being thus minimal (reduced to only a one-to-one mapping between
the rules of the two systems). Such a translation is available in Figure 7.3, in which
f (X) has been replaced by a constant c.

120 7.2. The Challenges of a Proof Translation

¬(∃x . D(x)⇒∀y D(y))
γ¬∃¬(D(X)⇒∀y D(y))
α¬⇒D(X),¬(∀y D(y))
δ¬∀¬D(f (X))
γ¬∃¬(D(f (X))⇒∀y D(y))
α¬⇒

D(f (X)),¬∀y D(y)
��

(a) Outer Skolemization tableau.

¬(∃x . D(x)⇒∀y D(y))
γ¬∃¬(D(X)⇒∀y D(y))
α¬⇒

D(X),¬(∀y D(y))
δ+¬∀¬D(c)

�σ
σ = {X 7→ c}

(b) Inner Skolemization tableau.

Figure 7.2: Proof of the drinker paradox in outer and inner Skolemization.

ax
¬(∃x . D(x)⇒∀y D(y)), . . . ,¬D(c),¬(D(c)⇒∀y D(y)), D(c),¬(∀y D(y)) `

¬⇒
¬(∃x . D(x)⇒∀y D(y)), . . . ,¬D(c),¬(D(c)⇒∀y D(y)) `

¬∃
¬(∃x . D(x)⇒∀y D(y)), . . . , D(X),¬(∀y D(y)),¬D(c) `

¬∀
¬(∃x . D(x)⇒∀y D(y)),¬(D(X)⇒∀y D(y)), D(X),¬(∀y D(y)) `

¬⇒
¬(∃x . D(x)⇒∀y D(y)),¬(D(X)⇒∀y D(y)) `

¬∃
¬(∃x . D(x)⇒∀y D(y)) `

Figure 7.3: Translation into GS3 of the drinker paradox in outer Skolemization.

However, to optimize tableau proofs, various Skolemization strategies have been
extensively studied. It results in several Skolemization rules, such as δ+-, δ+

+
-, δ∗-,

δ∗
∗
- and δε-rules [8, 36, 81, 137, 144], where the most optimized strategies δε and

δ∗
∗

have been shown to yield proofs shorter (for a number n of branches) by a factor of
222n

compared to standard Skolemization. While this is advantageous for proof-search
procedures, it presents challenges when translating tableau proofs for certification.

For instance, a proof in the δ+-rules (inner Skolemization rules), the weakest
amelioration over standard tableaux, is developed in Figure 7.2b. Even though this
proof does not generate any branch, it is already shorter than its outer-Skolemization
counterpart. However, this makes the proof not readily translatable into a GS3
sequent. Figure 7.4 is an attempt at a naive translation that fails when the rule
denoted (?) is applied.

The problem arises because, in Skolemization, the resulting constant must be fresh.
In this case, c is introduced by the ¬∃ rule, and if the constant is made fresh (e.g., if
the rule ¬∀ yields c′), then the axiomatic rule cannot be applied because the closure in
the tableau proof occurs between D(c) and ¬D(c), while the GS3 sequent’s node will
be labeled with D(c) and ¬D(c′). To certify tableau proofs with smart Skolemization
strategies, a transformation into GS3 sequents must be performed.

7. Toward Certification: an Output for Checkable Proofs 121

ax
¬(∃x . D(x)⇒∀y D(y)),¬(D(c)⇒∀y D(y)), D(c),¬(∀y D(y)),¬D(c) `

¬∀ (?)¬(∃x . D(x)⇒∀y D(y)),¬(D(c)⇒∀y D(y)), D(c),¬(∀y D(y)) `
¬⇒

¬(∃x (D(x)⇒∀y D(y))),¬(D(c)⇒∀y D(y)) `
¬∃

¬(∃x . D(x)⇒∀y D(y)) `

Figure 7.4: Incorrect proof yielded by a naive translation in GS3 of the tableau proof of the
drinker paradox in inner Skolemization.

7.3 A Deskolemization Strategy

As it has been mentioned in the previous section and highlighted in Figure 7.2b, a
tableau proof is sound even if a free variable is instantiated by a term that does not
(yet) exist in the said proof. However, the naive translation of such a proof into a GS3
sequent is impossible, as the freshness condition of the Skolemization rules (∃,¬∀)
does not hold. The algorithm developed in this section overcomes this problem by
offering an on-the-fly translation that refines the algorithm of [66]. This improved
algorithm should generalize well to other Skolemization strategies without relying
on syntactic preprocessing of formulas, as seen in [43].

The idea behind the algorithm of [66] is to, given a closed tableau T , build
a sequent by following the rules executed from the root of T until reaching a δ+-
rule applied over a formula D. The sequent is then adjusted to retain only the
formula D and the initial formula to prove while discarding everything else. In
practice, these formulas are weakened and grafted back after the application of the
δ+-rule. This processing ensures that every δ+-rule needed in a branch is applied
first, before any other rule. This approach is realized through a “grow, weaken, and
graft” strategy, as illustrated in Figure 7.5.

However, the previously described version of the algorithm is pathologically
inefficient due to the weakening-and-grafting strategy incurred when encountering a
δ+-rule. As proofs in inner-Skolemization gain an exponential number of branches
over the GS3 proof, this strategy always creates a sequent that is exponentially
bigger than the original proof. It is however possible to craft an on-the-whole better
translation that is in the worst case the same as previously presented but much better
in average. For this, we need to introduce the notions of dependency and descendants.

Definition 7.1: Dependency

Let D be a formula on which a δ+-rule can be applied, and δD the Skolem
symbol yielded by the application of the rule on D. Let Γγ be the set of formulas
on which a γ-rule can be applied. A formula F ∈ Γγ depends on D if and only if
F ,→ F ′ and there exists ω such that F ′|ω = δD (i.e., the subterm at the index
ω of F ′ is δD). The set of formulas which depend on D is denoted ∆(D) and

122 7.3. A Deskolemization Strategy

defined as follows:

∆(D) =
¦

F ∈ Γγ | F ,→ F ′ ∧ ∃ω. F ′|ω = δD

©

This set allows the algorithm to know exactly which formulas introduce a forbidden
Skolem symbol δD and thus to have a starting point to subsequently select the formulas
that need to be weakened, where the previous algorithm would always weaken
everything. To keep the number of formulas weakened to a minimum, this set must
then be extended by adding solely the formulas descended from the formulas in ∆(D)
that have an occurrence of δD.

Definition 7.2: Descendance

Let F be a formula of a leaf L of a tableau. Another formula G ∈ L is said to
be descending from F if and only if F ,→ F1 ,→ · · · ,→ Fn and there exists k ≤ n
such that G = Fk. If there exists D such that F ∈∆(D), then the set of formulas
descending from F which are also dependant on D is denoted Λ(F) and defined
as follows:

Λ(F) =
�

G ∈ L | F ,→∗ G ∧ ∃ω. G|ω = δD

	

Let us note that if D is descending from a formula F in ∆(D), then the algo-
rithm fails (or does not terminate). Fortunately, it can not happen as stated in
the following lemma.

Lemma 7.3: No Self Dependency

Let D be ∃x . D′ or ¬∀x . D′, i.e., a δ+-rule can be applied to D. Then forall
F ∈∆(D), D′[x 7→ δD] is not in Λ(F).

Proof. Let us suppose that there exists F ∈∆(D) such that D′[x 7→ δD] ∈ Λ(F). By
determinism of the tableau rules application, if D′[x 7→ δD] ∈ Λ(F), then D ∈ Λ(F)
and so there exists ω such that D|ω = δD. Recall that in inner Skolemization, the
free variables occurring in a formula are taken as arguments of the Skolem symbol
yielded by the rule. By definition of the dependency, it means that δD should be
a parameter of the symbol returned by the δ+-rule over D and thus there exists ω
such that δD |ω = δD, which can not happen by definition of a term’s construction in
first-order logic. �

The main ideas behind the new algorithm are the same as the ones behind the
previous algorithm, i.e., follow the tableau proof by seamlessly applying the GS3 rule
corresponding to the tableau rule while the latter is not a δ+-rule. Once it is a δ+-rule,
weaken the relevant formulas and make the tree grow back to its pre-weakened state.
This last step is now called growing back instead of grafting, as the pre-weakened
tree can not simply be grafted back now that only some picked-out formulas are
weakened. As such, the algorithm operates as follows:

7. Toward Certification: an Output for Checkable Proofs 123

¬(∃x . D(x)⇒∀y D(y)),¬(D(c)⇒∀y D(y)), D(c),¬(∀y D(y)) ` ¬⇒
¬(∃x . D(x)⇒∀y D(y)),¬(D(c)⇒∀y D(y)) `

¬∃
¬(∃x . D(x)⇒∀y D(y)) `

(a) First steps of the proof.

¬(∃x . D(x)⇒∀y D(y)),¬(∀y D(y)) `
w

¬(∃x . D(x)⇒∀y D(y)), D(c),¬(∀y D(y)) `
w

¬(∃x . D(x)⇒∀y D(y)),¬(D(c)⇒∀y D(y)), D(c),¬(∀y D(y)) `
¬⇒¬(∃x . D(x)⇒∀y D(y)),¬(D(c)⇒∀y D(y)) ` ¬∃¬(∃x . D(x)⇒∀y D(y)) `

(b) Cleaning the relevant formulas descending from ∆(D).

ax
¬(∃x . D(x)⇒∀y D(y)),¬(D(c)⇒∀y D(y)), D(c),¬(∀y D(y)),¬D(c) `

¬⇒
¬(∃x . D(x)⇒∀y D(y)),¬(D(c)⇒∀y D(y)),¬(∀y D(y)),¬D(c) `

¬∃
¬(∃x . D(x)⇒∀y D(y)),¬(∀y D(y)),¬D(c) `

¬∀
¬(∃x . D(x)⇒∀y D(y)),¬(∀y D(y)) `

w
¬(∃x . D(x)⇒∀y D(y)), D(c),¬(∀y D(y)) `

w
¬(∃x . D(x)⇒∀y D(y)),¬(D(c)⇒∀y D(y)), D(c),¬(∀y D(y)) ` ¬⇒¬(∃x . D(x)⇒∀y D(y)),¬(D(c)⇒∀y D(y)) ` ¬∃¬(∃x . D(x)⇒∀y D(y)) `

(c) Skolemization, applying back R ’s rules and finalisation.

Figure 7.5: Sound translation into GS3 of the drinker paradox in inner Skolemization using
the algorithm.

1. While the rule applied is not a δ+-rule, apply the GS3 rule corresponding to the
tableau rule and mark the formula on which it is applied (Figure 7.5a).

2. Let D be the formula on which the δ+-rule is applied.

3. For every formula F in∆(D), weaken the sequent to remove all marked formulas
of Λ(F) and record the rules used to derive these formulas in their application
order in a set called R (Figure 7.5b).

4. Apply the δ+-rule on D (first step of Figure 7.5c).

5. Apply back the rules recorded in R (last two steps of the Figure 7.5c).

6. Repeat while a rule is applied in the corresponding tableau leaf.

124 7.4. Soundness of the Translation over Inner Skolemization

Tableau Proof

Mapping

loss

GS3 Proof

Mapping recovery

Weakening

Skolem symbol

Dependent formula

Non-dependant formula

Figure 7.6: Mapping conservation after reapplication of a β-rule.

Specific attention is paid to β-rules in step 5. When a dependent formula has
a β-rule applied to it, it generates two branches: one for the Skolem symbol that
initiates the weakening and another. To continue the translation on the first branch,
applying the remaining weakened rules is sufficient. However, the second branch
is “lost” because applying the previously weakened formula does not lead to its
closure. Instead, the branch must follow the path of the other branch from the
original split. This behavior is ensured through a global correspondence between
branches, as illustrated in Figure 7.6.

This improved algorithm constructs a sequent from a given tableau proof, with
deskolemization steps applied only to the relevant formulas.

7.4 Soundness of the Translation over Inner Skolem-
ization

The idea of the soundness proof is to build a correspondence function, which will be
subsequently called mapping, between a valid GS3 sequent and the reference tableau
proof. The function’s domain will be total, thus associating every leaf of a valid
sequent to a leaf of the reference tableau, and follows closely the definition of the
algorithm. As the mapping is conserved all along the execution of the later, it ensures
that when it terminates, the sequent yielded is valid and that all its leaves are closed.
This section starts by formally defining the notions that will be needed to prove the
soundness theorem and continues directly by developing the proof.

After finishing its proof-search procedure, Goéland yields a tableau proof of a
formula F . This proof will then be used as a reference to subsequently build the
GS3 sequent corresponding to the proof of F . As the goal is to make each leaf of
the under-construction sequent correspond to a leaf of the reference tableau, it is
necessary to define the intermediate tableaux with relevant leaves, as it is difficult
to match the leaves of a partial proof and the leaves of a final proof.

7. Toward Certification: an Output for Checkable Proofs 125

Definition 7.4: Initial Part

Let T be a tableau proof. T0 is an initial part of T if and only if T0 and T share
the same root, the same rule is applied to this very root and all the children of
T0 are initial parts of the corresponding children in T .

The notion of initial part is defined between tableaux, but it can be extended
seamlessly to GS3 sequents as it is defined in the exact same way. Furthermore, both
notions of leaf and initial segment are also shared definitions between tableaux and
sequents, with a leaf intuitively being the last node of a branch identified by the set
of formulas that labels it and the initial segment being the analogy of an initial part
but for branches, i.e., an initial segment of a branch is a prefix of this very branch.
The notion of leaf is extended to all the branches of a tableau T or a sequent π, with
the set of all leaves being denoted L(T) or L(π). Let us now formally define the
correspondence function between a tableau and a sequent, called the mapping.

Definition 7.5: Mapping

Let T be a tableau proof and π a GS3 sequent. A mapping µ : L(π)→ L(T)
is a total function which, for every leaf L ∈ π associates a leaf in T such that
L ⊇ µ(L).

As previously done, the notion of mapping can be seamlessly extended between
two GS3 sequents. For ease of understanding, a mapping between a GS3 sequent
and a tableau will often be denoted µ while a mapping between two GS3 sequents
will be denoted λ. The inclusion condition between a leaf and its preimage is useful
then, as otherwise, for δ+ rules, there is a direct identity between a leaf of the
tableau and a leaf of the sequent.

Theorem 7.6: Soundness

Let T be a tableau proof of a formula F . Then the algorithm of Section 7.3
yields a sound GS3 proof.

Proof. By definition, the algorithm properly orders the application of δ-rule for
them to yield fresh constants when they are applied in the sequent. Indeed, suppose
that the Skolem symbol is not fresh, thus there should exist a formula G such that
δD appears in G when the δ-rule is applied to D. Furthermore, all descendants
of a formula depending on δD are weakened before applying the δ-rule, thus G is
not a descendant of any such formula. So either δD is a ground term, either it has
been generated on the application of a δ-rule on an antecedent of G. Both cases
are impossible, as the symbol introduced comes from the tableau proof T which is
sound by assumption. Therefore, every constant generated by a Skolemization rule
in the final sequent is fresh. Let π be the GS3 proof given by the algorithm. Let
µ : L(π) → L(T) and π′ respectively be the mapping and GS3 sequent given by
applying the Lemma 7.7 on T (which is actually an initial part of itself). Then, for

126 7.4. Soundness of the Translation over Inner Skolemization

every leaf L ∈ π′, L ⊇ µ(L). As µ(L) contains a contradiction, L also does and thus
all the leaves of π′ are closed. Furthermore, as π′ is an initial part of π with all its
leaves closed, by definition π′ is π. Therefore, π’s well and truly a sound proof of F . �

The idea behind Lemma 7.7 is to step-by-step build a mapping between the sequent
generated by the algorithm and a well-chosen tableau proof (which is, in fact, an
initial part of the reference tableau). In most cases, it is simple to make the mapping
grow along the sequent, as almost every rule (except for a δ+-rule) only extends it
and follows the tableau proof quite literally, thus yielding a clear mapping between
both proofs. However, it is not so clear for δ+-rule and Lemma 7.9 goes over the
technical details needed to retain the mapping after weakening the formulas and
growing back the sequent up to its previous state.

Lemma 7.7: δ+-Proof Mapping

If T is a tableau proof of a formula F and π the GS3 proof generated by the
algorithm, then forall initial part T0 of T , there exists an initial part π0 of π
such that µ0 : L(π0)→ L(T0) is a mapping.

Proof. Let T0 be an initial part of T . The initial part π0 is selected and the mapping
µ0 is built by induction on the number of rules applied in T0, denoted |T0|.

• If |T0| = 0, then T0 is composed solely of one node: the root node of the sequent.
Thus π0 also is the root node of the tableau T and π0 trivially maps to T0.

• If |T0|> 0, then there is at least one leaf f of T0 which is different than the root,
i.e., at least one rule r has been applied to a formula ϕ to yield f . As such,
let T1 be T0 without the formulas of f generated by its last rule and let f ′ be
such a leaf. Let π1 and µ1 : L(π1)→ L(T1) respectively be the initial part of
π and the mapping yielded by the induction hypothesis. π1 can not be closed
as otherwise no rule would be applicable in any leaf of T1, and in particular,
no rule would have been applied to f ′. Let thus π0 be π1 where the GS3 rule
corresponding to the tableau rule r is applied in µ−1(f ′) on ϕ (which exists
in this leaf, as f ′ ⊆ µ−1(f ′)). µ0 is built by extending µ1 and depends on the
applied rule r. There are several possible cases.

– r is a closure rule and in this case, µ0 = µ1 as no formula is added in f ′

and thus f = f ′.

– r is an α- or γ-rule and in this case, ϕ ,→ψ. Thus, as ψ is also in f , the
mapping µ0 : L(π0)→ L(T0) is defined as follows for every leaf b of π0:

µ0(b) =

¨

f ′ ∪ {ψ} if b is µ−1(f ′)∪ {ψ}
µ1(b) otherwise

– r is a β -rule and in this case, ϕ ,→ψ1,ψ2. Thus, f ′ is split into two leaves
f1 and f2 where, without loss of generality, ψ1 ∈ f1 and ψ2 ∈ f2. The

7. Toward Certification: an Output for Checkable Proofs 127

mapping µ0 : L(π0)→ L(T0) is defined as follows for every leaf b of π0:

µ0(b) =

f1 if b is µ−1(f ′)∪ {ψ1}
f2 if b is µ−1(f ′)∪ {ψ2}
µ1(b) otherwise

– r is a δ+-rule and then µ0 is the mapping yielded by applying Lemma 7.9
on π0, T0,µ1 and f ′.

�

The preservation of the mapping is difficult for δ+-rules, as it is first lost when
applying the weakening rules, and it is regained only when the sequent has been
fully grown back. It is thus necessary to prove that every leaf of the sequent provided
after applying the routine still maps properly over T0. In effect, it is not too difficult
to build it for most rules, except for β-rules where the mapping should be carefully
picked up from a previously generated leaf of the sequent.

Furthermore, to prove that the sequent can properly grow back up, a mapping
between sequents is necessary to make correspond the work-in-progress one to the
one yielded by the induction hypothesis of Lemma 7.7, π1. But π1 can not be directly
taken as the target of the mapping, as by definition the image of a leaf by a mapping
should be included in said leaf and the algorithm removes formulas from the relevant
leaf. Thus, a particular initial part of π1 has to be picked out to serve as the target.

Definition 7.8: Subsumed Initial Parts

Let π be a sequent, B be a branch of this sequent, and E a set of formulas.
The subsumed initial parts of π by E is denoted Π(π, B, E) and contains all the
initial parts of π such that the set labeling the leaf of the branch B is included
in E.

In essence, the following lemma specifies what needs to be done when applying
back rules in the algorithm. It is easy for α- and γ-rules, as the branch just needs
to be extended with the formula yielded by the application of this rule. It is a bit
tricky for β-rules, as only one of the leaves created by its application is a prefix of
the branch being grown back. Thus the other leaf needs to be mapped to the same
tableau node as the node generated by the original application of the β-rule that
is not a prefix of the branch being extended.

Lemma 7.9: δ+-Rules Mapping Conservation

Let µ1 : L(π1)→ L(T1) be a mapping, L be an open leaf of T1 such that the
next rule applied to L is a δ+-rule on a formula D, π0 be the GS3 sequent
after execution of the routine on π1 and µ−1

1 (L) and T0 the tableau T1 after
application of the δ+-rule, which generates δD. Then there exists a mapping
µ0 : L(π0)→ L(T0) which extends µ1.

128 7.4. Soundness of the Translation over Inner Skolemization

Proof. This proof is done by building families of mappings and sequents by
induction on the number of δ-terms which depend on δD, i.e., the number of δ-
terms such that δD is a sub-term of those very δ-terms. With the right extension,
the last item of these families can then yield the desired mapping. As the rules
generating these δ-terms are applied back, it is important to note that δD can not
depend on itself (by Lemma 7.3) and that, by transitivity, it can not depend on any
of its dependencies. Let π0

0 be π1 where the branch B carrying µ−1(L) is extended
by following the algorithm before applying back the rules, i.e., where all formulas of
Λ(D) are weakened and the Skolemization rule has been applied to D, generating D′.
As such, let Π0

1 be Π(π1, B,µ−1(L)), i.e., the subsumed initial parts of π1 over B and
the set µ−1(L). Π0

1 can be totally ordered by inclusion and we can thus take π0
1 to be

max(Π0
1), with b being its leaf on B. π0

0 can then be mapped to π0
1 by the function

λ0
1 : L(π0

0) → L(π0
1) defined as follows for every leaf n of π0

0:

λ0
1(n) =

¨

b if n is (µ−1(L) \Λ(D))∪ {D′}
n otherwise

We then construct by induction over the number n of formulas that have been weak-
ened a family of mappings (λi

1)i≤n, initial parts (πi
1)i≤n and sequents (πi

0)i≤n as follows.

• If no δ-term depends on δD, then the kth member of the families are built
depending on the kth rule r that needs to be applied back as follows:

– r is neither a closure rule nor a δ+-rule as no such rules depend from δD.

– If r is an α- or a γ-rule generating ϕ, then πk
0 is πk−1

0 where B has been
extended with ϕ, yielding the leaf L′, Πk

1 is Π(πk
0, B, L′) and thus πk

1 =
max(Πk

1). Let b be the leaf of B in πk
1. Then λk

1 is defined as follows for
every leaf n of πk

0:

λk
1(n) =

¨

b if n is L′

λk−1
1 (n) otherwise

– If r is a β -rule which produces ϕ1 and ϕ2, then let us suppose without loss
of generality that ϕ1 ∈ µ−1

1 (L). Let us define π2 to be πk−1
0 where L′ the

leaf of B has been extended into two leaves L1 (3 ϕ1) and L2 (3 ϕ2), Πk
1

is Π(π2, B, L1) and thus πk
1 =max(Πk

1). As such, let b be the parent of B’s
leaf in πk

1. The mapping of L1 is straightforward as it is simply b ∪ {ϕ1}.
However, selecting πk

0 and L2’s mapping is not. Indeed, the node b ∪ {ϕ2}
might not be a leaf, as the sequent could have been previously developed.
As such, let π3 be the sequent starting at the node b ∪ {ϕ2} in πk

1. πk
0 is

defined to be π2 where the subsequent tree that is rooted at L2 becomes π3

(therefore, if π3 is rooted at L3 then L2 ⊇ L3) as illustrated in Figure 7.6.
Then λk

1 is defined as follows for every leaf n of πk
0:

λk
1(n) =

b ∪ {ϕ1} if n is L1

n if n is a leaf of π3

λk−1
1 (n) otherwise

7. Toward Certification: an Output for Checkable Proofs 129

• If at least one δ-term depends on δD, the kth mapping, initial part and sequent
are the same as those defined for the previous case, except for the δ+-rule where
they are seamlessly defined as the induction hypothesis directly yields (π′ i0)i≤m,
(π′ i1)i≤m and (λ′ i1)i≤m and thus giving πk

1 = π
′m
1 , πk

0 = π
′m
0 and λk

1 = λ
′m
1 .

Finally, πn
0 is the sequent where all the rules have been applied back and thus is π0

and if b is its branch B’s leaf, then b ⊇ µ−1
1 (L) and πn

1 is π1. As such, as λn
1(b) ⊆ b

and λn
1(b) ∈ L(π1) then b ⊇ µ1(λn

1(b)) and µ1 can be extended for every leaf n
of π0 as follows to yield µ0:

µ0(n) =

¨

µ1(λn
1(n))∪ {D

′} if n is b
µ1(λn

1(n)) otherwise

�

7.5 Extensions to δ+
+

Most of the problems faced when translating δ+
+

tableau proofs (as introduced in
Section 2.1) to GS3 sequents are properly managed by the translation algorithm
introduced previously. Indeed, as those rules build over inner Skolemization, the
ordering of the rules applied is naturally taken into account when deskolemizing.
However, on-the-fly Skolemization generating the same symbol for α-equivalent
formulas introduces a new factor in-between the original proof and the translated
sequent: a γ-formula (i.e., a formula on which a γ-rule can be applied) can depend of
multiple different δ-formulas. Thus, the previous algorithm needs to be adapted
to handle those cases.

Figure 7.7a is the closed tableau of a formula in which both δ+
+
-rules give the

same symbol and use it to close their respective branch, having the same final
substitution. The translation of this proof by the deskolemization algorithm is
illustrated in Figure 7.7b. In this example, the root formula Γ depends on the δ-
formulas found in the two branches, as they generate the exact same Skolem symbol
c. Applying the algorithm, when c is met in a branch, the whole formula is grafted
(including the β-rule). Thus, the other branch grafts its part, including c, which
triggers the algorithm again. Even if a human can immediately find a contradiction
in the branch, this algorithm only translates a proof rather than searches for one.
As such, when the other branch is grafted back, the Skolem symbol is detected by
the algorithm and the rules of the initial tableau are applied again, leading to an
infinite loop between branches.

Intuitively, when downgrading a δ+
+

proof to a δ+ proof, there are two cases
when applying a Skolemization rule generating a symbol δD: either δD does not yet
exist and thus nothing needs to be done, either δD exists and as such, every formula
which depends on it needs to be reintroduced. For instance, Figure 7.8 shows the
proof in δ+, which is the counterpart of the δ+

+
proof of Figure 7.7a. In fact, such

a proof is eerily similar to the GS3 sequent given by the translation algorithm of

130 7.5. Extensions to δ+
+

∀y ((P(y)∧ (∃x ¬P(x))∨ (P(y)∧ (∃x ¬P(x)))))
γ∀((P(Y)∧ (∃x ¬P(x)))∨ (P(Y)∧ (∃x ¬P(x))))
β∨P(Y)∧ ∃x ¬P(x)

α∧
P(Y),∃x ¬P(x)

δ+
+

∃¬P(c)
�{Y 7→ c}

P(Y)∧ ∃x ¬P(x)
α∧

P(Y),∃x ¬P(x)
δ+

+

∃¬P(c)
�{Y 7→ c}

(a) Tableau proof yielding the same δ+
+
-symbol.

ax
· · · , P(c),∃x ¬P(x) `

∧· · · , P(c)∧ (∃x ¬P(x)) `

...
Γ ,∃x ¬P(x) `

w ×3· · · , P(c),∃x ¬P(x) `
∧· · · , P(c)∧ (∃x ¬P(x)) `

ax
· · · , P(c),∃x ¬P(x) `

∧· · · , P(c)∧ (∃x ¬P(x)) `
∨· · · , (P(c)∧ (∃x ¬P(x)))∨ (P(c)∧ (∃x ¬P(x))) `

∀· · · ,¬P(c) `
∃

Γ ,∃x ¬P(x) `
w

· · · , P(c),∃x ¬P(x) `
∧

Γ , P(c)∧ (∃x ¬P(x)) `
w ×3· · · , P(c)∧ (∃x ¬P(x)) `
∨· · · , (P(c)∧ (∃x ¬P(x)))∨ (P(c)∧ (∃x ¬P(x))) `

∀· · · ,¬P(c) `
∃

Γ ,∃x ¬P(x) `
w ×3· · · , P(c),∃x ¬P(x) `
∧· · · , P(c)∧ (∃x ¬P(x)) `

...
∨· · · , (P(c)∧ (∃x ¬P(x)))∨ (P(c)∧ (∃x ¬P(x))) `

∀
Γ = ∀y ((P(y)∧ (∃x ¬P(x))∨ (P(y)∧ (∃x ¬P(x))))) `

(b) A Diverging translation using the algorithm.

Figure 7.7: Formula that makes the translation algorithm diverge.

Figure 7.7b, except the fact that no δ-rule is applied back after reintroducing as the
needed-for-closure formula (¬P(c1)) is not weakened when branching.

As such, extending the translation algorithm to δ+
+

proofs is fairly straightforward:
it suffices to avoid weakening the Skolemized formulas and reapplying a δ+

+
-rule

over a previously Skolemized formula. Intuitively, two cases can then happen —
(i) the non-weakened Skolemized formula is useless in the branch and as such the
weakening serves no purpose and (ii) the non-weakened formula should have been
generated subsequently, but as it already appears in the branch with the right Skolem
symbol, the mapping is preserved.

To formalize this intuition, we need to rework the β-rules case of the proof of
Lemma 7.9 to properly select the sequent over which both resulting branches map to.

7. Toward Certification: an Output for Checkable Proofs 131

∀y. (P(y)∧ (∃x ¬P(x))∨ (P(y)∧ (∃x ¬P(x))))
γ∀((P(Y)∧ (∃x P(x)))∨ (P(Y)∧ (∃x ¬P(x))))

β∨P(Y)∧ (∃x P(x))
α∧

P(Y),∃x ¬P(x)
δ+∃¬P(c)

�{Y 7→ c}

P(Y)∧ (∃x P(x))
α∧P(Y),∃x ¬P(x)
δ+∃¬P(c1) γ∀((P(Y1)∧ (∃x P(x)))∨ (P(Y1)∧ (∃x ¬P(x))))

β∨P(Y1)∧ (∃x P(x))
α∧

P(Y1),∃x ¬P(x)
�{Y1 7→ c1}

P(Y1)∧ (∃x P(x))
α∧

P(Y1),∃x ¬P(x)
�{Y1 7→ c1}

Figure 7.8: Translation of the δ+
+

proof to the δ+ proof.

Lemma 7.10: δ+
+
-Rules Mapping Conservation

Let µ1 : L(π1)→ L(T1) be a mapping, f be an open leaf of T1 such that the
next rule applied to f is a δ+

+
-rule on a formula D, π0 be the GS3 sequent

after execution of the routine on π1 and µ−1
1 (f) and T0 the tableau T1 after

application of the δ+
+
-rule, which generates the formula D′ and the Skolem

term δD. Then there exists a mapping µ0 : L(π0)→ L(T0) which extends µ1.

Proof. Recall that this proof relies on building families of (i) initial parts of π1

denoted πi
1, (ii) sequents that grow to become π0 denoted πi

0 and (iii) mappings
between the last elements of (i) and (ii) denoted λi

1. Also recall that µ−1
1 (f) is

considered to be on the branch B in π0
0, and, by extension, in every πi

0. The induction
cases (over the number of δ-terms which depend on δD) only change when applying
back a β -rule. In this case, let ϕ1 and ϕ2 the formulas yielded by applying the β -rule
in πk−1

0 . Without loss of generality, let us suppose that ϕ1 ∈ µ−1
1 (f). As such, let

π2 be πk−1
0 where the leaf of B in πk−1

0 has been extended in two leaves f1 (3 ϕ1)
and f2 (3 ϕ2). Let πk

1 be max(Π(π2, B, f1)) and f ′ be λk−1
1 (f1 \ {ϕ1}), i.e., the parent

node of the leaf of B in πk
1. Recall that f ′ ∪ {ϕ1} is a leaf of π2 as well as πk

1 so the
mapping is straightforward. On the other hand, f ′ ∪ {ϕ2} might not be a leaf of πk

1,
and as such let π3 be the sequent starting at the node λk−1

1 (f ′)∪ {ϕ2} in πk
1. Then,

let π′3 be π3 where all the nodes have been augmented with D′, i.e., if n is a node of
π3, then n∪ {D′} is a node of π′3. Thus it suffices to define πk

0 to be π2 where f2 is
replaced by grafting π′3, i.e., where the subtree f2 is replaced by the tree π′3. As such,
λk

1 : L(πk
0)→ L(πk

1) can be defined as follows for every leaf b of πk
0:

λk
1(b) =

f ′ ∪ {ϕ1} if b is f1

b \ {D′} if b ∈ π′3 and the corresponding

node is not labelled with D′ in π3

b if b ∈ π3

λk−1
1 (b) otherwise

132 7.6. Coq and Lambdapi Output From GS3

It is important to note that every leaf of π′3 is either a leaf of πk
1 (and as such, D′ does

not need to be weakened on it) or either it should be weakened of D′ to be a leaf of
πk

1. In both cases, the invariant of the mapping (i.e., b ⊇ λk
1(b)) is preserved, and as

such λk
1 is a mapping. �

The soundness of this algorithm can thus be directly deduced by combining this
proof with the following argument of termination: in all branches, the number of
formulas depending on a Skolem term not yet created decreases strictly every time
the grafting routine is carried out. This argument can also be used to prove the
termination of the algorithm when applied over δ+-proofs, but has not been explicitly
given as in this case, the termination is clear.

The successful extension of the algorithm to δ+
+
-rules also achieves the initial

goal of building an algorithm that can serve as a solid basis for deskolemizing, even
with more advanced δ-rules.

7.6 Coq and Lambdapi Output From GS3

The sequent output of Goéland is a mean towards the goal of outputting certified
proofs. To achieve machine-checkable proofs, a translation process is implemented in
two layers: deskolemization and translation. The deskolemization layer transforms a
tableau proof into a deskolemized GS3. It is a straightforward implementation of the
algorithm given in Section 7.3 and can be found in the Goéland’s public repository1.

The advantage of this deskolemization step is that it offers a sequent proof that is
easily checkable by any proof-assistant, as GS3 can be embedded in most such tools.
For instance, two embeddings of GS3 into Coq [20] and Lambdapi [19] have been
implemented in Goéland. The translation rules for Coq can be found in Appendix A and
those for Lambdapi in the branch dev/ill/lambdapi. The respective translations of
the drinker paradox of Figure 7.5 can be found in Figure 7.9 and Figure 7.10. Most of
the files consist solely of lemmas that represent the GS3 rules, which can be used almost
instantly. Some similar embedding has also been implemented in Zenon [65, 83].

As Goéland makes use of deduction modulo theory to reduce the proof’s size, it is
normal to consider an output for proofs with rewrite rule steps. The GS3 translation
captures the rewrite rules and puts them into the axioms. Their management then
depends on the chosen system: the rewrite rules are kept for the Coq’s translation,
whereas they are omitted for the Lambdapi’s one, as this system natively manages
proofs in deduction modulo theory.

The translated proofs can be offered to their respective proof assistant to be
formally certified. Moreover, the layer of abstraction added by the GS3 sequent
allows us to easily translate Goéland’s proofs into the language of any proof-assistant,
validating the genericity and reusability of the method.

1in the folder plugins/gs3

7. Toward Certification: an Output for Checkable Proofs 133

Parameter goeland_U : Set. (* goeland's universe. *)
Parameter goeland_I : goeland_U. (* an individual in the universe. *)

Parameter d : (goeland_U -> Prop).
Parameters X : goeland_U.
Theorem goeland_proof_of_problems_p :

~(~((exists (X : goeland_U),
((d(X) -> (forall (Y : goeland_U), (d(Y)))))))).

Proof.
intro H0. apply H0. exists ((X)). apply NNPP. intros H1.
apply (goeland_notimply_s _ _ H1). intros H2 H3.
apply H3. intros skolem_Y. apply NNPP. intros H4.
apply H0. exists (skolem_Y). apply NNPP. intros H5.
apply (goeland_notimply_s _ _ H5). intros H6 H7.
auto.
Qed.

Figure 7.9: Coq proof of the drinker paradox, translated from the GS3 output.

7.7 Conclusion

While tableau methods yield proofs, obtaining certified proof is not always guaran-
teed, especially with more optimized proof-search strategies. The deskolemization
mechanism, by ensuring proof equivalence, allows for efficient proof search while
retaining the key advantages of tableau methods: producing a proof. In this way,
the ATP becomes a proof-certificate generator [18, 178], which is later checked
by an external proof checker.

By delegating the verification task to an external proof checker, we significantly
enhance the level of trust we place in these proofs. It also establishes a common
language for expressing proof, which allows to combine proofs generated by various
theorem provers with different systems. Additionally, rather than implementing a
deskolemization process in every automated theorem prover, a standardized format for
outputting tableau proofs could be developed. These proofs could then be processed by
a dedicated tool implementing the translation algorithm within a certified environment
such as Coq or Lambdapi, enabling automatic certification of tableau proofs.

134 7.7. Conclusion

symbol d : τ(ι) → Prop;
symbol X : τ(ι);

symbol goeland_problems_p :
∈ ¬((∃α (λ (v0 : τ(ι)),
(d(v0) ⇒ (∀α(λ (v1 : τ(ι)), d(v1))))))) → ∈ ⊥ :=
λ (v2 : ∈ ¬((∃α (λ (v0 : τ(ι)),
(d(v0) ⇒ (∀α(λ (v1 : τ(ι)), d(v1)))))))),
GS3nex
(ι)
(λ (v0 : τ(ι)), (d(v0) ⇒ (∀α(λ (v1 : τ(ι)), d(v1)))))
(X)
(λ (v3 : ∈ (¬((d(X) ⇒ (∀α(λ (v1 : τ(ι)), d(v1))))))),
GS3nimp
(d(X))
((∀α(λ (v1 : τ(ι)), d(v1))))
(λ (v4 : ∈ (d(X))),
λ (v5 : ∈ (¬((∀α(λ (v1 : τ(ι)), d(v1)))))),
GS3nall
(ι)
(λ (v1 : τ(ι)), d(v1))
(λ (v6 : τ(ι)),
λ (v7 : ∈ (¬(d(v6)))),
GS3nex
(ι)
(λ (v0 : τ(ι)), (d(v0) ⇒ (∀α(λ (v1 : τ(ι)), d(v1)))))
(v6)
(λ (v8 : ∈ (¬((d(v6) ⇒ (∀α(λ (v1 : τ(ι)), d(v1))))))),
GS3nimp
(d(v6))
((∀α(λ (v1 : τ(ι)), d(v1))))
(λ (v9 : ∈ (d(v6))),
λ (v5 : ∈ (¬((∀α(λ (v1 : τ(ι)), d(v1)))))),
GS3axiom (d(v6)) (v9) (v7)
)
(v8)
)
(v2)
)
(v5)
)
(v3)
)
(v2);

Figure 7.10: Lambdapi proof of the drinker paradox, translated from the GS3 output.

135

Chapter 8
Experiments and Analysis

Contents

8.1 Comparison Between the Variants of Goéland 135
8.2 Comparison with Other Provers . 138
8.3 Scale-Up Tests . 140
8.4 Typed Problems . 141
8.5 Expansion of the Proof Size with Deskolemization Strategy . . . 143
8.6 Conclusion . 145

This section presents the performances of Goéland on the Thousand of Problems
for Theorem Provers (TPTP) library [226]1 (v8.1.2). This library is the reference
for testing the developed tools as it has developed a standardized way to represent
logical problems and features over nine thousand (first-order logic) problems, ranging
from syntactic theorems to industrial proof obligations.

To begin, we conduct a comparative analysis of all the different variants of Goéland,
aiming to identify the most effective combination. Subsequently, we evaluate these
selected variants against state-of-the-art theorem provers.

We also perform scalability tests to investigate how Goéland behaves under various
core configurations. Lastly, we examine the impact of the transformations discussed
in Section 7 by comparing the sizes of proofs before and after the treatment.

The experiments have been done on an Intel Xeon E5-2680 v4 2.4GHz 2×14-
core processor with 128GB of memory within the MESO@LR platform2. Each proof
attempt was limited to 300 seconds.

8.1 Comparison Between the Variants of Goéland
First of all, we evaluated multiple combinations of Goéland on two problem categories
with FOF theorems in the TPTP library: syntactic problems (SYN) and problems
of set theory (SET). The former was chosen for its elementary nature, whereas the
latter was picked primarily to evaluate the performance of the deduction modulo
theory, given that set theory axioms are suitable for rewriting. The comparison
involved five variations of Goéland:

1https://www.tptp.org/
2https://meso-lr.umontpellier.fr/

136 8.1. Comparison Between the Variants of Goéland

SYN (288 problems) SET (464 problems)
Goéland 209 (251 s) 124 (2 315 s)

Goéland+EQ 213 (81 s) (+6, −2) 101 (1 585 s) (+21, −44)

Goéland+DMT 209 (285 s) (+0, −0) 217 (1 294 s) (+100, −7)

Goéland+DMT
+EQ 213 (119 s) (+6, −2) 192 (1 972 s) (+101, −33)

Goéland+DMT
+Polarized 202 (61 s) (+1, −7) 164 (260 s) (+89, −49)

Table 8.1: Experimental results of the different versions of Goéland over the SYN and SET
categories of the TPTP library.

• Goéland

• Goéland+EQ (Goéland improved with equality reasoning)

• Goéland+DMT (Goéland improved with deduction modulo theory)

• Goéland+DMT+EQ

• Goéland+DMT+Polarized (Goéland+DMT improved with polarized deduction
modulo theory)

Table 8.1, Figure 8.1 and Figure 8.2 provide detailed results. Table 8.1 shows
the number of problems solved by each variant of Goéland, the cumulative time, and
the number of problems solved by a given variant but not by the original one (+)
and conversely (−). For instance, in the SYN category, Goéland solved 209 problems
and Goéland+EQ 213. More exactly, 2 problems were solved by Goéland but not
by Goéland+EQ, and 6 problems were solved by Goéland+EQ but not by Goéland.
Figure 8.1 and Figure 8.2 present the cumulative time required to solve the number
of problems in the two categories.

The results reveal that the variants of Goéland perform relatively similarly in terms
of problems solved in the SYN category. This is primarily due to the SYN problems
containing a limited number of axioms, which are the triggers for rewrite rules, as
well as a few problems with equality. Notably, incorporating equality reasoning leads
to a slight increase in the number of problems solved, along with a reduction in
the time required.

Specifically, the equality-enhanced versions solve 6 more problems and lose 2.
This can be attributed to the fact that some problems that include equality predicates
in their axioms may not necessarily need it to be solved. Consequently, equality
reasoning may be unnecessarily triggered, leading to some problems being unsolved.
The difference in time consumption in the equality version arises from the fact that the
unsolved problems (i.e., those that are solved by the basic version) are those that take

8. Experiments and Analysis 137

0 20 40 60 80 100 120 140 160 180 200 220

0

50

100

150

200

250

300

Number of problems solved

To
ta

lc
um

ul
at

iv
e

ti
m

e
(i

n
se

co
nd

s)

FOF category

Goéland
G+EQ

G+DMT
G+DMT+EQ

G+DMT+Polarized

Figure 8.1: Cumulative time per problem solved on the SYN category between Goéland,
Goéland+EQ, Goéland+DMT, Goéland+DMT+EQ and Goéland+DMT+Polarized.

0 20 40 60 80 100 120 140 160 180 200 220

0

500

1,000

1,500

2,000

2,500

Number of problems solved

To
ta

lc
um

ul
at

iv
e

ti
m

e
(i

n
se

co
nd

s)

SET category

Goéland
G+EQ

G+DMT
G+DMT+EQ

G+DMT+Polarized

Figure 8.2: Cumulative time per problem solved on the SET category between Goéland,
Goéland+EQ, Goéland+DMT, Goéland+DMT+EQ and Goéland+DMT+Polarized.

138 8.2. Comparison with Other Provers

the most time to be solved, ultimately leading to an overall increase in cumulative time.
On the other hand, the addition of deduction modulo also increases the computation
time. Indeed, triggering rewrite rules and the associated backtracking takes time,
and may not be necessary to solve a problem, resulting in an increase of cumulative
time but not in the number of problems solved.

In the SET category, Goéland+DMT demonstrates significantly better results than
most other variants, confirming previous findings on the effectiveness of Deduction
Modulo Theory for set theory [76, 78]. The polarized version of DMT offers a
significant acceleration in terms of proof-search speed, although this gain comes at
the cost of lost problems. The versions with equality (resp. DMT+EQ) lead to a drop
in the number of problems solved as well as an increase of cumulative time compared
to the basic version (resp. DMT version), as equality reasoning introduces additional
computational complexity. Furthermore, the equality reasoner is still in its early
stages of development and has not yet undergone full optimization, occasionally
impacting its efficiency.

For these reasons, for comparison with other theorem provers, we have selected
the basic version Goéland, as well as two DMT-improved versions: Goéland+DMT
and Goéland+DMT+EQ. This choice will enable us to conduct a more detailed
analysis of the improvements offered by DMT, which represent the most advanced
version of Goéland.

8.2 Comparison with Other Provers

In order to evaluate the overall performances of Goéland, we have chosen to run
it on a larger set of problems and to compare it against various state-of-the-art
theorem provers. For this larger-scale experiment, we have chosen a subset of TPTP
composed of first-order problems belonging to the following categories: AGT, ALG,
COM, CSR, GEO, GRP, HWV, ITP, KLE, KRS, LCL, MGT, MSC, NLP, NUM, PHI, PUZ,
SET, SEU, SEV, SWB, SWC, and SYN.

We experimented the three previously chosen versions of Goéland and compared
the results with five other provers: tableau-based provers Zenon (v0.8.5) [65], Zenon
Modulo (0.4.2 [a5] 2015-09-01) [104] and Princess (v2023-06-19) [211], as well as
saturation-based provers Vampire (v4.8) [163] and E (v2.6) [213]. A summary of
the total result is available in Table 8.2 and Figure 8.3, and the detailed results for
each prover and each category can be found in Appendix B. The tables present the
number of problems solved, together with the total cumulative time and the average
time. Figure 8.3 follows the same structure as the previous section.

Overall, the results are under most of the other theorem provers. The equality
reasoning module is in an early stage of development, and the memory management
has not been optimized yet, which leads to difficulties when dealing with very
large problems.

However, the DMT-improved versions Goéland+DMT and Goéland+DMT+EQ
perform well on some specific categories, for example, SET, GEO (Geometry), or
KRS (Knowledge Representation), almost doubling the number of problems solved
compared to the basic version. These categories have in common the usage of a

8. Experiments and Analysis 139

FOF (5396 problems)
Goéland 613 (10 482 s — 17.1 s)

Goéland+DMT 770 (6 935 s — 9 s)
Goéland+DMT+EQ 801 (10 060 s — 12.5 s)

Zenon 1 382 (9 026 s — 6.5 s)
Zenon Modulo 1 389 (10 028 s — 7.2 s)

Princess 1 621 (23 200 s — 14.3 s)
Vampire 3 342 (42 873 s — 12.8 s)

E 3 939 (39 638 s — 10.1 s)

Table 8.2: Experimental results of Goéland, Goéland+DMT, Goéland+DMT+EQ, Zenon,
Zenon ModuloPrincess, Vampire and E over a subset of first-order problems of the TPTP
library.

0 400 800 1,200 1,600 2,000 2,400 2,800 3,200 3,600 4,000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
·104

Number of problems solved

To
ta

lc
um

ul
at

iv
e

ti
m

e
(i

n
se

co
nd

s)

SYN category

Goéland
G+DMT

G+DMT+EQ
Zenon

Zenon Modulo
Princess
Vampire

E

Figure 8.3: Cumulative time per problem solved between Goéland, Goéland+DMT(GDMT),
Goéland+DMT+EQ(G+DMT+EQ), Zenon, Zenon Modulo, Princess, Vampire and E.

high number of axioms, making them well-suited for working with deduction modulo
theory. These conclusions are confirmed by the increase in the number of problems
solved between Zenon and Zenon Modulo on the SET category, whereas the basic
version of Zenon already performs well on the two other ones, even without DMT.
Deduction modulo theory also increases the performances in terms of speed, dividing
by two time needed to solve a problem in Goéland. However, a few problems are also
lost in some categories. It can be either due to the non-deterministic proof-search of
Goéland, which can provide different search plans for the same input depending on
the reception order of the children’s answers, or to the application of rewrite rules
by the DMT modules, which also modifies the search.

140 8.3. Scale-Up Tests

SYN (207 problems) SET (113 problems)
2 1.5 s 20 s (+4)
4 0.6 s 15 s (+5)
8 0.4 s 12 s (+8)

16 0.4 s 8.7 s (+10)
28 0.3 s (+ 2) 8.7 s (+11)

Table 8.3: Scale-up experimental results of Goéland over the SYN and SET categories of the
TPTP library according to the number of cores.

The addition of equality, although leading to a few problems lost in some categories,
also improves performances on others that effectively require equality reasoning, such
as SWC (software creation).

Even if Goéland manages to achieve results comparable to some other provers
on specific categories, it remains overall behind other tableau-based provers, while
saturation theorem provers achieve the best results.

8.3 Scale-Up Tests

To assess the impact of the number of CPU cores on Goéland, which is particularly
relevant given the concurrent nature of the prover, we have chosen the usual SYN
and SET categories of TPTP and the three previous versions of the prover: Goéland,
Goéland+DMT and Goéland+DMT+EQ. Tests have been performed on the same
machine as the previous one, with an incremental configuration in terms of the
number of cores: 2, 4, 8, 16, and 28. We have restricted the problems to those
that have been solved for each configuration, i.e., for each number of cores. The
mean time is given in seconds and calculated over those common problems. The
number of additional problems solved is given in brackets, but the times of these
problems are not included in the mean.

A summary of the total results is available in Table 8.3, illustrated in Figure 8.4 and
8.5 for Goéland and in Table 8.4, illustrated in Figure 8.6 and 8.7 for Goéland+DMT.
For example, for Goéland on the SYN categories (Table 8.3), the same 207 problems
have been solved regardless of the number of cores, and two additional problems
have been solved on 28 cores.

First of all, we can observe that increasing the number of cores generally makes the
average time decrease, leading to an improvement in performance. The stagnation and
the variation in terms of problems solved can be explained by the non-deterministic
nature of Goéland since executing the prover on one problem can lead to different
(and possibly longer or unsuccessful) proof searches. In addition, the increase of cores
comes with an increase in the number of goroutines active at the same time and the
need to manage them, which relies on the scheduler. Thus, the time gained by the
parallelization may be compensated by the time taken to switch between the processes.
This can explain the stagnation despite the increase of cores. The number of problems

8. Experiments and Analysis 141

SYN (207 problems) SET (208 problems)
2 1.4 s (+ 1) 6.1 s (+ 5)
4 1.3 s 5.3 s (+ 8)
8 1.1 s 4.7 s (+ 7)

16 0.6 s (+ 1) 4.2 s (+ 9)
28 0.4 s (+ 2) 3.1 s (+ 9)

Table 8.4: Scale-up experimental results of Goéland+DMT over the SYN and SET categories
of the TPTP library according to the number of cores.

2 4 8 16 28
0

0.5

1

1.5

2

Numbre of cores

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

)

0

50

100

150

200

250

N
um

be
ro

f
Po

rb
le

m
So

lv
ed

Average time
Problems solved

Figure 8.4: Scale-up results of Goéland on the SYN category.

solved also follows this trend, with a slight increase or stagnation, although some
problems can be lost due the the reasons aforementioned.

8.4 Typed Problems

We also conducted experiments on the polymorphism module of Goéland. For these
tests, we selected TFF problems from TPTP that do not contain arithmetic, as Goéland
does not currently have a proper extension to handle it. The TFF category is thus
reduced to problems from COM (31), HWW (68), ITP (342), LCL (66), NUM (49),
PUZ (10), SCT (66) and others (GEO, KRS and SYN, one each). We compared two
versions of Goéland+DMT (with and without equality reasoning) against two versions
of Zenon (the basic version and Zenon Modulo). The results of these experiments
can be found in Table 8.5.

Despite a relatively small number of problems solved, the results demonstrate
that Goéland is capable of handling typed problems. The results are proportionally
comparable to those achieved in the FOF category, indicating that the challenges
faced are similar in both categories. On the other hand, Zenon successfully solves

142 8.4. Typed Problems

2 4 8 16 28
0

5

10

15

20

25

Numbre of cores

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

)

0

100

200

300

400

N
um

be
ro

f
Po

rb
le

m
So

lv
ed

Average time
Problems solved

Figure 8.5: Scale-up results of Goéland on the SET category.

2 4 8 16 28
0

0.5

1

1.5

2

Numbre of cores

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

)

0

50

100

150

200

250

N
um

be
ro

f
Po

rb
le

m
So

lv
ed

Average time
Problems solved

Figure 8.6: Scale-up results of Goéland+DMT on the SYN category.

a significant number of problems, though the DMT extension appears to be less
efficient than the original version.

Notably, in the primary categories within TFF, either both Zenon and Zenon Modulo
yield results comparable to the corresponding FOF categories, either the latter is
experiencing a drop in the number of problems solved, particularly in NUM and LCL
categories. One possible explanation for this lies in the fact that in these categories,
numerous rewrite rules can be triggered by the same axiom, compelling the deduction
modulo theory mechanism to choose between them, potentially not selecting the
one leading to a solution.

8. Experiments and Analysis 143

2 4 8 16 28
0

5

10

15

20

25

Numbre of cores

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

)

0

100

200

300

400

N
um

be
ro

f
Po

rb
le

m
So

lv
ed

Average Time
Problems solved

Figure 8.7: Scale-up results of Goéland+DMT on the SET category.

TFF (without Arithmethic) (635 problems)
Goéland+DMT 38 (10.7 s)

Goéland+DMT+EQ 27 (3.1 s)
Zenon 116 (1.7 s)

Zenon Modulo 87 (1.2 s)

Table 8.5: Experimental results of Goéland+DMT, Goéland+DMT+EQ, Zenon and Zenon
Modulo over a subset of the TFF problems of the TPTP library.

8.5 Expansion of the Proof Size with Deskolemization
Strategy

In order to evaluate the proof certification algorithm, we used the SYN and SET
categories of TPTP. To refine the set of selected problems, we launched Goéland and
Goéland+DMT (with all types of Skolemization) on the two categories to create a
subset of the problems proved by at least one variant. These subsets, together with
Goéland and the benchmark script, are available online3.

Then, the tests have been launched on the six following variants: Goéland, Goé-
land+δ+, Goéland+δ++ , Goéland+DMT, Goéland+DMT+δ+ and Goéland+DMT+δ+

+
.

Each variant corresponds to a particular Goéland’s option set, where the δ+-rules
can be activated using the -inner flag, δ+

+
-rules with the -preinner flag and DMT

with the -dmt flag. Each benchmark generates a folder containing, for every problem
proved (i) its tableau proof and (ii) its Coq proof, certified by Coq’s compiler. Then, the
statistics for a test can be generated using a script, also available online. It is important
to note that, as Goéland is a parallel theorem prover, its proof search algorithm is non-

3Benchmarked problems available on https://github.com/GoelandProver/
GoelandBenchmarks/ in the PROOF_CERTIFICATION folder.

https://github.com/GoelandProver/GoelandBenchmarks/
https://github.com/GoelandProver/GoelandBenchmarks/

144 8.5. Expansion of the Proof Size with Deskolemization Strategy

Problems
Proved

Percentage
Certified

Avg. Size
Increase

Max. Size
Increase

Goéland 261 100 % 0 % -
Goéland+δ+ 272 100 % 8.1 % 5.3
Goéland+δ++ 274 100 % 10.6 % 10.3

Goéland+DMT 363 100 % 0 % -
Goéland+DMT+δ+ 375 100 % 4.5 % 3.9
Goéland+DMT+δ++ 377 100 % 7.4 % 5.2

Table 8.6: Comparison between the different Skolemization strategies and their proof-size
increase.

deterministic and as such, the results presented here may not be perfectly reproducible.
Nevertheless, in any case, the percentage of problems certified should be near 100%.

Table 8.6 presents an overview of the results for the previously explained bench-
marks. The first column contains the name of the variant that corresponds to the
row’s results. The second shows the number of problems on which a tableau proof has
been output by the variant. The third column gives the percentage of tableau proofs
that have been successfully translated to Coq’s proofs. The fourth and fifth columns
present the size increase between the tableau proof and the Coq’s proof, in terms of
the number of branches. The former exhibits the average size increase between both
proofs while the latter indicates the maximum ratio obtained in the considered subset.

The results obtained are very promising as (i) every proof of all the variants
has been properly certified and (ii) the average size increase between the two
versions of the proof is low. In theory, a tableau proof is exponentially better than its
GS3 counterpart in inner Skolemization. However, for both variants featuring this
Skolemization strategy, the average and maximum increase of size is low. Indeed, for
the Goéland+δ+ variant, on average, only two more branches are created during the
translation. Furthermore, the maximum increase is realized on a 48-branches proof
(of SYN867+1). The translation features 255 branches, i.e., 28 − 1 branches, which
is 240 times less than the theoretical bound. The variant Goéland+DMT+δ+ is even
better, as on average it does not even increase the proof size of one branch, and the
maximum ratio is reached for the same problem as the former variant, yielding a 153-
branches proof from a 39-branches one. For δ+

+
-variants, as expected, the increase is

more pronounced. It is still, however, a relatively low increase in proof size, as this
Skolemization strategy is theoretically exponentially better compared to δ+-rules.

The average increase in non-DMT mode consists of more than two and a half
branches while the maximum ratio (still on the same problem) is reached on a 34-
branches proof, with the translation yielding 352 branches, which is also a long way
from the theoretical bound. Meanwhile, the DMT variant is even better, with an
average size increase of a little more than one branch with the maximum ratio being
attained by a 25-branches proof. It is not necessary to expand on variants with an
outer Skolemization strategy, as it behaves as expected: a one-to-one translation

8. Experiments and Analysis 145

between the tableau proof and the Coq proof is realized, easily certifying everything
with the exact same proof size.

All in all, the results obtained are more than satisfactory as they validate the
translation algorithm by yielding relatively short proofs. It means that it is cheap,
in practice, to certify proofs using the proposed translation algorithm together with
an embedding in a proof assistant.

8.6 Conclusion

Despite a relatively small number of proven problems, considering the early stage of
development of the prover, the results are promising, particularly with the deduction
modulo theory.

Benefits provided by the equality reasoner are minimal due to its lack of efficiency.
To enhance its performance, we can consider adding more restrictions on the BSE
calculus, revisiting the level of parallelization, or entirely revamping the equality
reasoning mechanism. In a broader context, improving the memory management
of Goéland is also essential to handle larger problems.

However, deduction modulo theory stands out as a promising optimization. It
offers improvements comparable to those achieved with other DMT tools, validating
prior work with this method. While its extension to polarized deduction modulo
theory shows an interesting increase in speed, one of the upcoming challenges is
to find a good balance in terms of the number of rewrite rules, to retain only the
relevant ones and apply them judiciously, without the risk of being overwhelmed
by excessive rewrite steps.

Regarding the output of checkable proofs, the promising results showed in practice
by the algorithm over δ+-rules proofs have then comforted us in implementing
the extensions to handle δ+

+
-rules and deduction modulo theory, two other proof

optimization techniques. Empirically, these extensions also yield promising results,
thus showing an alluring future work path in the lifting of the translation towards
the other forms of Skolemization: δε-, δ∗- and δ∗

∗
-rules.

In conclusion, while some experiments with deduction modulo theory or checkable
proofs have yielded interesting results, there is ample room for technical improvement
to make the tool more competitive.

146

Conclusion

The idea developed throughout this thesis was to extend the field of first-order
automated reasoning through the study of the method analytic tableaux, by combining
it with current techniques. In detail, we studied the use of concurrency for the devel-
opment of a tableau-based proof-search procedure with eager closure, its interactions
with some theory reasoning techniques, and the transformation of the generated
proofs in order to be checked by external tools. Our main contribution relies on the
creation Goéland theorem prover, which incorporates most of our theoretical results.

Contributions

Fairness in Tableau-Based Proof Search

The proof-search procedure of Goéland, which is based on tableaux, tackles most of
the fairness challenges thanks to its concurrent branch exploration and its forbidden
substitutions mechanism. In detail, each branch performs its own proof search, and
the final decision relies on an agreement mechanism, in which each potential solution
is tried before being validated or forbidden.

This strategy has demonstrated effectiveness in addressing most of the fairness
challenges inherent to tableaux. Moreover, it has been proven complete, increasing
the confidence in the method and contributing to the growing body of completeness
proofs for proof-search methods in automated deduction.

Theory Reasoning in First-Order Logic

In order to make Goéland applicable in highly specialized domains, and as the
management of theories in tableaux is not uniform, we studied the incorporation
of two different types of background reasoners within a tableau-based proof-search
procedure. Thus, two background reasoning modules were developed: one for
handling equality reasoning using rigid E-unification, and another to deal with any
axiomatized theory with deduction modulo theory.

We placed particular emphasis on concurrency, given its dependency on the
theory it addresses, by highlighting aspects amenable to parallelization and their
critical interactions with the proof-search process. The equality reasoner, for in-
stance, leverages concurrency to attempt to find a solution as soon as possible, while
parallelization in the deduction modulo theory module is primarily applied to the
search for applicable rewrite rules.

Proof Certification

Finally, in order to reinforce integration with proof assistants, we explored methods
for generating checkable proofs, even with more advanced Skolemization strategies.

8. Experiments and Analysis 147

The deskolemization mechanism, by ensuring equivalence between proofs in different
formats, enables one to carry out an efficient proof search with the use of optimized
Skolemization strategies while preserving the fundamental benefits of tableau meth-
ods: the production of a proof. This transformation essentially makes the automated
theorem prover evolve into a proof-certificate generator, with the generated certificates
subsequently subject to validation by an external proof checker.

This approach does not only allow to improve performance of Goéland, but also
maintains its compatibility with software that operates on unaltered formulas. Thus,
two extensions have been developed to export those proofs into Coq and Lambdapi,
making them machine-checkable.

Perspectives

Although the practical results cannot yet compete against other state-of-the-art provers,
they remain promising, especially in some domains thanks to the use of deduction
modulo theory. However, several areas for potential improvement can be envisioned.

Fairness in Tableau-Based Proof Search and Practical Results

The theoretical aspects of fairness management in the procedure are noteworthy as
they address known challenges in this domain. To make Goéland suitable for real-
world applications, future efforts will focus on strengthening the prover’s foundation,
including a comparison with a memory-shared version. Notably, it is also essential
to rework memory management, as the prover currently encounters difficulties with
large problem files. We also need to conduct a more comprehensive failure analysis,
as Goéland is unable to find a proof for some problems that are typically considered
“easy”. While in some cases it can find a proof using more advanced Skolemization
strategies or by attempting a different substitution earlier in the proof search, there
are still problems that inherently pose a significant challenge for the prover.

Moreover, the use of heuristics can enhance the proof search process. Presently,
when dealing with a substantial number of axioms that cannot be translated into
rewrite rules, they are processed in an arbitrary order, lacking specific inclination.
Thus, one can imagine implementing a heuristic that associates a priority score to
each formula to process, related to its proximity to the conjecture. Similar reasoning
can be applied to the choice of substitution. Currently, the prover selects an arbitrary
substitution among those with the fewest non-local free variables, but this process
could be improved by considering the reintroduction degree of each variable.

These optimizations can also involve a reconsideration of the eager closure
approach. One possibility is to sacrifice tool completeness by only considering the
initial answers from each branch. This may increase the substitution failure rate and,
consequently, lead to more frequent backtracking, but it has the potential to yield
a solution more rapidly. On the other hand, an alternative approach is to explore
delaying the closure rule, in line with the incremental closure concept proposed by
Giese [136]. This strategy aims to reduce the number of backtracks by attempting
potential closing substitutions at each proof-search step while allowing branches to

148 8.6. Conclusion

continue extending. Tests must be performed for those two approaches, for which
implementations are currently in progress.

Finally, one of the primary challenges in automated reasoning is its inherent
automation, which renders it relatively static and devoid of human intuition. In-
corporating machine learning methods could potentially infuse a level of “human
intuition”, suggesting the right substitution to try, providing a more precise γ-rule
application limit, or guiding the selection of a useful formula to process in the next
proof-search step. This practice has shown promise in some automated theorem
provers and SMT solvers [155, 240].

Theory Reasoning in First-Order Logic

Addressing the efficiency of the equality reasoning module is a priority for the theory
reasoning of Goéland. This can involve optimization of the current implementation or
considering alternative approaches, such as a current work focused on the addition
of equality rules directly integrated into the tableau calculus. Additionally, we can
study the interactions between deduction modulo theory and equality, especially to
integrate term rewriting. Indeed, as both of the mechanisms work with the same
set of terms, their interactions could be challenging.

Moreover, while Goeland can handle typed problems thanks to its native encoding
of polymorphic types, it currently does not benefit from any specific procedure
for typed theories, such as arithmetic, for which the development of a dedicated
reasoner based on a simplex and branch and bound approach reasoner is in progress.
Additionally, to expand the utility of Goéland in program verification, extending the
management of Typed First-order Logic (TFF) to Extended Typed First-Order Form
(TXF) could be considered. TXF includes support for tuples, conditional expressions
(if-then-else), and let expressions (let-defn-in).

In spite of its promising results, deduction modulo theory can be further enhanced.
Improvements can be made by manually designing rewrite rules, either independently
or in conjunction with automated computation from axioms. For instance, the BWare
project, which is based on set theory, provides manually designed rewrite rules for
reasoning about industrial problems. Further testing on this benchmark, with the
addition of arithmetic reasoning, can offer valuable insights

Additionally, while polarized deduction modulo theory demonstrates impressive
speed, it comes with a loss of problems. Heuristics can be developed in order to
achieve the right balance in computing rewrite rules and benefit from the speed
increase without sacrificing problems.

Proof Certification

Since being able to produce verified proofs is valuable, there is a desire to extend
the output to other proof assistants, broadening Goéland’s verification capabilities
and enhancing interoperability.

Furthermore, the true question revolves around the placement of deskolemization
process: should it be directly implemented into the prover or integrated into the proof

8. Experiments and Analysis 149

checker? In the former case, we can envision the creation of a standardized format
for the output of tableau proofs, eliminating the need for individually incorporating a
deskolemization process into each automated theorem prover. These proofs could
then be processed by a specialized tool that implements the translation algorithm
within a certified environment, simplifying the process of automatically certifying
tableau proofs.

On the other hand, an alternative approach involves implementing advanced
Skolemization strategies directly within the format itself, shifting the responsibility to
the proof checker. In this scenario, deskolemization becomes unnecessary, as proofs
can be directly translated into the corresponding proof assistant. This approach also
raises the question of the quality of the certificate. It is preferable for a proof to
be concise, omitting computational steps, which are left to the proof checker [178].
However, integrating such a mechanism into a proof checker may pose challenges,
and it does not eliminate the need for a common output format that serves as the
basis for developing common translation rules for specific proof assistants.

Résumé de la thèse

Avec l’augmentation de la prévalence et de la complexité des systèmes informatiques,
leur fiabilité est devenue une préoccupation cruciale, en particulier dans le cadre des
systèmes critiques. Tout bogue ou dysfonctionnement dans ces systèmes peut avoir
de graves conséquences, à la fois en termes financiers et, plus important encore, en
termes humains. Parmi les exemples notables de bogues, il est possible de citer la
défaillance de la fusée Ariane 5 de l’Agence spatiale européenne et le bogue du
Pentium FDIV d’Intel.

Si le test est une méthode courante pour détecter et atténuer les bogues d’un
système, il n’est pas exhaustif et ne peut garantir l’absence totale de défauts. À
l’inverse, les méthodes formelles permettent de démontrer, à l’aide d’un raisonnement
mathématique rigoureux, qu’un système fonctionne exactement comme prévu, sans
aucune déviation. Bien qu’elles nécessitent davantage de moyens, tant financiers
qu’humains, les méthodes formelles restent le seul moyen de garantir l’exactitude
d’un système dans l’ensemble de son espace de fonctionnement.

Cette évaluation repose sur l’existence d’une preuve pour un problème donné. Une
preuve est une séquence de déductions visant à exhiber le mécanisme de raisonnement
inhérent, conduisant à la validation de la propriété initiale. Historiquement, les
preuves étaient réalisées par un être humain à l’aide d’un papier et d’un crayon,
et étaient l’apanage d’une poignée de spécialistes. Cependant, au fil du temps, de
nouvelles techniques sont apparues et les preuves peuvent désormais être établies en
collaboration avec des ordinateurs, en utilisant différents degrés d’automatisation. Ces
niveaux d’automatisation varient des assistants de preuve, qui guident les utilisateurs
humains dans la construction d’une preuve tout en garantissant des dérivations sans
erreur, aux prouveurs automatiques de théorèmes, qui génèrent des preuves de manière
indépendante et algorithmique.

Les outils de raisonnement interactif agissent comme des assistants, guidant les
utilisateurs humains dans la construction de preuves tout en garantissant l’exactitude
des dérivations générées. Le raisonnement interactif joue un rôle important en
mathématiques, aidant les mathématiciens à prouver des théorèmes et à vérifier des
composants essentiels dans des systèmes ayant des implications critiques pour la
sécurité humaine. Par exemple, le système d’exploitation seL4 a été vérifié à l’aide
de l’assistant de preuve Isabelle/HOL, et l’assistant de preuve HOL Light a été un
outil clé dans la résolution de la conjecture de Kepler en 2017.

Les outils de raisonnement automatiques sont capables de raisonner entièrement ou
partiellement automatiquement sur des formules logiques. Ces outils de raisonnement

prouveur

Ø

×

Problème

Figure 9.8: Un prouveur prend un problème et retourne une information à propos de sa valeur
de vérité.

sont également appelés prouveurs (Figure 9.8), et sont largement utilisés dans des
domaines tels que la vérification et le test de programmes, l’ordonnancement, ainsi
que pour résoudre des problèmes mathématiques. À titre d’illustration, la méthode B
a été utilisée pour vérifier la fonctionnalité de la ligne 14 du métro parisien. Les outils
de raisonnement interactifs et automatiques peuvent être utilisés conjointement, par
exemple en confiant les parties les plus simples d’une preuve construite de manière
interactive à des prouveurs automatiques de théorèmes.

Bien que les preuves nous permettent d’atteindre un degré de confiance sat-
isfaisant dans nos systèmes, la complexité des outils permettant de les générer a
historiquement confiné leur utilisation à une minorité de spécialistes. Cependant,
les récents développements en matière de déduction automatique, les capacités de
calcul accrues et les efforts visant à améliorer l’accessibilité des logiciels de preuve
ont démocratisé ces techniques auprès d’un plus large spectre d’utilisateurs. Bien
qu’il soit aujourd’hui plus facile que jamais de collaborer avec des ordinateurs pour
construire des preuves, il reste nécessaire d’améliorer l’ergonomie pour les utilisateurs
finaux et de développer des outils automatiques capables de produire des preuves
certifiées. Ces développements permettront une application plus large des méthodes
formelles dans la vérification des programmes, contribuant ainsi à la création de
systèmes logiciels plus sûrs.

Cette thèse porte sur la conception et le développement d’un prouveur automatique
de théorèmes. De tels outils reposent sur deux caractéristiques principales : ce sur
quoi ils raisonnent et comment ils le font. Le premier aspect concerne le choix
du langage utilisé pour décrire les problèmes, tandis que le second se réfère aux
techniques de raisonnement.

En effet, les prouveurs automatiques de théorèmes ne peuvent pas s’attaquer
directement aux logiciels ou aux problèmes mathématiques, et nécessitent d’abord
une traduction de ces problèmes du monde réel dans un langage commun lisible
par les ordinateurs, qui permet aux différents outils de communiquer entre eux. Ce
langage commun est la logique, et permet de formaliser le monde. En raison du large

éventail et de la diversité des logiques existantes, une myriade de concepts peuvent

être représentés, depuis les concepts mathématiques jusqu’à de complexes problèmes

industriels. Ces logiques se différencient en fonction de leur niveau d’expressivité

et de l’efficacité des méthodes de raisonnement associées.

Certaines logiques, telles que la logique propositionnelle, sont décidables et

disposent de techniques particulièrement efficaces. En contre-partie, leur degré d’ex-

pressivité est limité, et seuls des concepts simples peuvent être représentés. À l’inverse,

les logiques d’ordre supérieur offrent une plus grande expressivité, mais posent souvent

problème aux outils de raisonnement automatique, notamment pour parvenir à un

raisonnement efficace. Dans le contexte de l’automatisation, la logique du premier

ordre se présente comme un bon candidat, offrant un équilibre intéressant entre

expressivité et efficacité de raisonnement. D’une part, elle permet la représentation

des individus et des propositions les concernant. D’autre part, bien que semi-décidable,

elle peut se targuer de techniques de raisonnement efficaces, facilitant les déductions

à partir de problèmes réels et mathématiques, également appelés formules logiques.

La sélection d’un langage influence considérablement le choix des techniques de

raisonnement employées. En effet, les différentes techniques ne sont pas applicables

à toutes les logiques, et dépendent de facteurs tels que la transformation de la

formule initiale ou le résultat souhaité. Ces techniques de raisonnement sont appelées

procédures de recherche de preuves. Comme leur nom l’indique, elles visent à rechercher

une preuve en appliquant un ensemble de règles sur une version potentiellement

modifiée des formules initiales, en explorant l’espace de recherche de preuves.

Il existe une multitude de techniques de raisonnement automatique, chacune

ayant ses propres caractéristiques. Certaines de ces techniques sont connues pour leur

efficacité, tandis que d’autres possèdent des propriétés qui peuvent être avantageuses

dans un certain contexte, comme une entrée spécifique ou l’adaptation à un spectre

plus large de logiques.

L’une de ces techniques se nomme la méthode des tableaux analytiques. Cette

méthode fonctionne de manière syntaxique, en déconstruisant la formule initiale à

prouver en sous-formules, jusqu’à atteindre des axiomes dont la véracité est prouvée.

Notamment, cette méthode fonctionne avec la formule initiale, sans transformation,

ce qui la rend à la fois adaptée aux interactions avec les assistants de preuve et

utilisable dans d’autres types de logiques. Dans le contexte de la logique du premier

ordre, sa principale force réside dans sa capacité à produire une preuve, qui peut être

facilement traduite en une preuve vérifiable par un outil externe.

Défis

Équité dans la recherche de preuve basée sur les tableaux

La méthode des tableaux analytiques se heurte cependant à certaines difficultés qui
peuvent l’empêcher de trouver une preuve. La structure arborescente générée par la
décomposition des formules originales en sous-buts peut introduire des dépendances
entre les branches, ce qui accroît la complexité de la recherche de preuves. De plus,
la variété des choix disponibles à chaque étape de la preuve rend le système sujet
à des problèmes d’équité, comme l’a déclaré Hähnle : « À l’heure actuelle, on ne
connaît pas de procédure de technique de preuve utilisant les tableaux destructifs
fortement complète qui fonctionne bien en pratique » [208].

De plus, la plupart des livres décrivent la fermeture anticipée comme la manière
standard de gérer la fermeture dans les tableaux à variables libres. En plus du
problème d’équité qui peut être induit par cette règle, il reste difficile de prouver
la complétude d’une procédure de recherche de preuves avec fermeture anticipée,
car elle implique un méchanisme de retour sur trace et donc une non-monotonicité.
Cependant, la complétude est un défi critique pour toute procédure de recherche
de preuves, car un outil complet permet d’instaurer la confiance dans ses résultats.
Dans le contexte des preuves de complétude standard pour les procédures basées
sur des tableaux du premier ordre, ces dernières impliquent souvent de considérer
l’arbre de preuve (infini) qui résulterait si la procédure ne parvenait pas à se terminer
sur une formule insatisfaisante, conduisant finalement à un contre-modèle et à une
réfutation. Cependant, pour les procédures de recherche de preuves avec retour
sur trace, la construction de cette dérivation infinie n’est pas simple. Il est donc
difficile d’obtenir une procédure de recherche de preuve équitable, complète et
efficace dans les tableaux.

Raisonnement au sein de théories en logique du premier ordre

Au-delà de la procédure de recherche de preuves elle-même, certains problèmes
sont intrinsèquement difficiles ou exigent des approches adaptées à des contextes
spécifiques. Ceci est particulièrement présent dans les applications industrielles, qui
impliquent souvent des contraintes explicites ou des structures de données telles que
les tableaux ou les tas, ou dans les théorèmes mathématiques qui se rapportent à
des théories spécifiques, comme la théorie des ensembles. Ces problèmes impliquent
un large ensemble d’axiomes, qui fournissent le contexte nécessaire pour prouver la
formule, ainsi qu’une sémantique spécifique ou des techniques de raisonnement
dédiées, telles que celles pour l’égalité ou le raisonnement arithmétique. Avec

l’augmentation de la complexité des systèmes, la capacité à traiter les théories est une
préoccupation cruciale pour tout prouveur de théorèmes automatisé contemporain.

Dans le contexte de la logique du premier ordre, le raisonnement théorique est
difficile, mais néanmoins essentiel. Bien qu’il existe des méthodes efficaces pour
aborder des domaines spécifiques, il n’existe pas d’approche unique pour traiter
toutes les théories possibles. En outre, l’inclusion des axiomes des théories dans les
hypothèses des problèmes est rarement utilisable en pratique dans les scénarios du
monde réel, car elle implique souvent une application irréfléchie des axiomes qui
surcharge le processus de recherche de preuves. Toutefois, des stratégies ont vu
le jour pour relever ces défis. En particulier, bien que principalement axé sur des
théories spécifiques, déduction modulo théorie a évolué et peut être utilisé comme une
optimisation pour les prouveurs automatiques de théorèmes. En transformant les
axiomes en règles de réécriture, il permet de ne déclencher que les règles pertinentes,
ce qui réduit l’espace de recherche et rend la recherche de preuves plus efficace.
Néanmoins, son intégration dans une recherche de preuve basée sur un tableau
n’est pas simple, car elle interagit étroitement avec des mécanismes critiques tels
que la dépendance des variables libres.

Certification de preuves

D’une certaine manière, les prouveurs automatiques de théorèmes peuvent être
considérés comme des oracles, générant une réponse pour une formule donnée.
Si certains d’entre eux tentent de fournir une trace, ils peuvent également se limiter à
la production d’une réponse binaire (oui ou non) dans le pire des cas. La fiabilité de
la réponse dépend alors uniquement du niveau de confiance que nous avons dans le
prouveur concerné. Néanmoins, ces outils sont généralement des logiciels de grande
envergure, comprenant des dizaines de milliers de lignes de code et employant des
heuristiques sophistiquées. En outre, étant développés par des humains, ils sont
susceptibles d’être affectés par des bogues et intrinsèquement sujets à des erreurs.
Dans de tels outils, les bogues peuvent être désastreux, les amenant à prouver des
non-théorèmes et, par conséquent, à compromettre la fiabilité des réponses qu’ils
produisent. Heureusement, il existe deux façons d’éviter les incohérences dans les
prouveurs automatiques de théorèmes : certifier entièrement le noyau du prouveur
à l’aide d’un assistant de preuve, ce qui est un travail coûteux, ardu et de longue
haleine [212], ou produire des preuves vérifiables par un outil externe, ce qui est
généralement facile d’accès.

Ce dernier s’appuie sur la notion de certificats de preuve. Il s’agit de preuves
générées par un prouveur de théorèmes automatisé qui peuvent être vérifiées par un

vérificateur externe. En effet, à l’inverse des prouveurs automatiques, les assistants de
preuve s’appuient sur un noyau certifié, garantissant l’exactitude des preuves vérifiées.
Il est donc naturel de chercher un moyen de combiner les forces des deux mondes
en produisant des preuves vérifiables, inspirant ainsi une confiance totale dans les
résultats du prouveur automatique. En outre, le fait de s’appuyer sur un vérificateur
de preuves externe pour valider les preuves renforce considérablement la confiance
que nous leur accordons, tout en établissant un cadre commun pour l’expression
des preuves. L’un des avantages de ce cadre commun est la possibilité d’échanger
des preuves provenant de divers prouveurs de théorèmes qui peuvent utiliser des
systèmes de preuve différents. Cependant, toutes les méthodes de raisonnement du
premier ordre ne peuvent pas être facilement traduites en preuves vérifiables, en
particulier lorsque des heuristiques avancées sont utilisées.

Contributions

Cette thèse vise à relever un large éventail de défis avec l’ambition de faire progresser
le domaine de la déduction automatique en utilisant les tableaux analytiques au
premier ordre. Les principales contributions englobent à la fois des aspects théoriques
et pratiques, ces derniers conduisant à des développements qui mettent en œuvre
nos résultats théoriques dans un nouvel outil appelé Goéland. Cet outil comprend
les éléments clés suivants :

• Une procédure de recherche de preuve concurrente basée sur des tableaux qui
garantit l’équité par construction. En effet, la structure arborescente offerte
par cette méthode s’adapte bien à un traitement concurrent. En concevant
une procédure qui explore les branches en parallèle et en tirant partie des
informations d’une branche pour éliminer plus rapidement certains sous-espaces
de recherche, cette thèse vise à résoudre les problèmes d’équité au sein de la
méthode de tableaux. Cette procédure a été prouvée complète, ce qui constitue,
à notre connaissance, la première preuve de complétude d’une procédure basée
sur la méthode des tableaux analytiques en logique du premier ordre avec
fermeture anticipée.

• L’implémentation de deux raisonneurs de fond pour traiter les théories : un
raisonneur pour gérer le traitement de l’égalité et un module de déduction
modulo théorie. Dans cette thèse, nous approfondissons l’incorporation d’un
module de raisonnement dédié et d’un autre plus général, en examinant leurs
interactions respectives avec une procédure de recherche de preuve concurrente
basée sur des tableaux.

• Une procédure de traduction des preuves par tableaux vers une structure de

preuve générique vérifiable par un outil externe, à savoir GS3, ainsi que deux

sorties vers des assistants de preuve dédiés : Coq et Lambdapi.

Nos principales contributions, en plus du travail de mise en œuvre pure, sont

multiples et, par conséquent, détaillées dans des chapitres distincts. Le manuscrit

est donc organisé comme suit. Le chapitre 1 introduit des notions préliminaires de

logique et de concurrence, tandis que l’état de l’art en la matière est disponible dans

le chapitre 2. La procédure principale, ainsi que les défis à relever, sont présentés

dans le chapitre 3 et est prouvée complète dans le chapitre 4.

Afin d’étendre les possibilités de Goéland, le chapitre 5 présente le raisonnement

théorique mis en œuvre dans le prouveur et le 6 son implémentation, ainsi que celle

d’autres fonctionnalités annxes. Pour finir, le chapitre 7 introduit une stratégie pour

produire des preuves vérifiables, qui est testé, ainsi que toutes les fonctionnalité de

Goéland, sur la bibliothèque TPTP dans le 8.

L’idée développée tout au long de cette thèse est l’extension du domaine du

raisonnement automatique au premier ordre au travers de l’étude de la méthode des

tableaux analytiques, en la combinant avec les techniques actuelles. En détail, nous

avons étudié l’utilisation de la concurrence pour le développement d’une procédure de

recherche de preuve basée sur des tableaux avec fermeture anticipée, ses interactions

avec certaines techniques de raisonnement théorique, et la transformation des preuves

générées afin qu’elles puissent être vérifiées par des outils externes. Notre principale

contribution repose sur la création du prouveur Goéland, qui intègre la plupart de

nos résultats théoriques.

Retour sur les contributions

Équité dans la recherche de preuves basée sur les tableaux

La procédure de recherche de preuves de Goéland, qui est basée sur des tableaux, résout

la plupart des problèmes d’équité grâce à son exploration simultanée des branches et

à son mécanisme de substitutions interdites. Dans le détail, chaque branche effectue

sa propre recherche de preuve, et la décision finale repose sur un mécanisme d’accord,

dans lequel chaque solution potentielle est essayée avant d’être validée ou interdite.

Cette stratégie s’est révélée efficace pour résoudre la plupart des problèmes d’équité

inhérents aux tableaux. De plus, cette procédure a été prouvée complète, ce qui

augmente la confiance dans ses résultats et contribue au nombre croissant de preuves

de complétude pour les outils de démonstration de théorèmes.

Raisonnement au sein de théories en logique du premier ordre

Afin de rendre Goéland utilisable dans des domaines hautement spécialisés, et étant

donné que la gestion des théories dans les tableaux n’est pas uniforme, nous avons

étudié l’incorporation de deux différents types de moteurs de raisonnement de fond

au sein d’une procédure de recherche de preuve basée sur des tableaux. Ainsi, deux

modules de raisonnement de fond ont été développés : l’un pour prendre en charge

l’égalité, basé sur l’E-unification rigide, et l’autre pour offrir un gestion générale des

théories axiomatisées avec la déduction modulo théorie.

Nous avons mis particulièrement l’accent sur la concurrence, étant donné sa

dépendance à l’égard de la théorie qu’elle aborde, en soulignant les aspects propices

à la parallélisation et leurs interactions critiques avec le processus de recherche de

preuve. Par exemple, le moteur de raisonnement sur l’égalité exploite la concurrence

pour tenter de trouver une solution aussi rapidement que possible, tandis que la

parallélisation dans le module de déduction modulo théorie est principalement

appliquée à la recherche de règles de réécriture applicables.

Certification de preuves

Enfin, afin de renforcer l’intégration avec les assistants de preuve, nous avons exploré

des méthodes pour générer des preuves vérifiables, y compris lors de l’utilisation

de règles de Skolémisation plus avancées. Le mécanisme de déskolémisation, en

assurant l’équivalence entre des preuves de formats différents, permet une recherche

efficace de preuves utilisant des techniques de Skolémisation optmisées tout en

préservant l’un des avantages fondamentaux des méthodes de tableau : la production

d’une preuve. Cette traduction transforme le prouveur automatique de théorèmes

en un générateur de certificats de preuve, lesdits certificats étant ensuite soumis

à la validation d’un outil externe.

Cette approche permet non seulement d’améliorer les performances de Goéland,

mais aussi de maintenir la compatibilité avec les logiciels qui utilisent des formules non

modifiées. Ainsi, deux extensions ont été développées pour exporter ces preuves aux

formats Coq et Lambdapi, afin qu’elles soient ensuite vérifiées par leurs outils respectifs.

Perspectives

Bien que les résultats pratiques ne puissent pas encore rivaliser avec d’autres prou-

veurs de pointe, ils restent prometteurs, en particulier dans le cas de la déduction

modulo théorie. Cependant, plusieurs domaines d’amélioration potentielle peuvent

être envisagés.

Equité dans la recherche de preuves basée sur les tableaux et
résultats pratiques

Les aspects théoriques de la gestion de l’équité dans la procédure sont dignes d’intérêt
car ils répondent à des défis connus dans ce domaine. Pour que Goéland soit adapté
aux applications du monde réel, les efforts futurs se concentreront sur le renforcement
de la base du prouveur, y compris via une comparaison avec une version à mémoire
partagée. Il est également essentiel de retravailler la gestion de la mémoire, car
le prouveur rencontre actuellement des difficultés avec des fichiers de problèmes
volumineux. Nous devons également réaliser une analyse plus approfondie des
cas d’échecs, car Goéland n’est pas en mesure de trouver une preuve pour certains
problèmes qui sont généralement considérés comme « faciles ». Bien que dans certains
cas, il puisse en trouver une à l’aide de stratégies de Skolémisation plus avancées ou
en essayant une substitution différente plus tôt dans la recherche de preuve, il existe
toujours des problèmes qui représentent un défi pour le prouveur.

En outre, l’utilisation d’heuristiques peut améliorer le processus de recherche de
preuves. Actuellement, lorsqu’un problème contient un nombre important d’axiomes
qui ne peuvent pas être traduits en règles de réécriture, ils sont traités dans un ordre
arbitraire, sans inclinaison spécifique. Il est donc envisageable d’implémenter une
heuristique qui associe un score de priorité à chaque formule à traiter, en fonction de
sa proximité avec la conjecture. Un raisonnement similaire peut être appliqué au choix
de la substitution. Actuellement, le prouveur sélectionne une substitution arbitraire
parmi celles qui ont le moins de variables libres non-locales, mais ce processus pourrait
être amélioré en prenant en compte le degré de réintroduction de chaque variable.

Ces optimisations peuvent également impliquer une réévaluation de l’approche
de fermeture anticipée. Une possibilité consiste à sacrifier la complétude de l’outil en
ne considérant que les réponses initiales de chaque branche. Cela peut augmenter
le taux d’échec des substitutions et, par conséquent, entraîner des retours sur trace
plus fréquents, mais cela offre également la possibilité d’obtenir une solution plus
rapidement. D’autre part, une approche alternative consiste à explorer le report de
la règle de cloture, conformément au concept de fermeture progressive proposé par
Giese [136]. Cette stratégie vise à réduire le nombre de retours sur trace en tentant
des substitutions à chaque étape de recherche de preuve tout en permettant aux
branches de se poursuivre. Des tests doivent être effectués pour ces deux approches,
pour lesquelles les mises en œuvre sont actuellement en cours.

Enfin, l’un des principaux défis du raisonnement automatisé est son automatisa-
tion inhérente, qui le rend relativement statique et dépourvu d’intuition humaine.
L’incorporation de méthodes d’apprentissage automatique pourrait potentiellement
infuser un niveau d’« intuition humaine », suggérant la bonne substitution à essayer,
fournissant une limite de réintroduction plus précise, ou guidant la sélection d’une

formule utile à traiter lors de l’étape suivante de recherche de preuves. Cette pratique
s’est avérée prometteuse dans certains prouveurs de théorèmes automatisés et solveurs
SMT [155, 240].

Raisonnement au sein de théories en logique du premier ordre

L’efficacité du module de raisonnement sur l’égalité est une priorité pour Goéland. Cela
peut impliquer l’optimisation de l’implémentation actuelle ou l’examen d’approches
alternatives, telles que le travail en cours axé sur l’ajout de règles d’égalité directement
intégrées dans le calcul des tableaux. De plus, nous pouvons étudier les interactions
entre la déduction modulo théorie et l’égalité, en particulier dans le but d’intégrer la
réécriture de termes. En effet, comme les deux mécanismes travaillent avec le même
ensemble de termes, leurs interactions pourraient être complexes.

De plus, bien que Goeland puisse gérer des problèmes typés grâce à son encodage
natif des types polymorphes, il ne bénéficie actuellement pas d’une procédure spéci-
fique pour les théories typées, telles que l’arithmétique, pour laquelle le développement
d’un raisonneur dédié utilisant une approche basée sur le simplexe combinée à un
algorithme de séparation et évaluation est en cours. De plus, pour étendre l’utilisation
de Goéland dans la vérification de programmes, l’extension de la gestion de la logique
du premier ordre typée (TFF) à la forme du premier ordre typée étendue (TXF) pourrait
être envisagée. La TXF prend en charge les tuples, les expressions conditionnelles
(if-then-else) et les expressions let (let-defn-in).

Malgré ses résultats prometteurs, la théorie de la déduction modulo peut encore
être améliorée. Des améliorations peuvent être apportées en concevant manuellement
des règles de réécriture, soit indépendamment, soit en conjonction avec le calcul
automatique à partir des axiomes. Par exemple, le projet BWare, qui repose sur
la théorie des ensembles, propose des règles de réécriture conçues manuellement
pour le raisonnement sur des problèmes industriels. Des tests supplémentaires
sur ce benchmark, avec l’ajout du raisonnement arithmétique, peuvent fournir des
informations précieuses.

En outre, si la déduction modulo théorie polarisée fait preuve d’une rapidité
impressionnante, elle s’accompagne d’une perte de problèmes. Des heuristiques
peuvent être développées afin d’atteindre un juste équilibre dans le calcul des règles de
réécriture et de bénéficier de l’augmentation de la vitesse sans sacrifier les problèmes.

Certification de preuve

Puisque la possibilité de produire des preuves vérifiées est précieuse, il est souhaitable
d’étendre la sortie à d’autres assistants de preuve, élargissant ainsi les capacités de
vérification de Goéland et améliorant son interopérabilité.

De plus, la vrai question repose sur la place du processus de deskolémisation :
doit-il être directement implémenté dans le prouveur ou intégré dans le vérificateur
de preuves ? Dans le premier cas, on peut envisager la création d’un format normalisé
pour la sortie des preuves de tableaux, éliminant ainsi la nécessité d’incorporer
individuellement un processus de deskolémisation dans chaque prouveur automatique.
Ces preuves pourraient ensuite être traitées par un outil spécialisé qui implémente l’al-
gorithme de traduction dans un environnement certifié, simplifiant ainsi le processus
de certification automatique des preuves de tableaux.

À l’inverse, une approche alternative consiste à implémenter directement des straté-
gies avancées de skolémisation dans le format lui-même, transférant la responsabilité
au vérificateur de preuves. Dans ce scénario, la deskolémisation devient inutile, car les
preuves peuvent être directement traduites dans l’assistant de preuve correspondant.
Cette approche soulève également la question de la qualité du certificat. En effet, il
est préférable qu’une preuve soit concise, en omettant les étapes de calcul, qui sont
laissées au vérificateur de preuves [178]. Cependant, l’intégration d’un tel mécanisme
dans un vérificateur de preuves peut représenter un défi et ne répond pas au besoin
d’un format de sortie commun à partir duquel des règles de traduction communes
vers des assistants de preuve spécifiques peuvent être conçues.

161

Appendices

162

Appendix A
Coq’s GS3 Embedding.

(* * The following presents the Coq file used to embed GS3 in Coq.
Each lemma corresponds to a GS3 rule. They can be easily
proven by importing the classical logic module. * *)

Lemma goeland_ax : ∀ (P : Prop), P → ¬P → ⊥.
Lemma goeland_nottrue : ¬> → ⊥.
Lemma goeland_and : ∀ (P Q : Prop),

(P → Q → ⊥) → (P ∧ Q → ⊥).
Lemma goeland_or : ∀ (P Q : Prop),

(P → ⊥) → (Q → ⊥) → ((P → Q) → ⊥).
Lemma goeland_imply : ∀ (P Q : Prop),

(¬P → ⊥) → (Q → ⊥) → ((P → Q) → ⊥).
Lemma goeland_equiv : ∀ (P Q : Prop),

(¬P → ¬Q → ⊥) → (P → Q → ⊥) → ((P ↔ Q) → ⊥).
Lemma goeland_notand : ∀ (P Q : Prop),

(¬P → ⊥) → (¬Q → ⊥) → (¬(P ∨ Q) → ⊥).
Lemma goeland_notor : ∀ (P Q : Prop),

(¬P → ¬Q → ⊥) → (¬(P ∨ Q) → ⊥).
Lemma goeland_notimply : ∀ (P Q : Prop),

(P → ¬ Q → ⊥) → (¬(P → Q) → ⊥).
Lemma goeland_notequiv : ∀ (P Q : Prop),

(¬P → Q → ⊥) → (P → ¬Q → ⊥) → (¬(P ↔ Q) → ⊥).
Lemma goeland_ex : ∀ (T : Type) (P : T -> Prop),

(∀ (z : T), ((P z) → ⊥)) → (∃ (x : T), (P x)) → ⊥.
Lemma goeland_all : ∀ (T : Type) (P : T -> Prop) (t : T),

((P t) → ⊥) → ((∀ (x : T), (P x)) → ⊥).
Lemma goeland_notex : ∀ (T : Type) (P : T → Prop) (t : T),

(¬(P t) → ⊥) → (¬(∃ (x : T), (P x)) → ⊥).
Lemma goeland_notall : ∀ (T : Type) (P : T → Prop),

(∀ (z : T), (¬(P z) → ⊥)) → (¬(∀ (x : T), (P x)) → ⊥).

Figure A.1: Coq’s GS3 embedding — lemmas.

A. Coq’s GS3 Embedding. 163

(* * Those lemmas are from the wrong side, which means that when
proving, the rules are applied to the left side of the lemma.
Indeed, during the proof search, only formulas on the
right side are treated. As such, we define λ-terms
which reverse the application of the rules. * *)

Definition goeland_and_s :=
fun P Q c h ⇒ goeland_and P Q h c.

Definition goeland_or_s :=
fun P Q c h i ⇒ goeland_or P Q h i c.

Definition goeland_imp_s :=
fun P Q c h i ⇒ goeland_imp P Q h i c.

Definition goeland_equiv_s :=
fun P Q c h i ⇒ goeland_equiv P Q h i c.

Definition goeland_notand_s :=
fun P Q c h i ⇒ goeland_notand P Q h i c.

Definition goeland_notor_s :=
fun P Q c h ⇒ goeland_notor P Q h c.

Definition goeland_notimp_s :=
fun P Q c h ⇒ goeland_notimp P Q h c.

Definition goeland_notequiv_s :=
fun P Q c h i ⇒ goeland_equiv P Q h i c.

Definition goeland_all_s :=
fun T P t c h ⇒ goeland_all T P t h c.

Definition goeland_ex_s :=
fun T P c h ⇒ goeland_ex T P h c.

Definition goeland_notall_s :=
fun T P c h ⇒ goeland_notall T P h c.

Definition goeland_notex_s :=
fun T P t c h ⇒ goeland_notex T P t h c.

Figure A.2: Coq’s GS3 embedding — reversed lemmas to follow tableau rules.

164

Appendix B
Detailed Results of Goéland,

Goéland+DMT, Goéland+DMT+EQ,
Zenon, Princess, E and Vampire over a

Subset of FOF

B. Detailed Results of Goéland, Goéland+DMT, Goéland+DMT+EQ, Zenon,
Princess, E and Vampire over a Subset of FOF 165

B.1 Detailed Results of Goéland over a Subset of FOF

Number of problems solved
(Cumulatitve time in second —

Average time in second)

Number of problems
in the category

AGT 6 (32 s — 5.3 s) 52
ALG 2 (29 — 14.5 s) 220
COM 2 (262 s — 131 s) 57
CSR 20 (1 614 s — 80 s) 577
GEO 53 (2 588 s — 48 s) 576
GRP 1 (48 s — 48 s) 185
HWV 2 (362 s — 181 s) 51
ITP 8 (4 s — 0.5 s) 99
KLE 3 (0.09 s — 0.03 s) 223
KRS 30 (286 s — 9.5 s) 87
LCL 28 (423 s — 15 s) 280
MGT 18 (492 s — 27 s) 68
MSC 3 (32 s — 10 s) 5
NLP 3 (1.8 — 0.6 s) 25
NUM 18 (88 s — 4.8 s) 649
PHI 4 (221 s — 55 s) 9
PUZ 4 (13 s — 3.3 s) 23
SET 124 (2 315 s — 18.6 s) 464
SEU 55 (845 s — 15 s) 895
SEV 1 (16 s — 16 s) 7
SWB 18 (549 s — 30 s) 134
SWC 1 (0.2 s — 0.2 s) 422
SYN 209 (251 s — 1.2 s) 288
Total 613 (10 482 s — 17.1 s) 5396

Table B.1: Detailed experimental results of Goéland over a subset of first-order problems of
the TPTP library.

166 B.2. Detailed Results of Goéland+DMT over a Subset of FOF

B.2 Detailed Results of Goéland+DMT over a Subset
of FOF

Number of problems solved
(Cumulatitve time in second)

Number of problems
in the category

AGT 2 (4.6 s — 2.3 s) 52
ALG 2 (36 s — 18 s) 220
COM 1 (1.5 s — 1.5 s) 57
CSR 16 (293 s — 18 s) 577
GEO 92 (1 968 s — 21 s) 576
GRP 1 (128 s — 128 s) 185
HWV 2 (200 s — 100 s) 51
ITP 6 (1.2 s — 0.2) 99
KLE 3 (0.1 s — 0.03 s) 223
KRS 62 (383 s — 6.1 s) 87
LCL 36 (323 s — 9 s) 280
MGT 18 (115 s — 6.4 s) 68
MSC 3 (76 s — 25 s) 5
NLP 3 (2.8 s — 0.9 s) 25
NUM 13 (200 s — 15 s) 649
PHI 6 (106 s — 17 s) 9
PUZ 4 (23 s — 5.8 s) 23
SET 217 (1 294 s — 5.9 s) 464
SEU 56 (1 358 s — 24 s) 895
SEV 0 7
SWB 17 (120 s — 7 s) 134
SWC 1 (0.2 s — 0.2 s) 422
SYN 209 (285 s — 1.3 s) 288
Total 770 (6 935 s — 9 s) 5396

Table B.2: Detailed experimental results of Goéland+DMT over a subset of first-order
problems of the TPTP library.

B. Detailed Results of Goéland, Goéland+DMT, Goéland+DMT+EQ, Zenon,
Princess, E and Vampire over a Subset of FOF 167

B.3 Detailed Results of Goéland+DMT+EQ over a
Subset of FOF

Number of problems solved
(Cumulatitve time in second)

Number of problems
in the category

AGT 2 (4.6 s — 2.3 s) 52
ALG 6 (839 s — 139 s) 220
COM 3 (26 s — 8.7 s) 57
CSR 16 (147 s — 9 s) 577
GEO 95 (3 052 s — 32 s) 576
GRP 1 (2.5 s — 2.5 s) 185
HWV 2 (342 s — 171 s) 51
ITP 6 (2 s — 0.3) 99
KLE 4 (41 s — 10 s) 223
KRS 64 (376 s — 5.8 s) 87
LCL 31 (255 s — 8.2 s) 280
MGT 18 (287 s — 16 s) 68
MSC 4 (90 s — 22 s) 5
NLP 3 (1.9 s — 0.6 s) 25
NUM 22 (592 s — 27 s) 649
PHI 6 (376 s — 62 s) 9
PUZ 6 (23 s — 5.8 s) 23
SET 192 (1 972 s — 10 s) 464
SEU 42 (796 s — 18 s) 895
SEV 0 7
SWB 20 (390 s — 19 s) 134
SWC 45 (316 s — 7 s) 422
SYN 213 (119 s — 0.5 s) 288
Total 801 (10 060 s — 12.5 s) 5396

Table B.3: Detailed experimental results of Goéland+DMT+EQ over a subset of first-order
problems of the TPTP library.

168 B.4. Detailed Results of Zenon over a Subset of FOF

B.4 Detailed Results of Zenon over a Subset of FOF

Number of problems solved
(Cumulatitve time in second —

Average time in second)

Number of problems
in the category

AGT 18 (125 s — 6.9 s) 52
ALG 76 (4 778 s — 62 s) 220
COM 18 (167 s — 9.2 s) 57
CSR 120 (218 s — 1.8 s) 577
GEO 222 (193 s — 0.8 s) 576
GRP 5 (6.5 s — 1.3 s) 185
HWV 4 (8.8 s — 2.2 s) 51
ITP 9 (3.3 s — 0.3 s) 99
KLE 6 (0.2 s — 0.03 s) 223
KRS 74 (522 s — 7 s) 87
LCL 55 (166 s — 3 s) 280
MGT 36 (180 s — 5 s) 68
MSC 5 (0.18 s — 0.03 s) 5
NLP 11 (1.8 s — 0.6 s) 25
NUM 106 (380 s — 3.5 s) 649
PHI 9 (149 s — 16 s) 9
PUZ 16 (126 s — 7.9 s) 23
SET 150 (558 s — 3.7 s) 464
SEU 96 (260 s — 2.7 s) 895
SEV 1 (0.07 s — 0.07 s) 7
SWB 23 (331 s — 14 s) 134
SWC 56 (483 s — 8.6 s) 422
SYN 266 (80 s — 0.3 s) 288
Total 1 382 (9 026 s — 6.5 s) 5396

Table B.4: Detailed experimental results of Zenon over a subset of first-order problems of the
TPTP library.

B. Detailed Results of Goéland, Goéland+DMT, Goéland+DMT+EQ, Zenon,
Princess, E and Vampire over a Subset of FOF 169

B.5 Detailed Results of Zenon Modulo over a Subset
of FOF

Number of problems solved
(Cumulatitve time in second —

Average time in second)

Number of problems
in the category

AGT 14 (45 s — 3.2 s) 52
ALG 58 (4 019 s — 69 s) 220
COM 18 (135 s — 7.5 s) 57
CSR 119 (736 s — 6.1 s) 577
GEO 217 (705 s — 3.2 s) 576
GRP 6 (80 s — 13 s) 185
HWV 0 51
ITP 12 (18 s — 1.5 s) 99
KLE 11 (75 s — 6.8 s) 223
KRS 57 (948 s — 16 s) 87
LCL 29 (2 s — 0.06 s) 280
MGT 44 (94 s — 2.1 s) 68
MSC 5 (0.24 s — 0.04 s) 5
NLP 12 (32 s — 2.7 s) 25
NUM 99 (612 s — 6.1 s) 649
PHI 8 (149 s — 16 s) 9
PUZ 14 (74 s — 5.3 s) 23
SET 227 (770 s — 3 s) 464
SEU 108 (1 112 s — 10 s) 895
SEV 2 (0.04 s — 0.02 s) 7
SWB 14 (1.4 s — 0.1 s) 134
SWC 53 (490 s — 9.2 s) 422
SYN 262 (114 s — 0.4 s) 288
Total 1 389 (10 028 s — 7.2 s) 5396

Table B.5: Detailed experimental results of Zenon Modulo over a subset of first-order problems
of the TPTP library.

170 B.6. Detailed Results of Princess over a Subset of FOF

B.6 Detailed Results of Princess over a Subset of FOF

Number of problems solved
(Cumulatitve time in second —

Average time in second)

Number of problems
in the category

AGT 9 (87 s — 9 s) 52
ALG 124 (531 s — 4.2 s) 220
COM 24 (42 s — 1.7 s) 57
CSR 112 (16 541 — 147 s) 577
GEO 130 (1880 s — 14 s) 576
GRP 3 (4.2 s — 1.4 s) 185
HWV 0 51
ITP 12 (108 s — 9 s) 99
KLE 13 (14 — 1.1 s) 223
KRS 56 (151 s — 2.7 s) 87
LCL 35 (71 s —2 s) 280
MGT 36 (385 s — 10 s) 68
MSC 4 (5.9 s — 1.4 s) 5
NLP 14 (35 s — 2.5 s) 25
NUM 202 (679 s — 3.3 s) 649
PHI 3 (2.4 s — 0.8 s) 9
PUZ 11 (43 s — 3.9 s) 23
SET 220 (925 s — 4.2 s) 464
SEU 184 (533 s — 2.9 s) 895
SEV 1 (0.9 s — 0.9 s) 7
SWB 44 (121 s — 2.7 s) 134
SWC 186 (652 s — 3.5 s) 422
SYN 198 (337 — 1.9 s) 288
Total 1 621 (23 200 s — 14.3 s) 5396

Table B.6: Detailed experimental results of Princess over a subset of first-order problems of
the TPTP library.

B. Detailed Results of Goéland, Goéland+DMT, Goéland+DMT+EQ, Zenon,
Princess, E and Vampire over a Subset of FOF 171

B.7 Detailed Results of Vampire over a Subset of FOF

Number of problems solved
(Cumulatitve time in second —

Average time in second)

Number of problems
in the category

AGT 52 (3 152 s — 60 s) 52
ALG 162 (980 s — 6s) 220
COM 48 (980 s — 20 s) 57
CSR 303 (3 108 s — 10 s) 577
GEO 423 (2 685 s — 6.3 s) 576
GRP 50 (1 035 s — 20 s) 185
HWV 28 (1 450 s — 51 s) 51
ITP 31 (1 523 s — 49 s) 99
KLE 121 (2 806 s — 23 s) 223
KRS 86 (1 478 s — 17 s) 87
LCL 148 (2 041 s — 13 s) 280
MGT 67 (24 s — 0.3 s) 68
MSC 5 (0.15 — 0.03 s) 5
NLP 24 (156 s — 6.5 s) 25
NUM 394 (7 253 s — 18.4 s) 649
PHI 9 (0.3 s — 0.03) 9
PUZ 20 (261 s — 13 s) 23
SET 322 (4 207 s — 13 s) 464
SEU 424 (5 147 s — 12 s) 895
SEV 2 (0.4 s — 0.2 s) 7
SWB 52 (549 s — 10 s) 134
SWC 286 (3 726 s — 13 s) 422
SYN 285 (302 s — 1 s) 288
Total 3 342 (42 874 s — 12.8 s) 5396

Table B.7: Detailed experimental results of Vampire over a subset of first-order problems of
the TPTP library.

172 B.8. Detailed Results of E over a Subset of FOF

B.8 Detailed Results of E over a Subset of FOF

Number of problems solved
(Cumulatitve time in second —

Average time in second)

Number of problems
in the category

AGT 46 (2 389 s — 51 s) 52
ALG 162 (682 s — 4.2 s) 220
COM 48 (691 s — 14 s) 57
CSR 512 (6 385 s — 12 s) 577
GEO 454 (3 527 s — 7 s) 576
GRP 88 (1 376 s — 15 s) 185
HWV 12 (1 364 s — 113 s) 51
ITP 34 (1 124 s — 33 s) 99
KLE 179 (2 235 s — 12 s) 223
KRS 85 (861 s — 9.9 s) 87
LCL 182 (3 995 s — 21 s) 280
MGT 67 (21 s — 0.3 s) 68
MSC 5 (0.1 s — 0.02 s) 5
NLP 25 (40 s — 1.5 s) 25
NUM 440 (6 522 s — 14.8 s) 649
PHI 9 (0.15 s — 0.01 s) 9
PUZ 21 (20 s — 0.9 s) 23
SET 362 (2 192 s — 6.1 s) 464
SEU 489 (4 283 s — 8.7 s) 895
SEV 3 (4.2 s — 1.4 s) 7
SWB 80 (562 s — 7 s) 134
SWC 353 (1 756 s — 4.9 s) 422
SYN 283 (201 s - 0.7 s) 288
Total 3 939 (39 638 s — 10.1 s) 5396

Table B.8: Detailed experimental results of E over a subset of first-order problems of the TPTP
library.

173

References

[1] M. Aigner, A. Biere, C. M. Kirsch, A. Niemetz, and M. Preiner. “Analysis of
Portfolio-Style Parallel SAT Solving on Current Multi-Core Architectures.” In: POS@
SAT 29 (2013), pp. 28–40 (cit. on p. 26).

[2] S. Anantharaman and N. Andrianarivelo. “Heuristical criteria in refutational theorem
proving”. In: Design and Implementation of Symbolic Computation Systems:
International Symposium DISCO’90 Capri, Italy, April 10–12, 1990 Proceedings.
Springer. 1990, pp. 184–193 (cit. on p. 31).

[3] P. B. Andrews. “Theorem proving via general matings”. In: Journal of the ACM
(JACM) 28.2 (1981), pp. 193–214 (cit. on p. 29).

[4] A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, C. Dubois, F. Gilbert,
P. Halmagrand, O. Hermant, and R. Saillard. “Dedukti: a logical framework based on
the λΠ-calculus modulo theory”. In: Manuscript http://www. lsv. fr/˜
dowek/Publi/expressing. pdf (2016) (cit. on p. 118).

[5] O. L. Astrachan. “METEOR: Exploring model elimination theorem proving”. In:
Journal of Automated Reasoning 13 (1994), pp. 283–296 (cit. on pp. 29, 30).

[6] O. L. Astrachan and M. E. Stickel. “Caching and lemmaizing in model elimination
theorem provers”. In: International Conference on Automated Deduction. Springer.
1992, pp. 224–238 (cit. on p. 24).

[7] J. Avigad. “Eliminating Definitions and Skolem Functions in First-Order Logic”. In:
16th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society,
2001, pp. 139–146 (cit. on p. 117).

[8] M. Baaz and C. G. Fermüller. “Non-elementary Speedups between Different Versions
of Tableaux”. In: TABLEAUX ’95. Ed. by P. Baumgartner, R. Hähnle, and J. Posegga.
Vol. 918. Lecture Notes in Computer Science. Springer, 1995, pp. 217–230 (cit. on
pp. 15, 24, 120).

[9] M. Baaz, S. Hetzl, and D. Weller. “On the Complexity of Proof Deskolemization”. In: J.
Symb. Log. 77.2 (2012), pp. 669–686 (cit. on p. 117).

[10] L. Bachmair, N. Dershowitz, and D. A. Plaisted. “Completion without failure”. In:
Rewriting Techniques. Elsevier, 1989, pp. 1–30 (cit. on p. 28).

[11] L. Bachmair and H. Ganzinger. “Rewrite-based equational theorem proving with
selection and simplification”. In: Journal of Logic and Computation 4.3 (1994),
pp. 217–247 (cit. on p. 11).

[12] L. Bachmair, H. Ganzinger, and A. Voronkov. “Elimination of equality via
transformation with ordering constraints”. In: International Conference on Automated
Deduction. Springer. 1998, pp. 175–190 (cit. on p. 76).

[13] P. Backeman and P. Rümmer. “Efficient algorithms for bounded rigid E-unification”.
In: Automated Reasoning with Analytic Tableaux and Related Methods: 24th
International Conference, TABLEAUX 2015, Wroclaw, Poland, September 21-24, 2015,
Proceedings 24. Springer. 2015, pp. 70–85 (cit. on p. 34).

174 References

[14] P. Backeman and P. Rümmer. “Free variables and theories: Revisiting rigid
e-unification”. In: Frontiers of Combining Systems: 10th International Symposium,
FroCoS 2015, Wroclaw, Poland, September 21-24, 2015, Proceedings 10. Springer.
2015, pp. 3–13 (cit. on p. 34).

[15] P. Backeman and P. Rümmer. “Theorem Proving with Bounded Rigid E-Unification”.
In: Automated Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. Ed. by A. P. Felty and
A. Middeldorp. Vol. 9195. Lecture Notes in Computer Science. Springer, 2015,
pp. 572–587 (cit. on pp. 34, 76).

[16] T. Balyo and C. Sinz. “Parallel satisfiability”. In: Handbook of Parallel Constraint
Reasoning (2018), pp. 3–29 (cit. on p. 26).

[17] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed,
M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng,
C. Tinelli, and Y. Zohar. “cvc5: A Versatile and Industrial-Strength SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I. Ed. by D. Fisman and G. Rosu. Vol. 13243. Lecture Notes in Computer Science.
Springer, 2022, pp. 415–442 (cit. on p. 34).

[18] H. P. Barendregt and E. Barendsen. “Autarkic computations in formal proofs”. In:
Journal of Automated Reasoning 28 (2002), pp. 321–336 (cit. on pp. 89, 133).

[19] H. P. Barendregt, W. Dekkers, and R. Statman. Lambda calculus with types. Cambridge
University Press, 2013 (cit. on p. 132).

[20] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez, H. Herbelin,
G. Huet, C. Munoz, C. Murthy, et al. “The Coq proof assistant reference manual:
Version 6.1”. PhD thesis. Inria, 1997 (cit. on pp. 118, 132).

[21] C. W. Barrett. “" Decision Procedures: An Algorithmic Point of View," by Daniel
Kroening and Ofer Strichman, Springer-Verlag, 2008.” In: J. Autom. Reason. 51.4
(2013), pp. 453–456 (cit. on p. 35).

[22] C. W. Barrett, L. De Moura, and A. Stump. “SMT-COMP: Satisfiability modulo
theories competition”. In: Computer Aided Verification: 17th International Conference,
CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005. Proceedings 17. Springer. 2005,
pp. 20–23 (cit. on p. 34).

[23] P. Baumgartner. “A model elimination calculus with built-in theories”. In: GWAI-92:
Advances in Artificial Intelligence: 16th German Conference on Artificial Intelligence
Bonn, Germany, August 31–September 3, 1992 Proceedings. Springer. 1992, pp. 30–42
(cit. on p. 32).

[24] P. Baumgartner. “Linear and unit-resulting refutations for Horn theories”. In: Journal
of Automated Reasoning 16 (1996), pp. 241–319 (cit. on p. 36).

[25] P. Baumgartner, N. Eisinger, and U. Furbach. “A confluent connection calculus”. In:
Conference on Automated Deduction (CADE). Vol. 1632. Lecture Notes in Computer
Science (LNCS). Springer. 1999, pp. 329–343 (cit. on p. 25).

[26] P. Baumgartner, A. Fuchs, and C. Tinelli. “(LIA)-model evolution with linear integer
arithmetic constraints”. In: International Conference on Logic for Programming
Artificial Intelligence and Reasoning. Springer. 2008, pp. 258–273 (cit. on pp. 25, 35).

References 175

[27] P. Baumgartner, U. Furbach, and I. Niemelä. “Hyper tableaux”. In: European Workshop
on Logics in Artificial Intelligence. Springer. 1996, pp. 1–17 (cit. on pp. 28, 29).

[28] P. Baumgartner, U. Furbach, and U. Petermann. A unified approach to theory reasoning.
Universität Koblenz-Landau. Institut für Informatik, 1992 (cit. on pp. 32, 76).

[29] P. Baumgartner and U. Petermann. “Theory reasoning”. In: Automated Deduction. A
Basis for Applications 1 (1998), pp. 191–224 (cit. on pp. 32, 76).

[30] B. Beckert. “Depth-first proof search without backtracking for free-variable clausal
tableaux”. In: Journal of Symbolic Computation 36.1-2 (2003), pp. 117–138 (cit. on
p. 25).

[31] B. Beckert. “Semantic Tableaux with Equality”. In: J. Log. Comput. 7.1 (1997),
pp. 39–58 (cit. on p. 83).

[32] B. Beckert. “Using E-Unification to Handle Equality in Universal Formula Semantic
Tableaux”. In: Proceedings, Theory Reasoning in Automated Deduction, Workshop at
CADE-12, Nancy, France. 1994 (cit. on pp. 33, 79, 83).

[33] B. Beckert and R. Hähnle. “An improved method for adding equality to free variable
semantic tableaux”. In: International Conference on Automated Deduction. Springer.
1992, pp. 507–521 (cit. on pp. 33, 79, 98).

[34] B. Beckert and R. Hähnle. “Analytic tableaux”. In: Automated Deduction: A Basis for
Applications 1 (1998), pp. 11–41 (cit. on pp. 38, 39, 44).

[35] B. Beckert, R. Hähnle, P. Oel, and M. Sulzmann. “The tableau-based theorem prover
3 TAP Version 4.0”. In: Automated DeductionCade-13: 13th International Conference
on Automated Deduction New Brunswick, NJ, USA, July 30–August 3, 1996 Proceedings
13. Springer. 1996, pp. 303–307 (cit. on pp. 28, 36).

[36] B. Beckert, R. Hähnle, and P. H. Schmitt. “The even more liberalized δ-rule in free
variable Semantic Tableaux”. In: Computational Logic and Proof Theory. Ed. by
G. Gottlob, A. Leitsch, and D. Mundici. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1993, pp. 108–119 (cit. on pp. 15, 24, 94, 120).

[37] B. Beckert and C. Pape. “Incremental theory reasoning methods for semantic
tableaux”. In: Theorem Proving with Analytic Tableaux and Related Methods: 5th
International Workshop, TABLEAUX’96 Terrasini, Palermo, Italy, May 15–17, 1996
Proceedings 5. Springer. 1996, pp. 93–109 (cit. on p. 36).

[38] B. Beckert and J. Posegga. “leanTAP: Lean tableau-based deduction”. In: Journal of
Automated Reasoning 15.3 (1995), pp. 339–358 (cit. on pp. 25, 28, 44).

[39] C. Benzmüller, M. Kerber, M. Jamnik, and V. Sorge. “Experiments with an
Agent-Oriented Reasoning System”. In: Annual Conference on Artificial Intelligence.
Vol. 2174. Lecture Notes in Computer Science (LNCS). Springer, 2001, pp. 409–424
(cit. on p. 29).

[40] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2004 (cit. on p. 118).

[41] E. W. Beth. Formal Methods: An Introduction to Symbolic Logic and to the Study of
Effective Operations in Arithmetic and Logic. Vol. 4. Synthese Library. D. Reidel Pub.
Co., 1962 (cit. on pp. 11, 13).

176 References

[42] W. Bibel. “A comparative study of several proof procedures”. In: Artificial Intelligence
18.3 (1982), pp. 269–293 (cit. on p. 29).

[43] W. Bibel. Automated theorem proving. Vieweg, 1982 (cit. on pp. 34, 79, 117, 121).

[44] J.-P. Billon. “The disconnection method: a confluent integration of unification in the
analytic framework”. In: Tableaux. Vol. 6. 1996, pp. 110–126 (cit. on p. 25).

[45] N. Bjøner, G. Reger, M. Suda, and A. Voronkov. “AVATAR modulo theories”. In: 2nd
Global Conference on Artificial Intelligence. 2016, pp. 39–52 (cit. on p. 34).

[46] J. C. Blanchette, S. Böhme, and L. C. Paulson. “Extending Sledgehammer with SMT
solvers”. In: Journal of automated reasoning 51.1 (2013), pp. 109–128 (cit. on p. 34).

[47] J. C. Blanchette, S. Böhme, A. Popescu, and N. Smallbone. “Encoding Monomorphic
and Polymorphic Types”. In: Log. Methods Comput. Sci. 12.4 (2016) (cit. on pp. 37,
106).

[48] J. C. Blanchette and A. Paskevich. “TFF1: The TPTP Typed First-Order Form with
Rank-1 Polymorphism”. In: CADE. Vol. 7898. Lecture Notes in Computer Science.
Springer, 2013, pp. 414–420 (cit. on p. 107).

[49] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. “Why3: Shepherd your herd of
provers”. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. 2011, pp. 53–64 (cit. on p. 37).

[50] F. Bobot and A. Paskevich. “Expressing polymorphic types in a many-sorted
language”. In: International Symposium on Frontiers of Combining Systems. Springer.
2011, pp. 87–102 (cit. on p. 37).

[51] S. Böhme and T. Nipkow. “Sledgehammer: Judgement Day”. In: Proceedings of the 5th
International Joint Conference on Automated Reasoning. Ed. by J. Giesl and R. Haehnle.
Lecture Notes in Artificial Intelligence 6173. 2010, pp. 107–121 (cit. on p. 75).

[52] M. P. Bonacina. “A model and a first analysis of distributed-search contraction-based
strategies”. In: Annals of Mathematics and Artificial Intelligence 27 (1999),
pp. 149–199 (cit. on p. 30).

[53] M. P. Bonacina. “A Taxonomy of Parallel Strategies for Deduction”. In: Annals of
Mathematics and Artificial Intelligence 29.1 (2000), pp. 223–257 (cit. on pp. 26, 29,
30).

[54] M. P. Bonacina. “A taxonomy of theorem-proving strategies”. In: Artificial Intelligence
Today: Recent Trends and Developments. Springer, 1999, pp. 43–84 (cit. on p. 26).

[55] M. P. Bonacina. “Analysis of distributed-search contraction-based strategies”. In:
European Workshop on Logics in Artificial Intelligence. Springer. 1998, pp. 107–121
(cit. on p. 30).

[56] M. P. Bonacina. “Combination of Distributed Search and Multi-Search in Peers-mcd.
d: System Description”. In: International Joint Conference on Automated Reasoning.
Springer. 2001, pp. 448–452 (cit. on pp. 26, 30, 31).

[57] M. P. Bonacina et al. “Distributed automated deduction”. PhD thesis. State University
of New York at Stony Brook, 1992 (cit. on pp. 26, 30, 31).

[58] M. P. Bonacina. “On the reconstruction of proofs in distributed theorem proving: a
modified Clause-Diffusion method”. In: Journal of Symbolic Computation 21.4
(1996), pp. 507–522 (cit. on p. 31).

References 177

[59] M. P. Bonacina. “Parallel Theorem Proving”. In: Handbook of Parallel Constraint
Reasoning. Springer, 2018, pp. 179–235 (cit. on pp. 26, 29, 31).

[60] M. P. Bonacina, U. Furbach, and V. Sofronie-Stokkermans. “On first-order model-based
reasoning”. In: Logic, Rewriting, and Concurrency: Essays Dedicated to José Meseguer
on the Occasion of His 65th Birthday (2015), pp. 181–204 (cit. on p. 26).

[61] M. P. Bonacina and J. Hsiang. “Distributed deduction by Clause-Diffusion: distributed
contraction and the Aquarius prover”. In: Journal of Symbolic Computation 19.1-3
(1995), pp. 245–267 (cit. on p. 31).

[62] M. P. Bonacina and J. Hsiang. “Distributed deduction by clause-diffusion: The
Aquarius prover”. In: Design and Implementation of Symbolic Computation Systems:
International Symposium, DISCO’93 Gmunden, Austria, September 15–17, 1993
Proceedings. Springer. 1993, pp. 272–287 (cit. on p. 31).

[63] M. P. Bonacina and J. Hsiang. “Parallelization of deduction strategies: an analytical
study”. In: Journal of Automated Reasoning 13.1 (1994), pp. 1–33 (cit. on pp. 26, 30).

[64] M. P. Bonacina and W. W. McCune. “Distributed theorem proving by Peers”. In:
International Conference on Automated Deduction. Springer. 1994, pp. 841–845
(cit. on p. 31).

[65] R. Bonichon, D. Delahaye, and D. Doligez. “Zenon: An extensible automated theorem
prover producing checkable proofs”. In: Logic for Programming, Artificial Intelligence
and Reasoning. Springer. 2007, pp. 151–165 (cit. on pp. 24, 25, 28, 33, 36, 44, 84,
118, 132, 138).

[66] R. Bonichon and O. Hermant. “A Syntactic Soundness Proof for Free-Variable
Tableaux with on-the-fly Skolemization”. 2013 (cit. on pp. 118, 121).

[67] S. Bose, E. Clarke, D. Long, and S. Michaylov. “PARTHENON: a parallel theorem
prover for nonHorn clauses”. In: Fourth Annual Symposium on Logic in Computer
Science. 1989, pp. 80–89 (cit. on pp. 29, 30).

[68] D. Brand. “Proving Theorems with the Modification Method”. In: SIAM J. Comput.
4.4 (1975), pp. 412–430 (cit. on p. 76).

[69] P. Brauner, C. Houtmann, and C. Kirchner. “Principles of superdeduction”. In: 22nd
Annual IEEE Symposium on Logic in Computer Science (LICS 2007). IEEE. 2007,
pp. 41–50 (cit. on p. 35).

[70] R. J. Browne. “Ground term rewriting in semantic tableau systems for first order logic
with equality”. PhD thesis. University of Maryland, College Park, 1987 (cit. on p. 33).

[71] A. Buch, T. Hillenbrand, and R. Fettig. “WALDMEISTER: High Performance Equational
Theorem Proving”. In: Proceedings of the 4th International Symposium on Design and
Implementation of Symbolic Computation Systems. Ed. by J. Calmet and C. Limongelli.
Vol. 1128. LNCS. 1996, pp. 63–64 (cit. on p. 27).

[72] G. Burel. “Experimenting with Deduction Modulo”. In: Automated Deduction –
CADE-23. Ed. by N. Bjørner and V. Sofronie-Stokkermans. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 162–176 (cit. on pp. 36, 84).

[73] G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant.
“First-Order Automated Reasoning with Theories: When Deduction Modulo Theory
Meets Practice”. In: Journal of Automated Reasoning (JAR) 64.6 (2020),
pp. 1001–1050 (cit. on pp. 37, 86, 89, 107).

178 References

[74] G. Burel and C. Kirchner. “Regaining cut admissibility in deduction modulo using
abstract completion”. In: Information and Computation 208.2 (2010), pp. 140–164
(cit. on p. 95).

[75] G. Bury, S. Cruanes, and D. Delahaye. “SMT solving modulo tableau and rewriting
theories”. In: SMT: Satisfiability Modulo Theories. 2018 (cit. on p. 37).

[76] G. Bury, S. Cruanes, D. Delahaye, and P.-L. Euvrard. “An Automation-Friendly Set
Theory for the B Method”. In: Abstract State Machines, Alloy, B, VDM, and Z (ABZ).
Vol. 10817. Lecture Notes in Computer Science (LNCS). Springer, 2018, pp. 409–414
(cit. on p. 138).

[77] G. Bury and D. Delahaye. “Integrating simplex with tableaux”. In: International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods.
Springer. 2015, pp. 86–101 (cit. on p. 35).

[78] G. Bury, D. Delahaye, D. Doligez, P. Halmagrand, and O. Hermant. “Automated
Deduction in the B Set Theory using Typed Proof Search and Deduction Modulo”. In:
Logic for Programming, Artificial Intelligence and Reasoning (LPAR). Ed. by A. Fehnker,
A. McIver, G. Sutcliffe, and A. Voronkov. Vol. 35. EPiC Series in Computing.
EasyChair, 2015, pp. 42–58 (cit. on pp. 37, 86, 107, 138).

[79] R. Caferra and N. Zabel. “Building models by using tableaux extended by equational
problems”. In: Journal of Logic and Computation 3.1 (1993), pp. 3–25 (cit. on p. 24).

[80] J. Cailler, J. Rosain, D. Delahaye, S. Robillard, and H. L. Bouziane. “Goéland: a
Concurrent Tableau-Based Theorem Prover (System Description)”. In: IJCAR
2022-11th International Joint Conference on Automated Reasoning. Vol. 13385. 2022,
pp. 359–368 (cit. on p. 100).

[81] D. Cantone and M. N. Asmundo. “A Further and Effective Liberalization of the δ-Rule
in Free Variable Semantic Tableaux”. In: Automated Deduction in Classical and
Non-Classical Logics, Selected Papers. Ed. by R. Caferra and G. Salzer. Vol. 1761.
Lecture Notes in Computer Science. Springer, 1998, pp. 109–125 (cit. on pp. 15, 24,
120).

[82] D. Cantone, M. N. Asmundo, and E. G. Omodeo. “Global Skolemization with
Grouped Quantifiers.” In: APPIA-GULP-PRODE. 1997, pp. 405–414 (cit. on p. 24).

[83] R. Cauderlier and P. Halmagrand. “Checking Zenon modulo proofs in Dedukti”. In:
arXiv preprint arXiv:1507.08719 (2015) (cit. on p. 132).

[84] K. Chaudhuri, M. Manighetti, and D. Miller. “A Proof-Theoretic Approach to
Certifying Skolemization”. In: CPP 2019. Ed. by A. Mahboubi and M. O. Myreen.
ACM, 2019, pp. 78–90 (cit. on p. 118).

[85] K. Chaudhuri and F. Pfenning. “A focusing inverse method theorem prover for
first-order linear logic”. In: International Conference on Automated Deduction.
Springer. 2005, pp. 69–83 (cit. on p. 29).

[86] A. Church. “An Unsolvable Problem of Elementary Number Theory”. In: American
Journal of Mathematics 58.2 (Apr. 1936), pp. 345–363 (cit. on p. 7).

References 179

[87] K. Claessen, A. Lillieström, and N. Smallbone. “Sort it out with monotonicity:
Translating between many-sorted and unsorted first-order logic”. In: Automated
Deduction–CADE-23: 23rd International Conference on Automated Deduction, Wrocaw,
Poland, July 31-August 5, 2011. Proceedings 23. Springer. 2011, pp. 207–221 (cit. on
p. 37).

[88] E. G. Coffman, M. Elphick, and A. Shoshani. “System Deadlocks”. In: ACM Comput.
Surv. 3.2 (1971), pp. 67–78 (cit. on p. 17).

[89] S. Conchon, A. Coquereau, M. Iguernlala, and A. Mebsout. “Alt-Ergo 2.2”. In: SMT
Workshop: International Workshop on Satisfiability Modulo Theories. 2018 (cit. on
pp. 34, 37).

[90] R. Cori and D. Lascar. Mathematical Logic: Part 1: Propositional Calculus, Boolean
Algebras, Predicate Calculus, Completeness Theorems. OUP Oxford, 2000 (cit. on p. 7).

[91] J.-F. Couchot and S. Lescuyer. “Handling polymorphism in automated deduction”. In:
International Conference on Automated Deduction. Springer. 2007, pp. 263–278
(cit. on p. 37).

[92] J. M. Crawford and L. D. Auton. “Experimental results on the crossover point in
random 3-SAT”. In: Artificial intelligence 81.1-2 (1996), pp. 31–57 (cit. on p. 28).

[93] S. Cruanes. “Superposition with structural induction”. In: International Symposium
on Frontiers of Combining Systems. Springer. 2017, pp. 172–188 (cit. on pp. 28, 37).

[94] M. D’Agostino, D. M. Gabbay, R. Hähnle, and J. Posegga. Handbook of tableau
methods. Springer, 1999 (cit. on pp. 25, 63).

[95] M. D’Agostino and M. Mondadori. “The taming of the cut. Classical refutations with
analytic cut”. In: Journal of Logic and Computation 4.3 (1994), pp. 285–319 (cit. on
p. 95).

[96] M. Davis, G. Logemann, and D. Loveland. “A Machine Program for
Theorem-Proving”. In: Commun. ACM 5.7 (1962), pp. 394–397 (cit. on p. 11).

[97] M. Davis and H. Putnam. “A Computing Procedure for Quantification Theory”. In: J.
ACM 7.3 (1960), pp. 201–215 (cit. on pp. 11, 27).

[98] L. De Moura and N. Bjørner. “Efficient E-matching for SMT solvers”. In: Automated
Deduction–CADE-21: 21st International Conference on Automated Deduction Bremen,
Germany, July 17-20, 2007 Proceedings 21. Springer. 2007, pp. 183–198 (cit. on
p. 35).

[99] L. De Moura and N. Bjørner. “Z3: An efficient SMT solver”. In: International
conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2008, pp. 337–340 (cit. on p. 34).

[100] A. Degtyarev and A. Voronkov. “Equality elimination for the tableau method”. In:
International Symposium on Design and Implementation of Symbolic Computation
Systems. Springer. 1996, pp. 46–60 (cit. on p. 76).

[101] A. Degtyarev and A. Voronkov. “The inverse method”. In: Handbook of Automated
Reasoning. Elsevier BV, 2001, pp. 179–272 (cit. on p. 29).

[102] A. Degtyarev and A. Voronkov. “The undecidability of simultaneous rigid
E-unification”. In: Theoretical Computer Science 166.1-2 (1996), pp. 291–300 (cit. on
p. 34).

180 References

[103] A. Degtyarev and A. Voronkov. “What you always wanted to know about rigid
E-unification”. In: Journal of Automated Reasoning 20 (1998), pp. 47–80 (cit. on
pp. 34, 76, 79, 81).

[104] D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, and O. Hermant. “Zenon Modulo:
When Achilles Outruns the Tortoise Using Deduction Modulo”. In: Logic for
Programming, Artificial Intelligence, and Reasoning. Ed. by K. McMillan,
A. Middeldorp, and A. Voronkov. Springer Berlin Heidelberg, 2013, pp. 274–290
(cit. on pp. 36, 84, 138).

[105] D. Delahaye, C. Dubois, C. Marché, and D. Mentré. “The BWare Project: Building a
Proof Platform for the Automated Verification of B Proof Obligations”. In: Abstract
State Machines, Alloy, B, TLA, VDM, and Z. Ed. by Y. Ait Ameur and K.-D. Schewe.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 290–293 (cit. on p. 75).

[106] J. Denzinger and I. Dahn. “Cooperating theorem provers”. In: Automated DeductionA
Basis for Applications: Volume II: Systems and Implementation Techniques. Springer,
1998, pp. 383–416 (cit. on pp. 26, 30).

[107] J. Denzinger and D. Fuchs. “Cooperation of heterogeneous provers”. In: IJCAI.
Vol. 99. Citeseer. 1999, pp. 10–15 (cit. on p. 31).

[108] J. Denzinger and M. Fuchs. “Goal oriented equational theorem proving using team
work”. In: Annual Conference on Artificial Intelligence. Springer. 1994, pp. 343–354
(cit. on p. 31).

[109] J. Denzinger, M. Kronenburg, and S. Schulz. “DISCOUNT – A Distributed and
Learning Equational Prover”. In: Journal of Automated Reasoning 18.2 (1997),
pp. 189–198 (cit. on p. 31).

[110] N. Dershowitz and Z. Manna. “Proving Termination with Multiset Orderings”. In:
Commun. ACM 22 (1979), pp. 465–476 (cit. on p. 65).

[111] E. W. Dijkstra. “Solution of a problem in concurrent programming control”. In:
Pioneers and Their Contributions to Software Engineering: sd&m Conference on
Software Pioneers, Bonn, June 28/29, 2001, Original Historic Contributions. Springer.
2001, pp. 289–294 (cit. on p. 19).

[112] G. Dowek. “Deduction modulo theory”. In: arXiv preprint arXiv:1501.06523 (2015)
(cit. on pp. 86, 95).

[113] G. Dowek. “What is a Theory?” In: STACS 2002: 19th Annual Symposium on
Theoretical Aspects of Computer Science Antibes-Juan les Pins, France, March 14–16,
2002 Proceedings 19. Springer. 2002, pp. 50–64 (cit. on p. 90).

[114] G. Dowek, T. Hardin, and C. Kirchner. “HOL-λσ: An Intentional First-Order
Expression of Higher-Order Logic”. In: vol. 11. Nov. 1999, pp. 672–672 (cit. on
pp. 36, 84).

[115] G. Dowek, T. Hardin, and C. Kirchner. “Theorem Proving Modulo”. In: Journal of
Automated Reasoning (JAR) 31.1 (2003), pp. 33–72 (cit. on pp. 35, 76).

[116] G. Dowek and A. Miquel. “Cut elimination for Zermelo set theory”. In: 2006 (cit. on
pp. 36, 84).

[117] G. Dowek and B. Werner. “Arithmetic as a Theory Modulo”. In: Term Rewriting and
Applications. Ed. by J. Giesl. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 423–437 (cit. on pp. 36, 84).

References 181

[118] B. Dutertre. “Yices 2.2”. In: International Conference on Computer Aided Verification.
Springer. 2014, pp. 737–744 (cit. on p. 34).

[119] Z. Esen and P. Rümmer. “TRICERA: Verifying C Programs Using the Theory of Heaps”.
In: Formal Methods in Computer-aided Design (FMCAD). 2022, p. 380 (cit. on p. 35).

[120] M. Färber. “A Curiously Effective Backtracking Strategy for Connection Tableaux”. In:
arXiv preprint arXiv:2106.13722 (2021) (cit. on p. 23).

[121] M. Färber and C. Kaliszyk. “No Choice: Reconstruction of First-order ATP Proofs
without Skolem Functions”. In: Proceedings of the 5th Workshop on Practical Aspects of
Automated Reasoning. Ed. by P. Fontaine, S. Schulz, and J. Urban. Vol. 1635. CEUR
Workshop Proceedings. CEUR-WS.org, 2016, pp. 24–31 (cit. on p. 118).

[122] M. Fisher. “An Open Approach to Concurrent Theorem Proving”. In: Parallel
Processing for Artificial Intelligence 3 (1997), pp. 80011– (cit. on p. 29).

[123] M. Fitting. “First Order Logic and Automated Theorem Proving”. In: Springer-Verlag,
1990. Chap. 7.5 (cit. on p. 41).

[124] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1990 (cit. on
pp. 11, 14, 24, 25, 33, 44, 63, 69, 98, 119).

[125] M. Franssen. “Implementing rigid e-unification”. In: (2008) (cit. on p. 81).

[126] G. Frege. Grundlagen der Arithmetik: Studienausgabe MIT Dem Text der
Centenarausgabe. Breslau: Wilhelm Koebner Verlag, 1884 (cit. on p. 7).

[127] M. Fuchs and A. Wolf. “System description: cooperation in model elimination:
CPTHEO”. In: Automated DeductionCADE-15: 15th International Conference on
Automated Deduction Lindau, Germany, July 5–10, 1998 Proceedings 15. Springer.
1998, pp. 42–46 (cit. on pp. 29, 31).

[128] U. Furbach. “Theory reasoning in first order calculi”. In: Management and Processing
of Complex Data Structures: Third Workshop on Information Systems and Artificial
Intelligence Hamburg, Germany, February 28–March 2, 1994 Proceedings 3. Springer.
1994, pp. 139–156 (cit. on pp. 32, 76).

[129] J. Gallier, P. Narendran, S. Raatz, and W. Snyder. “Theorem proving using equational
matings and rigid E-unification”. In: Journal of the ACM (JACM) 39.2 (1992),
pp. 377–430 (cit. on pp. 34, 77, 79).

[130] J. H. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid E-unification:
Equational matings. University of Pennsylvania, School of Engineering and Applied
Science , 1987 (cit. on pp. 34, 79).

[131] J. H. Gallier, W. Snyder, P. Narendran, and D. A. Plaisted. “Rigid E-Unification is
NP-Complete”. In: Proceedings of the Third Annual Symposium on Logic in Computer
Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988. IEEE Computer Society,
1988, pp. 218–227 (cit. on p. 34).

[132] Y. Ge, C. Barrett, and C. Tinelli. “Solving quantified verification conditions using
satisfiability modulo theories”. In: Automated Deduction–CADE-21: 21st International
Conference on Automated Deduction Bremen, Germany, July 17-20, 2007 Proceedings
21. Springer. 2007, pp. 167–182 (cit. on p. 35).

182 References

[133] Y. Ge and L. De Moura. “Complete instantiation for quantified formulas in
satisfiabiliby modulo theories”. In: Computer Aided Verification: 21st International
Conference, CAV 2009, Grenoble, France, June 26-July 2, 2009. Proceedings 21.
Springer. 2009, pp. 306–320 (cit. on p. 35).

[134] G. Gentzen. “Untersuchungen über das logische schlieSSen. I.” In: Mathematische
zeitschrift 35 (1935) (cit. on pp. 11, 29).

[135] M. Giese. “A model generation style completeness proof for constraint tableaux with
superposition”. In: International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods. Springer. 2002, pp. 130–144 (cit. on pp. 34, 76).

[136] M. Giese. “Incremental closure of free variable tableaux”. In: International Joint
Conference on Automated Reasoning. Springer. 2001, pp. 545–560 (cit. on pp. 25, 41,
44, 147, 158).

[137] M. Giese and W. Ahrendt. “Hilbert’s -Terms in Automated Theorem Proving”. In:
Automated Reasoning with Analytic Tableaux and Related Methods. Ed. by N. V. Murray.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 171–185 (cit. on pp. 15,
24, 120).

[138] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. Ph.D. thesis, Université Paris VII, 1972 (cit. on p. 106).

[139] W. D. Goldfarb. “The undecidability of the second-order unification problem”. In:
Theoretical Computer Science 13.2 (1981), pp. 225–230 (cit. on p. 6).

[140] R. Guerraoui and P. Kuznetsov. Algorithms for concurrent systems. EPFL press, 2018
(cit. on p. 16).

[141] R. Hähnle. “Tableaux and Related Methods”. In: Handbook of Automated Reasoning
(Volume 1). Ed. by J. A. Robinson and A. Voronkov. ISBN 0-444-50813-9. Elsevier and
MIT Press, 2001, pp. 100–178 (cit. on pp. 28, 39).

[142] R. Hähnle and B. Beckert. “Proof confluent tableau calculi”. In: International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods.
Springer. 1999 (cit. on p. 15).

[143] R. Hähnle and S. Klingenbeck. “A-ordered tableaux”. In: Journal of Logic and
Computation 6.6 (1996), pp. 819–833 (cit. on p. 28).

[144] R. Hähnle and P. H. Schmitt. “The Liberalized δ-Rule in Free Variable Semantic
Tableaux”. In: J. Autom. Reason. 13.2 (1994), pp. 211–221 (cit. on pp. 15, 24, 120).

[145] Y. Hamadi and C. Wintersteiger. “Seven challenges in parallel SAT solving”. In: AI
Magazine 34.2 (2013), pp. 99–99 (cit. on p. 26).

[146] P. B. Hansen. The origin of concurrent programming: from semaphores to remote
procedure calls. Springer Science & Business Media, 2013 (cit. on p. 17).

[147] J. Herbrand. “Recherches sur la théorie de la démonstration”. In: (1930) (cit. on
p. 93).

[148] J. Hintikka. “Two Papers on Symbolic Logic: Form and Content in Quantification
Theory and Reductions in the Theory of Types”. In: Societas Philosophica, Acta
philosophica Fennica 8 (1955), pp. 7–55 (cit. on pp. 11, 13).

[149] C. A. R. Hoare. “Communicating Sequential Processes”. In: Communications of the
ACM 21.8 (1978), pp. 666–677 (cit. on pp. 19, 20).

References 183

[150] H. Hojjat and P. Rümmer. “The ELDARICA horn solver”. In: 2018 Formal Methods in
Computer Aided Design (FMCAD). IEEE. 2018, pp. 1–7 (cit. on p. 35).

[151] J. Hsiang and M. Rusinowitch. “On word problems in equational theories”. In:
Automata, Languages and Programming: 14th International Colloquium Karlsruhe,
Federal Republic of Germany, July 13–17, 1987 Proceedings 14. Springer. 1987,
pp. 54–71 (cit. on p. 28).

[152] G. Huet and D. C. Oppen. “Equations and rewrite rules: A survey”. In: Formal
Language Theory (1980), pp. 349–405 (cit. on p. 65).

[153] M. Jacquel, K. Berkani, D. Delahaye, and C. Dubois. “Tableaux Modulo Theories
using Superdeduction: An Application to the Verification of B Proof Rules with the
Zenon Automated Theorem Prover”. In: vol. 7364. June 2012, pp. 332–338 (cit. on
pp. 36, 84).

[154] R. C. Jeffrey. Formal Logic: Its Scope and Limits. McGraw-Hill, 1967 (cit. on p. 32).

[155] C. Kaliszyk, J. Urban, H. Michalewski, and M. Olák. “Reinforcement learning of
theorem proving”. In: Advances in Neural Information Processing Systems 31 (2018)
(cit. on pp. 148, 159).

[156] S. Kanger. “A simplified proof method for elementary logic”. In: Studies in Logic and
the Foundations of Mathematics. Vol. 35. Elsevier, 1963, pp. 87–94 (cit. on p. 32).

[157] G. Katsirelos, A. Sabharwal, H. Samulowitz, and L. Simon. “Resolution and
parallelizability: Barriers to the efficient parallelization of SAT solvers”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 27. 1. 2013,
pp. 481–488 (cit. on p. 26).

[158] J. Kay and P. Lauder. “A Fair Share Scheduler”. In: Commun. ACM 31.1 (1988),
pp. 44–55 (cit. on p. 19).

[159] D. E. Knuth and P. B. Bendix. “Simple word problems in universal algebras”. In:
Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970
(1983), pp. 342–376 (cit. on p. 28).

[160] E. de Kogel. “Rigid E-unification simplified”. In: International Workshop on Theorem
Proving with Analytic Tableaux and Related Methods. Springer. 1995, pp. 17–30
(cit. on p. 34).

[161] K. Konrad. “HOT: A Concurrent Automated Theorem Prover Based on Higher-Order
Tableaux”. In: Theorem Proving in Higher Order Logics (TPHOLs). Vol. 1479. Lecture
Notes in Computer Science (LNCS). Springer, 1998, pp. 245–261 (cit. on p. 31).

[162] R. E. Korf. “Depth-First Iterative-Deepening: An Optimal Admissible Tree Search”. In:
Artificial Intelligence 27.1 (1985), pp. 97–109 (cit. on p. 44).

[163] L. Kovács and A. Voronkov. “First-order theorem proving and Vampire”. In:
International Conference on Computer Aided Verification. Springer. 2013, pp. 1–35
(cit. on pp. 27, 138).

[164] R. Kowalski and D. Kuehner. “Linear resolution with selection function”. In: Artificial
Intelligence 2.3-4 (1971), pp. 227–260 (cit. on p. 27).

[165] K. R. M. Leino and P. Rümmer. “A polymorphic intermediate verification language:
Design and logical encoding”. In: International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer. 2010, pp. 312–327 (cit. on p. 37).

184 References

[166] R. Letz. “First-Order Tableau Methods”. In: Handbook of Tableau Methods. Ed. by
M. D’Agostino, D. M. Gabbay, R. Hähnle, and J. Posegga. ISBN 978-94-017-1754-0.
Springer, 1999, pp. 125–196 (cit. on pp. 11, 28).

[167] R. Letz. “Using matings for pruning connection tableaux”. In: International
Conference on Automated Deduction. Springer. 1998, pp. 381–396 (cit. on p. 24).

[168] R. Letz, K. Mayr, and C. Goller. “Controlled integration of the cut rule into connection
tableau calculi”. In: Journal of Automated Reasoning 13.3 (1994), pp. 297–337
(cit. on p. 24).

[169] D. W. Loveland. “Automated Theorem Proving. A Logical Basis”. In: Journal of
Symbolic Logic 45.3 (1980) (cit. on pp. 28, 29).

[170] E. L. Lusk, W. W. McCune, and J. Slaney. “Roo: A parallel theorem prover”. In:
Automated DeductionCADE-11: 11th International Conference on Automated Deduction
Saratoga Springs, NY, USA, June 15–18, 1992 Proceedings 11. Springer. 1992,
pp. 731–734 (cit. on p. 30).

[171] N. Manthey. “Towards next generation sequential and parallel SAT solvers”. In:
KI-Künstliche Intelligenz 30.3-4 (2016), pp. 339–342 (cit. on p. 26).

[172] R. Martins, V. Manquinho, and I. Lynce. “An overview of parallel SAT solving”. In:
Constraints 17 (2012), pp. 304–347 (cit. on p. 26).

[173] P. J. Martn, A. Gavilanes, and J. Leach. “Tableau Methods for a Logic with Term
Declarations”. In: J. Symb. Comput. 29.2 (2000), pp. 343–372 (cit. on p. 115).

[174] S. Y. Maslov. “An inverse method for establishing deducibility of nonprenex formulas
of the predicate calculus”. In: Automation of Reasoning: 2: Classical Papers on
Computational Logic 1967–1970. Springer, 1983, pp. 48–54 (cit. on p. 29).

[175] S. Y. Maslov. Theory of deductive systems and its applications. MIT Press, 1987 (cit. on
p. 29).

[176] M. McCool, J. Reinders, and A. Robison. Structured Parallel Programming: Patterns for
Efficient Computation. 1st. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2012 (cit. on p. 18).

[177] W. W. McCune. Otter 3.0 reference manual and guide. Tech. rep. Argonne National
Lab.(ANL), Argonne, IL (United States), 1994 (cit. on pp. 27, 30, 31).

[178] D. Miller. “A proposal for broad spectrum proof certificates”. In: Certified Programs
and Proofs: First International Conference, CPP 2011, Kenting, Taiwan, December 7-9,
2011. Proceedings 1. Springer. 2011, pp. 54–69 (cit. on pp. 133, 149, 160).

[179] D. A. Miller. “A Compact Representation of Proofs”. In: Stud Logica 46.4 (1987),
pp. 347–370 (cit. on p. 118).

[180] G. Mints. “Resolution calculus for the first order linear logic”. In: Journal of Logic,
Language and Information 2 (1993), pp. 59–83 (cit. on p. 29).

[181] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and K. Mayr.
“SETHEO and e-SETHEO-the CADE-13 systems”. In: Journal of Automated Reasoning
18 (1997), pp. 237–246 (cit. on pp. 24, 29, 31).

[182] L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. “The Lean
Theorem Prover (System Description)”. In: CADE-25. Ed. by A. P. Felty and
A. Middeldorp. Vol. 9195. Lecture Notes in Computer Science. Springer, 2015,
pp. 378–388 (cit. on p. 118).

References 185

[183] N. V. Murray and E. Rosenthal. “Inference with path resolution and semantic graphs”.
In: Journal of the ACM (JACM) 34.2 (1987), pp. 225–254 (cit. on p. 32).

[184] N. V. Murray and E. Rosenthal. “Theory links: Applications to automated theorem
proving”. In: Journal of Symbolic Computation 4.2 (1987), pp. 173–190 (cit. on
p. 32).

[185] R. Nieuwenhuis, T. Hillenbrand, A. Riazanov, and A. Voronkov. “On the evaluation of
indexing techniques for theorem proving”. In: 1st International Joint Conference on
Automated Reasoning, IJCAR 2001. Vol. 2083. Lecture Notes in Computer Science.
Springer Nature, 2001, pp. 257–271 (cit. on p. 101).

[186] R. Nieuwenhuis and A. Rubio. “Paramodulation-Based Theorem Proving.” In:
Handbook of automated reasoning 1.7 (2001), pp. 371–443 (cit. on pp. 11, 28).

[187] R. Nieuwenhuis and A. Rubio. “Theorem proving with ordering and equality
constrained clauses”. In: Journal of Symbolic Computation 19.4 (1995), pp. 321–351
(cit. on pp. 28, 81).

[188] F. Oppacher and E. Suen. “HARP: A tableau-based theorem prover”. In: Journal of
Automated Reasoning 4 (1988), pp. 69–100 (cit. on pp. 24, 28).

[189] J. Otten. “A non-clausal connection calculus”. In: Automated Reasoning with Analytic
Tableaux and Related Methods: 20th International Conference, TABLEAUX 2011, Bern,
Switzerland, July 4-8, 2011. Proceedings 20. Springer. 2011, pp. 226–241 (cit. on
p. 29).

[190] J. Otten. “nanoCoP: A non-clausal connection prover”. In: Automated Reasoning: 8th
International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27–July 2, 2016,
Proceedings 8. Springer. 2016, pp. 302–312 (cit. on p. 29).

[191] J. Otten and W. Bibel. “leanCoP: lean connection-based theorem proving”. In: Journal
of Symbolic Computation 36.1-2 (2003), pp. 139–161 (cit. on p. 29).

[192] R. A. Overbeek. “An implementation of hyper-resolution”. In: Computers &
Mathematics with Applications 1.2 (1975), pp. 201–214 (cit. on p. 27).

[193] L. C. Paulson. “Natural Deduction as Higher-Order Resolution”. In: J. Log. Program.
3.3 (1986), pp. 237–258 (cit. on p. 118).

[194] N. Peltier. “Simplifying and generalizing formulae in tableaux. Pruning the search
space and building models”. In: International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods. Springer. 1997, pp. 313–327 (cit. on p. 24).

[195] B. Pelzer and I. Glöckner. “Combining theorem proving with natural language
processing”. In: Proc. of the First Int. Workshop on Practical Aspects of Automated
Reasoning (PAAR 2008), CEUR Workshop Proceedings. 2008, pp. 71–80 (cit. on p. 36).

[196] U. Petermann. “How to build in an open theory into connection calculi”. In:
Computers and artificial intelligence 11.2 (1992), pp. 105–142 (cit. on p. 32).

[197] G. E. Peterson. “A technique for establishing completeness results in theorem proving
with equality”. In: SIAM Journal on Computing 12.1 (1983), pp. 82–100 (cit. on
p. 28).

[198] A. Platzer. “Differential dynamic logic for hybrid systems”. In: Journal of Automated
Reasoning 41 (2008), pp. 143–189 (cit. on p. 35).

186 References

[199] G. Plotkin. “Building-in Equational Theories”. In: Machine Intelligence 7 (1972),
pp. 73–90 (cit. on pp. 35, 84).

[200] A. Policriti and J. T. Schwartz. “T-theorem proving I”. In: Journal of Symbolic
Computation 20.3 (1995), pp. 315–342 (cit. on p. 32).

[201] J. Posegga. “Compiling proof search in semantic tableaux”. In: Methodologies for
Intelligent Systems: 7th International Symposium, ISMIS’93 Trondheim, Norway, June
15–18, 1993 Proceedings 7. Springer. 1993, pp. 39–48 (cit. on p. 25).

[202] D. Prawitz. “Natural deduction: a proof-theoretical study”. PhD thesis. Almqvist &
Wiksell, 1965 (cit. on pp. 35, 84).

[203] V. Prevosto and U. Waldmann. “Spass+ t”. In: ESCoR: Empirically Successful
Computerized Reasoning 192 (2006), p. 88 (cit. on p. 34).

[204] W. Pugh. “The Omega test: a fast and practical integer programming algorithm for
dependence analysis”. In: Proceedings of the 1991 ACM/IEEE conference on
Supercomputing. 1991, pp. 4–13 (cit. on p. 35).

[205] S. V. Reeves. “Adding equality to semantic tableaux”. In: Journal of Automated
Reasoning 3 (1987), pp. 225–246 (cit. on p. 33).

[206] G. Reger, M. Suda, and A. Voronkov. “Unification with abstraction and theory
instantiation in saturation-based reasoning”. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer. 2018, pp. 3–22
(cit. on p. 34).

[207] J. C. Reynolds. “Towards a theory of type structure”. In: Programming Symposium:
Proceedings, Colloque sur la Programmation Paris, April 9–11, 1974. Springer. 1974,
pp. 408–425 (cit. on p. 106).

[208] A. J. Robinson and A. Voronkov. Handbook of automated reasoning. Vol. 1. Elsevier,
2001 (cit. on pp. 3, 26, 153).

[209] J. A. Robinson. “A Machine-Oriented Logic Based on the Resolution Principle”. In: J.
ACM 12.1 (1965), pp. 23–41 (cit. on pp. 11, 27).

[210] J. A. Robinson. “Automatic Deduction with Hyper-Resolution”. In: Journal of
Symbolic Logic 39.1 (1974), pp. 189–190 (cit. on p. 27).

[211] P. Rümmer. “A constraint sequent calculus for first-order logic with linear integer
arithmetic”. In: Logic for Programming, Artificial Intelligence and Reasoning. Springer.
2008, pp. 274–289 (cit. on pp. 25, 35, 44, 75, 138).

[212] A. Schlichtkrull, J. C. Blanchette, and D. Traytel. “A verified prover based on ordered
resolution”. In: Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019.
Ed. by A. Mahboubi and M. O. Myreen. ACM, 2019, pp. 152–165 (cit. on pp. 4, 154).

[213] S. Schulz. “E–a brainiac theorem prover”. In: Ai Communications 15.2-3 (2002),
pp. 111–126 (cit. on pp. 28, 138).

[214] J. Schumann. “Parallel Theorem Provers – An Overview”. In: Parallelization in
Inference Systems. Vol. 590. Lecture Notes in Computer Science (LNCS). Dagstuhl
Castle (Germany): Springer, 1992, pp. 26–50 (cit. on pp. 26, 30).

[215] J. Schumann. “Tableau-based theorem provers: Systems and implementations”. In:
Journal of Automated Reasoning 13 (1994), pp. 409–421 (cit. on p. 28).

References 187

[216] J. Schumann and R. Letz. “PARTHEO: A High-Performance Parallel Theorem Prover”.
In: Conference on Automated Deduction (CADE). Vol. 449. Lecture Notes in Computer
Science (LNCS). Springer, 1990, pp. 40–56 (cit. on pp. 29, 30).

[217] J. M. P. Schumann. “DELTAA bottom-up preprocessor for top-down theorem provers:
System abstract”. In: International Conference on Automated Deduction. Springer.
1994, pp. 774–777 (cit. on p. 31).

[218] T. Skolem. “Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder
Bewiesbarkeit mathematischer Sätze nebst einem Theorem über dichte Mengen”. In:
(1920) (cit. on pp. 15, 93).

[219] J. R. Slagle. “Automated theorem-proving for theories with simplifiers commutativity,
and associativity”. In: Journal of the ACM (JACM) 21.4 (1974), pp. 622–642 (cit. on
p. 28).

[220] R. M. Smullyan. “Analytic cut”. In: The Journal of Symbolic Logic 33.4 (1969),
pp. 560–564 (cit. on p. 94).

[221] R. M. Smullyan. First-Order Logic. Berlin Heidelberg New York: Springer-Verlag, 1968
(cit. on p. 24).

[222] E. Speckenmeyer, B. Monien, and O. Vornberger. “Superlinear speedup for parallel
backtracking”. In: International Conference on Supercomputing. Springer. 1987,
pp. 985–993 (cit. on p. 26).

[223] A. Steen, M. Wisniewski, and C. Benzmüller. “Going polymorphic-TH1 reasoning for
Leo-III”. In: IWIL Workshop and LPAR Short Presentations. EasyChair. 2017, p. 13
(cit. on p. 37).

[224] M. E. Stickel. “Automated deduction by theory resolution”. In: Journal of Automated
Reasoning 1.4 (1985), pp. 333–355 (cit. on p. 32).

[225] G. Sutcliffe. “The CADE ATP System Competition - CASC”. In: AI Magazine 37.2
(2016), pp. 99–101 (cit. on p. 11).

[226] G. Sutcliffe. “The TPTP Problem Library and Associated Infrastructure. From CNF to
TH0, TPTP v6.4.0”. In: Journal of Automated Reasoning (JAR) 59.4 (2017),
pp. 483–502 (cit. on p. 135).

[227] G. Sutcliffe and J. Pinakis. “A heterogeneous parallel deduction system”. In:
Proceedings of the Workshop on Automated Deduction: Logic Programming and Parallel
Computing Approaches, FGCS. Vol. 92. Citeseer. 1992 (cit. on p. 31).

[228] G. Sutcliffe, S. Schulz, K. Claessen, and P. Baumgartner. “The TPTP Typed First-Order
Form with Arithmetic”. In: LPAR. 2012 (cit. on pp. 107, 108).

[229] C. B. Suttner and J. Schumann. “Parallel automated theorem proving”. In: Machine
Intelligence and Pattern Recognition. Vol. 14. Elsevier, 1994, pp. 209–257 (cit. on
pp. 26, 30).

[230] A. S. Troelstra and H. Schwichtenberg. Basic proof theory, Second Edition. Vol. 43.
Cambridge tracts in theoretical computer science. Cambridge University Press, 2000
(cit. on p. 117).

[231] M. Tsoukalos. “Mastering Go: Create Golang production applications using network
libraries, concurrency, machine learning, and advanced data structures”. In: Packt
Publishing Ltd., 2019, pp. 439–463 (cit. on p. 100).

188 References

[232] A. Turing. “On computable numbers, with an application to the
Entscheidungsproblem. A correction”. In: Proceedings of the London (1938) (cit. on
p. 7).

[233] A. Voronkov. “The anatomy of vampire - Implementing bottom-up procedures with
code trees”. English. In: Journal of Automated Reasoning 15.2 (June 1995),
pp. 237–265 (cit. on p. 101).

[234] A. Voronkov. “Theorem proving in non-standard logics based on the inverse method”.
In: Automated DeductionCADE-11: 11th International Conference on Automated
Deduction Saratoga Springs, NY, USA, June 15–18, 1992 Proceedings 11. Springer.
1992, pp. 648–662 (cit. on p. 29).

[235] H. Wang. “Logic of many-sorted theories”. In: The Journal of Symbolic Logic 17.2
(1952), pp. 105–116 (cit. on p. 106).

[236] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and D. Topi. “Spass
Version 2.0”. In: Automated DeductionCADE-18: 18th International Conference on
Automated Deduction Copenhagen, Denmark, July 27–30, 2002 Proceedings 18.
Springer. 2002, pp. 275–279 (cit. on pp. 28, 31).

[237] L. Wos and G. Robinson. “Paramodulation and set of support”. In: Symposium on
Automatic Demonstration: Held at Versailles/France, December 1968. Springer. 1968,
pp. 276–310 (cit. on p. 28).

[238] L. Wos, G. A. Robinson, D. F. Carson, and L. Shalla. “The concept of demodulation in
theorem proving”. In: Journal of the ACM (JACM) 14.4 (1967), pp. 698–709 (cit. on
p. 28).

[239] C.-H. Wu. “A Multi-Agent Framework for Distributed Theorem Proving”. In: Expert
Systems with Applications 29.3 (2005), pp. 554–565 (cit. on p. 29).

[240] H. Zhu, S. Magill, and S. Jagannathan. “A data-driven CHC solver”. In: ACM SIGPLAN
Notices 53.4 (2018), pp. 707–721 (cit. on pp. 148, 159).

	List of Figures
	List of Tables
	Introduction
	Preliminary Notions
	First-Order Logic
	Syntactic Definitions
	Free Variables and Substitutions
	Semantic and Truth Value of a Formula

	Method of Analytic Tableaux
	Free-Variable Tableaux Calculus
	Terminology and Optimizations

	Concurrent Algorithmics
	Challenges of Multi-Process Architectures
	Communication Between Processes and Memory Management
	Semantic for Concurrency

	State of the Art
	Optimizations and Completeness in Tableaux
	Proof-Search Variations in Tableau-Based Methods
	Completeness of Proof-Search Procedures

	Parallelism and Concurrency in Automated Deduction
	Theorem Proving Strategies for First-Order Logic
	Parallel Theorem Proving

	Theory Reasoning in Tableaux
	Equality Handling in Tableaux
	Other Theories and General Theory Management

	Fairness Management in Tableau Proof-Search Procedures: a Concurrent Approach
	Fairness Management in Tableau-Based Theorem Prover
	Incompleteness Induced by Fairness Issues
	Sequential Approaches and Existing Solutions

	The Use of Concurrency for an Efficient Fairness Management
	State of the branches and Closure Management
	Tableau Representation and Abstract Procedure Rules
	A Concurrent Proof-Search Procedure
	A Better Handling of Fairness Issues

	Conclusion

	 A Complete Proof-Search Procedure for Free-Variable Tableaux with Eager Closure
	Proof Tree and Characteristics of the Proof Search
	Structure of a Proof Tree and Mappings
	-rule Application Limit and Higher Bound
	Canonicity and k-Completeness

	Completeness of the Proof-Search Procedure
	l-Completeness Behaviors
	Agreement Mechanism and Completeness

	Conclusion

	Handling Theories in Tableau-Based Automated Reasoning Methods
	Equality Reasoning
	Equality Reasoning in Tableau-Based Systems
	Extraction of a Rigid E-Unification Problem
	Handling Problems with Equality in a Tableau-Based Proof-Search Procedure

	Deduction Modulo Theory
	Motivation, Definition and Rewriting
	Useful Variants for a Tableaux Proof-Search Procedure
	Key points of the Interaction with the Proof-Search Procedure

	Conclusion

	Goéland: A Concurrent Tableau-Based Theorem Prover
	Implementation of the Concurrent Proof-Search Procedure
	Key Mechanisms and Data-Structure
	Variations of the Proof Search

	Handling Typed Problems with Polymorphism
	Type Definitions and Context
	Typing Process and Inference Rules
	Integration into an Automated Theorem Prover

	Conclusion

	Toward Certification: an Output for Checkable Proofs
	From Tableau Proofs to Sequent Proofs: GS3
	The Challenges of a Proof Translation
	A Deskolemization Strategy
	Soundness of the Translation over Inner Skolemization
	Extensions to ++
	Coq and Lambdapi Output From GS3
	Conclusion

	Experiments and Analysis
	Comparison Between the Variants of Goéland
	Comparison with Other Provers
	Scale-Up Tests
	Typed Problems
	Expansion of the Proof Size with Deskolemization Strategy
	Conclusion

	Conclusion
	Résumé de la thèse en français
	Coq's GS3 Embedding.
	Detailed Results of Goéland, Goéland+DMT, Goéland+DMT+EQ, Zenon, Princess, E and Vampire over a Subset of FOF
	Detailed Results of Goéland over a Subset of FOF
	Detailed Results of Goéland+DMT over a Subset of FOF
	Detailed Results of Goéland+DMT+EQ over a Subset of FOF
	Detailed Results of Zenon over a Subset of FOF
	Detailed Results of Zenon Modulo over a Subset of FOF
	Detailed Results of Princess over a Subset of FOF
	Detailed Results of Vampire over a Subset of FOF
	Detailed Results of E over a Subset of FOF

	References

