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Abstract

This work deals with the use of automatic methods based on artificial intelligence in
different contexts of biomedical imaging. The main objective is to investigate in what
extend deep learning models (DL) can be used in solving concrete clinical problems. In
particular, we highlight the models called Convolutional Neural Networks (CNNs), whose
architecture is specifically adapted to the recognition and segmentation of objects in vi-
sual data such as images or videos. In the first part, we address the need to develop diag-
nostic support systems in the context of a tomodensitometric examination (also called CT
-scan) for the detection of lung tumors. To this end, we are investigating the performance
of state-of-the-art object detection models in a three-dimensional context on a dataset of
more than 1000 publicly available patients. The results of this initial study have then al-
lowed us to develop a complete ool capable of distinguishing healthy patients from those
with tumors. This tool includes three major methods (lung segmentation, nodule detec-
tion and patient classification) and was selected as the winner of the 2019 Data Challenge
organized by the French Society of Radiology (FSR).

In the second part of the manuscript, we put ourselves in a context where data, an
essential element for the construction of a robust supervised model, is unavailable or
scarce. We often find this configuration in Microscopy imaging, where it is necessary to
correctly identify each cellular component, such as the nucleus, to determine a biological
outcome. As an alternative to tedious and costly labeling of the pixels of each nucleus,
we propose a modeling of all the mechanisms that enable the acquisition of images of
biological samples. In this way, we obtain a tool capable of rapidly generating, from a set
of predefined parameters, a large amount of data consisting of simulated images and an
associated ground truth for each of these images. Finally, we investigate the impact of us-
ing simulated datasets on the performance of models designed for nuclei segmentation.
Thus, we show that simulation can be used with a relatively small set of real images as a
tool for data augmentation and can provide significant performance gains.

The final part of this manuscript is devoted to the development of a methodology for
quantifying cancerous ovarian tissue in 3D confocal imaging. Starting from a cohort of
119 patients, the main objective is to automate the quantification of the centrosome-
nucleus index (CNI), allowing a better understanding of the role played by the major or-
gans of the cell (i.e. nuclei and centrosomes) in the development of the disease. The study
is therefore divided into two counting tasks : first the centrosomes, then the nuclei. The
visual counting performed for the centrosomes is based on the search for colocalized re-
gions in the image, i.e., regions whose signals are overlapped by different channels. Thus,
we implement this approach and compare the performances with methods using ma-
chine learning or deep learning models. Since we do not have voxel-level annotations, we
extend our simulator to a third dimension and implement a reinforcement learning ap-
proach to automatically find the simulation parameters that provide the highest possible
counting accuracy.

Keywords— Artificial intelligence, Deep Learning, Computer vision, Object detection, Image
segmentation, Biomedical imaging



Résumé

Cette thèse porte sur l’utilisation de méthodes automatiques basées sur l’intelligence
artificielle dans différents contextes d’imagerie biomédicale. L’objectif principal est
d’explorer dans quelle mesure des modèles d’apprentissage profond, ou Deep Learning
(DL), peuvent s’implanter dans la résolution de problématiques cliniques concrètes. En
particulier, nous mettons l’accent sur les modèles nommés Convolutional Neural Net-
works (CNNs) dont l’architecture est spécialement adaptée à la détection et à la segmen-
tation d’objets sur des données visuelles telles que les images ou les vidéos. Dans une
première partie, nous abordons ainsi la nécessité de développer des systèmes d’aides au
diagnostique dans le cadre d’examen tomodensitométrique (également appelé CT-scan)
pour la détection de tumeurs pulmonaires. Nous étudions ainsi les performances de l’état
de l’art des modèles de détection d’objet dans un contexte en trois dimensions sur un jeu
de données de plus de 1000 patients disponibles publiquement. Les résultats obtenus
sur cette première étude nous ont ensuite permis de construire un outil complet d’aide
au diagnostique, capable de distinguer les patients sains de ceux disposant de tumeurs.
Cet outil comprends trois procédures majeures (segmentation des poumoons, détections
des nodules, et classification du patient) qui a permis de remporté l’édition 2019 du Data
Challenge organisé par la Société Française de Radiologie (SFR).

Dans la seconde partie du manuscrit, nous nous plaçons cette fois dans un cadre
où la donnée, élément essentiel pour construire un modèle supervisée robuste, n’est
pas ou peu disponible. Nous retrouvons fréquemment cette configuration en imagerie
microscopique, où il est nécessaire d’identifier correctement chaque composant cellu-
laire, comme le noyau, afin de pouvoir dégager un résultat biologique d’intérêt. En
alternative à un étiquetage fastidieux et couteux des pixels de chaque noyau, nous
proposons une modélisation de l’ensemble des mécanismes permettant l’acquisition
d’images d’échantillons biologiques. Nous obtenons ainsi un outil capable de générer
rapidement, à partir d’un ensemble de paramètres prédéfinis, une grande quantité de
données composées d’images simulées et d’une vérité terrain associée pour chacune
d’entre elles. Enfin, nous étudions l’impact de l’utilisation de jeu de données simulées
sur les performances de modèles conçus pour la segmentation de noyaux. Nous mon-
trons ainsi qu’avec une quantité relativement faible d’image réelle, la simulation peut être
utilisé comme outil d’augmentation de données et permet un gain important de perfor-
mances.

Enfin, la dernière partie de ce manuscrit est consacrée à l’élaboration d’une
méthodologie pour la quantification de tissus ovariens cancéreux en imagerie micro-
scopique confocale 3D. A partir d’une cohorte de 119 patientes, l’objectif principal est
d’automatiser la quantification du Centrosome-Nucleus Index (CNI), et permettre ainsi
de mieux comprendre le rôle que jouent les principaux organes de la cellule (dans notre
contexte, le noyau et les centrosomes) dans l’évolution de la maladire. L’étude est ainsi di-
visée en deux tâches de comptages : d’abord des centrosomes, puis des noyaux. Le comp-
tage visuel qui a été fait pour les centrosomes se base sur la recherche de régions colocal-
isées dans l’image, c’est-à-dire, des régions dont les signaux issus de différents canaux se
superposent. Nous implémentons ainsi cette approche, et comparons ces performances
avec des méthodes impliquant des modèles de Machine Learning ou Deep Learning. En-
fin, ne disposant pas d’annotations au niveau des voxels, nous étendons notre simulateur



à une troisième dimensions, et implémentons un approche d’apprentissage par renforce-
ment afin de trouver automatiquement les paramètres de simulations permettant de don-
ner la plus grande précision possible de comptage.

Mots clés— Intelligence artificielle, Apprentissage profond, vision par ordinateur, segmenta-
tion d’images, détection d’objets, imagerie biomédicale
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Résumé substantiel

Cette thèse porte sur l’utilisation de méthodes automatiques basées sur l’intelligence
artificielle dans différents contextes d’imagerie biomédicale. L’objectif principal était
d’explorer dans quelle mesure des modèles de machine learning (ML) ou Deep Learn-
ing (DL) peuvent s’implanter dans la résolution de problématiques cliniques concrètes.
Les paragraphes suivants constituent ainsi un bref résumé des chapitres présentant les
travaux réalisés.

Chapitre 2 : Fondamentaux de l’apprentissage profond pour
la vision par ordinateur

Ce chapitre donne les bases théoriques et méthodologiques nécessaires afin
d’appréhender les problématiques et les challenges à relever dans le domaine de la
vision par ordinateur. Nous commençons par établir un premier constat : depuis le
début des années 2010, les modèles prédictifs réalisent des progrès fulgurants dans le
domaine de la reconnaissance d’image. À l’origine de ces avancées, les réseaux de neu-
rones ont ainsi grandement gagné en notoriété au sein de la communauté scientifique.
Appartenant à la grande famille des méthodes basées sur l’apprentissage profond (ou
Deep Learning), notre démarche consiste dans un premier temps à revenir aux prémisses
des modélisations mathématiques qui ont par la suite permis d’aboutir à des modèles
capable de défier, voir de surpasser, les performances humaines.

L’inspiration première des réseaux de neurones artificiels provient d’une modèlisa-
tion du fonctionnement des neurones biologiques. L’idée est alors de mimer les deux
propriétés fondamentales de ces derniers : la capacité à réagir à des stimulations ex-
térieurs (excitabilité) mais aussi celle à transmettre des impulsions nerveuses (conductiv-
ité). Mathématiquement, ce mécanisme se traduit par un modèle, appelé neurone formel
composé de 4 éléments : un vecteur d’entrée d’éléments réels, des poids et biais con-
stituant les paramètres, une fonction d’activation non-linéaire, et une sortie. Dans sa
forme la plus simple, ce neurone artificiel va pondérer ses entrées, les sommer, puis com-
parer le résultat à une valeur seuil déterminant la sortie finale. En munissant ce modèle
d’un algorithme permettant la mise à jour automatique de l’ensemble de ces paramètres,
nous créons ainsi un perceptron capable de réaliser efficacement une tâche de classifi-
cation binaire. Afin de résoudre des tâches plus complexes, cet algorithme a été étendu
au perceptron multicouche, qui consiste simplement à un empilement de "couches" de
perceptron, dont chaque élément est entièrement connecté aux autres. Il s’agit ainsi de la
modélisation la plus basique des réseaux de neurones, qui inspirera ensuite le développe-
ment d’architectures plus complexes.

Afin d’être plus axé autour des problèmatiques rencontrés lors de traitement de don-
nées visuelles, nous centrons le reste du chapitre autour des Convolutional Neural Net-
works (CNNs) et de leur fonctionnement. En particulier, comme leur nom l’indique, nous
étudions le principe des opérations de convolutions et leur utilité dans le domaine du
traitement de l’image. Aussi, nous fournissons une description détaillée des architectures
classiquement recontrées pour réaliser des tâches de classification ou de segmentation
d’images.

Enfin, un aperçu de l’état de l’art des modèles de détection d’objets est présenté. Les
premières contributions majeures dans cette tâche sont attribuées au Region-based CNN
(R-CNN), dont le principe repose sur une extraction de certaines régions dans l’image,
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puis une classification de celles-ci. Nous présentons ensuite quelles ont été les amélio-
rations apportées dans la littérature pour détecter des objets de différentes tailles, et être
capable de les séparer dans un contexte où ceux-ci sont extrêmement proches les uns des
autres.

Chapitre 3 : Utilisation du Deep Learning pour la détection
de nodule pulmonaire sur imagerie CT-scan 3D

Le cancer du poumon est classé parmi les tumeurs malignes les plus meurtrières dans le
monde. En France, cette maladie est un problème de santé publique majeur du fait de
son épidémiologie mais aussi de son caractère particulièrement aggressif. Ainsi, le taux
de survie à 5 ans est estimé à seulement 18%. Néanmoins, le diagnostic précis de nodule
pulmonaires à stade précoce est une des clés principale pour réduire la mortalité de cette
maladie. Ainsi, l’approche traditionnelle pour la détection de nodules pulmonaire passe
par un suivi médical du patient avec un ou plusieurs scanners à tomodensitométrie basse
dose (communément appelé CT-scan). Bien qu’efficace, cette méthode est très couteuse
à la fois sur le plan matériel, mais aussi sur le plan médical et humain. En effet, l’imagerie
des scanners est délivré sous la forme d’un grand volume de données en trois dimen-
sions, qui est à la fois difficile à manipuler et particulièrement fastidieux à inspecter.
Au sein de la communauté des radiologues, il y a ainsi un réel besoin d’automatisation
et/ou d’accélération de cette tâche. Nous proposons ainsi d’explorer les performances
des modèles de détections dans ce contexte.

Nous présentons dans un premier temps le jeu de données Lung Image Database Con-
sortium (LIDC) qui nous servira de base de données de référence pour nos expériences.
Celle-ci regroupe un total de 1035 CT scan, annotées en trois dimensions par différentes
équipes hospitalières. Les informations extraîtes grâce à ce processus d’annotations nous
permettent de transformer le jeu de données de sorte à obtenir, pour chaque patient, un
volume ainsi qu’un masque de segmentation 3D où chaque pixel sera étiqueté selon son
appartenance à une classe spécifique (0 : non-nodule, 1 : nodule bénins, 2 : nodules ma-
lins).

Nous présentons dans un second temps un framework particulièrement adapté à
notre problématique et regroupant différentes implémentations (2D et 3D) de modèles de
détection d’objets. En particulier, nous choisissons de porter notre analyse sur un modèle
de segmentation (appelée U-FPN), un modèle de détection à deux-étapes (Mask R-CNN)
et deux modèles de détection à une étape (Retina Net, Retina U-net). Une attention parti-
culière sera portée à la difficulté de traiter des données aussi volumineuse, nous obligeant
ainsi à passer par des méthodes de tuilage (ou patching) consistant à donner des sous-
sections de l’image originale en guise de lots d’entraînement. Également, nous présen-
tons une méthode simple basée sur un pré-tri des partients permettant l’équilibrage des
classes au sein des lots d’entraînement. Après une brève présentation des différents mod-
èles utilsés, nous procédons finalement à une comparaison complète de chacun d’entre
eux en incluant à chaque fois les architectures 2D et leur équivalent en 3D. Cette com-
paraison se fait sur plusieurs critères en écho avec une utilisation clinique : nombre de
détections par patient, temps d’analyse, métrique Average Precision (AP), score Compe-
tition Performance Metric (CPM). Les résultats tendent à montrer plusieurs faits. Le plus
évident, est celui de la superiorité des modèles 3D sur leur équivalent 2D en terme de
précision de localisation (meilleur score AP et CPM) mais aussi en terme de rapiditité de
temps de réponse : le temps moyen d’analyse d’un patient est de l’odre de 15 à 25 secon-
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des en 3D quand il dépasse les 40 voir les 50 secondes en 2D. En s’appuyant sur ces résul-
tats, nous avons poursuivi notre étude exclusivement sur les modèles 3D et avons implé-
menté par la suite une stratégie de réduction des détections faux positifs. Celle-ci se base
simplement sur une exclusion des boites de détection qui ne chevauche pas suffisament
les poumons. Une procédure de segmentation des poumons a ainsi été réalisé par une
combinaison de méthodes de seuillage et d’opération mathématiques morphologiques.
Nous avons ainsi pu observer que cette simple approche a améliorer la précision de tous
les modèles de détection.

Enfin, nous présentons la méthodologie que nous avons employée lors de notre par-
ticipation au Data Challenge organisé lors des Journées Francophones de la Radiologie
(JFR) par la Société Française de Radiologie (SFR). L’objectif de cet événement était de re-
grouper divers communautés scientifiques autour de différentes problématiques de santé
publique. Parmi les challenges proposés, l’un d’eux portait sur le diagnostic de CT scan
3D autour de la problématique du cancer du poumon. EN se basant sur l’idée que le
volume d’un nodule est un facteur prédictif important dans l’évolution de la maladire,
l’objectif était de créer un algorithme capable de classer chaque scanner de patient en
"normale - sans signes de nodules malins (volume < 100mm3)" vs. "anormale - présence
probable de régions suspectes (volume ≥ 100mm3)". En quatre semaines, nous avons
ainsi pu mettre en place un pipeline complet de diagnostique du cancer du poumon.
Ce pipeline se décompose en 3 trois étapes majeurs et reflétent les tâches réalisées vi-
suellement par les radiologistes : une segmentation des poumons, une détection des nod-
ules, puis une classification de ces derniers pour indiquer si leur volume est supérieur à
100mm3. Les deux première étapes sont assez simmilaires à celle présentées précéde-
ment, et la troisième implique l’extraction de paramètre (de taille, d’intensité moyenne,
...) afin d’entraîner un modèle Support Vector Machine (SVM) pour donner une réponse
finale au niveau du patient. Ainsi, cette méthodologie nous a permi de remporter la com-
pétition avec un score AUC (Area Under the Curve) à 0.899.

Chapitre 4 : Entraînement de réseaux de neurones avec des
images synthétiques de microscopie

De par leur nature supervisée, la robustesse des modèles d’apprentissage est forte-
ment dépendante de la quantité, mais aussi de la qualité, des données fournies pour
l’entraînement de ces derniers. Afin de répondre à une problématique spécifique, il est
alors nécessaire de construire une base de données la plus conséquentes possibles, et
dont le processus d’étiquetage est rigoureux et consistant. Ceci nécessite souvent un pro-
cessus très couteux, que ce soit en terme matériel ou en temps humain. En particulier
dans ce chapitre, nous nous concentrons particulièrement sur l’imagerie de microscopie,
dont les fondements sont intrésequement lié à la recherche en biologie médicale. Ainsi,
afin de procéder à l’analyse d’un mécanisme biologique quelconque, il est souvent néces-
saire de pouvoir extraire en amont un ensemble de caractéristiques morphologiques des
noyaux cellulaires, ce qui passe donc par une tâche de segmentation de l’image.

Cette tâche peut être réalisée par un CNN entraîné avec suffisament de données.
Ainsi, notre principale contribution consiste au développement d’un modèle génératif
d’image de microscopie. Nous détaillons ainsi chaque étape modélisée qui nous mène
à la formation d’une image et de sa vérité-terrain : la taille, forme et texture des noy-
aux, la disposition spatiale de la population dans l’image, les variation d’intensité et
d’illumination, le flou optique, les variation du bruit, etc... Par simplicité et pour plus
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d’accessibilité, nous avons également réalisé une interface graphique qui permet à un
utilisateur (expert ou non-expert) de pouvoir faire des tests simples pour visualiser le
rendu que donnent certaines valeurs de ces paramètres de simulation.

Finalement, afin d’évaluer la qualité de notre modèle, nous cherchons à évaluer
l’impact de l’utilisation de données simulées comme ensemble d’apprentissage sur les
performances de segmentation des noyaux cellulaires. Nous nous appuyons alors sur
deux modèles de l’état de l’art pour la segmentation des noyaux et deux jeux de don-
nées publiques issus de divers échantillons biologiques montrés sous différentes modal-
ités d’acquisition. Dans un premier temps, nous comparons les performances de chaque
modèle en faisant varier la quantité d’image utilisée dans l’ensemble d’entraînement
et en prenant à chaque fois soit des données exclusivement réelles, soit exclusivement
simulées. Ceci nous ammène à la premiere conclusion plutôt attendue que les per-
formances des modèles CNNs augmentent avec la quantité de données utilisées pour
l’entraînement. Il est cependant à noter que pour une même quantité d’images, il sera
en général préférable d’utiliser des données réelles plutôt que des simulées. Dans un
second temps, nous cherchons à voir cette fois si l’ajout de données simulées, en sup-
plémant d’une certaine quantité de données réelles, permet d’avoir un gain de perfor-
mances. Nous réalisons de nouveau l’expérience précédente en définissant cette fois,
pour chaque proportion de données réelles utilisées, un facteur d’augmentation de don-
nées. Ce facteur donne ainsi le nombre d’images simulées rajoutées pour chaque donnée
réelle utilisée. Nous réalisons ces expériences à 3 niveaux d’augmentation : 1, 5, 10, et
nous observons cette fois une augmentation nette des performances lorsque le facteur
d’augmentation croit. Pour une comparaison plus complète, nous réalisons ces mêmes
expériences en utilisant des procédés de data augmentation plus traditionnelles, impli-
quant des transformations géométriques des images. Finalement, nous observons que le
mélange données simulées + données transformées est un mélange encore plus efficace
pour la segmentation de noyaux cellulaires.

Chapitre 5 : Méthodes de quantifications de tissus cancéreux
ovariens sur imagerie microscopique confocale 3D

Les cancers épithéliaux de l’ovaire constituent le 5ème cancer féminin le plus létal dans
le monde occidental. Bien que leurs causes précises soient encore mal connues, la trans-
formation maligne des cellules constituant le tissu de surface de l’ovaire, en contiguïté
avec une membrane qui tapisse les parois intérieures de l’abdomen, semble jouer un
rôle important dans l’apparition de la maladie. Le faible pronostic de la maladie est lié
à une détection tardive, lorsque les cellules tumorales ont atteint le pelvis ou l’abdomen.
En outre, le taux de survie à 5 ans des cancers de l’ovaire va de 30 à 40% en raison du
manque de symptômes spécifiques ou de biomarqueurs validés. Un protocole expéri-
mental a été mis en place pour imager une cohorte composée 19 tissues sains et 100
tissues cancéreux de l’ovaire avec les principaux organes d’intérêt (noyau, centrosomes,
microtubules, Golgi). Ces données permettent d’analyser manuellement l’organisation
du cytosquelette dans ces tumeurs et d’améliorer la compréhension du rôle des cen-
trosomes et des microtubules dans l’établissement et la progression des carcinomes de
l’ovaire. Néanmoins, l’exploration du protocole est grandement freinée par la quantifi-
cation manuelle que requièrent ces images. En effet, ces dernières nécessitent un grand
nombre de pointage manuel que seul un expert est capable de réaliser, rendant alors le
processus de quantification extrêmement lent. L’objectif dans ce chapitre est d’utiliser
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les technologies d’intelligence artificielle (notamment de Deep Learning) pour faire ap-
prendre à une « machine-expert » les quantifications déjà existantes. La stratégie adoptée
dans ce contexte se divisera en deux temps, et proposera d’abord des méthodes de quan-
tifications du nombre de centrosomes, puis du nombre de noyaux.

Les méthodes de détections du centrosome est assez peu étudiée dans la littérature.
De plus, la morphologie des centrosomes est très diverse (centrosome simple isolé, clus-
ters, superclusters). Le comptage des centrosomes est donc une tâche très complexe,
car en fonction de la morphologie des objets détectés, plusieurs centrosomes doivent
être comptés. Aussi, nous proposons de comparer différentes méthodologies de quan-
tifications que nous avons nous même développés. Ces méthodes se basent essentielle-
ment sur une mesure de la colocalisation entre les canaux rouges et verts de chaque
image. Les approches proposées commencent ainsi par une démarche par traitement
d’image traditionnelle et se dirigent ensuite sur l’utilisation d’un modèle ResNet conçu
pour réaliser des tâches de régression. Après utilisation de chacune des méthodes sur
l’ensemble de la cohorte, il apparaît que les tissus sains peuvent être raisonnablement
quantifiés à partir de simple méthodes de traitement d’images, tandis que les tissus can-
céreux, plus complexes, ont été mieux quantifiés par les méthodes impliquant un proces-
sus d’apprentissage.

Concernant le comptage des noyaux, la difficulté de fournir des annotations de seg-
mentations 3D nous a mené à utiliser le simulateur construit dans le chapitre précédent.
Nous proposons alors une approche par Reinforcement learning (ou apprentissage par
renforcement) pour déterminer quel serait le meilleur paramètrage de notre simulateur
donnant les meilleures performances sur les données réelles. Cette méthode est assez
coûteuse en temps de calcul et ne permet pas un grand nombre d’expérience en temps
raisonnable. Aussi, nous validons dans un premier temps les choix stratégiques à opter
sur un jeu de données en deux dimensions, avant de réaliser quelques expériences sur la
cohorte complète.

Enfin, la dernière partie de ce chapitre expose les résultats obtenus sur notre quantifi-
cation du Centrosome-Nucleus Index (CNI), correspondant au ratio des quantifications
obtenus pour les centrosomes et les noyaux.

Chapitre 6 : Conclusions

Ce chapitre de conclusion établit une synthèse de nos démarches et de nos résultats
obtenus au travers de chaque domaines d’applications que nous avons étudié. Nous y
listons également les limites de nos travaux et discutons également des approches alter-
natives qui pourront être suivies dans de futurs travaux.
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1.1 General context

The term Artificial Intelligence (AI) in the sense in which it is most commonly used to-
day, encompasses a wide range of methods whose main goal is to transfer knowledge and
skills from humans to machines. Historically, the workshop organized by Marvin Minsky
and John McCarthy at Dartmouth University in 1956 is the seminal event in this field of
research. From that point on, the discipline experienced its first major boom in academia,
before fluctuating between several waves of optimism and pessimism until the end of the
20th century. Since the 2010s, AI has seen a resurgence in popularity. This is mainly due to
two factors. The first is the significant acceleration in computation times made possible
by the use of Graphic Processing Unit (GPU) in modern computers, and their availabil-
ity at relatively low cost. The second is the amount of data that is being generated at an
ever-increasing rate in all application areas.

Machine Learning (ML) is one of the main branches of AI, and as the name suggests,
its mechanism gives machines the ability to learn from experience, i.e. , by observing data.
When that data is labeled, learning resembles an iterative process of adjusting the deci-
sions made by the algorithm to get as many correct answers as possible. This corresponds
to what is known as supervised learning and is one of the most common applications
of ML. Among existing ML methods, Deep Learning (DL) is the class of algorithms that
has the reputation of providing the best results on most problems. As a result, this cate-
gory of models is becoming increasingly popular in industry. In particular, image analysis
and computer vision are among the application areas that have developed at high speed
thanks to DL.

This last point is particularly interesting for the field of biomedical imaging. Whether
it is to diagnose a disease or to try to understand the mechanisms involved in the func-
tioning of living organisms, there is a very wide variety of imaging systems that require
extensive and complex analyses. In general, the observation obtained from the images
can be quantified either by a class, a location, a count, or even directly by an analysis of
the morphological features. Thus, the advantage of using DL methods in this context is to
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automate the extraction of this information, overcoming the problems of subjectivity or
reproducibility of a study.

1.2 Objectives

Work on this dissertation was carried out under a CIFRE agreement between QuantaCell,
a company specializing in the analysis of biological and medical images, and the Insti-
tut Montpelliérain Alexander Grothendieck (IMAG). The main objective of this work is to
evaluate to what extent methods based on AI, and in particular on DL, can prove to be
powerful tools for solving recurrent issues that are encountered in a clinical context. To
this end, we will attempt to answer the following research questions:

1. Which DL models are best suited for solving complex tasks such as object detection
or image segmentation ? What are their functions and their limitations ?

2. In what configurations can DL be integrated into the solution of a biomedical imag-
ing problem ?

3. How closely do DL models relate to the data fed to them ?

4. Is the use of DL still necessary and/or relevant ?

To answer each question, we present the different application contexts we have en-
tered. Whenever possible, we will use publicly available datasets. However, for this work,
a large dataset of ovarian cancer tissue was provided by Institut Curie. The study required
complex procedures whose turnaround times were significantly extended by the 2020
health care context.

1.3 Thesis organization

This thesis is organized as follows:

• Chapter 2 reviews the existing literature on Deep Learning models generally used
in computer vision. In detail, the individual building blocks that make up a CNN
and the operations described in the literature for performing image segmentation
or object recognition are explained.

• Chapter 3 describes the use of a framework that employs various modern imple-
mentations of object detection models in a context of early pulmonary nodule de-
tection. In addition, this chapter reports on our participation in a Data Challenge
that addressed the problem of diagnosing lung cancer.

• Chapter 4 provides a data simulation model to generate various microscopy images
and examines the effect of using simulated data as a training set on the segmenta-
tion performance of cell nuclei.

• In Chapter 5, a methodology for quantifying ovarian cancerous tissue on 3D mi-
croscopy image is developed. The goal is then to perform a count of the major or-
gans of a cell (i.e. nucleus and centrosomes in our context) for each image.

• Chapter 6 is a general conclusion that summarizes the entire work, the results ob-
tained and the open research paths during these three years.
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Chapter 2

Deep Learning fundamentals for
computer vision

Abstract
This chapter is intended to provide the background knowledge necessary to under-
stand this thesis. Section 2.1 is a brief introduction to computer vision and its chal-
lenges. We describe how Deep Learning represents an important turning point in
the history of this research area. From biological modeling to learning algorithm,
Section 2.2 introduces the fundamental concepts on which DL and Artificial Neural
Network (ANN) are built. Section 2.3 describes the basic operations performed in
Convolutional Neural Network (CNN) and how to move from an architecture that
delivers one response per image to one response for each pixel. Section 2.4 pro-
vides details on how to perform an object detection task and traces the history of
the models used in recent years.
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2.4.7 Single shot detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.8 Retina Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Introduction

Computer vision is an active field of AI designed to enable computers to extract the most
relevant information from visual data, be it images or videos. Depending on the applica-
tion context, the machine uses this information to provide an interpretation of the scenes
presented. Ultimately, this discipline has a dual goal: to give a computer the ability to
see like a human, but also to understand what it sees. In humans, this process develops
naturally in the course of life: our brain experiences different types of stimuli that lead
to a strengthening or weakening of neuronal connections and enable to assimilate new
information.

Figure 2.1: Evolution of the best classification error rates in the ILSCVR competition from 2010 to
2017. The year 2012 marks the first victory of a Deep Learning model. This is followed by steady
progress from one year to the next. Extracted from kaggle website.

The corresponding procedure for machines consists first in the implementation of al-
gorithms that allow the extraction of image descriptors. These descriptors, commonly re-
ferred to as features, are low-dimensional representations of data, such as the presence or
absence of edges, shapes, or the quantification of pixel intensities. The relevance of a fea-
ture to solve a particular problem derives from its discriminative power between different
categories of images. Consequently, finding features that are capable of representing the
full heterogeneity of the real world is a major challenge in most concrete applications. In
addition, there can be some computation time constraints for certain tasks such as object
recognition in real time. This means that the development of a computer vision system
is a very time-consuming task and could require a certain degree of expertise in the field
of application. Without having completely disappeared, these technical difficulties have
tended to diminish in recent years with the increasing popularity of methods based on
Deep Learning. The 2012 edition of ILSCVR is often credited in the scientific community
as the origin of this Deep Learning boom. This event actually corresponds to the great
victory of the Alexnet model developed by Krizhevsky et al. [2012] with a classification
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error of 15.3 % on the ImageNet database compared to 26.2 % for the second-best team.
As shown in Figure 2.1, progress in recent years has resulted in falling below the level of
human error.

The key to this success lies in Deep Learning’s ability to find by itself the most appro-
priate features to solve each learning task. This principle is based on advanced mathemat-
ical modeling of the mechanisms involved in the function of biological neurons. This fact
explains the composition of most Deep Learning models: a sequence of layers of artificial
neurons that provide the connection between the input data and the predicted output.
The next sections aim to introduce the fundamental concepts on which DL are based.
In order to provide sufficient background for a better understanding of this document,
the following sections detail the basic concepts upon which DL is built. In particular, the
following sections examine the architecture of CNNs models, which are most commonly
used in computer vision. We then review the state of the art in models that are particularly
useful for visual data segmentation and object recognition.

2.2 Deep Learning basics

2.2.1 The perceptron

Activation
function

Weighted
sum

Output

Inputs BiasWeights

Figure 2.2: Formal neuron model introduced by McCulloch and Pitts [1943] with 3 inputs x1, x2, x3.
Each input is weighted by the appropriate parameter wi before being summed. The result of this
sum is placed as input of the activation function ϕ to obtain a final response ŷ .

The artificial neuron model, first proposed by McCulloch and Pitts [1943] and largely in-
spired by the biological model, is the basic unit of a neural network. As shown in Figure
2.2, a neuron consists in four main parts:

• inputs: generally represented in the form of a vector x = (xi )0<i≤n . Each element can
be either binary or real.

• weights: also represented with a vector w = (wi )0<i≤n . It corresponds to the impor-
tance of each inputs in the resulting output of the neuron. If the xi input tends to
cause the neuron to fire (respectively to inhibit), the corresponding weight wi will
be positive (respectively negative).
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• activation function (or transfer function): This component transforms the input val-
ues and introduces nonlinearity into the calculation process. A bias term b can be
incorporated in order to delay the triggering of the activation function.

• output: it stands for the activation function result.

The operation of the artificial neuron goes through two phases. The first phase re-
quires the use of a summation function. For simplicity, the bias parameter can be thought
of as an additional entry x0 whose value is always 1 and whose weight w0 has value b.
Thus, the linear component of the neuron is the weighted sum z =∑n

i=0 wi xi . The result-
ing value is then passed to the transfer function, which provides the value of the state of
the neuron. In the simplest cases, the activation function is the Heaviside function:

ϕ(z) =
 1 if

n∑
i=0

wi xi ≥ 0

0 else

This function is used especially for binary classification problems. Sometimes it can
be useful to have an output with multiple values. Note that unlike biological neurons,
whose state is binary, most transfer functions are continuous and have infinitely many
possible values in the range [0,1] or in [−1,+1]. For example, by using a sigmoid activation
function ϕ(z) = 1/(1+ exp(−z)), all values are between 0 and 1, allowing a probabilistic
interpretation of the neuron output.

Learning rule of the perceptron

Let us assume a supervised classification problem with multiple instances of inputs x
with targets y , forming a dataset D = {

(x, y), x ∈Rd and y ∈ {−1,1}
}
. The challenge for any

learning model, then, is to find parameters that are suitable for classifying the examples
presented. The perceptron developed by Rosenblatt [1958] was the first learning imple-
mentation based on the neuron model of McCulloch and Pitts [1943]. The algorithm re-
lies on a principle called Hebb’s law. The rule is grounded on a scientific hypothesis in
neuroscience and describes the neural adaptation changes in the brain during a learning
process. In summary, this postulate states that when two neurons are excited together, a
connection between them is formed or strengthened. The corollary of this law is also true:
the less stimulated is a neuronal circuit, the less the neurons of this circuit can connect
(or the connection between them is weakened). This leads to feed all the training inputs
into the perceptron and to look at the outputs produced. At each time step t , when the
perceptron’s outputs ŷ differs from the correct target y , every weight wi (t ) are updated
according to the following rule:

wi (t +1) = wi (t )+α(y − ŷ)xi ,

where α is a strictly positive real, called the learning rate. Simplicity of implementation
is the most important property of this algorithm. However, Minsky and Papert [1969]
pointed out the main limitation of the algorithm: it is effective only for linear separations,
which severely limits the number of real problems that can be solved.

2.2.2 Multi-layer perceptron

The Multi-Layer Perceptron (MLP) is an extensive extension of the perceptron. It consists
of multiple neurons arranged in so-called neural networks. A network is defined by its
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architecture: the number of neurons, the number of weights, and the arrangement of
inputs and outputs. Formally, there is no theoretical rule for the arrangement of neurons.
In practice, they are often arranged in an acyclic graph so that the input of a neuron does
not depend on its output. Figure 2.3 shows an example of such an architecture. This
structure allows information to be passed in the network in only one direction, forward.
For this reason, neural networks organized with this topology are also referred to as Feed-
Forward Neural Network (FFNN).

Input 
layer

Hidden layers

Output 
layer

Figure 2.3: A Multi-Layer Perceptron (MLP) composed of an input layer with 6 neurons, two hidden
layers with 4 neurons each, and an output layer with 1 neuron. Each layer is fully connected to the
previous one and to the next.

MLPs consist of several successive layers of neurons. The first layer is called the input
layer, and the last layer is the output layer. All intermediate layers represent the hidden
layers of the network. The term "hidden" comes from the fact that the outputs of these
layers are not directly visible. In a network of N layers, each neuron of layer l < N is con-
nected only to all other neurons of the following layer l +1. Thus, any output from one
layer of neurons is only "fed" as input to each neuron in the next layer. This means that
each neuron has a number of weights equal to the number of neurons in the previous
layer. In addition, the input layer processes the original data, while the subsequent layers
process data transformed according to the activation function of the neurons in the previ-
ous layer. Depending on the problem, the output layer has a specific activation function,
which then transforms the output of the hidden layer into a final output that represents
the response of the network.

Forward pass of MLPs

Let consider a MLP composed of L layers. Let nl be the total number of neurons in the
layer l ∈ [1,L]. The matrix weight Wl groups all the weight values of the layer l and is
defined as follows:

7
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Wl =



w l
1,1 w l

1,2 · · · · · · · · · w l
1,nl−1

w l
2,1

...
...

...
...

...
w l

nl ,1 · · · · · · · · · · · · w l
nl ,nl−1


,

where w l
j ,k denotes the weight value for the connection from the k th neuron in the

(l −1)th layer to the j th neuron in the l th layer. We also introduce a vector bl representing
all the biases (intercepts) of the neurons of the layer l . The vector σl represents the out-
puts of all the neurons of the layer l . Since each layer is connected to the previous one, σl

is also the input of the layer l +1. By extension, we denoteσ0 = x the input of the network.
Let suppose that all neurons in the same layer have the same activation functionϕl , then:

ϕl (z l ) =
(
ϕl (z l

1), ϕl (z l
2), . . . ,ϕl (z l

nl
)
)>

,

is the activation function and z l is the weighted input of the layer l :

z l = Wl ·σl−1 +bl .

The output of a layer according to its input can be written as follows:

σl =ϕl (z l ) =ϕl (Wl ·σl−1 +bl ) . (2.1)

The final output ŷ =σL of a MLP is therefore given by iteratively applying (2.1).

2.2.3 Backpropagation

In practice, it is common to test and compare several network configurations to find a
high-performance architecture. To this end, training a model consists of finding a set of
parameters θ (combining weights and bias) that, given any input x, make a prediction
ŷ the closest to the target y . Formally, the training process, regardless of the task to be
performed, can be formulated as follows:

min
θ

L (ŷ , y ;θ)

where L (.) refers to the loss function (also called error or cost function) and must reflect
how well the task is being performed. In general, the minimization of this function can-
not be done analytically, so numerical optimization methods such as gradient descent are
used. This means that the parameters are updated in small steps in the direction of the
negative gradient of the loss function:

θk+1 = θk −α
∂L

∂θk
(x,θk )

where k stands for the iteration number, α> 0 is the learning rate. This parameter speci-
fies how far the weights should be shifted in the direction of the gradient. If the learning
rate is low, the steps to the minimum of the loss function are small, resulting in being
stuck at a local minimum. On the contrary, if the learning rate is high, the training may
not converge or may even diverge.

8
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In summary, the learning process involves calculating the gradient of the loss function
in order to update the model parameters. Popularized by Rumelhart et al. [1985], the
backpropagation algorithm expresses the partial derivatives ∂L

∂w and ∂L
∂b with respect to

any weights and bias in the network. These quantities provide information about how
the loss function fluctuates when the parameters of the model change. Since L depends
explicitly on the final output ŷ , it is natural to start by calculating ∂L

∂ŷ . Applying the chain
rule, this result is then reused in each derivative calculation for each variable preceding ŷ
in the forward pass. In this way, the gradient of the loss function is propagated backward
from the last to the first layer of the network, hence the name "backpropagation".

Let denote δl the error vector of the layer l . The error of the j th neuron in the l th layer,
δl

j , is defined as follows:

δl
j =

∂L

∂z l
j

.

For every layer, backpropagation allows computing δl and relating those errors to ∂L

∂w l
j ,k

and ∂L

∂bl
j

. More concretely, the algorithm starts by computing the error in the output layer:

δL
j =

∂L

∂zL
j

= ∂L

∂ŷ

∂ŷ

∂zL
j

.

Using (2.1), the second term is simplified:

δL
j =

∂L

∂ŷ

∂ϕL

∂zL
j

(zL
j ) = ∂L

∂ŷ
ϕ′

L(zL
j ) .

Similarly, we can generalize δl for any earlier layer in the following form:

δl =ϕ′
l (z l )(Wl+1)>δl+1. (2.2)

Combining (2.2) with the chain rule, we obtain a simple expression for the contribution
of any network parameter to the variation in the loss function:

∂L

∂w l
j ,k

= ∂L

∂z l
j

∂z l
j

∂w l
j ,k

= δl
j

∂

∂w l
j ,k

(
nl−1∑
i=1

w l
j ,iσ

l−1
i +bl

j

)
= δl

jσ
l−1
k (2.3)

∂L

∂bl
j

= ∂L

∂z l
j

∂z l
j

∂bl
j︸︷︷︸

=1

= δl
j . (2.4)

2.2.4 Gradient-based optimization

To perform a full training of a model, the backpropagation algorithm must be coupled
with an optimization algorithm that provides the "rule" to update the parameters. The
vanilla gradient descent approach presented in the previous section, while theoretically
valid, might be computationally expensive in practice, especially for large datasets. This
is because, in this context, parameters updating occurs only once, when the entire dataset
has been used in the forward pass. An alternative method for more frequent updating is
the gradient descent algorithm called stochastic gradient descent (SGD). This algorithm
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evaluates the gradient and updates the parameters using a random subset of the entire
data set. This subset is referred to as a mini-batch. The gradient is determined sequen-
tially using different mini-batches. The complete run of the algorithm over the entire data
set using mini-batches is called epoch. Given a learning rate α, the algorithm uses a mini-
batch B to update the parameters at each iteration k as follows:

θk+1 = θk −α
∂L

∂θ
(B;θ) .

Since SGD does not use the entire dataset, but only a portion of it at each iteration,
the path took by the algorithm is noisier compared to the gradient descent algorithm. To
reduce oscillations along the path towards the optimum, we can add a momentum term
to the parameter update. This procedure describes the stochastic gradient descent with
momentum (SGDM) algorithm, and the update is:

θk+1 = θk −α∇θL (B,θk )+γ(θk −θk−1) ,

where γ ∈ [0,1] determines the contribution of the previous gradient step to the current
iteration.

When the training ends, the optimal parameters θ∗, such as ∂L
∂θ (x,θ∗) ≈ 0, should

be reached. However, the loss function being optimized is usually strongly non-convex,
which implies that θ∗ could be a local optimum. This means that SGD (or its variants)
requires a suitable initialization of the learning rate, which is not a simple adjustment,
as we have seen previously. So far, we have represented the learning rate as a fixed and
constant value during training. In practice, this value should be scheduled over time de-
pending on the variations of the loss function. Adam (for Adaptative Moment Estimation)
Kingma and Ba [2014] is a popular and robust extension of SGD algorithm allowing to up-
date the learning rate for each network parameter individually. Formally, this optimizer
can be seen as a combination of the SGDM algorithm and the RMSP (Root Mean Square
Propagation) algorithm described by Tieleman and Hinton [2012]. The learning rate is
adjusted based on the estimates of first and second moments of the gradient. Actually,
the algorithm computes an exponential moving average of the gradient and the squared
gradient:

mt = β1mt−1 +
(
1−β1

)∇θL (θt )

vt = β2vt−1 +
(
1−β2

)∇θL (θt )2 ,

where mt and vt are moving averages at iteration t and the parameters β1 and β2 control
the decay rates of these moving averages. By default, these values are set to β1 = 0.9 and
β2 = 0.999 in the original paper, and should only be changed in very rare cases. At first
iteration, m0 and v0 are initialized to 0, which implies that mt and vt are biased estima-
tors. Therefore, the algorithm includes a bias correction step and computes m̂t and v̂t as
follows:

m̂t = mt

1−βt
1

v̂t = vt

1−βt
2

.

Then parameters are updated based on previous moving averages computation:

θt+1 = θt +α m̂t√
v̂t +ε

,

where ε is a small value for preventing to divide by 0, generally set at 10−6.
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2.3 Convolutional neural network (CNN)

In the previous section, we presented the basic principles on which most neural networks
are based. So far, we have assumed that data is represented in terms of vectors, but image
data is generally represented in terms of one or more two-dimensional (2D) pixel grids.
Therefore, using MLP to deal with computer vision problems means that images must be
flattened before showing them to the model. Although this approach works, it does not
take into account the spatial relation that may exist between neighboring pixels. This sec-
tion focuses on one particular family of network designed for this purpose named CNN
and introduced by LeCun et al. [1989]. The basic idea of the CNN was inspired by a con-
cept from biology: the receptive field. Receptive fields are a feature of the visual cortex of
animals. They act as detectors that are sensitive to specific types of stimuli, such as edges.
The specific architecture of the network allows the extraction of features of varying com-
plexity, starting from the simplest to the most complex. The main strength of CNNs lies in
their ability to automatically extract features and prioritize them according to the prob-
lem. This explains the great popularity of these models, making them an indispensable
tool in the field of computer vision.

2.3.1 Convolutional layer

Convolution operation

From a mathematical standpoint, convolution is an operation which, from two functions
f and g defined on the same domain, produces a third function s such as:

s(t ) =
∫ +∞

−∞
f (τ)g (t −τ)dτ=

∫ +∞

−∞
f (t −τ)g (τ)dτ . (2.5)

As the convolution is very connected to multiplication, we use the symbol ∗ to symbolize
this operation:

s(t ) = ( f ∗ g )(t ) = (g ∗ f )(t ) .

One way to interpret this operation intuitively is to view it as a generalization of the mov-
ing average concept. As τ changes, we measure the overlap between f and g when a
function is flipped and shifted by t . Although we use the variable t in these equations,
this operation can be used for both temporal and spatial data.

Figure 2.4: 2D convolution operation between a 7×7 matrix I and a 3×3 kernel K. The kernel slides
along the input and performs element-by-element multiplication before outputting the sum of all
components at each step. Figure extracted from Mohamed [2017]
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Regarding images data, these are rather conceptualized as tensors. For instance, an
image I ∈ RH×W×C is a tensor of order 3 containing H×W ×C elements (i.e. pixels) that
we can index by a triplet

(
i , j ,k

)
with 1 ≤ i ≤ H, 1 ≤ j ≤ W, and 1 ≤ k ≤ C. From a com-

puter point of view, we can consider a tensor of order 3 as an array that includes C matrix
channels of height H and width W for each of them. Tensors are particularly useful for
representing images, whether grayscale images (C = 1) or color images stored in a Red-
Green-Blue (RGB) format (C = 3). In this context, it seems more natural to introduce a
discrete version of equation (2.5):

S(i , j ) = (I∗K)(i , j ) =∑
m

∑
n

I(i −m, j −n)K(m,n) , (2.6)

where I traditionally denotes the input image, K is a convolution filter (also called kernel)
of size m ×n, and the output S is referred as a feature map. This operation, as described
in equation (2.6), represents the main building block of a CNN. Concretely, it consists in
sliding the kernel along each input dimension, from top to bottom and from left to right.
At each step, the kernel is applied to the input by applying dot product, outputting a sin-
gle scalar value. Figure 2.4 depicts an explicit visualization of such procedure, usually
referred to as conv 3×3 with reference to the kernel size. Note that equation (2.6) corre-
sponds to the operation in a 2D convolutional layer, but the principle for extending it to
n dimensions is quite similar.

A convolutional layer usually contains a number of kernels of the same size, each out-
putting a different feature map. It is common to stack each of the outputs in a single block
whose number of channels actually matches the number of feature maps. As for the size
of the other dimensions (height and width) they depend on the values of three hyperpa-
rameters:

• kernel size: In 2D convolution, the kernel can slide in only two directions: horizon-
tally or vertically. The process works only if the filter fits completely into the input,
and it is completed when the kernel reaches the bottom right edge of the matrix. So
the larger the filter is, the more the maximum number of operations to be performed
is reduced.

• padding: When no other processes are involved, the successive application of multi-
ple convolutional layers gradually reduces the size of the original maps. In this way,
the information at the edges of the image becomes deteriorated layer after layer. The
padding process then consists of increasing the size of the input image by adding ex-
tra pixels at the edges. In general, all these pixels are set to 0.

• stride: In contrast to padding, increasing the value of stride allows for a reduction in
the outputs of each convolutional layer and thus more efficient computation. The
parameter thus controls the step size that the filter takes during convolution.

Finally, for a fixed dimension di n (height or width), if we note k the corresponding filter
size, p the padding value and s the stride value, the dimension of the output feature map
dout can be calculated as follows:

dout =
⌊di n +2p −k

s

⌋
+1 .

Convolution’s benefits

In computer vision, convolution produces various visible effects on images. For example,
Figure 2.5 shows how multiple convolution filters can detect edges in an image. Convo-
lution filters can be used to detect the presence of a set of features in images received as
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input. Following the concepts discussed in the previous sections, the resulting features
map can be referred as an activation map, where the highest values correspond to the
presence of the feature described by the filter. In general, the first convolutional layers
of a CNN learn less complex features, such as those activated for contours with a certain
angle. As we go deeper into the network, the learned features become more complex. In
the case of edge detection, the deepest layers are activated in the presence of a group of
edges that form a certain shape.

The main limitation of MLPs in image processing is that each neuron is fully con-
nected to the neurons of the previous and the next layer, which can lead to difficul-
ties in managing the image size. For example, an RGB image of size 200 × 200 means
200×200×3 = 120000 connections for a single neuron. The number of connections there-
fore easily explodes for fully connected multilayer networks. A major advantage of CNNs
over MLPs is the significant reduction in the number of connections between neurons.
CNNs are also inspired by biological processes that occur in different regions of the brain.
In this case, they were inspired by the functioning of sensory neurons in the visual cortex.
The latter have the peculiarity that they are stimulated only by a limited area of the vi-
sual field, called the receptive field. The receptive fields of the different neurons partially
overlap so that they cover the entire visual field.

Input image

Horizontal filter

Gradient in x

Gradient in y

Vertical filter

Figure 2.5: Application of Sobel filters consisting of a pair of 3×3 convolution kernels, giving im-
ages with emphasis on edges.

The principle is similar with CNNs and gives them fundamental properties that dis-
tinguish them from MLPs. Indeed, the size of the filters requires local connectivity of the
neurons from one layer to the next. During the training phase, this allows the filter to
provide the strongest responses to a spatially limited input region. Another advantage of
using CNNs is that each filter is replicated across the entire input image. This means that
the parameters of neurons located in the same feature maps are shared. This enables the
detection of specific patterns regardless of their position in the image. Thus, CNNs also
have a property of translational invariance. By combining these properties, the number
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of parameters to be optimized can be significantly reduced. This implies better statistical
estimation than MLPs for the same amount of data. In addition, the memory requirement
is lower, which allows the construction of larger and generally more powerful networks.

2.3.2 Standard layers of CNNs

6464

22
4

224

conv1

128 128

11
2

conv2

256 256 256

56

conv3

512 512 512

28

conv4

512 512 512

14

conv5

1

40
96

fc6

1

40
96

fc7

1

fc8+softmax

K

Figure 2.6: Architecture of the VGG-16 model developed by Simonyan and Zisserman [2014]. The
convolutional layers are staged in five blocks, with a pooling layer between every two blocks. This
is followed by three fully connected layers, whose role is to estimate a probability for each class on
which the model has been trained. Figure generated with PlotNeuralNet repository.

A CNN consists of several successive convolutional layers, generally interspersed with lay-
ers of subsampling. This sequence is usually followed by one or more layers fully con-
nected. Figure 2.6 illustrates a common architecture of CNN, with 16 layers. In this part,
we will describe the operation performed by some non-convolutional layers.

Rectified linear unit (ReLU) layer

Most CNNs use ReLU as activation function for the hidden layers. The ReLU correction
layer replaces all negative values received as inputs with zeros:

ReLU(x) = max(0, x) .

Using the ReLU activation function rather than sigmoid function in the hidden layers
of a CNN can be motivated for several reasons:

• Fast and easy computation: The result is really easy to calculate and inexpensive in
terms of computation time. CNNs with ReLU layers have a faster forward pass.

• Faster convergence: Sigmoid activation functions have an extremely low gradient
when input becomes large. This can cause the updating phase of the weights to slow
down or even stop altogether during training. This problem is called the vanishing
gradient. With a constant gradient, the ReLU function is less sensitive to this prob-
lem, thus showing faster convergence [Krizhevsky et al., 2012].

• Sparsity activation: By "turning off" the neurons with a negative outcome, it is more
likely that the remaining neurons are associated with important aspects of the super-
vised task. The predictive power is thus improved.
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Batch normalization layer

In the most general sense, normalization is a method of adjusting the value of numerical
data to a typical scale while preserving differences in the range of values. Analogously,
performing batch normalization (BN) [Ioffe and Szegedy, 2015] allows to train a CNN by
standardizing inputs layer for each mini-batch. Thus, for a mini-batch B formed by m
inputs {xi }i=1,...,m , the empirical mean µB and variance σ2

B
are computed as follows:

µB = 1

m

m∑
i=1

xi σ2
B = 1

m

m∑
i=1

(xi −µB)2 .

The standardization process centers and scales inputs individually:

x̂i = xi −µB√
σ2

B
+ε

,

where ε > 0 is a small constant added for numerical stability. Then, in order to preserve
the expressive power of the model, the BN layer introduces extra trainable parameters β,γ
to re-scale and shift inputs:

x̂i = γx̂i +β .

The use of a BN layer allows to insert a regularization process into CNNs, as well as sta-
bilization of the gradient values during backpropagation [Santurkar et al., 2018]. Conse-
quently, sharing the same scale of values for each batch speeds up training time, increases
the generalization of the model and reduces the risk of overfitting.

Pooling layer

Pooling operators are similar to convolution in the sense that they apply a sliding window
to all regions of the input based on a given stride value and compute a single output at
each position. Pooling layers, however, do not contain parameters to be optimized and
always apply the same operation regardless of the input on which they are based. In gen-
eral, this involves calculating either the average or the maximum of the elements covered
by the sliding window (this is referred to as average pooling or max pooling, respectively).
Intuitively, the purpose of a pooling layer is to aggregate the information available in the
feature maps while achieving a more manageable dimensionality reduction. The relevant
information with the highest activation values is then distributed across the layers, while
information that is not needed is progressively ignored. In this way, the receptive field of
the CNN increases layer by layer, as does the complexity and level of recognized features.

Fully connected layer

The FC layers are usually located at the end of the CNN architecture and form the classifi-
cation block. These layers behave in exactly the same way as that of the MLPs introduced
in Section 2.2.2. As a result, feature maps of convolutional layer are flattened in a one-
dimensional form before entering the first FC layer. FC layers determine the link between
the position of features in the image and a class. When a particular feature combination
of a class is identified, significant weights are assigned to the corresponding neurons. The
last FC layer classifies the input image of the network. The privileged activation function
ϕ :RK −→ [0,1]K in this configuration is the softmax function defined for each component
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ϕ(z) j as:

ϕ(z) j = ez j

K∑
k=1

ezk

, (2.7)

where K is the number of classes in any classification problem, z ∈ RK is the input vector
of the last FC layer. After applying (2.7), each element will be in range [0,1] and the nor-
malization ensures

∑K
k=1ϕ(z)k = 1, providing a probabilistic interpretation to the output

vector ŷ .

2.3.3 ResNet architecture

Since Alexnet’s victory at ILSCVR 2012 [Krizhevsky et al., 2012], its architecture, consisting
of 5 convolutional and 3 FC layers, has been considered a reference for the scientific com-
munity. While the ZFNet model [Zeiler and Fergus, 2014], winner of ILSCVR 2013, can
rather be considered as an optimization of the Alexnet architecture, competitors of the
subsequent editions have increased the number of layers to improve performance. Thus,
Simonyan and Zisserman [2014] developed VGG16-Net, which outperforms AlexNet and
ZFNet on ImageNet dataset, and, as its name suggests, has 16 layers. Also, the winner of
the 2014 edition, Googlenet [Szegedy et al., 2015] goes through 22 layers. Nevertheless,
He et al. [2016] has shown that increasing the depth, i.e. , stacking more and more layers
is not enough to improve a model. On the contrary, above a certain depth, adding plenty
of new layers can degrade performance. This is the direct consequence of the well known
vanishing/exploiding gradient problem, Due to the backpropagation algorithm, the more
layers a network has, the smaller the gradients of the parameters of the early layers be-
come. This leads to slowing down or, in the worst cases, even stopping the training.

Conv 

Skip connection

Batch
norm

ReLU
ReLU

Conv 
Batch
norm

Figure 2.7: Structure of a basic residual block, consisting of successive convolution, batch nor-
malization and ReLU layers. The skip connection associates the input map x with the output of
residual layers F (x) by element-wise addition. The result then passes through a ReLU layer to give
the final output of the block.

Winners of ILSCVR 2015, He et al. [2016] fix the problem with an architecture called
ResNet. These models consist of very deep neural network whose main building blocks
are residual connections (or residual blocks). A residual block is a group of layers config-
ured to connect the output of one layer to another deeper layer within the block. This
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connection is commonly called a shortcut (or skip connection) because it jumps across
multiple layers, as shown in Figure 2.7. Mathematically, the forward pass of a residual
block can be written as:

y =ϕ(F (x)+ Id(x)) =ϕ(F (x)+x) ,

where x and y are respectively the input and output features of the block, ϕ(·) is any ac-
tivation layer, Id(·) is the identity function, and F (·) is a combination of nonlinear trans-
formation operated by a sequence of any traditional layers. In this way, the identity func-
tion induced by the shortcut connection allows the gradient to be maintained during the
backpropagation pass. Moreover, no additional parameters or computational overhead
are added.

2.3.4 Fully convolutional network

All models presented in previous sections are particularly suitable for image classification
tasks where only one response per image is expected. However, some computer vision
applications, such as autonomous drive, require a more detailed understanding of the
scenes under investigation. An obvious step after image classification would be a pixel-
level classification. This is an approach called semantic segmentation. The goal now is to
create a model whose response is multidimensional and the same size as the input im-
age presented to it. This response map is commonly referred to as a segmentation mask
and assigns each pixel a value from a predefined set corresponding to an object class. For
CNNs such as those presented in Section 2.3.2, the solution would be to use a sliding win-
dow strategy. However, this type of approach is not really satisfactory, mainly because it
requires inference of the CNN for each pixel of the input image, which drives up the ex-
ecution time and also introduces low computational efficiency. Actually, architectures of
CNNs consisting of convolutional layers and FC layers are incompatible with a segmen-
tation aim. This is mainly because the FC layers perform flattening operation of feature
maps that ignore the spatial relation between pixels in images. In addition, the use of FC
layers requires the settings of a single input size for the input images. The Fully Convolu-
tional Network (FCN) [Long et al., 2015] is the first striking attempt to restructure CNN’s
architecture to resolve semantic segmentation tasks. Basically, a FCN is equivalent to a
CNN without FC layers.

1×1 convolution

First, the flattening operation and the FC layers are removed and replaced by a 1×1 convo-
lutional layer. As the name implies, this type of layer is equivalent to applying convolution
with a filter of size 1×1×D, where D denotes the input depth. This process is illustrated
by Figure 2.8. In general, no padding is added, and the stride is set to 1. Unlike layers
with a higher kernel size, using a 1×1 convolution layer preserves the spatial dimensions
(i.e. height and width) of the input tensor while reducing the dimensionality in channel
space.
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Figure 2.8: A 1× 1 convolution operation with a filter of size 1× 1×D and an input layer of size
H×W ×D, giving an output map of size H×W × 1. A 1× 1 convolutional layer composed of K
kernels yields an output layer of dimension H×W ×K. Image credits to Bai’s article in Towards
Data Science website.

At this stage, the final output of the model is a feature map whose size is independent
of that of the input image. Nevertheless, the resolution was successively reduced with
the multiple pooling layers (or any other subsampling operation). For example, the CNN
shown in Figure 2.6 begins with a 224×224 input layer and decreases the resolution by a
factor of 32, reaching 7×7 just before FC layers. These features map therefore contain a
lot of general information about the image, but are too coarse to produce a high quality
segmentation.

Upsampling convolution and skip connections

To complete the conversion of CNN classifications into a segmentation model, the coarse
results must be restored to the original resolution. A classic way for solving this problem
in image processing is to perform upsampling by interpolation. The simplest methods to
use are nearest neighbor interpolation and bilinear interpolation. In the first method, an
image is enlarged by a factor f by replacing each pixel with a block of size f × f with the
same value. In the second method, each pixel values are obtained by linear interpolation
in each direction. Although these approaches are acceptable, none of them have parame-
ters that can be learned. To take a "fully convolutional" perspective, an upsampling oper-
ation with f -factor can also be viewed as a backward convolution (or deconvolution) with
fractional stride 1/ f [Long et al., 2015]. Note that the term "transposed convolution" is
preferred in the DL community for this type of layer. This means that FCNs also learn to
convert an image from low to full resolution. However, to achieve high precision, it makes
more sense to proceed stepwise and incorporate multiple upsampling layers. Thus, it is
also possible to use skip connections in the model architecture. Analogous to the con-
nections presented in Section 2.3.3, the feature maps "jump" across multiple layers and
are not simply passed on to the next. In this way, the features from the downsampling
path, which are full of contextual information, can be connected to the features of the
upsampling path. Generally, the connection can be done by simple summation or con-
catenation.
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2.3.5 U-net architecture

The U-net model designed by Ronneberger et al. [2015] is one of the most popular archi-
tectures for semantic segmentation tasks. The model was developed in the context of a
biomedical imaging application, but it also performs very well in other application do-
mains [Iglovikov et al., 2017; Li et al., 2018; Tran and Le, 2019]. The authors have used this
architecture on several segmentation challenges and have shown that the model requires
only a few training images (< 40 labeled images) to significantly outperform the precision
of the state of the art. This is mainly due to the quasi-symmetry form of the model, which
allows the transfer of contextual information to the upsampling layers.

Figure 2.9: Schematic illustration of U-Net model as presented in Ronneberger et al. [2015]. The
left half reduces the spatial resolution with convolution and max-pooling layers, while the right
half gradually restores the resolution through convolution and upsampling layers. Skip connec-
tions (gray arrows) concatenate features from each side to propagate contextual information from
early to deepest layers.

Based on FCN architecture, the original U-net implementation, illustrated by Figure
2.9, is mainly divided into 3 parts:

• the contracting path (also called encoder): Similar to a CNN for classification, this
part of the model extracts features from the input image. This results in a sequence
of four downsampling blocks, each consisting of two consecutive convolutions layer
with ReLU activation, followed by a max-pooling layer. After passing through a
block, the spatial dimensions are approximately halved, while the number of fea-
ture maps has doubled.

• the bottleneck: Between the downsampling and the upsampling part, two 3×3 con-
volutional layers followed by 2×2 transposed convolution are inserted. The intuition
behind using this block is to transmit a compressed view of the input that contains
only useful information to better learn the reconstruction in the following block.

• the expanding path (also called decoder): This part can be seen as a mirror of the
contracting path and counteracts it. The max-pooling layers are replaced by trans-
posed convolutional layers. In this way, the spatial dimensions gradually increase
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again while the number of feature maps is halved. Each upsampled output is con-
catenated in the feature channel dimension with the corresponding cropped map
from the contracting path. Finally, the last layer is a 1×1 convolution applied to the
output of the expanding path. Then, a sigmoid function is applied for each pixel,
providing some sort of confidence value for belonging to an object of interest.

2.4 CNNs for object detection

2.4.1 Performing an object detection task

Object detection is one of the classical problems of computer vision. It involves finding,
individualizing, and categorizing all instances of an object present in a given image. This
is a common task in the development of self-driving cars, but also in the context of object
recognition in medical imaging. The complexity of the problem is twofold: on the one
hand, the object in question must be recognized and classified, and on the other hand,
it is also necessary to locate it accurately. For visualization, Figure 2.10 represents the
results of an object recognition model.

Figure 2.10: Object detection outputs with a model trained in Tensorflow from Huang et al. [2017].
Each result is a bounding box, encompassing an object of class according to a certain confidence
score.

Given an object detection system f and a 2D image I ∈ RH×W , an object localization
process results in a list B of size N ∈N :

f : RH×W → B

I 7→ {b1,b2, ...,bN} ,

where each element bi ∈ B is a tuple defining a bounding box (containing the targeted
objects):

bi = (bx ,by ,bw ,bh ,ci , si ) ,

with:

20



CHAPTER 2. DEEP LEARNING FUNDAMENTALS FOR COMPUTER VISION

• bx ,by define the center coordinates of the bounding box.

• bw ,bh refers to the width and height of the bounding box.

• c ∈ C is the object class, where C = {1,2, . . . ,C} is the set of bounding boxes classes,
and nc ≥ 1 is the number of existing object class.

• s ∈ [0,1] is a confidence score associated with the predicted class c.

Using vanilla CNN is not appropriate for solving this type of problem. The first obsta-
cle arises from the fact that the number of objects to be recognized is not known a priori,
so it is impossible to specify a size of the output layer. One way around this difficulty
would be to apply a CNN to different regions of interest, but the variety of sizes and lo-
cations of objects to be detected make this procedure hardly useful. In the next sections,
we describe modern models of object detectors that represent two different approaches:
single-level detectors or two-level detectors.

2.4.2 Traditional detectors

Before the rise in popularity of Deep Learning methods in the 2010s, most computer vi-
sion algorithms relied on handmade representations of images. This involved expertise
for extracting quality feature vectors from input images and feeding classifier models to
it. This section presents the most popular features extraction procedure before the emer-
gence of deep learning-based models.

Scale-Invariant Feature Transform (SIFT)

Developed by Lowe [1999], the SIFT algorithm detects and identifies a set of similar ele-
ments between images. The process consists of collecting key points localization from a
library of images and extracting local descriptors from it for building a reference database.
The resulting features are assumed invariant to image translation, rotation, and scaling,
which facilitates discrimination between each category of objects. Object detection is
then performed on SIFT features and matching it with stored features by measuring Eu-
clidean distance.

Viola-Jones Detector

The Viola-Jones (VJ) detector [Viola and Jones, 2001] is a complete framework proposing
real-time face recognition. The approach consists of using sliding windows across space
and scales and extracting Haar-like features at each step. As illustrated in Figure 2.11,
Haar-like features are computed by considering adjacent rectangular regions in detection
window and summing up the pixel intensities in each region. Computing the difference
between sums provides useful information (edges, straight/diagonal lines, etc.) for object
identification. For the training step, the authors designed a cascade of classifiers allowing
to eliminate most negative bounding boxes and boosting the model speed.

Histogram of Oriented Gradient (HOG)

Dalal and Triggs [2005] proposed the Histogram of Oriented Gradients (HOG) feature de-
scriptor in a context of pedestrian detection on 2D images. It leverages the description
of intensity gradient or edge detection distributions to perform detection. The method
starts by splitting the input image into small connected regions called cells and compute
a histogram of gradient directions for all pixels in the corresponding cell. Adjacent cells
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Figure 2.11: An example of the first Haar-like features used by Viola and Jones [2001]. Each rectan-
gle defines a mask where the sum of pixels delimited by the dark area is subtracted from the sum
of pixels delimited by the bright area.

(and associated histograms) are then concatenated and constitute a block, which will be
normalized for being independent of lighting variations. The HOG descriptors can then
be used to train a linear Support Vector Machine (SVM), though other supervised classi-
fiers are suitable as well.

2.4.3 Region-based CNN (R-CNN)

In 2014, Girshick et al. [2014] pioneered the concept of Region-based Convolutional Neu-
ral Network (R-CNN), which is at the origin of the two-stage models family based on Deep
Learning. The model can be seen as a pipeline made up of four disjoint stages, illus-
trated by Figure 2.12. The first stage of the method relies on candidate regions generation.
Commonly, this step consists of hierarchically grouping pixels, a step often called selec-
tive search (SS) [Van de Sande et al., 2011] leading to about 2000 regions per input image.
Proposals regions are then re-adapted to a fixed size, and given as inputs for fine-tuning
a binary classification CNN (background vs. foreground region). The latter outputs a fea-
ture vector used for training a set of binary SVM and classify each region according the
presence of each object class. Although this method is considered as a precursor in deep
learning-based object detectors, it remains relatively pricey to use. Indeed, forwarding so
many warped regions in a CNN considerably lengthens the training and testing time.

Figure 2.12: Illustration of the R-CNN model. The R-CNN’s workflow consists of four main stages:
generating region proposals, resizing them to a fixed size, extracting features with CNN layers and
classifying each of them. Image credit to Girshick et al. [2014].
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2.4.4 Fast R-CNN and SSP-Net

Numerous improvements have been made in terms of speed and performance through-
out the years. He et al. [2015] and Girshick [2015] respectively introduced Spatial Pyramid
Pooling Network (SPP-Net) and Fast R-CNN, which improved the initial workflow. Both
models feed whole images into convolutional layers first. Next, the SS algorithm is applied
to the resulting feature maps and yields Regions Of Interest (ROI), which are a set of sec-
tions of uneven size of the feature maps. In order to insert FC layers, it is then necessary to
provide a fixed size representation of each region. Following this principle, SPP-Net uses a
spatial pooling layer that consists in applying pooling operations with multiple windows
at different scales. Fast R-CNN, on the other hand, uses a ROI pooling layer, which implies
to apply max-pooling with a single window, but whose size depends on the desired output
size. Thus, both models convert each region into a fixed-size vector that is transferable for
the FC layers to perform a classification task. Note also that Fast R-CNN has an additional
regression branch to learn the offset between each ROI and the corresponding bounding
box of the detected object, as depicted in Figure 2.13. These adjustments allow unifying
independent models in R-CNN (regressors and classifiers) and can lead to gains of up to
one order of magnitude in terms of computational efficiency. However, region proposals
generation is still based on external greedy algorithm, in the sense that SS algorithm takes
local decision to solve the global problem. It starts by a graph-based sub-segmentation
method [Felzenszwalb and Huttenlocher, 2004], and then aggregate recursively regions
according to some similarity criteria (color, texture, size, etc.). The main issue for R-CNN
lies in the fact that region proposal is time-consuming (from 1.8 to 3.7 sec per image).

Figure 2.13: Framework of fast R-CNN. The input image directly feeds the CNN layers and provides
feature maps to which the selective search algorithm is applied. The size of the proposed regions is
then standardized by the ROI pooling layer. The resulting maps are flattened and passed to the FC
layers, whose final branch performs a classification and regression task. Image source: Girshick
[2015]

2.4.5 Faster R-CNN and Mask R-CNN

Faster R-CNN Ren et al. [2015] eventually replaced the bottleneck of the SS algorithm with
Region Proposal Network (RPN). A RPN is basically a CNN trained to output rectangular
region proposals associated with a score indicating how surely the proposal contains an
object, regardless of its class. In practice, the regions are generated from some predefined
reference boxes, which are called anchor boxes, and RPNs actually predict an offset from
their coordinates.

23



CHAPTER 2. DEEP LEARNING FUNDAMENTALS FOR COMPUTER VISION

Figure 2.14: Illustration of Region Proposal Network (RPN). The RPN uses a 3×3 window that slides
over a deep feature map to associate k anchors of different sizes and aspect ratios at each position.
It also uses a convolutional layer to convert the CNN output into a new 256-channel output. In this
way, each unit is a new feature vector of length 256 that feeds into the box regression layer (reg),
which computes the box offsets, and into the box classification layer (cls), which computes the
confidence values. For each input pixel (blue dot), the reg layer returns 4k outputs, while the cls
layer returns 2k outputs. Image souce: Ren et al. [2015]

Figure 2.15: Faster RCNN model from Ren et al. [2015]
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Anchors are generated from the latest feature maps of the backbone network which
denotes a pre-trained CNN used as a feature extraction block. For example, the origi-
nal paper used the VGG-16 model in their implementation. Multiple sizes and ratios can
be preset for defining anchors, allowing different types of objects to be captured. By de-
fault, it is common to configure 9 anchor boxes per location on feature maps. All anchors
are used to feed two FC layers, one for classification task, the other for coordinates re-
gression. Each generated box is defined as positive (foreground class) or negative (back-
ground class) box depending on how much it overlaps with the ground-truth bounding
boxes. The regressor is thus trained for giving boxes coordinates offset to adjust ground-
truth boxes, and the classifier gives a confidence score for each box. Figure 2.14 depicts
the workflow of the model on particular input pixel. Loss function for training a RPN is
defined as follows:

L
(
{pi , ti }

)= 1

Ncl s

Na∑
i

Lcl s(pi , p∗
i )+λ 1

Nr eg

Na∑
i

p∗
i Lr eg (ti , t∗i ) ,

where:

• i is the anchor index inside the mini-batch, Na is the total number of anchors.

• pi is the predicted probability of anchors contains an object.

• p∗
i is the ground truth "probability" value of anchors. The value is 1 for positive

anchors, 0 otherwise.

• ti is the coordinates vector of predicted boxes.

• t∗i is ground truth coordinate associated with bounding boxes.

• Lcl s is a classifier loss (binary log loss over two classes: object vs. non object).

• Lr eg = R(ti − t∗i ) is a regression loss, where R is a smooth `1 loss used in Girshick
[2015].

• Ncl s and Nr eg are normalization parameters of mini-batch size. (In the original pa-
per, Ncl s = 256 and Nr eg ≈ 2400).

• λ is used in order to make loss function equally weighted for the classifier and the
regressor (λ= 10 in the original paper).

To deploy the model on segmentation problems, He et al. [2017] have extended Faster
R-CNN with Mask R-CNN model. Basically, Mask R-CNN presents high similarities with
Faster RCNN and simply replace the ROI pooling layer with a more sophisticated ROI
Align layer. The main interest of this operation is to avoid loss of information induced
by rounding errors due to a floating point division. Bilinear interpolation is then applied
to obtain the exact value of each feature at each position. After passing through a ROI
align layer, all ROI are converted into feature maps of the same shape. For Mask R-CNN,
these feature maps are used to predict a class and bounding box for each R-CNN (like
Fast R-CNN), but the novelty is that a new branch consisting of a small FCN is added to
determine the pixel-level location of each object.

2.4.6 You only look once

By virtue of their step of proposals regions, all methods examined so far correspond to a
set of so-called two-stage detectors. This designation is in contrast to the You Only Look
Once (YOLO) model which embodies the family of single stage detectors. Although they
reach high accuracy, the main bottleneck of two-stage models is their execution time,
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which prevent real-time use in certain practical cases, such as autonomous driving. To
counterbalance this issue, Redmon et al. [2016] implemented the YOLO model whom the
essential idea is depicted in Figure 2.16. Instead of going through a region classification
step followed by refinement stage like Faster R-CNN/Mask R-CNN, this algorithm outputs
class probabilities and bounding box coordinates from an entire image in one pass. The
model divides the input image into S×S cells of equal size, and each cell is responsible for
predicting the object centered in it with B anchors boxes. Each prediction yields 5 com-
ponents: coordinates (bx , by , bw , bh) and confidence value s. The bounding box center
(bx ,by ) is given relative to the bounds of the grid cell while the width and height (bw ,bh)
are predicted relative to the whole image. The confidence score is explicited by the au-
thors as Pr (Ob j ect )∗ IoUtr uth

pr ed where Pr (Ob j ect ) denotes to how likely the box contains

an object, and IoUtr uth
pr ed reflects how accurate the localization is 1. For each grid cell, C

conditional class probabilities Pr (Cl assi | Ob j ect ) are computed. At test time, the con-
ditional class probabilities and the individual box confidence predictions are multiplied
and give a class-specific confidence score for each box:

Pr (Cl assi |Ob j ect )∗Pr (Ob j ect )∗ IoUtr uth
pr ed = Pr (Cl assi )∗ IoUtr uth

pr ed

These scores reflect both the likelihood of that class appearing in the box and how well
the box fits the object. The model only gives one set of class probabilities per cell, and the
output tensor is of size S ×S × (B×5+C).

Figure 2.16: YOLO workflow from Redmon et al. [2016]. Input image is divided into S×S cells, each
producing B bounding boxes, confidence scores, and C class probabilities.

YOLO is known to be particularly fast during runtime and suitable for real-time use.
Its unified architecture allows capturing contextual information and avoid false positives.
However, YOLO consists of several downsampling operations that lead to relatively coarse
features and generalization problems for different object sizes. Furthermore, since only
one object per cell is predicted, the main limitation is the performance of the detection of
small objects near each other in the environment.

1(This score refers to the Intersection over Union metrics between prediction and ground-truth, see Sec-
tion 3.3.1 for more details.)
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2.4.7 Single shot detector

The SSD model proposed by Liu et al. [2016] finds a better trade off between speed and ac-
curacy. Just like YOLO, this model belongs to the one-stage detector family and performs
object detection in one pass. Feature extraction is originally performed by a VGG-16 net-
work, which is truncated from its FC layers. This block is then augmented by successive
convolutional layers that allow a gradual reduction in the resolution of the feature maps
(represented by Conv8_2, Conv9_2, Conv10_2, and Conv11_2 in Figure 2.17). Intuitively,
these supplementary layers can be viewed as a representation of the input image with
multiple scaling that enables the detection of objects of different sizes.

Figure 2.17: Architecture of Single Shot Detector (SSD) model. SSD uses VGG-16 as a feature ex-
tractor and extends it with additional layers of downsampling convolutions. Each new layer is
used for bounding box prediction and allows detection at different scales. Image source: Liu et al.
[2016].

The workflow of SSD has high similarities to those of YOLO and faster R-CNN. The
algorithm divides feature maps to grid cells where default boxes are defined. These are
equivalent to RPN’s anchors boxes and instead of predicting boxes immediately, SSD pre-
dicts coordinates offsets. Each default boxes are predefined with several scales and aspect
ratios values. One scale size is assigned to each layer and all scales are equally spaced be-
tween the layers. Assuming m feature maps are used for prediction, the default boxes
scale for each feature map k ∈ [1,m] is determined by:

sk = smi n + smax − smi n

m −1
(k −1)

where smi n = 0.2 and smax = 0.9 in the original paper. The aspect ratios are config-
ured as ar ∈ {1,2,3,1/2,1/3} and allow to compute the width (w a

k = sk
p

ar ) and height
(ha

k = sk /
p

ar ) for each default box. For the aspect ratio of 1, the authors also append a
default box with a scale of s′k =p

sk sk+1, resulting in 6 default boxes per feature map loca-
tion. Therefore, all predictions are associated with each default box coming from lower to
higher features maps, allowing detection power to be maintained regardless of the size or
shape of objects of interest.

2.4.8 Retina Net

Despite an elegant multiscale detection framework, the evaluation of the SSD model on
COCO [Lin et al., 2014] or PASCAL Visual Object Classes (PASCAL-VOC) [Everingham
et al., 2010] benchmarks tends to show lower accuracy for smaller objects compared to
medium/large object [Liu et al., 2016]. This can be attributed to the fact that the predic-
tions for small objects come from early feature maps, which provide a weaker represen-
tation of the input image. Lin et al. [2017b] addresses this issue by designing a one-stage
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detector named RetinaNet. Its architecture consists of multiple connected blocks: a FPN
for computing feature maps, and a classification subnet and a box regression subnet for
outputting bounding boxes.

Feature Pyramid Network (FPN)

Introduced by Lin et al. [2017a], FPN’s architecture shows similarities with SSD and take
a multiscale approach for object detection. While most CNN consecutively produce de-
creasing height and width feature maps only, FPN is designed for generating growing fea-
ture maps dimensions as well. This allows to build a pyramid-shaped network combining
low and high resolution maps through a top-down pathway and lateral connections (see
Figure 2.18).

Figure 2.18: Architecture of Feature Pyramid Network (FPN). FPN comprises a bottom-up and a
top-down pathway. The bottom-up pathway refers to the feedforward operation of the backbone.
The top-down pathway apply upsampling operation on feature maps of each pyramid stage and
merge it with lateral connections.

The architecture of FPN initiates a bottom-up pathway corresponding to the feedfor-
ward operation of the backbone network. This procedure results in a feature hierarchy
where each level describes a declining scaling of feature maps. Once the highest stage
is reached, the transition to the top-down pathway begins. Each new layer is generated
from an upsampling process of the previous level, to which the lower layer of same size is
merged via lateral connections.

More precisely, the top-down pathway goes as follows:

1. First, a nearest neighbor algorithm is used to upsample the highest feature map, re-
sulting in maps twice larger. The authors assumed that another upsampling method
could be applied for improving performances.

2. Feature maps from the backbone network undergoes a 1×1 convolution layer allow-
ing to reduce the channel dimension and to combine high-resolution features with
low-resolution features

3. Finally, both feature maps are merged by element-wise addition.
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4. The process continues until reaching the largest feature maps, and predictions are
generated by applying 3×3 convolution layer on every merged maps.

Classification and regression subnetworks

Two fully convolutional subnetworks supplement each pyramid level to perform object
detection. The first subnetwork is a classification network which predicts the presence
of each object class. Its architecture comprises four 3×3 convolutions layers, each with
256 channels and ReLU activations. Then, an additional 3×3 convolution layer is applied
followed by a sigmoid activation. This results in an output grid with the same height H and
width W as the input feature map, and with depth (C×k) where C denotes the number of
class object and k the total amount of anchor boxes.

In parallel to the classification subnetwork, a second subnetwork with an almost iden-
tical design operates a regression task to adjust anchor box coordinates. The key dif-
ference lies in the last 3× 3 convolutional layer which produces a feature map of shape
(H,W,4×k) where k still refers to the number of anchor boxes. This output compiles all
predicted offsets relative to the corresponding anchor boxes dimensions.

The final output is obtained by transforming detection proposals coming from each
pyramid level into image coordinates. Detections are then refined with a Non-Maximum
Suppression (NMS) algorithm which essentially involve to select the prediction with the
highest confidence score among a group of overlapping boxes (see Section 3.3.2 for de-
tails).

2.5 Conclusions

This chapter provides a detailed overview of the basic principles required to process and
use Deep Learning models for specific application purposes. Starting with a simple mod-
eling of the biological neuron, we have presented all the basic operations required to train
an algorithm to perform a particular task. As far as computer vision is concerned, it seems
undeniable that the 2010s marked an impressive rise in the popularity of CNNs models in
many application areas. This popularity is largely due to convolutional layers which are
the main building block of these models. In conjunction with pooling, nonlinearity, or
normalization operations, the superposition of convolutional layers enables the creation
of an increasingly complex representation of features in the input image. During training,
the backpropagation algorithm allows the adaptation of these representations so that the
most relevant ones are automatically found to understand the given scene. This last prop-
erty is clearly the main advantage of CNNs over more traditional methods, which often
require a fairly good expertise for the feature extraction phase.

To achieve a better understanding of the presented scenes, the architecture of CNNs
models has been further developed to perform segmentation or object recognition tasks.
Up-sampling operations are particularly useful for transitioning from a lower-resolution
to a high-resolution feature map. Similarly, skip connections are a good way to link con-
textual and spatial information. These components are key elements of the U-net model
that forms the basis of many segmentation models for medical imaging [Kayalibay et al.,
2017; Milletari et al., 2016; Zhou et al., 2018, 2019]. Therefore, in Chapter 4 and Chapter 5,
we will use models whose architecture is derived from the architecture of U-net models
for segmentation of cell nuclei in microscopic imaging.

As for the problems of object detection, we have given an overview of the main models
that have made an important contribution to the field of computer vision. Two main fam-
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ilies of models have been identified: two-stage and single-stage detectors. As the name
suggests, the former divide the task into two subtasks (region proposal and subsequent
region classification), while the latter perform the same task without the region proposal
procedure. This difference generally results in higher accuracy for two-stage models, but
this comes at a higher computational time cost than the single-stage detection models. In
Chapter 3, we review this trend in the context of 3D recognition in medical imaging and
compare different model implementations.
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Chapter 3

Pulmonary nodule detection on 3D CT
scans.

Abstract
In this chapter, we present different methods for object detection based on Deep
Learning and show how they can be used in a medical context. After a brief pre-
sentation of lung cancer and its epidemiology, we expose the need to develop sys-
tems that can perform the same diagnosis as radiologists in Section 3.1. Section 3.2
summarizes all implementations used to train a DL model for pulmonary nodule
detection. Then, Section 3.3 introduces the most common metrics used to measure
models detection performance. In Section 3.4, we propose a comparative analy-
sis of different models performances for detecting pulmonary nodules, as well as
a method for reducing false positives by segmenting the lungs. Section 3.5, we ex-
tend this workflow in a data challenge context by building a decision support sys-
tem that provides an estimate of the malignancy of lung nodules. Finally, Section 3.6
provides an assessment of the results obtained in each context and identifies some
areas where diagnostic support could be improved.
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3.1 Medical context

3.1.1 Motivations

The World Health Organization (WHO) estimates that more than 1.7 million people died
from lung cancer in 2018, making it one of the deadliest cancers worldwide (see Figure
3.1). These deaths can be partially explained by the fact that symptoms do not appear
until the disease is at an advanced stage. The key to reducing lung cancer mortality rates,
therefore, is early and accurate diagnosis of small tissue collections in the lungs called
nodules [Winer-Muram, 2006].

Estimated number of incident cases and deaths worldwide, both sexes, all ages
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Figure 3.1: Estimated number of incidence cases and deaths in 2018 worldwide, all cancers, both
sexes, all ages (adapted from International Agency for Research on Cancer 2019).

There are several medical definitions to describe a pulmonary nodule, but most tend
to describe it as a localized lesion that is more or less round and may be up to 3 cm
in diameter. A collection of representative nodules is shown in Figure 3.2. Patient care
depends on early detection and diagnosis of the type of nodule (cancerous or benign).
Nodule detection has been facilitated by the development of imaging techniques based
on radiographic measurements that allow the interior of an object to be examined with-
out cutting it. In particular, the CT protocol outlines early-stage cancer [Swensen et al.,
2003] and is widely recommended in the patient diagnostic process. However, diagno-
sis remains a difficult analytic thinking even for the most experienced doctors because
malignancy is not determined solely by the size or morphology of the nodule. The only
way to make a true diagnosis is by biopsy or surgery, which carries additional risks for the
patient. In this context, the challenge for computer vision is to support radiologists, who
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are faced with a rather complex and time-consuming task on a daily basis. Computer-
aided diagnosis (CADx) techniques therefore have a threefold goal: speeding up analyses,
eliminating subjectivity in image interpretation, and reducing medical costs.

Figure 3.2: A collection of pulmonary nodule extracted from the LIDC dataset [Armato III et al.,
2011]. Lung nodules are lesions of a more or less spherical shape whose presence can be the direct
consequence of lung cancer.

The construction of an effective CADx system can rely on different approaches. San-
tos et al. [2014] developed a methodology based on classical image processing and ML
techniques. The combination of texture features for detecting nodules regions associated
with SVM classifiers to discriminate non-nodule from real nodule has shown satisfactory
performance. Peña et al. [2016] implemented a four stage pipeline starting with lung de-
tection and segmentation and performing connectivity algorithm to select nodules can-
didates. Camarlinghi et al. [2012] joined the output of three existing CADx systems and
demonstrated the combination of different approaches offers better results than each sin-
gle system.

The major drawback with these methods is the extracting process of features, which
are totally handmade and depending on experts comprehensions, developers and/or pa-
rameters used during the image acquisition. On the contrary, DL methods automatically
learn relevant features from the data, provided, thus enhancing the model’s generaliza-
tion. In particular, CNN-based methods are considered to improve on human experts for
accurate diagnosis of early pulmonary nodules [Zhao et al., 2012]. Hence, more and more
methods using DL have emerged to detect and classify nodules.

3.2 Training strategy for nodule detection

In this section, we describe all the procedures we use to train a nodule detection model.
We mainly rely on a Python framework developed by Jaeger et al. [2018] called Medical
Detection Toolkit (MDT)1. The latter offers implementations of powerful tools for training
and testing state-of-the-art detection models on any customized datasets.

1https://github.com/MIC-DKFZ/medicaldetectiontoolkit
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3.2.1 Datasets

Lung Image Database Consortium

Datasets play a key role in the development of efficient DL-based frameworks. Whether
for classification, segmentation, or object recognition problems, high quality labelled
data is key for training. In the medical field, the labelling procedure requires at least
one expert, and in particularly ambiguous cases, possibly several. This process is very
costly, both in terms of human and material resources, and is the main barrier to devel-
oping robust models to improve health outcomes in a hospital setup. To encourage the
development of CADx solution for nodule detection, academic institutions and indus-
trial companies collaborated to develop a public database, called LIDC [Armato III et al.,
2011]. This dataset includes a total of 1018 cases from 1010 patients, consisting of 244,527
Digital Imaging and Communications in Medicine (DICOM) files and corresponding XML
files with experts annotations. Each DICOM file corresponds to a two-dimensional (2D)
slice image of a patient’s scan. The combination of all slices from the same patient results
in a 3D volume and represents the entire CT scan. Figure 3.3 shows examples montage of
annotations superposed on CT scan. For data labeling, four radiologists have participated
in a two-stage process. The first step was a blinded-reading phase involving to review in-
dependently all CT scans, then marking and categorizing all discoveries. After completed
this phase, all results were compiled and sent back to the same radiologists to begin the
unblinded phase. In this way, each expert reviewed his own evaluation and those of his
colleagues and assigns a final mark category. This procedure enables to capture as many
candidate nodules as possible without forcing a consensus among the experts. LIDC orga-
nizers decided to define three different mark categories, based on the nature and the size
object. To build efficient CADx system, both nodules and non-nodules were annotated
and categorized.

1 2 3 4

8765

Figure 3.3: Left: a slice of 3D CT scan taken from LIDC dataset. Right: 3D annotations by several
radiologists depicting a nodule (blue). From 1 to 8, the scan slices are cropped and sorted in order
of depth in the lung.

Nodule with a diameter ≥ 3mm but ≤ 30mm. This class was manually segmented and
contours of objects have been defined in 3D. In addition, each expert has given a complete
characterization by giving a 1-5 rating on different criteria :

• Subtlety: which refers to the difficulty in detection
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• Internal structure: or expected internal composition of the nodule (soft tissue, fluid,
fat, air)

• Calcificiation: pattern of calcification if present

• Sphericity: the three-dimensional shape of the nodule in terms of its roundness

• Margin: description of how well-defined the margins of the nodule is

• Speculation: amount of speculation (or spikes) present in nodule

• Texture: internal texture or composition of nodule in terms of solid and ground glass
components

• Malignancy: reflecting how likely the annotation corresponds to a malignant nodule,
(based on the assumption of a 60-year-old male smoker)

Nodule with a diameter< 3mm. This class was labelled with only an approximate three-
dimensional center of mass, with no other characteristics. If the opacity clearly indicated
a benign nodule, no marking was done.

Non-nodule with a diameter ≥ 3mm. These markers were used to indicate anomalies
in the scan but are not considered nodules. Explicitly indicating objects that do not rep-
resent potential cancer is very useful for developing an appropriate algorithm. Neverthe-
less, non-nodule objects with a diameter < 3mm were simply ignored.

ANODE09 and LUNA16 challenges

To provide an objective comparison between CADx systems, several competitions were
conducted using a common database and common evaluation criteria. Automatic Nod-
ule Detection 2009 (ANODE09) Van Ginneken et al. [2010] was the first competition orga-
nized in this direction. However, the main limitation was the lack of diversity of available
scanners: only about fifty scanners were made available to which the same acquisition
protocol was applied.

Lung Nodule Analysis 2016 (LUNA16) focuses on a large-scale evaluation of nodule
detection on the LIDC dataset. As the data description on the website states2 CT scans
with inconsistent slice thickness or with slice thickness greater than 2.5 mm were ex-
cluded, resulting in a final list of 888 scans merged into MetaImage (.mhd) files. In ad-
dition, the organizers decided to take as reference all nodules greater than 3 mm in di-
ameter that were annotated by at least three radiologists. The other markers (nodules
≤ 3mm, non-nodules ≥ 3mm, nodules ≥ 3mm that were marked by only 1 or 2 radiolo-
gists) are simply ignored in the analysis. Therefore, all detections corresponding to these
annotations are considered neither true positives nor false positives, since they represent
abnormalities that may be important in the diagnosis of other pathologies.

3.2.2 Preprocessing

The nodule detection task is performed on LIDC dataset consisting of 1018 CT scans ac-
quired from different hospitals and thus from different scanners and protocols. To man-
age the large variety of data, a unification process must be applied to all patients. Götz
[2018] provided a first framework operating a preliminary data conversion step3. CT scan
are converted from a whole DICOM (.dcm) Series to nearly raw raster data (.nrrd) files to

2https://luna16.grand-challenge.org/Data/
3See: https://github.com/MIC-DKFZ/LIDC-IDRI-processing/tree/v1.0.1
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be read directly as 3D stacks. The contours of the nodules defined by the experts are ex-
tracted from XML files to define a nodule segmentation mask in Nifti format (.nii.gz). The
features relating to the size of the nodule, its position or its malignancy is also extracted
from XML files and converted to CSV format4.

Material HU

Air -1000
Lung -500

Fat [-100,-50]
Water 0
Blood 30-45

Muscles 10-40
Bones 700

Foreign bodies > 1000

Table 3.1: Hounsefield Unit (HU) values for some components located in or around the lungs.
Data extracted from HU scale wikipedia page.

CT scanning uses X-rays to create lung slices whose intensity values correspond to
an attenuation coefficient given in Hounsfield Unit (HU). As suggested in Table 3.1, HU
values are directly associated with some fluids or body parts. To remove some unneces-
sary information, voxels intensities of CT were clipped between -1200 and 600 HU before
applying a standardization process. To facilitate the detection of each nodule, the next
step is to resampled the dataset (i.e. scans and masks) to a fixed pixel resolution. For
each patient, the dimensions of the pixels (height and width) and the distance between
each slice (depth) are stored in the meta-information that is written in each DICOM file.
To account for the heterogeneity of the data, all scans were resampled to a resolution of
0.7×0.7×1.25mm3, which is approximately the average resolution in the whole dataset.

The nodule features are also extracted from the CSV file to summarize the annotations
of all the raters. In this way, a consensus contour for each lesion is determined by pixel-
wise majority voting. In addition, averaging the malignancy score assigned by each expert
allows the determination of the class of each region (benign or malignant). The result of
this method is a segmentation of all nodules in the scan. Once pre-processing is complete,
the images and corresponding masks are saved as numpy arrays (.npy) to dynamically
load the data during training, and meta-information about the location and severity of
the lesions is stored in a pickle file (.pck). With this configuration, the dataset occupies a
total of more than 300 GB of storage space.

3.2.3 Compared models and implementation details

Nodule localization can be understood from two points of view: either it can be consid-
ered as a segmentation problem or as an object detection problem, and in both cases
different state-of-art architectures are used in the following sections. Essentially, we re-
produced the nodule detection experience described by Jaeger et al. [2018] using their
MDT. All models described in this section are derived from this framework and are avail-
able both in a 2D and 3D implementation using Pytorch 0.4.1 library5.

4This script was only tested with Windows. The authors assume that the script will also run on Linux, but
no guarantee is given.

5A branch update with Pytorch >= 1.4.0 is available since April 2020, but not used here.
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Backbone model

To ensure fairness between models, the feature extraction phase is performed with the
same backbone FPN based on ResNet-50 [He et al., 2016]. The original ResNet-50 model
consists of 5 blocks whose corresponding outputs are denoted by {Ci }i∈[1,5]. The first block
is a convolutional layer 7× 7 with 64 filters and a stride of 2, followed by a layer of Max
Pooling 3× 3 with also a stride of 2. The following blocks of the model are organized in
a series with a fixed length of residual blocks consisting of 3 convolutional layers (1× 1,
3×3, then again 1×1). At each stage, the spatial resolution is divided by two compared
to the input size, while the depth has doubled. Then, the top-down pathway rebuilt each
level of the pyramid {Pi }i∈[0,5] by successively applying upsampling operations and us-
ing blocks Ci via lateral connections. Figure 3.4 provides a helpful representation of a
model incorporating this architecture. Six levels are shown in the pyramid denoted as
{P0,P1,P2,P3,P4,P5}, where Pi has resolution 2i lower than the input image.

U-FPN

Following the U-net of Ronneberger et al. [2015], a model called U-FPN is used as a base-
line for segmentation task. The difference lies in the lateral connections, which apply a
1× 1 convolution on each block Ci before being merged by element-wise addition with
pyramid level Pi+1. Moreover, a 1×1 layer is added after P0, followed by a softmax layer
applied to the pixels to obtain a final segmentation of the input image. The confidence
value assigned to each bounding box is defined by the maximum probability among all
pixels in the box.

Mask R-CNN

The implementation of the Mask R-CNN adds a RPN branch at each pyramid level except
P1 and P0. The number of RPN feature maps is 512 in 2D, while in 3D it is lowered to 128
because of GPU memory limitations. The x y size of the anchors is chosen according to
the standard size of the objects in the dataset and set to {42,82,162,322} for pyramid levels
from P5 to P2. For 3D model, experience shows that medical images resolution in the z
axis is generally lower than in x or y , so the depth of anchors cubes are set to {1,2,4,8}.

Retina Net and Retina U-net

The models Retina net and Retina U-net [Jaeger et al., 2018] belong to the family of single-
stage detectors and replace the RPN by two subnetworks: a classifier and a regressor. It
consists of four 3× 3 convolutional layers with 256 kernels (64 in 3D) and a final 3× 3
convolutional layer with ncl ass ×nanchor filters for the classifier and nanchor ×d ×2 filters
for the regressors, where d denotes the dimensionality of the input image (2D or 3D).
The Retina U-net model, as shown in Figure 3.4, adds a segmentation output by simply
applying convolution and softmax layer to the last layer of the top-down pathway P0.
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Figure 3.4: Architecture of Retina U-net proposed by Jaeger et al. [2018]. The model consists of a
FPN with a Resnet-50 backbone that enables feature extraction at different scales. A ROI regres-
sor and a classifier are connected to each pyramid level from P2 to P5 and provide bounding box
output. A segmentation output is also given by applying 1×1 convolution and softmax layer on
P0.

3.2.4 Loss functions

Regardless of the given problem, training a model is fundamentally about optimizing a
loss function in the context of the task being learned. This implies that the values of ob-
served loss over epochs should indicate whether the predictions of the model are improv-
ing. As a consequence, the choice of a relevant loss function affects the robustness and
efficiency of the final model. This section lists the loss functions used in our experiences.

Classification loss functions

Most classification models are constructed to provide an output for each class in the form
of a value between 0 and 1, which is equated with a probability of belonging to the class.
The most common and appropriate loss function in this configuration is the cross-entropy
function, which is a measure of the distance between two distributions. In the case of a
binary classification with N samples, all predicted probability si are compared to target
class yi (= 0 or 1) using the binary cross-entropy (BCE):

LBCE =− 1

N

N∑
i=1

(
yi log(si )+ (1− yi ) log(1− si )

)
. (3.1)

Intuitively, this function strongly penalizes the large differences (close to 1) between prob-
ability and real class. For multi-class problem with C > 2 class, this function can be gen-
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eralized to Categorical Cross Entropy (CCE):

LCCE =− 1

N

N∑
i=1

C∑
c=1

yi ,c log(si ,c ) , (3.2)

where yi ,c is a binary indicator encoding the class c of the i -th observation, and si ,c the
corresponding probability.

Regression loss function

The regression task is concerned with the prediction of continuous quantities. The stan-
dard loss functions used in this context are generally the absolute error L1 = |y − ŷ | or
the quadratic error L2 = 1

2 (y − ŷ)2. Both have different mathematical properties that rep-
resent an advantage or disadvantage when compared to each other. For example, L2 is
differentiable everywhere, while L1 is not differentiable at 0. However, L1 is less sensi-
tive to outliers than L2. The Huber loss [Huber, 1992] is often presented as a compromise
between L1 and L2 taking the behavior of one or the other from a fixed parameter δ> 0:

Lr eg =
{ 1

2 ·
(
y − ŷ

)2 if |y − ŷ | ≤ δ
δ

(|y − ŷ |− 1
2 ·δ

)
otherwise.

(3.3)

This function can be used for predicting bounding box coordinates and to measure the
accuracy of the estimated bounding box position.

Segmentation loss functions

For segmentation tasks, (3.1) and (3.2) can easily be adapted pixel-wise. To counteract the
large imbalance between the different pixel classes, it is also possible to extend the cross
entropy to a weighted form called weighted cross entropy (WCE):

LWCE =− 1

Npi x

Npi x∑
i=1

C∑
c=1

βc log(pi ,c ) , (3.4)

with pi ,c is a pixel element of the predicted probability map for class c, Npi x denotes the
number of input pixels and βc is a weight value related to class c. In practice, larger weight
values are assigned to underrepresented class. Another popular loss function for evalu-
ating the performance of a segmentation model is the Dice loss function [Milletari et al.,
2016]. Ranging from 0 to 1, this function measures the overlapping between prediction
and ground truth:

LDi ce = 1−2 ·

Npi x∑
i

pi gi

Npi x∑
i

pi +
Npi x∑

i
gi +ε

, (3.5)

where pi is a pixel of the predicted probability map with as many channels as classes,
gi a pixel of the one-hot ground-truth tensor, and ε > 0 a small constant for numerical
stability.
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3.2.5 Batch balancing

The images from the LIDC dataset are particularly large because they are acquired as 3D
volumes. This means that most computers, even those with the best GPU, have difficulty
using a full scan as a single entity that forms a batch during the training phase. The most
common solution to this problem is to train a model from subregions of fixed size in each
image, called tiles or patches.
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Figure 3.5: Description of the LIDC dataset after the preprocessing stage described in section 3.2.2.
Left: countplot depending on the presence of nodules in each CT scan. Right: histogram of vol-
umes (in voxels) according to nodule type.

Figure 3.5 gives an idea of the substantial imbalance of classes in the LIDC dataset.
At patient level, scans without nodules make up only about 25 % of the total dataset. At
annotation level, the average dimensions of bounding box are about 10× 10× 10. This
means that the proportion of voxels belonging to the nodule class is drastically smaller
than the proportion of voxels belonging to "non-nodule" regions. With such a class im-
balance within the training dataset, ML models tend to misclassify instances belonging
to minority groups. To overcome this problem, the extent of imbalance is reduced by a
batch balancing method at training.

The batch balancing method implemented in MDT is performed at two levels. First,
a selection of patients is made with respect to the type of nodule present in each scan.
Second, another selection is performed to determine the center of the tile to be extracted
from the full scan.

Patient picking

When creating a training batch, it is necessary to pick a list of patients in advance to in-
crease the chances of obtaining as many tiles with benign and malignant nodules as pos-
sible. The procedure is described by Algorithm 1 and consists of randomly selecting each
patient and checking that the nodules present in the current scan do not increase the class
imbalance in the batch. Thus, for each selected patient, each type of nodule is counted
to determine the patient’s weak class, denoted cweak . If the weak class also matches the
weak class of the batch to be created, the scan is rejected, otherwise it is accepted. In
addition, a slack factor s f ∈ ]0,1] is introduced corresponding to the fraction of patients
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selected without any filtering. For the problem of nodule detection, the default value is
set to 0.2, but this value can be increased for extremely imbalanced datasets.

Algorithm 1: Patient picking

Input : M: batch size, Pl i st : list of patients in the training set, s f ∈ ]0,1]: slack
factor

Initialize Pl i st
batch = {}

for i = 1, . . . ,M do
Keep looking ← True
while Keep looking do

k ← Pick a random index uniformly among Pl i st

Count s ← List of number of nodules for each class
cweak,tmp ← argmin(Count s) // Check the least occurring nodule class

for this patient.

if i ≤ |M× s| then
Keep looking ← False

else
Condi t i on1 ← cweak,tmp 6= cweak // Check if the weakest class in

this patient is not the weakest in current batch.

Condi t i on2 ← Count s (cweak ) > 0 // Check if at least one region

of this patient belongs to the weakest class.

if Condition 1 & Condition 2 then
Keep looking ← False

else
Keep looking ← True

Add patient k to Pl i st
batch , and update the weakest class cweak .

Output : Pl i st
batch

Patch picking

Most LIDC scans have x y dimensions of size 512×512, while their depth (z dimension)
ranges from 200 to 800 slices. Since the size of nodules is particularly small compared
to the dimensions of the individual scans, it is likely that a purely random extraction of
tiles will result in numerous tiles without objects. To maintain the equilibrium previously
established by Algorithm 1, MDT also includes a patch extraction procedure around ran-
domly selected nodules. This extraction mechanism is triggered according to a Bernoulli
process parameterized by a foreground probability p f g , set to 0.5 by default. When the
outcome of the Bernoulli process is "failure", the center pixel of the tile is randomly se-
lected. In either case, extracting a tile of dimensions (tH, tW , tD) is constrained by the di-
mensions of the full scan of dimensions (H,W,D). This means that the center of each tile
is at a certain distance from the edges of the scan. The procedure for tile extraction is
described by Algorithm 2.

3.2.6 Data augmentation

Data augmentation is a common method for training models. This method not only saves
the cost of obtaining and labeling new data, but also has the main effect of avoiding over-
fitting to the training data and increasing the robustness of the models. The goal is to in-
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Algorithm 2: Patch picking

Input : p f g : foreground probability, (tH, tW , tD): the tile size, a patient list Pl i st
batch

of length M
for i = 1, . . . ,M do

Scan ← i -th element of patient list
H,W,D ← Scan dimensions
Pick x ∼ Ber n(p f g )
if x > 0 & Patient has at least one nodule then

Pick a random nodule among all nodules in current scan.
Pick a random pixel coordinate (r,c,d) among all pixels belonging to the

picked nodule.
// Looping over dimensions to pick patch center coordinates

for di mt i le = tH, tW , tD ; di mscan = H,W,D; pcoor d = r,c,d do

Low ← max
(

di mt i le
2 , pcoor d − dimt i le

2

)
High ← mi n

(
di mscan − dimt i le

2 , pcoor d + dimt i le
2

)
Pick a random coordinate between Low and High.

else

Pick any coordinates away from the image border by at least dimt i le
2 for

each dimension.
Extract a patch centered around the resulting coordinates and append it to

batch.
Output : A batch with M elements consisting of tiles of size (tH, tW , tD)

crease the diversity of the training dataset by applying different geometric or photometric
transformations to each image fed to the model.

When sufficient storage space is available (say for relatively small datasets) offline aug-
mentation is most common, and consists of enlarging the dataset by applying most com-
binations of transformations, and storing each resulting image. It has the advantage of
controlling the augmentation factor of the dataset and making it easier for developers to
verify the quality of the augmentation. In this work, we have investigated an alternative
solution by augmenting the data using an online approach. We perform data transfor-
mations when visiting each training batch. Thus, at each iteration, the current batch is
randomly subjected to a combination of the following transformations:

• Translation: it consists in shifting the image by several pixels in one or more dimen-
sions. For example, the transformation allows a tile not always to be centered on a
nodule. The displacement parameters are bound to the tile size.

• Rotation: a random angle between 0 and 2π is picked, only on the X axis in 2D, only
on the Z axis in 3D. If the labeled regions in the training mask are not preserved after
rotation, the transformation is cancelled.

• Flipping: it is a quite easy transformation consisting in reversing the order of pix-
els/voxels in one or more dimensions.

• Random scaling: it randomly rescales the inputs (ratio in [0.8,1.1] in our experi-
ences). This operation is followed by a centered or random crop.

• Random cropping: it randomly selects any section of the original tile and then resizes
it to the original tile size.

• Elastic deformation: it corresponds to applying a force that deforms the shape of the
objects in the image. Firstly, a grid of points assigns a random displacement to each
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Figure 3.6: Intersection over Union (IoU) equation. The IoU metric reflects how close a prediction
provided by an object detector is to the target object (the closer to 1, the better the match).

control point. Then a displacement of each pixel in the input image is calculated by
interpolation with this grid.

3.3 Evaluating nodule detectors

Object detection in computer vision has experienced a significant rise of popularity in re-
cent years due to its wide range of applications. In particular, there is a certain recurrence
of competitions rewarding the best performing models on specific datasets. Depending
on the edition of the competitions, the metrics used to establish a ranking of the mod-
els are dependent on the specificity of the underlying datasets. In this section, we focus
on metrics used on the most popular competitions for object detection: PASCAL-VOC
challenges 6, and COCO detection challenges 7. We also examine the metric used in the
LUNA16 challenge, on nodule detection.

3.3.1 Intersection over union

Object detection is a quite complex task implying to locate accurately and classify multi-
ple targets on the same image(s). The evaluation of a model detector requires:

1. A set of ground-truth bounding boxes Bg t comprising all rectangular regions of all
object classes to be detected in the dataset.

2. A set of predicted bounding boxes Bpr ed given by a model, each complemented by a
class and a confidence score value.

To evaluate the quality of object detection models, it is common to quantify the prox-
imity between detections and target objects. This means evaluating the proportion of
overlap between predicted and ground-truth bounding boxes for each object class. Fol-
lowing Jaccard’s index [Jaccard, 1901], this measure is denoted IoU and provides a simi-
larity value between two boxes. Let bg t be a ground truth bounding box and bpr ed be any
bounding box output from a model, then IoU is defined as the ratio of the area of their

6http://host.robots.ox.ac.uk/pascal/VOC/
7https://cocodataset.org
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intersection to the area of their union:

IoU
(
bg t ,bpr ed

)= ar ea
(
bg t ∩bpr ed

)
ar ea

(
bg t ∪bpr ed

) .

As it is suggested by Figure 3.6, the best possible detection would perfectly match with
the reference object box and give an IoU score of 1. On the contrary, IoU

(
bg t ,bpr ed

) = 0
corresponds to a situation where both boxes do not overlap each other.

3.3.2 Filtering detections

Since the image size often exceeds the memory capacity of the GPU, the prediction proce-
dure is performed at the tile level. To increase the model accuracy, several strategies can
be combined during inference: predicting on high overlapped tiles, using multiple mod-
els, apply test-time augmentation, ... These processes can result in numerous detections
that overlap heavily, forming clusters of detections on the image that must be pruned to
remove redundancies in the detectors’ outputs.

Non-Maximum Suppression (NMS)

Non-Maximum Suppression (NMS) is the most popular algorithm used for object detec-
tion task [Felzenszwalb et al., 2010; Girshick, 2015; Redmon et al., 2016]. The algorithm
selects one bounding box among many overlapping items and partially ensures that each
object is identified only once. The selection’s criteria combines probability threshold and
overlapping measure, such as IoU. As defined in Algorithm 3, for a list of proposal boxes
Bi n with its list of corresponding confidence score Si n , and an overlap threshold τ, the
NMS algorithm gives a new list of filtered boxes Bout as follows:

1. Select the proposal bounding box with the highest confidence score in Si n .

2. Remove it from Bi n and append it to Bout .

3. Proposal comparison: compute the IoU of the current proposal with every other
proposal. If the IoU is greater than the threshold τ, remove that proposal from Bi n .

4. Repeat from step 1 to step 3 until there are no more boxes in Bi n .

3.3.3 Labeling of detections

Metrics for measuring the performance of object detectors are generally based on the
threshold of IoU score. Calculating this score between the actual and predicted bound-
ing box allows us to define the nature of each detection in terms of classification results.
In this section, we focus on a binary problem (nodule vs. non-nodule regions), but the
concepts can be easily generalized to problems for multi-classes problems.

Here, a few reminders of binary classifications definitions in ML. Interpretations are
adapted for nodule detection problem:

• A True Positive (TP) corresponds to a nodule present in the image that has been cor-
rectly detected. The term "correctly detected" means that there is a predicted bound-
ing box that has a IoU with the ground truth bounding box above a predefined thresh-
old τ. Typically, τ= 0.5 is used.

• A False Positive (FP) corresponds to all boxes wrongly identified as positives (i.e. con-
taining an object). For nodule detection, the situation is similar to detect a nodule
whereas there is none.
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Algorithm 3: Non-Maximum Suppression algorithm

Input : τ: the NMS threshold
Bi n : list of input bounding boxes
Si n : list of corresponding confidence score for each bounding box
Bout ← {}
Sout ← {}
while Bi n 6= {} do

ismax ← argmax(Si n)
smax ← sismax

bmax ← bismax

Bi n ← Bi n \ {bmax}
Si n ← Si n \ {smax}
Bout ← Bout ∪ {bmax}
Sout ← Sout ∪ {smax}
for b ∈ Bi n , s ∈ Si n do

if IoU(b,bmax) ≥ τ then
Bi n ← Bi n \ {b}
Si n ← Si n \ {s}

Output : Bout ,Sout

• A False Negative (FN) refers to a missed object by the detector. It may be an absence
of box on the object, or it may be boxes whose IoU value is below a certain threshold
τ.

• A True Negative (TN) can be thought as a non-object regions where no detection has
been made by the model. Because of the large imbalance between TNs and TPs, it is
generally discarded for computing object detection metrics.

3.3.4 Precision-Recall curve

Regardless of the given confidence score, each bounding box on the image can be clas-
sified as TP or FP according to some criterion. For object detection, the IoU score with
a fixed threshold τ = 0.5 is classically used. In addition, the model may also have failed
completely in locating some objects, which are then classified as FN. Consider a dataset
consisting of G ground truths and a model with N detections. Assuming S output(s) as
true positive(s) (S ≤ G), the following equations describe the precision and recall values:

Pr eci si on =

S∑
n=1

TPn

S∑
n=1

TPn +
N−S∑
n=1

FPn

= 1

N

S∑
n=1

TPn

Recal l =

S∑
n=1

TPn

S∑
n=1

TPn +
G−S∑
n=1

FNn

= 1

G

S∑
n=1

TPn ,

where sums simply refers to a count of detection with specific nature. Therefore,
S∑

n=1
TPn

is the total number of TP detections.
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True positive
(Good detection)

False positive 
(Wrong detection)

False negative
(Missed nodule, no detections)

Missed 
nodule

Figure 3.7: An illustration of true positive (blue), false positive (red), false negative (orange) in
object detection task adapted for pulmonary nodule detection.

Precision measures the accuracy of the model’s predictions, i.e. the percentage of cor-
rect predictions. Recall measures how well the model find all real objects. Given a certain
IoU threshold τ> 0, all boxes can be labelled as TP, FP or FN, and a Precision-Recall (PR)
curve is plotted for each class. Predicted boxes can be ranked in descending order ac-
cording to their corresponding confidence score value. By iteratively using multiple con-
fidence thresholds, each points of precision and recall coordinates can be obtained, as it
is depicted in Figure 3.8.

Box 
rank

Confidence 
score

IoU
score

TP/FP Precision Recall

1 1.0 0.8 TP 1 0.01

2 0.99 0.75 TP 1 0.02

3 0.97 0.2 FP 0.67 0.02

4 0.9 0.6 TP 0.75 0.02

5 0.88 0.0 FP 0.60 0.03

6 0.85 0.5 TP 0.67 0.04

… … … … … …

…

0.85 1.0

0.99

0.88 0.97

Patient 1

Patient 2

Patient n

0.9

Figure 3.8: Workflow for computing precision and recall values in a context of nodule detection
task, assuming IoU threshold τ= 0.5 and the amount of nodule to detect is G = 100.
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Figure 3.9: Precision-Recall curve with 11-points interpolation (left) and all points interpolation
(right). The given average precision (AP) score depends on how many precision values are inter-
polated.

High recall but low precision values means that although the model has provided nu-
merous boxes, most are FPs, while a small proportion actually contains a target object.
In contrast, high precision with low recall means that most proposed boxes are TPs. For
each object’s class, a high performance object detector must maintain high precision as
recall increases. By measuring the area under the PR, curve, the quality of the detections
can be quantified. This score is named Average Precision (AP) score and can be formally
expressed as follows:

AP =
∫ 1

0
p (r )dr .

Ranking detections leads to inadequate variations in the p (r ) function with a "wave"
effect. With the introduction of PASCAL-VOC challenges in computer vision communi-
ties, the integral form is replaced by a finite sum over some recall values, and interpola-
tions of precision values were suggested. AP computation proposed by Everingham et al.
[2010] implies to interpolate precision over 11 points corresponding to recall values from
0.0 to 1.0 with 0.1 step:

AP = 1

11

∑
r∈{0.0,0.1,...,1.0}

pi nter p (r ) ,

where pi nter p (r ) is an adjustment made on the curve by assigning the maximum precision
value for recalls values higher than r :

pi nter p (r ) = max
r̃≥r

p(r̃ ) .

In addition to a lack of precision, this method cannot provide a satisfactory compar-
ison between methods with a low AP score. This explains why a different AP calculation
is adopted after 2008 challenges from PASCAL-VOC. The AP value is then computed by
removing all zigzags in the curve and considering all recall values. This is equivalent to a
sum of area of rectangles:

AP =
n∑

k=1
(Rk −Rk−1)Pk ,
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Notation Definition

APIoU=0.75 AP with an IoU threshold = 0.75
AP0.5:0.05:0.95 Mean AP with IoU from 0.5 to 0.95 with a 0.05 step.

APsmal l AP for small object (Area < 322)
APmedi um AP for medium object (322 ≤ Area < 962)

APl ar g e AP for large object (Area ≥ 962)

Table 3.2: Overview of AP metrics introduced by COCO challenge [Lin et al., 2014].

where Pk and Rk are respectively the precision and the recall values considering the top-k
highest score bounding boxes detections. For multi object detection problem, AP can be
computed for all classes and mean Average Precision (mAP) is then defined as the mean
of AP for each class.

mAP = 1

C

C∑
c=1

APc ,

where C is the number of class object. The AP score is commonly computed with a IoU
threshold of 0.5, but latest COCO competitions computes AP through several IoU thresh-
olds (see Table 3.2).

3.3.5 Free-Response ROC curve

With a perspective of global diagnosis, data labelling consists of assigning a category to
each image. This procedure is compatible with Receiver Operating Characteristic (ROC)
analysis, which graphically results in a ROC curve. Basically, the ROC curve represents the
performance of a classification model by plotting sensitivity (synonym for recall) versus 1
- specificity, which denotes the false positive rate. For classification task, the calculation
of the corresponding Area Under the Curve (AUC) score is considered a standard evalua-
tion procedure for comparing models. However, this methodology has some significant
limitations in the context of medical imaging, as it does not take into account the local in-
terpretations required for some ROI to provide a global response at the patient level. As a
result, the ROC analysis does not clearly reflect whether the detected regions are relevant
to an accurate diagnosis.

With Free-response Receiver Operating Characteristic (FROC) paradigm [Bunch et al.,
1978], ground truths are no longer limited to one rating per image, but include informa-
tion about each abnormality. Using medical vocabulary, a lesion localisation (LL) charac-
terizes a TP detection, while a non-lesion localisation (NL) outlines a FP detection. Sim-
ilar to sensitivity, the Lesion localisatsion fraction (LLF) represents the ratio between the
number of all LLs nLL and the total number of lesions nl esi on :

LLF = sensi t i vi t y = nLL

nlesi on
.

Analogously, the Non-lesion localisation fraction (NLF) corresponds to the average num-
ber of FPs per scan:

NLF = nNL

nscan
,

with nNL is the number of NLs and nscan the total number of scans.
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The FROC represents the plot of the collection of LLFs vs. NLFs values along the varia-
tions of a confidence score threshold ζ. The point (0,0) refers to a threshold value ζ higher
than all detection confidence scores (typically ζ = 1 with softmax layer outputs). Gradu-
ally decreasing the threshold value allows to compute the relating LLF’s and NLF’s values
and plot the whole curve. It should be noted, however, that a detection model does not
necessarily always generate a bounding box for all lesions in the data. Thus, unlike the
ROC curve, the FROC curve is not guaranteed to achieve a sensitivity of 1. Figure 3.10
shows an example of the graphical representation of ROC and FROC curves.
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Figure 3.10: Illustration of ROC and FROC curve. In the medical context, the ROC curves are gen-
erally used to measure the quality of a global diagnosis, while the FROC curves show the quality of
a detection system that can help in the diagnosis.

Competition Performance Metric (CPM) score

Establishing an appropriate Figure of merit (FOM) is crucial for performance evaluation
of models. The value extracted from FROC data must be representative of the quality of
correct detections while reflecting the poor ones. AUC score is commonly used with ROC
data. However, the particularity of the FROC paradigm makes the comparison between
detection systems more complex. Since the number of detections per image is not fixed a
priori, curve’s abscissas may extend beyond 1, then making the AUC scores irrelevant.

Nowadays, most CADx systems offer a parameter setting allowing to be more or less lax
on the confidence scores attributed to the proposed detections. LUNA16 challenge evalu-
ation metrics was based on Competition Performance Metrics (CPM) score Van Ginneken
et al. [2010]. This metric refers to an average of LLF at 7 predefined NLF values (1/8, 1/4,
1/2, 1, 2, 4, 8):

CPM = 1

7

∑
i={1/8,1/4,1/2,1,2,4,8}

LLF(i ) .

Similar to a ROC analysis, the perfect object detection model will reach 1. In addition,
measuring sensitivity at low levels helps to determine which models are best suited for
routine clinical use.
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3.4 Experiments and results

In this section, we propose a comparative analysis on the performance of each model
presented in Section 3.2 with the metrics proposed in section 3.3.

3.4.1 Comparative analysis: 2D vs 3D models

Training setup

To determine which model is preferable in a clinical context, we examine the performance
of 2D and 3D implementations of the following models: U-FPN, Mask R-CNN, Retina Net,
Retina U-net. Each model was evaluated using the LIDC dataset with identical 5-fold
cross-validation. Therefore, for each iteration, 80% (n = 828) of the scans are used as the
training (60%) and validation (20%) set and the remaining 20% (n = 207) are used as the
testing set. The 5 results from the folds are then averaged to obtain a single performance
estimate. Each model was trained for 100 epochs with an Adam optimizer [Kingma and
Ba, 2014] and a constant learning rate of 10−4. For 2D models, the patch size was set
to 300 × 300 and the batch size to 20. For 3D models, the patch size was set to 128 ×
128×64, limiting the maximum batch size to 10 for the U-FPN and 6 for all other models.
Each training lasted on average 8 hours for 2D models, and 24 hours for 3D models, and
was performed using an NVIDIA GeForce RTX 2080 Ti GPU card with 12 GB of graphical
memory.

Testing phase

For each experience, the testing phase is applied in a loop to process each patient and
includes 3 stages:

1. Patching the 3D scan into fixed size patches. To avoid detection issues at tile edges,
we set for each dimension a minimum overlap of 25% between each neighboring
patch. With our setting for patch size, this results in processing an average of 1275
patches per patient for 2D models and 150 patches per patient for 3D models.

2. Inference on all patches, and conversion of patch-level detection coordinates to
scan-level coordinates.

3. Filtering and/or post-processing: The output segmentations of the U-FPN and
Retina U-net models are converted to a bounding box list by applying a connected
component algorithm. Also, for 2D models, the bounding boxes are transformed into
a 3D cube by grouping the contiguous detections on successive slices. Regardless of
the model used, all detections are filtered in 3D by applying the NMS algorithm.

Results analysis

For the purpose of comparability, each experience is evaluated in terms of both process-
ing time and performance with AP and CPM scores.

Regarding the processing speed, we measure the average processing time of a patient
for each model. These measurements are shown for each model in Figure 3.11. The graph
tends to show that the parameterization we used greatly slowed down the average pro-
cessing time of the scanner for all 2D models. This is mainly due to the significant differ-
ence in the total number of patches to be processed between the 2D and 3D models. On
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the other hand, regardless of the configuration chosen, the fastest testing phase is per-
formed with Mask-RCNN (average processing time of 38 ± 17 seconds/patient in 2D, 16
± 6 seconds/patient in 3D).
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Figure 3.11: A comparison of the inference time for each tested model in 2D and 3D. Average pro-
cessing time represents the average time required to process a full 3D scan of a patient. The bars
represent the standard deviation of the measured times.

Model Dimension
Number of outputs per patient

(Mean ± stddev)
smi n = 0.1 smi n = 0.2

U-FPN
2D
3D

30 ± 20
20 ± 19

30 ± 20
20 ± 19

Mask R-CNN
2D
3D

463 ± 179
98 ± 79

75 ± 48
38 ± 31

Retina Net
2D
3D

705 ± 92
2597 ± 941

56 ± 60
43 ± 31

Retina U-net
2D
3D

745 ± 50
2395 ± 1450

43 ± 33
7 ± 5

Table 3.3: A comparative table of the average number of detections per patient for each model
trained and then tested with the LIDC dataset as a function of the minimum confidence threshold
smi n .

Performance is then evaluated using the AP and CPM metrics. To define TPs, the min-
imum IoU threshold is set to 0.1, which in this context corresponds to a coarse but suf-
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Model Mean sensitivity (stddev)
FPs = 1/8 FPs = 1/4 FPs = 1/2 FPs = 1 FPs = 2 FPs = 4 FPs = 8

U-FPN 2D 0.02 (0.00) 0.05 (0.01) 0.09 (0.01) 0.18 (0.02) 0.36 (0.03) 0.45 (0.03) 0.56 (0.04)
Mask R-CNN 2D 0.12 (0.05) 0.18 (0.07) 0.25 (0.07) 0.34 (0.07) 0.45 (0.08) 0.54 (0.07) 0.63 (0.06)

Retina Net 2D 0.09 (0.03) 0.12 (0.03) 0.18 (0.04) 0.25 (0.06) 0.33 (0.08) 0.41 (0.10) 0.50 (0.10)
Retina U-net 2D 0.09 (0.03) 0.13 (0.04) 0.19 (0.06) 0.27 (0.08) 0.37 (0.11) 0.44 (0.11) 0.54 (0.1)

U-FPN 3D 0.08 (0.03) 0.16 (0.07) 0.32 (0.12) 0.48 (0.13) 0.58 (0.07) 0.66 (0.05) 0.7 (0.04)
Mask R-CNN 3D 0.34 (0.06) 0.42 (0.08) 0.51 (0.06) 0.6 (0.05) 0.69 (0.05) 0.76 (0.05) 0.82 (0.04)

Retina Net 3D 0.28 (0.06) 0.36 (0.07) 0.46 (0.06) 0.55 (0.05) 0.64 (0.03) 0.72 (0.03) 0.76 (0.03)
Retina U-net 3D 0.35 (0.07) 0.44 (0.06) 0.52 (0.05) 0.62 (0.03) 0.7 (0.03) 0.76 (0.02) 0.78 (0.02)

Table 3.4: A comparative table of the different models tested with the LIDC dataset. Bold indicates
the highest sensitivity for each level of average false positive per scan (FPs).

ficient localization. Although similar, measuring these two metrics provides an overview
of the quality of detections provided by each model. The PR curves have the advantage of
providing information about the distribution of FP and TP, whereas the FROC curves are
easier to interpret and provide more of a patient-level view. In order to collect results, it
is necessary to set a threshold for the minimum confidence score smi n , above which the
results of the model are analyzed. In this sense, table 3.3 shows that too low a threshold
(i.e., smi n = 0.1) can lead to an explosion in the number of detection results, especially
for 3D Retina Net and Retina U-Net. This instability is not desirable in our context. How-
ever, if we set the threshold too high, there is a risk that predictions that could be true
positive will not be considered. For our experiments, we therefore chose a threshold of
0.2, which seems to be an acceptable tradeoff. We can also note that, in a clinical context,
the 3D Retina U-net model yields a more manageable average number of responses at
this threshold (7 ± 5 detections per patients), indicating a lower number of false positives
compared to other model.

Figure 3.12 illustrates the PR curves of each model for each fold of the cross-validation.
These curves clearly show the superiority of the 3D implementations compared to their
2D equivalents. As for the comparison between the models, Mask R-CNN gives the best
average AP (average AP = 0.29), while in 3D the results between Mask R-CNN and Retina
Unet are quite equivalent (average AP = 0.57 for both). Note also that in all models, most
curves fall within an interval between 0.75 and 0.9 for recall value, suggesting that in each
fold about 10% to 25% of the nodules were not detected at all.

Figure 3.13 shows the FROC curve averaged over each fold of each image, and the av-
erage sensitivity values used to calculate the CPM score are shown in table 3.4. These
results lead to similar conclusions as the previous ones: The R-CNN models for 3D masks
and the retina U-mesh perform best in scoring CPM (average CPM = 0.59 for both). How-
ever, table 3.4 seems to indicate that Retina U-net has a slightly higher sensitivity than
Mask R-CNN for low average FP values.

3.4.2 Filtering false positive detection

Lungs segmentation

Because image acquisition procedures are not necessarily standardized from one hos-
pital to another, disturbances may occur during the inference process. There are many
advantages to creating a lung segmentation mask for each patient. On the one hand, it
can eliminate the most aberrant detections, such as those that might appear outside the
lungs due to artifacts. On the other hand, the volume to be examined can be reduced in
this way for large images.

For simplicity, our approach will basically be based on intensity threshold [Otsu,
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(a) Precision-Recall curve for 2D models.
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(b) Precision-Recall curve for 3D models.

Figure 3.12: Comparison of precision-recall curves between 2D and 3D models on a 5 fold cross-
validation applied to the LIDC dataset.
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Figure 3.13: Average FROC curves for all 2D and 3D models tested on LIDC dataset.
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1979], morphological operations, and a filtering on object sizes (see algorithm 4). Nat-
urally, this is an approximate approach, since not all internal structures of the lung are
considered. In addition, we have found that in very rare cases the process may result in
lung pixels being connected to external elements (especially the bed). Figure 3.14 shows
an example of 3D lung segmentation obtained by our approach. In this way, for each
scan and for each 3D model, we were able to filter out the detections that did not overlap
with the segmentation of the lungs. The results of the average CPM and AP metrics are
presented in table 3.5, and show the improvement obtained for each model.

Algorithm 4: Lungs segmentation

Input : I: a 3D scan with standardized intensities
M1 ← I > τ // Binarize all voxels of I using Otsu threshold

M2 ← fill_holes(M1) // Fill binary holes to obtain a primitive body mask

Apply connected component algorithm on M2 and keep the largest region only.
Obtain the body mask Mbod y .

Mth ← I ≤ τ
Ml ung ← Mth ×1Mbod y>0 // Remove positive pixels outside the body mask

Apply closing transformation and connected component algorithm on Mlung .
Keep the largest region only to remove small artefacts.

Output : A lungs binary mask

Figure 3.14: Visualisation of a lung scan CT under different views: axial (upper left), sagittal (lower
left), coronal (lower right). The segmentation of lungs (brown) obtained with Algorithm 4 was
overlaid in each view and the 3D representation of the segmentation is generated in the top right
view. Any detection that does not overlay the segmentation is ignored when calculating score
performances. This visualization was created using the open source software 3D Slicer.
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3D model Average CPM (stddev) Average AP (stddev)

U-FPN 0.44 (0.06) 0.35 (0.07)
Mask R-CNN 0.62 (0.06) 0.57 (0.06)

Retina Net 0.57 (0.04) 0.50 (0.04)
Retina U-net 0.6 (0.03) 0.57 (0.05)

Table 3.5: A comparative table of average CPM and AP scores for each 3D model. These values are
obtained after filtering detections outside of lung segmentation.

3.4.3 Influence of hyperparameters on nodule detection

To evaluate the impact of hyperparameters on the performance of detection models, we
have made supplementary experiences with the 3D Retina U-net model. Using a single
split of the LIDC dataset, we give here a brief description of the results obtained and our
interpretations.

Patch size In this experience, different patch sizes were used for model training. The
main idea was to investigate whether a smaller amount of data (and thus a larger batch
size) would provide better performance and/or faster convergence of the model. There-
fore, we repeated the same training with three different patch sizes: (64, 64, 64), (96, 96,
64), and (128, 128, 64). Our results showed that decreasing the patch size greatly increased
the number of false positives, resulting in worsened results from CPM and AP scores.

Batch balancing Similar to the previous experiment, we wanted to observe the effects
of foreground probability p f g (see section 3.2.5) with the values 0.3, 0.5, 0.7. Actually,
the default value p f g = 0.5 is the best compromise. Thus, it seems to us that the most
appropriate strategy is to choose a patch size that provides sufficient correlation with the
location of the nodule in the lung.

Bounding box filtering algorithm Instead of applying the NMS algorithm, we tested the
Weighted Box Clustering (WBC) algorithm proposed by Jaeger et al. [2018]. Following the
same principle as the NMS algorithm, the WBC algorithm selects the box with the highest
probability and weights its coordinates and score according to the neighboring boxes it
overlaps. The weights depend on the size of the box, the position on the tile, and the
total score. We show some visual examples in appendix A.1 (see figure A.1 and figure A.2).
Despite an interesting reduction in the confidence score of false positives, using NMS
gave a better AP or CPM score for all models tested.

3.5 Building a Computer-Aided System for patient diagno-
sis

3.5.1 Data challenge context

To extend the use of the nodule detection pipeline presented in the previous section, we
participated in the 2019 edition of the Data Challenge organized by the French Society
of Radiology (SFR) during the Journées Francophones de Radiologie (JFR) [Lassau et al.,
2020]. The goal of this event was to bring radiologists and data scientists together on
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important clinical issues by placing patient benefit at the core of the topics offered. Par-
ticipants were offered three different topics: the classification of pulmonary nodules on
3D CT scans (challenge 1), the prediction of expanded disability status scale for multiple
sclerosis on 3D MRI (challenge 2), and the assessment of abdominal Sarcopenia on 2D
CT scans (challenge 3). Naturally, our team competed for Challenge 1 and was a collab-
oration between us, the IBM-Cognitive team in Montpellier and the Jean-Perrin Hospital
Center in Clermont-Ferrand.

More specifically, challenge 1 is based on the medical observation that the risk of ma-
lignancy of a pulmonary nodule rises with increasing volume. In addition, the presence
of small nodules (i.e. , nodules with a volume < 100mm3) does not affect the probability
of lung cancer occurrence [Horeweg et al., 2014]. Therefore, this challenge is presented as
a classification task between patients. For each CT scan examined, the expected answer
is either "does not contain nodules, or only small with a volume < 100mm3" (negative
class) or "probably has at least one malignant nodules, with a volume ≥ 100mm3" (posi-
tive class). In practice, to give one of the two possible answers, a recognition task is first
required to identify the areas of interest. Then each area must be segmented to obtain an
estimate of the volume of the detected object. By applying this method to all the detected
areas, it is then possible to provide an overall response at the patient level. In the final
stage, the responses for each patient are submitted in the form of a csv file containing the
patient’s anonymization identifier, the predicted class (negative or positive), and the con-
fidence value for each class. The winner is determined by the method that achieves the
best AUC value on the ROC curve generated from the csv file.

Database description

The dataset provided by the SFR consisted of 1031 3D scans DICOM CT divided into three
batches of 343, 344, and 344 more images, submitted throughout the competition8 (which
lasted about a month). The first batch served as the training data set for the first month
of development and was manually annotated to indicate the location of nodules greater
than 100 mm3 in volume. The second batch was also annotated and shipped 3 days before
the day of the competition. Thus, the last batch is the test dataset, which was provided
without annotations and serves as a reference to determine the winning team.

3.5.2 A three-stage pipeline for patient diagnosis

This section describes the structure of the pipeline that we proposed during the competi-
tion. The latter is divided into three parts: lungs segmentation, nodule detection, feature
extraction, and nodule classification.

Lungs segmentation stage In this context, we used the approach described in sec-
tion 3.4.2 to create an annotated lung segmentation dataset from the JFR dataset. Errors
that may arise from this approach were corrected by hand. This dataset was then used as
a training set for a 3D U-FPN model using a Dice loss function (see section 3.2.4).

Nodule detection stage Regarding the nodule detection phase, the labeling procedure
was not harmonized between data providers. Thus, nodule localization could also be

8Important note: this challenge was developed fully in compliance with the General Data Protection
Regulation (GDPR). Therefore, the participating teams have worked only with anonymized images during
the competition and have committed not to keep any data after the competition.
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accomplished by marking a voxel in the center of the nodule or by marking a wide circle
on a single slice that did not map the contours of the nodule. We therefore decided to
train a Retina U-net model on the LIDC dataset. In this context, the model was trained for
400 epochs using Adam optimization algorithm with a learning rate reduction strategy
that starts at 10−3 and decreases by a factor of 10 every 100 epochs. The training was
performed using a Volta V100 NVIDIA GPU with 32 GB of graphics memory, allowing to
set a batch size of 16 and a patch size of (128,128,64).

Nodule classification stage Our approach to provide a global patient-level answer is to
perform a binary classification task for each detection given by the model in the previous
step. For this step, we use a linear SVM model that we train using the features we extracted
from each bounding box. Extracted features are:

• Confidence score given by the model.

• Bounding box center coordinates, dimensions (height, width, depth) and volume.

• Minimum, maximum and median of voxel intensities.

• Segmentation features. Using 5 intensity thresholds evenly distributed between the
minimum and maximum intensity in each box, we measure the number of objects
present, the average volume of each object, the average intensity of voxels above the
threshold, and the average intensity of voxels below the threshold. The same pro-
cedure is applied for each segmentation provided by the detection model in each
bounding box.

Based on all these features, we were able to achieve an AUC value of 0.881 when train-
ing the SVM model with the JFR dataset. To optimize the training, we used recursive fea-
ture elimination (RFE) [Sanz et al., 2018] as a feature selection algorithm. Thus, the model
was able to achieve a score of 0.905 with only 10 features. We kept this model in the final
phase of the JFR and were able to win the competition with an AUC score of 0.899 (see
table 3.6).

Teams AUC score

Aidence 0.878
Autonomous N.S.

GAMC 0.793
Our team 0.899
LEVIATAN N.S.

LyPhTe 0.838
NAIS 0.681

ONCONEURAL 0.644
Owkin 0.768

Table 3.6: AUC score results calculated for each team participating at lung cancer classification
challenge during the JFR. Bold indicates our score. N.S. indicates that the team left the challenge.
Results extracted from Lassau et al. [2020].

3.6 Conclusions and perspectives

The development of a diagnostic tool based on artificial intelligence may prove particu-
larly useful and beneficial in the medical field. In this chapter, we have specifically ad-
dressed the problem of early detection of pulmonary nodules in 3D CT scans. The MDT
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framework developed by Jaeger et al. [2018] provides a variety of CNNs implementations
suitable for 2D or 3D object detection, as well as a batch processing strategy adapted to
this context. This allowed us to perform a comparison of the different state-of-the-art
models in terms of performance. This allowed us to confirm certain trends:

1. Although this approach requires fewer computational resources, a 2D model that op-
erates separately and independently for each slice of a 3D scan appears to provide
significantly lower recognition performance than a corresponding model that oper-
ates directly in 3D. This is true for traditional segmentation models (U-FPN) as well
as for object detection models (Mask R-CNN, Retina Net, Retina U-net). Thus, these
results show that a 3D representation is required to achieve good recognition perfor-
mance.

2. By selecting the most efficient models, we can achieve very low processing times,
which in our experience are between 15 and 30 seconds. Even though this time de-
pends on the set number of patches per scan, it remains far below the reading times
that radiologists can achieve without a CADx tool [Beyer et al., 2007; Hsu et al., 2021;
Vassallo et al., 2019].

3. Overall, the Mask R-CNN model appears to be somewhat more efficient at detection
compared to the other models examined. However, The number of detections gen-
erated on average is very high, which is not desirable in a clinical context, and it also
inevitably leads to more false positives. Although the detection scores we measured
are somewhat lower, the Retina U-net model appears to be more stable above a cer-
tain probability threshold.

4. Even with an efficient detection model, a strategy to reduce false positives seems nec-
essary to improve performance results. Our approach to lung segmentation is simple
and allows us to eliminate the most obvious aberrant detections.

Finally, these results have allowed us to implement in a short time a simple solution
that provides a comprehensive response to patients. The solution proposed in the JFR
provides very encouraging results, especially in terms of diagnostic support. This type of
event also allows for broader collaboration between French hospitals, which may prove
beneficial, for example, in the merging of annotation procedures.

Of course, some aspects of our method can still be optimized: for example, we did
not use a multi-class model so that the detection model can directly distinguish between
benign and malignant nodules. In addition, the nodule classification model that we used
during the JFR is based on simple features that are probably somewhat redundant. In
retrospect, using 3D-CNN to classify each region with a nodule seems to be a better stan-
dard method [Kaliyugarasan et al., 2021]. Finally, in our study, we consider our system to
be fully autonomous. To get closer to a real-world application, we would need to measure
the performance gain that radiologists could achieve by using such a tool.
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Chapter 4

Training neural networks on synthetic
microscopy images

Abstract
To improve the robustness of CNN models during training, a large amount of data
is required. However, access to a large amount of data, which must also be of high
quality, is a problem that arises regardless of the application domain. In this chap-
ter, we specifically address microscopic imaging, which is inextricably linked to
biomedical research. After a basic description of acquisition systems in section 4.1,
we propose in section 4.2 the development of a generative model for synthetic data.
We describe each step necessary to generate a new fictitious microscopy image and
its associated groundtruth. In section 4.3 and section 4.4, we present the most com-
monly used models for segmenting cell nuclei in the literature and explore the met-
rics that can be used to evaluate the segmentation quality of a model. Finally, in
section 4.5, we propose to evaluate the impact of using simulated data in the train-
ing set on the performance of these models.
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4.1 Introduction

4.1.1 Microscopy imaging

Most modern microscopes consist of a lens and an eyepiece. The combination of these
two optical elements allows magnification and then high-resolution projection of the an-
alyzed biological sample, so that it is visible to the human eye. The cell is the basic bio-
logical unit of all known living beings and plays an important role in the functioning of
our organism. Microscopy and cells are inextricably linked in biomedical research, and
the visualization of specific cellular organs, such as the nucleus, cytoplasm, or protein el-
ements, has greatly increased our knowledge of cellular structures and the mechanisms
in which they are involved [Huang and Murphy, 2004].

To obtain the clearest and highest contrast image possible, the simplest microscopy
technique, called brightfield, consists in illuminating the biological specimen completely
with a uniform white light source. However, since cells and their components are largely
transparent, this technique is not suitable for their observation. The most common so-
lution used in biology nowadays is the use of a contrast agent in the preparation of the
sample. In fluorescence microscopy, this agent is usually a fluorescent biomarker that
reveals the presence of certain molecules of interest (e.g., DNA). For example, DAPI1 is a
well-known marker for the DNA that absorbs ultraviolet (UV) light and stains cell nuclei
blue as in Figure 4.1.

Image analysis is the natural step that follows data acquisition. The goal is often to
obtain quantitative results based on the analysis of the cell population under study. It is
then necessary to individualize each cell to extract some features that allow relevant bio-
logical interpretations, such as changes in cell size/morphology or pixel intensities. Due
to the large number of cells to be identified, automated methods are preferred over man-
ual and/or visual methods for this task. In addition, automated quantification provides
far more reproducible information and is less sensitive to the subjectivity of an expert
analysis. In practice, conventional image processing techniques can be applied, such as
thresholding the pixel intensities [Otsu, 1979] and applying a seeded-watershed algorithm
[Beucher, 1979; Malpica et al., 1997; Wählby et al., 2004]. The segmentation parameters of

1Molecule name for 4’,6-diamidino-2-phenylindole
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Figure 4.1: Human osteosarcoma U2OS cell line visualized by fluorescence microscopy. The left
image shows the cytoplasm (green staining) and nuclei (blue staining) of the cell line. The right
image is the blue channel showing only the cell nuclei. Image publicly available at Broad Bioimage
Benchmark Collection website.

these methods often require a certain level of expertise to be correctly tuned. In addition,
performance can be severely affected depending on the acquisition modality, the scale, or
the experimental conditions. In contrast, Deep Learning methods have also shown great
potential for segmenting nuclear instances in different types of images, without requir-
ing further user interactions [Caicedo et al., 2019]. Therefore, this will be the preferred
approach we will use in this chapter to solve nuclear segmentation problems.

4.1.2 The need for data

Regardless of its architecture, a neural network must use a large amount of data during
its training. Most importantly, a high-quality dataset, when properly labeled, contributes
to the robustness of the model and allows it to make better predictions for new data that
have never been observed before. Cho et al. [2015] has thus shown that the accuracy of
a model depends strongly on the size of the data set on which it is trained. As a result,
numerous initiatives have been launched in the scientific community to build and pub-
lish image databases with rigorous annotations [Clark et al., 2013; Ljosa et al., 2012; Wang
et al., 2017]. However, in practice, especially in the biomedical domain, the massive ac-
quisition of labeled data remains a difficult task. A first reason for this is the difficulty of
coordinating and harmonizing data acquisition and labeling between different research
teams. Second, the provisions of the General Data Protection Regulation (GDPR) on the
use and processing of personal data in the European Union are an important aspect to
consider when conducting a research project. Finally, labeling data, especially when it in-
volves pixel-wise annotations, is a rather tedious task that must be performed by humans.

An alternative workaround to this problem is to use a synthetic dataset for training
deep neural network. This method also shows promising results for segmentation prob-
lems [Toda et al., 2020; Tremblay et al., 2018; Zhuang et al., 2019]. Compared to real data,
synthetic datasets have the advantage of being very easy to obtain, and can also represent
any situation, no matter how rare. Thus, a tool capable of generating an almost infinite
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amount of quality data solves both the data acquisition and labeling problem. However,
the algorithmic construction of such a tool requires a thorough knowledge of the applica-
tion domains as well as an adequate modeling of all aspects that contribute to the forma-
tion of an image of interest. In this chapter, we propose a microscopy image simulation
model with simple and concrete parameters and then investigate its impact on the per-
formance of models suitable for nuclei cell segmentation.

4.2 Modeling microscopy image

The generation of new synthetic data corresponds to a sequence of different steps that
first lead to a labeled mask of the cell nuclei whom pixels values are integer. Each value
corresponds to a unique identifier for belonging to a particular nucleus (except for the
value 0, which is assigned to the class "background"). The resulting mask stands for a
synthetic ground truth. To obtain the corresponding image, we degrade the pixel values
using various methods that mimic the acquisition procedures of microscopic systems.
Thus, a simulation iteration corresponds to the generation of two results (images + nuclei
mask) whose properties are determined by certain parameters, which we explain in more
detail in this section.

4.2.1 Nuclei shape

As in a real acquisition process, the basic unit of our simulations corresponds to the cell
nucleus. When analyzing a microscopic image, the simplest visual features are the size
and/or shape of the cell nuclei. This is thus the first aspect we propose to model. Intu-
itively, nucleated objects are generally more or less blob-shaped. To obtain a sufficiently
large choice of different shapes, we introduce a parameterized model to generate random
polygons. Similar to Lehmussola et al. [2007], the model workflow starts using a paramet-
ric representation of an ellipse. The coordinates

(
x(θ), y(θ)

)
of each point on an ellipse

whose center is the origin (0,0) are defined as follows:

x(θ) = rx cos(θ)

y(θ) = ry sin(θ) ,
(4.1)

where θ ∈ [0,2π], and rx ,ry are the radius on the x and y axes respectively. The special case
rx = ry corresponds to a circle. By sampling θwith constant interval, (4.1) allows to gener-
ate a set of points corresponding to the vertices of a polygon. However, the shape of a cir-
cle or ellipse is too rudimentary and regular to be considered realistic enough to simulate
cell nuclei. Thus, we increase the variability of the generated shapes thanks to the 2D/3D
object deformation model proposed by Durrleman et al. [2014]. Let {ck }k=1,2,...,nv denote
a set of "control" points corresponding to the nv vertices of a polygon, and {µk }k=1,2,...,nv

a set of momentum vectors, where each µk ∈ Rd is associated with each control point.
The displacement of any control point ci is given by the sum of radial basis functions K
located at control point positions {ck }k=1,2,...,nv :

v(ci ) =
nv∑

k=1
K(ci ,ck )µk , (4.2)

where K(·) is commonly a radial Gaussian kernel K(x, y) = exp
(−‖x − y‖2/σ2

d

)
and σd > 0

controls how far the deformation pattern spreads, so the final polygon looks sharper when
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it is small. To avoid too large deformations, we also add a parameter α that controls the
amplitude of the displacement. Figure 4.2 gives an overview of the shapes that can be
created by using the same momentum vectors and by adjusting the values for α and σd .
Finally, the x, y coordinates of the vertices of each new polygon are calculated using a
combination of (4.1) and (4.2):

x = x(θ)+αv(x(θ))

y = y(θ)+αv(y(θ)) .
(4.3)

=0.1

=0.01

=0.3 =0.5 =0.7 =0.9

=0.03

=0.06

=0.08

=0.1

Figure 4.2: Overview of possible deformation applied to a disc of radius 1. The parameter α con-
trols the magnitude of the distortion, while the parameter σ is a smoothing parameter. For the
generation of cell nuclei, forms with values of α≥ 0.5 and σ≤ 0.06 are preferred.
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To give the generated nuclei a privileged orientation, we apply a rotation of β degrees
to all vertices as follows: (

xβ
yβ

)
,=

(
cos(β) −sin(β)
sin(β) cos(β)

)(
x
y

)
, (4.4)

where xβ and yβ are vertex coordinates rotated by β degrees. By applying (4.4) to a set
of closely spaced nuclei, it is possible to give global orientation to certain regions of the
image.

4.2.2 Population dispersal

After the individual characterization of each nucleus, the next important step is to model
their spatial arrangement in the image. This step is performed under the constraint of a
maximum allowable overlap rate Omax between the nuclei:

npx,i nter

npx,new
≤ Omax ,

where npx,new denotes the number of pixels belonging to the currently generated nucleus,
and npx,i nter is the corresponding number of pixels overlapping with other nuclei. A high
overlap rate may result in nested nuclei, which may lead to an unrealistic situation and
make the morphological aspect defined in the previous section obsolete. Therefore, for
each newly placed nucleus, it must be checked whether the overlap requirement is met.
If this is not the case, another location must be found for the placement. To improve effi-
ciency, this aspect encourages us not to place each nucleus completely randomly. Instead,
we opt for a strategy that requires as few placement attempts as possible.

For computational efficiency, we initialize a map corresponding to the possible lo-
cation of each nuclei centroid. For this purpose, the centroids are arranged according
to a Poisson-disc distribution [Bridson, 2007] that allows all objects to be placed evenly
while maintaining a minimum distance dmi n between each nucleus. Figure 4.3 shows
the application of this algorithm to a 512× 512 image with various minimum distances
dmi n = 30,60,90,120. Roughly speaking, the algorithm is based on a loop in which one
point at a time is randomly selected from a list of active points, and each new candidate
generated from the current active point is checked for validity. If none of the k candidates
are acceptable, i.e. , if there is at least one point less than dmi n away for all candidates,
the selected active sample is marked as inactive and is no longer used to generate can-
didates. When no more samples are active, the algorithm terminates. We also introduce
a distance parameter to the border of the image dbor der , which allows filtering the list of
output points to avoid generating fragmented nuclei.

4.2.3 Increasing population density

For both the human eye and any automated method, the main challenge in segment-
ing cell nuclei appears when they are arranged in very dense clusters. Higher population
density makes the task of finding good boundaries between cell nuclei very complex. The
errors often observed in these situations correspond to either over-segmentation (i.e. ex-
cessive division of each object into multiple fragments) or under-segmentation (i.e. a ten-
dency to group several nuclei together).

To increase the complexity of the generated data and improve the robustness of the
segmentation models used, we propose a procedure to increase the population density.
The main idea, shown in Figure 4.4, is to increase the number of average neighbors in the
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Figure 4.3: Visualization of cell population dispersion as a function of distance constraint dmi n .
The dotted circles show the minimum distance between a point and its nearest neighbors. Each
point then serves as a candidate for the centroid of a newly generated nucleus.
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Iteration 0 Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6 Iteration 7

Figure 4.4: Operation to increase the population density of the nuclei generated by our simulation.
At each iteration, the algorithm attempts to add one or more neighbors to each nucleus already
present on the image, subject to the maximum overlap condition.

entire population. The concept of "neighborhood" is defined here relative to the size of
the nucleus in question. In other terms, a nucleus with centroid p1, constructed with radii
rx and ry , and another nucleus with centroid p2 are said to be neighbors if the following
equality holds:

d(p1, p2) ≤ γmax(rx ,ry ) , (4.5)

with d(·) the Euclidean distance and γ > 1 a factor regulating the neighborhood search-
ing area. Empirically, we have observed that γ ∈ [1.5,2] gives a visually acceptable result.
Finally, using (4.5), we can place a neighbor for each nucleus in the image. To limit the
number of iterations for large populations, we also add a parameter regulating the max-
imum number of neighbors. This way, nuclei that have reached this threshold are then
ignored in the procedure.

4.2.4 Nuclei contouring

Several segmentation methods rely on a ground truth of the contours of the cell nuclei. By
combining a morphological mathematical operation, such as erosion, and element-wise
subtraction, we can create a contour mask of each nucleus (see Figure 4.5b). To vary the
thickness of the nuclei contours, the distance between each vertex and the centroid is re-
duced, resulting in a "hole" based on a smaller deformed version of the original polygon.
This mask can be assimilated with a nuclear membrane mask (see Figure 4.5c), and the
reduction factor can be linked with the membrane thickness. Like the nuclei mask, this
mask can be degraded to deal specifically with the pixels at the edges of the nuclei, which
are usually the most difficult to classify if they are located in very dense regions.
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(a) Binarized nucleus mask (b) Nucleus contours mask (c) Membrane mask

Figure 4.5: Visual comparison of segmentation masks created for a single nucleus. (a): corre-
sponds to a (binarized) nucleus mask, (b) is obtained by eroding (a) and subtracting the result
from (a), (c) is obtained by applying a subtraction to (a) based on a reduction of the initial polygon
used for (a).

4.2.5 Texture model

Chromatin is an essential macromolecular structure of the nucleus and consists of a mix-
ture of proteins, RNA and DNA. The study of chromatin intensity profile can provide im-
portant information about cell activity [Rousselle et al., 1999]. Therefore, texture is an-
other important feature to model in order to achieve a convincing visual aspect.

Basically, creating texture on an image is like adding noise. One of the most typical
textures generator is the Perlin noise [Perlin, 1985]. Classically, Perlin noise is often used
in computer graphics as a visual effect to create more realistic textures of various parts of
the natural world (clouds, waves, mountain ranges, smoke, etc...). A visualization of this
noise can be seen in Figure 4.6. The function used provides a texture map with a pseudo-
random aspect that can be configured to regulate the level of detail of the final rendering.
For our model, we rely on the framework by Lehmussola et al. [2007] which computes the
value of the texture map t at location (i , j ) as follows:

t (i , j ) = B+
n−1∑
k=0

pkηi , j (2k ) ,

where B is an intensity bias, η(·) is a noise function that produces noise at a fixed fre-
quency, n is the number of octaves to iterate, p is the persistence parameter that deter-
mines how much each octave contributes to the total shape.

4.2.6 Artifacts and noises

After modeling all the specific features of the nuclei, we refine our simulation model by
replicating their environment and the visual artifacts to which they might be exposed.

Uneven illumination

Uneven illumination is a common problem in image microscopy [Smith et al., 2015]. This
phenomenon causes certain areas of the image to be significantly brighter (usually in the
center), while other areas are quite shadowy and not very intense. Therefore, there can be
significant variations in pixel intensity within an image. In our context, signal attenuation
is generally assumed to be quadratic [Klein et al., 1998; Lehmussola et al., 2006; Svoboda
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Figure 4.6: Left: Gaussian noise, right: Perlin noise.

et al., 2009]. For simplicity, we create a light exposure map with a quadratic exponential
kernel to obtain a distance map from a randomly chosen reference point p in the image:

K(p, p ′) = exp

(
−

∥∥p −p ′∥∥2

2σ2
l i g ht

)
,

where
∥∥p −p ′∥∥ denotes the distance from point p ′ to point p, and σl i g ht determines in

which scale the light spreads in the image.

Point Spread Function (PSF)

Regardless of which optical system is used during the acquisition, the image result is not
quite "true to reality". The point spread function (PSF) is a property of an imaging system
that determines its impulse response to a point source. In other words, the PSF character-
izes the optical aberrations that occur during the acquisition and thus produce a certain
degree of blur. The most common way to model the PSF of a microscope is to apply Gaus-
sian filtering [Kaufman and Tekalp, 1991], which amounts to convolving the image with
the following function:

G(x, y) = 1√
2πσ2

PSF

e

(
− x2+y2

2σ2
PSF

)
,

where x and y are the distance from the origin on the horizontal and vertical axis respec-
tively, and σ2

PSF is the kernel variance controlling the amount of blur.

Charge-coupled device (CCD)

The charge-coupled device (CCD), an essential element of a light microscope, is a pho-
toreceptor system that captures photons reflected from an object. Each captured photon
generates an electrical charge that is recovered by the camera’s electronics to convert the
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signal into an image. This process is a source of noise, and the arrival interval of the pho-
tons is modeled by shot noise, also called Poisson noise [Svoboda et al., 2009]. Alterna-
tively, the background noise, as suggested by [Comeau et al., 2006], can also be approx-
imated by an additive Gaussian noise with zero mean and variance σ2

bckg , which is the
solution we used for our experience.

4.2.7 Simulation scenario

This section contains a short summary of every important steps for creating an image and
the corresponding nuclei mask. A visualization of different settings is shown in Figure 4.7.

1. Centroids dispersal: Initializing a list of points corresponding to candidates for the
nuclei centroids. Following the procedure described in section 4.2.2, each point is at
least dmi n away from the others.

2. Generate nuclei mask: Loop on the list obtained in the previous step to generate and
place each nucleus. Each radius of a nucleus are taken from a Gaussian distribution
with rx and ry mean, and σ2

rx
, σ2

ry
variance. At each iteration, the maximum overlap

Omax requirement must be respected. This process outputs the nuclei mask Mnuc and
can be further accelerated by setting criteria that govern the total number of objects
created or the maximum number of attempts to insert each nucleus.

3. Increasing nuclei population density: (optional) Calculate the number of neighbors
for each nucleus created. Add a neighbor near each nucleus whose number of neigh-
bors is below a specified threshold. This process can possibly be repeated several
times to generate a very dense population.

4. Generate membrane mask: Reduce each polygon that allowed the creation of the
core mask by a factor proportional to the thickness of the membrane. Subtract the
result to obtain the membrane mask Mmem .

5. Intensity maps: Generate the Perlin noise map IP and the light exposure map Il i g ht .
The intensity map is obtained on the foreground pixels only and is multiplied by a
constant ki nt , which is approximately considered as the average intensity of the nu-
clei.

Inuc = ki nt × IP ∗ Il i g ht ∗1Mnuc>0 . (4.6)

Add centered Gaussian noise Ng with variance σ2
PSF on background pixels:

Ibckg = Ng ∗1Mnuc=0 . (4.7)

6. Enhancement of membranes’ intensities: (optional) Apply (4.6) by replacing Mnuc

with Mmem , giving Imem . This operation results in an image with "holey" nuclei, i.e.
the pixels near the center of the nuclei are at 0. The value of these pixels is increased
depending on a coefficient khol e determining the intensity ratio between the mem-
brane and the interior of the nucleus.

Ii nt = Imem +khol e × Inuc ∗1(Mnuc>0)∩(Mmem=0) . (4.8)

Note that (4.8) can also be applied only to a certain percentage of the nuclei popula-
tion to ensure some diversity within the same image.
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7. Blurring: Apply Gaussian filtering with a kernel Γ of variance σ2
PSF on the output:

Ibl ur r ed = (Ii nt + Ibckg )∗Γ . (4.9)

8. Handling saturation: Set negative values to 0 and set to the highest value of the num-
ber of bits in the image. So, for 8-bit images, this value is 255.

4.2.8 Extension for 3D simulation

Most of the concepts presented so far are easily transferable to 3D simulation. As for
the morphology of the nuclei, we have used the same shape model as that proposed by
Weigert et al. [2020], namely star-convex polyhedra. Specifically, a nucleus, in its simplest
form, is modeled in 3D by a set of points evenly distributed on the surface of a sphere.
The coordinates of these points (xk , yk , zk )k=1,...,nv are calculated as follows:

zk =−1+ 2k

nv −1

yk =
√

1− z2
k × si n

[
2π(1−ϕ−1)k

]
xk =

√
1− z2

k × cos
[
2π(1−ϕ−1)k

]
with ϕ = 1+p5

2 is the golden ratio. The deformation model presented in section 4.2.1 re-
mains compatible even with the addition of a third dimension and can be applied to any z
coordinate. The surface of the 3D nucleus is then generated from the convex hull2 result-
ing from the moved points. figure 4.8 thus shows a modeling of the shape of a 3D nucleus,
obtained from the deformation of a sphere. To take into account the anisotropy of 3D
data, we can apply the same process on ellipsoids of radii rx , ry and rz . This 3D extension
will be used in particular in chapter 5.

2Calculated from Qhull library. See http://www.qhull.org/
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(a) Simulation 1

(b) Simulation 2

(c) Simulation 3

Simulation rx ry dmi n Omax Density augmented ki nt khol e σl i g ht σPSF σbckg

Simulation 1 10 10 50 0 No 200 1 100 2 0
Simulation 2 5 5 10 0 No 100 0.5 200 1.5 10
Simulation 3 10 15 70 0.2 Yes (×2) 150 0.2 50 1 0

Figure 4.7: Visualization of 3 examples of simulated data. Left: Image, right: Ground Truth. Image
dimension is 256×256. The simulation parameters used to generate this data are listed in the table
above.
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Figure 4.8: A Star Convex shape (left), with local perturbations (right)

4.2.9 Graphical interface

To simplify the use of the simulator, we have developed a graphical interface that uses
the python library PyQt3. The interface can be seen on Figure 4.9 and summarizes all the
parameters described in the previous sections. Thus, a user (expert or non-expert) can
easily set simulation parameters using easy-to-use graphical objects (spinboxes, sliders,
or checkbox). The interface also allows generating and visualizing on the fly a simulation
example based on the parameters set by the user. The visualization includes: the simu-
lated image, the nuclei mask, the membrane mask, and a montage showing the simulated
image and the contours of nuclei mask with a colored overlay. In addition, an action but-
ton is integrated to write an entire dataset according to the current settings. We have
also extended our simulator to a GPU version using the CuPy library4. This extension
can be useful for generating a large amount of data quickly, and is used in particular in
section 5.3.

3https://www.pythonguis.com/pyqt6-tutorial/
4https://cupy.dev/
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Figure 4.9: The graphical interface of our simulator. This allows to quickly see the effects of each
parameter on the final rendering of the simulation.

4.3 Models for nuclei segmentation

In this section, we present two popular segmentation models derived from the U-net ar-
chitecture, specifically designed for nuclei segmentation in microscopy images. These
two models will be used and compared in section 4.5.

4.3.1 Stardist

Model design

The Stardist algorithm developed by Schmidt et al. [2018] is one of the most popular
frameworks for cell detection and segmentation in microscopy and more generally in
biomedical imaging [Fazeli et al., 2020; Stevens et al., 2022; Weigert and Schmidt, 2022].
The principle is to perform, for each input pixel indexed by i , j , a regression of the n ra-
dial distances {r k

i , j }n
k=1 separating it from the boundary of the nuclei to which it belongs.

These distances form a set of equidistant radial directions around each pixel, and draws a
star-shaped convex polygon from which the name of the model comes. At the same time,
the algorithm also provides a probability map indicating for each pixel whether it belongs
to an object (i.e. , a nucleus cell for our cases). It is important to note that each probability
di , j corresponds to the (normalized) Euclidean distance to the nearest background pixel
(and not to the pixel classification based on a binary mask). Initially, only polygons whose
probability di , j is high enough are obtained. Then, the remaining candidate polygons are
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filtered by a NMS algorithm applied with a conventional polygon clipping method.

Implementation details

Although the method described above is not specifically tied to any particular CNN archi-
tecture, a Stardist model often refers to a modified U-net algorithm. The main structure is
therefore based on a contracting path followed by an expanding path (see section 2.3.5),
to which a new 3×3 convolution layer with 128 filters and a ReLU activation function is
added. The final two output layers are then integrated. The first is a convolutional layer
with a single channel and sigmoid activation function in order to give the probability map
of belonging to the nuclei. The second returns a distance map with as many channels as
radial distances, thus allowing constructing a polygon for each pixel.

Training

Given the pixel-wise object probabilities and distances of the prediction (p̂, d̂k ) and
ground-truth (p,dk ), the loss function L(p, p̂,dk , d̂k ) to be optimized during training is
decomposed into a combination of two loss functions:

L(p, p̂,dk , d̂k ) = Lob j (p, p̂)+λd Ldi st (p, p̂,dk , d̂k ) , (4.10)

where Lob j (p, p̂) is an object loss reflecting how well the model classifies the foreground

pixels, and Ldi st (p, p̂,dk , d̂k ) is a distance loss reflecting how well the boundaries of the
nuclei are detected. λd is a constant that weights the distance loss compared to the loss
object (by default λd = 0.2). For the object loss Lob j , standard binary cross-entropy is
used:

Lob j (p, p̂) =−p log(p̂)− (1−p) log(1− p̂) (4.11)

A variant of the mean absolute error is used for the distance loss Ldi st . The goal is to in-
crease the accuracy of the model for pixels near the center of the object (i.e. , theoretically
for pixels with the highest probabilities). The distances are weighted by the probability of
the corresponding pixel, and a regularization term λr eg = 10−4 is added for background
pixels (i.e. p = 0):

L(p, p̂,dk , d̂k ) = p ·1p>0 · 1

n

∑
k
|dk − d̂k |+λr eg ·1p=0

1

n

∑
k
|d̂k | . (4.12)

4.3.2 Cellpose

Model design

Cellpose [Stringer et al., 2021] is a deep learning segmentation model for cell and nuclear
images that uses a smooth topological representation as a key component of its image
processing pipeline. This topological space, called "cellpose flow", is a vector gradient
flow [Xu and Prince, 1997] that directs pixels within a cell nucleus toward its center. The
vectors do not necessarily point directly to the center of the nucleus, as this path could
intersect the boundaries of the nucleus. Instead, the flows translate pixels to other pixels
within the nucleus and across many iterations to fixed points: the centers of the nuclei.
All pixels that end in the same center are grouped into regions of interest and labeled with
the same ID.
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On test images, the neural network predicts the horizontal and vertical gradients,
which form vector fields or ”paths”. By following these paths, all pixels belonging to a
given cell should be routed to its center. Thus, by grouping pixels that flowed to the same
center point, we could simultaneously segment individual cells and recover their shapes.
The cell shapes are further refined by removing pixels with cell probabilities less than 0.5.

Overall, thanks to its innovative vector flow approach, Cellpose offer improved gen-
eralization performance and the ability to accurately detect and distinguish between ob-
jects with complex shapes.

Implementation details

The CNN part of Cellpose consists of a U-net architecture that downsamples convolu-
tional maps several times before mirror-symmetrically upsampling. In its nuclei version,
it takes a single-channel 2D image as input, and performs 4 downsamplings/upsamplings
using max-pooling, starting with 36 features maps up to 512 at the bottom of the network.
Skip connections between upsampling and downsampling layers are done by direct sum-
mation and allows for better information flow. In addition, traditional U-net blocks have
been replaced by residual blocks, each consisting of two convolutions with a filter size of
3×3, preceded by a batch normalization + ReLU operation. Finally, the last convolution
layer on the upsampling path produces three output maps. The first two directly pre-
dict the horizontal and vertical gradients of the cellpose flows, and the last one is passed
through a sigmoid and predicts the probability that a pixel belongs to a nucleus.

Training

Training is performed using the probability map output and the "cellpose flow" of seg-
mented images, the latter being generated using pixel diffusion from the center of the
cell nuclei and then calculating both the horizontal and vertical gradients. L2 loss is used
for gradient images and the cross-entropy loss is used for the probability map, flows are
multiplied by a factor of 5 to even the relative contribution of each loss.

4.4 Segmentation metrics

To get an overview of the quality of a nuclei segmentation, an object-level metric and
a pixel-level metric must be used. Pixel-level metrics evaluate the correspondence be-
tween predicted foreground pixels and ground truth, while object-level metrics evaluate
the counting and classification of objects. In this section, each ground truth object is
indexed by i and noted by Gi , while each segmented object, i.e. , resulting from a seg-
mentation model, is indexed by j and noted by S j .

4.4.1 F1-score

The most common object-level metric is the F1 score, defined as:

F1 = 2× Pr eci si on ×Recal l

Pr eci si on +Recal l
, (4.13)

with Pr eci si on = TP
TP+FP and Recal l = TP

TP+FN and TP, FP and FN are the true positives,
false positives, and false negatives, respectively. To compute F1 score, we need to define a
criterion to determine whether an object Gi has been detected. In the rest of this chapter,
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we assume that a nucleus Gi has been detected if at least 50% of its pixels are overlapped
by any existing prediction S j . Otherwise, the nucleus is classified as false negative. Finally,
the false positives correspond to all the segmented objects S j which do not overlap any
ground truth objects Gi , or less than 50% of the number of pixels of Gi .

4.4.2 Jaccard Index (JI)

To evaluate segmentation quality at the pixel level, the simplest metric is the Jaccard Index
(JI), another term that refers to IoU (see section 3.3.1). Given a ground-truth nucleus Gi

and a segmented nucleus S j , the JI is defined as follows:

JI(Gi ,S j ) = |Gi ∩S j |
|Gi ∪S j |

. (4.14)

In the context of nucleus segmentation, we can interpret this score as a correspondence
in terms of shape between Gi and S j . However, it should be noted that this score is com-
puted only for true positives, and so, the presence of false positives is not penalized. The
measurement of this value for a series of images is given by the mean JI (mJI), which is the
average of the JI values obtained for each image.

4.4.3 Aggregated Jaccard Index (AJI)

Although the metrics presented so far provide rich information about the quality of the
segmentation produced, the use of two metrics makes it difficult to compare two models
in the case where each model performs better on one type of metric than the other. To
unify the metrics both at pixel-level and at the object level, Kumar et al. [2017], presented
the Aggregated Jaccard Index (AJI), which is an expanded version of the JI.

To compute this score, each nucleus Gi is assigned with the segmented object S∗
j (i )

maximizing the JI score, i.e. , S∗
j (i ) = argmax j JI(Gi ,S j ). Similar to the JI, the AJI calculates

the ratio between the sum of the cardinal numbers of the intersection and the union of
each assigned pair. To account for false positives, all segmented objects that do not match
a nucleus are added to the denominator. Formally, the AJI for a ground truth with a total
of N nuclei is calculated as follows:

AJI =
∑N

i=1|Gi ∩S∗
j (i )|∑N

i=1|Gi ∪S∗
j (i )|+∑

m∈M|Sm | , (4.15)

with M the set of indices of segmented objects which were not assigned to a ground truth.
As with mJI, the mean AJI (mAJI) is the average of this score per image.

4.5 Experiments and results

To evaluate the potential utility of our simulation model, we will use it to generate datasets
that will serve as training sets for models such as Stardist and Cellpose which are de-
signed for segmenting cell nuclei in microscopy images. To compare performance with
annotated data, we will primarily work with two public datasets with different acquisition
methods and varying complexity.
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4.5.1 Biomedical image datasets

S-BSST265 dataset

BioStudies5 was launched in 2015 and is a public database that aims to contribute to the
reproducibility of research by linking scientific articles and data. For our study, we used
one of the datasets listed in the Biostudies database under the identifier S-BSST2656. This
dataset, provided by [Kromp et al., 2020], consists of 79 fluorescence microscopy images
and includes a total of 7813 cell nuclei manually labeled by biologists. A detailed de-
scription of sample characteristics and acquisition methods is provided for each image in
the form of a CSV file. In total, the images are from different biological tissues (human
ganglioneuroblastoma tumor, human neuroblastoma tumor, Wilms tumor, ...) and were
acquired with different modalities (fluorescence microscopy, confocal microscopy) and
magnifications (20x or 63x). Moreover, the authors propose a subdivision of this dataset
into training (41 images / 2727 nuclei) and test set (38 images / 5086 nuclei), which we
adopt for the experience described in the next sections.

Data Science Bowl (DSB) 2018

The Broad Bioimage Benchmark Collection (BBBC) is a website7 with a freely download-
able collection of microscopy datasets that have been used as benchmarks in over 500
studies. Each dataset is accompanied by a full description of the biological context of
the analysis and a ground truth, the nature of which may vary (counts, pixel annotations,
contours, bounding box, ...). For our experiments, we used the dataset with identifier
BBBC038v1, which is particularly well known in the literature because it was used as the
reference dataset for the Kaggle 2018 DataScience Bowl (DSB) international competition
[Caicedo et al., 2019].

Actually, we only use the training data from the competition, since they are the only
ones that contain segmentation for each nucleus. This results in a training set of 664 im-
ages and 28986 nuclei. Again, the images are from different organisms (humans, mice,
flies) and show some heterogeneity in acquisition (different staining, magnification, illu-
mination quality, etc.).

4.5.2 Extraction of simulation parameters from real images

To create a simulated dataset, we automatically extract the input parameters required for
our simulation model. Using already labelled real images, we perform various feature
extraction mainly by using regionprops method from python skimage library8. Figure 4.10
provides a visual overview of this procedure. For each real image, different simulated
images can be generated from the parameters calculated as follows:

• Size and shape: the average radii of each nucleus are calculated from the average
length of the minor axis and the major axis of each region. The eccentricity feature is
also extracted to determine whether the nuclei are more circular or oval.

• Dispersion: the centroid of each labeled nucleus is extracted, and the average dis-
tance between all centroids is used as the minimum distance value dmi n . The maxi-
mum overlap Omax is set to 0.1 for all generated images to encourage the appearance

5See: https://www.ebi.ac.uk/biostudies/
6Available here: https://identifiers.org/biostudies:S-BSST265
7See: https://bbbc.broadinstitute.org/image_sets
8See: https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops
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Figure 4.10: A visual comparison between the real data (left) and the simulated data (right). Each
row is constructed as follows: real image/real ground truth/simulated image/simulated ground
truth. Each simulated image/ground truth was obtained by automatic extraction of input param-
eters as described in section 4.5.2.

of clusters that are more difficult to segment. After creating an initial nuclei mask, we
also calculate the average number of neighbors of each nucleus. If this value is far
below that of the corresponding real image, we apply the procedure as many times as
necessary to increase the population density (see section 4.2.3).

• Intensities: features such as mean and standard deviation of intensity can be ex-
tracted from the intensity histogram of pixels belonging to a nucleus. An equivalent
method can be used to determine the mean and standard deviation background in-
tensity. To measure the average intensities at the edges of the nuclei, we apply a math-
ematical erosion operation to each real mask with a disk as a structuring element. The
subtraction of the real mask with the eroded mask gives a mask of the contours of all
the nuclei, allowing the measurement of the average intensity of the contours and
the simple calculation of the intensity ratio between the contour and the interior of
the nuclei. For light exposure σl i g ht , the value is chosen randomly compared to the
dimensions of the real image and ensures that few regions of the image are under-
exposed.

• Blurring: For each image, the level of blur is measured by the metric proposed by
Crete et al. [2007] and serves as an approximation to obtain σPSF.

4.5.3 Training setup

In the following sections, the training of a given model is performed with the same hyper-
parameters, regardless of the dataset used and its size. Our choices of parameters corre-
spond mainly to the choice offered in the authors’ tutorial 9.

9See GitHub repositories: https://github.com/stardist/stardist and https://github.com/MouseLand/cellpose
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• For the StarDist models, we use Adam optimization algorithm, initially setting the
learning rate to 3×10−4 and gradually reducing it (i.e. divide by 2) when no improve-
ment in validation loss is observed for 20 epochs.

• Cellpose models are trained with stochastic gradient descent (SGD) with a learning
rate of 0.1, a momentum of 0.9, and a weight decay of 10−5. The learning rate starts at
0 and anneals linearly to 0.1 over the first 10 epochs to prevent initial instabilities.

• Although trained weights are already available for each of the models, we perform
a random initialization of the parameters of each model and use this initialization
for each training performed. To avoid overfitting, we have also integrated an early
stopping criterion for each training: if no improvement in validation loss is observed
for 50 epochs, the training ends.

• For the S-BSST265 dataset, we always maintain the same separation between training
and test images as suggested by the authors. For DSB 2018, we use a unique 5-fold
split for the whole dataset, and we indicate the result of each experiment by averaging
the result from each fold.

4.5.4 Reducing of the amount of training data

Experiment In this section, we measure the impact of reducing the amount of data on
segmentation performance to provide a reference baseline. We evaluate this impact by
training StarDist and Cellpose models with both a fully real dataset (i.e. S-BSST265 and
DSB2018) and the corresponding fully simulated dataset obtained by the procedure de-
scribed in the previous section. For each of the datasets studied, we take 5 different pro-
portions of the total training dataset ptr ai n size: 10%, 20%, 50%, 80%, 100%. Thus, for a
given proportion, a subset of the training data set is randomly selected and actually used
as training data (see table 4.1). For reasons of comparability, the unselected images are
not included in the test data set, but simply ignored. We repeat this operation 5 times for
each proportion to avoid any selection bias. Figure 4.11 shows the evolution of the mAJI
score measured on B-SST265 and DSB 2018 for each model trained with real or simulated
data of different sizes. In addition, table 4.2 shows the average scores (± stddev) obtained
at the object level (F1 score) and at the pixel level (mJI).

Number of training images
in relation to ptr ai n value

10% 20% 50% 80% 100%
S-BSST265 4 8 20 33 41
DSB 2018 53 106 265 425 531

Table 4.1: Summary table of the size of the training dataset used according to the proportion ptr ai n

of available data for datasets S-BSST265 and DSB 2018.

Interpretations Overall, we observed that reducing the number of images to be trained
significantly reduces segmentation performance, whether at the object level, pixel level,
or mAJI score. This is true for both a fully simulated and a real dataset, and even more pro-
nounced for S-BSST265, a dataset that contains only a few training images and where the
use of DL approaches loses interest when the number of images used for training is fur-
ther reduced. Surprisingly, this last point is not verified experimentally for Cellpose with
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this dataset, and we therefore obtain equivalent performance on the mAJI score whether
we use 10% (i.e. 4 real images) or 100% (i.e. 41 real images) of the original training data
(see figure 4.11b). Nonetheless, we can infer from the other curves the need to increase
the size of the training dataset to increase the performance of a given model on a fixed test
set. It is also shown that, regardless of the size of the dataset chosen, using a simulated
dataset as a training dataset instead of real data will almost always result in a less robust
model. Therefore, in the remainder of this chapter, the baseline performance of a given
model corresponds to the performance obtained when training with only real data.
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(a) Stardist performance on S-BSST265.
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(b) Cellpose performance on S-BSST265.
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(c) Stardist performance on DSB 2018.
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(d) Cellpose performance on DSB 2018.

Figure 4.11: A comparison of the evolution of the mAJI score measured on the S-BSST265 and DSB
2018 datasets as a function of the size of the training set. Each point corresponds to the average
(± stddev) of the mAJI score measured with only a certain proportion of the available training set.
The red lines are derived from a model trained on a dataset consisting only of real images and the
blue lines are derived from one consisting only of simulated images.

4.5.5 Mixing real and simulated data as a training dataset

In an effort to surpass the performance of training based on real data, we use training
datasets composed of real and simulated data. More specifically, we want to investigate
whether, for a fixed dataset size, the addition of simulated data can be beneficial for seg-
mentation performance. For a certain fixed proportion ptr ai n of the real data, we simulate
an equivalent dataset with kaug times more images in total. Thus, the variable kaug corre-
sponds to a data augmentation factor. Our experiment therefore consists in training again
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Model +
dataset type

Average F1 score (stddev) at ptr ai n value

10% 20% 50% 80% 100%

Stardist + sim 0.05 (0.02) 0.07 (0.04) 0.1 (0.07) 0.35 (0.05) 0.54 (0.04)
Stardist + real 0.08 (0.06) 0.22 (0.02) 0.44 (0.07) 0.55 (0.04) 0.58 (0.04)
CellPose + sim 0.03 (0.01) 0.05 (0.01) 0.34 (0.05) 0.35 (0.02) 0.35 (0.01)
CellPose + real 0.57 (0.03) 0.59 (0.05) 0.60 (0.03) 0.61 (0.01) 0.55 (0.1)

(a) Object-level performance on S-BSST265

Model +
dataset type

Average F1 score (stddev) at ptr ai n value

10% 20% 50% 80% 100%

Stardist + sim 0.61 (0.04) 0.67 (0.04) 0.73 (0.04) 0.73 (0.04) 0.74 (0.04)
Stardist + real 0.57 (0.05) 0.68 (0.04) 0.75 (0.05) 0.79 (0.02) 0.81 (0.01)
CellPose + sim 0.70 (0.06) 0.74 (0.04) 0.75 (0.04) 0.76 (0.04) 0.74 (0.04)
CellPose + real 0.75 (0.05) 0.80 (0.04) 0.83 (0.02) 0.85 (0.03) 0.84 (0.02)

(b) Object-level performance on DSB 2018

Model +
dataset type

Average mJI score (stddev) at ptr ai n value

10% 20% 50% 80% 100%

Stardist + sim 0.05 (0.06) 0.08 (0.11) 0.15 (0.1) 0.41 (0.03) 0.50 (0.03)
Stardist + real 0.24 (0.17) 0.31 (0.20) 0.51 (0.02) 0.54 (0.02) 0.57 (0.04)
CellPose + sim 0.56 (0.04) 0.60 (0.04) 0.64 (0.03) 0.61 (0.02) 0.60 (0.01)
CellPose + real 0.60 (0.06) 0.67 (0.03) 0.72 (0.01) 0.73 (0.02) 0.71 (0.01)

(c) Pixel-level performance on S-BSST265

Model +
dataset type

Average mJI scor (stddev) at ptr ai n value

10% 20% 50% 80% 100%

Stardist + sim 0.53 (0.02) 0.59 (0.01) 0.64 (0.01) 0.65 (0.01) 0.66 (0.01)
Stardist + real 0.43 (0.03) 0.54 (0.01) 0.62 (0.01) 0.66 (0.01) 0.68 (0.01)
CellPose + sim 0.56 (0.04) 0.60 (0.04) 0.64 (0.03) 0.61 (0.02) 0.60 (0.01)
CellPose + real 0.60 (0.06) 0.67 (0.03) 0.72 (0.01) 0.73 (0.02) 0.71 (0.01)

(d) Pixel-level performance on DSB 2018

Table 4.2: Summary performance tables (at the object and pixel level) for the S-BSST265 and DSB
2018 datasets with Stardist and Cellpose models trained on real or simulated data only. The values
in bold for a given model indicate the best value obtained depending on the type of dataset used.
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Stardist and Cellpose models with different proportions ptr ai n of the real dataset and dif-
ferent kaug data augmentation factors based on data simulation. For the values of ptr ai n

we take the values from the previous experience, i.e. ptr ai n = 10%,20%,50%,80%,100%,
and for augmentation factors we use kaug = 1,5,10. For clarity, table 4.3 provides an
overview of the composition of the training datasets as a function of the values of ptr ai n

and kaug for the experiments performed with S-BBST265.

ptr ai n
Number of
real image

kaug
Number of

simulated image
Training dataset size

10% 4
1 4 8
5 20 24

10 40 44

20% 8
1 8 16
5 40 48

10 80 88

50% 20
1 20 40
5 100 120

10 200 220

80% 33
1 33 66
5 165 198

10 330 363

100% 41
1 41 82
5 205 246

10 410 451

Table 4.3: Composition of the training dataset for S-BBST265 according to the proportion of real
data ptr ai n and the augmentation factor kaug .

In practice, for object recognition or segmentation problems, it is common to use
various data augmentation methods to achieve performance improvement [Cygert and
Czyżewski, 2020; Ghiasi et al., 2021; Jin et al., 2020]. In our case, we will compare our-
selves to a data augmentation framework called Augmend, which is specifically designed
for microscopy image analysis10. The implemented transformations are diverse and in-
clude: flips, 90 degree rotations, scaling, elastic deformation, intensity shifts, intensity
noise.

Therefore, to get a more complete comparison, we replicate the experiments with
each model and each dataset, either by using a training set consisting of real data and
simulated data, or by using the same real data but augmenting them with multiple ran-
dom transformations. Finally, another experiment is performed by adding both simulated
and augmented data. We then represent the mean mAJI values obtained in each experi-
mental modality in figure 4.12 and in figure 4.13. From these graphs we can then draw the
following conclusions:

1. Increasing the number of training images, whether performed by simulation or aug-
mentation, is an effective way to improve segmentation performance. This is espe-
cially true for Stardist models with DSB 2018: the model trained with ptr ai n = 10,
k = 10 gives equivalent performance compared to the one trained using 100% of the
real data only (see figure 4.13a, and figure 4.13b).

10Github repository: https://github.com/stardist/augmend

82

https://github.com/stardist/augmend


CHAPTER 4. TRAINING NEURAL NETWORKS ON SYNTHETIC MICROSCOPY IMAGES

2. Cellpose is globally less sensitive to data augmentation, especially for the S-BSST265
dataset. For DSB 2018, we observe a slight improvement for ptr ai n = 10 and ptr ai n =
20. Also, neither the simulation nor the data augmentation seems to bring any per-
formance gain.

3. The best composition for almost any configuration seems to be to include both sim-
ulated data and augmented data.
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(a) Stardist perf. on S-BSST265, data simulation.
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(b) Stardist perf. on S-BSST265, data augmentation.
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(c) Cellpose perf. on S-BSST265, data simulation.
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(d) Cellpose perf. on S-BSST265, data augmentation.

Figure 4.12: Evolution of mAJI score measured on S-BSST265 for Stardist and Cellpose, depending
on the composition of the training data set. Each point corresponds to the average (± stddev)
of the mAJI score measured with only a certain proportion of the available training set. Different
data augmentation factors are applied to each proportion, either by simulation (left) or by complex
transformations of real images (right). The yellow lines are from a data augmentation procedure
from both simulations and data transformations, with a factor of 5 for each.
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(a) Stardist perf. on DSB 2018, data simulation.
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(b) Stardist perf. on DSB 2018, data augmentation.
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(c) Cellpose perf. on DSB 2018, data simulation.
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(d) Cellpose perf. on DSB 2018, data augmentation.

Figure 4.13: Evolution of mAJI score measured on DSB 2018 for Stardist and Cellpose, depending
on the composition of the training data set. Each point corresponds to the average (± stddev)
of the mAJI score measured with only a certain proportion of the available training set. Different
data augmentation factors are applied to each proportion, either by simulation (left) or by complex
transformations of real images (right). The yellow lines are from a data augmentation procedure
from both simulations and data transformations, with a factor of 5 for each.
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4.6 Conclusions

In this chapter we have presented the problem of image data acquisition and labeling
when working with microscopy imaging. To address the manual labeling problem, we
modeled the mechanisms involved in the formation and rendering of a microscopy image
to create a data generation model. The resulting tool has interpretable and visually un-
derstandable parameters that make it compatible with a simple and easy-to-use graphical
interface. In this way, we have created a tool that can generate an almost unlimited num-
ber of images that are automatically labeled with a fixed and known set of parameters.

Beyond the compelling visual aspect, we measured concretely how the use of simu-
lated data affects the performance of DL models. This has led us to first examine the state
of the art of nuclei segmentation models and then to cross-compare their performance
using training sets of different sizes and compositions. Overall, we observed experimen-
tally that performance decreases as the size of a training dataset decreases, which is a
rather expected result and consistent with the reputation that DL models have. Our ex-
periments have also shown us that the data generated by our model cannot fully replace
a real dataset coming from biological studies and annotated by humans. The annotation
process therefore seems to be a necessity, but its cost can at least be minimized.

The results of our experiments have thus shown that a high level of segmentation per-
formance can be achieved from a small amount of annotated real data. The most appro-
priate approach in this context is then to find a way to artificially increase the size of the
training data set. Simulation is a possible approach, and geometry or intensity transfor-
mations are also possible. Finally, a combination of these two approaches seems to be a
method that yields the best results.
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Chapter 5

Methods for quantification of ovarian
cancerous tissues on 3D confocal
microscopy

Abstract
Ovarian cancer is among the most lethal gynecologic cancers in women, and few
studies have been performed to understand and characterize cell behavior during
disease development. We present in section 5.1 a cohort of 119 patients consisting
of tumor tissues and healthy tissues already imaged by confocal microscopy and vi-
sually quantified by Institut Curie. The quantification process, which consisted of
counting the nuclei and centrosomes for each image, proved particularly complex
given the three-dimensional nature of images. The strategy adopted in this context
will be divided into two stages. In section 5.2, we will first propose a quantifica-
tion method for centrosomes. In section 5.3, we use the 3D implementation of our
simulation model in a loop based on a reinforcement learning principle. Therefore,
we iteratively give a set of fully simulated training data that allows to get as close as
possible to the count performed visually. Finally, in section 5.4, we aggregate our
results for the nuclei and centrosome counts to obtain a Centrosome-Nuclei Index
(CNI) quantification similar to that obtained by manual counting.
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5.1 Introduction

5.1.1 Ovarian cancer

According to the National Cancer Institute (NCI), the number of new cancer cases in
France in 2018 is estimated at 382,000 and the number of new cases of ovarian cancer
at 5200 [Defossez et al., 2019]. Ovarian cancer remains the deadliest gynecologic cancer
and the fourth leading cause of death in women [Reid et al., 2017].

It can arise on the surface of the ovary, fallopian tube, or in the abdominal cavity. Un-
like other cancers, this cancer has a unique spreading system. Namely, the cancer cells
lose their adherence [Iwanicki et al., 2011] and can detach from the original tumor and
form secondary tumors or metastases [Mitra, 2016]. As shown in figure 5.1, 4 stages have
been defined depending on the stage of tumor spread:

• Stage I: the cancer is confined to the ovaries.

• Stage II: the tumor spreads locally to the pelvic organs: uterus, fallopian tubes, bladder.

• Stage III corresponds to the extension of the tumor to the peritoneum or to the lymph
nodes in the pelvis (pelvic lymph nodes).

• Finally, the cancer is classified as stage IV when it has spread in the form of distant
metastases to distant organs such as the pleura (envelope of the lung) or the liver [Reid
et al., 2017].

Diagnosis is usually made by physical examination of the patient (pelvic and recto-
vaginal examination) and radiographs (ultrasound, scanner, MRI...) [Matulonis et al.,
2016], but these are often performed late (at stage III or stage IV), as symptoms go unno-
ticed in the early stages of the disease. Treatment for ovarian cancer usually consists of a
combination of surgery (removal of the ovaries, reduction of the number of metastases in
the abdominal cavity, known as debulking) and chemotherapy. However, many patients
develop resistance to treatment over time and eventually relapse.
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Figure 5.1: Representative scheme of the different stages of ovarian cancer. Image credit to
Katopodis et al. [2019].

5.1.2 The centrosome

Centrosomes are the major centers for microtubule organization in animal cells and con-
sist of a pair of centrioles surrounded by a matrix of pericentriolar material. Figure 5.2
depicts the important role that centrosomes play in many cellular processes, such as the
organization of the poles of the mitotic spindle, which precisely divides the duplicated
chromosomes into two daughter cells during mitosis [Conduit et al., 2015].

The presence of an increased number of centrosomes per cell, corresponding to cen-
trosome amplification, has been frequently demonstrated in many cancers [Cosenza and
Krämer, 2016; Godinho and Pellman, 2014; Nigg, 2006]. However, very few studies have
been performed to quantify centrosomes in ovarian cancers [Hsu et al., 2005], and the few
existing data are either not very robust (single centrosome marker, few samples) or come
from model cells maintained in culture for several years, which cannot physiologically
reflect the processes in a whole organism [Marteil et al., 2018].
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Figure 5.2: Consequences of centrosome amplification. A normal cell in interphase (top) contains
two centrosomes with two centrioles (green barrels) each. After cytokinesis, two daughter cells
with one centrosome each are generated. In the cells with extra centrosome (centriole duplica-
tion), two important scenarios have been described. Supernumerary centrosomes fail to cluster
and form multipolar spindles that divide in a multipolar manner. This type of division is thought
to have a poor outcome for cell survival. In cells where the extra centrosomes cluster to form a
bipolar spindle, merotelic attachments (indicated by the red chromosome) can result in lagging
chromosomes during anaphase, generating aneuploid cells. These aneuploid cells with unequal
chromosome numbers can lead to several pathological conditions such as growth disorders or
cancer. Figure adapted from Marthiens et al. [2012].
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5.1.3 Experimental protocol

To perform a robust study that would allow characterization of centrosome abnormalities
in epithelial ovarian carcinomas (EOCs), Institut Curie was able to obtain 100 human tis-
sues from EOCs and 19 healthy tissues. Sections of these tissues were immunostained and
then analyzed microscopically. To avoid false-positive counting of centrosomes, double
centrosome labeling was performed using two different antibodies CDK5RAP2 and peri-
centrin (PCNT), and only sites that showed colocalisation (a concept explained in sec-
tion 5.2) of the two immunolabeled proteins were quantified.

Figure 5.3: A schematic outline of the experimental protocol designed by Institut Curie in Morret-
ton et al. [2019].

These counts were performed at a tissue thickness of 20µm on a total of 10 randomly
selected fields (i.e. images) per tissue and yielded an average of 5248 nuclei per patient,
whereas other studies quantified only 3 fields with a thickness of 4µm and a maximum
of 500 cells [Hsu et al., 2005]. The impressive amount of data has made it possible to
obtain robust results that take into account the considerable variability between different
tissues, but also within the same tissue between different fields.

5.1.4 Motivations

Analysis of all these data was performed by a graduate student for two years. For each
sample, the 10 selected fields were visualized and quantified using ImageJ software1. The
number of nuclei and the number of centrosomes were counted visually, taking into ac-
count the three-dimensional nature of the images. For each sample, the Centrosome-
Nucleus Index (CNI) was determined by dividing the total number of centrosomes by the
total number of nuclei. Figure 5.4 shows the histogram of each quantification performed
and the resulting CNI for the two tissue types (healthy and cancerous). The main findings
of this study include, first, the presence of significant centrosomal amplification in part
of the EOCs tissues, leading to higher CNI values than in healthy tissues. Second, high
CNI values were shown to correlate with higher survival and better patient response to
chemotherapy [Morretton et al., 2019].

Therefore, in order to broaden the research perspectives offered by these results, it
is necessary to automate the process of ovarian tissue quantification, which has proven
to be an incredibly complex task due to the nature of the tissue, and which is also very
time-consuming due to the three-dimensional nature of the images.

1See https://imagej.nih.gov/ij/
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Figure 5.4: Description of the cohort quantified by Institut Curie. From left to right: counting
distributions of nuclei, centrosomes and the resulting CNI for both healthy and tumoral tissues.

5.1.5 Strategy for Centrosome-Nuclei Index (CNI) quantification

The approach we propose to automatically quantify Centrosome Nucleus Index (CNI) is
similar to that naturally followed by a human. We divide the problem into two indepen-
dent subtasks, each leading to either the counting of centrosomes or nuclei for a given
image:

• Centrosomes counting: we propose an initial automatic approach for colocalized spot
detection similar to the visual approach. This non-learning approach will be our base-
line and will then be compared to methods that incorporate Machine Learning or Deep
Learning.

• Nuclei counting: For this problem, we propose to use the 3D version of our simulator
developed in Chapter 4. In the absence of voxel-level labeling, we propose a reinforce-
ment learning approach that consists of learning the parameters of the simulations that
give the best performance on the real dataset.

5.2 Methods for centrosome counting

As far as we know, there are few, if any, fully automated methods for counting and/or de-
tecting centrosomes. However, the analysis of colocalization in biological microscopy im-
ages is a much more described area in the scientific literature [Comeau et al., 2006; Dunn
et al., 2011; Zinchuk and Grossenbacher-Zinchuk, 2009]. We will therefore address the
basic principles of colocalization analysis in our approaches. In this section, we present
several methods that we have developed for performing this task. We initially rely on tra-
ditional image processing methods (i.e. , without learning process), which we extend as
we proceed by considering the specificity of the data. For comparison purposes, we in-
tegrate a method based on feature extraction and an ML model, and a second method
based only on a CNN model designed for regression tasks. Finally, we propose a compar-
ative analysis of each proposed method based on regression metrics.
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5.2.1 Image processing approach

What is colocalization ?

Intermolecular interactions are at the heart of almost all biochemical mechanisms that
can occur in the life of a cell. When studying these interactions, it is therefore important
to unambiguously identify the molecular dynamics involved. In practice, this is done by
fluorescently labeling the molecules under investigation. The cells are then placed un-
der a microscope to obtain an image with at least two channels in different colors. The
extent of interaction between two molecules is then quantified by colocalization analysis
of the signals present in the final image. This means that we look for spatial correspon-
dences, i.e. a certain degree of overlap, between different fluorescence signals. Figure 5.5a
provides a concrete, easy-to-understand visual example of the concept of colocalization.
In our study, the presence of colocalization between PCNT antibodies (red channel) and
CDK5RAP2 (green channel) reflects the presence of one or more centrosomes.

Visual method

Our first method is based on basic image analysis techniques whose goals are: (1) the ac-
curate localization of spots in the image and (2) the measurement of the overlap between
two regions. We therefore propose a simple method in 5 steps:

1. Channels segmentations: This step is applied to each channel (red and green) sepa-
rately. We start by using a Difference of Gaussian (DoG) [Young, 1987] as an enhance-
ment process of each channel. For a given grayscale image I, the result Γσ2

1,σ2
2
(x, y, z) is

obtained by applying the following operation:

Γσ2
1,σ2

2
(x, y, z) = I∗

(
1

2πσ2
1

e
− x2+y2+z2

2σ2
1 − 1

2πσ2
2

e
− x2+y2+z2

2σ2
2

)
, (5.1)

with σ2
1,σ2

2 are the variance of a Gaussian blurred kernel, and σ2
1 < σ2

2 in general case.
For our expererience, we setσ2

1 = 1 andσ2
2 = 3. Then each channel is binarized, keeping

only the most intense voxels. This means that the intensity threshold is set to the 99th
percentile of each channel image.

2. Size filtering: for each segmented channel, we eliminate all objects whose volume is
below a certain threshold τsi ze . Given the relatively small volume of each object whose
diameter is close to the resolution of the voxels, we set this threshold to a low value, i.e. ,
τsi ze = 15.

3. Colocalization filtering: in this procedure, the segmented regions of one channel are
filtered based on their degree of overlap with the regions of the other channel. Thus,
for a given region, it is assumed that the minimum overlap must be at least 10% of all
voxels belonging to that region.

4. Intersection of channels: In this step, the two processed channels are merged by taking
their intersection, i.e. , we obtain a binarized mask in which each positive pixel has
"survived" the first three stages in both the red and green channels.

5. Connected component algorithm: this last step allows to label each detected region
and thus to perform a centrosome count.
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(a) Visualization of colocalized spot (centrosome) and non-colocalized spots on healthy tissue (HT).

(b) Visualization of different arrangements of centrosomes (4-
isolated, 5-clustered, 6-super-clustered) in tumor tissues (TT)

Figure 5.5: Overview of the task of quantifying centrosomes. Automated methods must capable of
measuring a sufficient level of colocalization (a) and, for large, inseparable aggregates, providing
an approximation of the count (b). Figures adapted from [Morretton et al., 2022].
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Watershed-based method

The method described above, while representative of the Institut Curie visual approach,
is very sensitive to artefacts present in one channel or the other and does not allow local
separation. As an alternative, we propose another method to the first one:

1. Merging: the red channel and the green channel from the first step are merged into
a single image. The result of the merging is an image Imer g e , which is calculated as
follows:

Imer g e = min(R,G) (5.2)

where R and G correspond to the red and green channels, respectively. Thus, the high
intensities of Imer g e correspond to the most colocalized regions of an image. We also
apply a DoG operation and intensity thresholding as in the previous method to get a
binarized mask of Imer g e .

2. Local maxima and watershed: A distance map from the nearest background voxel is
computed, and the local maxima location of this map is given as initialization of a wa-
tershed algorithm.

3. Aggregating regions: To solve the problem of over-segmentation, which could also lead
to overcounting of centrosomes, we propose an aggregation rule inspired by the NMS
algorithm: we order the detections by their average intensity and group together those
between which IoU score is greater than 0.1.

5.2.2 Machine Learning approach

In some samples, the presence of "clusters" and "superclusters" was highlighted (see fig-
ure 5.5b). This clustering of multiple centrosomes close to each other made visual count-
ing difficult or even impossible, so the number of centrosomes in these clusters was es-
timated from the surface area/size of a normal centrosome. To overcome this issue, we
decide to perform feature extraction based on the segmentation obtained with the pre-
vious method. Thus, for each image, we extract relevant features related to the counting
procedure performed:

• Counting feature: is the centrosome count obtained by watershed-based method (1
feature).

• Intensities features: (2×7 features) are obtained by analyzing the intensity histogram
of all detections in both channels. Then we take min, max, mean, standard deviation,
median, 1st and 3rd quartile of the intensity distribution.

• Volume features: (8 features) are obtained by analyzing the volume histogram of all
detections in the same image. Then we take min, max, mean, standard deviation, me-
dian, 1st, and 3rd quartile of the volume distribution. Finally, we also add the ratio of
the total sum volume of the detections to the total volume of the image.

• Colocalisation features: (4 features): Following the recommendations on Dunn et al.
[2011], we have extracted the main statistics needed to measure colocalization. Given
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an image consisting of red channel R and green channel G, the Pearson’s correlation
coefficient (PCC) is defined as:

PCC =
∑

i (Ri −R)× (Gi −G)√∑
i (Ri −R)2 × (Gi −G)2

,

where i is an index over pixels, and R,G refers to the mean intensity of red and green
channel respectively. This coefficient takes values between -1 and 1 and reflects how
closely the intensity values of red and green are correlated. Therefore, a PCC coefficient
with a value close to 0 indicates that the distribution of the red signal and the green sig-
nal are uncorrelated. Although it is an effective statistic for measuring colocalization,
the main shortcoming of PCC is that it poorly measures the amount of signal that colo-
calizes.To overcome this problem we also use the Manders Overlap Coefficients (MOC)
[Manders et al., 1993] defined as:

MOC =
∑

i (Ri ×Gi )√∑
i R2

i ×
∑

i G2
i

.

This quantity is also often accompanied by the coefficients M1 and M2, called Manders
Colocalization Coefficients (MCC), defined as follows:

M1 =
∑

i Ri ,colocal∑
i Ri

M2 =
∑

i Gi ,colocal∑
i Gi

,

where Ri ,colocal = Ri if Gi > 0; Ri ,colocal = 0 if Gi = 0; Gi ,colocal = Gi if Ri > 0 and
Gi ,colocal = 0 if Ri = 0.

After all these features were extracted, we used the Regression Learner application2

available in Matlab 2020a version to find out which regression model has the best per-
formance with this data. The procedure consists in entering this data and the expected
response into the application and launching several model trainings of different types
(linear regression, regression trees, SVM, random forest, ...). Finally, we observed that the
Gaussian Process Regression (GPR) models [Seeger, 2004] perform best on this data (see
section 5.2.4 for more details on how to measure performances).

5.2.3 Deep Learning approach

As a final solution to counting centrosomes, we propose to perform this regression task
via a DL model. In contrast to the non-training methods presented previously, it is very
difficult to process images directly in 3D and in full resolution in this context. The tiling
process also seems rather inappropriate here since we don’t have a per-tile ground truth
count. Finally, to conserve GPU memory, we convert our three-dimensional dataset into
a two-dimensional dataset by applying a maximum intensity projection in the depth di-
rection (i.e. , the z-axis) to each image. The principle is to construct a 2D image whose
elements correspond to the pixels with the highest intensity among all slices of the 3D
image.

Therefore, we use this dataset as a training set to count centrosomes. We use a ResNet-
18 model as the regression model, which we run for 100 epochs with a batch size of 5
images and a MAE loss (see next section) with an ADAM optimization algorithm and a
constant learning rate initialized at 10−3.

2See: https://fr.mathworks.com/help/stats/regressionlearner-app.html
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5.2.4 Evaluating centrosome counting models

To assess the performance of our centrosome counting methods, we use several metrics
that are classically used for regression tasks. For this section, we note yi the number of
centrosome obtained by manual counting on the i -th image (target value), and ŷi the
count obtained by any automatic method (predicted value).

The Root Mean Squared Error (RMSE) is the most commonly used metric for regres-
sion tasks. As the name suggests, this metric is the square root of the averaged squared
differences between target and predicted values. RMSE is particularly useful for penaliz-
ing large estimation errors and is calculated as follows;

RMSE =
√

n∑
i=1

(yi − ŷi )2

n
.

Mean Absolute Error (MAE) corresponds to the average absolute value difference be-
tween the target value and the predicted value. Because of its linearity, it has the advan-
tage of being easily interpreted:

MAE = 1

n

n∑
i=1

|ŷi − yi | .

Similar to MAE, Mean Average Percentage Error (MAPE) correponds to the mean of all
absolute percentage errors between the predicted and actual values:

MAPE = 100

n

n∑
i=1

∣∣∣∣ yi − ŷi

yi

∣∣∣∣ .

Finally, we also use the Pearson correlation coefficient, r , which is a specific measure
that quantifies the strength of the linear relationship between two variables:

r = Cov(Ŷ,Y)

σŶσY
=

n∑
i=1

(ŷi − ¯̂y)(yi − ȳ)√
n∑

i=1
(ŷi − ¯̂y)2

n∑
i=1

(yi − ȳ)2

.

The coefficient varies between -1 and 1, and the further away r is from zero, the stronger
the linear relationship between the two variables.

5.2.5 Results and Interpretations

Finally, we simply applied each of the methods to all images belonging to the cohort.
Note, however, that the methods involving a learning process, i.e. the methods with ML
and DL, were trained and tested according to a 5-fold cross-validation applied according
to the patients (rather than looking at all the images independently of each other). Thus,
the performance indicated for these models corresponds to an average of the results ob-
tained in each fold. All counting scores are reported in section 5.2.5 and a scatter plot is
available for each model in figure A.3 and figure A.4

Based on these results, our main interpretation is that healthy and cancerous tissue
do not necessarily need to be quantified using the same method. In fact, methods based
on image analysis (visual approach and watershed-based method) on healthy tissue are
equivalent or even better than learning methods. However, it is clear that learning-based
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Method Healthy tissues Tumoral tissues
RMSE MAE MAPE r RMSE MAE MAPE r

Visual method 185.73 114.66 19.70 0.93 359.2 294.94 39.65 0.86
Watershed method 145.72 102.73 24.24 0.96 280.36 226.24 30.56 0.90

ML method 196.67 136.78 30.07 0.93 148.03 107.46 16.38 0.91
DL method 157.26 108.38 21.43 0.96 146.89 95.18 13.47 0.93

Table 5.1: Summary table of counting results for each of the methods used to quantify centrosomes
on healthy tissue and tumor tissue.

methods give much better results in cancerous tissues on all scores: RMSE, MAE, MAPE
and correlation. This is mainly explained by the presence of clusters and superclusters
in cancerous tissues, which are particularly difficult to segment given the size of the cen-
trosomes in the images. These methods will then tend to undercount, while the features
extracted and processed by the methods with learning can help adjust the count.

5.3 Learning to simulate nuclei cells

Our approach to counting nuclei is essentially based on using our simulator developed in
the previous chapter. Compared to Chapter 4, our main problem here is that we do not
have pixel-level annotations. Therefore, in this section we implicitly assume that good
nuclei segmentation in 3D inevitably leads to good nuclei counting. On the other hand,
we cannot apply a feature extraction method as explained in section 4.5.2 and the very
large heterogeneity of the data does not allow us to initiate a suitable setting based on a
simple visual approach. Our goal in this section is therefore to find a setting for our sim-
ulation model that makes the count as close as possible to that of the manual counting.

5.3.1 Problem statement

To automatically find the best possible parameterization, the modeling of our problem is
similar to that proposed by Ruiz et al. [2018] in a context of counting cars in traffic’s scenes.
Formally, we want to simulate a real-life dataset Dsi m such that a nuclei segmentation
model hθ ensures high performance on real dataset Dr eal . Our simulation model can then
be viewed as a generative model G(I,M|ψ) which allows to provide a set of image-mask
pairs (I,M) governed by a set of parameters ψ. Therefore, we want to solve the following
bi-level optimization problem:

ψ∗ = argmin
ψ

∑
I,M∈Dr eal

L (M,hθ(I;θ∗(ψ)) (5.3)

s.t . θ∗(ψ) = argmin
θ

∑
I,M∈Dsi m

L (M,hθ(I,θ)) , (5.4)

with:

• ψ∗ are the optimal simulation parameters.

• θ∗(ψ): are the nuclei segmentation model parameters obtained after a training with
simulated data parameterized by ψ.

•
∑

I,M∈Dsi m

L (M,hθ(I,θ)) denotes the loss function evaluated on Dsi m with a model hθ

parametrized by θ.
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•
∑

I,M∈Dr eal

L (M,hθ(I;θ∗(ψ)) refers to the loss function evaluated on Dr eal with a model

hθ(I;θ∗(ψ)) trained on Dsi m .

5.3.2 Reinforcement learning

To better understand the experiments we performed, we briefly introduce some notions
of Reinforcement Learning (RL), which, like DL, is a sub-branch of Machine Learning. RL
is the study of interactions between an agent an its environment. The agent chooses to
take one action a ∈ A leading to be in state s ∈ S according to transition probabilities
(P). For each action a, the environment provides a reward r ∈ R as feedback. Figure 5.6
illustrates this process simply.

Figure 5.6: Interaction diagram between an agent and its environment in RL paradigm. Image
credit to Shweta Bhatt’s article.

More specifically, actions are performed according to a policy π that refers to the
agent’s behavioral strategy. This strategy is based on the observation of the state s, and
the nature of the agent’s policy can be:

• deterministic: π(s) = a

• stochastic: π(a|s) = Pπ(A = a|S = s). If the policy is parameterized, we denote πω(.) a
policy parameterized by ω.

Therefore, the goal of methods based on RL is to find the optimal strategy that the
agent must follow in order to maximize the obtained reward.

5.3.3 Policy gradient

Policy Gradient Methods (PG) are a type of RL techniques based on the optimization of
parameterized policies to achieve the optimal reward. In general, the policy is modeled
with a function πω(a|s) parameterized byω, whose variations influence the reward value.
Thus, the optimization can be done with a gradient descent algorithm.

Mathematically, the goal of PG methods is to maximize the expected total reward J(ω),
defined as:

J(ω) = Eψ∼πω
[
R(ψ)

]
,

where R(ψ) is the total reward obtained by training a model with data parameterized by
ψ. A standard approach to solve this optimization problem is to use gradient descent
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(or ascent) algorithm. Thus, at each iteration t , the policy parameters ωt are updated as
follows:

ωt+1 =ωt +α×∇ωJ(ω) ,

where α is the learning rate. Following the REINFORCE rule Williams [1992], the gradient
can be written as:

∇ωJ(ω) = Eψ∼πω
[∇ωlog (πω)R(ψ)

]
.

An unbiased approximation of this quantity is:

∇ωJ(ω) =∇ω log(πω)Â(ψ) ,

where Â(ψ) = R(ψ)−b is the reward advantage estimate and b a baseline, set to an expo-
nential moving average.

5.3.4 A strategy to optimize nuclei cells simulations

We propose to follow a PG method to simulate data that allows a Stardist model to
get as close as possible to the visual approach in terms of nuclei counts. Algorithm 5
presents our approach in a simplified form. Since the space of actions is continuous,
we set the simulation policy to follow a Gaussian distribution parameterized by ω, i.e. ,
πω =N (µ,σ2In). Thus ω is a concatenation of n means {µi }i=1,2,...,n and n standard devi-
ations {σi }i=1,2,...,n , where n is the total number of parameters in our simulator. For each
µi and each σi , the derivatives are:

∇µ log(πω) = ψi −µi

σ2
i

(5.5)

∇σ log(πω) = (ψi −µi )2 −σ2
i

σ3
i

. (5.6)

For the sake of simplicity, we will not try to optimize the standard deviations, so we set
∀i ,σi = 0.05.

Algorithm 5: Learning to simulate nuclei cells

Input : A simulation model and parameters initialization, a nuclei segmentation
model and corresponding weights θ,

for iteration i = 1,2, ...,nepi sode do
Use policy πω to generate a vector of simulation parameters ψ
Generate a dataset Dsi m of size M, following ψ parameterization
Train Stardist for ξ epochs, initialized by θ
Test on Dr eal , and obtain reward R(ψ)
Compute the advantage estimate A(ψ) = R(ψ)−b
Update the policy parameters ω.

Output : A generator G with an optimized policy ψω

5.3.5 Application on 2D dataset

In this section, we tackle the previously described problem with a 2D public dataset,
which is simpler and less computationally expensive. The results obtained will guide us
in our strategic choices for applying to ovarian tissue data.
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BBBC002-v1 dataset

We used the image set BBBC002v1 Carpenter et al. [2006] from the Broad Bioimage Bench-
mark Collection (BBBC) Ljosa et al. [2012]. This dataset consists of 5 samples from
Drosophila melanogaster. Each sample consists of 10 fields, resulting in a total of 50
512×512 grayscale imaes. As a baseline, a table is given summarizing a count of the num-
ber of nuclei in each image. These counts were made by two different experts, and we
always compare models outputs to the average of the two experts counts.

Training setup

For all experiments, we generate 50 simulation images that are used as a training set for a
StarDist model (2D, then 3D). Stardist models are trained for 200 epochs with a batch size
of 10, using an ADAM optimizer and an initialized learning rate )10−3 that decreases by a
factor of 5 every 40 epochs.

Experiences and results

We are optimizing here our simulator to maximize the negative reward function MAE on
the BBBC002-v1 dataset. The first experiment consists in studying the influence of the
initialization of the simulation parameters on the convergence speed of the PG algorithm.
We therefore take three random simulator settings for the first iteration of the PG loop and
then plot each reward trajectory in figure 5.7. We can observe that the convergence speed
of the algorithm is not the same depending on the initialization of the sampled simulation
parameters. After observing the simulation data generated for each initialization, it turns
out that the one that gives the green curve starts simulating very noisy data, with a nuclei
size that is far too large compared to the average size of nuclei present in the real dataset.
This could explain the delay in convergence. For the second experiment, we replaced the
updating rule of policy parameters. Due to the simple implementation, our optimization
choice fell on ADAM (see section 2.2.4 for details). We can then also observe in figure 5.7
that, for the same initialization parameters, the ADAM optimization algorithm enables
much faster convergence and achieves globally higher reward values compared to vanilla
gradient descent algorithm.
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Figure 5.7: An overview of the reward curves for all experiments performed on the BBBC002-v1
dataset. Left: reward curves for different initialization of simulation parameters. Right: compari-
son of reward curves based on policy parameter optimization algorithm (SGD vs. Adam).
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Figure 5.8: Comparison of reward curves using a pre-trained or untrained model.

5.3.6 Application on 3D dataset

Finally, we extend the experience to a 3D application to ovarian tissue. Due to the greater
heterogeneity of the data, the goal this time is to maximize the negative reward function
MAPE, using Adam updates for policy parameters. Based on our observations from the
previous 2D experience, we initialize the simulation parameters "by hand" to values that
do not result in degenerate images (i.e. , noise level higher than foreground signal, aver-
age radii of the mean values higher than the dimensions of the images, exposure with zero
light, highly blurred, etc.). In contrast to the 2D experiment, we also compare the perfor-
mance that can be obtained with an hθ model whose θweights have already been trained
in advance with any other dataset. The curves for each of the two experiments are shown
in figure 5.8. We can thus observe that the pre-trained model seems to obtain much more
stable rewards than the model initialized with random weights. In addition, the "plateau"
reached is much higher (R ≈−20).

5.4 Quantifications of Centrosome-Nuclei Index

In this final part, we summarize the best results from the previous sections on centrosome
and nuclei counts to examine regression metrics with CNI quantification.

For simplicity, we present here only the counting association that gave us the best
results in CNI quantification, i.e. , we recover for each image the centrosome number
given by the ResNet-18 model, and we take the number of nuclei resulting from a pre-
trained 3D Stardist model, which is then re-trained with simulated data as explained in
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(a) Scatter plot of CNI estimate at image level.

(b) Scatter plot of CNI estimate at patient level.

Figure 5.9: Overview of the results obtained for the CNI estimate for both tissue types.
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the previous section.
It should be remembered that the quantification of CNI can be done at two levels:

either at the level of the image or at the level of the patient. In the latter case, the CNI
corresponds to the ratio between the average number of centrosomes and the average
number of nuclei present in all fields of the same tissue.

figure 5.9 shows all results in the form of scatter plots. Also, figure A.5 shows a visual-
ization of the ratio of automatically detected values to manually counted values. Overall,
the quantified CNI values are relatively unsatisfactory at both the image and patient lev-
els. Despite the fact that centrosome counting models are quite efficient, determining the
ratio of the two quantities can be a major source of error. In particular, if we tend to over-
estimate the number of centrosomes and underestimate the number of nuclei, the error
in estimating CNI will accumulate. Thus, although we have good performance scores on
the counting of centrosomes and nuclei independently, our approach does not allow here
to have a sufficiently relevant quantification of the CNI.

5.5 Conclusions

Counting cells or their components is a very difficult task, especially when done in three
dimensions. The main risk is that the same object is counted more than once. In this
chapter, we have proposed different counting methods depending on the type of object
to be detected or the type of tissue to be examined. In healthy tissues, which do not show
any particular degeneration of the cells, the centrosomes are arranged in isolation, and
the colocalization between the red and green channels is strong there, resulting in rather
intense yellow spots that can be easily detected by thresholding methods or conventional
image analysis techniques. In contrast, centrosomes in cancer tissue have a more com-
plex morphology and are extremely difficult to segment. We then show that ML and/or
DL models are particularly efficient here compared to visual methods. Note, however, that
here traditional methods have the advantage of providing visualization of the detections
made, an avenue not explored with the deep regression model used here.

For the counting of the nuclei, the absence of real and public data in 3D forces us to
use our nucleus simulator developed in the previous chapter. In the absence of ground-
truth at the pixel level, we cannot automatically extract parameters to simulate a relevant
dataset. Thus, our approach is to learn the simulation that would allow us to give the best
results. We thus associate a set of images, obtained by certain settings, with a certain level
of performance on real data. Our results have made it possible to show that a suitable
initialization is necessary to achieve high performance, and especially in relatively con-
venient time. Also, constantly reusing weights that haven’t been minimally pretrained is a
losing strategy at long term, specially for 3D data.

Finally, after summarizing our best results on the number of nuclei and centrosomes,
we did not provide a sufficiently relevant quantification of CNI to draw a biological or
medical conclusion. However, this result in no way diminishes the quality of the methods
used to perform the counts of centrosome or nuclei alone.
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This chapter concludes the thesis with an evaluation of the work done and the possible
perspectives at the end of this research.

6.1 Conclusions

In this work, we have investigated a number of problems that are common in biomedi-
cal imaging and involve either object recognition or image segmentation solutions. The
main need that was frequently mentioned in each of the topics addressed is to reduce
the amount of time people spend on repetitive, long, complex, and/or tedious tasks.
Aside from simply saving time, developing automated methods to perform these tasks
also helps improve patient care and may also allow for the expansion of certain research
areas on a larger scale. We demonstrated this in the first part of the thesis by using the
state-of-art object detection CNN model for early nodule detection on 3D CT scans. Due
to their pyramidal structure, these models are able to provide detections at multiple size
scales. Also, the presence of a public database, which has already been annotated by sev-
eral experts and is relatively large, allowed us to effectively train several of these models.
Although the process requires some computational power, we were able to compare the
models in terms of both detection quality and analysis time. These results were particu-
larly useful for the development of a CADx system during the Data Challenge organized
by the JFR. The resulting system combines a ML and DL model and has produced very
encouraging results, leading to the belief that AI will be the most important support for
preventive medicine in the coming years.

Another important point raised in this thesis is the relationship between training data
and model performance. Although this is a rather expected result, we show that in a nu-
clei segmentation task, segmentation performance tends to increase as the amount of
data used in training is increased. To minimize the labeling cost of using real data, our
approach was based on the development of a simulator that generates data in a nearly in-
finite amount. Although this approach cannot fully replace a real dataset, we found that
it can be used as a method for data augmentation. When we combine this technique with
other, more classical methods, such as the application of rotation or elastic deformation,
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we can still see an improvement in performance, which also confirms the quality of our
tool.

Finally, the last part of this work is mainly application-oriented and uses methods
that are relatively well known in the scientific literature. The detection of centrosomes
in healthy tissues, due to their regular shape and rather isolated arrangement, is an ex-
ample of a method that mainly requires a good definition of some thresholds rather than
the implementation of a CNN architecture. As for counting the nuclei, although we saw
in the previous chapter that simulation is not necessarily the best option, in this context
it is the only viable alternative. Thus, our approach is to control the simulator so that it
generates relevant data relative to the task we are trying to perform. Thus, we observed
that small changes, such as a good initialization of simulation parameter or a change in
the parameters update rule, can be enough to make this type of algorithm converge.

6.2 Perspectives and future work

After all this work is completed, the possible perspectives we can consider arise naturally
from each chapter of this manuscript:

• Unifying a diagnostic pipeline for radiology: Although the results obtained during the
JFRs are very encouraging, the pipeline we have packaged can be seen as a stack of
different models whose outputs correspond to the inputs of the others. Thus, the failure
of one of the models at the beginning of the chain will most likely lead to the failure of
the following models. An alternative to this problem would be to build a unified and
multitask model capable of performing all the tasks required for the diagnosis of lung
cancer simultaneously (i.e. lungs segmentation, nodule detection and classification).
To improve the quality of these predictions, it might prove useful to add clinical data
on the patient’s age, sex, whether or not he is a smoker, etc., in addition to imaging
data. Then, it would be interesting to do a full clinical trial on this system to look at the
benefits in terms of patient care or patient survival.

• An extension of the simulation model: the model proposed in this thesis only gener-
ates images of cell nuclei. From new models of other cellular organs, we could enrich
our model and its graphical interface. For example, it could have been interesting to
also model the colocalization process in two then in three dimensions in order to gen-
erate centrosomes within the images. As for the nuclei, an approach by RL and PG
methods could thus have been initiated to find what is the level of colocalization that
one wishes to simulate. Another relevant possibility, would be to repeat the study con-
ducted in Chapter 4 using multiple data generators. In particular, one would need to
be able to include Generative Adversarial Networks (GANs), which are known for the
quality and realism of their simulations.

• Another meta-learning strategy: The gradient descent method presented in this the-
sis is a relatively simple approach, but extremely computationally expensive. Moreover,
the reward function we have chosen is questionable in that it rewards a correct count
without attaching any significance to the segmentation that led to that count. From a
practical point of view, situations may arise in which the count is relatively correct while
the segmentation is visually incorrect. A semi-automatic approach would then consist
in validating/correcting the segmentation that was made with each iteration, but would
make the process even more cumbersome. Beside, in the case of large dataset like ours,
the large heterogeneity of the data makes it unlikely that a single simulation mode will
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be sufficient to resemble the real data. Thus, one approach might be to create multiple
simulation modalities to produce greater diversity at each iteration, which would be
more appropriate for very complex data sets. The policy gradient approach could be a
multimodal policy gradient approach and would allow finding more realistic distribu-
tions of the features present in a dataset.
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A.1 Appendix on chapter 3
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APPENDIX A. APPENDIX

Figure A.1: A visual comparison of false positive detections obtained after applying NMS algorithm
(left) versus WBC algorithm (right).
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Figure A.2: A visual comparison of true positive detections obtained after applying NMS algorithm
(left) versus WBC algorithm (right).
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A.2 Appendix on Chapter 5

(a) Visual approach

(b) Watershed-based approach

Figure A.3: Performance overview of different approach for centrosome counting.
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(a) Machine learning approach

(b) Deep learning approach

Figure A.4: Performance overview of different approach for centrosome counting.
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(a) Visualization of the relative error of the CNI estimate at the image level

(b) Visualization of the relative error of the CNI estimate at the patient level.

Figure A.5: Visualization of the relative error of the CNI estimate for both image and patient level.
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