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Résumé: L'analyse sémantique est
une tache qui consiste a produire une
représentation formelle manipulable par
un ordinateur a partir d'un énoncé en
language naturel. Il s'agit d'une tache
majeure dans le traitement automatique
des langues avec plusieurs applications
comme le développement de systemes
de question-réponse ou la génération de
code entre autres. Ces derniéres années,
les approches fondées sur les réseaux
de neurones, et en particulier les archi-
tectures séquence-a-séquence, ont dé-
montré de tres bonnes performances
pour cette tache. Cependant, plusieurs
travaux ont mis en avant les limites
de ces analyseurs sémantiques sur des
exemples hors distribution. En partic-
ulier, ils échouent lorsque la générali-
sation compositionnelle est requise. |l
est donc essentiel de développer des
analyseurs sémantiques qui possedent
de meilleures capacités de composi-
tion. La représentation du contenu sé-
mantique est une autre préoccupation
lorsque l'on aborde l'analyse séman-
tique. Comme différentes structures
syntaxiques peuvent étre utilisées pour
représenter le méme contenu séman-
tique, il est souhaitable d'utiliser des
structures qui peuvent a la fois représen-
ter précisément le contenu sémantique
et s'ancrer facilement sur le langage na-
turel. A ces égards, cette thése utilise des
représentations fondées sur les graphes
pour l'analyse sémantique et se con-
centre sur deux taches. La premiére
concerne I'entrainement des analyseurs
sémantiques fondés sur les graphes.
lls doivent apprendre une correspon-
dance entre les différentes parties du
graphe sémantique et I'énoncé en lan-

gage naturel. Comme cette information
est généralement absente des données
d'apprentissage, nous proposons des al-
gorithmes d'apprentissage qui traitent
cette correspondance comme une vari-
able latente. La deuxiéme tache se con-
centre sur l'amélioration des capacités
de composition des analyseurs séman-
tiques fondés sur les graphes dans deux
contextes différents. Notons que dans la
prédiction de graphes, la méthode tradi-
tionnelle consiste a prédire d'abord les
noeuds, puis les arcs du graphe. Dans
le premier contexte, nous supposons
que les graphes a prédire sont néces-
sairement des arborescences et nous
proposons un algorithme d'optimisation
basé sur le lissage des contraintes et
la méthode du gradient conditionnel
qui permet de prédire I'ensemble du
graphe de maniere jointe. Dans le
second contexte, nous ne faisons au-
cune hypothese quant a la nature des
graphes sémantiques. Dans ce cas, nous
proposons d'introduire une étape in-
termédiaire de superétiquetage dans
l'algorithme d'inférence. Celle-ci va im-
poser des contraintes supplémentaires
sur |'étape de prédiction des arcs. Dans
les deux cas, nos contributions peuvent
étre vues comme l'introduction de con-
traintes locales supplémentaires pour
garantir la validité de la prédiction glob-
ale. Expérimentalement, nos contribu-
tions améliorent de maniere significa-
tive les capacités de composition des
analyseurs sémantiques fondés sur les
graphes et surpassent les approches
comparables sur plusieurs jeux de don-
nées congus pour évaluer la généralisa-
tion compositionnelle.
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Abstract: Semantic parsing is the task
of mapping a natural language utterance
into a formal representation that can be
manipulated by a computer program. It
is @ major task in Natural Language Pro-
cessing with several applications, includ-
ing the development of questions an-
swers systems or code generation among
others. In recent years, neural-based
approaches and particularly sequence-
to-sequence architectures have demon-
strated strong performances on this task.
However, several works have put forward
the limitations of neural-based parsers
on out-of-distribution examples. In par-
ticular, they fail when compositional gen-
eralization is required. It is thus essen-
tial to develop parsers that exhibit better
compositional abilities. The representa-
tion of the semantic content is another
concern when tackling semantic parsing.
As different syntactic structures can be
used to represent the same semantic
content, one should focus on structures
that can both accurately represent the se-
mantic content and align well with nat-
ural language. In that regard, this the-
sis relies on graph-based representations
for semantic parsing and focuses on two
tasks. The first one deals with the training
of graph-based semantic parsers. They
need to learn a correspondence between

the parts of the semantic graph and the
natural language utterance. As this in-
formation is usually absent in the train-
ing data, we propose training algorithms
that treat this correspondence as a la-
tent variable. The second task focuses on
improving the compositional abilities of
graph-based semantic parsers in two dif-
ferent settings. Note that in graph pre-
diction, the traditional pipeline is to first
predict the nodes and then the arcs of
the graph. In the first setting, we assume
that the graphs that must be predicted
are trees and propose an optimization al-
gorithm based on constraint smoothing
and conditional gradient that allows to
predict the entire graph jointly. Inthe sec-
ond setting, we do not make any assump-
tion regarding the nature of the semantic
graphs. In that case, we propose to intro-
duce an intermediate supertagging step
in the inference pipeline that constrains
the arc prediction step. In both settings,
our contributions can be viewed as in-
troducing additional local constraints to
ensure the well-formedness the overall
prediction. Experimentally, our contri-
butions significantly improve the compo-
sitional abilities of graph-based seman-
tic parsers and outperform comparable
baselines on several datasets designed to
evaluate compositional generalization.
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Chapter 1

Introduction

1.1 Context

1.1.1 Semantic parsing

Language is at the center of human communication as it allows us to understand and
exchange with others. Notably, humans are able to compose words into sentences, un-
derstand the meaning of a sentence and perceive the different meanings of an utterance
based on its context. On the other hand, computers do not possess this ability. By design,
they can only operate on languages like programming or query languages that possess a
strict grammar that must be followed. Otherwise, the computer will be unable to execute
the utterance. Additionally, the meaning of each element in a formal language must be
precisely defined. This makes communication between humans and computers difficult:
the humanis required to use a language that can be understood by the computer, which is
not possible for a large majority of the population, and even in that case, communication
is limited to the domain of the language used.

As such, one long standing goal of natural language processing has been the devel-
opment of systems that convert natural language to a representation that can be ma-
nipulated by a computer. Such systems enable a variety of tasks in human-computer
interaction: question answering, information extraction, instruction interpretation, code
generation, etc ... The task of mapping a natural language utterance into a formal mean-

ing representation is known as semantic parsing. We give several examples of natural
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Sentence How big is Texas?
MR answer (A, (size(B, A), const(B, stateid(texas)))))

Sentence The cat ate the cake.
MR xcat(x_2) ; *cake(x_b5); ate.agent(x_3, x_2) AND ate.theme(x_3, x_5)

Sentence The dog ate the bone.
MR (e / eat-01 :ARGO (d / dog) :ARG1 (b / bone))

Table 1.1: Examples of natural languages utterances paired with their meaning represen-
tations (MR). The first representation is a logical form following the Prolog syntax taken
from the GeoQuery (Zelle and Mooney, 1996) dataset. The second representation is a logi-
cal form taken from the COGS (Kim and Linzen, 2020) dataset. The third one is the Penman
notation (Kasper, 1989) of the Abstract Meaning Representation (Banarescu et al., 2013).

language utterances with corresponding meaning representations in Table 1.1.

Early approaches for semantic parsing were rule-based and focused on very limited
domains (Woods et al., 1972; Winograd, 1972). As natural language can be flexible and
ambiguous, these parsers required significant manual work to be developed and did not
generalize to other domains. To reduce the amount of work required, ulterior research
focused on the development of semantic parsers that could be trained from pairs con-
sisting of an utterance and its corresponding semantic representation. Various research
directions were explored throughout the years: grammar-based approaches (Zelle and
Mooney, 1996; Kate et al., 2005; Zettlemoyer and Collins, 2005, 2007; Kwiatkowski et al.,
2011), sequence-to-sequence approaches (Jia and Liang, 2016; Dong and Lapata, 2016;
lyer et al., 2017; Wang et al., 2020), span-based approaches (Pasupat et al., 2019; Herzig
and Berant, 2021) or graph-based approaches (Flanigan et al., 2014; Zhou et al., 2016; Lyu

and Titov, 2018) among others.

These approaches tackle various semantic structures. However, the structures of the
natural language utterance and the semantic representation do not necessarily match.
Rambow (2010) argued that different syntactic structures could represent the same se-
mantic content. It is thus essential to focus on structures that can both represent ac-
curately semantic content and align fairly well with natural language. In that regard, we

focused on graph-based representations in this thesis.
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1.1.2 Compositionality of language
The principle of compositionality states that

“The meaning of an expression is a function of the meanings of its parts and

of the way they are syntactically combined.” (Frege, 1956; Partee, 1984)

Indeed, humans can understand the meaning of natural language thanks to systematic
compositionality, the algebraic capacity to understand and produce novel combinations
from known components (Chomsky, 1957; Montague, 1970). Montague argued that nat-
ural language could be mapped to logical forms via a grammar, i.e. the semantic content
would be obtained by combining adjacent elements together. This idea was adopted in
early semantic parsing systems as they relied on hand-crafted, and later learned gram-
mars. While these systems were limited, they had an explicit inductive bias for composi-
tionality.

The development of sequence-to-sequence architectures was an important step in
semantic parsing. These approaches cast semantic parsing as a string-to-string machine
translation problem where the semantic representation was linearized and treated as a
foreign language. While these approaches performed well, semantic parsing tasks de-
signed to evaluate the robustness to compositional generalization were proposed to
study whether they had an inductive bias (Lake and Baroni, 2018). Their work as well as
further contributions (Loula et al., 2018; Finegan-Dollak et al., 2018) demonstrated that
sequence-to-sequence approaches fail to learn compositional generalization.

Therefore, recent work in semantic parsing has focused on the development of ap-
proaches with an inductive bias for compositional generalization. In this thesis, we pro-
pose two novel approaches that improve the compositional abilities of graph-based se-
mantic parsers. While the assumptions made for each approach are different, our key
idea is the same in both cases: we ensure the well-formedness of the global prediction

by introducing additional local constraints.
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1.2 Contributions

The contributions of this thesis can be summed up as follows:

+ We highlight how graph-based methods allow for a unified approach that can be ap-
plied to a variety of domains and meaning representations. The only requirement is

a bijective mapping between the target representation and a graph representation.

+ Graph-based parsers mustlearn a correspondence between parts of the formal rep-
resentation and the sentence. Explicitly annotating this correspondence in the data
can be problematic: how ambiguities are dealt with, which correspondences are
allowed (one-to-one, one-to-many, many-to-one, ...), how phenomenons like reen-
trancies are handled, etc ... As such, this information is usually absent. We propose
training algorithms that treat this correspondence as a latent variable, a setting that

we refer to as “weakly-supervised training”.

+ In graph prediction, the traditional pipeline is to first predict the nodes and then the
arcs of the graph. This can lead to additional errors as the prediction of nodes is not
informed by the prediction of arcs. In the case where the structures that must be
predicted are trees, we propose to predict the entire graph jointly. Our inference
algorithm solves the linear relaxation to this problem and delivers an optimality
certificate when the solution returned is integral. In addition, when given a semantic
grammar, our algorithm guarantees that its output will be well-formed with respect

to the grammar.

« The arcs of the graph are usually predicted independently from each other. It has
been observed that graph-based parsers fail to predict them correctly when they
are required to generalize to unseen sentence structures. To tackle this issue, we
get rid of the independence assumption. We propose to introduce an intermediate
supertagging step in the inference pipeline. In this step, each node is assigned a
supertag that will constrain the arcs that can be predicted as adjacent to the node

in the arc prediction step.
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1.3 Outline

Based on our contributions, this thesis is organized as follows.

Chapter 2. Semantic parsing and structured prediction. Inthischapter, weintroduce
the semantic parsing task. First, we present the major families of semantic formalisms.
Then, we describe the main research directions over the years for semantic parsing with
their motivations, advantages and limitations. Notably, we discuss the recent focus on
neural-based parsers and improving their compositional abilities. After that, we give a
brief overview of related works for compositional generalization in semantic parsing. Fi-

nally, we discuss the evaluation of semantic parsers.

Chapter 3. Graph-based semantic parsing. The following chapter introduces graph-
based approaches for semantic parsing. We first motivate the use of these approaches
before presenting them, the issues that they raise and how they are handled. Then, we
formally define the task as it is currently tackled and present common neural architec-
tures. After that, we present the graph-based approaches that were developped con-
currently to our contributions for compositional generalization. Finally, we introduce the

datasets that are used in this thesis and how they are transformed into graphs.

Chapter 4. Combinatorial optimization and training. In this chapter, we study the
training of a graph-based parser in a setting where the anchoring of a semantic graph
over its corresponding sentence is not available. We propose an objective function for
this setting and prove that its computation requires to solve a NP-hard problem. We
introduce a combinatorial optimization framework and propose a new algorithm to solve

the linear relaxation of this problem and, ultimately, compute the objective function.

Chapters 5 and 6. Improving compositional generalization. These chapters present
two novel graph-based approaches, each with their advantages and shortcomings. In
Chapter 5, we focus on semantic representations without reentrancies, i.e. their graph

representations are trees, and for which typed grammars are available. For this setting,
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we propose an approach that does not restrict the search space and covers all the struc-
tures observed in practice, including non-projective ones. Our proposed approach pre-
dicts the entire graph jointly while ensuring the well-formedness of the predicted solution
with respect to the semantic grammar.

In Chapter 6, we do not impose a priori constraints on the semantic representation.
We study a generalization task that requires semantic parsers to handle both known
grammatical structures with words that were not observed in these structures before as
well as novel grammatical structures. As semantic parsers tend to struggle particularly on
the latter, we propose a novel multi-step inference that relies on supertagging to predict
the semantic graph. Notably, our supertagging step ensures that there exists a feasible

solution.

Chapter 7. Conclusion. Finally, we conclude the thesis with a summary of our contri-

butions. We also provide an overview of potential future research directions.

1.4 List of publications

The articles listed below were published during the thesis.

Auto-encodeurs variationnels: contrecarrer le probléme de posterior collapse grace
a la régularisation du décodeur

Authors: Alban Petit, Caio Corro

Conference: 28e Conférence sur le Traitement Automatique des Langues Naturelles
Publication date: June 2021

Language: French

Abstract: Variational autoencoders are generative models useful to learn latent repre-
sentations. In practice, on text generation tasks, they tend to ignore latent variables dur-
ing the decoding process. We propose a new regularization method based on “fraternal”
dropout to encourage the use of these latent variables. We evaluate our approach on

multiple datasets and observe improvements in all the tested configurations.
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Preventing posterior collapse in variational autoencoders for text generation via
decoder regularization

Authors: Alban Petit, Caio Corro

Workshop: Deep generative Models and Downstream Applications Workshop at NeurIPS
2021

Publication date: December 2021

Language: English

Abstract: Variational autoencoders trained to minimize the reconstruction error are sen-
sitive to the posterior collapse problem, that is the proposal posterior distribution is al-
ways equal to the prior. We propose a novel regularization method based on fraternal
dropout to prevent posterior collapse. We evaluate our approach using several metrics

and observe improvements in all the tested configurations.

Un algorithme d’'analyse sémantique fondée sur les graphes via le probléme de
I'arborescence généralisée couvrante

Authors: Alban Petit, Caio Corro

Conference: 29e Conférence sur le Traitement Automatique des Langues Naturelles
Publication date: June 2022

Language: French

Abstract: We propose a novel algorithm for graph-based semantic parsing via the maxi-

mum generalized spanning arborescence problem.

On Graph-based Reentrancy-free Semantic Parsing
Authors: Alban Petit, Caio Corro

Journal: Transactions of the Association for Computational Linguistics, Volume 11

19



Publication date: 2023

Language: English

Abstract: We propose a novel graph-based approach for semantic parsing that resolves
two problems observed in the literature: (1) seq2seq models fail on compositional gen-
eralization tasks; (2) previous work using phrase structure parsers cannot cover all the
semantic parses observed in treebanks. We prove that both MAP inference and latent tag
anchoring (required for weakly-supervised learning) are NP-hard problems. We propose
two optimization algorithms based on constraint smoothing and conditional gradient to
approximately solve these inference problems. Experimentally, our approach delivers
state-of-the-art results on GeoQuery, Scan, and Clevr, both for i.i.d. splits and for splits

that test for compositional generalization.

Structural generalization in COGS: Supertagging is (almost) all you need

Authors: Alban Petit, Caio Corro, Francois Yvon

Conference: The 2023 Conference on Empirical Methods in Natural Language Processing
Publication date: December 2023

Language: English

Abstract: In many Natural Language Processing applications, neural networks have been
found to fail to generalize on out-of-distribution examples. In particular, several recent
semantic parsing datasets have put forward important limitations of neural networks in
cases where compositional generalization is required. In this work, we extend a neural
graph-based parsing framework in several ways to alleviate this issue, notably: (1) the
introduction of a supertagging step with valency constraints, expressed as an integer lin-
ear program; (2) the reduction of the graph prediction problem to the maximum matching
problem; (3) the design of an incremental early-stopping training strategy to prevent over-
fitting. Experimentally, our approach significantly improves results on examples that re-
quire structural generalization in the COGS dataset, a known challenging benchmark for
compositional generalization. Overall, these results confirm that structural constraints

are important for generalization in semantic parsing.
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Chapter 2

Semantic parsing and structured

prediction

This chapter introduces the necessary context for readers to understand the contribu-
tions presented in this thesis. We first present the major families of semantic formalisms
in Section 2.1. Then, we give an overview of the first manually designed systems for se-
mantic parsing and the development of grammar-based parsing in Section 2.2. Section
2.3 focuses on neural-based approaches. Sequence-to-sequence architectures are pre-
sented first with their limitations with respect to compositional generalization. Then, we
introduce span-based approaches which draw inspiration from previous grammar-based
approaches to improve compositional generalization. In Section 2.4, we give a brief sum-
mary of related works that study compositional generalization for semantic parsing. Fi-

nally, we discuss the evaluation of semantic parsers in Section 2.5.

2.1 Semantic formalisms

The role of a semantic representation is to provide a structured representation of the
meaning of a natural language utterance. To do so, it requires an ontology rich enough
to represent the concepts, their properties and relations for a given task. In this section,

we present the most common formalisms used in semantic parsing.
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Sentence ‘ How many states border texas ?

Lambda calculus count (A\x.state (x) A borders(x, texas))

answer (A, count(B, (state(B), next_to(B,C),
const(C, stateid(texas))), A))

A-DCS (Liang, 2013) count (Type.USState M Borders.Texas)

FunQL (Kate et al., 2005) count (state(next_to_2(stateid(texas))))

Prolog (Zelle and Mooney, 1996)

Table 2.1: Comparison of multiple semantic representations that can equivalently be re-
duced to first-order logic augmented with lambda calculus (Carpenter, 1997).

2.1.1 Logical forms

The modelisation of human language has a long history that precedes the task of seman-
tic parsing. As presented by Mooney (2014), existing work on this topic dates back to at
least 1685. Gottfried Leibniz argued that if a language could be evaluated, it could be pos-
sible to determine whether a reasoning was correct or not. To do so, he developed the
characteristica universalis, a formal conceptual language that could be evaluated by the
calculus ratiocinator, an automated reasoner. This work was a precursor to the Boolean
algebra (Boole, 1854) which reduces propositional logic to an algebra over binary vari-
ables with the conjunction (A), disjunction (V) and negation (—) operators. The Boolean
algebra is however limited. Whitehead and Russell (1912) finalized the development of
the modern first-order predicate logic. It introduces quantified variables with the ¥ and 3
operators as well as predicates and functions. While first-order logic is unable to manipu-
late sets, Carpenter (1997) proposed to augment it with lambda calculus. This formalism
is widely used in semantic parsing. Note that works may rely on different representations
that can equivalently be reduced to first-order logic augmented with lambda calculus, see

Table 2.1.

2.1.2 Graph-based representations

While logical forms are popular formalisms in semantic parsing, there has also been a
growing interest in the development of general-purpose meaning representations based
on graphs. Representing the semantic content as a labeled graph where vertices denote
entities and edges represent the semantic relations between them offers several advan-

tages: they can easily model semantic phenomenons like co-references and are fairly
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ARGO

w/want-01 »@® d/dog
ARG1 ARGO
e/eat-01
ARG1
[ ]
b/bone

Figure 2.1: The semantic graph corresponding to “The dog wants to eat a bone” in the
AMR formalism.

intuitive to understand for a human. In addition, as graph theory has been extensively
studied in computer science, there exists a large variety of algorithms that can be lever-
aged to train a parser predicting graphs.

As graph-based representations grew in popularity in recent years, several formalisms
have been proposed. We can cite Abstract Meaning Representation (AMR, Banarescu
et al., 2013), Universal Conceptual Cognitive Annotation (UCCA, Abend and Rappoport,
2013), Universal Dependency Semantics (UDS, White et al., 2016) or more recently, Ba-
belNet Meaning Representation (BMR, Martinez Lorenzo et al., 2022), among others. As
these representations are not the focus of this thesis, we refer to Abend and Rappoport
(2017) for a survey of these representations and their semantic differences. We give an

example of a graph-based semantic representation in Figure 2.1.

2.2 Development of grammar-based parsing

2.2.1 Rule-based semantic parsers

A detailed survey of early semantic parsing systems can be found in Androutsopoulos
et al. (1995). In this section, we present how these systems operated and their limita-
tions. Montague (1970) argued that natural language could be mapped to logical forms
by applying recursive syntactic rules. Early semantic parsers explored this direction and
relied on a hand-crafted grammar to recursively parse natural language utterances and
map them to logical forms. The first step in these systems was to produce a tree repre-

sentation of the sentence using a grammar. The latter could either be syntax-based, e.g.
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NP VP

T

Det N \Y N

Which  rock contains magnesium ?

Figure 2.2: Syntactic parse of the query "Which rock contains magnesium ?" using the
grammar defined in Example 2.1.

in the LUNAR system (Woods et al., 1972), or semantic-based (Lockemann and Thompson,

1969; Waltz, 1978; Hendrix et al., 1978; Templeton and Burger, 1983).

Example 2.1: Parsing of an utterance
We illustrate the parsing step with a query that could be asked to the LUNAR system:
“Which rock contains magnesium ?”. We use a simplified syntax-based grammar de-

fined as follows:

S — NP VP

+ NP - DetN | N

Det — “which” | “what”

* N — “rock” | “magnesium”

VP — V NP
* V — “contains” | “emits”

This grammar indicates that a simple declarative clause (S) is composed of a noun
phrase (NP) and a verb phrase (VP), a noun phrase is composed of a determiner
(Det) and a noun (N), a noun can either be “rock” or “magnesium”, etc ... Using this

grammar, the query will be parsed into the tree shown in Figure 2.2.

The second step consisted in mapping the parse tree obtained into a logical form. To
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do so, each element appearing in the grammar was assigned a semantic rule defining how
it should be mapped. The mapping of non-terminal elements in the grammar is usually

defined recursively. Thus, the parse tree is traversed bottom-up as shown in Example 2.2.

Example 2.2: Mapping of a parse tree to a logical form

We use the same query and grammar as in Example 2.1. We assume that the se-

mantic rules are defined as follows:
* “which” is mapped to for_every X.
* “rock” is mapped to (is_rock X).
* “contains” is mapped to contains.
* “magnesium” is mapped to magnesium.

* The mapping of a NP is the mapping of its determiner (if applicable) and the

mapping of its noun.

* The mapping of a VP is (V'X NP") where V' and NP’ are the mappings of its verb

and noun phrase respectively.

* Themapping ofaSis (NP'VP'; (printout X)) where NP'and VP’ are the map-
pings of its NP and VP respectively.

By following these rules, each word is first mapped to its representation. Then,
the NP is mapped to for_every X (is_rock X).The VP is mapped to (contains X
magnesium) and finally, the S is mapped to (for_every X (is_rock X) (contains

X magnesium); (printout X)).

As the grammar was hand-crafted, these systems were limited and they could not
handle out-of-vocabulary words or unknown grammatical structures. In addition, the se-
mantic rules could not be transferred to other domains, meaning that they needed to
be redesigned from scratch for every system. Due to these issues, the focus of research

shifted from rule-based methods to statistical approaches relying on data.
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2.2.2 Statistical learning

Statistical approaches for semantic parsing relied on pairs composed of a sentence and
its corresponding semantic representation. As the downside of rule-based parsers was
the hand-crafted grammar, the aim of these approaches was to infer a grammar from the
examples provided in the training set. An early example is the CHILL system (Zelle and
Mooney, 1996) that infers a deterministic shift-reduce parser. To evaluate their system,
Zelle and Mooney (1996) built a corpus from sentences submitted by uninformed users.
On these sentences, their approach outperformed an existing rule-based system known
as Geobase. This system was improved later on with a refined algorithm to infer the rules
of the shift-reduce parser (Tang and Mooney, 2001; Thompson and Mooney, 2003).

The next evolution came with the introduction of Combinatory Categorical Grammars
(CCG, Steedman, 1996, 2000) for semantic parsing. In semantic parsing, a CCG is gener-
ally defined by a lexicon in which an entry is a pair composed of a word and an associated
category containing both syntactic and semantic information. In addition, a CCG also has
a set of combinators, i.e. rules indicating how the syntactic and semantic informations of
adjacent elements in the utterance can be composed together. Zettlemoyer and Collins
(2005) proposed to reduce semantic parsing for logical forms to learning a probabilistic
CCQG, i.e. a CCG where each possible derivation is given a weight. Given pairs of sentences
with their corresponding logical forms, they aim to find the weights that maximizes their
joint likelihood. As polynomial-time algorithms to parse CCGs (Vijay-Shanker and Weir,
1993; Kuhlmann and Satta, 2014) exist, predicting the logical form associated to a nat-
ural language utterance is reduced to computing the derivation of maximum weight via
dynamic programming. Probabilistic CCGs proved to be a popular research direction for
semantic parsing in the following years. Zettlemoyer and Collins (2007) introduced addi-
tional combinators to handle variable word orderings or missing words. Kwiatkowski et al.
(2011) improved the induction of the lexicon by introducing factored lexicons, i.e. words
that belong to the same class (e.g. “Texas” and “California” are both states) are grouped

in the same template.
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Word Syntactic information Semantic information

Utah NP utah
ldaho NP idaho
borders (S\NP)/NP Az Ay.borders(y, )

Table 2.2: Example of a simple CCG lexicon containing 3 entries.

Utah borders Idaho
NP (S\NP)/NP NP
utah Az Ay.borders(y, ) idaho
S\NP
Ay.borders(y, idaho)
S

borders(utah, idaho)

Figure 2.3: Parsing of the sentence "Utah borders Idaho" with the CCG defined in Example

Example 2.3: Parsing with a CCG

We illustrate parsing with a CCG on the sentence "Utah borders Idaho". The lexicon

of the CCG is given in Table 2.2. We assume that there exists two combinators:

« A/B:f B:g = A:f(g)

i g AB:f = A:f(g)

The first combinator means that two elements with the syntactic types A/B and B

can be combined to produce an element with the type A. The second one means

that the types B and A\B can also be combined to produce an element with the

type A. In both cases, the semantic information of the resulting element will be the

application of f to g. Given this CCG, the resulting parse is shown in Figure 2.3.

Note that other research directions were also explored. An example is training seman-

tic parsers with less supervision to bypass the need for complex annotations in datasets

(Berant et al., 2013; Kwiatkowski et al., 2013; Pasupat and Liang, 2015). As these topics

are not the focus on this thesis, we do not discuss them here.
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2.3 Neural-based semantic parsing

The development of neural networks led to new research directions being explored for

semantic parsing. Most of them fall under the paradigm of structured prediction.

Definition 2.4: Structured representation

A structured representation z € Z is a discrete object consisting of interdependent

parts p € P respecting consistency constraints (Niculae et al., 2023).

Definition 2.5: Structured prediction

Given an input z, structured prediction consists in finding a structured represen-
tation z of maximum weight inside a set Z% with respect to a weighting function
f* 2% — R. The set of possible representations Z* is usually specific for each
input z and has an exponential size, i.e. it is impossible to enumerate every single
element in Z*. Additionally, the parts of a structured representation are highly con-

strained.

Based on Definition 2.5, one of the main concerns when tackling semantic parsing is
how the problem should be cast and which structure should be used to model the seman-
tic representation. In this section, we present the major approaches for neural semantic

parsing and discuss their compositional abilities as well as computational implications.

2.3.1 Sequence-to-sequence architectures

Presentation. Wong and Mooney (2006) and Andreas et al. (2013) proposed to rely on
machine translation methods for semantic parsing. The approach proposed by Andreas
etal. (2013)was to linearize the semantic representation and treat it as a foreign language.
Machine translation saw significant improvements with the development of sequence-to-
sequence architectures (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2015). It
was thus appealing to also use them for standard structured prediction problems (Vinyals
et al., 2015). As these models do not make any independence assumption, the likelihood

of an output sequence y given an input sentence w can be expressed using the chain rule

28



as follows:

P(y1, - ynlw) = p(y1|w) py2lyr, w) ... (Ynly1, - Yn—1, w)

n

= [ »(vily<i, w)

=1

Asthereis an exponential number of possible sequences, finding the most likely sequence
is intractable. The decoding algorithm in these models usually relies on beam search, i.e.
the tokens are generated iteratively and the k likeliest structures are kept in the beam,
where k is a constant.

This approach quickly gained traction in semantic parsing (Jia and Liang, 2016; Dong
and Lapata, 2016; lyer et al., 2017) as it outperformed previous work and was straightfor-
ward. Multiple variants for sequence-to-sequence were proposed to improve their accu-
racy. Dong and Lapata (2016) proposed a tree decoder to better model the structure of
the semantic representation. Their LSTM-based decoder could produce a special token
indicating a sub-tree. The hidden state at that point is then given to two separate de-
coders: one predicting the sequence that would be inserted in place of the special token
and another predicting the rest of the semantic representation. Dong and Lapata (2018)
proposed a two-step encoding-decoding process: the first step would predict a sketch of
the semantic representation from the sentence. The final semantic representation would
then be predicted from this sketch. Zheng and Lapata (2021) introduced an intermediate
tagging step where each word is associated a semantic symbol representing its meaning.
The sequence-to-sequence model then predicts a semantic representation conditioned
on the sentence and the semantic tags. Reordering the words in the sentence has also
been explored by Wang et al. (2020) and Lindemann et al. (2023). In each case, the idea is

to provide additional information to the sequence-to-sequence model.

Compositional generalization. Asgrammar-based approaches explicitly relied on rules
that combine adjacent elements in the utterance, they could generalize to unseen struc-
tures as long as these structures could be parsed by the grammar. Lake and Baroni (2018)
introduced the SCAN dataset to study whether such an inductive bias was present or

not in sequence-to-sequence architectures. The task associated to the SCAN dataset re-
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Sentence
Action sequence

Turn around left after jump twice
I_JUMP I_JUMP I_TURN_LEFT I_TURN_LEFT I_TURN_LEFT I_TURN_LEFT

Sentence
Action sequence

Look thrice and run opposite left
I_LOOK I_LOOK I_LOOK I_TURN_LEFT I_TURN_LEFT I_RUN

Table 2.3: Examples of sentences in the SCAN dataset with their corresponding action
sequences.

quires the model to map a natural language command to a sequence of actions, as illus-
trated in Table 2.3. The experiments conducted by Lake and Baroni (2018) highlighted

that sequence-to-sequence architectures failed catastrophically in two situations:

« When the sentences in the test set were mapped to longer sequences of actions

than the ones seen during training.

* When a primitive, i.e. a command that corresponds to a basic action, seen in isola-

tion during training is introduced in more complex structures during testing.

Further work (Loula et al., 2018; Finegan-Dollak et al., 2018; Keysers et al., 2020; Yao and

Koller, 2022) reached the same conclusions.

2.3.2 Span-based approaches

The failure of sequence-to-sequence architectures for compositional generalization mo-
tivated the developement of neural-based approaches inspired by traditional grammar-
based approaches. Span-based approaches were originally explored for syntactic pars-
ing (Stern et al., 2017; Corro, 2020) and applied to semantic parsing (Pasupat et al., 2019;
Herzig and Berant, 2021; Liu et al., 2021). They consist in predicting partial semantic rep-
resentations over short fragments of the utterance and composing them to build the rep-
resentation for the entire utterance. The idea behind this research direction is to take
advantage of modern neural architectures and introduce an inductive bias that should
encourage compositional generalization. In this subsection, we present two span-based
approaches designed to this end: SpanBasedSP (Herzig and Berant, 2021) and LeAR (Liu
et al., 2021).

SpanBasedSP. The aim of SpanBasedSP is to produce a tree where each node covers a

span (i, j), i.e. the sequence of words from w; to w;, and is tagged either with a concept
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from the semantic domain, a join operator or the empty operator ¢. The join operator
indicates that the meaning of a node is derived from the meaning of its children. We
denote C the set composed of every concept as well as join and ¢. The model relies on
a BERT encoder (Devlin et al., 2019) followed by an MLP to compute a score s(i, j, ¢) for
each span (i, j) and element ¢ € C. As they assume that the prediction for each span can
be made independently, given 6 the parameters of the neural network, the likelihood of

tagging a span (i, j) with cis:

exp s(4, j, ¢)
vec exps(i, j, )

po(Tli, j] = clw) = 5

and the log-likelihood of a tree T'is:

logp(Tw) =Y log p(T[i, j] = c|w)
i<j
During inference, the tree T of maximum score can be found using the CKY algorithm
(Cocke, 1970; Kasami, 1965; Younger, 1967). However, Herzig and Berant (2021) require
that the tree obtained must be valid with respect to the semantic domain. To do so, they
propose a variant of the CKY algorithm where the top k solutions are computed for each
span. Then, they iterate over the top k overall trees in descending score order and return
the first valid tree. We give an example of span tree produced by SpanBasedSP in Figure

24

LeAR. A two-step approach has been proposed in LeAR (Liu et al., 2021) to produce a
semantic tree: first, a binary tree is constructed over the sentence. Then, each terminal
node in this tree is tagged with a concept and each non-terminal node is tagged with a
semantic operation. The binary tree is constructed by relying on a Tree-LSTM encoder

(Tai et al., 2015) as follows:

+ Given a sentence w = (wy,...,wy), each word w; originally corresponds to a node

v} and is represented by a vector r}.

+ Ateachtime stept, a score is computed for each pair of adjacent nodes. The vectors

corresponding to the pair with the highest score are given to the Tree-LSTM encoder.
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join: capital(loc_2(state(next_to_1(stateid))))

join: capital(loc_2(state(next_to_1(stateid))))

join: loc_2(state(next_to_1(stateid)))

join: state(next_to_1(stateid))

join: next_to_1(stateid)

join: state join: next_to_1
0 capital loc.2 state 0 stateid nextto1 (
What is the capital of states that New York borders ?

Figure 2.4: Example of a span tree that can be produced by SpanBasedSP. The prediction
for each span is indicated in bold. We abbreviate “stateid(new york)” to “stateid” for
clarity.

A new node is created in the place of the pair and its representation is the output

of the encoder ™.

When only one node remains, the binary tree can be recovered from the successive merges.

We illustrate the two steps used by LeAR in Figure 2.5.

Search space limitations. Both approaches produce phrase structure trees. Itis known
that the complexity of inference on these structures is directly impacted by the considered
search space (Kallmeyer, 2010). Importantly, (ill-nested) discontinuous phrase structure
parsing is known to be NP-hard, even with a bounded block-degree (Satta, 1992).

Herzig and Berant (2021) only explore two restricted inference algorithms, both of
which have a cubic time complexity with respect to the input length (Corro, 2020). The
first one only considers continuous phrase structures, i.e. derived trees that could have
been generated by a context-free grammar, and the second one also considers a specific
type of discontinuities, see Corro (2020, Section 3.6). This restriction is problematic as

both algorithms fail to cover the full set of phrase structures observed in the datasets
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FillFrame

FillFrame

REC-THE

E:Lily P:give E:Emma E: strawberry

Lily gave  Emma a  strawberry

Figure 2.5: Example of a span tree that can be produced by LeAR for the sentence “Lily
gave Emma a strawberry”. On the left, a binary tree is constructed by iteratively merging
nodes. We highlight merges in red. Once this tree is constructed, each node can poten-
tially be tagged with a semantic primitive or operation. We represent these tags on the
right. The resulting tree must then be interpreted to produce the semantic representa-
tion “strawberry(x_5) AND give.agent(x_2, Lily) AND give.recipient(x_2, Emma)
AND give.theme(x_2, x_5)".

their approach was evaluated on. As this issue motivates the contribution presented in
Chapter 5, we discuss it in more details in Section 5.1.

Liu et al. (2021) only consider continuous phrases structures as their model constructs
binary trees. To fully cover the structures observed in the datasets used in their exper-
iments, they design the set of semantic operations that are required for each domain.
Requiring manual work from a human expert for each domain is highly impractical. In ad-
dition, introducing domain knowledge via these operations could leak useful information

for compositional generalization to the model, thus preventing a fair evaluation.

Compositional generalization. Both models demonstrated significantly better perfor-
mances compared to sequence-to-sequence architectures when compositional general-
ization is required. As they serve as baselines for our contributions, detailed results about

them are presented in Sections 5.4 and 6.5.

2.4 Related works for compositional generalization

The recent focus on compositional generalization in semantic parsing was not limited to
the development of novel structured prediction approaches. In this section, we give a

brief overview of other research directions that were pursued in that regard.
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2.4.1 Datasets for compositional generalization

In this subsection, we present the various methods that were used to design new or adapt
existing datasets to better assess compositional generalization. Note that while we briefly
present the methods here, we will provide a detailed presentation of the datasets used

in our work in Section 3.5.

Alternative data split. Finegan-Dollak et al. (2018) observed that several text-to-SQL
datasets tended to split examples between the training and the test set based on the nat-
ural language utterance, i.e. two examples must appear in the same set if their natural
languages utterances only differ by their constants. However, as natural language is am-
biguous, this led to examples in the training and the test set with identical SQL queries.
Instead, they proposed to split the examples based on the query, i.e. two examples must

appear in the same set if their SQL queries only differ by their constants.

Additional test set. Clevr (Johnson et al,, 2017) is a dataset designed for image-based
qguestion answering that has also been adapted for semantic parsing. The questions are
generated from templates with empty slots where each slot has a possible set of values.
In the original dataset, the training and the test sets are generated from the same set of
templates. Bahdanau et al. (2019) proposed a systematic generalization test set for Clevr
known as Closure. To do so, they designed 7 new templates that are used exclusively to

generate examples for Closure.

Original datasets. Novel datasets designed explicitly to evaluate compositional gener-
alization like COGS (Kim and Linzen, 2020) and CFQ (Keysers et al., 2020) were proposed.
In the case of COGS, the training data was generated using a Probabilistic Context-Free
Grammar. Then, various generalization cases were identified to compose the general-
ization set. For each of them, examples were generated from a new PCFG. As such, the
generalizations that are expected in COGS are known and allow for a straightforward er-
ror analysis.

The CFQ dataset consists of natural language questions paired with the correspond-

ing SPARQL query. With CFQ, Keysers et al. (2020) proposed a new method known as
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the Distribution-Based Compositionality Assessment to generate data splits that assess
compositional generalization. It iteratively selects examples either for the training set or
the test set in a way such that the distributions over atoms, i.e. the smallest units that
compose the natural language utterance, in the two sets are as similar as possible while
the distributions over compounds, i.e. combinations of atoms, are as different as possi-
ble. The intuition behind this method is that systematic compositionality is required to

successfully parse the test set.

2.4.2 Other research directions

Data augmentation. Data augmentation has been explored with the aim of providing
a compositional inductive bias to semantic parsers. Several works rely on infering the
structure of the data: Jia and Liang (2016) infer a grammar that is used to generate addi-
tional data, (Qiu et al., 2022) rely on a grammar-based generative model and Yang et al.
(2022) recombine sub-trees in the span-based representation proposed by Herzig and
Berant (2021). A more straightforward approach proposed by Andreas (2020) identifies
fragments that are used in a similar context and constructs new examples by swapping

them.

Meta-learning. The impact of meta-learning on compositional generalization has been
evaluated in various settings. For each batch in the training set, Conklin et al. (2021) pro-
posed to construct a “meta-test” composed of sentences with similar atoms but different
compounds. Given model parameters 6, a gradient descent step is performed with re-
spect to the training batch to obtain parameters #’. The training objective is then the
maximization of the likelihood of the training batch given 6 and the “meta-test” given ¢’.
The intuition behind this approach is that the parameter update on the training batch
should also be beneficial for the “meta-test”. Zhu et al. (2021) has shown that training a
parser on multiple datasets could improve compositional generalization on an additional

unseen dataset.

Auxiliary tasks. Introducing auxiliary tasks has been shown to be beneficial for com-

positional generalization in some cases. Jiang and Bansal (2021) observed significant im-
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provements on the SCAN dataset by introducing additional sequences that needed to be
predicted by the model. In addition to a word-level attention mechanism, Yin et al. (2021)
added an attention loss at the span-level and observed slight improvements for recursive

queries.

2.5 Evaluation

To compare multiple semantic parsers, we require metrics that can assess their respective
performance. In this section, we present the two most common ways that are used to
evaluate whether the semantic representation predicted by the model is correct or not.
Then, we present corner cases for both approaches and highlight why it is difficult to

design a unique metric for this task.

2.5.1 Match accuracy

The most straightforward way to evaluate whether a prediction is correct is by checking
if it is identical to the expected output or not. The metric can either be computed over
the entire semantic representation or over individual components. In the first case, it
is a binary metric known as the exact match accuracy. This is the most common way to
evaluate the match accuracy of a prediction. If the semantic representation can be de-
composed into individual components, it is also possible to compute the F1-score based
on the individual components of the prediction and the expected representation.

When the semantic representation contains variables, it is necessary to find a match-
ing between the variables in the prediction and the ones in the expected representation
that maximizes the metric used as using different variable names should not change the
performance of a parser. Finding the matching that maximizes the F1-score is NP-hard,
thus approximated algorithms like Smatch (Cai and Knight, 2013) have been proposed.

On the other hand, computing the exact match accuracy can often be done efficiently.

2.5.2 Denotation accuracy

The result of the execution or evaluation of a semantic representation is known as its

denotation. In tasks like database querying, it is common to have access to an executor,
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i.e. a software that can execute the semantic representation against a database. A metric
that is used to evaluate the performance of a semantic parser is the denotation accuracy.
It is a binary metric indicating whether the answer returned by the executor matches the

expected answer.

2.5.3 Corner cases

Exact match accuracy. There is a downside to using the exact match accuracy: the
handling of spurious representations, i.e. representations that are unnecessarily more
complex but carry the same meaning with respect to the domain. For example, in the
FunQL formalism for GeoQuery (Kate et al., 2005), the query "Give me the state of Cali-
fornia" can correspond to the semantic representation “answer (stateid(california))”.
In FunQL, the predicate state takes a set of elements as an argument and returns the
subset of the elements that are states. Thus, “answer (state (stateid(california)))”is
also a query yielding the state of California. One could even argue over which represen-
tation should be considered the "correct" one: should "state" be explicitly mentioned in
the semantic representation or is its implication by “stateid” enough? When using exact
match accuracy, only one answer is considered as correct. This can lead to considering

some predictions as wrong even though they carry the same meaning.

Denotation accuracy. As only the result of the query’s evaluation is considered, this
metric successfully handles the corner case presented for exact match accuracy. How-
ever, it can be affected by another issue: a prediction that is obviously wrong to the hu-
man eye can be considered as correct if its execution yields the same answer. Still in the
GeoQuery domain, there are no states that border Hawaii. Similarly, there are no rivers
that traverse both Florida and Alaska. It is trivial for a human to see that both of these
queries do not carry the same meaning. However, their denotations are equivalent and
thus, they would be considered as identical when computing the denotation accuracy.
As one can see, the exact match accuracy can be too strict as it discards queries that
could be argued to be correct while the denotation accuracy can be too lenient as an
unrelated query can yield the same denotation and be considered as correct. Thus, to

properly assess the performance of semantic parsers, one should report both metrics
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when it is relevant and possible.

2.6 Conclusion

In this chapter, we introduced the major semantic formalisms and gave an overview of the
main approaches to semantic parsing over the years. We highlighted that sequence-to-
sequence architectures were straightforward approaches that performed well on seman-
tic parsing tasks. However, they failed on tasks that require compositional generalization.

Span-based approaches perform better on tasks evaluating compositional generaliza-
tion. This suggests explicitly anchoring fragments of the semantic representation on the
sentence and composing them together introduces an inductive bias that is desirable for
compositional generalization. The downside of these approaches is that they either fail
to cover every phrase structure or require significant manual work to adapt the semantic
representation of each domain.

It is desirable to rely on an approach that presents a similar inductive bias but with-
out the limitations of span-based parsers during inference. In the following chapter, we

present the approach that will serve as a basis for our contributions: graph-based pars-

ing.
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Chapter 3

Graph-based semantic parsing

In Chapter 2, we introduced several formal representations and presented multiple ap-
proaches to tackle semantic parsing. We postponed to this section the presentation of
the approach our contributions are based on: graph-based semantic parsing.

In Section 3.1, we first present the reasons that motivated the development of graph-
based methods for semantic parsing. We highlight the issues raised by these methods
and how they were tackled in Section 3.2. Then, we explain how graph-based methods
currently approach semantic parsing by giving a formal definition of the problem and de-
scribing the general structure of modern neural architectures in Section 3.3. The main
focus of this thesis is the use of graph-based methods to improve compositional gener-
alization. We present works developed concurrently to our contributions in Section 3.4.

Finally, Section 3.5 is dedicated to presenting the datasets used in our contributions.

3.1 Motivation

Graphs are ubiquitous in computer science and provide a representation that is both sim-
ple to visualize and intuitive to understand for many linguistic entities. They have been
studied extensively and there exists a large variety of algorithms to manipulate them. Itis
thus appealing to reduce a problem to a known graph problem as it allows to rely on ex-
isting algorithms. In addition, graphs are a convenient structure for optimization (Martins
et al., 2010; Corro et al., 2017). This approach has been observed in NLP before, for de-

pendency parsing (McDonald et al., 2005). These authors proposed to reduce weighted
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Figure 3.1: Graph-based dependency parsing for the sentence “John saw Mary”. Each
arc in the complete graph on the left is weighted with the score of the corresponding
dependency in the sentence. The maximum spanning arborescence is represented in red.
The resulting dependency parse of the sentence is illustrated on the right. This figure is
inspired by McDonald et al. (2005).

dependency parsing to computing the maximum spanning arborescence in a directed
graph, see Figure 3.1.

By doing so, they do not restrict the search space like other existing work (Eisner,
1997; Gomez-Rodriguez et al., 2011; Pitler et al., 2012, 2013) and can rely on the Chu-
Liu/Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967), an efficient algorithm with
a O(n?) time complexity (Tarjan, 1977).

In Section 2.1, we introduced graph-based meaning representation formalisms like
AMR (Banarescu et al., 2013). Various research directions were explored to parse these
representations. A popular approach was to linearize the semantic representation and
rely on sequence-to-sequence architectures (Section 2.3). However, it is appealing to
draw inspiration from dependency parsing and frame the prediction of these meaning
representations as a graph problem. In addition, the conversion of other formal repre-
sentations like logical forms or query languages into graphs can be done in some cases
with minimum manual work (see Section 3.5 for several illustrations). Thus, graph-based
parsers also present the advantage of being applicable to these other formalisms and

domains without requiring a large amount of work.

3.2 Semantic parsing as a graph prediction problem

In graph-based semantic representations, the semantic domain is composed of a set of

concepts E and a set of relation labels L. Graph-based parsing consists in predicting a
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cat eat definite cake
A cat eats the cake

Figure 3.2: The semantic graph corresponding to the sentence “A cat eats the cake” in the
COGS dataset.

semantic graph (V, A) where each vertex v € V is tagged with a concept e € E and each
arca € Ais labeled with a label [ € L. We illustrate this in Figure 3.2.

A common assumption is that each word in the sentence can produce at most one
vertex and that there is at most one arc between two vertices. If the problem was un-
constrained, it would be easy to solve: one could simply select the concept and label of
maximum weight (if it is positive) for each vertex and arc respectively. However, the se-
mantic representation usually introduces hard structural constraints which prevents the
existence of efficient inference algorithms. Thus, inference algorithms are usually heavily
dependent on the desired output space.

One of the earliest graph-based approaches for semantic parsing was proposed by
Flanigan et al. (2014). To ensure that the predicted graph is weakly connected, they rely
on a two-step inference: concepts are first predicted via a semi-Markov model. Then, they
construct a complete graph in which each predicted concept is a vertex and each arc is
weighted with respect to a vector of manually defined features. Arcs are then selected
by computing the maximum connected spanning subgraph (MSCG). Their approach was
originally designed to parse AMR semantic graphs. However, in this formalism, a graph is
always directed and acyclic, a constraint that is not enforced by their approach. Enforcing
it would require to compute the directed acyclic subgraph of maximum weight, a problem
known to be NP-hard (Kuhlmann and Jonsson, 2015; Schluter, 2015).

It was highlighted by Zhou et al. (2016) that predicting a concept from an ambiguous
word without relying on the context, i.e. the surrounding words in the sentence, could lead
to errors in the pipeline. For example, the word “fall” can either be a noun representing
the season of the year or a verb representing the action of falling. To handle this, they

proposed to predict the concepts and relations between them jointly by relying on an
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approximate incremental algorithm.

Graph-based approaches are also influenced by the weighting functions. In that re-
gard, semantic parsing drew inspiration from advances in neural architectures for de-
pendency parsing. In the latter task, it was proposed to obtain contextual feature rep-
resentations for each word from bi-LSTMs (Kiperwasser and Goldberg, 2016). This ap-
proach allows both the computation of weights for each word by taking the surrounding
context into account and independent predictions for each word during inference. With
biaffine attention (Dozat and Manning, 2017), this yielded significant improvements in de-
pendency parsing. It was quickly adapted for semantic parsing (Dozat and Manning, 2018)
and was shown to outperform existing parsers on AMR parsing (Lyu and Titov, 2018). As
we will explain in Section 3.3, this neural architecture is commonly used in semantic pars-
ing nowadays.

The main takeaway from this section is that while graph-based approaches share com-
mon principles, the inference algorithm is heavily dependent on the constraints that are
imposed on the semantic representation. In addition, exact inference can become NP-
hard depending on this set of constraints. We will prove in Chapters 5 and 6 that exact

inference in both of our settings is NP-hard.

3.3 Formal definition and common architectures

Recent graph-based parsers (Lyu and Titov, 2018; Jambor and Bahdanau, 2022; Weil3en-
horn et al., 2022) as well as the contributions presented in Chapters 5 and 6 use a similar
formulation of graph-based semantic parsing and rely on neural architectures that follow

a common structure. We introduce both in this section.

3.3.1 Formal definition of graph-based semantic parsing

Given a sentence w = (wy,...,w,), the objective of graph-based semantic parsing is to
find the semantic graph that most likely corresponds to it by determining for each word
w; whether it produces a vertex v; and its associated concept e € E and for each pair
of words (w;, w;) whether there is an arc between their respective vertices v; and v; and

its associated label [ € L. If we introduce a special concept () and a special relation
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A cat eats the cake

Figure 3.3: The complete graph corresponding to the semantic graph presented in Figure
3.2. The original semantic graph in highlighted in red. For clarity, we do not represent arc
labels. Dashed arcs are labeled with the ) label.

that represent the lack of a concept or a relation respectively, this can be equivalently
viewed as constructing a complete graph G = (V, A) over w, tagging each vertex v € V
and labeling each arc a € A (potentially with the () concept and label respectively). In
Figure 3.3, we depict the complete graph corresponding to the semantic graph presented

in Figure 3.2. Note that we omit relation labels for clarity purposes.

Formally, this task can be defined as follows. Let z € {0, 1}/VI*IZl be a binary vector
indexed by vertices and concepts such that z, . = 1 means that vertex v € V is tagged
with concept e € E. Similarly, let y € {0, 1}/41¥IXl be a binary vector indexed by arcs and
labels such that y,; = 1 means that the arc a € A is labeled with the label [ € L. Then, if
a tuple (x, y) satisfies the set of constraints imposed by the semantic representation, it
represents a semantic graph anchored on the sentence w, i.e. the word w; corresponding
to each vertex v € V is known. We denote C the set of all the structures (x,y) that
represent a valid semantic graph. Note that while there can be additional constraints
imposed, this means at least having exactly one concept e € E selected per vertex and
one label I € L selected per arc. Let u € RI#l and ¢ € RI¥I be two vectors such that y, .
is the weight of tagging the vertex v € V with the concept e € E and ¢, is the weight of
labeling the arc a € A with the label [ € L. Given a sentence w, graph-based semantic

parsing can be expressed as finding the structure (x,y) € C of maximum weight:

arg max uTac +¢'y
(z,y)ec
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Figure 3.4: Common neural architecture of a graph-based semantic parser. For clarity,
we represent the final layers for a single word and a single pair of word respectively. Note
that they are applied to each word and each pair of words respectively.

3.3.2 Neural architecture structure

In the formal definition of our task, we introduced two weight vectors p and ¢ that are
produced by a neural architecture. To obtain these vectors, a sentence is first encoded to
obtain a contextual representation of each word. Then, these representations are used
to compute the vectors pu and ¢. We describe these steps below and illustrate them in

Figure 3.4.

Encoder. The sentence is encoded either by a recurrent network, usually a bi-LSTM
(Hochreiter and Schmidhuber, 1997), or a self-attentive encoder (Vaswani et al., 2017).

This produces a contextual representation h; for each word w; in the sentence w.

Concept weights. For each word wy;, its representation h; is given to a multi-layer per-
ceptron. The output is a vector of dimension |E| that contains a weight ., . for each con-
cepte € E, i.e. the weight of tagging the vertex v; corresponding to w; with the concept

e. Concatenating the output of this network for each word w; € w yields p.

Label weights. For each pair of words w; and wj, their representations h; and h; are
given to a biaffine layer (Dozat and Manning, 2017). The output is a vector of dimension
|L| that contains a weight ®v;—v;, for each label I € L, i.e. the weight of adding an arc

labeled with [ from v; to v; where v; and v; are the vertices corresponding to w; and w;
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respectively. Note that in the case where the arcs are not labeled, the output is simply a

scalar representing the weight of adding an arc from v; to v;.

3.4 Graph-based parsing for compositional generalization

Recent work in semantic parsing has focused on improving compositional generalization.
As highlighted in Section 2.4, models relying on the composition of local predictions, like
span-based approaches, outperformed sequence-to-sequence architectures. It is thus
appealing to explore graph-based parsing as it relies on local predictions, similarly to
span-based parsing. In this section, we present the two approaches introduced concur-
rently to the contributions presented in this thesis: LAGr (Jambor and Bahdanau, 2022)
and the application of an existing AM parser (Groschwitz et al., 2018) for compositional

generalization.

LAGr parser. LAGr follows the standard pipeline for graph-based parsing by predicting
the concepts first and the labels in a second step. The specificity of this parser lies in the
fact that each word can produce up to two vertices. It is thus possible to produce graphs
with more vertices than words in the sentence. To do so, two separate vectors of weights
are computed by the neural network, one for each potential vertex. To predict the arcs,
there is a score for each pair of vertices and each label. Thus, it is possible to have an arc
between the two vertices that correspond to the same word w;.

Inference in LAGr is efficient as the prediction for each vertex and arc in the graph is
made independently. As this approach outperforms sequence-to-sequence approaches
on compositional generalization tasks, it hints that more constrained inference algorithms
could lead to even better performances, which we demonstrate with our contributions in

Chapters 5 and 6.

AM parser. The AM (Apply-Modify) parser was originally designed for AMR parsing. It
differs from other parsers by relying on a linguistically motivated graph composition al-
gebra. In this approach, a supertag is predicted for each word instead of a concept. This

supertag represents a graph fragment composed of a labeled vertex as well as its adja-
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cent arcs. Between pairs of words, the model predicts whether their respective graph

fragments should be composed and which operation (Apply or Modify) should be used.

For example, in the COGS dataset, the verb “see” produces a vertex tagged with the
concept see. This vertex has two outgoing arcs labeled agent and theme respectively. The
AM parser will predict a supertag that represents both the vertex and the two arcs. Then,
it will predict two Apply operations towards the supertags that represent the vertices that

are the destination of the agent and theme arcs.

During inference, the supertags and operations predicted must yield a valid graph.
The inference algorithm is thus more constrained than LAGr. As this approach signif-
icantly outperforms both sequence-to-sequence architectures and LAGr on the COGS
dataset, it confirms that more constrained inference algorithms can be beneficial for com-

positional generalization.

3.5 Datasets

There is a large variety of existing datasets for semantic parsing. In this section, we in-
troduce the five datasets that are used in the following chapters: GeoQuery, Scan, Clevr,
COGS and CFQ. Notably, we explain how their semantic representations can be converted

into graphs and how the data splits are constructed for each of them.

3.5.1 GeoQuery

GeoQuery (Zelle and Mooney, 1996) is a dataset containing 880 questions regarding the
geography of the United States. The associated semantic representation is a first-order
logical form augmented with quantification operations over sets that uses the Prolog syn-
tax. As the approach proposed by Kate et al. (2005) did not handle variables, they also
introduced FunQL, a variable-free functional representation for GeoQuery that can be
mapped deterministically to the original logical forms. In this representation, each con-
ceptis a function that takes other concepts as arguments. We illustrate the two represen-

tations in Table 3.1.
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Sentence Name all the rivers in Colorado .
Original answer (A, (river(A),loc(A,B),const(B,stateid(colorado)))))
FunQL answer (river (loc_2(stateid(colorado))))

Sentence How big is Texas ?
Original answer (A, (size(B,A) ,const(B,stateid(texas)))))
FunQL answer (size(stateid(texas)))

Table 3.1: Examples of sentences in the GeoQuery dataset with their original and FunQL
representations.

Conversion to graph. To represent a logical form as a graph, we use the FunQL repre-

sentation as our starting point. We can transform it to a graph representation as follows:

1. A predicate with the argument all is a special construction used to designate the
set of all the objects of a given type. We first merge the predicate and its argument

as a single entity, e.g. city(all) is converted to the entity city_all.

2. Each object is represented by a concept and its name. For example, the state of
Texas is represented as stateid(texas). For each of these objects, we create a
vertex labeled with the concept, i.e. stateid in the example, as the name can be

recovered by looking at the word the vertex will be anchored on.

3. For every other concept (including the entities created in the first step) e we create

a vertex labeled with that concept.

4. Finally, for each argument ¢’ of a concept ¢, we create an arc from the vertex repre-

senting e to the vertex representing ¢’.

We illustrate this transformation in Figure 3.5. Note that the arcs are not labeled in Geo-

Query.

Data splits. The dataset contains 880 queries and the original data split consisted in
sampling 540 sentences for the train set, 60 for the dev set and use the remaining 280
queries as the test set. We refer to this split as the IID split. To specifically assess com-
positional generalization, two additional splits were introduced more recently. The first
one, known as the Template split, was created in such a way that two sentences whose

programs are identical if entities are anonymized must be in the same set (Finegan-Dollak
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most (state(loc_1(major(city(all)))))

N

state loc_1 most major city_all

What state has the most major cities ?

Figure 3.5: (top) Semantic analysis of the sentence “What state has the most major cities
?" in the FunQL formalism for GeoQuery. (bottom) Graph-based representation of the
semantic structure.

etal., 2018). For example, the two FunQL representations city (loc_2(stateid(texas)))
and city(loc_2(stateid(alaska))) areidentical if the identifier of the state is removed.
This split contains 544 sentences in the train set, 60 in the dev set and 276 in the test set.
The second split, known as the Length split, was created by sorting the sentences accord-
ing to the number of concepts in their FunQL representation (Herzig and Berant, 2021).
The 540 sentences with the smallest number of concepts constitute the training set, the
dev set contains the following 60 and finally, the test set contains the 280 sentences with
the highest number of concepts.

The type and expected arguments of each concept in GeoQuery are detailed in Ap-

pendix A.

3.5.2 SCAN

SCAN (Lake and Baroni, 2018) is a dataset originally designed to evaluate compositional
generalization in seq2seq models. In this dataset, the goal is to translate a natural lan-
guage command into a sequence of actions. In a natural language command, an action
can be modified with an orientation (“left” or “right”), a number of repetitions (“twice” or
“thrice”) or by requiring the agent to perform a half or a full turn on itself (“opposite”
or “around”). With these modifiers, the number of actions in a sequence can be signifi-
cantly bigger than the number of words in the natural language command. For example,
the command “Run around left thrice” alone will generate 24 actions. Herzig and Berant
(2021) proposed an alternative version of this dataset, denoted SCAN-SP, which uses a
functional representation. Each word in a sentence is always mapped to a concept with

the same name (e.g. the word “jump” is mapped to the concept “jump”), thus this dataset
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Sentence Original representation SCAN-SP representation

Turn left after jump twice I_JUMP I_JUMP I_TURN_LEFT after(turn(left),twice(jump))
Look and run left I_LOOK I_TURN_LEFT I_RUN and(look,run(left))
Walk twice after look I_LOOK I_WALK I_WALK after (twice(walk) ,look)

Table 3.2: Examples of sentences in the SCAN dataset with their original and SCAN-SP
representations.

and (jump (around, right), thrice(look))

® ® o+——0
jump around right and look thrice

Jump around right and look thrice

Figure 3.6: (top) Semantic analysis of the sentence “Jump around right and look thrice” in
the SCAN-SP formalism. (bottom) Graph-based representation of the semantic structure.

evaluates whether a model can learn simple composition rules. We illustrate the two rep-

resentations in Table 3.2.

Conversion to graph. Similarly to the FunQL representation for GeoQuery, the seman-
tic programs in SCAN-SP take the form of a functional language. Thus, we can follow
the same procedure to convert the programs into graphs. Note that the first two steps
handled the specificities of GeoQuery and are not needed for SCAN. We illustrate the

transformation in Figure 3.6.

Data splits. The sentences in this dataset are generated using a grammar without re-
cursion, which means that exactly 20910 unique sentences can be generated. The origi-
nal split, known as the simple split, introduced by Lake and Baroni (2018) sampled 80% of
these for the training set and 20% for the test set. We refer to it as the IID split. To evaluate
compositional generalization, additional splits were introduced by Loula et al. (2018). In
the following chapters of this thesis, we will use two of them: the Right and AroundRight
splits. The first one separates the sentences between the training and the test set in such
a way that a sentence is in the test set if and only if it contains an action immediately fol-

lowed by “right” (e.g. “jump right”). Similarly, the test set in the AroundRight split contains
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a sentence if and only if it contains an action followed by “around right” (e.g. “turn left
and jump around right”). As the splits in this dataset do not contain a dev set, 25% of the
training set is usually sampled to be used as a dev set, making it the same size as the test

set.

The type and expected arguments of each conceptin SCAN are detailed in Appendix B.

3.5.3 Clevr

Clevr (Johnson et al., 2017) contains synthetic questions regarding the properties of ob-
jects and the relations between them in synthetic images. Mao et al. (2019) proposed
a domain specific language (DSL) for Clevr that takes the form of a functional language,
similarly to the two datasets introduced before. In addition to the original dataset, a new
test set known as Closure (Bahdanau et al., 2019) was proposed to test compositional
generalization. It contains questions generated from new templates.

This representation contains two special concepts: “filter” and “scene”. The first one
returns a subset of objects given a set and multiple properties that must be satisfied and
the second one returns the set of all the objects present in the scene. They can be prob-
lematic to handle as they do not correspond to specific words in the sentence. Herzig and
Berant (2021) added them to the representation predicted by their parser in a determin-

istic fashion.

Conversion to graph. Similarly to GeoQuery, the conversion of Clevr semantic repre-

sentations requires some pre-processing. The steps to convert them are as follows:

1. The entities “1eft"”, “right”, “front” and “behind” only appear as the first argument
of the predicate “relate”. Thus, when the latter is encountered, we create a vertex

labeled with the concatenation of “relate” anditsfirstargument, e.g. “relate_left".

2. The predicate “filter” takes multiple properties and a set of objects as arguments.
We do not create a vertex for “filter” but we create one for each of its arguments.
If its final argument is “scene”, we do not create a vertex for it. Then, we create

an arc from the vertex representing each argument to the vertex representing the
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query(size, filter(brown, metal, sphere, scene()))

N

query size brown metal sphere
How big is the brown shiny sphere ?

"

Figure 3.7: (top) Semantic analysis of the sentence “How big is the brown shiny sphere
in the Clevr dataset. (bottom) Graph-based representation of the semantic structure.

following argument. In step 4, the vertex that will be considered as corresponding

to “filter” is the vertex of its first argument.
3. For every other concept e, we create a vertex labeled e.

4. Except for the concepts mentionned in the first two steps, for every argument ¢’ of a
concepte, we create an arc from the vertex representing e to the vertex representing

e.

We illustrate this transformation in Figure 3.7.

Data splits. The original dataset contains 699689 questions in the train set and 149991
in the development set. The test set cannot be used for semantic parsing as the descrip-
tion of the scenes are not publicly available. In our contributions, we sample 5000 ques-
tions from the train set as a development set and use the original development set as
a test set, following the approach proposed by Herzig and Berant (2021). The Closure
split (Bahdanau et al., 2019) introduces a new test set designed to evaluate systematic
generalization. It was constructed based on 7 new query templates and contains 25200
guestions, 3600 for each of these templates.

The type and expected arguments of each conceptin Clevr are detailed in Appendix C.

3.5.4 COGS

The Compositional Generalization Challenge based on Semantic Interpretation (COGS, Kim
and Linzen, 2020) dataset has been designed explicitly to evaluate compositional gen-

eralization. A semantic structure in COGS is represented as a logical form in which the
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ccomp agent

*cat (z1)
AND like.agent (zg, 1) det agent agent xcomp
AND like.ccomp(zs, x5) — > 0<—— [ ® >
AND prefer.agent (x5, Emma) def. cat like Emma prefer walk
AND prefer.xcomp(zs, 7)

The cat liked that Emma  preferred to walk

AND walk.agent(z7, Emma)

Figure 3.8: (left) Semantic analysis of the sentence “The cat liked that Emma preferred to
walk” in the COGS formalism. A * denotes definiteness of the following predicate. (right)
Graph-based representation of the semantic structure. Note that we mark definiteness
using an extra vertex anchored on the determiner.

common nouns are identified using unary predicates, proper nouns using constants and
verbs as well as relationships between nouns are identified using binary predicates. This
is illustrated in Figure 3.8 on the left.

COGS evaluates two distinct types of compositional generalizations: lexical and struc-
tural generalizations. Lexical generalization consists in evaluating a model on known
grammatical structures where words are used in a role that was not observed during
training, e.g. observing a word as the object of a verb while it was only seen as a subject
during training. Structural generalization consists in evaluating a model on novel syntactic
structures. COGS presents 18 lexical generalization cases and 3 structural generalization

cases. Illustrations of these generalizations can be found in Table 3.3.

Conversion to graph. We transform the logical forms found in COGS into graphs with

the following steps:
1. For each concept, we create a labeled vertex.

2. For each argument e of a concept ¢/, we create a labeled arc from the vertex repre-

senting ¢’ to the vertex representing e.

3. COGS explicitly identifies definiteness of nouns. Therefore, for each definite noun
that triggers a concept, we create a vertex v with label definite and we create an arc
with label det from v to the vertex representing the noun's concept. ! Indefiniteness

is marked by the absence of such structure.

"Using the determiner as the head of a relation may be surprising for readers familiar with syntactic de-
pendency parsing datasets, but there is no consensus among linguists about the appropriate dependency
direction, see e.g., Muller (2016, Section 1.5) for a discussion.
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Training example

Generalization example

Lexical generalizations : novel combinations

Subject — Object (common)
Subject — Object (proper)
Object — Subject (common)
Object — Subject (proper)
Primitive — Subject (common)
Primitive — Subject (proper)
Primitive — Object (common)
Primitive — Object (proper)
Primitive — Infinitive

A hedgehog ate the cake.
Lina gave the cake to Olivia.
Henry liked a cockroach.
The creature grew Charlie.
shark

Paula

Henry liked a cockroach.
The creature grew Charlie.
crawl

The baby liked the hedgehog.
A hero shortened Lina.

The cockroach ate the bat.
Charlie worshipped the cake.
A shark examined the child.
Paula sketched William.

The cockroach ate the bat.
Charlie worshipped the cake.
A baby planned to crawl.

Lexical generalizations : argument structure and verb class

Active — Passive
Passive — Active
0O transitive — Transitive
Unaccusative — Transitive

DO dative — PP dative

PP dative — DO dative

Agent NP — Unaccusative subj.
Theme NP — OO transitive subj.
Theme NP — Unergative subj.

The crocodile blessed William.
The booked was squeezed.
Emily baked.

The glass shattered.

The girl teleported Liam
the cookie.

Jane shipped the cake to John.
The cobra helped a dog.
The hippo decomposed.
The hippo decomposed.

A muffin was blessed.

The girl squeezed the strawberry.
The giraffe baked a cake.

Liam shattered the jigsaw.

Benjamin teleported the cake
to Isabella.

Jane shipped John the cake.
The cobra froze.

The hippo painted.

The hippo giggled.

Structural generalizations

Object PP — Subject PP

Deeper PP recursion

Deeper CP recursion

Noah ate the cake on the plate.

Ava saw the ball in the bottle.

Emma said that the cat danced.

The cake on the table burned.

Ava saw the ball in the bottle
on the table on the floor.

Emma said that Noah knew that
Lucas saw that the cat danced.

Table 3.3: Alist of all the lexical and structural generalization cases from COGS. “O0" and

“DO" stand for “Object-omitted” and “Double-object” respectively.

This transformation is illustrated in Figure 3.8.

Data splits.

COGS possesses two data splits, the 1ID split and the Generalization split.

The IID split contains 24155 sentences in the training set, 3000 in the development set and
3000 in the test set. The same training and development sets are used for the Generaliza-
tion split. The associated test set was constructed by generating exactly 1000 sentences
per generalization case, yielding a total of 21000 sentences. Note that for each lexical
generalization case, every sentence in the test set employs the same word, e.g. the 1000
sentences in the “Primitive — Infinitive” generalization introduce the verb “crawl!”. A word

used in a lexical generalization can only appear in a single sentence in the training set.
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3.5.5 CFQ

The Compositional Freebase Questions (CFQ, Keysers et al., 2020) dataset consists of natu-
ral language questions associated to corresponding SPARQL queries that can be executed
against the Freebase knowledge base (Bollacker et al., 2008). A SPARQL query is com-
posed of a SELECT and a WHERE clause. The SELECT clause can either be SELECT COUNT (*)
for yes/no questions or SELECT DISTINCT ?7x0 for wh- questions. The WHERE clause con-
tains predicates with one (e.g. 7x0 actor) or two entities (e.g. M1 starring ?7x0) as ar-
guments or filter constraints requiring two entities to be distinct (e.g. FILTER (7x0 !=

7x1)). We illustrate this in Figure 3.9 on the left.

Conversion to graphs. We transform the SPARQL queriesinto graphs with the following

steps:

1. In the case of wh- questions, we replace any mention of ?x0 in the WHERE clause by

select_7x0 which allows us to discard the SELECT clause.

2. Thenationality and gender concepts take an entity as their left argument and the
corresponding nationality or gender as their right argument. To reduce the amount
of vertices, for each possible right argument, we create a distinct copy of these con-
cepts that only take a left argument (e.g. 7x0 nationality swedish becomes 7x0

nationality_swedish).

3. Similarly to previous work (Furrer et al., 2020; Guo et al., 2020; Jambor and Bah-
danau, 2022), we merge concepts that share anidentical argument (e.g. M1 starring

?7x0. M2 starring 7x0 becomes [M1, M2] starring 7x0).

4. For each distinct concept in the WHERE clause, we create a vertex v in the semantic
graph. For variables (7x), we assign a generic concept var to v. In the case where en-
tities were merged together, we create a vertex tagged with a conjunction concept

and an arc labeled conjunction towards each vertex corresponding to an entity.

5. For each concept e with arguments, we create arcs with the agent and theme labels

towards the vertices representing its left and right arguments respectively. In the
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SELECT COUNT (%) {
M1 ns:produce 7x0.
M1 ns:edit 7xO0.

M2 ns:produce 7x0.
M2 ns:edit 7x0. M1 conj M2 produce edit var film
?x0 ns:film }

ag.

Did M1 and M2 produce and edit a film

Figure 3.9: (left) Semantic analysis of the sentence “Did M1 and M2 produce and edit a
film” in the CFQ formalism. (right) Graph-based representation of the semantic structure.
Note that we abbreviate agent and theme as ag. and th. respectively for readability
purposes.

case where an arguments consists of merged entities, the arcis created towards the

vertex tagged with conjunction instead.

We illustrate this transformation in Figure 3.9.

Data splits. CFQ contains 4 data splits. The first one is the IID split which contains 95744
sentences in the training set and 11967 in the dev and test sets. The three other splits,
designed to evaluate compositional generalization, are known as Maximum Compound
Divergence (MCD) 1, 2 and 3. These splits were constructed in such a way that they satisify

two properties:

1. The divergence between the frequency of apparition of each word in the training

set on one hand and the dev and test sets on the other hand is minimized.

2. The divergence between the frequency of apparition of combinations of elements
in the training set on one hand and the dev and test sets on the other hand is max-

imized.

Thus, these splits require a model to generalize to novel combinations of elements as
well as new syntactic structures at test time. Each of them contains 95743 sentences in

the training set while the dev and test sets contain 11968 sentences each.

3.6 Conclusion

In this chapter, we introduced graph-based approaches for semantic parsing. Notably, we

presented the motivation for relying on these approaches and formulated the task as an
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optimization problem. We highlighted that the inference algorithm is heavily dependent
on the set of constraints imposed on the semantic representation. Thus, the approaches
presented in the following chapters will be motivated by the constraints that are imposed
on our semantic representations.

We also introduced the five semantic parsing datasets that we used in our experi-
ments. While their respective semantic formalisms are logical forms and database queries,
we proposed a deterministic transformation into graphs for each of them. This highlights
how graphs allow for a unified approach for semantic parsing with limited manual work

being required.
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Chapter 4

Combinatorial optimization and

training

In Chapter 3, we introduced graph-based semantic parsing. As the output of these models
is a structure, computing the training objective can be tricky. A majority of recent works
rely on approximations to train their neural architectures. For example, both the span-
based parser of Herzig and Berant (2021) and the graph-based parser of Jambor and Bah-
danau (2022) are trained by computing an approximation of the structure of maximum
weight and maximizing the likelihood of this approximation. In both cases, there is no

guarantee that the chosen structure is the one of maximum weight.

Our novel contribution is a mathematically motivated training objective for graph-
based semantic parsing. In Section 4.1, we define the objective and discuss the issue
of marginalizing over a set of structures. To bypass this issue, we propose a surrogate
objective function that is a lower bound to the original objective. However, we prove that
computing one of the terms in this surrogate objective is NP-hard and can be cast as
an optimization problem. In Section 4.2, we introduce an optimization framework. It re-
lies on the conditional gradient method, also known as the Frank-Wolfe algorithm (Frank
and Wolfe, 1956; Levitin and Polyak, 1966; Lacoste-Julien and Jaggi, 2015), an iterative al-
gorithm that solves optimization problems. This method requires an efficient subroutine
over the search space of the problem, which is not the case for our problem. In the rest of

this section, we propose an approach based on Nesterov (2005) and Yurtsever et al. (2018)
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to handle problematic constraints and define a new search space for which a subroutine
exists. Finally, in Section 4.3, we propose two ways to tackle our NP-hard problem. The
first relies on the optimization framework introduced in the previous section for which we
present an efficient algorithm. The second approach casts our problem as MAP inference
in a factor graph. Parts of the contributions in this chapter were published in Petit and

Corro (2023) and Petit et al. (2023).

4.1 Training objective

Remember that in Section 3.3, we represented a graph anchored on a sentence as a struc-
ture (x,y) where « and y represent the concepts and labels assigned to the vertices and
arcs respectively. Let C be the set of all the valid semantic structures (x,y). Given the
weight vectors i € RI*land ¢ € R¥I, we can define the likelihood of a structure (z, y) € C

via the Boltzmann distribution:

pu,¢(wa y) = eXp(p,Tib + ¢Ty - C(u’v ¢))7

where c(u, ¢) is the log-partition function:

c(p, @) =log Y  exp(p’a’+¢'y).
(@' y)eC

During training, we aim to maximize the log-likelihood of the training dataset. The log-

likelihood of an observation (z, y) is defined as:

{p, 5, y) = logpue(x,y)

=p'z+¢'y—clp,d)

However, in practice we usually do not have access to a structure (x,y). A common oc-
curence is to have instead the semantic graph without concept anchoring. The difference
is illustrated in Figure 4.1. We consider our training signal to be the set of all the struc-
tures (z, y) thatinduce the gold semantic graph, which we denote C*. We call this setting

weakly-supervised and the training objective is the marginalization over all the structures
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definite Emma

[ ] [ ]
det agent theme
—>0«+—0—0 det theme
definite cat like Emma agent

[

1 1 1 1

: : : : cat like

The cat liked Emma The cat liked Emma

Figure 4.1: (left) A semantic graph with its vertices anchored on the words in the sen-
tence. The anchorings are represented by dashed lines. (right) The same semantic graph
without anchoring on the sentence.

inC*:

U, $5C*) =log Y pug(®.y)
(z,y)eC*

= log Z exp (uTa} +¢'y— c(p, ¢)>

(x,y)eC*

=|log > exp(p'z+o'y) | —clu )
(x,y)eC*

Unfortunately, computing both terms of this objective is intractable as it requires sum-
ming over C* and C respectively. Instead, we rely on a lower bound as a surrogate ob-
jective function. This approach is common in machine learning (Bishop, 2006). To this
end, we aim to derive a lower bound to the first term and an upper bound (because it is

negated in Z) to the second term.

4.1.1 Variational formulation of a LogSumExp function

Note that each term in the weakly-supervised loss is a LogSumExp (LSE) function. To de-
rive bounds of this function, we first express it under its variational formulation. To do

so, we will rely on its Fenchel conjugate defined below.

Definition 4.1: Convex set and convex function

Aset X C R* is convex if and only if

Ve, 2’ € X,e€[0,1]:ex+ (1 —e)x' € X
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A function f : X — Ris convex if and only if X is a convex set and

Ve, ' € X,e € [0,1]: flex+ (1 —e)x’) < ef(x) + (1 —€)f(z)

Definition 4.2: Proper function

A convex function f : X — R is proper if and only if

Vee X : f(x) >—-oc0  and dre X: f(x) < 400

Definition 4.3: Closed function

Afunction f : X — Risclosed ifand only if for each o € R, theset{x € X|f(z) < a}

is a closed set.

Definition 4.4: Fenchel conjugate

Let f : R¥ — RuU{oo} be afunction. The Fenchel conjugate of f is the convex function

f*:RF - RU {oco} defined as follows:

fft)= sup u't— f(u)
uedom f

Theorem 4.5: Fenchel-Moreau theorem

Let f : R*¥ — R U {oo} be a function. The biconjugate of f is the function f** : RF —

R U {oo} defined as follows:

f(u)= sup tTu— f(t)
tedom f*

If f is convex, closed and proper, then f** = f.

Proof. A proof of Theorem 4.5 can be found in Beck (2017, Theorem 4.8).
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Definition 4.6: Simplex

The simplex A* of dimension k — 1 is the set of all probability vectors of dimension

k. Formally, it can be written as

Ak:{pERﬂZpi:l and Vi:p; >0}

)

As a LSE function is convex, closed and proper (Beck, 2017, Sections 4.4.10 and 4.4.11),
we can express it via its Fenchel biconjugate. Let f : R* — R be a LSE function, i.e.

f(u) =log )", exp(u;). Its Fenchel conjugate is:

f*(t) = max u't — flu)
u€ERk

By the first order optimality conditions, we can compute the optimal value by setting the

derivative with respect to each element u; to 0:

0

_ Ty

0= amu t— f(u)
o -+
0= %u t— log;exp(ui)
exp(u;)
0=t; — il
>_; exp(u;)

b exp(u;)
’ Zj exp(u;)

Note that ¢ is the softmax of uw. Thus, it sums to 1 and every element ¢; is positive. This

means that the domain of f* is A*,

b exp(ui)
" exp(f(u))
exp(u;) = t; exp(f(u))
u; = log(t; exp(f(u)))

u; = log(t;) + f(u)
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We compute the Fenchel conjugate by rewriting w :

£ () = Z (ti x (logt; + f(u))) — f(u)
= Ztilogti +Ztif(u) — f(uw)
:Ztilogti—Ff(U)—f(u)

= Zti log t;
%

This function is the negative Shannon entropy. We will denote the Shannon entropy as
H[t] = =), tilogt;. Using these results, we can rewrite a LSE function via its Fenchel

biconjugate as follows:

f(u) = f7(u)

= maxt u— f(t
max (@)

= maxt'u — t;logt;
te Ak z

= maxt'u+ H[t]
teAk

These computations are inspired by Boyd and Vandenberghe (2004, Example 3.25), Wain-
wright and Jordan (2008, Section 3.6) and Beck (2017, Sections 4.4.10 and 4.4.11).

Definition 4.7: Variational formulation of the LSE over a set of structures

Let D be a set of structures (x,y). Let U be a matrix such that each row contains a

pair (x,y) € D and AlP! be the simplex of dimension |D| — 1. Note that | U
é

is a vector in which each element is the weight of a structure (z,y) € D. The LSE

over the set of structures D can be equivalently rewritten as:

m
log Z exp(p' x+¢ y)= max p' |U + H[p]
pEA‘D‘ ¢
(z,y)eD
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Figure 4.2: Semantic structure represented by the row in red in Example 4.8. Each tagged
vertex is anchored on the word below.

Example 4.8: Construction of a matrix of structures

Let w = (w1, w2) be a sentence, E = {ey, ez, (0} the set of concepts and L = {I,0}
the set of labels. Let G = (V, A) be the complete graph constructed over w where
V ={1,2}and A = {1 — 2,2 — 1}. A matrix U such that each row represents a

valid semantic graph over w can be constructed as follows:

Tler Tles L10 T2e1 T2ey T2 Y121 Y1520 Y211 Y2510

(1 0o o 1 0 o 1 0 0 1]
1 o o 0o 1 0o 1 0 0 1
U —
o 1 0 1 0 0 0 1 1 0

The row in red corresponds to the graph depicted in Figure 4.2.

In the following subsections, we derive an upper bound and a lower bound using the

variational formulation introduced in Definition 4.7.

4.1.2 LogSumExp upper bound

We first derive an upper bound to the log-partition function. Based on the formulation in
Definition 4.7, pis a probability vector over the set of structures C. As it has an exponential

size, this formulation remains impractical.
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Definition 4.9: Marginal polytope
Let D be a set of structures. Let U be a matrix such that each row contains a structure
in D and APl be the simplex of dimension |D| — 1. The marginal polytope M =

conv(D) is the convex hull of the structures in D. It can be expressed as follows:
M={p'U | pecal}

Using Definition 4.9, we can rewrite the variational formulation over C as:

log >  exp(p'@+¢'y)= maxm' 4+ Hm)
meM
(@,y)eC [0

where m is equivalent to p' U and H . is a joint entropy function defined such that the
equality holds. In this reformulation, the maximization acts on the marginal probabilities
of vertices and arcs in the graph, therefore it has a polynomial number of variables. Ad-
ditional details can be found in Wainwright and Jordan (2008, Section 5.2.1) and Blondel
et al. (2020, Section 7).

Unfortunately, this optimization problem is hard to solve as M cannot be caracterized
in an explicit manner and H,, is defined indirectly and lacks a polynomial closed form
(Wainwright and Jordan, 2008, Section 3.7). However, Cover (1999, Property 4) demon-
strated that decomposing the entropy term over each variable independently yielded an
upper bound to the joint entropy, i.e. Hy[m| < H[m]. We can derive an upper bound to
the log-partition function by decomposing the entropy term and using an outer approxi-

mation to the marginal polytope £ O M, i.e. increasing the search space:

log Z exp(p'+ ¢'y) < maxm’ g + H[m)]

(@y)eC meL (o)

In particular, we observe that each structure (x, y) € C has exactly one tag assigned to
each vertex and one label assigned to each arc. We denote C(°"®) the set of all the struc-
tures (x, y) that satisfy these constraints (note that not all of them correspond to a valid

semantic graph). By using £ = conv(C(°"®)) as an outer approximation to the marginal
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polytope, the optimization problem can be viewed as a sum of independent maximization
problems over each vertex and arc. As each of these problems is the variational formu-
lation of a LSE function, the upper bound on ¢(u, ¢) can be expressed as a sum of LSE

functions, which is tractable:

C(Na d)) < gg)ﬁ( (Z mv,eﬂv,e) + Z (Z manba,l) + H[m]
v e a 1
Z (10g Z eXp(Mv,exv,e)> + Z <log Z exp(d)a,lya,l))
e a 1

v

This approximation can be understood as a generalization of the head selection loss used
in dependency parsing (Zhang et al., 2017). Although it may not result in a Bayes consis-

tent loss (Corro, 2023), it works well in practice.

4.1.3 LogSumExp lower bound

We now derive a lower bound to the LSE function over C*. Intuitively, as the formula-
tion presented in Definition 4.7 takes the form of a maximization problem over a vector
p € A€l any value of p in the search space will yield a lower bound. We choose to max-
imize this lower bound using a vector that gives a probability of one to the structure of
maximum weight, as in “hard” EM (Neal and Hinton, 1998, Section 6). Note that in this
particular case, the Shannon entropy term is equal to 0. Thus, the lower bound is the

weight of the chosen structure.

Computing the structure of maximum weight. For a given sentence w, let G = (V, A)
be a complete graph constructed over w and G’ = (V’, A’) be a semantic graph. We aim
to tag the vertices and label the arcs of a subgraph of G such that it is identical to G'.
This is equivalent to anchoring each vertex v' € V' on a vertex of V such that there is at
most one vertex anchored on each vertex v € V and where the weight of an anchoring is

defined as follows:

+ For each vertex v’ € V' tagged with a concept e and anchored on a vertex v € V, we

add the weight 1, . of tagging v with e.

» For each arc v/ — o' € A’ with the label [, let w and v be the vertices in V that «’
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Figure 4.3: Aweighted complete graph with 3 vertices is depicted on the left. Dashed lines
represent the anchoring of the vertices of the graph on the right over the complete graph.
For readability purposes, we assume that all the vertices have the same concept and all
arcs have the same label. The weight of this anchoring is 24 (14 for the vertices plus 4 and
6 for the two arcs).

and v’ are respectively anchored on. We add the weight ¢,,_,,,; of labeling the arc

u— v e Awithl.

Note that this consists in computing a partial alignment between the two graphs. If
we did not have arc weights, this could be solved via the Kuhn-Munkres (Kuhn, 1955) or
the Jonker-Volgenant (Jonker and Volgenant, 1988; Crouse, 2016) algorithms. However,
introducing arc weights makes the use of these algorithms impossible. We illustrate the

computation of an anchoring weight in Figure 4.3.

Theorem 4.10: NP-hardness of the anchoring of maximum weight

Computing the anchoring of maximum weight of a semantic graph G’ on a graph G

is NP-hard.

Proof. We prove Theorem 4.10 by reducing the maximum directed Hamiltonian path prob-
lem, which is known to be NP-hard (Garey and Johnson, 1979, Appendix A1.3), to the an-
choring of maximum weight.

Let G = (V, A, ) be a directed weighted graph where V' = {1,...,n} and ¥ € R4l
are arc weights. The maximum Hamiltonian path problem aims to compute the subset of
arcs B C A such that every vertex v € V is the extremity of at least one arc and the set
of arcs B form a path of maximum weight where its weight is defined as 3 .  ¥a.

We construct a directed complete graph G’ = (V’, A’) such that there is a vertex v’ €
V' corresponding to each vertex v € V. Let e be a concept and [ an arc label. The weight

of tagging a vertex v’ € V' with e is 0. The weight of labeling an arc v/ — v € A" with [ is
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Yy_sy if thereisan arcu — v € A and —oo otherwise.

We construct a labeled directed graph G” = (V" A”) such that V" = {1”,...,n"},
A" ={i" = (i+1)"|1 < i < n}, each vertex v € V" is tagged with e and each arc

a"” € A" is labeled with (.

As such, there is a one-to-one correspondence between solutions of the maximum
Hamiltonian path problem on graph G and solutions of the anchoring of maximum weight
of G” on G’. Note that if the anchoring found has a weight equal to —oco, there is no

Hamiltonian path in G. Thus, the anchoring of maximum weight is NP-hard. O

Therefore, we propose an optimization-based approach to compute the structure of
maximum weight. The problem requires each vertex v € V to be the anchor of at most
onevertex v’ € V'. We denote Cj¢a,eq @ St Of structures (z, y) where a vertex v € V can
be the anchor of multiple vertices v" € V’, i.e. a word in w can be the anchor of multiple
concepts. Computing the structure of maximum weight in C* is therefore equivalent to
solving the following optimization problem:

max g xz+oé'y
w?y

st. (x,y) € C(T'elaxed)

va,e <1 YveV
eck

In the remainder of this chapter, we propose a method that relies on solving the problem

on the set Cpqja4eq) to find the optimal solution in C* and prove that solving the optimiza-
tion problem on the set Cjq|ayeq) /-6 if the second constraint is ignored, is easy. Thus, we

will obtain our training objective.

4.2 Optimization framework with constraint relaxation

In this section, we introduce the framework that we will use to solve the optimization

problem presented above.
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4.2.1 Conditional gradient method

Let C C R* be a set, A = conv(C) be its convex hull and f : A — R be a smooth, convex
and differentiable function. The conditional gradient method, also known as the Frank-
Wolfe algorithm (Frank and Wolfe, 1956; Levitin and Polyak, 1966; Lacoste-Julien and Jaggi,

2015), is an algorithm that solves constrained optimization problems of the form:

wex s

Unlike other constrained optimization methods, the Frank-Wolfe algorithm does not re-
quire to compute projections onto the feasible set .4 which is, in most cases, computa-
tionally expensive. Given an initial guess z(?), it iteratively converges towards the optimal
solution by constructing convex combinations z(!), 2(2) .. of elements in A. To do so, it
relies on a linear problem known as the Linear Maximization Oracle (LMO) which is de-
fined as follows:

Imoc(A) = argmax \' z
zeC

At each time step k, the update direction is given by computing d = lmoc (V f(2*))) —2(®),
Then, the next convex combination is z(*t1) = z(¥) 4 d where 7 is the stepsize defined
as arg max, e 1] f(2™®) +~d). A pseudo-code of the conditional gradient method is given

in Algorithm 1.

Computing the optimal stepsize does not always have a closed form solution. In that

case, v can either follow a pre-determined strategy or be approximated. A common pre-

2

determined strategy is to use v = 537.

This does not require any additional computation
and possesses the same worst-case complexity bounds as adaptive strategies (Dunn and
Harshbarger, 1978). As f is convex, v can also be approximated via the bisection algo-

rithm. This approach requires less steps to converge towards the solution in practice.
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Algorithm 1 Frank-Wolfe algorithm
function FW(A, ¢)

Let 20 e A
for k € {0....K} do >Where K is the maximum number of iterations
d + (lmoc(Vf(z*)))) — 2® > Compute the update direction
if Vf(2¥)Td < e then return z(*) > If the dual gap is small, z(*) is (almost)
optimal

Y € argmax, g 1 f(z®) +~d) > Compute or approximate the optimal stepsize

2+ = 2(k) 4 ~d > Update the current point
return z(¥)

4.2.2 Constraint relaxation and smoothing

The conditional gradient method is used to solve optimization problems over convex sets.

However in our case, the optimization problem takes the form:

max f(2)
st. Az <b

where C is a set over which there exists an efficient LMO that we will present in Section
4.3. However, the additional constraints Az < b prevent the existence of such an or-
acle. In this setting, an appealing approach is to introduce the problematic constraints
as penalties in the objective instead. Let S be the set of all the vectors that satisfy these

constraints. We rely on the indicator function of S defined below.

Definition 4.11: Indicator function of a set

Given a set S, its indicator function is defined as

0 ifues,
ds(u) =

+o00 otherwise

Using the indicator function, the problem can be rewritten as:

max f(z) — ds(Az)

zeC

However, the objective is no longer smooth due to the indicator function, preventing the
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use of the conditional gradient method. We rely on the framework proposed by Yurtsever

et al. (2018) where the indicator function is replaced by a smooth approximation.

Theorem 4.12: Fenchel conjugate of an indicator function

For a given set S, the Fenchel conjugate of its indicator function Jg is a convex func-

tion known as its support function og. This function is defined as

-
u) = t
os(u) max u

Proof. Let S be a set with g and og respectively its indicator and support functions. The

Fenchel conjugate of g is
0%(t) = maxu 't — dg(u)
u

We distinguish two cases:
+ Foragivenu € S,we have u't — dg(u) = u't.
+ Foragivenu ¢ S, we have u't — dg(u) = —oc.

Thus, we can rewrite the indicator function as

S5(t) = Tt
s =

= o5s(t)

Using Theorem 4.12, we rewrite the indicator function via its Fenchel biconjugate:

05(Az) = 05 (Az) = maxu' (Az) — ogs(u)

ues

It can be smoothed by adding a S-parameterized convex regularizer —%H )%

555(A%) = maxu” (A2) — os(u) — 5 ul}
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where 5 > 0 controls the quality and the smoothness of the approximation (Nesterov,

2005). We can then use the conditional gradient method to solve the following problem

instead:
max f(z) = 053(Az)
In the remainder of this thesis, we follow Yurtsever et al. (2018) and use ) = o

VE+1
where k is the iteration number and 3(®) = 1. We detail the computations that yield a

closed form to §3";(Az) in Appendix D.

Equality case. When the additional constraints are equalities, we have S = {b}. In
that case, we demonstrate in Appendix D that the smoothed indicator function can be
expressed as:

k% 1
55,5(AZ) = %”AZ - bH%

In this case, we have a quadratic penalty term in the objective. Note that this term is
similar to the term introduced in an augmented Lagrangian (Nocedal and Wright, 1999,

Equation 17.36), and adds a penalty in the objective for any vector z such that Az # b.

Inequality case. When the additional constraints are inequalities, we have S = {u|u <
b}. In that case, we demonstrate in Appendix D that the smoothed indicator function can
be expressed as:

1

5?5(142) = %H[AZ - b]+”%

where [-]+ denotes the Euclidean projection into the non-negative orthant, i.e. negative
values are clipped. It introduces a penalty in the objective for any vector z such that

Az > b. This is also known as the Courant-Beltrami penalty.

4.3 Structure of maximum weight

Remember that our lower bound to the objective function requires computing the struc-
ture of maximum weight. In this section, we introduce two algorithms to do so. The first
one relies on the optimization framework presented in Section 4.2. In the second one, we

reduce our problem to MAP inference in a factor graph.
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4.3.1 Structure of maximum weight via the conditional gradient method

Our optimization problem is defined as:
max MTZB + quy
m?y
s.t. <:D, y> € C(*relaxed)

Z:cw <1 YveV
ecE

Using the framework of Section 4.2, we can solve the linear relaxation of this problem
where the inequality constraints are introduced as a smoothed penalty in the objective
instead. We only require an efficient LMO to use as a subroutine in the conditional gradi-
ent method. Given a sentence w = (wy, ..., wy,), remember that G = (V, A) is a complete
graph constructed over w and G’ = (V', A’} is the semantic graph where each vertex

v € V'is tagged with a concept e € E and each arc o’ € A’ is labeled with a label | € L.

Linear oracle for arborescences. In this paragraph, we assume that G’ is an arbores-
cence. As the set Cjqjayeq) ONlY requires each vertex v" € V' to be anchored on a vertex
v € V, this problem is tractable via dynamic programming. Indeed, for a given vertex
v" € V', assume that we know the anchoring of maximum weight of the sub-arborescence
rooted at each of its descendents v’ for each possible anchor u € V for «’. The maximum
weight of the anchoring of the sub-arborescence rooted at v" where v’ is anchored on
v € V is the weight of tagging v with e plus selecting for each descendent «’ the an-
choring such that the sum of the weights of the sub-arborescence and the arc v’ — ' is

maximized. To this end, we can simply visit the set of vertices V' in reverse topological

order.

Definition 4.13: Topological order

Let G = (V, A) be a directed acyclic graph. A topological order of the vertices V is
an order such that for any arc u — v € A, u must appear before v. In a reverse

topological order, u must appear after v.

We give a pseudo-code in Algorithm 2. The best anchoring can then be retrieved via
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Algorithm 2 Unconstrained anchoring of maximum weight of G’ on a graph G

function DynProgAnchoring(G, G’)
for ' € V' in reverse topological order do
e is the concept associated to v/’

foru € V do
Weight[u/, u] < fiy.e
forv e {v" e V' |u =" € A} do > Best anchoring for each descendent

l is the label associated to v’ — v’

Weight[v/, u] < Weight[v/, u] + max,cy (Weight[v/, v] + ¢u—e,1)
return max,cy Weight[r’, u] >Where r' € V' is the root of G’

back-pointers. This algorithm requires iterating over every possible anchoring of «’ and
v' for each arcu/ — o' € A’. As there are |V’| — 1 arcs in A’ and at most n vertices in V’

and in V, this algorithm has a O(n3) time complexity.

Linear oracle for non-arborescence graphs. In this paragraph, we assume that G’ is
not an arborescence. We consider the equivalent undirected graph H' = (V’, E’) where
V' is the same set of vertices and E’ is a set of edges defined such that for each arc
u — v € A, thereisan edge v —v' € E'. If H' is acyclic, we can adapt Algorithm 2 by
arbitrarily choosing a vertex v’ € V'’ as a root. Then, we can construct a visiting order by
iteratively adding vertices that are not yet in the order but are adjacent to vertices that
are.

In the case where there are cycles in H’, we propose an approach inspired by algo-
rithms for efficient inference in graphical models, notably the Junction Tree Algorithm

(Barber, 2011, Section 6).

Definition 4.14: Clique

Let G = (V, E) be an undirected graph. A clique C is a subset of V' such that every
two distinct nodes in C' are adjacent, i.e. Vu,v € C : u —v € E. If there is no clique

C’ such that C C ', then C is a maximal clique.

Definition 4.15: Clique graph

Let G = (V, E) be an undirected graph. A clique graph of G is a graph G’ = (V' E’)

such that each node v' € V' represents a maximal clique C in G. For every edge
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Figure 4.4: (left) A graph that contains cliques with more than two vertices. We use
letters to identify the vertices. (right) A junction tree corresponding to the graph on the
left. Beside each node, we indicate the clique from the original graph that it represents.
For each edge, we indicate the separator between the two adjacent nodes.

u' —v" € E' such that v’ and v’ represent two cliques C' and C’ respectively, the edge

is labeled with C'n C” which is known as the separator.

Definition 4.16: Junction Tree

A junction tree is a clique graph G’ = (V'  E’) such that G’ is a tree and that, for
any two nodes ' and v’ in V' representing two cliques C' and C’ respectively, the

separator of every edge on the path between v’ and v’ contains C N C".

We give an example of a graph with its corresponding junction tree in Figure 4.4. Given
our undirected graph H’, we compute its junction tree. Using this junction tree, we can
compute a visiting order over cliques instead of vertices. We can then adapt Algorithm 2
to compute the anchoring of maximum weight by computing the possible anchorings for

each clique jointly.

Algorithm complexity. Each node inthe junction tree represents a clique containing m
vertices. As each vertex in V' is anchored on a vertex among n possible ones in V, there
are n™ possible anchorings that must be computed for a clique. As a junction tree can
have at most |V’| vertices, computing the anchoring of maximum weight has a O(n*) time
complexity where n is the length of the sentence and k is the size of the largest clique in

H.
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Time complexity

Dataset Split
<0®@* 0om*) Om') 0omd
1D 0.2% 99.8% - -
GeoQuery Template - 100% - -
Length 0.2% 99.8% - -
1D 0.1% 99.9% - -
Scan-SP Right 0.1% 99.9% - -
AroundRight 0.1% 99.9% - -
1D <0.1% >99.9% - -
Clevr
Closure <0.1% >99.9% - -
COGS 1D 0.6% 93.9%  5.5% -
Generalisation 0.6% 93.9%  5.5% -
1D - 76.1%  23.9% -
CFQ MCD1 - 72.7%  27.3% -
MCD2 - 74.0% 26.0% <0.01%
MCD3 - 72.4% 27.6% <0.01%

Table 4.1: Proportions of semantic graphs with respect to the time complexity of the Lin-
ear Minimization Oracle in the training set of each data split.

In the datasets considered in this thesis, the semantic graphs possess small cliques
in practice. For each split of each dataset, we report in Table 4.1 the distribution of time
complexities over the sentences in the train set. GeoQuery, Scan-SP and Clevr only con-
tain arborescences, thus the time complexity is O(n?) for every structure with at least
three vertices in these datasets. The complexity of the LMO is linear or quadratic if the
semantic graph contains exactly one or two vertices respectively. COGS and CFQ both
contain semantic graphs that are not arborescences. For these two datasets, we thus re-
quire the variant based on the Junction Tree Algorithm. However, we observe in Table 4.1
that graphs for which the anchoring of maximum weight can be computed with a cubic
complexity cover more than 70% of the datasets. Structures for which the anchoring can
be computed with a O(n*) time complexity cover the remainder of these datasets with the
exception of one sentence in the MCD2 and MCD3 splits of CFQ. Thus, handling graphs

that are not arborescences does not lead to significantly worse runtimes.
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theme

agent det
[ J o—>0

cat eat def. cake

Figure 4.5: The semantic graph corresponding to the sentence “A cat ate the cake” in the
COGS dataset.

4.3.2 Structure of maximum weight via a factor graph

To compute the structure of maximum weight, we also propose to reduce our problem
to MAP inference in a factor graph. In this section, we explain how to construct this factor
graph. An advantage of this approach is its simplicity of use as it is not dependent on the

structure of the semantic graph like the previous approach.

Factor graph. For clarity reasons, we denote v; € V the vertex corresponding to the
word w;. For each vertex v' € V' tagged with the concept e, we define a random variable
(RV) X, takingvaluesin{1,...,n}. When X, takes the value i, it represents the anchoring
of v/ on the vertex v; € V. We introduce a unary factor corresponding to tagging weights,
i.e. anchoring v’ on a vertex v; induces the weight s, .. For each arc v’ — v' € A’ labeled
with I/, we introduce a binary factor corresponding to labeling weights, i.e. anchoring «’
on a vertex v; and v’ on a vertex v; induces the weight Gv;—0; 1+ Finally, there is a global
factor acting as an indicator function, that forbids RVs assignments where different con-
cept instances are aligned with the same word. We use AD3 (Martins et al., 2011) for MAP

inference in this factor graph.

Example 4.17: Factor graph construction

Given the sentence “A cat ate the cake” in the COGS dataset, its corresponding se-
mantic graph is shown in Figure 4.5.

We construct the factor graph thatis used to compute the anchoring of maximum
weight for this semantic graph in Figure 4.6. For each of the four vertices, we intro-
duce a random variable denoted A; with a unary factor denoted u; corresponding to
its concept, i.e. cat, eat, the and cake. For each arc /' — v’ in the semantic graph,

we introduce a binary factor denoted b;; between the random variables A; and A;
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AtMostOne

Figure 4.6: Factor graph constructed to compute the anchoring of maximum weight of
the semantic graph shown in Figure 4.5 for the sentence “A cat ate the cake”. A detailed
description is given in Example 4.17.

Ao ANA; |1 2 3 4 5

1 Huy e 1 —00 ¢ul —wvg,l d’m —wsg,l ¢v1 —vg,l ¢v1 —ws,l
2 Hos e 2 ¢v2—>u1,z —00 ¢v2—>v3,l ¢v2—>v4,l ¢v2—>v5,l
3 e 3 Gug—v1,l  Pug—va,l —00 Dug—sval  Pug—svs,l
4 fge 4 Gvy—mv1l Puog—va,l  Pug—svs,l —0 Dvy—svs,l
5 e 5 Pus—svi,l  Pus—val  Pug—vsl  Pog—ugl —00

Figure 4.7: (left) Weights induced by a unary factor u; in the factor graph given the value
taken by the random variable A;. We denote e the concept corresponding to this unary
factor. (right) Weights induced by a binary factor b;; in the factor graph given the values
taken by A; and A;. We denote [ the label corresponding to this binary factor.

where A4; and A; correspond to v’ and v’ respectively. In this case, we have three
binary factors for the labels agent, theme and det. Finally, we introduce the AtMo-
stOne global factor ensuring that each vertex in the semantic graph will be anchored
on a different word in the sentence.

In Figure 4.7, we represent the weights induced by each unary and binary factor

in our factor graph.

4.4 Conclusion

In this chapter, we focused on two topics. The first one is the introduction of a combi-
natorial optimization framework with constraint relaxation. It relies on the conditional
gradient algorithm to solve the linear relaxation of optimization problems if it is convex.
Constraints that prevent the existence of an efficient oracle are relaxed and introduced
as quadratic penalties in the objective instead. This framework is appealing as it can be

applied to any optimization problem such that its linear relaxation is convex. We rely on
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this framework to compute our training objective and in the inference algorithm of our
contribution presented in Chapter 5.

The second focus of this chapter is a mathematically motivated objective function to
train graph-based semantic parsers in a “weakly-supervised” setting. We demonstrated
that the objective function in this setting is composed of two intractable LSE functions,
one over C*, the set of structures that induce the gold semantic graph, and the other over
C, the set of all valid structures. We proposed an upper bound to the LSE function over C
by decomposing it over each word and each pair of words. For the LSE function over C¥,
we proved that considering only the structure of maximum weight yields a lower bound.
As computing this structure is NP-hard, we proposed two approximate algorithms. As
mentionned above, the first one relies on the combinatorial optimization framework pre-
sented in this chapter and an efficient oracle. In the second one, we reduce our problem

to MAP inference in a factor graph.
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Chapter 5

Graph-based reentrancy-free

semantic parsing

In Chapter 2, we explained that the advances of sequence-to-sequence architectures for
machine translation (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2015) made
them appealing for semantic parsing (Jia and Liang, 2016; Dong and Lapata, 2016; Wang
et al., 2020). However, the recent focus on compositional generalization highlighted that
these models tend to fail when composition is required (Lake and Baroni, 2018; Finegan-
Dollak et al., 2018; Keysers et al., 2020). As such, there has been an interest in revisiting
more traditional structured prediction methods, notably predicting partial programs over

short utterances and composing them (Pasupat et al., 2019; Herzig and Berant, 2021).

Our novel contribution is a graph-based semantic parser that predicts the entire se-
mantic graph jointly. In Section 5.1, we motivate our approach by presenting the limi-
tations of recent work relying on a span-based approach. Then, we introduce our novel
graph-based approach that bypasses these limitations in Section 5.2. In Section 5.3, we
first prove that MAP inference is NP-hard for this approach and present an integer linear
programming formulation for the problem. We propose an approximate solver based
on the conditional gradient method presented in Chapter 4. Finally, we evaluate our ap-
proach on GeoQuery, Clevr and SCAN in Section 5.4 and observe that it outperforms com-
parable baselines both on IID splits and splits that test for compositional generalization.

Part of the contributions in this chapter were published in Petit and Corro (2023).
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5.1 Motivation

In Section 2.3.2, we introduced span-based approaches for semantic parsing (Pasupat
et al.,, 2019; Herzig and Berant, 2021). To improve compositional generalization, these
approaches drew inspiration from older grammar-based approaches by predicting par-
tial semantic programs over short utterances and composing them. During inference,
SpanBasedSP (Herzig and Berant, 2021) relies on standard span-based decoding algo-
rithms (Hall et al., 2014; Stern et al., 2017; Corro, 2020) with additional well-formedness
constraints from the semantic formalism. Given a weighting function, MAP inference is a
polynomial time problem that can be solved via a variant of the CYK algorithm (Kasami,
1965; Younger, 1967; Cocke, 1970). Experimentally, SpanBasedSP outperforms sequence-

to-sequence models in terms of compositional generalization.

The complexity of MAP inference for phrase structure parsing is directly impacted
by the considered search space (Kallmeyer, 2010). Importantly, (ill-nested) discontinu-
ous phrase structure parsing is known to be NP-hard, even with a bounded block-degree
(Satta, 1992). Herzig and Berant (2021) explore two restricted inference algorithms, both
of which have a cubic time complexity with respect to the input length. The first one only
considers continuous phrase structures, i.e. derived trees that could have been generated
by a context-free grammar, and the second one also considers a specific type of discon-
tinuities, see Corro (2020, Section 3.6). Both algorithms fail to cover the full set of phrase

structures observed in semantic treebanks as illustrated in Figure 5.1.

In this chapter, we propose to reduce semantic parsing without reentrancy to a bi-
lexical dependency parsing problem. Forbidding reentrancies means that a given pred-
icate or entity cannot be used as an argument for two different predicates, As such, we
tackle the same semantic content as aforementioned previous work but using a differ-
ent mathematical representation (Rambow, 2010). We identify two main benefits to our
approach: first, as we allow crossing arcs, all datasets are guaranteed to be fully cov-
ered. Secondly, it allows us to rely on optimization methods to tackle the inference of our
graph-based approach. More specifically, we will prove that MAP inference in our setting
is equivalent to the maximum generalized spanning arborescence problem (Myung et al.,

1995) with supplementary constraints. Although this problem is NP-hard, we propose an
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join: most (state(loc_1(major(city_all))))
join: most (state(loc_1(major(city_all))))
join: state(loc_1(major(city_all)))

/\

join: loc_1(major(city_all)) |

join: major(city_all)

TN

join: city_all

SN /N

0 state loc_1 1] most major city all 0§
h ?

What state has the most major cities

Figure 5.1: Example of a semantic phrase structure from GeoQuery. This structure is
outside of the search space of SpanBasedSP (Herzig and Berant, 2021) as the constituent
in red is discontinuous and also has a discontinuous parent (in red and green).

optimization algorithm that solves a linear relaxation of the problem.

5.2 Well-formed graph-based semantic parsing

5.2.1 Graph notations and definitions

We first introduce the graph notations and definitions that are relevant to the work pre-
sented in this chapter. Let G = (V, A) be a directed graph with V' the set of vertices and
A C V x V the set of arcs. For any subset of vertices U C V, we denote o/, (U) (respec-
tively o, (U)) the set of arcs leaving one vertex of U and entering one vertex of V' \ U

(respectively leaving one vertex of V' \ U and entering one vertex of U) in the graph G.

Definition 5.1: Cover set

Let G = (V, A) be a directed graph. Let B C A be a subset of arcs. The cover set of

B denoted V[B] is the set of vertices that appear as an extremity of at least one arc
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///////

o+—0
0

Figure 5.2: lllustrations of arborescences (in red) in a directed graph. (left) The arbores-
cence does not cover every vertex in the graph. (right) The arborescence covers every
vertex, it is spanning.

in B. We can define it formally as

VIBj={v|Ju:u—veBVv—uc B}

Definition 5.2: Arborescence and spanning arborescence

Let G = (V, A) be a directed graph. G is an arborescence rooted at u € V if and only
if it contains |V| — 1 arcs and there is a directed path from « to each vertex in V. Let
B C Abe asetofarcs such that G = (V[B], B) is an arborescence. G’ is a spanning

arborescence of G if and only if the cover set V[B] = V.

We give examples of an arborescence and a spanning arborescence in Figure 5.2. In this

chapter, we assume that the root of an arborescence is always a vertex 0 € V.

Definition 5.3: Cluster and partition

Let G = (V, A) be a graph. A cluster is a subset of vertices U C V. Letn =
{Vo,...,Vy} be asetof n+ 1clustersin V. x is a partition of V' if and only if we

have

Jvi-v

Viem
and

VWi, Vier:VinV; =0

In other words, each vertex v € V belongs to exactly one cluster V; € .
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Figure 5.3: lllustrations of generalized arborescences (in red) in a directed graph. The
clusters are indicated by the dashed lines. (left) The generalized arborescence does not
cover a vertex in every cluster, it is not-necessarily spanning. (right) The generalized ar-
borescence covers a vertex in every cluster, it is spanning.

Definition 5.4: Generalized arborescence

LetG = (V, A) be adirected graph and 7 be a partition of V as presented in Definition
5.3. Let G’ = (V[B], B) be an arborescence of G as introduced in Definition 5.2. G’
is a generalized not-necessarily spanning arborescence on the partition 7 of GG if and
only if V[B] contains at most one vertex per cluster V; € =. If it contains exactly one

vertex per cluster, it is a generalized spanning arborescence.

We give examples of generalized spanning and not-necessarily spanning arborescences

in Figure 5.3.

Definition 5.5: Contracted graph

Let G = (V, A) be a directed graph. Let W C V be a set of vertices. Contracting W
consistsin replacing in G the set W by a new vertex w ¢ V, eacharcu — v € o= (W)
by an arc u — w and each arcu — v € o (W) by an arc w — v.

Given ™ = {V, ..., V,} a partition of G, the contracted graph is the graph where

each cluster V; € 7 has been contracted.

We give an example of a contracted graph in Figure 5.4. Note that while contracting a

graph may introduce parallel arcs, this is not an issue in practice for our work.

83



Figure 5.4: (left) A directed graph where clusters are represented by the dashed lines.
(right) The resulting graph when each cluster is contracted.

5.2.2 Semantic grammar and graph

The semantic programs we focus on in this chapter take the form of a functional language,
i.e. arepresentation where each predicate is a function that takes other predicates or en-
tities as arguments. The semantic language is typed in the same sense than in “typed
programming languages”. For example, in GeoQuery, the predicate capital_2 expects
an argument of type city and returns an object of type state. We give a complete de-
scription of the typing systems for GeoQuery, Clevr and SCAN in Appendices A.2, C.2 and
B.2 respectively. In these datasets, the typing system disambiguates the position of argu-
ments in a function: for a given function, either all arguments are of the same type or the
order of arguments is unimportant. An example is the predicate intersection_river in
GeoQuery that takes two arguments of type river, but the result of the execution is un-
changed if the arguments are swapped. There are a few corner cases like exclude_river,
for which we simply assume arguments are in the same order as they appear in the input

sentence.

Definition 5.6: Semantic grammar

We define a semantic grammar as G = (E, T, frype, fargs) Where:

+ Fisthe set of predicates and entities, which we refer to as the set of concepts.

We assume that Root ¢ E is a special concept that is used for parsing.

« T'is the set of types.
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* frype : £ — T'is a typing function that assigns a type to each concept.

* fares : £ x T — Nis a valency function that assigns the number of expected
arguments of a given type to each concept.

Formally, we define the set of valid semantic programs as the set of programs that can
be produced with a semantic grammar defined as in Definition 5.6. Note that a concept
e € Eisanentityifand only if vt € T': fargs(e,t) = 0. Otherwise, it is a predicate.

A semantic program in a functional language can be equivalently represented as a
semantic graph where instances of concepts are represented as vertices and where arcs
identify arguments of predicates. The conversion for GeoQuery, SCAN and Clevr is de-

tailed in Section 3.5.

Definition 5.7: Well-formed semantic graph

A semantic graph is defined as a labeled graph G = (V, A, fiabel) Where the function
flabel 1 V' — E assigns a concept to each vertex. G is well-formed with respect to
a semantic grammar G if and only if G is an arborescence and the valency and type

constraints are satisfied, i.e. we have:

fArgs(fLabeI(“)yt) = ]Jé({u},t)] VueV,iteT
where:

u— v € of({u})

s.t. nype(fLabeI(U)) =1

ob({u},t) =

5.2.3 Problem reduction

In our setting, semantic parsing is a joint sentence tagging and dependency parsing prob-
lem (Bohnet and Nivre, 2012; Li et al., 2011; Corro et al., 2017): each content word (i.e.
words that convey a semantic meaning) must be tagged with a predicate or an entity, and
dependencies between content words identify arguments of predicates. However, our

semantic parsing setting differs from standard syntactic analysis in two ways:

* The resulting structure is not necessarily spanning as there are words that must
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Which states do not border Texas ?

Figure 5.5: Semantic graph (solid arcs) corresponding to the sentence “Which states do
not border Texas ?” in the GeoQuery dataset. The dashed lines represent the anchors of
the concepts (note that this information is not available in the dataset).

not be tagged and that do not have any incident dependency. Those words are not

known in advance and must be identified jointly with the rest of the structure.

* The dependency structure is highly constrained by the typing mechanism as the

predicted structure must be a well-formed semantic graph.

Nevertheless, similarly to aforementioned works, our parser is graph-based, i.e. for a
given input we build a (complete) directed graph and decoding is then reduced to com-

puting a constrained subgraph of maximum weight.

Clustered labeled graph. Given asentence w = (wy, ..., wy,) with n words and a seman-
tic grammar G, we construct a clustered labeled graph G = (V, A, 7, flapel) as follows. The
partition 7 = {Vj, ..., V,,} contains n + 1 clusters, where V} is a root cluster and each clus-
ter V;, i # 0, is associated to word w;. The root cluster {, = {0} contains a single vertex
that will be used as the root and every other cluster contains |E| vertices. The extended
labeling function fapel : V — EU{Root} assigns a concept in E to each vertexv € V'\ {0}
and Root to vertex 0. Distinct vertices in a cluster V; cannot have the same concept, i.e.
Vu,v € Vitu#v = frapel(t) # fiabel(v).

Let B C A be a subset of arcs. The graph G’ = (V[B], B) defines a 0-rooted general-
ized valency-constrained not-necessarily-spanning arborescence (GVCNNSA) if and only if
itis a generalized arborescence of G, there is exactly one arc 0 — w leaving 0 and the sub-
arborescence rooted at u is a well-formed semantic graph with respect to the grammar
G. As such, there is a one-to-one correspondence between a semantic graph anchored

on the sentence w and a GVCNNSA in the weighted graph G.
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next_to_2
next_to_2
stateid
state_all
area_1

Which states do not border Texas ?

Figure 5.6: A labeled clustered graph with the generalized valency-constrained not-
necessarily-spanning arborescence (red arcs) corresponding to the semantic graph in Fig-
ure 5.5. For clarity reasons, we do not represent the other arcs in the graph. The root is
the top left vertex.

Example 5.8: Clustered labeled graph construction

In the GeoQuery dataset, the sentence “Which states do not border Texas ?” is
mapped to the program “exclude(state_all, next_to_2(stateid(texas)))”. We
show the corresponding semantic graph in Figure 5.5. The corresponding clustered
labeled graph is presented in Figure 5.6. There is a cluster corresponding to each
word in the sentence as well as an additional root cluster. For compactness rea-
sons, we only included a few concepts from GeoQuery in the figure. The GVCNNSA

corresponding to the semantic graph is shown in red.

For a given sentence w, our aim is to find the semantic graph that most likely corre-
sponds to it. Thus, after building the clustered labeled graph G as explained above, we
use a neural network that will be described in Section 5.4 to produce a vector of weights
p € RIVIindexed by the set of vertices V' and a vector of weights ¢ € RI“! indexed by the
set of arcs A. Given these weights, our graph-based semantic parsing task is reduced to
an optimization problem: the maximum generalized valency-constrained not-necessarily-

spanning arborescence (MGVCNNSA) in the graph G.

5.3 Mathematical formulation and resolution

In the previous section, we have cast our semantic parsing problem as an optimization

problem. In this section, we first prove that this problem is NP-hard. Then, we present
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an integer linear programming (ILP) formulation for our problem. Finally, we highlight
which constraints are problematic and propose a way to solve the linear relaxation of our

problem by relying on the conditional gradient method, similarly to Chapter 4.

5.3.1 NP-hardness of the MGVCNNSA problem

Theorem 5.9: NP-hardness of the MGVCNNSA

The MGVCNNSA problem is NP-hard.

Proof. The maximum not-necessarily-spanning arborescence (MNNSA) problem is known
to be NP-hard (Rao and Sridharan, 2002; Duhamel et al., 2008). We prove Theorem 5.9 by
reducing it to the MGVCNNSA problem.

Let G = (V, A,) be a weighted graph where V' = {0,...,n} and ¢ € R4l are arc
weights. The MNNSA problem aims to compute the subset of arcs B C A such that
(V[B], B) is an arborescence of maximum weight, where its weight is defined as ) _ . 5 ¥.

Let G = (E,T, frype, fargs) be a grammar such that £ = {0,...,n — 1}, " = {t} and
Ve € E: frype(e) =t A fargs(e,t) = e. Intuitively, a concept e € £ is associated to vertices
that require exactly e outgoing arcs.

We construct a clustered labeled weighted graph G’ = (V', A’, 7, fLapel, ¥’) as follows.
m = {V{,...,V,} is a partition of V' such that each cluster V/ € 7 contains n — 1 vertices
and represents the vertex i € V. The labeling function f,pe| assigns a different concept
to each vertex in a cluster, i.e. VV/ € m,Vu/,0" € V! : ) # o = [(u) # (V). The set of
arcs is defined as A’ = {u' — V'[3i — j € Ast.u' € V/ A" € V/}. The weight vector
¢ € RATis such that V' — o' € A':u € VAV € V=4, = Yuse.

As such, there is a polynomial one-to-one correspondence between solutions of the
MNNSA problem on graph G and solutions of the MGVCNNSA problem on graph G’. Thus,
the MGVCNNSA problem is also NP-hard. O

5.3.2 Mathematical program

Our graph-based approach to semantic parsing has allowed us to prove the intrinsic hard-

ness of the problem. We now follow previous work on graph-based parsing (Martins et al.,
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Figure 5.7: lllustration of the reduction used in the proof of Theorem 5.9. (left) A graph
with its maximum not-necessarily-spanning arborescence in red. (right) The correspond-
ing clustered graph and MGVCNNSA in red. We do not represent the other arcs present
in the clustered graph for clarity reasons.

2009; Koo et al., 2010) by proposing an integer linear programming formulation in order

to compute (approximate) solutions.

Extended graph. Remember thatin the joint tagging and dependency parsing interpre-
tation of the semantic parsing problem, the resulting structure is not-necessarily-spanning,
meaning that some words may not be tagged. In order to rely on well-known algorithms
for computing spanning arborescences, we first introduce the notion of extended graph.
Given a clustered labeled graph G = (V, A, 7, fLabel), We construct an extended graph
G = (V, A7, fLavel) cONtaining n additional vertices {1, ..., 7} that are distributed along
clusters, ie. ™ = {Vp, V1 U{1},...,V,,U{n}}, and arcs from the root to these extra vertices,
iie. A= AU{0 — i1 <i < n}. Note that the labeling function is unchanged as there is no
need for types for the additional vertices in V'\ V. Let B C A be a subset of arcs such that
(V[B], B) is a generalized not-necessarily-spanning arborescence on G. Let B C A be a
subset of arcs defined as B = BU {0 — g‘U(V[B],B>(V;') = 0}. (V[B], B) is a generalized
spanning arborescence on G and there is a one-to-one correspondence between gener-
alized not-necessarily spanning arborescences (V[B], B) on G and generalized spanning

arborescences (V[B], B) on G.

Example 5.10: Extended graph construction

We show the clustered labeled graph corresponding to the sentence “Which states

do not border Texas ?” in Figure 5.6. The corresponding extended graph is shown
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Figure 5.8: The extended graph corresponding to the clustered labeled graph presented
in Figure 5.6. A vertex with the () concept is added to each cluster except the root clus-
ter. Adding the dotted orange arcs and vertices to the GVCNNSA produces a generalized
spanning arborescence.

in Figure 5.8. Each cluster except the root cluster has an additional vertex with the
() concept. As “Which”, “do” and “?" are not the anchors of vertices of the semantic
graph, the vertices labeled with () are selected in their respective clusters to produce

the corresponding generalized spanning arborescence.

Integer Linear Program. Letx € {0,1}/V/ and y € {0, 1}/l be variable vectors indexed
by vertices and arcs such that a vertex v € V (respectively an arc a € A) is selected if and
only if x, = 1 (respectively y, = 1). The set of 0-rooted generalized valency-constrained
spanning arborescences on G can be written as the set of variables (z, y) satisfying the
following linear constraints. First, we restrict y to structures that are spanning arbores-

cences over G where clusters have been contracted:

> Ya=0 (5.1)

a€o= (Vo)
Y w1 v C 7\ {Vo} (5.2)
a€og (UUEW’ U)
> pa=1 Vi e 7\ {Vo} (5.3)
aco—(V;)

Constraint(5.1) ensures that V does not have any incoming arg, i.e. it will be the root of the
arborescence on the contracted graph. Constraints (5.2) require any subset of clusters to

have at least one incoming arc from a cluster not in that subset. As this forbids any subset
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of cluster from being isolated, the contracted graph will necessarily be weakly connected.
Constraints (5.3) force each cluster except V; to have exactly one incoming arc. The set
of vectors y that satisfy these three constraints is exactly the set of 0-rooted spanning

arborescences on the contracted graph (Schrijver, 2003, Section 52.4).

The root vertex is always selected and other vertices are selected if and only if they

have an incoming selected arc:

o =1 (5.4)

Tu= Y Ya Vu e V\ {0} (5.5)

aEUé({u})
Note that constraints (5.1)-(5.3) do not force selected arcs to leave from a selected vertex
as they operate at the cluster level. This property will be enforced via the following valency

constraints:

Y Yo =1 (5.6)
ueV\{0}
> Yo = zufags(l(u),t) Vte T,ueV\{0} (5.7)

aeag({u},t)

Constraint (5.6) forces the root to have exactly one outgoing arc into a vertex u € V' \ {0}
(i.e. avertex thatis not part of the extra vertices introduced in the extended graph) that will
be the root of the labeled graph. Constraints (5.7) force the selected vertices and arcs to
produce a well-formed graph with respect to the grammar G. Note that these constraints
are only defined for the vertices in V'\ {0}, i.e. they are neither defined for the root vertex

nor for the extra vertices introduced in the extended graph.

To simplify notations, we introduce the following sets:

clsa) — (x,y) € {0, 1}|V| x {0, 1}|Z|
s.t. « and y satisfy (5.1)~(5.5)

ova _ (x,y) € {0,1}V x {0,1}14
s.t. & and y satisfy (5.6)-(5.7)
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and C = €3 N ¢, Given vertex weights p € RIV! and arc weights ¢ € RI4l, computing

the MGVCNNSA is equivalent to solving the following ILP:

max p'x+o'y
w?y

st. (x,y) €C and (x,y) e cV

5.3.3 Problem resolution

In Chapter 4, we proposed a framework to solve the linear relaxation of NP-hard prob-
lems via the conditional gradient method. To apply the same method for the MGVCNNSA
problem, we need to identify which constraints prevent us from having an efficient al-
gorithm to compute the optimal solution. Note that the set C®? is the set of spanning
arborescences over the contracted graph, hence we can compute the structure of maxi-

mum weight in this set as follows:

1. We contract the clustered graph G and assign to each arc in the contracted graph
the weight of its corresponding arc plus the weight of its destination vertex in the

original graph.

2. We run the Maximum Spanning Arborescence algorithm (MSA, Edmonds, 1967; Tar-
jan, 1977) on the contracted graph. This algorithm has a O(n?) time complexity.
Note that, even though the contracted graph may have parallel arcs, it is not an is-
sue in practice as only the arc of maximum weight can appear in a solution of the

MSA algorithm.

We illustrate this process in Figure 5.9 and Example 5.11. As such, we propose to relax
the constraint (z,y) € C¥® and introduce it as a penalty in the objective instead. We can
then solve the linear relaxation of our problem over the set conv(C®®) via the conditional

gradient method. Our LMO will be the two-step procedure introduced above over the set

Cta),

Example 5.11: Graph contraction and MSA algorithm

lllustration of the approximate inference algorithm on the two-word sentence “List
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Figure 5.9: lllustration of the approximate inference algorithm on the two-word sentence
“List states”, where we assume the grammar has one entity state_all and one predicate
loc_1 that takes exactly one entity as argument. Detailed explanations are given in Ex-
ample 5.11.

states”, where we assume the grammar has one entity state_all and one predi-
cate loc_1 that takes exactly one entity as argument. The left graph is the extended
graph for the sentence, including vertices and arcs weights (in black). If we ignore
constraints (5.6)-(5.7), inference is reduced to computing the MSA on the contracted
graph (solid arcs in the middle column). This may lead to solutions that do not satisfy
constraints (5.6)-(5.7) on the expanded graph (top example). However, the gradient
of the smoothed constraint (5.7) will induce penalties (in red) to vertex and arc scores
that will encourage the loc_1 predicate to either be dropped from the solution or to
have an outgoing arc to a state_all argument. Computing the MSA on the con-
tracted graph with penalties results in a solution that satisfies constraints (5.6)-(5.7)

(bottom example).

5.4 Experiments

5.4.1 Experimental setup

Neural architecture. In our experiments, a neural architecture was used to obtain the

weights p and ¢. Our baseline architecture is as follows:

+ A contextual representation for each word is obtained with an embedding layer of

93



dimension 200 followed by a bi-LSTM (Hochreiter and Schmidhuber, 1997) with a
hidden size of 400.

* This representation is given to a linear projection of dimension 500 followed by a

ReLU activation and another projection of dimension |E| to obtain .

+ The representation is given to another linear projection of dimension 500 followed

by a ReLU activation and a bi-affine layer (Dozat and Manning, 2017) to obtain ¢.

We apply dropout with a probability of 0.3 on the output of the bi-LSTM and after the ReLU
activations. The learning rate is 5 x 10~* and each batch is composed of 30 sentences.
We keep the parameters that obtain the best accuracy on the development set after 25

epochs.

Lexicon. Similarly to previous work (Zettlemoyer and Collins, 2005; Wang et al., 2015;
Liang et al., 2017; Herzig and Berant, 2021), we rely on a lexicon to guide our model. For
each concept e € E that is associated with a word w in the lexicon, the score associated
to the vertex labeled with e in the cluster corresponding to w is increased by a learned
constant A. This manual work is only done once and is common in semantic parsing. We
detail the lexicons used for GeoQuery, Clevr and SCAN in Appendices A.1, C.1 and B.1

respectively.

Training objective. The datasets used in this chapter do not contain the anchoring of
the semantic graphs over the sentences. In Chapter 4, we proposed a weakly-supervised
loss that relied on computing the anchoring of maximum weight between a complete
graph and the semantic graph. For a given semantic graph G = (V, A, fiapel) and a clus-
tered labeled graph G’ = (V', A’ 7, flapel), if we require each vertex v € V to be anchored
on avertex v’ € V' such that fiapel(v) = fLabel(v'), computing the anchoring of maximum
weight can be reduced to the problem introduced in Chapter 4. Thus, we can use this

approach to compute the training objective.
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SCAN

[ID Right  AroundRight

Baselines (denotation accuracy)

Seq2Seq (Herzig and Berant, 2021) 99.9 11.6 0

+ ELMo (Herzig and Berant, 2021) 100 549 41.6
BERT2Seq (Herzig and Berant, 2021) 100 77.7 95.3
GRAMMAR (Herzig and Berant, 2021) 100 0.0 4.2
BART (Herzig and Berant, 2021) 100 50.5 100
SpanBasedSP (Herzig and Berant, 2021) 100 100 100

Our approach

Denotation accuracy 100 100 100
L w/o CPLEX heuristic 100 100 100

Table 5.1: Denotation accuracy on the test sets for SCAN. For our approach, we also re-
port the accuracy without the use of CPLEX to round non-integral solutions, i.e. they are
considered as wrong predictions.

5.4.2 Baselines

To evaluate our approach, we compare it against several baselines. On all three datasets,
we compare ourselves to SpanBasedSP (Herzig and Berant, 2021) as well as their sequence-
to-sequence baselines. In Seg2Seq (Jia and Liang, 2016), the sentence is encoded with pre-
trained GloVe (Pennington et al., 2014) or ELMo (Peters et al., 2018) embeddings followed
by a bi-LSTM. The decoder is an attention-based LSTM (Bahdanau et al., 2015). BERT2Seq
replaces the encoder of the Seq2Seq baseline by BERT-base. GRAMMAR uses the same
architecture as Seg2Seq but the decoding is constrained by a grammar. Finally, BART

(Lewis et al., 2020) is pre-trained as a denoising autoencoder first.

We use two additional baselines on the GeoQuery dataset. The first one is LeAR (Liu
et al., 2021), a semantic parser introduced in Section 2.3.2 that relies on a Tree-LSTM (Tai
etal., 2015) encoder. The second oneis an approach proposed by Lindemann et al. (2023).
It consists of a fertility step, predicting the number of output tokens generated by each

word, followed by a reordering step. Each token is then predicted independently.

95



Clevr

[ID Closure

Baselines (denotation accuracy)

Seq2Seq (Herzig and Berant, 2021) 100 59.5
+ ELMo (Herzig and Berant, 2021) 100 64.2
BERT2Seq (Herzig and Berant, 2021) 100 56.4
GRAMMAR (Herzig and Berant, 2021) 100 51.3
BART (Herzig and Berant, 2021) 100 51.5
SpanBasedSP (Herzig and Berant, 2021) 96.7 98.8
Our approach

Denotation accuracy 100 99.6
L w/o CPLEX heuristic 100 98.0

Table 5.2: Denotation accuracy on the test sets for Clevr. For our approach, we also re-
port the accuracy without the use of CPLEX to round non-integral solutions, i.e. they are
considered as wrong predictions.

5.4.3 Experimental results

SCAN. We report the denotation accuracies on the SCAN dataset in Table 5.1. We ob-
serve that both our approach and SpanBasedSP reach a perfect accuracy on all three
splits. On the other hand, the sequence-to-sequence baselines suffer from a significant

drop in accuracy on the splits that require compositional generalization.

Clevr. Wereportthe denotation accuracies on the Clevr datasetin Table 5.2. Once again,
while the sequence-to-sequence baselines reach a perfect accuracy on the 11D split, their
accuracy drops by 35.6 to 48.7 points on the Closure split. SpanBasedSP fails to reach
a perfect accuracy on the IID split but generalizes very well on the Closure split. Our

approach outperforms every baseline on both splits.

GeoQuery. Wereportthe denotation accuracies for GeoQuery in Table 5.3. We observe
that the approach based on reordering proposed by Lindemann et al. (2023) is compet-
itive with the span-based approaches, i.e. SpanBasedSP and LeAR. Once again, our ap-
proach outperforms every baseline. However, we note that the accuracy is still signifi-

cantly worse on the split that requires to generalize to longer programs. For this dataset,

96



GeoQuery

1D Template Length

Baselines (denotation accuracy)

Seq2Seq (Herzig and Berant, 2021) 78.5 46.0 24.3
+ ELMo (Herzig and Berant, 2021) 79.3 50.0 25.7
BERT2Seq (Herzig and Berant, 2021) 81.1 49.6 26.1
GRAMMAR (Herzig and Berant, 2021) 72.1 54.0 24.6
BART (Herzig and Berant, 2021) 87.1 67.0 19.3
SpanBasedSP (Herzig and Berant, 2021) 86.1 82.2 63.6
LeAR (Liu et al., 2021) - 84.1 -

Lindemann et al. (2023) 89.1 80.4 68.8

Our approach

Denotation accuracy 92.9 89.9 74.9
Exact match 90.7 86.2 69.3
L w/o CPLEX heuristic 90.0 83.0 67.5

Table 5.3: Denotation accuracy on the test sets for GeoQuery. For our approach, we also
report the exact match accuracy and the exact match accuracy without the use of CPLEX
to round non-integral solutions, i.e. they are considered as wrong predictions.

we also report the exact match accuracy for our approach to provide a baseline that does
not require executing the semantic programs. As it is slightly lower than the denotation
accuracy, this means that our approach sometime predicts a program that is different

from the gold program but still returns the same denotation.

5.5 Conclusion

In this chapter, we focused on graph-based semantic parsing for formalisms that do not
allow reentrancy, i.e. their graph representations are trees. Unlike previous work, we
propose to predict the vertices and arcs of the graph jointly such that it is well-formed with
respect to the semantic grammar and without restricting the search space. We proved
that the problem is NP-hard and proposed an ILP formulation with a solver for its linear
relaxation via the conditional gradient method.

Experimentally, our approach outperforms comparable baselines on all the datasets

considered. However, even if our graph-based semantic parser provides better results
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than previous work on length generalization, this setting is still difficult. Developing neu-
ral architectures that generalize better to longer sentences is thus an important general

research direction for future work.
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Chapter 6

Improving structural generalization

via supertagging

In Chapter 5, we proposed a graph-based semantic parser that predicts the entire graph
jointly. We relied on the assumption that the semantic graphs were trees. However, these
assumptions do not hold in every case. Recent datasets that explicitly test for composi-
tional generalization like COGS (Kim and Linzen, 2020) and CFQ (Keysers et al., 2020) re-
quire a parser to be able to produce graphs that potentially contain cycles or reentrancies.
In addition, COGS was explicitly designed to evaluate separately lexical generalizations,
i.e. words that appear in a role unseen during training, and structural generalizations, i.e.
novel grammatical structures. While the majority of recent semantic parsers perform well

on lexical generalizations, structural ones remain challenging.

Our novel contribution is an inference pipeline with an additional supertagging step
that constrains the prediction of arc labels in the semantic graph. In Section 6.1, we moti-
vate our approach by presenting recent graph-based approaches for COGS and CFQ with
their respective strengths and weaknesses. Then, we define semantic supertagging and
introduce our approach in Section 6.2. A formal definition of our novel pipeline is given
in Section 6.3. Notably, we prove that our supertagging step is NP-hard and present an
integer linear programming formulation for it. In Section 6.4, we propose a relaxed vari-
ant to our approach that is more flexible and can be beneficial in specific situations. We

evaluate our approach on COGS and CFQ in Section 6.5 and observe that it outperforms
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comparable baselines and is almost on par with baselines that require significant manual
work from domain experts. Part of the contributions in this chapter were published in

Petit et al. (2023).

6.1 Motivation

As we mentioned, the COGS dataset has been explicitly designed to evaluate both lexical
and structural generalizations. Graph-based semantic parsers like LaGR (Jambor and Bah-
danau, 2022) demonstrated better generalization abilities than sequence-to-sequence
architectures on lexical generalization cases. However, they still fail on structural gen-
eralization cases. Recent work by Weillenhorn et al. (2022) has relied on the AM parser
(Groschwitz et al., 2018) and predicts supertags representing nodes of the semantic graph
with their adjacent arcs. This approach yielded better results on structural generalization
cases compared to other approaches. Additionnally, our contributions presented in Chap-
ter 5 as well as previous work by Herzig and Berant (2021) have shown that introducing
valency constraints in a structured decoder improved compositional generalization capa-
bilities.

This motivates us to explore a different method for compositional generalization based
on supertagging in this chapter. We propose to constrain the prediction of arc labels in
the semantic graph by introducing an intermediate step in the inference pipeline, which
we prove to be NP-complete. As introducing a supertagging step in a parser may lead to
infeasible solutions, we propose an integer linear programming formulation of supertag-
ging that ensures the existence of at least one feasible parse in the search space, the so-
called companionship principle (Bonfante et al., 2009, 2014). We also highlight that this

does not impact the final step of the pipeline as it can be reduced to a matching problem.

6.2 Supertagging for graph-based semantic parsing

In this section, we first introduce the notion of supertagging. Then, we present a way to
construct a set of supertags for graph-based semantic parsing. Finally, we propose a novel

inference pipeline that relies on supertag prediction to improve structural generalization.
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NP, VP NP, VP
v v NPJ
* *

Figure 6.1: Two supertag examples from an LTAG. (left) Supertag associated with an in-
transitive verb. The substitution site NP| indicates the position of the subject. (right)
Supertag associated with a transitive verb. The supplementary substitution site on the
right indicates the position of the object of the verbal phrase.

6.2.1 Supertagging

In the syntactic parsing literature, supertagging refers to assigning complex descriptions
of the syntactic structure directly at the lexical level (Bangalore and Joshi, 1999). For ex-
ample, while an occurrence of the verb “to walk” can be described in a coarse manner via
its part-of-speech tag, a supertag additionally indicates that this verb appears in a clause
with a subject on the left and a verbal phrase on the right, the latter also potentially requir-
ing an object on its right, see Figure 6.1 for an illustration in the formalism of Lexicalized

Tree-Adjoining Grammars (LTAGs, Joshi et al., 1975).

6.2.2 Semantic supertagging

We propose to introduce an intermediary semantic supertagging step in a graph-based

semantic parser.

Definition 6.1: Semantic supertag

A semantic supertag indicates the expected arguments of a concept (potentially none
for an entity) and how that concept is used. An expected argumentis referredto as a
substitution site and an expected usage as a root. Formally, itis defined as a multiset
of tuples (I,d) € L x {—,+} where [ is a label and d indicates either a substitution

site (with —) or a root (with +).

In this chapter, we denote the set of all supertags as S. Note that contrary to syntactic

grammars, our supertags do not impose a direction or an ordering on their labels.
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ccomp agent

det agent agent xcomp
*—>0 @< @ >
def. cat like Emma prefer walk
The cat liked that Emma  preferred to  walk

Figure 6.2: The semantic graph corresponding to the sentence “The cat liked that Emma
preferred to walk” in the COGS dataset. Examples of semantic supertags in this graph are
given in Example 6.2.

Example 6.2: Semantic supertags

The graph corresponding to “The cat liked that Emma preferred to walk” in the COGS
datasetis shown in Figure 6.2. For example, the supertag associated with the concept

like is [(agent, —), (ccomp, —)] and the one associated with the concept prefer is

[(agent, —), (xcomp, —), (ccomp, +)].

Definition 6.3: Companionship principle

The companionship principle states that each substitution site must have a potential
root in the supertag sequence, i.e. the number of substitution sites with a given label

exactly matches the number of roots with that label.

We borrowed the name "companionship principle" from Bonfante et al. (2009, 2014) al-

though our usage is slightly different.

Example 6.4: Failure to satisfy the companionship principle

Let us assume that we would like to parse the sentence “Marie ate”. If we asso-
ciate the transitive supertag [(agent, —), (theme, —)] to the verb, parsing will fail as

it doesn't have an object in that sentence.

Supertag extraction. To improve generalization capabilities, we define the set of su-
pertags as containing the set of all observed supertags in the training set, augmented with
the cross-product of all root combinations and substitution site combinations. For exam-
ple, if the supertags [(ccomp, +), (agent, —)] and [(agent, —), (theme, —)] are contained in

the training data, we also include [(ccomp, +), (agent, —), (theme, —)] and [(agent, —)] in
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the set of supertags.
Formally, let ST be the set of root combinations and S~ the set of substitution site

combinations observed in the data. The set of supertags is:

stTeSt As eS§™

ANsTUs™ #]]

Note that the empty set can not be a supertag, as this could prevent a concept instance

from appearing in the semantic structure.

6.2.3 Inference pipeline

With our novel supertagging step, the inference pipeline becomes:
1. Concept tagging
2. Semantic supertagging
3. Argument identification

We illustrate it in Figure 6.3. Note that the concept tagging step remains unchanged with
respect to the traditional pipeline presented in Chapter 3. Let w = (wy,...,w,) be a
sentence, G = (V, A) a complete graph constructed over w and E be the set of concepts,
including a special tag () € E that is used to identify semantically empty words, i.e. words
that do not trigger any concept. Let . € RIVIXIZl be tag weights computed by the neural
network. We denote a sequence of tags as a boolean vector = € {0, 1}VI*IEl where
Tye = 1,e # (indicates that the vertex v is tagged with the concept e € E. This means that
Yo € V.3 cp2ve = 1. Given weights u, computing the sequence of tags of maximum
linear weight is a simple problem. The two remaining steps are presented in the following

section.

6.3 Mathematical formulation and resolution

In the previous section, we defined semantic supertagging and proposed to introduce it

as an intermediate step in our inference pipeline. In this section, we first prove that this
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Figure 6.3: lllustration of our novel inference pipeline on the sentence “A cat ate the
cake”. We first predict at most one concept per word. The second step assigns a supertag
to each word tagged with a concept that is not (). Finally, arguments are identified using
the valency constraints imposed by the supertags.

problem is NP-complete. Then, we present an integer linear programming (ILP) formu-
lation for it. Finally, we explain how this supertagging step impacts the final step of the

inference pipeline.

6.3.1 NP-completeness of supertagging with companionship principle

Theorem 6.5: NP-completeness of supertagging with companionship principle

The following problem is NP-complete: is there a sequence of supertag assignments

with linear weight > m that satisfies the companionship principle?

Proof. First, note that given a sequence of supertags, it is trivial to check in linear time that
its linear weight is > m and that it satisfies the companionship principle, therefore the
problem is in NP. We now prove NP-completeness by reducing 3-dimensional matching
to supertagging with the companionship principle.

3-dimensional matching is defined as follows: Let A = {a(i)}7,, B = {b(i)}}~, and
C = {c(i)}~, be 3 sets of n elementsand D C A x B x C. Asubset D’ C Dis

a 3-dimensional matching if and only if, for any two distinct triples (a,b,¢) € D’ and
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(@', V', ") € D, the following three conditions hold: a # d/, b # ¥ and ¢ # .

The following decision problem is known to be NP-complete (Karp, 1972): given A, B,
C and D, is there a 3-dimensional matching D’ C D with |D’| > n?

We reduce this problem to supertagging with the companionship principle as fol-
lows. We construct an instance of the problem such that there are 3n concept instances
a(l),...,a(n),b(1),...,b(n),c(1),...,c(n). The set of supertags S is defined as follows, where

the weight associated to a supertag is 0 except if stated otherwise:

* For each triple (a,b,c¢) € D, we add a supertag [(b, —), (¢, —)] to S with weight 1 if

and only if it is predicted for concept a;

* For each b € B, we add a supertag [(b,+)] to S with weight 1 if and only if it is

predicted for concept b;

* For each ¢ € C, we add a supertag [(c,+)] to S with weight 1 if and only if it is

predicted for concept c.

If there exists a sequence of supertag assignment satisfying the CP that has a weight
> m = 3n, then there exists a solution for the 3-dimensional matching problem, given by

the supertags associated with concept instances a(1), ..., a(n).

Theorem 6.5 motivates the use of an heuristic based method to predict supertags. We
rely on the linear relaxation of an integer linear programming formulation of the problem,

that we embed in a branch-and-bound procedure to retrieve the optimal solution.

6.3.2 Supertagging mathematical program

Let z— € {0,1}/VI*I57I and 2+ € {0,1}IV1*IS"| be indicator variables of the substitution
sites and roots, respectively, associated with each word, e.g. z, , = 1 indicates that the
vertex v € V has substitution sites s € S=. Let A= € RIVIXIS"I and AT e RIVIXISTI pe
supertag weights computed by the neural network. We now describe the constraints that

z~ and z™ must satisfy. First, each vertex should have exactly one set of substitution sites
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and one set of roots if and only if they have an associated concept that is not (:

Y oz =1-m YoeV (6.1)
seS—
doal=1-ay Yo eV (6.2)
seSt

Next, we forbid the empty supertag:

- +
2ol + 2ol <1 YveV (6.3)

Finally, we need to enforce the companionship principle. We count in v_, the number of
substitution sites with label [ € Lin s € S~, and similarly in ujl for roots. We can then
enforce the number of roots with a given label to be equal to the number of substitution

sites with the same label as follows:

D sl = D AU viel (6.4)
U€V7 'UEV,
sES™ 5€S+

All'in all, supertagging with the companionship principle reduces to the following integer
linear program:
max (27, A7) + (27, A7),
z—,zt
s.t. (6.1-6.4),

2z~ € {0,1}V*57 2t e {0,1}V*5".
In practice, we use the CPLEX solver.’

6.3.3 Argument identification

The last step of the pipeline is argument identification. Note that in many cases, there is
no ambiguity, see the example in Figure 6.3: as there is at most one root and substitution
site per label, we can infer that the theme of eat is cake, etc. However, in the general case,

there may be several roots and substitution sites with the same label. In the example of

"https://www.ibm.com/products/ilog- cplex-optimization-studio
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Figure 6.2, we would have 3 agent roots after the supertagging step.

For ambiguous labels after the supertagging step, we can rely on a bipartite matching
(or assignment) algorithm. Let ¢ € RI4/*IXl be the label weights computed by the neural
network and [ € L be an ambiguous label. We construct a bipartite undirected graph as

follows:
*+ The first node set C contains one node per substitution site with label [
+ The second node set C’ contains one node per root with label [
* We add an edge for each pair (¢, ) € C x C" with weight ¢, ;

We then use the Jonker-Volgenant algorithm (Jonker and Volgenant, 1988; Crouse, 2016)
to compute the matching of maximum linear weight with complexity cubic with respect
to the number of nodes. Note that thanks to the companionship principle, there is always
at least one feasible solution to this problem, i.e., our approach will never lead to a “dead-

end” and will always predict a (potentially wrong) semantic parse for any given input.

6.4 Valency-relaxed pipeline

In the previous sections, we proposed a pipeline for semantic parsing with a novel su-
pertagging step. However, as the supertags are extracted from the training set, a model
cannot predict unseen root combinations or substitution site combinations at test time.
Thus, we present in this section a variant of our approach that does not constrain the

valency of each label in a supertag.

6.4.1 Valency-relaxed supertags

In Definition 6.1, a supertag was defined as a multiset of tuples (I,d) € L x {—,+}. Intu-
itively, if a label [ was expected for multiple roots or substitution sites, the supertag would
contain multiple identical tuples (I, +) or (I, —) respectively. We define a valency-relaxed
supertag as a semantic supertag such that it contains a tuple (I, +) (respectively (I, —)) if
and only if [ is the label of at least one root (respectively substitution site). As such, for

any two tuples (I;,d;) and (I;,d;) in a valency-relaxed supertag s, we have either I; # [;
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or d; # dj;. Similarly to Section 6.2, we define the set of valency-relaxed supertags S as
the set of all valency-relaxed supertags observed in the training set augmented with the

product of all root combinations and substitution site combinations.

Example 6.6: Valency-relaxed supertag

We depict in Figure 6.2 the semantic graph associated to the sentence “The cat liked
that Emma preferred to walk” in the COGS dataset. The semantic supertag associ-
ated to the concept Emma is [[(agent, +), (agent, +)]. Its valency-relaxed supertag is
[(agent,+)] which indicates that “agent” is the label corresponding to at least one

root but does not specify how many.

6.4.2 Valency-relaxed supertag prediction

Let z= € {0,1}IVI*I57I and 2+ e {0,1}/VI*IS" be indicator variables of the substitution
sites and roots, respectively, associated with each word, i.e. Zys = 1 indicates that the
vertex v € V has at least one of each substitution site in s € S~. We now describe the
new constraints that z— and z* must satisfy in this variant. Each position in the sentence
still requires exactly one set of substitution sites and one set of roots if and only if they

have an associated concept:

Y oz =1-z, YvevV (6.5)
s€S—

Z =1 =y Yo eV (6.6)
seSt

The empty supertag is still forbidden:

- +
Zul + 2ol <1 YveV (6.7)
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Finally, we need to ensure that the set of supertags predicted do not yield an infeasible
solution. As the supertags do not include the valency, we simply ensure that if there is at
least one substitution site (respectively one root) with label [ € L, there is at least one root
(respectively one substitution site) as well. We countin Vg whether there is a substitution
site with labell € Lins € S7, and similarly in U:,z for roots. We can enforce our constraint

as follows:

Y g <n Y ziel Viel 6.8)

veV, VeV,
s€S~ s€ST
S alah <n ) a0y vieL (6.9)
VeV, veV,
sEST sES™

All in all, valency-relaxed semantic supertagging reduces to the following integer linear

program:

max {27, A7) + (2T, A7),

z—,zt
st. (6.5-6.9),

2= € {0,1}V*5 2t e {0,1}V*5"

6.4.3 Valency-relaxed argument identification

Let y € {0, 1}/41XIL] be an indicator variable of labeled arcs, i.e. y, ,,; = 1 indicates that
there is an arc labeled with [ from the vertex u to the vertex v, and ¢ € RI4IXILl be [abel

weights computed by the neural network.

As we do not know the valencies of the supertags, we aim to predict at least one arc
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labeled [ for each supertag in which it appears:

S vt =Y zavs, VoeViel (6.10)
ueV u€vV,
sES™
D owr <00y 2 vy YweV,lel 6.11)
ueV u€eV,
SsES™
S e = Y abal VweV,lel (6.12)
ueV u€eV,
sesSt
D puses <0 Y by YweV,lel (6.13)
ueV u€evV,
seSt

These constraints ensure that if a label [ appears in a supertag, it will result in at least one
arc and at most n arcs while arcs cannot be created if it is not present. Our problem is

thus reduced to solving the following ILP:

max (Y, P)
Yy

s.t. (6.10-6.13)

Note that the solution to this ILP can contain parallel arcs. Indeed, if two labels both have
a single root on the same position in the sentence and a single substitution site on the
same position in the sentence, satisfying these supertags requires parallel arcs. In that
case, we only keep a single arc with the label I of maximum weight.

Intuitively, this step is almost identical to the traditional argument identification step
but it can enforce the prediction of some additional arcs even though they have a negative

weight.

6.5 Experiments

6.5.1 Experimental setup

Neural architecture. In our experiments, a neural architecture was used to obtain the

weights i, ¢, AT and A~. Our baseline architecture is as follows:
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+ A contextual representation for each word is obtained with an embedding layer of

dimension 200 followed by a bi-LSTM with a hidden size of 400.

* This representation is given to a linear projection of dimension 300 followed by a

ReLU activation and another projection of dimension |E| to obtain .

* Itis given to a linear projection of dimension 200 followed by a ReLU activation and

another projection of dimension |S™| to obtain A™.

+ Itis given to another linear projection of dimension 200 followed by a ReLU activa-

tion and a projection of dimension |S~| to obtain A~.

* Finally, the representation is given to a linear projection of dimension 200 followed

by a ReLU activation and a bi-affine layer (Dozat and Manning, 2017) to obtain ¢.

We apply dropout with a probability of 0.3 on the output of the bi-LSTM and after the ReLU
activations. The learning rate is 5 x 10~% and each batch is composed of 30 sentences. For
experiments in which we do not use the early stopping strategy presented below, we keep

the parameters that obtain the best accuracy on the development set after 20 epochs.

Training objective. In Chapter 4, we presented a weakly-supervised loss for graph-
based semantic parsing. Notably, we relied on an upper bound to the log-partition func-
tion: a sum of LSE functions over the set of concepts FE for each word and the set of labels
L for each pair of words. In the approach proposed in this chapter, each word is assigned
exactly one root combination and one substitution site combination. Thus, we can apply
the same decomposition for supertags and the upper bound to the log-partition function

is:

Z (10g Z exp(uv,exv,e)> + Z (10g Z eXp(¢a,lya,l)>
e a l

v

+ Z (log Z exp()\v’szw)> + Z (logZexp(ALzIQ)

To compute the anchoring of maximum weight, we follow the approach based on factor
graphs presented in Section 4.3, i.e. the supertag weights A and A~ are not used for this

computation.
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Early stopping. COGS only possesses an in-distribution development set and the accu-
racy of most parsers on this set usually reaches 100%. Previous work by Conklin et al.
(2021) highlighted that the lack of a development set representative of the generalization
set makes model selection difficult and hard to reproduce. They proposed to sample a
small subset of the generalization set that is used for development. Both their work and
LaGR (Jambor and Bahdanau, 2022) use this approach and sample 1000 sentences from
the generalization set to use as their development set. However, we argue that this set
leaks compositional generalization information during training.

We propose a variant of early stopping to prevent overfitting on the in-domain data
without requiring a compositional generalization development set. In this variant, we in-
crementally freeze the layers of the neural network as follows: each subtask (prediction of
concepts, supertags, dependencies) is monitored independently on the in-domain devel-
opment set. As soon as one of these tasks achieves 100% accuracy, we freeze the shared
part of the neural architecture, i.e. the embedding layer and the bi-LSTM. We also freeze
the layers that produce the scores of the perfectly predicted task. For each subsequent
task that achieves perfect accuracy, the corresponding layers are also frozen. This early

stopping approach aims to prevent overfitting.

6.5.2 Baselines

To assess the impact of our method, we compare it to several baselines, both existing

work as well as simpler versions of our model.

Sequence-to-sequence baselines. For the COGS dataset, Kim and Linzen (2020) evalu-
ated a LSTM-based and a Transformer-based model to serve as a baseline. An approach
based on data augmentation was proposed by Akyurek et al. (2021). Zheng and Lapata
(2021) proposed to introduce a semantic tagging step in their model. The encoder then
uses a concatenation of the embeddings of each word and its corresponding semantic
tag to encoder the sentence.

For the CFQ dataset, we report the Transformer-based models proposed by Keysers
etal.(2020) and Furrer et al. (2020). We also report the approach proposed by Herzig et al.

(2021) which relies on a T5 model and intermediate representations. For this baseline, we
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report the accuracy when the T5 model is not pretrained as this could leak information

and lead to an overestimation of the model’s ability to generalize (Kim et al., 2022).

Compositional baselines. For COGS, we use the two graph-based baselines presented
in Section 3.4: LaGR (Jambor and Bahdanau, 2022), which predicts every concept and label
independently, and the AM parser (Weil3enhorn et al., 2022), which predicts a supertag
representing a tagged vertex and its adjacent labeled arcs for each word. We also evaluate
our approach against LeAR (Liu et al., 2021), a semantic parser introduced in Section 2.3.2
that relies on a Tree-LSTM (Tai et al., 2015) encoder. We also report the accuracy of this
parser when the encoder is replaced by a bi-LSTM.

For the CFQ dataset, we report the accuracies reached by LaGR and LeAR. Our final
baseline is the approach proposed by Guo et al. (2020) based on Hierarchical Poset De-
coding (HPD). Their multi-step decoding process relies on a lexicon for the prediction of
concepts. As such, we also report the accuracy of their method when the hierarchical

mechanism is ablated.

Our baselines. Our approach introduces a novel supertagging step in the inference
pipeline as well as an early stopping strategy to prevent overfitting. We aim to properly
assess their impact. Regarding our supertagging step, we report the accuracy of a stan-
dard graph-based parser as well as the accuracy of a parser that uses supertagging as
an auxiliary loss but not during inference. Candito (2022) highlighted that auxiliary loss
functions improved the performance of models for dependency parsing. We also report

the accuracy of our baselines without early stopping.

6.5.3 Experimental results on COGS

We report the exact match accuracies on the COGS dataset in Table 6.1. We report the
overall accuracy, the accuracy over all lexical generalizations as well as the accuracy over
each structural generalization. Note that the overall accuracy mostly reflects the accu-
racy on lexical generalizations as they represent 85.7% of the test set. We observe that
our approach outperforms every baseline except LeAR which relies on hand-crafted se-

mantic operations. Importantly, our method achieves high exact match accuracy on the
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Structural Lexical Overall
Obj to SubjPP PPrec. CPrec.

Sequence-to-sequence models

Kim and Linzen (2020) 0 0 0 42 35

Conklin et al. (2021)" - - - - 67

Akyurek et al. (2021) 0 1 0 96 83

Zheng and Lapata (2021) 0 39 12 99 89

Structured models

LeAR (Liu et al., 2021) - - - - 97.7
w/o Tree-LSTM - - - - 80.7
reprod. by WeiRenhorn et al. (2022) 93 99 100 99 929

Jambor and Bahdanau (2022)* - - - - 82.3

WeilRenhorn et al. (2022) 59 36 100 82 79.6

Our baselines: Standard graph-based parser

Full model 11.6 0 0 97.4 84.1
w/o early stopping 12.7 0 0 97.3 84.1
w/o early stop. & w/o supertagging loss 9.8 0 0 97.5 84.1

Proposed method: graph-based parser with supertagging

Full model 75.0 100 100 99.1 98.1
w/o early stopping 51.1 100 100 98.9 96.7

Table 6.1: Exact match accuray on COGS. We report results for each subset of the test set
(structural generalization and lexical generalization) and the overall accuracy. For our re-
sults, we report the mean over 3 runs. Entries marked with T use a subset of 1k sentences
from the generalization set as their development set.

structural generalization examples, although the Obj to Subj PP generalization remains dif-
ficult. For this case, our approach only reaches an accuracy of 75.0%. Errors are discussed

below.

Impact of semantic supertagging. We now consider the effect of our novel inference
procedure compared to our standard graph-based pipeline. It predicts generalizations PP
recursion and CP recursion perfectly, where the baseline accuracy for these cases is 0. For
Obj to Subj PP generalization, our best configuration reaches an accuracy of 75.0%, 6 times
more than our baselines. All in all, the proposed inference strategy improves results in
the three structural generalizations subsets, and brings lexical generalization cases closer
to 100% accuracy.

We reportin Table 6.2 the supertagging accuracy with and without enforcing the com-
panionship principle. We observe a sharp drop in accuracy for the Obj to Subj PP general-

ization when the companionship principle is not enforced. This highlights the importance
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Obj to Subj PP PP rec. CPrec.

Word level accuracy

ILP 90.2 100 100
No ILP 71.6 99.9 100

Sentence level accuracy

ILP 75.0 100 100
No ILP 9.0 99.6 100

Table 6.2: Supertagging accuracy using our integer linear program (ILP) and without (i.e.
simply predicting the best supertag for each word, without enforcing the companionship
principle).

of structural constraints to improve compositional generalization. We depict a sentence
for which our model is mistaken in Figure 6.4. We observe that the error comes from the
presence of the prepositional phrase after the subject. The supertagger wrongly assigns
a theme root to the subject instead of an agent one. When the companionship principle
is enforced, this mistake is corrected.

In addition, we also observe that the sentence level accuracy for the Obj to Subj PP gen-
eralization is 75.0%. This means that errors in our pipeline happen during the semantic
supertagging step. However, if supertags are correctly predicted, argument identification

is always correct.

Impact of training procedure. The early stopping approach introduced above has a
clear impact for Obj to Subj PP, resulting in a 23.9 points increase (from 51.1 to 75.0). Such
improvements are not observed for the baselines. From this, we conclude that our neural
architecture tends to overfit the COGS training set and that some measures must be taken

to mitigate this behaviour.

6.5.4 Experimental results on CFQ

We report the exact match accuracies on the CFQ dataset in Table 6.3. We observe that
our approach significantly outperforms the sequence-to-sequence baselines as well as
LaGR (Jambor and Bahdanau, 2022). HPD (Guo et al., 2020) is competitive with our model
and LeAR (Liu et al., 2021) outperforms it by 25 points on average. However, one must

note that HPD relies on a lexicon to guide the training of its hierarchical mechanism. LeAR
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Figure 6.4: (top) Semantic graph of the sentence “A donkey in the room sold Ella a donut”.
(bottom) The supertags predicted by our parser if we do not enforce the companionship
principle via the ILP. A mistake occurs for“donkey” as the label “theme” is predicted in its
supertag instead of “agent”. This is probably due to the introduction of a PP between
“donkey” and “sold". This mistake is fixed when using the ILP.

relies on the same lexicon to constrain inference and on manually designed semantic
operations to compute a tree structure over the sentence. In both cases, we observe a

sharp drop in performance, suggesting that these parts are essential to HPD and LeAR.

Impact of semantic supertagging. We observe that our baseline without supertag-
ging performs slightly worse than LaGR with a 36.1 mean accuracy. Even though valency-
relaxed supertags do not impose as strict constraints as our original supertags, we ob-
serve that their addition significantly improve the performance of our graph-based parser
as the mean accuracy increases by 29.6 points. For most models, the MCD2 and MCD3
splits are the most problematic. The introduction of valency-relaxed supertags yields the

largest gains on these splits with 37.5 points and 33.8 points respectively.

6.6 Conclusion

In this chapter, we focused on improving compositional generalization (particularly struc-

tural generalization) via supertagging for graph-based semantic parsing. Unlike previous
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Mean MCD MCD1 MCD2 MCD3

Sequence-to-sequence models

Keysers et al. (2020) 18.9 37.4 8.1 11.3
Furrer et al. (2020) 42.1 61.6 31.3 33.3
Herzig et al. (2021) 22.6 - - -
Structured models
LaGR (Jambor and Bahdanau, 2022) 39.5 62.8 30.3 25.4
HPD (Guo et al., 2020) 69.0 79.6 59.6 67.8
Without hierachical decoding 12.6 21.3 6.4 10.1
LeAR (Liu et al., 2021) 90.9 91.7 89.2 91.7
Without Tree-LSTM 30.4 40.1 25.6 25.4

Our baseline: Standard graph-based parser
Baseline model 36.1 64.2 23.8 20.3

Proposed method: graph-based parser with supertagging

Valency-relaxed supertagging 65.7 81.7 61.3 54.1

Table 6.3: Accuracy on the CFQ dataset. We report the accuracy over each MCD split as
well as the mean of these accuracies.

work on graph-based semantic parsing (Lyu and Titov, 2018; Jambor and Bahdanau, 2022),
we do not assume that every part of the semantic graph can be predicted independently.
With our supertagging approach, the prediction of arc labels is constrained and done
jointly. We proved that supertagging with the companionship principle is NP-complete
and proposed an ILP formulation for it. Experimentally, our method significantly improves
results when compositional generalization is required. It outperforms every baseline with
the exception of LeAR (Liu et al., 2021) and HPD (Guo et al., 2020) that rely on a lexicon
and require manual work beforehand.

Future research based on this work could focus on two main directions: first, we could
focus on how to better adapt our approach to datasets like CFQ that introduce novel com-
binations of substitutions sites and roots in the test set. While our approach brought sig-
nificant improvements compared to a graph-based parser without supertagging, it still
struggles on the MCD2 and MCD3 splits. The second direction would be to extend our
method for representations that require words to produce multiple concepts like the Ab-
stract Meaning Representation (Banarescu et al., 2013). To a lesser extent, this also ap-
plies to CFQ as our proposed transformation requires merging some concepts together

to be able to anchor a semantic graph on its sentence.
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Chapter 7

Conclusion

7.1 Conclusion

In this thesis, we aimed to improve compositional generalization in semantic parsing via
graph-based approaches. There were two major motivations to use them: first, they rely
on local predictions, which have been shown to be beneficial for compositional gener-
alization. Then, relying on graphs is attractive as it is easier to make the conversion be-
tween a semantic representation and a graph than develop a tailored approach for each
semantic formalism. We first dealt with the issue of training these parsers. In our set-
ting, the weights of concepts and labels are predicted independently from each other.
We proposed a theoretically motivated approach to approximate and compute the train-
ing objective in the weakly-supervised case. Then, we presented two novel approaches
to improve compositional generalization. The first one (Chapter 5) predicts the entire
semantic graph jointly to find the optimal solution while taking into account constraints
imposed by the semantic grammar. The second one (Chapter 6) removes the assumption
that arcs can be predicted independently and introduces a semantic supertagging step
in the inference pipeline to constrain arc predictions. In both cases, our goal is to ensure
the well-formedness of the global prediction by introducing additional local constraints

in our inference algorithms.

Combinatorial optimization and training. In Chapter 4, we presented the issues that

arise when training a graph-based parser. Notably, the the anchoring of a semantic graph
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on its sentence is usually not available in the training data. We proposed a training ob-
jective for this scenario that we referred to as “weakly-supervised”. As the objective is
intractable, we derived an approximation which requires finding the optimal anchoring
of the semantic graph on the sentence. We proved this problem to be NP-hard. To tackle
this, we presented two approaches. The first one is an optimization framework relying on
the conditional gradient method (Frank and Wolfe, 1956) and constraint relaxation. This
framework allows us to solve the linear relaxation of our problems and requires only an
efficient algorithm known as the LMO that computes the optimal solution when the prob-
lematic constraints are relaxed. We proposed an LMO for trees and an adaptation that
can be applied in the general case. The second one frames the anchoring problem using

the formalism of factor graphs on which we perform MAP inference.

Graph-based reentrancy-free semantic parsing. In Chapter 5, we studied semantic
parsing in the case where the semantic graphs are trees and the grammar of the se-
mantic representation is known beforehand. We proposed to represent the search do-
main as a clustered labeled graph such that each valid semantic graph that can be pro-
duced is a generalized not-necessarily spanning arborescence of that graph. This al-
lowed us to reduce semantic parsing in that case to computing the maximum generalized
valency-constrained not-necessarily spanning arborescence. We proved that this prob-
lem is NP-hard and proposed to solve instead its linear relaxation via the conditional
gradient method (Frank and Wolfe, 1956). In this case, we use the maximum spanning
arborescence algorithm (Myung et al., 1995) on the contracted graph as an LMO. Experi-
mentally, we outperformed every baseline on the three datasets considered: GeoQuery,
SCAN and Clevr. This demonstrated the efficiency of our method over several domains

without requiring any adaptation.

Improving structural generalization via supertagging. In Chapter 6, we studied a
more general case in which the semantic graphs are not necessarily trees and we do
not have access to a semantic grammar. The common inference pipeline in that case is
to predict the vertices first and then predict the arcs between them. We proposed to ex-

tract semantic supertags from the training data that represent the expected arc labels
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for a given vertex. At inference, we introduce a supertagging step that must satisfy the
companionship principle, i.e. there exists at least one feasible semantic graph that satisfy
the constraints imposed by the supertags. We proved that this problem is NP-complete
and rely on a linear program solver for this step. Experimentally, we demonstrate that in-
troducing a supertagging step significantly improves structural generalization as it solves
perfectly two out of the three cases on the COGS dataset. Introducing additional steps in
a pipeline could hurt the performance in some cases as there is an increased risk of error
propagation. However, we observe that in practice, it is not the case for our approach on

the datasets considered.

7.2 Future research directions

The work presented in this thesis enabled significant improvements in compositional gen-
eralization for semantic parsing. It also highlighted several promising research directions

that we discuss below.

Multiple vertices per word. Our contributions are based on the assumption that each
word in a sentence can produce at most one vertex in the semantic graph. While this
assumption holds for the datasets considered in this thesis, it is not the case of other
datasets like the AMR dataset (Banarescu et al., 2013). The development of a parser that

bypasses this constraint is an important future step.

Generalization to longer sentences. We also observed that graph-based parsers still
struggle when generalizing to longer sentences. In Section 5.4, we reported a 15 point
drop in accuracy on the Length split of GeoQuery compared to other splits. Our experi-
ments in Section 6.5 also highlighted that without supertagging, our baseline graph-based
parser fails on structural generalization with deeper recursion. Thus, the development of
neural architectures that generalize better to longer sentences could yield significant im-

provements.

More generic semantic supertags. Both of our contributions demonstrated that local

constraints imposed either by a known grammar or supertags predicted by the model
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improved the accuracy of the parser. However, this information must either be known
beforehand (Chapter 5) or fully extractable from the training data (Chapter 6). Regard-
ing the CFQ dataset, we had to construct the set of semantic supertags present in the
test set to deduce that our original approach was not suitable and the valency-relaxed
pipeline was needed. Proposing a more generic representation that can handle unknown

supertags could be an interesting research direction.

Additional constraints inspired by supertagging. Finally, the introduction of our se-
mantic supertags removed the assumption that the arcs of the graph should be predicted
independently and increased the accuracy of the parser. One could wonder whether the
assumption that concepts can be predicted independently is justified or not. We can il-
lustrate this with the CFQ dataset. It contains concepts representing that the agent is the
director, writer, ... of the theme. It also contains the opposite concepts where the agent
has been directed_by, written_by, ... the theme. While it is obvious that these concepts
are incompatible, they could be predicted together by our parser. Expanding the idea
of supertags to other components of the semantic graph could prevent this kind of er-
rors, likely at the expense of a more complex inference. It could be another direction to
improve our graph-based parsers.

Although these potential research directions could be promising, it is also important
to ensure that further work will not trade the current progress that were made for com-

positional generalization in exchange for other improvements.
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Appendix A

GeoQuery lexicon and grammar

A.1 GeoQuery lexicon

Concept Words

area_1 area, square
capital capital, capitals
capital_all  capital, capitals
capital_1 capital, capitals
capital_2 capital, capitals
city city, cities
city_all city, cities
count many, number
density_1 density
exclude excluding, not
fewest fewest, least
higher_2 higher
highest highest, tallest
high_point_1 high

lake lake, lakes

largest
largest_one
len

loc_1

loc_2

longer

biggest, largest
largest, most
long, length

in, with

in, of

longer

Table A.1: Lexicon used in our contributions for the GeoQuery dataset. Each concept

Concept Words

longest biggest, longest
lower_2 lower

lowest lowest

most most
mountain mountain, peak

next_to_1
next_to_2
place
place_all
population_1
river
river_all
shortest
size
smallest
smallest_one
state
state_all
sum
traverse_1

traverse_2

border, borders

border, borders, next
point, spot, elevation

point

population, people

river, rivers
river, rivers
shortest

big, size
smallest
smallest, least
state, states
state, states
combined, total
through
through

appearing in this table is given an extra weight for the corresponding words.
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A.2 GeoQuery grammar

Concepts Type Arguments
capital_all/cityid/city_all city -
riverid/river_all river -
mountain_all / placeid/place_all place -
stateid/state_all state -
countryid country -
loc_1 loc city

river
state
place
loc_2 loc city
state
country
city city city
loc
capital city city
loc
place
lake / mountain / place place place
loc
river river river
loc
state state state
loc
high_point_1/low_point_1 place state
high_point_2/ low_point_2 state place
longer / longest / shortest river river
higher_2/lower_2/highest /lowest place place
next_to_1 state state
next_to_2 state river
state
traverse_1 city river
state
country
traverse_2 river city
state
country

Table A.2: For each concept in the GeoQuery dataset, we indicate its type and the types
of its expected arguments. Concepts that are grouped on the same line share the same
type and expected arguments.

142



Concepts Type Arguments

capital_1 city country
state
capital_2 state city
largest / smallest city city
place place
state state
most / fewest city city
river river
place place
state state
major city city
river river
place place
elevation_1 num place
len num river
size num city
state
country
count num city
river
place
state
area_1/density_1/population_1 num_city city
num_state state

num_country country

largest_one / smallest_one city num_city
state num_state
sum num num
num_city
num_state
intersection/ exclude city city, city
city, loc
river river, river
place place, place
place, loc
state state, state
state, loc

Table A.3: Continuation of Table A.2.
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Appendix B

SCAN lexicon and grammar

B.1 SCAN lexicon

Concept  Words Concept Words
after after right right
and and run run
around around thrice  thrice
jump jump twice twice
left left turn turn
look look walk walk

opposite opposite

Table B.1: Lexicon used in our contributions for the SCAN dataset. Each concept appear-
ing in this table is given an extra weight for the corresponding words.
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B.2 SCAN grammar

Concepts Type Arguments
left /right direction -
around / opposite manner -

jump / look / run/ turn/ walk action -
direction
manner, direction
thrice / twice action action

after / and combination action, action

Table B.2: For each concept in the SCAN dataset, we indicate its type and the types of its
expected arguments. Concepts that are grouped on the same line share the same type
and expected arguments.
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Appendix C

Clevr lexicon and grammar

C.1 Clevr lexicon

Concept Words Concept Words
blue blue purple purple
brown brown query how, what
color color query_attribute_equal same
count many, number red red
count_equal equal, same relate_attribute_equal same
count_greater greater, more relate_behind behind
count_less fewer, less relate_front front

cube block(s), cube(s) relate_left left

cyan cyan relate_right right
cylinder cylinder(s) rubber rubber, matte
exist any, there size size, big
gray gray shape shape
green green small small, tiny
intersect and sphere ball, sphere
large big, large union or
material made, material yellow yellow
metal metal, metallic, shiny

Table C.1: Lexicon used in our contributions for the Clevr dataset. Each concept appearing
in this table is given an extra weight for the corresponding words.
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C.2 Clevr grammar

Concepts Type Arguments

blue / brown/ cyan/ gray object -

object
green / purple /red/yellow object -

object
cube / cylinder / sphere object -

object
large / small object -

object
metal / rubber object -

object
scene object -
relate_behind / relate_front object object
relate_left /relate_right object object
intersect /union object object, object
color /material / shape / size property -
relate_attribute_equal object property, object
count / exist query object
count_equal / count_greater / count_less query object, object
query query property, object
query_attribute_equal query property, object, object

Table C.2: For each concept in the Clevr dataset, we indicate its type and the types of its
expected arguments. Concepts that are grouped on the same line share the same type
and expected arguments.
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Appendix D

Closed form to the smoothed

indicator function

In this appendix, we detail the computations that yield a closed form to the smoothed

indicator function introduced in Section 4.2. This function was defined as

Kok _ T _ _ é 2
5575(AZ)—313§<U (Az) —og(u) 2”“”2

Definition D.1: Proximal operator

Let f : X — R be a function. The proximal operator of f is the function prox; : X —

R defined as follows:

. 1
prox, (u) = axg min £ (@) + 5 |[u — @]
reX

Theorem D.2: Extended Moreau decomposition

Let f : X — Rbeafunction. If f is convex and lower semi-continuous, forany x € X

and any vy > 0, we have:

@ = prox, () + v prox,-1 (7" ')

Proof. A proof of Theorem D.2 was given by Beck (2017, Section 6.6). O
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Let u be the optimal value to the smoothed indicator function, we can express it as

follows:

@ = argmaxu' (Az) — og(u) BHuH%

ues 2

— argminos(u) + 2 ul} — u' (A2)
uesS 2
o 1 _
= argmin flog(u) + §Hu||% — 1uT(Az)
uesS

We introduce a term £||371Az||3 as it is constant with respect to u

.o 1 _ 1.
= arg min 3 105(U)+§HUII§—5 1uT(AZ)+5||ﬁ 'Az|3
ues

o 1 _
= argmin 3~ o5 (w) + 5 (|lull3 — 267w (A2) + | A=]3)
ues

.o 1.
= arg min 8 105(U)+§HB 'Az — ulf3
uesS

= proxg-15: (67" 2)
Using Theorem D.2, we rewrite this as

=41 ((Az) — Proxgs, (Az))

Definition D.3: Proximal operator of an indicator function

Let S be a set and dg its indicator function. The proximal operator of dg is

1
prox;, (t) = argmin dg(u) + §||t — 3
u

1 2
= argmin — ||t — u|3
ues 2

This is known as the projection operator on the set S.

We can now compute a closed form to our problem. We first handle the general case
where S is defined by a set of inequalities. Then, we handle a specific case where it is

defined by a set of equalities.
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Inequality case. As the set S = {u|u < b} is defined by a set of affine constraints,
using Definition D.3, we can rewrite our proximal operator as the element-wise minimum

between Az and b that we denote min(Az, b). Thus, we have:

u

(Az —min(Az,b))

B—l
B 'max(Az — Az, Az — b)
/871

max(Az — b,0)

This is the Euclidean projection into the non-negative orthant, which we will denote [-]; for
compactness. To compute the closed form expression of the smoothed indicator func-
tion, we now compute the support function. Using its positive homogeneity property

(Beck, 2017, Lemma 2.24.a), we have:

os(B Az — b]y)

B los([Az —bl)

os(w)

=p! <0<0 ([Az—b]4)—b"[Az — b]+)

=0

Note that we have the following equality:
(Az —b)"[Az — b, = |[[Az — b] ||}
The smoothed indicator function is then equal to:

55(A2) = (A2)T (57 [Az — b)) — 5767 (A= ~ b, — 257 [Az ~ bl |3

="'(Az —b)"[Az — D] [Az — b3

1
+—%H
_ 1 Az — bl |?
—%H[ z— bl 2

Thus, we now have a smooth formulation for our optimization problem:

max f(z) — - [[[Az — bl |3

L)
zeC 26
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Equality case. |If the set S is defined by a set of equalities, then we have S = {b} and
the proximal operator of its indicator function is b (as it is the only element in S). We thus

have:
a=pF"1(Az—b)
We now compute the support function:

Us(ﬁ) =0g (ﬁ_l(Az — b))
=705 ((Az - b))

=670 (Az —b)
The smoothed indicator function is then equal to:

555(A2) = (42)7 (57 (A= — b)) — 57T (A= —b) — 05767 (4= — b))

1
="' (Az —b)"(Az —b) - %HAZ ~bl3

1
= gplAz - bl
The smooth formulation of our optimization problem is then:

1
max f(z) — %I\AZ — b3
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Appendix E

French extended summary

L'analyse sémantique est une tache qui consiste a produire une représentation formelle
manipulable par un ordinateur a partir d'un énoncé en language naturel. Il s'agit d'une
tache majeure dans le traitement automatique des langues avec une large variété d'applications
comme le développement de systemes de question-réponse, la génération de code ou le
raisonnement automatique entre autres. Les premiers systémes d’'analyse sémantique
reposaient sur des grammaires définies manuellement. Ces approches étaient forte-
ment limitées dans la mesure ou elles couvraient des domaines restreints et ne pouvaient
pas facilement adaptées a d’'autres domaines. Afin de limiter les efforts manuels pour le
développement de nouveaux systémes, des approches se sontintéressées al'apprentissage
automatique a partir de paires composées de phrases associées a leurs représentations
sémantiques. Les premiers travaux dans ce but se sont intéressés a I'apprentissage au-
tomatique de grammaires qui pouvaient ensuite étre employées pour analyser de nou-
velles phrases. Ces derniéres années, les approches fondées sur les réseaux de neu-
rones, et en particulier les architectures séquence-a-séquence, ont démontré de tres
bonnes performances pour cette tache. Cependant, plusieurs travaux ont mis en avant
les limites de ces analyseurs sémantiques sur des exemples hors distribution. En par-
ticulier, ils échouent lorsque la généralisation compositionnelle est requise. Il est donc
essentiel de développer des analyseurs sémantiques qui possedent de meilleures ca-
pacités de composition. La représentation du contenu sémantique est une autre préoc-
cupation lorsque l'on aborde la tache d'analyse sémantique. Comme différentes struc-

tures syntaxiques peuvent étre utilisées pour représenter le méme contenu sémantique,
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il est souhaitable d'utiliser des structures qui peuvent a la fois représenter précisément
le contenu sémantique et s'ancrer facilement sur le langage naturel. A ces égards, cette
these utilise des représentations fondées sur les graphes pour I'analyse sémantique et
se concentre sur deux taches clés. La premiére concerne I'entrainement des analyseurs
sémantiques fondés sur les graphes. lls doivent apprendre une correspondance entre
les différentes parties du graphe sémantique et les mots qui composent I'énoncé en
langage naturel. Comme cette correspondance est généralement absente des données
d'apprentissage, nous proposons des algorithmes d’'apprentissage qui traitent cette cor-
respondance comme une variable latente. La deuxieme tache se concentre sur 'amélioration
des capacités de composition des analyseurs sémantiques fondés sur les graphes dans
deux contextes différents. Notons que dans la prédiction de graphes, la méthode tradi-
tionnelle consiste a prédire d'abord les nceuds, puis les arcs du graphe. Dans le premier
contexte, nous supposons que les graphes a prédire sont nécessairement des arbores-
cences et nous proposons un algorithme d'optimisation basé sur le lissage des contraintes
et la méthode du gradient conditionnel qui permet de prédire I'ensemble du graphe de
maniére jointe. Dans le second contexte, nous ne faisons aucune hypothése quant a la
nature des graphes sémantiques. Dans ce cas, nous proposons d'introduire une étape
intermédiaire de superétiquetage dans l'algorithme d'inférence. Celle-ci va imposer des
contraintes supplémentaires qui devront étre respectées durant I'étape de prédiction des
arcs. Dans les deux cas, nos contributions peuvent étre vues comme l'introduction de
contraintes locales supplémentaires pour garantir la validité de la prédiction globale. Ex-
périmentalement, nos contributions améliorent de maniére significative les capacités de
composition des analyseurs sémantiques fondés sur les graphes et surpassent les ap-
proches comparables sur plusieurs jeux de données concus pour évaluer la généralisa-

tion compositionnelle.

154



	Contents
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Context
	Semantic parsing
	Compositionality of language

	Contributions
	Outline
	List of publications

	Semantic parsing and structured prediction
	Semantic formalisms
	Logical forms
	Graph-based representations

	Development of grammar-based parsing
	Rule-based semantic parsers
	Statistical learning

	Neural-based semantic parsing
	Sequence-to-sequence architectures
	Span-based approaches

	Related works for compositional generalization
	Datasets for compositional generalization
	Other research directions

	Evaluation
	Match accuracy
	Denotation accuracy
	Corner cases

	Conclusion

	Graph-based semantic parsing
	Motivation
	Semantic parsing as a graph prediction problem
	Formal definition and common architectures
	Formal definition of graph-based semantic parsing
	Neural architecture structure

	Graph-based parsing for compositional generalization
	Datasets
	GeoQuery
	SCAN
	Clevr
	COGS
	CFQ

	Conclusion

	Combinatorial optimization and training
	Training objective
	Variational formulation of a LogSumExp function
	LogSumExp upper bound
	LogSumExp lower bound

	Optimization framework with constraint relaxation
	Conditional gradient method
	Constraint relaxation and smoothing

	Structure of maximum weight
	Structure of maximum weight via the conditional gradient method
	Structure of maximum weight via a factor graph

	Conclusion

	Graph-based reentrancy-free semantic parsing
	Motivation
	Well-formed graph-based semantic parsing
	Graph notations and definitions
	Semantic grammar and graph
	Problem reduction

	Mathematical formulation and resolution
	NP-hardness of the MGVCNNSA problem
	Mathematical program
	Problem resolution

	Experiments
	Experimental setup
	Baselines
	Experimental results

	Conclusion

	Improving structural generalization via supertagging
	Motivation
	Supertagging for graph-based semantic parsing
	Supertagging
	Semantic supertagging
	Inference pipeline

	Mathematical formulation and resolution
	NP-completeness of supertagging with companionship principle
	Supertagging mathematical program
	Argument identification

	Valency-relaxed pipeline
	Valency-relaxed supertags
	Valency-relaxed supertag prediction
	Valency-relaxed argument identification

	Experiments
	Experimental setup
	Baselines
	Experimental results on COGS
	Experimental results on CFQ

	Conclusion

	Conclusion
	Conclusion
	Future research directions

	Bibliography
	GeoQuery lexicon and grammar
	GeoQuery lexicon
	GeoQuery grammar

	SCAN lexicon and grammar
	SCAN lexicon
	SCAN grammar

	Clevr lexicon and grammar
	Clevr lexicon
	Clevr grammar

	Closed form to the smoothed indicator function
	French extended summary

