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Résumé

Le cerveau est un système complexe basé sur des phénomènes d’émergence à dif-
férentes échelles. De nombreuses méthodes existent pour intégrer les données de
différentes échelles, mais l’une d’entre elles consiste à assembler des modèles de
chaque échelle. Dans cette thèse, nous présenterons un cosimulateur composé de plu-
sieurs simulateurs dédiés à la simulation de modèles d’une échelle spécifique. Nous
nous limiterons aux modèles cérébraux à macro- et méso-échelle. Tout d’abord, nous
décrirons un modèle de co-conception en sciences et informatiques pour coupler
efficacement des simulateurs. Ce modèle de conception est utilisé pour construire un
workflow entre The Virtual Brain et NEST. Pour souligner l’intérêt du couplage de ces
deux simulateurs, nous proposons de simuler un modèle multiéchelle de la région
CA1 de l’hippocampe cellulaire de la souris intégré dans un réseau cérébral complet
de la souris impliquant des enregistrements de micro- et macro-électrodes virtuelles.
Deuxièmement, nous proposons d’étudier l’interdépendance entre les modèles macro-
et méso-échelle afin d’indiquer le choix d’un modèle pour passer le passage à une
échelle inférieur. Nous choisissons d’analyser le rôle du délai des connexions à longue
portée dans un réseau neuronal bidimensionnel. En utilisant l’exploration des pa-
ramètres, nous démontrons que le comportement principal de ce réseau comprend
des ondes d’activité stationnaires ou mouvantes et dépend de l’intensité du bruit, de
l’homéostasie E/I et de l’adaptation de la tension, qui est modulé par le délai de la
connexion à longue portée. En outre, nos résultats illustrent l’interaction entre les
propriétés d’un seul neurone, la connectivité et la composition du réseau neuronal,
et le délai de la connexion à longue portée. Enfin, nous concluons que ce type de
projet est principalement un projet logiciel axé sur le potentiel de réalisation sans
véritable objectif scientifique. Sans l’inclusion de la recherche transdisciplinaire et la
clarification de l’utilisation scientifique du champ moyen et des réseaux neuronaux,
cette technologie restera inutilisée. La facilité d’utilisation de la co-simulation dépend
également d’une définition plus robuste de la fonction de transformation entre les
échelles afin de garantir la confiance dans la simulation multiéchelle. En outre, nous
disposons également d’un résultat préliminaire sur l’interdépendance entre les mo-
dèles à méso-échelle et à macro-échelle pour indiquer le choix du modèle pour passer
le passage à une échelle supérieur. Nous choisissons de caractériser l’approximation
du champs moyen Ad Ex avec une entrée excitatrice statique ou oscillatoire. Nous
incluons également les travaux parallèles à cette thèse, à savoir la participation à
un article de modélisation de l’indice de complexité des perturbations de l’état de
sommeil lent et de l’état d’éveil à réponse élevée, ainsi qu’un article de synthèse des
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outils de The Virtual Brain sur EBRAINS.

Mots clés : co-simulation, multi-échelle, modèle de réseau cérébral, réseau de
neurones à pointes, simulation neuronale, modèle de champ moyen, retard temporel,
dynamique du réseau, synchronisation, systèmes non linéaires
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Abstract

The brain is a complex system based on emergence phenomena from different
scales. Multiple methods exist for integrating the data from different scales, but one of
them is assembling models of each scale. In this thesis, we will present a co-simulator
composed of multiple simulators dedicated to simulating models of a specific scale.
We will restrain to macro- and meso- scale brain models. Firstly, we will describe a
software science co-design pattern for efficiently coupling simulators. This design
pattern is used for building a workflow between The Virtual Brain and NEST. To high-
light the interest in the coupling of these two simulators, we propose to simulate a
multiscale model of the CA1 region of the cellular-level hippocampus of the mouse
embedded into a whole mouse brain network involving micro and macro electrode
recordings. Secondly, we propose to investigate the interdependence between macro-
and meso- scale models to indicate the choice of a model for downscaling. We choose
to analyze the role of the delay of long-range connection in a two-dimensional neural
network. Using parameters exploration, we demonstrate that the principal behavior of
this network comprises standing or traveling waves of activity and depends on noise
strength, E/I balance, and voltage adaptation, which are modulated by the delay of the
long-range connection. Moreover, our results illustrate the interplay of single neuron
properties, connectivity and composition of the neuronal network, and long-range
connectivity for the emergent spatiotemporal activity. Finally, we conclude this type
of project is mainly a capability-driven software project without a real scientific goal.
Without the inclusion of transdisciplinary research and clarification on the scientific
usage of mean-field and neural networks, this technology will stay unused. The usabil-
ity of co-simulation also depends on a more robust definition of the transformation
function between scales to ensure certainty in the multiscale simulation. Addition-
ally, we also have a preliminary result on the interdependence between meso- and
macro- scale models to indicate the choice of a model for upscaling. We choose to
characterize the approximation of Mean Ad Ex with static or oscillatory excitatory
input. We also include side work of this thesis, which is participation in a modeling
paper of the perturbation complexity index of slow-wave sleep state and high response
wakefulness state and an overview paper of the tools of The Virtual Brain on EBRAINS.

Keywords: co-simulation, multiscale, brain network model, spiking neural network,
neural simulation, mean-field model, time delay, network dynamic, synchronization,
nonlinear systems
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Γνω̃θι σεαντóν : "Know thyself"
Greek philosophical maxim



Liste des tableaux

One way to know thyself is to understand the emergence of thinking from the body,
specifically from the brain, more precisely from brain cells, more accurately from
molecules, or more minutely from atoms. Thinking is an emergent phenomenon from
emergent phenomena at different scales. Modeling the brain from a physical point of
view requires integrating knowledge of molecular, subcellular, cellular, brain regions
and body [10]. This thesis does not have the ambition of bridging all these scales.
However, my interest in grasping the state of the art about how emergent phenomena
of neural networks can shape brain activities and contribute to the neuroscience effort
led me to develop a software science co-simulation design pattern for multiscale co-
simulation of the brain, introduced in the Chapter 3. The composition of this new tool
is motivated by the scientific community’s desire to create a bridge between macro-
and meso- scales [10, 73], and by the wager that coupling a mean-field model and
point neuron model offers exciting potential for modeling multiscale experiments.
However, it is also essential to be aware of the limitation of this new tool, sketchily
abort in Chapter 4 and in the Annex A.

Before describing the co-simulation design pattern, it is necessary to understand the
dynamical systems theory, brain modeling, and distributed computation. I shall first
introduce dynamical system theory to provide the basic notion to describe complex
systems using differential equations. Additionally to this theory, the presentation of
bifurcation theory offers one way to analyze a complex dynamical system which helps
interpret system behavior and time series. Then, I shall characterize the assumption
underlying neuron models and briefly present analyses and classifications of neuronal
dynamics. Next, I shall describe constructing a network of point neurons and their
reduced version, mean-field models. Afterward, I shall provide elementary concepts
for grasping the idea of distributed and parallel computing and associated technology.
To finalize the introduction, I include a presentation of the Human Brain Project [235,
234, 12, 13, 11] and EBRAINS [99, 310] to situate the present work in the scientific
environment. The following part will introduce this method for coupling simulators
and apply it to embedding a spiking neural network in a brain model. Then I will
propose an analysis for helping to choose a model for downscaling data between
macro- and meso- scales. The analysis is a synchronization analysis of neural networks
due to short and long-range connections with time delay. Finally, I shall conclude with
the limitation of this approach and the perspective on the usability of the multiscale
co-simulation.

The annexes comprise additional work around this thesis and supplementary mate-
rials for each chapter. The extra work includes preliminary results of a study for helping
to choose a model for upscaling data between macro- and meso- scales. This analysis
is a dynamic analysis of the limitation of a mean-field approximation for constant and
oscillating stimulation. Moreover, the extra-works include papers I participated in a
modeling study of slow-wave sleep and high response wakefulness dynamics and an
overview of brain simulation using The Virtual Brain on EBRAINS.
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1.1. Dynamical Systems

1.1.1 System and equations

One way to understand a system is to mimic it with mathematical models, i.e. equa-
tions, which describe the evolution of variables. The minimal number of independent
variables for describing the model’s state are called state variables ; other variables
are intermediate or output variables. The model is characterized by its dimension, i.e.
the number of its state variables, and by its state space, i.e. the geometric space in
which the variables on the axes are the state variables. The equation also contains two
additional elements : the parameters and the functions of the evolution of variables.
The main difference between parameters and variables is that during the model simu-
lation, parameters are fixed and variables are changing.
For example, the simple mathematical model of a capacitor is the following equation :

∂V

∂t
= f(I (t ),C ) = I (t )

C
(1.1)

This equation approximates the time evolution of the compelling quantity of the
capacitor, i.e. voltage (V) and current (I). In this case, I is defined before the simulation,
i.e. it fixes, and V evolves in time. This means that V is the unique variable of the model.
f is the function that represents the approximation of the behavior of the capacitor
and has one parameter C , the capacitance.

1.1.2 Dynamical system theory

Dynamical system theory [146] is the study of trajectories, i.e. sequences of model
states. In this thesis, we will mainly focus on analyzing autonomous systems evolving
in time, i.e. the evolution functions of variables are time-independent. One mathe-
matical representation of autonomous systems is ordinary differential equations, i.e.
equations with one or more unknown functions with only one independent variable
and involving some of their derivatives. Due to the time independence, in all points of
the state space of an autonomous system, it is possible to compute differential vectors,
i.e. vectors representing the direction the system will take from a point in state space.
A vector field is one representation of a dynamical system that takes a subset of points
in state space and assigns a differential vector to them. Phase line and phase plane are
the names for vector fields of one and two dimensions. The geometrical interpretation
of these fields gives essential information about the model’s dynamics, and it is one of
the main tools of dynamic system theory.

The most interesting point in this vector field is when the vector is null, i.e. the
variables are constant in time, and the differential of each variable equals zero. These
points are called equilibrium points or fixed-points.
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1.1.3 Fixed-point stability

FIGURE 1.1. – Example of phase line and phase plane
The left panel is an example of a phase line for stable and unstable fixed-points. The
right panel is an example of a phase plane with a vector field that contains two fixed-
points and one unstable point. The two black lines are the nullcline of two system
variables, and the dashed lines are trajectory examples.

These fixed-points are categorized as unstable/repulsive, stable/attractive, and
saddle [278](see left panel of figure 1.1). These categories are based on the local or
Lyapunov stability and asymptotic stability of the fixed-point [229].

The Lyapunov stability : xe is a stable fixed-point, if for every neighbourhood U
of xe there is a neighbourhood V ⊆U of xe such that every solution x(t) starting in
V (x(0) ∈V ) remains in U for all t ≥ 0, else x is an unstable fixed-point.

The asymptotically stable : xe is a stable fixed-point, if it is Lyapunov stable and
additionally V can be chosen so that limt→∞ |x(t )−xe | = 0 for all x(0) ∈V .

In two dimensional system, the intersection of two nullclines, i.e. lines where the
differential of one state variable is zero, is a fixed-point(see right panel of figure 1.1).
In the case of higher dimensions or complex functions, the stability demonstration
of fixed-points is difficult. One possibility is to use the stability theory based on the
system’s robustness to a small perturbation. This can be done by linearizing the system
close to this point and calculating the value of the Jacobian matrix [180], i.e. matrix
contains all the first-order partial derivatives calculated at this point. The properties
of this matrix give information about the stability of the fixed-point [362](see figure
1.2). The sign of Jacobian determinants distinguishes between saddle (positive) and
stable or unstable fixed-points (negative). A null determinant means the presence of
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FIGURE 1.2. – Classification of Fixed-Points
Classification of linear autonomous system fixed-points x ′ = Ax , x ′ = Ax, between
stable or unstable. Stable fixed-points are on the left of the diagram, and unstable
fixed-points more on the right (adapted from Systems of Linear Differential Equations
Stability Analysis by Elmer G. Wiens [362])[331].

a line of fixed-points. The sign of Jacobian traces gives the stability of the point. If it
is positive, the point is unstable. If it is negative, the point is stable. If it equals zero,
the local trajectories are circles or uniform. The Jacobian discriminant defines the
limits between a local circular trajectory and linear trajectories. A null discriminant is
a degenerative fixed-point. A similar conclusion can be made by looking at the sign
of the real part of the eigenvalue of the Jacobian and the presence of the conjugate
eigenvalues.
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FIGURE 1.3. – Example of homoclinic and heterocline orbits
The left figure displays a homoclinic orbit with one saddle fixed-point. The right figure
illustrates a heteroclinic orbit with a stable and unstable fixed-point.

Moreover, in two and higher dimensions, closed trajectory indicates a periodic orbit
or cycle ((x(0), y(0)) = (x(T ), y(T )) for some T ≥ 0 ). If this trajectory is in the plane,
this orbit is called limit cycle. It is also possible to calculate the stability of the limited
cycle based on its first recurrence map or Poincaré map [279]. The Poincaré map is
the intersection of the limit cycle with a low perpendicular dimension plan. Orbits
with an infinite period are categorized into two types : homoclinic orbits, i.e. the orbit
contains only one fixed-point, a saddle fixed-point, and heterogenous orbits, i.e. the
orbits contain one attractor and one repulsive fixed-point (see figure 1.3).

1.1.4 Bifurcation theory

So far, the parameters have been invariant. Modifying the parameters modifies the
vector field and the stability and position of the fixed-points and orbits. Bifurcation
theory [15, 278, 335, 146] is the analysis of this modification for characterizing the
system’s dynamics depending on parameter values. One result of this analysis is the
bifurcation diagram, a map that divides parameter space in dynamically equivalent
systems. There exist at least four types of bifurcation of order one, i.e. based on the
variation of one parameter : limit point, Hopf, pitchfork and transcritical [335, 146].
The following paragraph details the limit point and the Hopf bifurcation because the
analyzed models in this thesis present these two bifurcations.
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Saddle node, limit point or blue sky bifurcation [15](see figure 1.4) :
The variation of the fixed-point will push a stable and unstable point to collide and

disappear. At the bifurcation, the system has only one saddle fixed-point (see figure
1.2). The simplest bifurcation of this type is ẋ = µ− x2 where µ ∈ R [146]. From the
point of view of stability, the bifurcation occurs when an eigenvalue equals zero.

FIGURE 1.4. – Example of limit point bifurcation
The two fixed-points merge and disappear by changing the parameter µ.

Poincaré-Andronov-Hopf bifurcation [15, 165, 278](see figure 1.5) :
In this case, a limited cycle collapses to a fixed-point when the parameters vary.

The simplest bifurcation of equilibria is ż = z
(
(µ+ i )+ (α+βi )|z|2) where z ∈ C and

µ,α,β ∈ R. From the point of view of stability, the bifurcation occurs when a pair
of eigenvalues become pure imaginary. Depending on the sign of α, the Hopf is
supercritical ; when the stable limit circles collapse with an unstable fixed-point or
subcritical ; when an unstable limit circle collapse with a stable fixed-point.

FIGURE 1.5. – Example of Hopf bifurcation
The limit circle merges with the fixed-point by changing the parameter µ. A supercri-
tical case where the fixed-point is stable. B subcritical case where the fixed-point is
unstable (adapted from KUZNETSOV [216])
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1.1.5 Software for numerical continuation

The bifurcation of complex nonlinear models is very difficult to perform mathema-
tical analysis. In this case, the mathematical analysis is coupled with computational
simulation and numerical continuation [215], which only approximate the bifurcation
map. In this thesis, numerical continuation was the most used methodology. The
idea of numerical continuation is to trace a fixed-point or a bifurcation when one
or multiple parameters change. At the same time as tracking it, the stability study
identifies the occurrence of bifurcation. Multiple software realize this analysis [30],
such as Matcont [94], PyDsTool [63], CoCo [77], XppAuto [109].

However, the numerical bifurcation analysis in this thesis has been done with Mat-
cont [94] because the analyzed equations are ordinary differential equations, the
detection of bifurcation is available for the fixed-point and limited cycle, and the
code is open source. This last property allows minor modifications for handling errors
created by the existence of a fixed-point at the limit of the state space.

1.2. Neuron model
The brain is composed of structural and functional tissues [287]. The structural

tissue, stroma, is a matrix of cells that supports the functional cells’ position and mo-
vement. The functional cells are categorized into two classes : excitable cells, neurons,
and no excitable cells, glia. This thesis used brain models that consider only neurons
due to their two properties : intercellular communication using neurotransmitter
molecules in synaptic cliffs or cytoplasmic continuities, gap junctions, and electric
signal propagation by changing its membrane potential.

1.2.1 What is a Neuron?

As electrical signal propagation is the dominant phenomenon that characterizes
neurons, this section focuses on its model and characterization. The electric signal
propagation is based on the variation of the neuronal membrane potential using
ion channels, membrane molecules that adjust ion concentration inside and outside
the cell. The three main types of ion channels are leakage channels, voltage-gated
ion channels and ion pumps. A leakage channel is an open channel that creates a
concentration gradient between the inside and outside of a cell for a specific type of
ion. A voltage-gated ion channel is a channel with the capability to open and close
depending on the membrane potential. An ion pump is a molecule that pumps some
ions from one side to the other side of the membrane. Other ion channels exist, and
their behavior is more complex and possibly dependent on electrical, mechanical,
or chemical signals [194]. Models present in the thesis only consider the three main
channels and the two principal neurotransmitter ion channels in the synapse cliff.
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Inspired by the input-process-output pattern, neurons are modeled with three
modules (see Figure 1.6) :

— dendrites : (input) branches connect to other neurons.
— soma : (process) the cell body which contains the nucleus and the functional

material.
— axons : (output) roots connected to other neurons.

FIGURE 1.6. – Schematic neuron
Different views of a neuron and synapses. A : Cartoons of neurons with synapses.
B : Conceptual model of a neuron. C : Representation of cable model composes of
cylindrical isopotential compartments. D : Representation of compartmental model
composes of discrete isopotential R-C compartments, the equivalent electrical circuit
of the cylindrical compartments. Figured adapted from [34], from [176] and from [346]
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This modeling approach leads to the simplest vision of the neuronal signaling
process : dendrites collect inputs from the synapses and transfer them to the soma by
depolarizing the membrane, i.e. generating an electric current ; at a specific voltage
(voltage threshold) the soma initiates an action potential, i.e. a self-regenerating wave
of electrical activity, at the beginning of the axons; axons propagate this wave until
the synapses. One common approximation of a neuron is its reduction to a point
representing its soma, receiving the summation current from the connection with
other neurons and transmitting an event when the voltage passes a threshold. This
approach realized a significant reduction because the point neuron model does not
consider the variety of interaction between incoming signals in the dendrites, i.e. the
dendrite morphology, and the variation of the signal propagation along the axons, for
example, the fluctuation of extra-cellular space. Other modeling approaches, such
as compartmental model (neuronal model based on a tree of isopotential cylinders
of different diameters and lengths) and cable model (neuronal model based on the
equivalence of a neuron to an electrical circuit.) [333], integrate some of these details.
However, for a better representation of ion concentration fluctuation, it is necessary
to include glial cells in the modeling [287].

1.2.2 Hodgkin and Huxley model

The first historical model [111] with a comprehensive description of the action po-
tential is the Hodgkin and Huxley model [162]. This model includes leakage channels,
voltage-gated ion channels, and ion pumps. This model is based on the assumption
that the dynamic of the action potential is mainly due to the difference in concentra-
tion of sodium ion, N a+, and potassium ion, K +, between intra- and extra-cellular.

cm
dVm

d t
=−ḡL(V −EL)− ḡN am3h(V −EN a)− ḡk n4(V −Ek )

dn

d t
=Φ[αn(V )(1−n)− (βn(V )n)]

dm

d t
=Φ[αm(V )(1−m)− (βm(V )m)]

dh

d t
=Φ[αh(V )(1−h)− (βh(V )h)]

(1.2)

where cm is the capacity of the membrane. −ḡL(V −EL) describe leak current due to
the leakage ion channels, which creates a balance of concentration of N a+ sodium, K +

potassium and C l− calcium ions between intra- and extra-cellular environments. The
ḡL is the leak conductance, the membrane permeability constant to ions in a passive
situation. EL is the leak reversal potential, the current at the equilibrium point of
ionic concentration between intra- and extra-cellular space. The membrane capacity,
leak conductance, and leak reversal potential can be quantified by measuring the
resting voltage and the membrane voltage at rest and by recording membrane voltage
during current injections. These measures assume that the cell is isopotential, i.e. the
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membrane potential is uniform at all the points of the cell.
The −ḡN am3h(V −EN a) is the current due to sodium voltage-gated channels. These

channels are responsible for the depolarization of the cell, i.e. the increase phase
of the action potential. ḡN a and EN a are, respectively, the leak conductance and the
reverse potential of the sodium channels. These values can be quantified by voltage
clamp of the cell [192]. The original voltage clamp by Hodgkin and Huxley [162] is
an experiment where two electrodes are implanted in the squid giant axon and a
third outside. One inside electrode monitors the transmembrane voltage, and the
two others inject the current to have the membrane at constant voltage (clamped).
The measure of injecting current associated with voltage steps reflects the flow of ion
currents. By removing the concentration of ions in extra-cellular space or by adding a
channel blocker such as tetrodotoxin or tetraethylammonium, it is possible to quantify
the effect of a specific ion channel on transmembrane voltage and find the value of m
and h.

Similarly, the equation −ḡk n4(V − Ek ) describes the current due to potassium
voltage-gated channels. These channels are responsible for the repolarization of the
cell, i.e. the falling phase of the action potential. ḡk and Ek are, respectively, the leak
conductance and the reverse potential of the potassium channel. n describes the
voltage dependence of the ion channels. Moreover, hyper-polarization after an action
potential reduces the probability of the neurons creating a second action potential
due to the sodium channels being closed and requiring some time for recovery.

The last constant of the equation isΦ is a temperature factor. The ion channels are
exponentially dependent on the temperature (Φ=Q(T−Tbase )/10

10 where Q10 is the ratio
ratio rates for increase in temperature of 10°C and Tbase is the default temperature
(37°C) [192]). In your case, we consider that the temperature is constant.

FIGURE 1.7. – Mechanism of action potential described by Hodgkin Huxley model
Figure adapted from figure 1.15 of [111] and figure 2.6 of [346]

This model’s advantage is the possibility of adding other channels, such as fast so-
dium currents or slow potassium currents [111]. At the same time, it is a disadvantage
because it increases the complexity of the model. Suppose we reduce the neurons as
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the creation of action potential. In that case, analyzing a network with this model can
require significant computational resources, and finding the underlying mechanisms
of emergent dynamics cannot be easy. The following part describes the models used
in the thesis after a characterization dynamic characterization of the neurons.

1.2.3 Characterize neurons

The model, as a simplification of reality, can be used for understanding an expe-
rience or the validation hypothesis about the mechanism of your system. The choice
of the model and features for fitting and validating the model are crucial. The feature
of neurons are multiple ; it can be the morphology, the type of ion channels, and the
electrophysiology. The essential features for point neuron models are the electrophy-
siology and the time of action potentials or spikes (for models, we used the terms
spikes for an action potential).

Based on the Electrophys Feature Extract Library [31], one library of Ebrains, there
is more than 100 features which can be extracted from an electrophysiology recording
of neurons. These features are grouped into three categories : spike shape, spike event,
and voltage features.

The principal feature used in this thesis is based on spike event features, especially
on the firing rate, the presence of burst, regularity of the spikes, and firing rate adapta-
tion.

The firing rate is the estimated number of spikes a neuron generates during one
second. The burst is defined as a sequence of at least two spikes in a short time (In
this thesis, the short time is defined as a fixed interval of 10 milliseconds, but the
common definition of burst is defined as an interval between two spikes belonging to
the smaller interval of bi-distribution of the interval of spikes times.)

For the regularity of neurons, there are two features :
The coefficient of variation of the inter-spiking interval (ISI) is a simple method used
since 1960 [274].

CvI SI = σI SI

µI SI
(1.3)

This measure is an evaluation of the regularity of the generation of spikes. When CVI SI

is close to zeros (in the thesis < 0.2), the interval between spikes should not have a
significant variance, which means the neuron is regular spiking; in another case, the
neuron is irregular spiking.
This measure has some deficits, especially in the case of burst, because the bi-distribution
bias the estimation of the mean and the variance [320]. To include this mixed distribu-
tion, Holt, Softky, Koch, and Douglas [164] introduce CV 2 for comparing two adjacent
inter-spike intervals. This new metric was improved in Shinomoto 2003 [321] and
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renamed local variation of the inter-spiking interval.

LvI SI = 1

M −1

M−1∑
i=1

3(tm − tm+1)2

(tm + tm+1)2
(1.4)

where M is the total of spikes at the time of analysis.
The neurons can be classified based on these measures and the injection of currents.

The firing pattern of neurons to current injection is a standard methodology in elec-
trophysiology for characterizing them, similar to the voltage clamp experimentation
for categorizing the ion channels. The following sections will present categorizations
of dynamics based on Izhikevich et al. 2004 [178], which summarize the behavior of
biological neurons along 20 responses to injected current, current ramps, and positive
or negative pulse and Naud et al. 2008 [254] which characterize the dynamic of adap-
tive exponential integrate and fire neurons, the model of point neuron principal used
in this thesis.

The first classification is based on the excitability of the neurons. In 1964, Hodgkin
[161] proposed three classes for categorizing neurons. The class 1 neurons have a firing
rate depending on the input strengths. The class 2 neuron starts to spike at a relatively
large frequency when a certain level of input strength is reached. The third class is
composed of the other neurons. There are multiple methods for distinguishing these
dynamics. One possibility is to stimulate the neurons with a ramp current stimulation,
and another option is to trace the Input Frequency curves. If the Input Frequency
curve presents a jump when the neurons start to fire, it means that the neurons are
class 2 ; in another case, the neurons are class 1.
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FIGURE 1.8. – Example of class 1 excitatory neuron
A Phase plane of adaptive exponential integrator and fire neurons with an example of para-
meters for class 1 excitatory neuron with a trajectory of the model to the response of a ramp
current stimulation. The green curve presents the nullcline of the adaptation current, and the
yellow is the nullcline of the voltage membrane (full : without stimulus and dashed with the
maximum of input current) B Voltage of the neuron for a ramp current stimulation. C Adapta-
tion current of the neuron for a ramp current stimulation. D Current of a ramp stimulation E
Input frequency curve of the neurons evaluate over 10 seconds. (see annex D for parameters
of the neuron)
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FIGURE 1.9. – Example of class 2 excitatory neuron
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The second classification is based on the response of the neuron to constant stimu-
lation : phasic spike(generate one spike), phasic burst (generate one burst), tonic spike
or regular spiking (generate regular spike), tonic burst or regular bursting (generate re-
gular burst), spike frequency adaptation (increase the frequency of the spikes), mixed
model (start with a burst and continue with spikes), irregular or chaos (spike without
any regularity), delay spikes (generate regular spike but the first one is delayed) and
delay burst (generate regular burst but the first one is delayed).

80 55 40
V_m (V)

10

60

130

W
 (p

A)

A

0 2500 5000
time (ms)

80
35
10

V_
m

 (V
) B

0 2500 5000
time (ms)

10
60

130
W

 (p
A)

C

0 2500 5000
time (ms)

0
319
638

I (
pA

) D

FIGURE 1.10. – Example of phasic spike neuron
A Phase plane of adaptive exponential integrator and fire neurons with an example of parame-
ters for phasic spike neuron with a trajectory of the model to the response of a step current
stimulation. The green curve presents the nullcline of the adaptation current, and the yellow
is the nullcline of the voltage membrane (full : without stimulus and dashed with the step of
input current) B Voltage of the neuron for a step current stimulation. C Adaptation current
of the neuron for a step current stimulation. D Current of a step stimulation (see annex A for
parameters of the neuron)
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FIGURE 1.11. – Example of phasic burst neuron
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FIGURE 1.12. – Example of tonic spike neuron
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FIGURE 1.13. – Example of tonic burst neuron
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FIGURE 1.14. – Example of spike frequency adaptation neuron
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FIGURE 1.15. – Example of mixed neuron
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FIGURE 1.16. – Example of irregular neuron
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FIGURE 1.17. – Example of delay spike neuron
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FIGURE 1.18. – Example of delay burst neuron

41



1. Modelling in neuroscience – 1.2. Neuron model

The third classification is based on the response of the neuron to one positive or
pulse : single spike (generate a spike), spike latency (generate a spike after some delay),
depolarizing after-potential (depolarization after a spike), rebound spike (spike after a
negative pulse), rebound burst (burst after a negative spike) and bi-stability (a pulse
push the neurons to spike or silence).
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FIGURE 1.19. – Example of single spike neuron
A Phase plane of adaptive exponential integrator and fire neurons with an example of parame-
ters for single spike neuron with a trajectory of the model to the response of a pulse. The green
curve presents the nullcline of the adaptation current, and the yellow is the nullcline of the
voltage membrane (full : without stimulus and dashed with the current pulse) B Voltage of the
neuron for a pulse stimulation. C Adaptation current of the neuron for a pulse stimulation. D
Current of a pulse stimulation (see annex A for parameters of the neuron)
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FIGURE 1.20. – Example of spike latency neuron
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FIGURE 1.21. – Example of depolarizing after-potential neuron
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FIGURE 1.22. – Example of rebound spike neuron
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FIGURE 1.23. – Example of rebound burst neuron
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FIGURE 1.24. – Example of bi-stability neuron
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The fourth classification is based on the neuron’s response to one small permuta-
tion : integrator (return linearly to the same voltage) and resonator (oscillate after a
perturbation). These two classes affect spike time differently in the presence of per-
turbation when there are oscillating. One possible quantification of this effect is the
Phase Response Curve [85]. The PRC for spiking neurons measures the modification
of the inter-spiking interval when a perturbation is applied at a different time of this
interval. The integrator has monophasic (type I) PRC, and the resonator has biphasic
(type II) PRC [154].

75 65 60
V_m (V)

10

70

150

W
 (p

A)

A

0 250 500
time (ms)

19
9
1

lo
g(

|V
_m

-E
_L

|) 
 

(V
)

B

0 250 500
time (ms)

10

70

150
W

 (p
A)

C

0 250 500
time (ms)

0

88

176

I (
pA

)

D

0 2
phase perturbation (rad)

0.00

0.04

0.08

Ph
as

e 
sh

ift
 (m

s) E

FIGURE 1.25. – Example of integrator neuron
A Phase plane of adaptive exponential integrator and fire neurons with an example of parame-
ters for integrator neuron with a trajectory of the model to the response of a small perturbation.
The green curve presents the nullcline of the adaptation current, and the yellow is the nullcline
of the voltage membrane (full : without stimulus and dashed with the maximum of input
current) B Voltage of the neuron for a small perturbation. C Adaptation current of the neuron
for a small perturbation. D Current of a small perturbation E Phase response curve of the
neuron after a transition of 1 second. (see annex A for parameters for the neuron)
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FIGURE 1.26. – Example of resonator neuron

The four classifications are based on different paradigms for classifying neuron
dynamics. They overlap because, for example, the class 1 excitatory neuron is also a
tonic spike, a one spike and an integrator. These classifications are based on different
paradigms for identifying the neurons’ behavior and fitting the neuronal model with
it, which can be done with real experimentation. These different classifications are not
exhaustive and restrictive to the possibility of dynamics of the adaptive exponential
integrator and fire neurons [254, 345]. Moreover, the paradigms can be too simple,
and other paradigms exist, such as a sequence of step current or noise [178, 336].

1.2.4 Point neuron models

Point neuron models contain a variety of models. One way to categorize them is
to look at their link to biophysics principles. This categorization of point neuron
models includes two categories : biophysical model, a model based on the biophysical
principle, and phenomenological model, a model with parameters and/or variables
which does not have direct biological meaning. Another way to categorized them
is their complexity. The complexity can be quantified by different metrics such as
the number of operation/flops [178], number of independent variables, number of
parameters, or number of bifurcation point [54]. The difficulty of using a model
is directly linked to the complexity of it. The more complex the model, the higher
the probability of overfitting and the higher the degree of freedom, i.e. number of
parameters unconstrained by the observations [183]. The choice of a neurons model
in research is a difficult question because scientists must select a simple and realistic
model simultaneously. One luck is that most often the less biophysical a model is, the
less complex it is. Consequently, a scientist should choose a balanced model between
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the required details and the available abstraction [157]. In this thesis, we decided to
focus based on the research on the adaptive exponential integrate and fire neurons(Ad
Ex) [37], which is a model of neurons focusing on the spike generation with a total
abstraction of the spatial structure of the neurons and dendrites interactions. This
model can reproduce the dynamic of neurons [254, 345] and reproduce the spike
times of the neurons [193]. It is less abstract than rate or stochastic models, but it is
less realistic than compartmental models or the Hodgkin and Huxley model. Before
to present in details this model, I introduce a phenomenological model, FitzHugh-
Nagumo [120, 253] neurons and the elementary model of Ad Ex, leaky integrator and
fire neurons [221].

1.2.4.1 FitzHugh Nagumo neuron

From the dynamical analysis, FitzHugh and Nagumo propose a simplified dynamic
of the model of the Hodgkin and Huxley model where the nullcline is similar [120, 253]
with a recovery nullcline linear to the voltage.

dV

d t
=V (V −a)(1−V )−w

d w

d t
= ϵ(V −γw)

(1.5)

where 0 < a < 1, ϵ> 0 and γ≥ 0 As a model is a phenomenological model, the parame-
ters a, ϵ, and γ do not have any biological interpretation. It is the same for the variable
w . This model has been intensively analyzed [296].

FIGURE 1.27. – Phase portrait and physiological state diagram of FitzHugh-Nagumo
model

Figure from [179], modified from an image of FitzHugh 1961 [120]
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1.2.4.2 Leaky integrator and fire neuron

Leaky integrator and fire [221] is based on the assumption that the never is simi-
lar to the charge of a capacitor in the presence of resistors. This model cannot be
derived from Hodgkin and Huxley model [44, 349, 58]. Still, it can be considered as
an approximation of it by considering only the passive properties of the membrane,
leakage channel, and a reset mechanism for the action potential. The rest mechanism
is that after passing a voltage threshold, the membrane voltage equals the voltage reset
during a refractory time for taking account of the spike and the hyper-polarization of
the membrane at the end of the action potential. This model does not consider the
different phases of action potentials.

cm
dVm

d t
=−gL(V −EL)

reset condition : ∀t f ,V ≥Vth ,V ([t f ; t f + tr e f ]) =Vr eset

(1.6)

where cm is the capacity of the neurons, gL is the conductance of the leakage channels,
EL is the resting potential, Vth is the voltage threshold, Vr eset is the voltage reset,
tr e f is the refractory time. This model has been intensively used in spiking neural
networks because it presents the advantage of requiring low computation [178], one
state variable and capturing 70 % of spike with a precision of 10 milliseconds [338].
However, this model has limited dynamic [178], and several extensions have been
proposed, such as adding adaptation currents (adaptive integrate and fire neuron
[357] or general integrate and fire neuron [243]), improving the shape of the spike
(quadratic [110], or exponential [123]) or adapt the voltage threshold (multi-timescale
adaptive threshold model [200])

1.2.5 Adaptive and exponential integrator and fire
neuron (Ad Ex)

The main point neuron model of this thesis is the adaptive and exponential integra-
tor and fire neurons (Ad Ex) [37], partially bio-physiological and partially phenome-
nological model. This model contains two extensions of the leaky integrator and fire
neuron. The first extension is the usage of the exponential for faithfully processing
fast input signals [123], improving the approximation of the subthreshold dynamic
[58]. The second extension is the addition of an intrinsic slow current to capture the
long-term effect of an action potential, which is essential for burst phenomena [58].
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Cm × dVm

d t
=− gL(Vm −EL)+ gL∆T e

Vm−Vth
∆T −w

τw × d w

d t
=a × (Vm −EL)−w

reset condition :∀t f ,V ≥Vpeak ,Vm([t ( f ); t ( f ) + tr e f ]) =Vr eset

w(t ( f )) = w(t ( f ))+b

(1.7)

Similar to leaky integrator and fire neurons, cm is the capacity of the neurons, gL

is the conductance of the leakage channels, EL is the resting potential, Vth is the vol-
tage threshold, Vr eset is the voltage reset, tr e f is the refractory time. Additionally, the
parameter of the exponential function : ∆T is the slope factor of the voltage increase
after the voltage threshold, and Vpeak is the new threshold for the rest mechanism.
Furthermore, the parameters of the slow current : a is the subthreshold adaptation, b
is the spike-triggered adaptation, and τw is the adaptation time constant. These two
extensions are phenomenology approaches because there are not derived from the
biophysical principles, but their parameters can be extracted from electrophysiologi-
cal experiments [37, 193].

FIGURE 1.28. – adaptive and exponential integrator and fire neuron
Interpretation of some parameters from the characterization by a step currents

The Ad Ex’s dynamic has been analyzed [254, 345, 220], but the model cannot
reproduce all patterns of activities, especially subthreshold activities of the voltage
membranes [178, 143, 348, 338].
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1.3. Network of point neurons
Once the model of neurons is chosen, the next step is to define the connection

between neurons. There are at least two types of intercellular communication. The first
type is the cytoplasmic continuities based on an aggregate of intercellular channels,
gap junctions [142], for transferring small molecules or ions between cells. The second
type of communication is through chemical signals. The neurons are sensitive to
multiple chemical signals produced by the brain or other organs [194]. The signals
between neurons in the central neural system are classified into neurotransmitters
and neuromodulators. The neuromodulators are a signal which affects locally multiple
neurons mainly because there are not reabsorbed or broken down into a metabolite
directly [256]. Their main function is the modulation of neuronal activities. On the
contrary, neurotransmitters transfer a signal from one cell to another. In this thesis,
we will consider only the neurotransmitters in synaptic cliffs of axodendritic, i.e. a
space between an axon and a dendrite, and we assume that their effects are only local.
In reality, the neurotransmitter interferes with the closed synapses [24].

FIGURE 1.29. – Structure of a typical chemical synapse
Figure from [257].

The life cycle of neurotransmitters [70] in an axodendritic connection starts with
a release of neurotransmitters by a synaptic vesicle when an action potential arrives
at the pre-synaptic side, the axon of a neuron. The neurotransmitter diffuses in the
synaptic cliff and activates on the post-synaptic side some receptors, which change
the concentration ionic concentration, i.e. the membrane voltage of the dendrite. After
the neurotransmitters are uptake by the pre-synaptic part for reform, a new vesicle
and the life of the neurotransmitters can restart. The effect of the neurotransmitters
depends on the type and the concentration of neurotransmitters in the vesicle, the
type, the density, and the configuration of receptors at the release time, and the
concentration in the cliff of other molecules such as the ions. Consequently, the signal
is transmitted with different intensities and different duration or not at all. If the
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glia cells are included in the model, the signal influences and is influenced by the
astrocytes [231]. One phenomenological way to capture these effects is called short-
term plasticity and significantly impacts network dynamic [351, 80]. In this thesis, we
assume that the signal is always transmitted with the same intensity and duration,
i.e. without short-term plasticity. Additionally, we consider only two types of signal,
excitatory signal, associated with the glutamate neurotransmitter which activates the
AMPA and NMDA receptors, and inhibitory signal, associated with α-aminobutyric
acid/GABA neurotransmitter which activates GABAα and GABAβ receptors [111, 194,
80]

1.3.1 Model of synapse

Based on these assumptions, there are still multiple models of synapses. The first
consideration is to take the different properties of the post-synaptic membrane.
Some models assume the effect of synaptic is independent of it and always has the
same effect on the membrane voltage, such as current synapse (Is yn(t ) = w ∗ ss yn(t )).
Other models consider only the voltage dependence of the effect and change the
membrane voltage by taking at count it, such as conductance synapses (Is yn(t) =
gs yn ∗ ss yn(t )(V (t )−Vs yn)). Other models include extra information depending on the
chemical reaction of the receptors, such as the concentration of magnesium ions for
NMDA receptors [111], which imply the consideration of short-term plasticity.

The second consideration is the modeling of the effect of the release of neurotrans-
mitters. The most common way to model this phenomenon is by using the percentage
of activated and deactivated receptors using a normalized double exponential wave-
form [111]. The normalization of the function is because the intensity of the signal is
modeled as a multiplicative factor, synaptic weight.

Ps(t ) = d

exp
−

t

τ1 −exp
−

t

τ2

H(t )

d = 1

exp(−tmax/τ1)−exp(−tmax/τ2)

τmax = log(τ1/τ2)

1/τ2 −1/τ1
(time of peak value)

(1.8)

with τ1 is the growing rate of the receptor activation, τ2 is the decay rate of receptor
deactivation and H(t ) is the Heaviside step function (1 if t > 0 else 0). The value of τ1

is influenced by the probability of activating receptors by a neurotransmitter after its
release in the synaptic cliff. τ2 is influenced by the diffusion out of the cliff, enzyme-
mediated degradation, and uptake mechanism [80].
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If we assume that τ1 equals τ2, the function become an alpha function [111] :

Ps(t ) = t

τ2

(
exp1− t

τ2

)
H(t ) (1.9)

This formulation of the synapse was introduced by Rall et al. in 1967 [290], but often
people do not use it because the interpretation of τ2 is not clear, and it complicates
the mathematical analysis of neural network [93].

If we assume that the rising time is very fast, i.e. τ1 →∞, the function becomes an
exponential function [111] :

Ps(t ) = exp− t
τ2 H(t ) (1.10)

This formulation does not conserve the linearity of the synaptic input because it
creates a discontinuity at zeros. However, it is more suitable for neural network analy-
sis [93].

If we assume that the rising and decay time is very fast, i.e. assuming the synapse
are instantaneous, the function becomes a delta function [111] :

Ps(t ) = δ(t )H(t ) (1.11)

This model is the simplest, and it is interesting because it reduces the computation re-
sources of a simulation and for studies where the post-synaptic currents are negligible.

In this thesis, the synaptic models are exponential and alpha functions.

FIGURE 1.30. – Model of synaptic current after activation
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1.3.2 Network connectivity

Creating a neuronal network requires a model of neurons, a model of synapses, as
well as the pairs of connected neurons, the weights of these connections, and the
delays in transferring signals.

Multiple methods exist for connecting neurons, but their main difference is the
integration of spatial information. Mathematical studies provide three types of connec-
tivity : fully connected [116], sparsely connected [16] or spatially connected [19].
For fully connected networks, all neurons are connected to all neurons.
For sparsely connected networks, the connectivity can be defined with a pairwise
probability connection based on probability distribution such as Bernoulli distribu-
tion [181] or Poisson distribution [280, 245], or by defining the number of incoming
synapses, outcoming synapses or the total numbers of a neuron or population. Addi-
tionally of the connectivity rules, some constraints [314] can be added, such as the
presence of autapse synapses [173, 286], i.e. the possibility of a neuron to connect to
itself, or the presence of multapse synapse, i.e. the possibility to connect multiple time
to the same neurons.
Spatial connectivity requires a spatial distribution of the neurons. In mathematical
studies, the spatial distribution of neurons is based on a grid along a line or plane. In
these studies, the boundaries can affect the dynamic network because the neurons
close to it are less connected. For toy models, the boundary condition is often assumed
to be periodic, i.e. the boundaries are connected to form a continuous space. This
assumption can be considered line and plan infinite, respectively, equivalent to a ring
and a torus. The spatial connectivity, in these cases, is defined using a kernel. The ker-
nel of probability is a function that defines the probability of connection depending on
the spatial distance between two neurons. Another method of the spatial distribution
of neurons is to group them regarding the position of their soma and use morphology
distribution to define connections between populations [281, 305, 306]. For example,
Potjans et al. 2014 [281] group neurons into six layers and define connectivity based
on a fixed number of connections between layers derived from an anatomical map.
In the case where the three dimensions position of all neurons is defined, recent
methods use the morphology of neurons to define pairwise connections, such as
parametric anatomical modeling [288] or spherical probability clouds [131] for more
precise connectivity. In this thesis, the network connectivity is sparse connectivity
based on Bernoulli distribution or spatial connectivity based on a two-dimensional
Gaussian kernel probability (see Chapter 4).

Connections in neuronal networks are weighted and delayed. From the assumption
that neurons are equivalent to a point, the delay represents the time of spike goes
from the soma of neuron A to the soma of neuron B, i.e. the time of a spike goes along
the axon until the synapses, the synapse releases the neurotransmitters, neurotrans-
mitter activates the post-synaptic receptors, and the generated current goes along the
dendrites. However, in this thesis, we assume that the delay is instantaneous between
neighborhood neurons because it simplifies the analysis and the comprehension of
network dynamics.
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The weight represents the intensity of the post-synaptic currents, i.e. the quantity and
type of neurotransmitter release, the type and density of post-synaptic receptors, and
the position of the synapse on the dendrite. All these properties can influence the
effect of post-synaptic current [46], but in this thesis, we consider that their values are
constants and unique for inhibitory and excitatory synapses.

1.3.3 Characterization of a neural network

One way to record neural networks is the introduction of electrodes in the brain to
record the variation of extracellular potential. Two elements can be extracted from
these recordings : action potentials (spikes in the signal) and local field potentials
(general signal fluctuation). Assuming each neuron generates identical spikes with a
unique shape, it is possible to classify them, determine the number of neurons, and
define the spike time of each neuron (spike train). If there are multiple electrodes,
it is possible to approximate neurons’ location and improve the classification [45].
However, these measures do not provide direct access to the underlying network or
structural network but only include information about the network dynamics or effec-
tive network. For analyzing network dynamics or, in particular, spike trains, multiple
methods exist, such as a statistic description [89], characterization of dynamical re-
lation [62], description of the different bands of oscillation and their interaction [45,
198, 230], or embedding in a low dimension space which is linked to behavior [36,
308]. In the case of this thesis, we focus on the statistical description of the network
dynamics (mean firing rate and mean of regularity, see sub-section 1.2.3), particularly
population synchronization.

The level of synchronization can be evaluated by different metrics [208, 207], but in
this thesis, we used only two metrics.

The first metric is the coefficient of variation of mean firing rate [41].

CvF R = σF R

µI F R
(1.12)

For the interpretation, C vF R higher than 1.0 means that the network is synchronized.
The second metric is the order-parameter R defined by Kuramoto 1984 [212] based

on the pseudo phase of the neurons. The pseudo phase of the spiking neuron n is
defined by considering that the phase between two spikes is constant [32] :

ψn(t ) = 2πm +2π
t − tn,m

tn,m+1 − tn,m
(1.13)

where m is the m-th spike of the neuron n.
From this definition, the order-parameter R of a population is defined as :

R(t ) =
∣∣∣∣∣
∑N

n=1 exp
(
iψn(t )

)
N

∣∣∣∣∣ (1.14)
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The mean over the time of the order-parameter quantifies network synchronization
and is included between 1.0 (synchronous) and 0.0 (asynchronous).

1.3.4 Network of adaptive exponential integrate and fire
neurons

All neural networks in this thesis are a network adaptive exponential integrate and
fire neurons. Most previous studies using this type of network focused on the impact
of the effect of the adaptation because anterior studies were mostly based on leaky
integrator model [44] (see sub-section 1.2.4.2).

Some studies use this network model to validate biological mechanisms. For example,
Destexhe et al. 2009 [92] models the thalamocortical networks to investigate the irre-
gular asynchronous state or the up and down state of a model of cortex and thalamus
and their interaction. A second example is the model of epilepsy statement and in-
vestigation of the impact of the stimulation on epilepsy [285]. A third example is the
reproduction of theta(4-8Hz)-nested gamma (>30Hz) rhythms with a sparse network
and with different types of synapses [319].

Some other studies analyze the impact of the connectivity, adaptation current and
response of an external input. For example, Lamdenbauer et al. 2012 characterize the
impact of a (subthreshold adaptation), b (spike-triggered adaptation), synaptic delays
and weights on synchronization of two neurons and populations of homogeneous
neurons [220]. A second example, Lamdenbauer et al. 2013 characterize the impact
of the synaptic weights and external input on the mean firing rate and the mean
regularity of coupled excitatory and inhibitory populations [219]. A third example,
Borges et al. 2017 look at the synchronization in coupled excitatory and inhibitory
populations for b, Vr eset , synaptic weights and probability of connection [32]. A fourth
example, Shiau et al. 2019 analyze the frequency and synchronization for synaptic
weights, percentage of connection, τw (adaptation time constant), the two constants
of time of a double exponential waveform of synaptic, a, b and external input [319]. A
fifth example, Protachevicz et al. 2020 focused on the time delay of coupled inhibitory
and excitatory populations on population synchronization, mean regularity and firing
rate frequency [284]. A sixth example, Protachevicz et al. 2020 focused on autaptic
synapses, i.e. connection of neurons to itself, on population synchronization, mean
regularity and mean firing rate of inhibitory population, excitatory population and
mixed population [286]. A seventh example, Augustin et al. 2013 studied synapse
weights, a, b, external firing rate, t auw on population synchronize oscillation and
resonance [18]. An eighth example, Wu et al. 2021 analyze the burst stabilization for
different network topologies [368].

Other studies analyze the network to define an equivalent low-dimensional system
of the network. This equivalent system is used to simplify the analysis of the network
or for the simulation of a larger network in the future, such as the brain [266, 18, 17,
49, 47, 33, 373, 374, 356] (see the sub-section 1.4.1 about Neural Mass of Ad EX).
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1.4. Mean-field model
Before detailing reduced systems, we must define the terms and approaches for

reducing a neural network to a low-dimensional system for modeling brain regions.
Most reduced models are based on the assumption that the exact statement of indi-
vidual neurons does not matter and can be replaced by a statistical description of
populations [84]. The percentage of active synapses or the distribution of the voltage
membrane or firing rate is used as the value for representing the network state at a
specific time. The common formulation for describing this reduced model are Fokker
Plank equations which describe the evolution of probability density over time, and
master equation, which describes the probabilistic combinations of states and their
transitions. The states with their transitions or probability density with its evolution
can be assumed by modelers based on their intuition [364], some part of the model can
be estimated from measures [182]or can be derived from a network of point neurons
[41].

The derivation from a network of point neurons is too complex to be solved actually.
Consequently, all available mean-fields are restrictive to specific network configu-
rations, network dynamics or neuron models. Additionally, most of them approxi-
mate the network behavior, such as the inconsiderate high frequencies, the assuming
Gaussian distribution, or linearizing some part of the model. Consequently, many
assumptions and approximations are used, creating difficulty in comparing and choo-
sing a neural field model. The rest of the paragraph presents some assumptions or
approximations for reduction (for more details, see the paper of Cook et al. 2022 [66]).
One common difference in assumption is the consideration of the spatial position
of neurons; Neural Field models take into account the spatial propagation of neural
activities, whereas the Neural Mass models do not include a spatial dimension in
their model. However, the spatial dimension can be included a posteriori, approxi-
mating a Neural Field with a Neural Mass network under certain conditions [326].
Another major difference is the consideration of the type of connectivity ; for sim-
plification, some mean-fields consider only fully connected networks, while others
consider some probability of connections, or others consider specific types of net-
works. Another difference is the approximation or not by the separation of time scale,
i.e. reducing the model to slow time scales which captures the main network dynamic.
Another difference is that some models assume a stable steady state of the network,
like an asynchronous irregular state, or oscillating, like a synchronous regular state. A
common assumption is that the parameters of the point neurons are the same in a
population for simplifying the reduction. Another common assumption is to consider
that the neurons are independent and that the input spikes of the neurons follow a
Poisson distribution.

One common modeling of brain activities is the brain network model [185]. In this
type of model, the network which constrains brain dynamics is called "connectome"
[328, 150] or structural connectivity, i.e. connections between neurons or brain regions.
From this point of view, brain activities are seen as an emergent phenomenon of a
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network of neurons or populations of neurons. Actually, the most precise connectome
is the network of neurons with detailed interactions (molecular interaction between
each neuron) of the caenorhabditis elegans pharynx [67]. The precision is not avai-
lable for bigger animals, and the description stays at the level of brain regions. For
an alive human, the standard method for getting the connectome is Diffusion Tensor
Imaging(DTI) [55], which estimate the number of fiber by measuring the direction of
the diffusion of water in the brain. The precision can be increased by including data
from analysis of postmortem human brains, such as the direction of the fibers [369].
For the mouse brain, it is possible to extract a connectome from postmortem data
of fluoresced axonal projections of each brain region [263] ; this connectome is more
informative than the individualized connectome computed from DTI [239]. Despite
the technical limitation, the choice of scale for the connectome is still unknown. For
example, the precise connectome of caenorhabditis elegans pharynx does not com-
prehensively understand the behaviors [121]. One explanation is that the connectivity
between neurons is insufficient because it lacks the plasticity of connections and
the modulation of neurons’ behavior. Even with these limitations, this model is used
for addressing causality in brain activities. In this thesis, the brain network model is
a network of Neural Mass derived from a point neuron network that describes the
activities of each brain region. Neural Mass models can capture some parts of brain
region dynamic, but it is challenging to evaluate their approximation. Despite the
diverse Neural Mass derived from a point neuron network, few studies analyze the
validity of assumptions, quantify the impact of approximations, compare the dynamic
behavior, or quantify the state difference between a network of Neural Mass and the
associated network of neural networks, which limits the interpretability of Neural
Mass.

1.4.1 Neural Mass AD EX

As expected, multiple methods have been used for reducing a network of the Ad EX
neurons. Augustin et al. 2017 [17] propose five methods based on different approxima-
tions only for fully connected networks with delayed delta synapses using Fokker Plank
equations formalism. One method is the Fokker Plank equations without approxi-
mation, the most precise and complex method, but it is unsuitable for analysis and
simulations. Two additional methods approximate the network activities based on the
spectral decomposition of the Fokker Plank operator to the first and second order. The
two last methods approximate the network activities based on the Linear-Nonlinear
Cascade approximation. The Linear-Nonlinear Cascade model [266] is composed of a
linear temporal filter, i.e. a function that defines the membrane voltage distribution
from the estimated distribution of firing rate, and a nonlinear function, i.e. a function
that defines the distribution of firing rate from the membrane voltage distribution.
This study approximates the linear temporal filter by an exponential or a damped
oscillator. Additionally, the section "Alternative derived models" of this paper reviews
the possible extension, approximation or modification of the reduction methods for
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the network of adaptive exponential integrate and fire neurons.
In this thesis, the reduction of the network used is the Mean Ad EX described by

Di Volo et al. 2019 [356]. This model assumes that the network state can be reduced
to its firing rate distribution and assumes that it follows a Markov process [33], i.e.
the system is memoryless, only dependent on the previous state. Additionally, the
model assumes that the network dynamic is an irregular asynchronous state [33, 374],
i.e. the network is quasi-stationary and the neurons are not correlated. Using the
Master equation formalism and these assumptions, the transition function is defined
by the transfer function,i.e. a function that defines the rate of a neuron from a defined
receiving excitatory and inhibitory mean firing rate.

These mean-fields were compared to data to explain some brain dynamics. The
Linear-Nonlinear cascade with the exponential temporal filter was used for the model
electrical stimulation of a neural population [49] and for the model whole brain with
slow-wave sleep activities [47]. The Mean Ad EX was used to model the measure of
consciousness based on stimulation [140] or the interaction of traveling waves in the
visual cortex [374, 56].
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2.1. Parallel and Distributed Computing
Large simulations require parallelization and/or distribution of computation to get

results in a reasonable time, up to a few days or weeks. Parallel computing means
performing calculations in parallel on a single computer, i.e., simultaneously reali-
zing multiple instructions. Distributed computing is the distribution of instructions
across multiple computers. However, all programs cannot be parallelized because
the parallelization requires at least some independence in the instructions, i.e. some
instructions do not require results of previous instructions.

FIGURE 2.1. – Distributed vs. Parallel Computing
Figure 1 from Rehman et al. 2019 [292].

2.1.1 A computer

Understanding the efficiency and limitations of parallelization and distributed
computing requires knowledge about the different components of a computer and
a cluster [72]. A basic personal computer includes a screen, a tower, a mouse and a
keyboard. The screen is used for showing images generated by the computer. The
mouse and the keyboard are the components to interact with the computer. The tower,
the center component of a computer, connects all the parts and supplies some of
them with electricity. The tower is generally composed of a mother card (an electronic
card that connects all components), a power supply unit, two types of memory (a
stable memory, called ROM : Read-Only Memory, and a volatile memory called : RAM :
Random Access Memory), two types of processors (CPU : Central Processing Unit
and GPU : Graphic Processing Unit) and network connection components (wifi card,
Bluetooth card, ethernet port and Universal Serial Bus (USB) ports). Computation,
the core function of a computer, is carried out by CPU cores. Each core has a small
memory for the computation, called cached, and a second memory to support multi-
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FIGURE 2.2. – Computer parts and components
The left sketch illustrates the parts of a personal computer [91], and the right sketch
represents the different components of the tower [1].

threading. This second memory gives the possibility to compute other instructions
when an instruction is waiting, for example, for getting data from the ROM.

The users can have two types of interface with a computer : a graphical interface
or/and a text interface. The graphical interface requires a mouse to interact with
the computer. The text interface is based on a command line interpreter, an engine
that interprets texts to command the computer. All the commands are treated by an
operative system (OS) [323], a software in charge of managing the hardware and the
software resources and providing services to other programs (for example, creating a
process or allocation of memory). Several implementations of OS exist, but the two
main families’ implementations are Windows and Unix (Linux and macOS). The thesis
was carried out using Linux systems which uses an interpreter of bash language, called
bash shell.

2.1.2 A cluster

A cluster is a network of nodes, i.e., towers without a screen, a keyboard and a
mouse, and is designed to be used by multiple people simultaneously. Most clusters
have a specific operative system, but most are based on a Linux system [27]. A cluster
includes at least two types of nodes : logging and computation nodes. The logging
node handles users’ connections and manages the cluster’s resources. Most of the
connection interface is based on a text interface using ssh protocol (Secure Shell
Protocol) [227], i.e. a distant shell with a secure connection. The graphic interface
is possible but less practical because of the latency from the connection. A resource
manager, such as SLURM(Simple Linux for Resource Management) [372], manages
the other nodes to compute instructions.

The resource manager has a program for running on all the nodes to control them
(slurmmd) and a program, the controller, on the logging node to interface with the
users (slurmctdl). One task of the controller is to distribute and schedule the re-
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FIGURE 2.3. – Slurm components
Figure from Slurm documentation [325].

sources/nodes of the cluster depending on the users’ requests and the administrator’s
constraints. The requests of computational resources, called jobs, contains some
requirements such as constraints of memory, time of execution, and the number
of nodes [325, 372] and, in the case of non-interactive jobs, a batch script (file with
command lines). The resource manager handles only the computational resources.
The memory resources are also shared but managed by the OS.

This common interface does not reflect the diversity of architecture and composi-
tion of clusters. Four clusters are used in this thesis and can show the cluster diversity.
Piz-daint [277] is a ten years old Swiss cluster ; the last update of the cluster is com-
posed of 2 sub-networks (nodes with or without GPU) based on a Cray system. Cray
system is a solution provided and supported by a private company, CRAY Incorporated,
a subsidiary of Hewlett Packard Enterprise. This solution provides specific architec-
ture and software to optimize distributed computing; for example, the scheduler is
handled by the Application Level Placement Scheduler(ALPS) [195] with the same
interface as SLURM.
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DEEPEST [86] is a German prototype cluster based on three modules to evaluate
the performance of the usage of heterogeneous nodes to accelerate software perfor-
mances. The three modules are cluster module (node without GPU), booster module
(node with GPU) and data analytics module (node with GPU and Field Programmable
Gate Arrays).
JUSUF [65] is a German cluster of nodes with a large amount of RAM (256 GB) and
CPUs (128 cores). One particularity of this cluster is that the computational resources
are requested per CPU instead of per node to avoid the waste of resources by forcing
the usage of all the CPUs.
In addition, some clusters can contain heterogeneous nodes (different numbers of
CPU and memory sizes), such as the INS cluster.

FIGURE 2.4. – Architecture comparison of the Virtual Machine (a), Docker container
(b), and Singularity (c)

Figure 1 from Li et al. 2021 [224].

Before executing any program, i.e. list of instructions, on a cluster, it is necessary
to port your application, i.e. engine for executing specific instructions, onto a cluster
by installing or using containers. Installing an application requires identifying the
existing and missing libraries for your software, identifying the compiler associated
with the specific sub-network, setting up the environment, and configuring the ins-
taller of libraries. The optimal installation is a challenge because the dependence
between libraries creates limitations that may even make the installation impossible
and requires knowledge about the possible configurations and available optimization
(for example see the different scripts of installation of co-simulation).

The second way to bring an application to a cluster is by using containers, a portable
environment containing installed software and libraries. The container is instantiated
from an image in a standardized virtual environment, at the difference of virtual
machines that virtualize the hardware and require a second OS. Multiple standards
exist for creating an image; in this thesis, the container is based on Singularity [213]
and Docker [359]. The main difference between Singularity and Docker is that the
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first container provides access to the host’s services. For example, docker containers
can not use the ssh server of the host and need their own server, which is not the
case for Singularity. However, access to some services is necessary to communicate
between the nodes and is essential for distributed computation. Consequently, some
container runtime, i.e. the creator of the virtual environment, for docker image is
specific for cluster exist such as Shifter [133] or Sarus [26]. One remark is that the
usage of a container can slow the application because it requires some virtualization
of the environment and does not provide all the available optimization. Still, it gives
better application repeatability and facilitates software deployment on a new cluster
or computer.

2.1.3 parallelization and distributed computing

FIGURE 2.5. – Multithreading vs. Multiprocessing
Figure from [367].

This simplified overview of a computer and a cluster provide the basic concepts
to understand the possibilities and the limitations of parallelization and distributed
computing [72]. Parallel computing is the concept of realizing multiple instructions
simultaneously to get the expected results. A program, i.e. a list of instructions, can be
parallelized if some instructions are independent of the results of previous instructions.
For instance, in the case of parameters exploration based on a grid, each exploration is
independent and easily parallelized ; it is an embarrassingly parallel workload. Howe-
ver, the potential for program parallelization does not mean that these programs have
to be implemented in parallel due to hardware limitations. If multiple instructions
are based on the same memory, at this moment, the optimal implementation use
multi-threading. The multi-threading is based on a thread, i.e. a list of instructions
that share the same memory, to execute a program and the capacity of the CPU to
switch context. Without going into details, this tool requires coordination of reading
and writing memory because the execution order of instruction is not guaranteed.
Suppose the multiple parallel instructions need different parts of the memory; in
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these cases, the optimal implementation uses multi-processing. The multi-processing
is based on the usage of several simultaneous CPUs. Without going into details, this
tool requires managing shared resources (memory and computation) and communi-
cations between processes, i.e. independent list of instructions, for the transfer of data
and synchronization. However, this solution is slower than multi-threading because it
requires data transfer between the CPUs. The parallelization will not be sufficient for
considered memory (impossible to load in the RAM) because these programs will be
slow due to the necessary access to ROM, the slowest accessible memory. One optimi-
zation for these programs is the distribution of computation over multiple computers.
Distributed computing requires the coordination of computers and to distribute the
instructions with the consideration that the connections between computers are slow.
Nevertheless, multi-threading, multi-processing and distribute programming are not
exclusive and can be combined for the most efficient implementation. As you can see,
the optimal performance of a program is dependent on the skills of the developer to
use the best strategy for paralleling the different parts of programs with the different
possibilities on specific hardware with the optimized libraries.

For parameter exploration, the simpler way is to launch the same program with
different parameters in parallel using a scheduler, for example, Snakemake [204],
to avoid overloading a computer. The overload of a computer is when the required
computational resources are higher than the available ones. In this context, the OS will
run all the explorations simultaneously and distribute the calculation time between
them. The consequence is a slow-down computation because each CPU must change
its cached at every instruction. By default, on a cluster, the resource manager provides
an interface to avoid this overload of the nodes.

For the simulation of a large homogeneous sparse network of point neurons with
synapses, it recommends combining all the parallelization tools. In this case, the
network cannot be handled by one computer or node and requires the simulation’s
distribution over multiple computers. Additionally, the neurons communicate with
spikes in the sparse network, meaning that each neuron does not need to know
the state of all neurons at every time. Consequently, the neurons can be computed
independently in parallel with some synchronization to communicate spikes. Due
to the homogeneity of the neurons, the instructions to compute the evolution of the
neuron’s state differ only in the values of the state itself. Consequently, the memory for
the instructions differs only by the neurons’ state. Due to this, the implementation can
use multi-threading to exploit CPUs’ capacity to execute an instruction when another
is waiting, multi-processing to use multiple CPUs, and distributed programming to
avoid overloading computers.

There are multiple methods for managing memory, synchronization, and communi-
cation between thread, process and computer [72]. However, some standard libraries
propose elementary functions for implementing these methods. The main standard
library in C++ for parallelization using shared memory, i.e. mainly for multi-threading,
is Open Multi-Processing (OpenMP) [74]. The high-level standard for communication
between processes on one or multiple computers, i.e. multi-processing and distribu-
ted computation, is Message Passing Interface (MPI) [342]. This latter standard has
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two families of implementations : MPICH [251] (MPIVACH2 [252], Cray MPT, Intel
MPI Library, Parastation MPI [250]) and OpenMPI [129, 145] (merge of FT-MPI [144],
LA-MPI [112], LAM/MPI [330], and PACX-MPI [196]).

These two implementations also include a standard for managing and configuring
processes, specifically, automating MPI configuration based on the SLURM require-
ment. This standard interface is called Process Management Interface [22, 53].

FIGURE 2.6. – Interaction of MPI and the process manager through PMI
Figure 1 from Balaji et al. 2010 [22].

2.2. Human Brain Project and EBRAINS
This thesis was done in the context of the two last stages of the Human Brain Project.

2.2.1 Humain Brain Project

The Human Brain Project (HBP) [168, 235, 234, 12, 13, 11] has granted as European
Future and Emerging Technologies Flagship (FET) by the European Commission in
2011. A FET is a large-scale, long-term research initiative funded over ten years to 100
million euros annually. HBP started in 2013 and was composed of four phases : a Ramp
UP phase (30 months) [341], a Specific Grant Agreement 1 (SGA1, 30 months) [169], a
Specific Grant Agreement 2 (SAG2, 30 months) [170] and a Specific Grant Agreement 3
(SAG3, 30 month with an extension of 6 month due to the COVID) [171].

The project was initially scientifically led by Henry Markram [235, 234] with a vi-
sion of reverse engineering the human brain based on two main trends : developing
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FIGURE 2.7. – Human Brain Project Timeline
Figure adapted from [168].

modern supercomputers and integrating multimodal data in models. This vision was
based on the first results of the Blue Brain Project [233, 295], started in 2005 and led by
Dr. Markram himself. At this time, the Blue Brain Project was developing a network of
neurons modeled at the level of ion channels for a neocortical column of the rat brain
using Blue Gene/L, a supercomputer design for simulating a large number of neurons.
HBP is structured around six Information and Communication Technology (ICT)
platforms : Neuroinformatics (management and interaction of neuroscience data ba-
sed on FAIR principles (Findable, Accessible, Interoperability and Reusability) [363]),
Brain Simulation (high-fidelity digital reconstruction and simulation of the brain),
High-Performance Computing (development of supercomputer dedicated to brain
simulation), Medical Informatics (connecting patients data from hospitals to help
understand or cure illness), Neuromorphic Computing (designing hardware inspired
from brain biology to increase the speed of simulations) and Neurorobotics (integra-
tion of brain model into robots). Additional to these six ICTs, HBP supported four
scientific projects : Mouse brain organization (construct models of mouse brain from
molecules to behavior), Human brain Organisation (characterize the functional and
structural specificity of the human brain), Systems and Cognitive Neuroscience (focus
on behavioral-cognitive processes and brain states), and Theoretical Neuroscience
(bridge scales from cells to whole brain) [12]. Furthermore, this project dedicated
efforts to reflect on ethics and societal issues relevant to the project. And it provides
educational materials and training for young researchers.

During SGA1, the project was criticized for missing scientific perspectives like cog-
nitive science or the lack of experimental neuroscience, but also for the opacity of its
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governance [126]. The project took a new direction in SGA2 under the lead of Katrin
Amunts in 2018. The new goal was to provide collaborative tools for decoding the
brain based on multiscale reconstruction building upon scientific results from the two
first phases [12], and this Ph.D. thesis started around that time. Under the pressure of
the European Commission, SGA3 was more dedicated to the interoperability of the
tools developed before and the demonstration of scientific contribution. HBP will end
September 2023 with the finalization of EBRAINS [10], a digital research infrastructure
that contains the principal datasets and tools developed during the project lifetime.
Besides this platform, HBP created a European community of researchers dedicated to
maintaining EBRAINS [99, 310] and to keep collaborating along a common vision [10,
310]. The support of EBRAINS is based on a network of European super-computing
centers, FENIX [5, 4, 6], built during HBP.

2.2.2 EBRAINS

EBRAINS is a digital research infrastructure composed of neuroscience datasets
from different animals and measured at different scales with associated tools for
sharing, comparing, analyzing, modeling and visualizing this data. The following
paragraph provides a presentation of the tools of EBRAINS connected to this thesis to
illustrate their variety.

FIGURE 2.8. – TVB on EBRAINS cloud services
Figure 1 of Schirner et al. 2022 [303]

EBRAINS supports three neurons simulators : NEURON [159], Arbor [3] and NEST
[98]. NEURON is a simulator, created in 1983 [159, 52], of neurons based on cable
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or compartmental model written in C and C++ with a graphical user interface (GUI).
The simulator has multiple extensions (for example, a python interface [160]) and
optimization (for example, parallelization [242, 210]). Arbor [3] was developed by HBP
to run efficient simulations of compartmental neurons on clusters and computers.
NEST [152], created in 1995 [97], focuses on optimizing simulations of point neurons.
This simulator is an interpreter of a simulation language interface (SLI) [97] written
in C++ for improving the parallelization of simulations. This simulator has a python
interface [107] and a GUI (NEST desktop) [329] dedicated to education. EBRAINS
also supports a brain simulator, The Virtual Brain (TVB) [299, 300]. TVB is written in
Python and has a GUI. Some derived versions propose an optimization like The Fast
TVB [303] or TVB rateML [354, 303].

For the integration of different scales and the interoperability of simulators, EBRAINS
offers standard interfaces to configure neuron simulators, such as PynNN [79], Brain
Scaffold Builder(BSB) [81] and ConGen [156]. PyNN is a common and standard inter-
face to create point neural networks for simulators such as NEURON [159], NEST [98]
and neuromorphic platforms (SpiNNaker [267, 128, 226] and BrainScales [302, 269]).
BSB [81] is a framework for managing simulations with NEST and NEURON. This fra-
mework implements functions to parameterize neurons, define connectivity, launch
simulations on a specific simulator, and create visual simulation outputs. ConGen
[156] offers a visual language to configure simulators and visualize networks of mul-
tiple scales.

EBRAINS also supports tools for visualization, such as ViSimpl [130] and NEST
desktop [329]. ViSimpl allows multiple visualizations of neural networks, such as the
morphology and placement of neurons, spiking neural network activity and connecti-
vity, all simultaneously.

EBRAINS also supports analysis and comparison between simulation and experi-
ments, such as LFPy [225, 149], HybridLFPy [148], Electrophysiology Analysis Tool-
kit(Elephant) [90]. LFPy[225, 149] is a tool for simulating extracellular potential (LFP,
EEG, ECOG, MEG) generated by multicompartment neurons simulated by NEURON
or Arbor. HybridLFPy [148] is an extension of LFPy for the point neuron simulation.
Elephant [90] is a tool for analyzing the electrical signal and spike trains and also the
statistical generation of spike trains.

EBRAINS provides a collaborative platform (https ://wiki.ebrains.eu) and a social
network (https ://community.ebrains.eu) to facilitate access to these tools. The col-
laborative platform comprises a set of tools for collaboration between researchers
and the training of future researchers. This platform uses xwiki [312] (for creating a
collaborative environment and editing and managing web pages), OnlyOffice [264]
(for collaboration on text documents), Seafile [311] (for file management) and a Ju-
pyterLab [283] environment (to run code and use EBRAINS’ tools). This platform is
connected to Fenix for running this collaborative environment. The overview propo-
sed by Schirner et al. 2022 [303] provides an example of the interaction of tools and
available services.
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3.1. Chapter overview
As the core of this thesis is the multiscale co-simulation of the brain, I will first

describe the software science co-simulation design pattern. This chapter describes
the design pattern and illustrates its functioning along a neuroscience example. An
example is the multiscale simulation of CA1 region of the cellular-level hippocampus
of the mouse embedded into a full brain network involving ECOG and polytrodes
recordings. This simulation is running on the co-simulator of The Virtual Brain [299]
and NEST [98].
This chapter is based on an under-revision article in Frontiers in Neuroinformatics :
Multiscale co-simulation design pattern for neuroscience applications
Lionel Kusch 1, Sandra Diaz 2, Wouter Klijn 2, Kim Sontheimer 2, Christophe Bernard 1,
Abigail Morrison 2,3,4 and Viktor Jirsa 1

1Institut de Neurosciences des Systèmes (INS) UMR1106, Aix-Marseille Univ., Mar-
seilles, 13005, France
2Forschungszentrum Jülich GmbH, Institute for Advanced Simulation, Jülich Super-
computing Centre (JSC), Simulation and Data Laboratory Neuroscience, JARA, Jülich,
52425, Germany
3Forschungszentrum Jülich GmbH, IAS-6/INM-6, JARA, Jülich, 52425, Germany
4Computer Science 3 - Software Engineering, RWTH Aachen University, Aachen, 52062,
Germany
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Abstract
Integration of information across heterogeneous sources creates added scienti-

fic value. Interoperability of data, tools and models is, however, difficult to accom-
plish across spatial and temporal scales. Here we introduce the toolbox Parallel Co-
Simulation, which enables the interoperation of simulators operating at different
scales. We provide a software science co-design pattern and illustrate its functioning
along a neuroscience example, in which individual regions of interest are simulated
on the cellular level allowing us to study detailed mechanisms, while the remaining
network is efficiently simulated on the population level. A workflow is illustrated for
the use case of The Virtual Brain and NEST, in which the CA1 region of the cellular-level
hippocampus of the mouse is embedded into a full brain network involving micro
and macro electrode recordings. This new tool allows integrating knowledge across
scales in the same simulation framework and validating them against multiscale expe-
riments, thereby largely widening the explanatory power of computational models.

3.2. Introduction
The brain is a complex system that includes billions of cells that interact with each

other in a nonlinear manner. As a result, even if we were able to measure what all
cells are doing simultaneously, we would not gain a deep understanding of how the
brain works, as emergent properties can be only understood through an integrated
approach [61], ideally in a common theoretical framework to give meaning to data at
all scales [125]. Such a framework using theoretical models can account for nonlineari-
ties and subsequently explain emergent properties [186, 276]. Numerous models have
been developed to study the interactions of molecules within cells, cell physiology, the
activity of cell populations, full brain dynamics and human behaviour [117, 104, 172].
It is currently impossible to model the brain with all its cellular and molecular consti-
tuents due to limitations in resolution, computational resources, or available data
from measurements. As a result, even if a given physio/pathological process can be
modelled at the macroscopic scale, the lack of microscopic resolution at the molecular
scale prevents obtaining mechanistic insight [238]. It is, therefore, important to bridge
different scales, which is a challenge not unique to neuroscience. In material science,
the study of composite materials requires the description of molecular interactions
of individual composites and a global description for the analysis of the subsequent
deformation of the composite plate [304]. In biology, to understand the effect of drugs
on tumour growth, it is necessary to model the tissue of cells around the tumour,
the tumour cells, and the subcellular transduction signalling pathways [293, 289]. In
neuroscience, synaptic plasticity uses mechanisms of spike timing on the millisecond
scale but leads to the formation of long-term memory evolving on the scale of minutes,
days and weeks [103].
Our current study aims to provide a methodology to address the scientific and techni-
cal problems of multiscale co-simulation in the brain. The main difficulty of multiscale

73



3. Multiscale co-simulation design pattern for neuroscience applications – 3.2.
Introduction

simulation is to enable the information exchange between models formulated at dif-
ferent scales. Such communication can be interpreted as a coupling across scales.
For example, in the case of tumours, the tissue around the tumours is represented by
a continuum model (first scale), which interacts with discrete tumour cells (second
scale) ; while continuous signalling pathways are modelled in cells (third scale). At
present, it is not possible to create a common coupling function amongst these three
scales and each scale can use a dedicated simulator engine for optimizing the simula-
tion. In the case of tumours, a common approach is to use COMSOL Multiphysics [64]
for the tissue simulation, and Matlab [174] for the simulation at cellular and subcellu-
lar scales. Because the interaction of simulator engines is not a commonly supported
feature, co-simulation of models at different scales and within a common framework
is challenging. Existing solutions for co-simulation in physics [118, 141] or in biology
[236, 158] cannot be easily adapted in neuroscience due to the specificity of simulators
and models. There is a large number of scale-specific simulators in neuroscience, e.g.
for compartmental neurons : NEURON [52], Arbor [3], Genesis [34] ; for point neurons :
NEST [135], Brian [334], ANNarchy [353] ; for the brain network : The Virtual Brain
(TVB) [299], Neurolib [48]). Most of these simulators can support multiscale simula-
tion to a limited degree, but they remain specialised and optimised for supporting a
specific model type; consequently, the usage of other model types diminishes their
optimal performance. The objective of co-simulation is to remove this limitation by
exploiting the advantages of each simulator within the same simulation [137, 244, 113,
100].
Schirner et al. 2022 [303] provide an overview of software tools available for TVB in
the European digital neuroscience infrastructure EBRAINS. Two toolboxes for co-
simulation are introduced in EBRAINS, TVB-Multiscale and Parallel Co-Simulation.
The former toolbox focuses on rapid development for scientific use cases, whereas
the latter focuses on optimisation of co-simulation performance and applies the
co-simulation design pattern presented in this study. An illustrative example of co-
simulation of multiscale models using TVB Multiscale co-simulation is virtual deep
brain stimulation [237, 315].

Here we present the methodology of the Parallel Co-Simulation toolbox and illus-
trate its use along the example of combined microscopic Local Field Potential (LFP)
and neuronal firing recordings, and macroscopic electro-COrticoGraphy (ECOG) in
mice [294]. This example aims to demonstrate computational requirements for in-
terpreting recorded multiscale data using multiscale modelling [73]. The method is
based on a software science co-design pattern[102] that dictates the separation of
science and technical attributes, allowing these to be addressed in isolation where
possible. This separation is based on transformer modules, which synchronise and
connect simulators and include the function for transforming data between scales. A
multiscale model is built from experimental data obtained in the mouse brain with
ECOG cortical signals and LFP signals in the CA1 region of the hippocampus. The
model is co-simulated using the simulators TVB and NEST. Three sets of model para-
meters related to different network dynamics are chosen to demonstrate the feasibility
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and limits of this modelling approach. The following sections describe the technical
details and the optimisation for co-simulation.

FIGURE 3.1. – Multiscale co-simulation design pattern and Example of an application
in neuroscience

Top. Multiscale co-simulation design pattern between 2 simulators using transfer modules to
transform and transfer data between scales. Bottom. Application of the co-simulation pattern
for a neuroscience use case focusing on the CA1 region of a mouse brain. The left panel
shows a rendering of the mouse brain from Allen Institute [222]. Blue spheres mark the centres
of mouse brain regions, and the red spheres are a subset of neurons of the CA1. The right
panel illustrates the co-simulation data flow between TVB [299] and NEST [152], showing the
different functional modules. The four corners’ plots illustrate the data type exchanged in
respective information channels. The transfer modules exchange mean firing rate data with
TVB (module on the right) and exchange spike times with NEST (module on the left). Each
population has a specific module enabling data transfer between populations in different
scales.
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3.3. Results
The multiscale co-simulation software science co-design pattern formalises the

interactions between parallel simulations at different scales. The data transformation
among scales is performed during their transfer among simulators. This design pattern
comprises 5 modules (figure 3.1a) : one launcher, two simulators, and two transfer
modules. Each transfer module contains 3 components : one interface for receiving
data, one interface for sending data and a transformation process. The launcher starts
and handles the coordination of simulation parameters. The simulators perform scale-
specific simulations. The transfer modules transfer the data from one simulator to
another. During the transfer, the transformation process transforms the incoming
data for the simulator on the receiver side.
This study applies the multiscale co-simulation design pattern to a virtual experiment
workflow between the in-silico mouse whole-brain dynamics and the in-silico micro-
scale network dynamics of the hippocampus CA1 region. The recording of the virtual
CA1 and virtual mouse brain has similar positions that some multiscale experiments
[294] (see figure 3.1b). The Virtual Brain (TVB) [299], an open-source platform, has
been used to simulate the mouse whole-brain network activity, while NEST [152],
another open-source platform, has been employed for the simulation of the CA1
neuronal network dynamics. This specific application illustrates this novel design
pattern’s technical limitations and demonstrates the potential for a wider range of
applications.

3.3.1 Virtual experiment of hippocampal CA1 embedded
in a full mouse brain

The virtual experiment of the mouse brain is composed of a brain network model,
regional neuronal network models and electrophysiological sensors models.
The whole-brain animal model is a network comprised of nodes and edges, where
each node contains a neural mass model to simulate the activity of each region and
where edges represent the anatomical connections among the regions. The anatomi-
cal connections are defined by track lengths and an adjacency matrix representing the
coupling strengths of connections between the regions of the network, the "connec-
tome", which are extracted from tracer data from the Allen Institute [263] (figure 3.2f
and 3.2g). The dynamic activity of each brain region is obtained with the Neural Mass
model described by Di Volo et al. [356] (see Materials and Methods). The neuroin-
formatics platform The Virtual Brain (TVB) [299] performs the animal whole-brain
simulation by considering both the chosen Neural Mass model and specific "connec-
tome".
The dynamics of the two main brain regions of interest, the left and right hippocam-
pus CA1 (figure 3.2), are modelled as a separate neural network composed of point
neurons connected with static synapses. Each network comprises one inhibitory, and
one excitatory homogeneous population of adaptive exponential integrate and fire
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neurons [37] (see Materials and Methods). In each microcircuit, the populations of
point neurons are taken to be homogeneous ; that is, neurons of the same population
have the same parameter values. The neuroinformatics platform NEST [152] is able to
perform the regional neuronal network simulation using the aforementioned descrip-
tion of the microcircuit of point neurons.
To compare the simulations with empirical data, the virtual experiment contains two
models of electrophysiology sensors for probing neural activity. The electrophysio-
logical sensor models are two surface grids of 8-channel electrocorticography arrays
and two penetrating multi-electrode arrays of 32 recording sites each. Their positions
are illustrated in figure 3.2a. Figure 3.2e shows the position of the polytrodes in the
mouse brain, while figure 3.2b and 3.2d depict the position of the left probes in a
cross-section of the left hemisphere and the position of the point of the polytrodes
in the population of neurons, respectively. Figure 3.2c displays the polytrodes with
the 32 recording sites. The simulated signal from the ECOG sensor is computed using
the model of a point dipole in a homogeneous space as described by Sanz-Leon et al.
2015 [300] (see Materials and Methods) and the hybridLFPy [148] software is used for
computing the signal from the recording site of the implanted probes (see Materials
and Methods). The latter software uses morphologies and spatial position of neurons
to generate the underlying local field potential (LFP) for given spike trains of point
neurons. The morphology of neurons is taken from the presented morphology in
Schuman et al. 2022 [322]. The excitatory morphology is based on the pyramidal cell
morphology, and inhibitory neurons are based on the basket cell morphology [322].

3.3.2 Output signal from the virtual experiment

This section describes the co-simulation results at different scales by describing the
possible recordings of physiological signals from the simulation of CA1 embedded
in a whole mouse brain. The Discussion section will provide an interpretation of
these results to describe the advantages and the limitations of the multiscale co-
simulation design pattern. As described in figure 3.2, the output modalities of one
virtual experiment have some direct equivalent measure of reality experimentation
such as the local field potential measure at every thirty-two sites of each polytrode
electrode (figure 3.2j) and from the sixteen electrocorticography channels of each
hemisphere (figure 3.2k). Moreover, the simulation gives access directly to the voltage
membranes of the CA1 neurons (figure 3.2h), adaptive current of the CA1 neurons
(figure 3.2g), spike times (figure 3.2i) and the mean firing rate of the different regions
of the mouse brain (figure 3.2m). To illustrate the variability of the measures and some
limitations of the coupling scale model, we choose three sets of different parameters
for CA1 and Neural Masses. Each parameter represents one of three dynamic regimes
of the CA1. These results are separated between micro (figure 3.3) and macro (figure
3.4) scales, but they are the output of the simulation workflow between TVB and NEST.
In particular, figure 3.3 reports the mean voltage membrane, mean adaptive current,
instantaneous firing rate and the signal of 12 central sites from the 32 electrode sites
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FIGURE 3.2. – The virtual mouse brain experiment
a Cross section of the mouse brain with the position of the left implanted electrode. b Position
of the site layout of a polytrode (Neuronexus 32 models from MEAutility library). c The probe
position inside the neural network. The red neurons are pyramidal neurons [322] and the blue
neurons are basket cells [322]. d Mouse brain of Allen Institute [222] with the position of the 2
polytrodes and 16 ECOG electrodes. The ECOG electrodes measure the neural field from the
surface of the electrode in blue for the left hemisphere and yellow for the right hemisphere.
Blue spheres mark the centres of mouse brain regions, and the red spheres are a subset of
neurons of the CA1. e Representation of the connectome of the mouse brain [263]. The blue
dots are brain regions, and the red ones are CA1 regions, whose neurons are simulated with
NEST. The grey links highlight the strongest anatomical connections. f The weights of the
anatomical links in F are shown as an adjacency matrix. g The tract lengths associated with
F are shown as an adjacency matrix. The anatomical connections are extracted from tracer
data of the Allen Institute [263]. h example of voltage recorded from 10 excitatory and 10
inhibitory neurons. i Example of adaptation currents recorded from 10 inhibitory and 10
excitatory neurons. j Example of spike trains recording from the left CA1. k Example of Local
Field Potential recorded from the poly-electrode generated from the spike trains and neuron
morphologies. l Example of recording from the ECOG electrodes of the left hemisphere. m
Example of mean firing rate of excitatory and inhibitory populations for a subset of mouse
brain regions.
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of the specific CA1 network. Figure 3.4 displays the results on the whole brain level :
the mean firing rate of each brain region, the signal of the 16 electrocorticography
channels and the transferring mean firing rate from the spiking neural network.

The figures 3.3 and 3.4 are separated into three different panels, which correspond
to the three sets of parameters representative of the different types of dynamics
exhibited by spiking neural networks (see Materials and Methods for the choice of
these parameters). Panel a represent an asynchronous (A) state, which is characterised
by a constant (flat line) the mean firing rate (see figure 3.3a top-right and figure 3.4a
top-left). Panel b represents an irregular synchronous (IS) state, which reflects a large
irregular variation of the mean firing rate (see figure 3.3b top-right and figure 3.4b
top-left). Panel c represents regular bursting (RB) reflecting regular oscillations (see
figure 3.3c top-right and figure 3.4c top-left) and a second dominant high frequency
(see figure 3.3c bottom-right).

3.3.2.1 Results at microscale

The top left of panels a, b and c of figure 3.3 show the membrane voltages for ten
excitatory neurons (thin red curves) and ten inhibitory neurons (thin blue curves) and
mean membrane voltage of these neurons (thick curves). The middle left of panels
a, b and c of figure 3.3 represent the adaptive currents from the same ensemble of
neurons (thin curves) and the mean adaptive current of these neurons (thick curves).
The third biological observable from the simulation is the Local Field Potential which
differs among panels (see bottom left of panels a, b and c of figure 3.3). The top right
of panels a, b and c of figure 3.3 display spike raster plots of the excitatory population,
in red, and the inhibitory population, in blue, of the left CA1. The spiking activity is
homogeneously distributed between neurons and time frames for the A state, while the
other two states show co-activation of neurons with different periods. The associated
instantaneous firing rate is shown in the middle right of panels a, b and c of figure 3.3.
The spectral analysis of the instantaneous firing rate displays a peak around 3 Hz for
the IS state (bottom left of panel b of figure 3.3), no peaks for the A state (bottom left of
panel a of figure 3.3), and two peaks (around 6 Hz and 160Hz) for the RB state (bottom
left of panel c of figure 3.3). For the RS state, the frequency of the first peak, 6Hz, is
also present in the mean of the adaptive currents, while the second peak is associated
with the burst time, as shown in further detailed in Supplementary Figure 1.

3.3.2.2 Results at macroscale

The top left of panels a, b and c of figure 3.4 display the instantaneous firing rate
(light red) of the spiking neural network with the associated transferred mean firing
rate of the left region of CA1 (thick red line). The neural network’s different states affect
the ECOG signals, as shown in the bottom left of panels a, b and c of figure 3.4. The
mean firing rate of excitatory (blue) and inhibitory (red) populations of each brain
region are plotted in the graph on the right part of panels a, b and c of figure 3.4 and
Supplementary Figures E.2, E.3 and E.4.
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FIGURE 3.3. – Spiking neural network in 3 different states of the left CA1
The parameterization of the spiking neural network of CA1 is chosen such that the
dynamics are in an asynchronous state (a), irregular synchronization state (b) and
regular bursting (c). top-left Voltage membrane of 20 adaptive exponential leaky and
integrator neurons and their mean in a thick line. The red (blue) lines are excitatory
(inhibitory) neurons. middle-left The adaptation currents of 10 neurons and their
mean in a thick line. bottom-left Local field potential from the 12 sites in the middle
line of the left polytrode. The local field potential is computed from the spike trains of
all neurons by the software HybridLFPY[209]. top-right Spike trains of 10000 neurons
for 11s. middle-right instantaneous firing rate of the excitatory (inhibitory) population
above in red (blue). bottom-right Spectrogram and power spectrum example of the
instantaneous firing rate for 10s.
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FIGURE 3.4. – Three different states of CA1 in mouse brain
The parameterization of the CA1 spiking neural network is defined to obtain an asyn-
chronous state (a), an irregular synchronization state (b) and a regular bursting (c).
top-left Instantaneous firing rate of spiking neural networks in light red for 11 seconds.
The thick line shows the sliding window mean firing rate. bottom-left (bottom-right)
Signal from ECOG sensors, the figure represents the recording of the 8 electrodes on
the top of the left (right) hemisphere. right part Subset of region overview of the mean
firing rates of excitatory, in red, and inhibitory, in blue, population from the model of
Mean Adaptive Exponential. The two black curves are the mean firing rate of the two
populations of excitatory neurons simulated with NEST [152].
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3.3.3 Workflow between NEST and TVB

The previous multiscale example uses the workflow between TVB and NEST for the
co-simulation. As an implementation of the design pattern, this workflow comprises
five modules : two simulators (TVB and NEST), one launcher and two transfer modules.
All these modules are built with the capability to be repurposed or replaced, allowing
for adjustments of components of transfer modules or communication protocols (see
Discussion). Two additional proofs of concept were implemented to demonstrate the
possibility of the reusability of the components. The first example replaces NEST with
NEURON, and the second replaces TVB with Neurolib (see Supplementary Figure E.24).
Moreover, without extra development, we get a proof of concept of co-simulation
between NEURON and Neurolib.

The simulators perform the actual integration of the dynamics in time and require
two properties to be integrated within one optimised and coherent workflow. The
first property is time delay equation management, essential for reducing data transfer
overhead. The second property is the presence of a high bandwidth Input/Output
(I/O) interface that facilitates the efficient exchange of data and parallel execution
of the simulators. Since TVB and NEST did not have generic high bandwidth I/O
interfaces by default, these had to be implemented for each simulator. Details of how
these I/O interfaces were created are reported in Supplementary Note E.1.1. Briefly,
the NEST interface uses the device nodes with a specific back-end, while TVB uses
proxy nodes which are proxy nodes used for the interface with the external software.

The launcher prepares the environment for the simulation and initiates all the other
modules, as shown in figure 3.5a (see details in the Supplementary Figure E.5). The
preparation consists of creating folders for the different modules, the logger files, and
the common file with all the parameters of the co-simulation. Creating the parameters
file provides the functionality to enforce consistent constraints on the parameters to
be shared between the modules, such as ensuring the same integration step in both
simulators, which is needed for correct synchronisation between modules.

The transfer modules connect simulators by transferring data between scales and
adapting the communication delay throughout the simulation. Each module is com-
prised of three components : two interfaces and one transformer (see Figure 3.1a and
Supplementary Figure E.14). These components are implemented in different files
for reusability and modularity and are tested independently to ensure robustness
(see Supplementary figure E.12). The interfaces are specific to each simulator, while
the transformation can be extended, modified or reused since the transformation
function is implemented as an independent process (see Supplementary Note E.1.2).
The components exchange data using a simple Application Programming Interface
(API). The API is based on fourth functions and assumes that the connections are
already established. The functions are "check if ready to get or send data", "trans-
fer data", "end the transfer" and "release the connection" (see Supplementary Note
E.1.2 and Supplementary Figure E.15). The API is implemented with two different
technologies depending on the nature of the parallelisation of the components (multi-
processing or multithreading). In the case of multiprocessing, each component runs
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in an individual process, and a Message Passing Interface (MPI) is used to transfer
data. In the case of multithreading, each component runs in an individual thread in a
shared process, and the data is transferred using shared memory. Multithreading uses
fewer computational resources (see Performance section). However, multithreading is
unstable on a supercomputer due to the global interpreter lock of python (for more
details, see the section deadlock due to the global interpreter in Materials and Me-
thods). It is recommended to use multiprocessing on a supercomputer, this solution
is slower, but it is stable and allows the usage of multiple computational nodes for the
transformation function.
The transformation function provides Neural Mass firing rate values by using a sliding
window, shown in figure 3.5e. The panel also illustrates the inverse transformation
from the mean firing rates to spike trains using a multiple interaction process [209].

The modular workflow execution is composed of three main blocks : start-up,
simulation-loop and termination (see Figure 3.5a and details in the Supplementary
Figure E.5).
The start-up procedure allocates a logger for each component, facilitating debugging
of the co-simulation. Subsequently, the modules and their communication channels
are configured according to the parameter file. At this stage, several initialisation files
are generated with simulation parameters only available after instantiation of the
model (e.g. id of NEST devices and MPI port description).
Once the simulation is launched, the simulator time clocks are synchronised using
asynchronous message passing : At each synchronisation step, simulators receive in-
put data, after which the next step is simulated. The transfer modules can buffer data
for one synchronisation step until the receiving simulator is available for receiving.
Each simulator requires an initial condition (NEST : initial voltage membrane and
adaptation current and TVB : state of the node during the previous seconds) and an
initial message. For TVB, this starting message is sent by the transformer processes
while, for NEST, it is produced by transforming the initial condition of TVB.
Ultimately, the termination occurs at the end of the simulation by the simulators
themselves (see Materials and Methods for details).

3.3.4 Performance

The evaluation of the performance is made against a fictitious workflow with op-
timal performance, a co-simulation with instantaneous communications between
simulators. As all the modules are designed to run in parallel, the co-simulation time
for each module is identical and equal to the total running time. The focus is only on
the simulator timers because the time of the transformer components is dominated by
the waiting time of data (see Supplementary Figure E.5). The total running time of the
simulators is divided into 5 parts. The "initialisation" time is the time of configuring
the simulators and creating connections. The "ending" time is the time of closing the
connections, stopping the simulator engine and terminating processes. The "simu-
lation" time is the total time of the internal computation of simulator engines. The
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"wait" time is the total duration of waiting time for access to the data to transfer by
the simulator interface of the transformer module. The "IO" time is the total duration
of functions for exchanging data between simulators and the transfer modules minus
the "wait" time.
A perfect co-simulator has the time of the slowest simulator X; thus, "wait" and "IO"
times equal zero. From figure 3.5b and the Supplementary figure E.17, the actual
implementation is close to ideal when the number of neurons simulated by NEST is
lower than 1000. In this case, TVB is the slower simulator, and NEST spends most of
the time waiting for data from TVB.
When the number of simulated neurons is between 1000 and 20000 neurons, "simula-
tion" time of TVB is approximately the same as the sum of "simulation" time and "IO"
time of NEST. In this condition, each simulator is waiting for the transformation of the
data among scales.
When the number of simulated neurons is higher than 20000, NEST is the slowest
simulator. In this case, the co-simulation time is determined by the "simulation" time
and the "IO" of NEST. The "wait" time is set to zeros, and the "IO" time is higher than
the "simulation" time (see Supplementary Figure E.17 and Supplementary Figure
E.20). The two principal causes are that the communication between modules is slo-
wer than inside the modules and the increased size of the neural spike data with the
increasing number of neurons (each neuron in NEST receives an individual spike
train). A closer look at the performance shows that the communication spends most
of the time sending individual spike trains to NEST (see Supplementary Figures E.23).
However, the data size is related to the model chosen and can be reduced.
As shown by figure 3.5c and 3.5d, some optimisations can be implemented to reduce
the problem of overhead time of communication. Figure 3.5c and Supplementary
figure E.18 represents the time delay between brain regions when delayed data is
aggregated to reduce the "IO" time and, hence, the co-simulation time. In this case,
the simulators are not synchronised at each time step but at n time steps (limited by
the model of connection). This aggregation can reduce co-simulation time by a factor
of 6 (see Supplementary Figure E.18 and Supplementary Figure E.21). Figure 3.5d and
Supplementary figure E.19 represent a reduction of co-simulation time per reduction
of the "simulation" time of one simulator. The increase in NEST’s resources does not
modify the "IO" time until the resource is available. Since the tests are running on
one computer, increasing resources for NEST increases the "simulation" time of TVB
and reduces the "simulation" time of NEST. However, by deploying the workflow on
high-performance computing facilities, the latter result does not replicate, and the
simulation time gives similar a result with an increase in "IO" and "simulation" time
because the communication between nodes is slower (see Supplementary Figures
E.22).
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FIGURE 3.5. – Architecture and performance of the co-simulation
a The interaction among the modules and data exchanges during co-simulation execution.
The boxes in yellow mark start-up : initialization and configuration, the boxes in red for the ter-
mination of the simulation and the boxes in white for the simulation phase. b,c,d Performance
of the workflow is obtained for 1 second of simulated time (see Materials and Methods for
more details). The reference implementation use 1 MPI process, 6 virtual processes/threads, a
synchronization time step of 2.0 ms, and simulates 20000 neurons. b The wall clock time of
the simulators as a function of the number of neurons. The total time of the co-simulation is
represented in yellow. The "wait", "simulation" and "IO" times of NEST are represented in red
surface with respectively hatches with big circles, small circles and points. The "simulation"
and "IO" times of TVB [299] are represented in the blue surface with respectively hatches
horizontal lines and oblique lines. c Simulation time depending on the synchronized time
between simulator. The colour code is the same as the panel B. d Wall clock time depending
on the number of virtual process used by NEST [152]. The green, blue, purple, red curves are
associated with different parallelization strategy of NEST, respectively, only multithreading, 2
MPI processes with threads, 4 MPI processes with thread and only MPI processes. The vertical
blue line represents the number of cores of the computer. e The "transform between spikes to
rate" and "transform between rates to spikes" blocks are displayed with the different steps for
transformation of data between TVB and NEST.
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3.4. Materials and Methods
The simulation details and models’ parametrisation are in Supplementary Table E.1.

The format of this table is drawn from the proposition of Nordlie et al. 2009 [261] for
spiking neural networks. This new format includes the description of brain network
modelling, the description of the coupling between scales and the description of the
measurements of the simulation. This format contains more details than the proposi-
tion of Nordlie et al. because it contains all the parameters for the co-simulations.
The following text provides an overview of the models, communication between mo-
dules, details of the performance tests and implementation details.

3.4.1 Models

3.4.1.1 CA1 model

The spiking neural network of CA1 comprises two regions (left and right), which
contain two populations, 8000 excitatory neurons and 2000 inhibitory neurons. This
network is simulated by NEST [152], a neuro-informatics platform for spiking neural
networks. The adaptive exponential integrate and fire neurons [37] are connected
by exponential conductance-based synapses with a connection probability of 5%
inside the region. The excitatory population establishes normalised weighted connec-
tions with the other regions defined by the mouse connectivity atlas. Additionally,
we assume that each neuron has the same unique number of synaptic connections
from other brain regions; the mouse connectome defines the repartition of these
synapses. Transmission delay between regions is defined as the ratio of the distance
between the regions and the transmission speed. Calculating these ratios is part of
the configuration of The Virtual Brain (TVB) [299] because the data required by TVB is
the track lengths between regions and the speed of the transmission. Within a region,
the synaptic transmission delay is instantaneous. In addition, the neurons can receive
external noise input modelled as an independent Poisson process in addition to the
external stimuli received from other regions through the transfer of mean firing rates
as transformed spike trains.

3.4.1.2 Mouse Brain model

The mouse brain model is simulated using The Virtual Brain [299, 240], a neuro-
informatics platform for connectome-based whole-brain network modelling. The
"connectome" used here is extracted from Allen Mouse Brain Connectivity Atlas [263]
in 2017. The large-scale brain network is comprised of linearly coupled Neural Mass
models. Specifically, the model representing each region is a second-order Mean Ad
Ex model [356] with adaptation, representing the mean firing rate for an ensemble of
one excitatory and one inhibitory neuronal population.
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3.4.1.3 Electrophysiological monitoring model

The electrophysiological monitoring variables are computed using two models
representing the cortical and implanted sensors. The electrocorticography model is a
simple forward solution of a dipole at the region level. The electric field recorded by the
virtual sensors at the brain level is based on two assumptions : considering the brain
as a homogeneous space, and the field is generated only excitatory population. With
these assumptions, the recorded field is the sum of excitatory population activities, i.e.
the mean excitatory firing rate weighted by the distance between the sensors and the
region’s centre [300]. The implanted sensors’ signals are computed from point-neuron
activities using a hybrid scheme for modelling local field potentials (LFP). Specifically,
each potential is simulated using hybridLFPy [148], which incorporates the recorded
spike from the network and the morphology of the pyramidal and basket cells.

3.4.1.4 Choice of three sets of parameters

The parameters for Irregular Synchronous state are chosen based on Di Volo et al.
paper [356]. The coupling between regions and the noise was defined after empirical
exploration to get a fluctuation of the firing rate in each region.
Based on the first set of parameters, the Asynchronous state was defined by chan-
ging empirical parameters to avoid fluctuation in the brain regions. The result is a
reduction of the spike-triggered adaptation of the excitatory neurons, a reduction of
the number of connections between the regions, an augmentation of the inhibitory
synaptic weights, a reduction of the variance of the noise and the addition of a Poisson
generator for the spiking neural network.
Based on the first set of parameters, the parameters for the Regular Bursting state
are chosen by changing the type of the neurons from regular spiking to regular burst
neurons. This modification was realized by changing the voltage reset of the mem-
brane and the leak of the reversal potential of the excitatory and inhibitory neurons,
the spike-triggered adaptation and the time constant of the adaptation current of
excitatory neurons. An empirical exploration of the models is done to get a balanced
spiking neural network and the desired brain dynamic. The result of this exploration
is a reduction of the connection between regions and a reduction of the connection
between excitatory and inhibitory neurons, a reduction of the number of connections
between brain regions and a reduction of the noise variance.
All the numerical values of the parameters are in Supplementary Table E.1.

3.4.2 Communication between modules

3.4.2.1 Initialization of communication

During the initialization of the simulation, the launcher creates a specific folder for
each module and an extra folder for the logger file of all components. The launcher
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creates a file with all the parameters. This file contains parameters for the simulation
with dedicated sections for each module. The parameters shared between modules
are duplicated by the launcher in each section to ensure there are the same.

3.4.2.2 Synchronization between modules

The transfer modules synchronize the simulation by managing the access to its in-
ternal buffer and receiving status messages from the simulators. The receiver process
receives the data and aggregates them in a buffer. Rate data do not need to be buffered
when using MPI communication, they are sent or received directly to the transformer
process. This buffer is transferred to the transformation function when the previous
data are transformed and transferred to the sender process. The sender process gets
the data after sending the previous data to the simulator. It can only send the data to
the simulator when it is ready. In addition, the simulator needs to await data for the
next step of the simulation. Given all these constraints, the transfer module assures
correct transport and keeps the components synchronized. If needed the transfer mo-
dule buffers data for a simulation step. The transfer module can receive and send data
concurrently and translation can be performed while waiting for the slowest simulator.

3.4.3 Performance tests

The performance tests are realised with time recorders integrated at specific places
in the code. These times are aggregate duration to evaluate the running time of the
co-simulation in each section. This allows evaluating the time of "simulation", "IO"
and "wait" time. Each test is done for 10 trials of 1 second of simulated time for asyn-
chronous configurations with one or two parameters which vary per trial. The results
of the trials are averaged to reduce the variability of the measurements. The varied
parameters of the tests are the number of spiking neurons, synchronized time between
simulators and the configuration of MPI and thread of NEST.
Figure 3.5 and supplementary figure E.17, E.18 and E.19 show the result of the per-
formance test done on DELL Precision-7540 (Intel Xeon(R) E-2286M CPU 2.40 GHz
* 8 cores * 2 threads, 64 GB of Ram with Ubuntu 18.04.5). The communication bet-
ween components in the transfer module was performed with the multithreading
approach. Supplementary figure E.20, E.21 and E.22 are generated using the Jusuf
system (https ://apps.fz-juelich.de/jsc/hps/jusuf/cluster/configuration.html) which
is composed of nodes with 2 AMD EPYC 7742 2.25 GHz * 64 cores * 2 threads, 256
(16x16) GB DDR4 with 3200 MHz, connected by InfiniBand HDR100 (Connect-X6). In
this second case, the transfer module uses MPI protocol to communicate between
components.
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3.4.4 Implementation details

The source code of the co-simulation is open-source and contains Python script
and C++ files. A singularity and a docker image are also available on singularity-hubs
to replicate the figures as in the performance test. The activity diagram (see Supple-
mentary Figure E.5) describes in detail the interaction between each module and
components for this specific virtual experimentation.
The implementation of Input and Output for NEST used the existing simulator’s ar-
chitecture and parallelization strategy. NEST has different back-ends for the input
and output data, the creation of a new backend for the communication of the data
was enough for integration in the co-simulation design pattern (for more details see
Supplementary Note E.1.1). For more technical details about the communication with
NEST, an activity diagram (see Supplementary Figure E.6) describes the communica-
tion protocol with NEST back-end. For this specific example, the states of the wrapper
of NEST and the states of transfer components which communicate with NEST are
described respectively by the Supplementary Figure E.7 and E.8.
The implementation of Input and Output for TVB is different because TVB does not
use MPI for its parallelization and it does not have an interface for exchanging data
outside of the simulator. The creation of the interface required a dynamic modifica-
tion of the simulator engine to integrate and release data from the transformer and
a wrapper for communication with the transformer modules (for more details see
Supplementary Note E.1.1). For more technical details about the communication with
TVB, an activity diagram (see Supplementary Figure E.9) describes the communication
protocol with the TVB wrapper. For this specific example, the states of the wrapper of
TVB and the states of transfer components which communicate with the wrapper of
TVB are described respectively by the Supplementary Figures E.10 and E.11.
The description of the transfer modules is partially described in Supplementary Note
E.1.2 which focuses only on the interface with simulators. In addition to this note,
the state of the different components are described in the Supplementary Figure E.8,
E.11 and E.13. To better understand different instances and classes in this module,
Supplementary Figure E.14 describes all the instances and their role and Supplemen-
tary Figure E.15 describes the composition of the abstract class and the simple API for
communication. The communication protocol for data exchange between transfer
module components differs depending on whether the parallelization strategy is mul-
tithreading or multiprocessing. In the case of multiprocessing, MPI protocol is used
for data exchange. The communication protocol differs depending on the data type,
as shown by panel A of Supplementary Figure E.16. The spike trains data are variable
and large (it can go from a few Kilobits to more than one Megabit depending on the
firing rates). The shared memory is chosen in this case. For the mean rate data, the
data size is constant and small (a few Kilobits depending on the number of regions).
Send and Receive function of the MPI protocol is chosen in this case. In the case of
multithreading, only a shared buffer is used between threads.
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3.4.4.1 Deadlock due to global interpreter of python

In the case of multithreading for internal communication in the transfer modules,
the program may be in a deadlock because the interface with a simulator does not
receive the information of receiving data. As it is explained in the global interpreter
lock documentation, "The GIL(global interpreter lock) can cause I/O-bound threads
to be scheduled ahead of CPU-bound threads, and it prevents signals from being
delivered." (https ://wiki.python.org/moin/GlobalInterpreterLock). The consequence
is that some signals used by MPI are not delivered, which creates a situation where a
simulator and a transformer are waiting for an MPI message from the other one, but
these messages will never arrive.

3.5. Discussion
The Parallel Co-simulation toolbox presented here provides co-simulation techno-

logy linking two simulators operating at two different scales with minimal require-
ments and modifications. This workflow is based on the cyclic coupling topology of
modules [59], i.e each module regularly receives new inputs during the simulation.
The two scale-specific simulators are interchangeable due to the genericity of the
transfer function, as well as the modularity and design of the transfer module (for
more characterization of the workflow, see Supplementary Note E.1.3). The interfaces
of the simulators and other modules serve as a software science co-design pattern
and can be reused in other studies involving co-simulations.

Our approach separates the theoretical challenge of coupling models at different
scales from the technical challenge of coupling the corresponding simulators. The
simplicity of the design pattern allows the scientific community to advance their
research project without being hindered by technical details. Best practices are ad-
vised on carrying out a task or implementing the design pattern. These challenges
are not unique to using the Parellel Co-simulation toolbox, but apply to most tech-
nical implementations of multiscale modeling software. On the technical side, the
design pattern does not provide guidelines for the co-simulation’s robustness, ma-
nagement and maintenance, similar to the closely related staged deployment and
support software for multiscale simulations developed in EBRAINS ( https ://juser.fz-
juelich.de/record/850819). On the conceptual side, for proper use of co-simulation
technology, a profound understanding of the involved models is necessary to avoid
operating the models outside of their valid parameter ranges. For instance, the Neural
Mass model used in this paper cannot capture the fast scale dynamics, especially the
fast regimes of regular burst state [33]. In the Neural Mass model’s derivation, the
input firing rate of the neurons is assumed to be an adiabatic process, which is valid
in some parameter regimes, but violated for the irregular synchronous state, in which
rapid transitions between low and high firing rates occur. As co-simulation requires an
understanding of models typically used in at least two different and non-overlapping
fields, particular attention should be paid to the responsible use of multiscale models.
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Such caution should also be applied here when interpreting the results of the CA1
model and the brain model used in this paper. Current CA1 models are in fact typically
more detailed and comprise Gandolfi et al 2022 [131], which contains the large type
cells and associated connectivities, or models by Bezaire et al. 2016 [28], by Ferguson
et al. 2015 [115] and by Cutsuridis et al. 2010 [71] for replication of theta rhythms
produced by CA1. Numerical errors constitute another issue. As these errors cannot
be estimated analytically, the alternative solution is to perform a sensitivity analysis
or uncertainty quantification to determine whether or not the simulation result is
reliable [68, 69].

For the validation of the co-simulation, it is essential to generate data that can be
related to real-world observations, as is the case here with the model of the two types
of electrodes. A critical issue is the repeatability and reproducibility of the simulations.
Repeatability is ensured by managing all the random generators in each simulator and
using a single parameter file for the co-simulation setup. For reproducibility, due to
the complexity of the network, a table is proposed where the configuration of each
simulator is reported with their version and also the description of the transformation
modules (see Supplementary Table E.1). A notable property of this design pattern is
the independence of its modules and components. This independence allows unit
testing for each of them. Our design pattern also requires the implementation of a
minimal reusable simulator interface for interaction between simulators. In a possible
second stage, this interface can be adapted to a standard to increase the possibility of
interaction with other simulators.

EBRAINS provides two solutions for co-simulation [303], that is TVB-Multiscale
tool and the here described Parallel Co-simulation toolbox. The two tools implement
conceptually and technically two different solutions. The TVB Multiscale tool focuses
on user convenience, allowing for rapidly prototyping scientific use cases using a
single interface to configure all modules in the co-simulation. It is based on serial
approaches for the co-simulation, i.e. each module is run one after the other. The
Parallel Co-simulation tool, on the other hand, focuses on optimizing performance.
The detailed description, benchmarking and validation of the Parallel Co-simulation
toolbox is the topic of the current manuscript. Consequently, the TVB-Multiscale tool
is slower. Performance tests show that the various modules run in parallel and adapt
to the slowest module (see Performance section). The waiting time of the slowest
modules is quasi-null, which means there is no loss of time in the synchronization of
modules. Performance in co-simulation is an important criterion, as the microscopic
simulators are typically very high-dimensional and hence computationally costly. The
serial approaches can be interesting when a computer does not have at least one
CPU core per module because, under this condition, modules need to share resources
which can slow the co-simulation. This was demonstrated by the large increase of
simulation time when the number of virtual processes for NEST is higher than the
number of physical CPU cores. The other important distinguishing feature of the two
co-simulation toolboxes is the unique interface for multiscale simulations. Similarly
to TVB-Multiscale, multiscale simulators have the advantage of having a unique
interface for multiscale simulations. This unique interface simplifies the simulation
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configuration but also reduces the specificity of functionality for each scale, which
may be disadvantageous for some situations, such as optimization. For example, in our
application, spiking neuron and brain region models require different integrators to
avoid numerical errors and enhance efficiency. The CA1 model is a sparsely connected
network of thousands of neurons using event communications. The mouse brain is a
fully connected network of hundreds of regions based on continuous communications.
Consequently, the optimization strategy is different and requires specificity.

Other existing frameworks to deploy and communicate runtime data between simu-
lators comparable to Parallel Co-simulation include the Multi-Simulation Coordinator
(MUSIC) [100]. MUSIC does not include modules that facilitate translation between
scales, which is needed when coupling simulators on different scales of abstraction.
Our design pattern includes parallelized modules and can be extended easily to in-
clude new, potentially more computationally intensive, methods in the future. On
a more technical level, a second difference is how MUSIC uses the HPC transport
protocol Message Passing Interface (MPI) [241]. MUSIC takes ownership of the hi-
ghest level MPI environment (MPI_COMM_WORLD) ; this can cause challenges when
integrating MUSIC with simulators that expect exclusive ownership of this highest
level. Our implementation does not touch this highest-level ownership. We use MPIs
client-server functionality to connect between simulators, completely evading this
challenge. This difference in MPI usage also allows better use of the HPC scheduling
mechanisms as each simulator is deployed in isolation, facilitating optimal workload
placement on the hardware available. MUSIC does support several features currently
not implemented in our implementation of the design pattern : multi-rate integration,
i.e. different frequencies of sending and receiving data from simulators, and it pre-
vents some simulation errors by using the MPI error system. On the other hand, our
implementation of the design pattern allows for easy extension with new simulators
and better distribution on HPC systems.

Outside of neuroscience, standards exist for co-simulation, such as HighLevel Ar-
chitecture(HLA) [301] and Functional Mock-up Interface (FMI) [14]. These standards
include error management, multi-rate integration, and data management [29, 301].
The main difference between MUSIC and our design pattern with these two stan-
dards is the communication strategy between simulators. FMI provides a standard
for exchanging models and for scheduled execution [14]. Features of FMI and MUSIC
currently not implemented in our design pattern are : Real-time hardware interactions
[14, 248]. Additionally, FMI supports signal extrapolation for error reduction [29],
although this could be added in the translation modules central in our design pattern.
FMI does not support concurrent execution of the different simulators, although inter-
nally, the simulations can be parallelized [14] and FMIGo proposes a parallelization
implementation of FMI [218]. HLA is designed for distributed systems and provides
a standard for data exchange and time management of simulators [255, 147]. HLA
facilitates the re-usability and interoperability of simulators and models by describing
each component’s roles and interactions. It further formalizes the data exchange and
coordination between simulators and follows the publish/subscribe pattern. This
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standard specifies the definition of information produced or required by simulators. It
provides a common data model for the reconciliation of model definitions and inter-
operability of simulators including during distributed runtime execution. Typically
these services are implemented with a centralized communication architecture [147],
sometimes described as a hub and spoke model. Both MUSIC and our design pattern
use direct, peer-to-peer communication.

In summary, we have presented a new software science co-design pattern of the
Parallel Co-simulation tool for coupling simulators with a transformation module.
This design pattern provides the first step for developing platforms using transitional
scaling models and structuring the future syntactic, semantic and conceptual issues
induced by multiscale problems. The optimization for this workflow is based on the
communication delay between scales. It is not generalized for all cases but recommen-
ded for models with transmission line element method [35] or waveform relaxation
method [258].

Acknowledgments
This research has received funding from the European Union’s Horizon 2020 Frame-

work Programme for Research and Innovation under the Specific Grant Agreement No.
945539 (Human Brain Project SGA3) and Specific Grant Agreement No. 785907 (Hu-
man Brain Project SGA2). The authors would like to thank Mario Lavanga for helpful
feedback, Ingles Chavez Rolando for technical support and numerous colleagues for
comments about the texts and figures. Also, the authors gratefully acknowledge the
support team of the supercomputer DEEP-EST and JURECA at Forschungszentrum
Jülich and Piz Daint at CSCS - Swiss National Supercomputing Centre.

Code availability
The co-simulation between TVB and NEST is freely available under v2 Apache

license at https ://github.com/multiscale-cosim/TVB-NEST on the branch Paper_-
TVB-NEST and Paper_TVB-NEST_with_timer.
A docker container containing the project is freely downloaded on EBRAINS (https ://docker-
registry.ebrains.eu/harbor/projects/53/repositories). The simulated data of the three
sets of parameters, the code and the singularity images are available in a Zenodo
repository(http ://dx.doi.org/10.5281/zenodo.7259022).

93



CHAPTER 4

Synchronization in spiking neural networks with short

and long connections and time delays

Contents of Chapter 4
4.1. Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3. Modeling the Network of Neurons . . . . . . . . . . . . . . . . . . . . . . 97
4.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1. Independent contributions of LRCs and noise . . . . . . . . . . . 103
4.4.2. Synergic effect of LRCs and noise . . . . . . . . . . . . . . . . . . . 103
4.4.3. Modulation by adaptation current . . . . . . . . . . . . . . . . . . 104
4.4.4. Effect of excitability of the voltage membrane . . . . . . . . . . . 105
4.4.5. Network effects : balanced network . . . . . . . . . . . . . . . . . 106
4.4.6. Network effects : network size . . . . . . . . . . . . . . . . . . . . 108
4.4.7. Topology effects : bi-directional long-range connections . . . . . 109

4.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

94



4. Synchronization in spiking neural networks with short and long connections and
time delays – 4.1. Chapter overview

4.1. Chapter overview
In the previous chapter, we presented the software science co-simulation design

pattern. We illustrated by the simulation CA1 region of the cellular-level hippocampus
of the mouse embedded into a full brain network. In this chapter, I aim to investigate
data transformation from macro- to meso- scale. Synchronization is a fundamental
mechanism for information processing in the brain and is affected by time delays.
This investigation uses parameter exploration to investigate the reproducibility of
synchronization in neural fields in the presence of long-range delayed connections
with point neural networks. We demonstrate the interaction of micro-, meso- and
macro-scopic parameters for the emergence of spatiotemporal patterns.

This chapter is based on an under-revision article in Chaos :
Synchronization in spiking neural networks with short and long connections and time
delays

Lionel Kusch 1, Martin Breyton 1,2, Spase Petkoski 1, Viktor Jirsa 1

1Institut de Neurosciences des Systèmes (INS) UMR1106, Aix-Marseille Univ., Mar-
seilles, 13005, France
2Service de Pharmacologie Clinique et Pharmacovigilance, Assistance Publique des
Hôpitaux de Marseille, Marseille, 13005, France
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Abstract
Synchronization in networks is fundamental for information processing in oscil-

latory brain networks and is strongly affected by time delays via signal propagation
along long fibers. Their effect however is less evident in spiking neural networks given
the discrete nature of spikes. To bridge the gap between these different modeling
approaches, we study the synchronization conditions, dynamics underlying synchro-
nization, and the role of the delay of a two-dimensional network model composed of
adaptive exponential integrate-and-fire neurons. Through parameter exploration of
neuronal and network properties, we map the synchronization behavior as a function
of unidirectional long-range connection and the microscopic network properties and
demonstrate that the principal network behaviors comprise standing or traveling
waves of activity and depend on noise strength, E/I balance, and voltage adaptation,
which are modulated by the delay of the long-range connection. Our results show the
interplay of micro- (single neuron properties), meso- (connectivity and composition
of the neuronal network), and macroscopic (long-range connectivity) parameters for
the emergent spatiotemporal activity of the brain.

4.2. Introduction
Brain activity is characterized by rich spatiotemporal dynamics across scales. Among

those, synchronization [350] between the rhythms of neuronal populations [45], has
been shown to be relevant for brain function [127] and dysfunction [25]. Different spa-
tial patterns of synchronization have been hallmarked both during tasks [206] and res-
ting state [76, 232], and through various neuroimaging modalities such as fMRI (func-
tional Magnetic Resonance Imaging), MEG/EEG (Magneto-Electro-Encephalography),
and ECoG (Electrocorticography). Similarly, neurons are known to synchronize lo-
cally as seen in Local Field Potentials (LFP) through short-range connections, also
in relation with brain function [21]. However, if macroscale rhythms emerge from
the microscopic spiking neuronal activity [268, 260], the interplay between the two is
often poorly understood.

Generative computational models have been commonly used [83, 155, 300, 324]
to understand how the brain’s anatomical structure, as defined by its connectome
[151], impacts the coherent macroscopic patterns of brain activity. Here, we explore
how emergent dynamics depend not only on the weights of the connectome but also
on the time it takes to propagate through the fibers [223, 270, 136]. Together they
define a space-time structure that is determinant for the network behavior, including
resonance, synchronization, and emergence of brain rhythms [271].

The effects of network heterogeneity, including that of the time-delays, were studied
on the macroscopic level [318, 273, 272], as well as for the combined macro- and meso-
scopic representations [187, 189, 184, 188, 332] using a neural field approach, including
both global and local connectivities [300, 282, 327]. However, neural fields in those
cases were either modeled by mean-field representations of the neuronal masses, or
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by phenomenological neuronal models that correspond to reduced representations of
Hodgkin-Huxley neurons. For the case of integrate-and-fire neuron models, there is a
lack of precise and self-consistent mathematical framework to link microscopic and
macroscopic dynamics within neural field theory [66]. In particular, the verification
and validation of macroscopic phenomena and mechanisms emerging from spiking
neuronal networks are missing.

In this study, we focus on the emergence of synchronization in neural fields coupled
through long-range connections (LRCs) with finite transmission velocity [184, 188,
187, 191, 214, 376, 197]. We use a methodology similar to Jirsa and Stephanescu 2011
[191] with a more detailed and physiological model of neurons. This step is critical for
synchronization of the network, as the previously used simplistic neuron models em-
bodied strong slow attractive manifolds, which are known to be the key determinant
in network synchronization, but are not physiological. As a consequence, the synchro-
nization results reported in the literature may not always translate into real-world
brain networks. To address this, we first present a detailed description of the network,
then present results illustrating the link between synchronization and parameters
of the LRCs as well as the effect of a noise drive. Next, we identify the robustness of
this phenomenon for different categories of neurons by changing parameters of the
voltage membrane (voltage reset, refractory time and heterogeneity) and parameters
of the adaptation current (sub-threshold adaptation, spike-triggered adaptation and
time constant adaptation current). Finally, we pinpoint network characteristics res-
ponsible for the emergence of synchronization by exploring the synaptic weight, the
number of neurons and the directionality of the LRCs.

4.3. Modeling the Network of Neurons
We consider a two-dimensional grid network consisting of 200 cells (10x20), each

with a size of 3x3 millimeters, and two boundaries with periodic conditions (see Figure
4.1 A) topologically equivalent to a torus (see the supplementary Figure F.1). Neurons
are distributed homogeneously on the grid with the only constraint that each cell
contains a fixed number of excitatory (160) and inhibitory (40) neurons (see Figure 4.1
B). All neurons were constructed identically with an adaptive exponential integrate
and fire model [37] with alpha conductance synapses without delay. Only the post-
synaptic weights were different between excitatory and inhibitory neurons.
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FIGURE 4.1. – Network topology
(a) The network topology is based on a two-dimensional grid network consisting of
200 cells (10x20), each with a size of 3x3 millimeters. The black surface represents
the default long connections between cells, with uni-directional connections from
the center of the source cell to the target cell. (b) Each cell contains 140 excitatory
neurons (red) and 60 inhibitory neurons (blue), randomly positioned. (c) An example
of the connected neurons of a neuron in the center of the source population is shown.
The gradient of gray is a two-dimensional Gaussian probability function that defines
the probability of neighborhood neurons being connected to the neuron. The red
neurons are excitatory, and the blue neurons are inhibitory. The neurons on the right
part of the grid represent connections due to the long-range connections. (d) is an
enlargement of the center part of the grid, which shows the same connected neuron
as in c. The position of the neurons is represented by a star, with different levels of
gray representing the probability distribution of local connections around the neuron.
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The following set of equations describes the network :

Cm × dVm

d t
=− gL(Vm −EL)+ gL ×∆T ×e

Vm−Vth
∆T

− ge (t )(Vm −Eex)− gi (t )(Vm −Ei n)

−w + Ie +N (0.0, σ2)

τw × d w

d t
=(a × (Vm −EL)−w

ge (t ) =∑
t

( f )
j

w j ×al pha(t − t j ,τex) with w j > 0.0

gi (t ) =∑
t

( f )
j

w j ×al pha(t − t j ,τi n) with w j < 0.0

al pha(t ,τ) = t

τ
×e

1−
t

τ ×Heavi si de(t )

(4.1)

where Vm is the membrane voltage, w the adaptation current, ge the excitatory synap-

tic conductance and gi the inhibitory synaptic conductance of one neuron. t ( f )
j repre-

sents spike-time from presynaptic neurons. When the membrane potential crosses a
threshold Vpeak , the membrane voltage is reset (Vr eset ), and the adaptive current is
increased by a value b (for more detail, see the Supplementary Table F.1). Each neuron
has two external inputs : Ie , corresponding to a constant external current, and N ,
corresponding to white noise. Ie has a default value of 0.0 pA, except for the case
of heterogeneous population where the distribution over the population follows a
Gaussian distribution centered in zero. The initial condition is chosen to obtain an
asynchronous irregular state in disconnected networks(see the supplementary figure
F.2). The choice of adaptive exponential integrate and fire model is motivated by its
capability of reproducing most neural firing patterns [178, 344], which led to multiple
studies describing its dynamics [344, 254, 220]. Other models, such as Conductance-
based Adaptive Exponential model [143], Multi-Timescale Adaptive Threshold model
[200], Generalize integrate and fire neuron [43] or Hodgkin-Huxley neurons [162], also
have this variety of dynamics, but they are harder to analyze due to a larger number of
parameters or missing knowledge about them. Other models, such as leaky integrate
and fire [221, 347] or FitzHugh-Nagumo [119, 253], are simpler and have been studied
with a similar network topology [191, 355].

The neurons in the network are divided into excitatory and inhibitory categories
based on the sign of their post-synaptic weights. Each neuron projects probabilistic
short-range connections around it following a two-dimensional Gaussian distribution
(see Equation 2). Projections of excitatory neurons decay faster (σ= 0.8) than those of
inhibitory neurons(σ= 1.2) [191](see figure 4.1 C and 4.1 D).

p(dx ,dy ) = e− (dx −µx)2 − (dy −µy )2

2σ2
(4.2)
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where (dx ,dy ) is the distance along the x and y axis between two neurons, and, mx

and my their position on the grid. To achieve an asynchronous irregular state [41] in
a noise-driven balanced network of neurons, the weight of the excitatory synapses
was set to 10.0 nS and the ratio (excitatory/inhibitory) to 0.11 through parameter
explorations (see Supplementary Figures F.25 and F.26). LRCs are defined by a source
cell and a target cell. In the source cell, on top of the short-range connections, 40% of
excitatory neurons project to the distant target following a two-dimensional Gaussian
probability density (σlong = 2.0) (see figure 4.1 C and 4.1 D) centered in the target cell.
The weight of the LRCs is independent of the local ones (by default : 15.0 nS), and their
delay is uniform between neurons and independent of the distance.

The synchronization of the network due to LRCs can be quantified using the coeffi-
cient of variation of the firing rate (FR), as proposed by Brunel (2000) [41]. This metric
is calculated by dividing the standard deviation of the firing rate (number of spikes
per time bin of 3 ms) by its mean over a period of 10 s (see Equation 3).

CVF R = σF R

µF R
(4.3)

A CVF R value higher than 1.0 between two neurons indicates that they are synchro-
nized and asynchronous otherwise. To reduce the bias induced by initial conditions,
an initial transient period of 12 s is discarded in each simulation. Each is run only
once for a specific parameter set. The time-average order-parameter was also used to
measure synchronization (see Supplementary Note F.3 for details).

4.4. Results
We seek to recover and understand the conditions in which a network with white

noise input is synchronized in the presence of long-range connections (LRCs) with
transmission delays and to characterize the spatiotemporal dynamics of the network.
To this end, we conducted analyses of parameter spaces of network synchronization as
a function of weight and delay of unidirectional LRCs, excitatory weights and variance
of white noise.
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FIGURE 4.2. – Three characteristic network dynamics
A network of 40000 neurons was simulated with white noise, synaptic weights of 10
nS, and different delays of the uni-directional long-range connections (a : 40 ms, b :
80 ms, c : 100 ms). The index is ordered by cells of the grid, with excitatory neurons
followed by inhibitory neurons. Each simulation is represented by spike trains and
an associated histogram (bin : 1 ms) between 15.0 s and 15.5 s. The blue and green
arrows indicate the eight regular snapshots’ start and end. On the histogram and
eight snapshots, blue and purple represent the source and the target population. (a)
traveling wave ; (b) regular bump from the target population with some other bumps,
and (c) multiple bumps at the time.

101



4. Synchronization in spiking neural networks with short and long connections and
time delays – 4.4. Results

Time series analysis reveals that the synchronization spectrum is associated with
corresponding spatiotemporal activity patterns. On one side of this spectrum (Figure
4.2A, corresponding to mark A in Figure 4.3B), the network is asynchronous, and the
associated spatiotemporal activity is a traveling wave along the longest axis of the
grid. As expected, the histogram is flat, and the spike trains forms a diagonal of spikes
due to the ordering of the neuron. At the opposite side of this spectrum (Figure 4.2C
corresponding to mark C in Figure 4.3B), the network is synchronous, and its activity
alternates between bursts of activation and quiet periods. In this case, activity bursts
are very short (less than 20 ms) and composed of multiple bumps starting from the
target cell and from other random locations due to the noise. The eight snapshots
indicate that when two waves collide, they collapse. Between these two extremes,
spatiotemporal patterns present a gradient where synchronization is linked to shorter
activity bursts and a higher number of bumps from random locations (see Figure 4.2B
corresponding to mark B in Figure 4.3B).
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FIGURE 4.3. – Competing network oscillation from noise and long-range connections
The network synchronization is quantified by the coefficient of variation of firing rate
(no overlapping window of 3 ms) for 10 s after a transition period of 12 s. Figures (a) and
(b) show the parameter space analysis of network synchronization without and with
noise (1800pA) for different delays versus weights of long-range connections. Figure
(c) displays the parameter space analysis of network synchronization for different
variances of the white noise and the excitatory synaptic weights. The parameters set
chosen for the simulations shown in Figure 4.2 is indicated by (a), (b), (c).
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4.4.1 Independent contributions of LRCs and noise

When noise is turned off, the network is generally synchronized, as evidenced by the
coefficient of variation systematically higher than 1.0 (Figure 4.3A). Time series (Figure
F.5) are characterized by periodic bumps starting from the target cell, forming a circular
wave, and eventually colliding with itself. We find an almost proportional relationship
between the level of synchronization and the delay which is also reflected in the mean
firing rate and longer silent periods between bursts. This relation is preserved when
varying the weight of the LRCs, the number of connections and the position of the
target cell (Supplementary Figures F.3, F.6 and F.8). However, the network is silent
(white areas) when the weight of the LRCs is lower than 5 nS or the standard deviation
of the Gaussian kernel is lower than 0.5, or the delay is lower than 70 ms.

When the LRCs are removed, the parameter space (Figure 4.3C and Supplementary
Figure F.10) shows that the network is synchronized only when noise is strong enough
(variance higher than 1500 pA) and if the excitatory synaptic weight is sufficiently
large (higher than 8 nS). When these conditions are met, synchronization diminishes
as noise increases with little effect of the excitatory synaptic weights. A related pheno-
menon to this is the appearance of synchronized bumps displaying chaotic behavior
[249] (see Supplementary figure F.11A and F.11B). When the excitatory synaptic weight
is too low, below 8 nS, the system remains in an asynchronous regime (Figure F.11).

4.4.2 Synergic effect of LRCs and noise

The combination of noise and LRCs results in simulations displaying activity regard-
less of the parameters (see Figure 4.3B and Supplementary Figures F.4, F.7 and F.9). The
level of synchronization depends on the delay along the LRCs, with a regular pattern
of higher synchronization occurring at 0, 110, 220 or 330 ms. This indicates inherent
oscillations with a period of 110 ms, also confirmed by a mean firing rate value around
1/0.11 Hz, shown in Supplementary Figure F.12A. The observed impact of the delay
on synchronization is similar to the one found in populations of oscillators [370, 273].
The same effect was also observed for continuous spiking neurons [191].

If the weight of the LRCs or the number of connections is too low, this effect is
lost, and the network remains synchronized regardless of the delay. Like before, we
found that the position of the target cell has no substantial impact on synchroni-
zation. In other words, if LRCs are too low, the noise is the dominant phenomenon
for the emergent synchronized activity, Figure 4.3 B-C. Otherwise, LRCs perturb the
synchronization, with the ratio delay and mean-firing rate determining the increa-
sed/decreased synchronization ranges.

When the synchronization is facilitated, e.g. point C in Figure 4.3B, the wave is
homotopic and it propagates faster (Figure 4.2B compared to 4.2C), compared to the
case when the synchronization is decreased, e.g. point B in Figure 4.3B. In certain
conditions, point A in Figure 4.3B, regular traveling waves appear. In this case, the
source and the target are anti-phase (close to half of the synchronized period), and
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the bump does not collapse but continues to travel across the network. It is worth
noting that, even though the overall network synchronization is the lowest in this case,
Supplementary Figure F.26 G, the phase locking is the highest, Supplementary Figure
F.26H. This is also visible in the activity in Figure 4.2A.

In the following sections, we explore the parameters that can generate network
synchronization in the presence of LRCs. We distinguish between individual neuron
parameters, such as the refractory time, voltage threshold and external current, and
network parameters, such as the number of neurons and the directionality of the
LRCs.

4.4.3 Modulation by adaptation current
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FIGURE 4.4. – Parameter space network synchronization analysis of adaptation cur-
rent properties in relation to delay of long-range connections

The network synchronization is quantified by the coefficient of variation of firing rate
(no overlapping window of 3 ms) for 10 s after a transition period of 12 s. Parameter
space network synchronization analysis is presented, showing the relationship bet-
ween the delay of long-range connections and the adaptation current properties of
neurons, including subthreshold adaptation(a), spike-triggered adaptation(b), adap-
tation time current(c).

The adaptive current is a mechanism that affects the frequency of the spikes. This
impacts the mean-firing rate, which serves as a "natural frequency" of self-sustained
network oscillations in the case of synchronization. Consequently, the impact of the
time-delays is similar to that of a population of synchronized oscillators [370]. The
adaptation has three main parameters : the time constant τw , the spike-triggered
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adaptation b and the sub-threshold adaptation a. As seen in Figure 4.4, synchroniza-
tion can be found for all ranges of these parameters with the same periodic effect of the
delay as before. This effect fades out as the adaptation parameters increase, although
with a general increase of CVF R and decrease of mean firing rate (see Supplementary
Figures F.14, F.13 and F.15).

4.4.4 Effect of excitability of the voltage membrane
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FIGURE 4.5. – Parameter space network synchronization analysis of voltage mem-
brane properties in relation to delay of long-range connections

The network synchronization is quantified by the coefficient of variation of firing rate
(no overlapping window of 3 ms) for 10 s after a transition period of 12 s. Parameter
space network synchronization analysis is presented, showing the relationship bet-
ween the delay of long-range connections and the voltage membrane properties of
neurons, including heterogeneity (a), voltage reset (b) and refractory time (c).

Excitability of the voltage membrane has an opposite effect to adaptation and
facilitates the generation of spikes and we used the external current Ie to create a
heterogeneity of excitability within the population (see section Modeling the Network).
As seen in Figure 4.5A, the network can be synchronized for all the heterogeneity values
explored. The increase in heterogeneity reduces the coefficient of variation of the firing
rate (CVF R ) associated with an increase in the mean firing rate (see Supplementary
Figure F.17). Here, the periodic effect of the delay on synchronization is spaced out as
heterogeneity decreases. Although not presented here, if heterogeneity is too strong, it
can also affect the balance of the network and push it into an asynchronous irregular
state equivalent to the previous results on excitatory synaptic weights.

Regarding voltage reset, synchronization is mainly present between -63 mV and
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-45 mV and almost constant within this range for a given delay (see Figure 4.5B and
Supplementary Figure F.18) ; otherwise the network is mostly asynchronous. This
separation of regimes can be explained by a strong non-linear relationship between
the mean firing rate and the voltage reset (Figure F.16D) and because the coefficient of
variation is not suited to capture synchronization for extreme values of mean firing
rate (highly bursty or very sparse activity). Therefore, stripes of synchronized activity
still exist within the asynchronous areas.

When refractory time is varied (Figure 4.5C), the parameter space is separable in
two subspaces : under and over 1.7 ms, approximately. For low refractory times, more
than 95% of the neurons have irregular burst activities (Figure F.19). In this case,
reducing refractory time increases the variation of the CVF R proportionally to the
delay. However, large values of CVF R (above 3) capture the presence of large waves
(see Supplementary Figure F.20A). When the refractory period exceeds 1.7 ms, neurons
regularly spike with few bursts with little to no effect of the delay along the LRCs. In
this scenario, very low values of CV (below 0.5), capture traveling wave activity (see
Supplementary Figure F.20C).

4.4.5 Network effects : balanced network
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FIGURE 4.6. – Parameter space network synchronization analysis of ratio excita-
tory/inhibitory synaptic weight versus delay of long-range connection
for different values of noise

The network synchronization is quantified by the coefficient of variation of firing
rate (no overlapping window of 3 ms) for 10 s after a transition period of 12 s. This
figure shows the parameter space network synchronization analysis of delay of the
long-range connection versus ratio excitatory/inhibitory synaptic weight for different
values of noise ((a) : 0.0pA, (b) : 1800.0pA, (c) : 2600.0pA).
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As seen before, for synchronization to occur the network needs to allow for wave
propagation drawing mainly from a specific balance between excitation and inhibi-
tion [313]. Other factors, such as the number of neurons and the synaptic weights
themselves can also affect network synchronization [191]. Plots in Figure 4.6 show the
effect of the relative strength between excitatory and inhibitory synaptic weights on
synchronization for different noise intensities (0 pA, 1800 pA and 2600 pA). Without
noise, the results are similar to those of the parameters of the LRCs (Figure 4.3) with
the same proportional relationship. The main difference with Figure 4.3 is the area
of asynchronous activity for a low ratio (approximately under 0.06). This area is in-
dependent of the noise, and simulations in it have mean firing rates over 50 Hz (see
Supplementary Figures F.25, F.26 and F.27). When noise is introduced, there appear
three main regimes : one asynchronous regime where the network is dominated by
inhibitory neurons (bottom), another asynchronous regime where excitatory neurons
dominate the network (top), and in-between a synchronous "balanced" regime [153,
87]. The latter corresponds to a specific range of ratio between inhibitory and exci-
tatory synaptic weights. The increase in noise strength narrows down this range of
synchronization.
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4.4.6 Network effects : network size
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FIGURE 4.7. – Parameter space network synchronization analysis of synaptic weights
in relation to delay of long-range connections for different sizes of the
network

The network synchronization is quantified by the coefficient of variation of firing rate
(no overlapping window of 3 ms) for 10 s after a transition period of 12 s. Parameter
space network synchronization analysis is presented, showing the relationship bet-
ween the delay of the long-range connection and the synaptic weight for different
percentages of active neurons (A :100%, B :75%, C :50%, D :25%)

To explore the effect of the number of neurons on synchronization, we varied the
percentage of active neurons in the network. The increase of synaptic weights can
compensate for the reduction in the number of neurons to achieve the same mean
firing rate in the network [7] (see Supplementary Figures F.21, F.22, F.23 and F.24). As
seen in Figure 4.7, the sparsening of neurons is associated with an increase in the
nominal values of excitatory synaptic weights to reach synchronization. However,
when the number of neurons is too low (less than 50%) increase in excitation can no
longer make up for the loss of activity.

In addition, we explored different grid sizes without changing the density of the
neurons and found invariant results except for small grids (less than 5 cells), see
Supplementary figure F.32.
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4.4.7 Topology effects : bi-directional long-range
connections

We showed previously (see Figure F.29A and 4.3B) that in the presence of unidirec-
tional LRCs, varying the weights had little to no effect on synchronization for any fixed
delay. However, when the LRCs become bidirectional, synchronization is lost an LRCs
weight higher than 4 nS(F.29 B).

In the absence of synchronization, activity resembles that of 4.2A with an unstable
traveling wave across the network. When tuned near synchronization, we again find
bumps of activity, but this time originating from both sides of the LRCs, Supplementary
Figure F.30B and C. If the weight of the LRCs is increased above 4 nS (from point C to
D in F.29 C), bumps of activation appear with origins alternating between both ends
of the LRCs, with roughly one-third of them never propagating through the network.
The principal cause of the disappearance of the periodic dependence on the delay in
the case of bidirectional LRCs is that regardless of the noise level, the network is not
synchronized. Still, a traveling wave occurs (see Supplementary Figure F.28A), while
the same condition for a unidirectional LRCs would have caused synchronization
instead (see Supplementary Figure F.28B).

4.5. Discussion
The present study analyzes the conditions for synchronization of a two-dimensional

surface of adaptive exponential integrate and fire neurons [37], including long-range
connections (LRCs) with transmission delay. Specifically, we identified a periodic
relationship between synchronization and the delay along the LRCs, which is generally
regular, depending on other conditions that we analyzed. These findings agree with
previous studies which validated this phenomenon in neural fields derived from
spiking neural networks [191], but also with the wider literature showing Arnold’s
tongues [275] for the synchronization, depending on the ratio of the natural frequency
and time-delays [370, 273].

We discovered four main conditions for the modulation of synchronization by the
LRCs in the network. First, the spontaneous behavior of the network with LRCs is to
be synchronized at a frequency proportional to the delay along the LRCs. Adding an
external input (here in the form of random noise) is essential for synchronization
and to find a more complex relationship between synchronization and the delay. The
second condition is that the strength of the LRCs must be strong enough (as measured
by weight and width of the kernel) to have an impact on the network. However, when
the LRCs become bidirectional, synchronization can no longer occur if their contribu-
tion is too strong. The third condition is that the network must be balanced between
inhibition and excitation [153, 87, 313] for the LRCs to modulate synchronization.
Finally, the number of neurons must be large enough [376] or sufficiently connected
for this phenomenon to occur.
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By exploring neuron parameters, we have indirectly explored different types of
neurons. We started with neurons coined adapting neurons in sub-threshold activities
[178]. They correspond to type II neuron models (as shown in Supplementary Figure
F.16C) exhibiting resonator regimes [344] and type I Phase Response Curve (PRC)
[220]. When modifying neuronal properties, we changed firing rate dynamics, neuron
type (I/II), voltage membrane regime, and PRC (see Supplementary Figures F.16 F.12).
For instance, when the sub-threshold is shifted to low values, the adapting neuron in
sub-threshold activities becomes a type I neuron with integrator regimes. Interestingly,
we found that the type of neuron is not a significant condition for the effect of the
LRCs on synchronization. Furthermore, setting the spike-triggered adaptation to 0
pA makes the neuron model equivalent to an exponential integrate and fire neuron
without adaptive current and we found that results also hold for this type of neuron.
This provides evidence that mean-field models derived from different types of neurons
would still behave according to our findings. Moreover, since for every value of the
delay along the LRCs, there is at least one set of neuron parameters (i.e. a type of
neuron) that will allow network synchronization to emerge, the properties of neurons
could theoretically be inferred from the knowledge about the LRCs.

In terms of generative mechanisms, we identified that bumps are the main cause
of synchronization captured by the CV in the network, and that it corresponds to a
burst of activity where many neurons are triggered collectively in a short period of
time. These bursts are generated cyclically and resemble the generative process of
action potentials unfolding in a sequence of voltage accumulation, threshold crossing,
spike triggering, and followed by a refractory period. In the case where the noise drive
is high enough to trigger a neuronal spike at the single neuron level, local synaptic
currents will increase through the synaptic weights and are mediated by the local ratio
between inhibitory and excitatory neurons. After accumulation, the mean voltage
becomes large enough to generate circular waves. If the network is homogeneous,
the probability of these events forming anywhere on the grid is uniform, potentially
generating multiple waves from different locations at the same time. When two of
them meet, they collapse followed by a silent period due to the refractory time and
the local increase of adaptation current, preventing neurons from generating new
spikes. During that silent time the adaptation current decays until new events occur.
As a result, the frequency of bursts depends on a complex interaction between the
adaptive current, the synaptic current, voltage reset, refractory time, and the noise.

Lastly, the properties of the neurons and the network are changing the dynamics of
the emergent phenomena in the population, such as synchronization and waves as
spatiotemporal patterns. This paper identifies relations between the emergent dyna-
mics and the properties of a long-range fiber-like connection. The comprehension
and characterization of this self-organization are essential for understanding a more
complex system like the brain. The delay and the weights of fibers are essential for
network synchronization as well as neuronal properties. In particular, the fluctuation
of adaptive current and voltage reset can impact the synchronization of a subset of
neurons [78], i.e., the emergent rhythm of the neuronal population. Additionally, wave
propagation is essential for synchronization as an emergent dynamic presented in this
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study. We corroborated previous findings that local modifications such as a change
in the excitation/inhibition balance or a loss of neurons can disrupt higher-order
phenomena potentially responsible for brain dysfunction.

The main limitation of our work is the choice of the synchronization metrics. Here,
synchronization is quantified using the coefficient of variation of firing rate (CVF R ),
which is less precise in the case of bursts (the cause of variation can be the high
activities of a sub-population). Nevertheless, we were able to reproduce all our results
using the time-averaged Kuramoto order-parameter [211], as shown in supplementary
figures F.32-F.31.

Among other limitations, we can note that each network configuration was only
tested once, thus bringing nuances to the conclusions that can be drawn about mul-
tiple regimes potentially coexisting for the same set of parameters. Indeed, some
simulations showed transitions between regimes (see Supplementary Figure F.33),
making it difficult to determine if the simulation represents a complete stationary
regime or only one regime in a more complex landscape. However, simulations were
run long enough to reach a steady regime whenever it existed. A complete exploration
of dynamical regimes would have been tedious and not the focus of this study.

Lastly, the analysis was not fully exhaustive ; synaptic parameters such as Gaussian
connectivity profiles [371], time constant or reversal potentials, for example, were not
explored because we chose to focus on neuronal properties important for mean-field
derivations.

In summary, the synchronization of a network of biological neurons with long-
range connections and finite transmission speeds is modulated by the delay of these
connections. The main conditions for this effect are the pre-existence of spontaneous
activity driven by an external input (or noise), a significant contribution of the LRCs, a
balanced network (excitation/inhibition), and a large number of neurons. Given that
our objective was to provide evidence for the validity of neural field models, future
work could include testing the relaxation of neural field model assumptions (e.g.,
plasticity, delays, and weight distributions) and using multiple heterogeneous neuron
models. Additionally, further analysis with bidirectional LRCs is needed to understand
spatiotemporal patterns in the presence of two LRCs. This analysis should consider
larger grids or modified connectivity, as recent findings suggest that traveling waves
are based on a fraction of neurons in a population [78]. Validation of this phenomenon
with more recent neural field models (e.g., Zerlaut et al. 2018 [374] or Augustin et al.
[18]) is also recommended.
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CHAPTER 5

Discussion

In this thesis, we have introduced a method for coupling simulators and an analysis
of the reproducible phenomena captured by some mean field using a neural network.
In this discussion, I shall demonstrate and contextualize the relationship between
these two scientific results.

5.1. Method for co-simulation
The core of this thesis is the multiscale brain simulations based on a co-simulator.

Chapter 3 describes a software science co-design pattern, i.e. a set of structural blue-
prints for building simulations composed of multiple simulators [102]. This co-design
pattern is illustrated with the coupling of NEST [98], a simulator of large-scale point
neuron network, and The Virtual Brain(TVB) [299, 300], a simulator of Neural Mass
network, for the simulation of a virtual mouse brain at the meso- and macro- scales.
One attractive characteristic of this co-design pattern is the conservation of the simu-
lators’ scalability, i.e. the capability to parallelize and distribute (see Chapter 2) the
simulation computation. Moreover, the separation of technical and scientific issues re-
lated to multiscale co-simulation is kept within the organization of the co-simulation
framework by using independent specialized modules with direct communication.
The core principle of this method is the creation of transfer modules dedicated to
transforming the data between scales and synchronizing different simulators. I want
to stress that the transformation between continuous signals (firing rate) and discrete
events (spike trains) is a non-trivial and non-generic challenge[39, 141].

5.1.1 Putting the co-design model into perspective using
a holistic framework

To improve the comprehension of this co-design pattern, I shall use the holistic
framework of co-simulation proposed by Nguyen et al. 2017 [258], which has five
conceptual layers of structuration : conceptual layer (architecture), semantic layer
(formal integration), syntactic layer, dynamical layer (execution and synchronization)
and technical layer.
The conceptual layer is about the meta-modeling process and the topology of the
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framework. The software science co-design pattern presented here addresses the
topology of the co-simulation. The meta-modeling is indirectly addressed by having
designed each simulator to handle models at a specific scale and having built a transfer
module using models to transform data between scales.
The semantic layer defines the role and the signification of each model, as well as
their interaction. This work does not address this layer ; it only encapsulates each
model in a simulator and their interaction in a transformation function without a clear
definition of them. In the future, additional research should be done to clarify the
different notions and create an ontology to reduce the number of homonyms between
the vocabulary used to describe and analyze each scale. For example, "frequency of a
brain region" is ambiguous in neural networks because it can be the mean firing rate
or the frequency of fluctuation of the population mean firing rate.
The syntactic layer is the harmonization of the difference of formalization between
models or simulators. This is not addressed in this work. However, in neuroscience,
large projects, such as Human Brain Project[11], or organizations, such as INCF[360],
participate in the elaboration of multiple standards such as PYNN [79], ConGEn [156],
Sonata [75]. In the future, this standard can be used for parameterized simulations
and standardize the interaction between modules.
The dynamic layer is the execution of co-simulation and the synchronization of the
simulators during the co-simulation. This work used the transformation module to
synchronize the different simulators without using centralized communications. The
solution proposed in this work is flexible and adapted for two simulators. However,
the synchronization and optimization between two simulators is already a difficult
problem and the difficulty can increase exponentially with the number of simulators.
Consequently, this solution is perhaps unsuitable for a higher number of simulators.
The technical layer is related to the implementation and evaluation of co-simulation.
This work addresses this layer by using Message Passing Interface [342] and simulator
wrapper for communication between simulators and to keep simulators’ scalability.
The only technical evaluation realized here is the performance of co-simulation. In
the future, the robustness and the accuracy of co-simulation, as well as the re-ability
and stability of the framework, should be assessed.

To summarize, this work targets the conceptual, dynamic, and technical layers. The
semantic and the syntactic layers are not directly addressed and are hidden in the
transfer modules.

5.2. Multiscale modeling
To fill the lack of the semantic layer, i.e. the lack of gathering models, we provide

analyses of the interdependence between models of each scale. Before presenting the
result of these analyses, I shall examine the concept of a "multiscale model".
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5.2.1 The concept

"Multiscale model" does not have a common and consensual definition [163]. The
only consensus is that such a model is based on information from at least two scales,
either temporal or spatial[59]. To understand these disagreements over the definition,
it is necessary to consider the different existing multiscale modeling approaches :
top-down, bottom-up, and mixed approaches [238]
The top-down approach is the study of a higher layer to infer underlying mechanisms
at a lower scale. In this case, models aim to capture only the relevant information to
describe a phenomenon, as seen for example in Neural Mass models (see section 1.4).
A phenomenological model captures emergent dynamics without necessarily conside-
ring the underlying scale. For example, the Epileptor [190] captures the propagation
of an epileptic seizure from a dynamic point of view, but it does not explicitly describe
the biological mechanisms generating this dynamic. Biophysical models extract the
relevant information of the lower scale for describing the emergent phenomena, i.e.,
the lower scale properties constraining the dynamic. They are more interpretable than
phenomenological models but still suffer from a loss of information from the lower
scale due to mathematical approximations and assumptions in their derivation. These
limitations narrow conclusions to only potential mechanisms, and further validation
is required to distinguish an artifact from the loss of information or a real emergent
dynamic.
The bottom-up approach is the study of an emergent phenomenon from a lower scale.
In this case, models often comprise a network of sub-models and are used to identify
and characterize an emergent dynamic of the system. The limitation of this approach
is the complexity of the model, the ambiguity of the results, and the extensive usage
of computational resources. The model must include most details to be realistic and
avoid missing important components [238], at the cost of increasing its complexity.
The result of analyses can be ambiguous since including all these details can make it
difficult to disentangle the central mechanism from the background noise. Additio-
nally, the increase in details requires more computation for simulations.
The mixed approach uses bottom-up and top-down at the same time. This approach is
more difficult because it requires knowledge of the two approaches and additional mo-
dels for transforming data from one scale to another. However, it can take advantage
of the two approaches and helps to clarify the interaction between higher and lower
scales. In this approach, multiscale becomes the art of making relevant decisions,
as indicated in Chopard et al. 2014 [59] "The art of multiscale modeling is then to
propose a good compromise between CPU performance and accuracy by selecting
the most relevant parts of the domain at an appropriate scale.".

In conclusion, the disagreement over the definition of a "multiscale model" is be-
cause different approaches have been used to study emerging phenomena without
specifying which or how many scales. In this thesis, we have occasionally used several
definitions of this concept. Still, the definition of a "multiscale model" in this discus-
sion is the one of the mixed approach, i.e. a model composed of sub-models at two

115



5. Discussion – 5.2. Multiscale modeling

scales.

5.2.2 Model for transforming neural data between scale

In a mixed approach, brain multiscale models require a model for brain regions, a
model for neurons, and models for connecting the scales. In this work, each model has
a dedicated module in the co-design pattern. In this thesis, we restraint the research
to one model for brain regions, Mean Ad Ex[356] (see section 1.4.1), and one model
for neurons, adaptive exponential integrator and fire neuron [37] (see section 1.2.5).
Due to the novelty of the co-simulation method, the models for the transformation
of data between scales are not well defined and studied. This work proposes some
elementary results for the studies of these models.

5.2.2.1 Downscaling transformation

The downscaling transformation is the transformation of the data from macro-scale
(mean firing rate) to meso-scale (spike trains). This type of transformation requires
additional information or some assumptions because the macro-scale description
is less precise than the meso-scale description. Particularly in neuroscience, this
transformation should consider the non-invertibility of the macro-scale description,
also called neurodegeneracy. Following the definition, in D’Angelo et al. 2022 [73],
neurodegeneracy is "a property of complex systems, such as the brain, in which
multiple element combinations and system configurations can explain a specific
set of ensemble signals.". As explained, this is one major limitation of the top-down
approach for interpreting or downscaling macro-scale activities.

The connection between a Neural Mass and a point neuron network in a brain
network model is based on white fibers, which are long-range connections in the
brain. Previous results showed the effect of delayed long-range connections on the
synchronization in Neural Fields [223, 270, 136, 191]. Consequently, some of these
results will be reproduced to parameterize and define a downscaling model. Chapter
4 demonstrates the modulation of synchronization by the delay along long-range
connections. These conditions are that the network needs to be synchronized without
the long-range connections, that the long-range connections should be strong enough
to impact the network, and that the network has to be balanced between excitation
and inhibition activities. The properties of the neurons have also been studied and
they do not significantly impact the synchronization but rather modulate the range of
delays where the network is synchronized. As expected, neurodegeneracy was found,
i.e. multiple sets of parameters could generate the same dynamics.

5.2.2.2 Upscaling transformation

The upscaling transformation is the transformation from meso-scale (spike trains)
to macro-scale (mean firing rate). This type of transformation is a reduction of the
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data from the meso-scale. The complexity and the meaning of the reduction depend
on the mean-field method, i.e. the connecting variable is derived from a statistical
description of the point neuron network or a phenomenological variable. In the case of
phenomenological models, the reduced signal often requires only a scaling operation
to the range of value of the phenomenological variables for keeping coherent dyna-
mics, and the interpretability of the connection is non-trivial. The derived model from
a point neuron network is often based on a statistical reduction of network activity,
generally to the first or second order. In this case, the interdependence between the
two scales is explicit and requires a statistical measure of the network activities.

In this thesis, we are in the second case, the mean field is derived from a point
neuron network. The Annex A provides the result of a comparison between the Mean
Ad Ex [356], and the corresponding network with a constant or oscillating external
input is presented. The qualitative comparison established a close match between the
mean-field fixed-point and the steady state of the network. Quantitative comparison
evaluates a non-uniform difference of a few tens to a few Hz. Additionally, comparing
dynamical responses to an oscillatory input between the mean-field and the network
provides a difference in the phase shift with respect to the input signal and a difference
in the convergence of average oscillations.

To summarize, the work introduces a multiscale co-simulation technology for the
macro- and meso- scale of the brain. This co-simulation used multiscale models,
which mix the top-down and bottom-up approaches. Multiscale brain modeling has
the advantage of integrating knowledge from different scales. Nevertheless, it requires
transformation models between scales that are currently being defined. The two main
difficulties in these analyses are the neurodegeneracy and the precision of the mean
field approximation.

5.3. Limitation
The limitations of these works are already discussed in detail in each chapter. I

will present only some additional limitations due to the interweaving of the different
previous results.

5.3.1 Limitation of co-design pattern

I want to stress that the co-simulation is not yet user-friendly, and it requires some
skills in programming and coding to install and adapt to a specific usage. It is missing
support for fixing bugs and helping the users. Also, as demonstrated in the previous
section 5.1.1, the semantic and syntactic layers are partially reached in this thesis. To
complete this analysis, I will use the framework proposed in Chopard et al. 2014 [59] to
highlight some limitations. This framework considers the concepts of scale separation
map, generic submodel execution loop, and coupling templates to be sufficient for
bridging the gap between application design and computer implementation in the

117



5. Discussion – 5.3. Limitation

multiscale modeling language. Regarding the previous holistic co-simulation frame-
work, this framework addresses the concepts layer by defining basic concepts and the
semantic and syntactic layers with the proposition of multiscale language.
The scale separation map is a map that places submodels in time and space to high-
light the separation of scale between them. In this thesis, I consider multiscale pro-
blems with the separation of space into different brain regions with different reso-
lutions, and the time is the same for all scales. Using the scale separation map, the
multiscale problem is classified as multidomain with space separation and time over-
lap.
Using the proposition of coupling template, I can define that the coupling in this thesis
is cyclic (the two simulators have multiple interactions during the co-simulation),
fixed in synchronization (synchronization points between the two simulators are re-
gular in time and defined before the beginning), and fixed in the number of instances
(the number of submodels is not evolving during the co-simulation).
From this characterization, the co-design pattern presented here is dedicated to a
specific type of multiscale model. However, the state of the art and the lack of examples
in Chopard et al. 2014 for this type of multiscale show the knowledge deficit around
this topic.

5.3.2 Should we trust a co-simulation?

A major limitation of the co-simulation is the certainty in the output [69]. Gathering
simulators and models of different scales does not necessarily mean the simulation
output is still correct. Multiscale co-simulation requires quantifying the model’s un-
certainty and controlling the numerical errors of the simulator before trusting the
output of a co-simulation [69].
For phenomenological models, the validation should at least ensure that the range of
input values to the network corresponds with the dynamic range of the phenomeno-
logical model. For mean-field derived from a point neuron network, the validations
should at least quantify the maximum difference between the mean-field model and
the network dynamic in the context of a network of population, as brain network
model, and quantify the variability of the measure of the network in the up-scale
transformation. Nevertheless, the most important consideration is the consistency
between a neural network, mean-fields and transformation models while considering
that their assumptions are compatible.
For example, the exposed difference between the Mean Ad Ex and the associate point
neuron network (see Annex A) limits the interpretability of the co-simulation output.
Additionally, the non-uniform difference between the mean field and the network
makes it difficult to define a transformation function to compensate for it. This conclu-
sion can also be generalized to other mean-field with different assumptions, such as
the mean-field presented in Cakan et al. 2020 [49]. Furthermore, the analysis of the
precision of the measure of the mean firing rate over windows less than 10 s presents
variability higher than 1 Hz (see figure G.8) for a network in a steady state. This indi-
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cates that estimating the mean firing rate for short windows used in co-simulation
will present some variability that can influence the simulation’s dynamic.

5.3.3 Modeling limitation

I want to raise awareness about the several assumptions for modeling the brain
in this thesis, such as the focus only on neuron cells, the non-consideration of sy-
naptic plasticity, the non-consideration of the distribution of synaptic weights or the
heterogeneity of neuron properties, the absence a regional specificity between brain
regions and the non-consideration of other scale (molecule interactions, variation of
ion concentration, behaviors). Additionally, the work has been focused on specific
models to avoid getting lost in the details, which limits its generalizability.

To summarize, the software science co-design pattern is specific to a type of multis-
cale model. Without quantification of the uncertainty, the output of a co-simulation
should not be trusted. Additionally, the brain model used in this thesis is very specific,
with many assumptions.

5.4. Perspective
Regardless of this limitation, the scientific context is the main obstruction of multis-

cale co-simulation usage.

5.4.1 Difficulty of formulating scientific question using
co-simulation

The first reason is the difficulty of formulating a multiscale question for co-simulation.
Multiscale co-simulation requires a simultaneous study of two scales that a simula-
tion of one specific scale can not answer. This is partially in contradiction with the
mean-field approach derived from a point neuron network because it claims that the
relevant information of the meso-scale is already captured by it, and it is not necessary
to include all other details. At the same time, as a large complex dynamical system,
the point neuron network is already difficult to understand without adding a complex
input to represent the interaction with the rest of the brain. From these statements,
co-simulation of the brain’s macro- and meso- scale requires including relevant details
not captured by the mean-field model and an analysis that requires going beyond an
oscillatory input.

5.4.2 Youth of brain network model

The second reason is that mean-field models are not mature enough. There is as yet
no consensus on the relevant features needed to describe the state of a neural network,
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and there are a variety of approximations or assumptions about the properties of neu-
ral networks without thorough comparison between these approaches [17]. Moreover,
there are few studies about the impact of these assumptions and approximation in a
network of populations and the quantification of the maximum difference between
the neural network and the mean-field approximation. The current mean-field me-
thods in neuroscience do not provide a precise macroscopic description for using
them in interconnecting scale models. This is not surprising because brain network
modeling has only seven years of application, since the non-invasive measurement of
connectome [328, 150] (see section 1.4).

5.4.3 History of co-simulation in neuroscience, a
technology-driven proposal

The third reason is that most of the development of co-simulation in neuroscience
is mainly a technology-driven proposal without a specific scientific application [134].
We shall learn this from the history of previous developments of co-simulation.
The first project of co-simulation was done during the United States’ Human Brain
Project (1991-2006) [167, 203, 138, 202, 316, 38, 82, 132, 298]. This technical solution
is called Neo-sim [137] and was developed for coupling Genesis [34] and NEURON
[159], two multi-compartment neuron simulators. As explained in Gewaltig et al. 2014
[134], "The developers departed at the end of the grant with very little to show for their
efforts, and none of the software was ever reused. This was possible because NeoSim
was a purely technology-driven proposal without a specific scientific application.".
Ten years later, INCF [360], International Neuroinformatics Coordinating Facility,
funded MUSIC [100, 105], Multi-Simulation Coordinator, tools for coordinating co-
simulation. MUSIC and it is still under development. Its first application [100] was to
link a molecular simulator, MOOSE [291], with the meso-scale simulator NEST [98]. In
parallel, the Blue Brain Project developed an interaction between simulators such as
NeoCortical Simulator [101] and NEURON [159], or STEPS 4.0 [57] and NEURON.
Some year later, the Human Brain Project[235, 234, 12, 13, 11](see subsection 2.2.1)
has developed different solutions in addition to this work responding to various usage :
TVB-multiscale [303](see Annex C) is a co-simulator between macro-scale and meso-
scale with a vision centered around the macro-scale, i.e. the co-simulation is view has
an extension of TVB; Neurorobotics platform [199, 113, 8, 114] is a platform which
couples multiple simulators such as NEST [98], TVB [299], Gazebo [201] and open-
Sim [88]. This platform was created to study the embodiment of brain models and
the development of robots. Most of this co-simulation work is being integrated into
EBRAINS [99, 310] (see subsection 2.2.2).
These different co-simulation solutions use different technologies, depending on the
scientific and software context. The common denominator is that they have been
developed in large-scale projects, but their scientific benefits have yet to be demons-
trated, except for the Neurorobotics platforms [20, 175].
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5.4.4 Missing of transdisciplinarity in neuroscience

The fourth reason is the lack of pluralism in neuroscience, as explained by KraKauer
et al. 2017 [205]. Pluralism means considering different points of view on the same
phenomenon, which implies accepting the explanation of diversity. My personal take
is that neuroscience is missing transdisciplinary neuroscientists. To develop this ar-
gument, I will use part of the argumentation in Loubser 2015 [228], which describes
how to become a transdisciplinary theologian but with conclusions not restricted to
theology that can apply to all disciplines. I’ll assume that theology and neuroscience
have in common that their different disciplines share different beliefs to develop the
following.
Loubser’s main argument is that Paul Cilliers’ description of complexity [60], roo-
ted in a post-foundationalist epistemology, can facilitate transdisciplinarity. Loubser
introduces transdisciplinarity using the definition proposed by Basarab Nicolescu :
"transdisciplinarity concerns the dynamics generated by the action of several levels of
reality at once" [259], which is different from multidisciplinary and interdisciplinary
approaches. For example, modeling in neurosciences is a multidisciplinary field, as
this work demonstrates by situating itself at the intersection of physics, computer
science and biology, but is not transdisciplinary research.
Loubser proposes that transdisciplinary epistemology and complexity epistemology
are linked because both disciplines can be understood as mutually traversing net-
works [265] and general systems theory attempts to reconnect disciplines through
a "transversal language" [247]. Using this vision, it is possible to propose a model,
reduction or interpretation of this system, i.e. the network of disciplines. Disciplines
are linked by boundaries that influence the conduct of transdisciplinary studies. The
particularity of disciplinary boundaries is that they constantly evolve, forming part of
the system while at the same time describing it.
Modeling a network of disciplines is a tool for making the complex interaction bet-
ween disciplines intelligible. It requires decisions, such as which minimal information
to keep, and values, such as the legitimate equality of different disciplines without
hierarchy. Woerman and Cillier 2012 [366] argue that personal lives shape modeling
choices and judgments, and modelers are responsible for these choices and judgments.
However, choices are complicated because complex systems are not made up of the
sum of their parts, but also of emergent behavior due to interactions between their
components. For better judgment, Loubser recommends understanding the context
and history of disciplinaries, as well as knowledge about knowers. For a transdiscipli-
nary researcher, having a fruitful conversation with knowers requires knowledge of
the knower’s ethics, epistemology and words, as well as some skill in empathy.
I would say that the ill-defined boundary between macro- and meso-scale brain mode-
ling, and the competition between these two communities, makes it difficult to carry
out transdisciplinary studies. For example, I was surprised that modelers of different
scales disagreed about the ease of use of models and their interests. A mean-field
modeler may consider that simulating millions of neurons is less important than a
medium-field model because it is too complex or chaotic. As a result, they only use
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the smaller scale to validate their findings. Conversely, a point neuron modeler may
consider that a mean-field model loses too much detail or that the approximation
is too broad to be worth using and/or examining its conclusions. As a result, they
only use models on a larger scale to pre-parameterize their networks. In addition,
some experimentalists may consider that using a computer model in neuroscience is
irrelevant because, in their view, mathematical models are irrelevant.

To summarize, co-simulation in neuroscience was developed in the context of the
interoperability of simulators supported inside a scientific project or international
federation. This interoperability was guided by developing technical solutions to
support and sometimes demonstrate the interaction between scientific communities.
Currently, scientific communities do not use them, which explains the lack of ontology
common between communities. One possibility is that our understanding of the brain
is not mature enough to use this technology, i.e. scientific research does not require
models with this level of complexity. Either the Neural Mass models are not sufficiently
accurate or do not capture the relevant information about the emerging dynamics.

5.5. Summary
The main contribution of this thesis is the development of co-simulation between

macro and meso scales and the analysis of these two scales to link them. However,
this tool uses models with several limitations that limit its use and interest. The main
limitations are the lack of a methodology for quantifying co-simulation uncertainty,
numerical error and consistency between meso-scale, macro-scale and transforma-
tion models. As Gewaltig et al. 2014 [134] mention, "In such projects [capability-driven
software projects], developers need almost superhuman prescience if they want to
build something useful." I hope that my collaborators and the scientific vision of HBP
offered me a sense of anticipation to deliver a valuable tool despite the current lack of
scientific interest.
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A.1. Chapter overview
In this chapter, I aim to investigate data transformation from meso- to macro- scale.

Brain study requires integrating information from different scales, in particular, to
study emergent phenomena. However, there is no systematic characterization of the
approximation for the Mean Ad Ex [356]. We will describe the result of the comparison
between mean-field and associate spiking neural networks.

This chapter is based on preliminary results :
Dynamics of mean-field model of adaptive exponential integrate-an-fire network
Lionel Kusch 1, Damien Depannemaecker 1, Viktor Jirsa 1

1Institut de Neurosciences des Systèmes (INS) UMR1106, Aix-Marseille Univ., Mar-
seilles, 13005, France
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Abstract
The study of brain activity spans diverse scales and levels of description, necessita-

ting the development of computational models alongside experimental investigations
to explore integrations across scales. The high dimensionality of spiking networks
presents challenges for understanding their dynamics. To tackle this, a mean-field
formulation offers a potential approach for dimensionality reduction while retaining
essential elements. This study centres on a previously developed mean-field model,
extensively utilized in various research works. However, a systematic investigation of
its properties has not been published before. Therefore, this paper aims to provide a
comprehensive description and characterization of the model to assist future users
in interpreting their results. The methodology includes model construction, stability
analysis, and numerical simulations. Finally, we offer an overview of dynamical pro-
perties and methods to characterize a mean-field model useful for further use of this
model.

A.2. Introduction
The study of brain activity is a complex and multifaceted field that involves exa-

mining different scales and levels of description. In addition to experimental work
in neuroscience, computational models have been developed to investigate brain
activity at different scales, ranging from molecular to whole-brain levels. These models
of different natures can have different functions, such as explicative or predictive. In
this paper, we are interested in models reproducing dynamical aspects of neuron
membrane excitability, networked through a synaptic communication model. These
networks are made up of an excitatory population and an inhibitory population in
similar proportions to what is observed in the cortex. These networks are useful for
studying complex dynamics associated with the large dimensions of these systems.
However, having a large number of dimensions can be a limiting factor for the unders-
tanding of the representation of its dynamics. But also, when going to a larger spatial
scale to constitute a network model of cerebral regions [140], if keeping this level of
description, the system becomes too complex to be understood and too computatio-
nally demanding to be simulated. In these cases, it may be interesting to try to reduce
the dimensions of the system, trying to keep key elements to achieve the function of
the model. A possible way of reduction is the formulation of a mean-field. The present
study focuses on the study of a mean-field previously developed [106, 375, 356] and
already used in different studies [56, 140, 356, 374, 50, 51, 339, 96, 340, 140]. Such
approaches may focus on the proper dynamics of its corresponding spiking network
[51, 356, 106, 50] or on experimental results [96, 374, 56] or, to clinically observable
measures [140, 340, 339]. However, despite a wide range of uses, no systematic study
of the mean-field model properties was published previously. Therefore, we propose a
description and characterization intended for future users of this model and thus to
help them interpret their results. We propose a methodology, and the results are given
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for one specific mean-field derivation (i.e. on a specific fit of the transfer function,
see models and methods section) ; each user may need to apply these approaches
to characterize its specific model. In the "model and methods" section, we detail
the construction of this model, and then in the "stability analysis" section, we detail
important elements of the structure underlying the dynamics. Then, we propose a cha-
racterization of its implementation in numerical simulations. Finally, in a discussion,
we situate this model in the broad panorama of mean-fields, explaining its advantages
and limits.

A.3. Models and methods
In this section, we first describe the Adaptive Exponential Integrate-and-Fire model

[37] that constituted the spiking network, and then the corresponding mean-field mo-
del. The equations’ details and the parameters’ values are available in Supplementary
Tables G.1 and G.2 based on the proposition of Nordlie et al. [261].

A.3.1 AdEx network

A network of 10 000 spiking neurons is constructed with a probability of connec-
tion of 5%, according to a sparse and random (Erdos-Renyi type) architecture. 20%
constituted an inhibitory (FS) population, and 80% an excitatory (RS) population,
accordingly to the cortex and previously modelled [51]. The dynamics of a single
neuron membrane excitability is described by the AdEx model [37] corresponding to
the equation (A.1)

Cm
dVm

d t
=−gL(Vm −EL)+ gL∆T e

(
Vm−Vth
∆T

)
−w + Is yn (A.1)

τw
d w

d t
= a(Vm −EL)−w

When an action potential is emitted (i.e. the membrane potential crosses a thre-
shold), the system is reset as in the equation (A.2) :

if Vm ≥Vpeak then

{
V →Vr eset

w → w +b
(A.2)

The interaction into the network is through synaptic current (equation (A.3)).

Is yn =−gE (Vm −EE )− g I (Vm −E I ) (A.3)

where EE = 0 mV and E I =−80 mV are, respectively, the reversal potentials of excita-
tory synapses and inhibitory synapses. For each incoming spike, the excitatory and
inhibitory conductances gE and g I are increased respectively by the value QE = 1.5 nS
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and QI = 5 nS. The conductances decrease following an exponential decay with a time
constant τs yn = 5 ms according to the equation (A.4).

d gE/I

d t
=−gE/I

τs yn
(A.4)

The network is simulated using the simulator NEST [152].

A.3.2 Mean-field of AdEx

Following the formalism proposed by El Boustani and Destexhe [106], di Volo and
colleagues have proposed a mean-field of the previously described spiking network
[356]. The differential equations describe the evolution of the firing rate νµ of each
population µ= e, i (equation (A.5)), the covariance cλη between population λη (equa-
tion (A.6) ), and, of the average adaptation for the excitatory population W (equation
(A.7)).

T
dνµ
d t

= (Fµ−νµ)+ 1

2
cλη

∂2Fµ
∂νλ∂νη

(A.5)

T
dcλη

d t
= δλη

Fλ(1/T −Fη)

Nλ
+ (Fλ−νλ)(Fη−νη)

+∂Fλ
∂νµ

cηµ+
∂Fη
∂νµ

cλµ−2cλη, (A.6)

∂W

∂t
= −W /τw +bνe +a(µV (νe ,νi ,W )−EL) (A.7)

The parameter T , the time constant of the firing rate equations and covariance
equations, comes from an essential assumption for this derivation : the network
dynamics is considered as Markovian on an infinitesimal (time resolution T) [106].
It is thus considered that each neuron emits a maximum of one spike into the time
step T. Therefore, the value of T strongly constrains the maximum firing rate that can
be considered according to these hypotheses. This question will be addressed in the
discussion.

The parameters b, a et EL in the equation (A.7), directly correspond to the parame-
ters named the same in the AdEx model [356] ((A.1)).

And, the function Fe,i relates to the transfer functions of the excitatory and inhibitory
population and should be understood as Fe (νe +νext ,νi ), where νext correspond to
a constant value of the firing rate an external drive. The first step is to measure the
output firing rate of the single neuron model while receiving excitatory and inhibitory
inputs. These measures are necessary because, due to the nonlinearity of the dynamics
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of the single neuron model, it cannot be inferred analytically, as well as determining
when the system will irretrievably produce a spike. Thus, it is considered an effective
or phenomenological threshold, V eff

thre, a function of the statistics of the subthreshold
membrane voltage dynamics. This statistic is assumed to be normally distributed, with
the average membrane voltageµV , its standard deviationσV and auto-correlation time
τV ; their calculation is described below. The effective threshold function is considered
as a second-order polynomial giving the equation (A.8), where τN

V = τV Gl /C . The {P }
values are computationally found through fitting methods.

V eff
thre(µV ,σV ,τN

V ) = P0 +
∑

x∈{µV ,σV ,τN
V }

Px ·
(x −x0

δx0

)
+

∑
x,y∈{µV ,σV ,τN

V }2

Px y ·
(x −x0

δx0

)( y − y0

δy0

)
,

(A.8)

Then a semi-analytic approach enables us to fit the transfer function (equation
(A.9)), where er f c is the Gauss error function, and thus obtain the output firing rate.

Fν = 1

2τV
er f c

(
V eff

thre −µVp
2σV

)
, (A.9)

Considering asynchronous irregular regimes, we assume that the input spike trains
follow the Poissonian statistics [356, 106, 375] and we calculate the averages (µGe,Gi )
and standard deviations (σGe,Gi ) of the conductances in the equations A.10. In these
equations, Ke and Ki are the average input connectivity received respectively from
the excitatory or inhibitory population. As in the spiking network, τe = τi = τs yn are
synaptic time constants, and Qe and Qi the quantal increment of the conductances,
respectively, for the excitatory or inhibitory populations.

µGe (νe ,νi ) = νe Ke τe Qe ,

σGe (νe ,νi ) =
√
νe Ke τe

2
Qe ,

µGi (νe ,νi ) = νi Ki τi Qi ,

σGi (νe ,νi ) =
√
νi Ki τi

2
Qi ,

(A.10)

We can then calculate the total input conductance of the neuron µG and its effective
membrane time constant τeff

m (equations (A.11)), with C and gL being the same as in
the AdEx model.
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µG (νe ,νi ) =µGe +µGi + gL ,

τeff
m (νe ,νi ) = C

µG
.

(A.11)

Then, we can calculate, in the equation (A.12), the mean subthreshold voltage assu-
ming that the subthreshold moments (µV , σV , τV ) are not affected by the exponential
term of the AdEx model, and thus considering only the leakage term and the synaptic
inputs.

µV (νe ,νI ) = µGe Ee +µGi Ei + gL EL

µG
. (A.12)

Thanks to the calculation developed by Zerlaut and al. [374], we obtain σV and τV

in the equations (A.13) and (A.14), where Us = Qs
µG

(Es −µV ) and s = (e, i ).

σV (νe ,νi ) =
√∑

s
Ks νs

(Us ·τs)2

2(τeff
m +τs)

, (A.13)

τV (νe ,νi ) =
( ∑

s
(
Ks νs (Us ·τs)2

)∑
s
(
Ks νs (Us ·τs)2/(τeff

m +τs)
)), (A.14)

The mean-field is simulated using The Virtual Brain [300].

A.3.3 Transfer function fitting

The transfer function is a function that provides the firing rate of a population for a
given excitatory and inhibitory input firing rates and mean adaptation current. To fit
the phenomenological threshold of this function, we create a data set of averages of the
mean firing rate of 10 seconds of fifty neurons connecting only to one excitatory and
one inhibitory Poisson generator with a fixed negative input. We take twenty values
for inhibitory input firing rate (between 0 and 40 Hz) and twenty values of adaptation
current, i.e. a constant negative current (between 0 and 500 pA). The five hundred
excitatory input firing rates (between 0. and 200 Hz) are adjusted to get a precision of
the output firing rate (the interval between two values is in the range of 0.1 and 1.0 Hz).
The mean output firing rate is the average over fifty neurons by removing the outliers
(values higher than three times the interquartile difference). The phenomenological
voltage threshold of the transfer function is fitted following the paper of Zerlaut et al.
2018 [374] with two steps. The initial values of the ten polynomial coefficients of the
voltage threshold are set to (effective mean voltage, 1e-3, 1e-3, 1e-3, 1e-3, 0, 0, 0, 0,
0). The first fitting step is the minimization of mean square difference of the voltage
threshold estimated from the transfer function (V eff

thre) and the estimated effective

threshold from the data set (µV +p
2σV · er f c_i nv

(
2µout ·τV

)
). The second fitting

step is the minimization of the mean squared difference between the output firing
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rate of the data set and the one estimated by the transfer function. The coefficients fit
using Broyden–Fletcher–Goldfarb–Shanno algorithm [40, 122, 139, 317] implemented
in Scipy [352].

A.3.4 Bifurcation analysis

The bifurcation analysis of the mean Ad Ex has been done using MatCont (version
7.7) [95], a numerical continuation library of MATLAB [174]. From the equilibrium
point of a silence network (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), we compute the change of
stability depending on the external excitatory firing rate. The result of the numerical
continuation is a stability diagram of the mean-field with a bifurcation point. The
steps of numerical continuation are variable and adjusted depending on the sensitivity
of the stability of the fixed-points.

A.3.5 Spike train analysis

In this paper, we analyze the spike trains analysis to validate the mean-field hypo-
theses and to compare the response to oscillatory input between the network and the
mean-field. The hypotheses of the mean-field are evaluated using two measures : the
time scale of the spike trains (auto-correlation time) and the minimum of the spiking
interval.
The auto-correlation time is calculated based on the following equation (A.15) propo-
sed by Wieland et al. 2015 [361] :

τcorr =
∫ τmax

−τmax

[
Ĉ (τ)

Ĉ (0)

]2

dτ (A.15)

where Ĉ (τ) = 〈x(t )x(t −τ)〉〈x〉2−〈x〉δ(τ) with x(t ) =
N∑

n=1
δ(t−tn) for tn is the n-th spike

time of the spike trains. The minimum inter-spiking interval is the minimum time
between two spikes of the same neurons. The maximum firing rate is the maximum
number of spikes in 5 milliseconds. The analysis of the network’s response to a sinu-
soidal Poisson generator is based on quantifying the phase difference between the
oscillation of the mean firing rate of the excitatory neuron of the spiking network and
the input oscillation. The network oscillation signal corresponds to the firing rate filter
at the input oscillation frequency. The firing rate is defined as a sliding average with a
window of 5 milliseconds of the instantaneous firing rate (resolution 0.1ms).
The phase difference between these two oscillatory signals is defined by the following
equation(A.16) :

meanphase = 1

N

N∑
n=1

exp
(

j
(
θi nput (t ,n)−θnet wor k (t ,n)

))
(A.16)
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where θi nput is the analytic signal given by the Hilbert transformation of the sinusoidal
input, and θnet wor k is the analytic signal provided by the Hilbert transformation of the
network oscillation signal. The network oscillation signal is the histogram of instanta-
neous firing rate (bin :0.1) smooths with a sliding average window of 5 milliseconds.
The absolute value of the meanphase corresponds to the phase locking value as
defined by Lachaux et al. 1999 [217]. The angle of the meanphase corresponds to the
phase shift [124]. Additional analyses are described in the Supplementary Note G.1.3.

A.3.6 Mean-field analysis

The mean-field signal corresponds to the excitatory mean firing rate filter at the
input oscillation frequency. The rest of the analysis is the same as for the spike trains.
The difference of phase is calculated based on the equation (A.16) where θi nput is
the analytic signal given by the Hilbert transformation of the sinusoidal input and
θmean_ f i eld is the analytic signal given by the Hilbert transformation of the mean-field
signal. The phase locking value and the phase shift are extracted from this phase and
used to quantify the mean-field’s response. Additionally, the maximum firing rate of
the mean-field corresponds to this maximum value of the mean firing rate. Additional
analyses are described in the Supplementary Note G.1.4.

A.4. Results
In the results sections of this paper, we do not present specific simulations but

instead, provide a characterization of the model itself. The results presented (unless
otherwise indicated) are based on a unique set of parameters that have led to a
fixed transfer function fitted for each of the populations (inhibitory and excitatory)
considered. These results may differ for other fits and parameters, and we invite
users of the mean-field AdEx to perform their own characterizations for their specific
applications.

A.4.1 Steady-state and transfer function

The mean-field (MF) model, by construction, captures the out-of-equilibrium asyn-
chronous irregular steady-state of the spiking neural network as a stable fixed-point.
The stability analysis, according to the parameter νext , the external input, provides a
bifurcation diagram. This bifurcation diagram can complete the understanding of the
underlying structure of attractors while building a network of MF [374, 140].

A qualitative comparison of the mean firing rate for a subset of external input
characterizes the link between the bifurcation diagram of the MF and the spiking
neural network state. The external input in this paper is a parameter, constant input,
for the MF and the frequency of the Poissonian spike generator for the network. Figure
A.1 illustrates in the central plot the stability of the MF (black line) for different levels
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of external inputs and the corresponding mean firing rate of the steady-state of the
network. The bifurcation diagram shows three regions of stability associated with the
two variables, the mean firing rate of each population, also existing for the network.
The side figures of the diagram show two simulations corresponding to two examples
taken from the stable region of the MF with the associated network simulations.
The qualitative comparison of these two measures displays a similar behavior and
proves that the MF captures well the steady-state of the network for different inputs.
Remarkably, in the region with a very high firing rate (≈ 200Hz, the network is no
longer in an asynchronous irregular regime, are captured by the MF. However, looking
more into details, significant quantitative differences appear for certain values of
external inputs.

FIGURE A.1. – Mean-field and network dynamic without adaptation
The figure C represents the bifurcation of external excitatory input in the variable
space of excitatory and inhibitory mean firing rate. The black line is the mean-field
bifurcation with its stability (continuous line for stable fix points and dashed lines
for unstable fix points). The crosses are the estimation of the fixed-point using the
simulation of the spiking neural network. The red crosses and red points are the fixed-
points associated with the examples of each side. The figures A,B,D and E exemplify
network and mean-field simulations with an external excitatory input of 10 Hz and
80 Hz. The top figures (A, D) visualize the mean firing rate of the excitatory (red) and
inhibitory (blue) neurons from the network simulation and the mean firing rate of the
excitatory (orange) and inhibitory (cyan) population from the mean-field simulation.
The bottom figures (B, E) are the corresponding raster plots of the spiking network
simulations. The figures A and B display asynchronous irregular regime, and the
figures D and E display synchronous regular regime

Before looking into detail, it is important to notice that the measure of the mean
and standard deviation of the firing rate of a network’s steady-state present variability
in time and is dependent on the window size. The supplementary figures G.5 and G.6
show the distribution of these measures over thirty seconds for different window sizes.
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This confirms that the distribution is dependent on the network state. To reduce the
measure variability, the steady-state of the network is measured over four seconds
after discarding one second of transient. Figure A.2 compares MF fixed-points and
the corresponding mean firing rate of steady-state of the network. The results show
the firing rate of each population for three different values of the parameter b, which
directly affects the range of the adaptation variable w . This adaptation variable is a
slower variable playing an important role in modeling phenomena such as neuromo-
dulation [140, 343]

As above, figure A.2 confirms that the MF captures the qualitative behavior of
the network. However, the MF model underestimates the mean firing rate for rates
below 150 Hz and overestimates it for the mean firing rate higher than 150 Hz. The
overestimation is accentuated with the increase of spike trigger, and it comes from a
reduction of the mean firing rate, not present in network simulation, after the first fast
increase. This may be reduced by fitting the population’s transfer function with the
network’s steady-state in a specific range of values. However, the structure remains
qualitatively the same : a stable fixed-point at the zero input (giving a firing rate
= 0) that soon becomes an unstable fixed-point going through a Hopf bifurcation
for negative or near-by zero values depending on the level of adaptation b. After
another Hopf bifurcation, it becomes stable again, entering the main region of interest
of the MF where the corresponding spiking network exhibit asynchronous irregular
dynamics and where the range of firing rate observed correspond to what can be
observed experimentally in the cortex [177, 297]. It remains stable for a long range of
input ( 80Hz without adaption and >100Hz with adaptation b = 30p A or b = 60p A). A
bistability exists, with a higher fixed-point around 200Hz. The supplementary figures
G.2, G.3 and G.4 provide the four additional dimensions of the bifurcation diagram.
They also demonstrate that the MF does not capture quantitatively the variances and
covariance. This may be linked to the size of the windows (see G.5 and G.6).

Our previous method for estimating the steady-state of the network is limited to one
state, and it cannot provide evidence of the existence of bi-stability. By a reduction
every 10 seconds of 1Hz of the external input of the Poisson Generator for a network in
a steady-state around 200 Hz, we estimate the range of existence of the bi-stability for
an external firing rate under 51 Hz. Similarly, by an increase every 10 seconds of 1Hz of
the external input of a steady-state network under 150 Hz, we estimate the existence
of bi-stability for an external firing rate over 48 Hz. The supplementary figures G.7 and
G.8 show that the MF overestimates the bi-stability’s existence. As well as previously,
the comparison was also limited to a specific network and one realization of noise. To
examine the generalization of the MF, the estimation of the steady-state of the network
was done thirty times. The result demonstrates a low variability of the steady-state
except when the external input is closed to 50Hz, around the shift of attractor (see
supplementary figure G.1).

The crucial aspect for the accuracy of the MF AdEx is the fitted transfer function
that, in the equations, drives the dynamics. As detailed in the method section, the
final expression is based on the semi-analytical approach, building the link between
the single neuron response to inhibitory and excitatory input and the MF. We aim to
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FIGURE A.2. – Impact of spike-trigger adaptation on the network dynamic
The graphic shows the bifurcation diagram, which depends on the external excitatory
input for three different values of spike-trigger adaptation (black : 0 pA, blue : 30 pA,
green : 60 pA). The three curves represent the stability of the fixed-point (a continuous
line indicates a stable fixed-point, and a dashed line represents an unstable fixed-
point). The crosses on the diagram are an approximation of the stable fixed-point
obtained through simulations. The A and C diagrams are dedicated to the mean firing
rate of the excitatory population, while the B and D diagrams are for the mean firing
rate of the inhibitory population. The two bottom figures (C and D) enlarge the bottom
part of the top graphic (A and B).

characterize it in figure A.3 provides an analysis of the MF transfer function’s ability to
capture the single neuron’s firing rate in response to excitatory input. The top plot (fig.
A.3A, B) shows the MF transfer function fitted. The middle plot (fig. A.3C, D) shows
the single neuron firing rate as a function of excitatory input, while the bottom plot
(fig. A.3E, F) shows the absolute error corresponding to the difference between the
MF transfer function and the firing rate of the single neuron. The results show that
the transfer function captures the firing rate well, with the maximum error occurring
when the inhibitory firing rate is null. For the excitatory neurons transfer function, the
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maximum error was found to be 40.089 Hz, with an error of 79.769 Hz and a relative
error of 0.0056 Hz for the range between 0 Hz and 200 Hz (see supplementary figure
G.9). It becomes much lower if we only consider the range between 0 Hz and 50 Hz,
where the maximum error was found to be 3.407 Hz with an absolute error of 0.1743
Hz and a relative error of 0.0218 Hz. For inhibitory, between 0 Hz and 200 Hz, the
maximum error was found to be 34.716, with an absolute error of 57.477 Hz and a
relative error of 0.00478 Hz (see supplementary figure G.9). If we only consider the
range between 0 Hz and 50 Hz, the maximum error was 1.7353 Hz with an absolute
error of 0.0688 Hz and a relative error of 0.00687 Hz. In this paper, the fitting of transfer
functions includes the effect of the adaptation currents by using data from simulations
of neurons with constant negative currents. This was done to reduce the discrepancy
between MF and network firing rate when the spike trigger increased, as shown in
Di Volo et al. 2019 [356]. For this set of parameters, the effect of the adaptation does
not have a significant impact (under the fitting errors without this additional data), as
shown in the supplementary figure G.10.

Due to the crucial aspect of the transfer function on the MF dynamic, we analyze
the sensibility of the precision of the polynomial coefficients of the excitatory transfer
function. The sensibility analysis is the variation of the 10 Hz fixed-point (far from
bifurcation) depending on the number of significant digits of the polynomial coeffi-
cients. For an accuracy of 10Hz, it requires at least one significant digit. For an accuracy
of 1 Hz, it requires at least three significant digits. And, for an accuracy of 0.1 Hz, it
requires at least four significant digits. However, the more the network dynamic is
closed to a bifurcation point, the more sensitive the stability of fixed to the precision of
the coefficients. Furthermore, for some specific states of the MF, the mean firing rate
becomes negative (see supplementary figure G.11). Consequently, the MF becomes
undefined because the transfer function is not defined for negative firing rates, as
expected, negative firing rates are unrealistic cases.

However, another possible source of differences between the network and the MF
observed in figure A.2 is that the network may not stay in an asynchronous irregular
regime while the input increases. While investigating the MF, we did not explore the
network behaviors in more detail, which would require an entirely separate study.

In conclusion, the MF captures qualitatively well the different network steady-states.
Still, some quantitative differences are observed and may be improved by a better
fitting of the transfer function on a specific region of interest for a particular usage of
this model.

A.4.2 Dynamical comparison

This part of the analysis is the dynamical response of the MF to non-constant inputs.
Indeed, this model is used to constitute a network of MF to model a cortical region
[375] or whole brain modeling [140]. In such simulations, it is not anymore the steady-
state of the network but the response to varying inputs that is of interest. Thus, the
network may not exhibit the asynchronous irregular regime and/or the condition

181



A. Dynamics of mean-field model of adaptive exponential integrate-an-fire network –
A.4. Results

FIGURE A.3. – Fitting of Transfer functions
The left part (A, C and E) is dedicated to the excitatory neuron, while the right part
(B, D and F) is dedicated to the inhibitory neuron. A,B : The top graph represents the
transfer function of the mean-field fitted to the data. C, D : The middle graph shows
the data used for the fitting, which is the mean firing rate of 50 independent neurons.
E, F : The bottom graph displays the error between the transfer function and the data.
Each line is associated with a different value of inhibitory firing rate (20 values evenly
distributed between 0 Hz and 40 Hz).

for the Markovianity assumption under non-constant inputs. We tested for different
sinusoidal variations of the external Poissonian inputs.

Figure A.4 shows the range of validity of the hypothesis of the MF. Indeed, one of
the important assumptions to avoid underestimation is the presence of only a single
spike of each neuron within the time windows T (see [106]). The red line corresponds
to the network’s auto-correlation time equals the minimum time between two spikes.
The top row of the figure describes the validity range for low amplitude and/or low
frequency. It shows that the MF hypothesis is valid for a wide range of low frequency
inputs but breaks down for high frequency or/and high amplitude inputs.

On the other hand, the bottom row of the figure shows the effect of adaptation
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FIGURE A.4. – Time scale of the excitatory population in the presence of a sinusoidal
Poisson generator

Each graphic represents the timescale of the excitatory population in the presence of
stimulation by a sinusoidal Poisson generator mimicking the connection with another
population. The red line represents the minimum time between two spikes equals
the timescale of the network. The neurons do not have any adaptation for the top
graphics (A, B and C), while for the bottom graphics (D, E, F), the value of their spike-
trigger adaptation is 60.0 pA. The difference between each column is the mean rate
of the sinusoidal Poisson generator. A, D : The mean rate equals the amplitude of the
oscillation. B, E : The mean rate is fixed at 0.0 Hz. C, F : The mean rate is fixed at 7.0
Hz, respectively.

(b=60.0pA) on the range of validity. It shows a validity range only when the average
input frequency is 7.0 Hz. In other words, the MF hypothesis, while receiving non-
constant input, is valid only for a narrow range of input values when the system has
adaptation.

Out of the MF assumptions, we compare the dynamic of the MF and the network
in response to a sinusoidal input. Figure A.5 shows that the Phase Locking Values
between the input signal and the network or MF is close to 1.0, i.e. synchronized.
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FIGURE A.5. – Comparison between the mean-field and the spiking network in the
presence of oscillatory input with a mean rate of 7Hz

The graphics A, B and C represent the measure of the excitatory population in the
spiking neural network, and the D, E and F graphics illustrate the measure of the
excitatory mean firing rate of the mean-field. The three measures displayed here
are the phase locking values in rad (A and D), the phase shift (B and E) between
the oscillatory input and the mean firing rate in rad, and the excitatory population’s
maximum firing rate in Hz(C and F).

The only exception is when the network receives a signal with low amplitude or low
frequency; this can come from the variability of the input of the inhomogeneous
Poisson generator. However, the phase shift analysis gives a clear difference between
the network and the MF. The MF’s phase shift is more negative than the networks
and is in anti-phase with the input for high amplitude and high firing rate (yellow
area). This area also corresponds to a maximum firing close to 200Hz. On the contrary,
the network has a maximum firing rate in the range of 10 Hz to 20 Hz. This means
that the network is more attracted around the center fixed-point than the MF, i.e. has
a tendency to converge toward this corresponding attractor. Including adaptation
does not change these observations but increases the mismatch already noted (see
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supplementary figure G.12). Nevertheless, the mismatches become more significant if
the sinusoidal input is centered around 0.0 Hz. As the mean firing rate does not attract
to the center fixed-point, it creates a difference in the phase locking values and phase
shift (see supplementary figure G.13 and G.14). The adaptation pushes the network in
anti-phase, reducing the discrepancy between the MF and the network for the phase
shift. However, the other observation remains the same.

A.5. Discussion
Many different approaches are possible to capture brain dynamics at the mesoscopic

scale [365, 262, 106, 42, 166, 309, 246, 307, 23], and each of these approaches is relevant
to capture specific features of the dynamics of spiking networks. Some specificities
of the mean-field methods studied here are the possibility of considering the sparse
connectivity and the finite size of the populations. This method has been applied
considering different single neuron models [106, 356, 51, 9], but the most used to
build large-scale model is based on the AdEx model. Thus, we aim to offer relevant
information and characterization approaches about this specific MF model.

The present characterization of the mean-field AdEx (MF) indicates that the MF pro-
vides good qualitative insights into the complex behavior of networks of the adaptive
exponential integrate and fire neurons with conductance synapses. The approxima-
tion of the MF is tightly connected to its transfer function and, in particular, to the
precision of the phenomenological threshold. However, this mean-field approxima-
tion does not capture the dynamical behaviors of the network for oscillatory inputs.

The bifurcation analysis of the MF reveals the co-existence of multiple fixed-point
depending on the external input. In this work, we validated the existence of the
co-existence of multi-steady-state in spiking neural networks. Additionally, the MF
captures fixed-points around 200 Hz despite the non-validity of the MF’s assumption
that the network regimes are asynchronous irregular regimes. However, the quantita-
tive comparison of the fixed-points and the steady-state present a mismatch which is
accentuated by the increase of the spike trigger adaptation of the excitatory neurons.
This mismatch has multiple causes, such as the size of the windows for the measures,
the approximation of the transfer function or/and the degree of network synchro-
nization. To evaluate the influence of these causes, we quantify the approximation
of the transfer function. This quantification informs us about the errors which are
not uniform and increase with the output firing rate of the neuron. However, the
approximation can be improved if the input and output firing rate range is reduced.
Additionally, sensitive analysis of the polynomial coefficients of the phenomenolo-
gical threshold of the transfer function shows that reducing the imprecision at 0.1
Hz, requires at least 4 significant digits. In the presence of oscillatory input, we check
the co-validity of two hypotheses : the time constant of the MF is high enough for
considering that the network is memory-less and low enough for the neurons not to
generate more than one spike during this interval. We found that these two hypotheses
are valid simultaneously for low amplitudes of the oscillatory input and depend on
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the average input. Additionally, adding the adaptation current can create cases where
these two hypotheses are exclusive because the adaptation current creates a slow
fluctuation of mean firing rate. Despite the validity or not of these two hypotheses,
the dynamic comparison between the MF and the network presents a good match for
synchronization with the input but a mismatch in mean firing rate, like previously,
and a mismatch in the phase shift with the input. These mismatches are variable with
the average input and are quite insensitive to the adaptation current. The possible
cause of these mismatches is the adiabatic approximation of the MF methods [106].

This study is limited to a specific set of parameters and mostly to a specific network
connectivity. However, the realization of thirty other networks provides a low variance
except around the shift of attractor. Additionally, the qualitative dynamic is similar
to that presented in Di Volo et al. 2019 [356]. The analyses do not provide exhaustive
confirmation of all MF’s hypotheses, such as the Gaussian distribution of the voltage
membrane, the adiabatic process, and the input spike trains of each neuron are
equivalent to a Poisson generator. It explains the partial conclusion of the study but
provides a characterization to help the interpretation of MF simulation and clarify the
link between the MF and the network. Additionally, we do not provide a study of the
different versions of the phenomenological threshold [375, 374, 356] which can reduce
the MF’s approximation. For example, the paper of Zerlaut et al. 2018 [374] seems to
better approximate the MF because the difference in phase shift is smaller. Still, it was
realized with a different transfer function and simulator. Indeed, the implementation
of the Poisson generator may differ between simulating environments such as between
NEST [98] and Brian2 [334], which can impact the network regimes, particularly for
high frequency. The good practice will be to perform a characterization of the MF for
each specific application.

To summarize, the MF provides valuable insights into the network’s steady-state
behavior. Through the optimization of the transfer function within the desired range,
the model’s suitability for particular use cases can be improved. Nonetheless, to
better characterize and refine the model’s performance in these specific scenarios,
it is imperative to undertake further investigations and analyses. This would ensure
a more comprehensive understanding of the network’s dynamics and improve its
accuracy and effectiveness in practical applications.
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CHAPTER B

A comprehensive neural simulation of slow-wave sleep

and highly responsive wakefulness dynamics

B.1. Chapter overview
This chapter is a side work of this thesis. It describes a model of perturbation

complexity index for a state of wake or sleep. My participation in this work is the
implementation of the Mean Ad Ex [356] in The Virtual Brain [299] and the help of the
parametrization of the model using the bifurcation analysis presented in the previous
chapter.

This chapter is based on the published article in Frontiers in Computational Neu-
roscience :
A comprehensive neural simulation of slow-wave sleep and highly responsive wake-
fulness dynamics
Jennifer S. Goldman 1, Lionel Kusch 2, David Aquilue 1, Bahar Hazal Yalçınkaya 1,2,
Damien Depannemaecker 1, Kevin Ancourt 1, Trang-Anh E. Nghiem 1,3, Viktor Jirsa 2,
and Alain Destexhe 1
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Hallmarks of neural dynamics during healthy human brain states span

spatial scales from neuromodulators acting on microscopic ion channels to

macroscopic changes in communication between brain regions. Developing

a scale-integrated understanding of neural dynamics has therefore remained

challenging. Here, we perform the integration across scales using mean-

field modeling of Adaptive Exponential (AdEx) neurons, explicitly incorporating

intrinsic properties of excitatory and inhibitory neurons. The model was run

using The Virtual Brain (TVB) simulator, and is open-access in EBRAINS.

We report that when AdEx mean-field neural populations are connected

via structural tracts defined by the human connectome, macroscopic

dynamics resembling human brain activity emerge. Importantly, the model

can qualitatively and quantitatively account for properties of empirically

observed spontaneous and stimulus-evoked dynamics in space, time, phase,

and frequency domains. Large-scale properties of cortical dynamics are shown

to emerge from both microscopic-scale adaptation that control transitions

between wake-like to sleep-like activity, and the organization of the human

structural connectome; together, they shape the spatial extent of synchrony

and phase coherence across brain regions consistent with the propagation of

sleep-like spontaneous traveling waves at intermediate scales. Remarkably, the

model also reproduces brain-wide, enhanced responsiveness and capacity to

encode information particularly during wake-like states, as quantified using

the perturbational complexity index. The model was run using The Virtual

Brain (TVB) simulator, and is open-access in EBRAINS. This approach not only

provides a scale-integrated understanding of brain states and their underlying

mechanisms, but also open access tools to investigate brain responsiveness,

toward producing a more unified, formal understanding of experimental data

fromconscious and unconscious states, aswell as their associated pathologies.

KEYWORDS

neural simulation, mean-field model, spontaneous activity, evoked responses, wake,

synchronous, slow-wave sleep, human brain
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1. Introduction

Brain activity is marked by complex spontaneous dynamics,

particularly during conscious states when the brain is most

responsive to stimuli. Though changes in spontaneous and

evoked dynamics have been unambiguously empirically

observed in relation to changes in brain state, their multi-scale

nature has notoriously occluded a formal understanding.

Spanning from macroscopic dynamics supporting

communication between brain regions to microscopic,

molecular mechanisms modulating ion channels, hallmarks

of consciousness have been observed across spatial scales. At

the whole-brain level, conscious states are marked by complex

spontaneous collective neural dynamics (Niedermeyer and

Lopes da Silva, 2005; El Boustani and Destexhe, 2010) and more

sustained, reliable, and complex responses to stimuli (Massimini

et al., 2005; Casali et al., 2013; D’Andola et al., 2018; Dasilva et al.,

2021). At the microscopic level, neuromodulation is enhanced

in conscious, active states, leading to microscopic changes

in cellular kinetics (McCormick, 1992). Yet, a challenging

multi-scale problem still resides in comprehending how changes

in the complexity of global spontaneous dynamics and whole

brain responsiveness may specifically relate to microscopic

neuromodulatory processes to enable neural coding during

active states. Here, using mean-field models of conductance-

based, Adaptive Exponential (AdEx) integrate-and-fire neurons

with spike-frequency adaptation developed recently (Zerlaut

et al., 2018; Capone et al., 2019; di Volo et al., 2019), constrained

by human anatomy and empirically informed by local circuit

parameters, we report the natural emergence of global dynamics

mimicking different human brain states.

To connect microscales (neurons) to macroscales (whole

brain), this work relies on previous advances at mesoscales

(neural populations). The first step was modeling biologically-

relevant activity states in networks of spiking neurons. Based

on experimental recordings, we used the Adaptive Exponential

(AdEx) integrate and fire model to simulate two main cell types

identifiable in extracellular recordings of human brain (Peyrache

et al., 2012): regular-spiking (RS) excitatory and fast-spiking (FS)

inhibitory cells. AdEx networks were constrained by biophysical

representations of synaptic conductances, which allowed the

model to be compared to conductance measurements done

in awake animals (Zerlaut et al., 2018) (for experiments,

see Steriade et al., 2001; Rudolph et al., 2007). In such

configurations, AdEx networks reproduce states observed

in vivo (Destexhe, 2009; Jercog et al., 2017; Zerlaut and

Destexhe, 2017; Zerlaut et al., 2018; Nghiem et al., 2020),

notably asynchronous irregular (AI) states found experimentally

in awake states, and synchronous slow waves as in deep

sleep (Destexhe et al., 1999; Steriade et al., 2001; Steriade,

2003). From AdEx networks, mean-field models were derived

to take into account second order statistics of AdEx networks

interacting through conductance-based synapses. We used a

Master Equation formalism (El Boustani and Destexhe, 2009),

modified to include adaptation (di Volo et al., 2019).

In this manuscript, we present evidence that mean-field

descriptions of biophysically informed estimates of neuron

networks produce macroscopic dynamics capturing essential

characteristics of human wake and sleep states—due to variation

in spike-frequency adaptation—when coupled by the human

connectome with tract-specific delays. First, we show that

simulated microscopic changes in membrane currents directly

lead to the emergence of globally asynchronous vs. synchronous

dynamics exhibiting distinct signatures in the frequency

domain, as well as changes in inter-regional correlation structure

and phase-locking, mimicking aspects of spontaneous human

brain dynamics. The spatial extent of synchrony and phase

relations across brain regions was observed to be an emergent

property of both microscopic-scale adaptation changes and

the organization of the human connectome, which allow for

enhanced phase coherence at intermediate, cross-region, but

not whole-brain scales in sleep-like states, consistent with the

propagation of traveling waves. Further, we report enhanced

brain-scale responsiveness to stimulation in simulations of

asynchronous, fluctuation-driven compared to synchronous,

phase-locked regimes, consistent with empirical data from

conscious vs. unconscious brain states. Together, the data

suggest that the TVB-AdEx model represents a scale-integrated

neuroinformatics framework capable of recapitulating known

features associated with human brain states as well as elucidating

relationships between space-time scales in brain activity. Due

to its reliance on anatomical data non-invasively available

from humans, this model may further facilitate subject-specific

modeling of human brain states in health and disease, including

restful and active waking states, as well as sleep, anesthesia, and

coma to aid future advances in personalized medicine.

2. Results

We begin by showing essential properties of the components

forming the TVB-AdExmodel. Next, we describe the integration

of AdEx mean-fields into The Virutal Brain (TVB) simulator

of EBRAINS, making the models and analyzes openly available

to facilitate replication and extension of the results. The results

presented here indicate that the TVB-AdEx whole human

brain model captures fundamental aspects of synchronous and

asynchronous brain states, both spontaneously and in response

to perturbation.

2.1. Components of TVB-AdEx models

The first component of the TVB-AdEx model is at the

cellular level, and consists of networks of integrate-and-fire
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adaptive exponential (AdEx) neurons. As shown in previous

studies (Destexhe, 2009; Zerlaut et al., 2018; di Volo et al.,

2019), networks of AdEx neurons with adaptation can display

asynchronous, irregular (AI) states, as well as synchronous,

regular slow-wave dynamics that alternate between periods

of high activity (Up) and periods of near silence (Down).

The necessary mechanistic ingredients needed to obtain both

dynamical regimes include leak conductance and conductance-

based synaptic inputs. Each neuron’s input is comprised by

the firing rates of synaptically connected neurons, weighted

by synaptic strengths, as well as stochastic noise (hereafter

called “drive”; see Materials and Methods), related biologically

to miniature postsynaptic currents. AdEx neurons have the

ability to integrate synaptic inputs and fire action potentials,

followed by a refractory period (Brette and Gerstner, 2005).

AdEx networks with conductance-based synapses can capture

features offered bymore detailed and computationally expensive

models, including AI states and slow-wave dynamics. Figure 1

shows an example of such AI states (Figure 1A) and Up-Down

dynamics (Figure 1B) simulated by the same AdEx network,

changing only the level of spike-frequency adaptation current

(parameter b in the equations, see Material and Methods). In

AI states, the firing of individual units remains irregular, but

sustained (Figure 1A), whereas in slow-wave states the dynamics

alternate between depolarized Up states with asynchronous

dynamics and hyperpolarized Down states of near silence

(Figure 1B). As such, changes in spike-frequency adaptation

lead to differences in cellular kinetics between sleep and wake

states. Biologically, spike-frequency adaptation is suppressed

by enhanced concentrations of neuromodulators such as

acetylcholine during active, conscious brain states that tends to

close K+ leak channels, resulting in sustained depolarization

of neurons (McCormick, 1992) which promotes the emergence

of asynchronous, irregular (AI) action potential firing and

fluctuation-driven regimes associated with waking states. In

contrast, low levels of neuromodulation during unconscious

brain states leave leak K+ channels open, leading to waves of

synchronous depolarisation and hyperpolarization due to the

buildup and decay of spike-frequency adaptation, accounting for

the emergence of slow-wave dynamics as observed in previous

modeling work (Jercog et al., 2017; Nghiem et al., 2020).

The second component of the TVB-AdEx model is a

mean-field equation derived from spiking-neuron network

simulations, capturing the typical dynamics of a neuron in

response to inputs and hence able to describe the mean behavior

of a neuronal population, Zerlaut et al. (2018) and di Volo

et al. (2019) using a Master-Equation formalism (El Boustani

and Destexhe, 2009). This formalism allows one to derive

mean fields from conductance-based integrate-and-fire models.

It has been shown that—using numerical fits of the transfer

function (Zerlaut et al., 2016), an analytical expression for the

relationship between a neuron’s input and output rates - one

can describe complex neuronal models, such as AdEx neurons,

and even Hodgkin-Huxley type biophysical models (Carlu et al.,

2020). In Figures 1C, D, excitatory and inhibitory firing rates

are compared between mean-field simulations using the Master

Equation formalism and spiking neural network simulations

(time binned population spike counts divided by time bin

length T = 0.5 ms). The average adaptation value is also

shown for this network (Figures 1C, D, orange curves). These

population variables are suitably captured by the mean-field

model including adaptation (Capone et al., 2019; di Volo et al.,

2019). This mean-field model can exhibit both AI (Figure 1E)

and Up-Down dynamics (Figure 1F). Like in the AdEx spiking

network model, the transition between two states can be

obtained by changing the adaptation parameter called b in

both cases (di Volo et al., 2019). With no adaptation, the

dynamics are fluctuation-driven around a fixed point exhibiting

nonzero firing rates. With adaptation, as the neurons self-

inhibit due to adaptation, the nonzero rate fixed point is

progressively destabilized by adaptation buildup, driving the

dynamics back to the near-zero firing rate fixed point until

adaptation wears off and noise drives the system back to the

vicinity of the higher-rate fixed point. Thus, with adaptation,

the system displays noise-driven alternation between the two

fixed-points to generate slow waves (Figure 1G). The regimes

are achieved using the mean-field model, which describes

excitatory (RS) and inhibitory (FS) population firing rates as

well as the mean adaptation level of excitatory populations

(Figure 1H).

2.2. Integration of AdEx mean-field
models in TVB

We have used the simulation engines of the Human Brain

Project’s (HBP’s) EBRAINS neuroscience research infrastructure

(https://ebrains.eu and The Virtual Brain https://ebrains.eu/

service/the-virtual-brain) to make access as wide as possible.

Replication of the TVB-AdEx findings can be done here, with

a free EBRAINS account, and users can clone the repositories

to further test or extend the present capacities. The models can

also be downloaded from Github at https://gitlab.ebrains.eu/

kancourt/tvb-adex-showcase3-git to run locally.

Here, the connection of mean-field models was defined by

human tractography data (https://zenodo.org/record/4263723,

Berlin subjects/QL_20120814) from the Berlin empirical data

processing pipeline (Schirner et al., 2015) (Figure 2A). A

parcellation of 68 regions was used to place localized mean-field

models, with long-range excitatory connections (Figure 2B) and

delays (Figure 2C) defined by tract length and weight estimates

in human diffusion tensor imaging (DTI) data (Sanz-Leon et al.,

2015). Now it becomes possible to simulate brain-scale networks

using AdEx-based mean-field models in TVB, hence the name

“TVB-AdEx” model.
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FIGURE 1

Asynchronous and synchronous dynamics produced by networks of microscopic AdEx neurons and their mesoscopic approximations. Raster

plots (A, B) and mean firing rates (C–F) from networks comprised of excitatory RS (blue) and inhibitory FS (red) AdEx neurons displaying

asynchronous (A) vs. synchronous states (B) as in Capone et al. (2019) and di Volo et al. (2019). The two simulated states, mimicking wake and

sleep neural dynamics, di�er only in the spike-frequency adaptation current be provided to the model (be = 0 pA in the asynchronous state and

60 pA in the synchronous state), known to be regulated by neuromodulation in vivo (McCormick, 1992). (C, D) Time variation of mean firing

rates (νe,i) and adaptation current (We) corresponding to networks shown in (A, B). Asynchronous (E) and synchronous (F) firing rate dynamics

produced using a mean-field model of AdEx networks implemented in The Virtual Brain (TVB). (G) Input-output firing rate relations are given by

the mean-field model transfer function (TF). Mean output firing rates of excitatory (blue) neurons as a function of mean excitatory input. The

dashed black trace is the identity line. Fixed points of the system (gray circles) occur where the input-output relation intersects with the identity

at the positions marked by circles (see Methods for equations). Note that two fixed points are apparent, one at high firing rates and one at low

firing rates. The inset is an enlargement of the low-input, low-output region, highlighting the presence of the low-firing fixed point. During

asynchronous, wake-like states, firing rates fluctuate around the higher fixed point. During sleep-like states, spike-frequency adaptation builds

up as excitatory neurons fire at the high-rate fixed point, eventually destabilizing the high-rate fixed point and causing the system to transition to

the near-zero rate fixed point. While the neurons are near-silent, adaptation decays through time, allowing noise fluctuations to entrain a

transition back to the high-rate fixed point. (H) Schematic of the simulated network.

2.3. Spontaneous dynamics of large-scale
networks

Having coupled AdEx mean-field models that capture

average microscopic characteristics of neural activity, we

sought to ascertain if hallmarks of brain-scale (macroscopic)

spontaneous activity resembling human brain states were

reproduced, as well as whether increases in adaptation strength

account for transitions between wake-like and sleep-like

macroscopic dynamics. Characterizing temporal hallmarks of

simulated neural activity (Figure 3), we find that asynchronous,

wake-like dynamics across nodes are recovered in the absence

(b = 0 pA, Figure 3A), but not in the presence (b = 60 pA,

Figure 3B) of adaptation. Power spectral analysis reveals a

peak in the delta range (0.5 − 5 Hz) for the high-adaptation

condition (Figure 3C) consistent with empirical data from

deeply sleeping individuals. Further, the power spectrum

in the low-adaptation condition shows a maximum near

10Hz (alpha range), consistent with empirically observed

dynamics during resting wakefulness (Figure 3C). Therefore,

changes in a simulated microscopic process (spike-frequency

adaption) influence spectral features of macroscopic brain

states, with low-adaptation regimes resembling waking states

and high-adaptation regimes reminiscent of slow-wave

sleep.

Increasing adaptation can also tune the spatial correlation

structure of neural activity across brain states. Indeed, as shown

in Figure 4, Pearson correlations across nodes are enhanced

in the presence of adaptation, consistent with asynchronous

dynamics seen during wakefulness vs. synchronous slow waves

seen during deep sleep (Figures 4A, E). We also observe the

correlation matrix is structured into two clusters corresponding

to the two hemispheres in the slow-wave condition (b = 60

pA, Figure 4E). In addition, increased adaptation strength also

causes the emergence of significantly larger correlations between

inhibitory than excitatory firing rates across nodes during sleep-

like dynamics (Figures 4B, F). This reveals that microscopic

variation in adaptation strength alone can account for empirical

reports of increased correlations between inhibitory neurons

across long distances and even different cortical regions

specifically for inhibitory (Peyrache et al., 2012; Le Van Quyen

et al., 2016; Olcese et al., 2016). This is due to different effects of
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FIGURE 2

Connection of AdEx mean-field models in The Virtual Brain. (A) Each mean-field model consists of two populations, excitatory RS (blue) and

inhibitory FS (red) neurons (as in Figure 1H), taking into account spike-frequency adaptation for excitatory neurons (W, orange). Mean-field

models represent the mesoscopic scale, here comprising each of 68 defined regions of cerebral cortex. Brain regions are connected by

excitatory tracts (thick blue lines) following structural connectomes (Schirner et al., 2015). (B) Number of fibers connecting brain regions in

tractography data, divided by the sum of the gray matter volume of regions in anatomical MRI, is used to define connectivity weights between

nodes. (C) The distribution of tract lengths in tractography data informs delays between TVB-AdEx model nodes.

adaptation on excitatory regular-spiking neurons and inhibitory

fast-spiking neurons, key to reproducing empirical dynamics

in unconscious states (Jercog et al., 2017; Nghiem et al., 2020).

Moreover, the Phase Lag Index (PLI) is increased during

sleep-like dynamics (Figures 4C, G), suggesting systematic

phase relations between nodes consistent with traveling slow

waves empirically observed during spontaneous unconscious

dynamics (Destexhe et al., 1999; Steriade, 2003). Such phase

relations, evidenced by a significantly larger PLI, are more

pronounced for inhibitory than excitatory neurons in sleep-like

dynamics, reminiscent of the key role of inhibitory neurons

in organizing the emergence of synchronous dynamics during

sleep (Nghiem et al., 2018).

Next, we investigate how the connectome’s structure shapes

the landscape of synchrony and phase coherence across

brain regions, alongside adaptation. In particular, how do

the Pearson correlation and PLI scale with spatial distance

between nodes? In both b = 0 pA and b = 60 pA

conditions (Figures 5A, D), the Pearson correlation between

excitatory firing rates significantly decreases with Euclidean

distance between regions, corresponding to tract-length-related

delays in our model. A steeper negative slope is observed

in the awake-like (Figure 5A) than in the slow-wave regime

(Figure 5D), suggesting that the spatial extent of synchrony

between regions is enhanced in the presence of high-adaptation,

sleep-like dynamics.

In Figures 5B, C, E, F, we show a scatter plot and

box plot of the Phase-Lag Index (PLI) as a function of

distance between regions. In both b = 0 pA and b =

60 pA cases, significant differences are observed in the PLI

across regions (Kruskal-Wallis test, ***p < 0.001), suggesting

systematic phase relations consistent with the propagation of

traveling waves are particularly predominant at intermediate

scales. Specifically, in the slow-wave condition (b = 60 pA),

we observe that the PLI between regions approximately 65

mm apart is significantly enhanced (Mann-Whitney U test,

**p < 0.01) in comparison to the PLI at both shorter and

longer distances.

Further, we test whether the predominance of slow waves

at an intermediate spatial scale is an emergent property from

the structure of the human connectome. To this purpose,

we shuffle the connection weights successively for each

region and every other region, to generate a connectome

with the same distribution of connection weights between

regions but retaining none of the graph structure of the

empirical connectome (Figure 5G). The tract lengths are not

modified. Repeating simulations with shuffled connectomes,

we again compute the PLI as a function of distance. With

shuffled connectomes, we find that the PLI no longer

varies significantly as a function of distance in wake-like

dynamics (Figure 5H). As well, the intermediate peak in PLI

as a function of distance—denoting an intermediate spatial
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FIGURE 3

Whole-brain-scale simulations of connected AdEx mean-field models produce activity mimicking wake- and sleep-like states. Time variation of

firing rates (νe,i, top) and adaptation currents (We, bottom) in simulated wake- (A) and sleep-like (B) states for each of the model nodes

representing 68 brain regions. When adaptation (be) equals 0 pA, the activity of model nodes is asynchronous (A), whereas the inclusion of

(Continued)
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FIGURE 3 (Continued)

adaptation (be = 60 pA) leads to the emergence of synchrony between brain regions (B). (C) Fourier power spectra of signals produced by the

TVB-AdEx in synchronous (sleep-like) and asynchronous (wake-like) states for di�erent values of be. Note that maximal power in the sleep-like

condition falls in the delta range (1–4 Hz), while it occurs near 10 Hz, in the alpha range for low adaptation, wake-like states.

FIGURE 4

Emergence of enhanced spontaneous synchrony between brain regions in sleep-like simulations. Functional connectivity is assessed in

wake-like (A–D) and deep sleep-like (E–H) states, by assessing Pearson correlation (A, B, E, F) and Phase-Lag Index (PLI) (C, D, G, H). Heatmaps

show correlations between brain regions in terms of excitatory firing rates (A, C, E, G), whereas scatter plots of show relationships between

inhibitory vs. excitatory firing rate correlations (B, D, F, H) where the dotted trace is the identity line. Inter-region correlations are increased

across regions in sleep-like states (E) as compared to wake-like states (A), consistent with increased synchrony across brain regions in empirical

brain imaging studies (M/EEG). Correlations across nodes are significantly larger between inhibitory firing rates than between excitatory firing

rates in sleep-like dynamics [(F); Independent Student’s t-test, t = −8.5, p = 2.8e− 17], but not during wake-like regimes [(B); t = −0.9,

p = 0.35]. The PLI is consistently larger in sleep-like dynamics (G), unlike in wake-like dynamics where the PLI is diminished (C). Likewise, the PLI

of excitatory vs inhibitory populations is significantly di�erent during sleep-like [(H); Independent Student’s t-test, t = 5, p = 4.6e− 7], but less so

in wake-like [(D); t = 4.2, p = 1.8e− 5] states, altogether possibly suggesting a previously unidentified role of inhibition in the emergence of

long-range synchrony in sleep-like activity.

scale for traveling waves (Figure 5I)—is lost. These results

suggest that the non-trivial organization of phase coherence

phenomena across cortex is an emergent property of both

high adaptation and the weighted graph structure of the

human connectome.

Finally, the transition between wake and sleep-like

dynamics when changing the level of adaptation is robust

for different combinations of parameters of the model

(Figure 6). With a high-density scan of the parameter space

(see Methods), we find that, for lower values of spike-

frequency adaptation (b = 0 pA), AI states are present

independently of the timescale (T) of the AdEx mean-field

model network nodes and the coupling strength between

nodes (S). Consequently, when increasing adaptation, there

is a sharp transition from wake-like dynamics to slow-wave

activity captured by a marked increase in firing rate standard

deviation, again robustly across all values of T and S in the

explored range.

2.4. Responsiveness to external
stimulation

After reproducing features of spontaneous dynamics

between brain states, we test the hypothesis that changing

adaptation in the TVB-AdEx model can also explain differences

in empirically observed stimulus-evoked brain responses,

with stimuli encoded in more sustained, widespread, reliable,

and complex patterns during conscious states (Massimini

et al., 2005). To this end, a square wave of 0.1 Hz, matching

the magnitude of stochastic drive, with 50 ms duration was

input to the firing rates of the transfer function for excitatory

populations in the right premotor cortex of the TVB-AdEx

simulation during awake-like and slow wave sleep-like

conditions, as in previously published empirical studies (Casali

et al., 2013).

Figure 7 illustrates the effect of perturbing the large-scale

network defined by the TVB-AdEx models. The effect of an
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FIGURE 5

Spatial extent of synchrony and phase coherence across regions emerge from adaptation strength and connectome structure. (A–F) Pearson

correlation (A, D) and PLI (B, C, E, F) between regions as a function of distance, as scatter plots (A, B, D, E) and box plots (C, F) in the absence

[b = 0 pA, (A–C)] and presence [b = 60 pA, (D–F)] of adaptation. In scatter plots, 400 points were subsampled randomly for graphical

representation, and solid black lines represent linear fits. Correlations are observed to decrease with distance, in a steeper manner in the

wake-like condition. In box plots, distances between regions are subdivided into five bins of equal size, and the mean distance between the two

extremities of each bin is marked on the horizontal axis. The PLI is significantly enhanced, suggesting increased phase coherence, at an

intermediate spatial scale in slow-wave dynamics. (G) Heatmap of connection weights in shu	ed connectivity matrix, where the weights from

one region to every other region are successively randomly permuted. (H, I) Boxplot of PLI as a function of distance for simulations with a

shu	ed connectome for b = 0 pA (H) and b = 60 pA (I) [compare to (C, F)]. The *, **, and *** symbols indicate the values of p < 0.05, p < 0.01,

and p < 0.001 respectively.

external stimulus is apparent for both deep sleep-like and wake-

like states (Figure 7A). The average traces of the stimulated

region are shown in black, and take into account the 40

realizations shown in gray. To examine the spread of activity

following perturbations, the time at which the excitatory firing

rate of each region becomes significantly different from the

unstimulated baseline (prior to perturbation) is plotted using a

color map showing earlier significant changes in brighter colors.

Here, we find that responses are more widespread across time

and space across brain regions in wake-like (Figure 7B) than

sleep-like dynamics (Figure 7C), corresponding to experimental

observations in response to Transcranial Magnetic Stimulation

(TMS) (Massimini et al., 2005).

To better characterize the complexity of stimulus-evoked

responses, the perturbational complexity index (PCI), used in

previous experimental works involving TMS, was computed.

The PCI is the ratio between Lempel-Ziv complexity, which

captures the number of all possible different binary words that

can be extracted from binarized responses to stimuli across

time and regions, and the entropy of the binarized response

that describes how often the response is above the pre-stimulus

baseline (see Methods for binarization procedure). A low PCI

value indicates a “simple” response to stimulus, while a high PCI

value indicates more “complex” response, typically propagating

more effectively to different brain areas (Casali et al., 2013). The

models were perturbed with stimuli smaller (0.01 Hz) than the
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FIGURE 6

Grid search in parameter space for asynchronous and slow oscillatory states. The TVB-AdEx model was run for six di�erent parameter

combinations in the depolarized region (EL,i = EL,e = −64 mV) and the time traces of the inhibitory and excitatory populations of the 68 AdEx

mean-field models are plotted during the last 3 s of the simulation. With be = 0 pA, for intermediate values of S, one can see how AI states

appear, consistent with the low value of SD shown in the feature plot. For S = 0.5, one can see the transition between AI and UD states when

increasing be.

stochastic drive, comparable to the noise in amplitude (0.1 Hz),

and larger than the drive (1.0 Hz) for simulations in which the

value of spike frequency adaptation (be) was varied between

0 and 60 pA. As shown in Figures 7D–F, computing the PCI

from the TVB-AdEx model shows that PCI values are typically

higher for lower-adaptation, wake-like regimes than for higher-

adaptation, slow-wave sleep like regimes. In particular, a sharp

drop in PCI values is observed between b = 40 pA and b = 60

pA, suggesting an abrupt transition between highly responsive

asynchronous and less responsive slow-wave dynamics as

adaptation increases. For each value of noise, a one-way ANOVA

revealed significant differences between PCI distributions across

b-values (p < 0.0001), with multiple comparisons highlighting

that the PCI was significantly larger for wake-like than sleep-

like conditions, in particular for lower-amplitude stimuli. The

same behavior was observed when comparing awake subjects

with subjects in slow-wave sleep (Massimini et al., 2005; Casali

et al., 2013). One may note a sharp drop of the PCI after b =

40 pA, for which enhanced PCI is observed, reminiscent of a

transition from conscious to unconscious response dynamics.

As concentrations of neuromodulators such as acetylcholine are

known to increase with attention and vigilance, b = 40 pA, which

is at the higher-adaptation, lower-neuromodulation end of the

spectrum of high-PCI states, could be reminiscent of states that

lie between waking vigilance and deep sleep, such as resting

wakefulness. Also note the wider distribution of PCI values in

sleep-like simulations, suggesting more variable responses for

each realization of the same stimulus and therefore less reliable

stimulus encoding.

3. Discussion

In this paper, we demonstrated that biologically-informed

scale-integrated mean-field models (di Volo et al., 2019) can

be used to simulate large-scale brain networks using the

TVB platform in EBRAINS. The coupled mean-field models

comprising the TVB-AdEx are derived from networks of AdEx

neurons and display whole-brain asynchronous and slow-wave

dynamics when wired following white matter tracts from a

human connectome. These results demonstrate the natural

emergence of empirically observed patterns of macroscopic
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FIGURE 7

Increased responsiveness to perturbations in simulated wake-like compared to sleep-like states. Excitatory firing rate of a simulated brain region

in time during wake-like (A) and sleep-like dynamics, in response to a stimulus. Black lines show the mean across 40 realizations, reminiscent of

event-related potentials (ERPs), and gray shaded areas show the standard deviation from the mean across realizations. (B, C) Spatio-temporal

propagation of responses to stimuli in wake-like (B) and sleep-like (C) states. Color plotted on the brain surface indicates earliest time at which

each region becomes significantly di�erent from its pre-stimulus baseline (see Methods), with earlier times in lighter colors. Regions in white do

not present significant di�erences in firing rate in response to the stimulus. In wake-like states, stimulus responses recruit more brain regions

and produce more spatially widespread and temporally sustained activity patterns, reminiscent of empirical observations. (D–F) Box plots of

perturbational complexity index (PCI) measurements from 40 realizations of wake-like and sleep-like simulations with increasing stimulus

amplitudes (panels left to right). Significant changes in the PCI are observed when the spike frequency adaptation (be) is varied (one-way

Kruskal-Wallis test; p < 0.05 for each group of adaptation values, be = 0, 20, 40, 60, for each stimulus value (0.01, 0.1, and 1 Hz). Results of

post-hoc Conover test for multiple comparisons between values of be are shown in the figure, where *p < 0.05, **p < 0.01, and ***p < 0.001).

In high-adaptation, sleep-like regimes, a sharp drop in PCI is observed, denoting more spatio-temporally complex responses in the Lempel-Ziv

sense in wake-like compared to sleep-like states, consistent with experiments (Massimini et al., 2005; Casali et al., 2013).

brain dynamics from simulated changes at microscopic scales

from both microscopic adaptation changes and the structural

organization of the human connectome. The TVB-AdEx

integration in EBRAINS is also of interest as EBRAINS

human brain atlas services will be able to provide a large

degree of cytoarchitectural detail such as region-specific

neurotransmitter densities and cell types and densities and

thus add to the biological realism of these virtual brain

models. The vertical integration across scales is provided by

TVB-AdEx-type models, taking advantage of the Big Data

in EBRAINS.

TVB-AdEx mean-field models constituting each node of

the connectome are designed by construction to approximate

the mean and covariance of the firing rate in spiking neural

networks exhibiting stable dynamics in asynchronous irregular

regimes (El Boustani and Destexhe, 2009). This model was

extended to two neuronal populations, excitatory neurons with

adaptation and inhibitory neurons (di Volo et al., 2019), but this

extension has limitations. Importantly, the model is imprecise

when adaptation varies within a range larger than described

here [for adaptation values higher than 100 pA (di Volo et al.,

2019)] and when fast synchronous dynamics like oscillations
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in the gamma range (between 40 and 80 Hz) (El Boustani

and Destexhe, 2009), spindles, or ripples occur. This model

is therefore likely not directly suitable for understanding

the nuances associated with particular microscopic motifs

comprised by transiently communicating assemblies that likely

encode relevant neural information. The model is appropriate

to the type of general dynamics presented here, wake-like

AI and deep sleep-like slow-waves, describing large scale

phenomena with relatively slow time scales. By smoothing

microscopic details, we have built a computationally tractable

bridge from microscopic to macroscopic scales, to elucidate

how general dynamical phenomena relate to differences in

neuronal interactions.

After integration in TVB, the resulting TVB-AdEx model

displays a number of interesting features and several exciting

perspectives for future work. A first result is the emergence of

synchrony across brain regions in the presence of adaptation.

In this case, the TVB-AdEx model displays synchronized slow

waves with structured phase relations at a macroscopic, brain-

wide level (Figure 3). This is consistent with the synchronized

slow-wave dynamics observed during deep sleep in the

brain (Destexhe et al., 1999; Steriade, 2003; Niedermeyer and

Lopes da Silva, 2005). When the same model is set into the

asychronous-irregular regime due to the loss of spike-frequency

adaptation, as is the case in the presence of acetylcholine

and other neuromodulators present in higher concentrations

during waking states (Jones, 2003), the large-scale network

displays a lower level of synchrony (Figure 3), consistent with

asynchronous dynamics typically seen in awake and aroused

states (Destexhe et al., 1999; Steriade, 2003; Niedermeyer and

Lopes da Silva, 2005). These different levels of synchrony

are therefore emergent properties in the large-scale network,

induced by changes at the microscopic level. A detailed grid

scan in parameter space established the robustness of this

phenomenon (Figure 6).

A second main result is that evoked dynamics are also

state-dependent. When the network displays synchronized Up-

and Down-states, a stimulus typically evokes a high amplitude,

simple response that remains local in space and time. When

the model resides in the asynchronous regime, the same

stimulus evokes responses that are weaker in amplitude, but

that propagate in a more elaborate way through space and

time. The PCI measure applied to these two states match the

experimental observations (Massimini et al., 2005; Casali et al.,

2013; D’Andola et al., 2018; Dasilva et al., 2021). Again, this is an

emergent property of the large-scale network.

What are possible mechanisms for such differences? A

previous study (Zerlaut and Destexhe, 2017) showed that

in balanced networks, not all states are equal and that

asynchronous states, despite their apparently noisy character,

can display higher responsiveness and support propagation

of stimuli. This enhanced responsiveness of AI states can be

explained by the combined effects of depolarization, membrane

potential fluctuations, and conductance state. It was proposed as

a fundamental property to explain why the activity of the brain

is systematically asynchronous in aroused states (Zerlaut and

Destexhe, 2017). The present results are in full agreement with

this mechanism, which manifests here in the asynchronous state

as a propagation further in time and space, across many brain

areas, associated with higher values of the PCI.

We believe that this work opens several perspectives.

First, the enhanced propagation of perturbations during wake-

like states could be used as a basis to explain why stimuli

are perceived in asynchronous regimes, and what kind of

modulation of the network activity could support phenomena

such as attention and perception. Second, mean-fieldmodels can

be set to also display pathological states, such as hyper-excitable

or hypersynchronized states, and the TVB-AdEx model could

be used to investigate seizure activity (Depannemaecker et al.,

2021). Other features, such as neuronal heterogeneity, are also

beginning to be included in mean-field models (di Volo and

Destexhe, 2020), paving the way for enhancing biological realism

in future versions of TVB-AdEX models.

In TVB, connectivity depends on the intermediate spatial

resolution of coarse-graining. Here, the brain was parceled in 68

regions, with each mean-field representing a substantially large

brain area. TVB allows such simple simulations using a few tens

of nodes, taking into account the rough long-range connectivity

according to the connectome resolved in tractography of human

DTI. TVB can also simulate much finer-grained connectivity,

by defining a larger number of nodes (usually on the order of

hundreds to hundreds of thousands, approaching the resolution

of cortical columns) (Spiegler and Jirsa, 2013). In such vertex-

based simulations that shall follow the present work, local

connectivity is determined by intracortical connections, whereas

the white-matter connectome from DTI used here captures

effects of longer-range cortico-cortical fibers.

Early stimulation studies in humans and in particular in

rodents are pioneering the use of high-resolution simulations,

demonstrating subtler influences of the connectome in

scaffolding signal propagation through brain networks (Spiegler

et al., 2016, 2020). In those studies, network nodes were

equipped with generic neural mass dynamics, Andronov-

Hopf-oscillators, which are theoretically appealing for their

mathematical simplicity, but are limited with regard to

biophysical interpretability of the results. The inclusion

of high-resolution data from tracer studies in the Allen

Institute was recently demonstrated in virtual mouse brain

models to significantly increase the predictive power (Melozzi

et al., 2019). As well, the inclusion of subject-specific,

personalized connectomes in virtual brain models significantly

outperforms generic simulations in predictive inter-individual

variability (Melozzi et al., 2019; Hashemi et al., 2020). These

studies point together to the importance of personalized brain

network models in future clinical applications and affords novel

methods supporting such goals (Falcon et al., 2016; Jirsa et al.,

Frontiers inComputationalNeuroscience 11 frontiersin.org



Goldman et al. 10.3389/fncom.2022.1058957

2017). The virtual brains in Spiegler et al. (2016, 2020) captured

the emergence of well-known resting state networks known

during spontaneous activity, but also functionally specific brain

responses to stimulation of regions along the processing chains

of sensory systems from periphery up to primary sensory

cortical areas. The latter responses heavily relied on the Default

Mode Network (DMN) and were suggestive of the DMN playing

a mechanistic role between functional networks. But neither

brain state dependence, nor biological interpretation of the

neural mass model parameters was possible, as it requires the

incorporation of biological complexity and integration across

scales provided here by the here by the TVB-AdEx approach.

Ongoing efforts in EBRAINS aim to enrich high-resolution

brain models with detailed information on regionally-variant

physiological features (neurotransmitters, receptor densities,

cell types, and densities) to next build the Virtual Big Brain,

a high-resolution multi-scale brain network, which will be

continuously updated and available to the community. The

drawback of such fine grained simulations is that they typically

require large computing resources as provided by EBRAINS,

while coarse grained TVB simulations, as presented here, can

easily be run on a standard workstation. To summarize, for the

sake of the initial release of the TVB-AdEx models, we offer a

relatively coarse parcellation, which will become more refined

and personalized in future work.

The TVB-AdEx models presented here are constructed

by connecting conductance-based, mean-field models of

biologically-informed populations of neurons by a human

connectome (Sanz-Leon et al., 2015). While the results

presented in the main figures are made on the backbone

of a single example human connectome, and many of the

reported emergent phenomena could be reproduced with

other topologies of connectivity, it is imperative to note that

the human connectome backbone of the TVB-AdEx model

is interchangeable between human subjects, representing

an opportunity to construct personalized models, digital

twins (Evers and Salles, 2021; Petkoski and Jirsa, 2022), for

any human subject for which diffusion tractography data

are available. While a study of inter-individual variation is

beyond the scope of this study, as a proof of principle, our

data indicate differences in spectral features, particularly

the power of low-frequency activity and power-law scaling,

between personalized TVB-AdEx models made from two

different healthy human subjects (Supplementary Figure S1).

Indeed, a parameter scan using TVB-AdEx models derived

from the subjects identifies different overlapping regions of

parameter space in which transitions between sleep-like and

wake-like activity between human subjects. Construction of

next generation TVB-AdEx models with human connectomes

for which biological and behavioral data are available, for

example, from the Human Connectome Project cohorts, will

allow researchers to use TVB-AdEx models methods introduced

here to test predictions regarding inter-subject differences in

brain states and their transitions. All code is openly available

in the EU digital neuroscience platform EBRAINS (Schirner

et al., 2022) and on Github to facilitate progress in personalized

brain modeling (Falcon et al., 2016) of neural states and their

transitions in health and disease.

It is interesting to note that the global properties used here

to characterize neural dynamics across brain states—synchrony,

frequency spectra, responsiveness, and PCI—all reflect neural

correlates of consciousness (Skarda and Freeman, 1987; Tononi

and Edelman, 1998; Sarasso et al., 2014; Koch et al., 2016). It

has even been argued that asynchronous dynamics (so-called

’activated EEG’) is so far one of the most “sensitive and reliable”

neural correlates of consciousness (Koch et al., 2016). Though

we have only presented results from stimulating one brain

region in different brain states, in the interest of replicating

experimental results (Casali et al., 2013), it is important to note

that our approach offers the possibility to perturb any region

within a given connectome to simulate the effects of various

stimuli or tasks in a variety of states, as well as the dynamical

consequences of transcranial stimulation in experimental and

medical contexts. This further emphasizes the promise of

the present modeling approach to understanding dynamics

associated with conscious and non-conscious states, with broad

potential applications in medicine and computation.

4. Materials and methods

Three types of models are used in this work: a network

of spiking neurons, a mean-field model of this network, and a

network of mean-fieldmodels implemented in The Virtual Brain

(TVB). Here we describe these models successively.

4.1. Spiking network model

We considered networks of integrate-and-fire neuron

models displaying spike-frequency adaptation, based on two

previous papers (Destexhe, 2009; Zerlaut et al., 2018). We

used the Adaptive Exponential (AdEx) integrate-and-fire

model (Brette and Gerstner, 2005). We considered a population

of N = 104 neurons randomly connected with a connection

probability of p = 5%. We considered excitatory and inhibitory

neurons, with 20% inhibitory neurons. The AdExmodel permits

to define two cell types, “regular-spiking” (RS) excitatory cells,

displaying spike-frequency adaptation, and “fast spiking” (FS)

inhibitory cells, with no adaptation. The dynamics of these

neurons is given by the following equations:

cm
dvk
dt

= gL(EL − vk)+ gL1e
vk−vthr
1 − wk + Isyn (1)

uw
dwk

dt
= −wk + b

∑

tsp(k)

δ(t − tsp(k))+ a(vk − EL), (2)
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where cm = 200 pF is the membrane capacitance, vk is the

voltage of neuron k and, whenever vk > vpeak = −47.5 mV for

inhibitory neurons and vk > vpeak = −40.0 mV for excitatory

at time tsp(k), vk is reset to the resting voltage vreset = −65 mV

and fixed to that value for a refractory time Trefr = 5 ms.

The voltage threshold vthr is –50 mV. The leak term gL had

a fixed conductance of gL = 10 nS and the leakage reversal

EL was of −65 mV for inhibitory and −63 for excitatory. The

exponential term had a different strength for RS and FS cells,

i.e., 1 = 2 mV (1 = 0.5 mV) for excitatory (inhibitory) cells.

Inhibitory neurons were modeled as fast spiking FS neurons

with no adaptation (a = b = 0 for all inhibitory neurons)

while excitatory regular spiking RS neurons had a lower level of

excitability due to the presence of adaptation (while b varied in

our simulations we fixed subthreshold adaptation a = 0 nS and

uw = 500 ms).

The synaptic current Isyn received by neuron i is the result

of the spiking activity of all neurons j ∈ pre(i) pre-synaptic

to neuron i. This current can be decomposed in the synaptic

conductances evoked by excitatory E and inhibitory I pre-

synaptic spikes

Isyn = Ge
syn(Ee − vk)+ Gi

syn(Ei − vk),

Where Ee = 0 mV (Ei = −80 mV) is the excitatory

(inhibitory) reversal potential. Excitatory synaptic conductances

were modeled by a decaying exponential function that sharply

increases by a fixed amount QE at each pre-synaptic spike, i.e.,:

Ge
syn(t) = Qe

∑

exc.pre

2(t − tesp(k)) e
−(t−tesp(k))/ue ,

Where 2 is the Heaviside function, ue = ui = 5 ms

is the characteristic decay time of excitatory and inhibitory

synaptic conductances, and Qe = 1.5 nS (Qi = 5 nS) the

excitatory (inhibitory) quantal conductance. Inhibitory synaptic

conductances are modeled using the same equation with e → i.

This network displays two different states according to the level

of adaptation, b = 0 pA for asynchronous irregular states,

and b = 60 pA for Up-Down states (see Zerlaut et al., 2018

for details).

4.2. Mean-field models

We considered a population model of a network of AdEx

neurons, using a Master Equation formalism originally

developed for balanced networks of integrate-and-fire

neurons (El Boustani and Destexhe, 2009). This model

was adapted to AdEx networks of RS and FS neurons (Zerlaut

et al., 2018), and later modified to include adaptation (di Volo

et al., 2019). The latter version is used here, which corresponds

to the following equations using Einstein’s index summation

convention where sum signs are omitted and repeated indices

are summed over:

T
∂νµ

∂t
= (Fµ − νµ)+

1

2
cλη

∂2Fµ

∂νλ∂νη
(3)

T
∂cλη

∂t
= δλη

Fλ(1/T − Fη)

Nλ
+ (Fλ − νλ)(Fη − νη)

+
∂Fλ

∂νµ
cηµ +

∂Fη

∂νµ
cλµ − 2cλη (4)

∂W

∂t
= −W/uw + bνe + a(µV (νe, νi,W)− EL) , (5)

where µ = {e, i} is the population index (excitatory or

inhibitory), νµ the population firing rate and cλη the covariance

between populations λ and η. W is a population adaptation

variable (di Volo et al., 2019). The function Fµ={e,i} =

Fµ={e,i}(νe, νi,W) is the transfer function which describes the

firing rate of population µ as a function of excitatory and

inhibitory inputs (with rates νe and νi) and adaptation level W.

These functions were estimated previously for RS and FS cells

and in the presence of adaptation (di Volo et al., 2019).

At the first order, i.e., neglecting the dynamics of the

covariance terms cλη , this model can be written simply as:

T
dνµ

dt
= (Fµ − νµ) , (6)

Together with Equation (5). This system is equivalent to

the well-known Wilson-Cowan model (Wilson and Cowan,

1972), with the specificity that the functions F need to be

obtained according to the specific single neuron model under

consideration. These functions were obtained previously for

AdEx models of RS and FS cells (Zerlaut et al., 2018; di Volo

et al., 2019) and the same are used here.

For a cortical volume modeled as two populations of

excitatory and inhibitory neurons, the equations can be written

as:

T
dνe

dt
= Fe(νe + νaff + νdrive, νi)− νe (7)

T
dνi

dt
= Fi(νe + νaff , νi)− νi (8)

dW

dt
= −W/uw + bνe + a(µV (νe, νi,W)− EL), (9)

where νaff is the afferent thalamic input to the population

of excitatory and inhibitory neurons and νdrive is an external

noisy drive simulated by an Ornstein-Uhlenbeck process.

The function µV is the average membrane potential of the

population and is given by

µV =
µGeEe + µGiE+ i+ gLEL −W

µGe + µGi + gL
,

where the mean excitatory conductance is µGe = νeKeueQe and

similarly for inhibition.
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This system describes the population dynamics of a single

region, and was shown to closely match the dynamics of the

spiking network (di Volo et al., 2019).

4.3. Networks of mean-field models

Extending our previous work at themesoscale (Chemla et al.,

2019; di Volo et al., 2019) to model large brain regions, we define

networks of mean-field models, representing interconnected

brain regions (each described by a mean-field model). We

considered interactions between cortical regions as excitatory,

while inhibitory connections remain local to each region. The

equations of such a network, expanding the two-population

mean-field (Equation 7), are given by:

T
dνe(k)

dt
= Fe

[

ν
input
e (k)+ νaff (k), νi(k)

]

− νe(k)

T
dνi(k)

dt
= Fi

[

ν
input
e (k)+ νaff (k), νi(k)

]

− νi(k) (10)

dW(k)

dt
= −W(k)/uw + bνe(k)

+ a(µV (νe(k), νi(k),W(k))− EL) , (11)

where νe(k) and νi(k) are the excitatory and inhibitory

population firing rates at site k, respectively, W(k) the level

of adapation of the population, and ν
input
e (k) is the excitatory

synaptic input. The latter is given by:

ν
input
e (k) = νdrive(k)+

∑

j

Cjk νe(j, t − ‖j− k‖/vc) (12)

where the sum runs over all nodes j sending excitatory

connections to node k, and Cjk is the strength of the connection

from j to k (and is equal to 1 for j = k). Note that νe(j, t − ‖j −

k‖/vc) is the activity of the excitatory population at node k at

time t−‖j−k‖/vc to account for the delay of axonal propagation.

Here, ‖j− k‖ is the distance between nodes j and k and vc is the

axonal propagation speed.

4.4. Spontaneous activity

The Phase-Lag Index (PLI) was computed for each pair of

nodes, averaged over simulation time. The Hilbert transform

is employed to extract the phase ψ(t) of the time series. From

there, the PLI, given by

PLI ≡ |< sign(ψi(t)− ψj(t)) >|, (13)

is computed for nodes i and j, where < · > denotes averaging

over time (Silva Pereira et al., 2017). One may note that the

PLI takes values between 0 (random phase relations or perfect

synchrony) and 1 (perfect phase locking). In this work we report

the mean PLI over all time epochs for excitatory and inhibitory

firing rates of each region pair for each adaptation value.

4.5. Parameter space exploration

A model such as the TVB-AdEx contains many parameters

whose impact on the dynamics needs to be understood.

Additionally, it is necessary to have reasonable, physiological

ranges determined for them. As described above, most of

them have were already fixed via biological or mathematical

arguments, but there is still a subset of parameters whose

impact needed to be studied to have a deeper and general

understanding of the model. In Table 1, one can find the

characteristics of the parameters chosen and the reason for

their choice. For each parameter, 16 evenly spaced values were

obtained inside the described range. Preliminary results allowed

to reduce the explored parameter space to a total of 675,840

different configurations to be analyzed. Using High Performance

Computing, the simulation of each parameter combination was

parallelized. For each configuration, a seven second simulation

was run and, afterwards, multiple features were extracted (mean

and standard deviation of the excitatory and inhibitory firing

rates, mean value of functional connectivity, etc.). By plotting the

value of these features as a function of the parameter values, one

can observe the influence of the latter on the model’s dynamics

(as is shown in Figure 6).

TABLE 1 Name, description, reason of choice, range and units of the parameters chosen for the parameter scan.

Parameter Description Reason of choice Range Units

S Coupling strength between nodes. Has to be

chosen phenomenologically.

Has to be chosen phenomenologically. [0, 0.5] Adimensional

EL,i Leakage reversal potential of AdEx inhibitory

neurons.

Resting membrane potential of a neuron might

vary depending on external conditions.

[−80,−60] mV

EL,e Leakage reversal potential of AdEx excitatory

neurons.

Resting membrane potential of a neuron might

vary depending on external conditions.

[−80,−60] mV

T Timescale of the AdEx mean field model. Has to be chosen phenomenologically. [5, 40] ms

be Adaptation strength of excitatory AdEx neurons. Models the change in neuromodulation that

induces transition between AI and UD.

[0, 120] pA
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4.6. Evoked activity

We computed the Perturbational Complexity Index (PCI) in

response to a localized square wave stimulus, over the firing rates

in a given brain region of a TVB-AdEx simulation, following

the method proposed by Casali et al. (2013). This stimulus

was applied by augmenting the firing rate of the excitatory

population during the pulse. This is done for multiple trials

with the same stimulus delivered to the same node at a random

point in time and with different realizations of noise. The

PCI is the ratio of two quantities: the Lempel-Ziv algorithmic

complexity and the source entropy (Casali et al., 2013). To

compute both quantities, firing rates ν(t) must be binarized to

produce significance vectors s(t). First, the trials are aligned

to stimulation time, considering only the 300 ms before and

after stimulus onset. Then, each node’s firing rate is re-scaled

and mean and standard deviation given by pre-stimulus activity

averaged over nodes. Afterwards, all pre-stimulus firing rates are

randomized across time bins, this procedure being repeated 500

times. The threshold for significance T is then given by the one-

tail percentile of themaximum absolute value over all repetitions

within a series of 20 trials. For each trial of those 20 trials, we

can then write s(t) = 1 whenever post-stimulus ν(t) > T and

s(t) = 0 otherwise. For what follows, we concatenate all s(t)

vectors from all simulation nodes into one single significance

vector S(t) per trial.

The Lempel-Ziv complexity LZ(S) is the length of the

“zipped” vector S(t), i.e., the number of possible binary

“words” that make up the binary vector S(t). Briefly, S(t)

is sectioned successively into consecutive words of between

one and Nt characters where Nt is the total length of

S(t). Scanning sequentially through all words, each new

encountered word is added to a “dictionary,” and LZ(S) is the

total number of words in the dictionary at the end of the

procedure.

The spatial source entropy H(S) is given by:

H(S) = −p(S = 0) log2(p(S = 0))− p(S = 1) log2(p(S = 1)),

(14)

where log2 denotes the base-two logarithm.

The PCI can then be expressed as PCI(S) = LZ(S)
H(S)

.

Code availability

A python-based open-access code to run the present whole-

brain model will be accessible online in the EBRAINS platform

(https://ebrains.eu) as a companion to the publication of the

present article. The scripts are also accessible on Github at

https://gitlab.ebrains.eu/kancourt/tvb-adex-showcase3-git.
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SUPPLEMENTARY FIGURE 1

Inter-individual di�erences in model parameters predicted by personal

connectomes from di�erent healthy human subjects. High performance

computing (HPC) grid search of parameters from a TVB-AdEx model

constructed with a second unique human connectome (subject

DH20120806 available from https://zenodo.org/record/3497545#.

Y4YybezMK3I, compared to the TVB-AdEx model featured in the main

text (subject QL20120814). Spectral features are extracted and

di�erences between personalized TVB-AdEx models are shown in

heatmaps. In particular, the two subject models show di�ering

dependencies on connectivity strength and spike-frequency adaptation

parameters, transitioning between wake- and sleep-like states at

di�erent values. Spectral profiles of simulated neural activity vary

between subjects with distinct connectomes, with delta, theta, alpha

power, and power law scaling showing di�erences in parameter space.

With easily interchangeable individual connectomes from subjects in

which behavioral and biological data are also available, TVB-AdEx

models will help make testable personalized predictions regarding

individual variation in transitions between conscious and unconscious

brain states in healthy and pathological conditions.
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CHAPTER C

Brain simulation as a cloud service : The Virtual Brain on

EBRAINS

C.1. Chapter overview
This chapter is a side work of this thesis. It describes an overview of the tools in

EBRAINS using The Virtual Brain [299]. My participation in this work is the co-writing
of the section about co-simulation and the creation of associated figures.
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a b s t r a c t 

The Virtual Brain (TVB) is now available as open-source services on the cloud research platform EBRAINS 
(ebrains.eu). It offers software for constructing, simulating and analysing brain network models including the 
TVB simulator; magnetic resonance imaging (MRI) processing pipelines to extract structural and functional brain 
networks; combined simulation of large-scale brain networks with small-scale spiking networks; automatic con- 
version of user-specified model equations into fast simulation code; simulation-ready brain models of patients 
and healthy volunteers; Bayesian parameter optimization in epilepsy patient models; data and software for mouse 
brain simulation; and extensive educational material. TVB cloud services facilitate reproducible online collabo- 
ration and discovery of data assets, models, and software embedded in scalable and secure workflows, a precon- 
dition for research on large cohort data sets, better generalizability, and clinical translation. 

1. Introduction 

This paper introduces cloud services for brain simulation that are 
now being offered on the open brain research platform EBRAINS (eu- 
ropean brain research infrastructures; ebrains.eu), which makes scien- 
tific data, tools, and results accessible to everyone within a protected 
environment that promotes reproducible work. Scientific studies de- 
pend on increasingly complex workflows that are often difficult to repli- 
cate and the produced findings are often not confirmed by additional 
data ( Aarts et al., 2015 ; Ioannidis, 2005 ). The data and the compu- 
tational steps that produced the findings as well as the explicit work- 
flow describing how to generate the results were identified as the mini- 
mal components for independent reproduction of computational results 
( Stodden et al., 2016 ). EBRAINS addresses these challenges by offer- 
ing modelling and simulation services for collaborative brain research, 
databases with annotated and curated data of many modalities, atlases 
of human and rodent brains, image processing workflows, supercom- 
puting resources, neuromorphic systems, and virtual robots. EBRAINS 
was developed by the Human Brain Project, a research initiative funded 
by the European Commission with the mission to decode the human 
brain ( Amunts et al., 2019 , 2016 ). TVB cloud services ( Tables 1 , 2 ) were 
developed by the Human Brain Project subproject "The Virtual Brain" 
in collaboration with the two Human Brain Project partnering projects 
TVB-Cloud (virtualbraincloud-2020.eu) and TVB-CD (bit.ly/3ogLYtb). 
To provide supercomputing resources, the Human Brain Project offers 
as part of the Interactive Computing E-Infrastructure project access to 
compute and storage resources of the Fenix infrastructure (fenix-ri.eu), 
a network of six European supercomputing centres. 

TVB cloud services are interlinked and make use of EBRAINS cloud 
services ( Fig. 1 ), which we briefly introduce in the following before fo- 
cussing on the TVB services. Please see Table 3 for a glossary of technical 
terms and abbreviations. The ’Collaboratory’ (Supplementary Note: The 
EBRAINS Collaboratory) provides online workspaces, called ’collabs’, 
where research teams can exchange data and work together on docu- 
ments, secured with access control to restrict usage to authorized users. 
’Lab’ provides JupyterLab instances for developing applications and run- 
ning code in a protected environment that cannot be accessed by other 
users. Jupyter notebooks provide a programmatic interface to EBRAINS 
services, allow to execute live code and to link processing steps with 
visualized results and documentation. Data can be found and accessed 
via the ’KnowledgeGraph’, which provides a graphical user interface 
(GUI) and Application Programming Interface for searching, populat- 
ing, and editing the data base. The KnowledgeGraph uses controlled 
vocabularies and ontologies that are mapped with existing neuroimag- 
ing and brain simulation ontologies to store data in a structured for- 
mat, which enables to search the EBRAINS platform for data sets and to 
identify related information (Supplementary Methods: Data integration 
and TVB-ready data). In addition, EBRAINS offers services for profes- 
sional curation of data sets including minting of persistent identifiers 
like Digital Object Identifiers (DOI; doi.org), licensing, versioning, and 
setting up of data sharing agreements. RESTful APIs are used for con- 
necting different cloud components, as well as for authentication, data 

transfer and control of supercomputers. Atlases provide common spatial 
reference spaces including a multilevel atlas of the human brain as well 
as the Waxholm Space rat brain atlas ( Osen et al., 2019 ; Papp et al., 
2014 ). The Multilevel Human Brain Atlas uses the Julich-Brain proba- 
bilistic cytoarchitectonic maps ( Amunts et al., 2020 ) to link with tem- 
plate spaces such as BigBrain ( Amunts et al., 2013 ) at the micrometre 
scale and MNI ( Das et al., 2016 ) at millimetre scale, and combines them 

with imaging-based maps of function ( Evans et al., 2012 ) and connec- 
tivity ( Guevara et al., 2017 ). Linking a growing set of multimodal fea- 
tures, the Human Brain Atlas captures brain organization in its different 
facets. 

What are the benefits of a cloud-based research platform? One im- 
portant advantage are on-demand scalable computing resources. Neu- 
roimaging and brain modelling workflows that are used to analyse large 
data sets (like the UK Biobank or the Human Connectome Project data 
sets) require processing power and storage beyond what personal com- 
puters can offer. On EBRAINS a network of powerful supercomputers 
enables to scale computing resources to the needs of a project. Another 
key advantage of cloud-based research is the ability for interoperable 
and reusable sharing of data and software, which is an urgent need as 
there is typically not one individual researcher doing all the work from 

data acquisition, analysis, hypotheses generation, model building, val- 
idation, up to writing and publishing. Rather, it is getting increasingly 
common that multiple teams, with team members being potentially scat- 
tered all around the planet, work together in large projects that require 
ongoing interaction and synchronization of data and code. Instead of fre- 
quently transmitting data sets via the internet and maintaining intricate 
software environments at multiple computing sites it is more efficient 
and practical to have a shared platform where teams can work together 
on datasets and run software in a common computing space. Problemat- 
ically, sharing of and collaborative work on personal data raises privacy 
concerns: highly personal and detailed health data like MRI can be mis- 
used for malicious intents and must therefore be thoroughly protected, 
which is reflected in legislation like the General Data Protection Regula- 
tion (GDPR) of the European Union. With TVB on EBRAINS we created a 
software environment that globally implements state-of-the-art security 
mechanisms like encryption, access control and sandboxing to protect 
personal data, while at the same time workflows can be flexibly and 
reproducibly modified using containerized applications. These globally 
implemented measures for data protection make it easier for individual 
researchers to protect confidential data and to comply with the law. An 
additional benefit of TVB on EBRAINS workflows is that mechanisms for 
data management, provenance tracking and reproducible research are 
directly embedded using DataLad ( Halchenko et al., 2021 ), which en- 
ables explicit tracking of all inputs, codes and processing steps that pro- 
duced a result in a manner similar to how GitHub (github.com) is used 
for source code management. Having reproducibility already "built-in" 
makes it not only easier for the scientist to understand and re-use their 
own complex workflows years later. More importantly, it makes it also 
easier for everyone else to understand and use a complex workflow or 
just individual steps thereof. With simple commands a reviewer, a stu- 
dent, or another researcher can start the entire process or just individual 
steps and verify the consistency and correctness of the research, or use 
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Table 1 

TVB cloud software, source codes and URLs leading to their main entry points. 

Service URLs 

The Virtual Brain Web-App 

Brain network simulation thevirtualbrain.apps.hbp.eu 
Collab 

wiki.ebrains.eu/bin/view/Collabs/the-virtual-brain 
End-to-end use case 

wiki.ebrains.eu/bin/view/Collabs/user-story-tvb 
Source code 

github.com/the-virtual-brain/tvb-root 
Python library 

pypi.org/project/tvb-library 
Container image 

hub.docker.com/r/thevirtualbrain/tvb-run 
Demo brain network model data 

zenodo.org/record/4,263,723#.YYRPgL1Bzxg 
TVB Image Processing Pipeline Web-App 

Connectome analysis thevirtualbrain.apps.hbp.eu 
Collab 

wiki.ebrains.eu/bin/view/Collabs/tvb-pipeline 
Source code 

github.com/BrainModes/tvb-pipeline 
Container images 

hub.docker.com/r/thevirtualbrain/tvb_converter 
Multiscale Co-Simulation Web-App (TVB-Multiscale) 

Two toolboxes for concurrent simulation of large-scale and spiking networks tvb-nest.apps.hbp.eu 
Collab (TVB-Multiscale) 

wiki.ebrains.eu/bin/view/Collabs/the-virtual-brain-multiscale 
Collab (Parallel CoSimulation) 

wiki.ebrains.eu/bin/view/Collabs/co-simulation-tvb-and-nest-high-computer 
Source code (TVB-Multiscale) 

github.com/the-virtual-brain/tvb-multiscale 
Source code (Parallel CoSimulation) 

github.com/multiscale-cosim/TVB-NEST 
Container image (TVB-Multiscale) 

hub.docker.com/r/thevirtualbrain/tvb-nest 
TVB-HPC Collab 

Automatic code generation wiki.ebrains.eu/bin/view/Collabs/rateml-tvb/ 
Source code 

github.com/the-virtual-brain/tvb-root 
Fast_TVB Collab 

Parallelized simulation (multithreading) wiki.ebrains.eu/bin/view/Collabs/fast-tvb 
Source code 

github.com/BrainModes/fast_tvb 
Container image 

hub.docker.com/r/thevirtualbrain/fast_tvb 
Bayesian Virtual Epileptic Patient Collab 

Epilepsy modelling wiki.ebrains.eu/bin/view/Collabs/bayesian-virtual-epileptic-patient 
Source code 

github.com/ins-amu/BVEP 
TVB Mouse Brains Collabs 

Mouse brain simulation wiki.ebrains.eu/bin/view/Collabs/tvb-mouse-brains 
wiki.ebrains.eu/bin/view/Collabs/mouse-stroke-brain-network-model/ 

TVB-ready dataset kg.ebrains.eu/search/instances/Dataset/a696ccc7-e742–4301–8b43-d6814f3e5a44 
SC, FC, and fMRI from tumour patients and controls 

openMINDS metadata for TVB-ready data Collab 

Metadata in JSON-LD format wiki.ebrains.eu/bin/view/Collabs/openminds-metadata-for-tvb-ready-data 
openMINDS schema 

github.com/HumanBrainProject/openMINDS 
TVB atlas adapter Collab 

Brain atlas wiki.ebrains.eu/bin/view/Collabs/sga3-d1–1-showcase-1 
Source code 

github.com/FZJ-INM1-BDA/siibra-python; github.com/FZJ-INM1-BDA/siibra-api 
Visualizer 

brainsimulation.org/atlasweb_multiscale 
INCF TVB training space training.incf.org/collection/virtual-brain-simulation-platform 

Education and training 

and adapt it for another problem, without necessarily needing domain 
knowledge about the used software, which helps to make workflows and 
results more robust and easier to review and reproduce. 

In the following we guide readers through the main components of 
TVB on EBRAINS, highlighting their main features and the respective 
advantages of cloud-based operation. Subsequently, we demonstrate an 

end-to-end use case example including the implemented mechanisms 
for reproducibility and provenance tracking (please see additional use 
cases in the Supplementary Material). We conclude the main part with a 
description of data protection mechanisms, the TVB on EBRAINS shared 
responsibility model, and a discussion. Technical details about the ser- 
vices and their deployments can be found in the Methods section and 
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Table 2 

Publications using software, workflows or data sets underlying different TVB cloud software. 

Cloud service Publications 

The Virtual Brain ( Ritter et al., 2013 ; Sanz-Leon et al., 2013 , 2015 ) 
TVB Image Processing Pipeline ( Proix et al., 2016 ; Schirner et al., 2015a ) 
Fast_TVB ( Costa-Klein et al., 2020 ; Schirner et al., 2018 ; Shen et al., 2019 ; Zimmermann et al., 2018 ) 
Bayesian Virtual Epileptic Patient ( Hashemi et al., 2020 ; Jirsa et al., 2017 ) 
TVB Mouse Brain ( Melozzi et al., 2019 , 2017 ) 
TVB ready datasets ( Aerts et al., 2020 , 2018 ) 
INCF TVB training space ( Matzke et al., 2015 ) 

Fig. 1. TVB on EBRAINS cloud services. Human brain network modelling and neuroimaging require personal data applicable to data protection regulation. Encryp- 
tion, sandboxing, and access control are used to protect personal data. EBRAINS provides core cloud services: the ’Multilevel Human Brain Atlas’ provides maps of 
structure, function, and connectivity in multiple reference spaces; ’Drive’ for storing and sharing files; ’Wiki’ and ’Office’ to create workspaces and documents for 
collaborative research; ’Lab’ for running live code in sandboxed JupyterLab instances; ’OpenShift’ for service and resource management; ’HPC’ are supercomputers 
for resource-intensive computations. All software components interact via RESTful APIs and use UNICORE for communication with supercomputers. Software com- 
ponents exist in the form of web GUIs, container images, Python notebooks, Python libraries and high-performance machine codes. Curated scientific results, input 
and output data can be loaded from and stored into the EBRAINS KnowledgeGraph using openMINDS-compliant metadata annotations to enable efficient and robust 
sharing and reproducible re-use. The connectors show interactions between different components (colours group connectors according to different forms of software 
implementation). 

exhaustive online documentation ( Table 1 ). Supplementary material 
provides further information on the different components of TVB on 
EBRAINS. 

2. Results 

2.1. The Virtual Brain 

TVB (thevirtualbrain.org) is an open-source software for simulating 
and analysing brain network models, which describe the brain as a graph 
that is composed of nodes that represent brain areas and edges that rep- 
resent physical connections between these areas (Supplementary Note: 
Brain simulation with TVB) ( Ritter et al., 2013 ; Sanz-Leon et al., 2013 ). 
TVB can be directly used on EBRAINS from a web GUI ( Table 1 ), without 
the need to install further software or to have a specific operating sys- 
tem, computing environment or hardware. In addition, TVB can also be 
used as a Python library for programming in the EBRAINS Lab ( Fig. 1 ). 
Via these interfaces users can upload brain network models, configure, 
and run simulations, as well as postprocess and export results. TVB us- 
age is introduced through Jupyter notebooks, explanatory videos, and 

technical documentation ( Table 1 ). TVB’s main documentation is hosted 
at docs.thevirtualbrain.org. 

Importantly, TVB interfaces with supercomputers to rapidly perform 

simulations that require extensive processing time and storage space. 
For example, parameter space explorations with hundreds of parame- 
ter sets can be simulated in parallel. The web GUI simplifies the pro- 
cess of running high-performance simulations as no further knowledge 
about supercomputer usage is required: the entire process of sending 
encrypted data to a supercomputer, decrypting, sandboxed processing, 
encrypting of results and transmission to the web GUI is handled by the 
software automatically without any intervention by the user. 

2.2. TVB Image Processing Pipeline 

Brain network modelling requires a description of the anatomical 
network that connects brain areas, called structural connectivity, which 
can be estimated from diffusion-weighted MRI data using the TVB Image 
Processing Pipeline. The pipeline takes anatomical, functional and diffu- 
sion MRI as input and provides as output structural connectivity, region- 
average functional MRI time series, functional connectivity, brain sur- 
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Table 3 

Glossary of technical terms and abbreviations. 

Notation Description 

access control (computer security) selective restriction to consume, enter or use a resource 
annotation of data categorization and labelling of data 
authentication (computer security) verifying the identity of a computer system user 
authorisation (computer security) specifying access rights and privileges to resources; access control rules are used to decide whether access 

requests from (authenticated) users shall be granted or not 
API; application programming interface interface that connects computers or software 
BIDS Brain Imaging Data Structure; a standard for organizing neuroscience data 
brain network model system of coupled differential equations for simulating brain activity 
checksum a small block of data that contains information about the contents of another block of data for the 

purpose of detecting errors 
cloud computing on-demand availability of computing power and storage over the internet 
cloud service infrastructure, platforms, or software made available through the internet 
container image, containerization 
(software) 

(creating) executable packages of software that include all dependencies needed to run an application 
reliably in different computing environments 

controlled vocabulary carefully selected list of words and phrases for unambiguous tagging of units of information 
curation organization and integration of data collected from various sources 
data sharing agreement legal contracts that detail what data are being shared and the appropriate use for the data 
differential equation equation that relates functions and their derivatives (rate at which the value of a function changes with 

respect to a change of its argument) 
EBRAINS European Brain Research INfrastructureS 
encryption converting information into secret code that hides the information’s true meaning 
functional connectivity statistical relationships between brain signals represented as a network; often a matrix of pairwise 

correlation coefficients between region-average fMRI signals 
General Data Protection Regulation a regulation in European Union law on data protection and privacy with the aim to increase individual’s 

control and rights over their personal data 
GUI graphical user interface 
Jupyter notebooks open-source web application to create and share documents that contain live code, equations, 

visualizations and narrative text 
JupyterLab web-based interactive development environment for Jupyter notebooks 
key (computer security) a piece of information, which, when processed through a cryptographic algorithm, can encode or decode 

cryptographic data 
knowledge graph a data model and database for linking, integrating, and storing information in a graph structure 
licensing (software) providing a software product with a legal statement (license) that governs its use and redistribution 
metadata data that provides information (annotations) about other data 
metadata schema a definition how metadata is structured 
MRI magnetic resonance imaging 
neuromorphic systems electronic analogue circuits to mimic neuro-biological architectures 
ontology (information science) a way to organize data, information, knowledge by defining concepts, categories and their relationships 
openMINDS specifications for structuring metadata in neuroscience (github.com/HumanBrainProject/openMINDS) 
persistent identifiers a long-lasting reference to an (often digital) object (e.g., document, file, web page); one example are 

digital object identifiers (DOI, doi.org), which are widely used to identify publications and data sets 
public-key cryptography a system that uses a different key for decryption than for encryption; this has the advantage that the 

decryption key needs not to be communicated via insecure channels, while the key for encryption can be 
known by everyone ("public") without compromising safety 

RESTful API an architectural style for APIs where resources are provided in a textual representation that can be read 
and modified with a predefined set of operations 

sandbox (computer security) security mechanism for separating running programs in an effort to protect computing systems from 

failure or attacks, often used to run untrusted programs and code 
structural connectivity aggregated descriptions of the networks that couple neurons, neural populations and brain areas 
supercomputer a computer that is shared by many users and that provides a high level of performance regarding 

processor time, memory and storage space 
TVB The Virtual Brain, a software to simulate brain network models 
UNICORE interface for exchanging data and commands between different computers in a network (unicore.eu) 
versioning (software) assigning unique version names or unique version numbers to unique states of computer software 
version control tracking and managing changes to software code or data sets 
virtual robots computer simulation of a physical robot 

face triangulations, projection matrices for predicting EEG, and brain 
parcellations. The outputs can be directly uploaded to TVB for brain 
simulation and analysis. Users can configure and control pipeline steps 
from the TVB web GUI ( Table 1 ), without needing to directly operate 
a supercomputer. A workflow orchestrator coordinates the execution 
of the pipeline and deals with privacy and reproducibility aspects. GUI 
and orchestrator ensure that the highly personal human brain data can 
only be accessed by authorized users, that they are always encrypted 
while at rest or in transit, and that they are only decrypted and pro- 
cessed inside a sandbox that is inaccessible by users of the cloud en- 
vironment. In addition, the pipeline orchestrator supports provenance 
tracking and actionable reproducibility: the entire code, data, and all 
computational steps necessary to reproduce results starting from the raw 

data can be stored and re-run with a small set of simple commands on a 

chosen level of granularity, which enables easy reproduction of research 
results. The pipeline supports flexible processing workflows as it con- 
sists of a sequence of container images that can be adapted, exchanged, 
added, or removed. Containerization makes the pipeline more platform- 
independent: it can be executed on all similar hardware platforms that 
support container runtimes like Docker or Singularity. Accordingly, the 
pipeline serves as a prototypical example for general-purpose protected 
and reproducible cloud workflows. 

2.3. Multiscale Co-Simulation 

Multiscale Co-Simulation are two new Python toolboxes for sim- 
ulating large-scale brain networks with TVB that interact with spik- 
ing networks in NEST ( Gewaltig and Diesmann, 2007 ). The toolboxes 
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provide interfaces to couple the two simulators by connecting the 
programmatic Python interface of TVB ( Sanz-Leon et al., 2013 ) with 
PyNEST ( Eppler et al., 2009 ), a Python wrapper for NEST. Multiscale Co- 
Simulation can be downloaded as standalone container image or used 
on EBRAINS from Jupyter notebooks ( Table 1 ). 

The need for a high-performance environment is for multiscale co- 
simulations even more important than for single-scale simulations: in- 
stead of one resource-demanding simulator there are two and they need 
to be executed in parallel. Critically, the two simulators need to syn- 
chronize to exchange their respective inputs, which is costly because 
the latency of network interaction is often orders of magnitude higher 
than the time needed to compute these inputs. To address the involved 
bottlenecks, the toolboxes implement routines that optimize communi- 
cation and parallel execution. The Multiscale Co-Simulation project is 
under ongoing development currently focussing on postulating and val- 
idating coupling scenarios between the scales, optimizing the user inter- 
faces as well as optimizing performance. See Supplementary Methods: 
Multiscale Co-Simulation for more information. 

2.4. High-Performance implementations of TVB 

Large software products like TVB are often designed with the goal to 
ease maintainability and long-term development, but that often comes 
at the cost of non-optimal execution speeds and resource consumption. 
Algorithms that are not optimized for speed can be orders of magni- 
tude slower than optimized versions: instead of taking days or weeks, a 
simulation can be done in mere minutes, depending on how it is imple- 
mented. Problematically, optimizing computer code for speed is chal- 
lenging and a task that is largely independent from scientific tasks like 
postulating and validating a new model: researchers must be put in a 
position where they can easily manipulate a given model in order to 
rapidly test hypotheses. To make it easier to simulate high-performance 
codes, two different strategies were realized. The first one, TVB-HPC 

( Table 1 ), automatically produces high-performance codes for CPUs and 
GPUs using an easy XML-based language called RateML for model spec- 
ification. RateML is based on the domain-independent language ’LEMS’ 
( Vella et al., 2014 ), which allows for the declarative description of com- 
putational models using a simple XML syntax. The already existing ex- 
ample implementations can be easily adapted to test different models, 
without requiring any knowledge about algorithmic optimization. The 
second one, Fast_TVB ( Table 1 ), is a specialized high-performance im- 
plementation of the "Reduced Wong Wang" model ( Deco et al., 2014 ; 
Sanz-Leon et al., 2015 ). Written in C it makes use of several optimization 
strategies and a sparse memory layout to efficiently use CPU resources, 
which makes it possible to simulate extremely large models with mil- 
lions of nodes even on a standard computer in a reasonable time. Further 
information and benchmarks are provided in Supplementary Methods: 
High-performance implementations. 

2.5. TVB atlas and data adapters 

TVB on EBRAINS provides interfaces for interoperability with dif- 
ferent components and services offered on EBRAINS, which enables re- 
searchers to plug in different analysis and modelling tools into their 
custom workflows. While the different TVB components are already in- 
teroperable by design, there is a need for ’adapters’ that enable to in- 
terconnect with other EBRAINS services like the siibra toolbox, which 
connects TVB with the Human Brain Atlas ( Table 1 ). The Human Brain 
Atlas characterizes brain regions with a growing set of multimodal fea- 
tures, including transmitter receptor densities ( Palomero-Gallagher and 
Zilles, 2019 ), cell distributions, and physiological recordings, based on 
the Julich-Brain cytoarchitectonic maps ( Amunts et al., 2020 ). Aligned 
with standard brain templates, the Human Atlas can be registered with 
individual brains to export multimodal microstructural "fingerprints" 
that can be used to set the parameters of brain models. The siibra adapter 

gives direct programmatic access to EBRAINS atlas services like select- 
ing a parcellation, browsing and searching brain region hierarchies, and 
obtaining maps of atlas features like the distributions of cell densities, 
neurotransmitters, or gene expression data. Internally, siibra connects 
with repositories like the EBRAINS KnowledgeGraph or the Allen Brain 
Atlas to retrieve the requested data, hiding the complexity of interacting 
with different services and minimizing common risks like misinterpre- 
tation of coordinates from different reference spaces. Complementary to 
siibra a viewer was implemented to visualize different atlas maps on the 
cortical surface ( Table 1 ). 

Additional adapters are under development that connect TVB with 
the Knowledge Graph and the Human Intracerebral EEG Platform to 
inform brain network model parameterization and to compare simula- 
tion results with empirical data. For example, it is planned to link in- 
tracranial electrophysiology recordings with the respective Julich-Brain 
regions to set model parameters based on direct measurements of effec- 
tive connectivity and transmission delays from stimulation experiments 
( Trebaul et al., 2018 ). See Supplementary Methods: TVB atlas and data 
adapters for more information. 

2.6. Data integration and TVB-ready data 

Another advantage of cloud-based operation is that research results 
from different groups can be directly integrated into a central data 
record where they can be found and re-used by others. This functionality 
is provided by the EBRAINS KnowledgeGraph, an ontology-based graph 
data base where data sets are richly annotated with openMINDS meta- 
data in order to ensure their interpretability in the future ( Table 1 ). The 
openMINDS metadata annotations define an exact classification of re- 
search inputs and outputs (for example, empirical recordings, software, 
articles, books, imaging coordinate systems, reference atlases, models, 
projects) against a scientific ontology or knowledge framework. To en- 
sure data quality EBRAINS employs a team of expert curators who as- 
sist in creating and verifying that data format and metadata annota- 
tions fulfil state of the art practices for provenance tracking and data 
management with regard to long-term availability and interpretability 
of the results. Data in the KnowledgeGraph is protected by the ’Human 
Data Gateway’, which controls access to human datasets through regula- 
tory compliant data use agreements and access policies. A first example 
of modelling results that were integrated into the KnowledgeGraph are 
TVB-ready connectivity data sets in BIDS format from tumour patients 
and matched control participants. The data set contains region-average 
fMRI time series, FC, and SC from 31 brain tumour patients before and 
after surgery, and 11 healthy controls ( Aerts et al., 2019 ). See Supple- 
mentary Methods: Data integration and TVB-ready data for more infor- 
mation. 

2.7. End-to-end use case with reproducible brain model construction 

Upon introducing the individual components of TVB on EBRAINS 
we now exemplify how they may be combined. Additional use cases are 
described in the Supplementary Material, especially in the section ‘Ad- 
vanced use cases and training’. To get acquainted with TVB one may 
start by performing a few test simulations with TVB’s default structural 
connectivity to learn usage of the web GUI and the Python interface; 
documentation and tutorials explain the steps ( Table 1 ). Visualizing the 
outputs for different parameter settings and fitting simulation results 
with empirical data (for example, using functional connectivity) helps 
to create an intuitive understanding of brain network model dynamics. 
Next, researchers may want to perform a more detailed analysis, for ex- 
ample, comparing individuals in patient versus control groups to study 
mechanisms of pathological versus healthy brain dynamics. Here, the 
researchers can use the TVB Image Processing Pipeline to compute in- 
dividual structural and functional connectivity from human MRI data. 
Estimating connectomes from MRI data consists of many complex steps, 
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making it hard to explicitly track all the necessary provenance data to 
robustly reproduce a particular configuration of processing steps. Just 
a minor update of a dependency or an untracked renaming of a file 
can break the entire workflow and make a result not reproducible. The 
pipeline uses DataLad (datalad.org) to make its workflow reproducible 
in an actionable manner: all software and data are tracked in a way 
that the entire workflow or just individual steps can be easily re-run, 
archived, published and shared. With DataLad all data and code files 
are version-controlled and managed in a manner that is comparable to 
how software is managed with GitHub (github.com), allowing to cap- 
ture complex hierarchical project structures and all computational steps 
from raw data to final figures. 

When large cohorts are modelled users may find the speed of stan- 
dard brain model implementations insufficient and switch to TVB’s high- 
performance implementations, which allow fast execution and easy gen- 
eration of high-performance codes for custom models with TVB’s XML- 
based modelling language RateML. To inform model parameters re- 
searchers may decide to include microstructural information from the 
EBRAINS Human Brain Atlas using the siibra interface ( Wang, 2020 ). 
Or they may extend large-scale models to encompass finer scales us- 
ing TVB Multiscale to study hypotheses about brain function that span 
spatial scales from individual point neurons over populations to whole 
brain models. In a recent preprint this novel approach was used to study 
the effect of deep brain stimulation on a spiking basal ganglia model 
( Meier et al., 2021 ). Finally, the resulting data outputs can be anno- 
tated with metadata, curated, and integrated into the KnowledgeGraph 
for future reuse by the community. 

2.8. Advanced use cases and training 

In addition to the introductory use cases described above, EBRAINS 
provides tutorials for several advanced use cases ( Table 1 ). The Bayesian 
Virtual Epileptic Patient tutorials showcase how Bayesian inference can 
be used to compute posterior probability distributions for region-wise 
parameter settings of TVB’s Epileptor model in order to study the spread 
of epileptic seizures ( Jirsa et al., 2017 , 2014 ). The approach makes use 
of prior distributions obtained from empirical data (for example, a pa- 
tient’s structural connectivity, or lesions detected in MRI) and model 
simulations to take into account the likelihood for these observations. 
For example, estimating excitability parameters of an Epileptor brain 
network model yields a map of region-wise epileptogenicity to guide 
clinical decision-making. The Virtual Mouse Brain extends TVB with 
tractography-based as well as tracer-based mouse SC ( Melozzi et al., 
2017 ), which was estimated from the Allen Mouse Brain Connectivity 
Atlas ( Oh et al., 2014 ). Tutorials demonstrate how to export mouse con- 
nectivity at different resolutions and how to simulate strokes in mice 
( Allegra Mascaro et al., 2020 ). In addition to these notebook tutorials 
the INCF (International Neuroinformatics Coordination Facility) train- 
ing space holds a dedicated collection for TVB with didactic use cases, 
video tutorials, Jupyter notebooks and example data sets ( Table 1 ). See 
Supplementary Methods: Advanced use cases and training for more in- 
formation. 

2.9. What can go wrong? Common pitfalls of brain network modelling. 

Although cloud services make it easier to run scalable modelling 
workflows there are several limitations to consider. Already one of the 
first steps, creating a brain network model from MRI data, involves sev- 
eral caveats. One major limitation of MRI tractography is that coupling 
strengths and time delays of nerve fibre tracts cannot be directly mea- 
sured ( Sotiropoulos and Zalesky, 2019 ). Identifying and quantifying fi- 
bre tracts is based on a mapping from water diffusion to fibre orienta- 
tions, which is in general an ill-posed problem as MRI voxels are too 
large to resolve individual fibers. Neither the orientation of fibers in 
a voxel can be resolved, nor can different arrangements like bending, 

fanning, crossing or kissing be distinguished. As a result, tractography 
provides only a model-based approximation of interregional coupling 
strengths and time delays. Problematically, these approximations are 
biased by factors like the distance of the regions, algorithmic choices, 
and individual anatomical properties ( Jeurissen et al., 2019 ; Yeh et al., 
2021 ). Furthermore, even if fibers could be reliably counted, there 
are several microstructural properties known to influence the strength 
of coupling that also cannot be directly measured like myelination, 
axon diameter and synaptic properties, which implicates that tractog- 
raphy results must be interpreted with caution ( Jeurissen et al., 2019 ; 
Yeh et al., 2021 ). A related problem is node delineation and the ques- 
tion what is a meaningful parcellation of the brain to form the nodes 
of a network model? Unlike the microscale, where the mapping be- 
tween nodes and neurons is obvious, defining nodes at the macroscale 
is less clear. An intuitive criterion would be functional homogeneity: 
voxels get grouped based on how similar their activity is, which is 
plausible, because one model node is usually governed by one type of 
dynamics. However, matters are complicated by individual structure- 
function variability. For example, the size of a well-characterized area 
like V1 can vary twofold in size across subjects ( Amunts et al., 2000 ; 
Van Essen, 2013 ), which would be missed by group-level parcellations. 
Similarly, the scale and the number of nodes heavily impacts the re- 
sulting model and they must therefore be aligned with the goals of 
the research ( Proix et al., 2016 ). For example, the parcellation must 
be fine enough to be able to represent and differentiate between the 
specific features of the system that are related to the aims of the 
research. 

Probably one of the biggest challenges is to identify whether a given 
model can or cannot reproduce a set of observations, which is done 
in a process called ‘inference’ that works by comparing modelling out- 
puts with the actual data and selecting the model that explains the 
observed phenomenon in a way that is deemed optimal. Problemati- 
cally, already the related task of finding optimal parameter values for 
a given set of model equations suffers from the so-called ‘curse of di- 
mensionality’: with each added dimension the space of possible model 
parameterizations increases exponentially (there is a combinatorial ex- 
plosion in the possible values that the parameters can jointly take), 
making it harder to find models that generalize to the typically high- 
dimensional real-world scenarios in digital medicine ( Berisha et al., 
2021 ). Complex mechanistic models are poorly suited for inference, be- 
cause computing the likelihood for a given observation is typically in- 
tractable ( Cranmer et al., 2020 ), as this would require integrating over 
all potential outcomes of a simulation, the number of which increases 
exponentially with each model dimension. Likewise, complex systems 
are often degenerate, producing indistinguishable observations by in- 
finitely many realizations of the same process. While new approaches 
for "likelihood-free" simulation-based inference are under development 
( Cranmer et al., 2020 ), in practical cases often recourse is made to tra- 
ditional approaches like relying on the insights of scientists into the 
system to construct powerful summary statistics to effectively compare 
observed with simulated data. A related problem, especially regarding 
clinical application, is that models always involve (per definition) enor- 
mous simplifications and are often based on assumptions that are only 
weakly justified and might be very restrictive. Consequently, the conclu- 
sions that can be drawn are a function of the validity of the knowledge 
that was used to build the model and the efficiency with which the ver- 
bal knowledge was translated into mathematical equations and then into 
computer code. Especially in clinical applications false expectations, 
misinterpretations and overconfidence in simulated results can lead to 
significant real-life problems. Consequently, these workflows may not 
be used in a "turn-key" manner and with the expectation that they will 
automatically produce meaningful results. To produce meaningful re- 
sults and to adequately interpret them knowledge about modelling and 
numerical methods as well as neuroscience domain knowledge are fun- 
damentally necessary. 
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Fig. 2. Securing personal data processing workflows in shared environments. Access control ensures that only authorized users can access sensitive data. Sensitive 
data is encrypted with public-key cryptography on the data controller’s computer before upload to the cloud. The key pair for upload is generated within a sandboxed 
process at the final processing site and the private key never leaves the sandbox. This ensures that the data can only be decrypted at the final processing site and 
that no human gets into possession of the key for decryption. All processing is performed in the sandbox and personal data is never written outside the sandbox in 
unencrypted form. A public key generated by the data controller is used for returning encrypted results, which ensures that only the data controller can decrypt the 
data. 

2.10. Data protection in the TVB on EBRAINS cloud 

Biomedical research is facing challenges because many methods lack 
technical infrastructure to protect the privacy of sensitive data. Re- 
search often involves that teams exchange and process sensitive data 
on shared infrastructure like the internet and high-performance com- 
puters, which poses risks for illegitimate access. Consequently, an im- 
portant requirement for privacy protection is to enable secure process- 
ing of sensitive data in shared infrastructures, as the involved networks 
and computers can be accessed by many human and non-human users 
with only logical separation between them. Cloud platforms have the 
advantage that privacy technology and legal compliance measures can 
be globally implemented and offered as a standardized and certified 
service, which makes it easier for the individual researchers to over- 
come technical and organizational hurdles for demonstrating compli- 
ance with data protection law. The European Union’s General Data 
Protection Regulation (GDPR) and similar international and national 
laws impose restrictions on the processing of personal data including 
storage and sharing. Problematically, biomedical data cannot be eas- 
ily anonymized or pseudonymized such that all potentially identifiable 
information are removed, and potential re-identification is excluded 
( Byrge and Kennedy, 2018 ; Gymrek et al., 2013 ; Rocher et al., 2019 ). 
A principle means of ensuring GDPR-compliant data processing is the 
implementation of technical and organizational measures to ensure a 
level of security appropriate to the risk of the processing (Article 32 
GDPR). To protect data by design and default (Article 25 GDPR), TVB 

on EBRAINS implements access control, public-key cryptography, and 
sandboxing ( Fig. 2 ). 

Access control mechanisms, like the TVB web GUI, hide direct ac- 
cess to systems where sensitive data are actively processed: users need 
to log into the GUI with their password and can only access data that 
they uploaded or created themselves or that was made available to them 

through the role-based access control and permission management func- 
tionalities of the EBRAINS Collaboratory (see Supplementary Note: The 
EBRAINS Collaboratory). Sensitive data is encrypted before upload to 
EBRAINS and remains encrypted at all times with the only exception be- 
ing the time when a processing job is actively executed. Cryptographic 
keys are created ad-hoc and independently for each processing job and 
the system is designed such that no human gets into possession of the 
decryption key while the data is in the cloud: the sensitive data can only 
be decrypted at their final processing site by an automatic procedure. 
During the actual processing sensitive data may exist in unencrypted 

form, but only within isolated temporary memory locations that cannot 
be accessed by other users of the system (sandboxes). See Supplemen- 
tary Methods: Data protection in the TVB on EBRAINS cloud for more 
information. 

2.11. Shared responsibility & compliance 

In addition to technical measures also organizational aspects must be 
considered for processing to be lawful. The GDPR describes two roles 
for lawful processing of personal data: data controllers and data pro- 
cessors. Data controllers are responsible for, and required to be able 
to demonstrate, compliance with GDPR (Art. 5, GDPR), by implement- 
ing technical and organisational measures that ensure appropriate secu- 
rity of the personal data (Art. 24, GDPR). In contrast, data processors 
process personal data only on behalf of data controllers, acting under 
the authority of the controller to carry out the processing (Art. 28/29, 
GDPR). When a user uses TVB on EBRAINS services to process personal 
data the user is always the data controller, while EBRAINS as a ser- 
vice provider is always the data processor, because the user is directing 
the processing through its interaction with the offered services, while 
EBRAINS is only executing the provided instructions. As data proces- 
sor EBRAINS is responsible for protecting the global infrastructure with 
documented procedures and services on behalf of the user. As data con- 
troller a user maintains control over the data that it hosts or processes 
with TVB on EBRAINS, as mechanisms were put in place to prevent 
unauthorized access and to enable that data controllers can indepen- 
dently or jointly determine the means of the data processing. To use 
TVB cloud services a user must therefore agree to terms that clarify its 
personal responsibility regarding compliance with GDPR with respect to 
security precautions, access permissions, contact persons, personal re- 
sponsibilities, monitoring, logging, and passing of information to third 
parties (ebrains.eu/terms). 

3. Discussion 

TVB cloud services were developed to lower the barriers to brain sim- 
ulation and connectome analysis. They offer reproducible and protected 
workflows for collaborative computational neuroscience research. All 
codes are open source and available for download from EBRAINS and 
GitHub ( Table 1 ). Software is packaged in container images that can 
be directly used without the need to install dependencies. Several soft- 
ware and data components have been peer-reviewed, and results were 
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published in academic journals ( Table 2 ). To enable actionable repro- 
ducibility the image processing workflow is equipped with tools for data 
management and provenance tracking. All computational steps, inputs 
and software are tracked, and each step can be easily rerun and verified 
with a simple set of commands. Technical and organisational measures 
for protecting the privacy of personal data are globally implemented into 
the services offerings of the platform, making it easier for researchers 
to demonstrate compliance with data protection regulation. Access con- 
trol, encryption and sandboxing ensure that sensitive data stays con- 
fidential. Comprehensive documentation in the form of manuals, tuto- 
rials, lectures, Jupyter notebooks, demo data, workshops, videos, use 
cases, mailing lists and support contacts provide efficient and didactic 
dissemination of knowledge and support. EBRAINS core services enable 
to map and organize complex projects by large remote teams into a 
persistent and replicable structure at a central and secure place, which 
makes it easier to pick up projects at a later time. The flexibility of 
the platform and its focus on community-driven research enable rapid 
adoption of advances in brain simulation and connectomics, as well as 
correction of errors. Technical and organisational security mechanisms 
are designed to provide highest data protection standards, while at the 
same time providing the required flexibility to enable state-of-the-art 
research. To keep the high quality of the cloud services, ongoing and fu- 
ture efforts are directed towards the continuous integration of improved 
community standards and best practices. The TVB on EBRAINS ecosys- 
tem can be transferred to other cloud environments within the European 
Open Science Cloud or beyond. Thus, it serves as a reference architec- 
ture for secure processing and simulation of neuroscience data in the 
cloud ( Fig. 1 and Supplementary Discussion). 

4. Methods 

4.1. The Virtual Brain 

The methods behind the main TVB neuroinformatics simulator 
are extensively described in several publications ( Ritter et al., 2013 ; 
Sanz-Leon et al., 2015 , 2013 ) and in online documentation ( Table 1 ; 
docs.thevirtualbrain.org). To deploy TVB as cloud service it was im- 
plemented as container image executed on OpenShift, an open source 
container orchestration platform. This deployment serves TVB’s GUI via 
the web and automatically scales the number of running instances of 
the TVB container depending on demand. The GUI is connected with 
the EBRAINS identity and access management system to perform access 
control: only registered EBRAINS user can access the GUI and they can 
only access the data for which they were given role-based permission. 
Depending on their complexity, simulation jobs are either directly com- 
puted in the running OpenShift instance that serves the web GUI or on 
a supercomputer. Currently users still have the responsibility to manu- 
ally encrypt their data with a public key before upload, but in a next 
release it is planned that this will be automatically performed by the 
upload function. After upload every project is individually re-encrypted 
with a dedicated key. Decryption only happens when a user opens a 
project in the web GUI and the decrypted data is immediately deleted 
when the project is closed or the user logs out. The decrypted project is 
not directly written to a file system, but only stored inside the running 
container. For high-demand operations that run on the supercomputer 
data is only decrypted after the job gets started by the job scheduler 
and only inside the running TVB container. See Supplementary Meth- 
ods: Brain simulation with TVB for more information. 

4.2. TVB Image Processing Pipeline 

The TVB Image Processing Pipeline ( Schirner et al., 2015b ) allows 
users to select and combine dedicated neuroimaging workflow contain- 
ers, like BIDS Apps (see Supplementary Note: BIDS Apps), into repro- 
ducible workflows that process MRI data on supercomputers while pro- 
tecting the privacy of personal data in compliance with data protec- 

tion regulation. Containerization makes it easier to deploy neuroimag- 
ing workflows, as they often rely on a high number of dependencies and 
computational steps. Users can select amongst different neuroimaging 
containers like fmriprep for functional MRI processing ( Esteban et al., 
2019 ), Mrtrix3_connectome for diffusion MRI tractography ( Smith and 
Connelly, 2019 ; Tournier et al., 2019 ), or the Human Connectome 
Project pipelines for both ( Glasser et al., 2013 ). Like main TVB, the 
pipeline execution on the supercomputer can be controlled from the 
TVB web GUI without giving users direct access to the supercomputer. 
An orchestrator program on the supercomputer coordinates the execu- 
tion of the container images and ensures that personal data is encrypted 
at all times, except for the duration of the processing and then only in the 
main memory of a sandboxed process ( Fig. 2 and Supplementary Note: 
TVB Image Processing Pipeline for more details). To make workflow 

processing reproducible the open source distributed data management 
solution DataLad (datalad.org; ( Halchenko et al., 2021 )) was used for 
version control and provenance tracking: all files involved in a work- 
flow (such as data, code and computational environment) are stored 
within nested directory trees, which allows to explicitly store the evo- 
lution of a data set from its raw state to the final result. Checksums 
allow the user to uniquely identify the contents of every file, which in 
turn allows to verify the correct execution of every computational step 
and thereby full computational reproducibility of the entire workflow. 
See Supplementary Methods: TVB Image Processing Pipeline for more 
information. 
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D.1. Parameters for classification of neuron
dynamic

Model of the neurons

Type
adaptive exponential leaky integrator

and fire

subthreshold dynamics

Cm
dVm

d t
=− gL(Vm −EL)+ gL∆T e

Vm−Vth
∆T

−W + Ie

τw
dW

d t
=a(Vm −EL)−W

reset condition

For t ( f ) = {t |Vm(t ) >=Vpeak }
— Vm([t ( f ); t ( f ) + tr e f ]) =Vr eset

— W ([t ( f )]) =W ([t ( f )])+b

Default Model Parameters
Cm Capacity of the membrane 201.0 pF
tr e f Duration of refractory period 2.0 ms
Vr eset Reset value for Vm after a spike -60.0 mV
EL Leak reversal potential -70.6 mV
gL Leak conductance 30.0 nS
∆T Slope factor 2.0 mV
Vpeak Spike detection threshold 10.0 mV
a Subthreshold adaptation 0.0 nS
b Spike-triggered adaptation 80.5 pA
τw Adaptation time constant 144.0 ms
Vth Spike initiation threshold -50.4 mV
Ie Constant external input current 0.0 pA

Vm
Initialization of the voltage mem-
brane

-70.6 mV

W
Initialization of adaptation cur-
rent

0.0 pA

Simulator

simulator configuration

The simulator is NEST with a
resolution of 0.001 ms. The

implementation model is the default
implementation of "aeif_cond_alpha"
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Classification of excitability from ramp current
excitability class 1 Imaxi mum :800.0pA
excitability class 2 a :2.0nS, b :0.0pA and Imaxi mum :800.0pA

Classification from step current
(time simulation :5.s and time stimulation :4.s)

tonic spike Ist i m :580.0pA
phasic spike a :2.nS, τw :200.0ms and Ist i m :580.pA
tonic burst b :30.pA, Vr eset :-48.mV and Ist i m :580.pA
phasic burst b :30.pA, a :2.nS, Vr eset :-48.mV and Ist i m :580.pA
spike frenquency adapta-
tion

b :3.pA, a :1.6nS and Ist i m :580.pA

mixed model b :5.pA, a :1.6nS, Vr eset :-50.mV and Ist i m :580.pA

irregular spiking
b :15.pA, τw :130.ms, Vr eset :-49.mV and

Ist i m :580.pA

delay spike
b :15.pA, a :-3.nS, EL :-72.5mV and

Istep cur r ent :580.pA

delay burst
b :7.pA, a :-1.1nS, EL :-72.5mV, Vr eset :-49.mV and

Ist i m :580.pA

delay acceleration
b :9.pA, a :-2.5nS, τw :200.ms, EL :-72.5mV,

Vr eset :-60.mV, Vm :-72.5mV and Ist i m :580.pA

Classification from impulse current
(time simulation :500.ms and time stimulation :10.ms)

single spike Ist i m :1250.pA
spike latency ∆T :19.mV, Vm :-57.mV and Ist i m :500.pA

after potential
b :-300.pA, a :10.nS, τw :50.ms, ∆T :20.mV,
Vr eset :-50.mV, Vm :-62.mV, W :70.pA and

Ist i m :1000.pA

rebound spike
a :8.nS, EL :-52.mV, Vm :-52.mV, W :13.pA and

Ist i m :-580.pA

rebound burst
a :8.nS, b :4.pA, EL :-52.mV, Vr eset :-49.mV,
Vm :-52.mV, W :13.pA and Ist i m :-580.pA

bi-stability
a :90.nS, b :5.pA, EL :-51.mV, Vr eset :-54.mV,

Vm :-50.mV, W :42.pA and Ist i m :1000.pA

Classification from perturbation
(time simulation :500.ms and time stimulation :5.ms)

integration Ist i m :160.pA

resonator
a :300.nS, EL :-61.mV, Vth :-60.mV, Vm :-61.mV,

W :34.5pA and Ist i m :160.pA
Example of dynamic

demonstration
∆T :10.mV, tr e f : 10.ms, a :5.nS, τw :100.ms,

Vm :-69.0mV, EL :-69.mV, Ist i m :250.pA

TABLEAU D.1. – Parameter for classification of neuron dynamic
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E.1. Supplementary Notes

E.1.1 Supplementary Note 1 | Guidelines Input/Output
(I/O) interface

Before creating the I/O interface, the simulator must be analysed. The objective is
to verify the existence of output and input devices, the paradigm of parallelisation, the
tools for the parallelisation and the properties to keep. This analysis will help to modify
the architecture of the simulator. The modification needs to follow the simulator
development and its maintainability. The last part is the creation of a wrapper to
communicate with the transfer module if required. Two paragraphs will provide further
details about how to transfer data from NEST [152] to TVB [300] and vice versa.

E.1.1.1 NEST I/O interface

NEST has two types of devices : stimulating and recording devices. These devices
receive or send messages mainly based on spikes times. The parallelisation uses
MPI and/or threading depending on its parametrisation, and it is based principally
on event transfer (spikes between neurons). The critical property to conserve is its
scalability. From this statement, a new interface was implemented into version 3 of
NEST and uses MPI communication. The modification architecture of NEST is creating
a specific back end of the recording and stimulating devices and reformatting input
devices to include the usage of a specific back end. Each back-end uses a particular
communication protocol (see supplementary figures E.6), which includes transmitting
the NEST state using tags and transferring data. The transfer module directly uses this
interface (see supplementary figures E.13).

E.1.1.2 TVB I/O interface

The TVB simulator presents monitor classes for recording values and stimulating
classes. There is no parallelisation optimisation, and all the data is stored in me-
mory (recording simulated data, stimulating and transferring data between Neural
Mass). This simulator does not have specific properties to keep for the optimisation
simulation. From this statement, the prototype uses a new monitor that dynamically
modifies the simulator. This new monitor adds an extra buffer to delay the simulated
data. Its advantage is the possibility of using proxy nodes and an IO interface to in-
clude external data during this delay in communication between nodes. Following the
simulator development and its maintainability, this new monitor is not included in
the code of TVB. The main reason is that it is difficult to maintain and debug dyna-
mic modifications. This interface is not enough for communication with the transfer
module because there is a need to use MPI communication. A wrapper around this
interface is implemented to overcome this requirement(see supplementary figure
E.10 for details). A bug present in the implementation monitor does not take into
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account the time of synchronisation between the simulator, but it does not have an
impact on the co-simulation dynamic. The official release of TVB includes a new class
of ’co-simulator’ that handles external communication.

E.1.2 Supplementary Note 2 | Guideline for
implementation of transfer module

This section focuses on the intention behind the implementation of the transfer
modules. In the future, two types of scientists will improve and use transfer modules.
The neuroscientist or physician will modify it to create new models and adapt them to
their scientific questions. In parallel, computational scientists will work to improve
communication speed between all modules and components. Furthermore, in the
future, there will be a need to add other simulators such as NEURON [52], Arbor [3],
Neurolib [48]. The architecture design needs to simplify the addition of other simula-
tors and other types of data (membrane voltage, current, ...).
The separation of the neuroscience research and computer science research is done by
the separation of the functions of the transfer module in three components/ objects/
processes : two for the I/O interface with simulators and one for transformation func-
tions (see Supplementary Figure E.14). A neuroscientist will principally modify the
transformation components where the meaning of the data transformation is required
and important for his work. A computational scientist will focus on optimising the
communication with the interface with a simulator, the internal communication and
the management of the data flux.
To avoid conflict between this type of research, there is a simple API for receiving and
sending data in each component (see examples of activity diagram of the transfer
components in the Supplementary Figure E.16). The only constraint to the neuros-
cientist is to respect the buffering of data in the transformation function by releasing
the input connection before accessing the output connection. Moreover, this simple
API is implemented following the abstract factory pattern. This design pattern is cho-
sen to help the comparison of different implementations of communication and the
integration of new simulators.
The API address partially the constraint of the simplification for adding a new simula-
tor because only one missing part is a component for the interface with the simulator ;
the rest can be reused. The other architecture element for this constraint is separating
files for each simulator and encapsulating the interface in an abstract class following
a composite pattern.
The second constraint is the simplification of adding a new type of data respected
by the imposition of a convention for data management. This convention comprises
four functions and one Boolean for sending and receiving data. The functions are
"ready for transfer data?", "transfer the data", "end of transfer data" and "release the
connection". The Boolean contains information about the connection statement from
the other side (0 :open or 1 :closed).
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E.1.3 Supplementary Note 3 | Detail characterization of
the workflow TVB-NEST

This characterisation is based on the taxonomies proposed in Gomes et al. 2019
[141]. However, this taxonomy is not the best for this workflow because the trans-
formation modules are not considered. Additionally, one of the hypotheses of this
taxonomy is the presence of an orchestrator, which is not the case for the workflow.

E.1.3.1 Non-Functional Requirements

— Fault tolerance : No (NEST does not store the previous state and the communi-
cation spike, which creates the impossibility of coming back in the future)

— Configuration reused : Yes (the configuration of each simulator is independent
and defined during the initialisation)

— Performance : Yes and No (the simulator’s scalability and parallelisation are kept,
but there is no modulation of the integration step or signal extrapolation).

— IP Protection : No protection (NEST and TVB do not use protected models.)
— Parallelism : Yes (the communication use MPI and each simulator is run in

individual processes)
— Distributed : Yes (the workflow keeps the properties of NEST to be simulated in a

distributed way)
— Hierarchy : Yes (the workflow is independent of the model for each simulator

and the transformation function. There is some requirement for the connection
between modules which creates the dependencies.)

— Scalability : No (it is dependent on the simulators)
— Platform independent : Yes and No (it requires some dependence on the platform,

but the usage of docker or singularity can pass it)
— Extensibility : Yes and No (some extra modules such as NESTML or TVB can

create models for each simulator but not a specific extension for the transforma-
tion and all the simulations.)

— Accuracy : No (there are any simulators which provide the errors or the conver-
gence of the simulations.)

— Open Source : Yes (each simulator is open source, and the workflow is also open
source)

E.1.3.2 Simulator Requirements

Information Exposed :
— Frequency of State : No (the frequency of the state for the simulator and the

co-simulation is fixed during the initialisation)
— Frequency of Outputs : No (same as before. Moreover, TVB can have an output

frequency lower than this internal integration frequency)
— Detailed Model : Yes (the code for all the models is available)
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— Nominal Values of Outputs : dependent on the output and the models used
— Nominal Values of State : dependent on the model
— I/O Signal Kind : No (there is not a master algorithm but NEST has some internal

statement about the signal communication between devices and nodes.)
— Time Derivative : Output only
— Jacobian : No
— Discontinuity Indicator : No (the transformation modules handles this part)
— Deadreckoning model : No
— Preferred Step Size : No (the step size is fixed at the beginning)
— Next Step Size : No (there is not an orchestrator for managing the step size and

the step size are fixed)
— Order of Accuracy : No ( there is no extrapolation function)
— I/O Causality : Propagation Delay (the delay is used for the parallelization. Ho-

wever this delay is fixed during the simulation)
— Input Extrapolation : No (there is no extrapolation function)
— State Variables : Values
— Micro-Step Outputs : Yes (TVB and NEST give the output of each micro-step but

it can be modulated)
— Worst Case Execution Time : Yes (the worst case is when the minimum delay is

equal to the micro-time step (see Performance section))
Causality : Causal
Time Constraints :
— Analytic Simulation : False (there does no analytic solution to this co-simulation)
— Scaled Real Time Simulation : Fixed for TVB and NEST
— Rollback Support : No (there is no rollback support for NEST and TVB)

Availability : local

E.1.3.3 Framework Requirements

— Standard : No standard (ad-hock solution)
— Coupling : Input/Output Assignments (Transformation modules between the

two simulators take the role to synchronize the I/O of the simulators)
— Number of Simulation Units : Two simulators
— Domain : Hybrid
— Dynamic structure : No (all the dependency is defined at the beginning)
— Co-simulation Rate : Single (unique size of the synchronization step between

simulators and micro-step is fixed during the simulation)
— Communication Step Size : Fixed
— Strong Coupling Support : None – Explicit Method (the transformation module

contains the information on the coupling of the simulators)
— Results Visualization : It can be in live or postmortem
— Communication Approach : Jacobi (however, the delays allow the separation of

micro-steps without creating errors)
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E.1.3.4 Additional : characterization of the coupling [59, 337]

The previous characterization is focusing more on the technical details but it is
missing the characterization of the transformation modules. For the workflow of
TVB-NEST, the scales are separate in space (micro- and macro-scale). The coupling
between the simulators is a tightly coupled or cyclic coupling using a fixed number of
simulators instance. The workflows allow sequential or parallel execution depending
on the number of initial conditions.
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E.2. Supplementary Table

A1 Co-simulator environment
Simulator NEST [152] TVB [299]
Version 3.0 2.0

Integrator method
4th order Runge-
Kutta-Fehlberg

method
Heun method

Integration step size 0.1 ms 0.1 ms
Synchronization time step 2.0 ms
Simulated time 60.0 s
Analyzed time between 42.5 s and 53.5
Type of I/O interface proxy input proxy region

A2 Co-simulator architecture
Reference model The mouse brain with 104 regions
Simulator NEST TVB
Number of simulated

region
2 102

Number of MPI processes 3 1
Number of thread per pro-

cess
6 1

Number of random seeds 1
Transfer module NEST to TVB TVB to NEST
number of transfer mo-

dule
2 2

Number of MPI processes 2 2
Number of threads or pro-

cesses
6 6

Number of random seeds 1 1

B1 NEST : Model Summary
Topology left and right CA1 connected to TVB
Population 2 by regions : excitatory and inhibitory
Connectivity random convergent connection

Neuron Model
adaptive exponential leaky integrate and fire neu-
rons [37], fixed threshold and fixed absolute re-
fractory time

Synapse Model conductance-based exponential shape
Plasticity __

Input
Independent fixed rate Poisson generator spike
trains to all neurons and spike trains from TVB

Measurement
Voltage, Adaptation Current, Spike Activity and
Model of Local Field Potential signal
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B2 NEST : Topology
regions 2 regions ( left CA1 and right CA1)
number of neurons by regions N=10000
percentage of inhibitory neurons gi nh=20%

B3 NEST : Population by regions
Name Elements Size
E aeif_cond_exp N_e = (1-gi nh)N = 8000
I aeif_cond_exp N_i = gi nhN = 2000
Pext Poisson generator 1

Iext
spike generator (input
from TVB)

N

B4 NEST : Neuron Model
Name aeif

Type
adaptive exponential leaky
integrator [37] and fire with

conductance synapse

subtreshold dynamics

Cm
dVm

d t
=− gL(Vm −EL)+ gL∆T e

Vm−Vth
∆T

− ge (t )(Vm −Eex)− gi (t )(Vm −Ei n)

−W + Ie

τw
dW

d t
=a(Vm −EL)−W

reset condition

For t ( f ) = {t |Vm(t ) >=Vpeak }
— Vm([t ( f ); t ( f ) + tr e f ]) =Vr eset

— W ([t ( f )]) =W ([t ( f )])+b

B5 NEST : Synapse Model
Name cond_exp

Type
post-synaptic conductance in the form of

truncated exponentials

Coupling equation

ge (t ) = ∑
t

( f )
j

w j exp_tr unc(t − t j ,τex) with w j > 0.0

gi (t ) = ∑
t

( f )
j

w j exp_tr unc(t − t j ,τi n) with w j < 0.0

exp_tr unc(t ,τ) = e1− t
τ Heavi si de(t )
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B6 NEST : Excitatory Neuron Model Parameters

case Asynchronous
Irregular
Synchro-

nous

Regular
bursting

Cm
Capacity of the mem-
brane

200.0 pF

tr e f
Duration of refractory
period

5.0 ms

Vr eset
Reset value for Vm after
a spike

-64.5 mV -64.5 mV -47.5 mV

EL Leak reversal potential -64.5 mV -64.5 mV -74.0 mV
gL Leak conductance 10.0 nS
∆T Slope factor 2.0 mV

Vpeak
Spike detection thre-
shold

0.0 mV

a
Subthreshold adapta-
tion

0.0 nS

b
Spike-triggered adapta-
tion

10.0 pA 100.0 pA 50.0 pA

τw
Adaptation time
constant

500.0 ms 500.0 ms 150.0 ms

Vth
Spike initiation thre-
shold

-50.0 mV

Ie
Constant external in-
put current

0.0 pA

Eex
Excitatory reversal po-
tential

0.0 mV

Ei n
Inhibitory reversal po-
tential

-80.0 mV

Vm
Initialization of the vol-
tage membrane

-64.5 mV -64.5 mV -47.5 mV

W
Initialization of adapta-
tion current

0.0 pA
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B7 NEST : Inhibitory Neuron Model Parameters

case Asynchronous
Irregular
Synchro-

nous

Regular
bursting

Cm
Capacity of the mem-
brane

200.0 pF

tr e f
Duration of refractory
period

5.0 ms

Vr eset
Reset value for Vm after
a spike

-65.0 mV -65.0 mV -75.0 mV

EL Leak reversal potential -65.0 mV -65.0 mV -75.0 mV
gL Leak conductance 10.0 nS
∆T Slope factor 0.5 ms

Vpeak
Spike detection thre-
shold

0.0 mV

a
Subthreshold adapta-
tion

0.0 nS

b
Spike-triggered adapta-
tion

0.0 pA

τw
Adaptation time
constant

1.0 ms

Vth
Spike initiation thre-
shold

-50.0 mV

Ie
Constant external in-
put current

0.0 pA

Eex
Excitatory reversal po-
tential

0.0 mV

Ei n
Inhibitory reversal po-
tential

-80.0 mV

Vm
Initialization of the vol-
tage membrane

-65.0 mV -65.0 mV -75.0 mV

W
Initialization of adapta-
tion current

0.0 pA
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B8 NEST : Connectivity between regions
parameter synapses

τex
Rise time of excitatory
synaptic conductance

5.0ms

τi n
Rise time of inhibitory
synaptic conductance

5.0ms

Name Source Target Weights Pattern

EE_global E E I 1.0

Fixed total number of
connections from one to
another region. The number
of synapses to another region
is A : 1150000, IS : 3000000
and RB : 800000. The delay
(161.6 ms) is defined by the
multiplication of velocity
(3.0 mm/ms) and distance
between regions ( 53.855
mm). See for more details in
the section TVB : connecti-
vity because delays and the
weights are extracted from
the connectivity of TVB.
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B9 NEST : Connectivity inside the regions
Name Source Target Weights Pattern

EE E E 1.0

Fixed number of input sy-
napses (Ne ∗pconnect : A and
SI 400 = 8000∗ 0.05 and RB
40 = 8000 ∗ 0.005). Neuron
can connect to itself and can
have multiple connections
with another neuron.

EI E I 1.0

Fixed number of input sy-
napses (Ne ∗pconnect : A and
SI 400 = 8000∗ 0.05 and RB
40 = 8000 ∗ 0.005). Neuron
can have multiple connec-
tions with another neuron.

IE I E g

Fixed number of input sy-
napses (Ni ∗pconnect : A and
SI 100 = 2000∗ 0.05 and RB
10 = 2000 ∗ 0.005). Neuron
can have multiple connec-
tions with another neuron.
The weight equals 10.0 for A,
5.0 for SI and 10.0 for RB.

II I I g

Fixed number of input sy-
napses (Ni ∗pconnect : A and
SI 100 = 2000∗ 0.05 and RB
10 = 2000 ∗ 0.005). Neuron
can connect to itself and can
have multiple connections
with another neuron. The
weight equals 10.0 for A, 5.0
for SI and 10.0 for RB.
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B10 NEST : Input
Poisson generator

equation p(n) = λn

n!
exp(−λ)

implementation al-
gorithm

Ahrens and Dieter 1982

case A IS RB
excitatory firing rate

λex
1.0 0.0 0.0

inhibitory firing rate
λi n

0.0 0.0 0.0

weight connection 1.0 1.0 1.0
Spike generator

Proxy for the input of the region simulated with TVB. (see
the section transformation TVB to NEST)
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B11 NEST : Measurement (part 1)

state variable
Voltage membrane,
adaptation current

precision 0.1

number of
recorded
neurons

10 excitatory and
10 inhibitory

spike time precision 0.1 ms
number of
recorded
neurons

all

spike activities

raster plot precision 0.1 ms
histogram of

instantaneous firing
rate

bins 0.1ms

simple moving
average

windows size T (20ms)

spectogram

method Welch’s method
sampling

frequencies
104Hz

window shape Hann window
length of each

segment
104

length of the
FFT

104

number of
points

overlapping
5.103

detrend
removing the

mean
sides only real part
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B11 NEST : Measurement (part 2)

Micro

software HybridLFPy [148]

-electrodes :

number of MPI 2
number random seed 2

Local Field

number of segment by
neuron

defined by the method
lambda100 of Neuron

Potential

resolution 0.1 ms

soma position

random in a cylinder of radius
2000 mm and height of 100mm

with a minimal distance of
1mm. The centre of the cylinder

is (0,-400).
excitatory neurons

morphology
pyramidal cell of Shuman 2020
[322] without biophysics and

synapses mechanisms
initial membrane

potential
Vm (-64.5 mV or -47.5 mV)

axial resistance 150.0 Ohm
membrane
capacitance

Cm ( 200pF )

passive mechanism yes
passive reversal

potential
EL (-64.5 mV or -74.0 mV))

passive conductance gL (10 nS)
inhibitory neurons

morphology
basket cell of Shuman 2020

[322] without biophysics and
synapses mechanisms

initial membrane
potential

Vm (-64.5 mV or -75.0 mV)

axial resistance 150.0 Ohm
membrane
capacitance

Cm ( 200pF )

passive mechanism yes
passive reversal

potential
EL (-65.0 mV or -75.0 mV))

passive conductance gL (10 nS)
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B11 NEST : Measurement(part 3)

Micro

connectivity

-electrodes :

layers 2 : [[300,-100],[-100,-600]]

Local Field

synapse shape truncated exponential

Potential

delay and weight
distribution

homogeneous values by population

excitatory connection
by layers and
populations

Ne ∗pconnect ∗0.5 0
Ne ∗pconnect ∗0.5 Ni ∗pconnect

excitatory weight 1.0
excitatory delay dt (0.1 ms)

inhibitory connection
by layers and
populations

0 0
Ne ∗pconnect Ni ∗pconnect

inhibitory weight g ( 5.0 or 10.0)
inhibitory delay dt (0.1 ms)

electrodes
extracellular
conductivity

0.3 S

electrode positions
and contacts surface

normal

positions normal
x y z x y z

1273 1273 1273 1 1 0
1273 -1273 -1273 1 1 0
-1273 -1273 15 1 1 0

-15 15 -15 1 1 0
1288 1258 1288 1 -1 0
1258 1288 1258 1 -1 0
1288 1258 -1800 1 -1 0
-1800 -1800 -1800 1 -1 0
-385 -385 -415 1 0 0
-415 -385 -385 1 0 0
-415 -415 -385 1 0 0
-385 -415 -415 1 0 0

contact shape circle of radius 20 mm
number of discrete

point for compute the
average potential

20

assumption method soma as point
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C1 TVB : Model Summary
Neural Mass model Mean Adaptive Exponential
Connectivity Mouse connectome with 104 regions
Coupling linear coupling
stimulus __

Monitors
ECoG (Electrocorticography) and state va-
riable of the mean-field

C2 TVB : Coupling
Name Linear
Type Linear coupling

equations νextk = a ∗
(

j=1∑
104

uk jνe j (t −τk j )

)
+b

where uk j are the elements of the weights
matrix, τk j are the elements of the delay
matrix and νe j are the mean excitatory

firing rate of the regions j.
parameters a = 1.0 and b = 0.0

C3 TVB : Connectivity
Connectivity is extracted from tracer data

as explained by the paper TVBM [240]
number of region 104
tract lengths maximum : 115.46 and mean : 53.58
speed 3 ms

weights
The weights are normalized such as the
sum of the input weight to one region

equals 1. (maximum : 0.73 and mean : 0.02)

centers
average center of mouse brain : [57., 74.97,

42.53]

orientation
the orientation is defined by a vector from
the average centre of a mouse brain to the

centre of the regions
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C3 TVB : Connectivity
region the region names are extracted from Allen Mouse Brain

name
Connectivity Atlas (17/01/2017)[263]

Right Primary motor area, Right Secondary motor area, Right Primary
somatosensory area nose, Right Primary somatosensory area barrel field,

Right Primary somatosensory area lower limb, Right Primary
somatosensory area mouth, Right Primary somatosensory area upper
limb, Right Supplemental somatosensory area, Right Gustatory areas,
Right Visceral area, Right Dorsal auditory area, Right Primary auditory

area, Right Ventral auditory area, Right Primary visual area, Right Anterior
cingulate area dorsal part, Right Anterior cingulate area ventral part,

Right Agranular insular area dorsal part, Right Retrosplenial area dorsal
part, Right Retrosplenial area ventral part, Right Temporal association
areas, Right Perirhinal area, Right Ectorhinal area, Right Main olfactory

bulb, Right Anterior olfactory nucleus, Right Piriform area, Right Cortical
amygdalar area posterior part, Right Field CA1, Right Field CA3, Right

Dentate gyrus, Right Entorhinal area lateral part, Right Entorhinal area
medial part dorsal zone, Right Subiculum, Right Caudoputamen*, Right

Nucleus accumbens*, Right Olfactory tubercle*, Right Substantia
innominata*, Right Lateral hypothalamic area*, Right Superior colliculus

sensory related*, Right Inferior colliculus*, Right Midbrain reticular
nucleus*, Right Superior colliculus motor related*, Right Periaqueductal

gray*, Right Pontine reticular nucleus caudal part*, Right Pontine
reticular nucleus*, Right Intermediate reticular nucleus*, Right Central
lobule*, Right Culmen*, Right Simple lobule*, Right Ansiform lobule*,

Right Paramedian lobule*, Right Copula pyramidis*, Right Paraflocculus*,
Left Primary motor area, Left Secondary motor area, Left Primary

somatosensory area nose, Left Primary somatosensory area barrel field,
Left Primary somatosensory area lower limb, Left Primary somatosensory

area mouth, Left Primary somatosensory area upper limb, Left
Supplemental somatosensory area, Left Gustatory areas, Left Visceral

area, Left Dorsal auditory area, Left Primary auditory area, Left Ventral
auditory area, Left Primary visual area, Left Anterior cingulate area dorsal
part, Left Anterior cingulate area ventral part, Left Agranular insular area

dorsal part, Left Retrosplenial area dorsal part, Left Retrosplenial area
ventral part, Left Temporal association areas, Left Perirhinal area, Left

Ectorhinal area, Left Main olfactory bulb, Left Anterior olfactory nucleus,
Left Piriform area, Left Cortical amygdalar area posterior part, Left Field
CA1, Left Field CA3, Left Dentate gyrus, Left Entorhinal area lateral part,

Left Entorhinal area medial part dorsal zone, Left Subiculum, Left
Caudoputamen*, Left Nucleus accumbens*, Left Olfactory tubercle*, Left
Substantia innominata*, Left Lateral hypothalamic area*, Left Superior

colliculus sensory related*, Left Inferior colliculus*, Left Midbrain
reticular nucleus*, Left Superior colliculus motor related*, Left

Periaqueductal gray*, Left Pontine reticular nucleus caudal part*, Left
Pontine reticular nucleus*, Left Intermediate reticular nucleus*, Left

Central lobule*, Left Culmen*, Left Simple lobule*, Left Ansiform lobule*,
Left Paramedian lobule*, Left Copula pyramidis*, Left Paraflocculus*

cortical all the region name ending by a ’*’ are not cortical regions
region
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C4 TVB : Neural Mass Model (part 1)
Name Mean Ad Ex [356]

Type
Neural Mass model of a network of adaptive exponential

integrate and fire excitatory and inhibitory neurons of
second statistical order with adaptation

equa-
tion

T
∂νe

∂t
=(Fe −νe )+ 1

2
cee

∂2Fe

∂νe∂νe

+ 1

2
cei

∂2Fe

∂νe∂νi
+ 1

2
ci e

∂2Fe

∂νi∂νe
+ 1

2
ci i

∂2Fe

∂νi∂νi

T
∂νi

∂t
=(Fi −νi )+ 1

2
cee

∂2Fi

∂νe∂νe

+ 1

2
cei

∂2Fi

∂νe∂νi
+ 1

2
ci e

∂2Fi

∂νi∂νe
+ 1

2
ci i

∂2Fi

∂νi∂νi

T
∂cee

∂t
=(Fe −νe ) (Fe −νe )+ cee

∂Fe

∂νe
+ cee

∂Fe

∂νe
+ cei

∂Fi

∂νe

+ ci e
∂Fi

∂νe
−2cee + Fe (1/T −Fe )

Ne

T
∂cei

∂t
=(Fe −νe ) (Fi −νi )+ cee

∂Fe

∂νe

+ cei
∂Fe

∂νi
+ cei

∂Fi

∂νe
+ ci i

∂Fi

∂νi
−2cei

T
∂ci e

∂t
=(Fi −νi ) (Fe −νe )+ ci e

∂Fe

∂νi

+ cee
∂Fe

∂νe
+ ci i

∂Fi

∂νi
+ ci e

∂Fi

∂νe
−2ci e

T
∂ci i

∂t
=(Fi −νi ) (Fi −νi )+ ci e

∂Fe

∂νi
+ cei

∂Fe

∂νi
+ ci i

∂Fi

∂νi

+ ci i
∂Fi

∂νi
−2ci i + Fi (1/T −Fi )

Ni

τWe

∂We

∂t
=−We +beνe +ae (µV (νe ,νi ,νext ,We )−ELe )

τWi

∂Wi

∂t
=−Wi +biνi +ai (µV (νe ,νi ,νext ,Wi )−ELi )
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C4 TVB : Neural Mass Model (part 2)
noise Ornstein-Uhlenbeck process :

equa-
tion

τou
dout

d t = (µ−out )+σdWt

with Wt is a Wiener process

transfer
function

Fe =F ((νe +1e −6)+wσout ,νext ,νi ,We )

Fi =F ((νe +1e −6)+wσout ,νext ,νi ,Wi )

F = 1

2τV
·Er f c(

V e f f
thr e −µVp

2σV
)

V e f f
thr e (µV ,σV ,τN

V =τV
gL

C m
) = P ′

0 +
∑

x∈{µV ,σV ,τN
V }

Px ·
(

x −x0

δx0

)

+ ∑
x,y∈{µV ,σV ,τN

V }2

Px y ·
(

x −x0

δx0

) (
y − y0

δy0

)
µG (νe ,νext ,νi ) = ((νe Ke +νext Kext )τeQe )+ (νi Kiτi Qi )+ gL

µVs (νe ,νext ,νi , w,µG ) = ((νe Ke +νext Kext )τeQe )Ee

µG

+ (νi Kiτi Qi )Ei + gLELs −w

µG

σV (µV ,µG ) =

√√√√√ ∑
s∈{e,i }

Ksνs

(
Qs
µG

(Es −µV )τs

)2

2Cm
µG

+τs

τV (µV ,µG ) =
∑

s∈{e,i } Ksνs

(
Qs
µG

(Es −µV )τs

)2

∑
s∈{ex,i n} Ksνs

(
Qs
µG

(Es−µV )τs

)2

2 Cm
µG

+τs
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C5 TVB : Neural Mass Model Parameters(part 1)

case Asynchronous
Irregular
Synchro-

nize

Regular
bursting

T
time resolution of the mean-
field

20.0ms

Cm Capacity of the membrane 200.0 pF

ELe
Leak reversal potential
excitatory(EL)

-64.5 mV -64.5 mV -74.0 mV

ELi
Leak reversal potential
inhibitory(EL)

-65.0 mV -65.0 mV -75.0 mV

gL Leak conductance 10.0 nS

ae
Subthreshold adaptation of ex-
citatory neurons(a)

0.0 nS

be
Spike-triggered adaptation of
excitatory neurons(b)

10.0 pA 100.0 pA 50.0 pA

τWe

Adaptation time constant of
excitatory neurons(τw )

500.0 ms 500.0 ms 150.0 ms

ai
Subthreshold adaptation of in-
hibitory neurons(a)

0.0 nS

bi
Spike-triggered adaptation in-
hibitory neurons(b)

0.0 pA

τWi

Adaptation time constant of
inhibitory neurons(τw )

1.0 ms

Ee
Excitatory reversal
potential(Eex)

0.0 mV

τe
Rise time of excitatory synap-
tic conductance(τex)

5.0 ms

Qe
excitatory quantal conduc-
tance

1.0 nS

Ei
Inhibitory reversal
potential(Ei n)

-80.0 mV

τi
Rise time of inhibitory synap-
tic conductance(τi n)

5.0 ms

Qi
inhibitory quantal conduc-
tance

10.0 nS 5.0 nS 10.0 nS

pconnectprobability of connection 0.05 0.05 0.005
Ntot Number of total neurons 10000

pi
percentage of inhibitory neu-
rons

0.2
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C5 TVB : Neural Mass Model Parameters(part 2)

Ne
Number of excitatory
neurons

Ntot (1−pi ) =8000

Ni
Number of inhibitory
neurons

Ntot pi =2000

Ke

mean number of input
excitatory synapses :
Ne pconnect

400 400 40

Ki

mean number of input
inhibitory synapses :
Ni pconnect

100 100 10

K exte
number of external ex-
citatory synapse

115 300 80

Pe

second order polyno-
mial of the phenome-
nological threshold for
excitatory neurons in
mV

P0 PµV PσV PτN
V

-0.0498 0.00506 -0.025 0.0014
Pµ2

V
Pσ2

V
P(τN

V )2

-0.00041 0.0105 -0.036
PµV σV PµV τ

N
V

PσV τ
N
V

0.0074 -0.0012 -0.0407

Pi

second order polyno-
mial of the phenome-
nological threshold for
inhibitory neurons in
mV

P0 PµV PσV PτN
V

-0.0514 0.004 -0.0083 0.0002
Pµ2

V
Pσ2

V
P(τN

V )2

-0.0005 0.0014 -0.014
PµV σV PµV τ

N
V

PσV τ
N
V

0.0045 0.0028 -0.00153
νext external input see coupling section
wσ weight of the noise 0.0002 0.0006 0.002
σ variation of the noise 0.2
µ mean of the noise 0.0
τou mean of the noise 20.0

initial condition
(random between
maximum and mini-
mum)

µE (kH z) : (0.,0.) µi (kH z) : (0.,0.)
cee : (0.,0.) cei : (0.,0.)
ci i : (0.,0.)

We (p A) : (0.,5.) Wi (p A) : (0.,0.)
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C6 TVB : Monitor

state variable

proxy node node
Only the mean firing
rate of the excitatory
population because it
is the coupling va-
riable and it s extrac-
ted from NEST simu-
lation

mean firing rate of excitatory and inhibitory
population, the variation of excitatory and
inhibitory firing rate, the co-variation bet-
ween excitatory and inhibitory firing rate,
mean adaptive current of excitatory and in-
hibitory firing rate

precision dt (0.1ms)

SEEG

equation ΨECoG (channel , t ) = P.νe +noi se
where P is the gain matrix and N is the mean
firing rate of excitatory population
Pi j = scal i ng _ f actor ∗
r eg i on_vol ume j /||ri − r j || where ri is
the position of the contact point of the
channel and r j is the centre of region j.

contact position
left hemisphere

x y z
40.0 80.0 79.5
20.0 80.0 72.0
30.0 70.0 76.5
30.0 90.0 75.5
22.5 72.5 73.0
22.5 87.5 72.5
37.5 72.5 78.5
37.5 87.5 78.5

right hemisphere

94.0 80.0 69.
74.0 80.0 78.5
84.0 70.0 74.5
84.0 90.0 74.0
76.5 72.5 77.5
76.5 87.5 77.5
91.5 72.5 70.5
91.5 87.5 70.

scal i ng _ f actor 1.0

r eg i on_vol ume
The volume is extracted from the volume
mapping of Allen Mouse Brain Connectivity
Atlas
mean : 3712.29 max : 16245.0 min : 957.0
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D Transformation NEST to TVB : model
Name SMFR : sliding mean firing rate

Type
sliding mean over the histogram of the instanta-
neous firing rate

Input
spike trains of excitatory neurons from one brain
region for synchronized time (2ms)

Output
mean firing rate of the excitatory population of a
brain region for synchronized time (2ms)

equation ∀t ≥ T,SMFR(t) =

t∑
s=t−T

Ne∑
n=1

spi ke(n, s)

Ne T
∗

103 (KHz)
where spi ke(n, s) =

1 if neuron n create spike at time s

with a presicion of dt

0 else
parameters size of the windows T : 20.0 ms ( same as TVB)
parameters number of neurons Ne : 8000 ( same as NEST)

parameters
precision of the integration d t : 0.1 ms (same as
TVB and NEST)

initialization
The transfer module does not have initialized be-
cause TVB used its initialization for starting the
communication.

247



E. Supplementary material of chapter 3 – E.2. Supplementary Table

E Transformation TVB to NEST : model
Name MIP
Type Multiple Interaction Process [209]

Input
incoming excitatory firing rate of a brain region for synchronized
time (2ms)

Output
spike trains to individual neurons with a correlation of p for
synchronized time (2ms)

equation reference spike train :
xr e f (t ) = Inhomog enousPoi ssonPr ocess((νi nput (t )nbs ynapse+
1e −12)/p)
input individual spike train to the neuron n :
xn(t ) = xr e f B(si ze(xr e f ), p)

where νi nput
mean external excitatory firing rate computed by TVB for the
NEST population.

nbs ynapse number of external input synapse (A :115, IS :300, RB :80)
p percentage of shared neurons (A :0.01, IS :0.1, RB :0.01)
B binomial law

The imple-
mentation of
the Inhomoge-
nous Poisson
Process

Dedicated function from the python library elephant (version
0.9), which : 1) generates spike trains with homogeneous Poisson
generator for the highest rate ; 2) removes some spikes for having
variation of rate based on the input rates. The homogeneous
Poisson generator computes the time interval between each
spike using the exponential random generator of numpy.

initializa-
tion

The initial rate sent to TVB are zeros during the first ts ynch (2ms).

TABLEAU E.1. – Parameter for co-simulation

248



E. Supplementary material of chapter 3 – E.3. Supplementary Figures

E.3. Supplementary Figures

FIGURE E.1. – Zoom on 1s for the spiking neural network with regular bursting state
This figure is a zoom of the figure 3.3 between 43s and 44s. top-left Example of time
series from 10 adaptive exponential leaky and integrator neurons. The red lines are
excitatory and the blue curve are inhibitory neurons. The mean excitatory time series
is shown with a thick red line and the inhibitory time series is shown with a thick blue
line. middle-left The adaptation currents of 10 neurons are shown. The thick line is
the mean adaptive currents. bottom-left The figure shown local field potential from
the 12 sites of in the middle line of the polytrode. The local field potential is computed
from the spike trains of all neurons by the software HybridLFPY [148]. top-right The
figure shows spike trains of 10000 neurons for 1s. bottom-right The figure shows
respectively the excitatory and inhibitory instantaneous firing rate of the population
in panel middle-right in red and blue. bottom Spectrogram and power spectrum
example of the instantaneous firing rate for 1s.
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FIGURE E.2. – Mouse Brain activity for Asynchronous Irregular
For the state of the Asynchronous Irregular, an overview of the mean firing rates
of excitatory, in red, and inhibitory, in blue, populations from the model of Mean
Adaptive Exponential for all mouse brain regions. The two black curves are the mean
firing rate of the two populations of excitatory neurons simulated with NEST [152].
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FIGURE E.3. – Mouse Brain activity for Synchronize Irregular
For the state of the Synchronize Irregular, an overview of the mean firing rates of exci-
tatory, in red, and inhibitory, in blue, populations from the model of Mean Adaptive
Exponential for all mouse brain regions. The two black curves are the mean firing rate
of the two populations of excitatory neurons simulated with NEST [152].
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FIGURE E.4. – Mouse Brain activity for Regular Bursting
For the state of the Regular Bursting, an overview of the mean firing rates of excitatory,
in red, and inhibitory, in blue, populations from the model of Mean Adaptive Expo-
nential for all mouse brain regions. The two black curves are the mean firing rate of
the two populations of excitatory neurons simulated with NEST [152].
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loop of simulation

Initialisation
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of communications
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Wait sending 
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of communications

Initialisation
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start loop
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configure
simulator
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monitor
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Create logger
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start loop
transforming data

Create loggerCreate loggerCreate logger

Transformation
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connections
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start loop
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with initial value

start loop
receiving data
(initial values)

Consumer of
TVB data
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NEST data

Create loggerCreate loggerCreate logger

Create logger

Create logger

Transformation
Spike to rate

Create Processes

Read parameters 
fi le

Read parameters 
fi le

Initialisation
of communications

create device
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create connection
between population

create connections
in the population

create population
of neurons

Create folders
for simulation

Creation of file 
with parameters

Link parameters

Start Modules

Launcher

Creation of files
with the Ids of
mpi devices

Start loop for 
simulation

Read file
MPI port file
and connectRead file

MPI port file
and connect

Creation of file 
with MPI port
for receiving

Consumer of
NEST data

Producer of
TVB data

configure NEST
kernel

Transfer
TVB to NEST

TVBTransfer
NEST to TVB

NEST

send spiketrains
of the run

Send rate

disconnection

end
simulation

disconnection disconnection disconnection

end
simulation

receive rate

receive spikes

send spikes

transform
spikes to rates

receive spikes
and store them

Simulate

receive rates

end end

rates

rates .

endendendend

spikes

spikes
spikes

Simulate

end

end end end

.      rates

fill buffer

spikes

spikes
spikes

fill buffer       .

rates       .

FIGURE E.5. – Detail sequence diagram of the co-simulation
This figure represents the interaction among the different modules during the co-
simulation and the different exchanged data. The co-simulation is separated in 3
steps : initialisation and configuration, simulation and termination.
The colour code of the boxes :

— green for the creation of a logger, one by components and modules
— orange for access to file systems (the creation of a folder or a file, the reading of

files, ...) and the start of the simulation with initial condition.
— yellow for initialization and configuration of modules and components
— magenta for MPI waiting connections
— white for the simulation step and the name of modules or components
— red for the termination of the simulation.
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Open connection

Open connection

Wait MPI connection

Wait MPI connection

Create MPI portCreate MPI port

Wait output port fi le

Wait input port file 

create file with 
list of spike detectors

create file with 
list of spike generators

Clean

Delete Files 
of configuration

Close Port

DisconnectionDisconnectDisconnect

Delete Files 
of configuration

Close Port

Disconnection

             For each run 

Run: post_run

Run:

Recorder backendInput backend

Run: pre_run

Prepare

Connect to MPI Port

Read File 

Create file with
MPI Port description

Create file with
MPI port description

NEST outputNESTNEST input

BarrierBarrier

      ONLY : if size list is different to 0

size of data by device and the total shape
(size_list+1,INT,ANY_source,ids[0])

list_ of id
(size_list,INT,0,0)

t rue
(1,CXX_BOOL,0,1)

data [id_dectector,id_neurons, times]
(sahepe,DOUBLE,0,0)

shape
(1,INT,0,0)

data 
(total shape,DOUBLE,Previous_source,id[0])

true 
(1,CXX_BOOL,0,0)

t rue
(1,CXX_BOOL,0,2)t rue

(1,CXX_BOOL,0,2)

t rue
(1,CXX_BOOL,0,1)

t rue
(1,CXX_BOOL,0,1)

t rue
(1,CXX_BOOL,0,0)

size of the list of id
(1,INT,0,0)

Read File 

connection connection
Connect to MPI Port

FIGURE E.6. – Sequence diagram of the communication protocol with NEST
The communication with NEST [152] is separated in 3 steps : creation of the MPI
connection, simulation and termination.
The colour code of the boxes :

— orange for access to file systems (the creation of files, the reading of files, ...).
— magenta for management of MPI port
— white for the name of the modules or components

254



E. Supplementary material of chapter 3 – E.3. Supplementary Figures

Wait for description of 
MPI port files

Create file with ids
of mpi recording devices

Create file with ids
of mpi stimulating devices

Wrapper of NEST

NEST Clean
1) Send end of simulation 
2) MPI barrier
3) Disconnect

NEST Run
Input backend :

pre_run  : Ask update data for 
               all the input devices
post_run : Send the end of the run
Record backend :

pre_run  :  Send beggining of simulation
post_run :  Send data/spikes of the run

NEST Prepare
1) Read all the file with the port description
2) Connect with MPI to all the different port

count = 0

count + 1

configure logger

Initialise connection 
between neuron population

Initialise population of neurons

Initialise NEST

True

False

count > end

FIGURE E.7. – State diagram of NEST wrapper
The diagram describes all the different states of the NEST wrapper during the co-
simulation. The beginning is the set-up of the network (the creation of neurons,
their connection and the creation of devices). After, the loop of simulation and the
termination.
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FIGURE E.8. – State diagram of transfer components for interaction with NEST
The diagram describes all the state of the component of the transfer module which
communicates with NEST. The beginning is the configuration of itself and the creation
of the MPI connection. Once the MPI connection is made, there is the loop of the
simulation. The centre of the simulation loop is the value of the tag receive by the
component to identify if NEST is ready to receive or send messages. If this tag equals
2, the components go in the sequence for the termination phase.

256



E. Supplementary material of chapter 3 – E.3. Supplementary Figures

Open connectionOpen connection

Wait port files 

Wait MPI connection

Create file with
MPI port description

Create MPI port Create MPI port

Create file with
MPI Port description

Wait MPI connection

Delete File 
of configuration

Close Port

Disconnection

Delete File 
of configuration

Close Port

Disconnection

Close Port

Disconnect

             For each run 

Connect to MPI Port

Read port files 

TVB outputTVBTVB input

Barrier

Barrier time starting and ending
(2,DOUBLE,source,1)

send True
(1,BOOLEAN,0,0)

send True
(1,BOOLEAN,0,1)

data
(shape,DOUBLE,source,0)

shape data
(1,INT,source,0)

time starting and ending
(2,DOUBLE,source,0)

data
(shape,DOUBLE,source,0)

shape data
(1,INT,source,0)

send True
(1,BOOL,0,0)

time starting and ending
(2,DOUBLE,source,0)

send True 
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FIGURE E.9. – Sequence diagram of the communication protocol
The communication with TVB [299] is separated into 3 steps : creation of the MPI
connection, simulation and termination.
The colour code of the boxes :

— orange for access to file systems (create files, read files, ...).
— magenta for management of MPI port
— white for the name of the modules or components
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FIGURE E.10. – State diagram of wrapper of TVB modules
The diagram describe all the different state of the TVB wrapper during the co-
simulation. The beginning is the set-up of the network (the creation of neurons,
their connection and the creation of devices). After, the loop of simulation and the
termination.
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FIGURE E.11. – State diagram of transfer components
The diagram describes all the state of the component of the transfer module which
communicates with TVB. The beginning is the configuration of itself and the creation
of the MPI connection. Once the MPI connection is made, there is the loop of the
simulation. The centre of the simulation loop is the value of the tag receive by the
component to identify if NEST is ready to receive or send messages. If this tag equals
1, the components go in the sequence for the termination phase.
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Nest 
I/O

TVB
I/O

Transformation
functions

Internal communication
launcher

Simulator I/O

FIGURE E.12. – File organisation of the transformer module
The file of transfer modules are organised following the modularity of the module.
The folder internal communication contains all the functions of the communication
between components of the modules. The launcher regroups the files used to start the
modules of transformation between specific simulators. The Simulator I/O contains
the function for the interface of each simulator. The figure shows that interface for
each simulator (TVB and NEST) is separated and independent. Transformation func-
tions is a folder which contains the abstract class for the transformations and the
implementation of specific transformation.
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FIGURE E.13. – State diagram of transfer components which transform data from one
scale to another

The diagram describes all the state of the transfer components. The beginning is the
configuration of itself. The component is waiting to access to the data from one buffer
for the transformation. After accessing to the data, it transforms them and awaits the
access for writing in a second buffer. When it receives the termination from one side
or the other, it goes in the sequence of termination.
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FIGURE E.14. – Structure diagram of the two transfer modules with the description of
each component

Each component is based on a class. The diagram gives a short description of each
class and their contents.
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«ThreadCommunicationn»
Package::communication

Class for using thread for the internal communication
-buffer_read_data: variable contains reading buffer
-status_read: status of read buffer and it can contain 
�the dimension of the data
-lock_read: lock for write in the status
-databuffer: buffer where to right
-buffer_write_data: variable for shared buffer
-status_write: status of buffer and contains the dimension of the data
-lock_write: lock for write in the status
-shape_buffer: dimension of the data

Responsibilities
Thread implementation of exchange of data between 3 threads 

«MPICommunication»
Package::communication

Class for using MPI for the internal communication
-rank
Usage of shared memory
-win: it's a MPI Window for shared buffer if it's required
-buffer_r_w: rank for the shared memory
-request_send_size_buffer: writer of the buffer
-request_read_buffer: read of the buffer variable for rate
-sender_rank: sender rank
-request_send_done: request for ending of send data
-receiver_rank: receiver rank
-request_receive_time: request for time
-request_receive_rate: requets for rate
-request_read_done: request for ending of receive data
_shared_mem_buffer(buffer_r_w, comm=MPI.COMM_WORLD):
�Create shared memory buffer
Responsibilities
MPI implementation of exchange of data between 3 MPI processes 

CommunicationInternAbstract
Package::communication

Abstract class for internal communication
Limitation of spike and rate exchange

-logger: logger for the class
1) for spike trains exchanges 
-databuffer: shared buffer for spike exchange
-shape_buffer: shape of the buffer
-send_spike_exit: boolean to identify the end of the simulation
2) for rate and time exchange
-get_time_rate_exit: boolean to identify the end from getting function
-send_time_rate_exit: boolean to identify the end from sending function

Abstract classes
finalise: Procedure before finalise MPI
1) for spike trains exchanges 
-send_spikes_ready: wait until it's ready to use the buffer
-send_spikes: buffer ready to use 
-send_spikes_trains(spike_trains): Write spike trains in buffer and send them
-send_spikes_end: close internal connection for sending spikes
-get_spikes: wait the sender to be ready and return the spikes trains
-get_spikes_ready: wait the buffer is ready
-get_spikes_release: realse the buffer
-get_spikes_end: close internal connection for getting spikes
2) for rate and time exchange
-get_time_rate: wait that the data are available and return them when it's ready
-get_time_rate_release: end the read of the data
-get_time_rate_end: close the connection for receiving data
-send_time_rate: send time and rate
-send_time_rate_end: close the connection for sending data
Responsibilities
-- all function for exchange data between processes in the transformer function

«ProducerDataNEST»
Package::SimulatorIO

(see instance)

«ConsumerTVBData»
Package::SimulatorIO

(see instance)

MPICommunicationExtern
Package::communication

Abstract class for MPI communication with a simulator
Management of MPI communication for exchange of data with simulator

-logger: logger for the class
-name: name of the module
-ports: array of MPI port
-path_ports: path for the port file
-communication_internal: CommunicationInterne between instance
run(path_connection): main function
create_connection(paths, info=MPI.INFO_NULL, comm=MPI.COMM_SELF, root_node=0):
                  Create the port the get external connection
close_connection(): close connection port
finalise(): finalise MPI
Abstract classes
simulation_time(): Connection with simulator
Responsibilities
-- running the process:
�1) creation of the connection if it's necessary
�2) simulation time / communication with the simulator during the simulation
�3) close the connection if it's necessary
�4) finalise the MPI communication

«TransformerRateSpike»
Package::Transform

(see instance)

«ProducerTVBData»
Package::SimulatorIO

(see instance)

«TransformerSpikeRate»
Package::Transform

(see instance)

«ConsumerNESTData»
Package::SimulatorIO

(see instance)

communication_internal

1
*

FIGURE E.15. – Class diagram of the transfer modules.
The description of the class on the right part is described in the supplementary figure
E.14. All this class inherit from an abstract class which manage MPI communication.
This abstract class manage the MPI connection and has an internal communicator.
This internal communicator is an abstract class for the communication between
the transfer components. This internal communication can be melting process or
multithreading as the diagram shows.
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end?

status[0] = -2

read buffer

Wait access to
internal buffer
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initialisation of status
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wri ter

create shared buffer
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FIGURE E.16. – Communication between components in the transfer module
As described in the supplementary figure E.15, the internal communication has 2 im-
plementations. The panel a is a sequence diagram of the communication of spikes and
rates using MPI communication. The panel b is a state diagram of the management of
a shared buffer in the case of multithreading communication for transfer spike data.
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FIGURE E.17. – Details of the performance with the increase of neurons
Performance is obtained for 1 second of simulated time on a computer (see Materials
and Methods for more details). The reference implementation use 1 MPI process,
6 virtual processes/threads, 2.0 ms to synchronize time between simulator for the
simulation of 20000 neurons. Simulation time depending on the number of neurons
simulated with NEST. a The wall clock time of the simulator depending on the number
of neurons. The total time of the co-simulation is represented in yellow. The "simula-
tion", "IO" and "wait" times of NEST are represented in red surface with respectively
hatches with big circles, small circles and points. The "simulation" and "IO" times
of TVB are represented in the blue surface with respectively hatches horizontal lines
and oblique lines. b The wall clock time for the co-simulation (yellow curve), NEST
(red curves) and TVB (blue curves) by the total wall clock time. The solid, dashed and
dashed dotted curves are associated with "simulation", "IO" and "wait" time of NEST.
The solid and dashed line is associate to "simulation" and "IO" time of TVB. c The
different timer for NEST simulator. Each contribution is reported as red curve and for
increasing numbers of neurons. The solid, dashed and dashed dotted curves represent
"simulation", "IO" and "wait" time of NEST respectively.
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FIGURE E.18. – Details of the performance with the increase of synchronize time
Performance is obtained for 1 second of simulated time on a computer (see Materials
and Methods for more details). The reference implementation use 1 MPI process,
6 virtual processes/threads, 2.0 ms to synchronize time between simulator for the
simulation of 20000 neurons. Simulation time depending on the synchronized time
between NEST and TVB. a The wall clock time of the simulator depending on time of
synchronization between the two simulators. The total time of the co-simulation is
represented in yellow. The "simulation", "IO" and "wait" times of NEST are represented
in red surface with respectively hatches with big circles, small circles and points.
The "simulation" and "IO" times of TVB are represented in the blue surface with
respectively hatches horizontal lines and oblique lines. b The wall clock time for
the co-simulation (yellow curve), NEST (red curves) and TVB (blue curves) by the
total wall clock time. The solid, dashed and dashed dotted curves are associated with
"simulation", "IO" and "wait" time of NEST. The solid and dashed line is associate to
"simulation" and "IO" time of TVB. c The different timer for NEST simulator. Each
contribution is reported as red curve and for increasing numbers of neurons. The
solid, dashed and dashed dotted curves represent "simulation", "IO" and "wait" time
of NEST respectively.
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FIGURE E.19. – Details of the performance depending of the number of process and
thread for NEST

Performance is obtained for 1 second of simulated time on a computer (see Materials
and Methods for more details). The reference implementation use 1 MPI process,
6 virtual processes/threads, 2.0 ms to synchronize time between simulator for the
simulation of 20000 neurons. Simulation time depending on the number of virtual
process used by NEST. The green, blue, purple, red curves are associated with different
parallelization strategy of NEST, respectively, only multithreading, 2 MPI processes
with threads, 4 MPI processes with thread and only MPI processes. The horizontal
green line represents the number of cores of the computer a The total time of the
co-simulation. b The "IO" time of NEST c The "simulation" time of NEST d The
"simulation" time of TVB
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FIGURE E.20. – Performance of the co-simulation on one supercomputer
Performance is obtained for 1 second of simulated time on a computer. The reference
implementation use 1 MPI process, 6 virtual processes/threads, 2.0 ms to synchronize
time between simulator for the simulation of 20000 neurons. The node of Jusuf, the
supercomputer, content 2 AMD EPYC 7742 @ 2.25 GHz * 64 cores * 2 threads, 256
(16x16) GB DDR4 with 3200 MHz, connected by InfiniBand HDR100 (Connect-X6).
The transfer modules and TVB has on one node and NEST on one or multiple other
nodes. Simulation time depending on the number of neurons simulated with NEST.
a The wall clock time of the simulator depending on the number of neurons. The
total time of the co-simulation is represented in yellow. The "simulation", "IO" and
"wait" times of NEST are represented in the red surface with respectively hatches
with big circles, small circles and points. The "simulation" and "IO" times of TVB
are represented in the blue surface with respectively hatches horizontal lines and
oblique lines. The "simulation" time for TVB is constant. The sum of "simulation"
and "IO" time of NEST is higher than the TVB "simulation". b The wall clock time
for the co-simulation (yellow curve), NEST (red curves) and TVB (blue curves) by the
total wall clock time. The solid, dashed and dashed dotted curves are associated with
"simulation", "IO" and "wait" time of NEST. The solid and dashed line is associate to
"simulation" and "IO" time of TVB. The initialisation and configuration time increase
with the number of neurons. c The contribution of NEST module to the total amount
of the wall clock time normalizes between 0 and 100. Each contribution is reported as
red curve and for increasing numbers of neurons. The solid, dashed and dashed dotted
curves represent "simulation", "IO" and "wait" time of NEST respectively. The "IO"
time of NEST increases exponentially with the number of neurons and is higher than
the "simulation time when the number of neurons is higher than 6*1e4 of neurons.
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FIGURE E.21. – Performance of the co-simulation on one supercomputer
Performance is obtained for 1 second of simulated time on a computer. The reference
implementation use 1 MPI process, 6 virtual processes/threads, 2.0 ms to synchronize
time between simulator for the simulation of 20000 neurons. The node of Jusuf, the
supercomputer, content 2 AMD EPYC 7742 @ 2.25 GHz * 64 cores * 2 threads, 256
(16x16) GB DDR4 with 3200 MHz, connected by InfiniBand HDR100 (Connect-X6).
The transfer modules and TVB has on one node and NEST on one or multiple other
nodes. Simulation time depending on the synchronized time between simulator. a
The wall clock time of the simulator. The simulation time reduces with the increase
of the synchronization time between simulators. This reduction is due to the reduc-
tion of NEST "IO" time. The total time of the co-simulation is represented in yellow.
The "simulation", "IO" and "wait" times of NEST are represented in the red surface
with respectively hatches with big circles, small circles and points. The "simulation"
and "IO" times of TVB are represented in the blue surface with respectively hatches
horizontal lines and oblique lines. The "simulation" time for TVB is constant. The
sum of "simulation" and "IO" time of NEST is higher than the TVB "simulation". b
The wall clock time for different co-simulation modules normalized by the total wall
clock time. All the curves are shown for an increase in the synchronized time between
simulators. c The contribution of NEST module to the total amount of the wall clock
time normalizes between 0 and 100. Each contribution is reported as red curve and
for increasing synchronized time. The reduction follows a logarithm function.
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FIGURE E.22. – Performance of the co-simulation on one supercomputer
Performance is obtained for 1 second of simulated time on a computer. The reference
implementation use 1 MPI process, 6 virtual processes/threads, 2.0 ms to synchronize
time between simulator for the simulation of 20000 neurons. The node of Jusuf, the
supercomputer, content 2 AMD EPYC 7742 @ 2.25 GHz * 64 cores * 2 threads, 256
(16x16) GB DDR4 with 3200 MHz, connected by InfiniBand HDR100 (Connect-X6).
The transfer modules and TVB has on one node and NEST on one or multiple other
nodes. Simulation depending on the number of nodes used by NEST. a The wall clock
time of the simulator as a function of the number of nodes used by NEST. The increase
of the nodes create overhead communication in side NEST because the network is
small. Moreover, the minimum delay in the network is the same as the integration
step which creates an overhead of communication in NEST simulation. The wall clock
time of the simulator depending on the number of neurons. The total time of the
co-simulation is represented in yellow. The "simulation", "IO" and "wait" times of
NEST are represented in the red surface with respectively hatches with big circles,
small circles and points. The "simulation" and "IO" times of TVB are represented
in the blue surface with respectively hatches horizontal lines and oblique lines. The
"simulation" time for TVB is constant. The sum of "simulation" and "IO" time of NEST
is higher than the TVB "simulation". b The wall clock time for different co-simulation
modules normalized by the total wall clock time. c The contribution of NEST module
to the total amount of the wall clock time normalized between 0 and 100. The NEST
"IO" time remains constant with the increase of the number of nodes.
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FIGURE E.23. – Details of the timer of one run for the reference configuration
This tree-map represents the timer for each component of the transfer module and
for the modules NEST and TVB at the top. The orange bar under each box represents
the time required for the initialisation. Each rectangle represents the time spent on
each specific piece of code.
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FIGURE E.24. – Proof of concept of replacing NEST and TVB by other simulators
For spiking neuron simulators (NEST and NEURON), the simulation output is the
spike train of neurons (top graphic) and the firing rate of the population (bottom
graphic : histogram of spike count with a bin of 10 ms). For Neural Mass simulators
(TVB and Neurolib), the simulation output is the mean firing rate of the excitatory
population.
The first row shows different examples without co-simulation on other simulators. One
remark about the network used in NEURON, this network without external stimulation
does not have any activities. The second and third rows display the result of the cou-
pling example together simulated using co-simulation. The co-simulation results show
the interaction of examples between them and the possibility to simulate these four dif-
ferent multiscale examples. The code is available here : https ://github.com/multiscale-
cosim/TVB-NEST-demo/tree/proof-concept

272



CHAPTER F

Supplementary material of chapter 4

Contents of Chapter F
F.1. Table of content of Supplementary Notes, Figures and Tables . . . . . . 274
F.2. Supplementary Note 1 : Databases description . . . . . . . . . . . . . . 276

F.2.1. Quality of database . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
F.3. Supplementary Note 2 : supplementary results . . . . . . . . . . . . . . 276

F.3.1. Firing rate and associated measures . . . . . . . . . . . . . . . . . 276
F.3.2. Inter-spiking interval and associated measures . . . . . . . . . . 277
F.3.3. Phase and associated measures . . . . . . . . . . . . . . . . . . . 277
F.3.4. Bursts and associated measures . . . . . . . . . . . . . . . . . . . 278

F.4. Supplementary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
F.5. Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

273



F. Supplementary material of chapter 4 – F.1. Table of content of Supplementary
Notes, Figures and Tables

F.1. Table of content of Supplementary Notes,
Figures and Tables

Supplementary File Title

Supplementary Note F.2 database description
Supplementary Note F.3 supplementary material
Supplementary Table F.1 Network description
Supplementary Figure F.1 View the grid as a torus
Supplementary Figure F.2 Spike trains of disconnected network
Supplementary Figure F.3 Parameter space of weight and delay

of the long-range connections without noise
Supplementary Figure F.4 Parameter space of weight and delay

of the long-range connections with white noise
Supplementary Figure F.5 Delay of long-range influence firing rate without white noise
Supplementary Figure F.6 Parameter space of standard deviation of the connection

kernel (σl ong ) and delay of long-range connections without noise
Supplementary Figure F.7 Parameter space of standard deviation of the connection

kernel (σl ong ) and delay of the long-range connections
with white noise

Supplementary Figure F.8 Parameter space of position of the target cell and delay
of the long-range connections without noise

Supplementary Figure F.9 Parameter space of position of the target cell and delay
of the long-range connections with white noise

Supplementary Figure F.10 Parameter space of the effect of the noise and
excitatory synaptic weight

Supplementary Figure F.11 Three characteristics network dynamics without
long-range connection for different excitatory synaptic weights
in the presence of white noise

Supplementary Figure F.12 Network and neurons dynamics characteristic
in function of adaptation current properties

Supplementary Figure F.13 Parameter space of subthreshold adaptation and delay
of the long-range connections with white noise

Supplementary Figure F.14 Parameter space of spike-triggered adaptation and delay
of the long-range connections with white noise

Supplementary Figure F.15 Parameter space of time constant adaptation and delay
of the long-range connections with white noise

Supplementary Figure F.16 Network and neurons dynamics characteristic
in function of voltage membrane properties

274



F. Supplementary material of chapter 4 – F.1. Table of content of Supplementary
Notes, Figures and Tables

Supplementary Figure F.17 Parameter space of heterogeneity and delay
of the long-range connections with white noise

Supplementary Figure F.18 Parameter space of voltage reset and delay
of the long-range connections with white noise

Supplementary Figure F.19 Parameter space of refractory time and delay
of the long-range connections with white noise

Supplementary Figure F.20 Three characteristics network dynamics with uni-direction
long-range connection for different refractory time

Supplementary Figure F.21 Parameter space of excitatory synaptic weight and delay of the
long-range connections with white noise for 100 percent of
active neurons

Supplementary Figure F.22 Parameter space of excitatory synaptic weight and delay of the
long-range connections with white noise for 75 percent of
active neurons

Supplementary Figure F.23 Parameter space of excitatory synaptic weight and delay of the
long-range connections with white noise for 50 percent of
active neurons

Supplementary Figure F.24 Parameter space of excitatory synaptic weight and delay of the
long-range connections with white noise for 25 percent of
active neurons

Supplementary Figure F.25 Parameter space of ratio excitatory/inhibitory synaptic weights
and delay of the long-range connections without noise

Supplementary Figure F.26 Parameter space of ratio excitatory/inhibitory synaptic weight
and delay of the long-range connections with white noise
(variance :1800pA)

Supplementary Figure F.27 Parameter space of ratio excitatory/inhibitory synaptic weight
and delay of the long-range connections with white noise
(variance :2600pA)

Supplementary Figure F.28 Two characteristics initial condition with uni-direction long-range
connection for different weight of long-range connection
without noise

Supplementary Figure F.29 Comparison of the uni and bi-direction of long-range connection
Supplementary Figure F.30 Four characteristic network dynamics with bi-directional long-range

connections
Supplementary Figure F.31 Parameter space of weight and delay of the long-range connections

with white noise and bi-directional
Supplementary Figure F.32 Parameter space of the size of the grid on these two dimensions
Supplementary Figure F.33 One simulation transition of state

275



F. Supplementary material of chapter 4 – F.2. Supplementary Note 1 : Databases
description

F.2. Supplementary Note 1 : Databases
description

There is one database by parameter space, i.e. 23 databases. Each database contains
the result of the analysis of the spike trains for the analysis of all the networks, by type
of neurons, by cell and by quarter of the grid. The quarters of the grid are the five
columns of the grid (Qsour ce :30-79 cells, Qt ar g et :130-179 cells, Q2 :80-129, Q4 :180-
200 and 0-29). The analysis is done after a transient period of 12 s and over 10 s. The
Supplementary Material (see Supplementary Note 2) describes the different measures
realized over the network’s firing rate, the inter-spiking interval, the phase, and the
bursts of the neurons during the analysis.

F.2.1 Quality of database

Each database contains the date of the analysis, the path of the simulation, the
explored parameters, and the name of the population. However, some databases do
not contain all expected analyses due to simulation bugs. Specifically, the exploration
databases with bi-directional long-range connections do not contain cell and quarter
analyses, as the analysis does not consider the grid’s dimension for the separation
of the quarters. Additionally, the databases associated with modifying the target cell
contain results of simulations with a bug, where the long-range connection is not
created when the target cell’s index is higher than 15 or lower than 5.

F.3. Supplementary Note 2 : supplementary
results

F.3.1 Firing rate and associated measures

The firing rate is the number of generated spikes by a neuron during 1 s. One mea-
sure of population synchronization quantifies the fluctuation of the population mean
firing rate (for windows of 1 and 3 ms) with the coefficient of variation [41]. Additio-
nally, one estimation of neural population frequency uses the dominant frequency
and its associated power of the population mean firing rate (for a window of 1 ms)
using Welch’s method [358] from the elephant package [89]. (Databases record average
(’rates_average’), standard deviation (’rates_std’), minimum (’rate_min’) and maxi-
mum (’rate_max’) mean firing rates ; for each (1 ms and 3 ms), the maximum of firing
rate (max_IFR_1ms’ and ’max_IFR_3ms’) and the coefficient of variation (’cvs_IFR_-
1ms’ and ’cvs_IFR_3ms’) ; and for a window of 1 ms, the dominant frequency and its
power(’frequency_hist_1_freq’ and ’frequency_hist_1_val’).
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F.3.2 Inter-spiking interval and associated measures

The inter-spiking interval is the time between 2 spikes. The distribution of this
interval characterizes the regularity or irregularity of neuron spike generation [41],
which is quantified by two measures : coefficient of variation of firing rate [41] and local
variation [321][320]. These measures are provided by Elephant python package [89].
For viable estimation, these measures are determined by considering only neurons
with more than 20 spikes in 10 s for analysis. (Databases record average (’ISI_average’),
standard deviation(’ISI_std’), minimum (’ISI_min’), and maximum (’ISI_max’) inter-
spiking intervals ; the average and standard deviation over the population of the
regularity measures (’cvs_ISI_average’, ’cvs_ISI_std’, ’lvs_ISI_average’ and ’lvs_ISI_-
std’) ; and the percentage of neurons with more than 20 spikes (’percentage’).

F.3.3 Phase and associated measures

Kuramoto proposed a model for describing and analyzing synchronization of cou-
pled intrinsic oscillators [211], based on the following equation :

∂θi

∂t
=ωi + K

N

N∑
j=1

sin
(
θ j −θi

)
, i = 1...N , (F.1)

where the system is composed of N limit-cycle oscillators, with phases θi and coupling
constant K.

The phase of a neuron can be defined by approximating the voltage membrane as an
intrinsic oscillator or by approximating the phase using a constant velocity between 2
spikes, similar to Borges et al. 2017 [32]. This study used the second approximation
described in the following equation :

ψ(t ) = 2πm +2π
t − tm

tm+1 − tm
,∀t ∈ [tm , tm+1] (F.2)

where tm is the m-th spike of the neuron.
One measure of synchronization is the estimation of Kuramoto order-parameter of a
population, i.e. the absolute values of the mean phase. Additionally, one estimation of
neural population frequency uses the dominant frequency and its associated power of
the mean phase (for a window of 0.1 ms) using Welch’s method [358] from the elephant
package [89]. (Databases record average (’synch_Rs_average’), standard deviation
(’synch_Rs_std’), minimum (’synch_Rs_min’) and maximum (’synch_Rs_max’) of the
Kuramoto order-parameter ; the start time and end time of the mean phase estimation
(’synch_Rs_times_init’ and ’synch_Rs_times_end’) ; and for a window of 0.1 ms, the
dominant frequency and its power(’frequency_phase_freq’ and ’frequency_phase_-
val’).
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F.3.4 Bursts and associated measures

Bursts are consecutive spikes with inter-spike intervals of less than 10 ms. Additio-
nally, the regularity of bursts is analyzed similarly to inter-spike intervals. For neurons
with more than 20 bursts, the regularity of the interval of the beginning time of bursts
and also their ending time is quantified with the coefficient of variation and the lo-
cal variation. (Databases record average (’burst_count_average’, ’burst_nb_average’
and ’burst_rate_average’), standard deviation (’burst_count_std’, ’burst_nb_std’ and
’burst_rate_std’), maximum (’burst_count_max’, ’burst_nb_max’ and ’burst_rate_-
max’) and minimum (’burst_count_min’, ’burst_nb_min’ and ’burst_rate_min’) of a
number of spikes in the sequence of burst, number of burst by neurons during the
analysis and mean bursting rates ; the percentage of neurons which have one burst
(’percentage_burst’) ; average (”burst_interval_average’), standard deviation (’burst_-
interval_std’), minimum (’burst_interval_min’), maximum (’burst_interval_max’) ;
and for neurons with more than 20 bursts, the average and the standard deviation of
the coefficient of variation (’burst_cv_begin_average’, ’burst_cv_end_average’, ’burst_-
cv_begin_std’, ’burst_cv_end_std’) and local variation (
’burst_lv_begin_std’, ’burst_lv_end_std’, ’burst_lv_begin_average’, ’burst_lv_end_ave-
rage’) of interval of the beginning time of bursts and also their ending time.
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F.4. Supplementary Table

A1 Nest : Model Summary
Software NEST
Topology two dimensional grid
Population excitatory and inhibitory
Connectivity two-dimensional Gaussian probability function

Neuron Model
adaptive exponential leaky integrate and fire neurons[37], fixed thre-
shold and fixed absolute refractory time

Synapse Mo-
del

conductance-based alpha shape

Plasticity __
Input white noise
Measurement Spike activity, histogram, coefficient of variation of firing rate

A2 Nest : Software
version 2.14
integrator method 4th order Runge-Kutta-Fehlberg method
integration step 0.1 ms
number of seed 16
simulation time 22000 ms

A3 Nest : Topology
Two dimensional regular grid composed of cells of dimension 3 millimeters by 3 milli-
meters. By default, the grid has 20 cells on the first dimension (x) and 10 cells on the
second dimension (y). The grid has two periods conditions.

A3 Nest : Populations
Name Elements Size
E aeif_cond_exp N_e = (1-gi nh)N = 140 by cell
I aeif_cond_exp N_i = gi nhN = 60 by cell
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A4 Nest : Neuron Model
Name aeif

Type
adaptive exponential leaky integrator and fire with

conductance synapse

subthreshold dynamics

Cm
dVm

d t
=− gL(Vm −EL)+ gL∆T e

Vm−Vth
∆T

− ge (t )(Vm −Eex)− gi (t )(Vm −Ei n)

−W + Ie

τw
dW

d t
=a(Vm −EL)−W

reset condition

For t ( f ) = {t |Vm(t ) >=Vpeak }
— Vm([t ( f ); t ( f ) + tr e f ]) =Vr eset

— W ([t ( f )]) =W ([t ( f )])+b

Nest : Synapse Model
Name cond_alpha
Type post-synaptic conductance in the form of alpha function

Coupling equation

ge (t ) = ∑
t

( f )
j

w j al pha(t − t j ,τex) with w j > 0.0

gi (t ) = ∑
t

( f )
j

w j al pha(t − t j ,τi n) with w j < 0.0

al pha(t ,τ) = t

τ
e1− t

τ Heavi si de(t )
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A5 Nest : Neuron Model Parameters
Default values

Cm Capacity of the membrane 281.0 pF
tr e f Duration of refractory period 2.0 ms
Vr esetReset value for Vm after a spike -60.0 mV
EL Leak reversal potential -70.6 mV
gL Leak conductance 30.0 nS
∆T Slope factor 2.0 mV
VpeakSpike detection threshold 0.0 mV
a Subthreshold adaptation 0.0 nS
b Spike-triggered adaptation 80.5 pA
τw Adaptation time constant 144.0 ms
Vth Spike initiation threshold -50.4 mV
Eex Excitatory reversal potential 0.0 mV
Ei n Inhibitory reversal potential -80.0 mV
Ie Constant external input current mean : 0.0 pA

sigma : 0.0 pA
Vm Initialization of the voltage membrane mean : -70.6 mV

sigma : 100.0 mV
W Initialization of adaptation current mean : 200 pA

sigma : 200 pA
ge Initialization of excitatory synapse conductance 0.0 nS
gi Initialization of inhibitory synapse conductance 0.0 nS

A6 Nest : Input
approximation white noise

equation I (t ) = mean + std ∗N j

where N j are Gaussian random numbers with unit standard deviation.
The noise is updated at intervals of dt, which give a piece-wise constant
current with Gaussian distribution amplitude.

parameters
mean 400.0 pA
std 1800.0 pA
d t 1.0 ms
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A7 Nest : Connectivity
default parameter synapses

τex
Rise time of excitatory synaptic conduc-
tance

0.2 ms

τi n
Rise time of inhibitory synaptic conduc-
tance

2.0 ms

g
Ratio excitatory/inhibitory synaptic
weight

0.11

Name
source
population

σ Weights delay Pattern

excitatory 0.8 Qe =10.0 nS dt=0.1
The neuron can not have multiple
connections with the same neuron. The
neuron can connect to itself.

Qi =g .Qe The neuron cannot have multiple
connections with the same neuron.
The neuron can connect to itself.

inhibitory 1.2 =11.0 nS dt=0.1

long-range
connection

2.0 Qlong =15.0 nS dt=0.1
The neuron can not have multiple
connections with the same neuron.

noise Qnoi se =1 nS dt=0.1
The noise is connected to all the neurons
and independents.

A8 Nest : Measurement

state variable
spike time precision 0.1 ms

number of recorded
neurons

all

spike activities

raster plot precision 0.1 ms
histogram of mean firing rate bins 1.0 ms

coefficient of variation of mean
firing rate

bins 3.0 ms

TABLEAU F.1. – Parameter for parameter exploration
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F.5. Supplementary Figures
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SUPPLEMENTARY FIGURE F.1. – View the grid as a torus
Representation of the grid in 3 dimensions with the position of the neurons and the
color is defined for each grid cell.
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SUPPLEMENTARY FIGURE F.2. – Spike trains of disconnected network
Spike trains of the neurons in the cases of disconnected neurons in the presence of
noise with a variance of 1800 pA.
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SUPPLEMENTARY FIGURE F.3. – Parameter space of weight and delay of the long-range
connections without noise

Each graphic represents a measure of the network without noise. Each white point
represents the analysis of one realization of 10 s after a transient period of 12 s for a
modification of two parameters (the weight and the delay of the long-range
connection). The gradient of colors is realized from a linear interpolation of the
measures. Red areas represent simulations in which less than 95 % of neurons
generate fewer than 20 spikes during the 10 s of analysis. The measures of the network
are mean (A), maximum(B), and minimum(C) firing rate of the network, the
dominant frequency of the mean phase(D) and the histogram with a bin of 1 ms(E),
the coefficient of variance of the histogram with a bin of 3 ms(F), mean(G), standard
deviation(H) and the minimum(I) of the order-parameter, coefficient of variation(J)
and the local variation(K) of the inter-spiking interval, the percentage of the neurons
with more than 20 spikes(L), the mean firing rate of the burst(M), coefficient of
variation of the start of the burst(N), the percentage of the neurons with more than 20
bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.4. – Parameter space of weight and delay of the long-range
connections with white noise

Each graphic represents a measure of the network with noise, which has a variance of
1800pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the weight and the delay
of the long-range connection). The gradient of colors is realized from a linear
interpolation of the measures. The measures of the network are mean (A),
maximum(B), and minimum(C) firing rate of the network, the dominant frequency of
the mean phase(D) and the histogram with a bin of 1 ms(E), the coefficient of
variance of the histogram with a bin of 3 ms(F), mean(G), standard deviation(H) and
the minimum(I) of the order-parameter, coefficient of variation(J) and the local
variation(K) of the inter-spiking interval, the percentage of the neurons with more
than 20 spikes(L), the mean firing rate of the burst(M), coefficient of variation of the
start of the burst(N), the percentage of the neurons with more than 20 bursts(O) (see
supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.5. – Delay of long-range influence firing rate without white
noise

Simulation of the network of 28000 excitatory neurons and 12000 inhibitory neurons
without noise with different delays of long-range connections ( A :100 ms, B :250 ms
and C :400 ms). The index is ordered by cells of the grid, with excitatory neurons
followed by inhibitory neurons in the cell. Each simulation is represented by spike
trains of the neurons and the associated histogram with a bin of 1 ms between 12.0 s
and 22.0 s. The blue and green arrows define the start and the end of the eight regular
snapshots of the network activities (snapshot time : A :16680, 16685.7, 16691.4,
16697.1, 16702.9, 16708.6, 16714.3, 16720 ; B :16725, 16730.7, 16736.4, 16742.1, 16747.9,
16753.6, 16759.3, 16765 ; C :16855, 16860.7, 16866.4, 16872.1, 16877.9, 16883.6, 16889.3,
16895). On the histogram and eight snapshots, the blue represents the source
population, and the purple represents the target. A Fast firing rate B Medium firing
rate C Slow firing rate
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SUPPLEMENTARY FIGURE F.6. – Parameter space of standard deviation of the connec-
tion kernel (σl ong ) and delay of the long-range connec-
tions without noise

Each graphic represents a measure of the network without noise. Each white point
represents the analysis of one realization of 10 s after a transient period of 12 s for a
modification of two parameters (the standard deviation of the connection kernel
(σlong ) and the delay of the long-range connection). The gradient of colors is realized
from a linear interpolation of the measures. Red areas represent simulations in which
less than 95 % of neurons generate fewer than 20 spikes during the 10 s of analysis.
The measures of the network are mean (A), maximum(B), and minimum(C) firing rate
of the network, the dominant frequency of the mean phase(D) and the histogram with
a bin of 1 ms(E), the coefficient of variance of the histogram with a bin of 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.7. – Parameter space of standard deviation of the connec-
tion kernel (σl ong ) and delay of the long-range connec-
tions with white noise

Each graphic represents a measure of the network with noise, which has a variance of
1800pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the standard deviation
of the connection kernel (σlong ) and the delay of the long-range connection). The
gradient of colors is realized from a linear interpolation of the measures. The
measures of the network are mean (A), maximum(B), and minimum(C) firing rate of
the network, the dominant frequency of the mean phase(D) and the histogram with a
bin of 1 ms(E), the coefficient of variance of the histogram with a bin of 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).

290



F. Supplementary material of chapter 4 – F.5. Supplementary Figures

SUPPLEMENTARY FIGURE F.8. – Parameter space of position of the target cell and delay
of the long-range connections without noise

Each graphic represents a measure of the network without noise. Each white point
represents the analysis of one realization of 10 s after a transient period of 12 s for a
modification of two parameters (the target cell and the delay of the long-range
connection). The gradient of colors is realized from a linear interpolation of the
measures. Red areas represent simulations in which less than 95 % of neurons
generate fewer than 20 spikes during the 10 s of analysis. The measures of the network
are mean (A), maximum(B), and minimum(C) firing rate of the network, the
dominant frequency of the mean phase(D) and the histogram with a bin of 1 ms(E),
the coefficient of variance of the histogram with a bin of 3 ms(F), mean(G), standard
deviation(H) and the minimum(I) of the order-parameter, coefficient of variation(J)
and the local variation(K) of the inter-spiking interval, the percentage of the neurons
with more than 20 spikes(L), the mean firing rate of the burst(M), coefficient of
variation of the start of the burst(N), the percentage of the neurons with more than 20
bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.9. – Parameter space of position of the target cell and delay
of the long-range connections with white noise

Each graphic represents a measure of the network with noise, which has a variance of
1800pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the target cell and the
delay of the long-range connection). The gradient of colors is realized from a linear
interpolation of the measures. The measures of the network are mean (A),
maximum(B), and minimum(C) firing rate of the network, the dominant frequency of
the mean phase(D) and the histogram with a bin of a 1 ms(E), the coefficient of
variance of the histogram with a bin of a 3 ms(F), mean(G), standard deviation(H) and
the minimum(I) of the order-parameter, coefficient of variation(J) and the local
variation(K) of the inter-spiking interval, the percentage of the neurons with more
than 20 spikes(L), the mean firing rate of the burst(M), coefficient of variation of the
start of the burst(N), the percentage of the neurons with more than 20 bursts(O) (see
supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.10. – Parameter space of the effect of the noise and excita-
tory synaptic weight

Each graphic represents a measure of the network, which does not have a long-range
connection in this case. Each white point represents the analysis of one realization of
10 s after a transient period of 12 s for a modification of two parameters (the variance
of the noise and synaptic weights). The gradient of colors is realized from a linear
interpolation of the measures. Red areas represent simulations in which less than 95
% of neurons generate fewer than 20 spikes during the 10 s of analysis. The measures
of the network are mean (A), maximum(B), and minimum(C) firing rate of the
network, the dominant frequency of the mean phase(D) and the histogram with a bin
of 1 ms(E), the coefficient of variance of the histogram with a bin of a 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.11. – Three characteristics network dynamics without
long-range connection for different excitatory synap-
tic weights in the presence of white noise

Simulation of the network of 28000 excitatory neurons and 12000 inhibitory neurons,
with different excitatory synaptic weights (A :100.0 nS, B :10.0 nS and C :4.0 nS) and
variance of white noise equals 1800 pA. The index is ordered by cells of the grid, with
excitatory neurons followed by inhibitory neurons in the cell. Each simulation is
represented by spike trains of the neurons and the associated histogram with a bin of
1 ms between 15.5 s and 16.5 s. The blue and green arrows define the starting and the
end of the eight regular snapshots of the network activities (A :15930 ms, 15932.1 ms,
15934.3 ms, 15936.4 ms, 15938.6 ms, 15940.7 ms, 15942.9 ms, 15945 ms; B :15855 ms,
15864.3 ms, 15873.6 ms, 15882.9 ms, 15892.1 ms, 15901.4 ms, 15910.7 ms, 15920 ms;
C :15855 ms, 15864.3 ms, 15873.6 ms, 15882.9 ms, 15892.1 ms, 15901.4 ms, 15910.7 ms,
15920 ms). On the histogram and eight snapshots, the blue represents the source
population, and the purple represents the target. A Regular bumps. B Regular bumps
start with random spikes. C asynchronous irregular activity.
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SUPPLEMENTARY FIGURE F.12. – Network and neurons dynamics characteristic func-
tion of adaptation current properties

A, D, G The first row shows the mean firing rate of the network for long-range
connection with a delay of 0.1 ms function of different parameters of adaptation
current properties (A : subthreshold adaptation, D : spike-triggered adaptation, G :
adaptation time constant). B, E, H The second row is frequency-current curves for
different parameters of adaptation current properties (B : subthreshold adaptation, E :
spike-triggered adaptation, H : adaptation time constant). C, F, I The third row is the
phase response curve for different parameters of the adaptation current properties (C :
subthreshold adaptation, F : spike-triggered adaptation, I : adaptation time constant).
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SUPPLEMENTARY FIGURE F.13. – Parameter space of subthreshold adaptation and de-
lay of the long-range connections with white noise

Each graphic represents a measure of the network with noise, which has a variance of
1800pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the subthreshold
adaptation and the delay of the long-range connection). The gradient of colors is
realized from a linear interpolation of the measures. The measures of the network are
mean (A), maximum(B), and minimum(C) firing rate of the network, the dominant
frequency of the mean phase(D) and the histogram with a bin of 1 ms(E), the
coefficient of variance of the histogram with a bin of 3 ms(F), mean(G), standard
deviation(H) and the minimum(I) of the order-parameter, coefficient of variation(J)
and the local variation(K) of the inter-spiking interval, the percentage of the neurons
with more than 20 spikes(L), the mean firing rate of the burst(M), coefficient of
variation of the start of the burst(N), the percentage of the neurons with more than 20
bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.14. – Parameter space of spike-triggered adaptation and
delay of the long-range connections with white noise

Each graphic represents a measure of the network with noise, which has a variance of
1800pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the spike-triggered
adaptation and the delay of the long-range connection). The gradient of colors is
realized from a linear interpolation of the measures. The measures of the network are
mean (A), maximum(B), and minimum(C) firing rate of the network, the dominant
frequency of the mean phase(D) and the histogram with a bin of 1 ms(E), the
coefficient of variance of the histogram with a bin of 3 ms(F), mean(G), standard
deviation(H) and the minimum(I) of the order-parameter, coefficient of variation(J)
and the local variation(K) of the inter-spiking interval, the percentage of the neurons
with more than 20 spikes(L), the mean firing rate of the burst(M), coefficient of
variation of the start of the burst(N), the percentage of the neurons with more than 20
bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.15. – Parameter space of time constant adaptation and
delay of the long-range connections with white noise

Each graphic represents a measure of the network, with noise, which has a variance of
1800pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the time constant
adaptation and the delay of the long-range connection). The gradient of colors is
realized from a linear interpolation of the measures. The measures of the network are
mean (A), maximum(B), and minimum(C) firing rate of the network, the dominant
frequency of the mean phase(D) and the histogram with a bin of 1 ms(E), the
coefficient of variance of the histogram with a bin of 3 ms(F), mean(G), standard
deviation(H) and the minimum(I) of the order-parameter, coefficient of variation(J)
and the local variation(K) of the inter-spiking interval, the percentage of the neurons
with more than 20 spikes(L), the mean firing rate of the burst(M), coefficient of
variation of the start of the burst(N), the percentage of the neurons with more than 20
bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.16. – Network and neurons dynamics characteristic func-
tion of voltage membrane properties

A, D, G The first row shows the mean firing rate of the network for long-range
connection with a delay of 0.1 ms function of different parameters of voltage
membrane (A : refractory time, D : voltage reset, G : heterogeneity). B, E, H The
second row is frequency-current curves for different parameters of voltage membrane
(B : refractory time, E : voltage reset, H : heterogeneity). C, F, I The third row is the
phase response curve for different parameters of the voltage membrane (C : refractory
time, F : voltage reset, I : heterogeneity).
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SUPPLEMENTARY FIGURE F.17. – Parameter space of heterogeneity and delay of the
long-range connections with white noise

Each graphic represents a measure of the network with noise which has a variance of
1800pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the heterogeneity of
neurons and the delay of the long-range connection). The gradient of colors is
realized from a linear interpolation of the measures. The measures of the network are
mean (A), maximum(B), and minimum(C) firing rate of the network, the dominant
frequency of the mean phase(D) and the histogram with a bin of 1 ms(E), the
coefficient of variance of the histogram with a bin of 3 ms(F), mean(G), standard
deviation(H) and the minimum(I) of the order-parameter, coefficient of variation(J)
and the local variation(K) of the inter-spiking interval, the percentage of the neurons
with more than 20 spikes(L), the mean firing rate of the burst(M), coefficient of
variation of the start of the burst(N), the percentage of the neurons with more than 20
bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.18. – Parameter space of voltage reset and delay of the
long-range connections with white noise

Each graphic represents a measure of the network with noise, which has a variance of
1800pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the voltage reset of
neurons and the delay of the long-range connection). The gradient of colors is
realized from a linear interpolation of the measures. The measures of the network are
mean (A), maximum(B), and minimum(C) firing rate of the network, the dominant
frequency of the mean phase(D) and the histogram with a bin of 1 ms(E), the
coefficient of variance of the histogram with a bin of 3 ms(F), mean(G), standard
deviation(H) and the minimum(I) of the order-parameter, coefficient of variation(J)
and the local variation(K) of the inter-spiking interval, the percentage of the neurons
with more than 20 spikes(L), the mean firing rate of the burst(M), coefficient of
variation of the start of the burst(N), the percentage of the neurons with more than 20
bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.19. – Parameter space of refractory time and delay of the
long-range connections with white noise

Each graphic represents a measure of the network with noise, which has a variance of
1800pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the refractory time of
neurons and the delay of the long-range connection). The gradient of colors is
realized from a linear interpolation of the measures. The measures of the network are
mean (A), maximum(B), and minimum(C) firing rate of the network, the dominant
frequency of the mean phase(D) and the histogram with a bin of 1 ms(E), the
coefficient of variance of the histogram with a bin of 3 ms(F), mean(G), standard
deviation(H) and the minimum(I) of the order-parameter, coefficient of variation(J)
and the local variation(K) of the inter-spiking interval, the percentage of the neurons
with more than 20 spikes(L), the mean firing rate of the burst(M), coefficient of
variation of the start of the burst(N), the percentage of the neurons with more than 20
bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.20. – Three characteristics network dynamics with uni-
direction long-range connection for different refrac-
tory time

Simulation of the network of 28000 excitatory neurons and 12000 inhibitory neurons
with white noise and different refractory times (A :0.5 ms, B :2.0 ms, and C :2.8 ms)
and with a delay of the long-range connections equals 200 ms. The index is ordered by
cells of the grid, with excitatory neurons followed by inhibitory neurons in the cell.
Each simulation is represented by spike trains of the neurons and the associated
histogram with a bin of 1 ms between 18.1 s and 18.6 s. The blue and green arrows
define the start and the end of the eight regular snapshots of the network activities
(A :18420 ms, 18427.1 ms, 18434.3 ms, 18441.4 ms, 18448.6 ms, 18455.7 ms, 18462.9
ms, 18470 ms ; B :18365 ms, 18368.6 ms, 18372.1 ms, 18375.7 ms, 18379.3 ms, 18382.9
ms, 18386.4 ms, 18390 ms ; C :18325 ms, 18335 ms, 18345 ms, 18355 ms, 18365 ms,
18375 ms, 18385 ms, 18395 ms). On the histogram and eight snapshots, the blue
represents the source population, and the purple represents the target. A Large
regular bump. B Regular bump with bumps from the noise. C Travelling waves.
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SUPPLEMENTARY FIGURE F.21. – Parameter space of excitatory synaptic weight and
delay of the long-range connections with white noise
for 100 percent of active neurons

Each graphic represents a measure of the network with noise, which has a variance of
1800pA for 100 percent of active neurons. Each white point represents the analysis of
one realization of 10 s after a transient period of 12 s for a modification of two
parameters (the synaptic weights and the delay of the long-range connection). The
gradient of colors is realized from a linear interpolation of the measures. The
measures of the network are mean (A), maximum(B), and minimum(C) firing rate of
the network, the dominant frequency of the mean phase(D) and the histogram with a
bin of 1 ms(E), the coefficient of variance of the histogram with a bin of 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.22. – Parameter space of excitatory synaptic weight and
delay of the long-range connections with white noise
for 75 percent of active neurons

Each graphic represents a measure of the network with noise, which has a variance of
1800pA for 75 percent of active neurons. Each white point represents the analysis of
one realization of 10 s after a transient period of t12 s for a modification of two
parameters (the synaptic weights and the delay of the long-range connection). The
gradient of colors is realized from a linear interpolation of the measures. The
measures of the network are mean (A), maximum(B), and minimum(C) firing rate of
the network, the dominant frequency of the mean phase(D) and the histogram with a
bin of 1 ms(E), the coefficient of variance of the histogram with a bin of 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.23. – Parameter space of excitatory synaptic weight and
delay of the long-range connections with white noise
for 50 percent of active neurons

Each graphic represents a measure of the network with noise, which has a variance of
1800pA for 50 percent of active neurons. Each white point represents the analysis of
one realization of 10 s after a transient period of 12 s for a modification of two
parameters (the synaptic weights and the delay of the long-range connection). The
gradient of colors is realized from a linear interpolation of the measures. The
measures of the network are mean (A), maximum(B), and minimum(C) firing rate of
the network, the dominant frequency of the mean phase(D) and the histogram with a
bin of 1 ms(E), the coefficient of variance of the histogram with a bin of 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.24. – Parameter space of excitatory synaptic weight and
delay of the long-range connections with white noise
for 25 percent of active neurons

Each graphic represents a measure of the network, with noise with a variance of
1800pA for 25 percent of active neurons. Each white point represents the analysis of
one realization of 10 s after a transient period of 12 s for a modification of two
parameters (the synaptic weights and the delay of the long-range connection). The
gradient of colors is realized from a linear interpolation of the measures. The
measures of the network are mean (A), maximum(B), and minimum(C) firing rate of
the network, the dominant frequency of the mean phase(D) and the histogram with a
bin of 1 ms(E), the coefficient of variance of the histogram with a bin of 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.25. – Parameter space of ratio excitatory/inhibitory synap-
tic weights and delay of the long-range connections
without noise

Each graphic represents a measure of the network without noise. Each white point
represents the analysis of one realization of 10 s after a transient period of 12 s for a
modification of two parameters (the ratio excitatory/inhibitory synaptic weight and
the delay of the long-range connection). The gradient of colors is realized from a
linear interpolation of the measures. Red areas represent simulations in which less
than 95 % of neurons generate fewer than 20 spikes during the 10 s of analysis. The
measures of the network are mean (A), maximum(B), and minimum(C) firing rate of
the network, the dominant frequency of the mean phase(D) and the histogram with
bin of 1 ms(E), the coefficient of variance of the histogram with bin of 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.26. – Parameter space of ratio excitatory/inhibitory synap-
tic weight and delay of the long-range connections
with white noise (variance :1800pA)

Each graphic represents a measure of the network with noise, which has a variance of
1800pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the ratio
excitatory/inhibitory synaptic weight and the delay of the long-range connection).
The gradient of colors is realized from a linear interpolation of the measures. The
measures of the network are mean (A), maximum(B), and minimum(C) firing rate of
the network, the dominant frequency of the mean phase(D) and the histogram with a
bin of 1 ms(E), the coefficient of variance of the histogram with a bin of 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.27. – Parameter space of ratio excitatory/inhibitory synap-
tic weight and delay of the long-range connections
with white noise (variance :2600pA)

Each graphic represents a measure of the network with noise, which has a variance of
2600pA. Each white point represents the analysis of one realization of 10 s after a
transient period of 12 s for a modification of two parameters (the ratio
excitatory/inhibitory synaptic weight and the delay of the long-range connection).
The gradient of colors is realized from a linear interpolation of the measures. The
measures of the network are mean (A), maximum(B), and minimum(C) firing rate of
the network, the dominant frequency of the mean phase(D) and the histogram with a
bin of 1 ms(E), the coefficient of variance of the histogram with a bin of 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.28. – Two characteristics initial condition with uni-
direction long-range connection for different weight
of long-range connection without noise

Simulation of the network of 28000 excitatory neurons and 12000 inhibitory neurons
for different weights of long-range connection (A :40.0 nS and B :4.0 nS) and with a
delay of the long-range connections equals 100 ms. The index is ordered by cells of
the grid, with excitatory neurons followed by inhibitory neurons in the cell. Each
simulation is represented by spike trains of the neurons and the associated histogram
with a bin of 1 ms between 18.1 s and 18.6 s. The blue and green arrows define the
start and the end of the eight regular snapshots of the network activities (A :1555 ms,
1564.3 ms, 1573.6 ms, 1582.9 ms, 1592.1 ms, 1601.4 ms, 1610.7 ms, 1620 ms; B :1555
ms, 1564.3 ms, 1573.6 ms, 1582.9 ms, 1592.1 ms, 1601.4 ms, 1610.7 ms, 1620 ms). On
the histogram and eight snapshots, the blue represents the source population, and
the purple represents the target. A Traveling wave B Synchronization initialisation
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SUPPLEMENTARY FIGURE F.29. – Comparison of the uni and bi-direction of long-range
connection

The network synchronization is quantified by the coefficient of variation of firing rate
(no overlapping window of 3 ms) for 10 s after a transition period of 12 s. Parameter
space network synchronization analysis is presented, showing the relationship
between the delay of the long-range connection and the weight of long-range
connections for uni-direction (A : same as the Figure 4.3C) and for bi-direction (B). C
Aggrandisement of the graphic B on the low values of the weight. The A, B, C, and D in
the graphic B and C are parameters set chosen for the simulation shown Figure F.30.

312



F. Supplementary material of chapter 4 – F.5. Supplementary Figures

SUPPLEMENTARY FIGURE F.30. – Four characteristic network dynamics with bi-
directional long-range connections

A network of 28,000 excitatory and 12,000 inhibitory adaptive exponential integrate
and fire neurons was simulated in the presence of white noise, with different synaptic
weights (A, B, C :4.0 nS, and D :5.0 nS) and different delays of the long-range
connections (A, D : 40 ms, B : 70 ms, C : 100 ms). The index is ordered by cells of the
grid, with excitatory neurons followed by inhibitory neurons of the cell. Each
simulation is represented by spike trains of the neurons and an associated histogram
with a bin size of 1 ms between 18.1 s and 18.6 s. The blue and green arrows indicate
the start and end of the eight regular snapshots of the network activities, respectively.
On the histogram and eight snapshots, blue represents the source population, and
purple represents the target population. A shows Quasi-travelling waves ; B illustrates
two regular partial bumps ; C displays two regular bumps ; and D shows alternating
diffuse bump and not diffuse bump.
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SUPPLEMENTARY FIGURE F.31. – Parameter space of weight and delay of the
long-range connections with white noise and bi-
directional

Each graphic represents a measure of the network with noise, which has a variance of
1800pA, and the long-range connection is bi-direction. Each white point represents
the analysis of one realization of 10 s after a transient period of 12 s for a modification
of two parameters (the weight and the delay of the long-range connection). The
gradient of colors is realized from a linear interpolation of the measures. The
measures of the network are mean (A), maximum(B), and minimum(C) firing rate of
the network, the dominant frequency of the mean phase(D) and the histogram with a
bin of 1 ms(E), the coefficient of variance of the histogram with a bin of 3 ms(F),
mean(G), standard deviation(H) and the minimum(I) of the order-parameter,
coefficient of variation(J) and the local variation(K) of the inter-spiking interval, the
percentage of the neurons with more than 20 spikes(L), the mean firing rate of the
burst(M), coefficient of variation of the start of the burst(N), the percentage of the
neurons with more than 20 bursts(O) (see supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.32. – Parameter space of the size of the grid on these two
dimensions

Each graphic represents a measure of the network, which does not have a long-range
connection in this case. Each white point represents the analysis of one realization of
10 s after a transient period of 12 s for a modification of two parameters (number of
cells for the first and second dimensions). The gradient of colors is realized from a
linear interpolation of the measures. The measures of the network are mean (A),
maximum(B), and minimum(C) firing rate of the network, the dominant frequency of
the mean phase(D) and the histogram with a bin of 1 ms(E), the coefficient of
variance of the histogram with a bin of 3 ms(F), mean(G), standard deviation(H) and
the minimum(I) of the order-parameter, coefficient of variation(J) and the local
variation(K) of the inter-spiking interval, the percentage of the neurons with more
than 20 spikes(L), the mean firing rate of the burst(M), coefficient of variation of the
start of the burst(N), the percentage of the neurons with more than 20 bursts (O) (see
the supplementary note 1 for more details).
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SUPPLEMENTARY FIGURE F.33. – One simulation transition of state
Simulation of the network of 28000 excitatory neurons and 12000 inhibitory neurons
in the presence of white noise with spike-triggered adaptation b equals 90.0 pA and
with a delay of the long-range connections equals 120 ms. The index is ordered by
cells of the grid with excitatory neurons, followed by the cell’s inhibitory neurons.
Each simulation is represented by spike trains of the neurons and the associated
histogram with a bin of 1 ms between 12.0 s and 22.0 s. The blue and green arrows
define the start and the end of the eight regular snapshots of the network activities.
On the histogram and eight snapshots, the blue represents the source population, and
the purple represents the target. A State transition between partial bump and
traveling waves.
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G.1. Supplementary Notes

G.1.1 Supplementary Note 1 : Additional analysis

Additional analysis was performed to complete the main analysis

G.1.1.1 Variability of the measure of the firing rate

The spiking network with a Poisson generator does not have a constant firing rate
over time. Measuring the firing rate variability is crucial for comparing with a mean-
field because it quantifies the tolerable range of difference with the mean-field. The
variability of the mean and standard deviation of the firing rate is estimated with the
measure’s distribution of 5000 values taken on 30 s of simulation after a transient
of 10 s. The only parameter for calculating the firing rate from a spike train using a
rectangular window is the window’s size. We analyze the influence of the window’s
size using a log scale between 0.2 ms and 3489.9 ms.

G.1.1.2 Estimation of coexistence of fixed-points

A first parameter exploration of the external input gives the values where the network
is switching between a fixed-point around 50 Hz to a fixed-point around 200 Hz
of excitatory firing rate. From a value of external firing close to this shift, a longer
simulation is run where the external input is reduced or increased by 1Hz every 10s.
The variation of the mean firing rate estimates the range of coexistence of fixed-points
by considering that 10 s is long enough to demonstrate the existence of a steady-state.

G.1.1.3 Sensitive analysis of polynomial coefficients of the
phenomenal threshold of the transfer function

The sensitivity analysis in this study quantifies the variation of a fixed-point depen-
ding on a number of significant digits of the coefficients. We choose to quantify the
variability of the fixed-point for b = 0 and for an excitatory firing rate equal 10 Hz. A
numerical continuation of this fixed-point is performed for each coefficient. From
these numerical continuations, we quantify the variation of the polynomial coeffi-
cients for the variability of 0.1Hz, 1Hz and 10Hz of the firing rate of the fixed-point. By
taking the higher variability of coefficients, we find the minimal number of digits for
these three precision of the fixed-point. However, this analysis does not consider the
variance due to the variation of the combination of two or more coefficients.

G.1.1.4 Existence of negative derivation for null firing rate

The transfer function is not defined for a negative firing rate and the mean-field
should not define negative derivation for a null firing rate. However, for specific value
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of the mean-field is not the case. For identifying these values, we assume that the firing
rate of a population is null but also its variance and the covariance. By consequence,
the first order equation become :
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The supplementary figure G.11 displays the minimal positive value of the covariance
where this condition is respected.

G.1.2 Supplementary Note 2 : Data available

In the Zenodo repository, the data from simulations and analyses are available. The
available bifurcation analysis results from the numerical continuation of the mean-
field for all different values of adaptation spike trigger b (0., 30., 60.). However, the
bifurcations for the sensitivity analysis are not available. The repository contains the
result of the negative derivative for a null firing rate (see supplementary figure G.11)
for excitatory and inhibitory transfer functions. It also contains the data for fitting
the transfer function and the result of the fit. The only available spike trains are the
output of the short simulation with an external input rate of 10, 60 and 80 Hz used
in the figure A.1. The only additional data not saved in a database is the firing rate
of the steady-state of the analysis of the coexistence of fixed-point for each value of
b (see supplementary figure G.7 and G.8). The Zenodo repository contains multiple
databases : one database contains the analysis of the spike trains of the steady-state for
different external input firing rates for each seed (see supplementary figure G.1), one
database for each long simulation used in the analysis of the variability of firing rate
(see supplementary figure G.5 and G.6), one database for each parameter exploration
of the oscillatory input parameters of neural network (see figure A.4) and a unique
database for the parameters exploration of oscillatory input parameters for the mean-
field (see figure A.5).
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G.1.3 Supplementary Note 3 : Supplementary results of
spiking neural network

G.1.3.1 Firing rate and associated measures

The firing rate is the number of generated spikes by a neuron during 1 s. One mea-
sure of population synchronization quantifies the fluctuation of the population mean
firing rate (for windows of 0.1 and 1 ms) with the coefficient of variation [41]. Additio-
nally, one estimation of neural population frequency uses the dominant frequency
and its associated power of the population mean firing rate (for a window of 1 ms)
using Welch’s method [358] from the elephant package [89]. (Databases record average
(’rates_average’), standard deviation (’rates_std’), minimum (’rate_min’) and maxi-
mum (’rate_max’) mean firing rates ; for each (0.1 ms and 1 ms) the coefficient of
variation (’cvs_IFR_0_1ms’ and ’cvs_IFR_1ms’) ; and for a window of 1 ms, the domi-
nant frequency and its power(’frequency_hist_1_freq’ and ’frequency_hist_1_val’).

G.1.3.2 Inter-spiking interval and associated measures

The inter-spiking interval is the time between 2 spikes. The distribution of this
interval characterizes the regularity or irregularity of neuron spike generation [41],
which is quantified by two measures : coefficient of variation of firing rate [41] and local
variation [321][320]. These measures are provided by Elephant python package [89].
These measures are determined for viable estimation by considering only neurons
with more than 20 spikes in 10 s for analysis. (Databases record average (’ISI_average’),
standard deviation(’ISI_std’), minimum (’ISI_min’), and maximum (’ISI_max’) inter-
spiking intervals ; the average and standard deviation over the population of the
regularity measures (’cvs_ISI_average’, ’cvs_ISI_std’, ’lvs_ISI_average’ and ’lvs_ISI_-
std’) ; and the percentage of neurons with more than 20 spikes (’percentage’).

G.1.3.3 Phase and associated measures

Kuramoto proposed a model for describing and analyzing synchronization of cou-
pled intrinsic oscillators [211], based on the following equation :

∂θi

∂t
=ωi + K

N

N∑
j=1

sin
(
θ j −θi

)
, i = 1...N , (G.6)

where the system is composed of N limit-cycle oscillators, with phases θi and coupling
constant K.

The phase of a neuron can be defined by approximating the voltage membrane as an
intrinsic oscillator or by approximating the phase using a constant velocity between 2
spikes, similar to Borges et al. 2017 [32]. This study used the second approximation
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described in the following equation :

ψ(t ) = 2πm +2π
t − tm

tm+1 − tm
,∀t ∈ [tm , tm+1] (G.7)

where tm is the m-th spike of the neuron.
One measure of synchronization is the estimation of Kuramoto order-parameter of a
population, i.e. the absolute values of the mean phase. Additionally, one estimation of
neural population frequency uses the dominant frequency and its associated power of
the mean phase (for a window of 0.1 ms) using Welch’s method [358] from the elephant
package [89]. (Databases record average (’synch_Rs_average’), standard deviation
(’synch_Rs_std’), minimum (’synch_Rs_min’) and maximum (’synch_Rs_max’) of the
Kuramoto
order-parameter ; the start time and end time of the mean phase estimation (’synch_-
Rs_times_init’ and ’synch_Rs_times_end’) ; and for a window of 0.1 ms, the dominant
frequency and its power (’frequency_phase_freq’ and
’frequency_phase_val’).)

G.1.3.4 Bursts and associated measures

Bursts are consecutive spikes with inter-spike intervals of less than 10 ms. Additio-
nally, the regularity of bursts is analyzed similarly to inter-spike intervals. For neurons
with more than 20 bursts, the regularity of the interval of the beginning time of bursts
and also their ending time is quantified with the coefficient of variation and the lo-
cal variation. (Databases record average (’burst_count_average’, ’burst_nb_average’
and ’burst_rate_average’), standard deviation (’burst_count_std’, ’burst_nb_std’ and
’burst_rate_std’), maximum (’burst_count_max’, ’burst_nb_max’ and ’burst_rate_-
max’) and minimum (’burst_count_min’, ’burst_nb_min’ and ’burst_rate_min’) of a
number of spikes in the sequence of burst, number of burst by neurons during the
analysis and mean bursting rates ; the percentage of neurons which have one burst
(’percentage_burst’) ; average (”burst_interval_average’), standard deviation
(’burst_interval_std’), minimum (’burst_interval_min’), maximum
(’burst_interval_max’) ; and for neurons with more than 20 bursts, the average and the
standard deviation of the coefficient of variation (’burst_cv_begin_average’, ’burst_cv_-
end_average’, ’burst_cv_begin_std’, ’burst_cv_end_std’) and local variation (’burst_lv_-
begin_std’, ’burst_lv_end_std’, ’burst_lv_begin_average’,
’burst_lv_end_average’) of interval of the beginning time of bursts and also their en-
ding time.
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G.1.3.5 Relation with input firing rate

The mean phase difference between the oscillatory input and the oscillatory histo-
gram of the spiking neural network :

meanphase = 1

N

N∑
n=1

exp
(

j
(
θi nput (t ,n)−θnet wor k (t ,n)

))
(G.8)

where θi nput is the analytic signal given by the Hilbert transformation of the sinusoidal
input, and θnet wor k is the analytic signal provided by the Hilbert transformation of
the network oscillation signal. The absolute value of the meanphase corresponds
to the phase locking value as defined by Lachaux et al. 1999 [217]. The angle of the
meanphase corresponds to the phase shift [124]. This measure is calculated for a
histogram with a bin of 0.1 ms, 1.0 ms and 5 ms and a smoothed histogram with an
average sliding window of 5 ms. Additionally, the time scale of the network is only
analyzed for networks with oscillatory input. The time scale is quantified using the
auto-correlation function of elephant package [89]. The function is the implementa-
tion of the method proposed by Wieland et al. 2015 [361] :

τcorr =
∫ τmax

−τmax

[
Ĉ (τ)

Ĉ (0)

]2

dτ (G.9)

where Ĉ (τ) = 〈x(t )x(t −τ)〉〈x〉2−〈x〉δ(τ) with x(t ) =
N∑

n=1
δ(t−tn) for tn is the n-th spike

time of the spike trains.
(Databases with oscillatory input record phase locking value (’PLV_0_1ms’, ’PLV_1ms’,
’PLV_5ms’, ’PLV_w5ms’), phase shift (’PLV_angle_0_1ms’,
’PLV_angle_1ms’, ’PLV_angle_5ms’, ’PLV_angle_w5ms’ and
’MeanPhaseShift_0_1ms’, ’MeanPhaseShift_1ms’, ’MeanPhaseShift_5ms’, ’MeanPhase-
Shift_w5ms’), the coefficient of variation of the histogram (’cvs_IFR_0_1ms’, ’cvs_IFR_-
1ms’, ’cvs_IFR_5ms’, ’cvs_IFR_w5ms’), maximum of firing rate
(max_IFR_0_1ms, max_IFR_1ms, max_IFR_5ms, max_IFR_w5ms) for a bin of 0.1 ms, 1
ms, 5 ms and smoothing with windows of 5 ms.)
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G.1.4 Supplementary Note 4 : Supplementary results of
mean-field

G.1.4.1 Firing rate

The firing rate corresponds to the variable of the mean-field. This measure variable
is quantified, using similar methods that for the histogram of spiking neural network,
phase locking value, phase shift and dominant frequency. (Databases with oscillatory
input record average (’mean_rates’), standard deviation (’std_rates’), minimum (’min_-
rates’), maximum (’max_rate’) and dominant frequency (’frequency_dom’) of firing
rates and phase locking value
(’PLV_value’) and phase shift (’PLV_angle’) between the oscillatory input and the firing
rate)
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G.2. Supplementary Tables

G.2.1 Supplementary Table 1 : Description of the network
simulation simulation

A1 NEST : model summary
software NEST
topology Erdős - Rényi [108]
population excitatory and inhibitory

connectivity
random connectivity without self-recurrent connec-
tions

neuron model
adaptive exponential leaky integrate and fire neurons,
fixed threshold and fixed absolute refractory time

synapse model conductance-based exponential shape
plasticity none

input
independent fixed rate Poisson generator spike trains
to all neurons

measurement spike activity

A2 NEST : software
version alpha 3.0.0 (8f5a5f) [152]
integrator me-
thod

4th order Runge-Kutta-Fehlberg method

integration step 0.1 ms
number of seeds 8 (master seed : 0-30 or 46)

simulation time
2s (example), 5s(normal, transient :1s), 40s(long,

transient :10s) or variable(test stability, transient :10s)

A3 NEST : populations
name elements size
E aeif_cond_exp N_e = (1-gi nh)N = 8000
I aeif_cond_exp N_i = gi nhN = 2000
Pext Poisson generator 8000

Psi n ext
Sinusoidal Poisson genera-
tor

1
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A4 NEST : neuron model
name aeif

type
adaptive exponential leaky integrator and fire [37] with
conductance synapse

subtreshold
dynamics

Cm
dVm

d t
=− gL(Vm −EL)+ gL∆T e

Vm−Vth
∆T

− ge (t )(Vm −Eex)− gi (t )(Vm −Ei n)+ Ie

−w + Ie

τw
d w

d t
=a(Vm −EL)−w

reset condition

for t ( f ) = {t |Vm(t ) >=Vpeak }
— Vm([t ( f ); t ( f ) + tr e f ]) =Vr eset

— w([t ( f )]) = w([t ( f )])+b

NEST : synapse model
name cond_exp

type
post-synaptic conductance in the form of truncated
exponentials

coupling equa-
tion

ge (t ) = ∑
t

( f )
j

w j exp_tr unc(t − t j ,τs yn) with w j > 0.0

gi (t ) = ∑
t

( f )
j

w j exp_tr unc(t − t j ,τs yn) with w j < 0.0

exp_tr unc(t ,τ) = e1− t
τ Heavi si de(t )
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A5 NEST : neuron model parameters
excitatory neurons

Cm capacity of the membrane 200.0 pF
tr e f duration of refractory period 5.0 ms
Vr eset reset value for Vm after a spike -55.0 mV
EL leak reversal potential -63.0 mV
gL leak conductance 10.0 nS
∆T slope factor 2.0 mV
Vpeak spike detection threshold 0.0 mV
a subthreshold adaptation 0.0 nS
b spike-triggered adaptation 0.0/30.0/60.0pA
τw adaptation time constant 500.0 ms
Vth spike initiation threshold -50.0 mV
Ie constant external input current 0.0 pA
Eex excitatory reversal potential 0.0 mV
Ei n inhibitory reversal potential -80.0 mV
Vm initialization of the voltage membrane −65.0±100.0 mV
w initialization of adaptation current 200.0±200 pA

ge
initialization of excitatory synapse in-
put

0.0 pA

gi
initialization of inhibitory synapse in-
put

0.0 pA

inhibitory neurons
Cm capacity of the membrane 200.0 pF
tr e f duration of refractory period 5.0 ms
Vr eset reset value for Vm after a spike -65.0 mV
EL leak reversal potential -65.0 mV
gL leak conductance 10.0 nS
∆T slope factor 0.5 ms
Vpeak spike detection threshold 0.0 mV
a subthreshold adaptation 0.0 nS
b spike-triggered adaptation 0.0 pA
τw Adaptation time constant 1.0 ms
Vth spike initiation threshold -50.0 mV
Ie constant external input current 0.0 pA
Eex excitatory reversal potential 0.0 mV
Ei n inhibitory reversal potential -80.0 mV
Vm initialization of the voltage membrane −65.0±100.0 mV
w initialization of adaptation current 200.0±200 pA

ge
initialization of excitatory synapse in-
put

0.0 pA

gi
initialization of inhibitory synapse in-
put

0.0 pA
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A6 NEST : input
Poisson generator

equation p(n) = λn

n!
exp(−λ)

implementation
algorithm

Ahrens and Dieter 1982 [2]

excitatory
firing rate λex

0-100 Hz

Sinusoidal Poisson generator

equation p(n) =
(
r ate +a sin

(
f ∗n

))n

n!
exp

(−r ate +a sin
(

f ∗n
))

amplitude a 0-50 Hz
frequency f 0-50 Hz
average r ate 0-50 Hz
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A7 NEST : connectivity
parameter synapses

τex
rise time of excitatory synaptic conduc-
tance

5.0ms

τi n
rise time of inhibitory synaptic conduc-
tance

5.0ms

name source target weights pattern

EE E E Qe =1.5 nS

probability of connections is
0.05 between pairs of neu-
rons. Neurons cannot be di-
rectly connected to themselves
nor have multiple connections
with the same postsynaptic
neuron.

EI E I Qe =1.5 nS

probability of connections is
0.05 between pairs of neu-
rons. Neurons cannot be di-
rectly connected to themselves
nor have multiple connections
with the same postsynaptic
neuron.

IE I E Qi =5.0 nS

probability of connections is
0.05 between pairs of neu-
rons. Neurons cannot be di-
rectly connected to themselves
nor have multiple connections
with the same postsynaptic
neuron.

II I I Qi =5.0 nS

probability of connections is
0.05 between pairs of neu-
rons. Neurons cannot be di-
rectly connected to themselves
nor have multiple connections
with the same postsynaptic
neuron.

Pext E Pext E Qe =1.5 nS one generator by neuron.

Psi n ext E Psi n ext E Qe =1.5 nS
the generator is connected to
a neurons with a probability of
0.05.

A8 NEST : measurement
state variable spike time precision 0.1 ms

spike activities
raster plot precision 0.1 ms

simple moving average windows size T (5ms)
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TABLEAU G.1. – Description of the network simulation simulation
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G.2.2 Supplementary Table 2 : Description of the
mean-field simulation

B1 TVB : model summary
software The Virtual Brain [300]
Neural Mass mo-
del

mean-field of Ad Ex [106, 356]

connectivity None
input sinusoidal input
monitor raw values

B2 TVB : software
version 2.6
integrator me-
thod

Heun integrator

integration step 0.1 ms
simulation time 20.001 s (including a transient of 2.5 s)

B3 TVB : input and monitor

input sinusoidal input equation
r ate +

a sin
(

f ∗ t
)

amplitude a 0-50 Hz
frequency f 0-50 Hz

rate r ate 0 or 7 Hz
monitor Raw monitor state variable 0.1 ms
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B4 TVB : Neural Mass model
name Mean-Field AdEx [106]

type
Neural Mass model network of adaptive exponential integrate and fire excitatory

and inhibitory neurons of second statistical order

equation

T
∂νe

∂t
=(Fe −νe )+ 1

2
cee

∂2Fe

∂νe∂νe
+ 1

2
cei

∂2Fe

∂νe∂νi
+ 1

2
ci e

∂2Fe

∂νi∂νe
+ 1

2
ci i

∂2Fe

∂νi∂νi

T
∂νi

∂t
=(Fi −νi )+ 1

2
cee

∂2Fi

∂νe∂νe
+ 1

2
cei

∂2Fi

∂νe∂νi
+ 1

2
ci e

∂2Fi

∂νi∂νe
+ 1

2
ci i

∂2Fi

∂νi∂νi

T
∂cee

∂t
=(Fe −νe ) (Fe −νe )+ cee

∂Fe

∂νe
+ cee

∂Fe

∂νe
+ cei

∂Fe

∂νi
+ ci e

∂Fe

∂νi
−2cee

+ Fe (1/T −Fe )

Ne

T
∂cei

∂t
=(Fe −νe ) (Fi −νi )+ cee

∂Fi

∂νe
+ ci e

∂Fi

∂νi
+ cei

∂Fe

∂νe
+ ci i

∂Fe

∂νi
−2cei

T
∂ci e

∂t
=(Fi −νi ) (Fe −νe )+ cee

∂Fi

∂νe
+ ci e

∂Fi

∂νi
+ cei

∂Fe

∂νe
+ ci i

∂Fe

∂νi
−2ci e

T
∂ci i

∂t
=(Fi −νi ) (Fi −νi )+ ci e

∂Fi

∂νe
+ cei

∂Fi

∂νe
+ ci i

∂Fi

∂νi
+ ci i

∂Fi

∂νi
−2ci i

+ Fi (1/T −Fi )

Ni

τWe

∂We

∂t
=−We +beνe +ae (µV (νe ,νi ,We )−ELe )

τWi

∂Wi

∂t
=−Wi +biνi +ai (µV (νe ,νi ,Wi )−ELi )

transfer
func-
tion

Fe =F ((νe +1e −6),νext ,νi ,We )

Fi =F ((νe +1e −6),νext ,νi ,Wi )

F = 1

2τV
·Er f c(

V e f f
thr e −µVp

2σV
)

V e f f
thr e (µV ,σV ,τN

V =τV
gL

C m
) = P ′

0 +
∑

x∈{µV ,σV ,τN
V }

Px ·
(

x −x0

δx0

)

+ ∑
x,y∈{µV ,σV ,τN

V }2

Px y ·
(

x −x0

δx0

) (
y − y0

δy0

)
µG (νe ,νext ,νi ) = ((νe Ke +νext Kext )τeQe )+ (νi Kiτi Qi )+ gL

µVs (νe ,νext ,νi ,W,µG ) = ((νe Ke +νext Kext )τeQe )Ee + (νi Kiτi Qi )Ei + gLELs −W

µG

σV (µV ,µG ) =

√√√√√ ∑
s∈{e,i }

Ksνs

(
Qs
µG

(Es −µV )τs

)2

2Cm
µG

+τs

τV (µV ,µG ) =
∑

s∈{e,i } Ksνs

(
Qs
µG

(Es −µV )τs

)2

∑
s∈{ex,i n} Ksνs

(
Qs
µG

(Es−µV )τs

)2

2 Cm
µG

+τs
332
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B5 TVB : Neural Mass model parameters
T time resolution of the mean-field 5.0 ms
Cm capacity of the membrane 200.0 pF
ELe leak reversal potential excitatory(EL) -63.0 mV
ELi leak reversal potential inhibitory(EL) -65.0 mV
gL leak conductance 10.0 nS

ae
subthreshold adaptation of excitatory
neurons(a)

0.0 nS

be
spike-triggered adaptation of excitatory
neurons(b)

0.0/30.0/60.0 pA

τWe

adaptation time constant of excitatory
neurons(τw )

500.0 ms

ai
subthreshold adaptation of inhibitory
neurons(a)

0.0 nS

bi
spike-triggered adaptation inhibitory
neurons(b)

0.0 pA

τWi

adaptation time constant of inhibitory
neurons(τw )

1.0 ms

Ee excitatory reversal potential(Eex) 0.0 mV

τe
rise time of excitatory synaptic
conductance(τex)

5.0 ms

Qe excitatory quantal conductance 1.5 nS
Ei inhibitory reversal potential(Ei n) -80.0 mV

τi
rise time of inhibitory synaptic
conductance(τi n)

5.0 ms

Qi inhibitory quantal conductance 5.0 nS
pconnectprobability of connection 0.05
Ntot number of total neurons 10000
pi percentage of inhibitory neurons 0.2
Ne number of excitatory neurons Ntot (1−pi ) =8000
Ni number of inhibitory neurons Ntot pi =2000

Ke
mean number of input excitatory synapses :
Ne pconnect

400

Ki
mean number of input inhibitory synapses :
Ni pconnect

100

νext external input see external input section

initial condition
µE : 0.H z;µi : 0.H z;cee : 0.;cei :

0.;ci i : 0.;We : 1000.p A;Wi : 0.p A
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Pe

second order
polynomial of
the phenomeno-
logical threshold
for inhibitory
neuron in mV

P0 PµV PσV PτN
V

-4.923163e-02 1.762790e-03 -7.677835e-04 -3.824880e-03
Pµ2

V
Pσ2

V
P(τN

V )2

2.356120e-04 4.0210098e-03 1.812297e-03
PµV σV PµV τ

N
V

PσV τ
N
V

-3.723180e-05 1.929229e-04 3.974934e-03

Pi

second order
polynomial of
the phenomeno-
logical threshold
for inhibitory
neuron in mV

P0 PµV PσV PτN
V

-5.079953e-2 2.139835e-3 -4.646189e-3 3.727148e-4
Pµ2

V
Pσ2

V
P(τN

V )2

5.053228e-4 1.304294e-3 -1.073580e-2
PµV σV PµV τ

N
V

PσV τ
N
V

1.995937e-3 1.932031e-3 -1.015957e-2

TABLEAU G.2. – Description of the mean-field simulation
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G.3. Supplementary Figures

SUPPLEMENTARY FIGURE G.1. – Variability of fixed-point from network simulation
with and without adaptation

Each violin represents the distribution of the mean firing rate of an excitatory or
inhibitory population of 4 seconds after 1 second of transient for 30 networks. A, B :
These violins in the top graphics represent the distribution of the estimated fixed-
point for the mean firing rate of excitatory dependent on the excitatory external firing
rate. C, D : These violins in the top graphics represent the distribution of the estimated
fixed-point for the mean firing rate of excitatory dependent on the excitatory external
firing rate. The additional curve represents the bifurcation diagram of the mean-field.
The left graphics (A and C) is for cases without adaptation, and the right graphics (B
and D) is for cases with spike-trigger adaptation equals 60 pA.
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SUPPLEMENTARY FIGURE G.2. – Bifurcation diagram of external excitatory input for
spike-trigger adaptation equals 0.0 pA

Each graphic represents the bifurcation diagram for each variable of the mean-field (A :
firing rate of excitatory population, D : firing rate of inhibitory population, G : mean
adaptation current, C : variance of excitatory firing rate, F : variance of inhibitory firing
rate, H : covariance of the firing rate of the inhibitory and excitatory population). The
black curve style represents the stability of the fixed-point (continuous line for stable
fix points and dashed lines for unstable fix points). The curve style represents the
stability of the fixed-point (continuous line for stable fix points and dashed lines for
unstable fix points). The graphics B and E enlarge the bottom part of their left graphic
(A and D). The black crosses are the estimation of the fixed-point using network
simulation. The bifurcation points are indicated with a red cross and a letter that
means the type of bifurcation (H : Hopf bifurcation and LP : limit point or saddle-node
bifurcation).
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SUPPLEMENTARY FIGURE G.3. – Bifurcation diagram of external excitatory input for
spike-trigger adaptation equals 30.0 pA

Each graphic represents the bifurcation diagram for each variable of the mean-field (A :
firing rate of excitatory population, D : firing rate of inhibitory population, G : mean
adaptation current, C : variance of excitatory firing rate, F : variance of inhibitory firing
rate, H : covariance of the firing rate of the inhibitory and excitatory population). The
blue curve style represents the stability of the fixed-point (continuous line for stable fix
points and dashed lines for unstable fix points). The curve style represents the stability
of the fixed-point (continuous line for stable fix points and dashed lines for unstable
fix points). The graphics B and E enlarge the bottom part of their left graphic (A and
D). The blue crosses are the estimation of the fixed-point using network simulation.
The bifurcation points are indicated with a red cross and a letter that means the type
of bifurcation (H : Hopf bifurcation and LP : limit point or saddle-node bifurcation).
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SUPPLEMENTARY FIGURE G.4. – Bifurcation diagram of external excitatory input for
spike-trigger adaptation equals 60.0 pA

Each graphic represents the bifurcation diagram for each variable of the mean-field (A :
firing rate of excitatory population, D : firing rate of inhibitory population, G : mean
adaptation current, C : variance of excitatory firing rate, F : variance of inhibitory firing
rate, H : covariance of the firing rate of the inhibitory and excitatory population). The
green curve style represents the stability of the fixed-point (continuous line for stable
fix points and dashed lines for unstable fix points). The curve style represents the
stability of the fixed-point (continuous line for stable fix points and dashed lines for
unstable fix points). The graphics B and E enlarge the bottom part of their left graphic
(A and D). The green crosses are the estimation of the fixed-point using network
simulation. The bifurcation points are indicated with a red cross and a letter that
means the type of bifurcation (H : Hopf bifurcation and LP : limit point or saddle-node
bifurcation).
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SUPPLEMENTARY FIGURE G.5. – Variability of the measure of the firing rate
Each violin plot represents the distribution in function of the time windows for the
measures associated with the variable of the mean-field, i.e. the mean and variance
of firing rate for excitatory and inhibitory. The distribution represents the values of
5000 measures taken randomly over 30 seconds of smoothing instantaneous firing
rate with sliding windows of 5 ms. The instantaneous firing rate is recorded from a
unique spiking neural network with no adaptation and an excitatory external firing
rate of 10 Hz. A, B : The top graphics represent the mean firing rate of each population.
C, D, E : the bottom graphics represent the variance and covariance of these two
populations. The left graphics (A and C) are associated with the excitatory population,
and the central graphics (C and D) are associated with the inhibitory population. On
each graphic, the red line represents the mean of each distribution, and the blue
shape represents a rotated kernel density. We can see an exponential decrease in the
variability. At the difference of the mean firing rate, the mean of the distribution of the
variance and covariance change with the size of the window, and the distribution is
not symmetric. The width of the distribution of the variance and covariance increase
for a window size of 1.5 ms and 20 ms.
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SUPPLEMENTARY FIGURE G.6. – Variability of the measure of the firing rate
Each violin plot represents the distribution in function of the time windows for the
measures associated with the variable of the mean-field, i.e. the mean and variance
of firing rate for excitatory and inhibitory. The distribution represents the values of
5000 measures taken randomly over 30 seconds of smoothing instantaneous firing
rate with sliding windows of 5 ms. The instantaneous firing rate is recorded from a
unique spiking neural network with no adaptation and an excitatory external firing
rate of 60 Hz. A, B : The top graphics represent the mean firing rate of each population.
C, D, E : the bottom graphics represent the variance and covariance of these two
populations. The left graphics (A and C) are associated with the excitatory population,
and the central graphics (C and D) are associated with the inhibitory population. On
each graphic, the red line represents the mean of each distribution, and the blue
shape represents a rotated kernel density. We can see the variance become smaller for
the window’s size smaller than the previous figure except for the covariance. At the
difference of the mean firing rate, the mean of the distribution of the variance and
covariance change with the size of the window. The large variance for small variance
is due to the oscillation of the network at a frequency of around 200 Hz.
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SUPPLEMENTARY FIGURE G.7. – Estimation and comparison of the high fixed-point
A, B, C : The top graphics represent the mean firing rate of the excitatory population
depending on the external excitatory input value. D, E, F : The bottom graphics
represent the mean firing rate of the inhibitory population depending on the external
excitatory input. The left graphics (A, D) are for neurons without adaptation, the
central graphics (B, E) are for the excitatory population with a spike trigger at 30 pA,
and the right graphics (C, F) are for the excitatory population with a spike trigger at 60
pA. The curve and the crosses are the same as the figure A.2 (see its caption for more
details). The circles represent the mean firing rate over 10 seconds every 10 seconds
for one network simulation. During these network simulations, the external excitatory
input is reduced to 1 Hz every 10 seconds, from 51 Hz to 0 Hz.
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SUPPLEMENTARY FIGURE G.8. – Estimation and comparison of the low fixed-point
A, B, C : The top graphics represent the mean firing rate of the excitatory population
depending on the external excitatory input value. D, E, F : The bottom graphics
represent the mean firing rate of the inhibitory population depending on the external
excitatory input. The left graphics (A, D) are for neurons without adaptation, the
central graphics (B, E) are for the excitatory population with a spike trigger at 30 pA,
and the right graphics (C, F) are for the excitatory population with a spike trigger at 60
pA. The curve and the crosses are the same as the figure A.2 (see its caption for more
details). The circles represent the mean firing rate over 10 seconds every 10 seconds
for one network simulation. During these network simulations, the external excitatory
input is reduced to 1 Hz every 10 seconds, from 48 Hz to 99 Hz.
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SUPPLEMENTARY FIGURE G.9. – Fitting of Transfer functions full
This figure enlarges the figure A.3. A, C, E : The left part is dedicated to the excitatory
neuron. B, D, F, The right part is dedicated to the inhibitory neuron. The top graph (A
and B) represents the transfer function of the mean-field fitted to the data. The middle
graph (C and D) shows the data used for the fitting, which is the mean firing rate
of 50 independent neurons. The bottom graph (E and F) displays the error between
the transfer function and the data. Each line is associated with a different value of
inhibitory firing rate (20 values evenly distributed between 0 Hz and 40 Hz).
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SUPPLEMENTARY FIGURE G.10. – Estimation of error of the transfer function for neu-
rons in the presence of negative current

A, B : The top graphics represent the transfer function fit with (continuous dark blue
line) and without (light dashed blue line) data of firing rate with a negative current. C,
D : The middle graphics display the difference between the transfer function fitted with
data of negative current. E, F : The bottom graphics display the difference between
the transfer function fitted without the data of negative current. The left graphics is
data of the mean firing rate
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SUPPLEMENTARY FIGURE G.11. – Negative derivative of the transfer function for zeros
firing rate

The graphics display the value of the variance of population A for which the mean
firing rate of population B becomes a negative value for a specific value of the mean
firing rate of population B and mean adaptive current. A, C : The top graphic illustrates
the variance of the inhibitory population for getting a negative mean excitatory firing
rate. B, D : The bottom graphic illustrates the variance of the excitatory population for
getting a negative mean inhibitory firing rate. The right graphics (A and B) enlarge the
left graphics (C and D).
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SUPPLEMENTARY FIGURE G.12. – Comparison between the mean-field and the spi-
king network in the presence of oscillatory input
with a mean rate of 7Hz and adaptation (b = 60.0p A)

A,B, C : The top graphics represent the measure of the excitatory population in the
spiking neural network. D, E, F : The bottom graphics illustrate the measure of the
excitatory mean firing rate of the mean-field. The three measures displayed here
are the phase locking values in rad (A and D), the phase shift (B and E) between
the oscillatory input and the mean firing rate in rad, and the excitatory population’s
maximum firing rate in Hz (C and F).
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SUPPLEMENTARY FIGURE G.13. – Comparison between the mean-field and the spi-
king network in the presence of oscillatory input
with a mean rate of 0Hz

A,B, C : The top graphics represent the measure of the excitatory population in the
spiking neural network. D, E, F : The bottom graphics illustrate the measure of the
excitatory mean firing rate of the mean-field. The three measures displayed here
are the phase locking values in rad (A and D), the phase shift (B and E) between
the oscillatory input and the mean firing rate in rad, and the excitatory population’s
maximum firing rate in Hz (C and F).

347



G. Supplementary material of Annex A – G.3. Supplementary Figures

SUPPLEMENTARY FIGURE G.14. – Comparison between the mean-field and the spi-
king network in the presence of oscillatory input
with a mean rate of 0Hz and adaptation (b = 60.0p A)

A,B, C : The top graphics represent the measure of the excitatory population in the
spiking neural network. D, E, F : The bottom graphics illustrate the measure of the
excitatory mean firing rate of the mean-field. The three measures displayed here
are the phase locking values in rad (A and D), the phase shift (B and E) between
the oscillatory input and the mean firing rate in rad, and the excitatory population’s
maximum firing rate in Hz (C and F).
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A1 Brian : Model Summary
Software Brian
Topology
Population excitatory and inhibitory

Connectivity random connection without self recurrent connections

Neuron Model
adaptive exponential leaky integrate and fire neurons, fixed
threshold and fixed absolute refractory time

Synapse Model conductance-based exponential shape
Plasticity

Input
Independent fixed rate Poisson generator spike trains to all neu-
rons

Measurement Voltage, Adaptation Current, Spike Activity

A2 Brain : Software
version 2.
integrator method Heun method
integration step 0.1 ms

number of seed 1
simulation time 3000ms

A3 Brian : Populations
Name Elements Size

E aeif cond exp N e = (1-ginh)N = 8000
I aeif cond exp N i = ginhN = 2000
Pext poisson generator 8000

1



A4 Brian : Neuron Model
Name aeif

Type
adaptive exponential leaky integrator

and fire with conductance synapse

subtreshold dynamics

Cm
dVm
dt

=− gL(Vm − EL) + gL∆T e
Vm−Vth

∆T

− ge(t)(Vm − Eex)− gi(t)(Vm − Ein)

−W + Ie

τw
dW

dt
=a(Vm − EL)−W

reset condition

For t(f) = {t|Vm(t) >= Vpeak}

• Vm([t(f); t(f) + tref ]) = Vreset

• W ([t(f)]) = W ([t(f)]) + b

Brian : Synapse Model
Name cond exp

Type
post-synaptic conductance in the form of truncated

exponentials

Coupling equation

ge(t) =
∑

t
(f)
j

wjexp trunc(t− tj , τex) with wj > 0.0

gi(t) =
∑

t
(f)
j

wjexp trunc(t− tj , τin) with wj < 0.0

exp trunc(t, τ) = e1−
t
τHeaviside(t)
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A5 Brian : Neuron Model Parameters
excitatory
neurons

Cm Capacity of the membrane 200.0 pF
tref Duration of refractory period 5.0 ms
VresetReset value for Vm after a spike -55.0 mV
EL Leak reversal potential -63.0 mV
gL Leak conductance 10.0 nS
∆T Slope factor 2.0 mV
Vpeak Spike detection threshold -40.0 mV
a Subthreshold adaptation 0.0 nS

b Spike-triggered adaptation
1.0pA for AI
and 60.0 for

UDstate
τw Adaptation time constant 500.0 ms
Vth Spike initiation threshold -50.0 mV
Ie Constant external input current 0.0 pA
Eex Excitatory reversal potential 0.0 mV
Ein Inhibitory reversal potential -80.0 mV
Vm Initialization of the voltage membrane -65.0 mV
W Initialization of adaptation current 1.35 pA

inhibitory
neurons

Cm Capacity of the membrane 200.0 pF
tref Duration of refractory period 5.0 ms
VresetReset value for Vm after a spike -65.0 mV
EL Leak reversal potential -75.0 mV
gL Leak conductance 10.0 nS
∆T Slope factor 0.5 ms
Vpeak Spike detection threshold -47.5 mV
a Subthreshold adaptation 0.0 nS
b Spike-triggered adaptation 0.0 pA
τw Adaptation time constant 1.0 ms
Vth Spike initiation threshold -50.0 mV
Ie Constant external input current 0.0 pA
Eex Excitatory reversal potential 0.0 mV
Ein Inhibitory reversal potential -80.0 mV
Vm Initialization of the voltage membrane -65.0 mV
W Initialization of adaptation current 0.0 pA

A6 Brian : Input
Poisson generator

equation p(n) =
λn

n!
exp(−λ)

implementation approximation with the binomial law

excitatory firing
rate λex

0.35
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A7 Brian : Connectivity
parameter synapses

τex
Rise time of excitatory
synaptic conductance

5.0ms

τin
Rise time of inhibitory
synaptic conductance

5.0ms

Name Source Target Weights Pattern

EE E E Qe=1.5 nS

The probability of connections
is 0.05 between pair of neurons.
The neuron can’t connected to
itself and it can’t have multiple
connections with the same neu-
rons.

EI E I Qe=1.5 nS

The probability of connections
is 0.05 between pair of neurons.
The neuron can’t have multiple
connections with the same neu-
rons.

IE I E Qi=5.0 nS

The probability of connections
is 0.05 between pair of neurons.
The neuron can’t have multiple
connections with the same neu-
rons.

II I I Qi=5.0 nS

The probability of connections
is 0.05 between pair of neurons.
The neuron can’t connected to
itself and it can’t have multiple
connections with the same neu-
rons.

PextE Pext E Qe=1.5 nS

The probability of connections
is 0.05 between pair of neurons.
The neuron can’t have multiple
connections with the same neu-
rons.

PextI Pext I Qe=1.5 nS

The probability of connections
is 0.05 between pair of neurons.
The neuron can’t have multiple
connections with the same neu-
rons.

A8 Brain : Measurement

state variable
spike time precision 0.1 ms

number of
recorded
neurons

all

spike activities
raster plot precision 0.1 ms

histogram of
instantaneous firing rate

bins 0.1ms

simple moving average windows size T (20ms)
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B1 TVB : Model Summary
Software TVB
Neural Mass model Mean Adaptive Exponential
Connectivity Mouse connectome with 104 regions

Coupling linear coupling
stimulus
Monitors state variable of the mean field

B2 TVB : Software
version 2.1
integrator method Heun method
integration step 0.1 ms

number of seed 1
simulation time 3000ms

B3 TVB : Coupling
Name Linear

Type Linear coupling

equations νextk = a ∗
(
j=1∑

104

ukjνej (t− τkj)
)

+ b

where ukj are the elements of the weights matrix, τkj
are the elements of the delay matrix and νej are the

mean excitatory firing rate of the regions j.
parameters a = 1.0 and b = 0.0

B4 TVB : Connectivity
Connectivity is extracted from tracer data as explained by the paper TVBM

number of region 104
tract lengths maximum : 115.46 and mean : 53.58
speed 3 ms

weights
The weigths are normalize such as the sum of the

input weight to one region eguals 1. (maximum : 0.73
and mean : 0.02)

centers average center of mouse brain : [57., 74.97, 42.53]
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B4 TVB : Connectivity

region name
the region name are extracted from Allen Mouse Brain Connectivity

Atlas
Right Primary motor area, Right Secondary motor area, Right

Primary somatosensory area nose, Right Primary somatosensory
area barrel field, Right Primary somatosensory area lower limb,

Right Primary somatosensory area mouth, Right Primary
somatosensory area upper limb, Right Supplemental somatosensory

area, Right Gustatory areas, Right Visceral area, Right Dorsal
auditory area, Right Primary auditory area, Right Ventral auditory

area, Right Primary visual area, Right Anterior cingulate area
dorsal part, Right Anterior cingulate area ventral part, Right

Agranular insular area dorsal part, Right Retrosplenial area dorsal
part, Right Retrosplenial area ventral part, Right Temporal

association areas, Right Perirhinal area, Right Ectorhinal area,
Right Main olfactory bulb, Right Anterior olfactory nucleus, Right
Piriform area, Right Cortical amygdalar area posterior part, Right

Field CA1, Right Field CA3, Right Dentate gyrus, Right Entorhinal
area lateral part, Right Entorhinal area medial part dorsal zone,

Right Subiculum, Right Caudoputamen , Right Nucleus accumbens
, Right Olfactory tubercle , Right Substantia innominata , Right

Lateral hypothalamic area , Right Superior colliculus sensory
related , Right Inferior colliculus , Right Midbrain reticular nucleus

, Right Superior colliculus motor related , Right Periaqueductal
gray , Right Pontine reticular nucleus caudal part , Right Pontine

reticular nucleus , Right Intermediate reticular nucleus , Right
Central lobule , Right Culmen , Right Simple lobule , Right
Ansiform lobule , Right Paramedian lobule , Right Copula

pyramidis , Right Paraflocculus , Left Primary motor area, Left
Secondary motor area, Left Primary somatosensory area nose, Left

Primary somatosensory area barrel field, Left Primary
somatosensory area lower limb, Left Primary somatosensory area

mouth, Left Primary somatosensory area upper limb, Left
Supplemental somatosensory area, Left Gustatory areas, Left

Visceral area, Left Dorsal auditory area, Left Primary auditory
area, Left Ventral auditory area, Left Primary visual area, Left
Anterior cingulate area dorsal part, Left Anterior cingulate area

ventral part, Left Agranular insular area dorsal part, Left
Retrosplenial area dorsal part, Left Retrosplenial area ventral part,

Left Temporal association areas, Left Perirhinal area, Left
Ectorhinal area, Left Main olfactory bulb, Left Anterior olfactory
nucleus, Left Piriform area, Left Cortical amygdalar area posterior

part, Left Field CA1, Left Field CA3, Left Dentate gyrus, Left
Entorhinal area lateral part, Left Entorhinal area medial part dorsal

zone, Left Subiculum, Left Caudoputamen , Left Nucleus
accumbens , Left Olfactory tubercle , Left Substantia innominata ,
Left Lateral hypothalamic area , Left Superior colliculus sensory

related , Left Inferior colliculus , Left Midbrain reticular nucleus ,
Left Superior colliculus motor related , Left Periaqueductal gray ,
Left Pontine reticular nucleus caudal part , Left Pontine reticular
nucleus , Left Intermediate reticular nucleus , Left Central lobule ,

Left Culmen , Left Simple lobule , Left Ansiform lobule , Left
Paramedian lobule , Left Copula pyramidis , Left Paraflocculus
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B5 TVB : Neural Mass Model
Name Mean Ad Ex

Type
Neural mass model of network of adaptive exponential integrate and fire excitatory

and inhibitory neurons of second statistical order

equation

T
∂νe
∂t

=(Fe − νe) +
1

2
cee

∂2Fe
∂νe∂νe

+
1

2
cei

∂2Fe
∂νe∂νi

+
1

2
cie

∂2Fe
∂νi∂νe

+
1

2
cii

∂2Fe
∂νi∂νi

T
∂νi
∂t

=(Fi − νi) +
1

2
cee

∂2Fi
∂νe∂νe

+
1

2
cei

∂2Fi
∂νe∂νi

+
1

2
cie

∂2Fi
∂νi∂νe

+
1

2
cii

∂2Fi
∂νi∂νi

T
∂cee
∂t

=(Fe − νe) (Fe − νe) + cee
∂Fe
∂νe

+ cee
∂Fe
∂νe

+ cei
∂Fi
∂νe

+ cie
∂Fi
∂νe
− 2cee

+
Fe (1/T −Fe)

Ne

T
∂cei
∂t

=(Fe − νe) (Fi − νi) + cee
∂Fe
∂νe

+ cei
∂Fe
∂νi

+ cei
∂Fi
∂νe

+ cii
∂Fi
∂νi
− 2cei

T
∂cie
∂t

=(Fi − νi) (Fe − νe) + cie
∂Fe
∂νi

+ cee
∂Fe
∂νe

+ cii
∂Fi
∂νi

+ cie
∂Fi
∂νe
− 2cie

T
∂cii
∂t

=(Fi − νi) (Fi − νi) + cie
∂Fe
∂νi

+ cei
∂Fe
∂νi

+ cii
∂Fi
∂νi

+ cii
∂Fi
∂νi
− 2cii

+
Fi (1/T −Fi)

Ni

τWe

∂We

∂t
= −We + beνe + ae(µV (νe, νi,We)− ELe)

τWi

∂Wi

∂t
= −Wi + biνi + ai(µV (νe, νi,Wi)− ELi)

noise
equation

Ornstein-Uhlenbeck process : τOU
dOUt
dt = (µ−OUt) + σ dWt

with Wt is a Wiener process

transfer
function

Fe =F((νe + 1e− 6), νext + +wσOUt, νi,We)

Fi =F((νe + 1e− 6) + wσOUt, νext, νi,Wi)

F =
1

2 τV
· Erfc(V

eff
thre − µV√

2σV
)

V effthre(µV , σV , τ
N
V =τV

gL
Cm

) = P ′0 +
∑

x∈{µV ,σV ,τNV }
Px ·

(
x− x0
δx0

)

+
∑

x,y∈{µV ,σV ,τNV }2
Pxy ·

(
x− x0
δx0

) (
y − y0
δy0

)

µG(νe, νext, νi) = ((νeKe + νextKext)τeQe) + (νiKiτiQi) + gL

µVs(νe, νext, νi, w, µG) =
((νeKe + νextKext)τeQe)Ee + (νiKiτiQi)Ei + gLELs − w

µG

σV (µV , µG) =

√√√√√ ∑

s∈{e,i}
Ksνs

(
Qs
µG

(Es − µV )τs

)2

2CmµG + τs

τV (µV , µG) =

∑
s∈{e,i}Ksνs

(
Qs
µG

(Es − µV )τs

)2

∑
s∈{ex,in}Ksνs

(
Qs
µG

(Es−µV )τs
)2

2CmµG
+τs
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B6 TVB : Neural Mass Model Parameters

case Asynchronous
Irregular

Synchronize
Regular
bursting

T time resolution of the mean field 20.0ms
Cm Capacity of the membrane 200.0 pF
ELe Leak reversal potential excitatory(EL) -64.5 mV -64.5 mV -74.0 mV
ELi Leak reversal potential inhibitory(EL) -65.0 mV -65.0 mV -75.0 mV
gL Leak conductance 10.0 nS

ae
Subthreshold adaptation of excitatory
neurons(a)

0.0 nS

be
Spike-triggered adaptation of excita-
tory neurons(b)

10.0 pA 100.0 pA 50.0 pA

τWe

Adaptation time constant of excitatory
neurons(τw)

500.0 ms 500.0 ms 150.0 ms

ai
Subthreshold adaptation of inhibitory
neurons(a)

0.0 nS

bi
Spike-triggered adaptation inhibitory
neurons(b)

0.0 pA

τWi

Adaptation time constant of inhibitory
neurons(τw)

1.0 ms

Ee Excitatory reversal potential(Eex) 0.0 mV

τe
Rise time of excitatory synaptic
conductance(τex)

5.0 ms

Qe excitatory quantal conductance 1.0 nS
Ei Inhibitory reversal potential(Ein) -80.0 mV

τi
Rise time of inhibitory synaptic
conductance(τin)

5.0 ms

Qi inhibitory quantal conductance 10.0 nS 5.0 nS 10.0 nS
pconnect probability of connection 0.05 0.05 0.005
Ntot Number of total neurons 10000
pi percentage of inhibitory neurons 0.2
Ne Number of excitatory neurons Ntot(1− pi) =8000
Ni Number of inhibitory neurons Ntotpi =2000

Ke
mean number of input excitatory
synapses : Nepconnect

400 400 40

Ki
mean number of input inhibitory
synapses : Nipconnect

100 100 10

Kexte number of external excitatory synapse 115 300 90

Pe

second order polynomial of the phe-
nomenological threshold for inhibitory
neuron in mV

P0 PµV PσV PτNV
-0.0498 0.00506 -0.025 0.0014
Pµ2

V
Pσ2

V
P(τNV )2

-0.00041 0.0105 -0.036
PµV σV PµV τNV PσV τNV
0.0074 -0.0012 -0.0407

Pi

second order polynomial of the phe-
nomenological threshold for inhibitory
neuron in mV

P0 PµV PσV PτNV
-0.0514 0.004 -0.0083 0.0002
Pµ2

V
Pσ2

V
P(τNV )2

-0.0005 0.0014 -0.014
PµV σV PµV τNV PσV τNV
0.0045 0.0028 -0.00153

νext external input see coupling section
wσ weight of the noise 1e-5
σ variation of the noise 0.2
µ mean of the noise 0.7
τOU mean of the noise 0.7

initial condition (random between max-
imum and minimum)

µE(kHz) : (0., 0.) µi(kHz) : (0., 0.)
cee : (0., 0.) cei : (0., 0.)
cii : (0., 0.)

We(pA) : (5., 0.) Wi(pA) : (0., 0.)
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B7 TVB : Monitor

state variable

Mean firing rate of excitatory and in-
hibitory population, the variation of ex-
citatory and inhibitory firing rate, the
co-variation between excitatory and in-
hibitory firing rate, mean adaptive current
of excitatory and inhibitory firing rate
precision : dt (0.1ms)
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Supplementary Note: The EBRAINS Collaboratory
The EBRAINS Collaboratory provides protected workspaces for researchers to cooperate on projects
via the internet,  to host and exchange data,  code and documentation. It  consists  of  lightweight
'collabs', isolated workspaces with explicit access control--other EBRAINS users can be added to a
collab with different roles that have specific permissions, in an environment that follows strict data
protection guidelines (see section Supplementary Methods: Data protection in the TVB on EBRAINS
cloud).  For  detailed  and  continuously  updated  documentation,  please  refer  to
wiki.ebrains.eu/bin/view/Collabs/the-collaboratory.

The Collaboratory is based on open-source tools:

 XWiki (wiki.ebrains.eu) is a wiki platform for collaborative content creation, version control,
permission  control,  search,  templating,  file  management,  blogs,  calendar  functions,
discussion forums, and task management.

 Keycloak  (iam.ebrains.eu)  provides  identity  and  access  management,  single  sign-on
authentication, and permission control for all EBRAINS cloud services.

 Seafile (drive.ebrains.eu) is a cloud storage system with web interface to upload, download,
manage, share, and synchronize files.

 OnlyOffice  (office.ebrains.eu)  is  an  office  suite  for  collaborative  word  processing,
spreadsheets, and presentations.

 JupyterLab (lab.ebrains.eu) is a web-based interactive development environment for Jupyter
notebooks.

Seafile implements the EBRAINS Drive,  which is the central  data-sharing place of  EBRAINS.  Each
collab has a Drive where all data belonging to that collab is centrally stored. A collab's Drive can be
accessed by clicking on the link "Drive" in the left sidebar of the collab. With Drive, users can upload,
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synchronize  and share  files  with  private  or  public  groups and devices.  Drive  keeps track  of  the
contributions from different authors and the history of the file during its evolution, which enables
versioning  with  roll-back  to  previous  versions  and  exact  tracking  of  individual  contributions.  In
private collabs data sharing is disabled per default and users have to either actively enable public
sharing, or actively specify the permissions of the collab members. Sharing can also be restricted in
time,  and,  e.g.,  expire  after  a  set  date.  In  addition  to  a  web-interface,  Seafile  also  provides
standalone clients for file browsing and data synchronization. Drive enables data exchange not only
between users, but also between EBRAINS services. A service can fetch data from a collab's drive and
either use it directly or forward it to other services. As an example, an application may load input
data from one collab, store intermediary outputs in a second collab, and store final results in a third
collab, all with different access permissions. In this way it becomes possible to protect sensitive data
at raw or intermediary processing stages from unintended disclosure, and only grant access to final
results. 

Drive implements role-based access control  for permission management that can be individually
specified for  each collab.  To share data or work collaboratively,  users  can add other  users to a
collab's team and then define a 'role' for each team member. Viewers have read-only access, Editors
can read, modify, create and delete subpages, and Admins have permission to do all of the former,
plus adding and removing team members. Permissions within a Collab are invariant across all pages
in the wiki and all files in the Drive. For example, a user with Viewer Role will be able to execute a
Jupyter notebook that is stored in the collab's Drive, but the user will not be able to save changes to
the notebook or write out data. In order to make changes to read-only content, users have the
option  to  copy  the  content  into  a  collab  where  they  have  write  permissions.  To  share  results
publicly, users can set up public collabs that are read-only accessible without EBRAINS account or
share 'public  links'  for public read-only access to individual  files in a private collab.  'Smart  links'
provide access for each user based on their individual roles. Roles can be defined for individual users
or  groups of  users.  Users  can be grouped into 'Units'  or  'Groups'.  Units  are used to map static
relationships,  like membership with an Institution, Country,  or Project, and are managed by the
administrators  of  the  partnering  institutions.  Examples  for  Units  are  "Spain",  "University  of
Aberdeen",  "Institutions",  "Projects",  "Administrators",  or  "Sub-Project  1  -  Mouse  Brain
Organisation". To become a member of a  Unit,  a user can navigate to the Unit's  wiki  page and
formally "Request to Join", by clicking the respective button. The request will then be evaluated by
the administrators of the Unit and the User notified via email. In contrast, Groups are used to map
dynamic  relationships.  Groups  can  be  created  and  managed  ad  hoc  by  every  user  with
administration  rights  for  that  group  and  simply  add  other  Users  or  Units  to  this  Group.
Administrators can be appointed at every level of the Groups tree and an administrator that was
appointed  for  a  certain  parent  node  is  automatically  administrator  for  all  child  nodes  and  all
descendants. Users and Units are managed in Keycloak, although therein the latter is called 'User
groups', while Roles are called 'Client Roles'. 

Lab is EBRAINS' main environment for code development. Lab hosts JupyterLab, which is a web-
based interface for  Jupyter  notebooks.  Jupyter  notebooks are open-source web applications for
creating  and  sharing  richly  structured  documents  that  can  simultaneously  contain  live  code,
equations,  visualizations  and  narrative  text,  which  helps  keeping  detailed  track  of  complex
workflows--a prerequisite for reproducible research and effective education. Lab allows users to run
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code in the EBRAINS cloud in a private environment that is inaccessible by other users and that is
reset  after  24 hours  of  inactivity.  As  interface for  data  transfer  and control  of  supercomputing
resources EBRAINS uses PyUnicore, a Python wrapper for UNICORE, which contains a RESTful API for
authentication, authorisation, user mapping, file transfer and job submission within supercomputing
networks.  Usage  of  JupyterLab  is  introduced  with  several  notebooks  that  show  how  to  use
(Py)Unicore to access a supercomputer, how to implement authorisation flows with cryptographic
tokens,  or  how to read and write data  to  and from Drive.  Another important  use of  Lab is  for
deployment  of  community  applications:  when  a  developer  creates  a  service  for  the  EBRAINS
community, it is often helpful to document usage with a few code examples. The developer may
create a dedicated documentation collab for their service, put example data into the corresponding
Drive, set up the library and the required environment in the Lab notebook, and write exemplary
output back into the Drive for users to examine. A documentation collab then may be quickly turned
into an educational collab by adding users with read access, which allows them to experiment with
the code and the documentation from their own JupyterLab instances. To protect sensitive data,
users can run EBRAINS services on data stored in their own private collabs, with their isolated Lab
computing spaces.

EBRAINS is  a  platform for  community-driven development  and  therefore  invites  contributors  to
program applications and make them available to others on the EBRAINS platform. 'Apps' can be
registered and managed with the Community Apps Catalogue to make them visible and conveniently
usable. Registration of an App involves curation by a team of specialists that controls the quality of
the code, e.g., by checking that applications are well-documented, open source, shared on public
repositories,  versioned,  actively  maintained  and  do  not  contain  malicious  code.  Once  in  the
catalogue, users can easily add an App to their collabs by clicking on the collab's "Create" button and
selecting from the available Community Apps. A versatile Application Programming Interface (API)
makes it possible for developers to interconnect Apps with other EBRAINS services such as Drive, Lab
or Wiki. Furthermore, developers can create authentication and authorisation flows for their Apps,
which makes it  easy to control and delegate access to shared resources or confidential data. By
adding OpenID connect clients (openid.net) to the application code, Apps can request access tokens
for different services, thereby enabling single-sign-on and authorized interaction between services.
Read and write operations on Drive can be performed from community apps via Seafile's RESTful
(Representational state transfer, a software architecture for interactive applications that use web
services)  HTTP  and  Python APIs.  Likewise,  XWiki  comes  with  a  RESTful  HTTP  API,  which  allows
applications to create, fetch or modify Collaboratory content. EBRAINS uses Google Analytics and
Matomo to enable content creators to track traffic between different sites and services. Developers
can obtain fine-grained metrics on individual sessions, pages, durations, clicks, geographic origins as
well  as specific events or actions (e.g.,  triggering a download, subscribing to a newsletter,  etc.).
Technical  documentation  for  developers  can  be  found  under  the  URL
wiki.ebrains.eu/bin/view/Collabs/the-collaboratory/Technical%20documentation.

Supplementary Methods: Brain simulation with TVB
TVB is a simulator (Supplementary Figure 1) for brain network models (BNMs) that simulate neural
population  models  that  are  coupled  by  structural  connectivity,  which  is  an  aggregated
representation  of  the  brain's  white  matter  axon  fiber  bundle  network.  In  addition  to  being
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implemented as Python library and deployed as EBRAINS cloud service, TVB is deployed in compiled
standalone versions for Linux, Windows and Mac OS as well as execution-ready container images
that are freely available for download.

A BNM is a computer model for simulating brain activity based on systems of differential equations
that are coupled by a reconstruction of a brain's structural connectome (SC), the white-matter axon
fiber bundle  network that  interconnects  brain  areas  (Breakspear,  2017).  Neural  populations are
simulated by neural mass or neural field models, desciribing the main modes of activity of coupled
neuron networks (Deco et al., 2008). Brain network models simulate neural activity like membrane
voltage  fluctuations,  synaptic  current  flow,  or  spike-firing,  which  is  used  to  predict  signals  like
functional  MRI  (fMRI)  or  electroencephalograms (EEG).  Predicted  signals  can be  compared with
empirical measurements to evaluate and optimize the model or to analyse the underlying model
mechanisms (Ritter et al., 2013; Schirner et al., 2018).

Two SC metrics are particularly important for BNMs: coupling weights and coupling delays. Coupling
weights quantify how strong brain regions interact, and coupling delays quantify how much time
elapses to transmit neuronal signals. Noninvasively, these two metrics are estimated using whole-
brain tractography on diffusion-weighted MRI. After the pathways of brain-wide fiber tracts have
been reconstructed, they are aggregated according to an atlas parcellation that divides the brain
into different regions. The workflow to reconstruct SC is implemented in the cloud service TVB Image
Processing  Pipeline,  which  would  therefore  be  the  first  step  in  an  end-to-end  brain  simulation
workflow. Alternatively, users can use the demo SC shipped with TVB package or find SCs that were
computed by other researchers with EBRAINS' KnowledgeGraph (see Supplementary Methods: Data
integration and TVB-ready data). 

Supplementary Figure  1.  TVB simulation services  can be accessed via  web application GUI  (left panel)  or
Jupyter notebooks (right panel). Both interfaces can be used to configure, run, and analyze brain simulations.

TVB distinguishes  between region-level  and surface-level  simulations.  In  region-level  models the
brain is coarsely parcellated into a set of areas, ranging from a few dozen up to several hundred that
interact exclusively via SC. In contrast, with 'surface simulations', population models are placed at
each  vertex  of  a  cortical  surface  triangulation  (the  surface  of  the  cortical  gray  matter  can  be
approximated by a mesh of triangles), which are often on the order of ten thousand or hundred
thousand vertices for one cortex. With such surface simulations the large-scale regions of a BNM are
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divided into smaller chunks, which allows to simulate the BNM at a higher resolution. In addition to
their interaction via long-range SC, the population models at each vertex of a surface simulation
interact  according  to  local  connectivity  kernels  that  specify  the  interaction  between  nearby
populations depending on their distance. 

The minimal amount of data necessary to perform a region-level simulation is SC. In addition to SC,
TVB can import several other data formats and use them for simulation, e.g., surface triangulations
for  surface  simulations.  TVB  offers  a  choice  of  population models  that  capture  different  neural
population dynamics.  For  example,  the  equations  of  the Generic  2D Oscillator  approximate the
geometry  of  the  nullclines  of  simple  planar  neuron  models,  which  captures  typical  neuronal
population dynamics like multistability, the co-existence of oscillatory and non-oscillatory states and
plausible time series dynamics over multiple time scales. Depending on parameters, the Generic 2D
Oscillator displays stable fixed points, limit cycles, or a bistable configuration with coexistence of
stable limit cycles and fixed points. Other examples of population models in TVB include Wilson &
Cowan; Wong, Wang & Deco; Zetterberg, Jansen & Rit; and Stefanescu & Jirsa 3D (Sanz-Leon et al.,
2015).

The  output  of  population  models  are  state  variable  time  series  that  represent  ongoing  neural
population activity like the moment-to-moment mean firing rate or mean membrane potential of an
ensemble of neurons. To compare simulated raw neural activity with electroencephalography (EEG)
or magnetoencephalography (MEG), forward models and inverted forward models are often used.
Forward models are used to approximate electromagnetic signals measurable near the scalp from
raw neural activity while inverted forward models are used to approximate signals measurable in the
vicinity of neural tissue on the basis of measured EEG or MEG  (Hallez et al., 2007; Mosher et al.,
1999).  Likewise, there exist forward models,  in TVB called 'monitors',  to simulate Blood-oxygen-
level-dependent  imaging  (BOLD)  functional  magnetic  resonance  imaging  (fMRI)  time series.  The
BOLD monitor, for example, relates the level of neural activity to oxygen consumption--higher neural
activity leads to higher oxygen consumption, which is modelled in TVB by convolution of the neural
time  series  with  a  hemodynamic  response  function,  e.g.,  a  mixture  of  gamma  functions  as
implemented in SPM (Friston et al., 1995). 

In a typical TVB workflow simulated brain activity is compared with empirical brain activity to tune
free  model  parameters,  like  the  magnitude  of  long-range  coupling,  which  is  necessary  because
dwMRI tractography only yields networks with relative connection weights. To tune the magnitude
of  long-range coupling simulated FC is  often compared with  empirical  FC and the parameter  is
adapted accordingly. Upon model fitting, a typical next step is to analyze whether the optimized
parameters reveal group differences, which in turn may point to differences in underlying neural
processes. This approach was used in several studies to differentiate between different clinical and
non-clinical populations (Aerts et al., 2020, 2018; Costa-Klein et al., 2020; Jirsa et al., 2017; Proix et
al., 2017; Zimmermann et al., 2018).

Supplementary Methods: TVB Image Processing Pipeline
This chapter provides details on the steps of the TVB Image Processing Pipeline ('pipeline' in the
following), an overview over the structure of output data, and an exemplary input data set. Users
control the pipeline via the TVB web GUI (Table 1) to select input MRI data for upload, to configure
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the processing steps, and to download the results. To configure processing steps, users can select
among a choice of neuroimaging containers, respectively BIDS Apps (see Supplementary Note: BIDS
Apps), like fmriprep (Esteban et al., 2019), the Human Connectome Project pipeline (Glasser et al.,
2013),  and  Mrtrix3_connectome  (Smith  and  Connelly,  2019).  In  addition,  users  can  supply
parameters  to  control  the  internal  execution  of  steps  in  these  containers.  In  the  following  we
provide  an  overview  over  the  steps  for  diffusion  MRI  tractography  with  Mrtrix3_connectome,
functional MRI preprocessing with fmriprep and BNM construction with tvb-pipeline-converter.

Pipeline processing steps

Diffusion MRI tractography
MRtrix3  is  a  powerful  and  actively  developed toolbox  for  diffusion  modelling  and  tractography
(Tournier et al., 2019). Notably, it includes methods to increase the accuracy of tractography and
reducing false positives by removing tracks that are anatomically implausible, called Anatomically-
Constrained  Tractography  (Smith  et  al.,  2012).  In  order  to  estimate  region-to-region  coupling
strengths, the MRtrix3 programs SIFT, respectively SIFT2, re-weight each track in the reconstructed
tractogram  such  that  streamline  densities  become  proportional  to  the  cross-sectional  area
connecting each pair  of brain regions  (Smith et al.,  2015).  The workflow of Mrtrix3_connectome
(Smith and Connelly, 2019) is controlled by a Python script that can be modified to match specifics of
the input  data  or  the research question.  In  the following we describe the default  setup of  the
workflow as it is currently implemented. As input, the workflow requires T1-weighted and diffusion-
weighted MRI data, as well as at least one phase-reversed dwMRI of the B0 field for susceptibility
distortion  correction.  Outputs  are  whole-brain  tractograms  and  SC.  In  between,  the  following
processing  steps  are  performed.  First,  dwMRI  is  denoised  by  removing  noise-only  principal
components  (Veraart  et  al.,  2016) using  dwidenoise.  Next,  Gibbs ringing artifacts  (Kellner  et  al.,
2016) are removed using mrdegibbs, and distortions are corrected with dwipreproc: eddy current-
induced distortion correction and motion correction is performed using FSL  eddy, and (optionally)
susceptibility-induced distortion correction is performed using FSL topup. In the next step, B1 bias
field inhomogeneities are corrected using dwibiascorrect and a brain mask for DWI is created using
dwi2mask and  maskfilter.  After  computing  fractional  anisotropy  maps  using  dwi2tensor,
dwi2response is used to estimate the response functions for spherical deconvolution. To obtain fiber
orientation  distributions,  spherical  deconvolution  is  performed  with  dwi2fod.  For  inter-modal
registration, the workflow extracts the brain with ROBEX and performs a bias field correction on the
T1 image in its original space using ANTS N4BiasFieldCorrection. Contrast-matched images for inter-
modal registration between DWIs and T1 are generated using  mrhistmatch and the T1w MRI is
registered to DWI using mrregister. The MRtrix program 5ttgen in conjunction with FSL or FreeSurfer
is then used to segment tissues into cortical grey matter, sub-cortical grey matter, white matter and
cerebrospinal fluid. Next, cortical gray matter parcellations are obtained. For the atlases 'desikan',
'destrieux', and 'hcpmmp1', the parcellation information is taken from FreeSurfer's recon-all output.
For the atlases 'aal', 'aal2', 'craddock200', 'craddock400', and 'perry512', a non-linear registration to
the MNI152_T1_2mm template is performed with optionally ANTS or FSL, and the registration result
is  used to transform the atlas information into individual subject space. Based on this nonlinear
registration any atlas defined on the MNI152 template can be used to parcellate the subject's brain,
e.g.,  cytoarchitectonic  information  from  Julich-Brain.  Next,  the  central  step  in  this  workflow  is
performed:  whole-brain  fibre-tractography  using  tckgen with  ACT  to  control  for  anatomical
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plausibility of constructed tracks using information from the tissue-segmented image (Smith et al.,
2012).  As additional  plausibility  criteria,  tracks  are  truncated and re-tracked if  a  poor structural
termination  is  encountered,  respectively  cropped  when  they  hit  the  gray-matter-white-matter
interface and when they exceed a length of 250 mm. Seed points are determined dynamically using
the SIFT model (Smith et al., 2015). If the number of tracks to be generated is not manually specified,
it is set to 500*N*(N-1), where N is the number of brain regions in the parcellation. After a whole-
brain tractogram has been generated, SIFT2 (Smith et al., 2015) is used next to filter tractography
results to determine streamline weights. SIFT2 optimises per-streamline cross-section multipliers to
match a whole-brain tractogram to fixel-wise fibre densities. As last step of the MRtrix workflow,
tck2connectome is  used  to  aggregate  the  whole  brain  tractogram  into  a  region-by-region
connectome matrix  using the specified region parcellation.  In addition to outputting the sum of
streamline weights for each region pair, also the mean streamline lengths between each region is
output. Optionally, the workflow also outputs track density images, which are useful for visualising
and evaluating the results of tractography.

Functional MRI processing
To process fMRI data fmriprep can be selected, which is a preprocessing pipeline for fMRI data that
is relatively robust to variation in scan acquisition protocols, sequence parameters, or presence of
fieldmaps for artifact correction (Esteban et al., 2020, 2019). A characteristic feature of fmriprep is
its  "glass  box"  philosophy,  according  to  which  reports  for  visual  verification are  produced  after
important  processing  steps.  This  is  an  important  feature  as  many  steps  of  MRI  preprocessing
pipelines are susceptible to errors and verification is therefore generally recommended after major
steps. The workflow combines the following software: FreeSurfer, FSL, AFNI, ANTS, BIDS validator
and ICA-AROMA. Auxiliary tools are: Python (miniconda), pandoc, SVGO, neurodebian and git. As
input  the  workflow  requires  data  to  be  in BIDS format,  and  it  must  include  at  least  one  T1w
structural  image and one fMRI series.  Output contains preprocessed fMRI data,  as well  as noise
components estimated with independent component analysis, which are used to remove associated
variance from the fMRI data during the tvb-pipeline-converter workflow. The following processing
steps  are  performed:  T1w  volumes  are  corrected  for  intensity  non-uniformity  using
N4BiasFieldCorrection and  skull-stripped  using  antsBrainExtraction.sh.  Brain  surfaces  are
reconstructed using FreeSurfer's  recon-all,  and the temporary brain  mask is  refined to reconcile
ANTs-derived  and  FreeSurfer-derived  segmentations  of  the  cortical  gray-matter  of  Mindboggle.
Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c is performed
through nonlinear registration with the antsRegistration tool, using brain-extracted versions of both
T1w volume and template.  Brain  tissue segmentation of  cerebrospinal  fluid  (CSF),  white-matter
(WM) and gray-matter (GM) is performed on the brain-extracted T1w using FSL  FAST. Functional
data is slice time corrected using  3dTshift from AFNI and motion corrected using  mcflirt from FSL.
Distortion correction is performed using an implementation of the TOPUP technique using 3dQwarp.
This is followed by co-registration to the corresponding T1w using boundary-based registration with
nine degrees of freedom, using bbregister from FreeSurfer. Motion correcting transformations, field
distortion  correcting  warp,  BOLD-to-T1w  transformation  and  T1w-to-template  (MNI)  warp  are
concatenated and applied in a single step using  antsApplyTransforms using Lanczos interpolation.
Physiological noise regressors are extracted applying CompCor. Principal components are estimated
for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). A mask to exclude
signal  with  cortical  origin  is  obtained  by  eroding  the  brain  mask,  ensuring  it  only  contained
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subcortical  structures.  Six  tCompCor  components  are  then calculated including only  the top 5%
variable voxels within that subcortical mask. For aCompCor, six components are calculated within
the intersection of the subcortical mask and the union of CSF and WM masks calculated in T1w
space, after their projection to the native space of each functional run. Frame-wise displacement is
calculated  for  each  functional  run  using  the  implementation  of  Nipype.  ICA-based  Automatic
Removal Of Motion Artifacts (AROMA) was used to generate aggressive noise regressors as well as
to  create  a  variant  of  data  that  is  non-aggressively  denoised  (see  section  thevirtualbrain/tvb-
pipeline-converter for details on aggressive vs. non-aggressive cleaning). For details, please refer to
fmriprep's documentation (https://fmriprep.readthedocs.io/).

Brain network model construction
The container tvb_converter (Table 1) takes the outputs of Mrtrix3_connectome and fmriprep as
input and provides as output TVB-ready connectomes in BIDS format (Supplementary Table 1) and in
native  TVB-ready  format  (Supplementary  Table  2),  which  can  be  directly  used  to  run  BNM
simulations  in  TVB.  Outputs  include  SC,  FC,  EEG/MEG  projection  matrices,  and  brain  surface
triangulations. As first step, the workflow performs a "non-aggressive" cleaning of motion artefacts
in  the  output  fMRI  data  that  was  processed  with  fmriprep.  Following  its  glass  box  philosophy,
fmriprep involves the researcher in critical decisions about the denoising strategy, as it  can have
considerable effects on the ensuing analyses. To this end, fmriprep provides both aggressively and
non-aggressively denoised fMRI. The output of the fmriprep workflow already contains ICA-AROMA
denoised 4D NIFTI files mapped to MNI space. Based on these results the tvb-pipeline-converter
performs non-aggressive denoising following the approach described in Pruim et al. (2015) using the
independent components (ICs) together with their classification obtained in the fmriprep processing.
ICA-AROMA classifies ICs into movement-related and movement-unrelated ICs. It does not require
manual training of the classifier--the classifier is already trained using four theoretically motivated
spatial and temporal  features:  high-frequency content,  correlation with realignment parameters,
edge fraction, and CSF fraction of each IC (Pruim et al., 2015). With aggressive denoising the entire
temporal  waveform  of  movement-related  ICs  is  regressed  from  the  data,  analogous  to  the
commonly done regression of nuisance parameter time courses (like mean global signal, mean tissue
class  signal,  frame-wise  displacement,  motion parameters)  from the  data.  Critically,  all  variance
associated with such "nuisance" time courses is removed, including shared variance with actual brain
signals.  This is problematic, because global  fMRI time courses often share a lot  of variance with
neural activity: even if two signals originate from different locations in the brain, they may still be
highly correlated. Therefore, regressing out global signals likely removes signals of interest (Liu et al.,
2017; Murphy and Fox, 2017). As an alternative, the non-aggressive approach based on ICA-AROMA
is more conservative by first performing a regression on the full set of IC time series, including both
signal and noise ICs. Then, to clean the data, only the motion-related regressors are subtracted from
the data, which specifically removes variance associated with motion-related-ICs that is not shared
by the remaining ICs. Problematically, with this non-aggressive approach motion-related dynamics
that were not identified as such are specifically retained in the data. Conversely, as mentioned, the
drawback of aggressive denoising is that it may remove shared variance between signal and noise.
To clean fMRI data non-aggressively the workflow uses fsl_regfilt with the provided AROMA ICs and
a list of (motion-related) ICs to reject. After this step, further nuisance regression may be performed
(if it fits the study design) as well as removal of linear trends and high-pass filtering. It is, however,
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important that during such a second regression step variables correlated with motion are not used
as regressors, as this may re-introduce motion-related waveform components into the time series. 

After denoising, tvb-pipeline-converter computes region-average fMRI time courses by resampling
the brain parcellation to fMRI resolution and averaging over all voxel time series in each region. The
converter also outputs cortical surfaces, which are used for detailed surface simulations and for EEG
or MEG source modelling, e.g. in order to extract region-average EEG or MEG source activity, which
can be used to constrain model dynamics (Schirner et al., 2018). The converter merges the left and
right  hemisphere  cortical  surface  triangulations  reconstructed  by  FreeSurfer  and  generates  a
mapping between each vertex and the large-scale regions of the brain atlas.  Each vertex of the
cortical  white  matter and pial  surface triangulations are  associated with  the region-label  of  the
region at that location. This step is carried out with HCP Connectome Workbench for atlases that are
defined in volumes (e.g., "aal",  "aal2" "craddock200", "craddock400", "perry512", atlas names as
used in MRtrix3_connectome workflow) and outputs a GIFTI  label  file  for  each hemisphere.  For
atlases  defined  on  surfaces  (e.g.,  "desikan",  "destrieux",  "hcpmmp1"),  the  'annot'  files  from
FreeSurfer  are  used  to  obtain  the  region  mapping.  The  following  atlases  are  currently  natively
supported,  for  other  atlases  the  workflow  needs  to  be  adapted:  "aal",  "aal2",  "craddock200",
"craddock400", "desikan", "destrieux", "hcpmmp1", "perry512".  

Next, the MNE toolbox (Gramfort et al., 2013) is used to compute forward and inverse models for 
electromagnetic source imaging. First, surfaces are decimated to 30,000 triangles and the region-
mapping is obtained by nearest neighbor interpolation in the original high-resolution surface. For the
head model, BEM surfaces using the FreeSurfer watershed algorithm are constructed. To make the 
workflow automatic, standard EEG montage locations are projected onto the individual head 
surfaces. The outputs of this step are a projection or lead-field matrix (LFM), EEG sensor location 
coordinates, and a mapping between surface vertices and large-scale regions. The LFM has the 
dimensions M x N, with M being the number of vertices on the cortical surface and N the number of 
EEG sensors. Next, surfaces are exported: the downsampled pial surface from FreeSurfer (used to 
define source space) as well as the BEM surfaces of the inside and the outside of the skull and the 
scalp. Finally, the converter outputs the SC weights and distances matrices as well as region 
centroids, average orientations (average over all vertex-normals), surface areas, and two files that 
indicate to which hemisphere each region belongs and whether it is a cortical or a subcortical region.
All output files are plaintext ASCII files that are zipped for uploading to TVB. As last step, the 
converter generates metadata for the BIDS output (see Supplementary Methods: Data integration 
and TVB-ready data). Supplementary Table 1 summarizes the folder and filename structure in BIDS 
format and Supplementary Table 2 summarizes folder and filename structure for outputs in TVB 
format, which are all stored in the output file "TVB_output.zip" that can be imported into TVB using 
the "Upload Connectivity ZIP" functionality of TVB. 

Path and filename Description

sub-<id>/

anat/

sub-<id>_desc-centroid_morph.tsv table with region names and 3D location of centres

sub-<id>_space-individual_dparc.label.gii Region mapping, assign each surface vertex to a region in the 
connectome
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sub-<id>_space-individual_pial.surf.gii FreeSurfer: cortical surface, both hemispheres

sub-<id>_space-individual_innerskull.surf.gii FreeSurfer: inner skull surface

sub-<id>_space-individual_outerskull.surf.gii FreeSurfer: outer skull surface

sub-<id>_space-individual_scalp.surf.gii FreeSurfer: scalp and face surface

connectivity/

sub-<id>_desc-distance_conndata-
network_connectivity.tsv

structural connectivity: connection distances (mm)

sub-<id>_desc-weight_conndata-
network_connectivity.tsv

structural connectivity: connection weights

sub-<id>_conndata-network_connectivity.json structural connectivity: metadata

eeg/

sub-<id>_desc-eeg_proj.tsv EEG lead field matrix

sub-<id>_task-simulation_electrodes.tsv EEG 3d coordinates electrode positions

func/

sub-<id>_task-rest_atlas-desikan_timeseries.tsv functional MRI time series for parcellation (cortical and 
subcortical structures

meg/

sub-<id>_desc-meg_proj.tsv MEG lead field matrix

sub-<id>_task-simulation_space-anat_sensors.tsv MEG 3d coordinates sensor locations and normals

Supplementary Table 1. Naming schema and description of TVB Processing Pipeline output files in BIDS format.

Level Mandatory
filename part

Description Format Output tvb-pipeline-converter

Minimum
large-scale

weight SC coupling weights N x N sub-<id>_Connectome/ weights.txt
tract SC track lengths N x N sub-<id>_Connectome/ tract_lengths.txt

centres Centers of brain regions N x 4; column 1:  region label;
columns 2 – 4: 3D coordinates

sub-<id>_Connectome/ centres.txt

Extended
large-scale

area Surface areas (mm2) N x 1 sub-<id>_Connectome/area.txt
cortical cortical or subcortical N x 1; 1: cortical; 0: subcortical sub-<id>_Connectome/cortical.txt

orientation orientation of the average
normal vector

N x 3; 3D coordinates sub-<id>_Connectome/ orientation.txt

hemisphere left or right N x 1; 1: right; 0: left sub-<id>_Connectome/hemisphere.txt
Surfaces
<surf> = 

{"Cortex",
"inner_skull
_surface",

"outer_skull
_surface",

"outer_skin_
surface"}

vertices surface triangulation N x 3; 3d coordinates sub-<id>_<surf>/ vertices.txt,

triangles surface triangulation N x 3; vertex indices sub-<id>_<surf>/ triangles.txt
normals surface triangulation N x 3; 3d coordinates sub-<id>_<surf>/ normals.txt

Region-
mapping

N/A associates surface vertices
with large-scale regions

M x 1; region label sub-<id>_region_mapping.txt

Sensors:
EEG, SEEG,

MEG

N/A sensor locations K x 4 or K x 7; column 1: channel
name; columns 2-4: 3d coordinates;

columns 5-7: normals

sub-<id>_EEG_Locations.txt

Projection
matrix

N/A mapping between
regions/vertices and

sensors

K x N or K x M sub-<id>_EEGProjection.mat
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Supplementary Table 2. Naming schema and description of TVB Processing Pipeline output files in TVB format. N is the 
number of brain regions, M the number of surface vertices, K the number of sensors.

Exemplary input data
In this section we describe how to prepare MRI data for processing with the TVB Image Processing
Pipeline.  To  construct  structural  connectivity  (SC)  and  functional  connectivity  (FC),  the  pipeline
requires the following MRI data:

 diffusion-weighted MRI (dwMRI), for SC;
 functional MRI (fMRI), for FC;
 anatomical T1-weighted MRI, for parcellation and surface reconstruction;
 field  inhomogeneity  maps  and  pairs  of  phase-encoding  reversed  acquisitions  to  correct

susceptibility distortions.

In addition to diffusion-weighed and functional MRI data, computing SC and FC requires at least one
high-resolution T1-weighted structural MRI for parcellating the subject's brain and, optionally, to
reconstruct brain surfaces. If the input data was not corrected for susceptibility distortions, then
additionally  phase-reversed  images  of  the  B0  field  in  dwMRI  data  and  fieldmaps  for  fMRI  are
required. To correct for susceptibility distortions, dwMRI and fMRI processing workflows often use
so-called fieldmaps. When an object is placed in a homogeneous magnetic field, like a head in an
MRI scanner, it will disrupt that field so it will no longer be homogeneous. This leads to signal loss
from T2*-dephasing and spatial signal mismapping that manifests in considerable displacements of
brain tissues. Fieldmaps quantify field inhomogeneities in order to correct the difference between
the homogeneous field and the actual field. There are different approaches for field-mapping, e.g.,
phase-difference B0 mapping (typically consisting of one phase difference image and one magnitude
image), direct B0 mapping sequences, or fieldmaps that are based on acquiring at least two images
with varying phase-encoding directions. In BIDS, fieldmaps are stored in the folder fmap/ and linked
with the specific scans they were acquired for by filling the IntendedFor field in the corresponding
JSON file. The value may contain one or more filenames with paths relative to the subject subfolder,
e.g.

{
   "IntendedFor": ["ses-pre/func/sub-01_ses-pre_task-motor_run-1_bold.nii.gz",
                   "ses-post/func/sub-01_ses-post_task-motor_run-1_bold.nii.gz"]
}

In  the  Mrtrix3_connectome  workflow  susceptibility  distortions  are  corrected  with  the  FSL  tool
topup,  which  is  an  important  prerequisite  for  the  Anatomically  Constrained  Tractography  (ACT)
algorithm (Smith et al., 2012). ACT reduces false positives by removing tracks that are biologically
implausible, e.g.,  because they terminate in a ventricle. Importantly, the JSON sidecar files must
contain the BIDS fields "SliceEncodingDirection" and "SliceTiming" to correctly distinguish the main
dwMRI scans from phase-reversed B0 (or gradient) scans for distortion correction. Since the phase-
reversed images are not fieldmaps, but regular dwMRI acquisitions, they are not stored in the folder
fmap/ but in the same folder as the main acquisition. Compliant with BIDS, the 'acq-XX' key-value
pair of the filename denotes the phase-encoding direction. 

As exemplary input data set for the TVB image processing pipeline we select the data set "TVB time
series  and  connectomes  for  personalized  brain  modeling  in  brain  tumor  patients"
(DOI10.25493/1ECN-6SM),  which  can  be  obtained  from  the  EBRAINS  KnowledgeGraph
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(search.kg.ebrains.eu).  This  dataset  was  already  used  for  simulation with  TVB  and  results  were
published  in  two  studies  (Aerts  et  al.,  2020,  2018).  When  the  data  set  entry  is  opened  in
KnowledgeGraph, users see meta information like DOI, License, Abstract and a link to the raw data
files,  which are hosted at openneuro.org. The imaging data set contains multi-shell  high angular
resolution dwMRI, b0 dwMRI with reversed phase encoding directions, resting-state fMRI and T1w
MRI from 11 healthy controls  and 25 tumor patients  prior  to a  tumor resection operation.  The
second part of the data set contains post-operative data from 19 of the 25 tumor patients as well as
data from 10 of the 11 healthy control subjects. Here we use subject 'sub-CON03' from the post-
operative data set. To this end we download the full data set by clicking on the "Download" button
and following the provided instructions. Next, we delete the imaging data from all other subjects in
order  to  make  data  transfer  between  local  file  systems,  the  EBRAINS  platform  and  the
supercomputers faster. That is, all folders 'sub-CONXX' and 'sub-PATXX' are deleted except for the
folder 'sub-CON03'. To make the metadata consistent, we need to adapt the file  participants.tsv,
where we remove all rows except the one for our selected subject. When working with BIDS data
sets  it  is  often useful  to  check their  validity  using  the BIDS validator,  for  example,  by  using  its
deployment as the Docker container bids/validator (https://hub.docker.com/r/bids/validator), which
can be invoked like this (assuming the main folder of the data set has the path /path/to/demodata):

docker run -ti --rm -v /path/to/demodata:/data:ro bids/validator /data

For our demo data set the BIDS validator reported zero errors and one warning that indicated that
participants.tsv contains custom values, which we ignored as this is irrelevant to pipeline processing.
The  final  directory  tree  is  shown in  Supplementary  Figure  2.  The  data  set  is  now ready  to  be
processed with the TVB Image Processing Pipeline via the TVB web GUI.

Supplementary Figure 2. Directory tree of the exemplary BIDS MRI data set.

Supplementary Note: BIDS Apps
The "Brain Imaging Data Structure" (BIDS) is an emerging standard for organizing and annotating
neuroimaging  datasets  (Gorgolewski  et  al.,  2017,  2016) that  is  currently  being  adopted  by  an
increasing number of projects. BIDS entails a schema to arrange data and metadata within a data set
folder. Naming conventions specify the formation of filenames as a series of key-value pairs and a
file type suffix. Data dictionaries,  implemented as TSV and JSON files,  store key-value pairs  that
identify  important  features  of  a  data  set.  BIDS  Apps  are  container  images  that  implement
neuroimaging pipelines that take BIDS formatted datasets as input. All BIDS Apps have the same core
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set of command line arguments, making usage straightforward across platforms. Containerization of
all required dependencies makes it possible that BIDS Apps do not depend on any software outside
of the image other than the container engine. Validation software automatically check compliance of
a  given  dataset  with  the  BIDS  standard  (e.g.,  BIDS  validator:
https://hub.docker.com/r/bids/validator).  In order to create BIDS data sets we refer to the BIDS
specification (doi.org/10.5281/zenodo.3686061) and recommend usage of automatic tools based on
dcm2niix (https://github.com/rordenlab/dcm2niix), the BIDS validator App (https://hub.docker.com/
r/bids/validator), and the steps outlined in the original BIDS publication (Gorgolewski et al., 2016),
namely

 Convert DICOM files to NIFTI
 Create folder structure, rename, and copy NIFTI files
 Add remaining data
 Add missing metadata
 Validate the data set with a BIDS validator.

A number of (semi-)automatic tools have been developed that take DICOM as input and generate
BIDS  data  sets  based  on  the  DICOM-to-NIFTI  converter  dcm2niix
(https://github.com/rordenlab/dcm2niix). To build and run container images a platform like Docker
(https://www.docker.com/)  is  required.  While  it  is  typically  straightforward  to  deploy  and  run
Docker on personal computers and cloud services, however, the Docker Engine is rarely available on
HPCs, due to security risks. For HPC usage there exist alternatives like Sarus, Shifter or Singularity,
which do not require root access for container execution and are thus safer to use on multi-tenant
systems. In our tests, the three BIDS Apps worked without modification with Sarus and Shifter.

Supplementary Methods: Multiscale Co-Simulation 
Multiscale Co-Simulation is implemented in the form of two toolboxes: the TVB-Multiscale toolbox
and  the  Parallel  CoSimulation  toolbox  (Table  1).  Both  are  based  on  common  concepts  and
architectures,  but they are independently  developed to focus on different goals:  TVB-Multiscale
focusses on rapid prototyping of scientific use cases while Parallel CoSimulation focusses on the
optimization of  co-simulation performance.  The idea behind multiscale co-simulation is  to  study
multiscale neural interaction. Population model state variables are coupled with single neuron state
variables  or  parameters  to  exchange  inputs  between  the  two  scales.  For  example,  TVB  state
variables  that  simulate  ongoing  population  firing  are  used  to  inject  spikes  into  a  NEST  spiking
network by sampling spike times from a probability distribution in dependence of the instantaneous
firing rate of the population model. Vice versa, the mean activity of a NEST neuron network is used
to inform inputs to a TVB population model. For example, averaging over spike trains of a NEST
network can be used to update instantaneous population firing rates of TVB variables. Coupling can
be unidirectional, to study effects of large-scale inputs on small-scale spiking-network activity, or
bidirectional,  to  study  how  both  scales  mutually  interact.  The  bidirectional  case  enables  to
"substitute" large-scale population models by small-scale spiking networks to simulate one or more
specific populations of a brain network model on a finer scale. Large-scale inputs to the substituted
populations will  then be forwarded to the small-scale network,  while small-scale activity will  be
averaged, or transformed with a custom-defined transformation function, and forwarded as input to
the connected large-scale nodes.  Like in the case of  large-scale-only brain network models,  it  is
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possible to subsequently input simulated neural  activity into forward models to simulate typical
neuroimaging signals like fMRI or EEG. The TVB to NEST interface is based on the creation of TVB
"proxy" nodes within the spiking network model. Proxy nodes are NEST stimulation devices used to
inject spikes or currents into NEST neurons. The interface allows to generate currents or spike trains
with a desired first order (mean firing rate), or second (correlations) or higher order statistics such
that the statistics of the produced spikes or currents follow the corresponding statistics of the large-
scale population activity. Proxy nodes can be coupled to NEST spiking networks with user defined
connection weights and delays, in order to simulate large-scale features of coupling on the small
scale.  To compute inputs  from NEST to TVB,  NEST recording devices  are used to aggregate the
activity of spiking neuron populations. Multiscale Co-Simulation gives the user flexibility for custom
configuration  of  co-simulations  regarding  the  network  structures,  the  state  variables  used  for
coupling,  the  transformation  functions  and  the  devices  for  computing  and  applying  inputs,  the
allocation of computational resources, and the storage of results. 

The Parallel CoSimulation toolbox is currently under development to optimize the performance of
co-simulation as well as for integration with the TVB-Multiscale toolbox. The idea for optimization is
to reduce the number of costly communication operations between NEST and TVB, because inputs
often do not need to be exchanged in every single time step of the model integration. Rather, it is
often the case that the model does not require instantaneous interactions, which depends on the
axonal  transmission  delays  in  the  network.  Consequently,  the  Parallel  CoSimulation  toolbox
therefore  employs  a strategy  where each simulator  integrates  their  respective model  equations
independently and in parallel  for several  time steps,  until again an exchange of  inputs becomes
unavoidable. Put differently, costly synchronization operations to exchange inputs often do not need
to be performed in every single time step but can also be delayed until they become critical for
model  integration.  The toolbox uses  MPI  (Message Passing  Interface)  for  communication and is
implemented  in  a  modular  fashion:  independent  modules  for  simulation  and  for  input
transformation enable to allocate different compute nodes to each module allowing to scale co-
simulations  over  multiple  compute  nodes.  In  the  following  we  provide  a  benchmark  for  the
performance of the optimized co-simulation algorithms implemented in the Parallel CoSimulation
toolbox. The goal for the optimization was to reduce the costs of communication such that the wall
time for co-simulation is close to the time that the slower of the two would need to simulate its part
of the network independently. For the benchmark 102 regions were simulated in TVB with the Mean
Adaptive  Exponential  model;  two  of  these  regions  were  simulated  in  NEST  using  Adaptive
Exponential  Integrate-and-Fire  spiking  networks  of  varying  sizes,  80  % excitatory  neurons and a
connection probability  of  0.05  (Supplementary  Figure  3).  Simulations  are  performed  on  a  DELL
Precision-7540  (Intel®  Xeon(R)  E-2286M CPU @ 2.40GHz  ×  16,  64  GB  of  RAM) and  an  Ubuntu
operating system. As expected, the implemented optimizations ("delayed synchronization") reduces
the wall time for co-simulation. and wall time scales with the number of threads used for integrating
NEST (Supplementary Figure 3). Up to a spiking network size of 300 neurons NEST was faster than
TVB, but slower for larger spiking networks.
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Supplementary Figure 3: Wall time benchmark results with the Parallel CoSimulation toolbox. The x-axis represents the
total number of neurons equally distributed between the two regions. The y-axis represents the wall time to simulate one
second of biological time. The blue curve represents the case without optimization, where inputs are exchanged at every
time step of integration. The orange curve represents the optimized case where inputs are communicated only when
necessary, depending on the minimum time delay of the model. For the green curve eight threads were used for simulating
NEST instead of only one as in the other simulations.

Supplementary Methods: High-performance 
implementations
To make BNM simulation with the main TVB software faster the Python compiler Numba is used,
which translates a subset of Python and NumPy into high-performance machine code. However, the
central loop for integrating the general evolution equation of the BNM  (Sanz-Leon et al., 2015) is
implemented in pure Python for modularity and generality and therefore constitutes a bottleneck
for simulation speed, which is why two dedicated high-performance implementations were created:
TVB-HPC and Fast_TVB, which we describe in the following. 

TVB-HPC
For TVB-HPC the domain-specific language (DSL) RateML was developed (Table 1), which allows to
specify custom population models without requiring knowledge about how to optimally implement
such models: Python code for CPU and CUDA code for GPU is automatically produced from RateML
model specifications.  The resulting Python code uses Numba vectorization  (Lam et  al.,  2015) to
integrate the population models. The resulting CUDA code uses the highly parallel architecture of
modern GPUs by  spawning one thread for  every  simulated parameter  set,  allowing to  simulate
multiple models in parallel. RateML is based on the domain-independent language 'LEMS' (Vella et
al.,  2014),  which  supports  the  declarative  description  of  model  components  in  a  concise  XML
representation. The PyLEMS expression parser is used to check and parse mathematical expressions
(Vella et al., 2014). Exemplary RateML ports of the TVB population models Epileptor, Kuramoto, 2D
Oscillator,  Montbrio and ReducedWongWang are provided with the main TVB software package.
During the automatic code generation, the RateML model equations are mapped to  generalized
universal function (gufuncs) using Numba's  guvectorize decorator, which compiles a pure Python
function directly into machine code that can be used to operate on NumPy arrays. An example of a
Numba generated guvectorize function is displayed in Supplementary Listing 1. In this example the
gufunc _numba_dfun_Epileptor accepts two n and m sized float64 arrays and 19 scalars as input and
returns a  n sized float64 array. The benefit of writing NumPy gufuncs with Numba's decorators, is
that it automatically uses parallel operations such as reduction, accumulation and broadcasting to
efficiently implement an algorithm. 
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@guvectorize([(float64[:], float64[:], (float64 * 19), float64[:])], 
    '(n),(m)' + ',()'*19 + '->(n)', nopython=True)
def _numba_dfun_EpileptorT(vw, coupling, a, b, c, d, r, s, x0, Iext, slope, 
    Iext2, tau, aa, bb, Kvf, Kf, Ks, tt, modification, local_coupling, dx):

c_pop1 = coupling[0]
  c_pop2 = coupling[1]
  c_pop3 = coupling[2]
  c_pop4 = coupling[3]
    ... # calculate derivatives

return dx
Supplementary Listing 1. Example of a gufunc header for the epileptor model, where the variable vw holds the input and 
dx the computed output derivatives.

RateML supports  the  specification of  population model  equations,  coupling  functions  and noise
functions. The implementation of TVB-HPC for automatic CUDA code generation differs from the
Python variant, due to architectural constraints of the main TVB implementation. For CUDA, the
constructs  Parameter and  DerivedParameter,  for  performing  parallelized  parameter  space
exploration on GPU, as well as the constructs coupling and noise, for specifying custom coupling and
noise functions, are available, but not supported for Python code generation. Supplementary Figure
4 shows a workflow diagram that introduces usage of RateML for the two different output languages
on local hardware and in the EBRAINS Collaboratory. Using RateML involves creating a Python object
of the RateML class with the arguments model filename, language, XML file location and model
output location. The model filename is the name of the XML file and will then also be used as name
for  the  Python model  class,  respectively  the  CUDA kernel  name. The  TVB-HPC collab  (Table  1)
contains a ready to be executed Jupyter notebook that demonstrates the entire TVB-HPC workflow.

Supplementary Figure 4. RateML workflow for generating and simulating Python and CUDA code either on own hardware 
or in a ready to be executed notebook available in the EBRAINS Collaboratory (Table 1).

Component type "derivatives"
DSL construct Python CUDA

File header <Lems description = "XML for ReducedWongWang">
ComponentType <ComponentType name = "derivatives">
Parameter N/A <Parameter 

 name="global_speed"
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 dimension="float"/>
Derived parameters N/A <DerivedParameter 

 name="rec_speed_dt" 

       
value="1.0f/globalspeed"/>
<DerivedParameter 
 name="nsig" 
 value="42"/>

Constants <Constant name="gamma_E"
 dimension="lo=-3.0, hi=-1.0, step=0.1"
 value="-2.0"
 description="Excitatory population kinetic param"/>
<Constant name="tau_E" value="100.0"
 description="[ms]. Excit. Pop. NMDA decay time c"/>
<Constant name="I_0" value="0.382" 
 description="[nA]. Effective external input"/>
<Constant name="w_I" value="0.7" 
 description="Inhibi. pop. ex. input scaling weight"/>
<Constant name="G" value="2.0" 
 description="Global coupling scaling"/>
<Constant name="J_NMDA" value="0.15"/>

Exposures <Exposure name="V" dimension="sin(V)"/>
Dynamics <Dynamics>

State variables <StateVariable name="V" dimension="0.0, 1.0"
 exposure="0.0, np.inf"/>

Derived variables <DerivedVariable name="imintau_E" value="-1.0*tau_E"/>
<DerivedVariable name="w_I__I_0" value="w_I * I_0"/>
<DerivedVariable name="G_J_NMDA" value="G*J_NMDA"/>
<DerivedVariable name="w_plus__J_NMDA" 
 value="w_plus * J_NMDA"/>
<DerivedVariable name="tmp_H_E" value="a_E * (w_E__I_0 + 
w_plus__J_NMDA * V + c_pop1 - JI*W) - b_E"/>

Conditional derived 
variables

<ConditionalDerivedVariable name="ydot0">
 <Case condition="x &lt; 0.0" value="x>
 <Case condition="else" value="y>
</ConditionalDerivedVariable>

Time derivatives <TimeDerivative 
 variable="dV" 
 value="(imintau_E*V)+(tmp_H_E*(1-V)*gamma_E)"/>

Dynamics </Dynamics>
File header </Lems>

Supplementary Table 3. Different DSL constructs for Python versus CUDA for the derivatives component type. Note that 
the ConditionalDerivedVariable construct is for demonstration purposes and does not exist in the ReducedWongWang 
model (Deco et al., 2014). 

The component type "derivatives" supports the specification of population model equations in the
form of time derivatives. The expression parser embedded in the LEMS library allows the following
function expressions for the value attributes of the constructs: 'exp', 'log',  'sqrt',  'sin',  'cos',  'tan',
'sinh', 'cosh', 'tanh', 'abs' and 'ceil'. The following operands can be used to specify the mathematical
expressions: '+', '-', '*', '/', '^', and '~'. The power symbol in the expression fields needs to be entered
within curly brackets, e.g.: {x^2}. Comparison operators must be specified with escape sequences,
e.g. '\&lt(=);' for the "less than or equal to" and '\&gt(=);' for the "greater than or equal to" operator.
See  the  original  publication  introducing  LEMS  for  more  documentation  (Cannon  et  al.,  2014).
Supplementary Table 3 compares how DSL constructs in RateML differ for Python versus CUDA for
the  derivatives component type, using the ReducedWongWang population model as an example.
The sequence of constructs in this example shows the order in which they need to appear in the XML
file.  The  component  type  also  supports  constructs  that  define  initial  conditions  and  additional
dynamical equations not captured by the main population model. The Parameter construct defines
parameters  to  be  used  in  a  parameter  sweep;  the  name keyword specifies  the  name,  and the
dimension keyword specifies the type of the parameter. This sets the variable, which is a single
parameter for a CUDA kernel, to receive a value from the parameter array, resulting in the line: 
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const float global_speed =(params[(size * (i_par)) + id]). 

Here, i_par represent the order in which the parameters have been entered in the XML file, params
represents the parameter array,  size represents the total number of threads and  id is the current
thread.  An example on how to implement the model in Python using the PyCuda library is available
in the run folder of the main TVB GitHub repository (Table 1). The following lines of code from this
example, show how to setup the parameter array:

couplings = np.logspace(1.6, 3.0, 32)
speeds = np.logspace(0.0, 2.0, 32)
params = itertools.product(speeds, couplings)
params = np.array([vals for vals in params], np.float32)

This creates a range of 32x32 possible parameters combinations of the couplings and speeds array.
Each thread of the CUDA kernel will take a single parameter combination of this array and runs a
TVB simulation with this combination. The DerivedParameter construct specifies parameters which
are computed during run-time and which depend on parameters used in sweeps. This construct will
create a  float with the  const keyword, which is  initialized with the result  of the  value keyword.
Special derived parameters are rec_speed_dt and nsig. The first one is the inverse of coupling speed
(no conduction delays if  unset)  and the second one is  a multiplicative parameter to scale noise
variance (see sections on coupling and noise components). The Constant construct is used to create
constants of the type  float. The  value field represents the initial value and a description can be
entered optionally in the description field. For the Python models either a domain must be specified
in the  dimension  field, or  'None', to exclude it from parameter sweeping. This domain is used to
generate GUI slider bars in the TVB Framework. For the CUDA code generation, the dimension field
can be omitted, because no slider bars are generated for these models. The  Exposures construct
specifies variables that the user wants to monitor and that are returned from the simulation; name
is the name of the variable to be monitored and the keyword dimension defines any mathematical
operation  performed  on  the  variable.  The  StateVariable construct  is  used  to  define  the  state
variables of the model. The dimension field can be used to initialize state variables. The exposure
field sets the state variable's upper and lower boundaries, for both languages. These boundaries
ensure that the values of state variables stay within the set boundaries and resets the state if the
boundaries are exceeded. The DerivedVariable construct can be used to define temporary variables
that depend on the state of state variables and which then appear as terms in the time derivative
equations.  The  related  mathematical  expression  would  be  defined  as  name=value.  The
ConditionalDerivedVariable construct can be used to create if-else constructs. Within the construct a
number of Cases can be defined to indicate the actions taken for the different conditions, as defined
by the value of the  condition  keyword. The  value  field holds an expression to be evaluated and
assigned to the variable indicated with the name field. Specification of one case is mandatory, two
cases will produce an if-else structure and more than two cases will result in 'else-if' statements. The
TimeDerivative construct combines the defined parameters and variables to construct the actual
expression of the model's differential equation. The variable field specifies the variable on the left-
hand side of the differential equation, while the value field specifies the right-hand side expression. 
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DSL construct Python CUDA
Coupling function class Coupling() <ComponentType name="coupling_pop1">

 <Parameter name="V_j" dimension='0'/>
 <DerivedParameter name="c_pop1"
  value="global_coup * local_coup"/>
 <Constant name="c_c_a" value="1"/>

 <Dynamics>
  <DerivedVariable name="pre" value="sin(V_j–V)"/>
  <DerivedVariable name="post" value="c_c_a * 2"/>
 </Dynamics>
</ComponentType>    

Noise function class Noise() <ComponentType name="noise">
Supplementary Table 4: Component types for coupling and noise functionality for Python and CUDA code generation.

Component type "coupling"
The  coupling  component  type  (Supplementary  Table  4)  gives  the  user  the  flexibility  to  define
arbitrary coupling functions for the automatic CUDA code generation. To identify this component
type, the  name field must include the term "coupling". For the Python variant, coupling functions
need  to  be  encoded  individually  for  each  population  as  c_pop  variables,  due  to  architectural
constraints  of  the  main  TVB  implementation.  The  constructs  Parameter,  DerivedParameter  and
DerivedVariable have a similar keyword naming scheme as in the "derivatives" component type. It is
possible to specify multiple coupling functions for a set of populations. The  Parameter constructs
specify the name of variables used to compute coupling and the dimension field indicates the used
state variable. In our example (Supplementary Table 4), the first defined state variable is selected, as
indexing starts from zero; the corresponding line 4 of Supplementary Listing 2 shows how a shift of
'0'  encodes the selection of the first  state variable.  The  DerivedParameter construct defines the
name of  the  variable  to  store  the  coupling  input  and  the  value field  contains  a  function  that
transforms the sums of all inputs to a specific node. This variable, which has the name c_pop1, can
again be used as input to compute pre- and postsynaptic dynamics. Line 20 of Supplementary Listing
2 shows the variable and the expression applied to it. The expression holds  global_coup, which is
defined as  a  parameter  and  local_coup which is  defined as  a  constant  outside of  the  coupling
construct. The  DerivedVariable construct can be used to enter custom "pre"- and "post"-synaptic
coupling functions. This pre- and postsynaptic coupling functions are then multiplied with each other
and again multiplied by the weights of the node and finally assigned to c_pop1, which is shown on
line 16 of  Supplementary Listing 2.  As is  mentioned in the  derivatives section, if  the derivatives
component type does not have a derived parameter named "rec_speed_dt", the coupling function
will  not  have  the  delay  aspect  and  thus  does  not  have  a  temporal  component.  Line  12  of
Supplementary  Listing  2  shows  the  fetching  of  the  delays  and  the  usage  of  "rec_speed_dt".  If
"rec_speed_dt" is not defined "dij" will be set to 0. Other variables or constants defined inside or
outside of this component type can also be used to populate this function.
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// Loop over nodes
for (int i_node = 0; i_node < n_node; i_node++){
    c_pop1 = 0.0f;
    V = state((t) % nh, i_node + 0 * n_node);
    unsigned int i_n = i_node * n_node;
    // Loop over nodes
    for (unsigned int j_node = 0; j_node < n_node; j_node++){
        // Get the weight of the coupling between node i and node j
        float wij = weights[i_n + j_node];
        if (wij == 0.0) continue;
        // Get the delay between node i and node j
        unsigned int dij = lengths[i_n + j_node] * rec_speed_dt;
        // Get the state of node j which is delayed by dij
        float V_j = state(((t - dij + nh) % nh), j_node + 0 * n_node);
        // Sum using coupling function (constant * weight * pre * post)
        c_pop1 += wij * c_c_a * 2 * sin(V_j - V);
    }
}
// Export c_pop1 outside loop and process
c_pop1 *= global_coupling;
// Do derivative calculation

Supplementary Listing 2: Generated CUDA code for coupling

Component type "noise"
To specify  noise terms,  a component type with the  name “noise” can be defined, which is  only
applicable for the CUDA variant. The CUDA code generation makes use of the Curand library to add a
random value to the calculated derivatives, which is comparable to Gaussian noise (curand_normal).
As  is  mentioned  in  the  derivatives section,  if  the  derivatives  component  type  has  a  derived
parameter with the name “nsig” a noise amplification of value will be used to amplify the noise. Thus
specifying:

<ComponentType name="noise" /> 

will add this line to the model, in which nsig is the noise amplifier V is the current state and dV is the
numerical solution step of the derivatives: 

V += nsig * curand_normal(&crndst) + dV;

Benchmark Python and CUDA: ReducedWongWang parameter 
exploration
TVB-HPC makes efficient use of the large number of parallel  cores in GPUs for high-dimensional
parameter space exploration. Supplementary Figures 5 and 6 show performance results for Python
and CUDA model code generated from a ReducedWongWang model  (Deco et  al.,  2014) RateML
specification.  The  results  in  Supplementary  Figure  5  shows  the  runtimes  for  simulating  1024
parameter combinations with the RateML generated models for an increasing numbers of  BNM
nodes. For a 68-node BNM we explored parameter scaling behavior, shown in Supplementary Figure
6. These setups explore a range of parameters for the coupling and speed of the TVB connectivity.
The Python models are distributed through MPI over 128 cores of an AMD EPYC 7742 with 2×64
cores running at 2.25 GHz. The GPU used is an NVIDIA V100 GPU with 16 GB HBM2e. MPI was used
to  disperse  the  workload  on  the  cores,  once  the  simulation  started  no  information  was
communicated between the cores. Both setups were executed on JUSUF supercomputer located at
the  Jülich  Supercomputing  Centre.  Occupancy  analysis  showed  that  when  the  thread  block
dimension is 32x32, a CUDA programming abstraction indicating thread count dispersion for the
GPUs multiprocessors, the GPU performance is optimal with regards to execution runtime.
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Fast_TVB

Fast_TVB was developed in C and makes extensive use of optimization techniques to increase the
speed of brain network model simulations with the Dynamic Mean Field model (Deco et al., 2014).
For  example,  it  uses  Single  Instruction,  Multiple  Data  instructions  where  the same operation is
concurrently applied to multiple values contained in one large register. In the main integration loop
no function calls are made to avoid possible overhead and instead all  necessary code is  directly
written into the main integration loop. Inner loops are unrolled, jammed and bound to avoid "end of
loop" tests and branch penalties. Intermediary results are re-used in other parts of the algorithm and
not  computed  again.  For  example,  some  terms  and  expressions  occur  multiple  times  in  the
equations or they resolve to a constant and therefore only need to be computed once and not
repeatedly  in  each  time  step.  To  reduce  memory-related  performance  bottlenecks  and  cache
failures, data to compute coupling inputs is organized in an efficient ring-buffer that stores related
data  in  close  locality.  SC  is  stored  in  a  sparse  layout  that  scales  linearly  with  the  number  of
connections (and not  quadratically  as  when stored as  array),  which enables  to  hold  large  brain
network models efficiently in memory. The computation of coupling inputs also requires that the
program steps through distant memory locations (in order to fetch time-delayed state variables),
which is why pointer tables that directly link to the required addresses are used instead of array
indexing tables, which saves one dereferencing operation for each memory access. Input and output
operations happen only before or after the main simulation to avoid waiting time for devices. The
Fast_TVB EBRAINS collab (Table 1) explains how to run the image container on supercomputers from
a Jupyter notebook using  Fast_TVB command line arguments. Having pulled the image (with e.g.,
docker pull thevirtualbrain/fast_tvb), the container can be run by invoking the command

docker run --rm --mount type=bind,source=/path/to/output,target=/output --
mount type=bind,source=/path/to/input,target=/input thevirtualbrain/fast_tvb
/start_simulation.sh <parameter_file> <subject_id> <num_threads>

and  analogous  commands  for  Docker  alternatives  like  Singularity,  Sarus  or  Shifter.  The  three
command line arguments specify the following:

 <parameter_file> specifies the name of the parameter file,
 <subject_id> specifies the ID of the subject, used as prefix for SC filenames, 
 <num_threads> sets the number of threads to be run during parallel execution (set to 1 to

disable multithreading).
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Supplementary Figure 5: Walltime results when scaling the 
number of TVB nodes for GPU and Python TVB models for 
1024 parameter combinations and 30 s of simulated time.

Supplementary Figure 6: Walltime results when scaling the 
number of parameters for GPU and Python TVB models for a 
68-nodes BNM and 30 s of simulated time



As input, Fast_TVB needs a parameter file and two SC files, one for connection weights and one for
distances. All three files must be plaintext ASCII and stored in the directory input/. Matrix columns
are separated by whitespaces, and rows by newline characters. The unit of distances is mm, whereas
coupling weights are dimensionless. To write outputs, Fast_TVB expects a folder called  output/.
Input and output folders must exist on the host computer, they must be bind-mounted to a folder in
the container as shown above, and the container client must have read and write access. SC files in
the  input  folder  must  have  the  suffixes  "_SC_weights.txt" for  the  coupling  weights  file,  and
"_SC_distances.txt" for the distances file:

 connection weights file: <sub_id>_SC_weights.txt
 connection distances file: <sub_id>_SC_distances.txt

The subject identifier <sub_id> should be an arbitrary short alphanumeric string, e.g. "sub002", and
must be provided as an argument to the program call. The parameter file contains the parameters as
a list of numbers separated by whitespaces. The expected sequence of parameters, an explanation,
and examples of the parameters are shown in Supplementary Table 5. Please note that for the
parameter file correct  formatting of floating point versus integer numbers is  mandatory:  integer
numbers must be formatted without a radix point, while floating point numbers must always have a
radix point (Supplementary Table 5). For a detailed description of parameters please consult Deco et
al. (2014).

Parameter Description Number format Example
nodes number of nodes in brain network model Integer 379
G global coupling scaling factor Float 1.0
J_NMDA strength of excitatory (NMDA) synpases Float 0.15
w_plus strength of local excitatory recurrence Float 1.4
Ji strength of local inhibitory (GABA) synapses Float 1.0
sigma noise strength Float 0.01
time_steps length of the simulation (ms) Integer 10000
BOLD_TR TR of simulated fMRI BOLD signal (ms) Integer 720
global_trans_v transmission velocity of large-scale network (m/s)Float 12.5
rand_num_seedseed to initialize random number generator Integer 42
Supplementary Table 5. Parameters of ReducedWongWang as implemented in Fast_TVB.

For efficient dense parameter space explorations, it is beneficial to use the code in a serial manner,
i.e., without multithreading. Simulations are more efficient when only a single thread is created, due
to  absence  of  interthread  communication  overhead,  but  faster  for  multiple  threads.  Instead,
multiple instances of the program can be spawned to compute several parameters sets in parallel.
To create the Docker image from scratch please refer to code and instructions in the source code
repository (Table 1). Fast_TVB was used in several publications for brain simulation  (Aerts et al.,
2020, 2018; Costa-Klein et al., 2020; Schirner et al., 2018; Shen et al., 2015; Zimmermann et al.,
2018). Supplementary Figure 7 compares runtimes of single-threaded Fast_TVB with TVB version
1.5.8-8852 on a MacBook Pro (15-inch, 2017, 3.1 GHz 6-Core Intel Core i7, 16 GB 2133 MHz LPDDR3)
for different network sizes.
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Supplementary Figure 7. Walltimes for TVB and Fast_TVB for simulating 30 s of fMRI BOLD activity for different parcellation
sizes.

Supplementary Methods: TVB atlas and data adapters
Atlas  and data  adapters  are  under  development  to  connect  TVB  with  the EBRAINS Brain  Atlas,
KnowledgeGraph and Human Intracerebral EEG services for data exchange via RESTful APIs. Atlas
adapters will enable to localize and extract empirical data from multimodal brain atlases to inform
BNM parameterization. For example, setting coupling parameters heterogeneously for each region
according to its ratio of T1- to T2-weighted MRI, a proxy of Myelin content (Glasser and van Essen,
2011), leads to a better fit with empirical fMRI and it also predicts empirically observed hierarchical
organization  of  spectral  power  (Demirtaş  et  al.,  2019).  Similarly,  Stefanovski  et  al.  (2019) used
information from PET data to heterogeneously set local population model parameters in order to
simulate  patient-specific  amyloid  beta  burdens  in  Alzheimer's,  which  produced  a  characteristic
slowing of EEG. In addition to supplying inputs, adapters are also needed for analyzing simulation
outputs, which often requires several additional software packages. For example, TVB has interfaces
with  Python,  MATLAB,  the  Brain  Connectivity  Toolbox,  or  the  Allen  Brain  Atlas  (see  TVB's
documentation, Table 1). 

The  Human  Brain  Atlas  is  EBRAINS'  central  reference  space  for  integrating  different  maps  of
structure, function and connectivity, based on the Julich-Brain Cytoarchitectonic Atlas (Amunts et al.,
2020). Julich-Brain is a 3D atlas of the human brain based on histological staining of 20-μm sectionsm sections
of 23 post-mortem brains, providing a highly detailed anatomical reference space that resolves large
cell  bodies in individual  cortical  layers.  Upon digitization,  a  3D reconstruction of  the histological
sections was computed for each individual and registered with the MNI-Colin27 template and the
ICBM 2009c Nonlinear Asymmetric template. Due to this alignment with standard brain templates,
the  atlas  features  can  be  mapped to  individual  brain  anatomy using  nonlinear  registration  and
spatial warping. A growing selection of multimodal data features will then be usable to inform large-
scale  BNMs,  including  transmitter  receptor  densities  (Palomero-Gallagher  and  Zilles,  2019),  cell
distributions, and physiological recordings. Initial work on the atlas adapters, an overview of which
can  be  inspected  in  a  dedicated  collab (wiki.ebrains.eu/bin/view/Collabs/atlas-tvb-mapping),  is
currently  focusing  on  providing  a  full-brain  coverage  parcellation  derived  from  the  Julich-Brain
probabilistic  cytoarchitectonic  maps  as  well  as  creating  SC  using  this  parcellation  and  diffusion
tractography data from the 1000BRAINS study  (Caspers and Schreiber,  2020).  Upon completion,
density measurements for 16 receptors will be provided for each brain region, and high-resolution
tractography maps (full brain post-mortem 200 μm sectionsm isotropic diffusion MRI and 60 μm sectionsm isotropic 3D
Polarised Light Imaging) will increase the reliability of SC  (Axer et al., 2016; Beaujoin et al., 2018).
Further  characterizations of  microstructural  properties will  be derived from HBP's BigBrain Atlas
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(Amunts et al., 2013), which contains cell body stains at 20 μm sectionsm isotropic resolution. In addition, post-
mortem  polarized  light  imaging  with  1  μm sectionsm  in-plane  resolution  will  provide  characterizations  of
tangential connectivity throughout the cortical mantle. Lastly, it is also planned to link intracranial
electrophysiology  recordings  of  different  cohorts  with  the respective Julich-Brain  regions,  which
opens up opportunities to set model parameters based on functional data, for example, estimates of
effective connectivity and transmission delays from stimulation experiments (Trebaul et al., 2018).

The idea of  data adapters is to connect TVB with EBRAINS data repositories,  with the goal  that
services can effectively and securely exchange data via  KnowledgeGraph as central database and
graph ontology, in order to compare simulation results with empirical data. Connecting different
repositories with TVB comes with the need to account for the heterogeneity of data formats and
data base interfaces. For example, TVB shall connect with the Human Intracerebral EEG Database
and Analysis Platform, which is currently developed in EBRAINS. To use this type of data it is, for
example, important that the geometry and location of sensors is taken into account, which requires
interfaces between the involved reference spaces and data formats. To conveniently set up adapters
for the large variety of applicable neuroscience repositories it is planned to develop a meta-language
where such interfaces can be specified with XML or JSON syntax. 

Supplementary Methods: Data integration and TVB-
ready data

openMINDS metadata annotation
The  KnowledgeGraph is the central service in EBRAINS to store, organize, share, and find data. To
increase findability and re-usability, integration of data into the KnowledgeGraph requires that the
data is properly documented, organized, and annotated with metadata that specifies key features of
the  data  that  allow  their  identification  and  interpretation,  e.g.,  data  set  identifiers,  full-text
descriptions,  licenses,  embargos,  owners,  contributors,  involved  specimen,  subject  identifiers,
methods, datatypes, measurements, activities, repositories, versions, etc. The KnowledgeGraph uses
the openMINDS metadata models (Table 1), which are defined by lightweight JSON templates that
are serialized in the  KnowledgeGraph using JSON-LD. The schemas of  the openMINDS metadata
model serve as basic architectural building blocks underlying the KnowledgeGraph graph database
and  are  linked  with  existing  neuroscience  ontologies  and  terminologies.  The  openMINDS  core
metadata-model  is  flexible  enough to capture  the intricacies  of  non-standardized  research data
while  being  strict  enough to enable  structured database querying.  To support  users  in  creating
openMINDS  metadata  we  provide  a  simple  openMINDS  JSON-LD writer  that  semi-automatically
creates the required file and folder structure with respective contents (Table 1).

BIDS metadata annotation
For compliance with the BIDS standard (bids-specification.readthedocs.io), derivative data sets must
contain the metadata JSON file dataset_description.json. This file must exist in the top-level folder of
every  BIDS  data  set  and  contains  a  description  of  the  data  including  Name,  Authors,  License,
Acknowledgments, Funding, DOI, etc. The TVB Processing Pipeline first propagates all key-value pairs
from the  dataset_description.json file of the input data, and then, following the 'BIDS Derivatives'
standard, adds key-value pairs as shown in Supplementary Listing 3.

"PipelineDescription":{
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   "Name":"TVB Image Processing Pipeline",
   "Version":"1.0",
   "CodeURL":[
      "https://github.com/BrainModes/tvb-pipeline-sc",
      "https://github.com/BrainModes/fmriprep",
      "https://github.com/BrainModes/tvb-pipeline-converter"
   ]
},
"SourceDatasetsMetadata":[
   {
      ...
   },
   ...
]

Supplementary Listing 3. Key-value pairs added to the dataset_description.json metadata file of the TVB Image Processing 
Pipeline output.

The  keys  belonging  to  "PipelineDescription"  describe  the  pipeline  and  are  filled  with  above-
mentioned default  values. The values belonging to the key "SourceDatasetsMetadata" collect all
metadata schemas from the source data sets.

TVB-ready data
KnowledgeGraph  provides  exemplary  TVB-ready  connectivity  data  in  BIDS  format  from  tumor
patients and matched control participants. The data set contains region-average fMRI time series,
FC, and SC from 31 brain tumor patients before and after surgery, and 11 healthy controls from
tumor patients and healthy controls. The data have been reported in previous studies (Aerts et al.,
2020, 2018). Both studies were approved by the Ethics Committee at Ghent University Hospital. All
participants received detailed study information and gave written informed consent before study
enrolment. The dataset contains MRI derivatives from patients who were diagnosed with either a
glioma, developing from glial cells, or a meningioma, developing in the meninges, as well as healthy
controls. Patients were recruited from Ghent University Hospital (Belgium) between May 2015 and
October 2017 on the day before each patient's tumor surgery. Patients were eligible if they (1) were
at least 18 years old, (2) had a supratentorial meningioma (WHO grade I or II) or glioma (WHO grade
II or III) brain tumor, (3) were able to complete neuropsychological testing, and (4) were medically
approved to undergo MRI investigation. Partners were also asked to participate in the study to
constitute a group of control subjects that suffer from emotional distress comparable to that of the
patients. Data from 11 glioma patients (mean age 47.5 y, SD = 11.3; 4 females), 14 meningioma
patients (mean age 60.4 y, SD = 12.3; 11 females), and 11 healthy partners (mean age 58.6 y, SD =
10.3; 4 females) was collected. From all participants, three types of MRI scans were obtained using a
Siemens  3T  Magnetom Trio  MRI  scanner:  T1-MPRAGE anatomic  images,  resting-state  functional
echo-planar imaging data, a multishell high angular resolution diffusion-weighted MRI scan, and two
DWI b = 0 s/mm2 images were collected with reversed phase-encoding blips for the purpose of
correcting susceptibility-induced distortions. Further information on the dataset, preprocessing and
analysis can be found in the original journal articles using this dataset (Aerts et al., 2020, 2018) and
in the dataset publication on EBRAINS KnowledgeGraph (Aerts et al., 2019).

Supplementary Methods: Advanced use cases and 
training

Bayesian Virtual Epileptic Patient
The Bayesian Virtual Epileptic Patient tutorials (Table 1) showcase how Bayesian inference is used to
compute  posterior  probability  distributions  for  parameters  of  TVB's  Epileptor  population model
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(Hashemi et al., 2020; Jirsa et al., 2017, 2014; Proix et al., 2017).  About one-third of the 70 million
Epilepsy patients worldwide suffer from drug-resistant Epilepsy: patients experience uncontrolled
seizures despite pharmacotherapy and in many cases brain surgery is the last resort  (Kwan and
Brodie, 2000; Tang et al., 2017). A major problem for Epilepsy surgery is that seizures can spread to
brain regions without clear relationship to the onset zone, which is why modelling efforts are now
considering large-scale brain network interaction effects. Mathematical models of seizure initiation
and  recruitment  have  advanced  our  understanding  of  the  dynamical  mechanisms  underlying
seizures. For instance, taxonomy analysis of seizure dynamics has shown that a system of five linked
state variables, called 'the Epileptor', is sufficient to describe onset, time course and offset of ictal-
like discharges and their recurrence  (Jirsa et al., 2014). A  detailed analysis over 2000 focal-onset
seizures from multiple centers  (Saggio et al., 2020) has shown that the Epileptor model is able to
realistically simulate the most dominant dynamics of onset, progression and offset in seizure-like
events. However, predicting seizure propagation is challenging because inversion of BNM equations
suffers from the curse of dimensionality, uncertainty about parameter ranges (which often cannot
be  measured)  and  variability  of  observations.  The  BVEP  uses  Bayesian  inference  to  compute
posterior probability  distributions for parameter values in order to study the spread of Epileptic
seizures  in  patient-specific  models.  The  approach  works  by  applying  Bayes'  theorem  on  prior
distributions obtained from observed data and model  simulations while taking into account the
likelihood  for  these  observations.  In  this  way  the  approach  integrates  empirical  information as
priors, such as a patient’s SC, or lesions detected in MRI. The goal of the BVEP is to estimate the
excitability parameter of the Epileptor population model for every brain region to yield a map of
epileptogenicity  for  informing clinical  decisions.  The excitability  parameter  controls  whether the
Epileptor shows epileptogenic behavior or not and the estimated values are used to classify brain
regions into three categories: epileptogenic zones (EZ), which can autonomously trigger seizures;
propagation zones (PZ), which do not trigger seizures autonomously but may be recruited during the
seizure evolution; and healthy zones (HZ), where no seizures occur. The target of this inference is to
obtain the posterior distributions of the excitability  parameter for every brain region, as well  as
initial  conditions,  global  coupling,  and  noise.  Priors  for  the  excitability  parameter  are  either
uninformative (e.g., a uniform distribution over the entire range for EZ, PZ and HZ), or they can
express clinical hypotheses (e.g., by centering a distribution over the range for on category), or they
can  be  used  for  including  empirical  data  (e.g.,  when the  region  was  recorded  to  show seizure
activity, the parameter value range for HZ can be excluded from the prior). Resulting model evidence
can be used for comparison of different clinical hypotheses  and to inform diagnosis and therapy.
Simulation results are compared with empirical measurements (e.g., EEG from implanted electrodes)
and model selection with cross-validation metrics are computed to evaluate clinical hypotheses and
to  assess  the  model's  ability  to  predict  new  data.  As  exact  posterior  inference  in  such  high-
dimensional models is intractable, approximate methods are used, e.g., Markov Chain Monte Carlo
(MCMC), which enables to generate correlated samples that converge to a (potentially complex)
target distribution. Gradient-based MCMC algorithms like Hamilton Monte Carlo provide efficient
convergence to high-dimensional target distributions, but their performance is highly sensitive to
hyperparameters, which often need to be re-tuned to arrive at the desired target distribution, which
is solved in BVEP by using No-U-Turn Samplers for adaptive self-tuning of hyperparameters (Hoffman
and Gelman, 2014). Alternatively, Automatic Differentiation Variational Inference (ADVI) is used to
approximate the posterior by first positing a family of densities and then finding a member of that
family  that  is  closest  to  the  target  distribution  as  measured  by  Kullback-Leibler  divergence
(Kucukelbir  et  al.,  2017).  BVEP  is  implemented  in  the  open-source  probabilistic  programming
language tools Stan (mc-stan.org) and PyMC3 (docs.pymc.io), which use automatic differentiation to
compute gradients  of  specified  model  density  functions for  NUTS and  ADVI.  The  workflow was
tested  with  ground-truth  synthetic  data  for  two  patients  with  symptomatic  and  asymptomatic
seizures where it was possible to accurately and efficiently infer the spatial map of epileptogenicity
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for all brain regions (Hashemi et al., 2020). The currently running EPINOV clinical trial (epinov.com)
investigates informing clinical decisions with virtual patient studies to improve surgery outcome.

TVB Mouse Brains
The TVB Mouse Brain (Melozzi et al., 2019, 2017) tutorials (Table 1) show how tracer-based mouse 
SCs at different resolutions can be constructed from the Allen Mouse Brain Connectivity Atlas (Oh et 
al., 2014). The "Mouse Stroke" tutorials show how to introduce structural alterations related to 
stroke into SC and to associate these with corresponding changes in FC and population 
synchronization (Allegra Mascaro et al., 2020). To model stroke and subsequent rehabilitation, a pre-
defined fraction of incoming connections is removed, e.g., 0 % corresponds to no stroke, while 100 %
would correspond to a devastating stroke that destroyed all incoming connections to the region. 
Similarly, recovery from stroke is modelled by compensatory rewiring (Nudo, 2013) where the 
connection strengths of the non-damaged connections are increased relative to healthy connectivity.
Different stroke connectomes are produced in this manner and the resulting FC is then fitted and 
compared with empirical data. By testing different re-wiring scenarios, the relative importance of 
compensatory rewiring in different connections for re-establishing healthy FC is studied. For these 
brain network models the Kuramoto model (Kuramoto, 1984) was used, which is a 
phenomenological model for emergent group dynamics of weakly coupled oscillators that we used 
previously to link SC with oscillatory dynamics in different modalities (Petkoski et al., 2018; Petkoski 
and Jirsa, 2019).  

INCF training space
The INCF (International  Neuroinformatics Coordination Facility)  training  space holds  a  dedicated
collection  for  The  Virtual  Brain  where  didactic  use  cases  are  available  with  video  tutorials,
notebooks, and example data sets (Table 1, Supplementary Figure 8). INCF's TVB EduPack module
gives  a  thorough  introduction  into  work  with  TVB  in  general  and  EBRAINS  cloud  services  in
particular,  helping  the  user  to  get  quickly  started  with  TVB  and  to  reproduce  several  of  the
publications made with TVB. Tutorials consist of short lecture videos, scripting tutorials with Jupyter
notebooks and code. Use cases demonstrate, for example, how to use TVB via the Collaboratory, run
multi-scale co-simulations with NEST, process imaging data to construct personalized virtual brains
of healthy individuals and patients, or analyze simulation results. 
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Supplementary Figure 8. In the INCF training space users find video tutorials, notebooks, and example data sets.

TVB Made Easy is a series of short lectures that introduce work where TVB was used in a clinical
context. The training modules exemplify how TVB can help to predict recovery after stroke and how
individual epileptic seizures are simulated. Brief lectures describe the methods and results, as well as
how researchers  can replicate  the principal  ideas  of  the articles  directly  with  the  TVB GUI  and
explore  how  artificial  lesions  alter  brain  dynamics,  or  how  seizures  spread  through  the  brain
network.  An advanced application of TVB is the specification of disease models like it was done in
the  publication  by  Stefanovski  et  al  (2019).  In  the  INCF  training  space  an  extensive  tutorial  is
provided that walks the user through the approach of the paper, in which the concentration of the
protein amyloid beta, measured with positron emission tomography, was added as a prior for brain
network  model  parameterization,  leading  to  a  better  understanding  of  the  hyperexcitability
phenomenon in Alzheimer's disease.

Supplementary Methods: Data protection in the TVB on 
EBRAINS cloud
Biomedical  research  is  currently  facing  challenges  because  many  methods  lack  technical
infrastructure to ensure the protection of personal data. Problematically, biomedical data cannot be
easily anonymized or pseudonymized such that personally identifiable information are removed, and
potential  re-identification  is  excluded  (Mostert  et  al.,  2016).  Person-related  information  is  the
explicit  target  in  biomedical  research  and  for  personalized  therapy.  The  information  that
characterizes the biomedical state of a person may also be used to (re-)identify a person. Precisely
those features that create a deep understanding of health and illness of individuals are often highly
unique.  High-dimensional  neuroimaging  data,  and  especially  data  related  to  personalized  brain
simulation, like structural connectomes, functional connectomes, brain surfaces, MRI images, fMRI
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time series, PET loadings, simulated brain activity, parameter estimation results, etc. are specifically
acquired  with  the  goal  of  deep  phenotyping  the  data  subjects.  Typical  data  anonymization  or
pseudonymization strategies like removing metadata, releasing only subsets of data or even deleting
facial features from MRI data are insufficient to protect the identity of the person, as it was shown
that re-identification is almost perfect with as few as 40 out of 64,620 functional connections (Byrge
and Kennedy, 2018) or 15 demographic attributes (Rocher et al., 2019). Currently, several large-scale
initiatives, like the UK Biobank, are collecting thousands of features from millions of people. Health
records of substantial parts of the world's population are digitized and exchanged between different
computing systems.  In the TVB on EBRAINS cloud personal  data is  exchanged over  the internet
between the user and the different cloud components. Moreover, the personal data is stored and
processed on shared supercomputers. Transmitting personal data over non-secure channels like the
internet as well as storing and processing personal data with shared resources poses the risk that the
data is subject to unauthorized access. If privacy is breached, the individuals from which these data
were collected face a number of potential harms. Here, we first provide a general outline of risks
involved  in  cloud  computing  and  highlight  key  aspects  of  the  currently  implemented  security
mechanisms. We also draft usage agreement terms that shall enable using TVB on EBRAINS cloud
services to process personal data in compliance with General Data Protection Regulation (GDPR) as
well as national laws. GDPR and similar national laws are legal frameworks that protect personal
information by imposing restrictions to storing, sharing, and processing of personal data, which is
here  primarily  neuroimaging  data,  derivatives  thereof,  neurosimulation  results  and  associated
metadata. In the following we describe cloud computing risks and protection measures that can help
prevent unauthorized access and leakage of personal data.

Cloud computing risks
In the following we list the major classes of risks involved in cloud computing with respect to GDPR
based on recommendations for data security published by the European Union Agency for Network
and Information Security  (Catteddu et al.,  2012; Rijmen et al., 2013).  Logical leakage includes all
scenarios where data was exposed in transit. For example, an unauthorized copy of files was made
because a communication channel was attacked.  When data is transferred between different sites
there is the possibility that the transfer can be intercepted. Sending data over open and insecure
networks, like the Internet, poses security risks like code execution exploits, person-in-the-middle-
attacks, DNS poisoning, redirect vulnerabilities, sniffing, spoofing, side channel and replay attacks.
Data can be protected against this type of attack by state-of-the-art authenticated encryption, which
is  a  form of  encryption that simultaneously assures the confidentiality  and authenticity of  data.
Authenticate-encrypted data can be considered protected if only the cipher text was exposed, but
the decryption key remains secret. During  break-in on a live device an attacker gains access to a
device while it is working on sensitive data. The device is active during the attack, but the attacker
has no physical access. For example, an attacker gets access to a device while a user is logged in. Or,
a system has been hacked, e.g., by exploiting backdoors or application vulnerabilities. Or a virus with
surveillance capabilities is active on the device. Since the cloud interface is remotely accessible and
mediates access to larger sets of resources, similar attack scenarios like above ensue. In addition,
isolation failure  in shared environments can lead to situations where one tenant gets access to
another  tenant's  resources  or  data,  e.g.,  guest-hopping  attacks,  SQL  injection  attacks,  or  side-
channel  attacks.  Furthermore,  malicious  insiders  of  the  cloud  provider,  e.g.,  current,  or  former
employees, can cause various kinds of damage, e.g., by implanting malicious code in cloud services.
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Authenticated encryption can only protect against this type of attack if the data and the encrypting
keys are not present in unencrypted form during the attack. If data resides in unencrypted form in
the RAM, it  is not protected against  this  attack. Data can only be considered secure if  one can
guarantee that the data was not opened for the entire duration of the attack.  If cryptographic keys
are present in RAM, then they are also to be considered as leaked, as well  as all  data that was
encrypted using these keys. The amount of data leaked during this type of attack can be reduced by
keeping as many keys as possible inside secure hardware and using a proper key architecture. In
addition, firewalls and sandboxes may help to prevent leakage of data that is unencrypted in RAM by
blocking network traffic and inter-process communication. This prevents that worms, trojan horses,
surveillance  viruses  or  other  malicious  code  intercept  sensible  data  while  unencrypted  in  main
memory.  For  that,  firewalls  and sandboxes  should  be  configured  such  that  all  traffic  and  inter-
process communication that is not explicitly permitted is blocked by default.  In case of  full  user
impersonation an attacker gets access to secret information that allows to impersonate a user. For
example, a user loses passwords, access tokens or cryptographic keys. The amount of data leaked
during  this  type  of  attack  can  be  reduced  by  keeping  as  many  keys  as  possible  inside  secure
hardware and using a proper key architecture. Keys that have to reside in RAM during their usage
shall  only encrypt small  amounts of data.  Furthermore, it  should not be possible to derive data
encryption  keys  from  access  control  keys  or  vice  versa. Lastly,  hardware  leakage  means  that
hardware  containing  sensitive  data  was  brought  into  possession  of  an  attacker.  For  example,
portable computers, hard drives, USB sticks or any device that stores sensitive data were lost. This
allows applying  physical  attacks  that  bypass  security  measures  at  the logical  level.  The problem
persists even if the data was deleted, because simple deletion does not guarantee that the data is
properly  destroyed  and  ultimately  removed  from  the  storage  or  backup  media.  If  data  is  not
properly destroyed, the data could be recovered and accessed at a later time. Data is better secured
against this type of data breach if it is protected by authenticated encryption and if all unencrypted
copies of the data that have ever been on this hardware have been deleted securely, such that they
cannot be recovered. The same protection must be applied to used cryptographic keys. Top-level
cryptographic keys should not be stored on the device at all but should rather be input manually or
read  from  a  removable  token.  In  addition  to  data  files,  also  swap  files  and  memory  dumps
(hibernation)  are  potential  causes  of  data  breach  and  such  files  must  therefore  also  remain
encrypted to protect from leakage. 

Protective measures
In the following we describe how the TVB on EBRAINS image processing workflow is protected by
the data security mechanisms access control, encryption, and sandboxing.  EBRAINS access control
uses passwords and cryptographic keys to prevent unauthorized access, to provide secure delegated
access for connecting different cloud services, as well as to provide single sign-on. Keycloak is used
for identity and access management, i.e., user registration, management, and permission control.
The OpenID Connect protocol is used for authentication--confirming the identity of a user--based on
OAuth 2.0 specifications for delegating and conveying authorization decisions. OAuth 2.0 is a widely
adopted standard for access delegation and user authorization flows without the need for sharing
credentials,  which  is  realized  by  issuing  cryptographic  tokens  that  provide  ongoing  access  to
protected resources on behalf of a user. With this framework TVB services can limit the scope of
computing  resources  accessible  by  a  user:  access  to  services  is  only  provided  through  a  GUI
(thevirtualbrain.apps.hbp.eu) that only allows to execute a preconfigured set of programs and only
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within  a  sandbox,  respectively  container,  that  does not  provide direct  access  to  the  underlying
supercomputing  account. Encryption is  a  fundamental  tool  for  data  privacy,  ensuring  that  data
becomes unintelligible without decryption key. Therefore, the workflow is implemented such that
sensitive data is encrypted at all times by default with the only exception when it is actively being
used as input for a data processing routine. Only for the time window during which the data is
actively being processed it may exist in unencrypted form, but then only within file system locations
that  are  not  accessible  by  other  users.  TVB  on  EBRAINS  workflows  (Figure  2)  use  public  key
cryptography in a way that the secret keys used for input data upload and results download are
created ad-hoc at the beginning of the workflow and remain the entire time in a secure location at
the site where the data will be finally used. That is, the decryption key for the uploaded input data is
generated and held only on the supercomputer where the processing is being performed, with an
automatic procedure, rendering the key inaccessible by any human user or system administrator.
That is, the secret private key for decryption is only held in the main memory of a sandboxed process
and  never  written  out.   Shortly  before  the  upload  starts  the  key  pair  is  generated  on  the
supercomputer, and only the public key is forwarded to the user's computer to encrypt the input
data. Each uploaded data set gets its own dedicated key that is automatically created shortly before
the encryption. After the encrypted data were uploaded to the supercomputer, they are decrypted
into a sandboxed temporary file system. Likewise, during the entire processing intermediate results
are only written into such a temporary filesystem that is invisible from the host. The outputs of the
workflow are encrypted with a public key that was generated on the data controller's computer and
all  input  and  intermediate  data  of  the  workflow  are  deleted,  the  sandbox  destroyed,  and  the
encrypted results returned to the data controller. The decryption key for returning processing results
is generated and exists only in an area that is under control by the user who initiated the processing
(either  within  the  EBRAINS  cloud,  or  locally  on  the  user's  computer).  Upon  termination  of  the
workflow, all keys and data are fully deleted. Data that is stored within a user's private space of the
TVB web GUI stays encrypted while they are stored on EBRAINS servers and are only decrypted
when the logged user opens the respective project in the project panel of the TVB GUI. When a
decrypted project is not used anymore (i.e., there is no operation running on it, the project is not in
the synchronization queue and the project is not used by another logged user) the decrypted data is
deleted.

Shared responsibility & compliance
In addition to the technical measures described above, EBRAINS addresses data security through
organizational measures and structures that plan, implement and review data protection and data
sharing  (ebrains.eu/service/share-data).  Among  these  is  a  data  governance  working  group
(humanbrainproject.eu/en/social-ethical-reflective/about/data-governance/dwgw)  that  oversees
and coordinates data-related policies across the infrastructure including access policies and their
technical implementation. EBRAINS has a data protection officer who works to ensure that GDPR
requirements  are  clear  and  that  data  protection-related  obligations  are  understood  and
appropriately addressed across the organizations involved. These organizational measures help to
review and update the data protection risks and the technical measures aimed to address them. TVB
on  EBRAINS  data  protection  follows  a  "data  protection  by  design  and  by  default"  strategy  as
mandated by GDPR Article 25. Data protection by design requires the implementation of state of the
art technical and organizational measures, such as pseudonymization and encryption, and adherence
to the data protection principles and the safeguarding of data subject rights at the earliest stages of
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workflow design in a way that ensures privacy at all stages of the processing. Data protection by
default implies that personal data is processed with the highest privacy protection so that by default
personal data are not made accessible to an indefinite number of persons. Article 24 GDPR states
that the data controller has the responsibility to implement appropriate technical and organizational
measures to ensure and to be able to demonstrate that processing is performed in accordance with
GDPR,  which  involves  data  protection  by  design  and  default  (Article  25).  Article  25  specifically
requires data protection by default in a way that only the minimum amount of personal data is
processed, the extent of the processing is minimal, the shortest period of storage is chosen, and the
possibilities  for  accessing  the  personal  data  are  minimized.  Following  these  legal  requirements
technical  and organizational  measures  were put  in  place to  enable  the data  controller  to  exert
continuing control  over the personal  data while in the EBRAINS cloud and to prevent access by
others. A user can at any point stop the processing and remove the data from the EBRAINS cloud.
Furthermore, the user is the only person that is in control over the data while in the cloud: security
measures prevent access to another user's data if not explicitly shared. Accordingly, a user of TVB on
EBRAINS services acts as a data controller under GDPR as it determines, alone or jointly with others,
the purposes and means of processing as defined in Article 4(7) GDPR. In contrast, EBRAINS only acts
as a data processor that processes data on behalf and under the authority of the data controller(s)
(Articles 28 and 29, GDPR). As defined by Article 4(8) GDPR, a 'processor' is a natural or legal person,
public authority or agency or other body which processes personal data on behalf of the controller.
When processing is to be carried out on behalf of a controller, compliance with the GDPR, including
the security of the personal data, should be enforced both by the controller and the processor, but it
remains the responsibility of each controller to demonstrate compliance with the GDPR, particularly
in relation to the necessary technical and organizational requirements and the existence of a lawful
basis for processing (Article 5, GDPR). In order to use TVB cloud services, a data controller must
therefore agree to terms of  service that clarify its  personal  responsibility  with respect to GDPR.
These terms of  service transparently  clarify  the nature of  security  precautions, contact  persons,
personal  responsibilities  of  the  user  as  data  controller,  monitoring,  logging,  and  passing  of
information  to  third  parties.  Data  controllers  must  confirm  that  they  understand  that  active
measures have been made to protect sensitive data, but nevertheless vulnerabilities may exist and a
remaining risk for data protection incidents cannot be excluded as shared networks and computing
systems are inherently  risky.  In addition to these measures the GDPR requires the controller  to
demonstrate a legal basis for processing as set out in Article 6(1)(a) for processing to be lawful. In
the case of the processing of 'special categories' of personal data, such as data concerning health,
there must also be a legal basis for processing as set out in Article 9(2) GDPR. It is often the case in
scientific research that in line with Article 9(2)(a), data subjects give their explicit consent to the
processing of their personal data for one or more specified purposes. Though, depending on the
circumstances, another legal basis may also be appropriate such as Article 9(2)(j) on processing for
the  purposes  of  scientific  research,  in  which  case  national  law  must  be  considered  and  the
safeguards  set  out  in  Article  89(1)  GDPR  must  be  applied.  In  particular,  the  data  controller  is
responsible that the data that is uploaded to the TVB on EBRAINS cloud must be strictly limited to
those needed for the purpose of the specific processing operation (minimization principle, GDPR
Article 5(1)(c)). Furthermore, data controllers are required to pseudonymize data as far as it does
not compromise the research goal and to strip data sets from metadata that could be used for
(re-)identification like names, birth dates, behavioral scores, etc. The Usage Agreement clarifies that
the data  is  temporarily  stored and  processed on servers  where  different  or  additional  areas  of
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jurisdiction may apply. In some countries,  for example, cryptographic methods may not be used
without approval. It is made clear at which locations (countries and regions) the data is stored, and
that national and international laws therefore may apply to these data. Users acknowledge that,
while extensive precautions have been taken, TVB on EBRAINS provides the services "as is" without
claiming or guaranteeing correctness, accuracy, reliability, completeness, fitness, or usefulness for
any purpose, reason, under any circumstance. Moreover, the user agrees that TVB on EBRAINS cloud
providers, administrators or other users have no liability to any person or entity with respect to loss
or damage caused directly or indirectly by the services provided by TVB on EBRAINS. Furthermore,
the Usage Agreement guarantees no involvement of subcontractors that are unable to guarantee
that personal data will be processed under the conditions indicated in the Usage Agreement.

Supplementary Discussion
TVB  on  EBRAINS  is  an  ecosystem  of  cloud  services  for  end-to-end  brain  simulation  that  were
developed to lower the barriers to entry of complex brain simulation workflows, to enhance their
reproducibility, and to enable legal compliance and data protection in supercomputing workflows.
Tools for creating, simulating, and analyzing brain network models can be conveniently run from a
web browser. The implementation allows flexible scaling of backend supercomputing resources to
meet the high computational demands for the construction and simulation of brain network models.
Several  cloud  services  can  also  be  downloaded  and  operated  on  local  hardware  as  standalone
software.  Dependencies  are  conveniently  packaged  into  platform-independent  container  images
that can be pulled from Docker Hub and run using the Docker platform or more security-oriented
alternatives like Singularity,  Shifter and Sarus. All  codes are open source and freely available for
download from GitHub (Table 1). Most of the software and data components were peer-reviewed
and results published in academic journals (see Table 2). The data management solution DataLad
(datalad.org) was added to the TVB Image Processing Pipeline to explicitly track all the used data,
software and execution steps, allowing to share and reproduce workflows and workflow results in an
actionable manner. The different services and workflows are modular and can be flexibly combined
to  address  different  research  questions.  In  order  to  support  standardization  efforts  in  the
neuroimaging community and to increase interoperability, TVB adopted the BIDS format for inputs
and outputs. MRI data in BIDS format can be directly used by the image processing pipeline and its
outputs can be read by BIDS Apps (Supplementary Note: BIDS Apps). Comprehensive documentation
in the form of manuals, tutorials, lectures, Jupyter notebooks, demo code, demo data, workshops,
videos, use cases, mailing lists and support contacts provide efficient and didactic dissemination of
knowledge and support. The EBRAINS high-level support team helps with questions about services
(ebrains.eu/support). Continuous integration and automated testing is set up to monitor that cloud
services  are  operational;  technical  and  administrative  staff provide  support  and  repair  broken
components (e.g., due to broken dependencies).

The EBRAINS cloud is a community platform that supports collaborative and reproducible research in
multiple ways. Storages maintain file version histories with the option for rollback. Change logs track
the changes from version to version with time stamps and author names, which enables rigorous
versioning  and  documentation  of  collaboratively  created  work.  Individual  contributions  are
transparently and openly recorded, which helps to resolve conflicts, to establish authorships, and
responsibilities. Files can be securely shared via link to private storages that have explicit access and
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permission control, instead of sending confidential data via insecure and intransparent channels.
Multiple authors can concurrently work on the same document, instead of creating new document
branches every time a document is shared with a co-author, which often creates inconsistencies in
the different branches that are tedious to resolve and merge. In the spirit of a "release early, release
often" philosophy team members can instantly see results as they are being created and can give
critical  feedback  early  on,  which  increases  the  speed  of  research  and  encourages  solid
documentation. Taken together, EBRAINS services enable to map and organize complex projects into
a persistent and replicable structure at a central and secure place, which makes it easier to pick up
projects at a later time. The flexibility of the platform and its focus on community-driven research
enable rapid adoption of advances in brain simulation and connectomics, as well as correction of
errors. Its modular design simplifies new developments as specialists from different subfields are not
required to work into the details of other modules in order to contribute. An important feature of
TVB on EBRAINS is that it makes high-performance computing resources available to researchers
without  supercomputing  resources.  Thereby,  resource-intensive  computations,  e.g.,  dense
parameter  space  explorations,  become  available  to  the  broader  community.  Currently,  TVB  on
EBRAINS  provides  800,000  core  hours  per  year  to  EBRAINS  users,  through  the  Swiss  National
Supercomputing Centre CSCS, as a part of the Fenix infrastructure (fenix-ri.eu), on a  first come, first
served basis, without need for individual application.

Privacy  protection  is  an  ethical  and  legal  prerequisite  to  continue  working  with  personal  data.
Technical and organizational measures are required not only to protect from malicious parties, but
also to protect cloud users from making errors, e.g., forgetting to delete a data set in an exposed
storage after a set period, unintended backups, accidentally sending it to the wrong recipient, or
failure to set appropriate access permissions are just a few examples. TVB on EBRAINS developments
are working to ensure highest standards for the protection of personal data, while at the same time
providing flexibility for users to deploy custom software to enable state-of-the-art research. On the
one  hand,  private  data  must  be  protected  from  unintended  disclosure;  on  the  other  hand,
researchers  must  be  able  to  process  such  data  with  adjustable  and  novel  procedures.
Problematically, pseudonymization is often not possible, because the personal features required for
personalized medicine are often highly unique and can be used  to identify a person  (Byrge and
Kennedy, 2018; Gymrek et al., 2013; Rocher et al., 2019). We took an important step to meet these
opposing requirements by setting up data processing and brain simulation workflows that enable
secure processing of personal data in shared environments by independent or joint data controllers.
Ongoing  developments  of  TVB  on  EBRAINS  involve  the  incorporation  of  automated  testing
frameworks for evaluating the plausibility of data and processing results, e.g.  regarding the data
quality of pipeline inputs, as well as the plausibility of intermediary and final outputs. Of interest are
also automized parameter optimization routines, and workflows that are able to process data from
other species or patient data that involve morphological changes like stroke or tumor patients. Most
importantly, to bring and maintain high-standard cloud services, efforts are directed towards the
continuous integration of improved community standards and best practices.

The TVB on EBRAINS ecosystem is open-source and can be transferred to other Cloud environments
within the European Open Science Cloud or beyond. Thus, it serves as a reference architecture for
the processing and simulation of neuroscience data in the cloud (Figure 1). Lowering the barriers to
use  complex  neuroimaging  and  brain  simulation workflows within  a  scalable  cloud  architecture
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fosters  the processing  of  large  cohort  data  sets  within  large  international  consortia,  which is  a
prerequisite  for  the  creation  of  generalizable  results,  efficient  clinical  translation,  and  effective
personalized medicine.
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