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Dedicated to my parents and my grandmother.

" When nothing seems to help, I go and look at a stone-cutter hammering away at his

rock perhaps a hundred times without as much as a crack showing in it. Yet at the

hundred and Ąrst blow it will split in two, and I know it was not that blow that did it Ű

but all that had gone before." Ű Jacob Riis
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Résumé

La prévention des défaillances structurelles dues à des défauts de fabrication est une

préoccupation majeure en ingénierie. Pour mieux comprendre la propagation des Ąssures

dans les structures ou les solides et éviter les effondrements, il est essentiel dŠétudier

lŠimpact de la microstructure sur la propagation des Ąssures. Les progrès en science des

matériaux et en technologie de fabrication ont élargi la gamme de matériaux disponibles,

notamment les matériaux composites, les matériaux structurels, les méta-matériaux et

les matériaux poreux. Ces avancées ont également rendu possible la modiĄcation de la

microstructure par divers processus de fabrication. En conséquence, un nombre croissant

dŠétudes ont été menées pour comprendre lŠimpact des changements microstructuraux

sur la sélection du trajet de la Ąssure.

Une avancée notable dans la technologie de fabrication est la fabrication additive, qui

gagne en popularité dans diverses industries. La fabrication additive offre une Ćexibilité

de conception et la possibilité de modiĄer les microstructures grâce à la technologie

dŠimpression. Elle remplace progressivement les processus de fabrication traditionnels

pour des composants spéciĄques ayant des exigences uniques dans de nombreux domaines.

LŠutilisation croissante de la fabrication additive dans diverses industries a conduit à des

recherches approfondies sur lŠimpact des paramètres dŠimpression sur les propriétés des

matériaux, avec une attention particulière portée à lŠamélioration de la résistance des

matériaux et de la ténacité à la rupture pour prévenir lŠamorçage des Ąssures. Cependant,

du point de vue de lŠingénierie, il est tout aussi crucial de comprendre comment la Ąssure

se propage, car cette connaissance peut orienter la conception structurelle et faciliter le

contrôle de lŠextension de la Ąssure dans des directions souhaitées. Malgré les progrès dans

des études connexes, telles que lŠétude des effets de différentes techniques ou stratégies

dŠimpression sur lŠextension et la sélection du chemin de la Ąssure, le domaine est encore

en exploration.

Cette thèse explore la propagation des Ąssures dans des échantillons imprimés présen-

tant une isotropie en élasticité et une anisotropie en ténacité à la rupture. Nous avons

utilisé une combinaison dŠapproches expérimentales, numériques et théoriques pour ex-

aminer la sélection des trajets de Ąssure dans des échantillons de Polycarbonate fabriqués



vi

par dépôt de Ąl fondu.

Pour la partie expérimentale, en adoptant le motif dŠimpression en croix, lŠéchantillon

imprimé présente un comportement de rupture anisotrope. Après une procédure de

pré-Ąssuration, nous avons réalisé des expériences de rupture sous des conditions de

chargement en Mode I et Mode I+II en utilisant des échantillons de Compact tension et des

échantillons Compact tension shear. À travers lŠexamen des résultats expérimentaux, nous

avons déduit lŠexistence dŠune direction interdite dans notre échantillon imprimé, comme

en témoigne la propagation cohérente de la Ąssure le long de la direction dŠimpression. À

un niveau microscopique, la propagation de la Ąssure se produit en raison de la rupture

de la jonction fondue entre deux Ąls adjacents parallèles. Nous avons utilisé la corrélation

dŠimages pour déterminer lŠenergie de surface critique 𝐺𝑐 de la Śplan faibleŠ en utilisant

le facteur dŠintensité de contrainte mesuré après le déviation de la Ąssure. De plus, nous

avons noté que la direction dŠimpression inĆuence également de manière signiĄcative la

charge critique associée au comportement de rupture.

Pour mieux comprendre lŠinĆuence microstructurale sur le comportement de rupture,

la modélisation de champ de phase de la rupture fragile est utilisée comme méthode

numérique dans cette thèse. Le modèle de champ de phase a gagné en popularité dans

la communauté de la rupture computationnelle en raison de son efficacité et de sa

Ąabilité dans la simulation de la nucléation et de la propagation des Ąssures. De plus, sa

polyvalence pour incorporer divers mécanismes de rupture, y compris le comportement de

rupture anisotrope, en fait un outil très souhaitable pour cette étude. Malgré les progrès

rapides dans lŠapplication numérique du modèle de champ de phase, plusieurs questions

controversées restent à étudier et à discuter. LŠune des questions les plus importantes est

le choix du paramètre de régularisation ℓ dans le modèle de champ de phase.

Pour répondre à cette question, nous commençons dŠabord par le modèle de champ

de phase isotrope et faiblement anisotrope (modèle de champ de phase dŠordre deux), en

comparant les prédictions du trajet de Ąssure numérique et de la charge critique associée

aux données expérimentales de la littérature pertinente. Les résultats des prédictions

numériques ont montré une bonne concordance avec les données expérimentales fournies.

La validation du modèle de champ de phase AT1 revêt une importance signiĄcative, car

elle sert de transition en douceur vers le modèle de champ de phase dŠordre supérieur.

Du point de vue théorique, nous avons validé la procédure de prédiction du GMERR

en comparant le chemin de Ąssure prédit et la contrainte critique avec des données

expérimentales pertinentes.

Par la suite, nous avons utilisé un modèle de champ de phase dŠordre supérieur avec

une énergie de surface fortement anisotrope pour simuler la propagation des Ąssures
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dans nos échantillons imprimés. Nous avons commencé par calibrer les paramètres

numériques, puis avons procédé à la comparaison du trajet de la Ąssure et de la force

critique pertinente avec les résultats expérimentaux, révélant un degré notable dŠaccord

entre les deux. Importamment, nous avons démontré que ces prédictions peuvent être

efficacement réalisées grâce à lŠapplication des critères GMERR dans le cadre de la

mécanique de la rupture élastique linéaire. De plus, guidée par les résultats des enquêtes

numériques, notre exploration sŠest plongée dans une discussion sur la sélection du

paramètre de régularisation ℓ dans le contexte du modèle de champ de phase. En menant

des expériences numériques avec différentes géométries dŠéchantillons (compact tension

et compact tension shear), nous avons constaté que la régularisation ℓ peut être reconnue

comme une longueur interne du matériau qui est proche de la taille du Ąl imprimé.

EnĄn, nous avons introduit une série dŠinvestigations préliminaires visant à identiĄer

des conĄgurations dŠéchantillons appropriées pour observer la propagation de Ąssures en

zig-zag. De plus, nous avons fait une découverte intrigante concernant les comportements

de rupture divergents démontrés par les échantillons imprimés soumis à des conditions

de chargement monotones et cycliques. Pour élucider davantage ce phénomène, nous

avons utilisé un modèle de champ de phase de fatigue présentant une énergie de surface

faiblement anisotrope, reproduisant avec succès les résultats expérimentaux et renforçant

notre compréhension de ce comportement complexe.

Mots clés: Fabrication additive, Rupture, Champ de phase, Energies

surface anisotropie





Introduction

Preventing structural failure due to manufacturing defects is a major concern in engi-

neering. To better understand how crack propagates in structures or solids and prevent

collapse, it is essential to study the impact of microstructure on crack propagation.

Advancements in material science and manufacturing technology have expanded the

range of available materials, including composite material, structural material, meta-

material, and porous materials. These advancements have also made it feasible to alter

the microstructure through various manufacturing processes. As a result, a growing

number of studies have been carried out to understand the impact of microstructural

changes on crack path selection.

One notable advancement in manufacturing technology is Additive manufacturing

(AM), which is gaining increasing popularity in various industries. AM offers design

Ćexibility and the ability to modify microstructures through printing technology. It is

gradually replacing traditional manufacturing processes for speciĄc components with

unique requirements in many Ąelds. The growing utilization of AM in various industries

has led to extensive research on the impact of printing parameters on material properties,

with a predominant focus on enhancing material strength and fracture toughness to

prevent crack initiation. However, from an engineering perspective, it is equally crucial

to understand how crack propagates, as this knowledge can guide structural design and

facilitate the control of crack extension in desired directions. Despite progress in related

studies, such as studying the effects of different printing techniques or strategies on crack

extension and crack path selection, the Ąeld is still being explored.

Recently, Corre and Lazarus 2021 reported a material printed by Fused Deposition

Modeling (FDM) possess a strongly anisotropic fracture toughness, meanwhile it remains

isotropy in elasticity. To illustrate this effect, they conducted experiments using two

Tapered Double Cantilever Beam (TDCB) specimens printed in Polycarbonate (PC), one

with a (0°/90°) deposit pattern and the other with a (+45°/-45°) criss-crossed deposit

pattern, as shown in Figure 1. Interestingly, the crack propagation in the specimen with

(0°/90°) deposit pattern was found to be stable and followed along the 0° direction, while
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the crack propagation in the specimen with (+45°/-45°) deposit pattern was stable at

Ąrst, following the 45° direction, but later became unstable and changed direction towards

the perpendicular to the direction of loading. It is important to highlight that the printed

PC specimens with a criss-cross pattern retained their brittleness and did not display the

ductile fracture behavior observed in certain prior studies (Cantrell et al., 2017; Corre

and Lazarus, 2021). This limited ductility was especially noticeable when the Ąll rate

reached approximately 100 %, as the deformation of the thread was not discernible prior

to failure. Instead, the stability of crack propagation and crack path selection were found

to vary with different printing patterns. This Ąnding has important implications for

investigating the relationship between brittle fracture and microstructure.

Figure 1 Loading curve and crack path in TDCB specimen with different microstucture obtained
by FDM. (Corre and Lazarus 2021Šs experiments and image)

To gain a deeper understanding of the microstructural inĆuence on brittle fracture

behavior, the phase-Ąeld modeling of brittle fracture is employed as a numerical method

in this dissertation. The phase-Ąeld model has gained popularity in the computational

fracture community due to its efficiency and reliability in simulating crack nucleation

and propagation. Moreover, its versatility in incorporating various fracture mechanisms,

including anisotropic fracture behavior, makes it a highly desirable tool for this study.

Despite the rapid progress in the numerical application of the phase-Ąeld model, several

controversial issues remain to be studied and discussed. One of the most important issues

is the choice of the regularization parameter ℓ in the phase-Ąeld model. Theoretically, as
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ℓ approaches 0, the damage energy function in the phase-Ąeld model tends towards the

Griffith-type brittle fracture model in a Gamma-convergence sens for both second order

(Bourdin et al., 2000) and higher-order phase-Ąeld functionals (Burger et al., 2015; Negri,

2020)1. However, in numerical practice, ℓ is considered more than a common numerical

parameter. It is often regarded as a material parameter or a physical internal length that

relates to the critical force for crack nucleation. Whether ℓ can be denoted as an internal

length is still being debated in the community (Pham et al., 2011; Tanné et al., 2018).

Several studies have been carried out to address this issue accompany with experimental

results, but research in this area is still ongoing.

Furthermore, when anisotropic fracture toughness is involved, the regularization

parameter ℓ(𝜃) may become orientation-dependent. This further complicates matters, as

more numerical parameters need to be determined to take into account the anisotropic

fracture toughness. To the best of our knowledge, there is a lack of research in this area.

This thesis aims to Ąll the gap by investigating the fracture behavior in elastic

media with anisotropic fracture toughness using the phase-Ąeld model. The study is

divided into two parts: experiments and numerical simulation. In the experimental

part, we utilize the Fused Deposition Modeling method with a speciĄc printing strategy

to form a criss-cross printing pattern. Different specimen geometries will be used to

investigate crack propagation under different loading conditions, including Mode I and

Mode I+II. In the numerical part, we initially employed a Ąnite element model based on

classical approach to validate the experimentally measured Stress Intensity Factors. Then

we adopt the phase-Ąeld modeling of brittle fracture based on a variational approach,

using experimental data for calibrating and identiĄcation of the numerical parameters.

With these comprehensive approaches, we aim at promoting a better understanding of

the relation between printing pattern and crack path selection, which has signiĄcant

implications for guiding and controlling crack extension in AM made parts. Besides,

we adopted the classical based criteria Generalized Maximum Energy Release Rate to

enhance our understanding of crack path selection and the relevant critical force.

This thesis is organized as follows: Chapter 1 is devoted to provide a comprehensive

introduction to fracture mechanics, including the classical and variational approach to

Linear Elastic Fracture Mechanics. Our objective is to discuss how the fracture issue

was addressed through two distinct approaches, particularly focusing on evolution of

crack propagation and selection of the crack path. We will subsequently present how to

solve the fracture problem numerically through these two approaches, with particular

1It is important to note that this result holds only for isotropic surface energy, whether the result of
Γ-convergence holds for anisotropic model requires further rigorous mathematical analysis.
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emphasis on the occurrence of a kink resulting from the anisotropic fracture toughness.

Chapter 2 is devoted to the experimental investigation on fracture behavior of printed

sample with anisotropic fracture toughness. The chapter begins by introducing the FDM

process and reviewing relevant literature. Then the sample preparation, experimental

setup and post-processing method are described in detail. Finally, the chapter presents

the results of the fracture experiments conducted on different samples.

Chapter 3 is dedicated to the validation of the numerical implementations for the

model based on both classic and variational approaches. To accomplish this, we compare

the numerical results obtained through our implementation with experimental and

theoretical results from literature. This allows us to validate the accuracy and reliability

of our numerical implementation.

Chapter 4 presents the main results and discusses for various cases, including a com-

parison between experimental and numerical results for materials with different fracture

anisotropic properties under various loading conditions. The chapter highlights the ability

of the phase-Ąeld model to predict crack trajectories and relevant critical force for crack

propagation, and also discusses the selection of numerical parameters, particularly the

regularization parameter ℓ in the phase-Ąeld model with strongly anisotropic surface

energy.

Chapter 5, we shift our attention to some preliminary investigations regarding the

potential emergence of a Zig-Zag crack pattern in 3D printed specimens. This study

involves conducting numerical simulations on various sample geometries to explore

this phenomenon. Furthermore, we delve deeper into the fracture behavior of the

printed specimens under cyclic loading, presenting a comprehensive comparison between

experimental observations and numerical predictions.

Finally, we conclude the thesis by summarizing the Ąndings and offering future

research perspectives.
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Chapter 1

State of the art in Linear Elastic

Fracture Mechanics

This chapter is devoted to the introduction of LEFM, including both classical approach

and variational approach, spanning the transition from materials with isotropic fracture

toughness to those exhibiting anisotropic fracture behavior. We aim to discuss how

the problem of fracture was solved using these two different approaches, with a speciĄc

focus on the evolution of crack propagation and the determination of the crack path.

Subsequently, we present numerical models derived from both approaches, dedicated to

addressing isotropic and anisotropic fracture challenges.
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2 State of the art in Linear Elastic Fracture Mechanics

1.1 Hypothesis of brittle fracture problem

Fracture mechanics is a Ąeld dedicated to the investigation and prediction of crack

initiation and propagation in solid materials. Its roots trace back to the early 1920s,

primarily focusing on the study of brittle materials. This led to the development of Linear

Elastic Fracture Mechanics (LEFM), a sub-Ąeld that speciĄcally examines the behavior of

crack initiation and propagation in brittle solids under loading conditions. Subsequently,

in the 1960s, the scope of fracture mechanics expanded to include ductile materials as

well. In this dissertation, our primary focus is on the brittle fracture problem. In the

following section, we will provide a concise overview of the assumptions and notation

used in this study.

Brittle fracture refers to the phenomenon where a material undergoes cracking without

experiencing substantial irreversible deformation. A crack is commonly represented as a

narrow separation within a medium, resulting in discontinuous displacement surfaces. In

a cracked solid, the displacements are permitted to be discontinuous across the crack,

and the jump of the displacement ⟦𝒖⟧(𝒙) at a speciĄc position 𝒙 located on a crack Γ is

denoted as:

⟦𝒖⟧(𝒙) = 𝒖+(𝒙) − 𝒖−(𝒙), 𝒙 ∈ Γ (1.1)

Furthermore, we neglect the cohesive forces between the crack lips and assume that

they are not in contact to avoid any overlapping phenomena:

⟦𝒖⟧ · 𝒏 > 0, and 𝝈˜ · 𝒏 = 0 (1.2)

where 𝒏 is the normal vector to the crack lips. The second hypothesis is related to the

constitutive behavior, where we assume that the material exhibits linear elastic behavior,

the stress-strain relation can be described as follows:

𝝈˜ = A : 𝜺˜ or 𝜺˜ = S : 𝝈˜ (1.3)

where 𝝈˜ and 𝜺˜ are stress and strain tensor, respectively. A and S are stiffness tensor and

compliance tensor, respectively. Additionally, we assume that the evolution of cracking in

a solid subjected to a time-dependent load is quasi-static, ensuring that the solid remains

in equilibrium under the current load and state of cracking. With these assumptions,

we can determine the displacement Ąeld in equilibrium based on the current state of

cracking and loading at each moment.

Consider a 2D body Ω with a known crack state Γ and subjected to a displacement
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Figure 1.1 Boundary value problem

𝒖𝑑 on the Dirichlet region 𝜕𝐷Ω. The volumetric force 𝒇 acts within Ω, and the surface

forces 𝑻𝑑 are applied on the Neumann region 𝜕𝑁Ω. (𝒖𝑑 ,𝑻𝑑 , 𝒇 ) are supposed to be applied

in-plane. We solve the following Boundary Value Problem (BVP) to determine the

unknowns (𝒖, 𝝈˜ , 𝜺˜) combined with the boundary condition on the crack eq. (1.1) - (1.2):

1. Equilibrium condition: div𝝈˜ + 𝒇 = 0 in Ω\Γ

2. The elasticity relationship: 𝝈˜ = A : 𝜺˜ with 2𝜺˜ = ∇ 𝒖 + ∇𝑇𝒖 in Ω\Γ

3. Boundary conditions: 𝝈˜ · 𝒏 = 𝑻𝑑 on 𝜕𝑁Ω, 𝒖 = 𝒖𝑑 on 𝜕𝐷Ω, and

𝝈˜ · 𝒏 = 0 on Γ

The weak formulation of the BVP can be denoted as:∫
Ω\Γ

1
2
𝜺˜(𝒖) : A : 𝜺˜(𝒗)d𝑥−

∫
Ω\Γ

𝒇 𝒗dΩ−
∫
𝜕𝑁Ω

𝑻𝑑 · 𝒗d𝑠 = 0 ∀𝒗 ∈ C0 (𝒗 = 0 on 𝜕𝐷Ω) (1.4)

where 𝒗 is the virtual displacement Ąeld, and C0 is a set of admissible displacement Ąelds.

The solution 𝒖 of the weak problem can be obtained by minimizing the energy E(𝒖).
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1.2 Media with isotropic surface energy

1.2.1 Classical approach

1.2.1.1 Griffith’s concept of energy release rate

The fundamental work of LEFM was Ąrst proposed by A.A. Griffith in 1921, where he

utilized classical mechanics and thermodynamics energy theorem to explain the brittle

fracture behavior based on the concept of energy balance (Griffith, 1921). According to

GriffithŠs criterion, the propagation of a crack is regarded as the creation of new surfaces

that results in an increase in the surface energy. A cracked solid Ω is subjected to a

mechanical loading, the total energy of the system E can be divided into two parts: stored

elastic energy and surface energy. The crack propagation is the result of a competition

between these two energies, coupled with the principle of minimization of the total energy

of the system. When the stored elastic energy exceeds the energy required for creating

new surfaces, crack propagation occurs. The decrease in the potential energy E𝑝 of the

cracked solid is deĄned as the energy release rate 𝐺:

𝐺 ≡ − 𝜕E𝑝
𝜕𝑙

����
fixed loading

(1.5)

where 𝑙 is the created crack surface. The potential energy comprises of the elastic energy,

external work force 𝑻𝑑 acting on 𝜕𝑁Ω, denoted as follows:

E𝑝 (𝒖, Γ) :=
∫
Ω\Γ

1
2
𝜺˜(𝒖) : A : 𝜺˜(𝒖) d𝑥 −

∫
𝜕𝑁Ω

𝑻𝑑 · 𝒖 d𝑠 (1.6)

1.2.1.2 Irwin’s concept of Stress Intensity Factors

GriffithŠs theory was then reĄned by Irwin in 1950s, who introduced the concept of the

Stress Intensity Factors (SIFs) (Irwin, 1957). SIFs are parameters that describe the

intensity of stress at the crack tip in a material and can be used to determine whether a

crack will propagate under different loading conditions. In Fracture mechanics, when

performing a stress analysis for the crack surface, it is beneĄcial to differentiate three

basic fracture modes, as illustrated in Ąg. 1.2:

1. Mode I (opening mode) corresponds to the normal separation of the crack surface

under the tensile stresses.

2. Mode II (sliding mode) corresponds to shear stress acting parallel to the plane of

the crack and perpendicular to the crack front.
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Figure 1.2 Modes of fracture

3. Mode III (tearing mode) corresponds to lateral shearing parallel to the crack front

A crack can be subjected to one or a combination of these three modes of loading.

Consider the 2D elasticity BVP presented in previous section, we can disregard the

tearing mode since 𝒖𝑑 ,𝑻𝑑 have no out plane component and the stress Ąeld near the

crack tip in 𝑥𝑦 coordinate (as illustrated in Ąg. 1.1) veriĄes for 𝑟 → 0 (Owen and Fawkes,

1983):
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) (1.7)

where 𝐾𝐼 and 𝐾𝐼 𝐼 are known as the SIFs of modes I and II, respectively. The SIFs depends

only on the geometry and the loading condition of the solid. The 𝑇 is the higher-order

term stands for 𝑇-stress, which is interpreted as the stress acting parallel to the crack

tip along 𝑥-direction (Gupta et al., 2015). This parameter plays a crucial role in the

selection of the crack path (Cotterell and Rice, 1980; Mesgarnejad et al., 2020).
The corresponding displacement Ąeld is denoted as follows (Owen and Fawkes, 1983):
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(1.8)

where 𝜅 is the KolossovŠs constant, with 𝜅 = (3 − 𝑣)/(1 + 𝑣) for plane stress assumption,

𝜅 = (3−4𝑣) for plane strain assumption, 𝜈 and 𝜇 is the PoissonŠs ratio and Shear modulus,
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respectively. According to Irwin 1957, the stress intensity factors (SIFs) play a critical

role in determining the potential for crack propagation by indicating the magnitude of

stress at the crack tip. In a general case, the energy release rate can be calculated using

the SIFs with the following equation:

𝐺 =
1
𝐸′ (𝐾

2
𝐼 + 𝐾2

𝐼 𝐼) (1.9)

where 𝐸′ = 𝐸 for plane stress assumption and 𝐸′ = 𝐸
1−𝜈2 for plane strain assumption,

where 𝐸 represents the YoungŠs modulus and 𝜈 represents the PoissonŠs ratio of the

material.

The stress Ąeld near the crack tip is theoretically inĄnite, according to the asymptotic

linear elastic solution. However, in reality, materials cannot endure an inĄnite stress

state, rendering the asymptotic linear elastic solution inaccurate when approaching the

crack tip due to material non-linearity and other factors. This region in the vicinity of

the crack tip is known as the Fracture Process Zone (FPZ). Outside of the FPZ, the

stress state is accurately described by the asymptotic solution in a region known as the

K-dominant zone.

1.2.1.3 SIFs across a kink

The presence of anisotropic material properties can cause the crack to deviate from its

original path and alter its direction, resulting in a crack kink. At the kink position,

the SIFs are not continuous (Leblond, 1989). However, the Amestoy-LeblondŠs formula

proposed by Amestoy and Leblond 1992, provides a relationship between SIFs before

and after kinking, which allows for determination of SIFs at the kinked crack tip.

Consider a crack in an isotropic homogeneous elastic solid Ω subjected to a constant

load between two states: a state without a kink and a state with a kink as shown in

Fig. 1.3. The SIFs before and after kinking are denoted by 𝐾𝑞 and 𝐾𝑝 (𝑠, 𝜑) respectively.

For 𝑠 → 0, the relationship can be described by Amestoy-LeblondŠs formula as follows:

𝐾𝑝 (𝑠, 𝜑) = 𝐹𝑝𝑞 (𝜑)𝐾𝑞 + 𝑇
√
𝑠 𝐺 𝑝 (𝜑) +𝑂 (𝑠) (1.10)

where 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑) are universal functions that depend on the kink angle 𝜑. 𝑠

represents the kink length, and 𝑇 is the 𝑇-stress prior to the occurrence of kink, which

appears in the stress Ąeld near crack tip, as shown in eq. (1.7).

By introducing the limit 𝑠 → 0:

𝐾∗
𝑝 (𝜑) = lim

𝑠→0
𝐾𝑝 (𝑠, 𝜑) (1.11)
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Figure 1.3 Crack kink in a linear elastic body

The relation can be denoted as following expression:

𝐾∗
𝑝 (𝜑) = 𝐹𝑝𝑞 (𝜑)𝐾𝑞 (1.12)

The expressions and graphs of 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑) have been provided by Amestoy

and Leblond 1992. They are recalled in Appendix. A. By substituting the SIFs after

kinking 𝐾∗
𝑝 (𝜑) into IrwinŠs formula eq. (1.9), we can obtain the energy release rate for

all potential direction:

𝐺 (𝜑) = 1
𝐸′ ((𝐾

∗
𝐼 (𝜑))2 + (𝐾∗

𝐼 𝐼 (𝜑))2) (1.13)

In Section 3.1.1, we will test the accuracy of our numerical model in calculating the

SIFs across a kink using the Amestoy-LeblondŠs formula.

1.2.1.4 Propagation threshold

To determine if a crack will propagate or not, we compare the critical surface energy

𝐺𝑐 with the energy release rate 𝐺. 𝐺𝑐 is regarded as a material property that signiĄes

its resistance to fracture. Propagation becomes feasible when the condition 𝐺 = 𝐺𝑐 is

met. This comparison aligns with IrwinŠs formula, which equates to assessing the SIFs

against a critical value known as the fracture toughness of the material 𝐾𝐼𝐶 . For mode I

loading, when 𝐾𝐼 ≥ 𝐾𝐼𝐶 , the crack can propagate. Irwin also demonstrated that criteria
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for crack propagation based on either the energy release rate or the SIFs are equivalent

only in mode I. Consequently, the propagation threshold according to IrwinŠs law can be

expressed as follows: {
𝐾𝐼 < 𝐾𝐼𝐶 no propagation

𝐾𝐼 ≥ 𝐾𝐼𝐶 possible propagation
(1.14)

The parameter 𝐾𝐼𝐶 is referred to as a material property under mode I loading, namely

toughness, which characterizes the materialŠs resistance to crack propagation. It can be

determined through standardized fracture tests conducted on Compact Tension (CT) or

Single Edge Notch Bend (SENB) specimens. On the contrary, the SIF 𝐾𝐼 is a structural

property that relies on the geometry, material behavior, and loading of the entire structure.

It is commonly obtained through numerical simulations by assuming linear elasticity.

1.2.1.5 Quasi-static propagation: Griffith’s evolution law

To determine the crack evolution under imposed loading, we Ąrst recall the GriffithŠs

evolution law. At a speciĄc time 𝑡, the energy release rate is represented as 𝐺 (𝑡, 𝑙), which

signiĄes the rate at which energy is released during the progression of a crack with a

length of 𝑙 along a pre-deĄned crack path. During quasi-static evolution, the time 𝑡 solely

serves as a loading parameter that describes the loading history. For a linear elastic

isotropic 2D body under quasi-static assumption, the GriffithŠs evolution law can be

expressed through the following three criteria (Marigo, 2010):

1. Irreversibility: 𝑙 (0) = 𝑙0, 𝑡 ↦→ 𝑙 (𝑡) is increasing

2. Yield criterion: 𝐺 (𝑡, 𝑙 (𝑡)) ≤ 𝐺c

3. Energy balance: (𝐺 (𝑡, 𝑙 (𝑡)) − 𝐺c) ¤𝑙 (𝑡) = 0

It is crucial to emphasize that the aforementioned formulation is speciĄcally applicable to

the smooth evolution of cracks. Additionally, this formulation assumes the existence of

an initial crack and its propagation along a pre-determined path. Consequently, it does

not provide a means to address crack initiation or the selection of crack paths. Therefore,

the question regarding the determination of the crack path becomes a consequential

consideration.

1.2.1.6 Question of the path: additional criterion

GriffithŠs evolution law assumes that the crack propagation path is known 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖, and

therefore it cannot be used alone to predict the trajectory of crack propagation. An
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additional criterion is needed in conjunction with GriffithŠs law to predict the crack path.

Various criteria have been proposed and classiĄed into different categories: stress-based

criteria such as the Maximum Tangential Stress criterion (MTS) (Erdogan and Sih, 1963),

strain-based criteria like the Strain Energy Density criterion (SED) (Sih, 1974), and

energy-based criteria, including the widely used Maximum Energy Release rate (𝐺max)

(Hussain et al., 1973). The 𝐺max criterion states that the crack extension direction

maximizes the release rate of potential energy, the predicted direction 𝜃∗ can be therefore

obtained by maximizing the eq. (1.13). Furthermore, the Principle of Local Symmetry

(PLS) (Goldstein and Salganik, 1974) criterion is based on the assumption that if a crack

is in Mode I during propagation, the crack tipŠs local symmetry prevents the crack from

changing direction. It is known that the 𝐺max and PLS criteria are among the most

commonly used methods to determine the crack path. For isotropic materials, they can

accurately predict the angle of crack kink with only minor differences. Therefore, these

two criteria are essentially equivalent (Amestoy and Leblond, 1992).

1.2.2 Variational approach

Up until now, we have presented the classical approach to fracture, which has demon-

strated its ability to address various fracture problems. However, this approach still relies

on certain prerequisites, such as a predeĄned pre-crack or a well-deĄned criterion for path

selection (Bourdin, 1998). Furthermore, when dealing with 3D effects, anisotropic mate-

rials, or heterogeneous materials, the complexity of the problem increases, necessitating

the extension of fracture criteria to a more general framework for crack path prediction.

To overcome these limitations of the classical approach and provide a physically mean-

ingful framework for fracture problems in a broader context, the variational approach

was proposed by Francfort and Marigo 1998. This approach involved a reevaluation of

GriffithŠs concept using the mathematical tools provided by the Calculus of Variations. It

builds upon GriffithŠs notion that crack evolution arises from the interplay between bulk

energy and surface energy. The concept of variational approach is described as follows:

let Ω ⊂ R𝑛 be a solid with a time-dependent displacement 𝒖 = 𝒖𝑑 (𝑥, 𝑡) applied to its

boundary 𝜕𝐷Ω, the surface forces 𝑻𝑑 (𝑥, 𝑡) are applied on the Neumann region 𝜕𝑁Ω, and

Γ represents the crack set. The energy functional of the cracked solid can be expressed

as the sum of the potential energy and the surface energy:

E(𝒖, Γ) := E𝑝 (𝒖, Γ) + E𝑠 (Γ) (1.15)
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where E𝑠 (𝒖, Γ) refers to the dissipated energy that arises from the creation of surface.

For brittle solid, the dissipated energy or surface energy E𝑠 is deĄned as:

E𝑠 (Γ) := 𝐺𝑐H 𝑛−1(Γ) (1.16)

where H 𝑛−1(Γ) denotes the (𝑛− 1) dimensional Hausdroff measure of the crack. For each

time step, we seek for the global minimizer (𝒖, Γ) of following total energy:

E(𝒖, Γ) =
∫
Ω\Γ

1
2
𝜺˜(𝒖) : A : 𝜺˜(𝒖) d𝑥 −

∫
𝜕𝑁Ω

𝑻𝑑 · 𝒖 d𝑠 + 𝐺𝑐H 𝑛−1(Γ) (1.17)

Meanwhile, the evolution problem should conform to the revisited GriffithŠs evolution

law, also known as the Francfort-Marigo law (Marigo, 2010) :

1. Irreversibility: 𝑡 ↦→ Γ(𝑡) increasing

2. Stability criterion: E(𝑡, Γ(𝑡)) ≤ E(𝑡, Γ),∀𝑡 ≥ 0 and ∀Γ ∈ [Γ(𝑡), Γ𝑠]

3. Energy balance: E(𝑡, Γ(𝑡)) = E(0, Γ(0)) +
∫ 𝑡

0
𝜕E
𝜕𝑡′ (𝑡′, Γ(𝑡′))d𝑡′ ∀𝑡 ≥ 0

It is noticed this formulation allows for the possibility of Γ(0) = ∅, which means that

there are no requirements for a pre-existing crack. In summary, the revised GriffithŠs law

is applicable to general cases, including 3D bodies and anisotropic settings. Besides, it

incorporates a criterion for path selection.

The problem previously introduced is referred to as the strong variational evolution

(Bourdin et al., 2008). To establish a more convenient formulation, it is advantageous to

deĄne the weak formulation by expanding the set of admissibility functions to a suitable

space that allows for discontinuous displacement Ąelds. Therefore the weak variational

evolution is denoted as follows by introducing the function space 𝑆𝐵𝑉 1:

min{
∫
Ω

1
2
𝜺˜(𝒖) : A : 𝜺˜(𝒖) d𝑥 −

∫
𝜕𝑁Ω

𝑻𝑑 · 𝒖 d𝑠 + 𝐺𝑐H 𝑛−1(𝑆(𝒖)), 𝒖 ∈ 𝑆𝐵𝑉 (Ω)} (1.18)

where 𝑆(𝒖) is the jump set of 𝒖. The strong variational evolution problem has been

proven to be equivalent to the weak one (Alessi, 2013).

1special functions with bounded variation, which is used to provide a weak formulation for certain
variational problems with free discontinuity (Braides, 1998)
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1.3 Extension to an anisotropic surface energy

In this dissertation, our primary focus is on studying the effects of anisotropic surface

energy in conjunction with isotropic elasticity. This research aligns with the experimental

system we have developed using 3D printing techniques (Corre and Lazarus, 2021).

By investigating the anisotropy present in the surface energy, we aim to enhance our

understanding of its contribution to the phenomenon of crack kinking. Next, we will

present the incorporation of anisotropic surface energy in both classical approach and

variational approach.

1.3.1 Generalized Maximum Energy Release Rate in classical

approach

The stress-based and PLS criteria lose their relevance in an anisotropic setting. Therefore,

the Generalized Maximum Energy Release Rate (GMERR) (Chambolle et al., 2009; Takei

et al., 2013) has been proposed for materials with isotropic elasticity and anisotropic

fracture toughness. When the energy release rate 𝐺 (𝜃) as deĄned in eq. (1.13) is lower

than the orientation-dependent surface energy 𝐺𝑐 (𝜃), these is no possible propagation.

And when 𝐺 (𝜃) = 𝐺𝑐 (𝜃), propagation may take place in the direction 𝜃∗ that maximizes

the ratio between the energy release rate 𝐺 (𝜃) and the orientation-dependent surface

energy 𝐺𝑐 (𝜃):

𝜃∗ = argmax
[
𝐺 (𝜃)
𝐺𝑐 (𝜃)

]
(1.19)

once the load is high enough to get 𝐺 (𝜃∗) = 𝐺𝑐 (𝜃∗).
Fig. 1.4 exhibits the visualization of GMERR in a Wulff diagram (Takei et al., 2013).

The black curve represents a four-fold symmetric surface energy chosen for illustration,

given by 𝐺𝑐 (𝜃) = 𝐺𝑐
4

√︃
1 − 0.8 cos 4

(
𝜃 − 5𝜋

36

)
. The green dot-line represents the reciprocal

energy release rate 1
𝐺 (𝜃) before crack propagation, and the green curve is the reciprocal

energy release rate 1
𝐺 (𝜃) at the stage when the crack begins to propagate. As the load

increases, the reciprocal of energy release rate 1
𝐺 (𝜃) approaches the reciprocal surface

energy, and the Ąrst intersection point gives the predicted angle 𝜃∗ and the relevant

critical loading. To obtain the relation between the critical load and crack angle, with

the aid of the LEFM and propagation criteria, we can write the following equation:



𝐹2
𝑐 (𝜃) · 𝐺̂ (𝜃) = 𝐺𝑐

𝐹2
𝑐 (𝜃 = 0) · 𝐺̂ (𝜃 = 0) = 𝐺𝑐

(1.20)
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Due to 𝐾𝑝 ∝ loading L, referring to IrwinŠs formula, eq (1.9), the energy release rate

𝐺 (𝜃) = L2𝐺 (𝜃). Therefore, we can extract the force component from the energy release

rate 𝐺 (𝜃), resulting in 𝐹2
𝑐 (𝜃) ·𝐺 (𝜃), where 𝐹𝑐 (𝜃) represents the critical force required for

propagation in the direction 𝜃, and 𝐺 (𝜃) denotes the energy release rate in the direction

𝜃 at unit load 𝐹 = 1. By dividing these two equations, we can derive the following

expression which describes the relationship between critical load and crack angle:

𝐹𝑐 (𝜃) =
[
𝐺 (𝜃 = 0)
𝐺 (𝜃)

]0.5

· 𝐹𝑐 (𝜃 = 0) (1.21)

where the energy release rate at unit load can be substituted with IrwinŠs formula eq.

(1.9) and Amestoy-LeblondŠs formula eq. (1.3).

Takei et al. 2013 validated the GMERR criterion by conducting tearing experiments

on bi-oriented polypropylene sheets that exhibit strongly anisotropic fracture toughness.

Subsequently, Mesgarnejad et al. 2020 investigated crack propagation in materials with

weakly anisotropic surface energy using a combination of experiments and phase-Ąeld

modeling. The study revealed the importance of considering the 𝑇-stress term when

calculating the energy release rate 𝐺 (𝜃) in the GMERR criterion, as shown below:

𝐾∗
𝑝 (𝜃) =𝐾𝑞𝐹𝑝𝑞 (𝜃) + 𝑇

√
𝑠𝐺 𝑝 (𝜃)

𝐺 (𝜃) =𝐾∗
𝑝 (𝜃)2/𝐸

(1.22)

Mesgarnejad et al. 2020 made a signiĄcant decision regarding the choice of the kink

length value 𝑠. They opted to set 𝑠 equal to the size of FPZ. This particular choice

yielded highly accurate predictions in their experiments and phase-Ąeld modeling.

The application of GMERR will be introduced in Section 3.2.2 and Section 4.2, it is

mainly used to compare with the crack path and relevant critical load obtained from

experiments and simulations.
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Figure 1.4 Wulff diagram: visualization of GMERR

1.3.2 Sharp model of anisotropic brittle fracture in variational

approach

The energy functional of a cracked body with anisotropic surface energy is denoted as

follows (Li and Maurini, 2019):

E(𝒖, Γ) =
∫
Ω\Γ

1
2
𝜺˜(𝒖) : A : 𝜺˜(𝒖)d𝑥 −

∫
𝜕𝑁Ω

𝑻𝑑 · 𝒖 d𝑠 + 𝐺0

∫
Γ

𝛾(𝒏) dH 𝑛−1 (1.23)

where the third term represent the anisotropic surface energy, and 𝒏 is the unit vector

normal to the crack path. The orientation-dependent surface energy 𝐺𝑐 (𝒏) is decomposed

into a scaling factor of energy per unit surface 𝐺0 and a dimensionless functional 𝛾(𝒏).
The anisotropic surface energy can be classiĄed into two categories: weakly anisotropic,

which is associated with a convex function 𝛾(𝒏), and strongly anisotropic, which is related

to a non-convex 𝛾(𝒏). In a 2D polar coordinates, the unit normal 𝒏 can be replaced a

single angle 𝜃, then we have 𝛾(𝜃) = 𝛾(𝒏(𝜃)) (Sekerka, 2005). The function 𝛾(𝜃) becomes
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non-convex when it violates the following local convexity condition (Takei et al., 2013):

𝛾(𝜃) + 𝛾′′(𝜃) < 0 (1.24)

As the surface energy becomes strongly anisotropic, the presented sharp model is ill-posed

due to the lack of semi-continuity (Fonseca, 1992), hence an intrinsic regularized model

(Li and Maurini, 2019) will be introduced in next Section 1.4.3.2.

1.4 Numerical method for fracture problem

Computational fracture mechanics involves developing numerical methods to model the

behavior of material under different loading conditions, with the aim of estimating crack

initiation and propagation. Fracture modeling approaches can be classiĄed into two

categories: discontinuous and continuum crack models.

In the discontinuous crack modeling, cracks are regarded as surfaces of discontinuity,

hence it faces the challenge of introducing displacement discontinuities in the numerical

model. To address with this issue, Ingraffea and Saouma 1985 proposed the Adaptive

Mesh ReĄnement (AMR) method, which introduces new boundaries as crack propagating.

Alternative method consist of the Extend Finite Element Method (XFEM) (Moës et al.,

1999), which introduces additional enrichment functions to capture the discontinuities or

singularities in the solution. However, discontinuous models with speciĄc techniques face

not only challenges in numerical efficiency, but also in determining propagation criteria

independently of the discretization technique.

The limitations of discontinuous crack models have thus led to the parallel development

of continuum crack model (Wu et al., 2020). Among these, the phase-Ąeld or gradient

damage model has emerged as a prominent and promising approach. In this model, the

crack is represented as a diffuse Ąeld of damage concentrated within a narrow band as

illustrated in Ąg. 1.5 b), the model incorporates a damage variable that distinguishes

between intact and fractured material. Several phase-Ąeld models based on different

approaches have been proposed, such as the dynamic phase-Ąeld model based on Ginzburg-

LandauŠs equation (Karma et al., 2001), which is widely used in the physics community.

Another approach based on the variational approach to fracture, which was proposed by

Bourdin et al. 2000 and has gained widespread acceptance in the mechanics community.
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Figure 1.5 Crack set Γ a in a solid Ω : a) sharp crack, b) crack set represented by a diffused
damage Ąeld

In following section, we will introduce the numerical models employed in order to solve

the static elasticity problem and the damage evolution problem. The classic approach

based model as presented in section 1.2.1 was used to deal with the static elasticity

problem, primarily to determine the fracture parameters when crack kinking is involved

due to anisotropic fracture toughness. The variational approach as presented in section

1.2.2 based model was used to solve the damage evolution problem when coupled with

anisotropic settings.

1.4.1 Static elasticity problem: numerical method to determine

SIFs

The FEM model based on the classic approach involves solving a linear elastic problem

with a Ąxed geometry and calculating the SIFs at each set of the prorogation in presence

of a crack kink due to the anisotropic surface energy.

1.4.1.1 G - 𝜃 method

Computing the SIF for both Mode I and Mode II in the presence of the kinked crack was

achieved using the 𝐺 − 𝜃 method. This method replaces the Rice integral with a surface

integral based on StokesŠs theorem (Destuynder et al., 1981), enabling the separation of

the SIFs for different modes. The superiority of 𝐺 − 𝜃 method is that it allows to bypass

the numerical difficulties associated with the singularity of the deformations and stresses

at the crack tip.
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Figure 1.6 The 𝐺 − 𝜃 method diagram is shown in Ągure A). The mesh in the vicinity of the
crack tip and region where the 𝐺 − 𝜃 method is applied are shown in Ągure B)

Consider a domain Ω ⊆ 𝑅2 shown in Fig. 1.6. The energy release rate can be expressed

as:

𝐺 = −
∫
Ω

∇𝜽𝑇 : 𝑬˜ d𝑆

where 𝑬˜ is Eshelby tensor is expressed:

𝑬˜ = 𝑊 𝑰˜ − ∇𝒖𝑇 · 𝝈˜
and 𝑊 is the strain energy density in an isotropic elastic solid:

𝑊 =
1
2
(𝝈˜ : 𝜺˜) (1.25)

Then we build a Ąctitious velocity Ąeld 𝜽 (𝒙) and a virtual time variable 𝜂 which transforms

the domain Ω𝜂 to Ω𝜂 + 𝑑𝜂, where 𝜽 (𝒙) is deĄned as:




𝜽 (𝒙) = 1 𝑟 = 0

𝜽 (𝒙) = 𝜽 (𝒙) 0 < 𝑟 ≤ 𝑅

𝜽 (𝒙) = 0 𝑅 < 𝑟

Finally, the SIF can be expressed following by separating different modes (taking

opening mode as an example) (Bonnet and Frangi, 2007):

2
(
1 − 𝜈2

)
𝐸

𝐾𝐼 = −
∫
Ω

(
1
2
𝜎𝑖 𝑗𝑢

(1)
𝑖, 𝑗
𝜃𝑘,𝑘 − 𝜎𝑖 𝑗𝑢(1)𝑗 ,𝑘𝜃𝑘,𝑖

)
dΩ
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where 𝒖(1) is the displacement Ąeld near the crack tip shown in eq. (1.8) for 𝐾𝐼 = 1,

𝐾𝐼 𝐼 = 0 and 𝐾𝐼 𝐼 𝐼 = 0. The index 𝑖, 𝑗 represents the derivative of the displacement

component 𝑢𝑖 with respect to the 𝑥 𝑗 direction.

1.4.1.2 Interaction integral

The 𝑇 -stress can be determined using a direct method numerically: which involves phase

subtraction of the stress Ąeld near the crack tip:

𝑇 = lim
𝑟→0

[𝜎𝑟𝑟 (𝑟, 𝜃 = 0) − 𝜎𝜃𝜃 (𝑟, 𝜃 = 0)] (1.26)

However, it is worth noting that the direct method for determining the 𝑇-stress, as

reported in Mesgarnejad et al. 2020, requires careful consideration of convergence, and

as a result, the accuracy of the obtained 𝑇-stress may not be optimal. As an alternative,

we presented the Interaction Integral or 𝐼-integral. It has demonstrated great promise in

accurately determining the 𝑇-stress and has been implemented into widely used Ąnite

element software Abaqus (Abaqus, 2023). Meanwhile it can be used to separate the SIFs

in mixed mode. It involves computing a contour integral inspired by RiceŠs 𝐽-integral

(Rice, 1968) concept:

𝐽 = lim
Γ→0

∫
Γ

(
𝑊𝛿1𝑖 − 𝜎𝑖 𝑗𝑢 𝑗 ,1

)
𝑛𝑖 dΓ (1.27)

𝛿𝑖 𝑗 is the Kronecker delta, and 𝑛𝑖 is the outward normal vector to the contour Γ, as

shown in Ąg. 1.7. RiceŠs 𝐽-integral has been shown to be path-independent for isotropic

linear elastic homogeneous solids, and 𝐽 = 𝐺 when crack propagation is straight.

Figure 1.7 𝐽-integral around the crack tip

However, 𝐽-integral alone cannot distinguish between the two SIFs, mode I 𝐾𝐼 and
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mode II 𝐾𝐼 𝐼 . Inspired by a two stated integral based on the BettiŠs reciprocity theorem,

Chen and Shield 1977 proposed superimpose an auxiliary Ąeld on the actual Ąeld in

𝐽-integral, eq. ( 1.27) can be expressed as:

𝐽𝑠𝑢𝑚 (𝑢𝑖+𝑢𝑎𝑢𝑥𝑖 ) = lim
Γ→0

∫
Γ

[
1
2

(
𝜎𝑗 𝑘 + 𝜎𝑎𝑢𝑥𝑗 𝑘

) (
𝜀 𝑗 𝑘 + 𝜀𝑎𝑢𝑥𝑗 𝑘

)
𝛿1𝑖 −

(
𝜎𝑖 𝑗 + 𝜎𝑎𝑢𝑥𝑖 𝑗

) (
𝑢 𝑗 ,1 + 𝑢𝑎𝑢𝑥𝑗 ,1

)]
𝑛𝑖 dΓ

(1.28)

Through rearrangement of the previous equation, the 𝐽𝑠𝑢𝑚 term can be separated into

three components: 𝐽, 𝐽𝑎𝑢𝑥, and 𝐼. Here, 𝐽 represents the 𝐽-integral of the actual Ąeld,

𝐽𝑎𝑢𝑥 represents the 𝐽-integral of the auxiliary Ąeld, and the Ąnal term 𝐼 is commonly

referred to as the interaction integral or 𝐼-integral. The expression for the interaction

integral is as follows:

𝐼 = lim
Γ→0

∫
Γ

[1
2

(
𝜎𝑗 𝑘𝜀

𝑎𝑢𝑥
𝑗 𝑘 + 𝜎𝑎𝑢𝑥𝑗 𝑘 𝜀 𝑗 𝑘

)
𝛿1𝑖 − 𝜎𝑎𝑢𝑥𝑖 𝑗 𝑢 𝑗 ,1 − 𝜎𝑖 𝑗𝑢𝑎𝑢𝑥𝑗 ,1 ] 𝑛𝑖 dΓ (1.29)

It is crucial to note that both the actual Ąeld and auxiliary Ąeld should satisfy the

equilibrium condition and be kinematically admissible. Similar to the 𝐽-integral, the

𝐼-integral is also path-independent for homogeneous materials. Notably, the 𝐼-integral

can be used in both isotropic and anisotropic media with the appropriate auxiliary Ąelds

(Yu and Kuna, 2021). To separate the SIFs 𝐾𝐼 and 𝐾𝐼 𝐼 under mixed mode loading, Yau

et al. 1980 used the stress and displacement Ąeld near the crack tip which are given by

eq. (1.7) and eq. (1.8), and the higher-order term 𝑇-stress is excluded. The 𝐽𝑠𝑢𝑚 can be

therefore denoted as follows (plane stress assumption):

𝐽𝑠𝑢𝑚 =
1
𝐸′

[ (
𝐾𝐼 + 𝐾𝑎𝑢𝑥𝐼

)2 +
(
𝐾𝐼 𝐼 + 𝐾𝑎𝑢𝑥𝐼 𝐼

)2
]

(1.30)

where 𝐾𝑎𝑢𝑥
𝐼

and 𝐾𝑎𝑢𝑥
𝐼 𝐼

are SIFs in the auxiliary Ąeld, Ąnally the 𝐼-integral can be obtained:

𝐼 =
2
𝐸′

(
𝐾𝐼𝐾

𝑎𝑢𝑥
𝐼 + 𝐾𝐼 𝐼𝐾𝑎𝑢𝑥𝐼 𝐼

)
(1.31)

By substituting the auxiliary Ąelds into eq. (1.29), we can have access to the value

of 𝐼-integral. Then setting the auxiliary SIFs: 𝐾𝑎𝑢𝑥
𝐼

and 𝐾𝑎𝑢𝑥
𝐼 𝐼

to 0 respectively, different

𝐼-integral correspond to different fracture modes 𝐼 (𝐼) and 𝐼 (𝐼 𝐼) can be obtained. The SIFs

𝐾𝐼 and 𝐾𝐼 𝐼 can be computed using the following equations:

𝐾𝐼 =
𝐸′

2
𝐼 (𝐼) , 𝐾𝐼 𝐼 =

𝐸′

2
𝐼 (𝐼 𝐼) (1.32)

Inspired by the solution of the concentrated force at a point of straight boundary

problem (Timoshenko and Goodier, 1951), Kfouri 1986 determined the higher-order term
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𝑇-stress through the 𝐼-integral by using the following deĄned auxiliary Ąeld:

𝑢𝑎𝑢𝑥1 = −𝐹
𝜋

𝜅 + 1
8𝜇

ln
𝑟

𝑑
− 𝐹

𝜋

1
4𝜇

sin2 𝜃, 𝑢𝑎𝑢𝑥2 = −𝐹
𝜋

𝜅 − 1
8𝜇

𝜃 + 𝐹
𝜋

1
4𝜇

sin 𝜃 cos 𝜃

𝜎𝑎𝑢𝑥11 = − 𝐹
𝜋𝑟

cos3 𝜃, 𝜎𝑎𝑢𝑥22 = − 𝐹
𝜋𝑟

cos 𝜃 sin2 𝜃, 𝜎𝑎𝑢𝑥12 = − 𝐹
𝜋𝑟

cos2 𝜃 sin 𝜃
(1.33)

The point force 𝐹 and reference length 𝑑 are typically taken as unit value in numerical

practice. Through the utilization of the deĄned auxiliary Ąeld, the impact of the singular

and higher order components of the actual stress will be eliminated, leaving only the

𝑇-stress to contribute the 𝐼-integral (Yu and Kuna, 2021). By substituting the auxiliary

Ąeld into eq. (1.29), the value of 𝐼 can be determined. This value of 𝐼 can subsequently

be employed to calculate the 𝑇-stress using the following expression:

𝑇 = 𝐼𝐸′ (1.34)

The validation of the 𝐼-integral implementation will be thoroughly discussed in Section

3.1.2.

1.4.2 Phase-field model with isotropic surface energy

The variational formulation poses a challenge in the numerical implementation of the

resulting discontinuity problem. To handle this issue, Bourdin et al. 2000 regularized the

formulation 1.6 and implemented it numerically by following the strategy of Ambrosio and

TortorelliŠs regularization of the Mumford-Shan problem in image processing (Ambrosio

and Tortorelli, 1990; Mumford and Shah, 1989). This regularization can be seen as an

approximation using elliptic functions and enables convergence towards the sharp model

of brittle fracture. In the numerical model of variational approach to fracture, a scalar

phase-Ąeld 𝛼 is used to represent the cracks, with values ranging from 0 to 1, allowing

for a smooth transition from intact to fractured states.

The functional of regularized energy can be denoted as:

Eℓ (𝒖, 𝛼) =
∫
Ω

𝑎(𝛼)𝑊 (𝒖)dΩ + 𝐺𝑐

𝑐𝑤

∫
Ω

(
𝑤(𝛼)
ℓ

+ ℓ∥∇𝛼∥2

)
dΩ (1.35)

where 𝒖 is the displacement Ąeld, 𝛼 is the damage variable that varies in [0, 1] (𝛼 = 1

meaning the material is completely fractured). The stiffness modulation function with

respect to the damage variable is denoted by 𝑎(𝛼), while 𝑤(𝛼) is the dissipation potential

and 𝑐𝑤 = 4
∫ 1

0

√
𝑤(𝛼)𝑑𝛼 is the normalization parameter. 𝑊 (𝒖) in Ąrst term represents
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the elastic energy density refer to eq. (1.25). And the second term is regarded as the

dissipation potential composed of two parts, a local term 𝑤(𝛼) depending only on the

damage state and a gradient damage term ∇𝛼 which penalizes sharp localization of the

damage. ℓ is the regularization parameter that controls the width of the damage Ąeld.

As ℓ approaches 0, the isotropic damage energy function tends towards the Griffith-type

brittle fracture model in a Gamma-convergence sense (Bourdin et al., 2000).

Possible choices for stiffness modulation and dissipation potential are the AT1, AT2

models (Tanné et al., 2018) and KKL model (Karma et al., 2001), denoted as follows:




𝑎(𝛼) = (1 − 𝛼)2 , 𝑤(𝛼) = 𝛼 AT1 model

𝑎(𝛼) = (1 − 𝛼)2 , 𝑤(𝛼) = 𝛼2 AT2 model

𝑎(𝛼) = 4(1 − 𝛼)3 − 3(1 − 𝛼)4 , 𝑤(𝛼) = 1 − 𝑎(𝛼) KKL model

(1.36)

For alternative damage models, refer to Wu et al. 2020.

We denote C as the set of admissible displacement Ąelds and D as the set of accessible

damage Ąelds:

C :=
{
𝒖 ∈ 𝐻1(Ω), 𝒖 = 𝒖𝑑 (𝑥, 𝑡) on 𝜕𝐷Ω

}
,

D :=
{
𝛼 ∈ 𝐻1(Ω), 0 ≤ 𝛼𝑖−1(𝑥) ≤ 𝛼(𝑥) ≤ 1,∀𝑥 ∈ Ω

}
.

(1.37)

where 𝛼𝑖−1(𝑥) ≤ 𝛼(x) represents the regularized irreversible damage evolution. The

solution to the problem can be obtained using an alternate minimization algorithm. This

algorithm involves solving a sequence of minimization sub-problems on the displacement

𝒖 for a Ąxed damage variable 𝛼, and similarly solving minimization sub-problems on 𝛼

for a Ąxed 𝒖 until the convergence is achieved (Pham et al., 2011). The given solution

(𝒖𝑖, 𝛼𝑖) of the local minimisation problem must adhere to what are referred to as the

Ąrst-order optimality conditions, as outlined in (León Baldelli and Maurini, 2021), as

following:

𝜕E𝑖 (𝒖𝑖, 𝛼𝑖)
𝜕𝒖

= 0,

𝛼𝑖 − 𝛼𝑖−1 ≥ 0,
𝜕E𝑖 (u𝑖, 𝛼𝑖)

𝜕𝛼
≥ 0,

𝜕E𝑖 (𝒖𝑖, 𝛼𝑖)
𝜕𝛼

· (𝛼𝑖 − 𝛼𝑖−1) = 0 (1.38)

The phase-Ąeld model provides a signiĄcant beneĄt by demonstrating that as the

parameter ℓ approaches zero, the surface of the regularized crack Γℓ converges to that of

the sharp crack Γ through Γ-convergence, thereby approaching GriffithŠs brittle fracture
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model. Furthermore, the phase-Ąeld model of fracture offers additional advantages.

It does not require 𝑎𝑑 − ℎ𝑜𝑐 conditions to capture the crack initiation and growth.

Additionally, the phase-Ąeld model is easy to incorporate different fracture mechanisms,

such as ductile fracture (Alessi et al., 2015; Ambati et al., 2015; Brach et al., 2019a),

dynamic fracture (Bourdin et al., 2011; Li et al., 2016), fatigue fracture (Mesgarnejad

et al., 2019; Grossman-Ponemon et al., 2022; Schreiber et al., 2020), thin Ąlm fracture

(Mesgarnejad et al., 2013; León Baldelli et al., 2013, 2014), hydraulic fracture (Wilson

and Landis, 2016; Xia et al., 2017). Moreover, the phase-Ąeld model can easily be coupled

with other physical Ąelds, such as thermal or drying effects (Maurini et al., 2013; Bourdin

et al., 2014) or electromagnetic effects (Abdollahi and Arias, 2012; Wu and Chen, 2021).

It can also be extended to anisotropic fracture (Li et al., 2015; Li and Maurini, 2019;

Nguyen et al., 2017; Scherer et al., 2022).

1.4.3 Presence of anisotropic surface energy in phase-field model

From a review of the literature, it is evident that the anisotropic behavior can be

incorporated into phase-Ąeld models through various approaches. For instance, one

approach involves introducing an anisotropic fracture surface energy, drawing inspiration

from anisotropic crystal solids (Hakim and Karma, 2005; Li et al., 2015; Teichtmeister

et al., 2017), another approach involves incorporating anisotropic stiffness degradation

(Bleyer and Alessi, 2018; Scherer et al., 2022). Additionally, anisotropy can be considered

through the use of layered media (Brach et al., 2019b; Brach, 2020). Here, our main

emphasis is on investigating the impact of anisotropic surface energy while keeping the

elasticity isotropic.

1.4.3.1 Two-fold symmetric model

To extend the model to an anisotropic model, various methods can be employed resulting

in different types of anisotropy. One approach involves introducing a second-order matrix

into the non-local fracture energy, resulting in a weakly anisotropic surface energy or a

two-fold symmetric surface energy (Hakim and Karma, 2005, 2009; Mesgarnejad et al.,

2020). The energy function can be expressed as follows:

Eℓ (𝒖, 𝛼) =
∫
Ω

𝑎(𝛼)𝑊 (𝒖)dΩ + 𝐺0

𝑐𝑤

∫
Ω

(
𝑤(𝛼)
ℓ0

+ ℓ0 A˜ ∇𝛼 · ∇𝛼
)

dΩ (1.39)
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where A˜ is deĄned as:

A˜ =

[
cos(𝜃0) − sin(𝜃0)
sin(𝜃0) cos(𝜃0)

] [
𝐴−1
𝑡 0

0 1

] [
cos(𝜃0) − sin(𝜃0)
sin(𝜃0) cos(𝜃0)

]𝑇
(1.40)

with 𝐴𝑡 represent the anisotropic indicator for two-fold symmetric model, and the

surface energy becomes more anisotropic as 𝐴𝑡 increases. In Mesgarnejad et al. 2020,

they used the two-fold symmetric model to simulate the crack path in orientationally

ordered composites. By comparing with the experimental results, they established

relevance between the numerical anisotropic coefficient 𝐴𝑡 and the volume fraction in

their composite material. While the material axis 𝜃0 correspond to the Ąber orientation

in composite. Finally, the two-fold symmetric model results in an orientation-dependent

surface energy:

𝐺𝑐 (𝜃) = 𝐺0

√︃
𝐴𝑡

−2 sin2(𝜃 − 𝜃0 + 𝜋/2) + cos2(𝜃 − 𝜃0 + 𝜋/2) (1.41)

1.4.3.2 Four-fold symmetric model

A four-fold symmetric model of anisotropy can be achieved by incorporating a fourth-

order tensor C into the non-local fracture energy, which leads to a higher-order phase-Ąeld

model (Borden et al., 2014). The validity of the Gamma-convergence result for the

higher-order phase-Ąeld model, as presented in (Burger et al., 2015; Negri, 2020), has

been established for the case of isotropic surface energy. As discussed in Li and Maurini

2019, such a result could potentially be extended to the weakly anisotropic case, where

the function 𝐺𝑐 (𝜃) is convex. However, for the strongly anisotropic case, the sharp

model 1.23 is ill-posed due to the lack of semi-continuity (Fonseca, 1992). Therefore an

intrinsically regularized model is proposed in (Li and Maurini, 2019), the corresponding

energy functional is given as:

Eℓ (𝒖, 𝛼) =
∫
Ω

𝑎(𝛼)𝑊 (𝒖)dΩ + 𝐺0

𝑐𝑤

∫
Ω

(
𝑤(𝛼)
ℓ0

+ ℓ3
0 C ∇2𝛼 · ∇2𝛼

)
dΩ (1.42)

where ∇2𝛼 is the Hessian of the damage variable. Different from the model presented in

(Li et al., 2015), this model incorporates a linear dissipation function and does not involve

any Ąrst derivatives of the phase-Ąeld (damage functional depends only on the Hessian

of the damage variable 𝛼). By incorporating these changes, the model can be simpliĄed,

leading to the attainment of an analytical solution for the optimal crack proĄle (Li and

Maurini, 2019). To obtain a cubic symmetric surface energy, it requires three constants



1.4 Numerical method for fracture problem 23

of matrix C: 𝐶11, 𝐶12 and 𝐶44 (Voigt notation), besides the C need to be positive deĄnite.

The determination of these anisotropic constants will be discussed in Section 4.2.1. As a

result, we obtained a four-fold symmetric model, and the orientation-dependent surface

energy can be expressed as:

𝐺𝑐 (𝜃) = 𝐺0
4
√︁
𝑎 · (1 − 𝐴 cos 4 (𝜃 − 𝜃0)) (1.43)

where 𝑎 = (3𝐶11 + 𝐶12 + 2𝐶44)/4 and 𝐴 = (𝐶11 − 𝐶12 − 2𝐶44)/(3𝐶11 + 𝐶12 + 2𝐶44). 𝜃0

represents the direction of weakest plane, or refers as the material axis. The anisotropic

coefficient for four-fold symmetric model 𝐴 𝑓 is deĄned as 𝐴 𝑓 = |𝐴| and it should be noted

that 𝐴 𝑓 ∈ [0, 1). To rotate the orientation-dependent 𝐺𝑐 (𝜃), we transform the matrix C

using eq. (1.44).

Ĉ = K C K
𝑇 (1.44)

In Voigt notation (Bower, 2009), K represents the transformation matrix for a fourth-
order tensor in 2D:

K =
©­­«

cos2(𝜃0) sin2(𝜃0) 2 · cos(𝜃0) · sin(𝜃0)
sin2(𝜃0) cos2(𝜃0) −2 · cos(𝜃0) · sin(𝜃0)

−cos(𝜃0) · sin(𝜃0) cos(𝜃0) · sin(𝜃0) cos2(𝜃0) − sin2(𝜃0)

ª®®¬
(1.45)

Fig. 1.8 displays the reciprocal surface energy in polar coordinate for two-fold and

four-fold symmetric models. As the anisotropic coefficient increases, both models exhibit

increasing anisotropy in the surface energy. However, the four-fold symmetric surface

energy can become non-convex when 𝐴 𝑓 >
1
3
, violating the local convexity condition for

certain ranges of angles as shown in eq. (1.24). Consequently, a Šforbidden directionŠ for

the crack propagation can arise, resulting in a strongly anisotropic model.
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Figure 1.8 The illustration shows the reciprocal surface energy 𝐺0

𝐺𝑐 (𝜃 ) in polar coordinates. The
left side depicts a two-fold symmetric model eq. (1.41), while the right side shows a four-fold
symmetric model eq. (1.43).

1.4.3.3 Multi-damage variable model

An alternative approach to obtain a strongly anisotropic model was employed by (Nguyen

et al., 2017; Scherer et al., 2022). Their model involves the use of multi damage variables,

where each variable represent a cleavage plane. This allows the model to remain a

second-order model. The total energy functional is denoted as follows:

E
(
𝜺˜, 𝛼𝑖,∇𝛼𝑖

)
=

1
2
𝜺˜ : A (𝛼𝑖) : 𝜺˜ +

𝑚∑︁
𝑖=1

3𝐺𝑖𝑐
8ℓ𝑖

(
𝛼𝑖 + ℓ2

𝑖 𝑩𝒊˜ : (∇𝛼𝑖 ⊗ ∇𝛼𝑖)
)

(1.46)

where the damage-degraded stiffness tensor A (𝛼𝑖) can be expressed as follows:

A (𝛼𝑖) =
(
(1 − 𝜅)

𝑚∏
𝑖=1

(1 − 𝛼𝑖)2 + 𝜅𝑟
)
A (1.47)

where 𝜅𝑟 is a residual stiffness. The presence of second-order tensors 𝑩𝒊˜ in the non-local

term of Eq. (1.47) introduces the anisotropic setting, which can be expressed as follows

𝑩𝒊˜ = 𝑰˜ + 𝛽𝑖
(
𝑰˜ − 𝒏𝒊 ⊗ 𝒏𝒊

)
(1.48)
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Here the penalization parameter 𝛽 is a key factor in determining the degree of

anisotropy, with higher values leading to strongly anisotropic surface energy. The index

𝑖 represent different fracture mechanism, with 𝑖 = 2 the model corresponding to an

fourth-fold symmetric model by setting the penalization parameter 𝛽 > 1. Each damage

variable can be regard as a cleavage plane. The fracture toughness 𝐺𝑖𝑐 and regularization

parameter ℓ𝑖 are speciĄc to each cleavage plane, which can be distinguished by the choice

of normal vector 𝒏𝒊. For example, 𝒏1 =

[
1 , 0

]
corresponds to a vertical cleavage

plane while 𝒏2 =

[
0 , 1

]
represents a horizontal one. By using a rotation matrix, the

orientation of the cleavage plane can be changed. Compared to the Li and Maurini 2019Šs

higher-order model, this model provides more freedom in deĄning surface energy form,

making it more suitable for modeling polycrystalline materials. Additionally, the model

is more computationally efficient as it is a second-order model. However, in contrast

to other anisotropic models that use the anisotropic constant in second or fourth-order

tensors to change the degree of anisotropy by manipulating the ratio between the surface

energy along the weak plane and the "forbidden direction", the physical meaning of the

penalization parameter 𝛽 in the multi-damage model is not clear (Scherer et al., 2022).

1.5 Motivation

LEFM is a comprehensive framework to treat the crack propagation if failure occurs in the

elastic domain. For isotropic fracture toughness, the classic approach has been validated

by several experiments (Erdogan and Sih, 1963; Ayatollahi et al., 2015, 2016). While for

the phase-Ąeld model based on variational approach, it has been validated by comparing

with fracture experiments in PMMA specimens (Pham et al., 2017; Cavuoto et al., 2022),

experimental evidence has demonstrated the effectiveness of AT1 and AT2 phase-Ąeld

models in accurately predicting intricate crack paths and stress state during the initial

phase of crack formation. By employing the formula proposed by (Tanné et al., 2018),

the regularization parameter ℓ can be computed using the material parameters, including

YoungŠs modulus 𝐸 , critical surface energy 𝐺𝑐, and tensile strength 𝜎𝑐. The utilization

of the calculated regularization parameter ℓ in numerical experiments yields outstanding

accuracy in providing quantitative predictions. As for the material with anisotropic

fracture behavior, the classical based criteria GMERR has been validated by performing

the experiments on tearing bi-oriented polypropylene sheets with strongly anisotropic

fracture toughness, which resulted in a zig-zag crack patterns (Takei et al., 2013). Beside,

the weakly anisotropic phase-Ąeld model is validated by conducting fracture experiments

on orientationally ordered composites (Mesgarnejad et al., 2020). The inclusion of the



26 State of the art in Linear Elastic Fracture Mechanics

higher-order term 𝑇 -stress was shown to be essential when applying the GMERR criteria,

as demonstrated by their studies. For the regularization parameter, the same formula

(Tanné et al., 2018) was employed, and it was observed that the phase-Ąeld model with

the corresponding ℓ value, provided accurate predictions on the crack angle.

As for the strongly anisotropic phase-Ąeld model, despite the existence of the numerical

models, until today, no one has validated these numerical models through experiments.

The validation of anisotropic models is more complex compared to isotropic models, which

is manifested in the following aspects: Ąrst the choice of the form of anisotropic surface

energy with forbidden direction. As we know, it is almost impossible to guide the crack

into a forbidden direction, hence, that surface energy form is impossible to obtain from

fracture experiments. The only value that can measured is the 𝐺𝑐 along the direction

of weak plane. Such difficulty makes the selection of constants in the numerical model

challenging. Second, the choice of the regularization parameter ℓ, as the higher-order

phase-Ąeld is employed, there is a lack of knowledge that if the formulation to determine

the ℓ for isotropic model (Pham et al., 2011; Tanné et al., 2018) holds for strongly

anisotropic model. Furthermore, can ℓ be considered as an internal length parameter

associated with the material? Does this regularization parameter have a connection with

the macroscopic tensile strength 𝜎𝑐, as well as the size of the microstructure (such as the

size of the deposited Ąlaments)? Also, should we take into account the effect of 𝑇-stress

in cases where there is a strong anisotropic surface energy as in Mesgarnejad et al. 2020?

During my PhD, we aim to answer these questions for a particular material, namely

PC printed by FDM with criss-cross printing pattern. The work consist of a part of

fracture experiments and a part of numerical simulations using the classic approach and

the strongly anisotropic phase-Ąeld model proposed in Li and Maurini 2019.



Chapter 2

Fracture experiments on FDM

printed samples

This chapter is dedicated to the fracture experiments carried out on specimens made

using Fused Deposition Modeling (FDM) process. It provides an overview on FDM

process and its current application. The chapter then provides detailed information

on the dimensions of the samples, the printing process using FDM, and the printing

parameters and strategies employed. It also describes the pre-cracking procedure of the

samples under cyclic loading before conducting fracture experiments, and the material

parameters extracted from tensile tests. The experimental setup for fracture experiments

and the post-processing methods used are also explained. The chapter concludes with

the presentation of the experimental results, including the fracture experiments under

mode I loading and mode I+II loading. Additionally, the critical surface energy of the

weak plane will be calculated using the experimental results.
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2.1 Fused Deposition Modeling

FDM is recognized as the most widely used technology of polymer-based additive

manufacturing. It involves the use of thermoplastic Ąlament to build components layer

by layer, as illustrated in Ąg. 2.1. The main materials used in FDM include: Polylactic

acid (PLA), Acrylonitrile butadiene styrene (ABS), PC or Polyamide (PA). FDM was

initially used for rapid prototyping due to its ability to quick design, manipulate, and

print complex geometries. In recent years, it has become more mature and widely used

in industrial production with the advancement of materials and technology.

FDM has been employed in various industries, including the automotive industry for

the production of components such as front frame covers, aerodynamic elements, and

air scoops (Gechev, 2022). It has also found applications in the medical industry for

the fabrication of biomedical implants (Singh et al., 2018). Additionally, FDM has been

used in the aerospace industry, with the FDM-manufactured antenna array supports for

FormoSat-7/COSMIC-2 satellite mission successfully proven to be functional in outer

space (cqadmin, 2015).

Figure 2.1 Schematic of the standard FDM process (Zou et al., 2016)
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However, the FDM still faces some challenges, including anisotropic elasticity and

void formation in printed components due to the layer-by-layer printing process, which

can signiĄcantly affect their mechanical properties. Meanwhile, the fracture behavior of

printed parts is a critical concern, as it directly affects the reliability and performance of

printed parts during their life service. Due to the complexity of analyzing the factors

inĆuencing the mechanical and fracture behavior of the printed parts, numerous studies

have been conducted in this area, focusing on different printing parameters such as:

raster pattern orientation (Ahn et al., 2002; Cantrell et al., 2017; Ayatollahi et al., 2020),

build orientation (McLouth et al., 2017; Mars,avina et al., 2022), thickness and extrusion

nozzle type (Maloch et al., 2018), bed temperature and nozzle temperature (Aliheidari

et al., 2018), bonding features (Allum et al., 2020), printing speed (Kizhakkinan et al.,

2022; Rezaeian et al., 2022) and deposition strategy (Gardan et al., 2018). For readers

interested in fracture behavior, refer to the review paper of Khosravani et al. 2020, and

for fatigue behavior, refer to Shanmugam et al. 2021.

The literature listed previously has primarily focused on studying the inĆuence of

printing parameters on fracture toughness and fatigue life of printed samples, particularly

in terms of the materialŠs ability to endure crack initiation and propagation. However, the

unique advantages of AM such as design freedom (Ngo et al., 2018) and the ability to easily

modify the microstructure, can result in a speciĄc microstructure that leads to anisotropic

fracture toughness. From an engineering standpoint, such microstructure is valuable

as it provides guidance for the design of mechanical components with controlled crack

propagation and facilitates more accurate nondestructive testing for locating potential

damage.

Despite the potential beneĄts of microstructure modiĄcation in FDM, there is a

lack of scientiĄc research investigating how crack propagates in the printed solids with

varying microstructure. Gardan et al. 2018 reported an optimised deposition technique

that altered the fracture behavior of printed samples, resulting in a ductile-like behavior.

Similarly, Kizhakkinan et al. 2022 reported a change in fracture behavior from brittle

to ductile by adjusting the printing speed. These studies employed a strategy that

transformed the fracture behavior of the printed samples from brittle to ductile, thereby

enabling increased energy absorption and delayed structural failure.

In Corre and Lazarus 2021, they involved adapting a criss-cross printing pattern,

which is able to guide and stabilize the crack propagation in printed PC sample, even the

fracture behavior remains brittle. In this dissertation, we build upon the work of Corre

and Lazarus 2021 by employing different geometries with the same printing pattern to

investigate crack extension under various loading modes.
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In this thesis, the main point is not to study the impact of different printing strategy

on fracture resistance as in the paper cited above. Instead we consider FDM as a versatile

and low cost way to design experiments to test fracture propagation models. As in Corre

and Lazarus 2021, we adopt a criss-cross printing pattern and PC material to enter in

the framework of isotropic linear elasticity with anisotropic fracture toughness.

2.2 Experimental protocol

Fracture experiment was performed on printed Compact Tension (CT Mode I) and

Compact Tension Shear (CTS Mode I+II) specimens, using the identical criss-cross

printing pattern as detailed in Corre and Lazarus 2021. Based on the experimental

observations, the printed samples exhibited an anisotropic behavior in fracture toughness

under mode I loading. The experimental setup used in previous study Corre and Lazarus

2021 was enhanced by incorporating a pre-crack though cyclic loading and by employing

a new printing device (Raise3D Pro2) instead of the Raise3D N2 Plus. Our aim is

to systematically investigate the fracture behavior of printed samples under different

fracture mode (Mode I and Mode I+II). The displacement Ąelds measured using Digital

Image Correlation (DIC) method were post-processed to obtain the fracture parameters.

The critical energy release rate 𝐺𝑐 along the weak plane will be determined using the

extracted SIFs during the crack propagation.

2.2.1 Sample preparation

2.2.1.1 Material used and printing process

The samples were fabricated with Fused Deposition Modeling using a Polycarbonate-based

Ąlament (𝑃𝐶 − 𝑃𝑙𝑢𝑠𝑇𝑀 from Poly-maker, diameter of Ąlament 1.75 mm). A digital model

of the sample was created using CAD software Fusion 360, based on their dimensions.

The exported STL Ąle was imported into Ideamarker and sliced layer by layer to generate

a Gcode Ąle, which contains printing actions, such as nozzle trajectory and temperature

settings. The 3D printer used for printing was the Raise 3D Pro2, which read the Gcode

Ąle and executed the printing program. Prior to the printing process, the build platform

was preheated to 100 °C for one hour to ensure a uniform temperature across the 3D

printer. Furthermore, the warm-up process helped to prevent strong adhesion between

the build platform and samples, which could potentially damage the platform when

removing the samples after printing. Besides, in order to avoid warping and increase bed
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adhesion, we start with printing a raft with 5 layers, which ensure proper calibration of

the Ąrst layer and maintain a close proximity between the print and the bed.

The printing process begins by heating the nozzle to 260 °C, and extruding a continuous

Ąlament of Polycarbonate through a 0.4 mm diameter nozzle. The PC material is heated

to a semi-liquid state and then deposited onto the platform or previous layers by moving

the nozzle. As time passes, the deposited material gradually cools down and solidiĄes,

ultimately bonding with the previously deposited thread. The printing speed for inĄlling

the sample is 50 mm/s as suggested as Poly-maker (30-50 mm/s) and it is important

to note that the cooling fan of the nozzle should be turned off during the printing.

Furthermore the extruderŠs Ąlament Ćow rate of is set to 98 %. Over-extrusion is a

common issue in FDM printing that can negatively affect print quality. To address this

problem, itŠs crucial to calibrate the printer by comparing the required extruded material

to the actual extruded material. Additionally, factors such as the extruder speed for

retraction and the amount of retraction need to be considered to avoid over-extrusion,

which often leads to faint strings or wisps along the nozzleŠs path between points. In our

case, the retraction speed is set to 40 mm/s, and the amount is 2.5 mm, as determined

through printing a speciĄc sample.

2.2.1.2 Geometries of CT and CTS samples

Figure 2.2 The dimensions of the specimens are as follows: a) CT sample, and b) CTS sample

To investigate the fracture behavior of 3D printed samples, CT (Mode I) and CTS (Mode

I+II) sample were used. The dimensions of CT and CTS sample were illustrated in

Ąg. 2.2. The printed CT and CTS sample are depicted in Ąg. 2.3 (a), (b) (c) and (d).
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Figure 2.3 a) Dimensions of CT sample, b) CT sample with a speckle pattern for DIC analysis,
c) CTS sample with adjoined pin hole to create a pre-crack for mode I fatigue loading and d)
CTS sample after cyclic loading with pre-crack, mode I pin holes are removed

2.2.1.3 Printing strategy of CT and CTS sample

The printing strategy described in Corre and Lazarus 2021 was used, where each layer

was Ąlled with a selected inĄll angle or raster angle (angle of deposited material with

respect to the notch), and successive layers were arranged orthogonally to each other.

Each layer had a thickness of 0.15 mm and a Ąll rate of 100 % was applied. An outer

shell enclosed the printing sample at each layer. Fig. 2.4 shows the printing strategy for

the CT sample. To facilitate the fracture experiments, the shell near the crack tip was

removed by systematically modifying the Gcode Ąle using a python script (see appendix

B).
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Figure 2.4 Ideamarker preview: a) shows the trajectory of the nozzle when printing a CT
sample, and b) presents a closer view near the crack tip where the shell is removed at the notch
extremity (Corre and Lazarus, 2021)

2.2.1.4 Pre-cracking under cyclic loading

During the printing process of CT and CTS sample, the nozzle moves near the crack

tip to start printing a new layer, resulting in a more complex microstructure in the

vicinity of the crack tip than initially expected. To address this issue, a pre-crack was

created under mode I loading using an Instron ElectroPlus 3000 Dynamic test instrument.

The specimens were subjected to a sinusoidal force at a frequency of 3 Hz, with the

maximum and minimum amplitudes of the force detailed in Table 2.1. After 20000

cycles, a pre-crack of approximately 1.5 mm length was initiated. The presence of a

pre-crack helps to stabilize the crack propagation, particularly under Mode I+II loading

conditions. Indeed, we observed that in the absence of the pre-crack, a signiĄcant number

of experiments occurred in an uncontrolled manner: once crack propagation began, it

would dynamically propagate until failure. However, with the inclusion of the pre-crack,

we were able to exert control over the propagation in the majority of experiments. When

propagation initiated, it occurred quasi-statically as the displacement was gradually

increased. It is important to note that the Mickey ears on Ąg. 2.3(c) served to initiate

a mode I fatigue pre-crack for the CTS sample, and they were removed (d) prior to

conducting the fracture test.
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Table 2.1 Table of maximal and minimal force used in the pre-crack procedure

Details of pre-cracking procedure

Sample Maximal force (N) Minimal force (N)

CT sample 240 80

CTS sample 160 60

2.2.1.5 Speckle pattern for DIC analysis

To perform DIC analysis, the specimens were coated with a pattern of speckles. This

allowed for tracking the movement of small pixels on the specimenŠs surface by comparing

images taken before and after deformation. By analyzing these images, the displacement

and strain Ąelds of the specimen could be accurately measured.

The specimens were Ąrst sprayed with a matte white background using paint spraying

(from COLORJELT), ensuring complete coverage of the surface. After the white base

dried, we used an airbrush with a 0.3 mm nozzle to spray black speckles (from CREATEX)

onto the surface. The use of an airbrush enabled consistent sizing of the black speckles,

ensuring a uniform appearance on the surface.

2.2.2 Mechanical tests

Fracture tests were carried out using an Instron 5596 tensile machine, with a 0.5 mm.min−1

displacement on the bolt in upper pin hole and the lower side remained Ąxed. The

experiment was captured using a Nikon D300s camera with an AF-S Micro NIKKOR

60 mm lens, resulting in a physical pixel size of 20 𝜇𝑚. The experimental setup is

illustrated in the Fig. 2.5. During the experiment, the control of data collection and

camera instructions was facilitated by Arduino, an open-source electronics platform. At

intervals of approximately 4-6 seconds, a greyscale image with dimensions of 4288x2848

pixels was captured. Concurrently, the corresponding displacements and forces were

measured by a 30KN load cell on the load head, and these values were recorded and

transmitted as analog signals through Arduino to the computer via a USB port. To

visualize the transmitted data, CoolTerm, a software designed for communicating with

serial devices via USB, was utilized. CoolTerm enabled the display and monitoring of

the received data on the computer screen, allowing for real-time observation.
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Figure 2.5 Fracture experimental setup

The elastic properties of printed sample were determined using 15 tensile specimens

with Ąve raster angles (0°, 10°, 15°, 25° and 45°). The dimensions of the tensile specimen

are illustrated in Ąg. 2.6. The tensile test was monitored using the same equipment as

described previous. The tensile tests were conducted with a displacement rate of 0.5

mm/min.

Figure 2.6 Tensile sample with 45° raster angle used for the determination of material properties
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2.2.3 Post-processing by digital image correlation

The displacement and strain of the specimen surface were measured using speckle image

tracking. To extract the fracture mechanics parameters, we used UFreckles20, an open-

source software for DIC 1 (Roux et al., 2009; Réthoré, 2015; Corre and Lazarus, 2021).

The post-processing involves the projection of the measured displacement Ąeld near the

crack tip within the extraction domain onto the Williams series Eq (2.1):

𝒖(𝑟, 𝜃) =
∞∑︁

𝑛=−∞
𝑎𝑛𝐼𝜓

𝑛
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where 𝜅 is the KolossovŠs constant, with 𝜅 = (3 − 𝑣)/(1 + 𝑣) for plane stress assumption,

𝜅 = (3 − 4𝑣) for plane strain assumption, and 𝜈 is the PoissonŠs ratio.

In practice, it is adequate to extract the lower order coefficients such as the SIF

and 𝑇-stress by selecting 𝑛 values ranging from -3 to 7 (Réthoré, 2015). The extraction

domain is a disk-shaped region with a radius denoted as 𝑟𝑒𝑥𝑡 , centered on the crack tip.

A small region with a radius of 𝑟𝑖𝑛𝑡 is removed from the extracted domain near the crack

tip and along the lip of the crack. The parameters of extracted domain are 𝑟𝑒𝑥𝑡 = 160

pixels and 𝑟𝑖𝑛𝑡 = 32 pixels, corresponding to 3.2 mm and 0.64 mm, respectively. A crack

path is proposed based on the discontinuity of the measured displacement to aid in the

detection of the crack tip. Subsequently, the displacement Ąeld of the extracted domain

is projected onto the Williams series to obtain the asymptotic coefficients. Finally, the

fracture mechanics parameters SIF and 𝑇-stress can be computed using the obtained

asymptotic coefficients as follows:

𝐾𝐼 = 2𝜇
√

2𝜋𝑎1
𝐼 , 𝐾𝐼 𝐼 = 2𝜇

√
2𝜋𝑎1

𝐼 𝐼 , 𝑇 = 2𝜇
√

2𝜋𝑎2
𝐼 (2.2)

As mentioned in the study by Corre and Lazarus 2021, the SIF obtained using DIC in

the vicinity of a kink position may be inaccurate due to the presence of an angular point

in the crack path. The region where the inaccuracy of SIFs is observed is inĆuenced by

1Link UFreckles: https://zenodo.org/record/1433776
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Figure 2.7 Schematic: Overlap region between the extraction domain and the proposed crack
path (in red)

the selected value of 𝑟𝑒𝑥𝑡 , as illustrated in Ąg. 2.7, this occurs because of the intersection

between the proposed crack path and the extraction domain.

2.2.4 Plane stress or Plane strain hypothesis

Inspired by the methodology outlined in Triclot et al. 2023, we performed a comparative

analysis of the SIF between experimental and theoretical data. The calculation of the

SIF for standard CT (Compact Tension) tests is determined using the norm speciĄed in

(ASTM, 1820).

𝐾𝐼 =
𝐹

𝑒
√
𝑊

(
2 + 𝑎

𝑊

) (
0.886 + 4.64 𝑎

𝑊
− 13.32

(
𝑎
𝑊

)2 + 14.72
(
𝑎
𝑊

)3 − 5.6
(
𝑎
𝑊

)4
)

(
1 − 𝑎

𝑊

)3/2 (2.3)

In accordance with the provided equation, where 𝐹 represents the applied load, 𝑒 denotes

the thickness, and 𝑊 represents the width of the CT sample measured from the load

line to the right edge, the fracture toughness 𝐾𝐼𝐶 can be determined by substituting the

critical load 𝐹𝑐.

For the experimental investigations, three CT samples were employed, all having a

raster angle of 0° to ensure mode I loading for crack propagation. Fig. 2.8 illustrates a

comparison between the SIF 𝐾𝐼 obtained through DIC under plane stress assumption and

the average fracture toughness 𝐾𝐼𝐶 (grey zone). The average value of fracture toughness
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𝐾𝐼𝐶 were computed using eq. (2.3) for these three CT samples.

Observations reveal that during the crack propagation phase, the measured 𝐾𝐼

obtained through DIC under the assumption of plane stress demonstrates good agreement

with the computed fracture toughness 𝐾𝐼𝐶 employing the critical load and 8 mm thickness.

These results indicate that the 2D plane stress assumption is suitable for a CT sample with

8 mm thickness as it was for 5 mm thickness samples (Triclot et al., 2023). Consequently,

the plane stress assumption was adopted for further analysis.

Figure 2.8 A comparison between the SIF 𝐾𝐼 measured by DIC assuming plane stress (as a
function of the crack length) and the computed average value of 𝐾𝐼𝐶 using eq. (2.3) for these
three CT samples.
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2.3 Experimental results

2.3.1 Elasticity properties

2.3.1.1 Tensile test

The strain results (𝜀𝑥𝑥, 𝜀𝑦𝑦 and 𝜀𝑥𝑦) were extracted from a rectangle zone centered on the

tensile specimens, analogous to attaching a strain gauge to the surface of the sample as

shown in Ąg. 2.9. The YoungŠs modulus was determined by performing a linear Ąt of the

data up to 0.8% longitudinal deformation 𝜀𝑦𝑦. For YoungŠs modulus, the nominal stress

𝜎𝑦𝑦 was plotted against longitudinal deformation 𝜀𝑦𝑦 as shown in Ąg. 2.10(left). While

for PoissonŠs ratio, the transverse strain 𝜀𝑥𝑥 was plotted against longitudinal strain 𝜀𝑦𝑦 as

shown in Ąg. 2.10 (right). Fig. 2.11 shows the results of tensile tests with different raster

angle obtained by linear Ąt of experimental data. As reported in (Corre and Lazarus,

2021), the printed samples exhibited nearly isotropic behavior in elasticity. It is evident

that the YoungŠs modulus value is nearly unaffected by the raster angle. However, for the

PoissonŠs ratio, there is a higher dispersion in the measurements, possibly due to surface

effects caused by inadequate printing of the Ąrst layer. Based on the study conducted by

Corre and Lazarus 2021, we adopt the assumption that our printed material possesses

isotropic elasticity, and the measured YoungŠs modulus 𝐸 and Poisson ratio 𝜈 for the

tensile sample were 1890 MPa (standard deviation 111 MPa) and 0.34 (standard deviation

0.07) respectively. The critical stress, denoted as 𝜎𝑐, was determined by measuring the

normal stress at the point of rupture, which was found to be 42 MPa with a standard

deviation of 2 MPa. These results are consistent with the values reported in Corre and

Lazarus 2021 and the material properties provided by the supplier.
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Figure 2.9 The measured displacement Ąeld along the 𝑦-axis (during the linear phase) of the
tensile sample with a 45° raster angle. The rectangular area, positioned at the center of the
tensile specimen, represents the designated extraction zone for obtaining strain results.

Figure 2.10 The results of the tensile test are presented as follows: on the left side, is the plot
showing the nominal stress 𝜎𝑦𝑦 plotted against the longitudinal deformation 𝜀𝑦𝑦. On the right
side, is a plot displaying the transverse strain 𝜀𝑥𝑥 plotted against the longitudinal strain 𝜀𝑦𝑦.



2.3 Experimental results 41

Figure 2.11 Results for tensile test: left and right represents measured YoungŠs modulus 𝐸 and
PoissonŠs ratio 𝜈 with respect to the raster angle

2.3.2 Crack evolution in CT and CTS samples

In Figure 2.12, the crack tip of a CT sample with a 25° raster angle is shown at the

point where kinking occurs. Prior to the crack kink, with increasing displacement, it was

observed that there was a brief period of straight propagation, followed by kinking when

the maximum force or critical force was reached. Fig. 2.13 illustrates the crack path

and evolution of SIFs for CT sample with a 25° raster angle. It was observed that 𝐾𝐼
increased almost linearly until the propagation threshold was reached, after which the

crack kinked in the direction of the raster angle. Fracture experiments were conducted for

various raster angles, including: 0°, 5°, 15°, 25°, 35° and 45°. From the mode I fracture

tests, it was observed that the crack propagation consistently followed the deposited

thread, aligning with the direction of the raster angle, which corresponds to the Śweak

planeŠ as depicted Fig. 2.14.
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Figure 2.12 CT sample with 25° raster angle: the left image shows the CT sample when crack
kink occurs, while the right image zooms in the crack tip

Figure 2.13 Experiment results of CT sample with 25° raster angle: the left image displays a
kinking crack following the printed direction in a CT sample with corresponding experimental
setup, while the right image shows the evolution of the SIF related to the imposed displacement
along 𝑦 axis. The grey zone signiĄes unreliable measurements due to the occurrence of a crack
kink.



2.3 Experimental results 43

Figure 2.14 CT samples with different raster angle: A) 15°, B) 25°, C) 35° and D) 45°.

To ensure that the crack propagation remains unaffected by the loading condition,

we further investigated the mode I+II fracture problem using CTS samples. The mode

I+II fracture experiments were carried out for various raster angle and loading angle

(5°, 15°, 25°, 35°). Fig. 2.15 illustrates the crack path and evolution of SIFs for CTS

sample with a 40° raster angle and a 15° loading angle (represented by the blue dash

line). Notably, irrespective of the loading conditions and the raster angle, the crack could

only propagate along the printing direction as shown in Ąg. 2.16, which we refer to as

the "weak plane" direction. This observation, combined with the experimental Ąndings

in the CT sample, clearly indicate that, regardless of the loading condition, the crack

propagates exclusively in the weak direction, strongly suggesting that propagation in

other directions is prohibited in the printed samples with criss-cross printing pattern.
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Figure 2.15 Experiment results of CTS sample with 40° raster angle and 25° loading angle:
the left image displays a kinking crack following the printed direction in a CTS sample with
corresponding experimental setup, while the right show the evolution of the SIF related to the
imposed displacement along 𝑦 axis. The grey zone signiĄes unreliable measurements due to the
occurrence of a crack kink.
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Figure 2.16 CTS samples with different raster angle and loading angle: A) raster angle 40° and
loading angle 15°, B) raster angle 35° and loading angle 35°, C) raster angle 0° and loading
angle 15° and D) raster angle 25° and loading angle 15°.

2.3.3 Evolution of critical force with different raster angle

Fig 2.17 illustrates the load curve for a CT sample with raster angles of 0°, 15°, 25°,

and 45°. The crack exhibits a change in direction when it reaches its critical force.

Subsequently, the force decreases as the crack propagates along the weak plane. The

majority of the samples exhibit stable propagation after pre-cracking. Notably, the

critical force increases as the raster angle increases. To gain a more comprehensive

understanding from an experimental perspective, three fracture tests were conducted for

each raster angle.
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Figure 2.17 Load curve for CT sample with different raster angle.

Figure 2.18 illustrates the relationship between the critical force of the CT sample

and the raster angle. Interestingly, it can be observed that the critical force exhibits a

monotonically increasing trend as the raster angle increases.

Figure 2.18 Experimental critical load of CT samples with respect to raster angle
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We then investigated the critical force of CTS sample using 15° loading angle and

various raster angle (0°, 15°, 25°, 35°, 45°). It is noteworthy that the critical force exhibits

a non-monotonic variation with the difference between the loading angle and raster angle.

Figure 2.19 Experimental critical load of CTS samples with respect to the raster angle (loading
angle = 15°)

Combined with the results for the CT sample, it has been observed that a larger kink

angle requires a greater force to redirect the crack propagation.

2.3.4 Fracture energy

Through fracture experiments, the critical energy release rate of the weak plane can be

achieved using the following formula under plane stress condition:

𝐺𝑐 =
1
𝐸

(
𝐾∗
𝐼

2 + 𝐾∗
𝐼 𝐼

2
)

(2.4)

where 𝐾∗
𝐼

and 𝐾∗
𝐼 𝐼

are the average value of the SIFs of mode I and mode II after kinking.

By substituting the measured 𝐾∗
𝐼

and 𝐾∗
𝐼 𝐼

as shown in the example Ąg. 2.13 and Ąg. 2.15,we

were able to calculate the average critical energy release rate 𝐺𝑐 for the weak plane. The

calculated value of 𝐺𝑐 was approximately 4.25 kJ/m2, with a standard deviation of 0.97

kJ/m2. This calculation was based on data obtained from 18 CT samples with different
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raster angles and 18 CTS samples with a loading angle of 15°, as illustrated in Ąg. 2.20.

The measured energy release rate of printed PC sample agrees with the value reported

by literature from 1 kJ/m2 to 5 kJ/m2 (Ashby, 1989; Kim et al., 1994). Due to the fact

that crack can only propagate into the direction of "weak plane", the value of 𝐺𝑐 along

other direction is inaccessible.

It is worth noting that the measured energy release rate differs from the value of 6

kJ/m2 reported in Corre and Lazarus 2021. In order to understand the reasons behind the

discrepancy in energy release rate observed in the same material, we further conducted a

comparative analysis of the fracture surfaces using a microscope.

Figure 2.20 Energy release rate measured using 18 CT samples and 18 CTS samples with
different raster angle and 15° loading angle

2.3.5 Fracture surface

Figure 2.21 displays the microscopic observations of two CT samples with a 45° raster

angle. Sample A was printed using the Raise 3D N2 Plus printer, as utilized in the study

by (Corre and Lazarus, 2021), while Sample B was printed using the Raise 3D Pro printer

and used in this dissertation. From the front view of these two samples, shown in Ąg.

2.21 C) and D), it is evident that compared to the sample used in the study by Corre

and Lazarus 2021, there are very few plasticized threads observed in our sample. The

crack surface appears to be neat, indicating a fracture behavior closer to brittle fracture,

with minimal visible signs of plastic deformation occurring in the threads before failure.
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Moreover, as reported in the study by Corre and Lazarus 2021, a higher measured value

of 𝐺𝑐 (6 kJ/m2) could be attributed to the plastic deformation of the transverse threads.

In terms of the crack surface view, the longitudinal and transverse threads are easily

distinguishable in the sample used in the study by Corre and Lazarus 2021 due to the

gaps between each transverse thread. However, in our sample, it appears that the fusion

of the threads from two directions is better, resulting in a less distinguishable boundary

between the longitudinal and transverse threads. As a result, fewer instances of plastic

deformation were observed in the transverse printing threads.
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Figure 2.21 Observation under a microscope of two CT samples with a raster angle of 45°:
A) sample printed by Raise 3D N2 Plus, as used in the study by (Corre and Lazarus, 2021).
B) sample printed by Raise 3D Pro 2, as used in this dissertation. C) and D) show the front
view of the respective samples. E) and F) show the view of the crack surface of the respective
samples.
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Table 2.2 Material properties of printed samples

Material properties
𝐸 (MPa) 𝜈 𝜎𝑐 (MPa) 𝐺𝑐 (kJ/m2)

1890 (std 111) 0.34 (std 0.07) 42 (std 2) 4.25 (std 0.97)

2.4 Conclusions

In this section, we presented the experimental results on specimens with criss-cross

printing pattern made using FDM technology. In the tensile test, we determined the

material properties of the printed samples, which exhibited nearly isotropic elasticity.

However, in the fracture experiments, such printing strategy resulting in a crystalline

orthotropic arrangement of the threads and consequently an anisotropic fracture behavior.

By subjecting the specimens to different loading modes (mode I and mode I+II),

we observed that cracks only propagated along the printing direction, which can be

considered the "weak plane". At a microscopic level, the crack initiation occurred as

a result of the rupture of the melting point between two parallel adjacent threads in

alternating layers. Meanwhile the crack propagated horizontally across the remaining

layers. These experimental observations suggest that directions other than the printing

direction can be regarded as "forbidden directions" in comparison to the raster angle.

Interestingly, we found that the critical load was inĆuenced by the crack angle. We

discovered that, in the case of the CT sample, the critical force 𝐹𝑐 exhibits a consistent

increase with respect to the raster angle, whereas for the CTS sample, it follows a

non-monotonic trend. Furthermore, through the use of Digital Image Correlation (DIC),

we were able to determine 𝐺𝑐 along the "weak plane" by using the measured SIFs after

crack kinking.

In summary, our experimental Ąndings provide insights into the anisotropic fracture

behavior of FDM printed specimens, highlighting the inĆuence of printing direction on

crack path selection and its relevant critical load. The measured material properties of

printed sample is shown in Table. 2.2. In the next step, our objective is to validate the

numerical implementations. These numerical models will be utilized to investigate the

anisotropic fracture behavior, as described in chapter 4.





Chapter 3

Validation of numerical models

This chapter focuses on validating the implementation of the FEM models based on

both the classic and variational approaches. In the classic model, a static elasticity

problem with a Ąxed geometry is solved to determine the SIFs in the presence of a crack

kink. These SIFs will be used later to validate experimental measurements obtained

through DIC. To ensure accurate determination of the SIFs in the presence of a kink, we

compare the numerical results with the Amestoy-LeblondŠs formula. Furthermore, the

implementation of the 𝐼-integral is validated using data from the existing literature.

In the phase-Ąeld model based on the variational approach, our goal is to verify

the implementation of the model with both isotropic and weak anisotropic surface

energy. To accomplish this, we compare the predictions of the phase-Ąeld model with

experimental data from relevant literature. In the case of the isotropic model, we focus

on crack propagation under mixed-mode loading conditions using Centred Notched

(CN) specimens (Erdogan and Sih, 1963). This investigation allows us to assess the

phase-Ąeld modelŠs capability to predict crack paths and the corresponding critical forces.

Additionally, we validate the implementation of the two-fold symmetric model for the

weak anisotropic case. This is achieved by comparing the predicted crack paths with

experimental results obtained from composite materials Mesgarnejad et al. (2020). For

both studies, we employ the AT1 damage model, and the selection of the regularization

parameter for the second-order phase-Ąeld model is thoroughly discussed.
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3.1 Static elasticity problem: classic approach

To model a kinked crack path, a full-sized CT sample was meshed with Gmsh (a Ąnite-

element mesh generator). This was done to circumvent penitential mesh-related issues

that could arise when employing a Ąne mesh in the vicinity of the crack tip, as the

solution near the crack tip has to be resolved with adequate accuracy with an extreme Ąne

discretization. The mesh of the CT sample with a kink angle of 25° in Gmsh is shown in

Fig. 3.1, where (A) depicts the entire CT sample mesh consisting of second-order Triangle

elements (blue) and second-order Quadrilateral elements (red), while (B) represents the

mesh near the crack tip.

Note that nodes in the vicinity of the crack tip were encompassed within a circular

region consisting of identical quadrilateral elements. This design enabled the application

of the 𝐺 − 𝜃 method to determine the SIFs. The circular region surrounding the crack tip

was made up of structured meshes with multiple layers, as shown in Fig. 3.1 (B). The

radius 𝑅1 of this circular region was determined based on the kink length 𝑠 to ensure

that the entire kink was not included in the layer where the 𝐺 − 𝜃 method was applied.

The Ąnite element analyses were performed using the open-source Cast3M software.

The calculations involved the solution of a linear elastic boundary value problem with a

Ąxed crack tip. The outputs consist of the displacement Ąeld 𝒖, strain Ąeld 𝜺˜, and stress

Ąeld 𝝈˜ .

The CT specimen was loaded through the bolt in the pin hole during fracture

experiment, an accepted method of modeling this contact problem is to Ąll the pin holes

with the Q4 elements (Ortega et al., 2014). The same material properties as the CT

sample were assigned to both bolts, we applied a 𝑦-direction displacement to the pivot of

upper bolt, the pivot of lower bolt being Ąxed. We adopted this method to validate the

the SIFs across a crack kink.



3.1 Static elasticity problem: classic approach 55

Figure 3.1 Mesh generated by Gmsh, CT sample with a kink angle of 25°. (A) shows the mesh
of the entire CT sample with 50000 elements, where the blue and red mesh represent the Tri6
elements and Qua8 elements respectively. (B) is a zoomed-in view of the kink region, which
consists of 6000 elements in the near crack tip circle. The near crack tip circle has 30 layers,
and the kink length is dimensionless with a value of 𝑠

𝐿
= 0.06

3.1.1 SIFs across a kink: comparison to Amestoy-Leblond’s

formula

Before conducting the numerical experiments, we conducted validation tests for numerical

convergence concerning the number of elements used and the number of layers where the

𝐺 − 𝜃 method is applied. The results of the convergence analysis, both for CT samples

with and without crack kink, indicated that convergence was achieved when employing

20,000 elements. For the 𝐺 − 𝜃 method, the number of layers where it should be applied

was determined as shown in Ąg. 1.6. Consequently, we conducted numerical experiments

by selecting a total number of layers near the crack tip close to 30 and varying the number

of layers where the 𝐺 − 𝜃 method was applied. Fig. 3.2 displays the dimensionless values

of the SIFs as a function of the number of layers where the 𝐺 − 𝜃 method is employed.

Notably, once 𝑛 > 5, convergence was achieved using quadratic elements.

To validate our model, we will compute the universal functions 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑) nu-

merically and compare them with their corresponding theoretical values. This comparison

will serve as a means to evaluate the accuracy and reliability of our model.

We encountered a challenge in determining the values of 𝐾∗
𝑝 (𝜑) as 𝑠 approaches 0

for computing the functions 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑) due to the inaccessibility of performing

numerical calculations with a kink length of 0. To address this limitation, we employed a

Ątting approach. We Ątted the numerical evolution curve of 𝐾𝑝 (𝑠, 𝜑), which represents
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Figure 3.2 Dimensionless value of Stress intensity factor (left 𝐾𝐼 and right 𝐾𝐼 𝐼) with respect to
the number of layer where G-𝜃 method is applied (total layer 𝑛 = 30, kink length 𝑠/𝐿 = 0.06)

the variation of 𝐾𝑝 with respect to the kink length 𝑠 and the kink angle 𝜑, using a known

functional form (3.1), inspired by eq. (1.10). By employing this Ątting procedure, we

were able to approximate the values of the universal functions 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑) as 𝑠

approaches 0.

𝐾𝑝 (𝑠, 𝜑) = 𝐴𝑝 (𝜑) + 𝐵𝑝 (𝜑)
√
𝑠 + 𝐶𝑝 (𝜑)𝑠 + 𝐷 𝑝 (𝜑)𝑠3/2 (3.1)

The numerical values of the SIFs used in the Ątting procedure were obtained by applying

a constant load and solving the elasticity problem for different combinations of kink

length 𝑠 and kink angle 𝜑. The kink angle 𝜑 was varied in the range of [0°, 80°]. Finally,

using the coefficients obtained from the Ątting procedure, the values of 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑)
can be calculated using:

𝐴𝑝 (𝜑) = 𝐹𝑝𝑞 (𝜑)𝐾𝑞 , 𝐵𝑝 (𝜑) = 𝐺 𝑝 (𝜑)𝑇 (3.2)

here, 𝐴𝑝 (𝜑) and 𝐵𝑝 (𝜑) represent the coefficients obtained from Ątting the numerical

SIFs: 𝐾𝑝 (𝑠, 𝜑). SpeciĄcally, for the case of mode I loading condition, the expression can

be simpliĄed as follows:

𝐹𝑝𝐼 (𝜑) =
𝐴𝑝 (𝜑)
𝐾𝐼

, 𝐺 𝑝 (𝜑) =
𝐵𝑝 (𝜑)
𝑇

(3.3)

Figure. 3.3 illustrates the Ątted curves for various kink angles, where the black dots

represent the dimensionless numerical values of 𝐾𝐼 (𝑠,𝜑)
√
𝐿

𝐸𝛿
corresponding to different kink

lengths 𝑠 with a unit displacement imposed on the bolt. For the Ątting procedure, 24

values in the dimensionless range 𝑠
𝐿

[0.001, 0.1] were utilized. The Ągure also displays the

Ątted curves along with the corresponding coefficients obtained from the Ątting process.
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The coefficients are arranged in the order [𝐴𝑝 (𝜑), 𝐵𝑝 (𝜑), 𝐶𝑝 (𝜑), 𝐷 𝑝 (𝜑)] as speciĄed in

eq. (3.1). Furthermore, the dimensionless values of 𝐾𝐼
√
𝐿

𝐸𝛿
and 𝑇𝐿

𝐸𝛿
before kinking occur are

0.339 and 0.177, respectively.

Figure 3.3 Fitted curve for 𝐾𝐼 (𝑠,𝜑)
√
𝐿

𝐸𝛿
with various kink angles: the black dots are the numerical

results. The Ątted curves are represented by lines, the Ąts coefficients are shown in the legend,
corresponds in turn to [𝐴𝑝 (𝜑), 𝐵𝑝 (𝜑), 𝐶𝑝 (𝜑), 𝐷 𝑝 (𝜑)] in expression (3.1)

In this study, we aim to determine the appropriate range of dimensionless kink length

[ 𝑠𝑚𝑖𝑛
𝐿
,
𝑠𝑚𝑎𝑥
𝐿

] to be used in the Ątting process using the 4 terms expansion of 𝐾𝑝 (𝑠, 𝜑) as

presented in eq. (3.1). To achieve this, we present a comparison between the numerical

and theoretical values of 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑) in Ąg. 3.4 and Ąg. 3.5 (corresponding to

varying 𝑠𝑚𝑎𝑥
𝐿

and 𝑠𝑚𝑖𝑛
𝐿

, respectively). Each sub-Ągure is divided into left and right rows,

representing the functions 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑), respectively. The sub-Ągures are arranged

from top to bottom, with each one indicating the range of kink length used for the Ątting

procedure.

Since 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑) are results obtained as 𝑠 → 0, it is essential to choose a

range of kink length that is as close to 0 as possible in order to ensure the accuracy of

the results. Therefore, the selection of an appropriate range of kink length is critical for

obtaining reliable Ątting outcomes.

In summary, the results indicate that by varying 𝑠𝑚𝑎𝑥
𝐿

within the range of [0.1, 0.4]

(with 𝑠𝑚𝑖𝑛
𝐿

Ąxed at 0.0002), or 𝑠𝑚𝑖𝑛
𝐿

within the range of [0.0002, 0.04] (with 𝑠𝑚𝑎𝑥
𝐿

Ąxed at 0.1),
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the values of 𝐹𝑝𝑞 (𝜑) consistently remain acceptable when compared to the theoretical

values. However, to obtain reasonable numerical values for 𝐺 𝑝 (𝜑), it is recommended to

set the dimensionless kink range to [0.001, 0.1]. This range is illustrated in the second

row of Ąg. 3.5.

By employing the Ątting process with the numerical values within the dimensionless

kink length range of [0.001, 0.1], we have achieved excellent agreement between the

numerical values of 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑) and their corresponding theoretical values. This

indicates that our model accurately predicts the relationship between the stress intensity

factors (SIFs) as expressed in eq. (1.10), both before and after kinking, within the

speciĄed range. Consequently, our model can effectively analyze with a kinked crack path,

as presented in the study by Corre and Lazarus 2021. Considering the length of our CT

sample: 𝐿 = 50 mm, it can be inferred that the expression 𝐹𝑝𝑞 (𝜑)𝐾𝑞 +𝑇
√
𝑠𝐺 𝑝 (𝜑) provides

a satisfactory approximation of 𝐾𝑝 (𝑠, 𝜑) within the range of [0.5, 5] mm. Notably, this

range is within the limits of observation in the experimental setup.
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Figure 3.4 Function 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑) between numerical and theoretical values for different
range of the kink length with change of 𝑠𝑚𝑎𝑥

𝐿
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Figure 3.5 Function 𝐹𝑝𝑞 (𝜑) and 𝐺 𝑝 (𝜑) between numerical and theoretical values for different
range of the kink length with change of 𝑠𝑚𝑖𝑛

𝐿

3.1.2 Validation of I-integral implementation

The phase-Ąeld model was implemented in the open-source computational platform

FEniCS. However, to determine the fracture parameters, an additional numerical method
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needed to be implemented. Therefore, we adopted the 𝐼-integral method because it

allows us to determine both the SIFs (Yau et al., 1980) and the higher-order term, namely

the 𝑇-stress, by choosing the appropriate auxiliary Ąeld (Kfouri, 1986). The choice of

auxiliary Ąeld is presented in Section 1.4.1.2.

In practical numerical simulations, the mutual energy momentum tensor can be

extracted using FEniCS and post-processed using an open-source visualization platform

called ParaView (ParaView, 2023). To verify the implementation of the 𝐼-integral method

in FEniCS, we utilized the Single Edge Notch (SEN) specimen as an illustrative example,

as shown in Ąg. 3.6.

Figure 3.6 Single Edge Notch specimen

To evaluate the effectiveness of the 𝐼-integral method in separating the SIFs, we

applied a mixed load to the SEN specimen. SpeciĄcally, we applied a unit stress on the

upper boundary in both the 𝑥 and 𝑦 directions, while keeping the lower boundary Ąxed.

By sequentially varying the ratios 𝑎
𝑊

and 𝐻
𝑊

, we obtained the SIFs 𝐾𝐼 and 𝐾𝐼 𝐼 using the

𝐼-integral method in FEniCS. We then compared these results to those obtained using

the 𝐺 − 𝜃 method in Cast3M.

The comparison results are presented in Ąg. 3.7. It is evident that the SIFs obtained

through the 𝐼-integral method exhibit strong agreement with those obtained using the

𝐺 − 𝜃 method. This validation conĄrms the capability of the 𝐼-integral method in

accurately separating the SIFs under mixed mode loading conditions.

To examine the higher-order term 𝑇-stress, we applied mode I loading to the SEN

specimen with a unit stress in the 𝑦 direction. The comparison of the dimensionless

𝑇-stress (𝑇
√
𝜋𝑎

𝐾𝐼
) in terms of the 𝐵-ratio is presented in Ąg. 3.8. The 𝐵-ratio, calculated

using the 𝐼-integral method, shows excellent agreement with the value reported in the



62 Validation of numerical models

Figure 3.7 The comparison of SIFs between Cast3M and FEniCS for SEN sample is illustrated.
On the left side, the dimensionless SIFs are shown for different values of 𝑎

𝑊
, where 𝐻

𝑊
= 2. On

the right side, the dimensionless SIFs are shown for different values of 𝐻
𝑊

, where 𝑎
𝑊

= 0.5.

literature (Leevers and Radon, 1982). The literature provides 𝐵-ratio values for various

sample geometries with different dimensional conĄgurations, all obtained through a

numerical model.

However, it is worth noting that the 𝑇 -stress value extracted using the direct method

of phase subtraction from the stress Ąeld near the crack tip is found to be inaccurate in

certain cases. Consequently, the implementation of the 𝐼-integral method in FEniCS is

validated based on the comparison results obtained using the SEN specimen.
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Figure 3.8 The comparison of 𝑇-stress values among Cast3M, FEniCS, and a reference value
from Leevers and Radon 1982 for the SEN sample is presented. On the left side, the various
B-ratios are plotted against 𝑎

𝑊
with a Ąxed 𝐻

𝑊
= 2. On the right side, the different B-ratios are

plotted against 𝐻
𝑊

with a Ąxed 𝑎
𝑊

= 0.5.

3.2 Phase-field modeling of brittle fracture

The validation process of the phase-Ąeld model implementation begins with a simple

model, speciĄcally the second-order model featuring isotropic and weakly anisotropic

surface energy. Initially, we addressed the mixed-mode fracture problem described by

Erdogan and Sih 1963, assuming isotropic fracture toughness. To validate the numerical

predictions concerning the crack path and the relevant critical stress, we compared them

with both the experimental data from Erdogan and Sih 1963 and theoretical results based

on the energy release rate criterion. Subsequently, using the two-fold anisotropic model,

our objective was to replicate the numerical Ąndings presented in the study conducted

by Mesgarnejad et al. 2020, while comparing them with their experimental results on a

composite material. The numerical implementation was performed using the FEniCS

software (FEniCS, 2022). Our primary focus was on the AT1 damage model as presented

in eq. (1.36), as it is similar to the speciĄc damage model employed in the higher-order

model (𝑤(𝛼) = 9𝛼) (Li and Maurini, 2019). Validating the AT1 phase-Ąeld model allows

for a smooth transition as we expand our investigations to the higher-order phase-Ąeld

model, aiming to analyze crack propagation in 3D printed samples.
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3.2.1 Isotropic case: PMMA specimen under mixed loading

Figure. 3.9 illustrates the dimensions of the center-notched specimens used in the study

by Erdogan and Sih 1963. It is noticed that the in the study of Erdogan and Sih 1963,

the imperial system was used, here all the units used in their paper have been converted

to the metric system. These specimens were composed of an isotropic homogeneous

PMMA (Polymethyl Methacrylate) plate with an inclined center-notch. The length of

the notch was denoted as 2𝑎, and it was positioned at a notch angle of 𝛽.

Figure 3.9 Dimension of center-notched sample in Erdogan and Sih 1963

To conduct the numerical calculations, we utilized an AT1 phase-Ąeld model with

isotropic surface energy as introduced in Section 1.4.2, which has proven effective in

predicting complex crack trajectories and stress states during the crack nucleation phase

(Cavuoto et al., 2022). Several numerical parameters were necessary for the numerical

experiments, including YoungŠs modulus 𝐸 , PoissonŠs ratio 𝜈, fracture energy 𝐺𝑐, and

the regularization parameter ℓ.

The values of the elastic constants were chosen as 𝐸 = 3000 MPa and 𝜈 = 0.35, as

referenced from Pham et al. 2017 (they were not provided in Erdogan and Sih 1963).

The fracture energy 𝐺𝑐 was set to 0.35 kJ/m2, as reported in Erdogan and Sih 1963.

The regularization parameter ℓ for AT1 phase-Ąeld model has been computed using the

following expression (Tanné et al., 2018):
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ℓ =
3
8
𝐺𝑐𝐸

𝜎2
𝑐

(3.4)

It is important to note that this formulation assumes that the material is isotropic and

homogeneous under uni-axial tension (Pham et al., 2011). For the case of CN specimen,

the local stress state changes due to the presence of an inclined notch. However, in the

study of Cavuoto et al. 2022, they determined the optimal value of ℓ by Ątting their

numerically predicted load-displacement curves with experimental results obtained from

compact tension tests. Interestingly, they found that the computed value of ℓ using the

previous formulation was very close to the value obtained by Ątting the numerical results

with experimental data. Hence, we adopted this formula to estimate the value of the

regularization parameter ℓ in our numerical experiments. The regularization parameter

ℓ = 0.25 mm was obtained by using the material strength 𝜎𝑐 = 40 MPa. To enhance

numerical efficiency and mesh generation, we used a slightly larger value of ℓ = 0.3 mm

and set the mesh size to ℎ = ℓ/3 near the crack tip while the mesh size at the boundary

was 12 times larger. The upper boundary of the specimen in the 𝑦-axis was subjected to

a displacement, while the lower boundary remained Ąxed. In addition, we assigned the

damage variable 𝛼 = 1 at the crack tip as the initial condition for the damage Ąeld. The

numerical computations were performed assuming 2D plane stress.

Before conducting the numerical experiments, we compared the SIFs obtained using

the 𝐼-integral method with the analytical solution given by eq. (3.5), which corresponds to

the scenario where a crack is situated in an inĄnite plate. These numerical values will be

used subsequently to establish the relationship between the critical stress and the initial

crack angle using the 𝐺max criteria. Fig. 3.10 shows the normalized values of 𝐾𝐼 and 𝐾𝐼 𝐼
for different crack angles 𝛽 ranging from 20° to 90°, comparing the analytical solution

with the numerical results. It is worth noting that the numerical results demonstrate

excellent agreement with the analytical solution.

𝐾I = 𝜎
√
𝜋𝑎 sin2 𝛽, 𝐾II = 𝜎

√
𝜋𝑎 sin 𝛽 cos 𝛽 (3.5)

Figure. 3.11 left presents a snapshot of the numerical predicted crack path (highlighted

in red) for a CN sample with an initial crack angle of 𝛽 = 60°. And Figure. 3.11 right

presents the numerical load curve for CN sample with 𝛽=60°. In Ąg. 3.13, the kink angle

relative to the initial crack angle is depicted, and the theoretical prediction for 𝐺max

is determined using Eq. (1.19) with an isotropic surface energy. The AT1 phase-Ąeld

model accurately predicts the angle of the crack path, as evidenced by the comparison

with experimental and theoretical data. Fig. 3.14 compares the numerical prediction of



66 Validation of numerical models

Figure 3.10 Normalized SIFs of center notched sample (a/W=0.11)

Figure 3.11 Left: a snapshot of numerical predicted crack path (in red, zoom on center crack,
ℓ=0.3 mm) and right: numerical load curve (30 time step) for center-notched sample with the
initial crack angle 𝛽 = 60°.
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the critical stress with experimental and theoretical results, the numerical critical stress

𝜎𝑐 corresponds to the maximum stress shown in Ągure. 3.11(right). The experimental

critical stress values were implicitly presented in the study by Erdogan and Sih 1963,

and we have re-plotted them in Figure 3.12. Each data point in the Ągure corresponds

to a speciĄc test with a particular crack angle 𝛽. In order to obtain the relevant critical

stress values, we substituted the corresponding crack angle 𝛽 and the value of SIFs into

into the analytical solution given by eq. (3.5). By doing so, we were able to calculate the

corresponding critical stress for each crack angle 𝛽.

Figure 3.12 Re-plotted Ągure.6 in Erdogan and Sih 1963: 𝐾𝐼 versus 𝐾𝐼 𝐼 at the beginning of
crack propagation in CN samples

To obtain the relevant stress in the LEFM framework, we adopted the 𝐺max criteria.

The 𝐺max predictions are derived by using eq. (1.13) to develop 𝐺 (𝜃) = 𝐺𝑐:

𝑎𝜎2
𝑐

1
𝐸

[(
𝐾∗
𝐼 (𝜃)

)2

+
(
𝐾∗
𝐼 𝐼 (𝜃)

)2
]
= 𝐺𝑐 (3.6)

where 𝐾∗
𝐼
(𝜃) and 𝐾∗

𝐼 𝐼
(𝜃) are the SIFs after kinking at unit stress 𝜎 = 1 and unit initial

crack length 𝑎 = 1. Then we substitute 𝐾∗
𝑝 (𝜃) by using eq. (1.12), we can establish the

relationship between the fracture angle 𝜃 and the critical stress as follows:

𝑎𝜎2
𝑐

𝐾2
𝑐

=
1

[𝐹1𝑞 (𝜃)𝐾𝑞]2 + [𝐹2𝑞 (𝜃)𝐾𝑞]2
(3.7)

where 𝑎 is half of the notch length, 𝐾𝑐 is the fracture toughness of the material. 𝐹1𝑞 (𝜃)



68 Validation of numerical models

and 𝐹2𝑞 (𝜃) are universal functions and known for different values of kink angle 𝜃 refer

to Appendix. A. The numerical values of 𝐾𝑞 at unit stress and unit notch length, as

presented in Ąg. 3.10, are then substituted into eq. (3.7). Consequently, the relationship

between the critical stress 𝜎𝑐 and the initial crack angle 𝛽, obtained using the energy

release rate criterion, is represented by the black curve in Ąg. 3.14.

A comparison of these results reveals the effectiveness of the AT1 isotropic phase-Ąeld

model in accurately predicting numerical outcomes for mixed mode fracture problems.

Additionally, we have demonstrated that these predictions can also be obtained through

the application of the 𝐺max within the framework of LEFM.

Figure 3.13 Comparison of experimental, (Erdogan and Sih, 1963) theoretical and simulated
kink angle with respect to the initial crack angle. The black curve represent the predicted
results using the maximum stress criterion, while dot-curve is obtained by the 𝐺𝑚𝑎𝑥 criterion.
Blue dots are experimental results from Erdogan and Sih 1963, and red dots represents the
numerical prediction.
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Figure 3.14 Comparison of experimental, theoretical and simulated critical stress with respect
to the initial crack angle. Blue dots represent the experimental results from Erdogan and Sih
1963, the red dots are the numerical prediction, and black curve shows theoretical prediction
base on the energy release rate criterion.

3.2.2 Weakly anisotropic case: Composite materials

Fig. 3.15 provides an illustration of the dimensions of the long and short samples utilized

in the study conducted by Mesgarnejad et al. 2020. These samples were composed of a

composite material comprising a polymer matrix with alumina platelets oriented along

𝛼Γ. Fracture experiments were carried out on these orientationally ordered composites,

revealing that the crack path can vary as the volume fraction increases. This variation in

crack path is attributed to the presence of weakly anisotropic fracture toughness within

the material. It is important to note that the selection of the crack path is inĆuenced by

both macroscopic factors, such as sample geometry, and microscopic factors, including

volume fraction and orientation of the Ąber within the matrix.
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Figure 3.15 Dimension of composite material (Mesgarnejad et al., 2020) with alumina Ąber
oriented along 𝛼Γ: a) Long sample and b) Short sample, with gray hatched regions were affixed
onto grips

Our primary objective is to validate the implementation of the phase-Ąeld model with

a weakly anisotropic (two-fold symmetric) surface energy, as presented in Section 1.4.3.1.

To achieve this, we aim to replicate the numerical predictions and then compare them

with the experimental results provided in (Mesgarnejad et al., 2020). In this study, we

have chosen to use the AT1 model instead of the KKL damage model as in Mesgarnejad

et al. 2020 (presented in eq. (1.36).

To determine the value of the regularization parameter ℓ for the AT1 model, we have

utilized an estimated value that is equivalent to that of the KKL model. The estimated

value of ℓ is calculated as 0.375 · 𝐺𝑐𝐸
𝜎2
𝑐

. The only difference between the AT1 and KKL

models lies in the initiation of crack nucleation. In the KKL model, a slight perturbation

at the notch is required, where the damage variable (𝛼) is set to a non-zero value, in

order to initiate crack nucleation. Otherwise, the damage variable will always remains at

zero. In the case of the AT1 model, it does not necessitate an initial damage condition

for nucleation. Furthermore, since we are not seeking to obtain a numerical prediction of

the critical load, we have therefore omitted the initial damage condition 𝛼 = 1. Using the

material parameters provided in (Mesgarnejad et al., 2020), we estimated the range of

the regularization parameter to be between 225 𝜇m and 550 𝜇m. To conduct numerical

experiments, we used the given material properties and explored the effects of both the

upper and lower bounds of the estimated regularization parameter.

We initially focused on investigating a speciĄc case where the material axis was Ąxed
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at 𝜃0 = 90°, corresponding to a Ąber orientation of 𝛼Γ = 90° in the experimental setup. In

Fig. 3.16, we present a comprehensive comparison of the experimental, theoretical, and

numerical results for the predicted crack angle as a function of the anisotropic coefficient

𝐴𝑡 . Here, the anisotropic coefficient 𝐴𝑡 represents the volume fraction of the Ąbers in

the matrix, and its relationship with the numerical parameter 𝐴𝑡 is established based on

the experimental data provided in detail in (Mesgarnejad et al., 2020). By varying 𝐴𝑡
and observing its inĆuence on the predicted crack angle, we aim to gain insights into the

impact of the anisotropic coefficient on the crack path selection.

In the presence of weakly anisotropic surface energy, the GMERR criterion (presented

in Section 1.3.1: Eq. (1.19)) undergoes a modiĄcation by replacing 𝐺𝑐 (𝜃) with the

corresponding surface energy form provided in eq. (1.41). In Ąg. 3.16, the black dashed

line represents the GMERR prediction without considering the 𝑇-stress, which is not

satisfactory. Therefore, to enable a more accurate quantitative prediction of the crack

path using the GMERR criterion, we adopt the approach described in (Mesgarnejad

et al., 2020), where we choose 𝑠 = ℓ to account for the 𝑇-stress effect when calculating

the energy release rate at the tip of a kinked crack:

𝐾∗
𝐼 (𝜃) =𝐾𝐼𝐹11(𝜃) + 𝑇

√
𝑠𝐺1(𝜃)

𝐾∗
𝐼 𝐼 (𝜃) =𝐾𝐼𝐹21(𝜃) + 𝑇

√
𝑠𝐺2(𝜃)

𝐺 (𝜃) = ( 𝐾∗
𝐼 (𝜃)2 + 𝐾∗

𝐼 𝐼 (𝜃)2)/𝐸
(3.8)

To determine the value of the 𝑇-stress, we conducted a static elasticity analysis with a

Ąxed geometry. Both the long and short samples were subjected to a unit displacement.

The 𝑇-stress value was then extracted using the 𝐼-integral method. In our analysis, we

obtained a 𝑇-ratio of 𝑇
√
𝐿

𝐾𝐼
= 0.93 for the long sample and -1.38 for the short sample.

These values are consistent with the results reported in (Mesgarnejad et al., 2020).

The comparison of the results reveals that the AT1 phase-Ąeld model with weakly

anisotropic surface energy provides excellent predictions that align with both experimental

results and GMERR predictions that consider the 𝑇-stress. Furthermore, an interesting

Ąnding is that as the anisotropic coefficient 𝐴𝑡 increases, the inĆuence of the 𝑇-stress

on crack path selection becomes negligible. SpeciĄcally, when 𝐴𝑡 > 4, considering the

𝑇-stress in GMERR predictions becomes unnecessary. The experimental and numerical

results for the long sample emphasize the signiĄcant impact of the microstructure on the

crack path. As the volume fraction of Ąbers oriented along 90° increases (corresponding

to an increasing anisotropic coefficient in the numerical simulations), the crack path

gradually shifts towards the direction of Ąber orientation. This observation highlights

the inĆuence of the microstructural characteristics (volume fraction of the Ąber).
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Figure 3.16 Comparison between numerical predictions and experimental results for long sample.
Experimental results involves the crack path in fracture experiments with different fraction
volume 𝑓𝑣 from 0.01-0.07. The fraction volume were translated in the degree of anisotropy 𝐴𝑡
using the experimental data: Ąg.8 d) in (Mesgarnejad et al., 2020). Numerical results involves
the predicted crack path by weak anisotropic phase-Ąeld model with different value of the
anisotropic coefficient 𝐴𝑡 and regularization ℓ = 225 and 550𝜇m. Also the GMERR prediction
in LEFM framework is presented. With the black-dot line are the LEFM prediction without
𝑇-stress, blue and red curve are LEFM prediction by taking into account the 𝑇-stress.

Fig. 3.17 illustrates the damage Ąeld of the long and short samples at different values of

the anisotropic coefficient 𝐴𝑡 , while maintaining a Ąxed material axis of 𝜃0 = 90°. Notably,

the crack path exhibits a change in direction as the anisotropic coefficient increases in

the long sample. However, in the short sample, the crack angle consistently remains at 0°.

This behavior can be explained by referring to the Wulff diagram depicted in Fig. 3.18.

The crucial distinction between these two samples lies in the sign of the 𝑇-stress. When

the 𝑇-stress is positive, the reciprocal of the energy release rate 1
𝐺 (𝜃) forms a convex

function. However, as the 𝑇-stress becomes negative, this reciprocal function becomes

non-convex. As a result, in the short sample, as the anisotropic coefficient increases,

the crack path always remains at 0°. This is due to the intersection point between the

reciprocal of the energy release rate 1
𝐺 (𝜃) and the reciprocal of the surface energy 1

𝐺𝑐 (𝜃)
occurring at 0°. These Ąndings indicate that both microstructure and macrostructure

conĄguration inĆuence the selection of the crack path.
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Figure 3.17 Snapshot of the numerical predicated crack path by weak anisotropic model with
different coefficient 𝐴𝑡 for different sample. First row and second row shows the simulation
results for long sample and short sample, respectively.
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Figure 3.18 Wulff diagram, GEMRR visualization: black curve shows the reciprocal surface
energy in form: 𝐺𝑐 (𝜃) = 𝐺𝑐

√︁
2.5−2 sin2(𝜃) + cos2(𝜃), green and blue line represents the recip-

rocal energy release rate taking into account negative and positive 𝑇-stress with ℓ = 225𝜇m,
respectively.

We then shift our focus to investigating a scenario where the anisotropic coefficient 𝐴𝑡
is Ąxed at 2.5, corresponding to a volume fraction of Ąbers 𝑓𝑣 = 0.04 in the experiments.

However, we now vary the material axis 𝜃0 for both the long and short samples. It is

important to note that in our numerical simulations, the material axis 𝜃0 represents

the Ąber orientation 𝛼Γ in the composite material. Figure. 3.19 presents a comparison

of experimental, theoretical, and numerical results for the predicted crack angle as a

function of the Ąber orientation 𝛼Γ. The results showed that the AT1 phase-Ąeld model

with weakly anisotropic surface energy provided accurate predictions for varying Ąber

orientation, aligning closely with both experimental results and GMERR predictions that

took into account the 𝑇-stress. Furthermore, with AT1 damage model, we successfully

replicated the numerical predictions as outlined in Mesgarnejad et al. 2020, where the KKL

damage model was employed. It is evident that these two damage models demonstrate

nearly identical performance in predicting crack propagation under conditions of weak
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anisotropy. Combining the previous results with the Ąndings presented here validates our

implementations of the AT1 phase-Ąeld model with weakly anisotropic surface energy.

Figure 3.19 Comparison between numerical predictions and experimental results for long and
short sample. Experimental results involves the crack path in fracture experiments with
different Ąber orientation 𝛼Γ and Ąxed friction volume 𝑓𝑣 =0.04 (corresponding anisotropic
coefficient 𝐴𝑡=2.5). Numerical results involves the predicted crack path by weak anisotropic
phase-Ąeld model with different Ąber orientation and regularization ℓ = 225𝜇m. Also the
GMERR prediction in LEFM framework is presented. The LEFM prediction taking into
account the 𝑇-stress. Green and orange color represent the results for long and short sample,
respectively.

3.3 Conclusions

In summary, our study involved the validation of a numerical model for determining

SIFs across a kink and fracture parameters using the 𝐼-integral method in the context of

static elasticity problems. We then compared our numerical predictions for the damage

evolution problem with experimental results from existing literature, thereby conĄrming

the accuracy of implementing both the AT1 phase-Ąeld model with isotropic and weakly

anisotropic surface energy.

We demonstrated the capability of the phase-Ąeld model with a linear dissipation

function (w(𝛼) = 𝛼, AT1) to accurately predict crack paths and critical forces. This

validation holds signiĄcant importance as the higher-order phase-Ąeld model proposed by
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Li and Maurini 2019 also incorporates a similar linear dissipation function (w(𝛼) = 9𝛼).

Thus, the validation of the AT1 phase-Ąeld model acts as a smooth transition towards

the higher-order model.

Our next chapter will expand the study to include a higher-order phase-Ąeld model

with strongly anisotropic surface energy. This extension will allow us to investigate

crack propagation in our 3D printed sample. Furthermore, we will utilize the validated

GMERR prediction procedure in cases involving strongly anisotropic surface energy,

providing valuable insights and understanding.



Chapter 4

Numerical investigation versus

fracture experiments in CT and CTS

tests

In this chapter, we focus on comparing numerical results with experimental data. The

Ąrst step involves validating the measured SIFs by comparing them with numerical results

obtained from solving a static elasticity problem with a Ąxed geometry. Furthermore, we

utilize the numerical model to determine the elastic constant of the printed CT sample.

To tackle the damage evolution problem with strongly anisotropic surface energy,

we utilize a higher-order phase-Ąeld model. In order to compare with our fracture

experiments on 3D printing part, we carefully determine the numerical parameters,

especially the anisotropic constants that contribute to the surface energy. Moreover, we

identify appropriate boundary conditions based on experimental data. By comparing the

simulation results with the experimental data, we demonstrate the modelŠs capability to

predict crack trajectories and the corresponding critical load. These predictions can also

be obtained through the GMERR within a LEFM framework.

Lastly, we delve into the discussion regarding the selection of the regularization

parameter ℓ of the higher-order phase-Ąeld model.
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4.1 Static problem: linear elastic solution

4.1.1 Boundary condition of CT specimens

As presented in previous section 3.1, the nodal loading boundary condition was adopted

to validate the SIFs across a kink, as depicted in in Fig. 4.1 (1). However, it has been

discussed in Triclot et al. 2023 that this boundary condition does not accurately simulate

the loading process of a CT sample due to the complex numerical challenges associated

with modeling the contact between the bolt and pin hole. Some inĆuencing factors

between the bolt and specimen are completely neglected in our model, such as the gaps

between the bolts and CT specimen, the friction generated by the possible rotation of

the bolt in the pin hole as the applied displacement increases.

To avoid the complexity of incorporating these inĆuencing factors into the model, we

introduce the DIC boundary condition in Fig. 4.1 (2) (Triclot et al., 2023). A sub-domain

of the CT sample was modeled based on the experimental displacement Ąeld obtained

by the DIC software UFreckles20. An example of extracted displacement Ąeld for CT

specimen is shown in Fig. 4.2. The experimental displacements Ąeld is obtained using a

Ąnite element formulation of DIC with bi-linear quadrilateral (Q4) elements (element

size 16 × 16 pixel), and then applied to the corresponding points of the selected contour

in Cast3M, with the right boundary of the CT sample (represented by the green curve in

Fig. 4.2) considered as a traction-free boundary.
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Figure 4.1 Different boundaries conditions used: (1) Nodal loading and (2) DIC boundary
condition

Figure 4.2 Extracted displacement Ąeld obtained from DIC: (A) 3rd contour (counts from the
outside to the inside) was extracted as inputs for the Ąnite element modeling, (B) sub-domain
mesh is shown in Gmsh (6000 Qua8 elements in near crack tip circle and 40000 elements for
entire model)

4.1.2 Comparison results between experiments and simulations

Figure 4.3 presents a comparison between the experimental and numerical results of

the SIF and 𝑇-stress relative to the applied displacement in the 𝑦 direction, indicating

the evolution of SIF and 𝑇-stress throughout the fracture experiment during crack

propagation. The left column corresponds to CT specimens with a raster angle of 0°,

while the right column corresponds to a raster angle of 25°. It is worth noting that the
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YoungŠs modulus and crack tip position play an identical role in both the experimental

and numerical results for SIF and 𝑇-stress. Thus, variations in these variables will not

impact the comparison between the experimental and numerical results. In our mesh, we

employed approximately 40,000 elements, including 6,000 Qua8 elements in the vicinity

of the crack tip circle. The 𝐺 − 𝜃 method is applied at the 10th layer surrounding the

crack tip.

The comparison of the results reveals that the SIF obtained using the nodal loading

boundary condition is signiĄcantly overestimated and does not align satisfactorily with

the experimental results. This suggests that nodal loading boundary conditions are not

suitable for accurately extracting the SIF and 𝑇 -stress during the Ąnite element calculation

of the CT sample. In contrast, the SIF obtained from Ąnite element modeling with the

DIC boundary condition exhibits excellent agreement with the experimental results. This

provides valuable insights into validating the linear elastic isotropic assumption. We

acknowledge that a small offset still exists, but it remains within acceptable tolerances.

Additionally, for the kinked CT sample (25° raster angle), the experimental SIF values

obtained using DIC become unreliable near the kink position (applied displacement from

1.26 mm to 1.45 mm). This is attributed to the presence of a kink in the extraction

region, which hinders the precise determination of asymptotic coefficients (Williams

series is deĄned for a straight crack (Williams, 1952)). Therefore, by using Ąnite element

modeling with the DIC boundary condition, we can obtain accurate SIF values near the

kink position.

Regarding the comparison of 𝑇-stress during propagation, a signiĄcant discrepancy

exists between the experimental and numerical results. In the experimental analysis,

the 𝑇-stress was extracted by projecting the displacement Ąeld onto the Williams series.

However, since the 𝑇-stress is the second-order term in the Williams series, the obtained

values lack accuracy. On the other hand, in the numerical analysis, the 𝑇-stress was

obtained using the direct method, which necessitates a convergence region where the

𝑇-stress reaches a stable value.

In summary, the use of DIC boundary condition enables the prediction of SIFs

evolution in the presence of a crack kink, compared to other boundary conditions.

Additionally, the DIC boundary condition allows for the accurate determination of the

SIFs value near the kink position, compensating for the lack of experimental information

and validating the experimental measurements from CT samples. Furthermore, we

validates the assumption of isotropic linear elasticity adopted for the printed samples.
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Figure 4.3 Comparison with experimental results with different boundary conditions: evolution
of SIF and 𝑇-stress relative to the imposed displacement for CT sample without and with kink
(left raster angle 0° and right raster angle 25°). And blue dots represent the experimental results.
Green and red curves represent the numerical results using Nodal loading boundary condition
and DIC boundary condition, respectively (50000 elements used, and numerical convergence is
reached with 20000 elements).
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4.1.3 Determination of Young’s modulus of printed CT sample

Due to the complexity of the printing process, there is uncertainty regarding whether

the elasticity constants obtained through a tensile test accurately represent those of the

printed CT/CTS samples. It is worth noting that the YoungŠs modulus and crack tip

position intervene same way in both the experimental and numerical results for SIF and

T-stress. Therefore, any variations in these variables will not impact the comparison

between the experimental and numerical results. Consequently, the previous study can

only validate the measured SIFs experimentally. However, determining the value of the

elastic constant (YoungŠs modulus) requires checking the loading curve.

In a recent study by Triclot et al. 2023, a 3D Ąnite element model was employed to

calibrate the YoungŠs modulus of printed CT samples. The authors compared the Force

versus Crack Opening Displacement (COD) curve between experimental and numerical

results. One advantage of using COD as a reference instead of the Force-Displacement

curve is that it remains unaffected by the boundary conditions employed in the numerical

simulation. Consequently, they discovered a signiĄcant 50% increase in the YoungŠs

modulus when compared to the values obtained from the tensile test.

The authors suggested that the higher YoungŠs modulus may be attributed to the

variations in size and geometry features between the dog-bone and CT samples. However,

these Ąndings have not been reported in other additive manufacturing literature. Addi-

tionally, it was observed that the calibrated YoungŠs modulus is strongly inĆuenced by

the location of the COD measurement on the crack lip relative to the crack tip position.

Given these factors, an alternative method was employed in our study to investigate the

YoungŠs modulus of printed CT samples.

Based on the previous study, the most straightforward and convenient approach

for modeling the CT sample involves utilizing the displacement Ąeld obtained from

experiments as the boundary condition. Therefore, instead of comparing the load curve

between numerical and experimental data, our objective is to compare the displacement

Ąeld of a selected zone in the CT sample during the linear elastic phase. This process

is depicted in Figure 4.4, where the measured displacement Ąeld allows us to extract

data from a chosen contour, as shown on the left. This selected contour comprises

approximately 200 points, each providing information about their pixel positions as well

as the measured displacements in the 𝑥 and 𝑦-axes during the loading of the CT sample.

Subsequently, this selected contour is incorporated into a full-size 3D FE model,

as illustrated on the right side of the Ągure. The 3D model is then subjected to the

experimentally measured force, and we extract the numerical displacement of the selected

contour. It has been shown that while the results are very sensitive to the way the
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Figure 4.4 Process of calibrating the elastic constants using a 3D numerical model: The
measured displacement Ąeld is used to extract a selected contour (left), which is then inserted
into a 3D FE model (right).

displacement is applied, they are insensitive to the way a force is applied, in accordance

with Saint VenantŠs principle (Triclot et al., 2023). By varying the input value of the

YoungŠs modulus, our aim is to identify the simulation results that best approximate the

experimental displacement Ąeld.

The study employed a CT sample with a raster angle of 0° to examine a pre-existing

crack of length 𝑎0 using DIC for identiĄcation purposes. A mesh was generated using

UFreckles20 based on the images captured during the experiments, as depicted in Ąg. 4.5

A). The measured displacement Ąeld in the 𝑦-axis is illustrated in Ąg. 4.5 B). By analyzing

the discontinuity in the displacement Ąeld, we proposed a crack path indicated by the red

line to determine the position of the successive crack tip. The crack extension, relative

to the number of images, is presented in Ąg. 4.6. Notably, the crack extension initially

increased with the growing load but then remained constant, despite the continued

load increment. This period is considered to be a linear elastic phase without crack

propagation, occurring as the applied displacement increased, speciĄcally between image

N° 5 and N° 20. Consequently, the estimated pre-crack length 𝑎0 was determined to be

26.64 mm.



84 Numerical investigation versus fracture experiments in CT and CTS tests

Figure 4.5 DIC analysis for CT sample with a raster angle of O°: (A) displays the mesh produced
by UFreckles using 16x16 pixel element size. (B) presents the vertical displacement Ąeld in
pixels, where the red line indicates the suggested crack path for determining the successive
crack tip position based on the discontinuity of the displacement Ąeld.

Figure 4.6 The crack extension is plotted as a function of the number of captured images

Fig. 4.7 displays the displacement Ąeld data extracted from the DIC analysis. Each

point indicating a nodal position on the generated mesh and contains displacement values

in the 𝑥- and 𝑦-axes during the fracture experiment. We selected three contours from

extracted displacement Ąeld data as shown in Ąg. 4.7 and inserted them into a full-size

CT sample to generate a 3D mesh Ąle using Gmsh. Subsequently, Cast3M was utilized

to perform calculations based on the solution of a linear elastic problem at a Ąxed crack
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Figure 4.7 The data obtained from the DIC analysis includes the position and displacement
values along the 𝑥 and 𝑦 axes for each nodal point on the mesh generated in UFreckles. Each
point on the graph corresponds to a nodal point on the mesh.

tip position 𝑎0 = 26.64 mm. The input data consisted of force measurements acquired

through fracture experiments, while the output data consisted of the displacement Ąeld of

the selected contour with different YoungŠs moduli. In the FEM calculation, as depicted

in Ąg. 4.4, a force was applied to the center of the upper bolt in the pin hole, while the

lower side remained Ąxed.

Fig. 4.8 displays the comparison between the experimental and numerical displacement

Ąelds, speciĄcally focusing on the third contour at image 20, where a force of 590 N

was applied to the bolt. The black dot-line represents the experimental position after

deformation, while the dots of various colors represent the simulated results obtained

using different values of YoungŠs modulus. To enhance the interpretability of the results,

we calculated the absolute difference between the positions of each contour in the

experimental and numerical data. The absolute difference between the experimental and

numerical contour positions after deformation is computed using the following expression:
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where 𝑥𝑖 and 𝑦𝑖 represent the position of the deformed point 𝑖 in the selected contour,

and 𝑁 denotes number of points in the selected contour.

The absolute difference between the experimental and numerical contour position

after deformation indicates the closeness of the simulation to the experiment. A smaller

value implies a closer match. The absolute difference value with respect to the number

of image for different contour are shown in Ąg. 4.9. It is noteworthy that the comparison

results are independent on the selected contour. Additionally, we found that the YoungŠs

modulus of the printed sample is approximately 1900 MPa.

To determine the exact value of the YoungŠs modulus for the printed CT sample,

we conducted FEM calculations to obtain the minimal absolute difference. Figure 4.10

presents the average absolute difference values from image 5 to image 20 of the third

contour. The optimal value of the YoungŠs modulus is the one that yields the minimum

average absolute difference, which is about 1950 MPa. This obtained value for the

printed CT sample aligns with the results of the tensile tests presented in section 2.3.1.1.

Consequently, it can be concluded that the elastic properties of printed sample by fused

deposition in polycarbonate are not affected by different size and geometry features.

In the study conducted by Triclot et al. 2023, it was observed that the position of the

extracted COD was found to be too close to the crack tip, which could be inĆuenced by

the fracture process zone. When comparing the results obtained from the displacement

Ąeld using a speciĄc contour, it was noted that the numerical displacement Ąeld, which

utilized a YoungŠs modulus of 𝐸 = 2700 MPa near the crack lip, exhibited signiĄcant

deviations from the experimental results.

However, it was discovered that when calculating COD as the difference in displace-

ment between upper and lower points located on the crack lip, the error was effectively

canceled out. Consequently, this led to a higher value of YoungŠs modulus (𝐸 = 2700

MPa) being obtained. Additionally, it was found that the calibration of YoungŠs modulus

using the F-COD method was highly sensitive to the experimental measured COD value.

Even a slight offset of 0.032 mm in the COD value may result in a 50% increase in the

estimated YoungŠs modulus.

In comparison, the use of a selected contour to compare the displacement Ąelds was

deemed to be more accurate and reliable. This was primarily due to the fact that each

contour contained a larger number of data points (approximately 200 points), which

minimized the inĆuence of small differences and reduced the potential for signiĄcant errors.
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Figure 4.8 Comparison of the displacement Ąeld for the third contour at image 20 (with an
imposed force of 590 N) between experiments and simulation is presented in this Ągure. The
zoomed-in views of the upper and lower sides are shown in (1) and (2), respectively. The initial
position of the sample is represented by the black line, and the experimental displacement
Ąeld is shown as a black dot-line. The blue, red, and green dots correspond to the numerical
displacement Ąelds obtained using the YoungŠs modulus values of 1900 MPa, 2200 MPa, and
2700 MPa, respectively.
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Furthermore, this study provides an explanation for the disparities in SIFs values observed

when employing pin loading and DIC boundary conditions. The complexity of the contact

problem between the pin and pin hole makes it challenging to accurately capture the local

displacement Ąeld when using the pin nodal boundary condition, resulting in deviations

from the experimental results.

Figure 4.9 The absolute difference between different contours is shown as a function of the
number of images.

Figure 4.10 The average absolute difference between different values of YoungŠs modulus from
image 5 to image 20.
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4.2 Phase-field modeling with strongly anisotropic

surface energy

In this section, we investigate the fracture problem with strongly anisotropic surface

energy using the higher-order phase-Ąeld model as presented in Section 1.4.3.2. To

accommodate the requirements of the higher-order phase-Ąeld model, which necessitates

a C1 continuity Ąnite element formulation, we adopted the Mixed Interpolation of

Tensorial Components (MITC) formulation, as discussed in previous works Hale et al.

2018; Li and Maurini 2019. Alternative methods include isogeometric analysis refer to Li

et al. 2015 and the utilization of Power-Sabin B-Splines, as described in Chen et al. 2021.

In comparison to the AT1 phase-Ąeld model, the anisotropic model demands additional

numerical parameters to described the anisotropic surface energy. To determine these

parameters, we initially focus on examining the mode I fracture problem using a CT

sample. Since the form of the surface energy is known (as shown in eq. 1.43), we

can therefore adopt the GMERR prediction to investigate the choice of the anisotropic

coefficient 𝐴 𝑓 . By comparing the numerical results with the GMERR prediction and

experimental crack path, we can determine the appropriate numerical parameters for the

anisotropic surface energy. These parameters, combined with the material parameters

obtained from fracture experiments, are then employed in the subsequent numerical

experiments. It is noticed that the numerical experiments were carried out under

assumption of 2D plane stress.

We aim at seeking for both predicted crack path and its relevant critical force. We

will Ąrst examine the mode I problem with CT sample and then mode I+II with CTS

sample. The numerical predictions, which encompass the crack path and critical force,

will be presented and compared against experimental data and theoretical predictions.

4.2.1 Determination of boundary conditions and numerical pa-

rameters using CT sample

Determining an appropriate boundary condition remains a challenge due to the complex

numerical issues associated with modeling the contact between the bolt and pin hole. In

the previous section, we found that the DIC boundary condition, as presented in Section

4.1.1, closely resembles the experimental conditions. However, using the DIC boundary

condition makes it difficult to obtain the relevant critical force. Hence, for phase-Ąeld

modeling, we adopted an alternative boundary condition.

To ensure that the boundary condition closely aligns with the experimental setup
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while avoiding excessive complexity, we initially neglected the friction resulting from the

rotation of the bolt within the pin hole of the CT sample as the applied displacement

increases. Based on experimental observations, we observed that only a certain area of

the pin hole was loaded, as depicted in Ąg. 4.11. We deĄned the angle of this loaded

area as the "pin angle" (𝜙). We hypothesized that the numerical SIFs near the crack

tip should match the experimental values when the pin angle is well deĄned in the

numerical simulation. So as to determine the pin angle for our numerical experiments,

we computed the numerical dimensionless SIF 𝐾𝐼
√
𝑎0

𝐸𝛿
values by varying the pin angle and

compared them with experimental data. Note that under assumption of linear elasticity,

the dimensionless quantity doesnŠt depend on displacement 𝛿 for a given pin angle 𝜙.

The comparison is presented in Ąg. 4.12, with different colors indicating different applied

displacements. We observed that the experimental dimensionless SIF increases with

increasing applied displacement, suggesting that the contact angle increases during the

fracture experiments prior to crack propagation. Additionally, it was observed that

crack propagation commenced along the direction of the kink at an applied displacement

of approximately 1 mm during fracture experiments as shown in Ąg. 2.17. Therefore,

we adopted the associated pin angle of approximately 50° (blue dot line 𝛿 = 1 mm as

depicted in Ąg. 4.12) for our numerical experiments and assumed it remains constant.

Figure 4.11 Schema: Boundary conditions used in phase-Ąeld modeling for CT samples. The
difference in the 𝑦-axis displacement between blue (upper side) and green point (lower side) is
deĄned as the COD. These two points are aligned with the center of the pin along the 𝑥-axis.



4.2 Phase-Ąeld modeling with strongly anisotropic surface energy 91

Figure 4.12 Dimensionless value of numerical SIF with respect to the pin angle 𝜙 compared
with experimental values. The dotted lines are the experimental values for different applied
displacements (mean values of 18 tested CT samples).

As for the determination of anisotropic constants, we employed an anisotropic surface

energy with cubic symmetry, which aligns with the criss-cross printing method used for

our CT and CTS samples. This printing method results in two mutually orthogonal

weak planes corresponding to the direction of the inĄll angle. To simulate different

raster angles, we rotated the orientation-dependent 𝐺𝑐 (𝜃) by transforming the matrix C

using eq. (1.44). Due to the cubic symmetry, our numerical experiments required three

numerical parameters in the matrix C (eq. (1.42)) to simulate the strongly anisotropic

surface energy. As shown in (Li and Maurini, 2019), the form of the four-fold symmetry

surface energy in terms of constants in matrix C is shown as follows:

𝐺𝑐 (𝜃) = 𝐺0

√︄
3𝐶11 + 𝐶12 + 2𝐶44

4

(
1 + 𝐶11 − 𝐶12 − 2𝐶44

3𝐶11 + 𝐶12 + 2𝐶44

cos 4𝜃
)

(4.2)

The orientation dependent surface energy 𝐺𝑐 (𝜃) attains its maximum at 𝜃∗ = 0, which

can be interpreted as a sample with 0° raster angle (𝜃0 = 0°), therefore the previous
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expression is simpliĄed:

𝐺𝑐 (𝜃∗ = 0) = 𝐺0

√︁
𝐶11 (4.3)

It is noticed that the surface energy 𝐺𝑐 along the weak plane equals to the numerical

parameter 𝐺0 multiplied by the anisotropic constants 𝐶11, to avoid confusion, we set

𝐶11 = 1 to normalize the surface energy 𝐺𝑐 (𝜃). This normalization ensures that the

numerical parameter of 𝐺𝑐 for the weak plane is directly related to the experimental

surface energy.

We then selected 𝐶12 = 0.5 to satisfy the condition 𝐶2
11 > 𝐶2

12 and varied 𝐶44 to

alter the anisotropy of the surface energy, subject to the constraint that the matrix C is

positive deĄnite. The rationale behind adjusting the numerical value of 𝐶44 is closely tied

to altering the surface energy along the "forbidden direction." As 𝐺𝑐 along the direction

of the Śweak planeŠ remains constant, increasing the value of 𝐶44 results in a higher

ratio between the surface energy along the weak plane and the "forbidden direction."

Consequently, the surface energy becomes progressively more anisotropic as 𝐶44 increases.

We considered 𝐶44 values ranging from (0.25, 198.25], and the associated anisotropic

coefficient 𝐴 𝑓 varied between 0 to 0.99.

In the numerical experiments conducted by Scherer et al. 2022, they demonstrated

that the degree of anisotropy in surface energy has an impact on the predicted critical load.

As the surface energy becomes more anisotropic, the constraint on crack propagation

becomes increasingly stringent in numerical simulations. Therefore, the choice of the

anisotropic coefficient plays a crucial role as it inĆuences both the selection of the crack

path and the relevant critical force. Beside, as we know the physical interpretation of

the anisotropic coefficient 𝐴 𝑓 is the ratio between the surface energy along the weak

plane and the "forbidden direction". However, it is not possible to determine the surface

energy along the "forbidden direction" experimentally, as the crack cannot be guided

towards that direction. Consequently, the choice of the anisotropic coefficient becomes

challenging, as it relies on understanding the inĆuence of the anisotropy on the fracture

behavior.

To determine the appropriate anisotropic coefficient, we conducted numerical tests

with the anisotropic coefficient ranging from 0 to 0.99 along with a material axis 𝜃0

= 25°. We anticipated that the predicted crack angle should align closely with the

raster angle when the anisotropic coefficient is accurately deĄned. A comparison between

the numerical results and the GMERR prediction is illustrated in Ąg. 4.13. The black

dash-dotted line represents the predicted crack angle with respect to the anisotropic

coefficient, the blue dots being the numerical predicted kink angles and the red curve

being the material axis (raster angle). It is noticed that the numerical predictions
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are agree with the GMERR prediction. Furthermore, we observed that the numerical

prediction closest to the experiments, which involved a 25° raster angle, was obtained

with an anisotropic coefficient of 0.99 (𝐶44 = 198.25). While it is possible to enhance

the anisotropy of the surface energy by increasing the value of 𝐶44, it should be noted

that excessively large values can sometimes result in convergence issues. Hence, it is not

meaningful to blindly push this value 𝐴 𝑓 towards 1 indeĄnitely. Meanwhile, different

from the results presented in Scherer et al. 2022, in LiŠs anisotropic model, the inĆuence

of anisotropic coefficient on predicted critical load is not signiĄcant. Consequently, we

choose 𝐴 𝑓 = 0.99 to simulate our fused deposition fabricated specimens, whereby the

corresponding surface energy is given by 𝐺𝑐 (𝜃) = 𝐺0
4
√︁

100 − 99 cos 4(𝜃 − 𝜃0). This choice

allows us to capture the anisotropic behavior accurately and aligns with the experimental

observations.

Figure 4.13 Comparison of predicted crack angles between GMERR and numerical predictions
with different values of anisotropic coefficient 𝐴 𝑓

Other numerical parameters like material parameters are obtained by tensile test

and fracture experiments: 𝐸 = 1900 MPa, 𝜈 = 0.34, the energy release rate 𝐺𝑐 = 4.5

𝑘𝐽/𝑚2, and material strength 𝜎𝑐 = 42 MPa. Additionally, to determine the regularization

parameter of the weak plane ℓ0, we adopted the expression presented in (Tanné et al.,

2018). Depending on the selected damage model, the regularization parameter can be

denoted as follows:

ℓ0 =
45
96
𝐺𝑐𝐸

𝜎2
𝑐

(4.4)
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the estimated regularization parameter ℓ0 was approximately 2.1 mm. However, this

value appeared excessively large compared to the size of the specimens and the diameter

of the extruded thread, which was 0.4 mm. Since the regularization parameter inĆuences

the width of the damage Ąeld and is inversely proportional to the critical stress 𝜎𝑐, an

adjustment was made to the estimate. To reĄne the estimate, numerical experiments

were conducted using ℓ0 = 0.4 mm (the diameter of the printed thread) to obtain the

upper limit of the critical force and ℓ0 = 2.1 mm (the estimated value determined by

Tanné et al. 2018Šs formula) to obtain the lower limit of the critical force. The aim was to

investigate whether the critical force observed in the experiments falls within the range

of the numerical predictions using ℓ0 values of 0.4 mm and 2.1 mm. The objective was

to identify the optimal value of ℓ0 by achieving a match with the experimental data.

4.2.2 Numerical predictions on crack path and critical force: a

comparison with experimental data

In terms of the order of magnitude, the experimental data falls within the range of

the predicted critical load when the regularization parameter ℓ0 is chosen within the

range of [0.4, 2.1] mm. Besides, the numerical predictions exhibit a perfect Ąt with

the experimental results when ℓ0 is set to 0.6 mm. Interestingly, numerical simulations

accurately captured the correlation between the raster angle and the corresponding

critical load. To further enhance our comprehension of the relation between the critical

force and the raster angle, and given that we are speciĄcally examining a CT sample

subjected solely to mode I loading, the eq. (1.21) can be redeĄned as follows:

𝐹𝑐 (𝜃) =
[

1
𝐹11(𝜃)2 + 𝐹21(𝜃)2

]0.5

· 𝐹𝑐 (𝜃 = 0) (4.5)

where 𝐹11(𝜃) and 𝐹21(𝜃) are the universal functions appears in the Amestoy-LeblondŠs

formula shown in eq. (1.12). Finally, we have access to the relation between critical force

and the raster angle as depicted in Ąg. 4.14 (represented by the black dash line), we

substituted the theoretical value of the unit force 𝐹𝑐 (𝜃 = 0) with the experimental value

𝐹
𝑒𝑥𝑝
𝑐 (𝜃 = 0). Notably, the predictions made using the GMERR within the framework of

LEFM align well with the experimental Ąndings. SpeciĄcally, the critical load consistently

rises as the kink angle increases, establishing a clear and monotonous trend.
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Figure 4.14 Comparison between experimental, numerical and theoretical results. Black dots
are experimental data, each point represents 3 tested CT samples. Blue, green and red dot-lines
are predicted critical force obtained by phase-Ąeld simulation. Black dash-line are theoretical
prediction based on the energy release rate criterion.

A snapshot of the predicted numerical crack path in an anisotropic CT sample is

illustrated in Ąg. 4.15, with regularization parameter ℓ0 = 0.6 mm. The black curve

represents the associated reciprocal surface energy, and green curve represents the

reciprocal energy release rate calculated using IrwinŠs formula and Amestoy-LeblondŠs

formula.
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Figure 4.15 A snapshot of predicted numerical crack path in CT specimen with anisotropic
fracture energy. The form of the anisotropic surface energy is expressed as: 𝐺𝑐 (𝜃) =

𝐺𝑐
4

√︃
100 − 99 cos 4

(
𝜃 − 5𝜋

36

)
. The black and green curves represent the reciprocal surface energy

and reciprocal energy release rate in polar coordinates respectively. The regularization parame-
ter ℓ = 0.6 mm is used in this numerical calculation.

With the identiĄed regularization parameter ℓ0 = 0.6 mm, a numerical simulation

was conducted on a CT sample with 25° raster angle. The comparison between the

numerically predicted and experimental Force/COD is depicted in Ąg. 4.16. COD is

deĄned as the difference in the 𝑦-axis displacement between two points situated on the

crack lip away from the crack tip (aligned with the center of the pin hole), as shown in

Ąg. 4.11. The experimental COD was determined using the displacement Ąeld measured

through DIC. It is observed that the predicted numerical F-COD curve matches well with

the experimental curve before crack propagation. However, during the crack propagation

stage, a sudden decrease in numerical force is observed. This abrupt drop can be

attributed to the appearance of an additional crack kink of Ąnite length, as evident from

the damage Ąeld depicted in Ąg. 4.16. This phenomenon is independent of the time step

and indicates unstable propagation. Similar results and discussions were reported and

discussed in Li and Maurini 2019. The kink problem has also been analyzed theoretically

in Chambolle et al. 2009. The analysis in Chambolle et al. 2009 states that the jump

is anticipated when a crack kinks because it exists another energy favorable direction

for the crack propagation. In such a situation, the crack arrests before kinking. As the

loading increases, a sudden jump is anticipated when a crack kink occurs, as the energy

release rate 𝐺 exceeds the critical surface energy 𝐺𝑐 for the kinking direction. In contrast,
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Figure 4.16 Comparison between numerical simulation and experiment on CT sample of 25°
raster angle: Force versus COD. Two numerical damage Ąeld snapshots show the predicted
crack path before and after the crack propagation, which is correlated with a sudden decrease
in force.

our simulation corresponds to the case where 𝐺 = 𝐺𝑐, indicating that the observed jump

in our numerical experiments might be a numerical artifact resulting from the phase-Ąeld

modeling.

The investigation of the mixed-mode fracture problem involved conducting numerical

tests on CTS, using the same numerical parameters as for CT specimens. Different

from the CT specimens, simulation of CTS specimens requires an additional numerical

parameter: the loading angle. For the boundary condition, in order to determine the

angle of the contact surface, the numerical K-ratio 𝐾𝐼 𝐼
𝐾𝐼

was computed for various pin

angles and compared with experimental data, the same pin angle 𝜙 = 50° was obtained

as CT sample.

A snapshot of the predicted numerical crack path in an anisotropic CTS sample with

15° loading angle is illustrated in Ąg. 4.17, with the regularization parameter ℓ0 = 0.6

mm. The black curve represents the corresponding reciprocal surface energy, and green
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curve represents the reciprocal energy release rate in polar coordinate. When subjected

to mixed-mode loading, the predicted crack path follows the material axis in the CTS

sample, consistent with the GMERR predictions. Moreover, the predicted crack path

consistently followed the direction of Śweak planeŠ as the loading angle and material axis

changed during numerical experiments.

Figure 4.17 A snapshot of predicted numerical crack path in CTS specimen with anisotropic
fracture energy. The loading angle is 15°. The form of the anisotropic surface energy is

expressed as: 𝐺𝑐 (𝜃) = 𝐺𝑐 4

√︃
100 − 99 cos 4

(
𝜃 − 𝜋

4

)
. The black and green curves represent the

reciprocal surface energy and reciprocal energy release rate in polar coordinates respectively.
The regularization parameter ℓ = 0.6 mm is used in this numerical calculation.

To further examine the correlation between the critical force and the raster angle in

CTS samples, we conducted numerical tests with a loading angle of 15° and varied the

material axis 𝜃0 from 0° to 45°. The results of the critical force for CTS samples are

presented in Ąg. 4.18. As mode II effects are present in CTS samples, it is important to

consider the mode II SIF 𝐾∗
𝐼 𝐼

while computing the energy release rate 𝐺 (𝜃) in eq. (1.21).

Taking this into account, the modiĄed theoretical prediction can be expressed as follows:

𝐹𝑐 (𝜃) =
[

𝐾2
𝐼
+ 𝐾2

𝐼 𝐼

(𝐾𝐼𝐹11(𝜃) + 𝐾𝐼 𝐼𝐹12(𝜃))2 + (𝐾𝐼𝐹21(𝜃) + 𝐾𝐼 𝐼𝐹22(𝜃))2

]0.5

· 𝐹𝑐 (𝜃 = 0) (4.6)

To incorporate the K-ratio 𝐾𝐼 𝐼
𝐾𝐼

into the formulation, we utilized the average value of the

K-ratio obtained from DIC experimental results of the CTS sample with a 15° loading

angle and different raster angles at a displacement of 1 mm (prior to crack propagation).
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It was observed that the K-ratio remains constant and independent of the raster angle,

with a value of -0.12 for the CTS sample with a 15° loading angle (this value has been

validated through numerical calculations). By considering the contribution of 𝐾𝐼 𝐼 in

equation (4.6), we establish the relationship between the critical force and the difference

between the raster angle and loading angle, as depicted in Ąg. 2.19. It is important

to note that the critical force exhibits a non-monotonic variation with respect to the

difference between the loading angle and raster angle. When the difference is zero, the

crack propagates under pure mode I conditions, with the crack direction being orthogonal

to the loading angle. These results highlight the ability of higher-order phase-Ąeld models

to accurately predict quantitative outcomes for mixed-mode fracture problems involving

strongly anisotropic surface energy. The optimal value of ℓ is founded to be 0.6 mm for

two different sample geometry: CT and CTS, which indicate that the found regularization

parameter is a material parameter which is independent on the sample geometry.

Figure 4.18 Comparison of experimental, numerical and theoretical critical forces as a function
of the difference between raster angle and loading angle. Each experimental point correspond
to 3 tested CTS samples. Blue, green and red dot-lines are predicted critical force obtained by
phase-Ąeld simulation. Black dash-line are theoretical prediction based on the energy release
rate criterion.
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4.2.3 Discussion on the choice of the regularization parameter

in anisotropic model

Through numerical investigations from the isotropic case to the weakly anisotropic

case, we have observed that the regularization parameter, obtained using the expression

presented in Tanné et al. 2018 , accurately predicts the crack path and critical load.

Similar studies have been conducted in (Pham et al., 2017; Cavuoto et al., 2022) for the

isotropic case, where they compared their results with experimental data. For the weakly

anisotropic case, as studied in (Mesgarnejad et al., 2020), the computed regularization

parameter was utilized to account for the 𝑇-stress effect in GMERR prediction, as the

scale of the regularization parameter ℓ is similar to that of the fracture process zone.

Their results using the KKL damage model in conjunction with with our numerical

experiments using the AT1 model in Section 3.2.2, demonstrate that selecting ℓ = 𝑠

in GMERR yields satisfactory predictions when compared to experimental data and

phase-Ąeld simulations.

The aforementioned studies attempts to assign a physical interpretation to this

numerical parameter ℓ, which is commonly referred to as the material internal length.

Based on the determined optimal value of ℓ = 0.6 mm for two different sample geometries:

CT and CTS, it can be inferred that the obtained ℓ is a material parameter that remains

consistent irrespective of the sample geometry. In light of the matter concerning the

selection of this parameter ℓ, building upon the previous work, our study provides a

new insight: in the case of materials with anisotropic surface energy, the presence of

microstructure plays a role in contributing to this anisotropy. As a result, it is plausible

that the numerical parameter ℓ depends on the size of the microstructure. The validity of

this hypothesis is further supported by the comparison between our experimental results

and simulations. Notably, we observed that the optimal value of ℓ = 0.6 mm closely

aligns with the diameter of the deposited thread (0.4 mm) in the FDM process. Since the

ℓ is Ąxed, the Γ-convergence is no longer applicable for establishing a connection to the

GriffithŠs model. However as mentioned in Marigo 2023, when dealing with structures

where the length 𝐿 greatly exceeds the internal length ℓ, we incorporate the small

parameter ℓ/𝐿 into the damage evolution problem, this results in the reestablishment of

the connection with GriffithŠs theory.

On the other hand, the inadequacy of the presented expression in (Tanné et al., 2018)

in our numerical investigations can be attributed to two factors. Firstly, this formulation

assumes the material to be isotropic and homogeneous under uniaxial tension, as noted

in (Pham et al., 2011). However, the CT and CTS samples used in our study are not

suitable for this case. Therefore, a more generalized formulation should be considered,
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as suggested by (Molnár et al., 2020). Secondly, the expression is derived based on the

second-order phase-Ąeld model, and extending it to the fourth-order phase-Ąeld model

requires a rigorous mathematical proof. Additionally, the consideration of anisotropic

surface energy becomes essential in this context.

While the debate regarding whether the regularization parameter can be interpreted

as a material internal length is still ongoing, we Ąnd that based on previous studies and

our own work, there are compelling reasons to consider the regularization parameter

as an internal length due to the fact that the regularization parameter is connected to

the critical load at which structural failure occurs. However, additional experimental

veriĄcation is required, speciĄcally employing diverse damage models, to validate the

interpretation of the regularization parameter as an internal length.

4.3 Conclusions

In conclusion, we conducted a comparison between the numerical results obtained through

the classical approach and the SIFs measured using DIC. This comparison serves to

validate the experimental measurements and the assumption of isotropic elasticity adopted

in our printed sample. Additionally, the FE model was used to determine the elastic

constants, such as YoungŠs modulus, of the printed CT sample.

Regarding the damage evolution problem, we successfully validated the phase-Ąeld

model with a strongly anisotropic surface energy in predicting crack paths and the

corresponding critical load using an appropriate regularization parameter. We thoroughly

discussed the determination of suitable anisotropic constants for our printed sample.

Furthermore, we established the relationship between the critical load and raster angle

using the GMERR criterion within the framework of LEFM. Lastly, we examined the

selection of the regularization parameter for the phase-Ąeld model and its signiĄcance.

In the next section, we will present a preliminary study using a strongly anisotropic

phase-Ąeld model. This study includes an investigation into the possibility of zig-zag

crack paths and the inĆuence of 𝑇-stress on materials with strongly anisotropic surface

energy. Additionally, we will showcase an intriguing experimental observation of distinct

fracture behaviors under cyclic loading.





Chapter 5

Preliminary study on samples with

strongly anisotropic surface energy

In this chapter, we examine possibility zig-zag crack patterns in printed samples resulting

from anisotropic surface energy. To investigate this phenomenon in diverse sample

geometries, we employ the same higher-order phase-Ąeld model incorporating anisotropic

surface energy presented in Chapter 4. SpeciĄcally, we study the inĆuence of 𝑇-stress

on the zig-zag crack path. Furthermore, we observe zig-zag crack propagation near the

interface of a sample with thickness variation from experiments. These experimental

Ąndings align with the numerical results obtained using phase-Ąeld model. Through

these analyses, we demonstrate the predictive capability of the higher-order phase-Ąeld

model in capturing complex zig-zag crack patterns.

Additionally, we observe some interesting fracture behavior in printed samples when

subjected to cyclic loading. This behavior signiĄcantly differs from the response observed

under monotonic loading. To shed light on this phenomenon, we present preliminary

results from numerical simulations using a phase-Ąeld model.
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5.1 On the possibility of zig-zag crack path

Zig-zag crack pattern is an interesting phenomenon resulting from the presence of

anisotropic surface energy, causing the crack to change its direction when encountering

another energy favorable direction. The study of zig-zag crack growth holds signiĄcant

importance for engineering applications, as reported in (Xu et al., 2021) that the zig-zag

crack growth path can potentially decelerate the rate of fatigue crack propagation in

certain materials. Besides, the complexity of zig-zag pattern can help us gain a deeper

understanding of how cracks propagate in solids. This behavior can be observed in

printed samples with a criss-cross printing pattern, where two Śweak planesŠ exist. To

potentially observe the zig-zag crack pattern, appropriate sample geometry and loading

conditions are required.

It has been observed possible zig-zag crack paths in anisotropic phase-Ąeld models

(Li et al., 2015; Mandal et al., 2022) using a speciĄc boundary condition called ŚSurĄng

boundary conditionŠ (Hossain et al., 2014; Brach et al., 2019a). However, this boundary

condition necessitates a complex experimental setup that might be challenging to imple-

ment. An alternative method involves a short sample with protected upper and lower

edges. When the crack reaches these boundaries, it changes direction and propagates

along another energy favorable path. Another option is to create a groove in a CT

sample, with thickness mismatch, it can therefore induce the zig-zag crack path. These

alternative approaches offer potential avenues for observing the zig-zag crack pattern

without any complicated experimental setups.

This section aims to present the Ąndings of our study on the zig-zag crack path. We

will start by presenting both numerical results and preliminary experimental results

obtained from short samples presented in Chapter 3. Subsequently, we explored an

alternative geometry conĄguration using CT samples with groove (sample with varying

thickness). The primary objective of this study is to systematically explore a speciĄc

conĄguration capable of generating a zig-zag path in fracture experiments. To achieve

this, we employed phase-Ąeld modeling. Once we identiĄed the sample conĄguration, it

will serve as a system for further investigation into the phenomena of zig-zag propagation.



5.1 On the possibility of zig-zag crack path 105

5.1.1 Short sample: influence of T-stress on zig-zag crack path

The selection of the short sample employed in Mesgarnejad et al. (2020) was primarily

motivated by the work of Nguyen et al. 2017. They conducted numerical experiments

using the multi-damage model (as outlined in Section 1.4.3.3) on a sample that resembled

the short sample used in our study. The observation of zig-zag crack path in their

numerical results justiĄed the adoption of the short sample for further investigation.

Another reason for choosing the short sample was related to its negative 𝑇-stress

state. This caused the reciprocal energy release rate 1
𝐺 (𝜃) to become non-convex in the

Wulff diagram, as illustrated in the previous Ąg. 3.18. This intriguing behavior made it

interesting to investigate the impact of 𝑇-stress in a system with strongly anisotropic

surface energy. This is because there is a possibility that the non-convex reciprocal

energy release rate may intersect the Šforbidden directionŠ of the surface energy as the

loading increases.

5.1.1.1 Numerical experiments

We conducted the numerical experiments on the short sample using the same numerical

parameters (𝐴 𝑓=0.99, ℓ=0.6 mm) as determined in Section 4.2. To provide a reminder,

the dimensions of the short sample were as follows: 𝑎
𝐿
= 0.5 and ℎ

𝐿
= 0.28, where 𝑎 is the

length of the notch, ℎ is the height of the sample, and 𝐿 is the length of the sample, as

depicted in Ąg. 5.1 (left). The boundary condition adopted was as described in section

3.2.2. In Fig. 5.1, the numerical results are presented with the material axis 𝜃0=25° and

the corresponding surface energy E𝑠. Initially, the crack was observed to propagate along

the direction of 25°. However, due to the constraint that the upper boundary cannot

be damaged, the crack path turned to -75° once it reached the upper boundary. As a

result, the crack then continued to propagate along this new energy-favorable direction,

changing its trajectory until it ultimately reached the lower boundary of the sample.

Each change in crack direction is linked to a jump of the surface energy. The jump

length, denoted as 𝑠𝑖, can be calculated as E𝑠/𝐺0. ItŠs important to note that the length

of the crack kink remains independent of the selection of the regularization parameter ℓ.
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Figure 5.1 Left: A snapshot of predicted numerical crack path in short specimen with
anisotropic fracture energy. The form of the anisotropic surface energy is expressed as:

𝐺𝑐 (𝜃) = 𝐺𝑐
4

√︃
100 − 99 cos 4

(
𝜃 − 5𝜋

36

)
. The regularization parameter ℓ = 0.6 mm is used in

this numerical calculation. Right: corresponding surface energy.

Based on the investigation in Section 3.2.2, it was revealed that the inĆuence of

𝑇 -stress becomes negligible in cases of high anisotropy. Consequently, there is no need to

delve into the effect of 𝑇-stress with a chosen anisotropic coefficient of 𝐴 𝑓 = 0.99. To

address this, we conducted numerical experiments, varying the anisotropic coefficient 𝐴 𝑓
while keeping the material axis Ąxed at 𝜃0 = 45°. Following the approach of (Mesgarnejad

et al., 2020), we opted for 𝑠 = ℓ = 0.6 mm to account for the 𝑇-stress effect. The energy

release rate 𝐺 (𝜃) was then computed using equation (3.8).

In Fig. 5.2, we present the numerical predictions of crack angles concerning the

anisotropic coefficient 𝐴 𝑓 and compare them to the GMERR predictions with and

without considering the 𝑇-stress effect. Notably, the GMERR predictions that take into

account the 𝑇-stress effect show greater consistency with the simulation results obtained

from the phase-Ąeld model.
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Figure 5.2 Comparison between numerical results with choice of ℓ=0.6 mm and GMERR
prediction for short sample at Ąxed material axis 𝜃0=45° with different anisotropic coefficient.
The black-dot line represents the GMERR predictions without considering the 𝑇-stress, while
the green curve represents the predictions that take into account the 𝑇-stress effect.

Furthermore, according to the deĄnition of convexity described by eq. (1.24), the

four-fold surface energy exhibits a strong anisotropy when 𝐴 𝑓 ≥ 0.5. Focusing on the

numerical results with 𝐴 𝑓=0.5, it is notable that the predicted crack angle is equal to

0°, a direction commonly referred to as the Šforbidden direction.Š This Ąnding imply

the possibility of guiding crack propagation into the Šforbidden directionŠ by reducing

anisotropy in our printed samples. However, achieving such a reduction in anisotropy

through modiĄcations in the printing process poses signiĄcant challenges, primarily

because quantifying the anisotropic coefficient in printed samples is difficult. In Fig. 5.3,

we depict the damage Ąeld of the short sample with varying anisotropic coefficient 𝐴 𝑓 .

As the anisotropic coefficient decreases, it becomes evident that the predicted crack angle

gradually approaches 0° until 𝐴 𝑓=0.5, primarily due to the inĆuence of the 𝑇 -stress effect.

Additionally, an intriguing observation is that the amplitude of the zig-zag crack path

decreases as the 𝐴 𝑓 is reduced.
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Figure 5.3 Snapshot of predicted numerical crack path in short specimen with different
anisotropic coefficient 𝐴 𝑓 . In right shows the corresponding surface energy form.

We subsequently conducted numerical experiments, maintaining the anisotropic

coefficient at a constant value of 𝐴 𝑓 = 0.5 and varying the material axis 𝜃0 within

the range of [0°, 45°]. In Fig. 5.4, the black and green curves represent the GMERR

predictions without and with the consideration of 𝑇-stress, respectively, while the black

dots represent the numerically predicted angles corresponding to the material axis 𝜃0.

Combining these results with the previous comparisons, we can draw the conclusion

that accounting for the effect of 𝑇-stress becomes crucial when the system is not highly

anisotropic. Additionally, it is worth noting that the choice of 𝑠 = ℓ in eq. (3.8)

yields satisfactory predictions using the GMERR criteria when compared to phase-Ąeld

simulations.
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Figure 5.4 Comparison between numerical results with choice of ℓ=0.6 mm and GMERR
prediction for short sample at Ąxed anisotropic coefficient 𝐴 𝑓=0.5 with different material axis
𝜃0. With the black-dot line are the GEMRR prediction without 𝑇-stress, and green curve is
the one take into account the 𝑇-stress.

5.1.1.2 Preliminary fracture experiments

Based on the sample geometry, we fabricated the short sample using the CAD model

shown in Ąg. 5.5 (A). The sample has a thickness of 2.4 mm, comprising 16 layers. The

upper and lower part was Ąxed in the grip as shown in Ąg. 5.5 (B) with 6 screw. During

the experiments, a displacement was applied to the upper part along the 𝑦-axis, while

the lower part remained Ąxed. We maintained a load rate of 0.5 mm/min, consistent

with the one used for the CT sample.

In Fig. 5.5 (C), we present the experimental results for the sample with a 45° raster

angle. We observed that the crack propagated along the weak plane until it reached

the upper boundary. Interestingly, sometimes the crack propagated into the interface

between the sample and the upper part instead of changing its direction to -45°. In

some samples, we did observe an unstable crack propagation along -45°, which eventually

formed a zig-zag crack path. Beside we have tried to increase the dimension of short

sample with L = 50 mm. However, obtaining the zig-zag crack path systematically

proved challenging in our fracture experiments. Most of the cracks ended with unstable
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propagation along the interface between the sample and upper part. Due to the difficulty

of realizing the boundary conditions applied to the short sample in experiments, we

adopted an alternative concept by creating a thickness variation in the CT sample to

reproduce the indestructible boundary condition in our numerical simulation.

Figure 5.5 Fracture experiments on short sample: A) visualization of short sample in CAD
software Fusion 360, B) experimental setup and C) experimental results for short sample with
45° raster angle

5.1.2 Zig-zag crack propagation in CT with variation in thick-

ness

In the alternative sample conĄguration using a CT sample with a 25° raster angle and

varying thickness, the experimental results (Fig. 5.6 (A) revealed an interesting crack

propagation behavior. The middle of the CT sample was excavated to create a groove,

and the crack was observed to propagate along the 25° direction initially. However,

when the crack encountered a zone with a thickness mismatch, it formed a zig-zag path.

Notably, the zig-zag crack path was observed to be in close proximity to the upper

boundary, with a small amplitude, rather than zig-zag throughout the entire middle zone,

these experimental results were consistently reproducible. To numerically simulate this

behavior, the mismatch of thickness was represented by two indestructible boundaries

in the 2D phase-Ąeld model. A regularization parameter was set to a minimum value

(ℓ = 0.36 mm) to accurately capture the experimental zig-zag path. We opted for a
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different value of ℓ deviating from the optimal value of 0.6 mm determined in previous

section, with the intention of reducing the width of the damage Ąeld. This modiĄcation

was made in consideration of relatively small height of the experimental zig-zag crack

pattern shown in Ąg. 5.6 (A). As depicted in Ąg. 5.6 (B), the numerical simulation

successfully replicated the experimental observed zig-zag crack path near the upper

boundary.

Figure 5.6 Zig-zag crack path in CT sample with varying thickness: (A) fracture experiments,
where the middle zone featured a groove and was half as thick as the other parts of the sample.
(B) snapshot of the damage Ąeld of the CT sample revealed that the upper and lower boundaries
were assigned boundary conditions that prevented them from being damaged.

Nonetheless, employing a 2D model to simulate a 3D sample is unsuitable due to the

discrepancy in thickness. It is noticed that the 3D effect near the interface boundary

can not be produced in a 2D simulation. To gain deeper insights into the situation, we

rewrite the energy functional eq. (1.42) using non-dimensional quantities as follows:

Ã =
A

𝐸0

, 𝜺(𝒖̃) = 𝑢0

𝐿0

𝜺(𝒖), 𝐺c =
𝐺c

𝐺0

, 𝒖̃ =
𝒖

𝑢0

, ℓ̃ =
ℓ

𝐿0

, ∇2𝛼̃ =
1
𝐿0

∇2𝛼, dΩ̃ =
dΩ

𝐿3

0

(5.1)

The 3D problem is visualised in Ąg. 5.7: we designate the middle zone as Ω1 with a

thickness of 𝑒1, and the remaining part as Ω2 with a thickness 𝑒2.
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Figure 5.7 CT sample with a groove

The dimensionless energy functional of the 3D problem is denoted as follows:

∫
Ω1

𝑎(𝛼̃)𝑊 (𝒖̃)dΩ̃1 +
∫
Ω2

𝑊 (𝒖̃)dΩ̃2 +
𝐺0𝐿

2

𝐸0𝑢
2
0

∫
Ω1

𝑤(𝛼̃)
ℓ̃0

+ ℓ̃3
0
C∇2𝛼̃ · ∇2𝛼̃ dΩ̃1 (5.2)

Here, we denote 𝜔𝑖 as a 2D body, and its relation with the corresponding 3D body is

given by Ω𝑖 = 𝑒𝑖 · 𝜔𝑖, where 𝑒𝑖 represents the corresponding thickness. To extend a 2D

problem into 3D, two assumptions are made:

1. Crack from 2D to 3D: Γ(𝑥) = Γ′ (𝑥′) · 𝑒𝑖 (𝑥3) with 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ R3 and 𝑥′ =

(𝑥1, 𝑥2) ∈ R2

2. Displacement from 2D to 3D: 𝒖(𝑥) = 𝒖′ (𝑥′) · 𝑒𝑖 (𝑥3)

The eq. (5.2) is therefore can be reformulated as follows:

∫
𝜔1

𝑎(𝛼̃)𝑊 (𝒖̃)d𝜔1 +
𝑒2

𝑒1

∫
𝜔2

𝑊 (𝒖̃)d𝜔2 +
𝐺0𝐿

2

𝐸0𝑢
2
0

∫
𝜔1

𝑤(𝛼̃)
ℓ̃0

+ ℓ̃3
0
C∇2𝛼̃ · ∇2𝛼̃ d𝜔1 (5.3)

It was initially thought that the 3D problem could be effectively replaced with a simpler 2D

model by assuming an elastic modulus 𝐸2 =
𝑒2

𝑒1
𝐸1 for domain Ω2 in numerical simulations,

given that the ratio of thicknesses 𝑒2

𝑒1
is 2. However, this assumption turned out to

be incorrect due to the second assumption not holding at the interface, resulting in a

signiĄcant 3D effect at that boundary. Consequently, the solution of the 2D displacement
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Ąeld cannot be directly extended to 3D by merely multiplying it by the thickness. As a

result, a 3D model becomes necessary to accurately simulate our CT sample with the

groove. Unfortunately, the current computational power is insufficient to handle a 3D

model with anisotropic surface energy.

5.1.3 Perspectives

In conclusion, the previously proposed sample conĄgurations have proven to be defective,

either due to experimental irreproducibility or the mismatch between numerical simula-

tions and experimental reality. Consequently, both sample types introduced earlier are

unsuitable for studying the phenomena of zig-zag crack propagation experimentally.

However, during our experimental investigation, we stumbled upon another type of

CT sample that shows promise. By altering the printing method, we created successive

layers that were not arranged orthogonally, instead, they formed an angle of less than

90 degrees. Fig. 5.8 presents this CT sample with a ± 15° raster angle, wherein we

observed a pronounced zig-zag crack path oscillating between 15° and -15°. Although it

can be recognized as a potential sample conĄguration to investigate the zig-zag crack

propagation, it still requires further development of the numerical model with conform

surface energy correspond to the arrangement of the threads.

Figure 5.8 Zig-zag crack path in CT sample with successive layers arranged with an angle of
30°, red lines shows the zig-zag crack path along ± 15°.
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5.2 Fatigue versus quasi-statics loading

One potential application of constructing an anisotropic surface energy is to gain control

over the crack path, thereby ensuring the safety and reliability of components during

their service life. In real-world scenarios, many components experience cyclic loading

instead of monotonic loading. Therefore, understanding fracture behavior under cyclic

loading, particularly the crack path, becomes crucial for ensuring the structural integrity

of these components.

To our best knowledge, it is generally assumed that the crack propagation direction

can be predicted in the same way for both quasi-static and fatigue propagation (Chen

et al., 2015). However, this assumption lacks solid physical arguments and has not been

proven to be valid, even for isotropic materials.

In our research, during the mode I pre-crack cyclic loading process, we observed

even when the inĄll angle differs from 0°, we consistently obtained a straight pre-crack

instead of propagation along the direction of the Śweak plane.Š This discovery raised

questions about the validity of the aforementioned assumption. To delve further into this

phenomenon, we conducted fatigue tests using the samples which were used in fracture

experiments presented in Chapter 2 to investigate the crack path under cyclic loading.

5.2.1 Experiments under cyclic loading

The fatigue experiments involved using both CT samples with a raster angle of 30° and

CTS samples with a 45° raster angle and 15° loading angle. The samples were mounted

in an Instron ElectroPuls E3000 testing machine, where pins were inserted into the holes,

and the bottom was Ąxed securely. A sinusoidal cyclic force, ranging between 100 N

(Fmin) and 220 N (Fmax), was applied to the samples at a frequency of 3 Hz. At the

start of each cycle during the fatigue tests, we set a displacement threshold. When the

measured displacement reached this threshold, indicating the completion of the load

cycle, the test was momentarily paused, and an image was captured, with the maximum

force set at Fmax = 220 N. The specimens underwent approximately 1.0x105 to 1.5x105

loading cycles, and about 20 images were captured during each experiment. The different

crack propagation paths can be observed in Ąg. 5.9. For monotonic load, the crack

followed the direction of inĄll angle, namely the Śweak planeŠ, while for cyclic loading,

the crack advances progressively in step with the cycle. For CT sample, the crack is

observed to advance straight, and for CTS sample, it kinks but in a different direction

than under monotonic load, the new direction is almost perpendicular to the direction

of loading angle. The experimental results are reproducible with different raster angle.
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Therefore, it can be concluded that, under cyclic loading, the crack path deviated from

the direction of the printing threads.

Figure 5.9 Different crack propagation path depending on the loading mode: Ąrst row (a, b) CT
and CTS (loading angle 15°) sample under monotonic loading. second row (c, d) CT and CTS
(loading angle 15°) sample under cyclic loading. Two different column represent two different
loading mode.

To gain a deeper insight into the difference in crack paths under monotonic loading

and cyclic loading, we conducted a comparison of the evolution of SIFs during crack

propagation, as depicted in Ąg. 5.10. When subjected to monotonic load, the crack

changed its direction, and a sudden increase in the SIF value was observed at the onset of

propagation. This deviation from the expected behavior indicates that the PLS criteria as

presented in Section 1.2.1.6 is not valid, since 𝐾𝐼 𝐼 ≠ 0 during crack propagation. However,

our previous Ąndings indicated that the crack direction can be accurately predicted using

the GMERR criterion, which involves adopting a non-convex form of the surface energy
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𝐺𝑐 (𝜃).
In contrast, when examining fatigue crack propagation (as shown in the second

row of Ąg. 5.10), the crack path followed the rules of isotropic material, and the PLS

was satisĄed, as 𝐾𝐼 𝐼 remained zero during crack propagation. This suggests that the

anisotropic fracture toughness did not signiĄcantly inĆuence the crack path in the case

of cyclic loading.

Figure 5.10 Evolution of SIFs measured by DIC: Ąrst row (a, b) CT and CTS sample under
monotonic loading. second row (c, d) CT and CTS sample under cyclic loading. Two different
column represent two different loading mode.

5.2.2 Numerical simulation: phase-field for fatigue fracture

model with anisotropic surface energy

To computationally investigate the distinction between quasi-static and fatigue crack

propagation paths in anisotropic media, the authors (cite our paper) conducted a study

focusing on a mode I crack propagating into a direction of higher fracture toughness. The

anisotropic model presented in (Mesgarnejad et al., 2020) was employed for this purpose.
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To account for fatigue effects in the anisotropic model, the authors incorporated a recently

developed phase-Ąeld model of fatigue (Mesgarnejad et al., 2019; Grossman-Ponemon

et al., 2022). This novel approach allows the crack to grow below the Griffith threshold

(𝐺 < 𝐺𝑐) by gradually degrading the fracture toughness. The energy function can be

denoted as following:

Eℓ [𝒖, 𝛼, 𝛾] (𝑁) :=
∫
Ω

𝑎(𝛼)𝑊 (𝒖)dΩ+ 𝐺0

4𝑐𝑤ℓ0

∫
Ω

𝛾

[
𝑤(𝛼) + ℓ2

0A˜ |∇𝛼 |2
]

dΩ−
∫
𝜕𝑁Ω

𝑻𝑑 (𝑁) ·𝒖 d𝑠

(5.4)

where 𝛾(𝑁, 𝒙) is the degradation function as a function of cycle number 𝑁 and spatial

position 𝒙. For further details on the fatigue anisotropic phase-Ąeld model, we refer

readers to (Mesgarnejad et al., 2020; Grossman-Ponemon et al., 2022).

Fig. 5.11 presents the outcomes of phase-Ąeld simulations, illustrating the different

crack paths observed under two loading conditions. The Ąrst row represents monotonic

loading, while the second row corresponds to cyclic loading. Moving from left to right,

the anisotropic coefficient 𝐴 increases. Under monotonic loading, as the anisotropic

coefficient 𝐴 rises and exceeds 3, the crack path gradually switches its direction towards

the Šweak plane.Š In contrast, when considering the fatigue model, the crack direction

remains Ąxed at 0°, regardless of how the anisotropic coefficient evolves.

Fatigue
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Figure 5.11 Numerical simulations: Ąrst row shows the case of monotonic loading, second row
shows the case of cyclic loading, from left to right with the anisotropic coefficient 𝐴 increases.
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Both experimental and numerical results have consistently demonstrated a substan-

tial disparity in crack paths between monotonic loading and cyclic loading conditions.

Although the exact underlying reasons for this discrepancy are not yet fully clear, it is

reasonable to consider the inĆuence of the FPZ as a potential factor. As reported in a

research on rocks has revealed that under cyclic loading, the FPZ length is approximately

60 % larger than that observed under monotonic loading (Le et al., 2014).

5.3 Conclusions

In this chapter, we carried out numerical experiments using the numerical parameters

determined in Chapter 4. Our objective was to explore potential sample conĄgurations for

investigating zig-zag crack propagation. While the zig-zag crack path could be observed

in numerical simulations, conducting corresponding fracture experiments presented

signiĄcant challenges.

Another intriguing Ąnding was the distinct fracture behavior exhibited by the printed

samples under monotonic and cyclic loading. We observed this phenomenon in both

experiments and numerical simulations. To understand the underlying reason for this

difference, further investigation is necessary to provide a physical explanation.



Conclusion and Perspectives

Conclusion

This thesis explores crack propagation within printed samples that display isotropy in

elasticity and anisotropy in fracture toughness. We used a combination of experimental,

numerical, and theoretical approaches to examine the selection of crack paths in FDM-

fabricated PC samples.

The experimental investigation is outlined in Chapter 2. By adopting the criss-cross

printing pattern, the printed sample exhibits anisotropic fracture behavior. Following

a pre-cracking procedure, we conduced fracture experiments under both Mode I and

Mode I+II loading condition using CT and CTS samples. Through the examination of

experimental Ąndings, we deduced the existence of a prohibited direction in our printed

sample, as evidenced by the consistent crack propagation along the printed direction. At

a microscopic level, crack propagation occurs due to the fracture of the melt junction

between two parallel adjacent threads. We used the DIC to determine the critical energy

release rate 𝐺𝑐 of the Śweak planeŠ by using the measured SIFs after crack kinking.

Additionally, we noted that the printing direction also signiĄcantly inĆuences the critical

load associated with the fracture behavior.

To investigate anisotropic fracture behavior, we employed two numerical models

based on the classical approach and variational approach. The numerical investigation

comprises two main steps: which are outlined in Chapters 3 and 4. In Chapter 3, we

focused on validating the numerical models, while Chapter 4 involves a comparison with

experimental results. The numerical model based on the classic approach is implemented

using Cast3M (2020). This model addresses the static elasticity problem and is employed

to determine the SIFs after crack kinking. To establish its accuracy, we compared the

numerical results with Amestoy-LeblondŠs formula, showcasing the modelŠs capability

in accurately determining SIFs after kinking. For the numerical model based on the

variational approach, the numerical implementation was conducted using the open-source

FEM software FEniCS (2019.1). This model is dedicated to solving the problem of
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damage evolution. In the initial stages, we validated the implementation of the I-integral,

which aids in segregating the SIFs 𝐾𝐼 and 𝐾𝐼 𝐼 and determining the value of 𝑇-stress.

Subsequently, we compared the predictions of the numerical crack path and the associated

critical load with experimental data from relevant literature. This was done to validate

the accuracy of the phase-Ąeld model. We started with isotropic and weakly anisotropic

cases (second-order phase-Ąeld model), using the AT1 damage model. The results of

the numerical predictions exhibited a good agreement with the provided experimental

data. The validation of the AT1 phase-Ąeld model carries signiĄcant importance, as

it serves as a smooth transition towards the higher-order phase-Ąeld model. In the

theoretical aspects, we validated the prediction procedure of the GMERR by comparing

the predicted crack path and critical stress with relevant experimental data.

In Chapter 4, we conducted a comprehensive comparison between the numerical

outcomes and experimental data. This involved contrasting the calculated SIFs using

the classical model with the SIF values obtained through DIC, aiming to validate the

accuracy of experimental measurements. Furthermore, the numerical model founded on

the classical approach was employed to derive the elastic constants of the printed sample

by means of displacement Ąeld comparison.

Subsequently, we employed a higher-order phase-Ąeld model with strongly anisotropic

surface energy to simulate crack propagation in our printed samples. We began by

calibrating the numerical parameters and then proceeded to compare the anticipated

crack path and relevant critical force with experimental results, revealing a notable degree

of agreement between the two. Importantly, we demonstrated that these predictions

can be effectively achieved through the application of the GMERR criteria within a

LEFM framework. Additionally, informed by results of the numerical investigations,

our exploration delved into a discussion concerning the selection of the regularization

parameter ℓ in the context of the phase-Ąeld model. By conducting numerical experiments

with different sample geometries (CT and CTS), we found that the regularization ℓ can

be recognized as a material internal length which is close to the size of the printed thread.

In the Ąnal Chapter 5, we introduced a series of preliminary investigations aimed

at identifying suitable sample conĄgurations for observing zig-zag crack propagation.

Furthermore, we made an intriguing discovery regarding the divergent fracture behaviors

demonstrated by printed samples when subjected to both monotonic and cyclic loading

conditions. To further elucidate this phenomenon, we employed a fatigue phase-Ąeld model

featuring weakly anisotropic surface energy, successfully replicating the experimental

results and enhancing our understanding of this intricate behavior.
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Future work

Building upon the discoveries and conclusions presented in this thesis, certain aspects

of the research are still in their preliminary stages. Consequently, in the subsequent

discussion, we will outline a road-map for prospective investigations and future endeavors.

Zig-Zag crack path

Continuing in the vein of Chapter 5, we aim to explore conditions that could potentially

induce zig-zag crack propagation. This objective can be accomplished through alterations

to either the sampleŠs geometry or the printing approach. On the experimental front, the

modiĄcation of both sample geometry and printing strategies via 3D printing is readily

attainable. However, the systematic observation of zig-zag crack propagation in fracture

experiments necessitates further validation. The primary challenge in achieving this lies

within the loading conĄguration. Despite its numerical observation in the phase-Ąeld

model with a surĄng boundaryŠ condition, the practical realization of such a conĄguration

in experimental settings is complex.

However, it has been observed that maintaining the current sample geometry while

achieving a zig-zag crack path can be realized through modiĄcation in the printing

strategy. Instead of constructing layers that are mutually orthogonal, we can achieve

this by reducing the angle between two consecutive layers. From a numerical perspective,

implementing such a modiĄed printing pattern necessitates a corresponding adjustment to

the form of the surface energy in the phase-Ąeld model. This adjustment transforms the

cubic system into a orthorhombic system, leading to the introduction of nine anisotropic

constants within the C matrix. Therefore, further research is necessary to investigate

how adjusting anisotropic constants can transform surface energy into an orthorhombic

system.

Measurement of anisotropic surface energy in the ’forbidden direction’

As outlined in this thesis, our assumption was that the surface energy form of the

printed sample resembles that of a four-fold symmetric model, where the two inĄll

angles correspond to the two weak planesŠ. While experimental observations indicate

the presence of forbidden directions, determining the precise values of these forbidden

directionsŠ remains challenging, given that cracks cannot be guided into these directions.

According to the predictions derived from the GMERR criteria, the Śforbidden

directionŠ can be experimentally determined through a speciĄc loading conĄguration

(yielding a negative 𝑇-stress) and by reducing the anisotropy of fracture toughness.
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However, practically achieving a reduction in anisotropy through 3D printing is complex,

and quantifying the degree of anisotropy into a speciĄc numerical value poses difficulties.

Moreover, if we were to reduce the anisotropy of the sample, the measured values of the

Šforbidden directionsŠ would no longer correspond to the sample studied within the scope

of this thesis.

Therefore, drawing inspiration from fatigue testing, we recognize that under cyclic

loading, the crack can readily be directed into the forbidden directionŠ. Interestingly, the

surface energy generated in this process is indeed equivalent to the energy dissipated during

fatigue testing. While measuring dissipated energy might pose challenges, this approach

remains more viable than conducting traditional fracture experiments. Furthermore, the

fatigue testing method offers another advantage: it enables us to access any direction of

the surface energy pertaining to the printed sample by simply rotating the raster angle.

Fatigue phase-field model with four-fold symmetric surface energy

As detailed in Chapter 5, the experimental Ąndings highlight a notable difference in crack

paths under both monotonic and cyclic loading conditions. This phenomenon is also

evident within the fatigue phase-Ąeld model with a weakly anisotropic model. However

the numerical investigation incorporated with a weakly anisotropic surface energy, which

doesnŠt fully align with the characteristics of the printed sample. Given the intricate

nature of higher-order phase-Ąeld models incorporating strongly anisotropic surface

energy, various numerical challenges, such as non-convergence of the nonlinear solver,

can arise. Therefore, incorporating fatigue mechanisms within the strongly anisotropic

phase-Ąeld model requires meticulous attention from a numerical point of view.

Furthermore, to gain a comprehensive understanding of the variance in crack paths

between monotonic and cyclic loading, additional experimental investigation is imperative.

One plausible explanation for the observed difference might arise from the variation in

the size of the FPZ under these loading conditions. As a consequence, the propagation

of cracks might not ŚperceiveŠ the anisotropy of fracture energy, leading to a different

crack path.

Stability analysis by numerical simulation

The use of alternate minimization algorithm (Bourdin et al., 2008) in this study, which

exclusively provides stationary points as solutions. As stated in (León Baldelli and

Maurini, 2021), quasi-static evolution problems in fracture and the related softening

damage models exhibit strong non-linearity, which can lead to the possibility of multiple

solutions or no solutions at all. Hence, it becomes essential to perform numerical stability
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and bifurcation analysis to identify the physically meaningful solution from multiple

potential solutions.

In the work of León Baldelli and Maurini 2021, given a solution which satisĄes the

Ąrst-order condition shown in eq. (1.38), they checked the second-order local minimality

conditions by detecting the sign of the eigenvalue to evaluate whether the returned

solution is incrementally stable or not. For more details of deĄnition of the second-order

conditions refer to (León Baldelli and Maurini, 2021) and implementation in FEniCSx is

available online 1.

Through the illustration of simple cases such as a 1D traction bar and a 2D thin

Ąlm multiĄssuration problem, the study by León Baldelli and Maurini 2021 showcases

the capability of their proposed algorithms identifying unstable evolution paths. In

this context, we demonstrate the application of their code to a 2D problem involving

a singularity. We use dimensionless pac-man sample and CT sample, as depicted in

Ąg. 5.12. ItŠs worth noting that our numerical experiments were conducted using an

isotropic phase-Ąeld model. We suggest extending the stability analysis to include the

anisotropic phase-Ąeld model in the future. As noted in Chambolle et al. 2009; Li and

Maurini 2019, when the crack kinks, it will lead to a jump in both time and space, it

would be beneĄcial to investigate whether the evolution becomes incrementally unstable

during the crack kinking.

1https://github.com/kumiori/mec647
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Figure 5.12 Application of stability analysis on pacman sample (left) and CT sample (right).
First row shows the predicted crack path (in red), second row shows the computed eigenvalues
with respect to time, and third row shows the plot of different energies with respect to time.
(The mesh size used in numerical test: h = 0.01, and internal length ℓ = 0.03)
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The expression of Amestoy-Leblond’s

formula

The expression of Amestoy-LeblondŠs formula 𝐹𝑝𝑞 and 𝐺 𝑝 are denoted as follows (Amestoy

and Leblond, 1992):
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where the unit of 𝜋𝜑 is in radians.

Figure A.1 Function of 𝐹𝑝𝑞 (𝜑) with respect to the kink angle 𝜑

Figure A.2 Function of 𝐺 𝑝 (𝜑) with respect to the kink angle 𝜑



Appendix B

Python code for extracting near

crack tip outer shell in Gcode

1 filename = "CT1.gcode"

2 # poisition of the nozzle : X 150, Y 145 (the nozzle begins at lower

side of the crack tip)

3 phrase = ";TYPE:WALL -OUTER"

4 line_number = []

5 read_file = open(filename ,"r")

6 # get the linenumber ( outlayer at crack tip)

7 for number , line in enumerate ( read_file ):

8 if phrase in line:

9 line_number . append ( number +10)

10 read_file .close ()

11

12 print( line_number )

13 len( line_number )

14

15 # remove all the lines

16 with open(filename , "r") as infile :

17 lines = infile . readlines ()

18 with open(filename , "w") as outfile :

19 for pos , line_ in enumerate (lines):

20 if pos not in line_number :

21 outfile .write(line_)

Listing B.1 Python example
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Résumé : La fabrication additive attire une attention
croissante en raison de ses avantages en termes de
flexibilité de modélisation et de facilité de conception
de microstructures complexes. Nous avons constaté
qu’en manipulant la stratégie d’impression, les échan-
tillons imprimés par dépôt de fusion de polycarbonate
peuvent présenter un comportement fortement aniso-
trope en termes de résistance à la rupture, tout en
conservant des propriétés isotropes en termes d’élasti-
cité.
Le focus de cette thèse est d’explorer le comportement
en matière de rupture dans des milieux élastiques iso-
tropes présentant une ténacité de rupture anisotrope,
en utilisant une combinaison d’investigations expéri-
mentales et de simulations numériques. Dans la partie
expérimentale, nous examinons la propagation des fis-
sures dans diverses conditions de chargement en uti-
lisant des géométries d’échantillons variées, englobant
à la fois le Mode I et le Mode I+II. Dans la partie
numérique, nous adoptons la modélisation de la fissu-
ration fragile par champ de phase basée sur l’approche

variationnelle, en utilisant des données expérimentales
pour l’étalonnage et l’identification des paramètres nu-
mériques. À travers ces méthodologies complètes, notre
objectif est de favoriser une compréhension plus pro-
fonde de l’interaction entre les motifs d’impression et
la sélection des trajectoires de fissures. Cette compré-
hension a des implications significatives pour guider
et gérer la propagation des fissures dans les compo-
sants fabriqués par fabrication additive. De plus, nous
adoptons les critères classiques basés sur le taux de res-
titution d’énergie maximale généralisé pour améliorer
notre compréhension de la sélection des trajectoires de
fissures et de la force critique correspondante.
Dans la dernière partie de cette thèse, nous présen-
tons quelques investigations préliminaires concernant
l’éventuelle émergence d’un motif de fissure en Zig-
Zag dans des spécimens imprimés en 3D. De plus, nous
plongeons en profondeur dans le comportement de rup-
ture des spécimens imprimés sous chargement cyclique,
offrant une comparaison exhaustive entre les observa-
tions expérimentales et les prévisions numériques.

Title : Crack propagation in elastic media with anisotropic surface energy : experiments, numerical simulations
and linear elastic fracture mechanics
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Abstract : Additive manufacturing is receiving increa-
sing attention due to its advantages in terms of mo-
delling flexibility and allowing to easily design com-
plex micro-structures. Through the manipulation of
the printing strategy, we observed that fused depo-
sition of polycarbonate can result in printed samples
showcasing a distinct anisotropic behavior in fracture
toughness, all the while retaining isotropic properties
in elasticity.
This thesis is dedicated to investigating fracture be-
havior within isotropic elastic media with anisotropic
fracture toughness. The approach involves a combi-
nation of fracture experiments and numerical simu-
lations. In the experimental part, we examine crack
propagation under various loading conditions using di-
verse sample geometries, encompassing both Mode I
and Mode I+II loading condition. In the numerical
part, we adopt the phase-field modeling of brittle frac-
ture based on a variational approach, using experimen-

tal data for calibrating and identification of the nume-
rical parameters. Through these comprehensive metho-
dologies, our objective is to foster a deeper comprehen-
sion of the interplay between printing patterns and the
selection of crack paths. This understanding holds si-
gnificant implications for guiding and controlling crack
propagation in additive manufacturing-produced com-
ponents. Besides, we adopted the classical based cri-
teria Generalized Maximum Energy Release Rate to
enhance our understanding of crack path selection and
the relevant critical force.
In the last part of this thesis, we presents some prelimi-
nary investigations regarding the potential emergence
of Zig-Zag crack patterns in 3D printed specimens. Ad-
ditionally, we delve extensively into the fracture beha-
vior of printed specimens under cyclic loading, offering
a comprehensive comparison between experimental ob-
servations and numerical forecasts.
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