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Abstract

We divide the thesis into three main parts and we summarize the major contributions as

follows.

Low complexity Gaussian processes

Gaussian Process (GP) regression usually scales asO(n3) for computation andO(n2) for

memory requirements, wheren represents the number of observations. These limitations

makes GP inefficient for many problems when n is large. In this thesis, we investigate

the Karhunen-Loève expansion of Gaussian processes which offers several advantages

over low-rank compression techniques. By truncating the Karhunen-Loève expansion,

we obtain an explicit low-rank approximation of the covariance matrix (Gram matrix),

greatly simplifying statistical inference when the level of truncation is small relative to

n. We then provide explicit solutions for low complexity Gaussian processes.

We seek Karhunen-Loève expansions, by solving for eigenpairs of a differential

operator where the covariance function serves as the Green function. We offer explicit

solutions for the Matérn differential operator and for differential operators with eigen-

functions represented by classical polynomials. In the experimental section, we compare

the proposed methods with alternative approaches or baseline, revealing their enhanced

capability in capturing relevant patterns.



Constrained Gaussian processes

The second contribution introduces a novel approach used constrained Gaussian

processes to approximate a density function based with a prior from a finite set, only few,

observations. To address these constraints, our approach involves modeling the square

root of unknown density function with a Gaussian process prior. In this part of the work,

we adopt a truncated version of the Karhunen-Loève expansion as an approximation

method. A notable advantage of this approach is that the coefficients are Gaussian

and independent, with the constraints on the realized functions entirely dictated by the

constraints on the random coefficients. After conditioning on both available data and

constraints, the posterior distribution of the coefficients is a normal constrained to the unit

sphere. This distribution is analytical intractability, which requires the use of numerical

methods for approximation. To this end, we employs spherical HamiltonianMonte Carlo

(HMC). The utility and the efficiency of the proposed framework are validated through

a series of experiments, with performance comparisons against alternative methods.

Transfer learning on the manifold of finite probability measures

Finally, we introduce transfer learning models in the space of probability measures on a

finite set I , denoted as P + (I). In our formulation, we endow the space P+(I) with the

Fisher-Rao metric, transforming it into, a nice and easy to use, Riemannian manifold.

This Riemannian manifold, P+(I), holds a significant place in information geometry

with a wide range of scientific and engineering applications. Within this thesis, we

provide detailed formulas for geodesics, the exponential map, the log map, and the

parallel transport on P+(I).

Our exploration extends to statistical models on P+(I), typically conducted within

the tangent space of this manifold. With a comprehensive set of geometric tools, we

introduce transfer learning models facilitating knowledge transfer between these tangent

spaces. Detailed algorithms for transfer learning encompassing Principal Component



Analysis (PCA) and linear regression models are presented. To substantiate these

concepts, we conduct a series of experiments, offering empirical evidence of their

efficacy.

Keywords: Artificial intelligence; Gaussian processes; Classification; Regression;

Constrained Gaussian processes; HMC sampling; Regression; Low Rand Gaussian pro-

cesses; Riemannian manifold; Fisher-Rao metric; Parallel transport, Transfer learning;

Statistical models;



Résumé

La thèse est divisée en trois parties principales, nous résumerons les principales contri-

butions de la thèse comme suit.

Processus gaussiens à faible complexité

La régression par processus gaussien s’échelonne généralement en O(n3) en termes

de calcul et en O(n2) en termes d’exigences de mémoire, où n représente le nombre

d’observations. Cette limitation devient inapplicable pour de nombreux problèmes

lorsque n est grand. Dans cette thèse, nous étudions l’expansion de Karhunen-Loève

des processus gaussiens, qui présente plusieurs avantages par rapport aux techniques de

compression à faible rang. En tronquant l’expansion de Karhunen-Loève, nous obtenons

une approximation explicite à faible rang de la matrice de covariance (matrice de Gram),

simplifiant considérablement l’inférence statistique lorsque le nombre de troncatures est

faible par rapport à n.

Ensuite, nous fournissons des solutions explicites pour les processus gaussiens à

faible complexité. Tout d’abord, nous cherchons des expansions de Karhunen-Loève en

résolvant les paires propres d’un opérateur différentiel où la fonction de covariance sert de

fonction de Green. Nous offrons des solutions explicites pour l’opérateur différentiel de

Matérn et pour les opérateurs différentiels dont les fonctions propres sont représentées

par des polynômes classiques. Dans la section expérimentale, nous comparons nos

méthodes proposées à des approches alternatives, révélant ainsi leur capacité améliorée

à capturer des motifs complexes.



Processus gaussiens contraints

Cette thèse introduit une approche novatrice utilisant des processus gaussiens contraints

pour approximer une fonction de densité basée sur des observations. Pour traiter ces

contraintes, notre approche consiste à modéliser la racine carrée de la fonction de densité

inconnue réalisée comme un processus gaussien. Dans ce travail, nous adoptons une

version tronquée de l’expansion de Karhunen-Loève comme méthode d’approximation.

Un avantage notable de cette approche est que les coefficients sont gaussiens et in-

dépendants, les contraintes sur les fonctions réalisées étant entièrement dictées par

les contraintes sur les coefficients aléatoires. Après conditionnement sur les données

disponibles et les contraintes, la distribution postérieure des coefficients est une dis-

tribution normale contrainte à la sphère unité. Cette distribution pose des difficultés

analytiques, nécessitant des méthodes numériques d’approximation. À cette fin, cette

thèse utilise l’échantillonnage Hamiltonien Monte Carlo sphérique (HMC). L’efficacité

du cadre proposé est validée au moyen d’une série d’expériences, avec des comparaisons

de performances par rapport à des méthodes alternatives.

Apprentissage par transfert sur la variété des mesures de probabilité finies

Finalement, nous introduisons des modèles d’apprentissage par transfert dans l’espace

des mesures de probabilité sur un ensemble fini I , noté P + (I). Dans notre étude,

nous dotons l’espace P+(I) de la métrique de Fisher-Rao, le transformant en une

variété riemannienne. Cette variété riemannienne,P+(I), occupe une place significative

en géométrie de l’information et possède de nombreuses applications. Au sein de

cette thèse, nous fournissons des formules détaillées pour les géodésiques, la fonction

exponentielle, la fonction logarithmique et le transport parallèle sur P+(I).

Notre exploration s’étend auxmodèles statistiques situés au sein deP+(I), générale-

ment réalisés dans l’espace tangent de cette variété. Avec un ensemble complet d’outils

géométriques, nous introduisons des modèles d’apprentissage par transfert facilitant le



transfert de connaissances entre ces espaces tangents. Des algorithmes détaillés pour

l’apprentissage par transfert, comprenant l’Analyse en Composantes Principales (PCA)

et les modèles de régression linéaire, sont présentés. Pour étayer ces concepts, nous

menons une série d’expériences, fournissant des preuves empiriques de leur efficacité.

Mots clés: Processus gaussiens; Processus gaussiens contraints; HMC; Régression;

Variété riemannienne; Métrique de Fisher-Rao; Apprentissage par transfert
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Chapter I: General introduction

In this chapter, we describe the context and motivations of the scientific problems that

will be addressed in the thesis. In particular, we highlight their importance, the general

formulations, and the proposed solutions for different cases. Afterward, we present our

main contributions. Finally, we conclude this chapter with an outline of the rest of this

manuscript.

I.1 Context and motivations

The thesis can be divided into three main parts. We start by giving an overview without

details of each part.

I.1.1 Reduced-rank Gaussian processes

Gaussian processes are powerful tools for non-parametric Bayesian inference and learn-

ing, widely employed today. A Gaussian process is characterized by its mean function

and covariance function. We typically set the mean function to zero for convenience,

while the choice of the covariance function is determined through data-driven learning

or prior knowledge. In Gaussian process regression, we assume that the unknown func-

tion is a realization of the Gaussian process, and we make predictions for unseen values

using Gaussian conditioning. However, this process involves taking inverse of covari-

ance matrix, with computational and memory requirements typically scaling as O(n3)

and O(n2), respectively, where n represents the data size. This limitation becomes

particularly evident when working with large datasets. For example, Gaussian processes

have been extensively used in astronomy to model various phenomena, including the

cosmic microwave background, active galactic nuclei, and the logarithmic flux of X-ray

binaries. Unfortunately, there exist astronomical time series datasets such as NASA’s

Kepler Mission, K2, TESS, etc.[42], for which applying a Gaussian process model is no

longer tractable.

There is many proposals that address those limitations. Most of the previous
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methods attempt to approximate the inverse of the covariance matrix using reduced-rank

algorithms [5, 96, 110]. On the other hand, somemethods based onVariational Inference

(VI) consist in finding an approximation of the posterior distribution that minimizes the

Kullback-Leibler divergence [121]. The Variational Fourier Features (VFF) method,

[58], combines the variational approach with Fourier features and overcomes the local

weakness of VI. The Variational Orthogonal Feature (VOF) [19] method improves VFF

for a broader class of covariance functions by using the Bochner’s theorem. Another

strategy for reducing the computational cost is to approximate the Gaussian process as

a finite truncation of its Karhunen-Loève expansion.

The Karhunen-Loève expansion allows to represent a stochastic process as an

infinite series of orthogonal basis functions and random coefficients. Suppose we

have the Karhunen-Loève expansion of a given Gaussian process, we can efficiently

compute its truncation with the help of this expansion. Thus, this can lead to a reduced

computational cost O(nM2) where M represents the truncation number. However,

explicit Karhunen-Loève expansions are not available for all covariance functions [30,

63]. Finding this expansion is equivalent to determining the Mercer representation

(eigenfunction expansion) of the covariance function. This step requires solving the

eigenvalues and eigenfunctions of the integral operator that has the covariance function as

a kernel. It is very important to note the relationship between the eigenpairs of the integral

operator and the differential operatorwith the covariance as aGreen function [39]. In fact,

they share the same eigenfunctions but their eigenvalues are inverses. We will exploit

this relationship to solve the eigen-equations and provide expansions with eigenfunctions

as bases, for several classes of covariance functions.

I.1.2 Constrained Gaussian processes

In Gaussian process models, selecting an appropriate covariance function allows us

to capture the expected smoothness and likely patterns within data [98]. However,

many real-world phenomena demand the introduction of additional constraints for a

more realistic representation. For instance, when modeling a function, we note f(t),

representing a chemical concentration, it’s essential that the values of f should belong to

2
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the range of 0 to 1. This is a hard constraint that can not be relaxed. In a broader context,

many previous works have imposed bound constraints such that a ≤ f(t) ≤ b, where

a and b are application dependent constants with −∞ ≤ a < b ≤ +∞. To give but a

two examples, [62] provide an overview and comparison of the warped and bounded

likelihood approaches and [26] discretize the global bound constraints into constraints

at a finite number of selected points.

Early method to incorporate constraints and ensure that they are satisfied across

the entire domain has been done with splines in the prominent work [127]. This

approach approximates the Gaussian process using a finite-dimensional model based

on spline functions with Gaussian random coefficients. Recently, [85] proposed a

basis functions that are piecewise linear but depend on a finite set of knots to form a

partition of unity. The coefficients correspond to the values of the original Gaussian

process computed at the respective knots. Using this approximated process, the model

can incorporate bound constraints, monotonicity constraints, and convexity constraints,

which are equivalently translated into constraints on the coefficients. After conditioning

with interpolation (observations) and constraints, the problem reduces to simulating

the truncated multivariate normal distribution. Very recently, [84] have proposed a

comparison fo several Markov chain Monte Carlo (MCMC) methods for sampling and

have concluded that Hamiltonian Monte Carlo (HMC) is the most efficient sampler in

this context.

To enhance the flexibility of constrained models for various applications, the intro-

duction of new types of constraints is necessary. Typically, the posterior density is not

analytically tractable, requiring a sampling method to approximate the integral. In this

thesis, we will introduce a new type of constraints and a new method for sampling the

posterior distribution.

I.1.3 Transfer learning

Although machine learning methods have achieved great success and have been suc-

cessfully applied in many applications, their performance are still highly dependent on

data, both in term of quality and quantity. Moreover collecting data is expensive and

3
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time-consuming as well as being a crucial step. Transfer learning can assist us in reusing

a well trained model or an existing data to enhance a new, albeit different but related

model. This methodology is especially promising when we do not have enough data for

the new model.

Transfer learning, also known as domain adaptation, focuses on transferring knowl-

edge across domains (source domain and target domain) in order to boost the performance

of the target model. There are several applications of transfer learning, including Nat-

ural Language Processing (NLP) [28, 129], text sentiment classification [128], image

classification [34, 54, 80], human activity classification [55] and multi-language text

classification [95]. We refer to [29, 131, 136] for an extended review.

In transfer learning, the source task and the target task need to share some rela-

tionships. However, in reality, guaranteeing such relationships can be very challenging

which leads us to ask a key question: When should we transfer? In fact, there are

situations where transfer learning, when applied to unrelated source and target domains,

may result in unsuccessful or even harmful outcomes for the target model or population.

This situation is commonly described as negative transfer, see for example [99]. Despite

its importance, the negative transfer has not received significant attention [37, 48, 103].

For certain applications, data imposes some hard constraints as well as belonging

to non-flat manifolds. For example, we will consider a study of probability density

functions. In particular, each observation consists of a non-negative functions with a

unit integral that belongs to a convex set without a geometric structure. In order to exploit

the intrinsic properties of the underlying space, it becomes essential to extend transfer

learning into a Riemannian manifold setting. In a different context [46] introduced

the Model transport using parallel transport between tangent spaces of a manifold.

Nevertheless, there is still more work needed in this direction of research. Subsequently,

in this thesis, we develop a new transfer learning model on the manifold of finite

probability measures.

4
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I.2 Contributions

We summarize the main contributions in three main parts. First, we study reduced

Gaussian processes by truncating their Karhunen-Loève expansion. This approximation

provides a natural reduced-rank approximation of the covariance matrix. Applying

the matrix inversion lemma, the prediction cost scales as O(nM2), and the memory

requirement asO(M2)wheren is the data size andM is the order of truncation. However,

finding the Karhunen-Loève expansion is generally not an easy task. In this thesis, we

introduce the Gaussian processes with covariance functions derived from differential

operators. We consider the Matérn differential operator on a bounded domain, as well

as differential operators with eigenfunctions represented by classical polynomials such

as Legendre, Laguerre, Hermite, Chebyshev and Jacobi. To the best of our knowledge,

this is a novelty. Through the introduction of various Gaussian process models, we

approximate a wide range of functions based on different data patterns. Furthermore, we

show that truncating at an appropriate orderM , the inverse of the covariance matrix is

more numerically stable. To assess the importance of this framework, we have conducted

several and various experiments.

As a second contribution, we introduce a new type of constraint into Gaussian

process models. The problem consists of approximating a probability density function

based on finite set of observation points. Since a probability density functionmust satisfy

non-negativity and have integral equal to one, the approximation needs to satisfy these

conditions too. Nevertheless, it is still hard to ensure these conditions in a global setting.

Hence, we exploit an isometric mapping to model the square root of the probability

density function as a realization of the Gaussian process. The Gaussian process is then

approximated by a truncation version of its Karhunen-Loève expansion, represented

by finite sum of random coefficients and eigenfunctions that are orthonormal. This

approximation, theoretically solid, allows us to incorporate both data observations and

constraints into the random coefficients. After conditioning, the posterior distribution is

a normal distribution restricted on the unit sphere (Fisher-Bingham distribution). This

distribution has been widely studied in statistics and probability sciences. Consequently,

5
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there are many efficients methods to numerically approximate this distribution. In

this thesis, we introduce Spherical Hamilton Monte Carlo (HMC), which converges

efficiently and very quickly. We give a detailed example withMatérn covariance function

on bounded domain for which the eigenfunctions are sine functions. This example is

given for illustration without restriction of the proposed model than can be applied, when

adapted, for a large panel of applications. We have tested this configuration for various

experiments and which demonstrate good performances.

Finally, we develop a new transfer learning on the space of finite probability mea-

sures, denoted P+(I) where I is a finite index domain. We impose an appropriate

geometric structure on P+(I) with the Fisher-Rao metric to make it a Riemannian man-

ifold. This space is one of the main topics in information geometry [8]. In this thesis,

we first study the geometry of this space in detail, then we derive the explicit formulas

for Christoffel symbols, geodesics, exponential map, logarithm map, and the parallel

transport. Furthermore, we study the properties of some statistical models in this space.

Thanks to the developed geometrical tools, we introduce transfer learning for popu-

lations and subdomains on P+(I). Without loss of generality, we provide numerical

solutions and algorithms for transporting the Principal Component Analysis (PCA) and

manifold linear regression models. We have conducted several experiments to show the

importance of the proposed framework.

I.3 Outline

The remainder of this manuscript is organized as follows. Chapter II presents some

background basic notions that may be useful along this thesis. Chapter III covers low

complexity Gaussian processes and explicit solutions with covariance functions derived

from differential operators. In Chapter IV, we introduce the constrained Gaussian pro-

cess framework for approximating a probability density function based on observations.

Chapter V is dedicated to the geometry of finite probability measures and transfer

learning on this space. We make a general conclusion in Chapter VI.

6



Chapter II: Backgrounds and basic notions

In this chapter, we provide the mathematical foundations and backgrounds necessary for

our upcoming work. We begin by discussing the definition and properties of multivariate

normal distributions and then introduce Gaussian processes, which are the main topics of

Chapter III and Chapter IV. Next, we gather definitions and theorems from Differential

Geometry, which will serve as the foundation for Chapter V. As an illustrative example,

we will depict the multivariate normal distribution space as a differentiable manifold.

Organization. Section .1 provides a reminder of the definition and some important

properties of the multivariate normal distribution. Section .2 offers detailed informa-

tion on Gaussian processes, including their definitions, smoothness in the sense of mean

square, and their existence. Section .3 presents the formulas for Gaussian process regres-

sion. Section .4 lists several results regarding covariance functions, Bochner’s theorem,

Mercer’s theorem, and the relationship between the smoothness of the covariance and

the process. Section .5 briefly introduces Differential Geometry. In the final Section .6,

we present the geometry of normal distributions with the Fisher-Rao metric.

II.1 Multivariate normal distribution

In probability theory and statistics, the multivariate normal distribution (or Gaussian

distribution) is widely used for continuous random variables. Gaussian distributions

appear in many real world phenomena, and in many different contexts. For example,

the Gaussian distribution maximizes the entropy (see Theorem 6.5.1 in [22]), or by

the Central Limit Theorem the limit of the average of independent random variables is

Gaussian (see Theorem 9.5.6 in [36]).

A random vectorX ∈ Rd is said to have a Gaussian distribution with mean µ ∈ Rd

and covariance matrix Σ if it has the distribution function

p(x|µ,Σ) = 1
(2π)d/2|Σ|1/2 exp

(
−1

2(x− µ)TΣ−1(x− µ)
)
, (II.1)

where Σ = [σij] ∈ Rd×d is a symmetric positive definite matrix and |Σ| denotes its
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determinant. The inverse matrix Σ−1 = [σij] is called the precision matrix, sometimes

it is more convenient to work with the precision matrix than the covariance matrix. We

denote by X ∼ N (µ,Σ), and call X a Gaussian vector. Gaussian random variables are

completely determined by their mean and covariance matrix.

Let X ∼ N (µ,Σ), and split X into two disjoint subsets XA and XB. Without loss

of generality, we takeXA is the firstm component ofX andXB is the remaining d−m

components,

X =

XA

XB

 . (II.2)

We also define corresponding partitions of the mean and the covariance as

µ =

µA
µB

 , Σ =

ΣAA ΣAB

ΣBA ΣBB

 . (II.3)

We have the following important properties.

1. Normalization. The probability density function p(x|µ,Σ) is positive on Rd and∫
Rd
p(x|µ,Σ)dx = 1. (II.4)

2. Marginalization. The marginal densities

p(xA) =
∫
XB

p(x|µ,Σ)dxB, (II.5)

p(xB) =
∫
XA

p(x|µ,Σ)dxA (II.6)

are Gaussian: XA ∼ N (µA,ΣAA), XB ∼ N (µB,ΣBB).

3. Conditioning. The conditional densities

p(xA|xB) = p(x|µ,Σ)∫
XA

p(x|µ,Σ)dxA
, (II.7)

p(xB|xA) = p(x|µ,Σ)∫
XB

p(x|µ,Σ)dxB
(II.8)

are also Gaussian:

XA|xB ∼ N (µA + ΣABΣ−1
BB(xB − µB),ΣAA − ΣABΣ−1

BBΣBA, (II.9)

XB|xA ∼ N (µB + ΣBAΣ−1
AA(xA − µA),ΣBB − ΣBAΣ−1

AAΣAB. (II.10)

4. Summation. The sum of two independent Gaussian random variables with the

8
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same dimension, X ∼ N (µX ,ΣX) and Y ∼ N (µY ,ΣY ), is also Gaussian:

X + Y ∼ N (µX + µY ,ΣX + ΣY ). (II.11)

5. Linear combination. A random vector X ∈ Rd is a Gaussian vector if and only

if any linear combination ofX has a univariate Gaussian distribution. This means

that for any a ∈ Rd fixed, there exist µa ∈ R and σa ≥ 0 such that

〈a,X〉 =
d∑
i=1

aiXi ∼ N (µa, σ2
a). (II.12)

6. Decomposition. A random vectorX ∈ Rd is a Gaussian vector if and only if there

exist µ ∈ Rd fixed, a matrixΛ ∈ Rn×r fixed, and a Gaussian vectorW ∼ N (0, Ir)

in Rr, where r ≤ n and Ir is the identity matrix in Rr, such that

X = µ+ ΛW. (II.13)

In this case we have X ∼ N (µ,ΛΛT ).

From the previous properties, we see that a Gaussian vector is obtained by shifting

µ and a scaling Λ of a set of identically independently distributed (iid) standard normal

distributionW . In general, theGaussian vector depend on d(d+3)/2 parameters ofµ and

Σ. When the dimension d is large, the total number of parameters grows quadratically,

but the distribution is intrinsically unimodal. This is a limitation of Gaussian vectors,

when they need too many parameters but unable to provide a good approximation to

multimodal distributions.

II.2 Gaussian processes

In this section, we reference the lecture notes [9] and the book [114]. A Gaussian

process is a stochastic process that generalizes the Gaussian distribution. Conceptually,

a Gaussian process can be thought of as a distribution over functions. Next, we will

provide the definition of a Gaussian process.

9
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Definition II.1
Let (Ω,A, P ) be a probability space andT is a parameter set. A stochastic process

f indexed on a set T is a mapping of two variables

f : (Ω,A, P )× T→ R

(ω, t) 7→ f(ω, t).

We say that f is a Gaussian process if for any finite number of index t1, ..., tn ∈

T, for n ∈ N, the corresponding random vector (f(w, t1), ..., f(w, tn)) has the

Gaussian distribution.

Similar to Gaussian distribution, a Gaussian process is completely determined by its

mean functionm(t) and covariance function K(t, t′)

m(t) = E [f(t)] , (II.14)

K(t, t′) = E [(f(t)−m(t))(f(t′)−m(t′))] . (II.15)

For ω ∈ Ω fixed, the function f(ω, t) depends on t only. This is a deterministic function,

called a sample path or a realization. The underlying probability space will usually

be ignored and we write f(t) instead of f(ω, t). We denote the Gaussian process as

f ∼ GP(m(t), K(t, t′)).

The index setT is usually the real lineR or interval inR, where t ∈ T is interptreted

as time. It can also be a subset of Rd or an abstract set. [66] studies the case when T is

the sigma algebra of a measure space (Wiener process), [88] studies the case when T is a

separable Hilbert space, called isonormal Gaussian process. Recently, Gaussian process

was generalized for the index set is the probability density functions [10, 44, 101] or a

Riemannian manifold . In the following, we restrict ourselves to the case where T is a

subset of Rd.

For the general random process, it is hard to making inferences about its proba-

bility law from observing a single realization of the process. A common simplifying

assumption is that the random process is stationary.

10
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Definition II.2
A random process f is stationary if for all t1, ..., tn ∈ T and h ∈ Rd, such that

t1 + h, ..., tn + h ∈ T, the finite distribution of f at t1, ..., tn is the same as the

finite distribution of f at t1 + h, ..., tn + h.

The covariance function K is said to be stationary if it only depends on t− t′, we write

K(t, t′) = K(t− t′) by an abuse of notation. The Proposition below gives the necessary

and sufficient condition for a Gaussian process is stationary (the prove was given in [9]).

Proposition II.1
Let f be a Gaussian process on T, then f is stationary if and only if its mean

function is constant and its covariance function is stationary.

Proof Suppose f ∼ GP(m(t), K(t, t′)) is a Gaussian process with a mean function

m is constant, and a covariance function K is stationary. Let n, t1, ..., tn, h be as in

the Definition II.2. Since f is a Gaussian process, (f(t1), ..., f(tn)) and (f(t1 +

h), ..., f(tn + h)) are Gaussian vectors. Hence, their distributions are characterized by

their mean vectors and covariancematrices. Wewill show that they are identical between

the two Gaussian vectors. Indeed, we have E(f(ti)) = E(f(ti + h)) for i = 1, ..., n,

since the mean function is constant. Hence the mean vectors are identical. We have also

cov(f(ti), f(tj)) = K(ti − tj) = K((ti + h)− (tj + h)) = cov(f(ti + h), f(tj + h)),

since the covariance function is stationary. Hence the two covariance matrices are

identical.

For the reverse implication, let m and K be the mean function and covariance

function. If there exist h so that m(t + h) 6= m(t), then the two random vectors

f(t) and f(t + h) do not have the same distribution. If there exist t1, t2, h so that

K(t1, t2) 6= K(t1 + h, t2 + h) then (f(t1), f(t2)) and (f(t1 + h), f(t2 + h)) do not have

the same covariance matrix. �

As stated in [114], there is no simple relationship between the covariance function

of a Gaussian process and the smoothness of its realizations. However, it is possible

to relate the covariance function and mean square continuity. The definition of mean

square continuity is given as below.

11
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Definition II.3
Let f be a stochastic process on T ⊂ Rd. We say that f is mean square continuous

at t0 ∈ T if

lim
t→t0

E
(
(f(t)− f(t0))2

)
= 0.

For a stationary Gaussian process f , we have

E
(
(f(t)− f(t0))2

)
= 2(K(0)−K(t− t0)).

So f is mean square continuous at t0 if and only if K is continuous at the origin,

in this case f is mean square continuous everywhere. We say that f is mean square

continuous ifK is continuous at 0. The mean square continuity of f does not imply that

its realizations are continuous. In considering on the probability space (Ω,A, P ), we

have two other types of continuity: Continuous sample paths with probability one and

Almost surely continuous [1]. We define the mean square differentiability, based on the

definition of mean square continuous.

Definition II.4
A Gaussian process f on T ⊂ Rd is mean square differentiable if there exist d

Gaussian processes (defined on the same probability space (Ω,A, P )), ∂f
∂t1
, ..., ∂f

∂td
,

such that for k = 1, ..., d, for all t0 ∈ T, we have

lim
h→0

E

(f(t0 + hek)− f(t0)
h

− ∂f(t0)
∂tk

)2
 = 0,

with {ek}dk=1 is the canonical basis of Rd.

By induction, we can define the mean square differentiable of higher order. A Gaussian

process f is n times mean square differentiable if it is mean square differentiable and if

the dGaussian processes ∂f
∂t1
, ..., ∂f

∂td
are n−1 times mean square differentiable. We have

the following result about the smoothness of f in the sense of mean square differentiable.

Proposition II.2
Let f be a Gaussian process on T ⊂ Rd with mean function m and covari-

ance function K. Then f is n times mean square differentiable if m is n times

continuously differentiable and K is 2n times continuously differentiable.

The probability density of the finite-dimensional Gaussian vector (f(t1), ..., f(tn)) is

12
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given by (II.1):

pt1,...,tn(x1, ..., xn) = 1
(2π)n2 |Σ| 12

exp
{
−1

2(x−m)TΣ−1(x−m)
}
,

where xT = (x1, ..., xn) ∈ Rn, mT = (m(t1), ...,m(tn)) ∈ Rn is the mean vector, the

covariancematrixΣ has the elements σij = K(ti, tj). The finite-dimensional cumulative

distribution is given by:

Ft1,...,tn(r1, ..., rn) = P (f(t1) ≤ r1, ..., f(tn) ≤ rn)

=
∫ r1

−∞
...
∫ rn

−∞
pt1,...,tn(x1, ..., xn)dx1...dxn. (II.16)

We say that cumulative distributions Gt1,...,tn(r1, ..., rn) satisfy the symmetry con-

dition if

Gt1,...,tn(r1, ..., rn) = Gtπ(1),...,tπ(n)

(
rπ(1), ..., rπ(n)

)
for any permutation π of the index set {1, ..., n}. The distributions Gt1,...,tn satisfy the

compatibility condition if

Gt1,...,tn−1(r1, ..., rn−1) = Gt1,...,tn(r1, ..., rn−1,∞).

The finite cumulative distribution of a Gaussian process satisfies the two conditions.

Proposition II.3
The distribution functions defined as in (II.16) satisfy two consistency require-

ments: symmetry condition and compatibility condition.

Proof See section 1.4 of [1]. �

The existence of Gaussian process is asserted by the Kolmogorov’s existence theorem.

Theorem II.1
Let t1, ..., tn be arbitrary points inT. If a system of finite-dimensional distributions

Ft1,...,tn satisfies the symmetry condition and compatibility condition, then there

exists on some probability space (Ω,A, P ) a random field f(ω, t), t ∈ T having

Ft1,...,tn as its finite-dimensional distributions.

Proof See page 174 of [79]. �
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II.3 Prediction

The prediction of Gaussian processes rely on Gaussian conditioning property (II.9).

Gaussian Process prediction is a Bayesian method, where the first thing is constructing a

prior distribution, this is equivalent to choose themean function and covariance function,

and updating this distribution by conditioning on the data to get the posterior distribution.

The posterior distribution is still a Gaussian process with a new updated mean function

and covariance function. We will consider two cases, noise-free observations and noisy

observations.

Let a Gaussian process f(t) ∼ GP(0, K(t, t′)), t ∈ T, with zero mean function and

covariance function K. Suppose we have a noise-free observations {(ti, f(ti))|i =

1, ..., n} of f . We want to predict the values at n∗ test point t′1, ..., t′n∗ . Denote

T = (t1, ..., tn) is the training points, T∗ = (t′1, ..., t′n∗) is the test points, F =

(f(t1), ..., f(tn))T is the training outputs, and F∗ = (f(t′1), ..., f(t′n∗))T is the test out-

puts. By the definition of Gaussian process, the joint distribution is given byF
F∗

 ∼ N
0,

K(T, T ) K(T, T∗)

K(T∗, T ) K(T∗, T∗)


 , (II.17)

whereK(T, T ) = [K(ti, tj)], ti, tj ∈ T is the covariancematrix of sizen×n, and similar

for K(T, T∗), K(T∗, T ) and K(T∗, T∗) where the components is the corresponding

values of covariance function. Apply the conditioning property (II.9), we have posterior

distribution

(F∗|T∗, F = y) ∼ N (K(T∗, T )K(T, T )−1y,K(T∗, T∗)−K(T∗, T )K(T, T )−1K(T, T∗)).

(II.18)

By placing the Gaussian process prior over a underlying unknown function f , we

get not only the value for the predictive test output, but we get the full predictive

distribution. These distributions provide approximations by the conditional means F̂∗ =

K(T∗, T )K(T, T )−1y, and confidence intervals by the conditional covariances cov(F∗).

When the test point is equal to one training point, we can prove that the predictive

value is equal to the corresponding training output (if the covariance matrixK(T, T ) is

invertible). This means that the predictive function interpolates the data.
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Figure II.1: The prior realizations ofGaussian processes (first row) and the posterior realizations.
The black line is the graph of the predictive function in black line, the grey region is the± standard
deviation, the red points are the observations.

It is more realistic if we use the noisy observation model y = f(t) + ε, where the

noise is independent identically distributed Gaussian ε ∼ N (0, σ2
n). In this case, we

have the joint distribution asY
F∗

 ∼ N
0,

K(T, T ) + σ2
nIn K(T, T∗)

K(T∗, T ) K(T∗, T∗)


 , (II.19)

where Y = (f(t1) + ε1, ..., f(tn) + εn)T , and In is the n× n identity matrix. Apply the

conditioning theorem, we have (F∗|T∗, Y = y) ∼ N (F̂∗, cov(F∗)), where

F̂∗ = K(T∗, T )
(
K(T, T ) + σ2

nIn
)−1

y, (II.20)

cov(F∗) = K(T∗, T∗)−K(T∗, T )
(
K(T, T ) + σ2

nIn
)−1

K(T, T∗). (II.21)

Figure II.1 shows examples of Gaussian prediction corresponding with Radial Basis

function kernel (or Gaussian covariance) and Matérn kernel.

II.4 Covariance functions

A Gaussian process is characterized by its mean and covariance function. We usually

assume that the mean function is identically zero. Hence the study of the covariance

function remains important for the Gaussian process. We will consider the class of

all possible stationary covariance functions. And by the Bochner’s theorem, we can

present the covariance functions with an unique spectral representation. Then we give

the conditions for the existence of n times mean square differentiable of the process, and
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the representation of its covariance function.

Definition II.5
Let n be a positive integer, and let ti ∈ T and ci ∈ R for i = 1, ..., n. Then the

function K on T× T is said to be positive semi-definite on T if
n∑
i=1

n∑
j=1

cicjK(ti, tj) ≥ 0 (II.22)

for all choice of n, {t1, ..., tn} and {c1, ..., cn}. If K is stationary, we have
n∑
i=1

n∑
j=1

cicjK(ti − tj) ≥ 0.

We can easily show that any covariance function is positive semi-definite. We apply the

Kolmogorov’s existence theorem to prove the inverse. The arguments below follow B.V.

Gnedenko [50].

Theorem II.2
The class of covariance functions coincide with the class of positive semi-definite

functions.

Proof Let K be a covariance function and ti, ci like in Definition II.5. Then we have
n∑
i=1

n∑
j=1

cicjK(ti, tj) = var
(

n∑
i=1

cif(ti)
)
≥ 0.

So any covariance function is a positive semi-definite function. We now prove the

inverse: each positive semi-definite function K is the covariance function of some

random field. The positive semi-definiteness of K ensures that any finite dimensional

distribution of (f(t1), ..., f(tn))

pt1,...,tn(x1, ..., xn) = 1
(2π)n2 |Σ| 12

exp
{
−1

2xTΣ−1x
}
,

where Σ has components σij = K(ti, tj), is a finite dimensional multivariate normal

distribution. So like in Theorem II.1, we can apply Kolmogorov’s existence theorem to

show that the corresponding Gaussian process exists. �

Corollary II.1
The correlation function of a random process f is defined as the function k on

T × T, where k(t, t′) = Cor(f(t), f(t′)), representing the correlation between

f(t) and f(t′). Then, the class of correlation functions coincides with the class of

positive semi-definite functions where k(t, t) = 1.
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Proof The Corollary follows from the previous theorem and

k(t, t′) = K(t, t′)√
K(t, t)

√
K(t′, t′)

.

�

We state here the well known Bochner theorem.
Theorem II.3. Bochner’s Theorem
A complex-valued functionK on Rd is positive semi-definite if and only if it is the

Fourier transform of a finite nonnegative Borel measure µ on Rd, i.e.

K(t) = (2π)−d/2
∫
Rd
e−ix.tdµ(x), t ∈ Rd. (II.23)

Proof See [132]. �

Definition II.6
The measure µ defined in (II.23) is called the spectral measure or spectrum of the

corresponding process f .

Now we discuss Mercer’s theorem, which allows us to express the kernel in the

series of eigenfunctions and eigenvalues of the integral operator

Kφ =
∫
T
K(x, ·)φ(x)dµ(x). (II.24)

In general, there are an infinite number of eigenfunctions {φi(x)}∞i=1 and corresponding

eigenvalues {λ}∞i=1,

Kφi = λφi. (II.25)

Theorem II.4. Mercer’s theorem
Let (Ω, µ) be a finite measure space andK be a kernel on Ω such that the integral

operator K is positive definite, i.e.∫
Ω×Ω

K(x, x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0, ∀f ∈ L2(Ω, µ). (II.26)

Let {φi(x)}∞i=1 be the normalized eigenfunctions of K associated with the eigen-

values {λ}∞i=1. Then:

1. the eigenvalues {λ}∞i=1 are absolutely summable,

2. the equation

K(x, x′) =
∞∑
i=1

λiφi(x)φi(x′) (II.27)
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holds for µ2-almost everywhere, where the series converges absolutely and

uniformly µ2-almost everywhere.

Proof See [78]. �

With T ⊂ Rd, let Ĥ be a subspace of L2(Ω,A, P ) consisting of functions which can

be represented as finite linear combinations of the form ξ = ∑
s∈S csf(s) where cs are

complex coefficients and S is an arbitrary finite subset of T. Then Ĥ is a complex

vector space. The inner product on Ĥ is induced from L2(Ω,A, P ). Namely, for

ξ = ∑
s∈S1 csf(s) and η = ∑

s∈S2 dsf(s),

(ξ, η) = E (ξη) =
∑
s1∈S1

∑
s2∈S2

cs1ds2E (f(s1)f(s2)) .

Let H = H(0, K) be the closure of the linear manifold Ĥ with respect to this inner

product. Here 0 in H(0, K) refers to the mean function of f , and K refers to its

covariance function. Thus ξ ∈ H if one can find a Cauchy sequence ξn ∈ Ĥ such that

E|ξ − ξn|2 → 0 as n→∞.

Definition II.7
The spaceH is called the Hilbert space generated by the random process f .

Similarly, define L(µ) to be the closed linear manifold of L̂(µ) with

L̂(µ) =
{
ξ(λ) =

∑
s∈S

cse
iλ.s|S ⊂ T, cs ∈ C

}
.

Let ξ(λ) = ∑
s1∈S1 cs1e

iλ.s1 and η(λ) = ∑
s2∈S2 ds2se

iλ.s2 be in L̂(µ). The inner product

of ξ(λ) and η(λ) is defined by

(ξ(λ), η(λ))µ =
∑
s1∈S1

∑
s2∈S2

cs1ds2

∫
Rd
eiλ.(s1−s2)µ(dλ),

with µ is spectral measure. For ξ(λ) and η(λ) in L(F ) we define the inner product

(ξ, η)µ = lim
n→∞

(ξn(λ), ηn(λ))µ ,

where ξn(λ) → ξ(λ) and ηn(λ) → η(λ). If we identify ∑s∈S csf(s) with ∑s∈S cse
iλ.s

and extend this correspondence to respective limits of such sums, we have:

Proposition II.4
The two Hilbert spacesH and L(µ) are isometrically isomorphic.

Let us apply this correspondence tomean square differentiability of a stationaryGaussian
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process f on R. By Definition II.4 of mean square differentiability, to consider the

convergence of fh(t) = f(t0 + h)− f(t0)
h

as h → 0 in H, it is equivalent to consider

the convergence of τh = eiλ(t+h) − eiλt

h
as h→ 0 in L(µ). Study the convergence of τh

we get the theorem below.

Theorem II.5
Suppose f is a stationary Gaussian process onRwith covariance functionK.Then

f is mean square differentiable if and only if K ′′(0) exists and is finite. And, if f

is mean square differentiable then f ′ has covariance function −K ′′ .

Proof See section 2.6 of [114]. �

By repeated application of the previous theorem, it follows that f is n-times mean square

differentiable if and only ifK(2n)(0) exists and is finite and, if so, the covariance of f (n)

is (−1)nK(2n).

Below are some examples of covariance functions where ` > 0 and σ2 are parame-

ters:

covariance function expression

exponential σ2 exp
(
− |t|

`

)
Matérn 3

2 σ2
(
1 +
√

6 |t|
`

)
exp

(
−
√

6 |t|
`

)
Matérn 5

2 σ2
(
1 +
√

10 |t|
`

+ 10
3
|t|2
`2

)
exp

(
−
√

10 |t|
`

)
Gaussian σ2e−

t2
`2

The general Matérn covariance is given by (see [114])

K`,ν(t) = 1
Γ(ν)2ν−1

(
2
√
ν
|t|
`

)ν
Kν

(
2
√
ν
|t|
`

)
, (II.28)

with Γ the Gamma function and Kν the modified Bessel function of second order. The

covariance K`,ν is Matérn (`, ν) with ` the correlation length and ν the smoothness

parameter.

In the regression and classification problems using a Gaussian process, we do not

know its covariance function in many practical applications. Thus in order to turn

Gaussian processes into powerful practical tools it is essential to develop methods that

address the model selection problem. We first determine what is the type of covariance

function that is more suitable from the context. Then we will use a statistical estimator to
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estimate the parameter of the covariance function like the Maximum Likelihood method

and Cross Validation method.

II.5 Manifold

In computer science, there are many datasets that reside on a manifold, a topological

space that locally looks like an open set of the Euclidean space. For example 3D rotation

matrices belong to the Lie group SO(3) [56], normalized histograms belong to the unit

sphere , the space of symmetric positive definite (SPD) matrices [91]. On the manifold,

we can define the metric, called Riemannian manifold, and we can compute the distance

between two points. The precise mathematical descriptions in applications are facilitated

by the use of differential geometry that generalizes the Euclidean space. In this section

we give briefly some definitions and notions about manifolds and differential geometry.

There are many books on Differential geometry, we follow maily the books [57, 67].

Definition II.8
A manifold M of dimension d is a connected paracompact Hausdorff space

for which every point m ∈ M, there exists a neighborhood Om of m that is

homeomorphic to an open subset Ω of Rd. The homeomorphism ψm : Om → Ω

is called a coordinate chart. An atlas is a family of charts {Oa, ψa}, where a

belongs to some index set A, such that {Oa} forms an open covering ofM.

For any chart (Oa, ψa), if m ∈ Oa and ψa(m) = (x1(m), ..., xd(m)) then Oa is called

coordinate neighborhood ofm, and (x1(m), ..., xd(m)) is called local coordinates ofm.

Having the definition of manifold, we can go further to define the differentiable structure.

Definition II.9
An atlas {Oa, ψa}, a ∈ A, on a manifold is called differentiable if all the transition

maps

ψbψ
−1
a : ψa(Oa ∩ Ob)→ ψb(Oa ∩ Ob) (II.29)

are differentiable of class C∞. A chart is called compatible with a differentiable

atlas if adding the chart to the atlas yields again a differentiable atlas. An

atlas is called maximal if any chart compatible with it is already contained in
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ψa
ψb

M

Oa
Ob

ψa(Oa)

Rd

ψbψ
−1
a

ψb(Ob)

Rd

Figure II.2: Two charts and their transition maps.

it. A maximal differentiable atlas is called a differential structure. A differential

manifold of dimension d is a manifold with a differentiable structure.

The maximal condition of differential structure is cumbersome to check. But it is not

essential since any family of atlas can be extended in a unique way to satisfy the maximal

condition. The differentiable structure allows us to define a differentiable map between

manifolds.
Definition II.10
LetM and N be two differentiable manifolds with their corresponding atlases

{Oa, ψa} and {Qb, θb}. A map h : M → N is called differentiable if all the

maps θb ◦ h ◦ ψ−1
a are differentiable in the defined domain. In the special case,

when N is R the differential map is called the differential function. The set of all

differential functions is denoted by C∞(M).

Furthermore, h is called a diffeomorphism if it is a bijection, and both h and its inverse

h−1 are differentiable. Some manifolds usually have complex geometries. A tangent

space of a manifold at given point gives an approximation of the manifold locally by a

linear space. If the manifoldM is embedded in some Euclidean space, the tangent space

atm is the space of all tangent vectors atm. Where the tangent vector can be though as

the velocity of a curve passing through m. In general manifold, we define the tangent

21



Manuscript - Thesis

space by the equivalence class.

Definition II.11
Let m ∈ M, and let (Oa, ψa) and (Ob, ψb) be two local charts of m. Define the

equivalence relation of tangent vectors v ∈ Tψa(m)Rd and w ∈ Tψb(m)Rd as

(ψa, v) ∼ (ψb, w) ⇐⇒ w = d(ψb ◦ ψ−1
a )v. (II.30)

Define the tangent space toM at m as the space of equivalent classes (ψa, v),

denoted by TmM. The space TM is defined as the disjoint union of tangent space

TmM, for allm ∈M.

We note that TmM is a vector space of dimension d. For any tangent vector v ∈ TmM,

in a local coordinate (Oa, ψa) ofm we can write as

v =
d∑
i=1

vi
∂

∂xi
, (II.31)

where vi ∈ R, and ∂
∂xi

: h 7→
(
∂h◦ψ−1

a

∂xi

)
◦ ψa, for any h ∈ C∞(M), i = 1, ..., d. We call

m is the base point, and the set of vectors ∂
∂xi
, for i = 1, ..., d, is a basis of the tangent

space. The tangent vector v can be represented as a derivative at 0 of a differentiable

curve γ that satisfies: γ is defined on a neighborhood of 0, γ(0) = m, and in coordinate

(Oa, ψa) we have
d

dt
xi ◦ ψa (γ(t)) = vi, i = 1, ..., d. (II.32)

Let π : TM → M be the projection of the tangent vector into its base point.

Then the triple (TM, π,M) is called the tangent bundle ofM. A smooth section of the

tangent bundle is called a vector field. The space of all vector fields is denoted byX(M).

Furthermore, we can introduce the scalar product on the tangent space. That permits

us to measure the lengths and the angles of tangent vectors. Then, we can evaluate the

length of a differentiable curve by taking integration of the norm of its tangent vector.

Definition II.12
A Riemannian metric on a differentiable manifoldM is given by a scalar product

gm on each tangent space TmM, which depends smoothly on the base pointm. A

Riemannian manifold is a differential manifoldM equipped with a Riemannian

metric g, denote (M, g).
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In the definition, the metric g depends smoothly on the base point means that for any two

smooth vector fields V,W in X(M), the function gm(V |m,W |m) is a smooth function

of m. A Riemannian isometry between (M, gM) and (N , gN ) is a diffeomorphism

h :M→N such that the pullback metric h∗gN is the same as gM, i.e,

gN (Dh(v), Dh(w)) = gM(v, w) (II.33)

for all v, w ∈ TmM and allm ∈M. Now let γ : [c1, c2]→M be a smooth curve from

a closed interval [c1, c2] ⊂ R into the Riemannian manifoldM. Then the length of γ is

defined as

L(γ) :=
∫ c2

c1

∥∥∥∥∥dγ(t)
dt

∥∥∥∥∥ dt, (II.34)

where ‖dγ(t)
dt
‖ =

√
gγ(t)(γ̇(t), γ̇(t)) is the norm of tangent vector γ̇(t) in Tγ(t)M. Here,

γ̇(t) represents the derivative of γ with respect to t. Now, let’s define the distance

between two points onM.

Definition II.13
Let m,n ∈ (M, g). The distance between m and n is defined as the infimum

length of the piecewise smooth curve connecting them

d(m,n) := inf
γ:[c1,c2]→M

{L(γ)|γ piecewise smooth curve, γ(c1) = m, γ(c2) = n}.

(II.35)

On a general manifold, the tangent space associated with different base points are

different. We cannot define the derivative of a vector field as usual way by taking

the limit of the ratio of two differences. Sine the difference of two tangent vectors at

different base points is not well defined, because they belong to two different spaces.

On manifolds, the affine connections provides us the rule to take the derivative of vector

fields.
Definition II.14
An affine connection on a manifold M is a rule ∇ which assigns to each

V ∈ X(M) (first argument) a linear mapping ∇V of the space X(M) (second

argument) into itself satisfying the following conditions:
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1. ∇ is tensorial in first argument

∇fV+hW = f∇V + h∇W , (II.36)

2. ∇ is linear in second argument, and satisfies the product rule

∇V (W + Z) = ∇V (W ) +∇V (Z), (II.37)

∇V (fW ) = V (f)W + f∇V (W ), (II.38)

for f, h ∈ C∞(M), V,W,Z ∈ X(M). The linear operator∇V is called covariant

differentiation with respect to V .

The following lemma states the local property of the connection∇.

Lemma II.1
SupposeM has the affine connection ∇. Let O be an open submanifold ofM.

Let V,W ∈ X(M). If V orW vanishes identically on O, then so does ∇V (W ).

Furthermore, if V vanishes at a pointm ∈M, then so does∇V (W ).

Proof See Section 4, Chapter 1 of [57]. �

In local coordinate, there is a one-one relation between the affine connection and the

Christoffel symbols Γki,j that satisfy

∇ ∂
∂xi

∂

∂xj
=
∑
k

Γki,j
∂

∂xk
. (II.39)

The fundamental theorem of Riemannian Geometry determines a unique connection,

called the Levi-Civita connection,∇LC .

Theorem II.6
On each Riemannian manifold (M, g), there is uniquely one connection∇LC that

satisfies

1. ∇LC is torsion free: ∇LC
V W −∇LC

W V = VW −WV = [V,W ],

2. ∇LC is metric: ∇LC
V g(W,Z) = g(∇LC

V W,Z) + g(W,∇LC
V Z),

where V,W and Z are vector fields.

Proof See [57]. �

Let γ : [c1, c2]→M be a curve inM. We have the following definition of parallelism.
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Definition II.15
Let γ : [c1, c2]→M be a curve inM, and let V,W ∈ X(M) such that

V (t) = Vγ(t) = γ̇(t). (II.40)

Then, given an affine connection ∇ onM, the familyW (t) = Wγ(t) is said to be

parallel with respect to γ if

∇VW |γ(t) = 0, ∀t ∈ [c1, c2]. (II.41)

In the local chart (Oa, ψb) the vector fields V,W can be written by

V =
∑
i

V i ∂

∂xi
, W =

∑
i

W i ∂

∂xi
, (II.42)

where V i,W i are functions on Oa. For simplicity, we write xi(t) = xi(ψ(γ(t)),

V i(t) = V i(γ(t)),W i(t) = W i(γ(t)), and assume γ([c1, c2]) ⊂ Oa. ThenV i(t) = ẋi(t)

and on the local coordinate Oa we have:

∇VW =
∑
k

∑
i

V i∂W
k

∂xi
+
∑
i,j

V iW jΓki,j

 ∂

∂xk
.

SoW (t) is parallel with respect to γ if
dW k

dt
+
∑
i,j

Γki,j
dxi
dt
W j = 0, (II.43)

for all k = 1, ..., d. We say that the tangent vector W (c1) was parallel translated to

W (c2), this depends also on the curve γ in general. By the parallelism, we can identify

the tangent space of different base points.

Proposition II.5
Let m and n be two points inM, and let γ be a curve segment from m to n.

The corresponding parallel translation with respect to γ induces an isomorphism

between TmM and TnM.

Proof See Proposition 5.2. in [57]. �

We can see that the equation involves V and W only through their values on the

curve. The following definition of the geodesic depends on the connection through the

parallelism.
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Definition II.16
Let γ : [c1, c2] → M be a curve inM. The curve γ is called a geodesic if the

family of tangent vector γ̇(t) is parallel with respect to γ. A geodesic γ is called

maximal if it is not a proper restriction of any geodesic.

In a local coordinate neighborhood, the geodesic satisfies
d2xk
dt2

+
∑
i,j

Γki,j
dxi
dt

dxj
dt

= 0, k = 1, ..., d. (II.44)

This means that the geodesic is a curve parallel to itself, that we call also autoparallel

curve. Given the initial conditions (initial point and initial velocity), the geodesic is

uniquely defined.

Proposition II.6
LetM be a differential manifold with an affine connection. Let m ∈ M and let

v 6= 0 in the tangent space TmM. Then there exists a unique maximal geodesic γ

onM such that

γ(0) = m, γ̇(0) = v. (II.45)

The following theorem shows a topological relationship between the tangent space and

the manifold.
Theorem II.7
Let M be a manifold with an affine connection, and let m ∈ M. For any

v ∈ TmM, let γ be the geodesic with γ(0) = m and γ̇(0) = v. Then there exists

an open neighborhood O0 of 0 in the tangent space TmM and an neighborhood

Om ofm inM such that the mapping v 7→ γ(1) is a diffeomorphism between O0

onto Om.

This brings us to the definition of the exponential map and the log map.

Definition II.17
The mapping v 7→ γ(1) defined in the theorem is called the exponential mapping

atm, denoted by expm. Its inverse is called the logarithm, denoted by logm.
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M

v.m

.
γ(1) = exp(v)

log(.)

exp(.)

TmM

Figure II.3: Exponential map and logarithmic map.

II.6 The geometry of Normal distributions

In this section, we give an example of manifold to illustrate the previous section. We

consider the statistical model of all Gaussian distributions

S = {p(x|µ,Σ) = N (µ,Σ)| θ = (µ,Σ) ∈ Rd × Sd++}, (II.46)

with the Fisher-Rao metric. This space was widely studied and has many applications

[93]. Define the mapping ψ : S → Rd′ , d′ = d(d+ 3)/2, as

ψ(N (µ,Σ)) = θ = ((µi)i=1,...,d, (σij)i≤j), (II.47)

where µ = (µ1, ..., µd)T and Σ = (σij)i,j=1,...,d. We see that ψ is a one-to-one map

between S and a subset of Rd′ . Considering (S, ψ) as a global chart, so there is a

corresponding differentiable structure on S where (S, ψ) is a coordinate system. This

shows S is a differential manifold of dimension d′. On the coordinate system (S, ψ), we

define a basis of the set of vector field X(S) by
∂

∂µi
, i = 1, ..., d; ∂

∂σij
, i ≤ j ≤ d. (II.48)

We then identify these basis vector fields with the vectors and symmetric matrix
∂

∂µi
↔ ei ∈ Rd; ∂

∂σij
↔ Eij, i ≤ j, (II.49)
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where (ei)i=1,...,d is the canonical basis of Rd, and Eij is the basis of symmetric matrix

space

Eij =


1(i,i), i = j,

1(i,j) + 1(j,i), i 6= j.

(II.50)

In which 1(i,j) is the d × d matrix with 1 in the (i, j) component and zero elsewhere.

Any vector field X ∈ X(S) can be decomposed as

X =
d∑
i=1

X iei +
∑
i≤j

X̄ ijEi,j, (II.51)

where X i, X̄ ij : S → R are smooth functions on S.

A natural Riemannian structure on S can be provided by the Fisher information

matrix

g(θ) = [gij(θ)] = Cov(∇ logN (µ,Σ)). (II.52)

We have logN (µ,Σ) = −d
2 log 2π− 1

2 log |Σ| − 1
2(x− µ)TΣ−1(x− µ). Suppose µ and

Σ depend on θ, taking partial derivative with respect to θi we have
∂ logN (µ,Σ)

∂θi
=− 1

2 trace
(

Σ−1 ∂Σ
∂θi

)
+ 1

2(x− µ)TΣ−1 ∂Σ
∂θi

Σ−1(x− µ)

+
(
∂µ

∂θi

)T
∂

∂µi
Σ−1(x− µ). (II.53)

By computing E
(
∂ logN (µ,Σ)

∂θi

∂ logN (µ,Σ)
∂θj

)
directly ([94]), we get the closed formula

gij(θ) = ∂µ

∂θi
Σ−1 ∂µ

∂θj
+ 1

2 trace(Σ
−1 ∂Σ
∂θi

Σ−1 ∂Σ
∂θj

). (II.54)

In the basis of the vector field, we have

g

(
∂

∂µi
,
∂

∂µj

)
= g(ei, ej) = eTi Σ−1ej = σij, i, j = 1, ..., d,

g

(
∂

∂µi
,
∂

∂σkl

)
= g(ei, Ekl) = 0, i, k, l = 1, ..., d,

g

(
∂

∂σij
,
∂

∂σkl

)
= g(Eij, Ekl) = 1

2 trace(Σ
−1EijΣ−1Ekl)

= σilσjk + σikσjl, i, j, k, l = 1, ..., d.

Let X = ∑d
i=1X

iei + ∑
i≤j X̄

ijEi,j and Y = ∑d
i=1 Y

iei + ∑
i≤j Ȳ

ijEi,j be tangent

vectors at θ. Then be The inner product of X and Y is

〈X, Y 〉θ = XT
µ Σ−1Yµ + 1

2 trace
(
Σ−1XΣΣ−1YΣ

)
, (II.55)
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where Xµ = (X1, ..., Xd)T , Yµ = (Y 1, ..., Y d)T are the tangent vectors in Rd and

XΣ = ∑
i≤j X̄

ijEi,j , YΣ = ∑
i≤j Ȳ

ijEi,j are the symmetric matrices.

The space S with the Fisher-Rao metric is a Riemannian manifold, called Fisher-

Rao Gaussian. The induced Riemannian geodesic distance ρN (·, ·) is called Fisher-Rao

distance:

dS(N (θ1),N (θ2)) = inf
γ
{Length(γ) | γ(0) = N (θ1), γ(1) = N (θ2)}, (II.56)

where γ is the piecewise smooth curve connecting the two distributions, and the length

is defined as

Length(γ) =
∫ 1

0

√
〈γ̇(t), γ̇(t)〉θ(t)dt. (II.57)

The Christoffel symbols of the Levi-Civita connection ∇LC were given in [107].

The corresponding geodesic curves (µ(t),Σ(t)) satisfy the equations
d2µ

dt2
−
(
dΣ
dt

)
Σ−1

(
dµ

dt

)
= 0

d2Σ
dt2

+
(
dµ

dt

)(
dµ

dt

)T
−
(
dΣ
dt

)
Σ−1

(
dΣ
dt

)
= 0.

(II.58)

The closed form for the geodesic and distance are not known in general. But they

were explicitly given in the cases where µ is constant, Σ is constant, Σ is diagonal or in

the one dimensional case.

II.6.1 The submanifold SΣ where Σ is constant

The statistical manifold SΣ = {p(x|µ,Σ) | θ = (µ),Σ = Σ0 fixed} is a submanifold of

S of dimension d. The Fisher information matrix is given by g(µ) = [gij(µ)] ∈ Rd×d

where

gij(µ) = ∂µ

∂θi
Σ−1 ∂µ

∂θj
. (II.59)

The geodesics and distance are given in [7, 93]. Let θ0 = µ0 and θ1 = µ1, then the

geodesic curve γ(t) in SΣ connecting θ0 and θ1 is given by

γ(t) = ((1− t)µ0 − tµ1,Σ0) . (II.60)

The Fisher-Rao distance is given by

dΣ(θ0, θ1) =
√

(µ1 − µ0)TΣ−1
0 (µ1 − µ0). (II.61)

29



Manuscript - Thesis

II.6.2 The submanifold Sµ where µ is constant

The statistical manifold Sµ = {p(x|µ,Σ) | θ = (Σ), µ = µ0 fixed} is of dimension

d(d + 1)/2. The Fisher information matrix in this case is given by g(Σ) = [gij(Σ)]

where

gij(Σ) = 1
2 trace(Σ

−1 ∂Σ
∂θi

Σ−1 ∂Σ
∂θj

), i, j = 1, ..., d(d+ 1)/2. (II.62)

The geodesics and distance has been studied in [87]. Let θ0 = Σ0 and θ1 = Σ1,

then the geodesic curve is given by

γ(t) =
(
µ0,Σ1/2

0 exp
(
t log

(
Σ−1/2

0 Σ1Σ−1/2
0

))
Σ1/2

0

)
. (II.63)

The Fisher-Rao distance is given by

dµ(θ1, θ2) =

√√√√1
2

d∑
i=1

log2(λi), (II.64)

where 0 < λ1 ≤ ... ≤ λd are the eigenvalues of Σ−1/2
0 Σ1Σ−1/2

0 .

II.6.3 The one dimensional case

Now we consider the one dimensional case. The univariate Gaussian distribution

p(x, µ, σ) = 1√
2πσ

exp
(
−|x− µ|2

2σ2

)
(II.65)

is parametrized by the half upper plane of R2

H = {(µ, σ) ∈ R2|σ > 0}. (II.66)

The information matrix is

[gij(µ, σ)] =

 1
σ2 0

0 2
σ2

 . (II.67)

The Christoffel symbols are given by

[Γ1
ij] =

 0 − 1
σ

− 1
σ

0

 , [Γ2
ij] =

 1
2σ 0

0 − 1
σ

 . (II.68)

Consequently, the geodesic equations are the following
d2µ

dt2
− 2
σ

dµ

dt

dσ

dt
= 0

d2σ

dt2
+ 1

2σ

(
dµ

dt

)2

− 1
σ

(
dσ

dt

)2

= 0.
(II.69)
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To solve for this ODE system, we first separating and integrating the first equation
µ̈

µ̇
= 2σ̇

σ
↔ d

dt
ln µ̇ = 2 d

ds
ln σ ↔ µ̇ = Aσ2, (II.70)

where A is constant. There are two cases.

1. The case A = 0. It follows that µ = constant, which corresponds to vertical

lines. The second equation of the system is reduced to
σ̈

σ̇
= σ̇

σ
. (II.71)

Integrating we find σ(t) = BeCt, with B,C are constants. Hence the geodesics are
µ = µ0,

σ(t) = BeCt,

(II.72)

where µ0, B, C are constants.

2. The case A 6= 0. Substituting µ̇ = Aσ2 in second equation, we obtain

σσ̈ + A2

2 σ4 − (σ̇)2 = 0. (II.73)

To solve for σ, we put u = σ̇. Then the equation becomes

σ
du

dσ
u+ A2

2 σ4 − u2 = 0. (II.74)

Multiplying by the factor 1/σ3 leads to the exact differential equation
u

σ2du+
(
A2

2 σ − u2

σ3

)
dσ = 0. (II.75)

The solution is
u2

2σ2 + A2σ2

4 = E

2 , (II.76)

where E is positive constant. Replacing u = σ̇ and solve for σ we get

σ =
√

2E
A2

1
cosh

(√
E(t+ t0)

) . (II.77)

In order to solve for µ, we integrate µ̇ = Aσ2 and obtain

µ = 2E
A

∫ 1
cosh2

(√
E(t+ t0)

)dt = 2
√
E

A
tanh

(√
E(t+ t0)

)
+ F (II.78)

in conclusion, the solution in this case is
µ(t) = 2

√
E
A

tanh
(√

E(t+ t0)
)

+ F,

σ(t) =
√

2E
|A|

1
cosh(√E(t+t0)) ,

(II.79)
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This satisfies the equation
A2

4E (µ(t)− F )2 + A2

2Eσ(t)2 = 1. (II.80)

So in the plane (µ, σ) the geodesic is the ellipse with center (F, 0), the width 4
√
E/|A|

and the height 2
√

2E/|A|. With the boundary conditions, we can find the values of the

constants. We remark that the formula for geodesic on Poincaré half-plane H is known

to Atkinson and Mitchell [7] and also Stoker [116]. But they use different system of

coordinates. The geodesics for this model are circular arcs perpendicular to the real axis

and straight vertical lines ending on the real axis.
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Chapter III: Gaussian processes based on

Classical Polynomial

In this chapter, we propose new data-driven statistical regression models with low

complexity. First, we introduce new Gaussian processes where the covariance functions

have explicit Mercer’s representation. Second, we truncate the infinite sum of Karhunen-

Loève expansion to employ it in regression models with low computational cost scaling:

O(nM2) for inference andO(M3) for learning, instead ofO(n3) for a canonical Gaussian

process, where n is large in comparison to M (n >> M ). Moreover, we develop an

implementation that requires a negligible memory O(M2) instead of O(nM). Finally,

we demonstrate the robustness and the practical interest of the proposed methods with

simulation and real studies. An extensive set of comparisons is explored to further

investigate their efficiency against some state-of-the-art methods.

Organization. This chapter is organized as follows. Section .1 presents a general

introduction. Section .2 provides background information on Gaussian processes re-

gression. In Section .3, we discuss the low complexity Gaussian processes and highlight

their main advantages in terms of computational complexity. Section .4 presents the

proposed solutions for several differential operators with orthogonal polynomial bases.

The experimental results are presented and discussed in Section .5. Finally, we provide

a comprehensive discussion and conclusion in Section .6.

III.1 Introduction

Gaussian processes are powerful and flexible statistical models that have gained sig-

nificant popularity in the field of econometrics, shape analysis, signal processing, data

science, machine learning, etc [3, 43, 44, 98, 125]. However, modeling with Gaussian

processes may also suffer from some computational challenges. When the number of

observations n increases, the computational complexity for inference and learning grows

significantly and incurs O(n3) computational cost which is unfeasible for many modern
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problems [86]. Another limitation of Gaussian processes is the memory scaling O(n2)

in a direct implementation. Significant efforts have been dedicated to the development

of asymptotically efficient or approximate computational methods for modeling with

Gaussian processes. Various approximations and scalable algorithms, such as sparse

Gaussian processes [108] and variational inference [27], have been developed to make

Gaussian processes applicable to larger dataset. The book [98] dedicated the whole

chapter (Chapter 8) to describe a number of approximation methods.

Usually, certain approximations, as demonstrated in [30, 65], involve a sort of

reduced-rank Gaussian processes that rely on approximating the covariance function.

Most of these approximations typically reduce the complexity toO(nM2) and the storage

to O(nM) with M << n. For example, [134] addressed the computational challenge

of working with large-scale dataset by approximating the covariance matrix, which is

often required for computations involving kernel methods. In addition, [47] proposed

a FFT-based method for stationary covariances as a technique that leverage the Fast

Fourier Transform (FFT) to efficiently compute and manipulate covariance functions

in the frequency domain. The link between state space models (SSM) and Gaussian

processes inference has been explored by [109]. This could avoid the cubic complexity

in time using Kalman filtering inference methods [71]. Recently, [110] presented a

novel method for approximating covariance functions as an eigenfunction expansion of

the Laplace operator defined on a compact domain. More recently, [52] introduced a

reduced-rank algorithm for Gaussian processes regression with a numerical scheme.

In this chapter, we consider the Karhunen-Loève (K-L) expansion of a Gaussian

process with many advantages over other low-rank compression techniques [49]. First,

it allows us to represent a Gaussian process as a series of basis functions and random

coefficients. By selecting a subset of the most significant basis functions according to

the more important eigenvalues, the rank of the Gaussian process can be reduced. This

is particularly useful when dealing with big data, as it can help alleviate computational

and storage requirements. Second, the K-L decomposition can be particularly useful

for modeling the noise component of a Gaussian process. By analyzing the eigenvalues

corresponding to the eigenfunctions, one can identify the level of contribution of each
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eigenfunction to the noise component. This information can aid in noise modeling, esti-

mation, and separation from the clean Gaussian process. Finally, the K-L decomposition

provides a natural framework for model selection and regularization in Gaussian process

modeling. By truncating the decomposition to a subset of significant eigenfunctions, one

can prevent overfitting. This regularization can improve the generalization capability of

the Gaussian process and mitigate the impact of noise or irrelevant features.

The K-L expansion of a Gaussian process is the optimal representation in the L2-

sense, but the K-L expansions are available only for Gaussian processes with some

covariance functions [63]. Instead of solving difficult integral equations for eigenpairs,

we aim to exploit differential operators with orthogonal polynomials acting as eigenfunc-

tions in contrast to previous works on K-L expansions. This choice is crucial because

polynomials are designed to be numerically stable and well-conditioned, which will

lead to more accurate and stable computations, especially in the presence of round-off

errors. Moreover, orthogonal polynomials often possess convenient integration and dif-

ferentiation properties. These properties facilitate efficient calculations involving the

interpolated functions, making them highly advantageous for applications that require

hard computations. Overall, Gaussian processes decomposition with orthogonal poly-

nomials provides numerical stability, faster convergence and accurate approximation [2].

Their use in Gaussian processes for machine learning has been virtually nonexistent. The

most existing researches are only based on analysis of integral operators and numerical

approximations for computing K-L expansions [49].

III.2 Canonical Gaussian processes regression

In this section, we remind Gaussian process prediction for convenience. A one-

dimensional Gaussian process defined on an index set T ⊆ R is a stochastic process in

which the marginal variables for any finite set in T follows a Gaussian distribution. In a

regression task, a nonparametric function f is assumed to be a realization of a stochastic

Gaussian process whereas the likelihood term holds from observations corrupted by a
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noise according to the canonical form
yi = f(ti) + εi; i = 1, . . . , n

f ∼ GP(0, K(t, s))
(III.1)

where εi ∼ N (0, σ2
n) is a Gaussian noise. Given a training dataset D = (t,y) =

(ti, yi)ni=1, the posterior distribution over f = f(t) = (f(t1), . . . , f(tn))T is also Gaus-

sian: p(f |D) = N (µ,Σ). From Bayes’ rule, we state that the mean and the covariance

posterior are expressed as

µ = K(K + σ2
nIn)−1y, (III.2)

Σ =
(

K−1 + 1
σ2
n

In
)−1

, (III.3)

where K = [K(ti, tj)]ni,j=1 is the prior covariance matrix and In is the n × n identity

matrix. The predictive distribution at any test input t? can be computed in closed-form

as f(t?)|D, t? ∼ N
(
f̂?, var(f?)

)
, with

f̂? = k(t?)T (K + σ2
nIn)−1y, (III.4)

var(f?) = K(t?, t?)− k(t?)T (K + σ2
nIn)−1k(t?), (III.5)

where k(t?) = [K(ti, t?)]ni=1.

The covariance function K(·, ·) usually depends on a set of hyperparameters, de-

noted by θk, that needs to be estimated from the training dataset. The log marginal

likelihood for Gaussian process regression serves as an indicator of the degree to which

the selected model accurately captures the observed patterns. The log marginal likeli-

hood is typically used for model selection and optimization. Let Θ = (θk, σ2
n) denote

the model hyperparameters then the log marginal likelihood log p(y|t,Θ) is given by

l(Θ) = −1
2 log |K + σ2

nIn| −
1
2yT (K + σ2

nIn)−1y− n

2 log(2π). (III.6)

Here, | · | denotes the determinant. The goal is to estimate the hyperparameter Θ that

maximizes the log marginal likelihood. This can be achieved using different methods,

such as gradient-based algorithm [12], where the gradient vector with respect to the
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hyperparameter is
∂l(Θ)
∂θk

=1
2yT (K + σ2

nIn)−1∂K
∂θk

(K + σ2
nIn)−1y− 1

2 tr
(

(K + σ2
nIn)−1∂K

∂θk

)
, (III.7)

∂l(Θ)
∂σ2

n

=1
2yT (K + σ2

nIn)−1(K + σ2
nIn)−1y− 1

2 tr
(
(K + σ2

nIn)−1
)
. (III.8)

The weakness of inferring the posterior mean, the mean prediction, or learning the hyper-

parameters from the log marginal likelihood is the need to inverse the n×nGrammatrix

K + σ2
nIn. This operation usually costs O(n3), which limits the applicability of stan-

dard Gaussian processes when the sample size n increases significantly. Furthermore,

the memory requirements for Gaussian process regression scale with a computational

complexity of O(n2).

III.3 Low complexity Gaussian processes

One of the main advantages of a Gaussian process is that it can be represented as a series

expansion involving a complete set of deterministic basis functions with corresponding

random coefficients. Let the inner product in L2(T, ρ) be〈
φ, ψ

〉
=
∫
T
φ(t)ψ(t)ρ(t)dt, (III.9)

where ρ(t) is a positive weight function such that
∫
T ρ(t)dt < ∞. Consider a linear

integral operator K : L2(T, ρ) 7→ L2(T, ρ) with kernel K, expressed in terms of the

inner product, as

Kφ =
∫
T
K(·, t)φ(t)ρ(t)dt. (III.10)

The following spectral theorem states the general result of an operator on a Hilbert space.

Theorem III.1. Spectral theorem
Let H be a separable infinite-dimensional Hilbert space, and let A be a compact

self-adjoint operator onH. Then there exists a sequence of real eigenvalues {λj}

with λj → 0 as j → ∞, and an orthonormal basis of {φj} of eigenvectors with

Aφj = λjφj for all j ≥ 1.

Proof See the book [38]. �

In our case, the operator K is compact and self-adjoint with respect to the inner

product defined in (III.9), since
〈
Kφ, ψ

〉
=
〈
Kψ, φ

〉
, allowing us to apply the spectral
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theorem for H = L2(T, ρ). Consequently, there exists an orthonormal set of basis

functions {φj}∞j=1 in the weighted space L2(T, ρ), that is,∫
T
φj(t)φl(t)ρ(t)dt = δjl, (III.11)

and a set of real eigenvalues {λj}∞j=1. If K is positive and bounded then it admits

absolutely summable positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0. According to Mercer’s

Theorem II.4, the covariance function has the series expansion

K(t, s) =
∞∑
j=1

λjφj(t)φj(s). (III.12)

The eigenvalues {λj}∞j=1 and eigenfunctions {φj}∞j=1 can be obtained from the integral

operator and the solution is provided by the Fredholm integral equation

Kφj(t) = λjφj(t), ∀t ∈ T. (III.13)

Now, the Gaussian process f ∼ GP(0, K(·, ·)) can be decomposed using a series of

eigenfunctions and random coefficients, as described in Karhunen-Loève [130].

Theorem III.2. Karhunen-Loève (K-L)
Let f be a nonparametric function on T modeled with a Gaussian process of a

covariance function K(·, ·). Then, for all t ∈ T the function f can be written as

f(t) =
∞∑
j=1

ajφj(t), with aj
ind∼ N

(
0, λj

)
(III.14)

where {λj}∞j=1 and {φj}∞j=1 are eigenvalues and eigenfunctions of the integral

operator K defined in (III.10).

In order to avoid the inversion of the n × n matrix K + σ2
nIn, we use the approx-

imation scheme presented above and project the Gaussian process to a truncated set of

M basis functions. The truncated version of f at an arbitrary orderM ∈ N∗ is given by

fM(t) =
M∑
j=1

ajφj(t) (III.15)

with an approximation error eM(t) = ∑∞
j=M+1 ajφj(t). The canonical Gaussian process

regression model adapted to the truncated Gaussian process becomes
yi = fM(ti) + εi, i = 1, . . . , n,

fM ∼ GP(0, KM(t, s)),
(III.16)

where KM(t, s) = E(fM(t)fM(s)) = ∑M
j=1 λjφj(t)φj(s). The following proposition
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proves the convergence.

Proposition III.1

1) The approximation KM(·, ·) converges uniformly to K(·, ·) whenM →∞,

i.e.,

lim
M→∞

(
sup
t,s∈T
|K(t, s)−

M∑
j=1

λjφj(t)φj(s)|
)

= 0 (III.17)

2) The mean integrated squared error (MISE) of fM tends to 0 asM →∞.

Proof The proof of 1) follows from Mercer’s theorem [118], while here we solely

present the proof of 2). The MISE of fM also known as the L2 risk function is given by

MISE = E
(
||f − fM ||2L2

)
(III.18)

= E
(
||eM ||2L2

)
= E

( ∫
T
(
∞∑

j=M+1
ajφj(t))2dt

)

= E
( ∞∑
j=M+1

a2
j

∫
T
φj(t)2dt

)

= E
( ∞∑
j=M+1

a2
j

)

=
∞∑

j=M+1
λj,

which tends to 0 asM →∞ since λj are absolutely summable. �

The convergence of the Mercer’s decomposition depends hardly on the eigenvalues

and the differentiability of the covariance function. [118] showed that the speed of the

uniform convergence varies in terms of the decay rate of eigenvalues and demonstrated

that for a 2β times differentiable covariance K(·, ·) the truncated covariance KM(·, ·)

approximates K(·, ·) as O
(
(∑∞j=M+1 λj)

β
β+1
)
. For infinitely differentiable covariances

the latter is O
(
(∑∞j=M+1 λj)1−ε

)
for any ε > 0. To summarize, smoother covariance

functions tend to exhibit faster convergence, while less smooth or non-differentiable

covariance functions may exhibit slower or no convergence.

The resulting approximation fall into the class of reduced-rank approximations

based on approximating the covariance matrix K with a matrix K̂ = [KM(ti, tj)]ni,j=1 =

ΦΛΦT , where Λ is a M ×M diagonal matrix eigenvalues such that Λjj = λj and Φ
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is a n ×M matrix eigenfunctions such that Φij = φj(ti). Note that the approximate

covariance matrix K̂ is ill-conditioned if λ1/λM is large or if the observation points ti

are too closed to each other [23]. This lead to large numerical error when inverting K̂.

By Theorem II.2, a bivariate function K(·, ·) is a covariance function if and only if it is

positive semi-definite. The following proposition states that the truncation covariance

KM(·, ·) is well define a covariance function.

Proposition III.2
Let M ∈ N∗ be the order of truncation. Let λj and φj be eigenvalues and

eigenfunctions of the integral operator K, for j = 1, . . . ,M . If K(·, ·) is positive

semi-definite then KM(·, ·) is also positive semi-definite.

Proof Let N ∈ N∗, {t1, . . . , tN} ⊂ T and {c1, . . . , cN} ∈ RN be as in Definition II.5.

From (III.12), we have
N∑
i=1

N∑
l=1

ciclKM(ti, tl) =
N∑
i=1

M∑
j=1

N∑
l=1

ciclλjφj(ti)φj(tl)

=
M∑
j=1

λj
N∑
i=1

N∑
l=1

ciclφj(ti)φj(tl)

=
M∑
j=1

λj

(
N∑
i=1

ciφj(ti)
)2

≥ 0.

In the above equality, we have used the fact that if K(·, ·) is positive semi-definite then

all eigenvalues λj are nonnegative. �

Now, we show how our novel regression model that utilizes Gaussian processes de-

composition technique is able to achieve low complexity. Wewrite down the expressions

needed for both inference and hyperparameters learning and discuss the computational

requirements. Applying the matrix inversion lemma [51] we re-rewrite the predictive

distribution (III.4–III.5) as

f̂? = φT? (ΦTΦ + σ2
nΛ
−1)−1ΦTy (III.19)

var(f?) = σ2
nφ

T
? (ΦTΦ + σ2

nΛ
−1)−1φ? (III.20)

where φ? is anM -dimensional vector with the j-th entry being φj(t?). When the number

of observations is higher than the number of required basis functions (n >> M ) the

use of this approximation is advantageous. Thus, any prediction mean evaluation is
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dominated by the cost of constructing ΦTΦ, which means that the method has an overall

asymptotic computational complexity of O(nM2).

The approximate log marginal likelihood updated with the model (IV.8) satisfies

l(Θ) =− 1
2 log |ΦΛΦT + σ2

nIn| −
1
2yT (ΦΛΦT + σ2

nIn)−1y− n

2 log(2π)

=− 1
2(n−M) log σ2

n −
1
2 log |ΦTΦ + σ2

nΛ
−1| − 1

2

M∑
j=1

log λj (III.21)

− 1
2σ2

n

(yTy− yTΦ(ΦTΦ + σ2
nΛ
−1)−1ΦTy)− n

2 log(2π)

After the initial cost needed for inferring the prediction mean (III.19) evaluating the

approximate logmarginal likelihood hasO(M3) complexity needed to inverse theM×M

matrix ΦTΦ + σ2
nΛ
−1. In practice, if the sample size n is large it is preferable to cache

the result of ΦTΦ causing a memory requirement scaling as O(M2).

III.4 Explicit solutions for low complexity Gaussian processes

In this section, we describe explicit solutions of the low complexity Gaussian process

(LCGP) with covariances derived from differential operators. In this chapter, we focus

on the construction of covariance functions that incorporate orthogonal polynomials as

eigenfunctions for two main reasons:

i) On the one hand, polynomials can approximate a wide range of functions with

various degrees of complexity. They can be adjusted to predict different data

patterns and can capture both linear and nonlinear relationships [25],

ii) On the other hand, polynomial regression is a well-established technique that

extends linear regression by incorporating polynomial terms. It allows for more

flexible modeling and can capture complex relationships between predictors and

the response variable.

The connection between a differential operator denoted by L and the integral

operator K has been largely used, see for example [39]. We follow the same idea and

find the differential operator L such that the covariance function K plays the role of its

Green’s function

(LK)(t, s) = δ(t− s), for all t, s ∈ T, (III.22)
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where δ(·) denotes the Dirac delta function. If {λj}∞j=1 and {φj}∞j=1 refer to the eigen-

values and eigenfunctions of the integral operator K, interchange integration and differ-

entiation we have

λjLφj(t) = LKφj(t)

=
∫
T
LK(t, s)φj(s)ρ(s)ds

=
∫
T
δ(t− s)φj(s)ρ(s)ds

= φj(t)ρ(t).

Finally, we get

Lφj(t) = 1
λj
φj(t)ρ(t). (III.23)

This implies that
(

1
λj
, φj

)
is eigenpair of ρ−1L, or the eigenvalues of K correspond

to reciprocal eigenvalues of ρ−1L, while the corresponding eigenfunctions still the

same [6, 53].

Now, suppose we have eigenvalues and normalized eigenfunctions of L, denoted as

(γj, φj), satisfyingLφj(t) = γjφj(t). To incorporate the weight function ρ as in (III.23),

we only need to consider ρL instead of L. This gives us the relationship:

ρ(t)Lφj(t) = γjφj(t)ρ(t). (III.24)

Next, using theMercer decomposition (III.12), we defineK(t, s) = ∑∞
j=1 γ

−1
j φj(t)φj(s).

Then, K(t, s) is associated with ρL as its Green function. This approach is applicable

to a wide range of differential operators with corresponding integral operators that are

positive and bounded. Detailed explanations are provided in the following sections.

III.4.1 Matérn covariance function

We choose one among the interesting operators on L2([0, 1]), called the Matérn differ-

ential operator [16, 133], defined by

LMa =
(
ε− d2

dt2

)α
, (III.25)

depending on ε ≥ 0 a scale parameter, and α ∈ N a smoothness parameter. In which

ε means ε times identity operator. Whittle [133] in 1963 discovered that, the Matérn

covariance function is a unique stationary solution to (III.25) in the case of Euclidean
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space Rd. On the bounded domain [0, 1] with zero boundary conditions, we can verify

(see [23]) that the corresponding eigenvalues and eigenfunctions of LMa are given by

γj =
(
ε+ j2π2

)α
, and φj(t) =

√
2 sin(jπt). (III.26)

By Mercer’s theorem, we construct a covariance function as

K(t, s) = 2
∞∑
j=1

(
ε+ j2π2

)−α
sin(jπt) sin(jπs). (III.27)

Let f ∼ GP(0, K(·, ·), the K-L expansion of f is given by

f(t) =
√

2
∞∑
j=1

aj sin(jπt), aj ∼ N (0, 1/γj). (III.28)

Then we approximate f by

fM(t) =
√

2
M∑
j=1

aj sin(jπt). (III.29)

So, the approximation error is

eM(t) =
√

2
∞∑

j=M+1
aj sin(jπt). (III.30)

We have the following proposition that shows the convergence of fM .

Proposition III.3
If we approximate f by fM (III.29) then the MISE of fM tends to zero asM tends

to infinity.

Proof Indeed, we have

MISE = E‖eM‖2
L2(I) =

∞∑
j=M+1

λj

=
∞∑

j=M+1

(
ε+ j2π2

)−α
. (III.31)

Therefore,MISE → 0 asM →∞. �

III.4.2 Legendre Polynomials

We recall that the classic Legendre operator LLe defined on L2([−1, 1]) is given by

LLe = −(1− t2) d
2

dt2
+ 2t d

dt
. (III.32)

The eigenvalues are {γj = j(j + 1)}∞j=1 and eigenfunctions are Legendre polynomial

{φj(t) = Pj(t)/‖Pj‖L2}∞j=1 with

Pj(t) = 1
2jj!

dj

dtj
(t2 − 1)j, (III.33)
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and ‖Pj‖2
L2 = 2

2j+1 . Next, we construct the covariance function

K(t, s) =
∞∑
j=1

(2j + 1)
2j(j + 1)Pj(t)Pj(s). (III.34)

We can check that K(·, ·) is square-integrable with the orthogonality of Legendre poly-

nomials ([6, 33])

||K||2L2(T×T) =
∞∑
j=1

[
(2j + 1)
2j(j + 1)

]2 1
(j + 1

2)2 =
∞∑
j=1

[
1

j(j + 1)

]2

<∞.

Let f ∼ GP(0, K(·, ·), then f(t) = ∑∞
j=1 ajφj(t). We approximate f by

fM(t) =
M∑
j=1

√
2j + 1

2 ajPj(t), (III.35)

with the approximation error

eM(t) =
∞∑

j=M+1

√
2j + 1

2 ajPj(t). (III.36)

We have the following proposition that shows the convergence of fM .

Proposition III.4
If we approximate f by fM (III.35) then the MISE of fM tends to zero asM tends

to infinity.

Proof We have

MISE = E‖eM(t)‖2
L2([−1,1]) =

∞∑
j=M+1

λj =
∞∑

j=M+1

1
j(j + 1) = 1

M + 1 . (III.37)

From (III.37),MISE → 0 asM →∞. �

III.4.3 Laguerre Polynomials

As a second example, we consider the operator

LLa = t
d2

dt2
+ (1− t) d

dt
(III.38)

operating on L2([0,∞), ρ), where ρ(t) = e−t is the weight function. The operator

LLa has eigenvalues γj = −j, and eigenfunctions from Laguerre polynomials {φj =

Lj(t)}∞j=1 with

Lj(t) = et

j!
dj

dtj

(
e−ttj

)
.

We can check that {Lj}∞j=1 is an orthonormal basis in L2([0,∞), ρ) [6].

Since LLa has negative eigenvalues, we consider the operator L2
La with eigenvalue

γj = j2 and unchanged eigenfunction φj = Lj . We construct the covariance function
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defined by

K(t, s) =
∞∑
j=1

1
j2Lj(t)Lj(s). (III.39)

We then approximate f by

fM(t) =
M∑
j=1

ajLj(t). (III.40)

Similarly, we have the following proposition that shows the convergence of fM .

Proposition III.5
The MISE of fM (III.40) tends to zero asM tends to infinity.

Proof We have

MISE = E‖eM(t)‖2
L2([0,+∞),e−t) =

∞∑
j=M+1

λj =
∞∑

j=M+1

1
j2 . (III.41)

From (III.41) we see thatMISE → 0 asM →∞. �

III.4.4 Hermite Polynomials

In this example, we consider the operator

LHe = d2

dt2
− 2t d

dt
, (III.42)

defined on L2(R, ρ), for ρ(t) = e−t
2 . The operator LHe has eigenvalues γj = −2j and

eigenfunctions from Hermite polynomials {φj = Hj(t)/‖Hj‖}∞j=1, where

Hj(t) = (−1)jet2 d
j

dtj
e−t

2
, (III.43)

and ‖Hj‖2
L2(T,ρ) =

√
π2jj!. Like in Laguerre polynomial, we consider the operator L2

He

with eigenvalues γj = (2j)2 and the same eigenfunctions. By Mercer’s theorem, we

construct the covariance function as

K(t, s) =
∞∑
j=1

1√
π2j(2j)2j!Hj(t)Hj(s). (III.44)

The truncated version of f is

fM(t) =
M∑
j=1

1√√
π2jj!

ajHj(t). (III.45)

Similarly, we have the following proposition.

Proposition III.6
The MISE of fM (III.45) tends to zero asM tends to infinity.
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Proof Indeed,

MISE =
∞∑

j=M+1

1
(2j)2 → 0 asM →∞. (III.46)

�

III.4.5 Chebyschev Polynomials

Now we consider the operator

LCh = (1− t2) d
2

dt2
− t d

dt

acts on the weighted space L2 ((−1, 1), ρ) , where ρ(t) = 1√
1−t2 . The operator LCh

has eigenvalues γj = −j2 and eigenfunctions from Chebyshev polynomials Tj(t) =

cos(j arccos t) [33]. Furthermore, {Tj}∞j=1 forms a sequence of orthogonal polynomials

in L2 (T, ρ), and ‖Tj‖2
L2(T,ρ) = π

2 . Let the normalized eigenfunction φj = Tj(t)/‖Tj‖.

Sine γj is negative, we consider the operator −LCh with eigenvalues γj = j2 and

the same eigenfunctions. By Mercer’s theorem, we construct the covariance function as

K(t, s) =
∞∑
j=1

2
πj2Tj(t)Tj(s). (III.47)

Then, the truncated version of f is given by

fM(t) =
M∑
j=1

√
2
π
ajTj(t). (III.48)

Similarly, we have the following proposition.

Proposition III.7
The MISE of fM (III.48) tends to zero asM tends to infinity.

Proof Indeed,

MISE =
∞∑

j=M+1

1
j2 → 0 asM →∞. (III.49)

�

III.4.6 Jacobi Polynomials

As the last example, we consider the differential operator

LJa = (t2 − 1) d
2

dt2
+ (α− β + (α + β + 2)t) d

dt
, (III.50)
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where α and β are parameters. The operator LJa has eigenvalues γj = j(j+α+β+ 1)

and eigenfunctions from Jacobi polynomials Jα,βj (t). Jacobi polynomials are orthogonal

in the space L2((−1, 1), ρ), where ρ(t) = (1− t)α(1 + t)β , and given by

Jα,βj (t) = (−1)j
2jj! (1− t)−α(1 + t)−β d

j

dtj

(
(1− t)j+α(1 + t)j+β

)
. (III.51)

The norm of Jα,βj are given by

‖Jα,βj (t)‖2
L2 =

∫ 1

−1

(
Jα,βj (t)

)2
ρ(t)dt = 2α+β+1Γ(j + α + 1)Γ(j + β + 1)

(2j + α + β + 1)j!Γ(j + α + β + 1) .

(III.52)

As before, let the normalized eigenfunction of LJa be φj(t) = Jα,βj (t)/‖Jα,βj (t)‖, and

let covariance function

K(t, s) =
∞∑
j=1

1
j(j + α + β + 1)φj(t)φj(s). (III.53)

The truncated version of f ∼ GP(0, K(·, ·) is given by

fM(t) =
M∑
j=1

ajφj(t) =
M∑
j=1

ajJ
α,β
j (t)

‖Jα,βj (t)‖
. (III.54)

We can also check that the MISE of fM tends to zero asM tends to infinity.

Covariance Operator Domain ρ γj φj ||φj||L2

Matérn LMa [0, 1] 1
(
ε+ j2π2

)α √
2 sin(jπt) 1

Legendre LLe [−1, 1] 1 j(j + 1) 1
2jj!

dj

dtj
(t2 − 1)j

√
2

2j+1

Laguerre L2
La [0,∞) e−t j2 et

j!
dj

dtj
(e−ttj) 1

Hermite L2
He R e−t

2 4j2 (−1)jet2 dj

dtj
e−t

2
√√

π2jj!

Chebyshev −LCh (−1, 1) (1− t2)−1/2
j2 cos(j arccos t)

√
π
2

Jacobi LJa (−1, 1) (1− t)α(1 + t)β j(j + α + β + 1) Jα,βj (t) ‖Jα,βj (t)‖

Table III.1: Different operators and their corresponding eigenpairs.

In Table III.1, we provide a summary for each class of differential operator, including

the domain, the weight function ρ, the eigenvalues γj , the eigenfunctions φj , and their

respective norms. Figure III.1 illustrates the behavior of the eigenvalues λj = 1
γj

as the

index j varies from 1 to 40. It is evident that the eigenvalues of all covariance functions

converge to zero. Matérn and Jacobi, in particular, exhibit much faster convergence to

zero compared to the other cases.
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Figure III.1: The eigenvalues λj of different operators. Where we let: ε = 2, α = 1 for Matérn,
and α = −0.5, β = −0.3 for Jacobi.

III.5 Experiments

In this section, we assess the effectiveness of the proposed methods by conducting

evaluations on multiple dataset. We will compare their performance with some state-

of-the-art methods. The comparative analysis will enable us to gain insights into the

strengths and weaknesses of our approach and determine its competitiveness.

In Table III.1, differences in the domains for each covariance are observed. Through

a change of variables, we can transform the basis to be defined on the open interval

T = (0, 1). The details are provided in Table III.2, where the new basis function

ϕj is the normalized function φj multiplied by the square root of the Jacobian of the

transformation map. It’s worth noting that we can choose other transformation maps;

Table III.2 provides only explicit examples. For Laguerre and Hermite, the formula

for ϕj is additionally multiplied by the square root of the weight function ρ to mitigate

boundary effects, as the polynomial tends to infinity when the variable approaches

infinity.

In this section, we use λj and ϕj from Table III.2 to create the covariance functions,

and then we apply Gaussian process models as discussed earlier in our regression

problems. We let fM(t) defined by fM(t) = ∑M
j=1 ajϕj(t), for aj

ind∼ N
(
0, λj

)
. Then

f ∼ GP(0, KM(t, s), where KM(t, s) = ∑M
j=1 λjϕj(t)ϕj(s). Sine all λj are positive,
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Figure III.2: Some observations from different datasets.

KM(·, ·) is positive semidefinite. Hence fM(t) well defines a Gaussian process on T.

Covariance Transformation map
du

dt
λj ϕj

Matérn u(t) = t 1
(
ε+ j2π2

)−α
φj(t)

Legendre u(t) = 2t− 1 2 1
j(j + 1)

√
2j + 1φj(u(t))

Laguerre u(t) = t

1− t
1

(1− t)2
1
j2

e−u(t)/2

1− t φj(u(t))

Hermite u(t) = log
(

t

1− t

) 1
t(1− t)

1
4j2

e−u(t)2/2φj(u(t))√√
π2jj!

√
t(1− t)

Chebyshev u(t) = 2t− 1 2 1
j2

2φj(u(t))√
π

Jacobi u(t) = 2t− 1 2 1
j(j + α + β + 1)

√
2

‖Jα,βj (u(t))‖
Jα,βj (u(t))

Table III.2: Transformation maps and new eigenpairs.

III.5.1 Data

Simulations. In this study, we examine two parametric functions: a beta density func-

tion represented by f(t) = B(t|a = 2, b = 5) (Simulation 1), and a quasi-periodic

function satisfying f(t) = t sin(10t) (Simulation 2). Both functions are defined on the

unit interval (0, 1). For these experiments, we generated a total of 140 observations.
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Out of these, we allocated 40 observations for training and the remaining for test. The

inputs points ti are uniformly distributed on (0, 1). To introduce variability and simulate

real-world conditions, each observed point was calculated as yi = f(ti) + εi, where εi

represents Gaussian noise drawn from N (0, σ2
n = 0.1). This procedure allows us to

evaluate the performance of our models using noisy data. Figure III.2 (a)-(b) shows both

true parametric functions and the noisy observations.

Real data. In this part, we conduct a real study using two challenging dataset. The first

dataset comprises more than 864000 observations collected by the California Coopera-

tive Oceanic Fisheries Investigationsm (CalCOFI). It investigates the ecological aspects

surrounding the collapse of the sardine population off the coast of California, which is

recognized as the longest and most comprehensive time series of oceanographic and lar-

val fish data worldwide. It encompasses abundance data for over 250 fish species’ larvae,

as well as larval length frequency data, egg abundance data for important commercial

species, and oceanographic data. Data collected at depths up to 500 meters includes:

temperature, salinity, oxygen, phosphate, silicate, nitrate and nitrite, chlorophyll, phy-

toplankton biodiversity, etc. In this experiment, we are specifically targeting climate

change indicators on the California coast when we keep 1000 observations among data

illustrating the temperature (oC) as function of the salinity (ppt). Some examples are

given in Figure III.2 (c).

The second dataset used in this study pertains to Medical Cost Personal (MCP)

and was sourced from demographic statistics provided by the US Census Bureau [113].

It primarily focuses on the cost of treatment, which is influenced by various factors,

including age, sex, body mass index (BMI), and smoking status. Specifically, this

chapter examines the relationship between treatment costs (charges in thousand dollars)

and the BMI factor for both smokers and non-smokers. The dataset consists of 1338

observations, with 1064 corresponding to non-smokers and 274 pertaining to smokers,

see Figure III.2 (d). For both real data a random split of 50% is allocated for training

purposes, while the remaining 50% is set aside for evaluation. This partition ensures a

balanced distribution of data for model training and comprehensive assessment of model

performance.
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Table III.3: Results of LCGP on Simulation 1.
Operator MSE R-squared NLML
Matérn 3.11× 10−3 0.9962 13.67
Legendre 3.13× 10−3 0.9961 18.02
Laguerre 3.12 -2.81 20.48
Hermite 4.54× 10−3 0.9944 11.08
Chebyshev 3.47× 10−3 0.9957 15.11
Jacobi 3.12× 10−3 0.9961 20.71

Table III.4: Results of LCGP on Simulation 2.
Operator MSE R-squared NLML
Matérn 7.82× 10−3 0.9426 8.79
Legendre 6.07× 10−3 0.9554 14.89
Laguerre 0.5 -2.67 12.47
Hermite 6.39× 10−3 0.9530 7.32
Chebyshev 5.69× 10−3 0.9582 12.49
Jacobi 5.73× 10−3 0.9579 12.85

Table III.5: Results of LCGP on CalCOFI data.
Operator MSE R-squared NLML
Matérn 1.5186 0.8588 4635.63
Legendre 1.4988 0.8607 3755.24
Laguerre 2.41 0.7761 4017.89
Hermite 1.5095 0.8597 4430.93
Chebyshev 1.4991 0.8606 3744.62
Jacobi 1.4993 0.8606 3758.00

Table III.6: Results of LCGP on MCP data.
Operator MSE R-squared NLML
Matérn 0.2354 0.3791 354.48
Legendre 0.2188 0.3958 329.57
Laguerre 0.2419 0.3686 338.93
Hermite 0.2548 0.3544 339.69
Chebyshev 0.2197 0.3943 327.84
Jacobi 0.2203 0.3938 329.68
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III.5.2 Results

To evaluate the performance of the proposed methods some commonly used metrics for

evaluating the performance of the regression model include:

MSE: the mean squared error as the average squared difference between the

predicted values and the true values.

R-squared: the coefficient of determination as a statistical measure used in re-

gression analysis that represents the proportion of the variance in the dependent

variable that is predictable from the independent variable.

NLML: the negative log marginal likelihood which is a commonly used loss

function defined as the negative of the average log marginal likelihood of the data

given the model parameters.

It should be noted that a learning step should employed to determine the optimal

hyperparameter for Matérn and Jacobi, whereas for other operators, only the noise

variance estimation was necessary since the associated truncated covariance does not

depend on any hyperparameter. But in this experiment study, we keep ε = 2, α = 1 for

Matérn and α = −0.5, β = −0.3 for Jacobi.

Table III.3 and Table III.4 present the prediction results of the proposed method on

simulations using different operators: Matérn, Legendre, Laguerre, Hermite, Chebyshev,

and Jacobi. It is evident that allmodels can predict the functionwith a smallmean squared

error (MSE) except for Laguerre. The best performer for Simulation 1 is Matérn, while

for Simulation 2, it is Chebyshev. The excellent performance of Matérn on simulated

data can be attributed to its suitability for approximating parametric functions defined

on the interval (0, 1), as Matérn operators are specifically designed for this interval.

However, according to the NLML criterion, Hermite outperforms others and is the best

choice for both simulations.

TableA.1 andTable III.6 showcase the prediction resultswith real data. For theMCP

data, we compute the average criteria (MSE, R-squared, NLML) for both smokers and

non-smokers. Among the various operators, Legendre consistently outperforms others

in real datasets. These results suggest that Legendre demonstrates greater flexibility

in capturing various patterns and structures within real data, effectively modeling both
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short-range and long-range dependencies. On the contrary, Chebyshev exhibits the

smallest values of NLML in both experiments.
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Figure III.3: Illustration of the prediction results with LCGP.

In Figure III.3 (a)-(b), we provide an illustration of predicting the true parametric

function from simulations. In contrast, Figure III.3 (c)-(d)-(e) displays predictions

from real datasets. Laguerre is not included in the figures for the sake of clarity. We

observe that different types of polynomial eigenfunctions exhibit distinct advantages in

prediction. We remind that Matérn and Hermite exhibit a boundary effect, where they

become zero at the endpoints. They perform better when the true functions satisfies

these conditions.

III.5.3 Comparison

We compare the proposed LCGP with several baseline methods to determine if there

are significant performance differences. The baseline methods include: i) simple linear

regression, ii) polynomial regression generating polynomial features from input data,

iii) standard Gaussian process regression (as described in Section .2), and iv) neural

network (NN) model. We provide some details about the NN architecture with multiple
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Table III.7: Results of different methods on Simulation 1.
Method MSE R-squared
Linear regression 0.2871 0.6497
Polynomial regression 0.2571 0.6863
Standard GP 5.26× 10−3 0.9935
NN 0.2255 0.7248
LCGP 3.11× 10−3 0.9962

Table III.8: Results of different methods on Simulation 2.
Method MSE R-squared
Linear regression 0.1245 0.0862
Polynomial regression 0.1147 0.1578
Standard GP 8.12× 10−3 0.9403
NN 0.1153 0.1532
LCGP 5.69× 10−3 0.9582

Table III.9: Results of different methods on CalCOFI data.
Method MSE R-squared
Linear regression 2.4813 0.76940
Polynomial regression 1.8685 0.8263
Standard GP 1.4997 0.8606
NN 1.7866 0.8339
LCGP 1.4988 0.8607

Table III.10: Results of different methods on MCP data.
Method MSE R-squared
Linear regression 0.2752 0.3322
Polynomial regression 0.2816 0.3251
Standard GP 0.2294 0.3836
NN 0.2757 0.3319
LCGP 0.2188 0.3958

hidden layers. It consists of three hidden layers with 32, 64, and 64 units respectively,

followed by an output layer with a single unit. The rectified linear unit (ReLU) activation

function is used in the hidden layers to introduce non-linearity to the model. It is worth

noting that Table III.7–III.8–III.9–III.10 represent results of standard Gaussian process

with Matérn covariance.

In Figure III.4 we illustrate the prediction results of the proposed method against the

standard GP for simulated data (Simulation 1 and Simulation 2) as well as the baseline

NN for real data (CalCOFI and MCP). The proposed method outperforms the baseline

methods in terms of MSE and R-squared on both simulated and real dataset. For simu-

lations study, the proposed method consistently achieves lower MSE values and higher

R-squared scores, indicating its superior accuracy and predictive power. Furthermore,

when applied to real-world dataset, the proposal demonstrates its ability to capture com-

plex patterns and provide more precise predictions, leading to significantly improved

MSE and R-squared values compared to the baseline methods. These results emphasize
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the effectiveness and robustness of the proposed method in accurately modeling and

predicting nonparametric regression tasks, making it a promising choice for various

applications requiring high-performance regression models.

By focusing on the results of standardGP, particularly for real data, we stated that the

shape parameter estimation ε is very large (around 105) which rends the prior covariance

matrix K almost zeros and singular (ill-conditioned). This gives a zero mean prediction

f̂? and therefore a significant noise variance estimation σ2
n. A large noise variance

leads to larger diagonal elements in the Gram matrix K + σ2
nIN , as the noise variance

contributes to the diagonal entries, i.e., K + σ2
nIN ≈ σ2

nIN . An ill-conditioned matrix

causes numerical instability in the inversion process, potentially leading to inaccurate

or unreliable predictions. It can make the model more sensitive to noise and result in

overfitting. Fortunately, the LCGP overcomes this issue when reducing the rank of the

standard GP. See Appendix A for more details.
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Figure III.4: The prediction results of the proposed method (left) versus comparative methods
(right).

III.6 Conclusion

In this chapter, we have proposed a new statistical regression model with a Gaussian

process prior to infer, predict and learn nonparametric functions. The proposed methods

have the ability to approximate some Gaussian processes using the eigen-expansion of

some differential operators. We have showed different configurations where orthog-

onal polynomials are optimal bases with a simple implementations and closed-form

expressions. To summarize, the main advantage consists in overcoming the limitations

of standard Gaussian processes: a computational cost of O(nM2) for inference and

O(M3) for learning. We have evaluated the proposed model with various simulated and

real data. The experimental results and comparisons demonstrate high efficiency, low

computational cost, and analytical simplicity against some existing methods.
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Chapter IV: Constrained Gaussian processes

to predict Probability density functions

In this chapter, we introduce a new framework based on a Gaussian process prior to

learn, infer and predict nonparametric probability density functions. Our proposed

method uses constrained Gaussian process to ensure that the output is a valid probability

density function. In particular, the Gaussian process is approximated by truncating the

Karhunen-Loève expansion, this allows us to incorporate both the knowledge of the data

and the constraints. The formulation leads to constrained spherical Gaussian processes,

which can be approximated by an efficient solution based on the spherical Hamiltonian

Monte Carlo (HMC) sampling. We test and evaluate different strategies with extensive

experiments on both simulations and real dataset.

Organization. This chapter is organized as follows. Section .1 presents a general

introduction. In section .2, we introduce constrained Gaussian process models. Section

.3 presents the posterior distribution of coefficients and algorithms to approximate them.

Section .4 provides an example with Matérn covariance function on a bounded domain.

We showcase various experiments in .5. Finally, we conclude this chapter at .6.

IV.1 Introduction

Over the last decades, probability density functions (PDFs) have become one of the main

objects in information sciences and statistical modeling, with applications in many fields

of science and engineering. For example, PDFs obtained from brain fMRI between

voxels in a region of interest [92], warping functions in computer vision [112], income

distributions [77], population pyramids for countries [31], etc. In practice, it is often not

possible to directly observe the full PDF but only few values. In such situation, the main

challenge would be predicting the PDF at unobserved points. In information sciences,

there are many methods for predicting a function based on available observations. To

cite but few, linear models, neural network, kernel method, see more details in [15]. We
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should say that the problem at hand is different from the problem estimating a distribution

from a data set. Where the later problem is very well known, and have been studied

extensively [15, 35, 122–124].

Gaussian processes have been successfully used for both regression and classifica-

tion problems [98]. In Gaussian process regression, the mean value at an unobserved

point is predicted based on the conditional expectation from data (observed points)

while the covariance provides the uncertainty interval, where both of them are explicit

as we have seen in the previous chapters. Unfortunately, the standard Gaussian process

regression is not straightforwardly applicable to the problem at hand since the under-

lying function may not be a PDF. Therefore, imposing hard conditions, related to the

output function, on a Gaussian process model can lead to more realistic uncertainty

quantification, but it requires further investigation. In this chapter, we introduce a new

constrained Gaussian process model ensuring that the output is a PDF. Another challeng-

ing problem would be the nonexistence of explicit formulas for conditional expectation

and covariance. We then overcome those limitations by considering sampling methods

with constrained Gaussian process. Thus, depending on the constraints, we can use one

among several sampling methods [84, 85, 117].

Constrained Gaussian process models have recently gained attention and have been

applied to various goals [117]. In particular, a constrained Gaussian process model has

been presented as a solution for sampling the multivariate normal distribution on some

domains where the properties depend on the constraints. In [26], the authors consider

a Gaussian process model with a set of inequality constraints for which the global

constraints are approximated at a finite set of points. Hence, this formulation transforms

the Gaussian process into a truncated multinormal distribution [119]. In [84, 85],

the authors propose a finite-dimensional approximation of a Gaussian process using

a basis of hat functions. Consequently, the constraints on the Gaussian process are

directly translated to constraints on the coefficients and the output function satisfies the

constraints everywhere in the index space. The coefficients are approximated by sampling

from the truncated multi-normal distribution [83, 117]. Back to the problem on hand,

the PDF constraints include that the integral is equal to one. This is a different type of
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constraint that has not been addressed in previous works. To the best of our knowledge,

the first work that modeled an unknown Square Root Density Function (SRDF) with a

Riemannian structure has been introduced in [112]. More recently, [60] has used the

Karhunen-Loève decomposition of the Gaussian process prior and used HamiltonMonte

Carlo (HMC) [81] to sample from the posterior distribution. According to our case, we

make use of the Spherical HMC [21].

Main contributions, we provide a unified framework based on a constrained Gaus-

sian process prior for inferring PDFs manifold from observations such that the predicted

solutions are inherently PDFs. We first model the SRDF with a Gaussian process prior

giving a PDF modeled with a χ2-process prior. One of the interesting properties of a

Gaussian process is that it can be decomposed by Karhunen-Loève expansion as a series

of random coefficients where the basis elements are eigenfunctions [30, 63]. From this

decomposition, a Gaussian process regressionmodel can be viewed as a linear regression

model of an infinite number of covariates. By using the truncated version of a Gaussian

process (finite-dimensional Gaussian process) the SRDF constraint is then maintained

by the finite set of random coefficients. After conditioning on observations, the pos-

terior distribution of the coefficients becomes a multivariate normal distribution that is

restricted to the sphere. In some previous works, this distribution was called the Fisher-

Bingham distribution and has been widely studied in directional statistics [69]. There

are several ways to sample from this distribution, for example rejection sampling [75]

and Gibbs sampler [59]. In this work, we consider a spherical HMC on embedded

manifolds [21] for which the numerical solutions are tractable and efficient.

IV.2 Constrained Gaussian Processes

We have seen how the Gaussian processes are used in regression models. By using the

Gaussian process prediction, the output function of the model does not need to satisfy

any condition. Let f(·) ∼ GP(0, K(·, ·)) be a Gaussian process indexed on T. Where

we let the mean function m(·) = 0 for convenience, and let denote covariance function

as K(·, ·). For the rest of the chapter, T is assumed to be a subset of R and will be

denoted by I .
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IV.2.1 Gaussian Process Regression

We remind the standard case where f is not constrained as detailed in the previous

Chapter. Assume that we have a finite set of noisy observations of f : D = (ti, yi)ni=1,

with inputs ti ∈ I and outputs yi = f(ti) + εi ∈ R, where εi ∼ N (0, σ2
n) is a Gaussian

noise. Given an unobserved input t? ∈ I , the predictive distribution of f(t?) is Gaussian,

denoted by f(t?) | {D, t?} ∼ N
(
f̂?, var(f?)

)
, with

f̂? = k(t?)T (K + σ2In)−1y, (IV.1)

var(f?) = K(t?, t?)− k(t?)T (K + σ2In)−1k(t?), (IV.2)

where K = [K(ti, tj)]ni,j=1 is the covariance matrix, k(t?) = [K(ti, t?)]ni=1, In is the

n×n identity matrix and y = (y1, . . . , yn)T . We predict f(t?) to be its mean f̂? in (IV.1),

whereas, var(f?) in (IV.2) gives us the uncertainty interval. Gaussian process models

can then be seen as function approximations based on kernels (covariance functions) [18,

40, 115, 127].

The Gaussian processes have a nice property that after conditioning on the data

D, the posterior is also Gaussian processes with explicit mean function and covariance

function. But if we incorporate the constraints into the framework by conditioning both

onD and the constraints, the posterior is no longer a Gaussian Process. So at the unseen

point t?, we do not have the explicit formulas for the mean and covariance.

One way to control the output of the framework is to approximate the Gaussian

process by a finite-dimensional Gaussian process. In [84, 85], the authors approximate

a Gaussian process by a finite-dimensional Gaussian process with a basis of functions,

and the coefficients follow normal distribution computed from the original Gausssian

process. The benefit is that the constraints of the finite-dimensional Gaussian process

are equivalent to the constraints of the random coefficients. This frameworks permit

to introduce the constraints: boundedness, monotonicity, and convexity. The posterior

distribution of the coefficients is the truncated multinormal distribution after a linear

transformation. Then the truncated multinormal can be approximated using MCMC

algorithms. Several methods of sampling were considered in [84], the authors concluded

that HMC is an efficient sampler for the proposed framework.
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In the following, we consider different constraints for the considered problem. We

also approximate the Gaussian process, but by truncating the K-L expansion. The

approximated finite-dimensional Gaussian has a basis functions derived from the eigen-

functions, and the coefficients are normal distributions. The posterior distribution of the

coefficients is normal distribution restricted on the sphere (Fisher-Bingham distribution).

We then use HMC on the sphere to approximate the posterior distribution.

IV.2.2 The SRDF modeled with a finite-dimensional Gaussian process

A probability density function (PDF) p on I is a nonnegative function such that its

integration on I equals to 1. We note P is the space of all PDFs on I such that

P =
{
p : I → R | p(t) ≥ 0, ∀t ∈ I, and

∫
I
p(t)dt = 1

}
. (IV.3)

The spaceP is a convex set but it is not a linear vector space. By imposing the Fisher-Rao

metric, the space P becomes a Riemannian manifold. But working directly with PDFs

is difficult due to the nonnegative and integral constraints [112]. Instead, we can work

with other representations, for example: cumumlative distribution function [45], or log

density function. In this chapter, we work with Square Root Density Function (SRDF)

representation. By the definition SRDF is nonnegative, but we neglect the sign, and we

denote the space of SRDFs by S

S =
{
q : I → R

∣∣∣ ∫
I
q2(t)dt = 1

}
. (IV.4)

So for each p ∈ P there are two function q,−q ∈ S such that p = q2 = (−q)2. The

advantages of working with S are twofold. First we can release the sign constraint to

consider the whole space S , because we will take the square of SRDF in the final step.

Second the geometry of S is the unit sphere in L2, which is more familiar and easier to

work with than P .

Aswe have seen that aGaussian process can be decomposed by theKarhunen-Loève

(K-L) expansion [30, 63]. If f(·) ∼ GP(0, K(·, ·)) then we can write

f(t) =
∞∑
j=1

ajφj(t), with aj
ind∼ N

(
0, λj

)
, (IV.5)

where λj, φj(t) are eigenvalue and normalized eigenfunction of the integral operator K

with kernel K. The K-L expansion has many applications in Functional Data Analysis
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(FDA) [11, 14, 92], Finance [106], and Machine Learning [76]. Along this chapter, the

truncated version of f at an orderM is given by

fM(t) =
M∑
j=1

ajφj(t), (IV.6)

with an approximation error eM(t) = ∑∞
j=M+1 ajφj(t). Now let fM is a SRDF. By

(IV.6), fM ∈ S, or f 2
M is a PDF, if and only if the coefficients a1, . . . , aM satisfy the

spherical constraint∑M
j=1 a

2
j = 1, [45] .

Proposition IV.1
Let fM(t) = ∑M

j=1 ajφj(t), where {φj(t)}∞j=1 is an orthonormal basis of L2(I)

and aj ∈ R for j = 1, ...,M . Then f 2
M is a PDF if and only if

∑M
j=1 a

2
j = 1.

Proof Suppose f 2
M is a PDF, we have∫ 1

0
f 2
M(t)dt =

∫ 1

0

 M∑
j=1

ajφj(t)
2

dt =
M∑
j=1

a2
j = 1, (IV.7)

where φ1, ..., φM is a subset of the orthonormal set {φj(t)}∞j=1. Conversely, if
∑M
j=1 a

2
j =

1 then f 2
M(t) ≥ 0 for all t ∈ [0, 1], and

∫ 1
0 f

2
M(t)dt = 1 by (IV.7). This completes the

proof. �

When dealing with a truncated Gaussian process, the regression model on fM

substantially becomes

yi = fM(ti) + εi, i = 1, ..., n. (IV.8)

The covariance function of fM is the truncated version of Mercer’s representation of

K(·, ·) with the same truncation orderM

KM(t, s) = E[fM(t)fM(s)] =
M∑
j=1

λjφj(t)φj(s). (IV.9)

Therefore, the covariance matrix depending on KM(·, ·) is

KM = [KM(ti, tj)]ni,j=1 = ΦΛΦT , (IV.10)

where Φ =


φ1(t1) . . . φM(t1)

... . . . ...

φ1(tn) . . . φM(tn)

 ∈ Rn×M and Λ =


λ1 . . . 0
... . . . ...

0 . . . λM

 ∈ RM×M .

The proposition of the previous chapter shows that KM(·, ·) in (IV.9) is positive
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semi-definite. We remind that the covariance matrix KM in (IV.10) is ill-conditioned if

the ratio λ1/λM is large or if the observation points tj are too close to each other [23].

This lead to many numerical errors when we try to take the inverse matrix in both (IV.1)

and (IV.2).

IV.3 Posterior Distribution

In this section, we give details of a SRDF modeled with a Gaussian process in a

regression framework. We suppose that we have a set of corresponding eigenvalues

{λj}∞j=1 and orthonormal eigenfunctions {φj(t)}∞j=1 in an explicit form. Then, the

constrained Gaussian process model is
yi = fM(ti) + εi, εi ∼ N (0, σ2

n), i = 1, . . . , n,∫
0

1
fM(t)2dt = 1,

(IV.11)

These equations are directly translated into random coefficients as
y = ΦA+ ε, ε ∼ N (0, σ2

nIn),

‖A‖2
2 = 1,

(IV.12)

wherey = (y1, ..., yn)T , ε = (ε1, . . . , εn)T andA = (a1, ..., aM)T . Since aj ind∼ N
(
0, λj

)

then we have A ∼ N (0,Λ) where Λ =


λ1 . . . 0
... . . . ...

0 . . . λM

. By the property of jointly

multivariate normal [84, 98], we have A|{ΦA+ ε = y} ∼ N (µ,Σ), where

µ = ΛΦT [KM + σ2
nIn]−1y, and Σ = Λ− ΛΦT [KM + σ2

nIn]−1ΦΛ, (IV.13)

in which KM = ΦΛΦT by (IV.10). On the other hand, we can view the resulting

model as a standard linear regression with basis φ1(t), . . . , φM(t) and parameters A =

(a1, . . . , aM).

Proposition IV.2
The posterior distribution of the coefficients A is given by

A|{ΦA+ ε = y} ∼ N

 1
σ2
n

(
1
σ2
n

ΦTΦ + Λ−1
)−1

ΦTy,

(
1
σ2
n

ΦTΦ + Λ−1
)−1

 .
(IV.14)
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Proof Indeed, we only need to prove the mean and the covariance matrix of the two

distributions in (IV.13) and (V.8) are identical. Hence, we have
1
σ2
n

ΦT
(
KM + σ2

nIn
)

= 1
σ2
n

ΦT
(
ΦΛΦT + σ2

nIn
)

=
(

1
σ2
n

ΦTΦ + Λ−1
)

ΛΦT , (IV.15)

by definition of KM . Multiplying (IV.15) by
(

1
σ2
n
ΦTΦ + Λ−1

)−1
from the left and by

(KM + σ2
nIn)−1 from the right we get

1
σ2
n

(
1
σ2
n

ΦTΦ + Λ−1
)−1

ΦT = ΛΦT
(
KM + σ2

nIn
)−1

. (IV.16)

which completes the proof of the mean. The equivalence of the covariances is directly

followed by the matrix inversion lemma [98] such that(
1
σ2
n

ΦTΦ + Λ−1
)−1

= Λ− ΛΦT
(
ΦΛΦT + σ2

nIn
)

= Λ− ΛΦT (KM + σ2
nIn) = Σ. (IV.17)

�

From the spherical condition (second condition of (IV.12)), the coefficients follow

the Fisher-Bingham distribution [69]. In the literature, there are several methods to

sample from this distribution on the sphere [59, 75]. In this work, we make use of

the Hamiltonian Monte Carlo (HMC) [21] on the sphere embedded in the Euclidean

space. Hence, we do not need a coordinate system but the orthogonal projection to the

tangent space at some base points as well as the geodesic flow. Thus, HMC considers

the Hamiltonian dynamics according to the Hamiltonian functionH(A, v) with the sum

of the potential energy U(A) and the kinetic energy K(v)

H(A, v) = U(A) +K(v). (IV.18)

for which U(A) is the minus of log distribution and K(v) = 1
2v

Tv where v is regarded

as velocity on the tangent space of the sphere. In HMC, the goal is to solve for (A, v)

from the following Hamilton’s equations
Ȧ = ∇vH(A, v),

v̇ = −∇AH(A, v).
(IV.19)
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In practice, (IV.19) was numerically solved by the leapfrog integrator.
Algorithm 1: HMC on embedded sphere.
Input : Current state A0, Data set D, Potential function U , its gradient∇U ,

number of iterations T , step size τ .

Output: Next state Â

Sample v ∼ N (0, IM)

Put v = v − A0A
T
0 v

Evaluate H0 = U(A0) + 1
2v

Tv

Put A = A0

for i = 1 to T do
Put D = ∇U(A)− AAT∇U(A) ;

v = v − τ
2D;

A = A cos(‖v‖τ) + v
‖v‖ sin(‖v‖τ) ;

v = −A‖v‖ sin(‖v‖τ) + v cos(‖v‖τ);

Put D = ∇U(A)− AAT∇U(A);

v = v − τ
2D;

end

Evaluate HT = U(A) + 1
2v

Tv;

Sample u uniformly on (0, 1);

if u < exp(−HT +H0) then
Return Â = A;

else Return Â = A0

end

In Algorithm 1, the steps 8 and 9 update the state (A, v) by the geodesic flow in the

sphere with a time interval τ . In our formulation, the potential function is proportional

to the minus of the log-posterior on A giving U(A) = 1
2(A − µ)TΣ−1(A − µ). By

Algorithm 1, we can generate a spherical sample of coefficients from the posterior

distribution and use its mean to predict the unknown function. We summarize all steps
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to approximate the coefficients in Algorithm 2.
Algorithm 2: Estimate the coefficients.
Input : Data set D, truncation orderM , number of samples S.

Output: Approximate Â and f̂M(t)2.

Let A = (a1, ..., aM)T , and fM = ∑M
j=1 ajφj(t) = 〈(φ1(t), ..., φM(t)), A〉 .

Evaluate the posterior mean and the conditional covariance of A|{ΦA+ ε = y}

µ = 1
σ2
n

(
1
σ2
n

ΦTΦ + Λ−1
)−1

ΦTy, Σ =
(

1
σ2
n

ΦTΦ + Λ−1
)−1

.

Let U(A) = 1
2(A− µ)TΣ−1(A− µ), and ∇U(A) = Σ−1(A− µ).

Run HMC in Algorithm 1 to get S samples: A1, . . . , AS .

Return the mean value Â from the sample, and the PDF estimation: f̂M(t)2.

The mean value Â in Algorithm 2 can be the Karcher mean or simply

Â =
∑
Ak∈SampleAk

‖∑Âk∈Sample Âk‖
. (IV.20)

We therefore estimate the SRDF by f̂M =
〈
(φ1(t), ..., φM(t)), Â

〉
, and unknown PDF

by f̂ 2
M , or we approximate it by the mean function

f̂M(t)2 = 1
S

∑
Ak∈Sample

〈(φ1(t), ..., φn(t)), Ak〉2 . (IV.21)

IV.4 The framework with sine function

In this section, we validate the proposed method from a particular class of covariance

functions: the family of Matérn covariance functions on bounded domain I = [0, 1].

From the last chapter, wemake use of theMatérn covariance function as a Green function

of the following Matérn differential operator (III.25):

LMa =
(
ε− d2

dt2

)α
,

where ε ≥ 0 and α are parameters. By taking the boundary conditions equal zero, the

eigenvalues and eigenfunctions of the equivalent Sturm-Liouville problem

LMaφ = λ−1φ, φ(2i)(0) = φ(2i)(1) = 0, for i = 0, ..., α− 1. (IV.22)

66



Manuscript - Thesis

are λj =
(
ε+j2π2

)−α
, andφj(t) =

√
2 sin(jπt) [23]. Therefore, theMatérn covariance

function can be written as

K(t, s) = 2
∞∑
j=1

(
ε+ j2π2

)−α
sin(jπt) sin(jπs). (IV.23)

If f(·) ∼ GP(0, K(·, ·)) then the K-L expansion of f is

f(t) =
√

2
∞∑
j=1

aj sin(jπt), aj
ind∼ N

(
0,
(
ε+ j2π2

)−α)
. (IV.24)

implying that f can be approximated by

fM(t) =
√

2
M∑
j=1

aj sin(jπt). (IV.25)

With the explicit expression of fM , we can use Algorithm 1, and 2 to approximate a PDF

based on the data D. In the next section, we will show the efficiency of this framework

for various experiments.

This framework can be applied for multidimensional case, we turn our attention

to a d−dimensional input space with a rectangular domain I = [0, 1]d. In this case, a

truncated Matérn covariance function is given as

KM(t, t′) =
n∑

j1,...,jd=1
λj1,...,jdφj1,...,jd(t)φj1,...,jd(t′), (t, t′) ∈ I2. (IV.26)

with the eigenfunctions and eigenvalues satisfying

φj1,...,jd(t) =
d∏

k=1
φjk(tk) = 2 d

2

d∏
k=1

sin(jkπtk), t = (t1, . . . , td) ∈ I (IV.27)

and

λj1,...,jd =
(
ε+ π2

d∑
k=1

j2
k

)−α
(IV.28)

respectively, see [13] for the proof of a similar approach.

IV.5 Experimental results

In this section, we validate the proposed method with several and various experiments

in order to test, evaluate and compare using different configurations:

Experiment 1: Tuning the truncation number or checking how the constrained

Gaussian process (cGP) performs according to the truncation numberM?

Experiment 2: Tuning the observation number or checking how cGP performs

according to the observation number n?
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Experiment 3: Comparison between cGP and an Unconstrained Gaussian process

(uGP)?

Experiment 4: Comparison between Gaussian process and a Projected Gaussian

process (pGP)?

Experiment 5: Results and discussion on a variety of synthetic and real dataset.

Experiment 6: Comparison with a neural networks (NN) based method.

Experiment 7: Results with the multivariate formulation.

For the experimental part, the regressionmodel is usedwith aMatérn covariance function

yi = fM(ti) + εi, εi ∼ N (0, σ2
n), i = 1, . . . , n

fM(t) =
√

2∑M
j=1 aj sin(jπt)

aj
ind∼ N

(
0,
(
ε+ j2π2

)−α)
∑M
j=1 a

2
j = 1.

Under these assumptions f 2
M is the true unknown PDF that we want to estimate:

(i) We consider that we have n observations,

(ii) we apply cGP to estimate f̄M ,

(iii) we evaluate the error between f̂ 2
M and f 2

M using different criteria.

We remind that the hyperparameters of theMatérn covariance function (ε, α) are usually

fitted by maximizing the marginal likelihood function [83, 84]. In this section, we only

focus on the truncation numberM as well as the sample size n.

Figure IV.1: Some illustrations of the true functions f2
M (left) and the Boxplots of Integrated

Square Error (ISE) between the true functions f2
M and their approximations f̂2

M with different
truncation orders: M = 25, 30, . . . , 50 (right).

68



Manuscript - Thesis

IV.5.1 Tunning the parameters

IV.5.1.1 Tunning the truncation order

In Figure IV.1 (left), we plot 50 examples of PDFs fM(t)2 generated from beta

distributions. For each PDF, we observe n = 50 points fM(ti)2 (i = 1, . . . , n) associated

to ti that are uniformly spaced in I = [0, 1]. The number of truncation M varies in

{25, 30, ..., 50}. For these experiments, we apply HMC as detailed in Algorithm 1 and

the resulting coefficients are updated as detailed in Algorithm 2 with the number of

sample S = 10000. Consequently, we evaluate the mean function given in (IV.21) as an

approximation f̂ 2
M of each PDF. Figure IV.1 (right) shows the boxplot of the Integrated

Square Error (ISE) between the true PDFs f 2
M and their approximates f̂ 2

M when varying

the truncation order. Note that the proposed cGP is able to minimize the ISE criteria.

The best results are obtained when 25 ≤M ≤ 45.

(a)M = 10 (b)M = 20

(c)M = 30 (d)M = 50
Figure IV.2: The true PDF (black) from which we observe some points and use them for training
(blue). The approximated PDF at some unobserved points (red) and the confidence region (cyan)
with different truncation ordersM = 10, 20, . . . , 50.

As a second example, we consider a nonparametric PDF fM and different approxi-
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mates f̂M with an increasingM , see Figure IV.2. We show the confidence region at some

unobserved points t? satisfying f̂M(t?)2 ± 2σ̂(t?) where σ̂(t?) is the empirical standard

deviation. Accordingly, the approximation is bad for M = 10 but gets better when

20 ≤M ≤ 30 with a small confidence region. WhenM = 50, the approximation is still

good but the confidence region becomes more larger which makes more uncertainty in

our approximations. Additionally, the computational time increases forM = 50. Based

on these results, the truncation number will be fixed to M = 30 throughout the rest of

the experiments. This choice is motivated by the previous experiments and is not worth

a theoretical or general justification.

Figure IV.3: The Boxplot of ISE between fM and f̂M when n = 25, 30, . . . , 50 andM = 30.

IV.5.1.2 Tunning the number of observations

In the second experiment, the truncation number is fixed to beM = 30, while the number

of observations n is varied. Figure IV.3 shows a boxplot of the ISE between the true

function fM and its approximate f̂M with n = 25, 30, . . . , 50. Based on these results,

one can state that the ISE criteria decrease when n is increasing but without a significant

margin. In Figure IV.4 we plot both the true PDF fM and f̂M . At the first glance, the

confidence region f̂M(t?)2 ± 2σ̂(t?) is smaller when n increases. As expected, we can

conclude that the uncertainty decreases when the data size n is increasing which seems

to give more robustness to our method.

IV.5.2 Comparison with variant Gaussian process
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(a) n = 10 (b) n = 20

(c) n = 30 (d) n = 50
Figure IV.4: The true PDF (black) and observations used for training (blue). The approximated
PDF at some unobserved points (red) and the confidence region (cyan) with different data sizes
n = 10, 20, . . . , 50.

IV.5.2.1 Comparison with unconstrained Gaussian process

In this section, we compare the constrained Gaussian process (cGP) against the uncon-

strained Gaussian process (uGP). We remind that the prediction in uGP does not claim

any spherical constraint and is performed from (IV.1) and (IV.2). We consider the true

PDF as a normalized version of

g(t) = (1− t)
(

1 + sin
(
−π2 + 10πt

))
, t ∈ I.

FromFigure IV.5, we observe that both cGP and uGP can approximate the PDF efficiently

with a small advantage to cGP.However, the biggest flowof uGP is that the approximation

may not be a PDF. In fact, from this example the integral of the approximate is equal to

0.729 while cGP predicts an approximation with an integral equal to 1.
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Figure IV.5: The true PDF (black) and the observations (blue). The approximated PDF at some
unobserved points (red) and the confidence region (cyan) for cGP (left) and uGP (right).

IV.5.2.2 Comparison with normalized uGP

In the previous example, we showed how a uGP without the spherical constraint leads

to a bad approximation: A solution that is not guaranteed to be a PDF. To fulfill such

constraint one can, for example, project the estimated function to the space of PDFs

by normalizing it to have the integral one. From the literature, this technique has been

widely used and refereed as a projected Gaussian process (pGP). For simulations, we

consider a true PDF g2
l , such that gl(t) =

√
2∑l

j=1 bj sin(jπt), and B = (b1, ..., bl) are

random coefficients in Sl−1 ⊂ Rl. To get observed PDFs from the proposed model we

use the following steps:

1. Choose the base point 1 = 1√
l
(1, . . . , 1) ∈ Sl−1, for simplification. Any other

valid point on the sphere can also be used.

2. Define the tangent space on the sphere locally at 1 denoted T1Sl−1 which is a

linear space of all elements v = (v1, ..., vl) ∈ Rl satisfying∑l
j=1 vj = 0.

3. Define the exponential map at 1, that maps any direction v ∈ T1Sl−1 into a point

B = (b1, ..., bl) on the sphere Sl−1 such that

exp
1

:T1Sl−1 → Sl−1

v 7→ B = cos(‖v‖2)1 + sin(‖v‖2) v

‖v‖2
(IV.29)

where ‖.‖2 denotes the usual Euclidean norm in Rl.

4. Compute gl(t) =
√

2∑l
j=1 bj sin(jπt) for each v and let g2

l as a true PDF.

Belowwe consider two different strategies to generate v in T1Sl−1 and consequently

to generate PDFs randomly:
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Figure IV.6: Comparison between pGP and cGP: The ISE for several PDFs between 1 and
50 along a geodesic arc as an increasing variation of distance (left) and along a circle as an
increasing variation of the angle at a fixed radius (right).

First, chose a unit direction v such that ‖v‖2 = 1 then get a set of T true PDFs as

gkl (t)2 =
(√

2∑l
j=1 b

k
j sin(jπt)

)2
for k = 1, ..., T according to

Bk = (bk1, . . . , bkl ) = exp
1

(
kv

2T

)
. (IV.30)

This means that the functions gkl are generated along a geodesic arc. With a small

value of k the coefficients of the corresponding function gkl is close to 1, but with

a large value of k it is far from 1. Especially, we focus on the case when the true

function is far from the base point (center).

Second, we fix a unit direction v and randomly choose vk such that the angle

between v and vk is θk = 2kπ/T . Similarly, we generate a set of T true PDFs

(gkl )2 using the corresponding coefficients Bk = exp
1
(vk). Here, the distance is

fixed but the angle varies around the center.

For the second example, we let l = 20 and T = 50, M = 30 and n = 25. We

summarize the ISE results in Figure IV.6. We state that cGP performs much better in

general.

IV.5.3 Simulation studies and results on real dataset

In this section, we validate the cGPmodel on four dataset denoted InvG, Beta, Males and

Animals. InvG and Beta are synthetic PDFs generated from the beta and inverse-gamma

distributions. On the other hand, Males and Animals are PDFs of real data representing

growth in a male group and temperatures of cats observed during several days of the

disease, respectively. Each test has been performed with M = 30 and n = 25. In
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addition to the ISE, we consider the Fisher-Rao distance to measure the error between

the true PDF f 2
M and its approximate f̂ 2

M as dFR(f 2
M , f̂

2
M) = 2 cos−1(

∫
I

√
f 2
M(t)f̂ 2

M(t)dt).

(a) ISE (b) dFR(f, f̂)

(c) U(Ā) (d) The mean of U(Âk)
Figure IV.7: Results of cGP using different metrics and various dataset.

Each dataset contains T = 100 PDFs in the experiments. From Figure IV.7 (a) and

(b), it is notable that the ISE and the Fisher-Rao distance are very small. The results for

Males and Animals are significant allowing our model to be successfully applied for real

applications. In Figure IV.7 (c) and (d), we display the potential function at the estimated

coefficient U(Â) and the mean of all potentials U(Ak) whereAk denotes the k-th sample

of the HMC sampling. The difference between these two quantities confirms that the

successful optimization using spherical HMC. In fact the much smaller values of U(Â)

means that the predicted values are very close to the data observations.
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IV.5.4 Comparison with Neural Network

In this section, we compare the proposed approach with a Neural Network-based method

(NN). Indeed, many layers inside a NN are parameterized, i.e., have associated weights

and biases that are optimized during the training step. In general, the principle of NN is

that signals travel from the first layer (the input layer), to the last layer (the output layer),

possibly after traversing the layers multiple times. For training NN, we consider the

back propagation algorithm to adjust the parameters (model weights) with a gradient-

based method for minimizing the loss function. Since we are dealing with a SRDF, the

coefficients are normalized during the training task.

Now, we give more details about the architecture of the NN model. We keep the

same configurations as detailed in Section .5.3. The NN was implemented with 5 linear

layers. The number of nodes in the input layer is equal to the number of observations:

n = 25, the number of nodes in the output layer is equal to the truncation number (number

of coefficients: M = 30), and the number of nodes in the hidden layers is equal to 500,

1000, and 200. In the forward function, we normalize the output to have a unit norm

before returning the coefficients allowing the NN model to fit coefficients belonging to

the unit sphere. Finally, the NN model uses MSE loss and Adam optimization with a

learning rate equal to 2 × 10−3. After the NN is fully trained, the NN model takes the

input is the observations and output the coefficients of the prediction function.

Figure IV.8 (left) displays an example of a true function and its approximate using

NN. Figure IV.8 (right) summarizes all ISE values when using the NN-based method

to predict PDFs from 4 different dataset. We have randomly selected and used 70% of

the dataset for training and the rest is kept for test. We remind that the same data have

been used to test cGP and results are summarized in Figure IV.7 (a). We have also used

the same colors to make the comparison between results easy to follow. Accordingly,

we can easily notice that cGP performs better than NN. For NN model, it needs a good

training data set to perform well.
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Figure IV.8: Left: The true PDF (black), the training points (blue) and theNN-based approximate
(red). Right: The boxplots summarizing ISE for NN-based method on 4 dataset.

IV.5.5 The multivariate case

In this section, we show how the proposed method can be extended and applied to the

multivariate case. In the following experiments, we consider bivariate PDFs defined

on the unit square interval I = [0, 1]2. We first simulate random coefficients from

aj1,j2
ind∼ N

(
0,
(
ε + (j2

1 + j2
2)π2

)−1
) and then form the corresponding SRDF with

fM(t) = 2∑5
j1,j2=1 aj1,j2 sin(j1πt) sin(j1πt), see an example in Figure IV.9 (a). We

display the estimate f̂ 2
M obtained with cGP in Figure IV.9 (b) and the resulting error as

the absolute value of the difference at each point in Figure IV.9 (c). In Figure IV.9 (d) we

(a) f 2
M (b) f̂ 2

M with cGP (c) |f 2
M − f̂ 2

M |

(d) A and Â with cGP and NN (e) ISE with cGP (f) ISE with NN
Figure IV.9: Top: An example of a true PDF (a), its approximate with cGP (b) and the difference
between them (c). Bottom: The true coefficients in blue and the estimated coefficients in red (d),
the boxplot summarizing the ISE(fn, f̂n) from cGP (e) and the NN (f).
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display the true coefficients initially used to form the PDFA = (a1,1, a1,2, . . . , a5,5)T and

their approximations using the spherical HMC sampling and NN. Finlay, we use T = 50

examples as true SRDFs fM , we estimate f̂ 2
M and we compute ISE between them. We

summarize all results as boxplots in Figure IV.9 (e). The same criteria is maintained for

NN in Figure IV.9 (f). Accordingly, we state that cGP is very successful in estimating

bivariate PDFs.

IV.6 Discussion and conclusion

In this chapter, we have introduced a new framework to learn, infer and predict

probability density functions using constrained Gaussian Processes prior. Thanks to

the formulation, the spherical constraint translates directly into a finite set of random

coefficients on an appropriate basis. We have used the spherical HMC sampling to

efficiently compute the mean function as a good candidate for the prediction. We have

conducted various and extensive experiments to confirm the ability of our proposal for

various real-world applications.
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Chapter V: Transfer learning on finite

probability measures

In this chapter, we propose a new powerful transfer learning method of statistical models

on the space of probability measures P+(I). We develop new approaches to capture

the Riemannian geometry of P+(I) equipped with Fisher-Rao metric. Specifically, we

exploit the Levi-Civita parallel transport on P+(I) that preserves the inner product.

We derive explicit theoretical expression of important geometric structures on P+(I)

associated to the Levi-Civita connection such as: Minimal geodesic, exponential and

logarithm map. We demonstrate that capturing such geometry yield a significant benefit

in transfer learning of covariance matrices, PCA and linear regression models on P+(I).

We illustrate and discuss the effectiveness of the proposed approach with various and

multiple experimental results.

Organization. This chapter is organized as follows. Section .1 presents a general

introduction. In section .2, we introduce the problems that we want to address. In

Section .3, we study in detail the geometry of the space of finite measures with the

Fisher-Rao metric. In section .4, we show how the statistical models can be transported

along the manifold. The experimental results are presented and discussed in Section .5.

We conclude this Chapter at Section .6.

V.1 Introduction

Research on transfer learning has attracted more and more attention over the last years

due to its importance in varied fields of machine learning and data mining areas. Today,

transfer learning methods appear in many applications, most notably in computer vi-

sion [17, 82], neural networks [89], natural language processing tasks [100], sentiment

analysis [120] and medical imaging [20]. The study of transfer learning is motivated by

the fact that people can intelligently apply knowledge learned previously to solve new

problems faster or with better solutions. The definition of transfer learning is depicted in



Manuscript - Thesis

terms of domain and task and presented in [90]: Given a source domainDL and learning

task TL, a target domainDS and learning task TS , transfer learning aims to help improve

the learning of the target predictive function fS(.) inDS using the knowledge inDL and

TL, where DL 6= DS , or TL 6= TS .

In recent years, statistical models have been extensively used for data lying on

manifolds. Indeed, data points on Riemannian manifolds are fundamental objects in

many fields of science and engineering including, machine learning, image and video

processing, artificial vision and medical. While transfer learning methods are very well-

developed on the Euclidean space Rd [28, 92], much effort has been directed towards

efficient approaches to encompass the wide variation within the class of manifolds, in

particular frommethods and techniques of differential geometry. In this vein, a new class

of transfer learning algorithms is developed in this chapter for data sets that intrinsically

lie on the space of strictly positive probability measures on a domain I , defined by

P+(I) =
{
µ =

∑
i∈I

µiδ
i | µi > 0, ∀i ∈ I, and

∑
i∈I

µi = 1
}
,

where δi is the Dirac measure concentrated on i. To make the problem and the setting

more general, we consider two valued datasets PL = {µi}Li=1 and PS = {νi}Si=1 in the

space P+(I), such that PL is of large size and PS is of small size. The main aim is

to learn a statistical model from the data set on PS such as covariance matrix, PCA,

and regression while leveraging statistical information from the large data set PL. Since

statistical models are often expressed in tangent spaces, thus, the goal is to establish an

accurate and efficient transfer learning algorithm of statistical objects between tangent

spaces in a way that preserves the structure of the statistical model while aligning to the

complex geometries of the underlying manifold.

In the Euclidean setting, different techniques and strategies of transfer learning have

appeared in the literature, including inductive transfer learning, transductive transfer

learning, and unsupervised transfer learning. A more detailed description of those

methods can be found in [104]. For general Riemannianmanifolds, the idea of leveraging

knowledge from one class to another has been investigated in recent works. In [135],

Xie et al. introduce a new framework that can transfer, not only the data but statistical

models using parallel transport. Nevertheless, their choice of parallel transport suffers
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from some drawbacks: Neither the inner product between two vectors nor the length of

a vector is preserved. Recently, in [46], Freifeld et al. attempted to avoid the weakness

of the method given in [135] and have developed a new approach that can transfer a

covariance matrix using the parallel transport that respects the Riemannian metric of the

manifold. In this framework, we propose to extend transfer learning strategy described

in [46] such that it can be successfully applied to data lying in the space of strictly

positive probability measures P+(I).

Recently much attention has been focused on the space of probability measures

P+(I) with different metrics including Frobenius, Fisher-Rao, log-Euclidean, Jensen-

Shannon and Wasserstein metrics [8, 32, 97, 126]. Works on linear regression [70, 74],

estimation [64], barycenters [68, 105], have been deeply studied and led to computational

advances in statistical analysis. The present chapter is an attempt to formalize a rigorous

and computational approach to the transfer learning problem on the space of probability

measures P+(I) equipped with Fisher-Rao metric, in the context of the theory of infor-

mation geometry developed in particular in [4, 8, 72, 73]. Indeed, on the Riemannian

manifold P+(I), each tangent vector X belongs to a tangent space TµP+(I) specific to

its root point µ ∈ P+(I). Hence tangent vectors from different tangent spaces cannot be

compared directly. Parallel transport is the unique mathematical tool capable of trans-

porting vectors between tangent spaces while retaining the information they contain.

In our case, we choose a metric parallel transport which asserts that the orthogonality

and distance between tangents vectors in TµP+(I) are retained, and consequently the

variance is preserved. The main contributions are summarized as follows:

1. Firstly, we develop an explicit expression of Christoffel symbols, and therefore the

Levi-Civita connection associated with the Fisher-Rao metric which allows the

computation of the geodesic curves joining two points on P+(I). In this way, we

exhibit an exact equation of the Levi-Civita parallel transport of a tangent vector

along a geodesic curve joining two probability measures on P+(I).

2. We apply the parallel transport to transfer learning of statistical models such as

covariance matrix, PCA and linear regression models between tangent spaces of

P+(I). Then we illustrated the methods with several experiments.
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V.2 Problem Formulation

In this chapter, we address the following problem. Given two valued datasets PL =

{µi}Li=1 and PS = {νi}Si=1 in the space of strictly positive probability measures P+(I),

such thatPL is of large size andPS is of small size. Our goal is to learn a statistical model

from the dataset PS such as the covariance matrix, PCA, and regression model while

leveraging statistical information from the large data set PL. Since statistical models

are often expressed in tangent spaces, hence, the goal is to transfer statistical objects

between tangent spaces in a way that preserves the structure of the statistical model while

adapting to the structure of the manifold.

V.3 Levi-Civita Parallel Transport on P+(I)

In this section, we study the space of strictly positive probability measures P+(I) on

a given finite set I endowed with an atlas of charts forming a differentiable manifold

modeled on Rn. We compute computational tools of interest, namely Levi-Civita

connection ∇LC , geodesics, Exp and log maps and the Levi-Civita parallel transport.

For a more detailed exposition on these concepts, we refer the reader to [61]. In the

following, we denote ∇ instead of ∇LC for convenience.

V.3.1 Fisher-Rao Geometry

Let a finite sample space I coded as I = {1, . . . , n, n + 1}, n ∈ N. On I , the set of all

real functions forms an algebra, denoted as F(I) = {f : I → R}. Its unity function 1I

or simply 1 is given by 1(i) = 1, for all i = 1, . . . , n, n+ 1. A canonical basis of F(I)

is given by

ei(j) =


1, if i = j,

0, otherwise,
(V.1)

and hence, every f ∈ F(I) has the representation

f =
∑
i∈I

f iei, (V.2)
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where f i = f(i). We will denote by S(I) the dual space of F(I), the space of R-

valued linear forms on F(I). With the Riesz representation theorem, this vector space

is interpreted as the vector space of signed measures on I , namely

S(I) = {µ : F(I)→ R | µ =
∑
i∈I

µiδ
i}, (V.3)

where µi = µ(ei) and δi is considered as the Dirac measure supported at i ∈ I . It is

also shown that S(I) is a smooth manifold, furthermore S(I) is isomorphic to Rn+1.

Besides we have a vector space isomorphism between the space F(I) and S(I), given

by

F(I) −→ S(I)

f 7−→ fµ :=
∑
i∈I

f iµiδ
i. (V.4)

The inverse is the Radon-Nykodym derivative with respect to µ, denoted as φµ,

φµ : S(I) −→ F(I)

ν =
∑
i∈I

νiδ
i 7−→ dν

dµ
:=
∑
i∈I

νi
µi
ei. (V.5)

In particular, the tangent space at the point µ ∈ S(I) is given by

TµS(I) = {µ} × S(I). (V.6)

Let us consider the following submanifolds of S(I):

Sc(I) =
{
µ =

∑
i∈I

µiδ
i |
∑
i∈I

µi = c, c ∈ R
}

and

M+(I) = {µ ∈ S(I) | µi > 0, ∀ i ∈ I}

the space of finite strictly positive measures on I . In the following definition, we see

more clearly the notion of measure on a finite space.

Definition V.1
A signed measure on a finite sample space I associated to µ = ∑

i∈I µiδ
i is a map

µ : B(I)→ R, defined on B(I) of the set of all subset of I , with:

µ(A) =
∑
i∈I

µiδ
i(A) =

∑
i∈A

µi, ∀A ⊂ I. (V.7)

A measure µ is called probability measure if µ(I) = 1 and µi ≥ 0 for all i.

Furthermore, if µi > 0 for all i, µ is called strictly positive probability measure.
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We denote by P(I) the space of all probability measures, and P+(I) the space of

strictly positive probability measures and we note

P+(I) =
{
µ =

∑
i∈I

µiδ
i | µi > 0, ∀i ∈ I, and

∑
i∈I

µi = 1
}
.

We check at once that P+(I) ⊂M+(I) ⊂ S(I). Therefore, as an open submanifold of

S(I),M+(I) has the same tangent space at the point µ ∈ M+(I). The tangent space

of P+(I) is given in the following proposition.

Proposition V.1
Consider P+(I) as a submanifold of S(I), then the tangent space at µ ∈ P+(I)

is given by:

TµP+(I) = {µ} × S0(I) =
{

(µ, v) | µ ∈ P+(I) and v =
∑
i∈I

viδ
i ∈ S0(I)

}
.

Proof Indeed, let α(t) be any differential curve in P+(I) that goes through µ at

t = 0. Suppose α(t) = ∑
i∈I αi(t)δi, where αi(t) is a differentiable function of t and

αi(0) = µi. As a curve in S(I), the differential of α at t is given by α̇(t) = ∑
i∈I α̇i(t)δi.

The tangent vector α̇(t) is also a measure, and∑
i∈I

α̇i(t) = d

dt

(∑
i∈I

αi(t)
)

= d

dt
(1) = 0, ∀t. (V.8)

This proves that TµP+(I) ⊂ {µ} × S0(I). For the converse, let any v ∈ S0(I). We

define the curve α(t) = µ + tv, defined for t close to 0 such that α(t) ∈ P+(I). It

follows that α̇(0) = v. This proves that that TµP+(I) ⊃ {µ} × S0(I). �

We want to study P+(I) intrinsically and impose a Riemannian metric on it. To

this end, we define a local coordinate map on P+(I). Let U be an open set of Rn given

by

U =
{
x = (x1, . . . , xn) ∈ Rn | xi > 0,∀i ∈ I, and

n∑
i=1

xi < 1
}
.

We define a map ϕ as

ϕ : P+(I) −→ U,

µ =
∑
i∈I

µiδ
i 7−→ (ϕ1(µ), ..., ϕn(µ)) = (x1(µ), ..., xn(µ)),

such that (ϕ1(µ), ..., ϕn(µ)) = (µ1, . . . , µn). Clearly, ϕ is an homomorphism and its
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inverse is given by

ϕ−1 : U −→ P+(I),

(x1, . . . , xn) 7−→ µ =
n∑
i=1

xiδ
i +

(
1−

n∑
i=1

xi

)
δn+1.

The single chart (P+(I), ϕ) defines a manifold structure of P+(I). Given a point

µ ∈ P+(I), let ∂

∂xi

∣∣∣∣
µ
be the tangent vector at µ given by

∂

∂xi

∣∣∣∣
µ

= ∂

∂xi

∣∣∣∣
ϕ(µ)

ϕ−1 =
(
δi − δn+1

)
, for i = 1, . . . , n.

Thus,
{
∂

∂xi

∣∣∣∣
µ
, i = 1, ..., n

}
define a local frame field of TµP+(I) at a point µ ∈ P+(I).

Now, for any v = ∑
i∈I viδ

i ∈ TµP+(I), it has the representation

v =
n+1∑
i=1

viδ
i =

n∑
i=1

viδ
i −

n∑
i=1

viδ
n+1 =

n∑
i=1

vi(δi − δn+1) =
n∑
i=1

vi
∂

∂xi
, (V.9)

since v ∈ S0(I).

With S(I) being a finite-dimensional linear space, and therefore, it can be naturally

equipped with a metric. For v, w ∈ TµS(I), we define the inner product as

< v,w >µ= µ

(
dv

dµ
.
dw

dµ

)
=
∑
i

viwi
µi

(V.10)

where
dv

dµ
= ∑

i∈I
vi
µi
ei ∈ F(I), represents a simple version of the Radon–Nikodym

derivative with respect to µ. This metric induces a metric onM+(I). Hence, following

the geometry structures in M+(I) equipped with Fisher-Rao metric, we derive the

corresponding one in P+(I).

Definition V.2
Let µ be a probability measure in P+(I). Given two tangents vectors v and w in

TµP+(I), the Fisher-Rao metric gµ : TµP+(I)× TµP+(I)→ R is given by

gµ(v, w) =
∑
i∈I

viwi
µi

,

and ||v||µ =
√
gµ(v, v).

With respect to the coordinate map (P+(I), ϕ), the Fisher-Rao metric Gµ = [gij]

is expressed as [8]:

gij(µ) =


1
µi

+ 1
µi+1

, if i = j,

1
µn+1

, otherwise,
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for i, j = 1, · · · , n. The inverse matrix G−1
µ = [gij] has the components

gij(µ) =


µi(1− µi), if i = j,

−µiµj, otherwise.

Our goal to make P+(I) as a Riemannian manifold is now fully satisfied. Our next

goal is to compute explicit expressions of geometric structures on P+(I), especially,

the Levi-Civita parallel transport which will be essential to define a transfer learning

approach of statistical models on P+(I).

V.3.2 Levi-Civita connection on P+(I)

Let X(P+(I)) denote the set of all smooth vector fields on P+(I). On the Riemannian

manifold P+(I) with the Fisher-Rao metric. The corresponding Levi-Civita connection

∇ : X(P+(I))×X(P+(I))→ X(P+(I)), takes vector fields X, Y, to give a new vector

field, denoted ∇XY , telling us how the vector field Y is changing in the direction X .

As we know in the Chapter II that the Levi-Civita connection is metric and torsion free,

for all X, Y, Z ∈ X(P+(I)), it satisfies
Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ),

∇XY −∇YX = [X, Y ].
(V.11)

In the local coordinate map (P+(I), ϕ), the Levi-Civita connection is defined by the

Christoffel symbols Γkij : P+(I)→ R such that

∇∂xi∂xj =
∑
k

Γkij∂xk. (V.12)

The Christoffel symbols are given explicitly in the following proposition.

Proposition V.2
With respect to the local coordinate map (P+(I), ϕ), the Christoffel symbols

associated with the Fisher-Rao metric are given by

Γkij =



1
2 ×

xk
1−∑n

h=1 xh
, i 6= j,

1
2 ×

(
xk

1−∑n
h=1 xh

+ xk
xi

)
, i = j 6= k,

1
2 ×

(
xk

1−∑n
h=1 xh

− 1− xk
xk

)
, i = j = k.

(V.13)
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Proof The smooth functions Γkij are easily computed through the characterization of

the Levi-Civita connection by the Koszul formula obtained from (V.11) computed for

all the circular permutations of X, Y, Z ∈ X (P+(I)),

g(∇XY, Z) =1
2{Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )}

+ 1
2{g([X, Y ], Z)− g([Y, Z], X)− g([X,Z], Y )}. (V.14)

Now, in the Koszul formula we set X = ∂xi, Y = ∂xj, Z = ∂xl. We get

Γkij = 1
2

n∑
l=1

gkl (gil,j + gjl,i − gij,l) , for i, j, k ∈ {1, ..., n}, (V.15)

where gil,j = ∂gil
∂xj

, gjl,i = ∂gjl
∂xi

, and gij,l = ∂gij
∂xl

. In the local coordinate system, the

Fisher-Rao metric and its inverse are given by

gij =


1
xi

+ 1
1−∑n

h=1 xh
, if i = j,

1
1−∑n

h=1 xh
, if i 6= j,

(V.16)

gij =


xi(1− xi), if i = j,

−xixj, if i 6= j,

(V.17)

for i, j = 1, . . . , n. Now if we take the derivative of (V.16) by xl, we get

gij,l =


− 1

(xi)2 + 1
(1−∑n

h=1 xh)2 , if i = j = l,

1
(1−∑n

h=1 xh)2 , otherwise.
(V.18)

Replace (V.18) in (V.15), the formula follows. �

The tangent space TP+(I) is trivial, it is the product of P+(I) and S0(I). We can

define a constant vector field as following.

Definition V.3
Let X ∈ X (P+(I)) be a vector field on P+(I) and let (P+(I), ϕ) the local

coordinate. Then X has the representation X = ∑n
i=1Xi∂xi, and X is called a

constant vector field on P+(I) if all Xi are independent of µ.

The connection of constant vector fields is given the following theorem.
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Theorem V.1
Given two constant vector fields X, Y on P+(I), the Levi-Civita connection at

µ ∈ P+(I) is given by

∇XY (µ) = −1
2

(
dX

dµ

dY

dµ
− gµ(X, Y )

)
µ. (V.19)

Proof LetX = ∑
i∈I Xiδ

i, Y = ∑
i∈I Yiδ

i and Z = ∑
i∈I Ziδ

i be constant vector fields

on P+(I). Thus, we get [X, Y ] = [Y, Z] = [X,Z] = 0 and consequently (V.14) gives

g(∇XY, Z) = 1
2 {Xg(Y, Z) + Y g(X,Z)− Zg(X, Y )} . (V.20)

Set µ = ∑
i∈I µiδ

i ∈ P+(I), and α(t) = µ + vt, a curve on P+(I) such that µ(0) = µ

and µ̇(0) = v = X(µ). We have

Xgµ(Y, Z) = d

dt

∣∣∣∣
t=0

gµ(t)(Y, Z)

= d

dt

∣∣∣∣
t=0

∑
i∈I

YiZi
µi + tvi

= −
∑
i∈I

viYiZi
µ2
i

= −
∑
i∈I

XiYiZi
µ2
i

.

Similarly, one obtains formulae for Y g(X,Z) and Zg(X, Y ). Now replacing the above

results in (V.20), we get

gµ(∇XY, Z) = 1
2

{
−
∑
i∈I

XiYiZi
µ2
i

−
∑
i∈I

XiYiZi
µ2
i

+
∑
i∈I

XiYiZi
µ2
i

}

= −1
2
∑
i∈I

XiYiZi
µ2
i

. (V.21)

On the other hand, we have∑
i∈I

gµ(X, Y )Zi = gµ(X, Y )
∑
i∈I

Zi = 0, (V.22)

since Z is a vector field on P+(I). Then (V.21) can be written as

gµ(∇XY, Z) = −1
2
∑
i∈I

(
XiYi
µ2
i

− gµ(X, Y )
)
µi
Zi
µi

= gµ

(
−1

2

(
dX

dµ

dY

dµ
− gµ(X, Y )

)
µ, Z

)
.

This holds for every constant vector field Z, which completes the proof. �
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V.3.3 Geodesics curves on P+(I)

A geodesic curve is the autoparallel curve. By applying the formula for connection of

constant vector fields, we derive the explicit formula of geodesics on P+(I).

Theorem V.2
Let µ = ∑

i∈I µiδ
i be a probability measure in P+(I) and v ∈ TµP+(I) a unit

tangent vector, i.e., ||v||µ = 1. Then the geodesic α that satisfies α(0) = µ and

α̇(0) = v is given by α(t) = ∑
i∈I αi(t)δi with

αi(t) =
(

cos t2 + α̇i(0)
αi(0) sin t

2

)2

αi(0), (V.23)

in which αi(0) = µi and α̇i(0) = vi, ∀i ∈ I .

Proof Let α(t) = ∑
i∈I αi(t)δi and α̇(t) = ∑

i∈I α̇i(t)δi. Then for each t, we have
∑
i∈I αi(t) = 1, and αi(t) > 0,∀i ∈ I,

∑
i∈I α̇i(t) = 0.

(V.24)

Set X a constant vector field in P+(I). From the condition (V.11) of Levi–Civita

connection, we have

gα(t)(∇α̇(t)α̇(t), X) = α̇(t)
(
gα(t)(α̇(t), X)

)
− gα(t)(α̇(t),∇α̇(t)X). (V.25)

With the properties of Levi-Civita connection, to compute ∇α̇(t)X , the tangent vector

α̇(t) can be considered as a constant vector field on P+(I) when t is fixed. Therefore,

applying (V.19) for α̇(t) and X we get,

∇α̇(t)X = −1
2

(
dα̇(t)
dα(t)

dX

dα(t) − gα(t)(α̇(t), X)
)
α(t)

= −1
2
∑
i∈I

 α̇i
αi

Xi

αi
−
∑
j∈I

α̇jXj

αj

αiδi. (V.26)

Taking into account (V.24), the last term in (V.25) becomes

g(α̇(t),∇α̇(t)X) =
〈
dα̇

dα
,
d∇α̇(t)X

dα

〉
α(t)

= −1
2
∑
i∈I

α̇i
αi

 α̇i
αi

Xi

αi
−
∑
j∈I

α̇jXj

αj

αi
= −1

2
∑
i∈I

α̇2
iXi

α2
i

. (V.27)

Now, we need to compute the second term in (V.25). Thus, we have

α̇(t)
(
gα(t)(α̇(t), X)

)
= d

dt
gα(t)(α̇(t), X) =

∑
i∈I

d

dt

(
α̇i
αi

)
Xi. (V.28)
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Combining (V.27) and (V.28) in (V.25), we get

gα(t)(∇α̇(t)α̇(t), X) =
∑
i∈I

(
d

dt

(
α̇i
αi

)
+ 1

2
α̇2
i

α2
i

)
Xi. (V.29)

Let’s define the function F (t) as

F (t) = −
∑
i∈I

(
d

dt

(
α̇i
αi

)
+ 1

2
α̇2
i

α2
i

)
αi(t) = −

∑
i∈I

d

dt

(
α̇i
αi

)
αi(t)−

1
2gα(t)(α̇(t), α̇(t)).

(V.30)

Hence, the measure

ν(t) =
∑
i∈I

(
d

dt

(
α̇i
αi

)
+ 1

2
α̇2
i

α2
i

+ F (t)
)
αiδ

i (V.31)

belongs to Tα(t)P+(I). In this way, (V.29) can be written as gα(∇α̇α̇, X) = gα(ν,X).

And since X is an arbitrary constant vector field, we get

∇α̇α̇ = ν =
∑
i∈I

(
d

dt

(
α̇i
αi

)
+ 1

2
α̇2
i

α2
i

+ F (t)
)
αiδ

i. (V.32)

Therefore, α(t) = ∑
i∈I αi(t)δi is a geodesic if and only if

d
dt

(
α̇i
αi

)
+ 1

2

(
α̇i
αi

)2
+ F (t) = 0, ∀i ∈ I,

∑
i∈I α̇i(t) = 0, ∀t.

(V.33)

Our next goal is to solve (V.33). Wemay remark that ifα is a geodesic thengα(t)(α̇(t), α̇(t))

is constant alongα(t). Consequently, taking into account the assumption that ||γ̇(0)||µ =

1, we can assert that

gα(t)(α̇(t), α̇(t)) =
∑
i∈I

α̇2
i

αi
≡ 1. (V.34)

Then we have ∑
i∈I

d

dt

(
α̇i
αi

)
αi = d

dt

∑
i∈I

(
α̇i
αi
αi

)
−
∑
i∈I

α̇2
i

αi
= −1. (V.35)

Which translates to F (t) = 1
2 . Substituting this result in (V.33), we obtain

d

dt

(
α̇i
αi

)
+ 1

2

(
α̇i
αi

)2
+ 1

2 = 0, ∀i ∈ I. (V.36)

We set ωi(t) = α̇i(t)
αi(t)

, and we rewrite equation (V.36) as

d

dt
ωi + 1

2ω
2
i + 1

2 = 0, ∀i ∈ I,

(V.37)

The solution of this differential equation is given by ωi = tan
(
− t

2 + Θi
)
, where Θi is
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constant for i ∈ I . Hence, we have
α̇i
αi

= tan
(
−1

2t+ Θi
)
, ∀i ∈ I,

and αi(t) = Ωi cos2
(
− t

2 + Θi
)
, where Ωi is constant, and i ∈ I . Taking into account

initial conditions, we conclude that

Θi = arctan
(
α̇i(0)
αi(0)

)
, (V.38)

Ωi = α2
i (0) + α̇2

i (0)
αi(0) . (V.39)

Which proves the theorem. �

When the initial vector is not normalized, the geodesic curve is given by the

following corollary.

Corollary V.1
The geodesic α(t) with α(0) = µ and α̇(0) = v, where v is a nontrivial tangent

vector and not necessary unit, is given by

α(t) =
∑
i∈I

(
cos t‖v‖µ2 + vi

µi‖v‖µ
sin t‖v‖µ2

)2

µiδ
i. (V.40)

Proof Indeed, we can check that the curve is auto parallel and satisfies the initial

conditions. �

The distance between two measure is equal to the length of the geodesic segment

connecting them. But instead of computing the difficult integral, we transform to

compute the length of the geodesic on the sphere, which is much practical.

Proposition V.3
The Fisher Rao distance dFR : P+(I) × P+(I) → [0, π) between two measures

µ, ν ∈ P+(I) under the Fisher-Rao metric is given by

dFR(µ, ν) = 2 arccos
(∑
i∈I

√
µiνi

)
. (V.41)

To prove Proposition V.3, we remind the following lemma [8].

Lemma V.1
Let

S+
(0,2)(I) =

{
f ∈ F(I) | f i > 0,∀i ∈ I and

∑
i∈I

(f i)2 = 4
}
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be the positive sector of the sphere centered at 0 with radius 2. As a submanifold

of F(I) it carries the induced standard metric of F(I). That is for a given point

f ∈ S+
(0,2)(I) and two tangents vectors p, q ∈ TfS+

(0,2)(I), we have

〈p, q〉f =
∑
i∈I

piqi. (V.42)

Then the map Φ given by

Φ : P+(I) −→ S+
(0,2)(I)

µ =
∑
i∈I

µiδ
i 7−→ 2

∑
i∈I

√
µiei (V.43)

is an isometry.

Proof [Proof of the lemma] It is clear that Φ is bijective. Now, let v, w be in TµP+(I).

We have 〈
∂Φ
∂v

(µ), ∂Φ
∂w

(µ)
〉

=
〈
d

dt
Φ(µ+ vt)

∣∣∣∣
t=0
,
d

dt
Φ(µ+ wt)

∣∣∣∣
t=0

〉

=
〈∑
i∈I

vi√
µi
ei,
∑
i∈I

wi√
µi
ei

〉

=
∑
i∈I

viwi
µi

= gµ(v, w).

�

Proof [Proof of the Proposition] By virtue of Lemma V.1, we get

dFR(µ, ν) = d(Φ(µ),Φ(ν)) = 2 arccos
(∑
i∈I

√
µiνi

)
.

�

We remark that the Riemannian geometry of P+(I) is well known in differential

geometry. However, we provide here explicit computations in special coordinates. Now

we have the explicit formula of the geodesic segment connecting two measures.

Theorem V.3
Let µ, ν be two different probability measures inP+(I). Then there exists a unique

geodesic α : [0, l]→ P+(I), t→ α(t), joining two points µ and ν, with α(0) = µ,

α(l) = ν and l = dFR(µ, ν), given by

α(t) =
∑
i∈I

(
cos tl2 + dτ

dµ
(i) sin tl2

)2

µiδ
i, (V.44)
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where τ is the tangent vector in TµP+(I) defined by

τ = 1
sin l

2

∑
i∈I

√dν
dµ
−
∑
j∈I

√
dν

dµ
(j)µ(j)

µiδi. (V.45)

Proof The proof falls naturally into three steps.

Step 1 First, let us check that τ is a tangent vector in TµP+(I). Indeed,

1
sin l

2

∑
i∈I

√dν
dµ

(i)−
∑
j∈I

√
dν

dµ
(j)µ(j)

µi = 1
sin l

2

∑
i∈I

√
dν

dµ
(i)µi −

∑
j∈I

√
dν

dµ
(j)µ(j)


= 0. (V.46)

Then, since ∑
j∈I

√
dν

dµ
(j)µ(j)

2

=
∑
j∈I

√
µjνj

2

= cos2 l

2 . (V.47)

it follows that

〈τ, τ〉µ = 1
sin2 l

2

∑
i∈I

√dν
dµ

(i)−
∑
j∈I

√
dν

dµ
(j)µ(j)

2

µi

= 1
sin2 l

2

∑
i∈I

ν(i)−
∑
j∈I

√
dν

dµ
(j)µ(j)

2


= 1
sin2 l

2

(
1− cos2 l

2

)
= 1. (V.48)

hence τ is a unit tangent vector.

Step 2 Now let us examine that the curve α(t) defined in (V.44) satisfies α(0) = µ and

α(1) = ν. It is easily seen that for t = 0, α(0) = µ. Now for t = l, we have

α(l) =
∑
i∈I

(
cos l2 + dτ

dµ
(i) sin l

2

)2

µiδ
i. (V.49)

By (V.45) we get

dτ

dµ
sin l

2 =
∑
i∈I

√dν
dµ

(i)−
∑
j∈I

√
dν

dµ
(j)µ(j)

 ei
=
∑
i∈I

(√
dν

dµ
(i)− cos l2

)
ei. (V.50)

Hence,

α(l) =
∑
i∈I

(
cos l2 +

√
dν

dµ
(i)− cos l2

)2

µiδ
i =

∑
i∈I

νiδ
i = ν. (V.51)

Step 3 Now we go to prove the uniqueness of the curve. Let µ(t) = expµ τt and

µ̃(t) = expµ τ̃ t be unit speed geodesics corresponding to τ and τ̃ , and satisfying

92



Manuscript - Thesis

µ(0) = µ̃(0) = µ and µ(l) = µ̃(l) = ν. By means of Theorem V.2, we have

µ(t) =
∑
i∈I

(
cos t2 + dτ

dµ
sin t

2

)2

µiδ
i, (V.52)

µ̃(t) =
∑
i∈I

(
cos t2 + dτ̃

dµ
sin t

2

)2

µiδ
i. (V.53)

From later condition, we have(
cos l2 + dτ

dµ
(i) sin l

2

)2

=
(

cos l2 + dτ̃

dµ
(i) sin l

2

)2

,∀i ∈ I (V.54)

⇒ cos l2 + dτ

dµ
(i) sin l

2 = ±
(

cos l2 + dτ̃

dµ
(i) sin l

2

)
,∀i ∈ I. (V.55)

Define

I± =
{
i ∈ I

∣∣∣∣ cos l2 + dτ

dµ
(i) sin l

2 = ±
(

cos l2 + dτ̃

dµ
(i) sin l

2

)}
(V.56)

Then we have I_ ∪ I+ = I . Moreover I_ ∩ I+ = ∅. Indeed, if there exists i ∈ I_ ∩ I+

then

νi =
(

cos t2 + dτ

dµ
sin t

2

)2

µi = 0, (V.57)

contradict to ν ∈ P+. Sine 0 < l < π, we have

I+ = {i ∈ I|τi = τ̃i} , (V.58)

I_ =
{
i ∈ I|τi + τ̃i = −2µi cot l2

}
. (V.59)

Suppose I_ 6= ∅, since τ and τ̃ are unit tangent vectors at µ, we have∑
i∈I+

τi +
∑
i∈I_

τi =
∑
i∈I+

τ̃i +
∑
i∈I_

τ̃i = 0 (V.60)

⇒
∑
i∈I_

(
τ̃i + 2µi cot l2

)
+
∑
i∈I_

τ̃i = 0. (V.61)

Since (V.61) we see that if I_ = I , then cot l
2 = 0 contradicts to 0 < l < π. So I_ 6= I.

We have the claim below.

Claim For all µ ∈ P+(I) and 0 < l < π. If τ, τ̃ ∈ TµP+(I). Let

I+ = {i ∈ I|τi = τ̃i} , (V.62)

I_ =
{
i ∈ I|τi + τ̃i = −2µi cot l2

}
, (V.63)

then I_ = ∅.

By means of the Claim, we prove the uniqueness of the geodesic (V.44) defined

with the unit tangent vector (V.45). �
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The proof of the Claim will be given in Appendix B.

By the Theorem II.7 of the Chapter II (Background), we have for any µ ∈ P+(I)

there exist a neighborhood O0 ⊂ TµP+(I) and neighborhood Oµ ⊂ P+(I) such that

the mapping α(1, µ, v) is a diffeomorphism. This implies that the set O0 contains the

vector v such that the geodesic is well defined on the interval [0, 1]. Furthermore, the

value of the geodesic at time 1 is the exponential map. We have the explicit definition

for the exponential map and the logarithm map.

Corollary V.2
Let µ ∈ P+(I), and let O0,Oµ be the neighborhoods of 0 and µ in TµP+(I) and

P+(I) such that the exponential map expµ is well defined. Then for v ∈ O0, the

exponential map is given by

expµ(v) =
∑
i∈I

(
cos ‖v‖µ2 + vi

µi‖v‖µ
sin ‖v‖µ2

)2

µiδ
i. (V.64)

The logarithmic map logµ, as the inverse of expµ, is given by

logµ : Oµ −→ O0

ν 7−→ logµ(ν) = l

sin l
2

∑
i∈I

√dν
dµ

(i)−
∑
j∈I

√
dν

dµ
(j)µ(j)

µiδi. (V.65)

Proof The corollary follows directly from (V.40) when letting t = 1, and Theorem V.3,

where logµ(ν) = lτ . �

V.3.4 Levi-Civita parallel transport on P+(I)

Let us consider two points µ, ν ∈ P+(I), a tangent vector v ∈ TµP+(I) and a geodesic

curve α : [0, l] → P+(I) on P+(I) such that α(0) = µ and α(l) = ν. We would like

to map v from TµP+(I) = Tα(0)P+(I) to TνP+(I) = Tα(l)P+(I). We introduce X , a

vector field defined along the geodesic α, such that X(µ) = v and ∇α̇(t)X(α(t)) = 0.

We say that the vector field X is constant along the geodesic curve α with respect to∇.

Definition V.4
A metric parallel transport on P+(I) is the map

Γα(0)�α(t) : Tα(0)P+(I)→ Tα(t)P+(I) (V.66)
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such that for every v, w ∈ TµP+(I), and for any t ∈ [0, l] we have

gα(0) (v, w) = gα(t)
(
Γα(0)→α(t)(v),Γα(0)→α(t)(w)

)
. (V.67)

If Γ is the Levi-Civita parallel transport (corresponding with Levi-Civita con-

nection), then Γ is metric. Rewriting equation ∇α̇(t)X(α(t)) = 0, we conclude that

computingX(t) = X(α(t)) requires solving a linear first order differential equations on

P+(I) given by
dXk

dt
+
∑
i,j

αkij
dαi
dt
Xj = 0, for k = 1, . . . , n. (V.68)

We check at once that it is difficult to solve equation (V.68) directly. Instead we will use

equation (V.19).

Theorem V.4
Let µ be a probability measure in P+(I) and v ∈ TµP+(I) a unit tangent vector,

i.e., ||v||µ = 1. Let α : [0, l] → P+(I) be a geodesic curve such that α(0) = µ

and α̇(0) = v. The Levi-Civita parallel transport of a vector w ∈ TµP+(I) to

Tα(t)P+(I), is given by

Γµ�α(t)(w) =
∑
i∈I

√
αi(t)

(
−F0
√
µi

(
2 sin t

2 − 2 vi
µi

cos t2

)
+ wi√

µi
− 2F0

vi√
µi

)
δi,

(V.69)

where F0 = 1
2gµ(v, w) is constant.

Proof We can proceed analogously to the proof of Theorem V.2. Thus, let α(t) =∑
i∈I αi(t)δi be a geodesic curve, and define α̇(t) = ∑

i∈I α̇i(t)δi. Consider the vector

field X on α defined by X(α(t)) = ∑
i∈I Xi(α(t))δi, for t ∈ [0, l], as the parallel

transport of vector w along α. Then
∇α̇(t)X(t) = 0

X(0) = w

, (V.70)

where we writeX(α(t)) simplyX(t) when no confusion can arise. Let Y be a constant

vector field (in the sense of Definition V.3) on P+(I), we have

gα(t)
(
∇α̇(t)X(t), Y

)
= α̇(t)

(
gα(t)(X(t), Y )

)
− gα(t)

(
X(t),∇α̇(t)Y

)
. (V.71)
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Applying Theorem V.1, we get

∇α̇Y = −1
2
∑
i∈I

 α̇i
αi

Yi
γi
−
∑
j∈I

α̇jYj
αj

αiδi. (V.72)

Hence the last term in (V.71) becomes

gα(X,∇α̇Y ) = −1
2
∑
i∈I

Xi

αi

 α̇i
αi

Yi
αi
−
∑
j∈I

α̇jYj
αj

αi
= −1

2
∑
i∈I

XiYiα̇i
α2
i

. (V.73)

Let us now compute the second term in (V.71). We obtain

α̇(t)
(
gα(t)(X, Y )

)
= d

dt
gα(t)(X(t), Y ) =

∑
i∈I

d

dt

(
Xi

αi

)
Yi. (V.74)

Consequently, equation (V.71) becomes

gα(∇α̇X, Y ) =
∑
i∈I

(
d

dt

(
Xi

αi

)
+ 1

2
Xiα̇i
α2
i

)
Yi. (V.75)

Define the function F (t) by

F (t) = −
∑
i∈I

(
d

dt

(
Xi

αi

)
+ 1

2
Xiα̇i
α2
i

)
αi(t)

= −
∑
i∈I

d

dt

(
Xi

αi

)
αi(t)−

1
2gα(t)(X(t), α̇(t)). (V.76)

Then, ∀t ∈ [0, l], the probability measure

ν(t) =
∑
i∈I

(
d

dt

(
Xi

αi

)
+ 1

2
Xiα̇i
α2
i

+ F (t)
)
αiδ

i

belongs to Tα(t)P+(I). Thus, Equation (V.75) can be written as

gα(∇α̇X, Y ) = gα(ν, Y ). (V.77)

Since Y is an arbitrary constant vector field, we get

∇α̇X = ν =
∑
i∈I

(
d

dt

(
Xi

αi

)
+ 1

2
Xiα̇i
α2
i

+ F (t)
)
αiδ

i. (V.78)

Therefore,X(t) is the parallel transport of the vector w along the geodesic curve α(t) if

and only if 
d

dt

(
Xi

αi

)
+ 1

2
Xiα̇i
α2
i

+ F (t) = 0, ∀i ∈ I,

X(0) = w.

(V.79)

Our next concern will be to solve equation (V.79). We remind that gα(t)(X(t), α̇(t)) =

gα(0)(X(0), α̇(0)). Moreover∑
i∈I

d

dt

(
Xi

αi

)
αi = d

dt

∑
i∈I

(
Xi

αi
αi

)
−
∑
i∈I

(
Xiα̇i
αi

)
= −gα(0)(X(0), α̇(0)). (V.80)
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Which gives that F (t) is a constant function and F (t) = F0 = 1
2gα(0)(X(0), α̇(0)).

Hence, substituting this result in equation (V.79) we get
d

dt

(
Xi

αi

)
+ 1

2
Xiα̇i
α2
i

+ F0 = 0, ∀i ∈ I. (V.81)

Set ωi = Xi

αi
. Equation (V.81) can be written as

d

dt
ωi + 1

2
α̇i
αi
ωi + F0 = 0, ∀i ∈ I. (V.82)

Solution of the first order differential equation (V.82) is given by

ωi(t) = 1√
αi(t)

(
−F0

√
αi(0)

(
2 sin t

2 − 2 α̇i(0)
αi(0) cos t2

)
+ Θi

)
, for Ωi constant, i ∈ I.

(V.83)

Therefore,

Xi =
√
αi(t)

(
−F0

√
αi(0)

(
2 sin t

2 − 2 α̇i(0)
αi(0) cos t2

)
+ Θ

)
, for Θi constant, i ∈ I.

(V.84)

According to the initial conditions, it follows that

Θ = wi√
µi
− 2F0

vi√
µi
. (V.85)

We conclude that

Xi(t) =
√
αi(t)

(
−F0
√
µi

(
2 sin t

2 − 2 vi
µi

cos t2

)
+ wi√

µi
− 2F0

vi√
µi

)
, i ∈ I.

(V.86)

and it is easy to check that, ∀t ∈ [0, l], X(t) = ∑
i∈I Xi(t)δi ∈ Tγ(t)P+(I) and it is the

Levi-Civita parallel transport of the vector w along the geodesic curve γ(t). �

Let the parallel transport between two measures be computed along the geodesic

curve. The following theorem gives the explicit formula for the transportation.

Theorem V.5
Given two distinct probability measures µ and ν in P+(I), a nontrivial tangent

vectorw ∈ TµP+(I) and the geodesic curveα : [0, l]→ P+(I) such thatα(0) = µ

and α(l) = ν. The Levi-Civita parallel transport, Γµ�ν : TµP+(I) → TνP+(I),

that transports a vector w from TµP+(I) = Tα(0)P+(I) to TνP+(I) = Tα(l)P+(I)
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is given by

Γµ�ν(w) =
∑
i∈I

√
νi

(
−F0
√
µi

(
2 sin l

2 − 2 τi
µi

cos l2

)
+ wi√

µi
− 2F0

τi√
µi

)
δi,

(V.87)

where l = 2 arccos∑i∈I
√
µiνi, F0 = 1

2gµ(w, τ), and τ is the unit tangent vector

τ = 1
sin l

2

∑
i∈I

√dν
dµ

(i)−
∑
j∈I

√
dν

dµ
(j)µ(j)

µiδi. (V.88)

Proof We make use of the geodesic curve α(t) joining two points µ and ν as detailed

in Theorem V.3 together with taking t = l in Theorem V.4. �

We have studied the space P+(I) with all the geometrical tools needed. In the next

section we consider some statistical models on this space.

V.4 Transfer Learning

In this section, we consider the issue of transporting statistical models on the space of

probability measures P+(I). Specifically, we illustrate the benefits of exploiting the

Riemannian geometry of P+(I) and discuss how these tools can be incorporated into

transfer learning problems. To address this issue, let PL = {µi}Li=1 and PS = {νi}Si=1

denote two populations in P+(I), with PL is of large size and PS is of small size. We

are interested in learning a statistical model from the dataset on PS such as covariance

matrix, PCA, and regression models while leveraging statistical information from the

large dataset on PL. Firstly, we need to identify the geometric mean of PL and PS .

Indeed, for a set of data points {µi}Li=1 ∈ P+(I), we consider the Karcher mean defined

as

µ? = argminµ∈P+(I)

L∑
i=1

dFR(µ, µi)2 (V.89)

where dFR(µ, µi) denotes the distance on P+(I) determined with respect to the Fisher-

Rao metric. Now suppose that we have computed the means µ∗ and ν∗ of the two

populationsPL andPS , we lift data pointsPL = {µi}Li=1 onto the tangent spaceTµ∗P+(I)

and the data points PS = {νi}Si=1 onto the tangent space Tν∗P+(I) by means of the

logarithm map defined on the set of probability measures P+(I). The populations
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are now represented in the tangent vector space. Indeed, projecting data into a vector

space allows us to apply common statistical analysis methods. Let’s denote the mapped

data respectively by {vi}Li=1 and {wi}Si=1 with vi = logµ∗(µi), i = 1, ..., L and wi =

logν∗(νi), i = 1, ..., S. We wish to state steps of our approach for transferring statistical

models and we will discuss the performance of the parallel transport defined previously

on P+(I) with different applications in the next section.

V.4.1 Covariance and PCA from large populations

Since the space P+(I) is nonlinear, the usual PCA cannot be applied to the large

population PL. A variant has been introduced in [41] as an extension of PCA for data

lying on Riemannian manifolds. This method requires to solve a nonlinear optimization

problem that is hard to solve in general [111]. In [24], the authors give an efficient

and exact algorithm for manifolds with constant sectional curvature. In this chapter, we

consider an approximation on the tangent space at µ∗, called TPCA.

Let {vi}Li=1 in Tµ∗P+(I). We define the variance as

σ2 = 1
L− 1

L∑
i=1
‖vi‖2

µ∗ = 1
L− 1

L∑
i=1

gµ∗(vi, vi). (V.90)

By the isometrymapΦ, (V.43), mapsP+(I) into the sphereS+
(0,2)(I), we havegµ∗(vi, vi) =

〈dΦ(µ∗) [vi] , dΦ(µ∗) [vi]〉, where 〈·, ·〉 is the usual inner product in the ambient space

Rn+1. The variance can be rewritten as

σ2 = 1
L− 1

L∑
i=1

〈
dΦ(µ∗)

[
vi
]
, dΦ(µ∗)

[
vi
]〉
. (V.91)

We note that σ2 captures the total variance of data and is equal to the trace of the

covariance matrix CV̄ given in the following definition.

Definition V.5
Let {vi}Li=1 be a dataset in Tµ∗P+(I) and let V̄ =

[
v̄1, ..., v̄L

]
∈ R(n+1)×L be a

matrix, where the i-th column v̄i is simply the vector dΦ(µ∗) [vi] = vi/
√
µ, the

divide is done component-wise. We define the sample covariance matrix CV̄ as

CV̄ = 1
L− 1 V̄ V̄

T . (V.92)

We remind that the main goal of TPCA is to find an orthonormal basis {e1, ..., en}
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in Tµ∗P+(I) that solves the optimization problems:
e1 = argmax‖e‖µ∗=1

1
L−1

∑L
i=1 gµ∗(e, vi)2,

ek = argmax‖e‖µ∗=1
1

L−1
∑L
i=1 gµ∗(e, vik)2, where vik = vi −∑k−1

j=1 gµ∗(ej, vi)ej.

(V.93)

We summarize the solution in the following proposition.

Proposition V.4

Let V̄ =
[
v̄1, ..., v̄L

]
∈ R(n+1)×L with v̄i = dΦ(µ∗) [vi]. Let CV̄

be the sample covariance matrix. The solution of (V.93) is given by

{dΦ(µ∗)−1f1, . . . , dΦ(µ∗)−1fn}, where {f1, ..., fn} is the first n eigenvectors of

CV̄ .

Proof Using the isometry map Φ, we rewrite (V.93) on Rn+1 as
f1 = argmax‖f‖=1

1
L−1

∑L
i=1 〈f, v̄i〉

2
,

fk = argmax‖f‖=1
1

L−1
∑L
i=1

〈
f, v̄ik

〉2
, where v̄ik = v̄i −∑k−1

j=1 〈fj, v̄i〉 fj,

(V.94)

with v̄i = dΦ(µ∗) [vi]. Then, the solution is given by the ordered eigenvectors {fk}n+1
k=1

ofCV̄ . To show that {dΦ(µ∗)−1f1, ..., dΦ(µ∗)−1fn} is an orthonormal basis of Tµ∗P+(I)

we consider the HyperplaneH perpendicular to Φ(µ∗). We remind that 〈Φ(µ∗), v̄i〉 = 0

and we easily check that {fk}nk=1 spans H and fn+1 is it’s normal vector. �

Definition V.6
Let (λi, fi)n+1

i=1 be the eigenpairs of the covariance matrix CV̄ as in the Propo-

sition V.4. We define the corresponding covariance matrix on the tangent space

as

CV = ES2ET , (V.95)

where E = [e1, ..., en], ei = dΦ(µ∗)−1(fi) and S is the diagonal matrix of

(
√
λi)ni=1.
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We summarize the main steps in Algorithm 3.
Algorithm 3: Covariance matrix/TPCA
Input : Data Populations: PL = {µi}Li=1.

Output: Covariance matrix: CV , CV̄ , eigenvectors F , E, eigenvalues λ1, ..., λn.

Compute the Karcher mean µ∗ of PL using (V.89).

Project data points PL onto tangent space Tµ∗P+(I):

vi = logµ∗(µi), i = 1, ..., L,

V = [v1, ..., vL].

Push forward the data:

v̄i = dΦ(µ∗)[vi], i = 1, ..., L,

V̄ = [v̄1, ..., v̄L].

Compute the covariance matrix

CV̄ = 1
L− 1 V̄ V̄

T .

Find the eigenpairs (λi, fi)n+1
i=1 of CV̄ .

Pullback the eigenvector ei = dΦ(µ∗)−1[fi], for i = 1, ..., n, and let

E = [e1, ..., en].

The covariance matrix on tangent space is given by

CV = Ediag(λ1, ..., λn)ET .

V.4.2 Covariance and PCA transport

Given two populations PL = {µi}Li=1 and PS = {νi}Si=1 in P+(I), the corresponding

covariance matrices are then given by

CV̄ = 1
L− 1 V̄ V̄

T ,

and

CW̄ = 1
S − 1W̄W̄ T ,

where W̄ =
[
w̄1, ..., w̄S

]
∈ R(n+1)×S with the i-th column w̄i = dΦ(ν∗) [wi]. The

corresponding sample covariance matrices on tangent space CV and CW are defined as
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in Definition V.6. Since PS is of small size, CW̄ may be a poor estimate of the true

covariance matrix of PS . Hence, we would hope to enhance the covariance estimation

CW̄ by exploiting CV̄ . To illustrate this idea, we transfer the sample covariance matrix

CV , which is defined on the tangent space Tµ∗P+(I) to the tangent space Tν∗P+(I) using

the metric parallel transport Γµ∗�ν∗ defined on P+(I). To accomplish this, our strategy

consists in transporting orthonormal basis {e1, ..., en} in Tµ∗P+(I) to Tν∗P+(I), which

in turn has produced the covariance matrix of the transported data {vi}Li=1 in Tν∗P+(I).

Thanks to the metric parallel transport, the orthogonality and distance between vectors

are preserved.

Improving the covariance matrix CW̄ provides an avenue for the application of

common dimensionality reduction techniques. Here, we show that TPCA model of

{ṽi}Li=1 = Γµ∗�ν∗({vi}Li=1) in Tν∗P+(I) coincides exactly with the TPCAmodel defined

by the transported eigenvectors of CV̄ . We summarize these results in Proposition V.5.

Proposition V.5. Covariance/PCA transport [46]
Let two populations PL = {µi}Li=1 and PS = {νi}Si=1 in P+(I) with the corre-

sponding Karcher means µ∗, ν∗. Let V =
[
v1, ..., vL

]
be the matrix where the

i-th column vi is equal to logµ∗(µi). Suppose we have an orthonormal basis

{e1, ..., en} in Tµ∗P+(I) and corresponding eigenvalues {λ1, ..., λn}, that solves

the TPCA problems (V.93). Then

a) the transported vector {ẽ1, ..., ẽn}, where ẽi = Γµ∗�ν∗(ei), solves the TPCA

problems in Tν∗P+(I) of Ṽ =
[
ṽ1, ..., ṽL

]
, where ṽi = Γµ∗�ν∗(vi).

b) the transported covariance matrix is

C̃V = ẼS2ẼT , (V.96)

where Ẽ = [ẽ1, ..., ẽn] and S2 = diag(λ1, ..., λn).

Proof a) Since Γµ∗�ν∗ is metric parallel transport, {ẽ1, ..., ẽn} is an orthonormal basis

in Tν∗P+(I). The TPCA problems for the transported data are given by
u1 = argmax‖u‖ν∗=1

1
L−1

∑L
i=1 gν∗(u, ṽi)2,

uk = argmax‖u‖ν∗=1
1

L−1
∑L
i=1 gν∗(u, ṽik)2, where ṽik = ṽi −∑k−1

j=1 gν∗(uj, ṽi)uj.

(V.97)
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We see that the solution of the above problems are {ẽ1, ..., ẽn}with the same eigenvectors

{λ1, ..., λn}.

b) This follows directly from the part a) since {ẽ1, ..., ẽn} solves the TPCA problems

with corresponding eigenvalues {λ1, ..., λn}. �

By the above Proposition, to transport the TPCAmodel on µ∗ to ν∗, we do not need

to transport all the data to solve for the TPCA problems but we only need to transport

the orthonormal basis.

Now, the two covariance matrices CW and C̃V lie in the same tangent space

Tν∗P+(I), we can use shrinkage estimation method [102] to combine the two covariance

matrices as follow,

Cρ = ρC̃L + (1− ρ)CS, 0 ≤ ρ ≤ 1. (V.98)

It is easily seen that ρ weighs the contribution of C̃L, and we need to choose the value

of ρ depending on each problem. We summarize different steps of transfer learning

covariance matrix and PCA model in Algorithm 4.

V.4.3 Linear regression transport

Let {vi}Li=1 ⊂ Tµ∗P+(I). We present similar result as Proposition V.5 for transfer

learning of linear regression model. Indeed, let {yi}Li=1 ∈ R denote the label of {vi}Li=1.

A linear regression model y : Tµ∗P+(I)→ R, v → y(v) has the following form

y(v) = vT r + r0 =
〈
v,G−1

µ r
〉
µ

+ r0. (V.99)

where Gµ denote the Fisher-Rao metric on P+(I), r0 ∈ R and r is a tangent vector

on Tµ∗P+(I). Let us consider li(y) the loss function associated with yi = y(ai), for

example we can take the loss function as a squared error li(y) = (y − yi)2.

Proposition V.6. Linear regression transport [46]
Let

(β, β0) = argmin
d∈Tµ∗P+(I),d0∈R

L∑
i=1

li

((
vi
)T
d+ d0

)
. (V.100)

be a solution of the linear regression model (V.99) on Tµ∗P+(I). Then the

tangent vector β̃ = Gν∗Γµ∗�ν∗(G−1
µ∗ β) is a solution of the linear regression model
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Algorithm 4: Transfer Learning of Covariance matrix and PCA model
Input : Data Populations: PL = {µi}Li=1, and PS = {νi}Si=1.
Output: Covariance matrix: Cρ.
Compute Karcher means µ∗ and ν∗ of PL and PS using (V.89).
Project data points PL and PS respectively onto tangent spaces Tµ∗P+(I) and
Tν∗P+(I):

vi = logµ∗(µi), i = 1, ..., L,
wi = logν∗(νi), i = 1, ..., S.

Push forward the data into the ambient space:

v̄i = dΦ(µ∗)[vi], i = 1, ..., L,
w̄i = dΦ(ν∗)[wi], i = 1, ..., S.

Apply the Algorithm 3 to find the covariance matrix and TPCA of PL and PS:
CV , CV̄ , FV , EV , λ

V
i and CW , CW̄ , FW , EW̄ , λWi .

Transform the orthonormal basis EV to ẼV = [ẽV1 , ..., ẽVn ], where
ẽVi = Γµ∗�ν∗(eVi ), and transform FV to F̃V = [f̃V1 , ..., f̃Vn ], where
f̃Vi = dΦν∗(ẽVi ).
The transformed covariance matrices are

C̃V = ẼV diag(λV1 , ..., λVn )ẼV ,
C̃V̄ = F̃V diag(λV1 , ..., λVn )F̃V .

Let Cρ = ρC̃V̄ + (1− ρ)CW̄ , 0 ≤ ρ ≤ 1 be the shrinkage covariance matrix
on Rn+1.
Compute the eigenvalue decomposition of Cρ: Cρ = Vρdiag(λρ1, ..., λρn+1)V T

ρ

and the corresponding orthonormal basis Eρ of Tν∗P+(I).
Fix k ∈ N, k < n, the k-dimensional TPCA model given by the first k vectors of
Eρ and k eigen-value (λρ1, ..., λρk).

on Tν∗P+(I),

β̃ = argminc∈TνP+(I)

L∑
i=1

li

((
ṽi
)T
c+ β0

)
. (V.101)

According to Proposition V.6, there is no need to transport the entire dataset; rather,

we only need to transport the tangent vector of the linear model. This significantly

reduces computational costs. We summarize the different steps of linear regression
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transport in Algorithm 5.
Algorithm 5: Transfer learning of Linear regression model
Input : Data Populations: PL = {µi}Li=1, PS = {νi}Si=1 in P+(I) and its labels

{yµi}Li=1, {yνi}Si=1.

Output: γρ: the coefficients of the Linear model.

Compute Karcher means µ∗ and ν∗ of PL and PS using (V.89).

Project data points PL and PS respectively onto tangent space Tµ∗P+(I) and

Tν∗P+(I):

vi = logµ∗(µi), i = 1, ..., L,

wi = logν∗(νi), i = 1, ..., S.

Find the solution (β, β0) of the Linear regression model model on Tµ∗P+(I)

(β, β0) = argminr∈Tµ∗P+(I),r0∈R

S∑
i=1

li

((
vi
)T
r + r0

)
. (V.102)

Split the data {{wi}Si=1, {yνi}Si=1} into the training set Btrain and test set Btest.

Find the solution (θ, θ0) of the Linear regression model model on Tν∗P+(I) on

training set

(θ, θ0) = argminu∈Tν∗P+(I),u0∈R
∑

wi∈Btrain

li

((
wi
)T
u+ u0

)
. (V.103)

Apply the parallel transport Γµ∗→ν∗ defined on P+(I) to transport the tangent

vector G−1
µ∗ β to the tangent space Tν∗P+(I).

Set β̃ = Gν∗Γµ→ν(G−1
µ∗ β), then (β̃, β0) is the solution of the transported linear

regression model (V.99) on Tν∗P+(I).

β̃ = argminc∈Tν∗P+(I)

L∑
i=1

li(Γµ∗→ν∗(vi)T c+ β0). (V.104)

Compute the combined solution of the regression model on Tν∗P+(I):

γρ = ρ(β̃, β0) + (1− ρ)(θ, θ0). (V.105)

Return γρ.

V.5 Experiments
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V.5.1 TPCA and TPCA transport

We will apply the TPCA and TPCA transport for two different datasets of histograms.

V.5.1.1 On first datasets

We apply Algorithm 3 to the real dataset Animal-Fclass1 (PL), which contains 998

elements in P+(I), where |I| = 200. This dataset represents the histogram of density

estimation from the body temperature of animals without disease. The reconstruction

is computed by applying the exponential map to the projection of the log of data on the

space spanned by principal components (the projection is in the tangent space). Then,

the error between the true and the reconstructed data is measured using the geodesic

distance. In this experiment, we employ 3 principal components for reconstruction,

with an explained variance ratio of 0.9372. The errors are displayed in Figure V.1. We

observe that the median of reconstruction errors is approximately 0.1.

Figure V.1: The boxplot of geodesic distance error of the reconstruction and the true of PL.

To apply the TPCA transport model developed in this chapter, we consider the second

data set, Animal-Fclass2 (PS), which consists of 350 data points. This dataset represents

the histogram of density estimation from the temperature of animals with diseases. Both

datasets and their Karcher means are illustrated in Figure V.2.

We apply Algorithm 4 to the model transport with ρ ∈ {0, 0.1, 0.2, ..., 1} (V.98).

We also use 3 principal components for reconstruction, and the error is measured by
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Figure V.2: The data and the Karcher mean of (Left): PL, (Right): PS .

geodesic distance. The results are presented in Figure V.3. Notably, we observe that

selecting specific ρ values, such as 0.1, 0.2, and 0.3, results in a slight reduction in the

reconstruction error.

Figure V.3: The boxplots of the reconstruction error for ρ ∈ {0, 0.1, 0.2, ..., 1}.

V.5.1.2 On second datasets

Now we apply the same steps as before but to different datasets. The large dataset PL

contains 4000 histograms of images of cat from the training set1. The small dataset

consists of 300 histogram of cat images from the test set. Figure V.4 shows some of

these cat images.

1https://www.kaggle.com/datasets/chetankv/dogs-cats-images?select=
dataset
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Figure V.4: The images of cats in the large dataset (on the right) and the small dataset (on the
left).

The normalized histograms of gray scale images belong to P+(256) (after adding

some small number). Figure V.5 displays Karcher means and some histograms.

Figure V.5: The images of Karcher mean and some histograms of the large dataset (right) and
small dataset (left).

For TPCA of the large dataset PL, we use 10 principal components for reconstruc-

tion, with an explained variance ratio of 0.8516. The errors are displayed in Figure

V.6.

Figure V.6: The boxplot displays the geodesic distance errors on the large dataset of cat image
histograms.

108



Manuscript - Thesis

For TPCA transport, we apply Algorithm 4 using 10 principal components. The

results are presented in Figure V.7.

Figure V.7: The boxplots show the reconstruction error for ρ ∈ {0, 0.1, 0.2, ..., 1} for small
dataset of cat image histograms.

V.5.2 Linear Regression

As before, we also apply transferring linear regression models to two different datasets.

V.5.2.1 On first datasets

We apply Algorithm 5 to transport a linear regression model. Suppose we have two

populations, PL and PS , each containing data labeled as 0 or 1. Initially, we train the

linear model LM1 on PL and then transport its coefficients. We refer to the combined

model of the transported one and the model learned from PS as LMcom. Subsequently,

we test LMcom on the test subset of PS .

We demonstrate an application on two populations: Human (Male and Female) and

Animal (class 1 and class 2). The Human dataset contains the histograms estimated

from the heights of males and females, while the Animal dataset comprises histograms

estimated from temperatures of animals. Each class in Human and Animal consists of

100 elements. In our application, we randomly split the Animal dataset into a training

set and a test set, with the test size set to 0.33.
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The first model is leaned on the Human dataset and then transported to the Animal

dataset. Then, the second model is trained on the training set of the Animal dataset.

Finally, the transported model and the second model are combined and tested on the test

set of Animal dataset.

The same method of transported model is also applied for the Heart beats dataset,

which contains 500 normal and 1000 abnormal elements, in place of the Human dataset.

We conducted the test 50 times with random splits in the Animal dataset to remove the

bias. The accuracies of the combined model are depicted in Figure V.8.

Figure V.8: The Box-plot of the accuracy of the combined models (Left column): the large
dataset is Human, (Right column): the large dataset is Heart beats.

In Figure V.8, we observe that the accuracy in the left figure remains relatively

stable overall. However, with an appropriate value of ρ, such as ρ = 0.7, the results can

be improved. In contrast, in the right figure, the accuracies do not exhibit improvement.

This suggests that there is little to no relationship between the two datasets, which can

be considered an example of negative transfer.

V.5.2.2 On second datasets

In this experiment, we apply the same strategy to transfer a linear regression model to

different datasets. The large datasetPL comprises two classes of histograms from images
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of cats and dogs in the training set2. Each class consists of 4000 elements. Similar, the

small dataset PS contains two classes of histograms from images of cats and dogs in the

test set, with each class contains 300 elements. The results are depicted in Figure V.9.

Figure V.9: The Box-plot of accuracy of the combined model for datasets of histograms from
images of cats and dogs.

In Figure V.9, we observe that several values of ρ lead to improved results, with the

optimal value being ρ = 0.8.

V.6 Conclusion

In this chapter, we have proposed an efficient and accurate transfer learning algorithm

of statistical models on the space of probability measures P+(I). To achieve this goal,

we consider a metric parallel transport: Levi-Civita parralel transport. In particular, we

have developed newly geodesic operations associated to the metric parallel transport.

We have proven that implementing techniques that exploit the underlying geometry of

the manifold yield good achievement in transfer learning tasks. Finally, we have applied

and discussed the good accuracy of the method and the high efficiency of the proposed

algorithm with various and multiple experimental results.

2https://www.kaggle.com/datasets/chetankv/dogs-cats-images?select=
dataset
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Chapter VI: Conclusion and prospects

In this chapter, we conclude the thesis by summarizing our main contributions and

results. Additionally, we will list some ongoing works that we aim to finish in the future.

VI.1 Summary of the contributions

Throughout this thesis, we havemade contributions by introducing newGaussian process

models, constrained Gaussian processes, and transfer learning on manifolds. We will

provide a more detailed summary in the following items:

We constructed new Gaussian processes based on classical polynomials such as

Legendre, Laguerre, Hermite, and Chebyshev. Although these Gaussian processes

do not have explicit covariance functions, they do have explicit K-L expansions.

By approximating these Gaussian processes through a finite truncation of the K-

L expansion, we reduce the computational cost in Gaussian process regression,

enabling us to work with large datasets.

We have incorporated a new type of constraint into Gaussian process models, en-

suring that the output function represents a probability distribution. Constrained

Gaussian process models pose a challenge because the posterior distribution is

typically analytically intractable. As a result, numerical methods are required to

approximate its mean and covariance. In this thesis, we introduced the embedded

Hamiltonian Monte Carlo (HMC) method on the sphere to simulate and approxi-

mate the posterior distribution. Our experiments demonstrate that this proposed

framework performs well and, in specific cases, outperforms other methods such

as Artificial Neural Networks.

Our last contribution has two facets: first, a detailed examination of the geometry

of finite distribution measures, and second, the introduction of transfer learning on

this manifold. In this thesis, we equip the space of finite measures with the Fisher-

Rao metric. We provide detailed formulas for the geodesic, parallel transport,

exponential map, and log map. These are all the tools necessary for transfer
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learning. We also present algorithms for transferring PCA and linear regression.

Additionally, we conducted experiments to apply these frameworks.

VI.2 Future work and prospects

In this thesis, we have demonstrated that it is highly beneficial when the K-L expansion

of a Gaussian process is known. Unfortunately, discovering the K-L expansion can be

challenging. Our future research endeavors will focus on exploring this field further

to uncover additional representations of Gaussian processes through series. Indeed, by

considering the eigenvalue equations of certain differential and integral operators, we

hope to identify more K-L expansions for Gaussian processes.

We also aim to enhance the flexibility of Gaussian process regression in applica-

tions by incorporating various types of constraints into the model. Simultaneously, we

are exploring the application of alternative simulation methods to improve both cost-

effectiveness and accuracy. In our recent work, we have experimented with applying

a Neural Network model with constraints to approximate probability density functions.

We hope to obtain further results through this approach as well.

Finally, wewill delve deeper into InformationGeometry to better apply it inMachine

Learning. In fact, we will endeavor to define a distance and a covariance function in

a more abstract space. From there, we can introduce linear regression models and

classification models.
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Chapter A: Low rank Gaussian processes

A.1 Simulation

In this simulation study, our goal is to predict the true function, denoted as g, which has

the form g(t) = ∑P
j=1 cjϕj(t). Where the coefficients cj are generated independently

from a normal distributionN (0, λj), and (λj, ϕj) represent eigenpairs. It’s worth noting

that the function g exhibits different properties and shapes for different covariance

settings. In this section, we keep P fixed at 15.

Figure A.1 illustrates the graphs of g for various covariance settings. To predict

the values of g, we utilize 50 observation points that are observed uniformly along the

interval I . At each observation point, we introduce a small amount of noise drawn inde-

pendently from N (0, σ2
n = 10−3). We employ GP models with fM(t) = ∑M

j=1 ajϕj(t),

corresponding to each covariance, with M set to 25. These models are then evaluated

at 200 equally spaced points within the interval I . We also employ a standard GP with

a Matérn covariance function defined on R, and Sparse GP for the purpose of compari-

son. The standard GP model is implemented in the scikit-learn library1, and Sparse GP

implemented in GPy2. We calculate the errors and present the results in the box-plots

in Figure A.2.

1https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_
process.GaussianProcessRegressor.html

2https://nbviewer.org/github/SheffieldML/notebook/blob/master/GPy/
sparse_gp_regression.ipynb

https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
https://nbviewer.org/github/SheffieldML/notebook/blob/master/GPy/sparse_gp_regression.ipynb
https://nbviewer.org/github/SheffieldML/notebook/blob/master/GPy/sparse_gp_regression.ipynb
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Figure A.1: Realizations of different models.

In Figure A.2, we observe that, in general, all models can predict the true function

very effectively with small errors. The model employing the Legendre, Chebyshev and

Jacobi covariance functions outperforms the others, as it exhibits the smallest Integrated

Squared Error (ISE) and negative log-likelihood. These models slightly better than

standard GP. However, the Matérn Hermite and sparse GP models do not perform as

well as the others.
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Figure A.2: Box-plots of the results of different Gaussian process models in predicting the true
function g(t) =

∑P
j=1 cjϕj(t), where cj generated independently fromN (0, λj). Where MGP:

Matérn, LGP: Legendre, HGP: Hermite, CGP: Chebyshev, GP: standard GP, SGP: Sparse GP.

A.2 Real data

In this part, we give details results for the Experiment part with real data. Table A.1,

Table A.2 and Table A.3 display the prediction results using real data, in which Legendre
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performs sightly better than the others methods. These results suggest that Legendre is

more adaptable in capturing a wide range of patterns and structures within real data. The

time required for the Chebyshev model is the smallest, even though its complexity is the

same as that of other proposed models. This is due to the faster computation time for the

corresponding eigenfunctions. The standard GP (std GP) has the highest complexity,

while the sparse GP has a smaller complexity compared to the proposed methods.

However, both the standard GP and sparse GP require more computation for solving

the best parameters of the covariance functions and inducing points. The polynomial

regression has the smallest complexity but we need to spend time preprocessing the

data. In all the experiments, we take the number of truncationM = 25 in the proposed

models, number of inducing points Z = 10 for sparse GP and the degree of polynomial

regression is two, R = 3. The programs were run on the computer Dell Precision with

125 GiB memory and CPU Xeon(R) W 2275 @ 3.30GHz

Table A.1: Results of different methods on CalCOFI data (N = 500).
Models MSE R2 NLML Time(s) O(.)
Matérn 1.5186 0.8588 4635.63 0.0048 NM2

Legendre 1.4988 0.8607 3755.24 0.0033 NM2

Hermite 1.5095 0.8597 4430.93 0.0059 NM2

Chebyshev 1.4991 0.8606 3744.62 0.0022 NM2

Jacobi 1.4992 0.8606 3758.00 0.0171 NM2

std GP 1.4997 0.8606 822.77 0.2259 N3

Sparse GP 1.5635 0.8547 830.7 0.1489 NZ2

Polynomial
regression

1.8685 0.8263 N/A 0.0034 NR2

Table A.2: Results of different methods on MCP non-smoker data (N = 532).
Models MSE R2 NLML Time(s) O(.)
Matérn 0.2556 -0.0029 504.54 0.0042 NM2

Legendre 0.2568 -0.0076 510.09 0.0046 NM2

Hermite 0.2578 -0.0117 500.47 0.0045 NM2

Chebyshev 0.2572 -0.0091 508.23 0.0023 NM2

Jacobi 0.2570 -0.0086 508.91 0.0175 NM2

std GP 0.2570 -0.0086 368.45 0.5880 N3

Sparse GP 0.2569 -0.0083 368.0 0.1803 NZ2

Polynomial
regression

0.2575 -0.0103 N/A 0.0033 NR2
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Table A.3: Results of different methods on MCP smoker data (N = 137).
Models MSE R2 NLML Time(s) Complexity

(O)
Matérn 0.2152 0.7611 205.38 0.0018 NM2

Legendre 0.1809 0.7992 149.06 0.0018 NM2

Hermite 0.2518 0.7205 178.91 0.0020 NM2

Chebyshev 0.1822 0.7977 147.44 0.0011 NM2

Jacobi 0.1836 0.7962 150.45 0.0139 NM2

std GP 0.2018 0.7760 111.99 0.0288 N3

Sparse GP 0.2227 0.7528 116.27 0.1696 NZ2

Polynomial
regression

0.3058 0.6606 N/A 0.0023 NR2
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Chapter B: Transfer learning

Proof of Claim

Claim: For all µ ∈ P+(I) and 0 < l < π. Let τ, τ̃ ∈ TµP+ such that

cos l2 + dτ

dµ
(i) sin l

2 = ±
(

cos l2 + dτ̃

dµ
(i) sin l

2

)
,∀i ∈ I.

Let

I+ = {i ∈ I|τi = τ̃i} , (B.1)

I_ =
{
i ∈ I|τi + τ̃i = −2µi cot l2

}
, (B.2)

then I_ = ∅.

Proof We proof the Claim by induction on the degree of I . If |I| is one or two the

Claim is true since I+ is not empty. Suppose the Claim is trus for |I| = n. We go to

prove the Claim for |I| = n + 1. Let µ ,τ , τ̃ and l like in the Claim. Suppose I_ 6= ∅

then |I_| ≥ 2. Let g, h be two distinct index in I_, this means τg + τ̃g = −2µg cot l
2 and

τh + τ̃h = −2µh cot l
2 . Now let k ∈ I+ and define three measures τ ′, τ̃ ′, µ′ on I \ {k} as

follow

τ ′ =
∑

i∈I,i 6=k,h,g
τiδ

i + τgδ
g + (τh + τk)δh, (B.3)

τ̃ ′ =
∑

i∈I,i 6=k,h,g
τ̃iδ

i + (τ̃g + 2τ̃k)δg + (τ̃h − τ̃k)δh, (B.4)

µ′ =
∑

i∈I,i 6=k,h,g
µiδ

i + (µg + µk)δg + µhδ
h. (B.5)

We have τ ′, τ̃ ′ ∈ Tµ′P+(I \ {k}), and h ∈ I_ 6= ∅. This contradicts to the hypothesis.

This shows the Claim for |I| = n+ 1. �
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