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Abstract

We divide the thesis into three main parts and we summarize the major contributions as

follows.

Low complexity Gaussian processes

Gaussian Process (GP) regression usually scales as O(n?) for computation and O(n?) for
memory requirements, where n represents the number of observations. These limitations
makes GP inefficient for many problems when n is large. In this thesis, we investigate
the Karhunen-Loeve expansion of Gaussian processes which offers several advantages
over low-rank compression techniques. By truncating the Karhunen-Loeve expansion,
we obtain an explicit low-rank approximation of the covariance matrix (Gram matrix),
greatly simplifying statistical inference when the level of truncation is small relative to
n. We then provide explicit solutions for low complexity Gaussian processes.

We seek Karhunen-Loeve expansions, by solving for eigenpairs of a differential
operator where the covariance function serves as the Green function. We offer explicit
solutions for the Matérn differential operator and for differential operators with eigen-
functions represented by classical polynomials. In the experimental section, we compare
the proposed methods with alternative approaches or baseline, revealing their enhanced

capability in capturing relevant patterns.



Constrained Gaussian processes

The second contribution introduces a novel approach used constrained Gaussian
processes to approximate a density function based with a prior from a finite set, only few,
observations. To address these constraints, our approach involves modeling the square
root of unknown density function with a Gaussian process prior. In this part of the work,
we adopt a truncated version of the Karhunen-Loéve expansion as an approximation
method. A notable advantage of this approach is that the coefficients are Gaussian
and independent, with the constraints on the realized functions entirely dictated by the
constraints on the random coeflicients. After conditioning on both available data and
constraints, the posterior distribution of the coefficients is a normal constrained to the unit
sphere. This distribution is analytical intractability, which requires the use of numerical
methods for approximation. To this end, we employs spherical Hamiltonian Monte Carlo
(HMC). The utility and the efficiency of the proposed framework are validated through

a series of experiments, with performance comparisons against alternative methods.

Transfer learning on the manifold of finite probability measures

Finally, we introduce transfer learning models in the space of probability measures on a
finite set /, denoted as P + (). In our formulation, we endow the space P, (1) with the
Fisher-Rao metric, transforming it into, a nice and easy to use, Riemannian manifold.
This Riemannian manifold, P (7), holds a significant place in information geometry
with a wide range of scientific and engineering applications. Within this thesis, we
provide detailed formulas for geodesics, the exponential map, the log map, and the
parallel transport on P (I).

Our exploration extends to statistical models on P (1), typically conducted within
the tangent space of this manifold. With a comprehensive set of geometric tools, we
introduce transfer learning models facilitating knowledge transfer between these tangent

spaces. Detailed algorithms for transfer learning encompassing Principal Component



Analysis (PCA) and linear regression models are presented. To substantiate these
concepts, we conduct a series of experiments, offering empirical evidence of their
efficacy.

Keywords: Artificial intelligence; Gaussian processes; Classification; Regression;
Constrained Gaussian processes; HMC sampling; Regression; Low Rand Gaussian pro-
cesses; Riemannian manifold; Fisher-Rao metric; Parallel transport, Transfer learning;

Statistical models;



Résumé

La these est divisée en trois parties principales, nous résumerons les principales contri-

butions de la thése comme suit.

Processus gaussiens a faible complexité

La régression par processus gaussien s’échelonne généralement en O(n?) en termes
de calcul et en O(n?) en termes d’exigences de mémoire, ol n représente le nombre
d’observations. Cette limitation devient inapplicable pour de nombreux problemes
lorsque n est grand. Dans cette thése, nous étudions I’expansion de Karhunen-Loeve
des processus gaussiens, qui présente plusieurs avantages par rapport aux techniques de
compression a faible rang. En tronquant I’expansion de Karhunen-Loeve, nous obtenons
une approximation explicite a faible rang de la matrice de covariance (matrice de Gram),
simplifiant considérablement I’inférence statistique lorsque le nombre de troncatures est
faible par rapport a n.

Ensuite, nous fournissons des solutions explicites pour les processus gaussiens a
faible complexité. Tout d’abord, nous cherchons des expansions de Karhunen-Loeve en
résolvant les paires propres d’un opérateur différentiel ou la fonction de covariance sert de
fonction de Green. Nous offrons des solutions explicites pour ’opérateur différentiel de
Matérn et pour les opérateurs différentiels dont les fonctions propres sont représentées
par des polyndmes classiques. Dans la section expérimentale, nous comparons nos
méthodes proposées a des approches alternatives, révélant ainsi leur capacité améliorée

a capturer des motifs complexes.



Processus gaussiens contraints

Cette these introduit une approche novatrice utilisant des processus gaussiens contraints
pour approximer une fonction de densité basée sur des observations. Pour traiter ces
contraintes, notre approche consiste a modéliser la racine carrée de la fonction de densité
inconnue réalisée comme un processus gaussien. Dans ce travail, nous adoptons une
version tronquée de I’expansion de Karhunen-Loeve comme méthode d’approximation.
Un avantage notable de cette approche est que les coefficients sont gaussiens et in-
dépendants, les contraintes sur les fonctions réalisées étant entierement dictées par
les contraintes sur les coefficients aléatoires. Apres conditionnement sur les données
disponibles et les contraintes, la distribution postérieure des coeflicients est une dis-
tribution normale contrainte a la sphere unité. Cette distribution pose des difficultés
analytiques, nécessitant des méthodes numériques d’approximation. A cette fin, cette
these utilise 1’échantillonnage Hamiltonien Monte Carlo sphérique (HMC). Lefficacité
du cadre proposé est validée au moyen d’une série d’expériences, avec des comparaisons

de performances par rapport a des méthodes alternatives.

Apprentissage par transfert sur la variété des mesures de probabilité finies

Finalement, nous introduisons des modeles d’apprentissage par transfert dans I’espace
des mesures de probabilité sur un ensemble fini 7, noté P + (/). Dans notre étude,
nous dotons I’espace P, (I) de la métrique de Fisher-Rao, le transformant en une
variété riemannienne. Cette variété riemannienne, P, (), occupe une place significative
en géométrie de I'information et possede de nombreuses applications. Au sein de
cette these, nous fournissons des formules détaillées pour les géodésiques, la fonction
exponentielle, la fonction logarithmique et le transport parallele sur P, ([).

Notre exploration s’étend aux modeles statistiques situés au sein de P (1), générale-
ment réalisés dans I’espace tangent de cette variété. Avec un ensemble complet d’outils

géométriques, nous introduisons des modeles d’apprentissage par transfert facilitant le



transfert de connaissances entre ces espaces tangents. Des algorithmes détaillés pour
I’apprentissage par transfert, comprenant I’Analyse en Composantes Principales (PCA)
et les modeles de régression linéaire, sont présentés. Pour étayer ces concepts, nous

menons une série d’expériences, fournissant des preuves empiriques de leur efficacité.

Mots clés: Processus gaussiens; Processus gaussiens contraints; HMC; Régression;

Variété riemannienne; Métrique de Fisher-Rao; Apprentissage par transfert
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Chapter I: General introduction

In this chapter, we describe the context and motivations of the scientific problems that
will be addressed in the thesis. In particular, we highlight their importance, the general
formulations, and the proposed solutions for different cases. Afterward, we present our
main contributions. Finally, we conclude this chapter with an outline of the rest of this

manuscript.

1.1 Context and motivations

The thesis can be divided into three main parts. We start by giving an overview without

details of each part.

I.1.1 Reduced-rank Gaussian processes

Gaussian processes are powerful tools for non-parametric Bayesian inference and learn-
ing, widely employed today. A Gaussian process is characterized by its mean function
and covariance function. We typically set the mean function to zero for convenience,
while the choice of the covariance function is determined through data-driven learning
or prior knowledge. In Gaussian process regression, we assume that the unknown func-
tion is a realization of the Gaussian process, and we make predictions for unseen values
using Gaussian conditioning. However, this process involves taking inverse of covari-
ance matrix, with computational and memory requirements typically scaling as O(n?)
and O(n?), respectively, where n represents the data size. This limitation becomes
particularly evident when working with large datasets. For example, Gaussian processes
have been extensively used in astronomy to model various phenomena, including the
cosmic microwave background, active galactic nuclei, and the logarithmic flux of X-ray
binaries. Unfortunately, there exist astronomical time series datasets such as NASA’s
Kepler Mission, K2, TESS, etc.[42], for which applying a Gaussian process model is no
longer tractable.

There is many proposals that address those limitations. Most of the previous
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methods attempt to approximate the inverse of the covariance matrix using reduced-rank
algorithms [5, 96, 110]. On the other hand, some methods based on Variational Inference
(VI) consist in finding an approximation of the posterior distribution that minimizes the
Kullback-Leibler divergence [121]. The Variational Fourier Features (VFF) method,
[58], combines the variational approach with Fourier features and overcomes the local
weakness of VI. The Variational Orthogonal Feature (VOF) [19] method improves VFF
for a broader class of covariance functions by using the Bochner’s theorem. Another
strategy for reducing the computational cost is to approximate the Gaussian process as
a finite truncation of its Karhunen-Lo¢ve expansion.

The Karhunen-Loeve expansion allows to represent a stochastic process as an
infinite series of orthogonal basis functions and random coefficients. Suppose we
have the Karhunen-Loeve expansion of a given Gaussian process, we can efficiently
compute its truncation with the help of this expansion. Thus, this can lead to a reduced
computational cost O(nM?) where M represents the truncation number. However,
explicit Karhunen-Loe¢ve expansions are not available for all covariance functions [30,
63]. Finding this expansion is equivalent to determining the Mercer representation
(eigenfunction expansion) of the covariance function. This step requires solving the
eigenvalues and eigenfunctions of the integral operator that has the covariance function as
akernel. Itis very important to note the relationship between the eigenpairs of the integral
operator and the differential operator with the covariance as a Green function [39]. In fact,
they share the same eigenfunctions but their eigenvalues are inverses. We will exploit
this relationship to solve the eigen-equations and provide expansions with eigenfunctions

as bases, for several classes of covariance functions.

I.1.2 Constrained Gaussian processes

In Gaussian process models, selecting an appropriate covariance function allows us
to capture the expected smoothness and likely patterns within data [98]. However,
many real-world phenomena demand the introduction of additional constraints for a
more realistic representation. For instance, when modeling a function, we note f(t),

representing a chemical concentration, it’s essential that the values of f should belong to
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the range of 0 to 1. This is a hard constraint that can not be relaxed. In a broader context,
many previous works have imposed bound constraints such that a < f(¢) < b, where
a and b are application dependent constants with —oo < a < b < 4o00. To give but a
two examples, [62] provide an overview and comparison of the warped and bounded
likelihood approaches and [26] discretize the global bound constraints into constraints
at a finite number of selected points.

Early method to incorporate constraints and ensure that they are satisfied across
the entire domain has been done with splines in the prominent work [127]. This
approach approximates the Gaussian process using a finite-dimensional model based
on spline functions with Gaussian random coeflicients. Recently, [85] proposed a
basis functions that are piecewise linear but depend on a finite set of knots to form a
partition of unity. The coefficients correspond to the values of the original Gaussian
process computed at the respective knots. Using this approximated process, the model
can incorporate bound constraints, monotonicity constraints, and convexity constraints,
which are equivalently translated into constraints on the coefficients. After conditioning
with interpolation (observations) and constraints, the problem reduces to simulating
the truncated multivariate normal distribution. Very recently, [84] have proposed a
comparison fo several Markov chain Monte Carlo (MCMC) methods for sampling and
have concluded that Hamiltonian Monte Carlo (HMC) is the most efficient sampler in
this context.

To enhance the flexibility of constrained models for various applications, the intro-
duction of new types of constraints is necessary. Typically, the posterior density is not
analytically tractable, requiring a sampling method to approximate the integral. In this
thesis, we will introduce a new type of constraints and a new method for sampling the

posterior distribution.

I.1.3 Transfer learning

Although machine learning methods have achieved great success and have been suc-
cessfully applied in many applications, their performance are still highly dependent on

data, both in term of quality and quantity. Moreover collecting data is expensive and
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time-consuming as well as being a crucial step. Transfer learning can assist us in reusing
a well trained model or an existing data to enhance a new, albeit different but related
model. This methodology is especially promising when we do not have enough data for
the new model.

Transfer learning, also known as domain adaptation, focuses on transferring knowl-
edge across domains (source domain and target domain) in order to boost the performance
of the target model. There are several applications of transfer learning, including Nat-
ural Language Processing (NLP) [28, 129], text sentiment classification [128], image
classification [34, 54, 80], human activity classification [55] and multi-language text
classification [95]. We refer to [29, 131, 136] for an extended review.

In transfer learning, the source task and the target task need to share some rela-
tionships. However, in reality, guaranteeing such relationships can be very challenging
which leads us to ask a key question: When should we transfer? In fact, there are
situations where transfer learning, when applied to unrelated source and target domains,
may result in unsuccessful or even harmful outcomes for the target model or population.
This situation is commonly described as negative transfer, see for example [99]. Despite
its importance, the negative transfer has not received significant attention [37, 48, 103].

For certain applications, data imposes some hard constraints as well as belonging
to non-flat manifolds. For example, we will consider a study of probability density
functions. In particular, each observation consists of a non-negative functions with a
unit integral that belongs to a convex set without a geometric structure. In order to exploit
the intrinsic properties of the underlying space, it becomes essential to extend transfer
learning into a Riemannian manifold setting. In a different context [46] introduced
the Model transport using parallel transport between tangent spaces of a manifold.
Nevertheless, there is still more work needed in this direction of research. Subsequently,
in this thesis, we develop a new transfer learning model on the manifold of finite

probability measures.
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1.2 Contributions

We summarize the main contributions in three main parts. First, we study reduced
Gaussian processes by truncating their Karhunen-Loe¢ve expansion. This approximation
provides a natural reduced-rank approximation of the covariance matrix. Applying
the matrix inversion lemma, the prediction cost scales as O(nM?), and the memory
requirement as O(M?) where n is the data size and M is the order of truncation. However,
finding the Karhunen-Lo¢ve expansion is generally not an easy task. In this thesis, we
introduce the Gaussian processes with covariance functions derived from differential
operators. We consider the Matérn differential operator on a bounded domain, as well
as differential operators with eigenfunctions represented by classical polynomials such
as Legendre, Laguerre, Hermite, Chebyshev and Jacobi. To the best of our knowledge,
this is a novelty. Through the introduction of various Gaussian process models, we
approximate a wide range of functions based on different data patterns. Furthermore, we
show that truncating at an appropriate order M, the inverse of the covariance matrix is
more numerically stable. To assess the importance of this framework, we have conducted
several and various experiments.

As a second contribution, we introduce a new type of constraint into Gaussian
process models. The problem consists of approximating a probability density function
based on finite set of observation points. Since a probability density function must satisfy
non-negativity and have integral equal to one, the approximation needs to satisfy these
conditions too. Nevertheless, it is still hard to ensure these conditions in a global setting.
Hence, we exploit an isometric mapping to model the square root of the probability
density function as a realization of the Gaussian process. The Gaussian process is then
approximated by a truncation version of its Karhunen-Loeve expansion, represented
by finite sum of random coeflicients and eigenfunctions that are orthonormal. This
approximation, theoretically solid, allows us to incorporate both data observations and
constraints into the random coeflicients. After conditioning, the posterior distribution is
a normal distribution restricted on the unit sphere (Fisher-Bingham distribution). This

distribution has been widely studied in statistics and probability sciences. Consequently,
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there are many efficients methods to numerically approximate this distribution. In
this thesis, we introduce Spherical Hamilton Monte Carlo (HMC), which converges
efficiently and very quickly. We give a detailed example with Matérn covariance function
on bounded domain for which the eigenfunctions are sine functions. This example is
given for illustration without restriction of the proposed model than can be applied, when
adapted, for a large panel of applications. We have tested this configuration for various
experiments and which demonstrate good performances.

Finally, we develop a new transfer learning on the space of finite probability mea-
sures, denoted P, (/) where [ is a finite index domain. We impose an appropriate
geometric structure on P, (1) with the Fisher-Rao metric to make it a Riemannian man-
ifold. This space is one of the main topics in information geometry [8]. In this thesis,
we first study the geometry of this space in detail, then we derive the explicit formulas
for Christoffel symbols, geodesics, exponential map, logarithm map, and the parallel
transport. Furthermore, we study the properties of some statistical models in this space.
Thanks to the developed geometrical tools, we introduce transfer learning for popu-
lations and subdomains on P, (/). Without loss of generality, we provide numerical
solutions and algorithms for transporting the Principal Component Analysis (PCA) and
manifold linear regression models. We have conducted several experiments to show the

importance of the proposed framework.

1.3 Outline

The remainder of this manuscript is organized as follows. Chapter II presents some
background basic notions that may be useful along this thesis. Chapter III covers low
complexity Gaussian processes and explicit solutions with covariance functions derived
from differential operators. In Chapter IV, we introduce the constrained Gaussian pro-
cess framework for approximating a probability density function based on observations.
Chapter V is dedicated to the geometry of finite probability measures and transfer

learning on this space. We make a general conclusion in Chapter VI.



Chapter II: Backgrounds and basic notions

In this chapter, we provide the mathematical foundations and backgrounds necessary for
our upcoming work. We begin by discussing the definition and properties of multivariate
normal distributions and then introduce Gaussian processes, which are the main topics of
Chapter III and Chapter IV. Next, we gather definitions and theorems from Differential
Geometry, which will serve as the foundation for Chapter V. As an illustrative example,
we will depict the multivariate normal distribution space as a differentiable manifold.
Organization. Section .1 provides a reminder of the definition and some important
properties of the multivariate normal distribution. Section .2 offers detailed informa-
tion on Gaussian processes, including their definitions, smoothness in the sense of mean
square, and their existence. Section .3 presents the formulas for Gaussian process regres-
sion. Section .4 lists several results regarding covariance functions, Bochner’s theorem,
Mercer’s theorem, and the relationship between the smoothness of the covariance and
the process. Section .5 briefly introduces Differential Geometry. In the final Section .6,

we present the geometry of normal distributions with the Fisher-Rao metric.

II.1 Multivariate normal distribution

In probability theory and statistics, the multivariate normal distribution (or Gaussian
distribution) is widely used for continuous random variables. Gaussian distributions
appear in many real world phenomena, and in many different contexts. For example,
the Gaussian distribution maximizes the entropy (see Theorem 6.5.1 in [22]), or by
the Central Limit Theorem the limit of the average of independent random variables is
Gaussian (see Theorem 9.5.6 in [36]).

A random vector X € R is said to have a Gaussian distribution with mean p € R?

and covariance matrix Y. if it has the distribution function

1 1
plzlp, X) = D exp <—2($ — 'Sz - M)) ; (L1)

where 3 = [0;;] € R™? is a symmetric positive definite matrix and |3| denotes its
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determinant. The inverse matrix ¥~ = [0%] is called the precision matrix, sometimes
it is more convenient to work with the precision matrix than the covariance matrix. We
denote by X ~ N (u,Y), and call X a Gaussian vector. Gaussian random variables are
completely determined by their mean and covariance matrix.

Let X ~ N (u,Y), and split X into two disjoint subsets X 4 and X 5. Without loss
of generality, we take X 4 is the first m component of X and X is the remaining d — m
components,

X
x=|"". (11.2)

Xp

We also define corresponding partitions of the mean and the covariance as

b)) by
= Ha oy AA AB . (1L3)
LB Ypa XBB

We have the following important properties.

1. Normalization. The probability density function p(z|u, 3) is positive on R? and

/ p(z|p, X)dx = 1. (I1.4)
R4
2. Marginalization. The marginal densities
plaa) = [ plaln.T)das, aLs)
XB
plas) = [ p(eln, D)z (IL6)
Xa

are Gaussian: X4 ~ N (a4, X44), X ~ N (up, Xp5).

3. Conditioning. The conditional densities

p(x|p, ¥)
plralrp) = : (IL.7)
ales) = o (eln, D)
p(x|p, X)
p(xplra) = (IL.8)
lea) = § (i, 2)drs
are also Gaussian:
Xalrg ~ N(pa +Xap3pp(Ts — 15), Yaa — LapXppisa, (IL.9)

Xplza ~N(up+ SpaSis(ma — 114), s — XpaXihSas. (IL.10)

4. Summation. The sum of two independent Gaussian random variables with the
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same dimension, X ~ N (ux,Yx) and Y ~ N (uy, Xy ), is also Gaussian:
X+Y ~N(ux + py,Xx +Zy). (IL.11)

5. Linear combination. A random vector X € R? is a Gaussian vector if and only
if any linear combination of X has a univariate Gaussian distribution. This means

that for any a € R? fixed, there exist ji, € R and o, > 0 such that

d
(a,X) =" a; Xi ~ N(pta, 02). (IL.12)

=1
6. Decomposition. A random vector X € R? is a Gaussian vector if and only if there

exist ;1 € R? fixed, a matrix A € R™*" fixed, and a Gaussian vector W ~ A/ (0,Z,)

in R", where » < n and Z, is the identity matrix in R", such that
X =pu+ AW, (IL.13)

In this case we have X ~ N (u, AAT).
From the previous properties, we see that a Gaussian vector is obtained by shifting
1 and a scaling A of a set of identically independently distributed (iid) standard normal
distribution V. In general, the Gaussian vector depend on d(d+3)/2 parameters of 1 and
Y. When the dimension d is large, the total number of parameters grows quadratically,
but the distribution is intrinsically unimodal. This is a limitation of Gaussian vectors,
when they need too many parameters but unable to provide a good approximation to

multimodal distributions.

II.2 Gaussian processes

In this section, we reference the lecture notes [9] and the book [114]. A Gaussian
process is a stochastic process that generalizes the Gaussian distribution. Conceptually,
a Gaussian process can be thought of as a distribution over functions. Next, we will

provide the definition of a Gaussian process.
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Definition I1.1

Let (92, A, P) be a probability space and T is a parameter set. A stochastic process

f indexed on a set T is a mapping of two variables
f:(QAP)xT—-R
(w,t) = f(w,t).
We say that f is a Gaussian process if for any finite number of index t1, ..., t, €

T, for n € N, the corresponding random vector (f(w,t1), ..., f(w,t,)) has the

Gaussian distribution.

Similar to Gaussian distribution, a Gaussian process is completely determined by its
mean function m(t) and covariance function K (¢,t')
m(t) =E[f(t)], (I1.14)
K(t,t') = E[(f(t) = m(@))(f (') —m(t))]. (IL15)
For w € (2 fixed, the function f(w, t) depends on ¢ only. This is a deterministic function,
called a sample path or a realization. The underlying probability space will usually
be ignored and we write f(¢) instead of f(w,t). We denote the Gaussian process as
f~GP(m(t), K(t,1)).

The index set T is usually the real line R or interval in R, where ¢ € T is interptreted
as time. It can also be a subset of R or an abstract set. [66] studies the case when T is
the sigma algebra of a measure space (Wiener process), [88] studies the case when T is a
separable Hilbert space, called isonormal Gaussian process. Recently, Gaussian process
was generalized for the index set is the probability density functions [10, 44, 101] or a
Riemannian manifold . In the following, we restrict ourselves to the case where T is a
subset of R%.

For the general random process, it is hard to making inferences about its proba-
bility law from observing a single realization of the process. A common simplifying

assumption is that the random process is stationary.



Manuscript - Thesis

Definition I1.2

A random process f is stationary if for all t,,...,t, € T and h € R, such that
ty + h,....t, + h € T, the finite distribution of f at ti,...,t, is the same as the

finite distribution of f att, + h, ..., t, + h.

The covariance function K is said to be stationary if it only depends on ¢ — t/, we write
K(t,t') = K(t—t') by an abuse of notation. The Proposition below gives the necessary

and sufficient condition for a Gaussian process is stationary (the prove was given in [9]).

Proposition I1.1

Let [ be a Gaussian process on T, then [ is stationary if and only if its mean

function is constant and its covariance function is stationary.

Proof Suppose [ ~ GP(m(t), K(t,t")) is a Gaussian process with a mean function
m is constant, and a covariance function K is stationary. Let n,ty,...,%,,h be as in
the Definition I1.2. Since f is a Gaussian process, (f(t1), ..., f(t,)) and (f(t1 +
h), ..., f(t, + h)) are Gaussian vectors. Hence, their distributions are characterized by
their mean vectors and covariance matrices. We will show that they are identical between
the two Gaussian vectors. Indeed, we have E(f(t;)) = E(f(¢t; + h)) fori = 1,...,n,

since the mean function is constant. Hence the mean vectors are identical. We have also
cov(f(t:), f(t;)) = K(t; — t;) = K((t: + h) — (t; + h)) = cov(f(t: + h), f(t; + h)),
since the covariance function is stationary. Hence the two covariance matrices are
identical.

For the reverse implication, let m and K be the mean function and covariance
function. If there exist i so that m(t + h) # m(¢), then the two random vectors
f(t) and f(t + h) do not have the same distribution. If there exist t1, %>, h so that
K(ty,ty) # K(t1 + h,to+ h) then (f(t1), f(t2)) and (f(t1 + h), f(t2 + h)) do not have
the same covariance matrix. |

As stated in [114], there is no simple relationship between the covariance function
of a Gaussian process and the smoothness of its realizations. However, it is possible
to relate the covariance function and mean square continuity. The definition of mean

square continuity is given as below.
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Definition I1.3

Let f be a stochastic process on T C RY. We say that f is mean square continuous

atty € Tif

lim E ((/() ~ f(ts))*) = 0.

t—to

For a stationary Gaussian process f, we have

E ((f(t) = f(t))®) = 2(K(0) = K(t — to)).
So f is mean square continuous at t, if and only if K is continuous at the origin,
in this case f is mean square continuous everywhere. We say that f is mean square
continuous if K is continuous at 0. The mean square continuity of f does not imply that
its realizations are continuous. In considering on the probability space (€2, A, P), we
have two other types of continuity: Continuous sample paths with probability one and
Almost surely continuous [1]. We define the mean square differentiability, based on the

definition of mean square continuous.

Definition I1.4

A Gaussian process f on T C R? is mean square differentiable if there exist d

Gaussian processes (defined on the same probability space (), A, P)), g—t’i, s g—t{l,

such that for k =1, ..., d, for all ty € T, we have

mE ((f(to + her) — f(to) af(to)>2) _o,

h—0 h ot

with {ey }$_, is the canonical basis of RY.

By induction, we can define the mean square differentiable of higher order. A Gaussian

process f is n times mean square differentiable if it is mean square differentiable and if

the d Gaussian processes g—t’i, e l%{i are n — 1 times mean square differentiable. We have

the following result about the smoothness of f in the sense of mean square differentiable.

Proposition I1.2

Let f be a Gaussian process on T C R? with mean function m and covari-

ance function K. Then f is n times mean square differentiable if m is n times

continuously differentiable and K is 2n times continuously differentiable.

The probability density of the finite-dimensional Gaussian vector (f(t1), ..., f(t,)) is
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given by (IL.1):

1

Dty ot (T15 ooy Tp) = W exp {—(x — m)TZ_l(x — m)} ,
2

2
where xT = (zy,...,2,) € R", m” = (m(ty),...,m(t,)) € R" is the mean vector, the
covariance matrix X has the elements 0;; = K (t;,t;). The finite-dimensional cumulative
distribution is given by:
Fooa,(r1,rn) = P(f(t) <7y, f(tn) < 1)
= /T:O /r; Dty vt (T1,5 oy T )dq ... d . (I1.16)

We say that cumulative distributions Gy, 4, (71, ..., 7y,) satisfy the symmetry con-

dition if
Gyt (11, ey ) = Groyotnio (rﬂ(l), ey rﬂ(n))

for any permutation 7 of the index set {1,...,n}. The distributions G, ., satisfy the
compatibility condition if

th,...,tn,1 (Tla ceey 7,,TLfl) - th,...,tn (T17 ceey r’n,fl? OO)

The finite cumulative distribution of a Gaussian process satisfies the two conditions.

Proposition 11.3

The distribution functions defined as in (11.16) satisfy two consistency require-

ments: symmetry condition and compatibility condition.

Proof See section 1.4 of [1]. [ |

The existence of Gaussian process is asserted by the Kolmogorov’s existence theorem.

Letty, ..., t, be arbitrary points in T. If a system of finite-dimensional distributions
Fy, .+, satisfies the symmetry condition and compatibility condition, then there
exists on some probability space (2, A, P) a random field f(w,t),t € T having

Fy, ...+, as its finite-dimensional distributions.

Proof See page 174 of [79]. |
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II.3 Prediction

The prediction of Gaussian processes rely on Gaussian conditioning property (I1.9).
Gaussian Process prediction is a Bayesian method, where the first thing is constructing a
prior distribution, this is equivalent to choose the mean function and covariance function,
and updating this distribution by conditioning on the data to get the posterior distribution.
The posterior distribution is still a Gaussian process with a new updated mean function
and covariance function. We will consider two cases, noise-free observations and noisy
observations.

Let a Gaussian process f(t) ~ GP(0, K(t,t)), t € T, with zero mean function and
covariance function K. Suppose we have a noise-free observations {(t;, f(;))|i =
1,...,n} of f. We want to predict the values at n, test point ¢{,...,¢; . Denote
T = (t1,...,t,) is the training points, 7, = (t},...,t, ) is the test points, F' =
(f(t1), ..., f(tn))" is the training outputs, and F, = (f(t}), ..., f(,.))" is the test out-
puts. By the definition of Gaussian process, the joint distribution is given by

K(T,T) K(T,T))
~N |0, , (IL.17)

F, K(T,,T) K(T.,T.)
where K (T, T) = [K (t;,t;)],ti, t; € T is the covariance matrix of size n x n, and similar
for K(T,T,), K(T,,T) and K(T,,T,) where the components is the corresponding

values of covariance function. Apply the conditioning property (I1.9), we have posterior

distribution

(Fu|T.,F =5y) ~N(K(T.,,TK(T,T) 'y, K(T\,,T.) — K(T.,T)K(T,T) ' K(T,T,)).
(IL.18)
By placing the Gaussian process prior over a underlying unknown function f, we
get not only the value for the predictive test output, but we get the full predictive
distribution. These distributions provide approximations by the conditional means E, =
K(T,,T)K(T,T) 'y, and confidence intervals by the conditional covariances cov(F,).
When the test point is equal to one training point, we can prove that the predictive
value is equal to the corresponding training output (if the covariance matrix K (7', T) is

invertible). This means that the predictive function interpolates the data.
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Radial Basis Function kernel Matérn kernel

Figure IL.1: The prior realizations of Gaussian processes (first row) and the posterior realizations.
The black line is the graph of the predictive function in black line, the grey region is the £ standard
deviation, the red points are the observations.

It is more realistic if we use the noisy observation model y = f(t) + €, where the
noise is independent identically distributed Gaussian ¢ ~ N'(0,02). In this case, we
have the joint distribution as

e K(T,T)+ o027, K(T,T.) | (L19)
F, K(T,,T) K(T,,T.)
where Y = (f(t1) + €1, ..., f(tn) + €,)T, and Z,, is the n x n identity matrix. Apply the

conditioning theorem, we have (F,|T,,Y = y) ~ N (F., cov(F.)), where

Fo= K(T.T) (K(T,T) + 02T.) v, (11.20)
cov(F,) = K(T.,T.) - K(T..T) (K(T.T) + 02T,)  K(T.T.). (I1.21)

Figure II.1 shows examples of Gaussian prediction corresponding with Radial Basis

function kernel (or Gaussian covariance) and Matérn kernel.

II.4 Covariance functions

A Gaussian process is characterized by its mean and covariance function. We usually
assume that the mean function is identically zero. Hence the study of the covariance
function remains important for the Gaussian process. We will consider the class of
all possible stationary covariance functions. And by the Bochner’s theorem, we can
present the covariance functions with an unique spectral representation. Then we give

the conditions for the existence of n times mean square differentiable of the process, and
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the representation of its covariance function.

Definition I1.5

Let n be a positive integer, and let t; € T and c; € R for1 = 1,...,n. Then the

function K on'T x T is said to be positive semi-definite on T if

1

n n

7

1j
for all choice of n, {t1,...,t,} and {cy, ...,c,}. If K is stationary, we have

n n

ZZCich(ti —t;) 2 0.

i=1j=1

We can easily show that any covariance function is positive semi-definite. We apply the
Kolmogorov’s existence theorem to prove the inverse. The arguments below follow B.V.

Gnedenko [50].

The class of covariance functions coincide with the class of positive semi-definite

functions.

Proof Let K be a covariance function and #;, ¢; like in Definition I1.5. Then we have

CiCjK(ti, t]) = var (Z sz(tl)> > 0.
1 i=1

So any covariance function is a positive semi-definite function. We now prove the

n
1=

n

1

inverse: each positive semi-definite function K is the covariance function of some
random field. The positive semi-definiteness of K ensures that any finite dimensional

distribution of (f(t1), ..., f(t,))

1 1 ey }
T1yeeiyTp) = ————T € —=X" XX,
ptl,...,tn( 1 ) (2ﬁ)§|2|% Xp{ 9

where X has components 0;; = K (t;,t;), is a finite dimensional multivariate normal
distribution. So like in Theorem II.1, we can apply Kolmogorov’s existence theorem to

show that the corresponding Gaussian process exists. [

The correlation function of a random process f is defined as the function k on
T x T, where k(t,t') = Cor(f(t), f(t')), representing the correlation between
f(t) and f(t"). Then, the class of correlation functions coincides with the class of

positive semi-definite functions where k(t,t) = 1.



Manuscript - Thesis

Proof The Corollary follows from the previous theorem and
K(t,t)

k(t,t') = :
VE DK@, 1)
|
We state here the well known Bochner theorem.
A complex-valued function K on R? is positive semi-definite if and only if it is the
Fourier transform of a finite nonnegative Borel measure 1 on RY, i.e.
K(t) = (2m) %2 / eTtdu(z), teRC (I1.23)
R
Proof See [132]. |

Definition I1.6

The measure | defined in (11.23) is called the spectral measure or spectrum of the

corresponding process f[.

Now we discuss Mercer’s theorem, which allows us to express the kernel in the

series of eigenfunctions and eigenvalues of the integral operator

Ko = | K(a.)o(x)du(). (11.24)
In general, there are an infinite number of eigenfunctions {¢;(x)}$°, and corresponding

eigenvalues { A},

Koi = \o. (I1.25)

Let (2, 11) be a finite measure space and K be a kernel on ) such that the integral
operator K is positive definite, i.e.

[ K@) f@f@)du@dua) 20, ¥f €Lsy(@p).  (L26)
Let {¢;(x)}52, be the normalized eigenfunctions of KC associated with the eigen-
values {\}2,. Then:

1. the eigenvalues {\}5°, are absolutely summable,

2. the equation

K(z,2') =Y Nis(x)i(a) (I1.27)
=l
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holds for u*-almost everywhere, where the series converges absolutely and

uniformly p?-almost everywhere.

Proof See [78]. |
With T C R% let H be a subspace of L*(Q, A, P) consisting of functions which can
be represented as finite linear combinations of the form £ = > .5 ¢ f(s) where ¢ are
complex coefficients and S is an arbitrary finite subset of T. Then His a complex

vector space. The inner product on H is induced from L*(Q, A, P). Namely, for

6 = 2565’1 CSf(S) and n= ZSESQ dsf(s)’
Em=EEn) = > > cudyE(f(s1)f(s2)).

51€51 52€852

Let H = H(0, K) be the closure of the linear manifold H with respect to this inner
product. Here 0 in #(0, K') refers to the mean function of f, and K refers to its
covariance function. Thus ¢ € H if one can find a Cauchy sequence &, € H such that

El§ — &, — 0asn — oo.

Definition I1.7
The space H is called the Hilbert space generated by the random process f.

Similarly, define £ (1) to be the closed linear manifold of £(:) with

L(p) = {5()\) =Y c,e™|S C T,c, € c} .

seS

Let £(\) = X, cq, s, €1 and n(\) = 3, cq, ds, 52 be in L£(11). The inner product
of £(A) and () is defined by

(EA):n(N), = S cads, . e™(31752) (),

51€851 52€852

with  is spectral measure. For {(\) and () in L(F) we define the inner product

(3 77)“ = Jgrolo (&n(N), nn(/\))“ )

where &,(A\) — £(A\) and n,(\) — n()). If we identify 3,5 ¢, f(s) with 3 g cse™*

and extend this correspondence to respective limits of such sums, we have:

Proposition I11.4
The two Hilbert spaces H and L(p) are isometrically isomorphic.

Let us apply this correspondence to mean square differentiability of a stationary Gaussian




Manuscript - Thesis

process f on R. By Definition II.4 of mean square differentiability, to consider the

f(to+h) — f(to)

eIAt+R) it
the convergence of 73, = — as h — 0in L(u). Study the convergence of 7,

convergence of fi,(t) =

as h — 0 in H, it is equivalent to consider

we get the theorem below.

Suppose f is a stationary Gaussian process on R with covariance function K.Then
f is mean square differentiable if and only if K ”(O) exists and is finite. And, if f

0 . . / . . "
is mean square differentiable then f has covariance function —K .

Proof See section 2.6 of [114]. [ |
By repeated application of the previous theorem, it follows that f is n-times mean square
differentiable if and only if K (> (0) exists and is finite and, if so, the covariance of f()
is (— 1) K@),

Below are some examples of covariance functions where ¢ > 0 and o2 are parame-

ters:
covariance function expression
exponential o2 exp (_%)
Matérn 2 o? (1 + \/gm> exp ( 7I)
Matérn 2 o? (1 + \/E% + Lol 1t ) exp < )
Gaussian ole” ,2

The general Matérn covariance is given by (see [114])

Kiult) = Foiger <2f '”) . (2\5'?), (11.28)

with I" the Gamma function and K, the modified Bessel function of second order. The
covariance K, is Matérn (¢,v) with ¢ the correlation length and v the smoothness
parameter.

In the regression and classification problems using a Gaussian process, we do not
know its covariance function in many practical applications. Thus in order to turn
Gaussian processes into powerful practical tools it is essential to develop methods that
address the model selection problem. We first determine what is the type of covariance

function that is more suitable from the context. Then we will use a statistical estimator to



Manuscript - Thesis

estimate the parameter of the covariance function like the Maximum Likelihood method

and Cross Validation method.

I1.5 Manifold

In computer science, there are many datasets that reside on a manifold, a topological
space that locally looks like an open set of the Euclidean space. For example 3D rotation
matrices belong to the Lie group SO(3) [56], normalized histograms belong to the unit
sphere , the space of symmetric positive definite (SPD) matrices [91]. On the manifold,
we can define the metric, called Riemannian manifold, and we can compute the distance
between two points. The precise mathematical descriptions in applications are facilitated
by the use of differential geometry that generalizes the Euclidean space. In this section
we give briefly some definitions and notions about manifolds and differential geometry.

There are many books on Differential geometry, we follow maily the books [57, 67].

Definition I1.8

A manifold M of dimension d is a connected paracompact Hausdorff space

for which every point m € M, there exists a neighborhood O,, of m that is
homeomorphic to an open subset ) of R%. The homeomorphism 1, : O,, — §)

is called a coordinate chart. An atlas is a family of charts {Og,1,}, where a

belongs to some index set A, such that {O,} forms an open covering of M.

For any chart (O,,¢,), if m € O, and ¢,(m) = (z1(m), ..., z4(m)) then O, is called
coordinate neighborhood of m, and (z1(m), ..., z4(m)) is called local coordinates of m.

Having the definition of manifold, we can go further to define the differentiable structure.

Definition I1.9

Anatlas {O,, 0.}, a € A, on a manifold is called differentiable if all the transition

maps
Uthg " Ya(Oa N Oy) = (00 N Oy) (I1.29)
are differentiable of class C*°. A chart is called compatible with a differentiable

atlas if adding the chart to the atlas yields again a differentiable atlas. An

atlas is called maximal if any chart compatible with it is already contained in

20



Manuscript - Thesis

% 1/)h
R4 R4

(ST

T

wa(oa) wb(ob)

Figure I1.2: Two charts and their transition maps.

it. A maximal differentiable atlas is called a differential structure. A differential

manifold of dimension d is a manifold with a differentiable structure.

The maximal condition of differential structure is cumbersome to check. But it is not
essential since any family of atlas can be extended in a unique way to satisfy the maximal
condition. The differentiable structure allows us to define a differentiable map between

manifolds.

Definition I1.10

Let M and N be two differentiable manifolds with their corresponding atlases

{04, 00} and {Qy,0,}. A map h : M — N is called differentiable if all the

maps O, o h o ¢! are differentiable in the defined domain. In the special case,
when N is R the differential map is called the differential function. The set of all
differential functions is denoted by C*(M).

Furthermore, £ is called a diffeomorphism if it is a bijection, and both A and its inverse
h~! are differentiable. Some manifolds usually have complex geometries. A tangent
space of a manifold at given point gives an approximation of the manifold locally by a
linear space. If the manifold M is embedded in some Euclidean space, the tangent space
at m is the space of all tangent vectors at m. Where the tangent vector can be though as

the velocity of a curve passing through m. In general manifold, we define the tangent
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space by the equivalence class.

Definition I1.11

Let m € M, and let (O,,1,) and (O, 1y,) be two local charts of m. Define the

equivalence relation of tangent vectors v € T, %(m)Rd and w € wa(m)Rd as

(Va,v) ~ (Yp, w) <= w = d(p 0P, ). (I1.30)
Define the tangent space to M at m as the space of equivalent classes (1,,v),

denoted by T,, M. The space T' M is defined as the disjoint union of tangent space
TwM, for allm € M.

We note that 77,,M is a vector space of dimension d. For any tangent vector v € T;, M,

in a local coordinate (O, 1,) of m we can write as

d )
= f— I1.31
where v* € R, and % s h— (%gijfl) 0 1,, forany h € C°(M), i =1, ...,d. We call
m is the base point, and the set of vectors %, fori = 1,...,d, is a basis of the tangent

space. The tangent vector v can be represented as a derivative at 0 of a differentiable
curve 7y that satisfies: v is defined on a neighborhood of 0, v(0) = m, and in coordinate

(Ou, 1) We have

;ixi othy (v(t) =v;, i=1,....d. (I1.32)

Let 7 : TM — M be the projection of the tangent vector into its base point.
Then the triple (7'M, 7, M) is called the tangent bundle of M. A smooth section of the
tangent bundle is called a vector field. The space of all vector fields is denoted by X(M).
Furthermore, we can introduce the scalar product on the tangent space. That permits
us to measure the lengths and the angles of tangent vectors. Then, we can evaluate the

length of a differentiable curve by taking integration of the norm of its tangent vector.

Definition I1.12

A Riemannian metric on a differentiable manifold M is given by a scalar product

Om on each tangent space T,,, M, which depends smoothly on the base point m. A
Riemannian manifold is a differential manifold M equipped with a Riemannian

metric g, denote (M, g).
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In the definition, the metric g depends smoothly on the base point means that for any two
smooth vector fields V, W in X(M), the function g,,,(V|,,, W1,,,) is a smooth function
of m. A Riemannian isometry between (M, gr¢) and (N, gy ) is a diffeomorphism

h : M — N such that the pullback metric h*gy is the same as g, i.e,

gv (Dh(v), Dh(w)) = gm(v, w) (I.33)
for all v, w € T,, M and all m € M. Now let v : [¢1, co] — M be a smooth curve from

a closed interval [cy, ¢z] C R into the Riemannian manifold M. Then the length of  is

defined as
2 |l dry(t
L(y) = / WH dt, (IL.34)
c1 dt
where || dzl—f) | = \/gw(t) (9(t),*(t)) is the norm of tangent vector () in T’ ;)M. Here,

4(t) represents the derivative of v with respect to t. Now, let’s define the distance

between two points on M.

Definition I1.13

Let m,n € (M,g). The distance between m and n is defined as the infimum

length of the piecewise smooth curve connecting them

dim,n) := inf  {L(v)|y piecewise smooth curve,v(c1) = m,v(cs) = n}.

v:[er,c2] M

(IL.35)

On a general manifold, the tangent space associated with different base points are
different. We cannot define the derivative of a vector field as usual way by taking
the limit of the ratio of two differences. Sine the difference of two tangent vectors at
different base points is not well defined, because they belong to two different spaces.
On manifolds, the affine connections provides us the rule to take the derivative of vector

fields.

Definition I1.14

An affine connection on a manifold M is a rule V which assigns to each

V € X(M) (first argument) a linear mapping Vv of the space X(M) (second

argument) into itself satisfying the following conditions:
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1. V is tensorial in first argument
Viviww = fVy + hVw, (IL.36)
2. Vis linear in second argument, and satisfies the product rule
V(W +2)=Vy(W)+Vy(Z2), (IL.37)
Vv (fW) = V(HW + fVv(W), (I.38)

for f,he C°(M), V,W,Z € X(M). The linear operator Vv is called covariant

differentiation with respect to V.

The following lemma states the local property of the connection V.

Suppose M has the affine connection V. Let O be an open submanifold of M.
Let V.W € X(M). If V or W vanishes identically on O, then so does Ny (W).

Furthermore, if V vanishes at a point m € M, then so does N (W).

Proof See Section 4, Chapter 1 of [57]. [ |
In local coordinate, there is a one-one relation between the affine connection and the

Christoffel symbols '} that satisfy

Vo ZF” o (IL.39)

Oz; 8ZE]

The fundamental theorem of Riemannian Geometry determines a unique connection,

called the Levi-Civita connection, V€.

On each Riemannian manifold (M, g), there is uniquely one connection V*° that
satisfies

1. Vs torsion free: VECW — VECV = VW — WV = [V, W],

2. VEC is metric: VECg(W, Z) = g(VECW, Z) + (W, VEC Z),
where V. W and Z are vector fields.

Proof See [57]. |

Let 7 : [c1, c2) — M be a curve in M. We have the following definition of parallelism.
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Definition I1.15

Let v : [c1,c3] = M be a curve in M, and let VW € X(M) such that
V(t) = Vie = A(t). (I1.40)

Then, given an affine connection NV on M, the family W (t) = W is said to be

parallel with respect to vy if

VVW|7(t) =0, Vte [Cl, CQ]. (I1.41)

In the local chart (O,, 1) the vector fields V, W can be written by

0 .0
V:Z‘/Zaxi’ W:ZW’(%i, (I11.42)

where V¢ W are functions on O,. For simplicity, we write x;(t) = z;(¢(y(t)),
Vi(t) = Vi(y(t)), Wit) = Wi(vy(t)), and assume y([c1, c2]) C O,. Then Vi(t) = i4(t)

and on the local coordinate O, we have:
0
VW = Z (Z Vi + z:VZWJF"C ) 5
l‘k
So W (t) is parallel with respect to ~ if

de de
+> T yr Wi =0, (11.43)
i,J

for all k = 1,...,d. We say that the tangent vector W (c;) was parallel translated to
W (cz), this depends also on the curve 7 in general. By the parallelism, we can identify

the tangent space of different base points.

Proposition IL.5

Let m and n be two points in M, and let v be a curve segment from m to n.

The corresponding parallel translation with respect to v induces an isomorphism

between T,, M and T,, M.

Proof See Proposition 5.2. in [57]. [ |
We can see that the equation involves V' and W only through their values on the
curve. The following definition of the geodesic depends on the connection through the

parallelism.
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Definition I1.16

Let 7y : [c1,c2] — M be a curve in M. The curve v is called a geodesic if the

family of tangent vector (t) is parallel with respect to . A geodesic y is called

maximal if it is not a proper restriction of any geodesic.

In a local coordinate neighborhood, the geodesic satisfies
APz, n e dxidx;
ez =M dt dt

This means that the geodesic is a curve parallel to itself, that we call also autoparallel

=0, k=1,...d (IL.44)

curve. Given the initial conditions (initial point and initial velocity), the geodesic is

uniquely defined.

Proposition I1.6

Let M be a differential manifold with an affine connection. Let m € M and let

v # 0 in the tangent space T,,, M. Then there exists a unique maximal geodesic ~y

on M such that

v(0) =m, 4(0)=w. (I1.45)

The following theorem shows a topological relationship between the tangent space and

the manifold.

Let M be a manifold with an affine connection, and let m € M. For any
v € T,y M, let v be the geodesic with (0) = m and 7(0) = v. Then there exists
an open neighborhood Oy of 0 in the tangent space 'I,, M and an neighborhood
Oy, of m in M such that the mapping v — (1) is a diffeomorphism between O,

onto O,,.

This brings us to the definition of the exponential map and the log map.

Definition I1.17

The mapping v — (1) defined in the theorem is called the exponential mapping

at m, denoted by exp,,. Its inverse is called the logarithm, denoted by log,,.
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Figure I1.3: Exponential map and logarithmic map.

I1.6 The geometry of Normal distributions

In this section, we give an example of manifold to illustrate the previous section. We

consider the statistical model of all Gaussian distributions
S={pa|w,X)=NwX)| 0= ()R xS}, (11.46)

with the Fisher-Rao metric. This space was widely studied and has many applications

[93]. Define the mapping ¢ : S — R¥| d' = d(d + 3)/2, as

YN (1, 2)) = 0 = (i) i=1.....a> (035)i<;), (1L.47)

77777

between S and a subset of R?. Considering (S,) as a global chart, so there is a
corresponding differentiable structure on S where (S, ) is a coordinate system. This
shows & is a differential manifold of dimension d’. On the coordinate system (S, 1), we

define a basis of the set of vector field X(S) by

—i=1,...d, ,
8/1%72 Y ? ao_zj

We then identify these basis vector fields with the vectors and symmetric matrix

i<j<d (11.48)

e € Rd;
O ‘ 30@7
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e

space

]]-(i,i)7 1= .j)
E;; = (I1.50)
Lig + 1o, 77
In which 1, ;) is the d x d matrix with 1 in the (7, ) component and zero elsewhere.

Any vector field X € X(S) can be decomposed as

d
X =) X'e¢;+> X"E,, (IL51)

i=1 i<j
where X?, X% : S — R are smooth functions on S.

A natural Riemannian structure on S can be provided by the Fisher information

matrix
9(0) = [955(0)] = Cov(Vlog N (1, %)). (IL.52)

We have log NV (i, £) = —4log 2 — L log |S| — 4 (z — 1) "S~" (2 — p). Suppose y and

) depend on 6, taking partial derivative with respect to ¢; we have

dlogN(1,%) 1 LoD\ 1 e 05,
s TAAN i o) 5 S — )T
20, plrace | B 50 | 4 gle —p) BT ay X @ - )
ou\" o __,
X — I). 1L
+(on) ezt (153
By computing E (810%\0/5“ .2) Blogé\af;“ ’E)) directly ([94]), we get the closed formula
o _,0n 1 0¥ 0%

i (0) = X — + =t by X —). I1.54
930) = 59, = gg, +omaceE 5 X 50 {>4)

In the basis of the vector field, we have

o 0 N
g <8M7 aﬂ) = g(ei,ej) = 6;-112716]- — O—U’ Z,] — 17 “_’d7
? J

o 0
_ f— Z'7E — > '7l€,l:1,...,d,
g (éwz-’ 6%) g(ei, Br) =0, i

0 ) . ) )
g (fbij’ E)akl> - g( i) Ekl) = itrace(z lEz’jZ lEkl)

=olgi* 4 ol Gk l=1,..,d.
Let X = 3¢ X', + Y; XYE; jand Y = YL Yie; + 3, YYE; ; be tangent
vectors at . Then be The inner product of X and Y is

1
(X.Y)y = X571, + trace (2 XD 1Yy), (I1.55)
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where X, = (X',..., XDT)Y, = (Y, .., YHT are the tangent vectors in R? and
Xy =Yi; XYE,; ;, Ys = Y;c; YYE, ; are the symmetric matrices.

The space S with the Fisher-Rao metric is a Riemannian manifold, called Fisher-
Rao Gaussian. The induced Riemannian geodesic distance py/(-, -) is called Fisher-Rao

distance:
ds(N(61), N(02)) = inf{Length(7) | 7(0) = N(61),7(1) = N(62)},  (L56)

where 7 is the piecewise smooth curve connecting the two distributions, and the length

is defined as

Length(-) = | NI (IL57)

The Christoffel symbols of the Levi-Civita connection V*¢ were given in [107].

The corresponding geodesic curves (p(t), 3(t)) satisfy the equations
d? by
H o df Zfl dflLL =0
dt? dt dt

) T
B (| ()T a2\ asy
dt? dt dt dt dt

The closed form for the geodesic and distance are not known in general. But they

(IL.58)

were explicitly given in the cases where y is constant, 3. is constant, 2 is diagonal or in

the one dimensional case.

11.6.1 The submanifold Sy, where X is constant

The statistical manifold Sy, = {p(z|p, ) | 0 = (1), X = X fixed} is a submanifold of
S of dimension d. The Fisher information matrix is given by g(u) = [g;;(1)] € R**?

where

ooy
95(0) = 5.5 56,
i J

The geodesics and distance are given in [7, 93]. Let 6y = po and 6, = p4, then the

(I1.59)

geodesic curve y(t) in Sy, connecting 6, and 6, is given by

Y(t) = (1 = t)po — tr, Xo) - (11.60)

The Fisher-Rao distance is given by

ds(60,6:) = 1/ (111 — 110)7E5™ (11 — pro)- dLe1)
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I1.6.2 The submanifold S, where ;. is constant

The statistical manifold S, = {p(z|u,X) | § = (£),u = po fixed} is of dimension
d(d + 1)/2. The Fisher information matrix in this case is given by g(X) = [g;;(2)]

where

1 o)) o
gi;(X) = itrace(E 89 o, —), i,j=

The geodesics and distance has been studied in [87]. Let 6, = ¥y and 6, = ¥,

1,....d(d+1)/2. (I1.62)

then the geodesic curve is given by
(t) = (o, X5/ * exp (tlog (252515 %) ) 55%) . (IL.63)

The Fisher-Rao distance is given by

d
d,(01,0s) = | Z (I1.64)

where 0 < A\; < ... < )\; are the eigenvalues of > /221251/2.

[\D\»—t

11.6.3 The one dimensional case

Now we consider the one dimensional case. The univariate Gaussian distribution

1 —|z — pf?
S, O) = I1.65
p(z, p, o) orH eXP( 557 (I1.65)
is parametrized by the half upper plane of R?
H = {(p,0) € R*|o > 0}. (I1.66)
The information matrix is
L0
l9i (1, 0)] = | 7 : (IL.67)
0 %
The Christoffel symbols are given by
0o -1 = 0
T3] = S A . (1L68)
-1 9 0 -1
Consequently, the geodesic equations are the following
i 2dudo _

2 2 2
o ()1 (o)
dt2 20 \ dt o \ dt
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To solve for this ODE system, we first separating and integrating the first equation
i 20 d d
B2 Y mp=2% o o = Ad?, (IL70)
[t o dt ds

where A is constant. There are two cases.
1. The case A = 0. It follows that ;. = constant, which corresponds to vertical

lines. The second equation of the system is reduced to

o o

- =—. (IL.71)
c o
Integrating we find o(t) = Be®?, with B, C are constants. Hence the geodesics are
K = Ho;
(IL.72)
o(t) = Be“,
where 1, B, C' are constants.
2. The case A # 0. Substituting t = Ac? in second equation, we obtain
2
oF + 704 —(6)*=0. (IL.73)
To solve for o, we put u = ¢. Then the equation becomes
d A?
o4+ St —u? =0, (IL74)
do 2
Multiplying by the factor 1/0® leads to the exact differential equation
A2 2
Zdu+ (So— L )do=0. (IL75)
o? 2 o3

The solution is

u? A%0%2 FE
st =5 (11.76)

where F is positive constant. Replacing u = ¢ and solve for o we get

2F 1
=/= . I1.77
7=V A2 oan (\/E(t + t0)> L7

In order to solve for 1, we integrate /1 = Ac? and obtain

2k 1 2VE
dt = vE

A J cosh? (\/E(t + to)) A

in conclusion, the solution in this case is

= tanh (VE(t +19)) + F (1L.78)

p(t) = # tanh (\/E(t + to)) + F,

_ V2E 1
O'(t) 4] cosh(\/E(t—i-to))7

(11.79)
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This satisfies the equation

A? A?
E(u(t) - F)* + Yo (t)* = 1. (IL.80)

So in the plane (u1, ) the geodesic is the ellipse with center (F,0), the width 4v/E /| A]
and the height 2¢/2E /| A|. With the boundary conditions, we can find the values of the
constants. We remark that the formula for geodesic on Poincaré half-plane H is known
to Atkinson and Mitchell [7] and also Stoker [116]. But they use different system of
coordinates. The geodesics for this model are circular arcs perpendicular to the real axis

and straight vertical lines ending on the real axis.
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Chapter III: Gaussian processes based on

Classical Polynomial

In this chapter, we propose new data-driven statistical regression models with low
complexity. First, we introduce new Gaussian processes where the covariance functions
have explicit Mercer’s representation. Second, we truncate the infinite sum of Karhunen-
Loeve expansion to employ it in regression models with low computational cost scaling:
O(nM?) for inference and O(M?) for learning, instead of O(n?) for a canonical Gaussian
process, where n is large in comparison to M (n >> M). Moreover, we develop an
implementation that requires a negligible memory O(M?) instead of O(nM). Finally,
we demonstrate the robustness and the practical interest of the proposed methods with
simulation and real studies. An extensive set of comparisons is explored to further
investigate their efficiency against some state-of-the-art methods.

Organization. This chapter is organized as follows. Section .1 presents a general
introduction. Section .2 provides background information on Gaussian processes re-
gression. In Section .3, we discuss the low complexity Gaussian processes and highlight
their main advantages in terms of computational complexity. Section .4 presents the
proposed solutions for several differential operators with orthogonal polynomial bases.
The experimental results are presented and discussed in Section .5. Finally, we provide

a comprehensive discussion and conclusion in Section .6.

III.1 Introduction

Gaussian processes are powerful and flexible statistical models that have gained sig-
nificant popularity in the field of econometrics, shape analysis, signal processing, data
science, machine learning, etc [3, 43, 44, 98, 125]. However, modeling with Gaussian
processes may also suffer from some computational challenges. When the number of
observations n increases, the computational complexity for inference and learning grows

significantly and incurs O(n?®) computational cost which is unfeasible for many modern
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problems [86]. Another limitation of Gaussian processes is the memory scaling O(n?)
in a direct implementation. Significant efforts have been dedicated to the development
of asymptotically efficient or approximate computational methods for modeling with
Gaussian processes. Various approximations and scalable algorithms, such as sparse
Gaussian processes [108] and variational inference [27], have been developed to make
Gaussian processes applicable to larger dataset. The book [98] dedicated the whole
chapter (Chapter 8) to describe a number of approximation methods.

Usually, certain approximations, as demonstrated in [30, 65], involve a sort of
reduced-rank Gaussian processes that rely on approximating the covariance function.
Most of these approximations typically reduce the complexity to O(nM?) and the storage
to O(nM) with M << n. For example, [134] addressed the computational challenge
of working with large-scale dataset by approximating the covariance matrix, which is
often required for computations involving kernel methods. In addition, [47] proposed
a FFT-based method for stationary covariances as a technique that leverage the Fast
Fourier Transform (FFT) to efficiently compute and manipulate covariance functions
in the frequency domain. The link between state space models (SSM) and Gaussian
processes inference has been explored by [109]. This could avoid the cubic complexity
in time using Kalman filtering inference methods [71]. Recently, [110] presented a
novel method for approximating covariance functions as an eigenfunction expansion of
the Laplace operator defined on a compact domain. More recently, [52] introduced a
reduced-rank algorithm for Gaussian processes regression with a numerical scheme.

In this chapter, we consider the Karhunen-Loeve (K-L) expansion of a Gaussian
process with many advantages over other low-rank compression techniques [49]. First,
it allows us to represent a Gaussian process as a series of basis functions and random
coeflicients. By selecting a subset of the most significant basis functions according to
the more important eigenvalues, the rank of the Gaussian process can be reduced. This
is particularly useful when dealing with big data, as it can help alleviate computational
and storage requirements. Second, the K-L decomposition can be particularly useful
for modeling the noise component of a Gaussian process. By analyzing the eigenvalues

corresponding to the eigenfunctions, one can identify the level of contribution of each
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eigenfunction to the noise component. This information can aid in noise modeling, esti-
mation, and separation from the clean Gaussian process. Finally, the K-L decomposition
provides a natural framework for model selection and regularization in Gaussian process
modeling. By truncating the decomposition to a subset of significant eigenfunctions, one
can prevent overfitting. This regularization can improve the generalization capability of
the Gaussian process and mitigate the impact of noise or irrelevant features.

The K-L expansion of a Gaussian process is the optimal representation in the IL2-
sense, but the K-L expansions are available only for Gaussian processes with some
covariance functions [63]. Instead of solving difficult integral equations for eigenpairs,
we aim to exploit differential operators with orthogonal polynomials acting as eigenfunc-
tions in contrast to previous works on K-L expansions. This choice is crucial because
polynomials are designed to be numerically stable and well-conditioned, which will
lead to more accurate and stable computations, especially in the presence of round-off
errors. Moreover, orthogonal polynomials often possess convenient integration and dif-
ferentiation properties. These properties facilitate efficient calculations involving the
interpolated functions, making them highly advantageous for applications that require
hard computations. Overall, Gaussian processes decomposition with orthogonal poly-
nomials provides numerical stability, faster convergence and accurate approximation [2].
Their use in Gaussian processes for machine learning has been virtually nonexistent. The
most existing researches are only based on analysis of integral operators and numerical

approximations for computing K-L expansions [49].

III.2 Canonical Gaussian processes regression

In this section, we remind Gaussian process prediction for convenience. A one-
dimensional Gaussian process defined on an index set T C R is a stochastic process in
which the marginal variables for any finite set in T follows a Gaussian distribution. In a
regression task, a nonparametric function f is assumed to be a realization of a stochastic

Gaussian process whereas the likelihood term holds from observations corrupted by a
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noise according to the canonical form

vi=f(t) +e; i=1,....n
(I1L.1)

f~GP(0, K(t,s))
where ¢; ~ N(0,02) is a Gaussian noise. Given a training dataset D = (t,y) =
(ti,y;)™, the posterior distribution over f = f(t) = (f(t1),..., f(t,))7 is also Gaus-
sian: p(f|D) = N (w,X). From Bayes’ rule, we state that the mean and the covariance

posterior are expressed as
p = KK+02Z,) y, (I1L.2)

—1
1
- (Kl + 2In> , (I11.3)

n

where K = [K(t;,1;)];;_, is the prior covariance matrix and Z, is the n x n identity

matrix. The predictive distribution at any test input ¢, can be computed in closed-form
as f(t.)|D, t. ~ N (o, var(£,)), with
fo=k(t)" (K +02T,) Yy, (IL4)
var(f,) = K(t,,t,) — k(t,)" (K + 02Z,) " 'k(t,), (IIL.5)
where k(t,) = [K(t;, t.)];.

The covariance function K (-, -) usually depends on a set of hyperparameters, de-
noted by 6y, that needs to be estimated from the training dataset. The log marginal
likelihood for Gaussian process regression serves as an indicator of the degree to which
the selected model accurately captures the observed patterns. The log marginal likeli-

hood is typically used for model selection and optimization. Let © = (6, 0?2) denote

the model hyperparameters then the log marginal likelihood log p(y|t, ©) is given by

1 1
[(8) = —5 log|K + oo T, — §yT(K +027,) Yy — g log(27). (11L.6)

Here, | - | denotes the determinant. The goal is to estimate the hyperparameter © that
maximizes the log marginal likelihood. This can be achieved using different methods,

such as gradient-based algorithm [12], where the gradient vector with respect to the
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hyperparameter is

ol©e) 1 ; 27 -19K 27 -1 1 27 -19K

= yI(K+02Z,) ' - (K +02Z,) 'y — ~tr [ (K + 02Z 1L
al(@) _]' T 2 -1 2 -1 1 2 -1
902 =y (K+03L,) " (K +0,T,) y——?I«K%%%ZJ ). (IIL.8)

The weakness of inferring the posterior mean, the mean prediction, or learning the hyper-
parameters from the log marginal likelihood is the need to inverse the n x n Gram matrix
K + 02Z,. This operation usually costs O(n?), which limits the applicability of stan-
dard Gaussian processes when the sample size n increases significantly. Furthermore,
the memory requirements for Gaussian process regression scale with a computational

complexity of O(n?).

ITII.3 Low complexity Gaussian processes

One of the main advantages of a Gaussian process is that it can be represented as a series
expansion involving a complete set of deterministic basis functions with corresponding

random coefficients. Let the inner product in IL?(T, p) be

(6.,0) = [[owu®pat (I1L9)
where p(t) is a positive weight function such that [ p(t)dt < oco. Consider a linear
integral operator K : L?(T, p) — LL*(T, p) with kernel K, expressed in terms of the

inner product, as

Ko = /T K (- 1)o(t)p(t)dt. (I11.10)

The following spectral theorem states the general result of an operator on a Hilbert space.

Let H be a separable infinite-dimensional Hilbert space, and let A be a compact
self-adjoint operator on H. Then there exists a sequence of real eigenvalues {\;}
with \; — 0 as j — 00, and an orthonormal basis of {¢;} of eigenvectors with

A¢j = )\j(ﬁijl" all] Z 1.

Proof See the book [38]. [ |
In our case, the operator K is compact and self-adjoint with respect to the inner

product defined in (II1.9), since <qu§, w> = <IC¢, q5>, allowing us to apply the spectral
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theorem for # = IL*(T,p). Consequently, there exists an orthonormal set of basis

functions {¢;}52, in the weighted space IL*(T, p), that is,

/Tcﬁj(t)@(t)p(t)dt = 01, (1IL11)
and a set of real eigenvalues {A;}32,. If KC is positive and bounded then it admits

absolutely summable positive eigenvalues A\; > A\ > --- > 0. According to Mercer’s

Theorem I1.4, the covariance function has the series expansion
K(t,s) = i)\j@(t)gzﬁj(s). (I1.12)
j=
The eigenvalues {);}52, and eigenfunctions {¢;}52, can be obtained from the integral
operator and the solution is provided by the Fredholm integral equation
Ko;(t) = Njo;(t), VteT. (II1.13)

Now, the Gaussian process f ~ GP(0, K(-,-)) can be decomposed using a series of

eigenfunctions and random coefficients, as described in Karhunen-Loeve [130].

Let f be a nonparametric function on T modeled with a Gaussian process of a

covariance function K (-, -). Then, for all t € T the function f can be written as
F6) =" a;8;(t), with a; % N(0,) (IIL.14)
j=1

where {\;}32, and {¢;}32, are eigenvalues and eigenfunctions of the integral

operator I defined in (111.10).

In order to avoid the inversion of the n x n matrix K + 02Z,,, we use the approx-
imation scheme presented above and project the Gaussian process to a truncated set of

M basis functions. The truncated version of f at an arbitrary order M € N* is given by
M

fu(t) =3 a;05(t) (IIL.15)
j=1

with an approximation error ey (t) = 3252/, a;¢;(t). The canonical Gaussian process

regression model adapted to the truncated Gaussian process becomes

vi=fu(t) +e, i=1,...,n,
(I11.16)
Jar ~ GP(0, Kn(t, 5)),

where Kr(t,s) = E(fu(t) fu(s)) = X044 Aj¢;(t)d;(s). The following proposition
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proves the convergence.

Proposition I11.1

1) The approximation K (-, ) converges uniformly to K (-,-) when M — oo,

iLe.,

lim (Sup |K(t,s) ZAJ@ ) 0 (IIL.17)

M—o00 \ ¢ seT

2) The mean integrated squared error (MISE ) of fur tends to 0 as M — oo.

Proof The proof of 1) follows from Mercer’s theorem [118], while here we solely

present the proof of 2). The MISE of fy; also known as the IL? risk function is given by
MISE = E(|If - full?:) (II1.18)

= E HeMHLz)

(
= E( [ / a;0,(t))dt)
(Y

j=M+1

a? [ o;(%at)
J=M+1

= K( Z a)

j=M+1
oo
= 2N
j=M+1
which tends to 0 as M — oo since \; are absolutely summable. |

= K

The convergence of the Mercer’s decomposition depends hardly on the eigenvalues
and the differentiability of the covariance function. [118] showed that the speed of the
uniform convergence varies in terms of the decay rate of eigenvalues and demonstrated
that for a 23 times differentiable covariance K (-, -) the truncated covariance K (-, -)
approximates K (-, ) as O((Zj S M1 A )ﬁil) For infinitely differentiable covariances
the latter is O((Z;’; M1 ) *5> for any ¢ > 0. To summarize, smoother covariance
functions tend to exhibit faster convergence, while less smooth or non-differentiable
covariance functions may exhibit slower or no convergence.

The resulting approximation fall into the class of reduced-rank approximations
based on approximating the covariance matrix K with a matrix K = (K (i, t5)]7 o1 =

®AD”, where A is a M x M diagonal matrix eigenvalues such that Ajj =)jand ®
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is a n x M matrix eigenfunctions such that ®,; = ¢;(¢;). Note that the approximate
covariance matrix K is ill-conditioned if A1/ is large or if the observation points ;
are too closed to each other [23]. This lead to large numerical error when inverting K.
By Theorem II.2, a bivariate function K (-, ) is a covariance function if and only if it is
positive semi-definite. The following proposition states that the truncation covariance

K (-, -) is well define a covariance function.

Proposition II1.2

Let M € N* be the order of truncation. Let \; and ¢; be eigenvalues and

eigenfunctions of the integral operator K, for j = 1,..., M. If K(-,-) is positive

semi-definite then Ky (-, ) is also positive semi-definite.

Proof Let N € N* {t;,...,ty} C Tand {ci,...,cy} € R" be as in Definition IL5.
From (II1.12), we have

N N N M N
DY Kt t) =) D ciakidi(t)o;(t)
=1

i=1[=1 = 1] 1

- Z)‘J chcl¢3 ¢J tl)
11=1

=

M N 2
=2 (Z Ci%(ti)) > 0.
j=1 i=1
In the above equality, we have used the fact that if K(-, ) is positive semi-definite then
all eigenvalues \; are nonnegative. n

Now, we show how our novel regression model that utilizes Gaussian processes de-
composition technique is able to achieve low complexity. We write down the expressions
needed for both inference and hyperparameters learning and discuss the computational

requirements. Applying the matrix inversion lemma [51] we re-rewrite the predictive

distribution (II1.4-II1.5) as
fo= ol (@T® + 2A) 1@y (I11.19)
var(f.) = o2oL (BT ® + o2 A7) o (I11.20)

where ¢, is an M-dimensional vector with the j-th entry being ¢;(¢.). When the number
of observations is higher than the number of required basis functions (n >> M) the

use of this approximation is advantageous. Thus, any prediction mean evaluation is
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dominated by the cost of constructing ®’ ®, which means that the method has an overall
asymptotic computational complexity of O(nM?).

The approximate log marginal likelihood updated with the model (IV.8) satisfies

1 1
UO) = — 5 log |®AD” + 02T, | — Jy" (RAR" + 02T,) 'y - g log(27)

1 1 1M
=—5(n—M)logoy — Jlog|@T® + oy AT~ - 3 log); (21
j=1

1
- Q—Q(yTy —y'®(@TP® + A2ATH ' Ty) - g log(27)

O-TL
After the initial cost needed for inferring the prediction mean (III.19) evaluating the
approximate log marginal likelihood has O(M?) complexity needed to inverse the M x M
matrix &7 ® + aiA‘l. In practice, if the sample size n is large it is preferable to cache

the result of ®7'® causing a memory requirement scaling as O(M?).

II1.4 Explicit solutions for low complexity Gaussian processes

In this section, we describe explicit solutions of the low complexity Gaussian process
(LCGP) with covariances derived from differential operators. In this chapter, we focus
on the construction of covariance functions that incorporate orthogonal polynomials as
eigenfunctions for two main reasons:

i) On the one hand, polynomials can approximate a wide range of functions with
various degrees of complexity. They can be adjusted to predict different data
patterns and can capture both linear and nonlinear relationships [25],

ii) On the other hand, polynomial regression is a well-established technique that
extends linear regression by incorporating polynomial terms. It allows for more
flexible modeling and can capture complex relationships between predictors and
the response variable.

The connection between a differential operator denoted by £ and the integral
operator K has been largely used, see for example [39]. We follow the same idea and
find the differential operator £ such that the covariance function K plays the role of its

Green’s function

(LK)(t,s) =0d(t—s), forallt,se T, (1I1.22)
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where §(-) denotes the Dirac delta function. If {);}32, and {¢;}32, refer to the eigen-
values and eigenfunctions of the integral operator /C, interchange integration and differ-

entiation we have
NLoi(t) = LK¢;(t)
= [ LK @8)os()p(s)ds
= [ 8t =)8s()p(s)ds
= 0,(t)p(t).

Finally, we get
1
£65(t) = +-65(Dp(0). (11.23)
J

This implies that (%, qﬁj) is eigenpair of p~!L, or the eigenvalues of K correspond
to reciprocal eigenvalues of p~!'L, while the corresponding eigenfunctions still the
same [0, 53].

Now, suppose we have eigenvalues and normalized eigenfunctions of £, denoted as
(7, ¢;), satisfying L¢;(t) = v;¢,(t). To incorporate the weight function p as in (II1.23),

we only need to consider pL instead of L. This gives us the relationship:

p(t)Ld;(t) = ;d;(t)p(t). (I11.24)
Next, using the Mercer decomposition (I11.12), we define K (£, s) = 02, v; ' &;(t)d; (s).
Then, K (¢, s) is associated with pL as its Green function. This approach is applicable
to a wide range of differential operators with corresponding integral operators that are

positive and bounded. Detailed explanations are provided in the following sections.

II1.4.1 Matérn covariance function

We choose one among the interesting operators on IL?([0, 1]), called the Matérn differ-

ential operator [16, 133], defined by

a2\ “
Lare = (g - dt2> , (I11.25)

depending on £ > 0 a scale parameter, and a € N a smoothness parameter. In which
€ means ¢ times identity operator. Whittle [133] in 1963 discovered that, the Matérn

covariance function is a unique stationary solution to (II1.25) in the case of Euclidean
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space R?. On the bounded domain [0, 1] with zero boundary conditions, we can verify

(see [23]) that the corresponding eigenvalues and eigenfunctions of £,;, are given by
v = (e+*7%)", and ¢;(t) = V2sin(jnt). (I11.26)

By Mercer’s theorem, we construct a covariance function as

K(t,s)=2)_ (8 + j27r2> - sin(jmt) sin(j7s). (IL.27)
j=1
Let f ~ GP(0, K(-,-), the K-L expansion of f is given by
) =v2Y ajsin(jat), a; ~N(0,1/7;). (IIL.28)
j=1
Then we approximate f by
M
fu(t) = V23 a;sin(jt). (I11.29)
j=1
So, the approximation error is
em(t) =v2 > ajsin(jnt). (I11.30)
j=M+1

We have the following proposition that shows the convergence of f;.

Proposition I11.3

If we approximate f by f; (111.29) then the MISE of f; tends to zero as M tends

to infinity.

Proof Indeed, we have

j=M+1
= > (e+2) " (ITL.31)
j=M+1
Therefore, MISE — 0 as M — oo. [ |

II1.4.2 Legendre Polynomials

We recall that the classic Legendre operator Ly defined on L?([—1, 1]) is given by
d? d
e=—(1—t")—5 +2—. 111.32
L ( Ve T2 (1.32)

The eigenvalues are {; = j(j + 1) 52, and eigenfunctions are Legendre polynomial
{9;(t) = P5(6)/|1PjllL2 352, with

1 &

(1) = ﬁ@(ﬁ —1)7, (I11.33)
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and || P;||2. = G +1 Next, we construct the covariance function
(2j+1)
K(t,s) =) ——=<P;(t)P;(s). I11.34
(:5) = X 2 TRy OB (1.34)

We can check that K (-, -) is square-integrable with the orthogonality of Legendre poly-
nomials ([6, 33])

<[+ 1 <[ 1 ]
K 22 — ( J ] _ [] .
I8 B = 3 [ G~ | <
Let f ~ GP(0, K(-,-), then f(t) = >°72, a;¢;(t). We approximate f by

27 1
Z T + Pi(t), (I11.35)
with the approximation error
> 2741
= > /2= + a;Pi(t). (I11.36)
j=M+1

We have the following proposition that shows the convergence of f;.

Proposition 111.4

If we approximate f by fyr (I11.35) then the MISE of fy tends to zero as M tends

to infinity.

Proof We have

s 1 1
MISE = Ellen (t)I7 2 A — = . (I11.37)
S 3%4-1 g%ﬂj(j'i"l) M+1
From (II1.37), MISE — 0 as M — oc. |
II1.4.3 Laguerre Polynomials
As a second example, we consider the operator
d? d
Lr,=1t— 1—1¢ I11.38
1=t (I11.38)

operating on L%([0, ), p), where p(t) = e ' is the weight function. The operator

L1, has eigenvalues 7; = —j, and eigenfunctions from Laguerre polynomials {¢; =

L)}, with

et ‘o
(1) = S (ot
Li(t) = FET (7).
We can check that {L;}%2, is an orthonormal basis in ([0, 00), p) [6].

Since L1, has negative eigenvalues, we consider the operator £2  with eigenvalue

7v; = j* and unchanged eigenfunction ¢; = L;. We construct the covariance function
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defined by
<1
= L) (111.39)
j=1
We then approximate f by
M
t) =>_a;L;(t). (I11.40)
j=1

Similarly, we have the following proposition that shows the convergence of fj;.

Proposition II1.5
The MISE of fy (111.40) tends to zero as M tends to infinity.

Proof We have

= 1
MISE = Ellex (81720 1+ 00).e-t) = Z A=Y (IIL.41)
j=M+1 j=M+1J
From (II1.41) we see that MISE — 0as M — oo. [ |
I11.4.4 Hermite Polynomials
In this example, we consider the operator
d? d
‘CHe - @ - 215%, (III42)

defined on L2(R, p), for p(t) = e~*. The operator £ has eigenvalues v; = —2j and

eigenfunctions from Hermite polynomials {¢; = H;(t)/||H}||}32,, where

s 42 '7 2
H;(t) = (—1)¢ ;ije_t , (II1.43)

and || Hj||?2y ) = v/72/j!. Like in Laguerre polynomial, we consider the operator L7,
with eigenvalues v; = (2;)? and the same eigenfunctions. By Mercer’s theorem, we

construct the covariance function as

Z \/—QJ T O ). (I1L.44)
The truncated version of f is
M
Z a;H;(t). (I11.45)
J J
=1 1/ \/_2Jj|

Similarly, we have the following proposition.

Proposition II1.6
The MISE of far (I11.45) tends to zero as M tends to infinity.
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Proof Indeed,

MISE = % 5 —0 asM — oo. (I11.46)
j=M+1 (27)
|
II1.4.5 Chebyschev Polynomials
Now we consider the operator
d? d
Lon=1—1)— —t—
on=0-)5s 15
acts on the weighted space L% ((—1,1), p), where p(t) = \/11_? The operator L¢y,
has eigenvalues 7, = —j* and eigenfunctions from Chebyshev polynomials 7} (t) =

cos(j arccost) [33]. Furthermore, {7} }52, forms a sequence of orthogonal polynomials
inL? (T, p), and || T}||Z2(r ,) = 5- Let the normalized eigenfunction ¢; = T (t)/||T}]|.
Sine v; is negative, we consider the operator —L¢, with eigenvalues v; = j? and
the same eigenfunctions. By Mercer’s theorem, we construct the covariance function as
> 2
K(t,s) => —T;(t)T;(s). (I11.47)

2
J=1

Then, the truncated version of f is given by

M9
Sut) = —a;T5(t). (111.48)
j=1

Similarly, we have the following proposition.

Proposition II1.7
The MISE of far (111.48) tends to zero as M tends to infinity.

Proof Indeed,

> 1
MISE= % — =0 asM — oo. (111.49)

- J

j=M+1
|
II1.4.6 Jacobi Polynomials
As the last example, we consider the differential operator
9 d? d

Lijo=0t"-1)—+(a—F+(a+F+2)) (II1.50)

dt2 dt’
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where « and 3 are parameters. The operator £, has eigenvalues v, = j(j +a+ [ +1)
and eigenfunctions from Jacobi polynomials .J;" P (t). Jacobi polynomials are orthogonal

in the space IL2((—1, 1), p), where p(t) = (1 — t)*(1 4 t)?, and given by

T () = (2‘3] A=) (=), ansy

The norm of J3' P are given by

o, 2 ! a,fB 2 - 2a+ﬁ+11‘\<j + o+ 1>F(.7 + 5 + 1)
2Ol = [, (520) o0t = o

(111.52)

As before, let the normalized eigenfunction of L, be ¢;(t) = Jf’ﬂ(t)/||Jf’5(t)||, and

let covariance function
K(ts) =) ——
’ i tat+ B+l

The truncated version of f ~ GP(0, K(-,-) is given by

)¢j(t)¢j<s)- (I11.53)

M M . q,ﬂ(t)
j
Fult) = S asyt) = 3 D (I.54)
= = 15 @]
We can also check that the MISE of f,, tends to zero as M tends to infinity.
Covariance | Operator | Domain p v oF l|65] |12
Matérn Lt [0,1] 1 (e +5%7%)" V2sin(jnt) 1
Legendre Lre [—1,1] 1 JG+1) saaw® =1 | Vs
Laguerre L2, [0, c0) et 52 %% (e tt7) 1
Hermite L3, R et 45> (—1)7e” %e*ﬁ \/ /245!
Chebyshev | —Lc, | (—1,1) (1—)' J? cos(j arccost) \/g
Jacobi Lo | (=1L,1) | Q1=8*1+t)° | jG+a+p+1) TSP (t) TP ()]

Table III.1: Different operators and their corresponding eigenpairs.

In Table I11.1, we provide a summary for each class of differential operator, including
the domain, the weight function p, the eigenvalues -y;, the eigenfunctions ¢;, and their
respective norms. Figure IIL.1 illustrates the behavior of the eigenvalues \; = % as the
index j varies from 1 to 40. It is evident that the eigenvalues of all covariance functions
converge to zero. Matérn and Jacobi, in particular, exhibit much faster convergence to

zero compared to the other cases.
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1004 — Matérn
== | egendre
= | aguerre

\_ =+ Hermite

10714 \ Chebyshev

K =® ' Jacobi

\ J
10-24
10-3 4
10-4 4

0 5 10 15 20 25 30 35 40

index j
Figure IIL.1: The eigenvalues \; of different operators. Where we let: € = 2, o = 1 for Matérn,
and « = —0.5, 8 = —0.3 for Jacobi.

III.5S Experiments

In this section, we assess the effectiveness of the proposed methods by conducting
evaluations on multiple dataset. We will compare their performance with some state-
of-the-art methods. The comparative analysis will enable us to gain insights into the
strengths and weaknesses of our approach and determine its competitiveness.

In Table III.1, differences in the domains for each covariance are observed. Through
a change of variables, we can transform the basis to be defined on the open interval
T = (0,1). The details are provided in Table III.2, where the new basis function
; is the normalized function ¢; multiplied by the square root of the Jacobian of the
transformation map. It’s worth noting that we can choose other transformation maps;
Table III.2 provides only explicit examples. For Laguerre and Hermite, the formula
for ; is additionally multiplied by the square root of the weight function p to mitigate
boundary effects, as the polynomial tends to infinity when the variable approaches
infinity.

In this section, we use \; and ¢; from Table III.2 to create the covariance functions,
and then we apply Gaussian process models as discussed earlier in our regression
problems. We let fu,(t) defined by fa(t) = 31, aji;(t), for a; e (O, )\j) . Then
f ~ GP(0, Ky (t,s), where Ky (t,s) = Zjle Ajpj(t)p;(s). Sine all \; are positive,
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Figure II1.2: Some observations from different datasets.

K (-, -) is positive semidefinite. Hence f),(t) well defines a Gaussian process on T.

d
Covariance | Transformation map d—? Aj ©;
Matérn u(t) =t 1 <€ + j27T2>_a 0;(t)
1
Legendre u(t) =2t —1 2 G0 V27 +16;(ul(t))
t 1 1 e_u(t)/2
Laguerre u(t) = 13 L 7 li—zt(ﬁj(u(t))
t 1 1 e O 2¢ (u(t))
Hermite | u(t) = log (—) — .
L—t) | t(1—1) 452 V200 H(1 —t)
1 2¢,(u(t
Chebyshev |  u(t) =2t — 1 2 - 20,(ult))
j va
1 2
jacobi | w=2%-1 | 2 | — V2 ey
JU+at+B+1) | T (ud)]

Table III.2: Transformation maps and new eigenpairs.

II1.5.1 Data

Simulations. In this study, we examine two parametric functions: a beta density func-
tion represented by f(t) = B(tla = 2,b = 5) (Simulation 1), and a quasi-periodic
function satisfying f(¢) = ¢sin(10¢) (Simulation 2). Both functions are defined on the

unit interval (0,1). For these experiments, we generated a total of 140 observations.
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Out of these, we allocated 40 observations for training and the remaining for test. The
inputs points ¢; are uniformly distributed on (0, 1). To introduce variability and simulate
real-world conditions, each observed point was calculated as y; = f(t;) + ¢;, where ¢;
represents Gaussian noise drawn from A(0,02 = 0.1). This procedure allows us to
evaluate the performance of our models using noisy data. Figure I11.2 (a)-(b) shows both
true parametric functions and the noisy observations.
Real data. In this part, we conduct a real study using two challenging dataset. The first
dataset comprises more than 864000 observations collected by the California Coopera-
tive Oceanic Fisheries Investigationsm (CalCOF]I). It investigates the ecological aspects
surrounding the collapse of the sardine population off the coast of California, which is
recognized as the longest and most comprehensive time series of oceanographic and lar-
val fish data worldwide. It encompasses abundance data for over 250 fish species’ larvae,
as well as larval length frequency data, egg abundance data for important commercial
species, and oceanographic data. Data collected at depths up to 500 meters includes:
temperature, salinity, oxygen, phosphate, silicate, nitrate and nitrite, chlorophyll, phy-
toplankton biodiversity, etc. In this experiment, we are specifically targeting climate
change indicators on the California coast when we keep 1000 observations among data
illustrating the temperature (°C') as function of the salinity (ppt). Some examples are
given in Figure II1.2 (c).

The second dataset used in this study pertains to Medical Cost Personal (MCP)
and was sourced from demographic statistics provided by the US Census Bureau [113].
It primarily focuses on the cost of treatment, which is influenced by various factors,
including age, sex, body mass index (BMI), and smoking status. Specifically, this
chapter examines the relationship between treatment costs (charges in thousand dollars)
and the BMI factor for both smokers and non-smokers. The dataset consists of 1338
observations, with 1064 corresponding to non-smokers and 274 pertaining to smokers,
see Figure I11.2 (d). For both real data a random split of 50% is allocated for training
purposes, while the remaining 50% is set aside for evaluation. This partition ensures a
balanced distribution of data for model training and comprehensive assessment of model

performance.
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Table II1.3: Results of LCGP on Simulation 1.

Operator MSE R-squared NLML
Matérn 3.11 x 1073 0.9962 13.67
Legendre 3.13x 1073 0.9961 18.02
Laguerre 3.12 -2.81 20.48
Hermite 4.54 x 1073 0.9944 11.08
Chebyshev 3.47 x 1073 0.9957 15.11
Jacobi 3.12 x 1073 0.9961 20.71
Table II1.4: Results of LCGP on Simulation 2.
Operator MSE R-squared NLML
Matérn 7.82 x 1073 0.9426 8.79
Legendre 6.07 x 1073 0.9554 14.89
Laguerre 0.5 -2.67 12.47
Hermite 6.39 x 1073 0.9530 7.32
Chebyshev 5.69 x 1073 0.9582 12.49
Jacobi 5.73 x 1073 0.9579 12.85
Table IIL.5: Results of LCGP on CalCOFI data.
Operator MSE R-squared NLML
Matérn 1.5186 0.8588 4635.63
Legendre 1.4988 0.8607 3755.24
Laguerre 241 0.7761 4017.89
Hermite 1.5095 0.8597 4430.93
Chebyshev 1.4991 0.8606 3744.62
Jacobi 1.4993 0.8606 3758.00
Table II1.6: Results of LCGP on MCP data.
Operator MSE R-squared NLML
Matérn 0.2354 0.3791 354.48
Legendre 0.2188 0.3958 329.57
Laguerre 0.2419 0.3686 338.93
Hermite 0.2548 0.3544 339.69
Chebyshev 0.2197 0.3943 327.84
Jacobi 0.2203 0.3938 329.68
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II1.5.2 Results

To evaluate the performance of the proposed methods some commonly used metrics for
evaluating the performance of the regression model include:

o MSE: the mean squared error as the average squared difference between the
predicted values and the true values.

o R-squared: the coeflicient of determination as a statistical measure used in re-
gression analysis that represents the proportion of the variance in the dependent
variable that is predictable from the independent variable.

o NLML: the negative log marginal likelihood which is a commonly used loss
function defined as the negative of the average log marginal likelihood of the data
given the model parameters.

It should be noted that a learning step should employed to determine the optimal
hyperparameter for Matérn and Jacobi, whereas for other operators, only the noise
variance estimation was necessary since the associated truncated covariance does not
depend on any hyperparameter. But in this experiment study, we keep ¢ = 2, = 1 for
Matérn and o = —0.5, f = —0.3 for Jacobi.

Table I11.3 and Table III.4 present the prediction results of the proposed method on
simulations using different operators: Matérn, Legendre, Laguerre, Hermite, Chebysheyv,
and Jacobi. Itis evident that all models can predict the function with a small mean squared
error (MSE) except for Laguerre. The best performer for Simulation 1 is Matérn, while
for Simulation 2, it is Chebyshev. The excellent performance of Matérn on simulated
data can be attributed to its suitability for approximating parametric functions defined
on the interval (0, 1), as Matérn operators are specifically designed for this interval.
However, according to the NLML criterion, Hermite outperforms others and is the best
choice for both simulations.

Table A.1 and Table I11.6 showcase the prediction results with real data. For the MCP
data, we compute the average criteria (MSE, R-squared, NLML) for both smokers and
non-smokers. Among the various operators, Legendre consistently outperforms others
in real datasets. These results suggest that Legendre demonstrates greater flexibility

in capturing various patterns and structures within real data, effectively modeling both
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short-range and long-range dependencies. On the contrary, Chebyshev exhibits the

smallest values of NLML in both experiments.
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Figure II1.3: Illustration of the prediction results with LCGP.

In Figure II1.3 (a)-(b), we provide an illustration of predicting the true parametric
function from simulations. In contrast, Figure II1.3 (c)-(d)-(e) displays predictions
from real datasets. Laguerre is not included in the figures for the sake of clarity. We
observe that different types of polynomial eigenfunctions exhibit distinct advantages in
prediction. We remind that Matérn and Hermite exhibit a boundary effect, where they
become zero at the endpoints. They perform better when the true functions satisfies

these conditions.

II1.5.3 Comparison

We compare the proposed LCGP with several baseline methods to determine if there
are significant performance differences. The baseline methods include: i) simple linear
regression, ii) polynomial regression generating polynomial features from input data,
iii) standard Gaussian process regression (as described in Section .2), and iv) neural

network (NN) model. We provide some details about the NN architecture with multiple
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Table II1.7: Results of different methods on Simulation 1.

Method MSE R-squared
Linear regression 0.2871 0.6497
Polynomial regression 0.2571 0.6863
Standard GP 5.26 x 1073 0.9935
NN 0.2255 0.7248
LCGP 3.11 x 1073 0.9962
Table IIL.8: Results of different methods on Simulation 2.
Method MSE R-squared
Linear regression 0.1245 0.0862
Polynomial regression 0.1147 0.1578
Standard GP 812 x 1073 0.9403
NN 0.1153 0.1532
LCGP 5.69 x 1073 0.9582
Table I11.9: Results of different methods on CalCOFI data.
Method MSE R-squared
Linear regression 24813 0.76940
Polynomial regression 1.8685 0.8263
Standard GP 1.4997 0.8606
NN 1.7866 0.8339
LCGP 1.4988 0.8607
Table II1.10: Results of different methods on MCP data.

Method MSE R-squared
Linear regression 0.2752 0.3322
Polynomial regression 0.2816 0.3251
Standard GP 0.2294 0.3836
NN 0.2757 0.3319
LCGP 0.2188 0.3958

hidden layers. It consists of three hidden layers with 32, 64, and 64 units respectively,
followed by an output layer with a single unit. The rectified linear unit (ReLLU) activation
function is used in the hidden layers to introduce non-linearity to the model. It is worth
noting that Table II1.7-II1.8—I11.9-II1.10 represent results of standard Gaussian process
with Matérn covariance.

In Figure I11.4 we illustrate the predict