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0.1 Notations and Conventions

In the following discussion we will often use Dirac’s bra-ket notation to denote rank-one

operators. To define it in short, we understand |x⟩ to be a vector in some Hilbert space

Cn and ⟨x| to be its dual vector. Then for two vectors x, y ∈ Cn we define the rank one

operator |x⟩⟨y| by-

|x⟩⟨y|(z) := ⟨y|z⟩x

for any z ∈ Cn. The space of n × n and n ×m matrices will be denoted by Mn(C) and

Mn,m(C) respectively. If {ei}ni=1 is the standard basis of Cn and {Eij ; 1 ≤ i, j ≤ n} is the

standard matrix units (i.e. 1 at ij-th position and zero everywhere else) then one can easily

verify that Eij = |ei⟩⟨ej |. We will use Lin(Mn(C),Mm(C)) to denote the set of all linear

maps from Mn(C) to Mm(C). If n = m we will abbreviate it to Lin(Mn(C)). We will

frequently use the notation Mn(C)∗ which is defined by Mn(C)∗ := {A∗ : A ∈Mn(C)}.



Chapter 1

Introduction

Two basic ingredients of any information theory whether it is classical or quantum, are

the information we want to communicate and a medium or channel to communicate. The

information is a set of elements and a channel is a map on that information set. Now in

the formalism of quantum mechanics every system corresponds to a Hilbert space which

is usually taken to be of finite dimension in quantum information theory. For a system

corresponding to a Hilbert space of dimension n, say Cn, all the information of a quantum

system is encoded in a quantum state which is mathematically represented by a positive

matrix ρ ∈ Mn(C) of trace 1. A quantum channel S is then a map which takes a state ρ

as an input and produces another state S(ρ) in some system represented by the Hilbert

space Cm of certain dimesnion m (or the same system Cn). To formalise, we need a map

S : Mn(C) →Mm(C) that takes a positive matrix of Mn(C) to a positive matrix of Mm(C)

and which preserves the trace of the input matrix. There are sufficient reasons to assume

this map S to be linear. A non-linear map will violate the notion of locality i.e. the idea

that any spatially localised action does not immediately influence distant parts (see sec.

1.4, [Wol12]). So we see that it requires our channel S to be a linear positivity and trace

preserving map. But it turns out that such assumptions are not sufficient. What we need a

stronger notion of positivity for S. Suppose we adjoin another system of dimension k (e.g.

ancilla, environment) to our initial system so that the joint system is represented by the

Hilbert space Ck⊗Cn. We want our channel S to act on the initial system without affecting

the ancillary system i.e. S : Mn(C) → Mm(C) is a linear, trace and positivity preserving

map such that the augmented map (Idk ⊗ S) : Mk(C) ⊗Mn(C) → Mk(C) ⊗Mn(C) is

also positivity preserving. Such an S is called k-positive. The dimension of the ancillary

system could be any natural number k. Thus, we need (Idk ⊗ S) : Mk(C) ⊗Mn(C) →

7



8 CHAPTER 1. INTRODUCTION

Mk(C) ⊗Mm(C) to be positivity preserving for any natural number k. Such linear maps

are called completely positive maps. With all these above ideas the quantum channel turns

out to be a completely positive trace preserving linear map. Among all the various ways to

define positivity of a linear map completely positive maps are most well understood object

both mathematically and physically [Kra70]. The k positive maps or just the positive map

lack the direct physical interpretation. But nonetheless they are very much important yet

not so well understood objects in mathematics or mathematical quantum information.

Entanglement is a phenomenon lying at the heart of quantum mechanics. It is one of the

key properties which makes quantum mechanics completely different from any classical

theory. To put it in simple terms- if we have two systems, possibly spatially separated,

then unlike the classical case it is not possible to treat each system as an individual

subsystem if they share a joint entangled state. We need to treat the two systems as a

whole. If we perform any measurement on one subsystem then it immediately affects our

description of the other subsystem and this has surprising consequences that do not occur

for classically correlated systems. Positive or k-positive maps are deeply related to the

entanglement theory as the k-entangled states are dual objects of k positive maps if we

define a suitable duality between the spaces Mn(C) ⊗Mm(C) and Lin(Mn(C),Mm(C)).

Another crucial role that the positive linear maps plays is to describe the dynamics of

open quantum system. If a sub-atomic particle is not interacting with the environment

then we call the system to be closed. The dynamics of such system is described by the

Schrödinger’s wave equation. If ρ represents the quantum state of a closed system at

the time t = 0 then the state of the system at then after some time t > 0 is given by

ρt = U∗
t ρUt for some one parameter group of unitary operators {Ut : t ∈ R}. Stone’s

theorem says that there is a unique Hermitian operator H (called the Hamiltonian) such

that Ut = exp (itH) (see theorem 4.3.11, [App19]). This H is the generator of the one

parameter group of unitaries Ut. But if the system is interacting with the environment

then we have to take into account the joint system of (environment + initial open system).

Locally the dynamics of such open system is decribed by one-parameter semigroup of

completely positive maps. Mathematically, this is a consistent description with respect

to the Schrödinger’s unitary evolution theory since a famous result of Stinespring, known

as the Stinespring dilation theorem (see theorem 2.2, [Wol12]) says that such any such

semigroup of completely positive map can be extended to a unitary evolution of a bigger

space. To put it in other way, if we consider the (open system + environment) to be a
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closed system, any dynamics of initial system described by the semigroup of completely

positive maps corresponds to a dynamics of the bigger joint system described by unitary

operators. It was proved by Lindblad, Gorini, Kossakowski, Sudarshan(LKGS) [Lin76]

[GKS76] that a semigroup of linear maps (exp (tΦ))t≥0 on Mn(C) describes a semigroup

of completely positive, identity preserving map if and only if

Φ(X) = i[H,X] +

k∑
j=1

{V ∗
j XVj −

1

2
(V ∗

j VjX +XV ∗
j Vj)}

for some Hermitian matrix H (Hamiltonian) and a set of matrices (Vj)
k
j=1 ⊂Mn(C).

So to summarise the two models- the dynamics of closed and open system respectively

are connected by the Stinespring’s dilation theorem and what Stone’s theorem stands for

closed quantum system i.e. to describe the generator, LKGS’s theorem does the analogous

thing for open quantum system.

1.1 Presentation of the Thesis

The second chapter briefly discusses the existing results on different cones of positive op-

erators which are very much important to both operator theory and quantum information.

These are mostly works of Choi[Choi75], Kraus[Kra70], De Pillis[Pil67], Jamio lkowski[Jam72],

Skowronek, Størmer, Zyczkowski [SSZ09], Ranade, Ali [RA07]. We will begin with the

notion of quantum state, separability and entanglement. Then we will start with the con-

jugate map AdS : X 7→ S∗XS, the simplest of the positive maps and will gradually try to

introduce different positive cones of operators. The third chapter discusses the nice error

basis and its constructions which are mainly the results E. Knill, A. Klappenecker, M.

Rötteler [Kni96], [KR02],[KR05].

The last two chapters of the present thesis i.e. the chapter 4 and the chapter 5 consist

of the research works that we have done. Our main motivations of the work for this thesis

are two questions. First, does having a good basis of the space Lin(Mn(C)) the space of

linear maps on Mn(C), help to understand positivity of a linear map? Second, can we

characterise the semigroup of k-(super)positive maps in terms of its generator, similar to

the LKGS result for the completely positive semigroup? Chapter 4 is devoted to the first

question and Chapter 5 to the second.

Chapter 4 is based on our paper [BCF23(ii)]. In this chapter, we take advantage of the

notion of nice error basis(NEB) of Mn(C) to construct a conveninent basis of the space
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Lin(Mn(C)). A nice error basis is a unitary projective representation {πg ∈ U(n) : g ∈

G} of a group G of order n2 such that the trace of each such representative πg is zero

except for g = 1, the group identity element. The projective representation is a twisted

homomorphism by a 2-cocycle i.e. πg.πh = ω(g, h)πgh for any g, h ∈ G and a 2-cocycle

map ω : G×G → C (see def. 3.2.1). Such a set of unitary matrices forms an orthogonal

basis of Mn(C) with respect to the Hilbert-Schmidt inner product. Now consider the map

T : Mn(C) ⊗M∗
n(C) ∋ A ⊗ B∗ 7→ TA,B∗ ∈ Lin(Mn(C)) where the linear map TA,B∗ is

given by TA,B∗ : X 7→ AXB∗ for any X ∈ Mn(C). The map T can be extended linearly

to a Hilbert space isomorphism between the space Mn(C) ⊗ Mn(C)∗ and Lin(Mn(C)).

So if {Bi : 1 ≤ i ≤ n2} is a basis of Mn(C) then {TBi,B∗
j

: 1 ≤ i, j ≤ n2} is a basis of

Lin(Mn(C)). In particular if we take an NEB {πg : g ∈ G} as a basis of Mn(C) then

{Tx,y := πx(·)π∗y : x, y ∈ G} is a basis of Lin(Mn(C)). What is more {Tx,y : x, y ∈ G}

is also an NEB of Lin(Mn(C)) if we identify the space with Mn2(C). As an example of

NEB we will do the computation with Weyl operators {Wx : x ∈ Zn×Zn} (see subsection

3.2). We decompose a linear map α on Mn(C) with respect to an NEB {Tx,y : x, y ∈ G}

i.e. α =
∑

x,y∈GDα(x, y)Tx,y to obtain a n2 × n2 decomposition coefficient matrix Dα(or

a kernel on G × G). We now try to characterise different positivity properties of α with

respect to Dα. We will prove the following result on 1-positivity-

Theorem 1.1.1. Let {Bx}x=1,2...n2 be a basis of Mn(C). Consider a linear map α ∈

L(Mn(C)) of form α(X) =
∑n2

x,y=1Dα(x, y)BxXB
∗
y . Then α is

i. Hermitianity preserving if and only if Dα is Hermitian.

ii. positive if and only if for any v, w ∈ Cn,

⟨v ⊗ w, α̃(v ⊗ w)⟩ ≥ 0

where α̃ = τ ◦
∑n2

x,y=1Dα(x, y)(Bx ⊗B∗
y) and τ(u⊗ v) = v ⊗ u is the flip operator.

We will show a characterisation of complete positivity-

Theorem 1.1.2. A linear map α ∈ Lin(Mn) is a completely positive map with Kraus rank

r if and only if the corresponding coefficient matrix Dα ∈Mn2(C) is positive semi-definite

of rank r.

One should observe the similarity of the properties of Dα and Choi-Jamio lkowski ma-

trix Cα. We will also show the following correspondence between Dα and Choi matrix

Cα
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Proposition 1.1.1. If Tx,y is defined with respect to the Weyl operators and if α is of the

form α =
∑

x,y∈Zn×Zn
Dα(x, y)Tx,y, then its Choi-Jamio lkowski matrix is given by

Cα(v, w) =
∑

x2,y2∈Zn

κ(x2, v1)

κ(y2, w1)
Dα

(
(v2 − v1, x2), (w2 − w1, y2)

)
,

for v, w ∈ Zn × Zn. Conversely, Dα can be computed from the Choi-Jamio lkowski matrix

via

Dα(x, y) =
1

n

∑
a,b∈Zn

κ(y2, b)

κ(x2, a)
Cα

(
(a, a+ x1), (b, b+ y1)

)
for x, y ∈ Zn × Zn.

We will also characterise complete co-positivity of α.

Theorem 1.1.3. A linear map α ∈ Lin(Mn(C)) is completely co-positive iff the convolu-

tion product ∑
p,q∈Zn×Zn

χ(p, x− p)

χ(q, y − q)
Tr(W pWq)Dα(x− p, y − q)

is positive semi-definite.

We will show a characterisation of entanglement breaking map for the special case of

dimension n = 2.

Corollary 1.1.1. A linear map α ∈ Lin(M2) is 1-super positive iff Dα =
∑r

j=1 |lj⟩⟨lj |

where lj = (lj(1), . . . , lj(4))t is a vector in C4 satisfying lj(1)2 =
∑4

k=2 lj(k)2.

The final chapter i.e. chapter 5 is based on our paper [BCF23(i)]. This chapter of the

present thesis is about the second question we posed on the topic of one parameter semi-

group of positive operators. We were motivated by the Lindblad, Gorini, Kossakowski,

Sudarshan’s theorem on the characterisation of the generator of a semigroup of completely

positive maps to ask if it is also possible to give a characterisation of semigroup of other

positive maps e.g. k-(super)positive maps. For this we generalise a result of M. Schürmann

[Sch85] on the Schoenberg type correspondence of unital semigroup to its non-unital ver-

sion. We prove the following result

Theorem 1.1.4. Let A be a real Banach algebra with a closed convex cone C ⊆ A with

non-empty interior. Let a0 ∈ C be an idempotent such that for any c ∈ C, we have

a0ca0 ∈ C.

We assume furthermore that for any c ∈ C we have cn ∈ C for n ≥ 1.

Then, for any b ∈ A such that ba0 = a0b = b, the following statements are equivalent.
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(i) b is a0-conditionally positive on C◦, i.e., φ(b) ≥ 0 for all φ ∈ C◦ with φ(a0) = 0.

(ii) expa0(tb) := limn→∞
(
a0 + tb

n

)n ∈ C for all t ≥ 0.

The reason we couldn’t use the Schürmann’s original result directly was that in his

version of the result the cone contained the unit of the Banach algebra and the semi-

group started at the unit element. But if we wish to consider a general positive cone in

Lin(Mn(C))sa then it does not necessarily contain the identity map. For example, the

cone of k-super positive maps (or also known as k-partially entanglement breaking map)

does not contain the identity map for k < n. So a semigroup of k-super positive maps can

not start at the identity map at t = 0. With the non-unit version of the Schoenberg type

correspondence mentioned above we will prove the following result.

Theorem 1.1.5. Let

A = Lin(Mn(C))sa =
{
T ∈ L(Mn,Mn);T ◦ ∗ = ∗ ◦ T

}
and let C ⊆ A be one of the cones of k-positive, completely positive or k-super positive

maps,

Fix an idempotent map Φ0 ∈ C. Then for Ψ ∈ A with Ψ ◦ Φ0 = Φ0 ◦ Ψ = Ψ the

following are equivalent.

(i) We have expΦ0
(tΨ) = Φ0 +

∑∞
n=1

tnΨ◦n

n! ∈ C for all t ≥ 0;

(ii) Ψ is Φ0-conditionally positive on C◦, i.e., we have

∀v ∈ C◦, ⟨v,Φ0⟩ = 0 ⇒ ⟨v,Ψ⟩ ≥ 0.

In particular we have the following characterisation of the generator of a semigroup of

k-positive maps-

Corollary 1.1.2. Ψ = TS with S =
∑
Ai ⊗ Bi ∈ (Mn ⊗Mop

n )sa generates a semigroup

Tt = exp(tΨ), t ≥ 0, of k-positive maps if and only if

∀V ∈Mn,
(
rank(V ) ≤ k and Tr(V ) = 0

)
⇒

∑
Tr(AiV

∗)Tr(BiV ) ≥ 0.

We can also retrieve the LKGS theorem using this characterisation. We will end the

present thesis by our discussion on few examples of semigroup of positive operators gener-

ated by the depolarising channel P , transposition T , conditional expectation onto diagonal

C and identity Id i.e. the semigroup exp t(αP + βT + γC + δId), where α, β, γ, δ ∈ R.
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1.2 Notations and Conventions

In the following discussion we will often use Dirac’s bra-ket notation to denote rank-one

operators. To define it in short, we understand |x⟩ to be a vector in some Hilbert space

Cn and ⟨x| to be its dual vector. Then for two vectors x, y ∈ Cn we define the rank one

operator |x⟩⟨y| by-

|x⟩⟨y|(z) := ⟨y|z⟩x

for any z ∈ Cn. The space of n × n and n ×m matrices will be denoted by Mn(C) and

Mn,m(C) respectively. If {ei}ni=1 is the standard basis of Cn and {Eij ; 1 ≤ i, j ≤ n} is

the standard matrix units (i.e. 1 at ij-th position and zero everywhere else) then one can

easily verify that Eij = |ei⟩⟨ej |. We will denote Lin(Mn(C),Mm(C)) the set of all linear

maps from Mn(C) to Mm(C). If n = m we will abbreviate it to Lin(Mn(C)). We will

frequently use the notation Mn(C)∗ which is defined by Mn(C)∗ := {A∗ : A ∈Mn(C)}.



14 CHAPTER 1. INTRODUCTION



Chapter 2

Positive Cones

We recall some definitions and basic facts on cones.

Definition 2.0.1. A subset C of a topological vector space V over R is called a convex

cone or just cone if there is no confusion if for any two elements x, y ∈ C and α ≥ 0 we

have αx + y ∈ C. Furthermore, we call a cone solid if it has nonempty interior and it is

pointed if C ∩ (−C) = {0}.

Definition 2.0.2. For a cone C ⊆ V we define its dual cone C◦,

C◦ := {z ∈ V ′; ⟨z, x⟩ ≥ 0, x ∈ C}

where V ′ is the topological dual space of V .

The following results are well known so we mention without proof (see Lemma 3.2,

Corollary 3.3 [AT07]).

Proposition 2.0.1. Let C be a closed convex cone in Rn. Then the following statements

are equivalent:

a. C is pointed i.e. C ∩ (−C) = {0}.

b. C◦ − C◦ = Rn.

c. C◦ has non-empty interior.

d. span(C◦) = Rn .

If we assume C is closed (which is the case for all cones we give as examples) the

same results hold if we replace C by C◦ in the above proposition via the Bipolar theorem

(C◦)◦ = C (see theorem 5.5, [Sim11]).

15
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2.1 Quantum States In Mn(C)

Let H be a Hilbert space of dimension n. A pure state of H is a vector |x⟩ in H such that

∥x∥ = 1. We can also associate to the unit vector x the rank one projection Px ∈ Mn(C)

onto the subspace generated by the unit vector x ∈ H. Upto the bijection |x⟩ ↔ Px, we

use the term pure state to denote both |x⟩ and Px. We say a state is mixed if it is convex

combination of pure states i.e. ρ ∈Mn(C) is a mixed state if

ρ =
r∑

k=1

λkPxk
and

r∑
k=1

λk = 1,

where Pxk
is the projection onto the subspace generated by |xk⟩. In general, a quantum

state ρ is described by a positive semi-definite operator on H = Cn of trace 1 which is also

called a density matrix. This does not lead to confusion since any such positive matrix of

trace 1 has the spectral decomposition of the above mentioned form. The trace condition

is important for describing a physical system but as we can always normalise a positive

matrix when ever it is convenient we can easily get rid of it. So by a state or density matrix

(non-normalised)ρ ∈ Mn(C), we usually understand it as a positive matrix ρ ≥ 0. The

collection of such non-normalised states will be denoted by Mn(C)+. If we denote the set

of all Hermitian ( or self-adjoint) matrices of Mn(C) by M sa
n (C) then Mn(C)+ ⊂M sa

n (C).

Observe that M sa
n (C) is a vector space over R of dimension n2.

Now let’s consider a composite quantum system of two subsystem HA = Cn and

HB = Cm. The joint quantum system is described by the tensor product of individual

subsystems i.e. HA ⊗HB = Cn ⊗ Cm. We denote by (Mn(C) ⊗Mm(C))sa the real linear

space of self-adjoint operators and by (Mn(C)⊗Mm(C))+ the set of all positive operators

on Cn ⊗ Cm. One obvious way to construct a state or density operator on the joint

system is to consider the convex combinations of tensor products of density operators of

individual subsystems. But not all density operator of the joint system can be expressed

in that manner.

Definition 2.1.1 (Separable state/Entangled state). A state ρ ∈ (Mn(C) ⊗ Mm(C))+

for some n,m ∈ N is called separable if and only if there exists finite sets of states

{ρ(1)i }i∈I ⊂ Mn(C)+, {ρ(2)i }i∈I ⊂ Mm(C)+ and non-negative numbers {pi}i∈I such that

ρ =
∑

i∈I piρ
(1)
i ⊗ ρ

(2)
i and

∑
i∈I pi = 1.

It is called entangled if it can not be expressed in the above manner.

There is an obvious isomorphism between Cn ⊗ Cm and the space of all linear maps
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from Cn to Cm i.e. Lin(Cn,Cm) = Mn,m(C). If {ei}ni=1 and {fj}mj=1 are two orthonormal

bases of Cn and Cm respectively then for any vector |x⟩ =
∑

i,j xij |ei⟩ ⊗ |fj⟩ ∈ Cn ⊗ Cm

the corresponding matrix X =
∑

ij xij |ei⟩⟨fj | ∈ Mn,m(C) is called the matrisation of the

vector x. Conversely, for any matrix X ∈ Lin(Cn,Cm) of the above form the corresponding

vector x ∈ Cn ⊗ Cm is called the vectorisation of X.

Theorem 2.1.1 (Schmidt decomposition). For each non-zero vector x ∈ Cn ⊗ Cm there

exists positive numbers λ1, λ2, . . . , λs for some 1 ≤ s ≤ min(n,m) and orthonormal systems

(ϕi)1≤i≤s ⊂ Cn, (ψi)1≤i≤s ⊂ Cm such that

|x⟩ =
∑

1≤i≤s

λi|ϕi⟩ ⊗ |ψi⟩,

where λi satisfies
∑s

i=1 λ
2
i = ∥x∥2. The number s is uniqely determined and so are numbers

(λ1, . . . , λs) if we require that λ1 ≥ . . . ≥ λs.

Proof. Let {|ei⟩ : 1 ≤ i ≤ n} and {|fj⟩ : 1 ≤ j ≤ m} be two bases of Cn and Cm

respectively. Any vector x ∈ Cn⊗Cm can be written in the form |x⟩ =
∑n

i=1

∑m
j=1 xij |ei⟩⊗

|fj⟩ with respect to these bases. Let X =
∑n,m

i,j=1 xij |ei⟩⟨fj | be the matrisation of the vector

x and let r be its rank. Consider the singular value decomposition X = UDV ∗, where

U = (uij)n×n is an unitary matrix of order n, D = (λij)n×m is a diagonal matrix of rank

s and V = (vij)m×m is an unitary matrix of order m. If we vectorise X now with respect

to this decomposition then we have

|x⟩ =
∑
i,j,k

uikλkvjk|ei⟩ ⊗ |fj⟩

=

s∑
k=1

λk|ϕk⟩ ⊗ |ψk⟩,

where the set of vectors {|ϕk⟩ : 1 ≤ k ≤ s} and {|ψk⟩ : 1 ≤ k ≤ s} constitute orthonormal

set in Cn and Cm respectively, since U, V are unitaries. That ∥x∥2 =
∑s

k=1 λ
2
k, follows

directly now from the computation of ⟨x|x⟩.

The number s is called the Schmidt rank of the vector x and denoted by SR(x) and

λ1, . . . , λs are called Schmidt coefficients of |x⟩..

Corollary 2.1.1. Let (ui)1≤i≤s and (vi)1≤i≤s be two systems of not necessarily orthogonal

vectors in Cn and Cm. Then SR (
∑s

i=1 ui ⊗ vi) ≤ s.

Proof. The Hilbert spaces spanned by the systems (ui)1≤i≤s and (vi)1≤i≤s are of dimension

at most s. So the result follows directly from the Schmidt decomposition theorem.
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Corollary 2.1.2 (Purification lemma). Let ρ ∈Mn(C)+ be a density operator. Then there

always exists k ≥ 1 and a pure state |Φ⟩ ∈ Cn⊗Ck, k ≥ rank(ρ), such that ρ = Tr2(|Φ⟩⟨Φ|),

where Tr2 is the partial trace with respect to the second tensor factor.

Proof. Suppose the spectral decomposition of the density operator ρ ∈ Mn(C)+ is of the

form

ρ =

r∑
i=1

λi|ϕi⟩⟨ϕi|,

where r is the rank of ρ. Now the recipe to cook up |ψ⟩ follows directly from the Schmidt

decomposition theorem. We take {ψi}ri=1 an orthonormal system in the space Ck, where

k ≥ r. We define

|Φ⟩ :=
r∑

i=1

√
λi|ϕi⟩ ⊗ |ψi⟩.

Therefore we have

Tr2(|Φ⟩⟨Φ|) = Tr2

 r∑
i,j=1

√
λiλj |ϕi⟩⟨ϕj | ⊗ |ψi⟩⟨ψj |


=

r∑
i,j=1

δij
√
λiλj |ϕi⟩⟨ϕj |

=
r∑

i=1

λi|ϕi⟩⟨ϕi| = ρ.

2.2 Positive Cones In Mn(C)⊗Mm(C)

It is easy to see that the set of all separable states of Cn ⊗ Cm form a closed convex

cone. We denote this cone Sep(Cn,Cm). If ρ =
∑

i∈I piρ
(1)
i ⊗ ρ

(2)
i is separable then we

can find the spectral decomposition of each ρ
(1)
i and ρ

(2)
i in terms of rank one projections

ρ
(1)
i =

∑
x |x(i)⟩⟨x(i)| and ρ

(2)
i =

∑
y |y(j)⟩⟨y(j)|. So we can write ρ =

∑
|x(i)⟩⟨x(i)| ⊗

|y(j)⟩⟨y(j)|. Thus we see that the cone Sep(Cn,Cm) is generated by the elements of the

form |x⟩⟨x| ⊗ |y⟩⟨y| ∼= |x⊗ y⟩⟨x⊗ y|. So we find that

Sep(Cn,Cm) = Conv {|x⊗ y⟩⟨x⊗ y| : x⊗ y ∈ Cn ⊗ Cm} .

Since x ⊗ y has Schmidt rank 1 we can say that the cone of separable states is the

convex hull of the projections onto vectors of Schmidt rank 1. So if a bipartite state

ρ ∈ (Mn(C) ⊗ Mm(C))+ is entangled then we can spectral decompose the state into
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convex combination of rank one projections onto vectors such that at least one of the

vectors has Schmidt rank > 1. We can use the maximal Schmidt rank of such vectors

in the spectral decomposition of a bipartite state to categorise different entangled states.

This motivates to define the cone of k-entangled states.

Definition 2.2.1 (k-Entangled operator). Let k be a positive integer. A state ρ ∈

(Mn(C) ⊗Mm(C))+ is called k-entangled operator iff it belongs to the set

k-Ent(Cn,Cm) = Conv


k∑

ij=1

|xi ⊗ yi⟩⟨xj ⊗ yj | : {xi}ki=1 ⊂ Cn, {yj}kj=1 ⊂ Cm

 .

Observe that for k = 1, 1-Ent(Cn,Cm) = Sep(Cn,Cm) the cone of separable states.

Since SR(
∑k

ij=1 xi⊗yj) ≤ k, equivalently ρ is k-entangled iff the Schmidt rank of its eigen

vectors ≤ k i.e.

k-Ent(Cn,Cm) = Conv {|v⟩⟨v| : v ∈ Cn ⊗ Cm, SR(v) ≤ k}

We can check that k-Ent(Cn,Cm) is a closed convex cone for each k ∈ N. It is obvious

that if k = min{n,m} then k-Ent(Cn,Cm) = (Mn(C)⊗Mm(C))+. It also follows from the

definition that k-Ent(Cn,Cm) ⊆ (k+1)-Ent(Cn,Cm). In fact, the inclusion is strict. Let

v ∈ Cn ⊗ Cm be a vector with SR(v) = k + 1. Obviously, |v⟩⟨v| ∈ (k + 1)-Ent(Cn,Cm).

Let’s assume we can write |v⟩⟨v| =
∑l

i=1 |vi⟩⟨vi|. This equality can only hold if each vi is

a scalar multiple of the vector v. Therefore SR(vi) can not be less than k + 1 and thus

|v⟩⟨v| /∈ k-Ent(Cn,Cm).

For any two elements A,B ∈Mn(C)⊗Mm(C) we can define the Hilbert-Schmidt inner

product of A and B by

⟨A,B⟩ := Tr(AB∗).

If we restrict our attention to the real linear space (Mn(C)⊗Mm(C))sa then we can define

⟨A,B⟩ := Tr(ABt)

We now try to find the dual cone of k-Ent with respect to the Hilbert-Schmidt inner

product on (Mn(C) ⊗Mm(C))sa. Since the positive rank 1 operators with range vector

having Schmidt rank ≤ k, generate the cone of k-entangled states, it suffices to work with

such generators. Let ρ =
∑k

i,j=1 |xi ⊗ yi⟩⟨xj ⊗ yj | ∈ k-Ent(Cn,Cm) and ϕ ∈ Mn(C) ⊗
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Mm(C). Then the scalar product of two

0 ≤ ⟨ρ, ϕ⟩ =

〈
k∑

i,j=1

|xi ⊗ yi⟩⟨xj ⊗ yj |, ϕ

〉
=

k∑
i,j=1

Tr (|xi ⊗ yi⟩⟨ϕ(xj ⊗ yj)|)

=
k∑

i,j=1

⟨xi ⊗ yi|ϕ(xj ⊗ yj)⟩ =

〈
k∑

i=1

xi ⊗ yi

∣∣∣ϕ k∑
j=1

xj ⊗ yj

〉
.

This motivates us to define the k−block positive operators. The set of all such operators

forms the dual cone of the cone of k− entangled operators.

Definition 2.2.2 (k-Block positive operator). An operator ρ ∈ (Mn(C)⊗Mm(C)) is called

k-Block positive if for any {xi}ki=1 ⊂ Cn and {yj}kj=1 ⊂ Cm we have〈
k∑

i=1

xi ⊗ yi

∣∣∣∣∣ρ
 k∑

j=1

xj ⊗ yj

〉 ≥ 0.

Equivalently, ⟨v|ρ|v⟩ ≥ 0 for all v ∈ Cn ⊗ Cm with SR(v) ≤ k. We denote the set of all

such operators by k-BP(Cn,Cm).

Note that the defining property of k-Block positivity implies that such operators are

Hermitian i.e. k-BP(Cn,Cm) ⊂ (Mn(C) ⊗Mm(C))sa (see A2, [Sko08]). It is clear from

the definition that if k = min{n,m} then k-Block(Cn,Cm) = (Mn ⊗Mm)+ and we have

the following inclusion

1-BP(Cn,Cm) ⊇ 2-BP(Cn,Cm) ⊇ . . . ⊇ min(m,n)-BP(Cn,Cm) = (Mn ⊗Mm)+.

In fact, all the above inclusions are strict since its dual cones follow strict inclusion. We

can write

k-Ent(Cn,Cm)◦ = k-BP(Cn,Cm),

and since all these cones are closed, by the Bipolar theorem (theorem 5.5, [Sim11]) we

have

k-BP(Cn,Cm)◦ = k-Ent(Cn,Cm).

We summarise the chain of inclusions of positive cones in Mn(C) ⊗Mm(C):

Sep(Cn,Cm) ⊂ k−Ent(Cn,Cm) ⊂ (Mn(C)⊗Mm(C))+ ⊂ k−BP(Cn,Cm) ⊂ 1−BP(Cn,Cm).

2.3 Positive Cones In Lin(Mn(C),Mm(C))

Definition 2.3.1 (Hermitianity preserving map). A linear map S ∈ Lin(Mn,Mm) is called

Hermitianity preserving iff S(M sa
n (C)) ⊂ M sa

m (C). We denote the set of all Hermitianity

preserving linear maps from Mn(C) to Mm(C) by Lin(Mn,Mm)sa.
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It is easy to see that Lin(Mn,Mm)sa is a R linear space (but not C linear).

Lemma 2.3.1. A linear map S ∈ Lin(Mn(C)) is Hermitianity preserving if and only if

S(X∗) = S(X)∗ for any X ∈ Mn(C). In particular, if (Ei)1≤i≤n2 is a basis of Mn(C),

this is the case, if and only if S(E∗
i ) = S(Ei)

∗ for all 1 ≤ i ≤ n2.

Proof. Suppose the condition S(X∗) = S(X)∗ holds for any X ∈ Mn(C). Then for

an H ∈ M sa
n (C) we have S(H) = S(H∗) = S(H)∗ which shows that S(H) ∈ M sa

m (C).

Conversely, we assume that S(M sa
n (C)) ⊂M sa

m (C). For any X ∈Mn(C) we can decompose

it into sum of two Hermitian elements i.e. X = H1 + iH2. So we have

S(X∗) = S(H1 − iH2) = S(H1) − iS(H2) = S(H1)
∗ − iS(H2)

∗

= (S(H1) + iS(H2))
∗ = (S(H1 + iH2))

∗ = S(X)∗

Example 2.3.1. Conisder the linear map Mn(C) ∋ X 7→ A∗XtA ∈ Mm(C) for some

n×m matrix A. Then it is easy to see that the map is Hermitianity preserving. In fact,

De Pillis showed that any Hermitianity preserving linear map S ∈ Lin(Mn,Mm) will be

of the form S(X) =
∑r

i=1 ciA
∗
iX

tAi for any X ∈Mn(C), where ci’s are real numbers and

Ai’s certain n×m matrices [Pil67].

Similar to the Hermitianity preserving maps, we define the positivity preserving maps.

Definition 2.3.2. A linear map T ∈ Lin(Mn,Mm(C)) is called positive iff T (Mn(C)+) ⊂

Mm(C)+. We denote the set of all positive map from Mn(C) to Mm(C) by P1(n,m)

It is easy to see that P1(n,m) is a convex cone in Lin(Mn,Mm),

Example 2.3.2. i. The transposition map T : Mn(C) ∋ X 7→ Xt ∈ Mn(C) with

respect to a fixed orthonormal basis of Cn is a positive map.

ii. For any n×m matrix V the conjugate map AdV : Mn(C) ∋ X 7→ V ∗XV ∈Mm(C)

is a positive map. Indeed, if X ∈ Mn(C)+ then there exists C ∈ Mn(C) such that

X = C∗C. Therefore AdV (X) = V ∗XV = V ∗C∗CV = (CV )∗CV , which is positive.

If H is a Hermitian matrix in Mn(C) then we can write it as H = P1 − P2 for some

positive matrices P1, P2 ∈Mn(C). Indeed, we can define |H| := (H∗H)
1
2 using functional

calculas. Then P1 := |H|+H
2 and P2 := |H|−H

2 . If S ∈ P1(n,m) then S(H)∗ = S(P1)
∗ −
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S(P2)
∗ = S(P1) − S(P2) = S(H). So we see that any positive map is also Hermitianity

preserving. So we can think of P1(n,m) as a convex cone inside the R linear space

Lin(Mn,Mm)sa.

2.3.1 Choi-Jami lokowski Isomorphism

Let’s equip the space Mn(C) with Hilbert-Schmidt inner product ⟨A,B⟩ := Tr(AB∗). De

Pillis [Pil67] and Jamio lkowski [Jam72] considered a map J1 : Lin(Mn(C),Mm(C)) →

Mn(C) ⊗Mm(C) characterised by the property that

⟨J1(S), A∗ ⊗B⟩Mn⊗Mm = ⟨S(A), B⟩Mm

holds for any A ∈Mn(C), B ∈Mm and T ∈ Lin(Mn(C),Mm(C)). De Pillis proved that

Lemma 2.3.2. The map J1 is uniquely defined and an isometric isomorphism between the

spaces Lin(Mn(C),Mm(C)) and Mn(C) ⊗Mm(C). Moreover, for any orthonormal basis

(Ei)1≤i≤n2 of Mn(C) and every operator S ∈ Lin(Mn(C),Mm(C)) we have

J1(S) =

n2∑
i=1

E∗
i ⊗ S(Ei).

Theorem 2.3.3. A linear map S ∈ Lin(Mn(C),Mm(C)) is

i. Hermitianity preserving iff J1(S) ∈Mn(C) ⊗Mm(C) is Hermitian.

ii. positive iff ⟨(v ⊗ w),J1(S)(v ⊗ w)⟩ ≥ 0 holds for any v ⊗ w ∈ Cn ⊗ Cm.

Proof. The first claim was proved by De Pillis [Pil67] and Jamio lkowski [Jam72] showed

the second one.

A more useful variant of the above isomorphism was proposed by Choi in his paper

[Choi75]. Instead of taking any orthonormal basis of Mn(C) we take the standard basis

(Eij)1≤i,j≤n, where Eij is the matrix whose ijth is 1 and zero elsewhere. We consider the

modified Jamio lkowski isomophism or popularly known as Choi-Jamio lkowski isomorphism

J2 : Lin(Mn(C),Mm(C)) →Mn(C) ⊗Mm(C) defined by

J2(S) =
∑

1≤i,j≤n

Eij ⊗ S(Eij)

Theorem 2.3.4. A linear map S ∈ Lin(Mn(C),Mm(C)) is

i. Hermitianity preserving iff J2(S) is Hermitian.



2.3. POSITIVE CONES IN Lin(Mn(C),Mm(C)) 23

ii. positive iff ⟨(v ⊗ w),J2(S)(v ⊗ w)⟩ ≥ 0 holds for any v ⊗ w ∈ Cn ⊗ Cm.

Proof. S ∈ Lin(Mn(C),Mm(C)) is Hermitianity preserving if and only if

J2(S)∗ =

n∑
i,j=1

E∗
ij ⊗ S(Eij)

∗ =

n∑
ij=1

Eji ⊗ S(E∗
ij) =

n∑
ij

Eji ⊗ S(Eji) = J2(S).

It proves the claim of the first part of the theorem.

The proof of the second part is similar to the original proof of theorem 2.3.3 by

Jamio lkowski. The proof below is taken from K. S. Ranade and M. Ali’s paper [RA07].

Let S be a linear map in Lin(Mn,Mm). It is positive iff for any X ∈ (Mn(C))+, S(X) is

positive in Mm(C). Since any positive matrix X has the spectral decomposition into real

linear combinations of rank one projections, S is positive is equivalent to the fact that

S(|x⟩⟨x|) is positive for any x ∈ Cn. We write the basis decomposition of the projection

|x⟩⟨x| with respect to the standard basis {Eij}ni,j=1 of Mn(C)-

|x⟩⟨x| =
∑
ij

〈
(|x⟩⟨x|)Eij

〉
Eij =

∑
ij

Tr
(
|x⟩⟨x|Eij

)
Eij =

∑
ij

⟨x,Eijx⟩Eij .

So S(|x⟩⟨x|) =
∑

ij⟨x,Eijx⟩S(Eij). Therefore we have that S(|x⟩⟨x|) is positive if and

only if
∑

ij⟨x,Eijx⟩⟨y, S(Eij)y⟩ is positive for any y ∈Mm(C).

∑
ij

⟨x,Eijx⟩⟨y, S(Eij)y⟩ =

〈
x⊗ y

∣∣∣(id ⊗ S)

∑
ij

Eij ⊗ Eij

x⊗ y

〉

= ⟨x⊗ y,J2(S)(x⊗ y)⟩

Thus, S is positive iff ⟨x⊗ y,J2(S)(x⊗ y)⟩ge0 for any x ∈ Cn and y ∈ Cm.

We have isomorphism between real linear spaces Lin(Mn,Mm)sa and (Mn ⊗Mm)sa.

2.3.2 Positive Cones In Lin(Mn(C),Mm(C))

For any operator V ∈ Mn,m(C) we define the elementary positive map or also known as

the conjugate map AdV : Mn(C) → Mm(C) by AdV (X) := V ∗XV for any X ∈ Mn(C).

It is known that such maps generate an extreme ray of the cone of positive maps from

Mn(C) to Mm(C) [Sto63].

Definition 2.3.3 (k-Super Positive Map). Let k be a positive integer. The convex cone

generated by the conjugate maps AdV for V ∈Mn,m(C) of rank(V ) ≤ k, is called the cone

of k-super positive maps i.e. A linear map S ∈ Lin(Mn(C),Mm(C)) is k-super positive if
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and only if it is of the form S =
∑r

i=1AdVi for some {Vi}ri=1 ⊂Mn,m(C) with rank(Vi) ≤ k

for each i. We denote the cone by Sk(n,m). In case n = m and there is no confusion

about the dimension, we denote it simply by Sk.

It is clear that Sk(n,m) ⊆ Sk+1(n,m) ⊂ P1 ⊂ Lin(Mn,Mm)sa for any integer k ≥ 1.

Proposition 2.3.1. J2(AdV ) = CAdV = |v⟩⟨v|, where v ∈ Cn ⊗ Cm is the vectorisation

of the matrix V ∈ Mn,m(C) i.e. if V =
∑

ij vij |i⟩⟨j| ∈ Mn,m(C) then its vectorisation is

given by |v⟩ :=
∑

ij vij |i⟩ ⊗ |j⟩ ∈ Cn ⊗ Cm.

Proof. Suppose the matrix V is given by V =
∑

i,j vij |i⟩⟨j| ∈Mn,m(C), where |i⟩s (or |j⟩s)

are standard basis of Cn (or Cm). We have

CAdV =
∑
p,q

|p⟩⟨q| ⊗

∑
i,j

vij |j⟩⟨i|

 |p⟩⟨q|

∑
k,l

vkl|k⟩⟨l|


=
∑
p,q

|p⟩⟨q| ⊗
∑
i,j

∑
k,l

δipδqkvijvkl|j⟩⟨l|

=
∑
p,q

|p⟩⟨q| ⊗
∑
j,l

vpjvql|j⟩⟨l|

=

∑
p,j

vpj |p⟩ ⊗ |j⟩

∑
q,l

vql⟨q| ⊗ ⟨l|

 = |v⟩⟨v|.

Since the rank of V is equal to the Schmidt rank of its vectorisation |v⟩ we see that the

image of the cones of k-super positive operators under the Choi-Jamio lkowski isomorphism

are the states (unnormalised) which are convex sum of rank one projections onto vectors

in Cn ⊗ Cm having Schmidt rank at most k. Thus we have the following corollary.

Corollary 2.3.1. J2(Sk(n,m)) = k−Ent(Cn,Cm). In particular, J2(S1(n,m)) = Sep(Cn,Cm).

If we define the Hilbert-Schmidt scalar product on the real linear space Lin(Mn,Mm)sa

i.e. for any two linear map R,S ∈ Lin(Mn,Mm)sa by ⟨R,S⟩ := Tr(CRC
t
S) then it is easy

to see that for any A ⊗ B ∈ (Mn(C) ⊗Mm(C))sa we have ⟨A ⊗ B,CS⟩ = ⟨B,S(A)⟩. We

now find the dual cone of Sk(n,m) in Lin(Mn,Mm)sa.

Theorem 2.3.5. A linear map S ∈ Lin(Mn(C),Mm(C))sa belongs to the dual cone

Sk(n,m)◦ if and only if (idk ⊗ S) : Mk(C) ⊗Mn(C) →Mk(C) ⊗Mm(C) is positive.
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Proof. Let AdV be a map in Sk(n,m) so that the Choi matrix of it is of the form CAdV =

|v⟩⟨v| where v =
∑

i=1 xi ⊗ yi ∈ Cn ⊗ Cm whose Schmidt rank is at most k. For any

S : Mn(C) →Mm(C) Hermitianity preserving linear map, we have

⟨AdV , S⟩ = ⟨CAd, CS⟩ =

〈
k∑
i,j

|xi⟩⟨xj | ⊗ |yi⟩⟨yj |, CS

〉

=
k∑

i,j=1

〈
|yi⟩⟨yj |, S(|xi⟩⟨xj |)

〉

=
k∑

i,j=1

〈
|i⟩⟨j| ⊗ |yi⟩⟨yj |, |i⟩⟨j| ⊗ S(|xi⟩⟨xj |

〉

=

〈
k∑

ij=1

|i⟩⟨j| ⊗ |yi⟩⟨yj |,
k∑

ij=1

|i⟩⟨j| ⊗ S(|xi⟩⟨xj |)

〉
.

Putting ϕ =
∑k

i=1 |i⟩ ⊗ |yi⟩ ∈ Ck ⊗ Cm and ψ =
∑k

i=1 |i⟩ ⊗ |xi⟩Ck ⊗ Cn we see that

⟨AdV , S⟩ =
〈
|ϕ⟩⟨ϕ|, (idk ⊗ S)|ψ⟩⟨ψ|

〉
=
〈
ϕ, (idk ⊗ S)(|ψ⟩⟨ψ|)ϕ

〉
.

It shows that S is in the dual cone Sk(n,m) if and only if (idk ⊗ S) : Mk(C) ⊗Mn(C) →

Mk(C) ⊗Mm(C) is positive (see [Kye22]).

The previous proposition motivates to define the dual cone of Sk(n,m) in the following

manner

Definition 2.3.4 (k-Positive map). A linear map S : Mn(C) →Mm(C) is called k-positive

if and only if the map (idk ⊗S) : Mk(C)⊗Mn(C) →Mk(C)⊗Mm(C) is positive. The set

of all such linear maps will be denoted by Pk(n,m).

Example 2.3.6. See lemma 2.5.2 and 2.5.1.

Considering Mk(C) as embedded in Mk+1(C) it follows that we have the inclusion

Pk+1(n,m) ⊆ Pk(n,m). In fact, Chruścińiski and Kossakowski showed that the inclusion

is strict for k < min(m,n) i.e. Pk+1(n,m) ⊂ Pk(n,m) [CK09]. It is also not difficult to

see that Pk(n,m) is a convex cone in Lin(Mn,Mm)sa. For k = 1 it is simply the cone of

positive operators P1(n,m) which we introduced earlier.

Theorem 2.3.7. A linear map S ∈ Lin(Mn(C),Mm(C)) is k-positive if and only if

⟨v,J2(S)v⟩ ≥ 0 for any vector v ∈ Cn ⊗ Cm such that SR(v) ≤ k.

Proof. The proof is taken from the M. Ali and K. S. Ranade’s paper [RA07]. By the

definition, a linear map S : Mn(C) → Mm(C) is k-positive for some positive integer k
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iff (idk ⊗ S) : Mk(C) ⊗ Mn(C) → Mk(C) ⊗ Mm(C) is positive. The idea is to apply

Jamio lkowski’s result- theorem 2.3.4 to verify the positivity of (idk ⊗ S). Consider the

Hilbert spaces Ck ⊗ Cn and Ck ⊗ Cm corresponding to the matrix algebras Mk ⊗Mn
∼=

Mk(Mn(C)) and Mk⊗Mm
∼= Mk(Mm(C)). Theorem 2.3.4 tells us that (idk⊗S) is positive

if and only if ⟨x⊗ y,J2,k(idk⊗S)(x⊗ y) ≥ 0 for any x ∈ Ck⊗Cn and y ∈ Ck⊗Cm, where

J2,k : Lin(Mk ⊗Mn,Mk ⊗Mm) → (Mk ⊗Mn)⊗ (Mk ⊗Mm) is the modified Jamio lkoswki

isomorphism on the respective spaces. Let (ei)
n
i=1 and (fg)kg=1 be the standard orthonormal

bases of Cn and Ck respectively. Therefore we have (|ei⟩⟨ej |)ni,j=1 and (|fg⟩⟨fh|)kg,h=1-

the corresponding standard orthonormal bases of Mn(C) and Mk(C) respectively. With

respect to these bases the Choi matrix or the image of the Jamio lkowski isomorphism of

(idk ⊗ S) is given by

J2,k(idk ⊗ S) =
k∑

g,h=1

n∑
i,j=1

|fg⟩⟨fh| ⊗ |ei⟩⟨ej | ⊗
[
idk ⊗ S

](
|fg⟩⟨fh| ⊗ |ei⟩⟨ej |

)
.

Any vector x ∈ Ck ⊗ Cn can be written as x =
∑k

p=1 fp ⊗ xp with elements xp ∈ Cn.

Similarly for y ∈ Ck ⊗ Cm, we write y =
∑k

q=1 fq ⊗ yq, where yq ∈ Cm. Therefore,

x⊗ y =
∑k

p,q=1 fp ⊗ xp ⊗ fq ⊗ yq. We compute

⟨x⊗ y,J2,k(idk ⊗ S)(x⊗ y)⟩

=
∑

i,j,g,h,p,q

〈
(fp ⊗ xp) ⊗ (fq ⊗ yq)

∣∣∣(⟨fh, fr⟩fg ⊗ ⟨ej , xr⟩ei) ⊗ (⟨fh, fs⟩fg ⊗ S(|ei⟩⟨ej |)ys)
〉

=
∑

i,j,g,h,p,q,r,s

δhrδhs⟨fp, fg⟩⟨ej , xr⟩⟨xp, ei⟩⟨fq, fg⟩⟨yq, S(|ei⟩⟨ej |)ys⟩

=
∑

i,j,g,h,p,q,r,s

δhrδhsδpgδqg⟨xp ⊗ yq, |ei⟩⟨ej | ⊗ S(|ei⟩⟨ej |)xr ⊗ ys)

=
∑
p,r

⟨xp ⊗ yq,J2(S)xr ⊗ ys⟩ = ⟨v,J2(S)v⟩,

where v =
∑k

p=1 xp⊗yq. By the corollary 2.1.1 SR(v) ≤ k. Hence the claim is proved.

Definition 2.3.5 (Completely positive map). A linear map S : Mn(C) →Mm(C) is called

completely positive if and only if it is k-positive for any positive integer k. We denote the

set of completely positive map from Mn(C) to Mm(C) by CP(n,m).

Example 2.3.8. Consider the conjugate map AdV ∈ Lin(Mn,Mm) for some n×m matrix

V . We already know that it is a positive map. For any positive integer k, (idk ⊗ AdV ) =

AdIk⊗V , where Ik is the k × k identity matrix. It shows that idk ⊗ AdV is positive on
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Mk(C)⊗Mn(C) for any positive integer k. Thus AdV is completely positive. In fact, any

convex combination conjugates maps are completely positive.

Corollary 2.3.2. A linear map S ∈ Lin(Mn(C),Mm(C)) is completely positive if and

only if it is min{n,m}-positive.

Proof. By the defition of complete positivity a linear map S is completely positive iff it is

k-positive for all k ∈ N. Again by the previous theorem a linear map is k-positive iff it is

positive on all vectors of Schmidt rank at most k. But any vector of Cn⊗Cm has Schmidt

rank at most min{n,m}. Thus if S is min{n,m} positive then it is completely positive.

The other direction is obvious.

Corollary 2.3.3 (Choi’s 1st theorem). A linear map S ∈ Lin(Mn(C),Mm(C)) is com-

pletely positive if and only if the corresponding Choi matrix CS := J2(S) is positive semi-

definite.

Proof. It follows directly from the theorem 2.3.7 that a linear map S : Mn(C) → Mm(C)

is completely positive if and only if its Choi matrix CS := J2(S) is positive semi-definite

on vectors of arbitrary Schmidt rank in Cn ⊗ Cm.

This result is known as the channel-state duality was proved by M. D. Choi (see

theorem 2, [Choi75]). We have seen in the example 2.3.8 that any convex combination of

conjugate map AdV is completely positive. Now we can ask the converse question i.e. if

any completely positive map is a convex combination of some conjugate maps. Choi and

Kraus proved that the answer is positive [Choi75], [Kra70].

Theorem 2.3.9 (Kraus Decomposition). A linear map S ∈ Lin(Mn(C),Mm(C)) is com-

pletely positive if and only if there exists operators V1, V2, . . . , Vr ∈Mn,m(C) such that

S =
r∑

i=1

AdVi .

Proof. By the corollary 2.3.2 and theorem 2.3.5

S ∈ CP(n,m) ⇐⇒ S is min{n,m}-positive ⇐⇒ S ∈ Smin{n,m}(n,m)◦.

So we have CP(n,m) = Smin{n,m}(n,m)◦. Since the Choi matrix corresponding to a

completely positive map is positive semi-definite (corollary 2.3.3), for any two map R,S ∈

CP(n,m)

⟨R,S⟩ = ⟨CR, CS⟩ ≥ 0.
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It shows that the cone of completely positive map CP is actually self dual implying that

CP(n,m) = Smin{n,m}(n,m). Hence, the claim is proved.

Remark 2.3.10. An alternate way to prove the theorem without using the duality is to

utilise the Choi’s 1st theorem directly and the spectral theorem.

The operators Vi’s in the Kraus decomposition are known as Kraus operators corre-

sponding to the CP map S. But they are not unique. For example, consider a CP map

S on Mn(C) represented by two Kraus operators {V1, V2} i.e. S = AdV1 + AdV2 . Let

(uij)
2
i,j=1 be a unitary matrix. If we define two new operators Ṽ1 = u11V1 + u12V2 and

Ṽ2 = u21V1 + u22V2 then it can be easilt checked that AdV1 + AdV2 = AdṼ1
+ AdṼ2

.

Theorem 2.3.11 (Choi’s second theorem). Two sets of Kraus operators {Vj}j∈J and

{Ṽl}l∈L represent the same map S =
∑

j∈J AdVj =
∑

l∈L AdṼl
iff there exists a unitary

U = (uij) such that Vj =
∑

l ujlṼl, where the smaller set is padded with zeros.

We need the following proposition to prove the theorem.

Proposition 2.3.2. Let ρ ∈Mn(C)+ with two decomposition ρ =
∑p

i=1 |vi⟩⟨vi| =
∑q

j=1 |wj⟩⟨wj |.

Then there exists an isometry U = (uij) ∈Mq,p(C) i.e. U∗U = Idp such that

wi =

p∑
j=1

uijvj .

Proof. Without loss of generality let’s assume p ≤ q. We construct two purifications of

ρ, say ψ1 and ψ2 of the form ψ1 =
∑p

i=1 |vi⟩ ⊗ |i⟩ and ψ2 =
∑q

j=1 |wj⟩ ⊗ |j⟩, where

{|i⟩ : 1 ≤ 1 ≤ p} is an orthonormal basis of Cp- the dilation space of ρ of dimension p

and since p ≤ q we can extend the same orthonormal set to an orthonormal basis of Cq,

the dilation space of ρ of dimension q, considering Cp is embedded in Cq. We know that

two such purifications differ by isometry i.e. ψ2 = (id ⊗ U)ψ1 where U : Cp → Cq is an

isometry. Taking the scalar product with a basis vector |i⟩ on the second tensor factor

gives wi =
∑p

j=1 uijvj

Proof of Choi’s 2nd theorem. If S has two Kraus representations

S =
∑
j∈J

AdVj =
∑
l∈L

AdṼl
,

then the corresponding Choi matrices is given by CS =
∑

j∈J |vj⟩⟨vj | =
∑

l∈L |ṽl⟩⟨ṽl|.

The previous proposition implies that there is an isometry U = (ulj) such that ṽl =
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∑
j uljvj . Since by the proposition 2.3.1 Vj is just the matrisation of |vj⟩ we obtain that

Ṽl =
∑

j uljVj .

The minimum number of Kraus operators required to express a completely positive

map in its Kraus decomposition forms is called the Choi-Kraus rank of the corresponding

CP map. More precisely,

Definition 2.3.6 (Choi-Kraus rank). Let S be a completely positive map on Mn(C). Then

the Choi-Kraus rank of S is defined as

ckr(S) := min

{
q ∈ N : S =

q∑
i=1

AdVi , Vi ∈Mn(C)

}
.

Theorem 2.3.12. Let S be a completely positive map on Mn(C) and CS := J2(S) be its

Choi matrix. Then ckr(S) = rank(CS).

Proposition 2.3.3. Let S be a 1-super positive map from Mn(C) to Mm(C) i.e. S ∈

S1(n,m) if and only if for any k ≥ 1 and any bipartite state(non-normalised) ρ ∈ (Mk(C)⊗

Mn(C))+, (Idk ⊗ S)(ρ) is separable.

Proof. Let ρ ∈ (Mk(C) ⊗ Mn(C))+ for some fixed k ≥ 1. By the Choi-Jamio lkowkski

isomorphism and Choi’s theorem there is a unique completely positive map R : Mk(C) →

Mm(C) such that CR = J2(R) = (Idk ⊗R)(
∑k

i,j=1Eij ⊗Eij) = ρ, where Eij ’s are matrix

units of Mk(C). Therefore,

(Idk ⊗ S)(ρ) = (Idk ⊗ S) ◦ (Idk ⊗R)

 k∑
i,j=1

Eij ⊗ Eij

 = (Id ⊗ S ◦R)

 k∑
ij=1

Eij ⊗ Eij

 .

It is easy to see that S ◦ R ∈ S1(k,m) for if S =
∑p

j=1 AdSj and R =
∑q

i=1 AdRi then

S ◦R =
∑p,q

i,j=1 AdRiSj , where rank(RiSj) ≤ min{rank(Ri), rank(Sj)} = 1. Since we know

by the corollary 2.3.1 that J2(S1(n,m)) = Sep(Cn,Cm) therefore, (Idk⊗S ◦R)(
∑

i,j Eij ⊗

Eij) = J2(S ◦R) which is separable and thus (Idk ⊗ S)(ρ) is separable.

Conversely, suppose for for any k ≥ 1 and ρ ∈ (Mk(C) ⊗ Mn(C))+ we have that

(Idk ⊗S)(ρ) is separable. We need to prove that S ∈ S1(n,m). So it suffices to show that

J2(S) ∈ Sep(Cn,Cm). For k = n we take the maximally entangled state ρ =
∑n

i,j=1Eij ⊗

Eij ≥ 0, where Eij ’s are matrix units of Mn(C). By our assumption (Idn⊗S)(
∑n

i,j=1Eij⊗

Eij) = J2(S) is separable.

This motivates to define the entanglement breaking channel or more generally the

k-entanglement breaking map.
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Definition 2.3.7 (Entanglement Breaking Map). A linear map S ∈ Lin(Mn(C),Mm(C))

is called entanglement breaking if (Idk ⊗ S)ρ is separable for any ρ ∈ (Mk(C) ⊗Mn(C))+

and for any k ≥ 1. We denote the set of all entanglement breaking maps by EB(n,m).

Proposition 2.3.3 shows that EB(n,m) = S1(n,m).

Definition 2.3.8 (k-Entanglement Breaking Map). A linear map S ∈ Lin(Mn,Mm) is

called k-entanglement breaking if it is k-positive and (idk ⊗ S)X is separable whenever

X ∈ (Mk ⊗Mn)+. We denote the cone of k-entanglement breaking maps by EBk(n,m).

With the cones defined above we have the following chain of inclusions

(i) EB(n,m) = S1(n,m) ⊂ Sk(n,m) ⊂ Smin{n,m}(n,m) = CP(n,m) = Pmin{n,m}(n,m) ⊂

Pk(n,m) ⊂ P1(n,m),

(ii) EB(n,m) = EBmin{m,n}(n,m) ⊂ EBk(n,m) ⊂ Pk(n,m) ⊂ P1(n,m),

(iii) EB(n,m) = S1(n,m) ⊂ Sk(n,m) ⊂ EBk(n,m)◦ ⊂ P1(n,m).

Proposition 2.3.4. The cones Pk,Sk, EBk, EB◦
k ⊆ Lin(Mn,Mm)her, k = 1, . . . , n, are

closed, pointed and solid. Furthermore they are stable under composition.

Proof. Stability under composition is easy to check for k-positive maps and therefore for

CP maps. For k-superpositive maps, if S, T ∈ Sk have Kraus representations

S(X) =

p∑
i=1

L∗
iXLi and T (X) =

q∑
j=1

K∗
jXKj ,

with Kraus operators of rank less than or equal to k, then so does their composition S ◦T ,

S ◦ T (X) =

p∑
i=1

q∑
j=1

(KjLi)
∗XKjLi,

since rank(KjLi) ≤ min{rank(Li), rank(Kj)} ≤ k. For the stability of composition of

k-entanglement breaking maps, see [DMS21, Theorem 5.4]. For the dual cone EB◦
k, it

follows from the characterisation given in [DMS21, Equation (3.5), Theorem 3.11]. Indeed,

suppose that Si are limits of convex combinations of the form given in [DMS21], i.e., Si =

lim
∑
λ
(i)
p Γ

(i)
p ◦Ψ

(i)
p , with Γ

(i)
p : Mk →Mn positive and Ψ

(i)
p : Mn →Mk completely positive

for i = 1, 2 (where we suppressed the index for the limit). Then Γ
(1)
p ◦Ψ

(1)
p ◦Γ

(2)
p : Mk →Mn

is again positive, and so

S1 ◦ S2 = lim
∑
p,p

λ(1)p λ
(2)
p′

(
Γ(1)
p ◦ Ψ(1)

p ◦ Γ
(2)
p′

)
◦ Ψ

(2)
p′
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is again of the form given in [DMS21, Equation (3.5), Theorem 3.11].

To show that all these cones are solid (i.e., C+ (−C) = Lin(Mn,Mn), or, equivalently,

they have non-empty interior) and pointed (i.e., C ∩ (−C) = {0}), we will show below in

Lemma 2.3.3 that the depolarising channel P : Mn → Mn, P (X) = Tr(X) 1
nIn is in the

interior of S1 = EB. Since all other cones contain EB, they are also solid. Which implies

that they are pointed, as duals of solid cones.

Lemma 2.3.3. The depolarising channel P : Mn → Mm, P (X) = Tr(X) 1
nIm belongs to

the interior of the cone S1 = EB of entanglement breaching maps.

Proof. We will use the duality between EB = S1 and PM = P1. To show that P belongs

to the interior of EB, it is sufficient to show that

∀T ∈ PM = EB◦, T ̸= 0 ⇒ ⟨T, P ⟩ > 0.

Let T ∈ PM such that ⟨T, P ⟩ = 0. Choose an orthonormal bases (ui)i=1,...,n of Cn. Then

the set of rank 1 operators
(
|ui⟩⟨uj |

)
i,j=1,...,n

is an orthonormal basis of Mn and we have

0 = ⟨T, P ⟩ =
1

n2

m∑
i,j=1

〈
T
(
|ui⟩⟨uj |

)
, P
(
|ui⟩⟨uj |

)︸ ︷︷ ︸
=

δij
n

In

〉
=

1

n3

n∑
i=1

Tr
(
T
(
|ui⟩⟨ui|

)∗)

Since T is positive map, each term in this sum is positive, and therefore has to vanish.

Since the orthonormal basis (ui)i=1,...,n is arbitrary, this implies

∀u ∈ Cn, Tr
(
T
(
|u⟩⟨u|

))
= 0.

and therefore T = 0.

2.4 Equivariance And k-Positivity

Given a linear map S ∈ Lin(Mn(C),Mm(C)), it is computationally easy to decide if it is

completely positive but very difficult to decide if it is k-positive for some k < min{n,m}.

Since
∑k

i,j=1 Ẽij ⊗ Eij ∈ Mk(C) ⊗Mn(C) is positive, where Ẽij and Eij are matrix units

of Mk(C) and Mn(C) respectively, we know that the km × km matrix [S(Eij)]
k
i,j=1 =∑k

i,j=1 Ẽij ⊗ S(Eij) is positive. The converse is of course not true in general. B. Collins,

H. Osaka and G. Sapra showed that the converse holds for a special case- if the map S

satisfies some equivariance property [COS18][BCS20].

Definition 2.4.1. A linear map S ∈ Lin(Mn(C),Mm(C)) is called
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i. equivariant if for any unitary U ∈ Mn(C) there exists V ∈ Mm(C) (not necessarily

unitary) such that following equality holds

S(UXU∗) = V S(X)V ∗

for all X ∈Mn(C).

ii. unitarily equivariant if V in the above defition can be chosen to be a unitary.

iii. (a, b)-unitarily equivariant if m = n(a+b) and Mm(C) = Mn(C)⊗a ⊗Mn(C)⊗b such

that for any unitary U ∈Mn(C)

S(UXU∗) = (U
⊗a ⊗ U⊗b)X(U

⊗a ⊗ U⊗b)∗

Example 2.4.1. i. Any ∗-homomorphism or ∗-anti-homomorphism on a finite dimen-

sional matrix algebra is equivariant.

ii. Let A ∈Mn(C) be an invertible matrix. Define the linear map SA : Mn(C) →Mn(C)

by

SA(X) := A∗XA

for any X ∈Mn(C). Then,

SA(UXU∗) = A∗UXU∗A

= A∗U(A∗)−1(A∗XA)A−1U∗A

= (A∗U(A∗)−1)SA(X)(A∗U(A∗)−1)∗.

It shows that SA is equivariant and if A is unitary then SA is unitarily equivariant.

iii. B. V. R. Bhat characterised all (0, 1)-unitarily equivariant maps [Bhat11]. More

precisely, he showed that any linear map S on Mn(C) which verifies the following

equality

S(UXU∗) = US(X)U∗

for any unitary U ∈Mn(X) and any X ∈Mn(C), is of the form

S = αId+ βP

for some α, β ∈ C, where Id is the identiy map and P is the depolarising channel.

It follows directly from this result that any (1, 0) unitarily equivariant map Q is of

the form

Q = αT + βP
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for some α, β ∈ C, where T is the transposition map.

Collins, Osaka, Sapra proved the following results-

Lemma 2.4.1. Let S ∈ Lin(Mn(C),Mm(C)) be a map with equivariance property. If

S(E11) ≥ 0, where E11 is a matrix unit in Mn(C) then S is positive.

Proof. It suffices to show that S(p) is positive for any rank-one projection p ∈ Mn(C).

Since two Hermitian matrices are unitarily equivalent if and only if they have the same

eigenvalues (counting multiplicities), E11 and p are unitarily equivalent. So there exists

a unitary U ∈ Mn(C) such that p = UE11U
∗. This implies S(p) = V S(E11)V

∗ by the

equivariance property of S. Since S(E11) ≥ 0 we have V S(E11)V
∗ ≥ 0 which prove the

claim.

Theorem 2.4.2 (Collins, Osaka, Sapra, 2018). Let S ∈ Lin(Mn(C),Mm(C)) be a self-

adjoint linear map which verifies the equivariance property. Then for k ≤ min{n,m}, S

is k-positive if and only if the block matrix [S(Eij)]
k
i,j=1 is positive, where (Eij)s are the

matrix units of Mn(C).

Proof. We have already seen that if S is k positive then [S(Eij)]
k
i,j=1 is positive. For the

converse it suffices to prove that (idk ⊗ S)(p) is positive for any rank one projection p in

Mk(C) ⊗Mn(C). Let p = |x⟩⟨x| for some |x⟩ ∈ Ck ⊗ Cn with ∥x∥ = 1. We write the

Schmidt decomposition of |x⟩,

|x⟩ = (U ⊗ V ∗)

r∑
i=1

ci|i⟩ ⊗ |i⟩,

where {|i⟩ : 1 ≤ i ≤ n} is the standard basis of Cn, ci’s are positive real numbers with∑r
i c

2
i = 1, U and V unitaries arising from the singular value decomposition of C the

matrisation of the vector |x⟩ ∈ Ck ⊗ Cn. Therefore,

p = |x⟩⟨x| = (U ⊗ V ∗)

 r∑
i,j=1

cicj |i⟩⟨j| ⊗ |i⟩⟨j|

 (U ⊗ V ∗)∗.

Denoting X =
∑r

i,j=1 cicj |i⟩⟨j| ⊗ |i⟩⟨j| we can write

p = (U ⊗ V ∗)X(U ⊗ V ∗)∗

It is easy to see that if S satisfies the equivariance property so does (idk ⊗ S). Thus,

(idk ⊗ S)(p) = (idk ⊗ S)[(U ⊗ V ∗)X(U ⊗ V ∗)∗]

= (V1 ⊗ V2)(idk ⊗ S)(X)(V1 ⊗ V ∗
2 )∗
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We now show that (idk ⊗ S)(X) is positive to conclude the argument. Suppose the block

matrix [S(Eij)]
k
i,j=1 is positive. Then,

(idk ⊗ S)(X) =
r∑

i,j=1

cicj |i⟩⟨j| ⊗ S(|i⟩⟨j|)

= [S(cicjEij)]
k
i,j=1

= [cicjS(Eij)]
k
i,j=1

= [cicj ]
k
i,j=1 ⊙ [S(Eij)]

k
i,j=1,

where ⊙ denotes the Schur product of two matrices. The last term being the Schur product

of two positive matrices, it is again positive. This proves the claim.

2.5 A 4-Parameter Family Of Maps

We take the linear combinations of some well known maps e.g. depolarizing channel,

transpose, or map which is conditional expectation onto diagonal and discuss the criterion

of positivity, k-positivity or complete positivity of such combinations. Later we can use

these examples to generate identity preserving semigroups, which are of our ineterest. We

have already defined the depolarising channel in Lemma 2.3.3. as a linear map P : Mn →

Mn satisfying

P (X) =
1

n
Tr(X)In.

We have

P (X) =
1

n

n∑
j,k=1

⟨ej , Xej⟩|ek⟩⟨ek| =
n∑

j,k=1

1√
n
|ek⟩⟨ej |X

(
1√
n
|ek⟩⟨ej |

)∗
,

which shows that P ∈ S1 = EB. The Choi-Jamio lkowski matrix of P is

CP =
n∑

j,k=1

Ejk ⊗ P (Ejk) =
1

n

n∑
j,k=1

Ejj ⊗ Ekk =
1

n
In ⊗ In.

We consider also the transposition map, T (X) = XT . It is known that T is positive,

but not 2-positive, i.e.

T ∈ P1, T ̸∈ P2,

for n ≥ 2. The Choi-Jamio lkowski matrix of T is

CT =

n∑
j,k=1

Ejk ⊗ T (Ejk) =

n∑
j,k=1

Ejk ⊗ Ekj .
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Conditional expectation onto the the diagonal: Consider the linear map D : Mn → Mn,

D(X) = (δjkxjk)1≤j,k≤n for X = (xjk)1≤j,k≤n ∈ Mn. This map is the conditional expec-

tation onto the *-subalgebra of diagonal matrices (w.r.t. the standard basis).

We have

D(X) =

n∑
j=1

|ej⟩⟨ej |X|ej⟩⟨ej |,

which shows that D ∈ S1 = EB.

We can furthermore show that D belongs to the boundary of CP, and therefore also

to the boundary of EB. Indeed, denote by C ∈ Mn that matrix that cyclically permutes

the vectors of the standard basis,

Cej = ej⊕1 =

 ej+1 if 1 ≤ j ≤ n− 1,

e1 if j = n,

where we use ⊕ to denote the addition modulo n in {1, . . . , n}. Then the completely

positive map TC with TC(X) = CXC∗ acts as

TC(Ejk) = Ej⊕1,k⊕1.

Thus we have

⟨TC , D⟩ =

n∑
j,k=1

Tr
(
TC(Ejk)∗D(Ejk)

)
=

n∑
j=1

Tr(Ej⊕1,j⊕1Ejj) = 0.

The Choi-Jamio lkowski matrix of D is

CD =
n∑

j,k=1

Ejk ⊗D(Ejk) =
n∑

j=1

Ejj ⊗ Ejj .

We have

CId =
n∑

j,k=1

Ejk ⊗ Ejk.

We are interested in the 4 parameter family of linear maps- αP + βD + γT + δId for

α, β, γ, δ ∈ R. We need the real parameters so that the family of maps is Hermitianity

preserving. These are exactly the linear maps on Mn(C) that are invariant under the

action of the hyperoctahedral group as signed permutations and have been considered

from that perspective in [JPPY23]. We wish to decide to which cone it belongs depending

on the real values of the coefficients. We can easily check that the Choi-Jamio lkowski

matrices CP , CD, CT , CId ∈ Mn ⊗Mn commute. Therefore, we can simultaneously diag-

onalise these four matrices. The minimal polynomials of CD, CT , CId have degree two,
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and these matrices have two distinct eigenvalues. Computing the traces, we also get the

multiplicities.

Eigenvalues of CD ρ = 0 ρ = 1

dim ker(CD − ρIn ⊗ In) n2 − n n

Eigenvalues of CT σ = −1 σ = 1

dim ker(CT − σIn ⊗ In) 1
2(n2 − n) 1

2(n2 + n)

Eigenvalues of CId τ = 0 τ = n

dim ker(CId − τIn ⊗ In) n2 − 1 1

In particular, CId is a multiple of the orthogonal projection onto Ω =
∑n

j=1 ej ⊗ ej , which

is also an eigenvector for the other matrices.

Denote by

V (ρ, σ, τ) = {v ∈ Cn ⊗ Cn : CDv = ρv, CT v = σv,CIdv = τv}

the joint eigenspaces of CD, CT , CId. We can verify that, V (ρ, σ, τ) is non-null correspond-

ing to the four triples (ρ, σ, τ) = (0,−1, 0), (0, 1, 0), (1, 1, 0), (1, 1, n).

Proposition 2.5.1. Let α, β, γ, δ ∈ R and set

Φ(α, β, γ, δ) = αP + βD + γT + δId.

Then Φ is completely positive if and only if α, β, γ, δ satisfy the inequality

α ≥ max{n|γ|,−n(β + γ),−n(β + γ) − n2δ}.

Proof. We check that the Choi-Jamio lkowski matrix CΦ(α,β,γ,δ) = αCP +βCD+γCT +δCId

of CΦ(α,β,γ,δ) has eigenvalues

α

n
− γ,

α

n
+ γ,

α

n
+ β + γ,

α

n
+ β + γ + nδ,

corresponding to the four triples (ρ, σ, τ) = (0,−1, 0), (0, 1, 0), (1, 1, 0), (1, 1, n) with non-

trivial eigenspaces.

Restricting to equivariant maps as in the terminology of [BCS20] (see also [COS18,

Theorem 2.2]) we can also characterize the k-positivity criterion of the above mentioned

family.
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(1, 0)-Unitarily Equivariant Case - Linear Combinations Of Identity And De-

polarising Channel

The identity map and the depolarising channel are (1, 0)-unitarily equivariant map. For

Φα,δ = αP + δId, Φα,δ(X) = δX + α
nTr(X)In we

Φα,δ(UXU
∗) = UΦα,δ(X)U∗,

for all U,X ∈Mn with U unitary.

Let 1 ≤ k ≤ n. By the theorem 2.4.2, Φα,δ is k-positive, if and only if

C
(k)
Φα,δ

=
k∑

i,j=1

Eij ⊗ Φα,β(Eij) =
k∑

i,j=1

Eij⊗ =
α

n
I(k)n ⊗ In + δ

k∑
i,j=1

Eij ⊗ Eij ∈Mn ⊗Mn

is positive, where I
(k)
n =

∑k
i=1Eii ∈Mn.

Note that C
(k)
Φ0,1

=
∑k

i,j=1Eij⊗Eij commutes with I
(k)
n ⊗In, satisfies

(
C

(k)
Φ0,1

)2
= kC

(k)
Φ0,1

,

and is a multiple of the orthogonal projection onto Ωk =
∑k

i=1 ei ⊗ ei. One can show that

the eigenvalues of C
(k)
Φα,δ

= α
nI

(k)
n ⊗ In + δC

(k)
Φ0,1

are given by

spec(C
(k)
Φ0,1

) =
{

0,
α

n
,
α

n
+ kδ

}
.

We summarize our results in the following Lemma.

Lemma 2.5.1. ([Tom85, Theorem 2]) Let α, δ ∈ R. The linear map Φα,δ is k-positive iff

the matrix C
(k)
Φα,δ

is positive iff α, δ satisfy the following two inequalities

α ≥ 0 and δ ≥ − α

kn
.

(0, 1)-Unitarily Equivariant Case - Linear Combinations Of Transposition And

Depolarising Channel

The transposition and the depolarising channel are (0, 1)-unitarily equivariant (in the

terminology of [BCS20, Definition 1.1 (iii)]. For Ψα,γ = αP + γT , Ψα,γ(X) = γXT +

α
nTr(X)In, we have

Ψα,γ(UXU∗) = UΨα,γ(X)UT ,

for all U,X ∈Mn with U unitary.

By [BCS20, Theorem 2.4], Ψα,γ is k-positive, if and only if

C
(k)
Ψα,γ

=
k∑

i,j=1

Eij ⊗ Ψα,γ(Eij) =
α

n
I(k)n ⊗ In + γ

k∑
i,j=1

Eij ⊗ Eji ∈Mn ⊗Mn
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is positive, where I
(k)
n =

∑k
i=1Eii ∈Mn.

Note that C
(k)
Ψ0,1

=
∑k

i,j=1Eij ⊗ Eji satisfies

I(k)n ⊗ InC
(k)
Ψ0,1

= C
(k)
Ψ0,1

= C
(k)
Ψ0,1

I(k)n ⊗ In,

and (C
(k)
Ψ0,1

)2 =
∑k

i,j=1Eii ⊗ Ejj = I
(k)
n ⊗ I

(k)
n . which implies

spec(C
(1)
Ψ0,1

) = {0, 1} and spec(C
(k)
Ψ0,1

) = {−1, 0, 1} for k ≥ 2.

We see that the eigenvalues of C
(k)
Ψα,γ

= α
nI

(k)
n ⊗ In + γC

(k)
Ψ0,1

are

spec(C
(1)
Ψα,γ

) =
{

0,
α

n
,
α

n
+ γ
}

and spec(C
(k)
Ψα,γ

) =
{

0,
α

n
,
α

n
+ γ,

α

n
− γ
}

for k ≥ 2.

Therefore we have the following Lemma.

Lemma 2.5.2. ([Tom85, Theorem 3]) Let α, γ ∈ R. The linear map Ψα,γ is

i. 1-positive iff α ≥ 0 and α ≥ −nγ.

ii. k-positive for k ≥ 2, iff α ≥ n|γ|.
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Error Basis

The Pauli matrices are set of 2 × 2 Hermitian, unitary matrices

σ0 = 1
2

1 0

0 1

 , σ1 = 1
2

0 1

1 0

 , σ2 = 1
2

0 −i

i 0

 , σ3 = 1
2

1 0

0 −1

 .
They were first introduced by Pauli to describe quantum spin of a subatomic particle

interacting with the external electromagnetic field. But they found a crucial role for

quantum error correcting codes. They satisfy the following relations

σ2p = σ20, σpσq = −σqσp, σpσq = iσrσ0

if (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. Moreover, except for the identity each Pauli ma-

trix has trace zero. Due to this trace condition, together with the above identities they

form an orthonormal basis (up to a scaling) of M2(C) with respect to the Hilbert-Schmidt

scalar product. The Pauli matrices model the sign and bit flip errors in the case of 2

dimensional error correcting codes. To generalise them in higher dimension, Schwinger

(1960), Knill (1996), Werner (2001) introduced the idea of unitary error basis.

Definition 3.0.1 (Unitary Error Basis). An Unitary Error Basis (UEB) of Mn(C) is a

family of n× n unitary matrices {Ui}n
2

i=1 such that

Tr(U∗
i Uj) = δijn.

If we equip the vector space Mn(C) with the Hilbert-Schmidt inner product

⟨A,B⟩ := Tr(A∗B)

then the UEB becomes an orthonormal basis (upto a scaling) of Mn(C).

39
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Definition 3.0.2. Two UEB’s B1 and B2 are said to be equivalent iff

i. there exist unitaries W1,W2 ∈ U(n)

ii. there exist constant cU ∈ C for U ∈ B1

such that

B2 = {cUW1UW2;U ∈ B1}.

Lemma 3.0.1. Any unitary error basis in dimension 2 is equivalent to the Pauli basis.

Proof. Let E = {A1, A2, A3, A4} be an arbitrary unitary error basis of dimension 2. This

error basis is equivalent to a basis of the form {In,diag(1,−1), B3, B4}. Indeed, we can

multiply all matrices in E from the left with A∗
1 to get an equivalent error basis which

contain identity. By the orthogonality condition the rest of the non-identity matrices have

trace zero. A change of basis and multiplication by scalar allows us to reduce the second

matrix to diag(1,−1) without changing the identity matrix.

Again due to the orthogonality condition, the diagonal elements of B3, B4 are zero.

We can assume they are of the form B3 = anti-diag(1, eiθ) and B4 = anti-diag(1, e−iθ) for

some θ ∈ R since we are allowed to multiply the matrices with scalars. Conjugating the

matrices with diag(1, e−iθ/2) yeilds the Pauli matrices up to scalar multiples. Hence E is

equivalent to the Pauli basis.

Two fundamentally different constructions of UEB are known. One is combinatorial in

nature known as shift and multiply basis(SMB) introduced by Werner[Wer01] and another

is more algebraic in nature, known as nice error basis(NEB) [Kni96]. We will first briefly

discuss the shift and multiply basis and mainly focus on the construction of nice error

basis as we will use them later to study different positive maps and quantum channels.

3.1 Shift And Multiply Basis

We recall that a Latin square is a n×n matrix such that each element of the set Zn occurs

exactly once in each row and column.
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Example 3.1.1. 
2 3 1

1 2 3

3 1 2


.

A complex Hadamard matrix H of order n is a n× n complex matrix such that

1. |Hij | = 1 for 1 ≤ i, j ≤ n.

2. H∗H = nIn

For example, for any n ∈ N we can define the following Hadamard matrix of order n

(H)kl = exp

(
2πikl

n

)
.

Definition 3.1.1. Let H = {H(j); 1 ≤ j ≤ n} be a finite sequence of Hadamard matrices

and L be a Latin square of order n. A shift and multiply basis B associated to L and H is

given by the unitary matrices

Bij := Pjdiag
(
H

(j)
ik : 0 ≤ k < n

)
for i, j ∈ Zn,

where Pj denotes the permutation matrix with entries given by Pj(L(j, k), k) = 1 for k ∈ Zn

and zero elsewhere.

If we label the standard basis of Cn by the set {|k⟩; k ∈ Zn} then we can verify the

action of Bij on the basic vectors of Cn-

Bij |k⟩ = H
(j)
ik |L(j, k)⟩.

Lemma 3.1.1 (Werner). B = {Bij ; 1 ≤ i, j ≤ n} is a UEB (known as Shift and Multiply

basis associated to L and H).

Proof. It is sufficient to show that B is an orthogonal system with respect to the Hilbert-

Schmidt inner product i.e. Tr(B∗
ijBkl) = 0 if (i, j) ̸= (k, l). If j ̸= l then the matrix P ∗

j Pl

has vanishing diagonal which implied that Tr(B∗
ijBkl) = 0 for any choice of i and k. If

j = l and i ̸= k then Tr(B∗
ijBkl) is equal to the inner product of i-th and k-th row of the

complex Hadamard matrix H(j), hence Tr(B∗
ijBkl) = 0.
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Example 3.1.2. For n = 3, let’s take the following Latin square L and Hadamard matrix

H:

L =


0 1 2

2 0 1

1 2 0

 and H =


1 1 1

1 ω ω2

1 ω2 ω

 ,
where ω is a third root of unity. We can check that the three permutation matrices corre-

sponding to the Latin square L are

P0 =


1 0 0

0 1 0

0 0 1

 , P1 =


0 1 0

0 0 1

1 0 0

 and P2 =


0 0 1

1 0 0

0 1 0

 .
Now we can construct the shift and multiply basis according to the definition 3.1.1. For

example the basis B01 and B12 are given by

B01 =


0 1 0

0 0 1

1 0 0

 , B12 =


0 0 ω2

1 0 0

0 ω 0

 .

3.2 Nice Error Basis

The other type of unitary error basis was introduced by E. Knill [Kni96], called nice error

basis(NEB). We first recall the definiton of a NEB.

Definition 3.2.1. Let G be a group of order n2 for some natural number n. A nice error

basis (NEB) on Cn is a set of unitary operators E = {ρg ∈ U(n) : g ∈ G} such that

1. ρ1 is the identity matrix, where 1 denotes the identity element of the group G.

2. Tr(ρg) = nδg,1.

3. ρgρh = ω(g, h)ρgh, where ω(g, h) is a scalar.

For such a set of operators the labelling group G is called the index group of the corre-

sponding NEB.

Conditions (1) and (3) simply tell us that the representation ρ is a projective repre-

sentation. If we equip Mn(C) with the inner product ⟨A,B⟩ := Tr(A∗B) then condition

(2) ensures that E is an orthonormal set since

⟨ρg, ρh⟩ = Tr(ρ∗gρh) = ω(g−1, g)−1Tr(ρg−1ρh) = ω(g−1, g)−1ω(g−1, h)Tr(ρg−1h)

= ω(g−1, g)−1ω(g−1, h)nδg,h.
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Comparing the dimension it follows that E is an orthonormal basis (upto a scaling) of

Mn(C). It follows that π is an irreducible representation. Recall that a 2-cocycle is a

function f : H ×H → C, where H is a group, verifying the relation

f(a, bc)f(b, c) = f(a, b)f(ab, c)

for any a, b, c ∈ G. In the case of a NEB the associativity of the index group G implies

that function ω : G×G→ C is a 2-cocycle. Indeed for any g, h, k ∈ G we have

(ρgρh)ρk = ρg(ρhρk)

=⇒ ω(g, h)ω(gh, k)ρghk = ω(g, hk)ω(h, k)ρghk.

If we normalise each πg so that det(πg) = 1 then ω(g, h) becomes an n-th root of unity

for any g, h ∈ G.

Recall that the character corresponding to an irreducible representation of a group G

is called an irreducible character of G. If the irreducible representation is projective with

2-cocycle α then the corresponding character is called an irreducible α character of G.

Theorem 3.2.1. Let α be a 2-cocycle and let χ be a irreducible α character of the group

G. Then χ(1)2 ≤ |G : Kerχ| with equality iff χ(g) = 0 for all g ∈ G/Kerχ.

Proof. See corollary 11.13, [Kar94]

Theorem 3.2.2 (Theorem 1, [KR02]). Let E = {π(g); g ∈ G} be a set of unitary matrices

indexed by the a finite group G. Then E is a NEB iff π is a unitary faithful irreducible

projective representation of order |G|1/2.

Proof. If E is a nice error basis then we have already seen that π is an unitary irreducible

projective representation of degree |G|
1
2 . The condition (2) of the definition of NEB ensures

that the projective representation is faithful i.e. no ρg is scalar multiple of identity except

for g = 1. Conversely, if ρ is an irreducible faithful projective representation of order |G|
1
2

then by the previous theorem the extremal degree condition tr(ρ(1)) = |G|
1
2 implies that

tr(ρ(g)) = 0 holds for any g ∈ G/Ker(ρ). It follows that ρ satisfies the condition (ii) of

the definition of a NEB.

Characterisation Of Abelian Index Group

As a consequence of theorem 3.2.2, Klappenecker and Rötteler characterised all the index

groups which are anbelian [KR02]. They used a classical result of group representation

theory by Frucht. A group G is called of symmetric type if G ∼= H ×H for some group H.
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Theorem 3.2.3 (Frucht, 1931). A finite abelian group admits a faithful unitary irreducible

projective representation iff it is of symmetric type. The degree of the representation is

|G|1/2.

Proof. See [Fruc31].

Theorem 3.2.4. If a NEB E has an abelian index group G then G is of symmetric type.

Conversely, any finite abelian group of symmetric type is a index group of a NEB.

Proof. We have seen in the theorem 3.2.2 that an NEB E can be viewed as an irreducible

faithful projective representation of a group G. By the theorem of Frucht a finite abelian

group G admits such a representation if it is of symmetric type i.e. G ∼= H × H for

some group H and conversely, any symmetric group G will have an irreducible, faithful,

projective representation of degree |G|
1
2 .

Characterisation of Non-abelian Index Group

The characterisation of an non-abelian index group is more difficult than the abelian case.

To study this case Knill [Kni96] considered a slightly bigger group than the index group,

known as the abstract error group.

Definition 3.2.2. Let G be an index group and E = {πg; g ∈ G} be a NEB. Then the

group H generated by πg’s i.e. H := ⟨πg⟩ is called abstract error group.

In general it may not be finite but if we multiply each πg by a suitable scalar cg such

that det(cgπg) = 1 then we get an equivalent error basis

E ′ = {π′(g) := cgπg : g ∈ G}

for which the abstract error basis H ′ becomes finite. Indeed, in such case the value of

ω(g, h) for each g, h ∈ G becomes an n-th root of the unity.

1 = det(π′g)det(π′h) = ω(g, h)ndet(π′gh) = ω(g, h)n.

So after this normalisation the corresponding abstract error group H ′ can have at most

order n × n2 = n3. So without any loss of generality we can assume any abstract error

group H to be of finite order. If ϵ is a primitive n-th root of the unity then we can write

the abstract error group H as

H = {ϵiπg : g ∈ G, 0 ≤ i ≤ n− 1},
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with the group operation

(ϵiπg).(ϵjπh) = ϵi+jω(g, h)πgh.

If T is the cyclic group generated by the values of ω then the abstract error group H

can be identified with the group Gω := T ×G where the group operation is given by

(a, g) ◦ (b, h) := (abω(g, h), gh)

The map Gω : (a, g) 7→ g ∈ G is a surjective homomorphism with kernel {(a, 1); a ∈ T} ∼=

T . The group Gω is called the ω-covering group of G [Kar93]. Recall that if G and N

are two groups then H is called an extension of G by N if there is a short exact sequence

1 −→ N
g−→ H

f−→ G −→ 1

i.e g is monomorphism, f is epimorphism and Kerf = Img. When g(N) lies in the centre

of the group H it is called a central extension of G. Following the previous discussion it

is easy to see the abstract error group H ∼= Gω := T ×G is a central extension of G, the

index group, by T

1 −→ T −→ Gω −→ G −→ 1

The main motivation of studying the abstract error group will be clear soon. The idea

is that if we have a central extension of a group then any projective representation of a

group lifts to an usual representation of its central extension. Since we have already seen

that the abstract error group is a central extension of the index group, characterising the

abstract error group will be sufficient to study an index group.

Definition 3.2.3 (lifting a projective representation to central extension). Let A,G and

G∗ be three groups such that G∗ is an extension of G by A,

1 −→ A −→ G∗ f−→ G −→ 1.

Given a projective representation of G, π : G −→ GL(V ), we say π lifts to an ordinary

representation π∗ : G∗ −→ GL(V ) of G∗ if

i. π∗(a) is scalar matrix for any a ∈ A.

ii. there is a section µ : G −→ G∗ of f (i.e. µ(1) = 1 and f ◦ µ = Id) such that for all

g ∈ G

π(g) = π∗(µ(g))
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Theorem 3.2.5. Let ω be a 2-cocycle and Gω be the ω covering group of G. Then every

ω projective representation of G lifts to a ordinary representation of Gω.

Proof. If π is a projective representation of G then we define the ordinary representation

π∗ of Gω
∼= T ×G by

π∗(g)(ϵi, g) = ϵiπ(g).

We define the section map µ : G → G∗ by µ(g) := (1, g) for any g ∈ G. It is easy

to see now that for any g ∈ G, π(g) = π∗(µ(g)) and we have π∗(ϵi, 1) = ϵiIn. Since

T ∼= {(ϵi, 1) : 1 ≤ i ≤ n− 1}, it follows that π∗ is a lift of π.

We see that characterising the index group is equivalent to the characterisation of the

abstract error group which is nothing but the central extension of the index group. It

was A. Klappenecker and M. Rötteler who characterised all the abstract error groups as a

central extension of an index group by a group of central type with cyclic center [KR02].

Definition 3.2.4. A group H is called group of central type if there exists an ordinary

irreducible character χ of H such that χ(1)2 = |H : Z(H)|, where Z(H) is the center of

the group H.

Before we discuss the result of Klappenecker and Rötteler we need the following well

known results on finite group representation theory, which we will mention without any

proof as they are out of the scope of this thesis.

Let G be a finite group and χ a character corresponding to a representation of the

group G. We call the center of the character the set

Z(χ) := {g ∈ G : |χ(g)| = χ(1)}.

Lemma 3.2.1. If χ is an irreducible character of the group H then χ(1)2 ≤ |H : Z(χ)|.

Equality occurs if and only if χ vanishes on G− Z(χ).

Proof. Corollary 2.30, [Iss76].

Remark 3.2.6. Since we know that Z(H) = ∩{Z(χ) : χ ∈ Irr(H)}, where Irr(H) denotes

the set of all irreducible characters of H, it follows from the above mentioned lemma that

χ(1)2 ≤ |H : Z(H)|. Equality can occur and when it does we have Z(χ) = Z(H)

Theorem 3.2.7 (Klappenker & Röttler, 2002). A group H is an abstract error group if

and only if it is a group of central type with cyclic centre Z(H).
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Proof. If H is an abstract error group then it is isomorhphic to a ω-covering group of

an index group G which has an irreducible faithful projective representation π of order

|G|
1
2 with 2-cocycle ω (cf. theorem 3.2.2). In particular, G ∼= H/T for some cyclic

central subgroup T of H generated by a primitive nth root of the unity. Each projective

representation of G lifts to an ordinary representation of H of same degree. So there

exists an irreducible ordinary representation of H and the corresponding character χ

of H with χ(1) = |H : T |
1
2 . Since each irreducible charcater satisfies the inequality

χ(1)2 ≤ |H : Z(H)| (see remark 3.2.6) and we already know that T ⊂ Z(H) we have

T = Z(H). Thus, H is a group of central type with cyclic center.

Conversely, Suppose H is a group of central type with cyclic center. It was shown in a

seminal work of Pahling [Pah70] that H has a faithful irreducible unitary representation

σ of degree |H : Z(H)|
1
2 . Let G = H/Z(H) and denote by W = {xg : g ∈ G} a set of

coset representative of Z(H) in H. Now define a projective representation

π(g) = σ(xg).

The projective representation π is unitary, irreducible and faithful of degree |G|
1
2 . There-

fore, by theorem 3.2.2 G is an index group of an NEB. Finally, since H is isomorphic to

a ω covering group of G, H is an abstract error group.

We present in the next result a recipe to obtain an index group from a group of central

type. But we need the following lemma before moving on.

Lemma 3.2.2. Let H be a group and χ be an irreducible character of G. Then Z(H/Kerχ) =

Z(χ)/Kerχ. Moreover, Z(χ)/Kerχ is a cyclic group.

Proof. Lemma 2.27, [Iss76]

Theorem 3.2.8. Let H be a group of central type. Then the group

(H/Kerχ)/(Z(H)/Kerχ) ∼= H/Z(H) is an index group.

Proof. Let H be a group of central type with an irreducible character χ which satisfies

χ(1)2 = |H : Z(H)| then Z(χ) = Z(H) (see remark 3.2.6). Therefore we have that

Z(H/Kerχ) = Z(H)/Kerχ by Lemma 3.2.2. For each h ∈ (H/Kerχ)/(Z(H)/Kerχ) we

choose a coset representative ϕ(h) in H/Kerχ. Let us denote πh = X̃χ(ϕ(h)). Therefore

we have

πhπk = X̃(ϕ(h))X̃(ϕ(k)) = X̃(ϕ(h)ϕ(k)) = X̃(ϕ(hk)zh,k),



48 CHAPTER 3. ERROR BASIS

where zh,k ∈ Z(H)/Kerχ. X̃χ(Z(H)/Kerχ) consists of scalar multiples of identity only.

So we obtain πh.πk = X̃(ϕ(hk))X̃(zh,k) = ω(h, k)πhk, where ω(h, k) ∈ C. Since the

representation is irreducible, all the πh spans Mn(C) for some n ∈ N. Using isomorphism

theorem we get (H/Ker χ)/(Z(H)/Ker χ) ∼= H/Z(H). As we know the character χ

vanishes outside Z(H), it follows that Tr(πh) = 0 except at the identity. So we find that

(H/Kerχ)/(Z(H)/Kerχ) ∼= H/Z(H) is an index group if H is a group of central type.

Examples: We present here two examples to briefly clarify the previous result- one

with an Abelian index group and another with a non-Abelian index group.

i. The group of unit quaternions Q = {±1,±i,±j,±k} (with multiplication as the

group operation) has eight elements and five irreducible representations (up to equiv-

alence), which we can choose as

ε : ε(i) = ε(j) = 1,

σi : σi(i) = 1, σi(j) = −1,

σj : σj(i) = −1, σj(j) = 1,

σk : σk(i) = −1 = σk(j),

π : π(i) =

 0 i

i 0

 , π(j) =

 0 −1

1 0

 .

For the character table we get

1 −1 i −i j −j k −k dim

χε = ε 1 1 1 1 1 1 1 1 1

χσi = σi 1 1 1 1 −1 −1 −1 −1 1

χσj = σj 1 1 −1 −1 1 1 −1 −1 1

χσk
= σk 1 1 −1 −1 −1 −1 1 1 1

χπ 2 −2 0 0 0 0 0 0 2

We see that

ker(χπ) = {1},

Z(χπ) = {1,−1} = Z(Q).

Q is a group of central type: its center is Z(Q) = {−1, 1} and it has a |Q/Z(Q)|1/2-

dimensional irreducible representation. We have Q/Z(Q) ∼= Z2 × Z2.
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The 2-cocycle ω : Z2 × Z2 → T is given by the relations

π(g1)π(g2) = ω(g1, g2)π(g1g2),

for g1, g2 ∈ Z2. If we write Z2 × Z2 = {(±1,±1)} multiplicatively and choose

π(+1,+1) = π(1) = I2,

π(+1,−1) = π(i) =

 0 i

i 0

 ,

π(−1,+1) = π(j) =

 0 −1

1 0


π(−1,−1) = π(k) =

 i 0

0 −i

 .

We get

ω (+1,+1) (+1,−1) (−1,+1) (−1,−1)

(+1,+1) 1 1 1 1

(+1,−1) 1 −1 1 −1

(−1,+1) 1 −1 −1 1

(−1,−1) 1 1 −1 −1

ii. Klappenecker and Rötteler construceted an example of NEB corresponding to a non-

commutative index group which we briefly mention here. Consider the group Hn for

some n ∈ N, generated by the composition of the maps

τ : x 7→ x+ 1(mod 2n) and α : x 7→ 5x(mod 2n).

If A := ⟨τ⟩ and B := ⟨α⟩ then Hn = A⋊B.

Theorem 3.2.9. The group Hn is a group of central type of order 22n−2 with cyclic

center Z(Hn) = ⟨τ2n−2⟩. The index group Hn/Z(Hn) is non-Abelian for n ≥ 5.

Proof. See theorem 5, [KR02].

Let ϕ : Z/2nZ → C be a map defined by

ϕ(x) = exp

(
2πi5x

2n

)
.

Then the diagonal matrix

π(τ) = diag(ϕ(0), ϕ(1), . . . , ϕ(2n−1 − 1))
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and the shift

π(α) =



0 1 0 . . . 0

0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1

1 0 0 . . . 0


define an ordinary faithful irreducible representation of Hn. The NEB corresponding

to the index group Hn/Z(Hn) is given by

E = {π(τ)kπ(α)l : 0 ≤ k, l < 2n−2 − 1}.

NEB and SMB from Discrete Weyl Operators

An open problem posed by Schligemann and Werner was if each NEB is equivalent to a

SMB. Klappenecker and Rötteler showed the answer to be negative [KR05]. We discuss

here an important class of example called Weyl operators which is both SMB and NEB.

We define κ((·, ·)) a fixed symmetric nondegenerate bicharacter on Zn×Zn i.e., a function

κ(·, ·) : Zn × Zn → C such that

(i) |κ(x, y)| = 1, for all x, y ∈ Zn,

(ii) Symmetry: κ(x, y) = κ(y, x), for all x, y ∈ Zn,

(iii) Non-degeneracy: κ(x, y) = 1 for all y ∈ Zn iff x = 0,

(iv) Character: κ(x, y + z) = κ(x, y) · κ(x, z).

In general Zn can be replaced by an arbitrary Abelian finite group

Example 3.2.10. We can take

κ(k, ℓ) = exp

(
2πikℓ

N

)
, k, ℓ ∈ ZN .

Fix an orthonormal basis

{|x⟩;x ∈ Zn}

of Cn. We define two unitary representations U and V of Zn on Cn, by the relations

Ua|x⟩ = |x+ a⟩,

Va|x⟩ = κ(a, x)|x⟩,
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for x, a ∈ Zn.

The operators Ua, Vb, a, b ∈ Zn, satisfy the Weyl commutation relations

UaUb = Ua+b, VaVb = Va+b, VbUa = κ(a, b)UaVb

for a, b ∈ Zn.

We define the Weyl operators

Wa,b = UaVb

for a, b ∈ Zn [Wat18]. The matrix coefficients of a Weyl operator Wa,b w.r.t. to the basis

{|x⟩;x ∈ Zn} are given by

⟨y|Wa,b|x⟩ = κ(b, x)δy,x+a, x, y ∈ Zn,

or, equivalently,

Wa,b =
∑
x∈G

κ(b, x) |x+ a⟩⟨x|. (3.2.1)

It is straightforward that they satisfy the following relations,

Wa,bWx,y = κ(b, x)Wa+x,b+y,

W ∗
a,b = W−1

a,b = κ(a, b)W−a,−b,

Wa,bWx,yW
∗
a,b =

κ(b, x)

κ(a, y)
Wx,y,

for a, b, x, y ∈ Zn.

It follows that

{n−1/2Wa,b; a, b ∈ G}

is an NEB of Mn(C), since

Tr(Wa,b) =
∑
x∈Zn

⟨x| UaVb|x⟩︸ ︷︷ ︸
=κ(b,x)|x+a⟩

=

 n if (a, b) = (0, 0),

0 else,
(3.2.2)

and

Tr(W ∗
x,yWa,b) = Tr

(
((x, y))W−x,−yWa,b

)
= ((x− a, y))Tr(Wa−x,b−y)

=

 N if (a, b) = (x, y),

0 else.
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Here we used the orthogonality of the characters,

∑
x∈Zn

κ(a, x)κ(b, x)︸ ︷︷ ︸
=κ(b−a,x)

= n δa,b.

The following Fourier expansion shows how to express any element X ∈ Mn(C) in

terms of the o.n.b. {n−1/2Wa,b; a, b ∈ G}. For all X ∈Mn(C) we have

X =
1

n

∑
a,b∈Zn

Tr(W ∗
a,bX)Wa,b.



Chapter 4

Error Basis and Quantum Channel

In this chapter we will use use nice error basis, in particular the Weyl operators to construct

a convenient basis of Lin(Mn(C)). We want to decompose any linear map with respect to

such convenient basis to obtain an n2×n2 coefficient matrix. We will then characterise the

positivity, complete positivity, complete co-positivity in terms of that coefficient matrix.

We will also establish the connection between the Choi matrix of a linear map on Mn(C)

and the coefficent matrix that we have found. The discussion and the results of this chapter

are based on our paper [BCF23(ii)], co-authored by Uwe Franz and B. V. Rajarama Bhat.

4.1 Convenient Basis Of Lin(Mn(C))

For a pair of matrices A,B ∈Mn(C) we define a linear map TA,B : Mn(C) →Mn(C) by

TA,B(X) = AXB∗, for X ∈Mn(C).

Proposition 4.1.1. The map Mn(C)×Mn(C) ∋ (A,B) 7→ TA,B ∈ Lin(Mn(C)) extends to

a unique isomorphism of *-algebras T : Mn(C)⊗Mn(C)∗ ∋ A⊗B∗ → TA,B ∈ Lin(Mn(C)),

which is also an isomorphism of Hilbert spaces.

The above proposition shows that if {Bi; 1 ≤ i ≤ n2} is a basis of Mn(C) and we define

Tij(X) := BiXB
∗
j for any X ∈Mn(C) then {Tij ∈ Lin(Mn(C)); 1 ≤ i, j ≤ n2} is a basis of

Lin(Mn(C)). Taking an NEB as a basis of Mn(C) has the added advantage that in that

case Tij also becomes an NEB in Lin(Mn(C)).

Lemma 4.1.1. Let { 1√
n
πg; g ∈ G} be an NEB of Mn(C) corresponding to an index group

G. Define the linear map Tx,y : Mn(C) →Mn(C) by

Tx,y(X) := πxXπ
∗
y .

53
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Then the { 1
nTx,y;x, y ∈ G} is an NEB of Lin(Mn(C)) with the index group G × G and

2-cocycle ωL : (G×G) × (G×G) → T given by

ωL((x′, y′), (x, y)) =
ω(x′, x)

ω(y′, y)
.

Proof. It is trivial to check that T1,1 = Id where 1 is the identity element of G. To check

the trace condition, we compute

TrLin(Mn(C))(Tx,y) =
∑〈

|i⟩⟨j|, Txy|i⟩⟨j|
〉

=
∑

TrMn(C)

(
|j⟩⟨i|πx|i⟩⟨j|π∗y

)
=
∑

⟨i|πx|i⟩⟨j|π∗y |j⟩ = Tr(πx)Tr(π∗y) = n2δ1,xδ1,y,

where {|i⟩⟨j|1 ≤ i, j ≤ n} is the set of matrix units of Mn(C). This shows that trace of

each operator Tx,y is zero except for the identity. For any X ∈Mn(C) and x, y, x′, y′ ∈ G

we see that

Tx′,y′ ◦ Tx,y(X) = πx′πxXπ
∗
yπ

∗
y′ =

ω(x′, x)

ω(y′, y)
πx′xXπ

∗
y′y =

ω(x′, x)

ω(y′, y)
Tx′x,y′y(X),

which proves the claim about the 2-cocycle ωL.

The next proposition follows immediately since any NEB forms an ONB of the asso-

ciated space of linear maps.

Proposition 4.1.2. The set { 1
nTx,y;x, y ∈ G} forms an orthonormal basis of Lin(Mn(C))

with respect to the Hilbert-Schmidt inner product.

Let α ∈ Lin(Mn(C)) and {Bi; 1 ≤ i ≤ n2} be a basis of Mn(C). Since Tij(defined

above ) forms a basis of Lin(Mn(C)) we can decompose α as

α(X) =
∑

1≤i,j≤n2

Dα(i, j)BiXB
∗
j . (4.1.1)

In particular, if we take an NEB { 1√
n
πx;x ∈ G} as a basis of Mn(C) we can explicitly

compute the coefficient matrix Dα.

α(X) =
1

n

∑
x,y

Dα(x, y)Tx,y(X) =
1

n

∑
x,y

Dα(x, y)πxXπ
∗
y . (4.1.2)

for all X ∈Mn(C). Using the orthonormality of the basis 1
nTx,y and NEB { 1√

n
πg; g ∈ G}

of Mn(C), we have Dα(x, y) = 1
n⟨Tx,y, α⟩Lin(Mn(C)) i.e.

Dα(x, y) =
1

n
Tr(T †

x,yα)

=
1

n2

∑
g∈G

⟨Tx,y(πg), α(πg)⟩

=
1

n2

∑
g∈G

Tr(πyπ
∗
gπ

∗
xα(πg)). (4.1.3)
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Here T † denotes the involution applied on T w.r.t the Hilbert-Schmidt inner product on

Lin(Mn(C)). If we use the Weyl operators as the nice error basis for defining Tx,y i.e.

Tx,y(X) = WxXW
∗
y for x, y ∈ Zn × Zn then we can compute the coefficient Dα in (4.1.3),

using {|a⟩⟨b|; a, b ∈ Zn} as an o.n.b of Mn(C)

Dα(x, y) =
1

n

∑
a,b∈G

Tr
(
Wy|b⟩⟨a|W ∗

xα
(
|a⟩⟨b|

))
=

1

n

∑
a,b∈G

κ(y2, b)

κ(x2, a)

〈
a+ x1

∣∣∣α(|a⟩⟨b|)∣∣∣b+ y1

〉
, (4.1.4)

for x = (x1, x2), y = (y1, y2).

Lemma 4.1.2. Let α, β ∈ Lin(Mn(C)) with coefficients (Dα(x, y))x,y∈G and (Dβ(x, y))x,y∈G

respectively, as defined in the equation (4.1.2). Then the coefficients of their composition

α ◦ β are given by

Dα◦β(x, y) =
∑
p,q∈G

ω(p, xp−1)ω(q, yq−1)Dα(p, q)Dβ(p−1x, q−1y),

for x, y ∈ G

Proof. We have

α ◦ β(X) =
∑
p,q∈G

Dα(p, q)πp

 ∑
p′,q′∈G

Dβ(p′, q′)πp′Xπ
∗
q′

π∗q

=
∑

p,p′,q,q′∈G
ω(p, p′)ω(q, q′)Dα(p, q)Dβ(p′, q′)πpp′Xπ

∗
qq′

=
∑

x,y∈G

∑
p,q∈G

ω(p, p−1x)ω(q, q−1y)Dα(p, q)Dβ(p−1x, q−1y)


︸ ︷︷ ︸

Dα◦β

πxXπ
∗
y ,

which completes the proof.

We can define two different involutions on Lin(Mn(C)). The first comes from the

Hilbert-Schmidt inner product and is characterised by the condition

⟨X,α(Y )⟩ = ⟨α†(X), Y ⟩

for all X,Y ∈Mn(C).

The second is inherited from the involution in Mn(C) and defined by α#(X) = α(X∗)∗.

Both involutions are conjugate linear, but only the first is anti-multiplicative, whereas

the second is multiplicative, i.e., we have

(α ◦ β)† = β† ◦ α†, (α ◦ β)# = α# ◦ β#
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for α, β ∈ Lin(Mn(C)).

Proposition 4.1.3. Let α ∈ Lin(Mn(C)). We have

Dα†(x, y) =
ω(x, x−1)

ω(y, y−1)
Dα(x−1, y−1)

and

Dα#(x, y) = Dα(y, x)

for x, y ∈ G.

Proof. It is easy to see that for any x, y ∈ G we have T †
x,y = ω(x,x−1)

ω(y,y−1)
Tx−1,y−1 . Applying

the involution † on the decomposition of α in (4.1.2)

α† =
∑

x,y∈G
Dα(x, y)T †

x,y =
∑

x,y∈G

ω(x, x−1)

ω(y, y−1)
Dα(x, y)Tx−1,y−1

the first claim follows. Similarly, we can trivially check that T#
x,y = Ty,x for any x, y ∈ G.

Then the second claim follows by applying # on the decomposition (4.1.2)

α# =
∑

x,y∈G
Dα(x, y)T#

x,y =
∑

x,y∈G
Dα(x, y)Ty,x

4.1.1 Examples

Here we compute the kernel or the n2 × n2 matrix Dα corresponding to different positive

maps α ∈ Lin(Mn(C)) which are important in quantum information. We use { 1
nTx,y;x, y ∈

G} as an o.n.b of Lin(Mn(C)) where G is an index group corresponding to an NEB

{ 1√
n
πx;x ∈ G}.

Identity map: The identity map corresponds to the kernel DId(x, y) = nδ1,xδ1,y for

x, y ∈ G as we can write

X = π1Xπ
∗
1 =

1

n

∑
x,y∈G

nδ1,xδ1,yπxXπ
∗
y .

Depolarising Channel: Let P ∈ Lin(Mn(C)) be the diagonal sum P = 1
n

∑
g∈G Tg,g.

For any h ∈ G and X ∈Mn(C) we have

πhP (X) =
1

n

∑
g

ω(h, g)πhgXπ
∗
g and P (X)πh =

1

n

∑
g

ω(h, h−1)

ω(h−1, g)
πgXπ

∗
h−1g.
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After a change of variable we can write P (X)πh = 1
n

∑
g

ω(h,h−1)
ω(h−1,hg)

πhgXπ
∗
g . Using the

definition of 2-cocycle

ω(h, h−1)

ω(h−1, hg)
=

ω(h, h−1)

ω(h, h−1)ω(1, g)ω(h, g)
= ω(h, g).

Thus we see that P (X) commutes with every basis element πh on Mn(C). So we con-

clude that P (X) = cIn for some c ∈ C. Computing the trace of both sides we find that

c = Tr(X). Therefore we see that the map P , defined as the diagonal sum of the oper-

ators Tg,g, is actually the depolarising channel which corresponds to the identity matrix

DP (x, y) = 1
nδx,y where x, y ∈ G.

Transposition: Let T ∈ Lin(Mn(C)) be the transposition map given by X 7→ Xt. We

compute the n2×n2 matrix DT corresponding to the transposition map. For anyx, y ∈ G

we have

DT (x, y) =
1

n
⟨Tx,y|T ⟩ =

1

n

∑
1≤i,j≤n

Tr
(

(Tx,y|i⟩⟨j|)∗T |i⟩⟨j|
)

=
1

n

∑
1≤i,j≤n

Tr
(
πy|j⟩⟨i|π∗x|j⟩⟨i|

)
=

1

n

∑
1≤i,j≤n

⟨i|π∗x|j⟩Tr
(
πy|j⟩⟨i|

)
=

1

n

∑
1≤i,j≤n

⟨i|π∗x|j⟩⟨i|πy|j⟩ =
1

n
Tr(πxπy)

In particular, if we take the Weyl operators {Wa,b; a, b ∈ Zn} as the chosen NEB and

{|i⟩; i ∈ Zn} as the standard basis of Cn then

DT ((a, b), (c, d)) =
1

n

∑
i,j∈Zn

⟨i|W ∗
a,b|j⟩⟨i|Wc,d|j⟩ =

1

n

∑
i,j∈Zn

χ(a, b)χ(−b, j)χ(d, j)δi,j−aδi,c+j .

So we have

DT ((a, b), (c, d)) =

 1
n

∑
i∈Zn

χ(a, b)χ(d− b, i+ a) if c = −a,

0 otherwise.

Conditional Expectation onto Diagonal: Consider the linear map C : Mn(C) →

Mn(C), C(X) = (δijxij)1≤i,j≤n for X = (xij)1≤i,j≤n ∈ Mn(C). This map is a conditional

expectation onto the *-subalgebra of diagonal matrices with respect to the standard basis.
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We compute the coefficient matrix DC of the map C. For any x, y ∈ G

DC(x, y) =
1

n
⟨Tx,y|C⟩ =

1

n

∑
1≤i,j≤n

Tr
(

(Tx,y|i⟩⟨j|)∗C|i⟩⟨j|
)

=
1

n

∑
1≤i,j≤n

δijTr(πy|j⟩⟨i|π∗x|i⟩⟨j|)

=
1

n

∑
1≤j≤n

δij⟨i|π∗x|i⟩⟨j|πy|j⟩ =
1

n
Tr(C(π∗x)C(πy)).

In particular, taking the Weyl operators as NEB gives

DC((a, b), (c, d)) =

 1
n

∑
j∈Zn

χ(d− b, j) if c = a = 0,

0 otherwise.

4.2 Correspondence between Choi matrix Cα and Dα

Recall that the Choi-Jamio lkowski matrix of a map α ∈ Lin(Mn(C)) is the n2×n2-matrix

defined by

Cα =

n∑
j,k=1

Ejk ⊗ α(Ejk) ∈Mn(C) ⊗Mn(C) ∼= Mn2(C).

It is known that α ∈ Lin(Mn(C)) is completely positive (CP) iff Cα is positive. Further-

more, α ∈ Lin(Mn(C)) is k-positive if and only if

⟨v, Cαv⟩ ≥ 0

for all v ∈ Cn⊗Cn with Schmidt rank not more than k [RA07, SSZ09]. For any completely

positive map α we have the Kraus decompositon

α =
r∑

j=1

AdLj

for some matrices Lj ∈Mn(C), where for any X ∈Mn(C) the conjugate map AdLj is given

by AdLj (X) = LjXL
∗
j . The minimum number of AdLj required to express α as its Kraus

decomposition is called the Kraus rank of α. We call α 1-super positive or entanglement

breaking iff rank(Lj) = 1 for any j. The linear map α is called completely co-positive iff

T ◦ α is completely positive, where T is the transposition map.

We can switch from Cα to Dα by a change of basis.

Proposition 4.2.1. If Tx,y is defined with respect to the Weyl operators then the Choi-

Jamio lkowski matrix of Tx,y is given by

CTx,y(v, w) =
κ(x2, v1)

κ(y2, w1)
δv1+x1,v2δw1+y1,w2 ,
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for x = (x1, x2), y = (y1, y2), v = (v1, v2), w = (w1, w2) ∈ Zn × Zn. More generally, if α is

of the form α =
∑

x,y∈Zn×Zn
Dα(x, y)Tx,y, then its Choi-Jamio lkowski matrix is given by

Cα(v, w) =
1

n

∑
x2,y2∈G

κ(x2, v1)

κ(y2, w1)
Dα

(
(v2 − v1, x2), (w2 − w1, y2)

)
,

for v, w ∈ Zn×Zn. Conversely, the coefficients from the equation (4.1.4) can be computed

from the Choi-Jamio lkowski matrix via

Dα(x, y) =
1

n

∑
a,b∈G

κ(y2, b)

κ(x2, a)
Cα

(
(a, a+ x1), (b, b+ y1)

)
for x, y ∈ Zn × Zn.

Proof. Using Formula (3.2.1), we get

W ∗
y =

∑
d∈Zn

1

κ(y2, d)
|d⟩⟨d+ y1|

and

Tx,y
(
|a⟩⟨b|

)
=

κ(x2, a)

κ(y2, b)
|a+ x1⟩⟨b+ y1|,

for a, b ∈ Zn, x, y ∈ Zn ×Zn. So, if we choose {|a⟩; a ∈ Zn} as a basis of Cn, we can write

the corresponding matrix units as |a⟩⟨b|, a, b ∈ Zn, and we get

CTx,y =
∑

a,b∈Zn

|a⟩⟨b| ⊗ Tx,y
(
|a⟩⟨b|

)
=

∑
a,b∈Zn

κ(x2, a)

κ(y2, b)
|(a, a+ x1)⟩⟨(b, b+ y1)|,

which proves the first claim of the proposition.

For α = 1
n

∑
x,y∈Zn×Zn

Dα(x, y)Tx,y, this yields

Cα =
1

n

∑
x,y∈Zn×Zn

∑
a,b∈Zn

Dα(x, y)
κ(x2, a)

κ(y2, b)
|(a, a+ x1)⟩⟨(b, b+ y1)|

or

Cα(v, w) =
1

n

∑
x2,y2∈Zn

κ(x2, v1)

κ(y2, w1)
Dα

(
(v2 − v1, x2), (w2 − w1, y2)

)
.

For the converse we use the equation (4.1.4),

Dα(x, y) =
1

n

∑
a,b∈G

κ(y2, b)

κ(x2, a)

〈
a+ x1

∣∣∣α(|a⟩⟨b|)∣∣∣b+ y1

〉

=
1

n

∑
a,b∈Zn

κ(y2, b)

κ(x2, a)

〈
a+ x1

∣∣∣
 ∑

g,h∈Zn

Cα

(
(a, g), (b, h)

)
|g⟩⟨h|

∣∣∣b+ y1

〉
=

1

n

∑
a,b∈Zn

κ(y2, b)

κ(x2, a)
Cα

(
(a, a+ x1), (b, b+ y1)

)
,
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where we used the identity

α
(
|a⟩⟨b|

)
=
∑

g,h∈G
Cα

(
(a, g), (b, h)

)
|g⟩⟨h|.

4.3 Characterisation of positive and completely positive maps

Theorem 4.3.1. Let {Bx}x=1,2...n2 be a basis of Mn(C). Consider a linear map α ∈

Lin(Mn(C)) of the form α(X) =
∑n2

x,y=1Dα(x, y)BxXB
∗
y . Then α is

i. hermiticity preserving if and only if Dα is Hermitian.

ii. positive if and only if for any v, w ∈ Cn,

⟨v ⊗ w, α̃(v ⊗ w)⟩ ≥ 0

where α̃ = τ ◦
∑n2

x,y=1Dα(x, y)(Bx ⊗B∗
y) and τ(u⊗ v) = v ⊗ u is the flip operator.

Proof. α ∈ Lin(Mn(C)) is hermiticity preserving iff α(X∗)∗ = α(X) i.e. α# = α. Compar-

ing the coefficient matrix of both sides the first claim follows directly from the proposition

4.1.3.

On the other hand, α is positive if and only if it maps rank one projections to positive

operators. i.e. for all v, w ∈ C

0 ≤ ⟨v, α(|u⟩⟨u|)v⟩ =

〈
v,
∑
x,y

Dα(x, y)Bx|u⟩⟨u|B∗
yv

〉

=
∑
x,y

Dα(x, y)⟨v,Bxu⟩⟨u,B∗
yv⟩

=

〈
u⊗ v, τ ◦

∑
x,y

Dα(x, y)Bx ⊗B∗
y(u⊗ v)

〉
= ⟨u⊗ v, α̃(u⊗ v)⟩.

Theorem 4.3.2. A linear map α ∈ Lin(Mn(C)) is a completely positive map with Kraus

rank r if and only if the corresponding coefficient matrix Dα ∈ Mn2(C) as defined in

(4.1.1), is positive semi-definite of rank r.

Proof. Let {Bx;x = 1, . . . , n2} be a basis of Mn(C). α ∈ Lin(Mn(C)) is CP with Kraus

rank r then there exists {Lj ∈ Mn(C); 1 ≤ j ≤ r} such that α can be written as Kraus
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decomposition

α =
r∑

j=1

AdLj ,

where AdLj is the conjugate map given by AdLj (X) = LjXL
∗
j for any matrix X ∈Mn(C).

Since the map Lin(Mn(C)) ∋ α 7→ Dα ∈ Mn2(C) is a linear isomorphism, we have Dα =∑r
j=1DAdLj

. We can expand each Lj with respect to the basis {Bx;x = 1, . . . , n2} and

write Lj =
∑n2

z=1 lj(z)Bz. Therefore we get

AdLj (X) = LjXL
∗
j =

 n2∑
z=1

lj(z)Bz

X

 n2∑
z′=1

lj(z
′)Bz′

∗

=
n2∑

z,z′=1

lj(z)lj(z′)BzXB
∗
z′

We find that DAdLj
is a rank one operator given by

DAdLj
= |lj⟩⟨lj |

where lj = (lj(1), lj(2), . . . , lj(n
2))t is a vector in Cn2

. Thus Dα =
∑r

j=1 |lj⟩⟨lj | is a positive

semi-definite operator of rank r.

Conversely, assume thatDα is positive semi-definite with rank r. So there exists vectors

v1, v2, . . . , vr ∈ Cn2
such that Dα =

∑r
j=1 |vj⟩⟨vj |. If we denote {|x⟩;x = 1, . . . , n2} the

standard basis of Cn2
then

Dα(x, y) =
r∑

j=1

⟨x|vj⟩⟨vj |y⟩ =
r∑

j=1

⟨x|vj⟩⟨y|vj⟩.

Therefore we can write the equation (4.1.1) as

α(X) =
n2∑

x,y=1

r∑
j=1

⟨x|vj⟩⟨y|vj⟩BxXB
∗
y

=

n2∑
x,y=1

r∑
j=1

(
⟨x|vj⟩Bx

)
X
(
⟨y|vj⟩By

)∗
=

r∑
j=1

 n2∑
x=1

⟨x|vj⟩Bx

X

 n2∑
y=1

⟨y|vj⟩By

∗

.

If we denote Lj =
∑

x∈G⟨x|vj⟩Bx then we get α(X) =
∑r

j=1 LjXL
∗
j , which shows that α

is completely positive with Kraus rank r.

We remark here that the similar result was obtained by Poluikis and Hill from a

different approach [PH81]. But our approach has the advantange that coefficient matrix
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corresponding to the composition of two linear maps becomes the convolution type product

of their individual coefficient matrices. This composition law can be used to characterise

the completely co-positive maps too.

Corollary 4.3.1. A linear map α ∈ Lin(Mn(C)) is completely co-positive iff the convolu-

tion product ∑
p,q∈Zn×Zn

χ(p, x− p)

χ(q, y − q)
Tr(W pWq)Dα(x− p, y − q)

is positive semi-definite.

Proof. The linear map α is co-CP iff the composition with transposition T ◦ α is CP.

Using the Theorem 4.3.2, we see that T ◦α is CP iff the coefficient matrix DT◦α is positive

semi-definite. In particular, in the decomposition T ◦ α w.r.t the Weyl operators

T ◦ α(X) =
1

n

∑
x,y∈Zn×Zn

DT◦αWxXW
∗
y ,

the coefficient matrix DT◦α is positive semi-definite. We use the Lemma 4.1.2 and the

coefficients we have found for transposition in example 4.1.1 to compute the coefficient

Dt◦α which complete the claim.

Corollary 4.3.2. A linear map α ∈ Lin(M2(C)) is 1-super positive iff Dα =
∑r

j=1 |lj⟩⟨lj |

where lj = (lj(1), . . . , lj(4))t is a vector in C4 satisfying lj(1)2 =
∑4

k=2 lj(k)2.

Proof. Since α is 1-super positive in M2(C), there exists matrices L1, L2, . . . , Lr ∈M2(C)

of rank 1 such that α =
∑r

1 AdLj . We can decompose each Lj w.r.t the Pauli basis

σ1 = 1
2

1 0

0 1

 , σ2 = 1
2

0 1

1 0

 , σ3 = 1
2

0 −i

i 0

 , σ4 = 1
2

1 0

0 −1

 .
to obtain Lj =

∑4
i=1 lj(k)σk. After this decomposition Lj has the form

1

2

 lj(1) + lj(4) lj(2) − ilj(3)

lj(2) + ilj(3) lj(1) − lj(4)

 .
Lj has rank 1 iff det(Lj) = 0 i.e. lj(1)2 = lj(2)2 + lj(3)2 + lj(4)2. We have already seen

that in the proof of 4.3.2 that DAdLj
= |lj⟩⟨lj |, which completes the claim.

Proposition 4.3.1. A linear map α : Mn(C) −→Mn(C)



4.3. CHARACTERISATION OF POSITIVE AND COMPLETELY POSITIVE MAPS63

(a) is trace preserving if and only if

∑
x∈G

ω(x, g)Dα(x, xg) = δ1,g

for all g ∈ G.

(b) is unit preserving if and only if

∑
x∈G

ω(x, x−1z)

ω(z−1x, x−1z)
Dα(x, z−1x) = δ1,z

for all z ∈ G.

Proof.

(a) Since {πg; g ∈ G} forms a basis of Mn the map α is trace preserving iff Tr(α(πg)) =

Tr(πg) for all g ∈ G. Now

Trα(πg) =
∑
x,y

Dα(x, y)
ω(x, g)ω(xg, y−1)

ω(y−1, y)
Tr(πxgy−1)

Substituting xg = y we get

∑
x∈G

ω(x, g)Dα(x, xg) = Tr(πg) = δ1,g

for all g ∈ G.

(b) By definition α is unit preserving iff α(In) = In.

α(In) =
∑

x,y∈G
Dα(x, y)πxπ

∗
y =

∑
x,y∈G

ω(x, y−1)

ω(y, y−1)
Dα(x, y)πxy−1

=
∑
x,z∈G

ω(x, x−1z)

ω(z−1x, x−1z)
Dα(x, z−1x)πz.

Comparing the coefficients we get

∑
x∈G

ω(x, x−1z)

ω(z−1x, x−1z)
Dα(x, z−1x) = δ1,z

for all z ∈ G.
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Chapter 5

Semigroup Of Different Positive

Maps

The following discussion is based on our paper [BCF23(i)], co-authored by Uwe Franz and

B. V. Rajarama Bhat. Let V be a Banach space and L(V ) be the algebra of all bounded

linear operators on V . We recall the definition of a semigroup of linear operators-

Definition 5.0.1. A unital semigroup of operators on V is a family of bounded linear

operators on (Tt)t≥0 on V such that

i. T0 = Id,

ii. Tt+s = Tt ◦ Ts for t, s ≥ 0,

iii. the map t 7→ Tt is continuous.

Remark 5.0.1. We remark here that the third condition which imposes certain continuity

on the semigroup (Tt)t≥0 can be replaced by weaker conditions of continuity e.g. strong

continuity (C0 semigroup), ultra weak continuity. However, as we will work on finite

dimension it will be enough to restrict our discussion on norm continuity of the semigroup

of linear maps.

It is well known that there exists an operator A ∈ L(V ) such that Tt = exp (tA) for

t ≥ 0. Such an operator A is called the generator of the semigroup of linear operators

(Tt)t≥0 (see prop. 9.4, [BFR17]). Even if we weaken the continuity condition (iii) by

replacing the norm continuity by strong continuity existence of closed densely defined

generators follows from Hill-Yoshida theorem (see theorem 2.2.5, [App19]).

65
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On finite dimension, let’s consider a semigroup of operators Tt : Mn(C) →Mn(C). We

call it an n-level quantum dynamical semigroup of linear maps if it preserves identity i.e.

Tt(In) = In and each Tt is a completely positive map for t ≥ 0. The following result was

proved by Lindblad, Gorini, Kossakowski and Sudarshan [Lin76][GKS76].

Theorem 5.0.2. A semigroup of linear operators Tt = exp tΨ is a quantum dynamical

semigroup if and only if the generator Ψ has the form

Ψ(X) = i[H,X] +
k∑

j=1

{V ∗
j XVj −

1

2
(V ∗

j VjX +XV ∗
j Vj)}

Motivated by this result we were interested to see if it is possible to characterise the

generator of semigroups of k-(super)positive maps.

Let A be a unital algebra with unit 1. Let C be a cone inside the topological dual

space A′. Then an element a ∈ A is called conditionally positive on C if ϕ(a) ≥ 0 for any

ϕ ∈ C such that ϕ(1) = 0. Michael Schürmann proved the following result [Sch85]

Theorem 5.0.3. Let A be a real Banach algebra with unit 1. Denote by A′ the topological

dual of A. Let C be a closed convex cone with non-empty interior such that c ∈ C implies

that cn ∈ C for all n ≥ 0 (where c0 = 1). Then for an element a ∈ A the following

statements are equivalent

i. a is conditionally positive on the dual cone C◦.

ii. exp (ta) ∈ C for all t ≥ 0.

We could use apply this result to characterise the generator of semigroup of k-positive

maps or k-super positive maps but the problem was that for k < n the identity map is not

a k super positive map. So a semigroup of k-super positive maps can not be Id at time

t = 0. It compels us to consider a non-unital semigroup of linear maps.

5.1 Non-unital Semigroups

We will be interested in semigroups of linear operators (Tt)t≥0 (on some Banach space V ),

which do not start from the identity, i.e. we have TsTt = Ts+t for all s, t ≥ 0, but not

necessarily T0 = id. We still want t 7→ Tt to be continuous.

The semigroup property implies

T 2
0 = T0
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i.e., T0 is idempotent. Then we can decompose V as V = Im(T0) ⊕ Ker(T0), where

Im(T0) = T0(V ) = Ker(idV −T0), and Ker(T0) = Im(idV −T0) = (idV −T0)(V ) We assume

that T0 is bounded, so both subspaces are closed. With respect to this decomposition T0

has the form

T0 =

 idIm(T0) 0

0 0


Furthermore, the semigroup property implies T0Tt = TtT0 = Tt for all t ≥ 0. Therefore

Ker(T0) ⊆ Ker(Tt) and Im(Tt) ⊆ Im(T0).

W.r.t. the decomposition V = Im(T0) ⊕ Ker(T0) we can write the Tt as

Tt =

 T̃t 0

0 0


with some linear operators T̃t ∈ B(Im(T0)), which form a continuous semigroup (T̃t)t≥0

with initial value T̃0 = IdIm(T0). This allows to extend classical result on unital semigroups

to the non-unital case.

In our examples, if T0 is a conditional expectation onto some unital *-subalgebra,

then we are lead to study semigroups (T̃t)t≥0 that preserve the corresponding cones of

T0(Mn) ⊆Mn.

But in general T0 need not be a conditional expectation, as the example in the following

subsection shows.

5.1.1 Examples Of k-Positive Semigroups

Since the identity map id : Mn → Mn is not k-superpositive for k < n, there exist no k-

superpositive semigroups (Tt : Mn →Mn)t≥0 with T0 = id. But there do exist semigroups

of k-superpositive linear maps on Mn that start with an idempotent k-superpositive map

T0. Very simple examples are given by T0(X) = PXP with P a k-dimensional orthogonal

projection.

Another class of examples are semigroups Tt : M2 ⊗Mn →M2 ⊗Mn of the form

Tt

 A B

C D

 =

 St(A) 0

0 α
(
St(A)

)


with (St)t≥0 a k-superpositive semigroup acting on Mn and α : Mn → Mn any k-

superpositive linear map. If α is not a *-homomorphism, then T0 is a k-superpositive

idempotent whose image is not a *-subalgebra, and so T0 is not a conditional expectation.
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5.2 A Schoenberg Type Correspondence For General Non-

unital Semigroups

We give a non-unital version of Schürmann’s result [Sch85, Lemma 2.1].

For X a Banach space, we will denote by BX′ and SX′ the unit ball and the unit sphere

of the dual space X ′. If C ⊆ X is a cone in X then C◦ denotes the dual cone in X ′, i.e.

C◦ = {φ ∈ X ′; ∀v ∈ C,φ(v) ≥ 0}.

Note that we have (for C a closed convex cone)

(C◦)◦ = C.

Theorem 5.2.1. Let A be a real Banach algebra with a closed convex cone C ⊆ A with

non-empty interior. Let a0 ∈ C be an idempotent such that for any c ∈ C, we have

a0ca0 ∈ C.

We assume furthermore that for any c ∈ C we have cn ∈ C for n ≥ 1.

Then, for any b ∈ A such that ba0 = a0b = b, the following statements are equivalent.

(i) b is a0-conditionally positive on C◦, i.e., φ(b) ≥ 0 for all φ ∈ C◦ with φ(a0) = 0.

(ii) expa0(tb) := limn→∞
(
a0 + tb

n

)n ∈ C for all t ≥ 0.

Proof. (ii)⇒(i): This follows by diffentiation at t = 0. If φ ∈ C◦ is such that φ(a0) = 0,

then

φ(b) = lim
t→0
t>0

φ

(
expa0(tb) − expa0(0)

t

)
= lim

t→0
t>0

1

t
φ
(

expa0(tb)
)
≥ 0,

(i)⇒(ii): We have

expa0(tb) := lim
n→∞

(
a0 +

tb

n

)n

= a0 +

∞∑
n=1

(tb)n

n!
(5.2.1)

and we want to show that this quantity is positive for t ≥ 0 if b satisfies condition (i).

Without loss of generality we can take t = 1.

We will prove in four steps that expa0(b) is positive.

Step I: For any interior point c ∈ C there exists δ > 0 such that

∀φ ∈ C◦, φ(c) ≥ δ∥φ∥.
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Indeed, let c ∈ C be an interior point. Then there exists δ > 0 such that c + δBA ⊆ C,

where BA is the unit ball in A. Therefore for v ∈ BA,

φ(c± δv) ≥ 0,

and

φ(c) ≥ δ sup
v∈BA

|φ(v)| = δ∥φ∥.

Step II: for any ρ > 0 there exists η > 0 such that

∀φ ∈ C◦ ∩BA′ , φ(a0) < η ⇒ φ(b) > −ρ.

Indeed, fix ρ > 0 and set

Vn(ρ) =

{
φ ∈ C◦ ∩BA′ ;φ(a0) ≤

1

n
and φ(b) ≤ −ρ

}
By the a0-conditional positivity of b w.r.t. C◦, we have⋂

n≥1

Vn(ρ) = ∅.

Since C◦ ∩ BA′ is compact by the Banach-Alaoglu theorem in the weak-* topology, and

since the Vn(ρ) ⊆ C◦ ∩ BA′ are weak-* closed, there exists n0 ∈ N such that Vn0(ρ) = ∅.

Take η = 1
n0

.

Step III: For any ε > 0 and c ∈ C an interior point, there exists n0 ∈ N such that for all

n ≥ n0,

∀φ ∈ C◦ ∩ SA′ , φ

(
a0 +

b+ εc

n

)
≥ 0,

where SA′ denotes the unit sphere in A′. Let δ > 0 be the real number guaranteed by

Step I such that φ(c) ≥ δ∥φ∥ for all φ ∈ C◦. Let η > 0 be the real number guaranteed by

Step II such that for all φ ∈ C◦ ∩BA′ with φ(a0) < η we have φ(b) ≥ −εδ.

Let φ ∈ C◦ ∩ SA′ . We distinguish two cases, according to the value of φ on a0.

Case φ(a0) < η: in this case we have

φ

(
a0 +

b+ εc

n

)
= φ(a0)︸ ︷︷ ︸

≥0

+
1

n

(
φ(b)︸︷︷︸
≥−εδ

+εφ(c)︸︷︷︸
≥δ

)
≥ 0.

Case φ(a0) ≥ η: now we get

φ

(
a0 +

b+ εc

n

)
= φ(a0)︸ ︷︷ ︸

≥η

+
1

n
φ(b+ εc) ≥ η − ∥b+ εc∥

n
,

which is positive as soon as n ≥ ∥b+εc∥
η .
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Step IV: By the Bipolar theorem, this means that for any ε > 0 and c ∈ C an interior

point there exists an n0 ∈ N such that for all n ≥ n0, a0 + b+εc
n ∈ C. Then we have

a0
(
a0 + b+εc

n

)
a0 = a0 + b+εa0ca0

n ∈ C.

Since C is stable under taking powers and closed, we get

expa0(b+ εa0ca0) = lim
n→∞

(
a0 +

b+ εa0ca0
n

)n

∈ C.

To conclude the proof we let ε↘ 0.

5.3 Application To The Semigroups Of k- (Super)Positive

Maps

Now we apply Theorem 5.2.1 to the algebra Lin(Mn(C))sa of hermitianity preserving linear

maps from Mn to Mn.

Theorem 5.3.1. Let

A = Lin(Mn(C))sa =
{
T ∈ Lin(Mn(C));T ◦ ∗ = ∗ ◦ T

}
and let C ⊆ A be one of the cones P1 = PM,P2, . . . ,Pn−1,Pn = CP = Sn,Sn−1,. . .

S2,S1 = EB, EBn−1, . . . EB1.

Fix an idempotent map Φ0 ∈ C. Then for Ψ ∈ A with Ψ ◦ Φ0 = Φ0 ◦ Ψ = Ψ the

following are equivalent.

(i) We have expΦ0
(tΨ) = Φ0 +

∑∞
n=1

tnΨ◦n

n! ∈ C for all t ≥ 0;

(ii) Ψ is Φ0-conditionally positive on C◦, i.e., we have

∀v ∈ C◦, ⟨v,Φ0⟩ = 0 ⇒ ⟨v,Ψ⟩ ≥ 0.

Proof. The hermitianity preserving maps on Mn form a real Banach algebra, when we

equip it with the norm induced by the operator norm on Mn
∼= Lin(Cn,Cn).

Proposition 2.3.4 ensures that all the cones are convex, solid, pointed and stable under

composition. Furthermore, they are closed under composition, so we have S◦n ∈ C and

T0 ◦ S ◦ T0 ∈ C for any S, T0 ∈ C and n ≥ 1.

Therefore, we can apply Theorem 5.2.1 to any pair (T0, S), with T0 an idempotent in

C and S ∈ A such that S ◦ T0 = T0 ◦ S = S, and the result follows.

In particular, if we take the cone of k-positive maps we obtain the the following result-
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Corollary 5.3.1. Take C = Pk with k ∈ {1, . . . , n} and T0 = Id = TI⊗I .

A semigroup Tt = exp(tS) with generator S = TW where W =
∑
Ai ⊗ Bi ∈ (Mn ⊗

Mop
n )sa, consists of k-positive maps for all t ≥ 0 if and only if

∀V ∈Mn,
(
rank(V ) ≤ k and Tr(V ) = 0

)
⇒

∑
Tr(AiV

∗)Tr(BiV ) ≥ 0.

Proof. Here we consider unital semigroups, i.e., T0 = Id, which belongs to Pk for all k ≥ 1.

Furthermore, the condition S ◦ T0 = T0 ◦ S = S now holds for any S ∈ Lin(Mn,Mn)her.

We know that

C◦ = P◦
k = Sk = convex hull of {TV⊗V ∗ ;V ∈Mn, rank(V ) ≤ k},

cf. [SSZ09].

Note that

⟨TV⊗V ∗ , Id⟩ = Tr(V ∗ ⊗ V ) = |Tr(V )|2 ,

since, by Proposition 4.1.1, T is an isomorphism of Hilbert spaces.

By Theorem 5.3.1, exp(tS) ∈ Pk for all t ≥ 0, iff S is Id-conditionally positive on

Sk = P◦
k , i.e. , if

∀φ ∈ Sk, ⟨φ, Id⟩ = 0 ⇒ ⟨φ, S⟩ ≥ 0.

Let us check that it is sufficient to verify this for φ ∈ {TV⊗V ∗ ;V ∈ Mn, rank(V ) ≤ k}.

Indeed, this set generates Sk. And, since for a convex combination φ =
∑
λiTVi⊗V ∗

i
with

λi > 0,
∑
λi = 1, we have〈∑

λiTVi⊗V ∗
i
, Id
〉

=
∑

λiTr(V ∗
i ⊗ Vi) =

∑
λi |Tr(Vi)|2 ,

we see that the condition ⟨φ, Id⟩ = 0 is satisfied for a convex combination iff it is satisfied

for each term.

If S = TW with W =
∑
Ai ⊗Bi ∈ (Mn ⊗Mop

n )sa, then

⟨TV⊗V ∗ , TW ⟩ = ⟨V ⊗ V ∗,W ⟩ = Tr (V ∗Ai ⊗ V Bi) = Tr(AiV
∗)Tr(BiV ),

which completes the proof.

Let {Bj}j=1,...,n2 be an orthonormal basis of Mn such that B1 = In and Tr(Bj) = 0 for

2 ≤ j ≤ n2. Taking {Bi⊗Bj}n
2

p,q=1 as a basis of Mn⊗Mop
n , or equivalently {Bi⊗B∗

j }n
2

i,j=1

of Mn ⊗M∗
n further we write S =

∑n2

i,j=1DijBi ⊗B∗
j , where Dij is a n2 × n2 matrix in C,

so that the map TS is given by

Ψ(X) = TS(X) =
n2∑

i,j=1

DijBiXB
∗
j (5.3.1)
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for all X ∈ Mn. The semigroup exp (tΨ) is Hermitianity preserving if and only if the

generator TS is hermitianity perserving if and only if the matrix (Dij) is hermitian.

Proposition 5.3.1. A semigroup Tt = exp tΨ is completely positive if and only if the

matrix (Dij)
n2

i,j=1 is hermitian and for any v = (0, v2, v3, · · · , vn2) ∈ Cn2
we have

⟨v|(Dij)
n2

i,j=1v⟩ ≥ 0,

Proof. Let V be a n× n matrix with the basis decomposition V =
∑n2

j=1 vjBj . The trace

conditions on Bj ’s implies that Tr(V ) = 0 if and only if v1 = 0. By a direct application of

Corollary 5.3.1 we see that the map TS with S =
∑n2

i,j=1Bi ⊗ B∗
j generates a completely

positive semigroup (i.e. n positive) if and only if for any V ∈Mn with Tr(V ) = 0, we have∑n2

i,j=1DijTr(BiV
∗)Tr(B∗

jV ) ≥ 0. Writing the basis decomposition of V in this condition,

we obtain

(∀(0, v2, v3, · · · , vn2) ∈ Cn2
) =⇒

n2∑
i,j=2

n2∑
k,l=2

Dij v̄kvlTr(BiB
∗
k)Tr(B∗

jBl) ≥ 0.

Because of the orthonormality of the basis Bi’s, Tr(BiB
∗
k) = δik and Tr(B∗

jBl) = δjl. Thus

the above condition becomes

n2∑
i,j=2

n2∑
k,l=2

Dij v̄kvlδikδjl =
n2∑

i,j=2

Dij v̄ivj ≥ 0,

which is the desired result.

From this result we can re-derive the Lindblad[Lin76], Gorini, Kossakowski, Sudar-

shan’s theorem [GKS76] on genereator of CP semigroup.

Theorem 5.3.2. An identity preserving semigroup exp (tΨ)) will be completely positive

for all time t ≥ 0 if and only if the generator Ψ has the form

Ψ(X) = i[H,X] +

k∑
j=1

{V ∗
j XVj −

1

2
(V ∗

j VjX +XV ∗
j Vj)}

for all X ∈Mn, where H is an hermitian matrix and V ∈Mn.

Proof. We use the basis decomposition 5.3.1 of the generator Ψ

Ψ(X) = D11X +

n2∑
i=2

Di1BiX +

n2∑
j=2

D1jXB
∗
j +

n2∑
i,j=2

DijBiXB
∗
j

As (Dij) is hermitian, if we denoteW :=
∑n2

i=2Di1Bi and κ := D11 thenW ∗ =
∑n2

j=2D1jB
∗
j

and κ is a real number. From the previous proposition 5.3.1 we know that (Dij)
n2

i,j=2 is
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a positive matrix. Therefore there exists A1, A2, ..., Ak ∈ Mn2−1 such that (Dij)
n2

i,j=2 =

A1A
∗
1 +A2A

∗
2 + ...+AkA

∗
k. If we write Ar = (ar(p, q)) then in terms of the coefficients of

the matrix Ar we have

Dij =
k∑

r=1

n2∑
p=2

ar(i, p)ar(j, p).

Substituting these in the above expression of Ψ and regrouping the terms we obtain

Ψ(X) = κX +WX +XW ∗ +

k∑
r=1

n2∑
p=2

( n2∑
i=2

ar(i, p)Bi

)
X
( n2∑

j=2

ar(j, p)Bj

)∗
= κX +WX +XW ∗ +

n2∑
p=2

k∑
r=1

Vp,rXV
∗
p,r

where Vp,r :=
∑n2

i=2 ar(i, p)Bi. That the semigroup preserves the identity is equivalent to

the generator mapping it to zero i.e. Ψ(In) = 0. Plugging this condition we get

0 = κ+W +W ∗ +
∑
p

∑
r

Vp,rV
∗
p,r.

So we can set W = iH − 1
2κ − 1

2

∑
p

∑
r Vp,rV

∗
p,r, where H is a Hermitian matrix and

substituting it in the above expression of Ψ(X), we have

Ψ(X) = κX + (iH − 1

2
κ− 1

2

∑
p

∑
r

Vp,rV
∗
p,r)X +X(−iH − 1

2
κ− 1

2

∑
p

∑
r

V ∗
p,rVp,r)

+
∑
p

∑
r

Vp,rXV
∗
p,r

= i[H,X] +
∑
p

∑
r

{
Vp,rXV

∗
p,r −

1

2

(
Vp,rV

∗
p,rX +XV ∗

p,rVp,r

)}

5.4 Positive Semigroups On M2(C)

In [Car04] positive semigroup has been characterized in terms of the generator of the

semigroup. Here we give another characterization of the same, following the discussion

above. The Pauli matrices are unitary matrices

σ0 = 1
2

1 0

0 1

 , σ1 = 1
2

0 1

1 0

 , σ2 = 1
2

0 −i

i 0

 , σ3 = 1
2

1 0

0 −1

 ,
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which form an orthogonal basis of M2 with respect to Hilbert-Schmidt inner product.

Moreover, they satisfy the following relations

σ2p = σ20, σpσq = −σqσp, σpσq = iσrσ0

if (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. Decomposing a matrix V with respect to these

basis i.e V =
∑3

p=0 vpσp, we observe that V has the form

1

2

 v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

 .
It is easy to see that

(i) V has trace zero if anf only if v0 = 0,

(ii) it has rank one if and only if det(V ) = 0 i.e. v20 = v21 + v22 + v23.

For a semigroup exp (tΦ) on M2 we can write the generator again in terms of Pauli basis

as in 5.3.1-

Φ = TS , where S =
3∑

p,q=0

Dp,qσp ⊗ σq.

Proposition 5.4.1. A semigroup exp (tΦ) is positive if and only the matrix (Dpq)
3
p,q=0 is

hermitian and for all v = (v1, v2, v3) ∈ C3 with v21 + v22 + v23 = 0 we have

⟨v|(Dpq)
3
p,q=1v⟩ ≥ 0 (5.4.1)

where (Dpq)
3
p,q=1 is the 3× 3 submatrix of the matrix (Dij)

3
i,j=0, defined above. Moreover,

it is identity preserving if and only if the following relations are satisfied,

3∑
p=0

Dpp = 0, and (Dp0 +D0p) + i(Dqr −Drq) = 0

for (p, q, r) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

Proof. As a direct application of coroallary 5.3.1 it follows that the semigroup exp (tΦ) is

positive if and only if for any V ∈M2 with rank(V ) = 1 and Tr(V ) = 0

3∑
p,q=0

DpqTr(σpV
∗)Tr(σqV ) ≥ 0 (5.4.2)

As we observed, expanding V in the Pauli basis V =
∑3

j=0 vjσj the rank and trace

conditions translate into v0 = 0 and
∑3

j=1 v
2
j = 0. Plugging this decomposition of V in
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the expression 5.4.2 it becomes

3∑
p,q=0

3∑
j,k=0

DpqvjvkTr(σpσj)Tr(σqσk) =

3∑
p,q=0

3∑
j,k=0

vjvkδpjδqk

=
1

4

3∑
p,q=1

Dpqvpvq ≥ 0,

which gives the desired inequality.

To obtain the conditions of hermitianity and identity preserving property, it is easy to

see that

(i) exp (tΦ) is hermitianity preserving if and only if the generator Φ = TS has the same

property, which is equivalent to the matrix (Dpq)
3
p,q=0 being hermitian.

(ii) The semigroup preserves identity if and only if the generator Φ takes identity to zero

i.e. TS(σ0) = 0.

5.5 A General 4-Parameter Family Of Semigroups

Now we discuss as an example the semigroup generated by 4 parameter family L = αP +

βD+γT + δId and time evolution for specific cases in M2. As all the operators P,D, T, Id

commute, the semigroup generated is given by

exp (tL) =et(β+γ+δ)(etα − 1)P + et(γ+δ)(etβ − 1)D + etδ
(etγ − e−tγ)

2
T

+ etδ
(etγ + e−tγ)

2
Id

5.5.1 The Depolarising Channel

We consider the semigroup Tα,δ = exp t(αP + δId). This semigroup is again a linear

combination of the operator P and identity,

Tα,δ(t) = exp
(
t(αP + δId)

)
= eδt(eαt − 1)︸ ︷︷ ︸

=:α(t)

P + eδt︸︷︷︸
=:δ(t)

Id,

which, by Lemma 2.5.1, is k-positive iff

α(t) ≥ 0 and δ(t) ≥ −α(t)

kn

This condition is satisfied for all t ≥ 0 iff eαt ≥ 1 for all t ≥ 0 iff α ≥ 0.
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If we consider the identity preserving semigroup generated by the operator P and the

identity operator i.e. the semigroup Tα,−α. we can see that it is a convex combination of

P and the identity opearator

Tα,−α = exp tα(P − Id) = (1 − e−tα)P + e−tαId.

which is completely positive for all t ≥ 0 iff α ≥ 0. What is more, in this case the

semigroup converges to P as t → ∞, which we know by Lemma 2.3.3 to be an interior

point of the cone EB or 1-superpositive. So if α ≥ 0, the semigroup Tα,−α enters the cone

EB in finite time t1 > 0. The Choi matrix of the semigroup is given by

CTα,−α =


1
2(1 + e−tα) 0 0 e−tα

0 1
2(1 − e−tα) 0 0

0 0 1
2(1 − e−tα) 0

e−tα 0 0 1
2(1 + e−tα)

 .

To decide when the semigroup enters EB we use Peres-Horodeci (or PPT) criterion. If T

is the transpose map then

(Id ⊗ T )Cexp (tL) =


1
2(1 + e−tα) 0 0 0

0 1
2(1 − e−tα) e−tα 0

0 e−tα 1
2(1 − e−tα) 0

0 0 0 1
2(1 + e−tα)

 .

So Tα,−α is in EB if and only if CTα,−α is separable if and only if (Id⊗T )CTα,−α is positive

(by PPT criterion, see [Per96],[HHH96]). We can easily check that the above matrix is

positive iff the determinant∣∣∣∣∣∣
1
2(1 − e−tα) e−tα

e−tα 1
2(1 − e−tα)

∣∣∣∣∣∣ = −3

4
e−2tα − 2e−tα + 1.

is positive. Replacing by x = e−tα in the above expression, we observe that the polynomial

−3
4x

2 − 2x+ 1 has the positive root x0 := −4
3 + 2

√
7
3 in the interval [0, 1]. The polynomial

is positive on the interval [0, x0] and negative on [x0, 1]. Thus the semigroup enters the

cone S1 at the time

t1 = − 1

α
ln

(
−4

3
+

2
√

7

3

)
.
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5.5.2 Transposition

We consider the identity preserving semigroup generated by the transposition and the

depolarizing channel i.e. by the generator L = αP + γT − (α + γ)Id, for α, γ ∈ R. Since

all the quantities T, P, Id commutes we have

exp(tL) = exp(tγ(T − Id)) exp(tα(P − Id))

= e−tα 1 + e−2tγ

2
Id+ e−tα 1 − e−2tγ

2
T + (1 − e−tα)P,

which is a convex combination of the Id, T and P .

If we take α, γ > 0, then in general it is a positive semigroup but not necessarily

completely positive.

If the parameter α = 0 then the semigroup is just convex combination of Id and T ,

which converges to 1
2(Id + T ) as t→ ∞.

If α > 0, then the semigroup eventually becomes completely positive, even 1-superpositive

as it converges to P .

We compute the Choi matrix of of the semigroup exp (tL),

Cexp (tL) = ρtCId + µtCT + νtCP , (5.5.1)

where ρt = e−tα 1+e−2tγ

2 , µt = e−tα 1−e−2tγ

2 and νt = (1 − e−tα). Using the same arguments

as in Proposition 2.5.1, the Choi matrix is positive iff the eigenvalues νt
n − µt and νt

n + µt

are positive. Combining these two conditions, we conclude that the semigroup exp (tL)

becomes CP at time t iff

νt
n

≥ |µt| i.e. 2(eαt − 1) ≥ n|1 − e−2tγ |.

The above inequaility shows that even if γ >> α > 0 it is possible that the semigroup not

CP for certain time but ultimately becomes CP and then superpositive after finite time. If

γ = α > 0 then substituting x = eαt in the above inequality gives the following criterion,

2x3 − (2 + n)x2 + n ≥ 0.

The polynomial p(x) = 2x3 − (2 + n)x2 + n has two positive roots- 1 and n+
√
n2+8n
4 , and

p(x) ≥ 0 for x ≥ n+
√
n2+8n
4 . The root 1 corresponds to the time t = 0. So the semigroup

becomes CP at time t1 = 1
α ln n+

√
n2+8n
4 .
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We can find the time when the semigroup becomes 1-superpositive using again PPT

criterion for the case M2(C).

(Id ⊗ T )Cexp tL =


ρt + µt + 1

2νt 0 0 µt

0 1
2νt ρt 0

0 ρt
1
2νt 0

µt 0 0 ρt + µt + 1
2νt

 .

The above matrix is positive iff the determinant

∣∣∣∣∣∣
1
2νt ρt

ρt
1
2νt

∣∣∣∣∣∣ = 1
4ν

2
t − ρ2t is positive, which

gives the condition

2 ≤ etα − e−2tγ . (5.5.2)

If γ = α > 0 then substituting x = etα in the abive inequality gives that

x3 − 2x2 − 1 ≥ 0.

If ξ is the positive root of the polynomial then we see that at the time t2 = 1
ν ln ξ the

semigroup becomes 1-superpositive.
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[KR05] Andreas Klappenecker, Martin Rötteler, On The Monomiality of Nice Error

Bases. IEEE Trans. Inf. Theory 51, No. 3, 1084-1089 (2005).

[Kra70] K. Kraus, General State Changes in Quantum Theory, Annals of Physics, 64,

311-335 (1970).

[Kye22] Seung-Hyeok Kye, Compositions and Tensor Products of Linear Maps on Ma-

trix Algebras, arxiv: 2204.02516v2
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