Error basis, quantum channel and seimgroup of various positive operators
 Purbayan Chakraborty

To cite this version:

Purbayan Chakraborty. Error basis, quantum channel and seimgroup of various positive operators. Operator Algebras [math.OA]. Université Bourgogne Franche-Comté, 2023. English. NNT: 2023UBFCD045 . tel-04529552

HAL Id: tel-04529552
https://theses.hal.science/tel-04529552
Submitted on 2 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Crrs

Error Basis, Quantum Channel and Semigroups of Various Positive Operators

Base d'Erreur, Canal Quantique, Semigroupe de Divers Opérateurs Positifs

THÈSE DE DOCTORAT DE L'ÉTABLISSEMENT UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ PRÉPARÉE A L'UNIVERSITÉ DE FRANCHE-COMTÉ

Ecole doctorale n ${ }^{\circ} 553$
CARNOT PASTEUR
Doctorat de Mathématiques
Par
M. CHAKRABORTY Purbayan

Thèse présentée et soutenue à Besançon, le 8 Sepembre 2023

Composition du Jury :

M, Bhat, B. V. Rajarama	Professeur, Indian Statistical Institute Banagalore	Président
M, Schürmann, Michael	Professeur émérite, University of Greifswald	Rapporteur
M, Nechita, Ion	Chargé de Recherche, Université de Toulouse III	Rapporteur
M, Bourin, Jean-Christophe	Maître de conférences, Université de Franche-Comté	Examinateur
M, Holweck, Frédéric	Maître de conférences, Université de Technologie de- Belfort-Montbéliard	Examinateur
M, Franz, Uwe	Professeur, Université de Franche-Comté	Directeur de thèse

Contents

0.1 Notations and Conventions 6
1 Introduction 7
1.1 Presentation of the Thesis 9
1.2 Notations and Conventions 13
2 Positive Cones 15
2.1 Quantum States In $M_{n}(\mathbb{C})$ 16
2.2 Positive Cones In $M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ 18
2.3 Positive Cones $\operatorname{In} \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ 20
2.3.1 Choi-Jamiłokowski Isomorphism 22
2.3.2 Positive Cones $\operatorname{In} \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ 23
2.4 Equivariance And k-Positivity 31
2.5 A 4-Parameter Family Of Maps 34
3 Error Basis 39
3.1 Shift And Multiply Basis 40
3.2 Nice Error Basis 42
4 Error Basis and Quantum Channel 53
4.1 Convenient Basis Of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ 53
4.1.1 Examples 56
4.2 Correspondence between Choi matrix C_{α} and D_{α} 58
4.3 Characterisation of positive and completely positive maps 60
5 Semigroup Of Different Positive Maps 65
5.1 Non-unital Semigroups 66
5.1.1 Examples Of k-Positive Semigroups 67
5.2 A Schoenberg Type Correspondence For General Non-unital Semigroups 68
5.3 Application To The Semigroups Of k- (Super)Positive Maps 70
5.4 Positive Semigroups On $M_{2}(\mathbb{C})$ 73
5.5 A General 4-Parameter Family Of Semigroups 75
5.5.1 The Depolarising Channel 75
5.5.2 Transposition 77

0.1 Notations and Conventions

In the following discussion we will often use Dirac's bra-ket notation to denote rank-one operators. To define it in short, we understand $|x\rangle$ to be a vector in some Hilbert space \mathbb{C}^{n} and $\langle x|$ to be its dual vector. Then for two vectors $x, y \in \mathbb{C}^{n}$ we define the rank one operator $|x\rangle\langle y|$ by-

$$
|x\rangle\langle y|(z):=\langle y \mid z\rangle x
$$

for any $z \in \mathbb{C}^{n}$. The space of $n \times n$ and $n \times m$ matrices will be denoted by $M_{n}(\mathbb{C})$ and $M_{n, m}(\mathbb{C})$ respectively. If $\left\{e_{i}\right\}_{i=1}^{n}$ is the standard basis of \mathbb{C}^{n} and $\left\{E_{i j} ; 1 \leq i, j \leq n\right\}$ is the standard matrix units (i.e. 1 at ij-th position and zero everywhere else) then one can easily verify that $E_{i j}=\left|e_{i}\right\rangle\left\langle e_{j}\right|$. We will use $\operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ to denote the set of all linear maps from $M_{n}(\mathbb{C})$ to $M_{m}(\mathbb{C})$. If $n=m$ we will abbreviate it to $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right.$). We will frequently use the notation $M_{n}(\mathbb{C})^{*}$ which is defined by $M_{n}(\mathbb{C})^{*}:=\left\{A^{*}: A \in M_{n}(\mathbb{C})\right\}$.

Chapter 1

Introduction

Two basic ingredients of any information theory whether it is classical or quantum, are the information we want to communicate and a medium or channel to communicate. The information is a set of elements and a channel is a map on that information set. Now in the formalism of quantum mechanics every system corresponds to a Hilbert space which is usually taken to be of finite dimension in quantum information theory. For a system corresponding to a Hilbert space of dimension n, say \mathbb{C}^{n}, all the information of a quantum system is encoded in a quantum state which is mathematically represented by a positive matrix $\rho \in M_{n}(\mathbb{C})$ of trace 1. A quantum channel S is then a map which takes a state ρ as an input and produces another state $S(\rho)$ in some system represented by the Hilbert space \mathbb{C}^{m} of certain dimesnion m (or the same system \mathbb{C}^{n}). To formalise, we need a map $S: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ that takes a positive matrix of $M_{n}(\mathbb{C})$ to a positive matrix of $M_{m}(\mathbb{C})$ and which preserves the trace of the input matrix. There are sufficient reasons to assume this map S to be linear. A non-linear map will violate the notion of locality i.e. the idea that any spatially localised action does not immediately influence distant parts (see sec. 1.4, [Wol12]). So we see that it requires our channel S to be a linear positivity and trace preserving map. But it turns out that such assumptions are not sufficient. What we need a stronger notion of positivity for S. Suppose we adjoin another system of dimension k (e.g. ancilla, environment) to our initial system so that the joint system is represented by the Hilbert space $\mathbb{C}^{k} \otimes \mathbb{C}^{n}$. We want our channel S to act on the initial system without affecting the ancillary system i.e. $S: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is a linear, trace and positivity preserving map such that the augmented map $\left(\operatorname{Id}_{k} \otimes S\right): M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$ is also positivity preserving. Such an S is called k-positive. The dimension of the ancillary system could be any natural number k. Thus, we need $\left(\operatorname{Id}_{k} \otimes S\right): M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C}) \rightarrow$
$M_{k}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ to be positivity preserving for any natural number k. Such linear maps are called completely positive maps. With all these above ideas the quantum channel turns out to be a completely positive trace preserving linear map. Among all the various ways to define positivity of a linear map completely positive maps are most well understood object both mathematically and physically [Kra70]. The k positive maps or just the positive map lack the direct physical interpretation. But nonetheless they are very much important yet not so well understood objects in mathematics or mathematical quantum information. Entanglement is a phenomenon lying at the heart of quantum mechanics. It is one of the key properties which makes quantum mechanics completely different from any classical theory. To put it in simple terms- if we have two systems, possibly spatially separated, then unlike the classical case it is not possible to treat each system as an individual subsystem if they share a joint entangled state. We need to treat the two systems as a whole. If we perform any measurement on one subsystem then it immediately affects our description of the other subsystem and this has surprising consequences that do not occur for classically correlated systems. Positive or k-positive maps are deeply related to the entanglement theory as the k-entangled states are dual objects of k positive maps if we define a suitable duality between the spaces $M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ and $\operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$.

Another crucial role that the positive linear maps plays is to describe the dynamics of open quantum system. If a sub-atomic particle is not interacting with the environment then we call the system to be closed. The dynamics of such system is described by the Schrödinger's wave equation. If ρ represents the quantum state of a closed system at the time $t=0$ then the state of the system at then after some time $t>0$ is given by $\rho_{t}=U_{t}^{*} \rho U_{t}$ for some one parameter group of unitary operators $\left\{U_{t}: t \in \mathbb{R}\right\}$. Stone's theorem says that there is a unique Hermitian operator H (called the Hamiltonian) such that $U_{t}=\exp (i t H)$ (see theorem 4.3.11, [App19]). This H is the generator of the one parameter group of unitaries U_{t}. But if the system is interacting with the environment then we have to take into account the joint system of (environment + initial open system). Locally the dynamics of such open system is decribed by one-parameter semigroup of completely positive maps. Mathematically, this is a consistent description with respect to the Schrödinger's unitary evolution theory since a famous result of Stinespring, known as the Stinespring dilation theorem (see theorem 2.2, [Wol12]) says that such any such semigroup of completely positive map can be extended to a unitary evolution of a bigger space. To put it in other way, if we consider the (open system + environment) to be a
closed system, any dynamics of initial system described by the semigroup of completely positive maps corresponds to a dynamics of the bigger joint system described by unitary operators. It was proved by Lindblad, Gorini, Kossakowski, Sudarshan(LKGS) [Lin76] [GKS76] that a semigroup of linear maps $(\exp (t \Phi))_{t \geq 0}$ on $M_{n}(\mathbb{C})$ describes a semigroup of completely positive, identity preserving map if and only if

$$
\Phi(X)=i[H, X]+\sum_{j=1}^{k}\left\{V_{j}^{*} X V_{j}-\frac{1}{2}\left(V_{j}^{*} V_{j} X+X V_{j}^{*} V_{j}\right)\right\}
$$

for some Hermitian matrix H (Hamiltonian) and a set of matrices $\left(V_{j}\right)_{j=1}^{k} \subset M_{n}(\mathbb{C})$.
So to summarise the two models- the dynamics of closed and open system respectively are connected by the Stinespring's dilation theorem and what Stone's theorem stands for closed quantum system i.e. to describe the generator, LKGS's theorem does the analogous thing for open quantum system.

1.1 Presentation of the Thesis

The second chapter briefly discusses the existing results on different cones of positive operators which are very much important to both operator theory and quantum information. These are mostly works of Choi[Choi75], Kraus[Kra70], De Pillis[Pil67], Jamiołkowski[Jam72], Skowronek, Størmer, Zyczkowski [SSZ09], Ranade, Ali [RA07]. We will begin with the notion of quantum state, separability and entanglement. Then we will start with the conjugate map $A d_{S}: X \mapsto S^{*} X S$, the simplest of the positive maps and will gradually try to introduce different positive cones of operators. The third chapter discusses the nice error basis and its constructions which are mainly the results E. Knill, A. Klappenecker, M. Rötteler [Kni96], [KR02],[KR05].

The last two chapters of the present thesis i.e. the chapter 4 and the chapter 5 consist of the research works that we have done. Our main motivations of the work for this thesis are two questions. First, does having a good basis of the space $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ the space of linear maps on $M_{n}(\mathbb{C})$, help to understand positivity of a linear map? Second, can we characterise the semigroup of k -(super)positive maps in terms of its generator, similar to the LKGS result for the completely positive semigroup? Chapter 4 is devoted to the first question and Chapter 5 to the second.

Chapter 4 is based on our paper [BCF23(ii)]. In this chapter, we take advantage of the notion of nice error basis (NEB) of $M_{n}(\mathbb{C})$ to construct a conveninent basis of the space
$\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$. A nice error basis is a unitary projective representation $\left\{\pi_{g} \in \mathcal{U}(n): g \in\right.$ $G\}$ of a group G of order n^{2} such that the trace of each such representative π_{g} is zero except for $g=1$, the group identity element. The projective representation is a twisted homomorphism by a 2 -cocycle i.e. $\pi_{g} . \pi_{h}=\omega(g, h) \pi_{g h}$ for any $g, h \in G$ and a 2-cocycle $\operatorname{map} \omega: G \times G \rightarrow \mathbb{C}$ (see def. 3.2.1). Such a set of unitary matrices forms an orthogonal basis of $M_{n}(\mathbb{C})$ with respect to the Hilbert-Schmidt inner product. Now consider the map $T: M_{n}(\mathbb{C}) \otimes M_{n}^{*}(\mathbb{C}) \ni A \otimes B^{*} \mapsto T_{A, B^{*}} \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ where the linear map $T_{A, B^{*}}$ is given by $T_{A, B^{*}}: X \mapsto A X B^{*}$ for any $X \in M_{n}(\mathbb{C})$. The map T can be extended linearly to a Hilbert space isomorphism between the space $M_{n}(\mathbb{C}) \otimes M_{n}(\mathbb{C})^{*}$ and $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$. So if $\left\{B_{i}: 1 \leq i \leq n^{2}\right\}$ is a basis of $M_{n}(\mathbb{C})$ then $\left\{T_{B_{i}, B_{j}^{*}}: 1 \leq i, j \leq n^{2}\right\}$ is a basis of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$. In particular if we take an NEB $\left\{\pi_{g}: g \in G\right\}$ as a basis of $M_{n}(\mathbb{C})$ then $\left\{T_{x, y}:=\pi_{x}(\cdot) \pi_{y}^{*}: x, y \in G\right\}$ is a basis of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$. What is more $\left\{T_{x, y}: x, y \in G\right\}$ is also an NEB of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ if we identify the space with $M_{n^{2}}(\mathbb{C})$. As an example of NEB we will do the computation with Weyl operators $\left\{W_{x}: x \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}\right\}$ (see subsection 3.2). We decompose a linear map α on $M_{n}(\mathbb{C})$ with respect to an NEB $\left\{T_{x, y}: x, y \in G\right\}$ i.e. $\alpha=\sum_{x, y \in G} D_{\alpha}(x, y) T_{x, y}$ to obtain a $n^{2} \times n^{2}$ decomposition coefficient matrix D_{α} (or a kernel on $G \times G)$. We now try to characterise different positivity properties of α with respect to D_{α}. We will prove the following result on 1-positivity-

Theorem 1.1.1. Let $\left\{B_{x}\right\}_{x=1,2 \ldots n^{2}}$ be a basis of $M_{n}(\mathbb{C})$. Consider a linear map $\alpha \in$ $L\left(M_{n}(\mathbb{C})\right)$ of form $\alpha(X)=\sum_{x, y=1}^{n^{2}} D_{\alpha}(x, y) B_{x} X B_{y}^{*}$. Then α is
i. Hermitianity preserving if and only if D_{α} is Hermitian.
ii. positive if and only if for any $v, w \in \mathbb{C}^{n}$,

$$
\langle v \otimes w, \tilde{\alpha}(v \otimes w)\rangle \geq 0
$$

where $\tilde{\alpha}=\tau \circ \sum_{x, y=1}^{n^{2}} D_{\alpha}(x, y)\left(B_{x} \otimes B_{y}^{*}\right)$ and $\tau(u \otimes v)=v \otimes u$ is the flip operator.
We will show a characterisation of complete positivity-
Theorem 1.1.2. A linear map $\alpha \in \operatorname{Lin}\left(M_{n}\right)$ is a completely positive map with Kraus rank r if and only if the corresponding coefficient matrix $D_{\alpha} \in M_{n^{2}}(\mathbb{C})$ is positive semi-definite of rankr.

One should observe the similarity of the properties of D_{α} and Choi-Jamiołkowski matrix C_{α}. We will also show the following correspondence between D_{α} and Choi matrix C_{α}

Proposition 1.1.1. If $T_{x, y}$ is defined with respect to the Weyl operators and if α is of the form $\alpha=\sum_{x, y \in \mathbb{Z}_{n} \times Z_{n}} D_{\alpha}(x, y) T_{x, y}$, then its Choi-Jamiotkowski matrix is given by

$$
C_{\alpha}(v, w)=\sum_{x_{2}, y_{2} \in \mathbb{Z}_{n}} \frac{\varkappa\left(x_{2}, v_{1}\right)}{\varkappa\left(y_{2}, w_{1}\right)} D_{\alpha}\left(\left(v_{2}-v_{1}, x_{2}\right),\left(w_{2}-w_{1}, y_{2}\right)\right)
$$

for $v, w \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}$. Conversely, D_{α} can be computed from the Choi-Jamiotkowski matrix via

$$
D_{\alpha}(x, y)=\frac{1}{n} \sum_{a, b \in \mathbb{Z}_{n}} \frac{\varkappa\left(y_{2}, b\right)}{\varkappa\left(x_{2}, a\right)} C_{\alpha}\left(\left(a, a+x_{1}\right),\left(b, b+y_{1}\right)\right)
$$

for $x, y \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}$.

We will also characterise complete co-positivity of α.

Theorem 1.1.3. A linear map $\alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ is completely co-positive iff the convolution product

$$
\sum_{p, q \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}} \frac{\chi(p, x-p)}{\chi(q, y-q)} \operatorname{Tr}\left(\bar{W}_{p} W_{q}\right) D_{\alpha}(x-p, y-q)
$$

is positive semi-definite.

We will show a characterisation of entanglement breaking map for the special case of dimension $n=2$.

Corollary 1.1.1. A linear map $\alpha \in \operatorname{Lin}\left(M_{2}\right)$ is 1-super positive iff $D_{\alpha}=\sum_{j=1}^{r}\left|l_{j}\right\rangle\left\langle l_{j}\right|$ where $l_{j}=\left(l_{j}(1), \ldots, l_{j}(4)\right)^{t}$ is a vector in \mathbb{C}^{4} satisfying $l_{j}(1)^{2}=\sum_{k=2}^{4} l_{j}(k)^{2}$.

The final chapter i.e. chapter 5 is based on our paper [BCF23(i)]. This chapter of the present thesis is about the second question we posed on the topic of one parameter semigroup of positive operators. We were motivated by the Lindblad, Gorini, Kossakowski, Sudarshan's theorem on the characterisation of the generator of a semigroup of completely positive maps to ask if it is also possible to give a characterisation of semigroup of other positive maps e.g. k-(super)positive maps. For this we generalise a result of M. Schürmann [Sch85] on the Schoenberg type correspondence of unital semigroup to its non-unital version. We prove the following result

Theorem 1.1.4. Let A be a real Banach algebra with a closed convex cone $C \subseteq A$ with non-empty interior. Let $a_{0} \in C$ be an idempotent such that for any $c \in C$, we have $a_{0} c a_{0} \in C$.

We assume furthermore that for any $c \in C$ we have $c^{n} \in C$ for $n \geq 1$.
Then, for any $b \in A$ such that $b a_{0}=a_{0} b=b$, the following statements are equivalent.
(i) b is a_{0}-conditionally positive on C°, i.e., $\varphi(b) \geq 0$ for all $\varphi \in C^{\circ}$ with $\varphi\left(a_{0}\right)=0$.
(ii) $\exp _{a_{0}}(t b):=\lim _{n \rightarrow \infty}\left(a_{0}+\frac{t b}{n}\right)^{n} \in C$ for all $t \geq 0$.

The reason we couldn't use the Schürmann's original result directly was that in his version of the result the cone contained the unit of the Banach algebra and the semigroup started at the unit element. But if we wish to consider a general positive cone in $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)^{\text {sa }}$ then it does not necessarily contain the identity map. For example, the cone of k-super positive maps (or also known as k-partially entanglement breaking map) does not contain the identity map for $k<n$. So a semigroup of k -super positive maps can not start at the identity map at $t=0$. With the non-unit version of the Schoenberg type correspondence mentioned above we will prove the following result.

Theorem 1.1.5. Let

$$
A=\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)^{\mathrm{sa}}=\left\{T \in L\left(M_{n}, M_{n}\right) ; T \circ *=* \circ T\right\}
$$

and let $C \subseteq A$ be one of the cones of k-positive, completely positive or k-super positive maps,

Fix an idempotent map $\Phi_{0} \in C$. Then for $\Psi \in A$ with $\Psi \circ \Phi_{0}=\Phi_{0} \circ \Psi=\Psi$ the following are equivalent.
(i) We have $\exp _{\Phi_{0}}(t \Psi)=\Phi_{0}+\sum_{n=1}^{\infty} \frac{t^{n} \Psi^{\circ n}}{n!} \in C$ for all $t \geq 0$;
(ii) Ψ is Φ_{0}-conditionally positive on C°, i.e., we have

$$
\forall v \in C^{\circ}, \quad\left\langle v, \Phi_{0}\right\rangle=0 \quad \Rightarrow \quad\langle v, \Psi\rangle \geq 0 .
$$

In particular we have the following characterisation of the generator of a semigroup of k-positive maps-

Corollary 1.1.2. $\Psi=T_{S}$ with $S=\sum A_{i} \otimes B_{i} \in\left(M_{n} \otimes M_{n}^{o p}\right)^{\text {sa }}$ generates a semigroup $T_{t}=\exp (t \Psi), t \geq 0$, of k-positive maps if and only if

$$
\forall V \in M_{n}, \quad(\operatorname{rank}(V) \leq k \text { and } \operatorname{Tr}(V)=0) \quad \Rightarrow \quad \sum \operatorname{Tr}\left(A_{i} V^{*}\right) \operatorname{Tr}\left(B_{i} V\right) \geq 0
$$

We can also retrieve the LKGS theorem using this characterisation. We will end the present thesis by our discussion on few examples of semigroup of positive operators generated by the depolarising channel P, transposition T, conditional expectation onto diagonal C and identity Id i.e. the semigroup $\exp t(\alpha P+\beta T+\gamma C+\delta \mathrm{Id})$, where $\alpha, \beta, \gamma, \delta \in \mathbb{R}$.

1.2 Notations and Conventions

In the following discussion we will often use Dirac's bra-ket notation to denote rank-one operators. To define it in short, we understand $|x\rangle$ to be a vector in some Hilbert space \mathbb{C}^{n} and $\langle x|$ to be its dual vector. Then for two vectors $x, y \in \mathbb{C}^{n}$ we define the rank one operator $|x\rangle\langle y|$ by-

$$
|x\rangle\langle y|(z):=\langle y \mid z\rangle x
$$

for any $z \in \mathbb{C}^{n}$. The space of $n \times n$ and $n \times m$ matrices will be denoted by $M_{n}(\mathbb{C})$ and $M_{n, m}(\mathbb{C})$ respectively. If $\left\{e_{i}\right\}_{i=1}^{n}$ is the standard basis of \mathbb{C}^{n} and $\left\{E_{i j} ; 1 \leq i, j \leq n\right\}$ is the standard matrix units (i.e. 1 at ij-th position and zero everywhere else) then one can easily verify that $E_{i j}=\left|e_{i}\right\rangle\left\langle e_{j}\right|$. We will denote $\operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ the set of all linear maps from $M_{n}(\mathbb{C})$ to $M_{m}(\mathbb{C})$. If $n=m$ we will abbreviate it to $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right.$). We will frequently use the notation $M_{n}(\mathbb{C})^{*}$ which is defined by $M_{n}(\mathbb{C})^{*}:=\left\{A^{*}: A \in M_{n}(\mathbb{C})\right\}$.

Chapter 2

Positive Cones

We recall some definitions and basic facts on cones.

Definition 2.0.1. A subset C of a topological vector space V over \mathbb{R} is called a convex cone or just cone if there is no confusion if for any two elements $x, y \in C$ and $\alpha \geq 0$ we have $\alpha x+y \in C$. Furthermore, we call a cone solid if it has nonempty interior and it is pointed if $C \cap(-C)=\{0\}$.

Definition 2.0.2. For a cone $C \subseteq V$ we define its dual cone C°,

$$
C^{\circ}:=\left\{z \in V^{\prime} ;\langle z, x\rangle \geq 0, x \in C\right\}
$$

where V^{\prime} is the topological dual space of V.
The following results are well known so we mention without proof (see Lemma 3.2, Corollary 3.3 [AT07]).

Proposition 2.0.1. Let C be a closed convex cone in \mathbb{R}^{n}. Then the following statements are equivalent:
a. C is pointed i.e. $C \cap(-C)=\{0\}$.
b. $C^{\circ}-C^{\circ}=\mathbb{R}^{n}$.
c. C° has non-empty interior.
d. $\operatorname{span}\left(\mathrm{C}^{\circ}\right)=\mathbb{R}^{\mathrm{n}}$.

If we assume C is closed (which is the case for all cones we give as examples) the same results hold if we replace C by C° in the above proposition via the Bipolar theorem $\left(C^{\circ}\right)^{\circ}=C($ see theorem $5.5,[\operatorname{Sim} 11])$.

2.1 Quantum States $\operatorname{In} M_{n}(\mathbb{C})$

Let \mathcal{H} be a Hilbert space of dimension n. A pure state of \mathcal{H} is a vector $|x\rangle$ in \mathcal{H} such that $\|x\|=1$. We can also associate to the unit vector x the rank one projection $P_{x} \in M_{n}(\mathbb{C})$ onto the subspace generated by the unit vector $x \in \mathcal{H}$. Upto the bijection $|x\rangle \leftrightarrow P_{x}$, we use the term pure state to denote both $|x\rangle$ and P_{x}. We say a state is mixed if it is convex combination of pure states i.e. $\rho \in M_{n}(\mathbb{C})$ is a mixed state if

$$
\rho=\sum_{k=1}^{r} \lambda_{k} P_{x_{k}} \quad \text { and } \quad \sum_{k=1}^{r} \lambda_{k}=1,
$$

where $P_{x_{k}}$ is the projection onto the subspace generated by $\left|x_{k}\right\rangle$. In general, a quantum state ρ is described by a positive semi-definite operator on $\mathcal{H}=\mathbb{C}^{n}$ of trace 1 which is also called a density matrix. This does not lead to confusion since any such positive matrix of trace 1 has the spectral decomposition of the above mentioned form. The trace condition is important for describing a physical system but as we can always normalise a positive matrix when ever it is convenient we can easily get rid of it. So by a state or density matrix (non-normalised) $\rho \in M_{n}(\mathbb{C})$, we usually understand it as a positive matrix $\rho \geq 0$. The collection of such non-normalised states will be denoted by $M_{n}(\mathbb{C})^{+}$. If we denote the set of all Hermitian (or self-adjoint) matrices of $M_{n}(\mathbb{C})$ by $M_{n}^{\text {sa }}(\mathbb{C})$ then $M_{n}(\mathbb{C})^{+} \subset M_{n}^{\text {sa }}(\mathbb{C})$. Observe that $M_{n}^{\text {sa }}(\mathbb{C})$ is a vector space over \mathbb{R} of dimension n^{2}.

Now let's consider a composite quantum system of two subsystem $\mathcal{H}_{A}=\mathbb{C}^{n}$ and $\mathcal{H}_{B}=\mathbb{C}^{m}$. The joint quantum system is described by the tensor product of individual subsystems i.e. $\mathcal{H}_{A} \otimes \mathcal{H}_{B}=\mathbb{C}^{n} \otimes \mathbb{C}^{m}$. We denote by $\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{\text {sa }}$ the real linear space of self-adjoint operators and by $\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{+}$the set of all positive operators on $\mathbb{C}^{n} \otimes \mathbb{C}^{m}$. One obvious way to construct a state or density operator on the joint system is to consider the convex combinations of tensor products of density operators of individual subsystems. But not all density operator of the joint system can be expressed in that manner.

Definition 2.1.1 (Separable state/Entangled state). A state $\rho \in\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{+}$ for some $n, m \in \mathbb{N}$ is called separable if and only if there exists finite sets of states $\left\{\rho_{i}^{(1)}\right\}_{i \in I} \subset M_{n}(\mathbb{C})^{+},\left\{\rho_{i}^{(2)}\right\}_{i \in I} \subset M_{m}(\mathbb{C})^{+}$and non-negative numbers $\left\{p_{i}\right\}_{i \in I}$ such that $\rho=\sum_{i \in I} p_{i} \rho_{i}^{(1)} \otimes \rho_{i}^{(2)}$ and $\sum_{i \in I} p_{i}=1$.

It is called entangled if it can not be expressed in the above manner.
There is an obvious isomorphism between $\mathbb{C}^{n} \otimes \mathbb{C}^{m}$ and the space of all linear maps
from \mathbb{C}^{n} to \mathbb{C}^{m} i.e. $\operatorname{Lin}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)=M_{n, m}(\mathbb{C})$. If $\left\{e_{i}\right\}_{i=1}^{n}$ and $\left\{f_{j}\right\}_{j=1}^{m}$ are two orthonormal bases of \mathbb{C}^{n} and \mathbb{C}^{m} respectively then for any vector $|x\rangle=\sum_{i, j} x_{i j}\left|e_{i}\right\rangle \otimes\left|f_{j}\right\rangle \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ the corresponding matrix $X=\sum_{i j} x_{i j}\left|e_{i}\right\rangle\left\langle f_{j}\right| \in M_{n, m}(\mathbb{C})$ is called the matrisation of the vector x. Conversely, for any matrix $X \in \operatorname{Lin}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ of the above form the corresponding vector $x \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ is called the vectorisation of X.

Theorem 2.1.1 (Schmidt decomposition). For each non-zero vector $x \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ there exists positive numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ for some $1 \leq s \leq \min (n, m)$ and orthonormal systems $\left(\phi_{i}\right)_{1 \leq i \leq s} \subset \mathbb{C}^{n},\left(\psi_{i}\right)_{1 \leq i \leq s} \subset \mathbb{C}^{m}$ such that

$$
|x\rangle=\sum_{1 \leq i \leq s} \lambda_{i}\left|\phi_{i}\right\rangle \otimes\left|\psi_{i}\right\rangle,
$$

where λ_{i} satisfies $\sum_{i=1}^{s} \lambda_{i}^{2}=\|x\|^{2}$. The number s is uniqely determined and so are numbers $\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ if we require that $\lambda_{1} \geq \ldots \geq \lambda_{s}$.

Proof. Let $\left\{\left|e_{i}\right\rangle: 1 \leq i \leq n\right\}$ and $\left\{\left|f_{j}\right\rangle: 1 \leq j \leq m\right\}$ be two bases of \mathbb{C}^{n} and \mathbb{C}^{m} respectively. Any vector $x \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ can be written in the form $|x\rangle=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i j}\left|e_{i}\right\rangle \otimes$ $\left|f_{j}\right\rangle$ with respect to these bases. Let $X=\sum_{i, j=1}^{n, m} x_{i j}\left|e_{i}\right\rangle\left\langle f_{j}\right|$ be the matrisation of the vector x and let r be its rank. Consider the singular value decomposition $X=U D V^{*}$, where $U=\left(u_{i j}\right)_{n \times n}$ is an unitary matrix of order $n, D=\left(\lambda_{i j}\right)_{n \times m}$ is a diagonal matrix of rank s and $V=\left(v_{i j}\right)_{m \times m}$ is an unitary matrix of order m. If we vectorise X now with respect to this decomposition then we have

$$
\begin{aligned}
|x\rangle & =\sum_{i, j, k} u_{i k} \lambda_{k} v_{j k}\left|e_{i}\right\rangle \otimes\left|f_{j}\right\rangle \\
& =\sum_{k=1}^{s} \lambda_{k}\left|\phi_{k}\right\rangle \otimes\left|\psi_{k}\right\rangle,
\end{aligned}
$$

where the set of vectors $\left\{\left|\phi_{k}\right\rangle: 1 \leq k \leq s\right\}$ and $\left\{\left|\psi_{k}\right\rangle: 1 \leq k \leq s\right\}$ constitute orthonormal set in \mathbb{C}^{n} and \mathbb{C}^{m} respectively, since U, V are unitaries. That $\|x\|^{2}=\sum_{k=1}^{s} \lambda_{k}^{2}$, follows directly now from the computation of $\langle x \mid x\rangle$.

The number s is called the Schmidt rank of the vector x and denoted by $\operatorname{SR}(x)$ and $\lambda_{1}, \ldots, \lambda_{s}$ are called Schmidt coefficients of $|x\rangle .$.

Corollary 2.1.1. Let $\left(u_{i}\right)_{1 \leq i \leq s}$ and $\left(v_{i}\right)_{1 \leq i \leq s}$ be two systems of not necessarily orthogonal vectors in \mathbb{C}^{n} and \mathbb{C}^{m}. Then $S R\left(\sum_{i=1}^{s} u_{i} \otimes v_{i}\right) \leq s$.

Proof. The Hilbert spaces spanned by the systems $\left(u_{i}\right)_{1 \leq i \leq s}$ and $\left(v_{i}\right)_{1 \leq i \leq s}$ are of dimension at most s. So the result follows directly from the Schmidt decomposition theorem.

Corollary 2.1.2 (Purification lemma). Let $\rho \in M_{n}(\mathbb{C})^{+}$be a density operator. Then there always exists $k \geq 1$ and a pure state $|\Phi\rangle \in \mathbb{C}^{n} \otimes \mathbb{C}^{k}, k \geq \operatorname{rank}(\rho)$, such that $\rho=\operatorname{Tr}_{2}(|\Phi\rangle\langle\Phi|)$, where Tr_{2} is the partial trace with respect to the second tensor factor.

Proof. Suppose the spectral decomposition of the density operator $\rho \in M_{n}(\mathbb{C})^{+}$is of the form

$$
\rho=\sum_{i=1}^{r} \lambda_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|,
$$

where r is the rank of ρ. Now the recipe to cook up $|\psi\rangle$ follows directly from the Schmidt decomposition theorem. We take $\left\{\psi_{i}\right\}_{i=1}^{r}$ an orthonormal system in the space \mathbb{C}^{k}, where $k \geq r$. We define

$$
|\Phi\rangle:=\sum_{i=1}^{r} \sqrt{\lambda_{i}}\left|\phi_{i}\right\rangle \otimes\left|\psi_{i}\right\rangle .
$$

Therefore we have

$$
\begin{aligned}
\operatorname{Tr}_{2}(|\Phi\rangle\langle\Phi|) & =\operatorname{Tr}_{2}\left(\sum_{i, j=1}^{r} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{i}\right\rangle\left\langle\phi_{j}\right| \otimes\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|\right) \\
& =\sum_{i, j=1}^{r} \delta_{i j} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{i}\right\rangle\left\langle\phi_{j}\right| \\
& =\sum_{i=1}^{r} \lambda_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|=\rho .
\end{aligned}
$$

2.2 Positive Cones In $M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$

It is easy to see that the set of all separable states of $\mathbb{C}^{n} \otimes \mathbb{C}^{m}$ form a closed convex cone. We denote this cone $\operatorname{Sep}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$. If $\rho=\sum_{i \in I} p_{i} \rho_{i}^{(1)} \otimes \rho_{i}^{(2)}$ is separable then we can find the spectral decomposition of each $\rho_{i}^{(1)}$ and $\rho_{i}^{(2)}$ in terms of rank one projections $\rho_{i}^{(1)}=\sum_{x}\left|x^{(i)}\right\rangle\left\langle x^{(i)}\right|$ and $\rho_{i}^{(2)}=\sum_{y}\left|y^{(j)}\right\rangle\left\langle y^{(j)}\right|$. So we can write $\rho=\sum\left|x^{(i)}\right\rangle\left\langle x^{(i)}\right| \otimes$ $\left|y^{(j)}\right\rangle\left\langle y^{(j)}\right|$. Thus we see that the cone $\operatorname{Sep}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ is generated by the elements of the form $|x\rangle\langle x| \otimes|y\rangle\langle y| \cong|x \otimes y\rangle\langle x \otimes y|$. So we find that

$$
\operatorname{Sep}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)=\operatorname{Conv}\left\{|x \otimes y\rangle\langle x \otimes y|: x \otimes y \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}\right\}
$$

Since $x \otimes y$ has Schmidt rank 1 we can say that the cone of separable states is the convex hull of the projections onto vectors of Schmidt rank 1. So if a bipartite state $\rho \in\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{+}$is entangled then we can spectral decompose the state into
convex combination of rank one projections onto vectors such that at least one of the vectors has Schmidt rank >1. We can use the maximal Schmidt rank of such vectors in the spectral decomposition of a bipartite state to categorise different entangled states. This motivates to define the cone of k-entangled states.

Definition 2.2.1 (k-Entangled operator). Let k be a positive integer. A state $\rho \in$ $\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{+}$is called k-entangled operator iff it belongs to the set

$$
k \text {-Ent }\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)=\text { Conv }\left\{\sum_{i j=1}^{k}\left|x_{i} \otimes y_{i}\right\rangle\left\langle x_{j} \otimes y_{j}\right|:\left\{x_{i}\right\}_{i=1}^{k} \subset \mathbb{C}^{n},\left\{y_{j}\right\}_{j=1}^{k} \subset \mathbb{C}^{m}\right\}
$$

Observe that for $k=1,1-\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)=\operatorname{Sep}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ the cone of separable states. Since $\operatorname{SR}\left(\sum_{i j=1}^{k} x_{i} \otimes y_{j}\right) \leq k$, equivalently ρ is k-entangled iff the Schmidt rank of its eigen vectors $\leq k$ i.e.

$$
\mathrm{k}-\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)=\operatorname{Conv}\left\{|v\rangle\langle v|: v \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}, \operatorname{SR}(v) \leq k\right\}
$$

We can check that k - $\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ is a closed convex cone for each $k \in \mathbb{N}$. It is obvious that if $k=\min \{n, m\}$ then $\mathrm{k}-\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)=\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{+}$. It also follows from the definition that k - $\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right) \subseteq(\mathrm{k}+1)-\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$. In fact, the inclusion is strict. Let $v \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ be a vector with $\operatorname{SR}(v)=k+1$. Obviously, $|v\rangle\langle v| \in(k+1)$ - $\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$. Let's assume we can write $|v\rangle\langle v|=\sum_{i=1}^{l}\left|v_{i}\right\rangle\left\langle v_{i}\right|$. This equality can only hold if each v_{i} is a scalar multiple of the vector v. Therefore $\operatorname{SR}\left(v_{i}\right)$ can not be less than $k+1$ and thus $|v\rangle\langle v| \notin \mathrm{k}-\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$.

For any two elements $A, B \in M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ we can define the Hilbert-Schmidt inner product of A and B by

$$
\langle A, B\rangle:=\operatorname{Tr}\left(A B^{*}\right) .
$$

If we restrict our attention to the real linear space $\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{\text {sa }}$ then we can define

$$
\langle A, B\rangle:=\operatorname{Tr}\left(A B^{t}\right)
$$

We now try to find the dual cone of k-Ent with respect to the Hilbert-Schmidt inner product on $\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{\text {sa }}$. Since the positive rank 1 operators with range vector having Schmidt rank $\leq k$, generate the cone of k-entangled states, it suffices to work with such generators. Let $\rho=\sum_{i, j=1}^{k}\left|x_{i} \otimes y_{i}\right\rangle\left\langle x_{j} \otimes y_{j}\right| \in \operatorname{k-Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ and $\phi \in M_{n}(\mathbb{C}) \otimes$
$M_{m}(\mathbb{C})$. Then the scalar product of two

$$
\begin{gathered}
0 \leq\langle\rho, \phi\rangle=\left\langle\sum_{i, j=1}^{k} \mid x_{i} \otimes y_{i}\right\rangle\left\langle x_{j} \otimes y_{j} \mid, \phi\right\rangle=\sum_{i, j=1}^{k} \operatorname{Tr}\left(\left|x_{i} \otimes y_{i}\right\rangle\left\langle\phi\left(x_{j} \otimes y_{j}\right)\right|\right) \\
=\sum_{i, j=1}^{k}\left\langle x_{i} \otimes y_{i} \mid \phi\left(x_{j} \otimes y_{j}\right)\right\rangle=\left\langle\sum_{i=1}^{k} x_{i} \otimes y_{i} \mid \phi \sum_{j=1}^{k} x_{j} \otimes y_{j}\right\rangle .
\end{gathered}
$$

This motivates us to define the k-block positive operators. The set of all such operators forms the dual cone of the cone of $k-$ entangled operators.

Definition 2.2.2 (k-Block positive operator). An operator $\rho \in\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)$ is called k-Block positive if for any $\left\{x_{i}\right\}_{i=1}^{k} \subset \mathbb{C}^{n}$ and $\left\{y_{j}\right\}_{j=1}^{k} \subset \mathbb{C}^{m}$ we have

$$
\left\langle\sum_{i=1}^{k} x_{i} \otimes y_{i} \mid \rho\left(\sum_{j=1}^{k} x_{j} \otimes y_{j}\right)\right\rangle \geq 0
$$

Equivalently, $\langle v| \rho|v\rangle \geq 0$ for all $v \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ with $\mathrm{SR}(v) \leq k$. We denote the set of all such operators by $k-\operatorname{BP}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$.

Note that the defining property of k-Block positivity implies that such operators are Hermitian i.e. $\mathrm{k}-\mathrm{BP}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right) \subset\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{\text {sa }}($ see A2, [Sko08]). It is clear from the definition that if $k=\min \{n, m\}$ then k - $\operatorname{Block}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)=\left(M_{n} \otimes M_{m}\right)^{+}$and we have the following inclusion

$$
1-\mathrm{BP}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right) \supseteq 2-\mathrm{BP}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right) \supseteq \ldots \supseteq \min (m, n)-\mathrm{BP}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)=\left(M_{n} \otimes M_{m}\right)^{+}
$$

In fact, all the above inclusions are strict since its dual cones follow strict inclusion. We can write

$$
k-\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)^{\circ}=k-\operatorname{BP}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)
$$

and since all these cones are closed, by the Bipolar theorem (theorem 5.5, [Sim11]) we have

$$
k-\operatorname{BP}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)^{\circ}=k-\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)
$$

We summarise the chain of inclusions of positive cones in $M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$:
$\operatorname{Sep}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right) \subset k-\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right) \subset\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{+} \subset k-\operatorname{BP}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right) \subset 1-\mathrm{BP}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$.

2.3 Positive Cones In $\operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$

Definition 2.3.1 (Hermitianity preserving map). A linear map $S \in \operatorname{Lin}\left(M_{n}, M_{m}\right)$ is called Hermitianity preserving iff $S\left(M_{n}^{s a}(\mathbb{C})\right) \subset M_{m}^{s a}(\mathbb{C})$. We denote the set of all Hermitianity preserving linear maps from $M_{n}(\mathbb{C})$ to $M_{m}(\mathbb{C})$ by $\operatorname{Lin}\left(M_{n}, M_{m}\right)^{s a}$.

It is easy to see that $\operatorname{Lin}\left(M_{n}, M_{m}\right)^{\text {sa }}$ is a \mathbb{R} linear space (but not \mathbb{C} linear).

Lemma 2.3.1. A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ is Hermitianity preserving if and only if $S\left(X^{*}\right)=S(X)^{*}$ for any $X \in M_{n}(\mathbb{C})$. In particular, if $\left(E_{i}\right)_{1 \leq i \leq n^{2}}$ is a basis of $M_{n}(\mathbb{C})$, this is the case, if and only if $S\left(E_{i}^{*}\right)=S\left(E_{i}\right)^{*}$ for all $1 \leq i \leq n^{2}$.

Proof. Suppose the condition $S\left(X^{*}\right)=S(X)^{*}$ holds for any $X \in M_{n}(\mathbb{C})$. Then for an $H \in M_{n}^{\text {sa }}(\mathbb{C})$ we have $S(H)=S\left(H^{*}\right)=S(H)^{*}$ which shows that $S(H) \in M_{m}^{\mathrm{sa}}(\mathbb{C})$. Conversely, we assume that $S\left(M_{n}^{\mathrm{sa}}(\mathbb{C})\right) \subset M_{m}^{\mathrm{sa}}(\mathbb{C})$. For any $X \in M_{n}(\mathbb{C})$ we can decompose it into sum of two Hermitian elements i.e. $X=H_{1}+i H_{2}$. So we have

$$
\begin{aligned}
S\left(X^{*}\right) & =S\left(H_{1}-i H_{2}\right)=S\left(H_{1}\right)-i S\left(H_{2}\right)=S\left(H_{1}\right)^{*}-i S\left(H_{2}\right)^{*} \\
& =\left(S\left(H_{1}\right)+i S\left(H_{2}\right)\right)^{*}=\left(S\left(H_{1}+i H_{2}\right)\right)^{*}=S(X)^{*}
\end{aligned}
$$

Example 2.3.1. Conisder the linear $\operatorname{map} M_{n}(\mathbb{C}) \ni X \mapsto A^{*} X^{t} A \in M_{m}(\mathbb{C})$ for some $n \times m$ matrix A. Then it is easy to see that the map is Hermitianity preserving. In fact, De Pillis showed that any Hermitianity preserving linear map $S \in \operatorname{Lin}\left(M_{n}, M_{m}\right)$ will be of the form $S(X)=\sum_{i=1}^{r} c_{i} A_{i}^{*} X^{t} A_{i}$ for any $X \in M_{n}(\mathbb{C})$, where c_{i} 's are real numbers and A_{i} 's certain $n \times m$ matrices [Pil67].

Similar to the Hermitianity preserving maps, we define the positivity preserving maps.

Definition 2.3.2. A linear map $T \in \operatorname{Lin}\left(M_{n}, M_{m}(\mathbb{C})\right)$ is called positive iff $T\left(M_{n}(\mathbb{C})^{+}\right) \subset$ $M_{m}(\mathbb{C})^{+}$. We denote the set of all positive map from $M_{n}(\mathbb{C})$ to $M_{m}(\mathbb{C})$ by $\mathcal{P}_{1}(n, m)$

It is easy to see that $\mathcal{P}_{1}(n, m)$ is a convex cone in $\operatorname{Lin}\left(M_{n}, M_{m}\right)$,
Example 2.3.2. \quad i. The transposition $\operatorname{map} T: M_{n}(\mathbb{C}) \ni X \mapsto X^{t} \in M_{n}(\mathbb{C})$ with respect to a fixed orthonormal basis of \mathbb{C}^{n} is a positive map.
ii. For any $n \times m$ matrix V the conjugate map $\operatorname{Ad}_{V}: M_{n}(\mathbb{C}) \ni X \mapsto V^{*} X V \in M_{m}(\mathbb{C})$ is a positive map. Indeed, if $X \in M_{n}(\mathbb{C})^{+}$then there exists $C \in M_{n}(\mathbb{C})$ such that $X=C^{*} C$. Therefore $\operatorname{Ad}_{V}(X)=V^{*} X V=V^{*} C^{*} C V=(C V)^{*} C V$, which is positive.

If H is a Hermitian matrix in $M_{n}(\mathbb{C})$ then we can write it as $H=P_{1}-P_{2}$ for some positive matrices $P_{1}, P_{2} \in M_{n}(\mathbb{C})$. Indeed, we can define $|H|:=\left(H^{*} H\right)^{\frac{1}{2}}$ using functional calculas. Then $P_{1}:=\frac{|H|+H}{2}$ and $P_{2}:=\frac{|H|-H}{2}$. If $S \in \mathcal{P}_{1}(n, m)$ then $S(H)^{*}=S\left(P_{1}\right)^{*}-$
$S\left(P_{2}\right)^{*}=S\left(P_{1}\right)-S\left(P_{2}\right)=S(H)$. So we see that any positive map is also Hermitianity preserving. So we can think of $\mathcal{P}_{1}(n, m)$ as a convex cone inside the \mathbb{R} linear space $\operatorname{Lin}\left(M_{n}, M_{m}\right)^{\text {sa }}$.

2.3.1 Choi-Jamiłokowski Isomorphism

Let's equip the space $M_{n}(\mathbb{C})$ with Hilbert-Schmidt inner product $\langle A, B\rangle:=\operatorname{Tr}\left(A B^{*}\right)$. De Pillis [Pil67] and Jamiołkowski [Jam72] considered a map $\mathcal{J}_{1}: \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right) \rightarrow$ $M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ characterised by the property that

$$
\left\langle\mathcal{J}_{1}(S), A^{*} \otimes B\right\rangle_{M_{n} \otimes M_{m}}=\langle S(A), B\rangle_{M_{m}}
$$

holds for any $A \in M_{n}(\mathbb{C}), B \in M_{m}$ and $T \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$. De Pillis proved that
Lemma 2.3.2. The map \mathcal{J}_{1} is uniquely defined and an isometric isomorphism between the spaces $\operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ and $M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$. Moreover, for any orthonormal basis $\left(E_{i}\right)_{1 \leq i \leq n^{2}}$ of $M_{n}(\mathbb{C})$ and every operator $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ we have

$$
\mathcal{J}_{1}(S)=\sum_{i=1}^{n^{2}} E_{i}^{*} \otimes S\left(E_{i}\right) .
$$

Theorem 2.3.3. A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ is
i. Hermitianity preserving iff $\mathcal{J}_{1}(S) \in M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ is Hermitian.
ii. positive iff $\left\langle(v \otimes w), \mathcal{J}_{1}(S)(v \otimes w)\right\rangle \geq 0$ holds for any $v \otimes w \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$.

Proof. The first claim was proved by De Pillis [Pil67] and Jamiołkowski [Jam72] showed the second one.

A more useful variant of the above isomorphism was proposed by Choi in his paper [Choi75]. Instead of taking any orthonormal basis of $M_{n}(\mathbb{C})$ we take the standard basis $\left(E_{i j}\right)_{1 \leq i, j \leq n}$, where $E_{i j}$ is the matrix whose $i j^{\text {th }}$ is 1 and zero elsewhere. We consider the modified Jamiołkowski isomophism or popularly known as Choi-Jamiołkowski isomorphism $\mathcal{J}_{2}: \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right) \rightarrow M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ defined by

$$
\mathcal{J}_{2}(S)=\sum_{1 \leq i, j \leq n} E_{i j} \otimes S\left(E_{i j}\right)
$$

Theorem 2.3.4. A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ is
i. Hermitianity preserving iff $\mathcal{J}_{2}(S)$ is Hermitian.
ii. positive iff $\left\langle(v \otimes w), \mathcal{J}_{2}(S)(v \otimes w)\right\rangle \geq 0$ holds for any $v \otimes w \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$.

Proof. $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ is Hermitianity preserving if and only if

$$
\mathcal{J}_{2}(S)^{*}=\sum_{i, j=1}^{n} E_{i j}^{*} \otimes S\left(E_{i j}\right)^{*}=\sum_{i j=1}^{n} E_{j i} \otimes S\left(E_{i j}^{*}\right)=\sum_{i j}^{n} E_{j i} \otimes S\left(E_{j i}\right)=\mathcal{J}_{2}(S)
$$

It proves the claim of the first part of the theorem.
The proof of the second part is similar to the original proof of theorem 2.3.3 by Jamiołkowski. The proof below is taken from K. S. Ranade and M. Ali's paper [RA07]. Let S be a linear map in $\operatorname{Lin}\left(M_{n}, M_{m}\right)$. It is positive iff for any $X \in\left(M_{n}(\mathbb{C})\right)^{+}, S(X)$ is positive in $M_{m}(\mathbb{C})$. Since any positive matrix X has the spectral decomposition into real linear combinations of rank one projections, S is positive is equivalent to the fact that $S(|x\rangle\langle x|)$ is positive for any $x \in \mathbb{C}^{n}$. We write the basis decomposition of the projection $|x\rangle\langle x|$ with respect to the standard basis $\left\{E_{i j}\right\}_{i, j=1}^{n}$ of $M_{n}(\mathbb{C})$ -

$$
|x\rangle\langle x|=\sum_{i j}\left\langle(|x\rangle\langle x|) E_{i j}\right\rangle E_{i j}=\sum_{i j} \operatorname{Tr}\left(|x\rangle\langle x| E_{i j}\right) E_{i j}=\sum_{i j}\left\langle x, E_{i j} x\right\rangle E_{i j}
$$

So $S(|x\rangle\langle x|)=\sum_{i j}\left\langle x, E_{i j} x\right\rangle S\left(E_{i j}\right)$. Therefore we have that $S(|x\rangle\langle x|)$ is positive if and only if $\sum_{i j}\left\langle x, E_{i j} x\right\rangle\left\langle y, S\left(E_{i j}\right) y\right\rangle$ is positive for any $y \in M_{m}(\mathbb{C})$.

$$
\begin{aligned}
\sum_{i j}\left\langle x, E_{i j} x\right\rangle\left\langle y, S\left(E_{i j}\right) y\right\rangle & =\left\langle x \otimes y \mid(\mathrm{id} \otimes S)\left(\sum_{i j} E_{i j} \otimes E_{i j}\right) x \otimes y\right\rangle \\
& =\left\langle x \otimes y, \mathcal{J}_{2}(S)(x \otimes y)\right\rangle
\end{aligned}
$$

Thus, S is positive iff $\left\langle x \otimes y, \mathcal{J}_{2}(S)(x \otimes y)\right\rangle g e 0$ for any $x \in \mathbb{C}^{n}$ and $y \in \mathbb{C}^{m}$.

We have isomorphism between real linear spaces $\operatorname{Lin}\left(M_{n}, M_{m}\right)^{\text {sa }}$ and $\left(M_{n} \otimes M_{m}\right)^{\text {sa }}$.

2.3.2 Positive Cones In $\operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$

For any operator $V \in M_{n, m}(\mathbb{C})$ we define the elementary positive map or also known as the conjugate map $\operatorname{Ad}_{V}: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ by $\operatorname{Ad}_{V}(X):=V^{*} X V$ for any $X \in M_{n}(\mathbb{C})$. It is known that such maps generate an extreme ray of the cone of positive maps from $M_{n}(\mathbb{C})$ to $M_{m}(\mathbb{C})[$ Sto63].

Definition 2.3.3 (k-Super Positive Map). Let k be a positive integer. The convex cone generated by the conjugate maps $A d_{V}$ for $V \in M_{n, m}(\mathbb{C})$ of $\operatorname{rank}(V) \leq k$, is called the cone of k-super positive maps i.e. A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ is k-super positive if
and only if it is of the form $S=\sum_{i=1}^{r} A d_{V_{i}}$ for some $\left\{V_{i}\right\}_{i=1}^{r} \subset M_{n, m}(\mathbb{C})$ with $\operatorname{rank}\left(V_{i}\right) \leq k$ for each i. We denote the cone by $\mathcal{S}_{k}(n, m)$. In case $n=m$ and there is no confusion about the dimension, we denote it simply by \mathcal{S}_{k}.

It is clear that $\mathcal{S}_{k}(n, m) \subseteq \mathcal{S}_{k+1}(n, m) \subset \mathcal{P}_{1} \subset \operatorname{Lin}\left(M_{n}, M_{m}\right)^{\text {sa }}$ for any integer $k \geq 1$.

Proposition 2.3.1. $\mathcal{J}_{2}\left(\operatorname{Ad}_{V}\right)=C_{A d_{V}}=|v\rangle\langle v|$, where $v \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ is the vectorisation of the matrix $V \in M_{n, m}(\mathbb{C})$ i.e. if $V=\sum_{i j} v_{i j}|i\rangle\langle j| \in M_{n, m}(\mathbb{C})$ then its vectorisation is given by $|v\rangle:=\sum_{i j} v_{i j}|i\rangle \otimes|j\rangle \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$.

Proof. Suppose the matrix V is given by $V=\sum_{i, j} v_{i j}|i\rangle\langle j| \in M_{n, m}(\mathbb{C})$, where $|i\rangle \mathrm{s}$ (or $|j\rangle \mathrm{s}$) are standard basis of \mathbb{C}^{n} (or $\left.\mathbb{C}^{m}\right)$. We have

$$
\begin{aligned}
C_{\mathrm{Ad}_{V}} & =\sum_{p, q}|p\rangle\langle q| \otimes\left(\sum_{i, j} \bar{v}_{i j}|j\rangle\langle i|\right)|p\rangle\langle q|\left(\sum_{k, l} v_{k l}|k\rangle\langle l|\right) \\
& =\sum_{p, q}|p\rangle\langle q| \otimes \sum_{i, j} \sum_{k, l} \delta_{i p} \delta_{q k} \bar{v}_{i j} v_{k l}|j\rangle\langle l| \\
& =\sum_{p, q}|p\rangle\langle q| \otimes \sum_{j, l} \bar{v}_{p j} v_{q l}|j\rangle\langle l| \\
& =\left(\sum_{p, j} \bar{v}_{p j}|p\rangle \otimes|j\rangle\right)\left(\sum_{q, l} v_{q l}\langle q| \otimes\langle l|\right)=|v\rangle\langle v| .
\end{aligned}
$$

Since the rank of V is equal to the Schmidt rank of its vectorisation $|v\rangle$ we see that the image of the cones of k-super positive operators under the Choi-Jamiołkowski isomorphism are the states (unnormalised) which are convex sum of rank one projections onto vectors in $\mathbb{C}^{n} \otimes \mathbb{C}^{m}$ having Schmidt rank at most k. Thus we have the following corollary.

Corollary 2.3.1. $\mathcal{J}_{2}\left(\mathcal{S}_{k}(n, m)\right)=k-\operatorname{Ent}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$. In particular, $\mathcal{J}_{2}\left(\mathcal{S}_{1}(n, m)\right)=\operatorname{Sep}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$.
If we define the Hilbert-Schmidt scalar product on the real linear space $\operatorname{Lin}\left(M_{n}, M_{m}\right)^{\text {sa }}$ i.e. for any two linear map $R, S \in \operatorname{Lin}\left(M_{n}, M_{m}\right)^{\text {sa }}$ by $\langle R, S\rangle:=\operatorname{Tr}\left(C_{R} C_{S}^{t}\right)$ then it is easy to see that for any $A \otimes B \in\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)^{\text {sa }}$ we have $\left\langle A \otimes B, C_{S}\right\rangle=\langle B, S(A)\rangle$. We now find the dual cone of $\mathcal{S}_{k}(n, m)$ in $\operatorname{Lin}\left(M_{n}, M_{m}\right)^{\text {sa }}$.

Theorem 2.3.5. A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)^{\text {sa }}$ belongs to the dual cone $\mathcal{S}_{k}(n, m)^{\circ}$ if and only if $\left(\mathrm{id}_{k} \otimes S\right): M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ is positive.

Proof. Let Ad_{V} be a map in $\mathcal{S}_{k}(n, m)$ so that the Choi matrix of it is of the form $C_{\mathrm{Ad}_{V}}=$ $|v\rangle\langle v|$ where $v=\sum_{i=1} x_{i} \otimes y_{i} \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ whose Schmidt rank is at most k. For any $S: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ Hermitianity preserving linear map, we have

$$
\begin{aligned}
\left\langle\operatorname{Ad}_{V}, S\right\rangle=\left\langle C_{A d}, C_{S}\right\rangle & =\left\langle\sum_{i, j}^{k} \mid x_{i}\right\rangle\left\langle x_{j}\right| \otimes\left|y_{i}\right\rangle\left\langle y_{j} \mid, C_{S}\right\rangle \\
& =\sum_{i, j=1}^{k}\left\langle\mid y_{i}\right\rangle\left\langle y_{j} \mid, S\left(\left|x_{i}\right\rangle\left\langle x_{j}\right|\right)\right\rangle \\
& =\sum_{i, j=1}^{k}\langle\mid i\rangle\langle j| \otimes\left|y_{i}\right\rangle\left\langle y_{j}\right|,|i\rangle\langle j| \otimes S\left(\left|x_{i}\right\rangle\left\langle x_{j} \mid\right\rangle\right. \\
& =\left\langle\sum_{i j=1}^{k} \mid i\right\rangle\langle j| \otimes\left|y_{i}\right\rangle\left\langle y_{j}\right|, \sum_{i j=1}^{k}|i\rangle\left\langle j \mid \otimes S\left(\left|x_{i}\right\rangle\left\langle x_{j}\right|\right)\right\rangle .
\end{aligned}
$$

Putting $\phi=\sum_{i=1}^{k}|i\rangle \otimes\left|y_{i}\right\rangle \in \mathbb{C}^{k} \otimes \mathbb{C}^{m}$ and $\psi=\sum_{i=1}^{k}|i\rangle \otimes\left|x_{i}\right\rangle \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ we see that

$$
\left\langle\operatorname{Ad}_{V}, S\right\rangle=\langle\mid \phi\rangle\langle\phi|,\left(\mathrm{id}_{\mathrm{k}} \otimes S\right)|\psi\rangle\langle\psi \mid\rangle=\left\langle\phi,\left(\mathrm{id}_{\mathrm{k}} \otimes \mathrm{~S}\right)(|\psi\rangle\langle\psi|) \phi\right\rangle .
$$

It shows that S is in the dual cone $\mathcal{S}_{k}(n, m)$ if and only if $\left(\mathrm{id}_{k} \otimes S\right): M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C}) \rightarrow$ $M_{k}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ is positive (see $[\mathrm{Kye} 22]$).

The previous proposition motivates to define the dual cone of $\mathcal{S}_{k}(n, m)$ in the following manner

Definition 2.3.4 (k-Positive map). A linear map $S: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is called k-positive if and only if the map $\left(\operatorname{id}_{k} \otimes S\right): M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ is positive. The set of all such linear maps will be denoted by $\mathcal{P}_{k}(n, m)$.

Example 2.3.6. See lemma 2.5.2 and 2.5.1.
Considering $M_{k}(\mathbb{C})$ as embedded in $M_{k+1}(\mathbb{C})$ it follows that we have the inclusion $\mathcal{P}_{k+1}(n, m) \subseteq \mathcal{P}_{k}(n, m)$. In fact, Chruścińiski and Kossakowski showed that the inclusion is strict for $k<\min (m, n)$ i.e. $\mathcal{P}_{k+1}(n, m) \subset \mathcal{P}_{k}(n, m)$ [CK09]. It is also not difficult to see that $P_{k}(n, m)$ is a convex cone in $\operatorname{Lin}\left(M_{n}, M_{m}\right)^{\text {sa }}$. For $k=1$ it is simply the cone of positive operators $P_{1}(n, m)$ which we introduced earlier.

Theorem 2.3.7. A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ is k-positive if and only if $\left\langle v, \mathcal{J}_{2}(S) v\right\rangle \geq 0$ for any vector $v \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ such that $\mathrm{SR}(v) \leq k$.

Proof. The proof is taken from the M. Ali and K. S. Ranade's paper [RA07]. By the definition, a linear map $S: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is k-positive for some positive integer k
iff $\left(\mathrm{id}_{k} \otimes S\right): M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ is positive. The idea is to apply Jamiołkowski's result- theorem 2.3.4 to verify the positivity of $\left(\mathrm{id}_{k} \otimes S\right)$. Consider the Hilbert spaces $\mathbb{C}^{k} \otimes \mathbb{C}^{n}$ and $\mathbb{C}^{k} \otimes \mathbb{C}^{m}$ corresponding to the matrix algebras $M_{k} \otimes M_{n} \cong$ $M_{k}\left(M_{n}(\mathbb{C})\right)$ and $M_{k} \otimes M_{m} \cong M_{k}\left(M_{m}(\mathbb{C})\right)$. Theorem 2.3.4 tells us that $\left(\mathrm{id}_{k} \otimes S\right)$ is positive if and only if $\left\langle x \otimes y, \mathcal{J}_{2, k}\left(\mathrm{id}_{k} \otimes S\right)(x \otimes y) \geq 0\right.$ for any $x \in \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ and $y \in \mathbb{C}^{k} \otimes \mathbb{C}^{m}$, where $\mathcal{J}_{2, k}: \operatorname{Lin}\left(M_{k} \otimes M_{n}, M_{k} \otimes M_{m}\right) \rightarrow\left(M_{k} \otimes M_{n}\right) \otimes\left(M_{k} \otimes M_{m}\right)$ is the modified Jamiołkoswki isomorphism on the respective spaces. Let $\left(e_{i}\right)_{i=1}^{n}$ and $\left(f_{g}\right)_{g=1}^{k}$ be the standard orthonormal bases of \mathbb{C}^{n} and \mathbb{C}^{k} respectively. Therefore we have $\left(\left|e_{i}\right\rangle\left\langle e_{j}\right|\right)_{i, j=1}^{n}$ and $\left(\left|f_{g}\right\rangle\left\langle f_{h}\right|\right)_{g, h=1^{-}}^{k}$ the corresponding standard orthonormal bases of $M_{n}(\mathbb{C})$ and $M_{k}(\mathbb{C})$ respectively. With respect to these bases the Choi matrix or the image of the Jamiołkowski isomorphism of $\left(\mathrm{id}_{k} \otimes S\right)$ is given by

$$
\mathcal{J}_{2, k}\left(\operatorname{id}_{k} \otimes S\right)=\sum_{g, h=1}^{k} \sum_{i, j=1}^{n}\left|f_{g}\right\rangle\left\langle f_{h}\right| \otimes\left|e_{i}\right\rangle\left\langle e_{j}\right| \otimes\left[\operatorname{id}_{k} \otimes S\right]\left(\left|f_{g}\right\rangle\left\langle f_{h}\right| \otimes\left|e_{i}\right\rangle\left\langle e_{j}\right|\right) .
$$

Any vector $x \in \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ can be written as $x=\sum_{p=1}^{k} f_{p} \otimes x_{p}$ with elements $x_{p} \in \mathbb{C}^{n}$. Similarly for $y \in \mathbb{C}^{k} \otimes \mathbb{C}^{m}$, we write $y=\sum_{q=1}^{k} f_{q} \otimes y_{q}$, where $y_{q} \in \mathbb{C}^{m}$. Therefore, $x \otimes y=\sum_{p, q=1}^{k} f_{p} \otimes x_{p} \otimes f_{q} \otimes y_{q}$. We compute

$$
\begin{aligned}
& \left\langle x \otimes y, \mathcal{J}_{2, k}\left(\operatorname{id}_{k} \otimes S\right)(x \otimes y)\right\rangle \\
& =\sum_{i, j, g, h, p, q}\left\langle\left(f_{p} \otimes x_{p}\right) \otimes\left(f_{q} \otimes y_{q}\right) \mid\left(\left\langle f_{h}, f_{r}\right\rangle f_{g} \otimes\left\langle e_{j}, x_{r}\right\rangle e_{i}\right) \otimes\left(\left\langle f_{h}, f_{s}\right\rangle f_{g} \otimes S\left(\left|e_{i}\right\rangle\left\langle e_{j}\right|\right) y_{s}\right)\right\rangle \\
& =\sum_{i, j, g, h, p, q, r, s} \delta_{h r} \delta_{h s}\left\langle f_{p}, f_{g}\right\rangle\left\langle e_{j}, x_{r}\right\rangle\left\langle x_{p}, e_{i}\right\rangle\left\langle f_{q}, f_{g}\right\rangle\left\langle y_{q}, S\left(\left|e_{i}\right\rangle\left\langle e_{j}\right|\right) y_{s}\right\rangle \\
& \left.=\sum_{i, j, g, h, p, q, r, s} \delta_{h r} \delta_{h s} \delta_{p g} \delta_{q g}\left\langle x_{p} \otimes y_{q}, \mid e_{i}\right\rangle\left\langle e_{j}\right| \otimes S\left(\left|e_{i}\right\rangle\left\langle e_{j}\right|\right) x_{r} \otimes y_{s}\right) \\
& =\sum_{p, r}\left\langle x_{p} \otimes y_{q}, \mathcal{J}_{2}(S) x_{r} \otimes y_{s}\right\rangle=\left\langle v, \mathcal{J}_{2}(S) v\right\rangle,
\end{aligned}
$$

where $v=\sum_{p=1}^{k} x_{p} \otimes y_{q}$. By the corollary 2.1.1 $\mathrm{SR}(v) \leq k$. Hence the claim is proved.
Definition 2.3.5 (Completely positive map). A linear map $S: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is called completely positive if and only if it is k-positive for any positive integer k. We denote the set of completely positive map from $M_{n}(\mathbb{C})$ to $M_{m}(\mathbb{C})$ by $\mathcal{C P}(n, m)$.

Example 2.3.8. Consider the conjugate map $\operatorname{Ad}_{V} \in \operatorname{Lin}\left(M_{n}, M_{m}\right)$ for some $n \times m$ matrix V. We already know that it is a positive map. For any positive integer k, $\left(\mathrm{id}_{k} \otimes \mathrm{Ad}_{V}\right)=$ $\operatorname{Ad}_{I_{k} \otimes V}$, where I_{k} is the $k \times k$ identity matrix. It shows that $\mathrm{id}_{k} \otimes \operatorname{Ad}_{V}$ is positive on
$M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$ for any positive integer k. Thus Ad_{V} is completely positive. In fact, any convex combination conjugates maps are completely positive.

Corollary 2.3.2. A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ is completely positive if and only if it is $\min \{n, m\}$-positive.

Proof. By the defition of complete positivity a linear map S is completely positive iff it is k-positive for all $k \in \mathbb{N}$. Again by the previous theorem a linear map is k-positive iff it is positive on all vectors of Schmidt rank at most k. But any vector of $\mathbb{C}^{n} \otimes \mathbb{C}^{m}$ has Schmidt rank at most $\min \{n, m\}$. Thus if S is $\min \{n, m\}$ positive then it is completely positive. The other direction is obvious.

Corollary 2.3.3 (Choi's 1 st theorem). A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ is completely positive if and only if the corresponding Choi matrix $C_{S}:=\mathcal{J}_{2}(S)$ is positive semidefinite.

Proof. It follows directly from the theorem 2.3.7 that a linear map $S: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is completely positive if and only if its Choi matrix $C_{S}:=\mathcal{J}_{2}(S)$ is positive semi-definite on vectors of arbitrary Schmidt rank in $\mathbb{C}^{n} \otimes \mathbb{C}^{m}$.

This result is known as the channel-state duality was proved by M. D. Choi (see theorem 2, [Choi75]). We have seen in the example 2.3.8 that any convex combination of conjugate map Ad_{V} is completely positive. Now we can ask the converse question i.e. if any completely positive map is a convex combination of some conjugate maps. Choi and Kraus proved that the answer is positive [Choi75], [Kra70].

Theorem 2.3.9 (Kraus Decomposition). A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ is completely positive if and only if there exists operators $V_{1}, V_{2}, \ldots, V_{r} \in M_{n, m}(\mathbb{C})$ such that

$$
S=\sum_{i=1}^{r} \operatorname{Ad}_{V_{i}}
$$

Proof. By the corollary 2.3.2 and theorem 2.3.5

$$
S \in \mathcal{C P}(n, m) \Longleftrightarrow S \text { is } \min \{n, m\} \text {-positive } \Longleftrightarrow S \in \mathcal{S}_{\min \{n, m\}}(n, m)^{\circ} .
$$

So we have $\mathcal{C P}(n, m)=\mathcal{S}_{\min \{n, m\}}(n, m)^{\circ}$. Since the Choi matrix corresponding to a completely positive map is positive semi-definite (corollary 2.3.3), for any two map $R, S \in$ $\mathcal{C} \mathcal{P}(n, m)$

$$
\langle R, S\rangle=\left\langle C_{R}, C_{S}\right\rangle \geq 0
$$

It shows that the cone of completely positive map $C P$ is actually self dual implying that $\mathcal{C P}(n, m)=\mathcal{S}_{\min \{n, m\}}(n, m)$. Hence, the claim is proved.

Remark 2.3.10. An alternate way to prove the theorem without using the duality is to utilise the Choi's 1st theorem directly and the spectral theorem.

The operators V_{i} 's in the Kraus decomposition are known as Kraus operators corresponding to the CP map S. But they are not unique. For example, consider a CP map S on $M_{n}(\mathbb{C})$ represented by two Kraus operators $\left\{V_{1}, V_{2}\right\}$ i.e. $S=\operatorname{Ad}_{V_{1}}+\operatorname{Ad}_{V_{2}}$. Let $\left(u_{i j}\right)_{i, j=1}^{2}$ be a unitary matrix. If we define two new operators $\tilde{V}_{1}=u_{11} V_{1}+u_{12} V_{2}$ and $\tilde{V}_{2}=u_{21} V_{1}+u_{22} V_{2}$ then it can be easilt checked that $\operatorname{Ad}_{V_{1}}+\operatorname{Ad}_{V_{2}}=\operatorname{Ad}_{\tilde{V}_{1}}+\operatorname{Ad}_{\tilde{V}_{2}}$.

Theorem 2.3.11 (Choi's second theorem). Two sets of Kraus operators $\left\{V_{j}\right\}_{j \in J}$ and $\left\{\tilde{V}_{l}\right\}_{l \in L}$ represent the same map $S=\sum_{j \in J} \operatorname{Ad}_{V_{j}}=\sum_{l \in L} \operatorname{Ad}_{\tilde{V}_{l}}$ iff there exists a unitary $U=\left(u_{i j}\right)$ such that $V_{j}=\sum_{l} u_{j l} \tilde{V}_{l}$, where the smaller set is padded with zeros.

We need the following proposition to prove the theorem.
Proposition 2.3.2. Let $\rho \in M_{n}(\mathbb{C})^{+}$with two decomposition $\rho=\sum_{i=1}^{p}\left|v_{i}\right\rangle\left\langle v_{i}\right|=\sum_{j=1}^{q}\left|w_{j}\right\rangle\left\langle w_{j}\right|$. Then there exists an isometry $U=\left(u_{i j}\right) \in M_{q, p}(\mathbb{C})$ i.e. $U^{*} U=I d_{p}$ such that

$$
w_{i}=\sum_{j=1}^{p} u_{i j} v_{j} .
$$

Proof. Without loss of generality let's assume $p \leq q$. We construct two purifications of ρ, say ψ_{1} and ψ_{2} of the form $\psi_{1}=\sum_{i=1}^{p}\left|v_{i}\right\rangle \otimes|i\rangle$ and $\psi_{2}=\sum_{j=1}^{q}\left|w_{j}\right\rangle \otimes|j\rangle$, where $\{|i\rangle: 1 \leq 1 \leq p\}$ is an orthonormal basis of \mathbb{C}^{p} - the dilation space of ρ of dimension p and since $p \leq q$ we can extend the same orthonormal set to an orthonormal basis of \mathbb{C}^{q}, the dilation space of ρ of dimension q, considering \mathbb{C}^{p} is embedded in \mathbb{C}^{q}. We know that two such purifications differ by isometry i.e. $\psi_{2}=(\mathrm{id} \otimes U) \psi_{1}$ where $U: \mathbb{C}^{p} \rightarrow \mathbb{C}^{q}$ is an isometry. Taking the scalar product with a basis vector $|i\rangle$ on the second tensor factor gives $w_{i}=\sum_{j=1}^{p} u_{i j} v_{j}$

Proof of Choi's 2nd theorem. If S has two Kraus representations

$$
S=\sum_{j \in J} \operatorname{Ad}_{V_{j}}=\sum_{l \in L} \operatorname{Ad}_{\tilde{V}},
$$

then the corresponding Choi matrices is given by $C_{S}=\sum_{j \in J}\left|v_{j}\right\rangle\left\langle v_{j}\right|=\sum_{l \in L}\left|\tilde{v}_{l}\right\rangle\left\langle\tilde{v}_{l}\right|$. The previous proposition implies that there is an isometry $U=\left(u_{l j}\right)$ such that $\tilde{v}_{l}=$
$\sum_{j} u_{l j} v_{j}$. Since by the proposition 2.3.1 V_{j} is just the matrisation of $\left|v_{j}\right\rangle$ we obtain that $\tilde{V}_{l}=\sum_{j} u_{l j} V_{j}$.

The minimum number of Kraus operators required to express a completely positive map in its Kraus decomposition forms is called the Choi-Kraus rank of the corresponding CP map. More precisely,

Definition 2.3.6 (Choi-Kraus rank). Let S be a completely positive map on $M_{n}(\mathbb{C})$. Then the Choi-Kraus rank of S is defined as

$$
c k r(S):=\min \left\{q \in \mathbb{N}: S=\sum_{i=1}^{q} A d_{V_{i}}, V_{i} \in M_{n}(\mathbb{C})\right\}
$$

Theorem 2.3.12. Let S be a completely positive map on $M_{n}(C)$ and $C_{S}:=\mathcal{J}_{2}(S)$ be its Choi matrix. Then $\operatorname{ckr}(S)=\operatorname{rank}\left(C_{S}\right)$.

Proposition 2.3.3. Let S be a 1 -super positive map from $M_{n}(\mathbb{C})$ to $M_{m}(\mathbb{C})$ i.e. $S \in$ $\mathcal{S}_{1}(n, m)$ if and only if for any $k \geq 1$ and any bipartite state(non-normalised) $\rho \in\left(M_{k}(\mathbb{C}) \otimes\right.$ $\left.M_{n}(\mathbb{C})\right)^{+},\left(\operatorname{Id}_{k} \otimes S\right)(\rho)$ is separable.

Proof. Let $\rho \in\left(M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C})\right)^{+}$for some fixed $k \geq 1$. By the Choi-Jamiołkowkski isomorphism and Choi's theorem there is a unique completely positive map $R: M_{k}(\mathbb{C}) \rightarrow$ $M_{m}(\mathbb{C})$ such that $C_{R}=\mathcal{J}_{2}(R)=\left(\operatorname{Id}_{k} \otimes R\right)\left(\sum_{i, j=1}^{k} E_{i j} \otimes E_{i j}\right)=\rho$, where $E_{i j}$'s are matrix units of $M_{k}(\mathbb{C})$. Therefore,

$$
\left(\operatorname{Id}_{k} \otimes S\right)(\rho)=\left(\operatorname{Id}_{k} \otimes S\right) \circ\left(\operatorname{Id}_{k} \otimes R\right)\left(\sum_{i, j=1}^{k} E_{i j} \otimes E_{i j}\right)=(\operatorname{Id} \otimes S \circ R)\left(\sum_{i j=1}^{k} E_{i j} \otimes E_{i j}\right) .
$$

It is easy to see that $S \circ R \in \mathcal{S}_{1}(k, m)$ for if $S=\sum_{j=1}^{p} \operatorname{Ad}_{S_{j}}$ and $R=\sum_{i=1}^{q} \operatorname{Ad}_{R_{i}}$ then $S \circ R=\sum_{i, j=1}^{p, q} \operatorname{Ad}_{R_{i} S_{j}}$, where $\operatorname{rank}\left(R_{i} S_{j}\right) \leq \min \left\{\operatorname{rank}\left(R_{i}\right), \operatorname{rank}\left(S_{j}\right)\right\}=1$. Since we know by the corollary 2.3.1 that $\mathcal{J}_{2}\left(\mathcal{S}_{1}(n, m)\right)=\operatorname{Sep}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ therefore, $\left(\operatorname{Id}_{k} \otimes S \circ R\right)\left(\sum_{i, j} E_{i j} \otimes\right.$ $\left.E_{i j}\right)=\mathcal{J}_{2}(S \circ R)$ which is separable and thus $\left(\operatorname{Id}_{k} \otimes S\right)(\rho)$ is separable.

Conversely, suppose for for any $k \geq 1$ and $\rho \in\left(M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C})\right)^{+}$we have that $\left(\operatorname{Id}_{k} \otimes S\right)(\rho)$ is separable. We need to prove that $S \in \mathcal{S}_{1}(n, m)$. So it suffices to show that $\mathcal{J}_{2}(S) \in \operatorname{Sep}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$. For $k=n$ we take the maximally entangled state $\rho=\sum_{i, j=1}^{n} E_{i j} \otimes$ $E_{i j} \geq 0$, where $E_{i j}$'s are matrix units of $M_{n}(\mathbb{C})$. By our assumption $\left(\operatorname{Id}_{n} \otimes S\right)\left(\sum_{i, j=1}^{n} E_{i j} \otimes\right.$ $\left.E_{i j}\right)=\mathcal{J}_{2}(S)$ is separable.

This motivates to define the entanglement breaking channel or more generally the k-entanglement breaking map.

Definition 2.3.7 (Entanglement Breaking Map). A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ is called entanglement breaking if $\left(\operatorname{Id}_{k} \otimes S\right) \rho$ is separable for any $\rho \in\left(M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C})\right)^{+}$ and for any $k \geq 1$. We denote the set of all entanglement breaking maps by $\mathcal{E B}(n, m)$.

Proposition 2.3.3 shows that $\mathcal{E B}(n, m)=\mathcal{S}_{1}(n, m)$.

Definition 2.3.8 (k-Entanglement Breaking Map). A linear map $S \in \operatorname{Lin}\left(M_{n}, M_{m}\right)$ is called k-entanglement breaking if it is k-positive and $\left(i d_{k} \otimes S\right) X$ is separable whenever $X \in\left(M_{k} \otimes M_{n}\right)^{+}$. We denote the cone of k-entanglement breaking maps by $\mathcal{E B}_{k}(n, m)$.

With the cones defined above we have the following chain of inclusions
(i) $\mathcal{E B}(n, m)=\mathcal{S}_{1}(n, m) \subset \mathcal{S}_{k}(n, m) \subset \mathcal{S}_{\min \{n, m\}}(n, m)=\mathcal{C P}(n, m)=\mathcal{P}_{\min \{n, m\}}(n, m) \subset$ $\mathcal{P}_{k}(n, m) \subset \mathcal{P}_{1}(n, m)$,
(ii) $\mathcal{E B}(n, m)=\mathcal{E B}_{\min \{m, n\}}(n, m) \subset \mathcal{E B}_{k}(n, m) \subset \mathcal{P}_{k}(n, m) \subset \mathcal{P}_{1}(n, m)$,
(iii) $\mathcal{E B}(n, m)=\mathcal{S}_{1}(n, m) \subset \mathcal{S}_{k}(n, m) \subset \mathcal{E} \mathcal{B}_{k}(n, m)^{\circ} \subset \mathcal{P}_{1}(n, m)$.

Proposition 2.3.4. The cones $\mathcal{P}_{k}, \mathcal{S}_{k}, \mathcal{E B}_{k}, \mathcal{E} \mathcal{B}_{k}^{\circ} \subseteq \operatorname{Lin}\left(\mathrm{M}_{\mathrm{n}}, \mathrm{M}_{\mathrm{m}}\right)^{\text {her }}, k=1, \ldots, n$, are closed, pointed and solid. Furthermore they are stable under composition.

Proof. Stability under composition is easy to check for k-positive maps and therefore for CP maps. For k-superpositive maps, if $S, T \in \mathcal{S}_{k}$ have Kraus representations

$$
S(X)=\sum_{i=1}^{p} L_{i}^{*} X L_{i} \quad \text { and } \quad T(X)=\sum_{j=1}^{q} K_{j}^{*} X K_{j}
$$

with Kraus operators of rank less than or equal to k, then so does their composition $S \circ T$,

$$
S \circ T(X)=\sum_{i=1}^{p} \sum_{j=1}^{q}\left(K_{j} L_{i}\right)^{*} X K_{j} L_{i}
$$

since $\operatorname{rank}\left(K_{j} L_{i}\right) \leq \min \left\{\operatorname{rank}\left(L_{i}\right), \operatorname{rank}\left(K_{j}\right)\right\} \leq k$. For the stability of composition of k-entanglement breaking maps, see [DMS21, Theorem 5.4]. For the dual cone $\mathcal{E B}_{k}^{\circ}$, it follows from the characterisation given in [DMS21, Equation (3.5), Theorem 3.11]. Indeed, suppose that S_{i} are limits of convex combinations of the form given in [DMS21], i.e., $S_{i}=$ $\lim \sum \lambda_{p}^{(i)} \Gamma_{p}^{(i)} \circ \Psi_{p}^{(i)}$, with $\Gamma_{p}^{(i)}: M_{k} \rightarrow M_{n}$ positive and $\Psi_{p}^{(i)}: M_{n} \rightarrow M_{k}$ completely positive for $i=1,2$ (where we suppressed the index for the limit). Then $\Gamma_{p}^{(1)} \circ \Psi_{p}^{(1)} \circ \Gamma_{p}^{(2)}: M_{k} \rightarrow M_{n}$ is again positive, and so

$$
S_{1} \circ S_{2}=\lim \sum_{p, p} \lambda_{p}^{(1)} \lambda_{p^{\prime}}^{(2)}\left(\Gamma_{p}^{(1)} \circ \Psi_{p}^{(1)} \circ \Gamma_{p^{\prime}}^{(2)}\right) \circ \Psi_{p^{\prime}}^{(2)}
$$

is again of the form given in [DMS21, Equation (3.5), Theorem 3.11].
To show that all these cones are solid (i.e., $C+(-C)=\operatorname{Lin}\left(M_{n}, M_{n}\right)$, or, equivalently, they have non-empty interior) and pointed (i.e., $C \cap(-C)=\{0\}$), we will show below in Lemma 2.3.3 that the depolarising channel $P: M_{n} \rightarrow M_{n}, P(X)=\operatorname{Tr}(X) \frac{1}{n} I_{n}$ is in the interior of $\mathcal{S}_{1}=\mathcal{E B}$. Since all other cones contain $\mathcal{E B}$, they are also solid. Which implies that they are pointed, as duals of solid cones.

Lemma 2.3.3. The depolarising channel $P: M_{n} \rightarrow M_{m}, P(X)=\operatorname{Tr}(X) \frac{1}{n} I_{m}$ belongs to the interior of the cone $\mathcal{S}_{1}=\mathcal{E B}$ of entanglement breaching maps.

Proof. We will use the duality between $\mathcal{E B}=\mathcal{S}_{1}$ and $\mathcal{P} \mathcal{M}=\mathcal{P}_{1}$. To show that P belongs to the interior of $\mathcal{E B}$, it is sufficient to show that

$$
\forall T \in \mathcal{P} \mathcal{M}=\mathcal{E B}^{\circ}, T \neq 0 \quad \Rightarrow \quad\langle T, P\rangle>0
$$

Let $T \in \mathcal{P M}$ such that $\langle T, P\rangle=0$. Choose an orthonormal bases $\left(u_{i}\right)_{i=1, \ldots, n}$ of \mathbb{C}^{n}. Then the set of rank 1 operators $\left(\left|u_{i}\right\rangle\left\langle u_{j}\right|\right)_{i, j=1, \ldots, n}$ is an orthonormal basis of M_{n} and we have

$$
0=\langle T, P\rangle=\frac{1}{n^{2}} \sum_{i, j=1}^{m}\langle T\left(\left|u_{i}\right\rangle\left\langle u_{j}\right|\right), \underbrace{P\left(\left|u_{i}\right\rangle\left\langle u_{j}\right|\right)}_{=\frac{\delta_{i j}}{n} I_{n}}\rangle=\frac{1}{n^{3}} \sum_{i=1}^{n} \operatorname{Tr}\left(T\left(\left|u_{i}\right\rangle\left\langle u_{i}\right|\right)^{*}\right)
$$

Since T is positive map, each term in this sum is positive, and therefore has to vanish. Since the orthonormal basis $\left(u_{i}\right)_{i=1, \ldots, n}$ is arbitrary, this implies

$$
\forall u \in \mathbb{C}^{n}, \quad \operatorname{Tr}(T(|u\rangle\langle u|))=0 .
$$

and therefore $T=0$.

2.4 Equivariance And k-Positivity

Given a linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$, it is computationally easy to decide if it is completely positive but very difficult to decide if it is k-positive for some $k<\min \{n, m\}$. Since $\sum_{i, j=1}^{k} \tilde{E}_{i j} \otimes E_{i j} \in M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$ is positive, where $\tilde{E}_{i j}$ and $E_{i j}$ are matrix units of $M_{k}(\mathbb{C})$ and $M_{n}(\mathbb{C})$ respectively, we know that the $k m \times k m$ matrix $\left[S\left(E_{i j}\right)\right]_{i, j=1}^{k}=$ $\sum_{i, j=1}^{k} \tilde{E}_{i j} \otimes S\left(E_{i j}\right)$ is positive. The converse is of course not true in general. B. Collins, H. Osaka and G. Sapra showed that the converse holds for a special case- if the map S satisfies some equivariance property [COS18][BCS20].

Definition 2.4.1. A linear map $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ is called
i. equivariant if for any unitary $U \in M_{n}(\mathbb{C})$ there exists $V \in M_{m}(\mathbb{C})$ (not necessarily unitary) such that following equality holds

$$
S\left(U X U^{*}\right)=V S(X) V^{*}
$$

for all $X \in M_{n}(\mathbb{C})$.
ii. unitarily equivariant if V in the above defition can be chosen to be a unitary.
iii. (a,b)-unitarily equivariant if $m=n^{(a+b)}$ and $M_{m}(\mathbb{C})=M_{n}(\mathbb{C})^{\otimes a} \otimes M_{n}(\mathbb{C})^{\otimes b}$ such that for any unitary $U \in M_{n}(\mathbb{C})$

$$
S\left(U X U^{*}\right)=\left(\bar{U}^{\otimes a} \otimes U^{\otimes b}\right) X\left(\bar{U}^{\otimes a} \otimes U^{\otimes b}\right)^{*}
$$

Example 2.4.1. i. Any *-homomorphism or $*$-anti-homomorphism on a finite dimensional matrix algebra is equivariant.
ii. Let $A \in M_{n}(\mathbb{C})$ be an invertible matrix. Define the linear map $S_{A}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ by

$$
S_{A}(X):=A^{*} X A
$$

for any $X \in M_{n}(\mathbb{C})$. Then,

$$
\begin{aligned}
S_{A}\left(U X U^{*}\right) & =A^{*} U X U^{*} A \\
& =A^{*} U\left(A^{*}\right)^{-1}\left(A^{*} X A\right) A^{-1} U^{*} A \\
& =\left(A^{*} U\left(A^{*}\right)^{-1}\right) S_{A}(X)\left(A^{*} U\left(A^{*}\right)^{-1}\right)^{*} .
\end{aligned}
$$

It shows that S_{A} is equivariant and if A is unitary then S_{A} is unitarily equivariant.
iii. B. V. R. Bhat characterised all (0,1)-unitarily equivariant maps [Bhat11]. More precisely, he showed that any linear map S on $M_{n}(\mathbb{C})$ which verifies the following equality

$$
S\left(U X U^{*}\right)=U S(X) U^{*}
$$

for any unitary $U \in M_{n}(X)$ and any $X \in M_{n}(\mathbb{C})$, is of the form

$$
S=\alpha I d+\beta P
$$

for some $\alpha, \beta \in \mathbb{C}$, where Id is the identiy map and P is the depolarising channel. It follows directly from this result that any $(1,0)$ unitarily equivariant map Q is of the form

$$
Q=\alpha T+\beta P
$$

2.4. EQUIVARIANCE AND K-POSITIVITY

for some $\alpha, \beta \in \mathbb{C}$, where T is the transposition map.
Collins, Osaka, Sapra proved the following results-
Lemma 2.4.1. Let $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ be a map with equivariance property. If $S\left(E_{11}\right) \geq 0$, where E_{11} is a matrix unit in $M_{n}(\mathbb{C})$ then S is positive.

Proof. It suffices to show that $S(p)$ is positive for any rank-one projection $p \in M_{n}(\mathbb{C})$. Since two Hermitian matrices are unitarily equivalent if and only if they have the same eigenvalues (counting multiplicities), E_{11} and p are unitarily equivalent. So there exists a unitary $U \in M_{n}(\mathbb{C})$ such that $p=U E_{11} U^{*}$. This implies $S(p)=V S\left(E_{11}\right) V^{*}$ by the equivariance property of S. Since $S\left(E_{11}\right) \geq 0$ we have $V S\left(E_{11}\right) V^{*} \geq 0$ which prove the claim.

Theorem 2.4.2 (Collins, Osaka, Sapra, 2018). Let $S \in \operatorname{Lin}\left(M_{n}(\mathbb{C}), M_{m}(\mathbb{C})\right)$ be a selfadjoint linear map which verifies the equivariance property. Then for $k \leq \min \{n, m\}, S$ is k-positive if and only if the block matrix $\left[S\left(E_{i j}\right)\right]_{i, j=1}^{k}$ is positive, where $\left(E_{i j}\right)$ s are the matrix units of $M_{n}(\mathbb{C})$.

Proof. We have already seen that if S is k positive then $\left[S\left(E_{i j}\right)\right]_{i, j=1}^{k}$ is positive. For the converse it suffices to prove that $\left(i d_{k} \otimes S\right)(p)$ is positive for any rank one projection p in $M_{k}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$. Let $p=|x\rangle\langle x|$ for some $|x\rangle \in \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ with $\|x\|=1$. We write the Schmidt decomposition of $|x\rangle$,

$$
|x\rangle=\left(U \otimes V^{*}\right) \sum_{i=1}^{r} c_{i}|i\rangle \otimes|i\rangle,
$$

where $\{|i\rangle: 1 \leq i \leq n\}$ is the standard basis of \mathbb{C}^{n}, c_{i} 's are positive real numbers with $\sum_{i}^{r} c_{i}^{2}=1, U$ and V unitaries arising from the singular value decomposition of C the matrisation of the vector $|x\rangle \in \mathbb{C}^{k} \otimes \mathbb{C}^{n}$. Therefore,

$$
p=|x\rangle\langle x|=\left(U \otimes V^{*}\right)\left(\sum_{i, j=1}^{r} c_{i} c_{j}|i\rangle\langle j| \otimes|i\rangle\langle j|\right)\left(U \otimes V^{*}\right)^{*} .
$$

Denoting $X=\sum_{i, j=1}^{r} c_{i} c_{j}|i\rangle\langle j| \otimes|i\rangle\langle j|$ we can write

$$
p=\left(U \otimes V^{*}\right) X\left(U \otimes V^{*}\right)^{*}
$$

It is easy to see that if S satisfies the equivariance property so does $\left(i d_{k} \otimes S\right)$. Thus,

$$
\begin{aligned}
\left(i d_{k} \otimes S\right)(p) & =\left(i d_{k} \otimes S\right)\left[\left(U \otimes V^{*}\right) X\left(U \otimes V^{*}\right)^{*}\right] \\
& =\left(V_{1} \otimes V_{2}\right)\left(i d_{k} \otimes S\right)(X)\left(V_{1} \otimes V_{2}^{*}\right)^{*}
\end{aligned}
$$

We now show that $\left(i d_{k} \otimes S\right)(X)$ is positive to conclude the argument. Suppose the block matrix $\left[S\left(E_{i j}\right)\right]_{i, j=1}^{k}$ is positive. Then,

$$
\begin{aligned}
\left(i d_{k} \otimes S\right)(X) & =\sum_{i, j=1}^{r} c_{i} c_{j}|i\rangle\langle j| \otimes S(|i\rangle\langle j|) \\
& =\left[S\left(c_{i} c_{j} E_{i j}\right)\right]_{i, j=1}^{k} \\
& =\left[c_{i} c_{j} S\left(E_{i j}\right)\right]_{i, j=1}^{k} \\
& =\left[c_{i} c_{j}\right]_{i, j=1}^{k} \odot\left[S\left(E_{i j}\right)\right]_{i, j=1}^{k},
\end{aligned}
$$

where \odot denotes the Schur product of two matrices. The last term being the Schur product of two positive matrices, it is again positive. This proves the claim.

2.5 A 4-Parameter Family Of Maps

We take the linear combinations of some well known maps e.g. depolarizing channel, transpose, or map which is conditional expectation onto diagonal and discuss the criterion of positivity, k-positivity or complete positivity of such combinations. Later we can use these examples to generate identity preserving semigroups, which are of our ineterest. We have already defined the depolarising channel in Lemma 2.3.3. as a linear map $P: M_{n} \rightarrow$ M_{n} satisfying

$$
P(X)=\frac{1}{n} \operatorname{Tr}(X) I_{n} .
$$

We have

$$
P(X)=\frac{1}{n} \sum_{j, k=1}^{n}\left\langle e_{j}, X e_{j}\right\rangle\left|e_{k}\right\rangle\left\langle e_{k}\right|=\sum_{j, k=1}^{n} \frac{1}{\sqrt{n}}\left|e_{k}\right\rangle\left\langle e_{j}\right| X\left(\frac{1}{\sqrt{n}}\left|e_{k}\right\rangle\left\langle e_{j}\right|\right)^{*},
$$

which shows that $P \in \mathcal{S}_{1}=\mathcal{E B}$. The Choi-Jamiołkowski matrix of P is

$$
C_{P}=\sum_{j, k=1}^{n} E_{j k} \otimes P\left(E_{j k}\right)=\frac{1}{n} \sum_{j, k=1}^{n} E_{j j} \otimes E_{k k}=\frac{1}{n} I_{n} \otimes I_{n} .
$$

We consider also the transposition map, $T(X)=X^{T}$. It is known that T is positive, but not 2-positive, i.e.

$$
T \in \mathcal{P}_{1}, \quad T \notin \mathcal{P}_{2},
$$

for $n \geq 2$. The Choi-Jamiołkowski matrix of T is

$$
C_{T}=\sum_{j, k=1}^{n} E_{j k} \otimes T\left(E_{j k}\right)=\sum_{j, k=1}^{n} E_{j k} \otimes E_{k j} .
$$

Conditional expectation onto the the diagonal: Consider the linear map $D: M_{n} \rightarrow M_{n}$, $D(X)=\left(\delta_{j k} x_{j k}\right)_{1 \leq j, k \leq n}$ for $X=\left(x_{j k}\right)_{1 \leq j, k \leq n} \in M_{n}$. This map is the conditional expectation onto the ${ }^{*}$-subalgebra of diagonal matrices (w.r.t. the standard basis).

We have

$$
D(X)=\sum_{j=1}^{n}\left|e_{j}\right\rangle\left\langle e_{j}\right| X\left|e_{j}\right\rangle\left\langle e_{j}\right|,
$$

which shows that $D \in \mathcal{S}_{1}=\mathcal{E B}$.
We can furthermore show that D belongs to the boundary of $\mathcal{C P}$, and therefore also to the boundary of $\mathcal{E B}$. Indeed, denote by $C \in M_{n}$ that matrix that cyclically permutes the vectors of the standard basis,

$$
C e_{j}=e_{j \oplus 1}=\left\{\begin{array}{cc}
e_{j+1} & \text { if } 1 \leq j \leq n-1, \\
e_{1} & \text { if } j=n,
\end{array}\right.
$$

where we use \oplus to denote the addition modulo n in $\{1, \ldots, n\}$. Then the completely positive map T_{C} with $T_{C}(X)=C X C^{*}$ acts as

$$
T_{C}\left(E_{j k}\right)=E_{j \oplus 1, k \oplus 1}
$$

Thus we have

$$
\left\langle T_{C}, D\right\rangle=\sum_{j, k=1}^{n} \operatorname{Tr}\left(T_{C}\left(E_{j k}\right)^{*} D\left(E_{j k}\right)\right)=\sum_{j=1}^{n} \operatorname{Tr}\left(E_{j \oplus 1, j \oplus 1} E_{j j}\right)=0 .
$$

The Choi-Jamiołkowski matrix of D is

$$
C_{D}=\sum_{j, k=1}^{n} E_{j k} \otimes D\left(E_{j k}\right)=\sum_{j=1}^{n} E_{j j} \otimes E_{j j} .
$$

We have

$$
C_{I d}=\sum_{j, k=1}^{n} E_{j k} \otimes E_{j k}
$$

We are interested in the 4 parameter family of linear maps- $\alpha P+\beta D+\gamma T+\delta$ Id for $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. We need the real parameters so that the family of maps is Hermitianity preserving. These are exactly the linear maps on $M_{n}(\mathbb{C})$ that are invariant under the action of the hyperoctahedral group as signed permutations and have been considered from that perspective in [JPPY23]. We wish to decide to which cone it belongs depending on the real values of the coefficients. We can easily check that the Choi-Jamiołkowski matrices $C_{P}, C_{D}, C_{T}, C_{I d} \in M_{n} \otimes M_{n}$ commute. Therefore, we can simultaneously diagonalise these four matrices. The minimal polynomials of $C_{D}, C_{T}, C_{I d}$ have degree two,
and these matrices have two distinct eigenvalues. Computing the traces, we also get the multiplicities.

Eigenvalues of C_{D}	$\rho=0$	$\rho=1$
$\operatorname{dim} \operatorname{ker}\left(C_{D}-\rho I_{n} \otimes I_{n}\right)$	$n^{2}-n$	n
Eigenvalues of C_{T}	$\sigma=-1$	$\sigma=1$
$\operatorname{dim} \operatorname{ker}\left(C_{T}-\sigma I_{n} \otimes I_{n}\right)$	$\frac{1}{2}\left(n^{2}-n\right)$	$\frac{1}{2}\left(n^{2}+n\right)$
Eigenvalues of $C_{I d}$	$\tau=0$	$\tau=n$
$\operatorname{dim} \operatorname{ker}\left(C_{I d}-\tau I_{n} \otimes I_{n}\right)$	$n^{2}-1$	1

In particular, $C_{I d}$ is a multiple of the orthogonal projection onto $\Omega=\sum_{j=1}^{n} e_{j} \otimes e_{j}$, which is also an eigenvector for the other matrices.

Denote by

$$
V(\rho, \sigma, \tau)=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: C_{D} v=\rho v, C_{T} v=\sigma v, C_{I d} v=\tau v\right\}
$$

the joint eigenspaces of $C_{D}, C_{T}, C_{I d}$. We can verify that, $V(\rho, \sigma, \tau)$ is non-null corresponding to the four triples $(\rho, \sigma, \tau)=(0,-1,0),(0,1,0),(1,1,0),(1,1, n)$.

Proposition 2.5.1. Let $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ and set

$$
\Phi(\alpha, \beta, \gamma, \delta)=\alpha P+\beta D+\gamma T+\delta \mathrm{Id} .
$$

Then Φ is completely positive if and only if $\alpha, \beta, \gamma, \delta$ satisfy the inequality

$$
\alpha \geq \max \left\{n|\gamma|,-n(\beta+\gamma),-n(\beta+\gamma)-n^{2} \delta\right\} .
$$

Proof. We check that the Choi-Jamiołkowski matrix $C_{\Phi(\alpha, \beta, \gamma, \delta)}=\alpha C_{P}+\beta C_{D}+\gamma C_{T}+\delta C_{\mathrm{Id}}$ of $C_{\Phi(\alpha, \beta, \gamma, \delta)}$ has eigenvalues

$$
\frac{\alpha}{n}-\gamma, \quad \frac{\alpha}{n}+\gamma, \quad \frac{\alpha}{n}+\beta+\gamma, \quad \frac{\alpha}{n}+\beta+\gamma+n \delta,
$$

corresponding to the four triples $(\rho, \sigma, \tau)=(0,-1,0),(0,1,0),(1,1,0),(1,1, n)$ with nontrivial eigenspaces.

Restricting to equivariant maps as in the terminology of [BCS20] (see also [COS18, Theorem 2.2]) we can also characterize the k-positivity criterion of the above mentioned family.

(1, 0)-Unitarily Equivariant Case - Linear Combinations Of Identity And Depolarising Channel

The identity map and the depolarising channel are (1,0)-unitarily equivariant map. For $\Phi_{\alpha, \delta}=\alpha P+\delta \mathrm{Id}, \Phi_{\alpha, \delta}(X)=\delta X+\frac{\alpha}{n} \operatorname{Tr}(X) I_{n}$ we

$$
\Phi_{\alpha, \delta}\left(U X U^{*}\right)=U \Phi_{\alpha, \delta}(X) U^{*},
$$

for all $U, X \in M_{n}$ with U unitary.
Let $1 \leq k \leq n$. By the theorem 2.4.2, $\Phi_{\alpha, \delta}$ is k-positive, if and only if

$$
C_{\Phi_{\alpha, \delta}}^{(k)}=\sum_{i, j=1}^{k} E_{i j} \otimes \Phi_{\alpha, \beta}\left(E_{i j}\right)=\sum_{i, j=1}^{k} E_{i j} \otimes=\frac{\alpha}{n} I_{n}^{(k)} \otimes I_{n}+\delta \sum_{i, j=1}^{k} E_{i j} \otimes E_{i j} \in M_{n} \otimes M_{n}
$$

is positive, where $I_{n}^{(k)}=\sum_{i=1}^{k} E_{i i} \in M_{n}$.
Note that $C_{\Phi_{0,1}}^{(k)}=\sum_{i, j=1}^{k} E_{i j} \otimes E_{i j}$ commutes with $I_{n}^{(k)} \otimes I_{n}$, satisfies $\left(C_{\Phi_{0,1}}^{(k)}\right)^{2}=k C_{\Phi_{0,1}}^{(k)}$, and is a multiple of the orthogonal projection onto $\Omega_{k}=\sum_{i=1}^{k} e_{i} \otimes e_{i}$. One can show that the eigenvalues of $C_{\Phi_{\alpha, \delta}}^{(k)}=\frac{\alpha}{n} I_{n}^{(k)} \otimes I_{n}+\delta C_{\Phi_{0,1}}^{(k)}$ are given by

$$
\operatorname{spec}\left(C_{\Phi_{0,1}}^{(k)}\right)=\left\{0, \frac{\alpha}{n}, \frac{\alpha}{n}+k \delta\right\} .
$$

We summarize our results in the following Lemma.
Lemma 2.5.1. ([Tom85, Theorem 2]) Let $\alpha, \delta \in \mathbb{R}$. The linear map $\Phi_{\alpha, \delta}$ is k-positive iff the matrix $C_{\Phi_{\alpha, \delta}}^{(k)}$ is positive iff α, δ satisfy the following two inequalities

$$
\alpha \geq 0 \quad \text { and } \quad \delta \geq-\frac{\alpha}{k n} .
$$

(0,1)-Unitarily Equivariant Case - Linear Combinations Of Transposition And

 Depolarising ChannelThe transposition and the depolarising channel are (0,1)-unitarily equivariant (in the terminology of [BCS20, Definition 1.1 (iii)]. For $\Psi_{\alpha, \gamma}=\alpha P+\gamma T, \Psi_{\alpha, \gamma}(X)=\gamma X^{T}+$ $\frac{\alpha}{n} \operatorname{Tr}(X) I_{n}$, we have

$$
\Psi_{\alpha, \gamma}\left(U X U^{*}\right)=\bar{U} \Psi_{\alpha, \gamma}(X) U^{T}
$$

for all $U, X \in M_{n}$ with U unitary.
By [BCS20, Theorem 2.4], $\Psi_{\alpha, \gamma}$ is k-positive, if and only if

$$
C_{\Psi_{\alpha, \gamma}}^{(k)}=\sum_{i, j=1}^{k} E_{i j} \otimes \Psi_{\alpha, \gamma}\left(E_{i j}\right)=\frac{\alpha}{n} I_{n}^{(k)} \otimes I_{n}+\gamma \sum_{i, j=1}^{k} E_{i j} \otimes E_{j i} \in M_{n} \otimes M_{n}
$$

is positive, where $I_{n}^{(k)}=\sum_{i=1}^{k} E_{i i} \in M_{n}$.
Note that $C_{\Psi_{0,1}}^{(k)}=\sum_{i, j=1}^{k} E_{i j} \otimes E_{j i}$ satisfies

$$
I_{n}^{(k)} \otimes I_{n} C_{\Psi_{0,1}}^{(k)}=C_{\Psi_{0,1}}^{(k)}=C_{\Psi_{0,1}}^{(k)} I_{n}^{(k)} \otimes I_{n}
$$

and $\left(C_{\Psi_{0,1}}^{(k)}\right)^{2}=\sum_{i, j=1}^{k} E_{i i} \otimes E_{j j}=I_{n}^{(k)} \otimes I_{n}^{(k)}$. which implies

$$
\operatorname{spec}\left(C_{\Psi_{0,1}}^{(1)}\right)=\{0,1\} \quad \text { and } \quad \operatorname{spec}\left(C_{\Psi_{0,1}}^{(k)}\right)=\{-1,0,1\} \text { for } k \geq 2
$$

We see that the eigenvalues of $C_{\Psi_{\alpha, \gamma}}^{(k)}=\frac{\alpha}{n} I_{n}^{(k)} \otimes I_{n}+\gamma C_{\Psi_{0,1}}^{(k)}$ are

$$
\operatorname{spec}\left(C_{\Psi_{\alpha, \gamma}}^{(1)}\right)=\left\{0, \frac{\alpha}{n}, \frac{\alpha}{n}+\gamma\right\} \quad \text { and } \quad \operatorname{spec}\left(C_{\Psi_{\alpha, \gamma}}^{(k)}\right)=\left\{0, \frac{\alpha}{n}, \frac{\alpha}{n}+\gamma, \frac{\alpha}{n}-\gamma\right\}
$$

for $k \geq 2$.
Therefore we have the following Lemma.

Lemma 2.5.2. ([Tom85, Theorem 3]) Let $\alpha, \gamma \in \mathbb{R}$. The linear map $\Psi_{\alpha, \gamma}$ is
i. 1-positive iff $\alpha \geq 0$ and $\alpha \geq-n \gamma$.
ii. k-positive for $k \geq 2$, iff $\alpha \geq n|\gamma|$.

Chapter 3

Error Basis

The Pauli matrices are set of 2×2 Hermitian, unitary matrices

$$
\sigma_{0}=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \sigma_{1}=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{2}=\frac{1}{2}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{3}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

They were first introduced by Pauli to describe quantum spin of a subatomic particle interacting with the external electromagnetic field. But they found a crucial role for quantum error correcting codes. They satisfy the following relations

$$
\sigma_{p}^{2}=\sigma_{0}^{2}, \quad \sigma_{p} \sigma_{q}=-\sigma_{q} \sigma_{p}, \quad \sigma_{p} \sigma_{q}=i \sigma_{r} \sigma_{0}
$$

if $(p, q, r) \in\{(1,2,3),(2,3,1),(3,1,2)\}$. Moreover, except for the identity each Pauli matrix has trace zero. Due to this trace condition, together with the above identities they form an orthonormal basis (up to a scaling) of $M_{2}(\mathbb{C})$ with respect to the Hilbert-Schmidt scalar product. The Pauli matrices model the sign and bit flip errors in the case of 2 dimensional error correcting codes. To generalise them in higher dimension, Schwinger (1960), Knill (1996), Werner (2001) introduced the idea of unitary error basis.

Definition 3.0.1 (Unitary Error Basis). An Unitary Error Basis (UEB) of $M_{n}(\mathbb{C})$ is a family of $n \times n$ unitary matrices $\left\{U_{i}\right\}_{i=1}^{n^{2}}$ such that

$$
\operatorname{Tr}\left(U_{i}^{*} U_{j}\right)=\delta_{i j} n
$$

If we equip the vector space $M_{n}(\mathbb{C})$ with the Hilbert-Schmidt inner product

$$
\langle A, B\rangle:=\operatorname{Tr}\left(A^{*} B\right)
$$

then the UEB becomes an orthonormal basis (upto a scaling) of $M_{n}(\mathbb{C})$.

Definition 3.0.2. Two UEB's \mathcal{B}_{1} and \mathcal{B}_{2} are said to be equivalent iff
i. there exist unitaries $W_{1}, W_{2} \in U(n)$
ii. there exist constant $c_{U} \in \mathbb{C}$ for $U \in \mathcal{B}_{1}$
such that

$$
\mathcal{B}_{2}=\left\{c_{U} W_{1} U W_{2} ; U \in \mathcal{B}_{1}\right\} .
$$

Lemma 3.0.1. Any unitary error basis in dimension 2 is equivalent to the Pauli basis.

Proof. Let $\mathcal{E}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ be an arbitrary unitary error basis of dimension 2. This error basis is equivalent to a basis of the form $\left\{I_{n}, \operatorname{diag}(1,-1), B_{3}, B_{4}\right\}$. Indeed, we can multiply all matrices in \mathcal{E} from the left with A_{1}^{*} to get an equivalent error basis which contain identity. By the orthogonality condition the rest of the non-identity matrices have trace zero. A change of basis and multiplication by scalar allows us to reduce the second matrix to $\operatorname{diag}(1,-1)$ without changing the identity matrix.

Again due to the orthogonality condition, the diagonal elements of B_{3}, B_{4} are zero. We can assume they are of the form $B_{3}=\operatorname{anti-diag}\left(1, e^{i \theta}\right)$ and $B_{4}=\operatorname{anti-diag}\left(1, e^{-i \theta}\right)$ for some $\theta \in \mathbb{R}$ since we are allowed to multiply the matrices with scalars. Conjugating the matrices with $\operatorname{diag}\left(1, e^{-i \theta / 2}\right)$ yeilds the Pauli matrices up to scalar multiples. Hence \mathcal{E} is equivalent to the Pauli basis.

Two fundamentally different constructions of UEB are known. One is combinatorial in nature known as shift and multiply basis(SMB) introduced by Werner[Wer01] and another is more algebraic in nature, known as nice error basis(NEB) [Kni96]. We will first briefly discuss the shift and multiply basis and mainly focus on the construction of nice error basis as we will use them later to study different positive maps and quantum channels.

3.1 Shift And Multiply Basis

We recall that a Latin square is a $n \times n$ matrix such that each element of the set \mathbb{Z}_{n} occurs exactly once in each row and column.

Example 3.1.1.

$$
\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]
$$

A complex Hadamard matrix H of order n is a $n \times n$ complex matrix such that

1. $\left|H_{i j}\right|=1$ for $1 \leq i, j \leq n$.
2. $H^{*} H=n I_{n}$

For example, for any $n \in \mathbb{N}$ we can define the following Hadamard matrix of order n

$$
(H)_{k l}=\exp \left(\frac{2 \pi i k l}{n}\right)
$$

Definition 3.1.1. Let $\boldsymbol{H}=\left\{H^{(j)} ; 1 \leq j \leq n\right\}$ be a finite sequence of Hadamard matrices and L be a Latin square of order n. A shift and multiply basis \mathcal{B} associated to L and \boldsymbol{H} is given by the unitary matrices

$$
B_{i j}:=P_{j} \operatorname{diag}\left(H_{i k}^{(j)}: 0 \leq k<n\right) \quad \text { for } i, j \in \mathbb{Z}_{n}
$$

where P_{j} denotes the permutation matrix with entries given by $P_{j}(L(j, k), k)=1$ for $k \in \mathbb{Z}_{n}$ and zero elsewhere.

If we label the standard basis of \mathbb{C}^{n} by the set $\left\{|k\rangle ; k \in \mathbb{Z}_{n}\right\}$ then we can verify the action of $B_{i j}$ on the basic vectors of \mathbb{C}^{n} -

$$
B_{i j}|k\rangle=H_{i k}^{(j)}|L(j, k)\rangle .
$$

Lemma 3.1.1 (Werner). $\mathcal{B}=\left\{B_{i j} ; 1 \leq i, j \leq n\right\}$ is a UEB (known as Shift and Multiply basis associated to L and \boldsymbol{H}).

Proof. It is sufficient to show that \mathcal{B} is an orthogonal system with respect to the HilbertSchmidt inner product i.e. $\operatorname{Tr}\left(B_{i j}^{*} B_{k l}\right)=0$ if $(i, j) \neq(k, l)$. If $j \neq l$ then the matrix $P_{j}^{*} P_{l}$ has vanishing diagonal which implied that $\operatorname{Tr}\left(B_{i j}^{*} B_{k l}\right)=0$ for any choice of i and k. If $j=l$ and $i \neq k$ then $\operatorname{Tr}\left(B_{i j}^{*} B_{k l}\right)$ is equal to the inner product of i-th and k-th row of the complex Hadamard matrix $H^{(j)}$, hence $\operatorname{Tr}\left(B_{i j}^{*} B_{k l}\right)=0$.

Example 3.1.2. For $n=3$, let's take the following Latin square L and Hadamard matrix H :

$$
L=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right] \quad \text { and } \quad H=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right]
$$

where ω is a third root of unity. We can check that the three permutation matrices corresponding to the Latin square L are

$$
P_{0}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], P_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad P_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Now we can construct the shift and multiply basis according to the definition 3.1.1. For example the basis B_{01} and B_{12} are given by

$$
B_{01}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], B_{12}=\left[\begin{array}{ccc}
0 & 0 & \omega^{2} \\
1 & 0 & 0 \\
0 & \omega & 0
\end{array}\right]
$$

3.2 Nice Error Basis

The other type of unitary error basis was introduced by E. Knill [Kni96], called nice error basis(NEB). We first recall the definiton of a NEB.

Definition 3.2.1. Let G be a group of order n^{2} for some natural number n. A nice error basis (NEB) on \mathbb{C}^{n} is a set of unitary operators $E=\left\{\rho_{g} \in U(n): g \in G\right\}$ such that

1. ρ_{1} is the identity matrix, where 1 denotes the identity element of the group G.
2. $\operatorname{Tr}\left(\rho_{g}\right)=n \delta_{g, 1}$.
3. $\rho_{g} \rho_{h}=\omega(g, h) \rho_{g h}$, where $\omega(g, h)$ is a scalar.

For such a set of operators the labelling group G is called the index group of the corresponding $N E B$.

Conditions (1) and (3) simply tell us that the representation ρ is a projective representation. If we equip $M_{n}(\mathbb{C})$ with the inner product $\langle A, B\rangle:=\operatorname{Tr}\left(A^{*} B\right)$ then condition (2) ensures that E is an orthonormal set since

$$
\begin{aligned}
\left\langle\rho_{g}, \rho_{h}\right\rangle=\operatorname{Tr}\left(\rho_{g}^{*} \rho_{h}\right)=\omega\left(g^{-1}, g\right)^{-1} \operatorname{Tr}\left(\rho_{g^{-1}} \rho_{h}\right) & =\omega\left(g^{-1}, g\right)^{-1} \omega\left(g^{-1}, h\right) \operatorname{Tr}\left(\rho_{g^{-1} h}\right) \\
& =\omega\left(g^{-1}, g\right)^{-1} \omega\left(g^{-1}, h\right) n \delta_{g, h}
\end{aligned}
$$

Comparing the dimension it follows that E is an orthonormal basis (upto a scaling) of $M_{n}(\mathbb{C})$. It follows that π is an irreducible representation. Recall that a 2-cocycle is a function $f: H \times H \rightarrow \mathbb{C}$, where H is a group, verifying the relation

$$
f(a, b c) f(b, c)=f(a, b) f(a b, c)
$$

for any $a, b, c \in G$. In the case of a NEB the associativity of the index group G implies that function $\omega: G \times G \rightarrow \mathbb{C}$ is a 2 -cocycle. Indeed for any $g, h, k \in G$ we have

$$
\begin{aligned}
\left(\rho_{g} \rho_{h}\right) \rho_{k} & =\rho_{g}\left(\rho_{h} \rho_{k}\right) \\
\Longrightarrow \omega(g, h) \omega(g h, k) \rho_{g h k} & =\omega(g, h k) \omega(h, k) \rho_{g h k}
\end{aligned}
$$

If we normalise each π_{g} so that $\operatorname{det}\left(\pi_{\mathrm{g}}\right)=1$ then $\omega(g, h)$ becomes an n-th root of unity for any $g, h \in G$.

Recall that the character corresponding to an irreducible representation of a group G is called an irreducible character of G. If the irreducible representation is projective with 2-cocycle α then the corresponding character is called an irreducible α character of G.

Theorem 3.2.1. Let α be a 2-cocycle and let χ be a irreducible α character of the group G. Then $\chi(1)^{2} \leq|G: \operatorname{Ker} \chi|$ with equality iff $\chi(g)=0$ for all $g \in G / \operatorname{Ker} \chi$.

Proof. See corollary 11.13, [Kar94]
Theorem 3.2.2 (Theorem 1, $[\mathrm{KR} 02])$. Let $\mathcal{E}=\{\pi(g) ; g \in G\}$ be a set of unitary matrices indexed by the a finite group G. Then \mathcal{E} is a NEB iff π is a unitary faithful irreducible projective representation of order $|G|^{1 / 2}$.

Proof. If \mathcal{E} is a nice error basis then we have already seen that π is an unitary irreducible projective representation of degree $|G|^{\frac{1}{2}}$. The condition (2) of the definition of NEB ensures that the projective representation is faithful i.e. no ρ_{g} is scalar multiple of identity except for $g=1$. Conversely, if ρ is an irreducible faithful projective representation of order $|G|^{\frac{1}{2}}$ then by the previous theorem the extremal degree condition $\operatorname{tr}(\rho(1))=|G|^{\frac{1}{2}}$ implies that $\operatorname{tr}(\rho(g))=0$ holds for any $g \in G / \operatorname{Ker}(\rho)$. It follows that ρ satisfies the condition (ii) of the definition of a NEB.

Characterisation Of Abelian Index Group

As a consequence of theorem 3.2.2, Klappenecker and Rötteler characterised all the index groups which are anbelian [KR02]. They used a classical result of group representation theory by Frucht. A group G is called of symmetric type if $G \cong H \times H$ for some group H.

Theorem 3.2.3 (Frucht, 1931). A finite abelian group admits a faithful unitary irreducible projective representation iff it is of symmetric type. The degree of the representation is $|G|^{1 / 2}$.

Proof. See [Fruc31].

Theorem 3.2.4. If a $N E B \mathcal{E}$ has an abelian index group G then G is of symmetric type. Conversely, any finite abelian group of symmetric type is a index group of a NEB.

Proof. We have seen in the theorem 3.2.2 that an NEB \mathcal{E} can be viewed as an irreducible faithful projective representation of a group G. By the theorem of Frucht a finite abelian group G admits such a representation if it is of symmetric type i.e. $G \cong H \times H$ for some group H and conversely, any symmetric group G will have an irreducible, faithful, projective representation of degree $|G|^{\frac{1}{2}}$.

Characterisation of Non-abelian Index Group

The characterisation of an non-abelian index group is more difficult than the abelian case. To study this case Knill [Kni96] considered a slightly bigger group than the index group, known as the abstract error group.

Definition 3.2.2. Let G be an index group and $\mathcal{E}=\left\{\pi_{g} ; g \in G\right\}$ be a NEB. Then the group H generated by π_{g} 's i.e. $H:=\left\langle\pi_{g}\right\rangle$ is called abstract error group.

In general it may not be finite but if we multiply each π_{g} by a suitable scalar c_{g} such that $\operatorname{det}\left(c_{g} \pi_{g}\right)=1$ then we get an equivalent error basis

$$
\mathcal{E}^{\prime}=\left\{\pi^{\prime}(g):=c_{g} \pi_{g}: g \in G\right\}
$$

for which the abstract error basis H^{\prime} becomes finite. Indeed, in such case the value of $\omega(g, h)$ for each $g, h \in G$ becomes an n-th root of the unity.

$$
1=\operatorname{det}\left(\pi_{g}^{\prime}\right) \operatorname{det}\left(\pi_{h}^{\prime}\right)=\omega(g, h)^{n} \operatorname{det}\left(\pi_{g h}^{\prime}\right)=\omega(g, h)^{n}
$$

So after this normalisation the corresponding abstract error group H^{\prime} can have at most order $n \times n^{2}=n^{3}$. So without any loss of generality we can assume any abstract error group H to be of finite order. If ϵ is a primitive n -th root of the unity then we can write the abstract error group H as

$$
H=\left\{\epsilon^{i} \pi_{g}: g \in G, 0 \leq i \leq n-1\right\}
$$

with the group operation

$$
\left(\epsilon^{i} \pi_{g}\right) \cdot\left(\epsilon^{j} \pi_{h}\right)=\epsilon^{i+j} \omega(g, h) \pi_{g h} .
$$

If T is the cyclic group generated by the values of ω then the abstract error group H can be identified with the group $G_{\omega}:=T \times G$ where the group operation is given by

$$
(a, g) \circ(b, h):=(a b \omega(g, h), g h)
$$

The map $G_{\omega}:(a, g) \mapsto g \in G$ is a surjective homomorphism with kernel $\{(a, 1) ; a \in T\} \cong$ T. The group G_{ω} is called the ω-covering group of G [Kar93]. Recall that if G and N are two groups then H is called an extension of G by N if there is a short exact sequence

$$
1 \longrightarrow N \xrightarrow{g} H \xrightarrow{f} G \longrightarrow 1
$$

i.e g is monomorphism, f is epimorphism and $\operatorname{Ker} f=\operatorname{Im} g$. When $g(N)$ lies in the centre of the group H it is called a central extension of G. Following the previous discussion it is easy to see the abstract error group $H \cong G_{\omega}:=T \times G$ is a central extension of G, the index group, by T

$$
1 \longrightarrow T \longrightarrow G_{\omega} \longrightarrow G \longrightarrow 1
$$

The main motivation of studying the abstract error group will be clear soon. The idea is that if we have a central extension of a group then any projective representation of a group lifts to an usual representation of its central extension. Since we have already seen that the abstract error group is a central extension of the index group, characterising the abstract error group will be sufficient to study an index group.

Definition 3.2.3 (lifting a projective representation to central extension). Let A, G and G^{*} be three groups such that G^{*} is an extension of G by A,

$$
1 \longrightarrow A \longrightarrow G^{*} \xrightarrow{f} G \longrightarrow 1
$$

Given a projective representation of $G, \pi: G \longrightarrow G L(V)$, we say π lifts to an ordinary representation $\pi^{*}: G^{*} \longrightarrow G L(V)$ of G^{*} if
i. $\pi^{*}(a)$ is scalar matrix for any $a \in A$.
ii. there is a section $\mu: G \longrightarrow G^{*}$ of f (i.e. $\mu(1)=1$ and $f \circ \mu=I d$) such that for all $g \in G$

$$
\pi(g)=\pi^{*}(\mu(g))
$$

Theorem 3.2.5. Let ω be a 2-cocycle and G_{ω} be the ω covering group of G. Then every ω projective representation of G lifts to a ordinary representation of G_{ω}.

Proof. If π is a projective representation of G then we define the ordinary representation π^{*} of $G_{\omega} \cong T \times G$ by

$$
\pi^{*}(g)\left(\epsilon^{i}, g\right)=\epsilon^{i} \pi(g)
$$

We define the section map $\mu: G \rightarrow G^{*}$ by $\mu(g):=(1, g)$ for any $g \in G$. It is easy to see now that for any $g \in G, \pi(g)=\pi^{*}(\mu(g))$ and we have $\pi^{*}\left(\epsilon^{i}, 1\right)=\epsilon^{i} I_{n}$. Since $T \cong\left\{\left(\epsilon^{i}, 1\right): 1 \leq i \leq n-1\right\}$, it follows that π^{*} is a lift of π.

We see that characterising the index group is equivalent to the characterisation of the abstract error group which is nothing but the central extension of the index group. It was A. Klappenecker and M. Rötteler who characterised all the abstract error groups as a central extension of an index group by a group of central type with cyclic center [KR02].

Definition 3.2.4. A group H is called group of central type if there exists an ordinary irreducible character χ of H such that $\chi(1)^{2}=|H: Z(H)|$, where $Z(H)$ is the center of the group H.

Before we discuss the result of Klappenecker and Rötteler we need the following well known results on finite group representation theory, which we will mention without any proof as they are out of the scope of this thesis.

Let G be a finite group and χ a character corresponding to a representation of the group G. We call the center of the character the set

$$
Z(\chi):=\{g \in G:|\chi(g)|=\chi(1)\}
$$

Lemma 3.2.1. If χ is an irreducible character of the group H then $\chi(1)^{2} \leq|H: Z(\chi)|$. Equality occurs if and only if χ vanishes on $G-Z(\chi)$.

Proof. Corollary 2.30, [Iss76].

Remark 3.2.6. Since we know that $Z(H)=\cap\{Z(\chi): \chi \in \operatorname{Irr}(H)\}$, where $\operatorname{Irr}(H)$ denotes the set of all irreducible characters of H, it follows from the above mentioned lemma that $\chi(1)^{2} \leq|H: Z(H)|$. Equality can occur and when it does we have $Z(\chi)=Z(H)$

Theorem 3.2.7 (Klappenker \& Röttler, 2002). A group H is an abstract error group if and only if it is a group of central type with cyclic centre $Z(H)$.

Proof. If H is an abstract error group then it is isomorhphic to a ω-covering group of an index group G which has an irreducible faithful projective representation π of order $|G|^{\frac{1}{2}}$ with 2-cocycle ω (cf. theorem 3.2.2). In particular, $G \cong H / T$ for some cyclic central subgroup T of H generated by a primitive nth root of the unity. Each projective representation of G lifts to an ordinary representation of H of same degree. So there exists an irreducible ordinary representation of H and the corresponding character χ of H with $\chi(1)=|H: T|^{\frac{1}{2}}$. Since each irreducible charcater satisfies the inequality $\chi(1)^{2} \leq|H: Z(H)|$ (see remark 3.2.6) and we already know that $T \subset Z(H)$ we have $T=Z(H)$. Thus, H is a group of central type with cyclic center.

Conversely, Suppose H is a group of central type with cyclic center. It was shown in a seminal work of Pahling [Pah70] that H has a faithful irreducible unitary representation σ of degree $|H: Z(H)|^{\frac{1}{2}}$. Let $G=H / Z(H)$ and denote by $W=\left\{x_{g}: g \in G\right\}$ a set of coset representative of $Z(H)$ in H. Now define a projective representation

$$
\pi(g)=\sigma\left(x_{g}\right) .
$$

The projective representation π is unitary, irreducible and faithful of degree $|G|^{\frac{1}{2}}$. Therefore, by theorem 3.2.2 G is an index group of an NEB. Finally, since H is isomorphic to a ω covering group of G, H is an abstract error group.

We present in the next result a recipe to obtain an index group from a group of central type. But we need the following lemma before moving on.

Lemma 3.2.2. Let H be a group and χ be an irreducible character of G. Then $Z(H / \operatorname{Ker} \chi)=$ $\mathrm{Z}(\chi) / \operatorname{Ker} \chi$. Moreover, $Z(\chi) / \operatorname{Ker} \chi$ is a cyclic group.

Proof. Lemma 2.27, [Iss76]
Theorem 3.2.8. Let H be a group of central type. Then the group $(H / \operatorname{Ker} \chi) /(\mathrm{Z}(\mathrm{H}) / \operatorname{Ker} \chi) \cong \mathrm{H} / \mathrm{Z}(\mathrm{H})$ is an index group.

Proof. Let H be a group of central type with an irreducible character χ which satisfies $\chi(1)^{2}=|H: Z(H)|$ then $Z(\chi)=Z(H)$ (see remark 3.2.6). Therefore we have that $Z(H / \operatorname{Ker} \chi)=Z(H) / \operatorname{Ker} \chi$ by Lemma 3.2.2. For each $h \in(H / \operatorname{Ker} \chi) /(Z(H) / \operatorname{Ker} \chi)$ we choose a coset representative $\phi(h)$ in $H / \operatorname{Ker} \chi$. Let us denote $\pi_{h}=\tilde{\mathfrak{X}}_{\chi}(\phi(h))$. Therefore we have

$$
\pi_{h} \pi_{k}=\tilde{\mathfrak{X}}(\phi(h)) \tilde{\mathfrak{X}}(\phi(k))=\tilde{\mathfrak{X}}(\phi(h) \phi(k))=\tilde{\mathfrak{X}}\left(\phi(h k) z_{h, k}\right),
$$

where $z_{h, k} \in Z(H) / \operatorname{Ker} \chi$. $\tilde{\mathfrak{X}}_{\chi}(Z(H) / \operatorname{Ker} \chi)$ consists of scalar multiples of identity only. So we obtain $\pi_{h} \cdot \pi_{k}=\tilde{\mathfrak{X}}(\phi(h k)) \tilde{\mathfrak{X}}\left(z_{h, k}\right)=\omega(h, k) \pi_{h k}$, where $\omega(h, k) \in \mathbb{C}$. Since the representation is irreducible, all the π_{h} spans $M_{n}(\mathbb{C})$ for some $n \in \mathbb{N}$. Using isomorphism theorem we get $(H / \operatorname{Ker} \chi) /(Z(H) / \operatorname{Ker} \chi) \cong H / Z(H)$. As we know the character χ vanishes outside $Z(H)$, it follows that $\operatorname{Tr}\left(\pi_{h}\right)=0$ except at the identity. So we find that $(H / \operatorname{Ker} \chi) /(\mathrm{Z}(\mathrm{H}) / \operatorname{Ker} \chi) \cong \mathrm{H} / \mathrm{Z}(\mathrm{H})$ is an index group if H is a group of central type.

Examples: We present here two examples to briefly clarify the previous result- one with an Abelian index group and another with a non-Abelian index group.
i. The group of unit quaternions $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$ (with multiplication as the group operation) has eight elements and five irreducible representations (up to equivalence), which we can choose as

$$
\begin{aligned}
\varepsilon & : \\
\sigma_{i} & : \\
\sigma_{j} & : \sigma_{i}(i)=1, \quad \sigma_{j}(i)=-1, \quad \sigma_{j}(j)=-1, \\
\sigma_{k} & : \\
\pi & \sigma_{k}(i)=-1=\sigma_{k}(j), \\
\pi & : \\
& \pi(i)=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right), \quad \pi(j)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

For the character table we get

	1	-1	i	$-i$	j	$-j$	k	$-k$	dim
$\chi_{\varepsilon}=\varepsilon$	1	1	1	1	1	1	1	1	1
$\chi_{\sigma_{i}}=\sigma_{i}$	1	1	1	1	-1	-1	-1	-1	1
$\chi_{\sigma_{j}}=\sigma_{j}$	1	1	-1	-1	1	1	-1	-1	1
$\chi_{\sigma_{k}}=\sigma_{k}$	1	1	-1	-1	-1	-1	1	1	1
χ_{π}	2	-2	0	0	0	0	0	0	2

We see that

$$
\begin{aligned}
\operatorname{ker}\left(\chi_{\pi}\right) & =\{1\} \\
Z\left(\chi_{\pi}\right) & =\{1,-1\}=Z(Q) .
\end{aligned}
$$

Q is a group of central type: its center is $Z(Q)=\{-1,1\}$ and it has a $|Q / Z(Q)|^{1 / 2}{ }^{1}$ dimensional irreducible representation. We have $Q / Z(Q) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

The 2-cocycle $\omega: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow \mathbb{T}$ is given by the relations

$$
\pi\left(g_{1}\right) \pi\left(g_{2}\right)=\omega\left(g_{1}, g_{2}\right) \pi\left(g_{1} g_{2}\right)
$$

for $g_{1}, g_{2} \in \mathbb{Z}_{2}$. If we write $\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(\pm 1, \pm 1)\}$ multiplicatively and choose

$$
\begin{aligned}
& \pi(+1,+1)=\pi(1)=I_{2} \\
& \pi(+1,-1)=\pi(i)=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right), \\
& \pi(-1,+1)=\pi(j)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& \pi(-1,-1)=\pi(k)=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) .
\end{aligned}
$$

We get

ω	$(+1,+1)$	$(+1,-1)$	$(-1,+1)$	$(-1,-1)$
$(+1,+1)$	1	1	1	1
$(+1,-1)$	1	-1	1	-1
$(-1,+1)$	1	-1	-1	1
$(-1,-1)$	1	1	-1	-1

ii. Klappenecker and Rötteler construceted an example of NEB corresponding to a noncommutative index group which we briefly mention here. Consider the group H_{n} for some $n \in \mathbb{N}$, generated by the composition of the maps

$$
\tau: x \mapsto x+1\left(\bmod \quad 2^{n}\right) \quad \text { and } \quad \alpha: x \mapsto 5 x\left(\bmod \quad 2^{n}\right) .
$$

If $A:=\langle\tau\rangle$ and $B:=\langle\alpha\rangle$ then $H_{n}=A \rtimes B$.
Theorem 3.2.9. The group H_{n} is a group of central type of order $2^{2 n-2}$ with cyclic center $Z\left(H_{n}\right)=\left\langle\tau^{2^{n-2}}\right\rangle$. The index group $H_{n} / Z\left(H_{n}\right)$ is non-Abelian for $n \geq 5$.

Proof. See theorem 5, [KR02].

Let $\phi: \mathbb{Z} / 2^{n} \mathbb{Z} \rightarrow \mathbb{C}$ be a map defined by

$$
\phi(x)=\exp \left(\frac{2 \pi i 5^{x}}{2^{n}}\right) .
$$

Then the diagonal matrix

$$
\pi(\tau)=\operatorname{diag}\left(\phi(0), \phi(1), \ldots, \phi\left(2^{n-1}-1\right)\right)
$$

and the shift

$$
\pi(\alpha)=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

define an ordinary faithful irreducible representation of H_{n}. The NEB corresponding to the index group $H_{n} / Z\left(H_{n}\right)$ is given by

$$
\mathcal{E}=\left\{\pi(\tau)^{k} \pi(\alpha)^{l}: 0 \leq k, l<2^{n-2}-1\right\} .
$$

NEB and SMB from Discrete Weyl Operators

An open problem posed by Schligemann and Werner was if each NEB is equivalent to a SMB. Klappenecker and Rötteler showed the answer to be negative [KR05]. We discuss here an important class of example called Weyl operators which is both SMB and NEB. We define $\varkappa((\cdot, \cdot))$ a fixed symmetric nondegenerate bicharacter on $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ i.e., a function $\varkappa(\cdot, \cdot): \mathbb{Z}_{n} \times \mathbb{Z}_{n} \rightarrow \mathbb{C}$ such that
(i) $|\varkappa(x, y)|=1$, for all $x, y \in \mathbb{Z}_{n}$,
(ii) Symmetry: $\varkappa(x, y)=\varkappa(y, x)$, for all $x, y \in \mathbb{Z}_{n}$,
(iii) Non-degeneracy: $\varkappa(x, y)=1$ for all $y \in \mathbb{Z}_{n}$ iff $x=0$,
(iv) Character: $\varkappa(x, y+z)=\varkappa(x, y) \cdot \varkappa(x, z)$.

In general \mathbb{Z}_{n} can be replaced by an arbitrary Abelian finite group
Example 3.2.10. We can take

$$
\varkappa(k, \ell)=\exp \left(\frac{2 \pi i k \ell}{N}\right), \quad k, \ell \in \mathbb{Z}_{N} .
$$

Fix an orthonormal basis

$$
\left\{|x\rangle ; x \in \mathbb{Z}_{n}\right\}
$$

of \mathbb{C}^{n}. We define two unitary representations U and V of \mathbb{Z}_{n} on \mathbb{C}^{n}, by the relations

$$
\begin{aligned}
U_{a}|x\rangle & =|x+a\rangle, \\
V_{a}|x\rangle & =\varkappa(a, x)|x\rangle,
\end{aligned}
$$

for $x, a \in \mathbb{Z}_{n}$.
The operators $U_{a}, V_{b}, a, b \in \mathbb{Z}_{n}$, satisfy the Weyl commutation relations

$$
U_{a} U_{b}=U_{a+b}, \quad V_{a} V_{b}=V_{a+b}, \quad V_{b} U_{a}=\varkappa(a, b) U_{a} V_{b}
$$

for $a, b \in \mathbb{Z}_{n}$.
We define the Weyl operators

$$
W_{a, b}=U_{a} V_{b}
$$

for $a, b \in \mathbb{Z}_{n}$ [Wat18]. The matrix coefficients of a Weyl operator $W_{a, b}$ w.r.t. to the basis $\left\{|x\rangle ; x \in \mathbb{Z}_{n}\right\}$ are given by

$$
\langle y| W_{a, b}|x\rangle=\varkappa(b, x) \delta_{y, x+a}, \quad x, y \in \mathbb{Z}_{n}
$$

or, equivalently,

$$
\begin{equation*}
W_{a, b}=\sum_{x \in G} \varkappa(b, x)|x+a\rangle\langle x| . \tag{3.2.1}
\end{equation*}
$$

It is straightforward that they satisfy the following relations,

$$
\begin{aligned}
W_{a, b} W_{x, y} & =\varkappa(b, x) W_{a+x, b+y}, \\
W_{a, b}^{*}=W_{a, b}^{-1} & =\varkappa(a, b) W_{-a,-b}, \\
W_{a, b} W_{x, y} W_{a, b}^{*} & =\frac{\varkappa(b, x)}{\varkappa(a, y)} W_{x, y},
\end{aligned}
$$

for $a, b, x, y \in \mathbb{Z}_{n}$.
It follows that

$$
\left\{n^{-1 / 2} W_{a, b} ; a, b \in G\right\}
$$

is an NEB of $M_{n}(\mathbb{C})$, since

$$
\operatorname{Tr}\left(W_{a, b}\right)=\sum_{x \in \mathbb{Z}_{n}}\langle x| \underbrace{U_{a} V_{b}|x\rangle}_{=\varkappa(b, x)|x+a\rangle}= \begin{cases}n & \text { if }(a, b)=(0,0) \tag{3.2.2}\\ 0 & \text { else },\end{cases}
$$

and

$$
\begin{aligned}
\operatorname{Tr}\left(W_{x, y}^{*} W_{a, b}\right) & =\operatorname{Tr}\left(((x, y)) W_{-x,-y} W_{a, b}\right) \\
& =((x-a, y)) \operatorname{Tr}\left(W_{a-x, b-y}\right) \\
& = \begin{cases}N & \text { if }(a, b)=(x, y), \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Here we used the orthogonality of the characters,

$$
\sum_{x \in \mathbb{Z}_{n}} \underbrace{\overline{\varkappa(a, x)} \varkappa(b, x)}_{=\varkappa(b-a, x)}=n \delta_{a, b} .
$$

The following Fourier expansion shows how to express any element $X \in M_{n}(\mathbb{C})$ in terms of the o.n.b. $\left\{n^{-1 / 2} W_{a, b} ; a, b \in G\right\}$. For all $X \in M_{n}(\mathbb{C})$ we have

$$
X=\frac{1}{n} \sum_{a, b \in \mathbb{Z}_{n}} \operatorname{Tr}\left(W_{a, b}^{*} X\right) W_{a, b} .
$$

Chapter 4

Error Basis and Quantum Channel

In this chapter we will use use nice error basis, in particular the Weyl operators to construct a convenient basis of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$. We want to decompose any linear map with respect to such convenient basis to obtain an $n^{2} \times n^{2}$ coefficient matrix. We will then characterise the positivity, complete positivity, complete co-positivity in terms of that coefficient matrix. We will also establish the connection between the Choi matrix of a linear map on $M_{n}(\mathbb{C})$ and the coefficent matrix that we have found. The discussion and the results of this chapter are based on our paper [BCF23(ii)], co-authored by Uwe Franz and B. V. Rajarama Bhat.

4.1 Convenient Basis Of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$

For a pair of matrices $A, B \in M_{n}(\mathbb{C})$ we define a linear map $T_{A, B}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ by

$$
T_{A, B}(X)=A X B^{*}, \quad \text { for } X \in M_{n}(\mathbb{C})
$$

Proposition 4.1.1. The $\operatorname{map} M_{n}(\mathbb{C}) \times M_{n}(\mathbb{C}) \ni(A, B) \mapsto T_{A, B} \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ extends to a unique isomorphism of ${ }^{*}$-algebras $T: M_{n}(\mathbb{C}) \otimes M_{n}(\mathbb{C})^{*} \ni A \otimes B^{*} \rightarrow T_{A, B} \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$, which is also an isomorphism of Hilbert spaces.

The above proposition shows that if $\left\{B_{i} ; 1 \leq i \leq n^{2}\right\}$ is a basis of $M_{n}(\mathbb{C})$ and we define $T_{i j}(X):=B_{i} X B_{j}^{*}$ for any $X \in M_{n}(\mathbb{C})$ then $\left\{T_{i j} \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right) ; 1 \leq i, j \leq n^{2}\right\}$ is a basis of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$. Taking an NEB as a basis of $M_{n}(\mathbb{C})$ has the added advantage that in that case $T_{i j}$ also becomes an NEB in $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$.

Lemma 4.1.1. Let $\left\{\frac{1}{\sqrt{n}} \pi_{g} ; g \in G\right\}$ be an $N E B$ of $M_{n}(\mathbb{C})$ corresponding to an index group G. Define the linear map $T_{x, y}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ by

$$
T_{x, y}(X):=\pi_{x} X \pi_{y}^{*}
$$

Then the $\left\{\frac{1}{n} T_{x, y} ; x, y \in G\right\}$ is an NEB of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ with the index group $G \times G$ and 2-cocycle $\omega^{L}:(G \times G) \times(G \times G) \rightarrow \mathbb{T}$ given by

$$
\omega^{L}\left(\left(x^{\prime}, y^{\prime}\right),(x, y)\right)=\frac{\omega\left(x^{\prime}, x\right)}{\omega\left(y^{\prime}, y\right)}
$$

Proof. It is trivial to check that $T_{1,1}=\operatorname{Id}$ where 1 is the identity element of G. To check the trace condition, we compute

$$
\begin{gathered}
\operatorname{Tr}_{\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)}\left(T_{x, y}\right)=\sum\langle\mid i\rangle\langle j|, T_{x y}|i\rangle\langle j \mid\rangle=\sum \operatorname{Tr}_{M_{n}(\mathbb{C})}\left(|j\rangle\langle i| \pi_{x}|i\rangle\langle j| \pi_{y}^{*}\right) \\
=\sum\langle i| \pi_{x}|i\rangle\langle j| \pi_{y}^{*}|j\rangle=\operatorname{Tr}\left(\pi_{x}\right) \operatorname{Tr}\left(\pi_{y}^{*}\right)=n^{2} \delta_{1, x} \delta_{1, y},
\end{gathered}
$$

where $\{|i\rangle\langle j| 1 \leq i, j \leq n\}$ is the set of matrix units of $M_{n}(\mathbb{C})$. This shows that trace of each operator $T_{x, y}$ is zero except for the identity. For any $X \in M_{n}(\mathbb{C})$ and $x, y, x^{\prime}, y^{\prime} \in G$ we see that

$$
T_{x^{\prime}, y^{\prime}} \circ T_{x, y}(X)=\pi_{x^{\prime}} \pi_{x} X \pi_{y}^{*} \pi_{y^{\prime}}^{*}=\frac{\omega\left(x^{\prime}, x\right)}{\omega\left(y^{\prime}, y\right)} \pi_{x^{\prime} x} X \pi_{y^{\prime} y}^{*}=\frac{\omega\left(x^{\prime}, x\right)}{\omega\left(y^{\prime}, y\right)} T_{x^{\prime} x, y^{\prime} y}(X)
$$

which proves the claim about the 2-cocycle ω^{L}.
The next proposition follows immediately since any NEB forms an ONB of the associated space of linear maps.

Proposition 4.1.2. The set $\left\{\frac{1}{n} T_{x, y} ; x, y \in G\right\}$ forms an orthonormal basis of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ with respect to the Hilbert-Schmidt inner product.

Let $\alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ and $\left\{B_{i} ; 1 \leq i \leq n^{2}\right\}$ be a basis of $M_{n}(\mathbb{C})$. Since $T_{i j}($ defined above) forms a basis of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ we can decompose α as

$$
\begin{equation*}
\alpha(X)=\sum_{1 \leq i, j \leq n^{2}} D_{\alpha}(i, j) B_{i} X B_{j}^{*} . \tag{4.1.1}
\end{equation*}
$$

In particular, if we take an NEB $\left\{\frac{1}{\sqrt{n}} \pi_{x} ; x \in G\right\}$ as a basis of $M_{n}(\mathbb{C})$ we can explicitly compute the coefficient matrix D_{α}.

$$
\begin{equation*}
\alpha(X)=\frac{1}{n} \sum_{x, y} D_{\alpha}(x, y) T_{x, y}(X)=\frac{1}{n} \sum_{x, y} D_{\alpha}(x, y) \pi_{x} X \pi_{y}^{*} \tag{4.1.2}
\end{equation*}
$$

for all $X \in M_{n}(\mathbb{C})$. Using the orthonormality of the basis $\frac{1}{n} T_{x, y}$ and NEB $\left\{\frac{1}{\sqrt{n}} \pi_{g} ; g \in G\right\}$ of $M_{n}(\mathbb{C})$, we have $D_{\alpha}(x, y)=\frac{1}{n}\left\langle T_{x, y}, \alpha\right\rangle_{\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)}$ i.e.

$$
\begin{align*}
D_{\alpha}(x, y) & =\frac{1}{n} \operatorname{Tr}\left(T_{x, y}^{\dagger} \alpha\right) \\
& =\frac{1}{n^{2}} \sum_{g \in G}\left\langle T_{x, y}\left(\pi_{g}\right), \alpha\left(\pi_{g}\right)\right\rangle \\
& =\frac{1}{n^{2}} \sum_{g \in G} \operatorname{Tr}\left(\pi_{y} \pi_{g}^{*} \pi_{x}^{*} \alpha\left(\pi_{g}\right)\right) . \tag{4.1.3}
\end{align*}
$$

Here T^{\dagger} denotes the involution applied on T w.r.t the Hilbert-Schmidt inner product on $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$. If we use the Weyl operators as the nice error basis for defining $T_{x, y}$ i.e. $T_{x, y}(X)=W_{x} X W_{y}^{*}$ for $x, y \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}$ then we can compute the coefficient D_{α} in (4.1.3), using $\left\{|a\rangle\langle b| ; a, b \in \mathbb{Z}_{n}\right\}$ as an o.n.b of $M_{n}(\mathbb{C})$

$$
\begin{align*}
D_{\alpha}(x, y) & =\frac{1}{n} \sum_{a, b \in G} \operatorname{Tr}\left(W_{y}|b\rangle\langle a| W_{x}^{*} \alpha(|a\rangle\langle b|)\right) \\
& =\frac{1}{n} \sum_{a, b \in G} \frac{\varkappa\left(y_{2}, b\right)}{\varkappa\left(x_{2}, a\right)}\left\langle a+x_{1}\right| \alpha(|a\rangle\langle b|)\left|b+y_{1}\right\rangle, \tag{4.1.4}
\end{align*}
$$

for $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$.
Lemma 4.1.2. Let $\alpha, \beta \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ with coefficients $\left(D_{\alpha}(x, y)\right)_{x, y \in G}$ and $\left(D_{\beta}(x, y)\right)_{x, y \in G}$ respectively, as defined in the equation (4.1.2). Then the coefficients of their composition $\alpha \circ \beta$ are given by

$$
D_{\alpha \circ \beta}(x, y)=\sum_{p, q \in G} \omega\left(p, x p^{-1}\right) \overline{\omega\left(q, y q^{-1}\right)} D_{\alpha}(p, q) D_{\beta}\left(p^{-1} x, q^{-1} y\right),
$$

for $x, y \in G$
Proof. We have

$$
\begin{aligned}
\alpha \circ \beta(X) & =\sum_{p, q \in G} D_{\alpha}(p, q) \pi_{p}\left(\sum_{p^{\prime}, q^{\prime} \in G} D_{\beta}\left(p^{\prime}, q^{\prime}\right) \pi_{p^{\prime}} X \pi_{q^{\prime}}^{*}\right) \pi_{q}^{*} \\
& =\sum_{p, p^{\prime}, q, q^{\prime} \in G} \omega\left(p, p^{\prime}\right) \overline{\omega\left(q, q^{\prime}\right)} D_{\alpha}(p, q) D_{\beta}\left(p^{\prime}, q^{\prime}\right) \pi_{p p^{\prime}} X \pi_{q q^{\prime}}^{*} \\
& =\sum_{x, y \in G} \underbrace{\left(\sum_{p, q \in G} \omega\left(p, p^{-1} x\right) \overline{\omega\left(q, q^{-1} y\right)} D_{\alpha}(p, q) D_{\beta}\left(p^{-1} x, q^{-1} y\right)\right)}_{D_{\alpha \circ \beta}} \pi_{x} X \pi_{y}^{*},
\end{aligned}
$$

which completes the proof.
We can define two different involutions on $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$. The first comes from the Hilbert-Schmidt inner product and is characterised by the condition

$$
\langle X, \alpha(Y)\rangle=\left\langle\alpha^{\dagger}(X), Y\right\rangle
$$

for all $X, Y \in M_{n}(\mathbb{C})$.
The second is inherited from the involution in $M_{n}(\mathbb{C})$ and defined by $\alpha^{\#}(X)=\alpha\left(X^{*}\right)^{*}$.
Both involutions are conjugate linear, but only the first is anti-multiplicative, whereas the second is multiplicative, i.e., we have

$$
(\alpha \circ \beta)^{\dagger}=\beta^{\dagger} \circ \alpha^{\dagger}, \quad(\alpha \circ \beta)^{\#}=\alpha^{\#} \circ \beta^{\#}
$$

for $\alpha, \beta \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$.

Proposition 4.1.3. Let $\alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$. We have

$$
D_{\alpha^{\dagger}}(x, y)=\frac{\omega\left(x, x^{-1}\right)}{\omega\left(y, y^{-1}\right)} \overline{D_{\alpha}\left(x^{-1}, y^{-1}\right)}
$$

and

$$
D_{\alpha^{\#}}(x, y)=\overline{D_{\alpha}(y, x)}
$$

for $x, y \in G$.
Proof. It is easy to see that for any $x, y \in G$ we have $T_{x, y}^{\dagger}=\frac{\omega\left(x, x^{-1}\right)}{\omega\left(y, y^{-1}\right)} T_{x^{-1}, y^{-1}}$. Applying the involution \dagger on the decomposition of α in (4.1.2)

$$
\alpha^{\dagger}=\sum_{x, y \in G} \overline{D_{\alpha}(x, y)} T_{x, y}^{\dagger}=\sum_{x, y \in G} \frac{\omega\left(x, x^{-1}\right)}{\omega\left(y, y^{-1}\right)} \overline{D_{\alpha}(x, y)} T_{x^{-1}, y^{-1}}
$$

the first claim follows. Similarly, we can trivially check that $T_{x, y}^{\#}=T_{y, x}$ for any $x, y \in G$. Then the second claim follows by applying \# on the decomposition (4.1.2)

$$
\alpha^{\#}=\sum_{x, y \in G} \overline{D_{\alpha}(x, y)} T_{x, y}^{\#}=\sum_{x, y \in G} \overline{D_{\alpha}(x, y)} T_{y, x}
$$

4.1.1 Examples

Here we compute the kernel or the $n^{2} \times n^{2}$ matrix D_{α} corresponding to different positive maps $\alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ which are important in quantum information. We use $\left\{\frac{1}{n} T_{x, y} ; x, y \in\right.$ $G\}$ as an o.n.b of $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ where G is an index group corresponding to an NEB $\left\{\frac{1}{\sqrt{n}} \pi_{x} ; x \in G\right\}$.

Identity map: The identity map corresponds to the kernel $D_{\text {Id }}(x, y)=n \delta_{1, x} \delta_{1, y}$ for $x, y \in G$ as we can write

$$
X=\pi_{1} X \pi_{1}^{*}=\frac{1}{n} \sum_{x, y \in G} n \delta_{1, x} \delta_{1, y} \pi_{x} X \pi_{y}^{*} .
$$

Depolarising Channel: Let $P \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ be the diagonal sum $P=\frac{1}{n} \sum_{g \in G} T_{g, g}$. For any $h \in G$ and $X \in M_{n}(\mathbb{C})$ we have

$$
\pi_{h} P(X)=\frac{1}{n} \sum_{g} \omega(h, g) \pi_{h g} X \pi_{g}^{*} \quad \text { and } \quad P(X) \pi_{h}=\frac{1}{n} \sum_{g} \frac{\omega\left(h, h^{-1}\right)}{\omega\left(h^{-1}, g\right)} \pi_{g} X \pi_{h^{-1} g}^{*} .
$$

After a change of variable we can write $P(X) \pi_{h}=\frac{1}{n} \sum_{g} \frac{\omega\left(h, h^{-1}\right)}{\omega\left(h^{-1}, h g\right)} \pi_{h g} X \pi_{g}^{*}$. Using the definition of 2-cocycle

$$
\frac{\omega\left(h, h^{-1}\right)}{\omega\left(h^{-1}, h g\right)}=\frac{\omega\left(h, h^{-1}\right)}{\omega\left(h, h^{-1}\right) \omega(1, g) \overline{\omega(h, g)}}=\omega(h, g) .
$$

Thus we see that $P(X)$ commutes with every basis element π_{h} on $M_{n}(\mathbb{C})$. So we conclude that $P(X)=c I_{n}$ for some $c \in \mathbb{C}$. Computing the trace of both sides we find that $c=\operatorname{Tr}(\mathrm{X})$. Therefore we see that the map P, defined as the diagonal sum of the operators $T_{g, g}$, is actually the depolarising channel which corresponds to the identity matrix $D_{P}(x, y)=\frac{1}{n} \delta_{x, y}$ where $x, y \in G$.

Transposition: Let $T \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ be the transposition map given by $X \mapsto X^{t}$. We compute the $n^{2} \times n^{2}$ matrix D_{T} corresponding to the transposition map. For any $x, y \in G$ we have

$$
\begin{aligned}
D_{T}(x, y)=\frac{1}{n}\left\langle T_{x, y} \mid T\right\rangle & =\frac{1}{n} \sum_{1 \leq i, j \leq n} \operatorname{Tr}\left(\left(T_{x, y}|i\rangle\langle j|\right)^{*} T|i\rangle\langle j|\right) \\
& =\frac{1}{n} \sum_{1 \leq i, j \leq n} \operatorname{Tr}\left(\pi_{y}|j\rangle\langle i| \pi_{x}^{*}|j\rangle\langle i|\right) \\
& =\frac{1}{n} \sum_{1 \leq i, j \leq n}\langle i| \pi_{x}^{*}|j\rangle \operatorname{Tr}\left(\pi_{y}|j\rangle\langle i|\right) \\
& =\frac{1}{n} \sum_{1 \leq i, j \leq n}\langle i| \pi_{x}^{*}|j\rangle\langle i| \pi_{y}|j\rangle=\frac{1}{n} \operatorname{Tr}\left(\bar{\pi}_{x} \pi_{y}\right)
\end{aligned}
$$

In particular, if we take the Weyl operators $\left\{W_{a, b} ; a, b \in \mathbb{Z}_{n}\right\}$ as the chosen NEB and $\left\{|i\rangle ; i \in \mathbb{Z}_{n}\right\}$ as the standard basis of \mathbb{C}^{n} then

$$
D_{T}((a, b),(c, d))=\frac{1}{n} \sum_{i, j \in \mathbb{Z}_{n}}\langle i| W_{a, b}^{*}|j\rangle\langle i| W_{c, d}|j\rangle=\frac{1}{n} \sum_{i, j \in \mathbb{Z}_{n}} \chi(a, b) \chi(-b, j) \chi(d, j) \delta_{i, j-a} \delta_{i, c+j} .
$$

So we have

$$
D_{T}((a, b),(c, d))=\left\{\begin{array}{cc}
\frac{1}{n} \sum_{i \in \mathbb{Z}_{n}} \chi(a, b) \chi(d-b, i+a) & \text { if } c=-a, \\
0 & \text { otherwise } .
\end{array}\right.
$$

Conditional Expectation onto Diagonal: Consider the linear map $C: M_{n}(\mathbb{C}) \rightarrow$ $M_{n}(\mathbb{C}), C(X)=\left(\delta_{i j} x_{i j}\right)_{1 \leq i, j \leq n}$ for $X=\left(x_{i j}\right)_{1 \leq i, j \leq n} \in M_{n}(\mathbb{C})$. This map is a conditional expectation onto the ${ }^{*}$-subalgebra of diagonal matrices with respect to the standard basis.

We compute the coefficient matrix D_{C} of the map C. For any $x, y \in G$

$$
\begin{aligned}
D_{C}(x, y)=\frac{1}{n}\left\langle T_{x, y} \mid C\right\rangle & =\frac{1}{n} \sum_{1 \leq i, j \leq n} \operatorname{Tr}\left(\left(T_{x, y}|i\rangle\langle j|\right)^{*} C|i\rangle\langle j|\right) \\
& =\frac{1}{n} \sum_{1 \leq i, j \leq n} \delta_{i j} \operatorname{Tr}\left(\pi_{y}|j\rangle\langle i| \pi_{x}^{*}|i\rangle\langle j|\right) \\
& =\frac{1}{n} \sum_{1 \leq j \leq n} \delta_{i j}\langle i| \pi_{x}^{*}|i\rangle\langle j| \pi_{y}|j\rangle=\frac{1}{n} \operatorname{Tr}\left(C\left(\pi_{x}^{*}\right) C\left(\pi_{y}\right)\right) .
\end{aligned}
$$

In particular, taking the Weyl operators as NEB gives

$$
D_{C}((a, b),(c, d))=\left\{\begin{array}{cc}
\frac{1}{n} \sum_{j \in \mathbb{Z}_{n}} \chi(d-b, j) & \text { if } c=a=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

4.2 Correspondence between Choi matrix C_{α} and D_{α}

Recall that the Choi-Jamiołkowski matrix of a map $\alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ is the $n^{2} \times n^{2}$-matrix defined by

$$
C_{\alpha}=\sum_{j, k=1}^{n} E_{j k} \otimes \alpha\left(E_{j k}\right) \in M_{n}(\mathbb{C}) \otimes M_{n}(\mathbb{C}) \cong M_{n^{2}}(\mathbb{C})
$$

It is known that $\alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ is completely positive (CP) iff C_{α} is positive. Furthermore, $\alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ is k-positive if and only if

$$
\left\langle v, C_{\alpha} v\right\rangle \geq 0
$$

for all $v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ with Schmidt rank not more than $k[$ RA07, SSZ09]. For any completely positive map α we have the Kraus decompositon

$$
\alpha=\sum_{j=1}^{r} \operatorname{Ad}_{L_{j}}
$$

for some matrices $L_{j} \in M_{n}(\mathbb{C})$, where for any $X \in M_{n}(\mathbb{C})$ the conjugate map $\operatorname{Ad}_{L_{j}}$ is given by $\operatorname{Ad}_{L_{j}}(X)=L_{j} X L_{j}^{*}$. The minimum number of $\operatorname{Ad}_{L_{j}}$ required to express α as its Kraus decomposition is called the Kraus rank of α. We call α 1-super positive or entanglement breaking iff $\operatorname{rank}\left(L_{j}\right)=1$ for any j. The linear map α is called completely co-positive iff $T \circ \alpha$ is completely positive, where T is the transposition map.

We can switch from C_{α} to D_{α} by a change of basis.
Proposition 4.2.1. If $T_{x, y}$ is defined with respect to the Weyl operators then the ChoiJamiotkowski matrix of $T_{x, y}$ is given by

$$
C_{T_{x, y}}(v, w)=\frac{\varkappa\left(x_{2}, v_{1}\right)}{\varkappa\left(y_{2}, w_{1}\right)} \delta_{v_{1}+x_{1}, v_{2}} \delta_{w_{1}+y_{1}, w_{2}}
$$

for $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right), v=\left(v_{1}, v_{2}\right), w=\left(w_{1}, w_{2}\right) \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}$. More generally, if α is of the form $\alpha=\sum_{x, y \in \mathbb{Z}_{n} \times Z_{n}} D_{\alpha}(x, y) T_{x, y}$, then its Choi-Jamiotkowski matrix is given by

$$
C_{\alpha}(v, w)=\frac{1}{n} \sum_{x_{2}, y_{2} \in G} \frac{\varkappa\left(x_{2}, v_{1}\right)}{\varkappa\left(y_{2}, w_{1}\right)} D_{\alpha}\left(\left(v_{2}-v_{1}, x_{2}\right),\left(w_{2}-w_{1}, y_{2}\right)\right)
$$

for $v, w \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}$. Conversely, the coefficients from the equation (4.1.4) can be computed from the Choi-Jamiotkowski matrix via

$$
D_{\alpha}(x, y)=\frac{1}{n} \sum_{a, b \in G} \frac{\varkappa\left(y_{2}, b\right)}{\varkappa\left(x_{2}, a\right)} C_{\alpha}\left(\left(a, a+x_{1}\right),\left(b, b+y_{1}\right)\right)
$$

for $x, y \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}$.
Proof. Using Formula (3.2.1), we get

$$
W_{y}^{*}=\sum_{d \in \mathbb{Z}_{n}} \frac{1}{\varkappa\left(y_{2}, d\right)}|d\rangle\left\langle d+y_{1}\right|
$$

and

$$
T_{x, y}(|a\rangle\langle b|)=\frac{\varkappa\left(x_{2}, a\right)}{\varkappa\left(y_{2}, b\right)}\left|a+x_{1}\right\rangle\left\langle b+y_{1}\right|,
$$

for $a, b \in \mathbb{Z}_{n}, x, y \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}$. So, if we choose $\left\{|a\rangle ; a \in \mathbb{Z}_{n}\right\}$ as a basis of \mathbb{C}^{n}, we can write the corresponding matrix units as $|a\rangle\langle b|, a, b \in \mathbb{Z}_{n}$, and we get

$$
\begin{aligned}
C_{T_{x, y}} & =\sum_{a, b \in \mathbb{Z}_{n}}|a\rangle\langle b| \otimes T_{x, y}(|a\rangle\langle b|) \\
& =\sum_{a, b \in \mathbb{Z}_{n}} \frac{\varkappa\left(x_{2}, a\right)}{\varkappa\left(y_{2}, b\right)}\left|\left(a, a+x_{1}\right)\right\rangle\left\langle\left(b, b+y_{1}\right)\right|,
\end{aligned}
$$

which proves the first claim of the proposition.
For $\alpha=\frac{1}{n} \sum_{x, y \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}} D_{\alpha}(x, y) T_{x, y}$, this yields

$$
C_{\alpha}=\frac{1}{n} \sum_{x, y \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}} \sum_{a, b \in \mathbb{Z}_{n}} D_{\alpha}(x, y) \frac{\varkappa\left(x_{2}, a\right)}{\varkappa\left(y_{2}, b\right)}\left|\left(a, a+x_{1}\right)\right\rangle\left\langle\left(b, b+y_{1}\right)\right|
$$

or

$$
C_{\alpha}(v, w)=\frac{1}{n} \sum_{x_{2}, y_{2} \in \mathbb{Z}_{n}} \frac{\varkappa\left(x_{2}, v_{1}\right)}{\varkappa\left(y_{2}, w_{1}\right)} D_{\alpha}\left(\left(v_{2}-v_{1}, x_{2}\right),\left(w_{2}-w_{1}, y_{2}\right)\right)
$$

For the converse we use the equation (4.1.4),

$$
\begin{aligned}
D_{\alpha}(x, y) & =\frac{1}{n} \sum_{a, b \in G} \frac{\varkappa\left(y_{2}, b\right)}{\varkappa\left(x_{2}, a\right)}\left\langle a+x_{1}\right| \alpha(|a\rangle\langle b|)\left|b+y_{1}\right\rangle \\
& =\frac{1}{n} \sum_{a, b \in \mathbb{Z}_{n}} \frac{\varkappa\left(y_{2}, b\right)}{\varkappa\left(x_{2}, a\right)}\left\langle a+x_{1}\right|\left(\sum_{g, h \in \mathbb{Z}_{n}} C_{\alpha}((a, g),(b, h))|g\rangle\langle h|\right)\left|b+y_{1}\right\rangle \\
& =\frac{1}{n} \sum_{a, b \in \mathbb{Z}_{n}} \frac{\varkappa\left(y_{2}, b\right)}{\varkappa\left(x_{2}, a\right)} C_{\alpha}\left(\left(a, a+x_{1}\right),\left(b, b+y_{1}\right)\right),
\end{aligned}
$$

where we used the identity

$$
\alpha(|a\rangle\langle b|)=\sum_{g, h \in G} C_{\alpha}((a, g),(b, h))|g\rangle\langle h| .
$$

4.3 Characterisation of positive and completely positive maps

Theorem 4.3.1. Let $\left\{B_{x}\right\}_{x=1,2 \ldots n^{2}}$ be a basis of $M_{n}(\mathbb{C})$. Consider a linear map $\alpha \in$ $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ of the form $\alpha(X)=\sum_{x, y=1}^{n^{2}} D_{\alpha}(x, y) B_{x} X B_{y}^{*}$. Then α is
i. hermiticity preserving if and only if D_{α} is Hermitian.
ii. positive if and only if for any $v, w \in \mathbb{C}^{n}$,

$$
\langle v \otimes w, \tilde{\alpha}(v \otimes w)\rangle \geq 0
$$

where $\tilde{\alpha}=\tau \circ \sum_{x, y=1}^{n^{2}} D_{\alpha}(x, y)\left(B_{x} \otimes B_{y}^{*}\right)$ and $\tau(u \otimes v)=v \otimes u$ is the flip operator.
Proof. $\alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ is hermiticity preserving iff $\alpha\left(X^{*}\right)^{*}=\alpha(X)$ i.e. $\alpha^{\#}=\alpha$. Comparing the coefficient matrix of both sides the first claim follows directly from the proposition 4.1.3.

On the other hand, α is positive if and only if it maps rank one projections to positive operators. i.e. for all $v, w \in \mathbb{C}$

$$
\begin{aligned}
0 \leq\langle v, \alpha(|u\rangle\langle u|) v\rangle & =\left\langle v, \sum_{x, y} D_{\alpha}(x, y) B_{x} \mid u\right\rangle\left\langle u \mid B_{y}^{*} v\right\rangle \\
& =\sum_{x, y} D_{\alpha}(x, y)\left\langle v, B_{x} u\right\rangle\left\langle u, B_{y}^{*} v\right\rangle \\
& =\left\langle u \otimes v, \tau \circ \sum_{x, y} D_{\alpha}(x, y) B_{x} \otimes B_{y}^{*}(u \otimes v)\right\rangle=\langle u \otimes v, \tilde{\alpha}(u \otimes v)\rangle .
\end{aligned}
$$

Theorem 4.3.2. A linear map $\alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ is a completely positive map with Kraus rank r if and only if the corresponding coefficient matrix $D_{\alpha} \in M_{n^{2}}(\mathbb{C})$ as defined in (4.1.1), is positive semi-definite of rank r.

Proof. Let $\left\{B_{x} ; x=1, \ldots, n^{2}\right\}$ be a basis of $M_{n}(\mathbb{C}) . \alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ is CP with Kraus rank r then there exists $\left\{L_{j} \in M_{n}(\mathbb{C}) ; 1 \leq j \leq r\right\}$ such that α can be written as Kraus

4.3. CHARACTERISATION OF POSITIVE AND COMPLETELY POSITIVE MAPS61

decomposition

$$
\alpha=\sum_{j=1}^{r} \operatorname{Ad}_{L_{j}},
$$

where $\operatorname{Ad}_{L_{j}}$ is the conjugate map given by $\operatorname{Ad}_{L_{j}}(X)=L_{j} X L_{j}^{*}$ for any matrix $X \in M_{n}(\mathbb{C})$. Since the map $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right) \ni \alpha \mapsto D_{\alpha} \in M_{n^{2}}(\mathbb{C})$ is a linear isomorphism, we have $D_{\alpha}=$ $\sum_{j=1}^{r} D_{\text {Ad }_{L_{j}}}$. We can expand each L_{j} with respect to the basis $\left\{B_{x} ; x=1, \ldots, n^{2}\right\}$ and write $L_{j}=\sum_{z=1}^{n^{2}} l_{j}(z) B_{z}$. Therefore we get

$$
\begin{gathered}
\operatorname{Ad}_{L_{j}}(X)=L_{j} X L_{j}^{*}=\left(\sum_{z=1}^{n^{2}} l_{j}(z) B_{z}\right) X\left(\sum_{z^{\prime}=1}^{n^{2}} l_{j}\left(z^{\prime}\right) B_{z^{\prime}}\right)^{*} \\
=\sum_{z, z^{\prime}=1}^{n^{2}} l_{j}(z) \overline{l_{j}\left(z^{\prime}\right)} B_{z} X B_{z^{\prime}}^{*}
\end{gathered}
$$

We find that $D_{\text {Ad }_{L_{j}}}$ is a rank one operator given by

$$
D_{\mathrm{Ad}_{L_{j}}}=\left|l_{j}\right\rangle\left\langle l_{j}\right|
$$

where $l_{j}=\left(l_{j}(1), l_{j}(2), \ldots, l_{j}\left(n^{2}\right)\right)^{t}$ is a vector in $\mathbb{C}^{n^{2}}$. Thus $D_{\alpha}=\sum_{j=1}^{r}\left|l_{j}\right\rangle\left\langle l_{j}\right|$ is a positive semi-definite operator of rank r.

Conversely, assume that D_{α} is positive semi-definite with rank r. So there exists vectors $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{C}^{n^{2}}$ such that $D_{\alpha}=\sum_{j=1}^{r}\left|v_{j}\right\rangle\left\langle v_{j}\right|$. If we denote $\left\{|x\rangle ; x=1, \ldots, n^{2}\right\}$ the standard basis of $\mathbb{C}^{n^{2}}$ then

$$
D_{\alpha}(x, y)=\sum_{j=1}^{r}\left\langle x \mid v_{j}\right\rangle\left\langle v_{j} \mid y\right\rangle=\sum_{j=1}^{r}\left\langle x \mid v_{j}\right\rangle \overline{\left\langle y \mid v_{j}\right\rangle} .
$$

Therefore we can write the equation (4.1.1) as

$$
\begin{aligned}
\alpha(X) & =\sum_{x, y=1}^{n^{2}} \sum_{j=1}^{r}\left\langle x \mid v_{j}\right\rangle \overline{\left\langle y \mid v_{j}\right\rangle} B_{x} X B_{y}^{*} \\
& =\sum_{x, y=1}^{n^{2}} \sum_{j=1}^{r}\left(\left\langle x \mid v_{j}\right\rangle B_{x}\right) X\left(\left\langle y \mid v_{j}\right\rangle B_{y}\right)^{*} \\
& =\sum_{j=1}^{r}\left(\sum_{x=1}^{n^{2}}\left\langle x \mid v_{j}\right\rangle B_{x}\right) X\left(\sum_{y=1}^{n^{2}}\left\langle y \mid v_{j}\right\rangle B_{y}\right)^{*} .
\end{aligned}
$$

If we denote $L_{j}=\sum_{x \in G}\left\langle x \mid v_{j}\right\rangle B_{x}$ then we get $\alpha(X)=\sum_{j=1}^{r} L_{j} X L_{j}^{*}$, which shows that α is completely positive with Kraus rank r.

We remark here that the similar result was obtained by Poluikis and Hill from a different approach [PH81]. But our approach has the advantange that coefficient matrix
corresponding to the composition of two linear maps becomes the convolution type product of their individual coefficient matrices. This composition law can be used to characterise the completely co-positive maps too.

Corollary 4.3.1. A linear map $\alpha \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right)$ is completely co-positive iff the convolution product

$$
\sum_{p, q \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}} \frac{\chi(p, x-p)}{\chi(q, y-q)} \operatorname{Tr}\left(\bar{W}_{p} W_{q}\right) D_{\alpha}(x-p, y-q)
$$

is positive semi-definite.

Proof. The linear map α is co-CP iff the composition with transposition $T \circ \alpha$ is CP. Using the Theorem 4.3.2, we see that $T \circ \alpha$ is CP iff the coefficient matrix $D_{T \circ \alpha}$ is positive semi-definite. In particular, in the decomposition $T \circ \alpha$ w.r.t the Weyl operators

$$
T \circ \alpha(X)=\frac{1}{n} \sum_{x, y \in \mathbb{Z}_{n} \times Z_{n}} D_{T \circ \alpha} W_{x} X W_{y}^{*},
$$

the coefficient matrix $D_{T \circ \alpha}$ is positive semi-definite. We use the Lemma 4.1.2 and the coefficients we have found for transposition in example 4.1.1 to compute the coefficient $D_{t o \alpha}$ which complete the claim.

Corollary 4.3.2. A linear map $\alpha \in \operatorname{Lin}\left(M_{2}(\mathbb{C})\right)$ is 1-super positive iff $D_{\alpha}=\sum_{j=1}^{r}\left|l_{j}\right\rangle\left\langle l_{j}\right|$ where $l_{j}=\left(l_{j}(1), \ldots, l_{j}(4)\right)^{t}$ is a vector in \mathbb{C}^{4} satisfying $l_{j}(1)^{2}=\sum_{k=2}^{4} l_{j}(k)^{2}$.

Proof. Since α is 1 -super positive in $M_{2}(\mathbb{C})$, there exists matrices $L_{1}, L_{2}, \ldots, L_{r} \in M_{2}(\mathbb{C})$ of rank 1 such that $\alpha=\sum_{1}^{r} \operatorname{Ad}_{L_{j}}$. We can decompose each L_{j} w.r.t the Pauli basis

$$
\sigma_{1}=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \sigma_{2}=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{3}=\frac{1}{2}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{4}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

to obtain $L_{j}=\sum_{i=1}^{4} l_{j}(k) \sigma_{k}$. After this decomposition L_{j} has the form

$$
\frac{1}{2}\left[\begin{array}{ll}
l_{j}(1)+l_{j}(4) & l_{j}(2)-i l_{j}(3) \\
l_{j}(2)+i l_{j}(3) & l_{j}(1)-l_{j}(4)
\end{array}\right] .
$$

L_{j} has rank $1 \mathrm{iff} \operatorname{det}\left(L_{j}\right)=0$ i.e. $l_{j}(1)^{2}=l_{j}(2)^{2}+l_{j}(3)^{2}+l_{j}(4)^{2}$. We have already seen that in the proof of 4.3.2 that $D_{\operatorname{Ad}_{L_{j}}}=\left|l_{j}\right\rangle\left\langle l_{j}\right|$, which completes the claim.

Proposition 4.3.1. A linear map $\alpha: M_{n}(\mathbb{C}) \longrightarrow M_{n}(\mathbb{C})$

4.3. CHARACTERISATION OF POSITIVE AND COMPLETELY POSITIVE MAPS63

(a) is trace preserving if and only if

$$
\sum_{x \in G} \omega(x, g) D_{\alpha}(x, x g)=\delta_{1, g}
$$

for all $g \in G$.
(b) is unit preserving if and only if

$$
\sum_{x \in G} \frac{\omega\left(x, x^{-1} z\right)}{\omega\left(z^{-1} x, x^{-1} z\right)} D_{\alpha}\left(x, z^{-1} x\right)=\delta_{1, z}
$$

for all $z \in G$.
Proof.
(a) Since $\left\{\pi_{g} ; g \in G\right\}$ forms a basis of M_{n} the map α is trace preserving iff $\operatorname{Tr}\left(\alpha\left(\pi_{g}\right)\right)=$ $\operatorname{Tr}\left(\pi_{g}\right)$ for all $g \in G$. Now

$$
\operatorname{Tr} \alpha\left(\pi_{g}\right)=\sum_{x, y} D_{\alpha}(x, y) \frac{\omega(x, g) \omega\left(x g, y^{-1}\right)}{\omega\left(y^{-1}, y\right)} \operatorname{Tr}\left(\pi_{x g y^{-1}}\right)
$$

Substituting $x g=y$ we get

$$
\sum_{x \in G} \omega(x, g) D_{\alpha}(x, x g)=\operatorname{Tr}\left(\pi_{g}\right)=\delta_{1, g}
$$

for all $g \in G$.
(b) By definition α is unit preserving iff $\alpha\left(I_{n}\right)=I_{n}$.

$$
\begin{aligned}
\alpha\left(I_{n}\right)=\sum_{x, y \in G} D_{\alpha}(x, y) \pi_{x} \pi_{y}^{*} & =\sum_{x, y \in G} \frac{\omega\left(x, y^{-1}\right)}{\omega\left(y, y^{-1}\right)} D_{\alpha}(x, y) \pi_{x y^{-1}} \\
& =\sum_{x, z \in G} \frac{\omega\left(x, x^{-1} z\right)}{\omega\left(z^{-1} x, x^{-1} z\right)} D_{\alpha}\left(x, z^{-1} x\right) \pi_{z} .
\end{aligned}
$$

Comparing the coefficients we get

$$
\sum_{x \in G} \frac{\omega\left(x, x^{-1} z\right)}{\omega\left(z^{-1} x, x^{-1} z\right)} D_{\alpha}\left(x, z^{-1} x\right)=\delta_{1, z}
$$

for all $z \in G$.

Chapter 5

Semigroup Of Different Positive

Maps

The following discussion is based on our paper [BCF23(i)], co-authored by Uwe Franz and B. V. Rajarama Bhat. Let V be a Banach space and $\mathcal{L}(V)$ be the algebra of all bounded linear operators on V. We recall the definition of a semigroup of linear operators-

Definition 5.0.1. A unital semigroup of operators on V is a family of bounded linear operators on $\left(T_{t}\right)_{t \geq 0}$ on V such that
i. $T_{0}=\mathrm{Id}$,
ii. $T_{t+s}=T_{t} \circ T_{s}$ for $t, s \geq 0$,
iii. the map $t \mapsto T_{t}$ is continuous.

Remark 5.0.1. We remark here that the third condition which imposes certain continuity on the semigroup $\left(T_{t}\right)_{t \geq 0}$ can be replaced by weaker conditions of continuity e.g. strong continuity (C_{0} semigroup), ultra weak continuity. However, as we will work on finite dimension it will be enough to restrict our discussion on norm continuity of the semigroup of linear maps.

It is well known that there exists an operator $A \in \mathcal{L}(V)$ such that $T_{t}=\exp (t A)$ for $t \geq 0$. Such an operator A is called the generator of the semigroup of linear operators $\left(T_{t}\right)_{t \geq 0}$ (see prop. 9.4, [BFR17]). Even if we weaken the continuity condition (iii) by replacing the norm continuity by strong continuity existence of closed densely defined generators follows from Hill-Yoshida theorem (see theorem 2.2.5, [App19]).

On finite dimension, let's consider a semigroup of operators $T_{t}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$. We call it an n-level quantum dynamical semigroup of linear maps if it preserves identity i.e. $T_{t}\left(I_{n}\right)=I_{n}$ and each T_{t} is a completely positive map for $t \geq 0$. The following result was proved by Lindblad, Gorini, Kossakowski and Sudarshan [Lin76][GKS76].

Theorem 5.0.2. A semigroup of linear operators $T_{t}=\exp t \Psi$ is a quantum dynamical semigroup if and only if the generator Ψ has the form

$$
\Psi(X)=i[H, X]+\sum_{j=1}^{k}\left\{V_{j}^{*} X V_{j}-\frac{1}{2}\left(V_{j}^{*} V_{j} X+X V_{j}^{*} V_{j}\right)\right\}
$$

Motivated by this result we were interested to see if it is possible to characterise the generator of semigroups of k -(super)positive maps.

Let A be a unital algebra with unit 1. Let C be a cone inside the topological dual space A^{\prime}. Then an element $a \in A$ is called conditionally positive on C if $\phi(a) \geq 0$ for any $\phi \in C$ such that $\phi(\mathbf{1})=0$. Michael Schürmann proved the following result [Sch85]

Theorem 5.0.3. Let A be a real Banach algebra with unit 1. Denote by A^{\prime} the topological dual of A. Let C be a closed convex cone with non-empty interior such that $c \in C$ implies that $c^{n} \in C$ for all $n \geq 0$ (where $c^{0}=1$). Then for an element $a \in A$ the following statements are equivalent
i. a is conditionally positive on the dual cone C°.
ii. $\exp (t a) \in C$ for all $t \geq 0$.

We could use apply this result to characterise the generator of semigroup of k -positive maps or k-super positive maps but the problem was that for $k<n$ the identity map is not a k super positive map. So a semigroup of k-super positive maps can not be Id at time $t=0$. It compels us to consider a non-unital semigroup of linear maps.

5.1 Non-unital Semigroups

We will be interested in semigroups of linear operators $\left(T_{t}\right)_{t \geq 0}$ (on some Banach space V), which do not start from the identity, i.e. we have $T_{s} T_{t}=T_{s+t}$ for all $s, t \geq 0$, but not necessarily $T_{0}=\mathrm{id}$. We still want $t \mapsto T_{t}$ to be continuous.

The semigroup property implies

$$
T_{0}^{2}=T_{0}
$$

i.e., T_{0} is idempotent. Then we can decompose V as $V=\operatorname{Im}\left(T_{0}\right) \oplus \operatorname{Ker}\left(T_{0}\right)$, where $\operatorname{Im}\left(T_{0}\right)=T_{0}(V)=\operatorname{Ker}\left(\operatorname{id}_{V}-T_{0}\right)$, and $\operatorname{Ker}\left(T_{0}\right)=\operatorname{Im}\left(\operatorname{id}_{V}-T_{0}\right)=\left(\operatorname{id}_{V}-T_{0}\right)(V)$ We assume that T_{0} is bounded, so both subspaces are closed. With respect to this decomposition T_{0} has the form

$$
T_{0}=\left(\begin{array}{cc}
\mathrm{id}_{\operatorname{Im}\left(T_{0}\right)} & 0 \\
0 & 0
\end{array}\right)
$$

Furthermore, the semigroup property implies $T_{0} T_{t}=T_{t} T_{0}=T_{t}$ for all $t \geq 0$. Therefore

$$
\operatorname{Ker}\left(T_{0}\right) \subseteq \operatorname{Ker}\left(T_{t}\right) \quad \text { and } \quad \operatorname{Im}\left(T_{t}\right) \subseteq \operatorname{Im}\left(T_{0}\right)
$$

W.r.t. the decomposition $V=\operatorname{Im}\left(T_{0}\right) \oplus \operatorname{Ker}\left(T_{0}\right)$ we can write the T_{t} as

$$
T_{t}=\left(\begin{array}{cc}
\widetilde{T}_{t} & 0 \\
0 & 0
\end{array}\right)
$$

with some linear operators $\widetilde{T}_{t} \in B\left(\operatorname{Im}\left(T_{0}\right)\right)$, which form a continuous semigroup $\left(\widetilde{T}_{t}\right)_{t \geq 0}$ with initial value $\widetilde{T}_{0}=\operatorname{Id} \operatorname{Im}\left(T_{0}\right)$. This allows to extend classical result on unital semigroups to the non-unital case.

In our examples, if T_{0} is a conditional expectation onto some unital ${ }^{*}$-subalgebra, then we are lead to study semigroups $\left(\tilde{T}_{t}\right)_{t \geq 0}$ that preserve the corresponding cones of $T_{0}\left(M_{n}\right) \subseteq M_{n}$.

But in general T_{0} need not be a conditional expectation, as the example in the following subsection shows.

5.1.1 Examples Of k-Positive Semigroups

Since the identity map id : $M_{n} \rightarrow M_{n}$ is not k-superpositive for $k<n$, there exist no k superpositive semigroups $\left(T_{t}: M_{n} \rightarrow M_{n}\right)_{t \geq 0}$ with $T_{0}=\mathrm{id}$. But there do exist semigroups of k-superpositive linear maps on M_{n} that start with an idempotent k-superpositive map T_{0}. Very simple examples are given by $T_{0}(X)=P X P$ with P a k-dimensional orthogonal projection.

Another class of examples are semigroups $T_{t}: M_{2} \otimes M_{n} \rightarrow M_{2} \otimes M_{n}$ of the form

$$
T_{t}\left(\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\right)=\left(\begin{array}{cc}
S_{t}(A) & 0 \\
0 & \alpha\left(S_{t}(A)\right)
\end{array}\right)
$$

with $\left(S_{t}\right)_{t \geq 0}$ a k-superpositive semigroup acting on M_{n} and $\alpha: M_{n} \rightarrow M_{n}$ any k superpositive linear map. If α is not a ${ }^{*}$-homomorphism, then T_{0} is a k-superpositive idempotent whose image is not a ${ }^{*}$-subalgebra, and so T_{0} is not a conditional expectation.

5.2 A Schoenberg Type Correspondence For General Nonunital Semigroups

We give a non-unital version of Schürmann's result [Sch85, Lemma 2.1].
For X a Banach space, we will denote by $B_{X^{\prime}}$ and $S_{X^{\prime}}$ the unit ball and the unit sphere of the dual space X^{\prime}. If $C \subseteq X$ is a cone in X then C° denotes the dual cone in X^{\prime}, i.e.

$$
C^{\circ}=\left\{\varphi \in X^{\prime} ; \forall v \in C, \varphi(v) \geq 0\right\}
$$

Note that we have (for C a closed convex cone)

$$
\left(C^{\circ}\right)^{\circ}=C
$$

Theorem 5.2.1. Let A be a real Banach algebra with a closed convex cone $C \subseteq A$ with non-empty interior. Let $a_{0} \in C$ be an idempotent such that for any $c \in C$, we have $a_{0} c a_{0} \in C$.

We assume furthermore that for any $c \in C$ we have $c^{n} \in C$ for $n \geq 1$.
Then, for any $b \in A$ such that $b a_{0}=a_{0} b=b$, the following statements are equivalent.
(i) b is a_{0}-conditionally positive on C°, i.e., $\varphi(b) \geq 0$ for all $\varphi \in C^{\circ}$ with $\varphi\left(a_{0}\right)=0$.
(ii) $\exp _{a_{0}}(t b):=\lim _{n \rightarrow \infty}\left(a_{0}+\frac{t b}{n}\right)^{n} \in C$ for all $t \geq 0$.

Proof. (ii) $\Rightarrow(\mathbf{i})$: This follows by diffentiation at $t=0$. If $\varphi \in C^{\circ}$ is such that $\varphi\left(a_{0}\right)=0$, then

$$
\varphi(b)=\lim _{\substack{t \rightarrow 0 \\ t>0}} \varphi\left(\frac{\exp _{a_{0}}(t b)-\exp _{a_{0}}(0)}{t}\right)=\lim _{\substack{t \rightarrow 0 \\ t>0}} \frac{1}{t} \varphi\left(\exp _{a_{0}}(t b)\right) \geq 0
$$

(i) \Rightarrow (ii): We have

$$
\begin{equation*}
\exp _{a_{0}}(t b):=\lim _{n \rightarrow \infty}\left(a_{0}+\frac{t b}{n}\right)^{n}=a_{0}+\sum_{n=1}^{\infty} \frac{(t b)^{n}}{n!} \tag{5.2.1}
\end{equation*}
$$

and we want to show that this quantity is positive for $t \geq 0$ if b satisfies condition (i). Without loss of generality we can take $t=1$.

We will prove in four steps that $\exp _{a_{0}}(b)$ is positive.
Step I: For any interior point $c \in C$ there exists $\delta>0$ such that

$$
\forall \varphi \in C^{\circ}, \quad \varphi(c) \geq \delta\|\varphi\|
$$

Indeed, let $c \in C$ be an interior point. Then there exists $\delta>0$ such that $c+\delta B_{A} \subseteq C$, where B_{A} is the unit ball in A . Therefore for $v \in B_{A}$,

$$
\varphi(c \pm \delta v) \geq 0
$$

and

$$
\varphi(c) \geq \delta \sup _{v \in B_{A}}|\varphi(v)|=\delta\|\varphi\| .
$$

Step II: for any $\rho>0$ there exists $\eta>0$ such that

$$
\forall \varphi \in C^{\circ} \cap B_{A^{\prime}}, \quad \varphi\left(a_{0}\right)<\eta \Rightarrow \varphi(b)>-\rho .
$$

Indeed, fix $\rho>0$ and set

$$
V_{n}(\rho)=\left\{\varphi \in C^{\circ} \cap B_{A^{\prime}} ; \varphi\left(a_{0}\right) \leq \frac{1}{n} \text { and } \varphi(b) \leq-\rho\right\}
$$

By the a_{0}-conditional positivity of b w.r.t. C°, we have

$$
\bigcap_{n \geq 1} V_{n}(\rho)=\emptyset .
$$

Since $C^{\circ} \cap B_{A^{\prime}}$ is compact by the Banach-Alaoglu theorem in the weak-* topology, and since the $V_{n}(\rho) \subseteq C^{\circ} \cap B_{A^{\prime}}$ are weak-* closed, there exists $n_{0} \in \mathbb{N}$ such that $V_{n_{0}}(\rho)=\emptyset$. Take $\eta=\frac{1}{n_{0}}$.
Step III: For any $\varepsilon>0$ and $c \in C$ an interior point, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$,

$$
\forall \varphi \in C^{\circ} \cap S_{A^{\prime}}, \quad \varphi\left(a_{0}+\frac{b+\varepsilon c}{n}\right) \geq 0
$$

where $S_{A^{\prime}}$ denotes the unit sphere in A^{\prime}. Let $\delta>0$ be the real number guaranteed by Step I such that $\varphi(c) \geq \delta\|\varphi\|$ for all $\varphi \in C^{\circ}$. Let $\eta>0$ be the real number guaranteed by Step II such that for all $\varphi \in C^{\circ} \cap B_{A^{\prime}}$ with $\varphi\left(a_{0}\right)<\eta$ we have $\varphi(b) \geq-\varepsilon \delta$.

Let $\varphi \in C^{\circ} \cap S_{A^{\prime}}$. We distinguish two cases, according to the value of φ on a_{0}.
Case $\varphi\left(a_{0}\right)<\eta$: in this case we have

$$
\varphi\left(a_{0}+\frac{b+\varepsilon c}{n}\right)=\underbrace{\varphi\left(a_{0}\right)}_{\geq 0}+\frac{1}{n}(\underbrace{\varphi(b)}_{\geq-\varepsilon \delta}+\varepsilon \underbrace{\varphi(c)}_{\geq \delta}) \geq 0 .
$$

Case $\varphi\left(a_{0}\right) \geq \eta$: now we get

$$
\varphi\left(a_{0}+\frac{b+\varepsilon c}{n}\right)=\underbrace{\varphi\left(a_{0}\right)}_{\geq \eta}+\frac{1}{n} \varphi(b+\varepsilon c) \geq \eta-\frac{\|b+\varepsilon c\|}{n},
$$

which is positive as soon as $n \geq \frac{\|b+\varepsilon c\|}{\eta}$.

Step IV: By the Bipolar theorem, this means that for any $\varepsilon>0$ and $c \in C$ an interior point there exists an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}, a_{0}+\frac{b+\varepsilon c}{n} \in C$. Then we have $a_{0}\left(a_{0}+\frac{b+\varepsilon c}{n}\right) a_{0}=a_{0}+\frac{b+\varepsilon a_{0} c a_{0}}{n} \in C$.

Since C is stable under taking powers and closed, we get

$$
\exp _{a_{0}}\left(b+\varepsilon a_{0} c a_{0}\right)=\lim _{n \rightarrow \infty}\left(a_{0}+\frac{b+\varepsilon a_{0} c a_{0}}{n}\right)^{n} \in C
$$

To conclude the proof we let $\varepsilon \searrow 0$.

5.3 Application To The Semigroups Of k- (Super)Positive Maps

Now we apply Theorem 5.2.1 to the algebra $\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)^{\text {sa }}$ of hermitianity preserving linear maps from M_{n} to M_{n}.

Theorem 5.3.1. Let

$$
A=\operatorname{Lin}\left(M_{n}(\mathbb{C})\right)^{\text {sa }}=\left\{T \in \operatorname{Lin}\left(M_{n}(\mathbb{C})\right) ; T \circ *=* \circ T\right\}
$$

and let $C \subseteq A$ be one of the cones $\mathcal{P}_{1}=\mathcal{P} \mathcal{M}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{n-1}, \mathcal{P}_{n}=\mathcal{C P}=\mathcal{S}_{n}, \mathcal{S}_{n-1}, \ldots$ $\mathcal{S}_{2}, \mathcal{S}_{1}=\mathcal{E B}, \mathcal{E B}_{n-1}, \ldots \mathcal{E B}_{1}$.

Fix an idempotent map $\Phi_{0} \in C$. Then for $\Psi \in A$ with $\Psi \circ \Phi_{0}=\Phi_{0} \circ \Psi=\Psi$ the following are equivalent.
(i) We have $\exp _{\Phi_{0}}(t \Psi)=\Phi_{0}+\sum_{n=1}^{\infty} \frac{t^{n} \Psi^{\circ n}}{n!} \in C$ for all $t \geq 0$;
(ii) Ψ is Φ_{0}-conditionally positive on C°, i.e., we have

$$
\forall v \in C^{\circ}, \quad\left\langle v, \Phi_{0}\right\rangle=0 \quad \Rightarrow \quad\langle v, \Psi\rangle \geq 0
$$

Proof. The hermitianity preserving maps on M_{n} form a real Banach algebra, when we equip it with the norm induced by the operator norm on $M_{n} \cong \operatorname{Lin}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$.

Proposition 2.3.4 ensures that all the cones are convex, solid, pointed and stable under composition. Furthermore, they are closed under composition, so we have $S^{\circ n} \in C$ and $T_{0} \circ S \circ T_{0} \in C$ for any $S, T_{0} \in C$ and $n \geq 1$.

Therefore, we can apply Theorem 5.2.1 to any pair (T_{0}, S), with T_{0} an idempotent in C and $S \in A$ such that $S \circ T_{0}=T_{0} \circ S=S$, and the result follows.

In particular, if we take the cone of k-positive maps we obtain the the following result-

Corollary 5.3.1. Take $C=\mathcal{P}_{k}$ with $k \in\{1, \ldots, n\}$ and $T_{0}=\mathrm{Id}=T_{I \otimes I}$.
A semigroup $T_{t}=\exp (t S)$ with generator $S=T_{W}$ where $W=\sum A_{i} \otimes B_{i} \in\left(M_{n} \otimes\right.$ $\left.M_{n}^{o p}\right)^{\text {sa }}$, consists of k-positive maps for all $t \geq 0$ if and only if

$$
\forall V \in M_{n}, \quad(\operatorname{rank}(V) \leq k \text { and } \operatorname{Tr}(V)=0) \quad \Rightarrow \quad \sum \operatorname{Tr}\left(A_{i} V^{*}\right) \operatorname{Tr}\left(B_{i} V\right) \geq 0
$$

Proof. Here we consider unital semigroups, i.e., $T_{0}=\mathrm{Id}$, which belongs to \mathcal{P}_{k} for all $k \geq 1$. Furthermore, the condition $S \circ T_{0}=T_{0} \circ S=S$ now holds for any $S \in \operatorname{Lin}\left(M_{n}, M_{n}\right)^{\text {her }}$.

We know that

$$
C^{\circ}=\mathcal{P}_{k}^{\circ}=\mathcal{S}_{k}=\text { convex hull of }\left\{T_{V \otimes V^{*}} ; V \in M_{n}, \operatorname{rank}(V) \leq k\right\},
$$

cf. [SSZ09].
Note that

$$
\left\langle T_{V \otimes V^{*}}, \mathrm{Id}\right\rangle=\operatorname{Tr}\left(V^{*} \otimes V\right)=|\operatorname{Tr}(V)|^{2},
$$

since, by Proposition 4.1.1, T is an isomorphism of Hilbert spaces.
By Theorem 5.3.1, $\exp (t S) \in \mathcal{P}_{k}$ for all $t \geq 0$, iff S is Id-conditionally positive on $\mathcal{S}_{k}=\mathcal{P}_{k}^{\circ}$, i.e., if

$$
\forall \varphi \in \mathcal{S}_{k}, \quad\langle\varphi, \mathrm{Id}\rangle=0 \quad \Rightarrow \quad\langle\varphi, S\rangle \geq 0 .
$$

Let us check that it is sufficient to verify this for $\varphi \in\left\{T_{V \otimes V^{*}} ; V \in M_{n}, \operatorname{rank}(V) \leq k\right\}$. Indeed, this set generates \mathcal{S}_{k}. And, since for a convex combination $\varphi=\sum \lambda_{i} T_{V_{i} \otimes V_{i}^{*}}$ with $\lambda_{i}>0, \sum \lambda_{i}=1$, we have

$$
\left\langle\sum \lambda_{i} T_{V_{i} \otimes V_{i}^{*}}, \mathrm{Id}\right\rangle=\sum \lambda_{i} \operatorname{Tr}\left(V_{i}^{*} \otimes V_{i}\right)=\sum \lambda_{i}\left|\operatorname{Tr}\left(V_{i}\right)\right|^{2},
$$

we see that the condition $\langle\varphi, \mathrm{Id}\rangle=0$ is satisfied for a convex combination iff it is satisfied for each term.

If $S=T_{W}$ with $W=\sum A_{i} \otimes B_{i} \in\left(M_{n} \otimes M_{n}^{o p}\right)^{\text {sa }}$, then

$$
\left\langle T_{V \otimes V^{*}}, T_{W}\right\rangle=\left\langle V \otimes V^{*}, W\right\rangle=\operatorname{Tr}\left(V^{*} A_{i} \otimes V B_{i}\right)=\operatorname{Tr}\left(A_{i} V^{*}\right) \operatorname{Tr}\left(B_{i} V\right),
$$

which completes the proof.
Let $\left\{B_{j}\right\}_{j=1, \ldots, n^{2}}$ be an orthonormal basis of M_{n} such that $B_{1}=I_{n}$ and $\operatorname{Tr}\left(B_{j}\right)=0$ for $2 \leq j \leq n^{2}$. Taking $\left\{B_{i} \otimes B_{j}\right\}_{p, q=1}^{n^{2}}$ as a basis of $M_{n} \otimes M_{n}^{o p}$, or equivalently $\left\{B_{i} \otimes B_{j}^{*}\right\}_{i, j=1}^{n^{2}}$ of $M_{n} \otimes M_{n}^{*}$ further we write $S=\sum_{i, j=1}^{n^{2}} D_{i j} B_{i} \otimes B_{j}^{*}$, where $D_{i j}$ is a $n^{2} \times n^{2}$ matrix in \mathbb{C}, so that the map T_{S} is given by

$$
\begin{equation*}
\Psi(X)=T_{S}(X)=\sum_{i, j=1}^{n^{2}} D_{i j} B_{i} X B_{j}^{*} \tag{5.3.1}
\end{equation*}
$$

for all $X \in M_{n}$. The semigroup $\exp (t \Psi)$ is Hermitianity preserving if and only if the generator T_{S} is hermitianity perserving if and only if the matrix $\left(D_{i j}\right)$ is hermitian.

Proposition 5.3.1. A semigroup $T_{t}=\exp t \Psi$ is completely positive if and only if the matrix $\left(D_{i j}\right)_{i, j=1}^{n^{2}}$ is hermitian and for any $v=\left(0, v_{2}, v_{3}, \cdots, v_{n^{2}}\right) \in \mathbb{C}^{n^{2}}$ we have

$$
\left\langle v \mid\left(D_{i j}\right)_{i, j=1}^{n^{2}} v\right\rangle \geq 0,
$$

Proof. Let V be a $n \times n$ matrix with the basis decomposition $V=\sum_{j=1}^{n^{2}} v_{j} B_{j}$. The trace conditions on B_{j} 's implies that $\operatorname{Tr}(V)=0$ if and only if $v_{1}=0$. By a direct application of Corollary 5.3.1 we see that the map T_{S} with $S=\sum_{i, j=1}^{n^{2}} B_{i} \otimes B_{j}^{*}$ generates a completely positive semigroup (i.e. n positive) if and only if for any $V \in M_{n}$ with $\operatorname{Tr}(V)=0$, we have $\sum_{i, j=1}^{n^{2}} D_{i j} \operatorname{Tr}\left(B_{i} V^{*}\right) \operatorname{Tr}\left(B_{j}^{*} V\right) \geq 0$. Writing the basis decomposition of V in this condition, we obtain

$$
\left(\forall\left(0, v_{2}, v_{3}, \cdots, v_{n^{2}}\right) \in \mathbb{C}^{n^{2}}\right) \Longrightarrow \sum_{i, j=2}^{n^{2}} \sum_{k, l=2}^{n^{2}} D_{i j} \overline{v_{k}} v_{l} \operatorname{Tr}\left(B_{i} B_{k}^{*}\right) \operatorname{Tr}\left(B_{j}^{*} B_{l}\right) \geq 0
$$

Because of the orthonormality of the basis $B_{i}{ }^{\prime} \mathrm{s}, \operatorname{Tr}\left(B_{i} B_{k}^{*}\right)=\delta_{i k}$ and $\operatorname{Tr}\left(B_{j}^{*} B_{l}\right)=\delta_{j l}$. Thus the above condition becomes

$$
\sum_{i, j=2}^{n^{2}} \sum_{k, l=2}^{n^{2}} D_{i j} \bar{v}_{k} v_{l} \delta_{i k} \delta_{j l}=\sum_{i, j=2}^{n^{2}} D_{i j} \bar{v}_{i} v_{j} \geq 0
$$

which is the desired result.
From this result we can re-derive the Lindblad[Lin76], Gorini, Kossakowski, Sudarshan's theorem [GKS76] on genereator of CP semigroup.

Theorem 5.3.2. An identity preserving semigroup $\exp (t \Psi))$ will be completely positive for all time $t \geq 0$ if and only if the generator Ψ has the form

$$
\Psi(X)=i[H, X]+\sum_{j=1}^{k}\left\{V_{j}^{*} X V_{j}-\frac{1}{2}\left(V_{j}^{*} V_{j} X+X V_{j}^{*} V_{j}\right)\right\}
$$

for all $X \in M_{n}$, where H is an hermitian matrix and $V \in M_{n}$.
Proof. We use the basis decomposition 5.3 .1 of the generator Ψ

$$
\Psi(X)=D_{11} X+\sum_{i=2}^{n^{2}} D_{i 1} B_{i} X+\sum_{j=2}^{n^{2}} D_{1 j} X B_{j}^{*}+\sum_{i, j=2}^{n^{2}} D_{i j} B_{i} X B_{j}^{*}
$$

As $\left(D_{i j}\right)$ is hermitian, if we denote $W:=\sum_{i=2}^{n^{2}} D_{i 1} B_{i}$ and $\kappa:=D_{11}$ then $W^{*}=\sum_{j=2}^{n^{2}} D_{1 j} B_{j}^{*}$ and κ is a real number. From the previous proposition 5.3 .1 we know that $\left(D_{i j}\right)_{i, j=2}^{n^{2}}$ is
a positive matrix. Therefore there exists $A_{1}, A_{2}, \ldots, A_{k} \in M_{n^{2}-1}$ such that $\left(D_{i j}\right)_{i, j=2}^{n^{2}}=$ $A_{1} A_{1}^{*}+A_{2} A_{2}^{*}+\ldots+A_{k} A_{k}^{*}$. If we write $A_{r}=\left(a_{r}(p, q)\right)$ then in terms of the coefficients of the matrix A_{r} we have

$$
D_{i j}=\sum_{r=1}^{k} \sum_{p=2}^{n^{2}} a_{r}(i, p) \overline{a_{r}(j, p)}
$$

Substituting these in the above expression of Ψ and regrouping the terms we obtain

$$
\begin{aligned}
\Psi(X) & =\kappa X+W X+X W^{*}+\sum_{r=1}^{k} \sum_{p=2}^{n^{2}}\left(\sum_{i=2}^{n^{2}} a_{r}(i, p) B_{i}\right) X\left(\sum_{j=2}^{n^{2}} a_{r}(j, p) B_{j}\right)^{*} \\
& =\kappa X+W X+X W^{*}+\sum_{p=2}^{n^{2}} \sum_{r=1}^{k} V_{p, r} X V_{p, r}^{*}
\end{aligned}
$$

where $V_{p, r}:=\sum_{i=2}^{n^{2}} a_{r}(i, p) B_{i}$. That the semigroup preserves the identity is equivalent to the generator mapping it to zero i.e. $\Psi\left(I_{n}\right)=0$. Plugging this condition we get

$$
0=\kappa+W+W^{*}+\sum_{p} \sum_{r} V_{p, r} V_{p, r}^{*} .
$$

So we can set $W=i H-\frac{1}{2} \kappa-\frac{1}{2} \sum_{p} \sum_{r} V_{p, r} V_{p, r}^{*}$, where H is a Hermitian matrix and substituting it in the above expression of $\Psi(X)$, we have

$$
\begin{aligned}
\Psi(X) & =\kappa X+\left(i H-\frac{1}{2} \kappa-\frac{1}{2} \sum_{p} \sum_{r} V_{p, r} V_{p, r}^{*}\right) X+X\left(-i H-\frac{1}{2} \kappa-\frac{1}{2} \sum_{p} \sum_{r} V_{p, r}^{*} V_{p, r}\right) \\
& +\sum_{p} \sum_{r} V_{p, r} X V_{p, r}^{*} \\
& =i[H, X]+\sum_{p} \sum_{r}\left\{V_{p, r} X V_{p, r}^{*}-\frac{1}{2}\left(V_{p, r} V_{p, r}^{*} X+X V_{p, r}^{*} V_{p, r}\right)\right\}
\end{aligned}
$$

5.4 Positive Semigroups On $M_{2}(\mathbb{C})$

In [Car04] positive semigroup has been characterized in terms of the generator of the semigroup. Here we give another characterization of the same, following the discussion above. The Pauli matrices are unitary matrices

$$
\sigma_{0}=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \sigma_{1}=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{2}=\frac{1}{2}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{3}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

which form an orthogonal basis of M_{2} with respect to Hilbert-Schmidt inner product. Moreover, they satisfy the following relations

$$
\sigma_{p}^{2}=\sigma_{0}^{2}, \quad \sigma_{p} \sigma_{q}=-\sigma_{q} \sigma_{p}, \quad \sigma_{p} \sigma_{q}=i \sigma_{r} \sigma_{0}
$$

if $(p, q, r) \in\{(1,2,3),(2,3,1),(3,1,2)\}$. Decomposing a matrix V with respect to these basis i.e $V=\sum_{p=0}^{3} v_{p} \sigma_{p}$, we observe that V has the form

$$
\frac{1}{2}\left[\begin{array}{ll}
v_{0}+v_{3} & v_{1}-i v_{2} \\
v_{1}+i v_{2} & v_{0}-v_{3}
\end{array}\right]
$$

It is easy to see that
(i) V has trace zero if anf only if $v_{0}=0$,
(ii) it has rank one if and only if $\operatorname{det}(V)=0$ i.e. $v_{0}^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}$.

For a semigroup $\exp (t \Phi)$ on M_{2} we can write the generator again in terms of Pauli basis as in 5.3.1-

$$
\Phi=T_{S}, \text { where } S=\sum_{p, q=0}^{3} D_{p, q} \sigma_{p} \otimes \sigma_{q}
$$

Proposition 5.4.1. A semigroup $\exp (t \Phi)$ is positive if and only the matrix $\left(D_{p q}\right)_{p, q=0}^{3}$ is hermitian and for all $v=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{C}^{3}$ with $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=0$ we have

$$
\begin{equation*}
\left\langle v \mid\left(D_{p q}\right)_{p, q=1}^{3} v\right\rangle \geq 0 \tag{5.4.1}
\end{equation*}
$$

where $\left(D_{p q}\right)_{p, q=1}^{3}$ is the 3×3 submatrix of the matrix $\left(D_{i j}\right)_{i, j=0}^{3}$, defined above. Moreover, it is identity preserving if and only if the following relations are satisfied,

$$
\sum_{p=0}^{3} D_{p p}=0, \text { and }\left(D_{p 0}+D_{0 p}\right)+i\left(D_{q r}-D_{r q}\right)=0
$$

for $(p, q, r) \in\{(1,2,3),(2,3,1),(3,1,2)\}$.
Proof. As a direct application of coroallary 5.3 .1 it follows that the semigroup $\exp (t \Phi)$ is positive if and only if for any $V \in M_{2}$ with $\operatorname{rank}(V)=1$ and $\operatorname{Tr}(V)=0$

$$
\begin{equation*}
\sum_{p, q=0}^{3} D_{p q} \operatorname{Tr}\left(\sigma_{p} V^{*}\right) \operatorname{Tr}\left(\sigma_{q} V\right) \geq 0 \tag{5.4.2}
\end{equation*}
$$

As we observed, expanding V in the Pauli basis $V=\sum_{j=0}^{3} v_{j} \sigma_{j}$ the rank and trace conditions translate into $v_{0}=0$ and $\sum_{j=1}^{3} v_{j}^{2}=0$. Plugging this decomposition of V in
the expression 5.4.2 it becomes

$$
\begin{aligned}
\sum_{p, q=0}^{3} \sum_{j, k=0}^{3} D_{p q} \bar{v}_{j} v_{k} \operatorname{Tr}\left(\sigma_{p} \sigma_{j}\right) \operatorname{Tr}\left(\sigma_{q} \sigma_{k}\right) & =\sum_{p, q=0}^{3} \sum_{j, k=0}^{3} \bar{v}_{j} v_{k} \delta_{p j} \delta_{q k} \\
& =\frac{1}{4} \sum_{p, q=1}^{3} D_{p q} \bar{v}_{p} v_{q} \geq 0,
\end{aligned}
$$

which gives the desired inequality.
To obtain the conditions of hermitianity and identity preserving property, it is easy to see that
(i) $\exp (t \Phi)$ is hermitianity preserving if and only if the generator $\Phi=T_{S}$ has the same property, which is equivalent to the matrix $\left(D_{p q}\right)_{p, q=0}^{3}$ being hermitian.
(ii) The semigroup preserves identity if and only if the generator Φ takes identity to zero i.e. $T_{S}\left(\sigma_{0}\right)=0$.

5.5 A General 4-Parameter Family Of Semigroups

Now we discuss as an example the semigroup generated by 4 parameter family $L=\alpha P+$ $\beta D+\gamma T+\delta$ Id and time evolution for specific cases in M_{2}. As all the operators P, D, T, Id commute, the semigroup generated is given by

$$
\begin{aligned}
\exp (t L)= & e^{t(\beta+\gamma+\delta)}\left(e^{t \alpha}-1\right) P+e^{t(\gamma+\delta)}\left(e^{t \beta}-1\right) D+e^{t \delta} \frac{\left(e^{t \gamma}-e^{-t \gamma}\right)}{2} T \\
& +e^{t \delta} \frac{\left(e^{t \gamma}+e^{-t \gamma}\right)}{2} \mathrm{Id}
\end{aligned}
$$

5.5.1 The Depolarising Channel

We consider the semigroup $T_{\alpha, \delta}=\exp t(\alpha P+\delta \mathrm{Id})$. This semigroup is again a linear combination of the operator P and identity,

$$
T_{\alpha, \delta}(t)=\exp (t(\alpha P+\delta \mathrm{Id}))=\underbrace{e^{\delta t}\left(e^{\alpha t}-1\right)}_{=: \alpha(t)} P+\underbrace{e^{\delta t}}_{=: \delta(t)} \mathrm{Id},
$$

which, by Lemma 2.5.1, is k-positive iff

$$
\alpha(t) \geq 0 \quad \text { and } \quad \delta(t) \geq-\frac{\alpha(t)}{k n}
$$

This condition is satisfied for all $t \geq 0$ iff $e^{\alpha t} \geq 1$ for all $t \geq 0$ iff $\alpha \geq 0$.

If we consider the identity preserving semigroup generated by the operator P and the identity operator i.e. the semigroup $T_{\alpha,-\alpha}$. we can see that it is a convex combination of P and the identity opearator

$$
T_{\alpha,-\alpha}=\exp t \alpha(P-\mathrm{Id})=\left(1-e^{-t \alpha}\right) P+e^{-t \alpha} \mathrm{Id} .
$$

which is completely positive for all $t \geq 0$ iff $\alpha \geq 0$. What is more, in this case the semigroup converges to P as $t \rightarrow \infty$, which we know by Lemma 2.3.3 to be an interior point of the cone $\mathcal{E B}$ or 1 -superpositive. So if $\alpha \geq 0$, the semigroup $T_{\alpha,-\alpha}$ enters the cone $\mathcal{E B}$ in finite time $t_{1}>0$. The Choi matrix of the semigroup is given by

$$
C_{T_{\alpha,-\alpha}}=\left[\begin{array}{cccc}
\frac{1}{2}\left(1+e^{-t \alpha}\right) & 0 & 0 & e^{-t \alpha} \\
0 & \frac{1}{2}\left(1-e^{-t \alpha}\right) & 0 & 0 \\
0 & 0 & \frac{1}{2}\left(1-e^{-t \alpha}\right) & 0 \\
e^{-t \alpha} & 0 & 0 & \frac{1}{2}\left(1+e^{-t \alpha}\right)
\end{array}\right] .
$$

To decide when the semigroup enters $\mathcal{E B}$ we use Peres-Horodeci (or PPT) criterion. If T is the transpose map then

$$
(\operatorname{Id} \otimes T) C_{\exp (t L)}=\left[\begin{array}{cccc}
\frac{1}{2}\left(1+e^{-t \alpha}\right) & 0 & 0 & 0 \\
0 & \frac{1}{2}\left(1-e^{-t \alpha}\right) & e^{-t \alpha} & 0 \\
0 & e^{-t \alpha} & \frac{1}{2}\left(1-e^{-t \alpha}\right) & 0 \\
0 & 0 & 0 & \frac{1}{2}\left(1+e^{-t \alpha}\right)
\end{array}\right]
$$

So $T_{\alpha,-\alpha}$ is in $\mathcal{E B}$ if and only if $C_{T_{\alpha,-\alpha}}$ is separable if and only if $(\operatorname{Id} \otimes T) C_{T_{\alpha,-\alpha}}$ is positive (by PPT criterion, see [Per96],[HHH96]). We can easily check that the above matrix is positive iff the determinant

$$
\left|\begin{array}{cc}
\frac{1}{2}\left(1-e^{-t \alpha}\right) & e^{-t \alpha} \\
e^{-t \alpha} & \frac{1}{2}\left(1-e^{-t \alpha}\right)
\end{array}\right|=-\frac{3}{4} e^{-2 t \alpha}-2 e^{-t \alpha}+1
$$

is positive. Replacing by $x=e^{-t \alpha}$ in the above expression, we observe that the polynomial $-\frac{3}{4} x^{2}-2 x+1$ has the positive root $x_{0}:=-\frac{4}{3}+2 \frac{\sqrt{7}}{3}$ in the interval $[0,1]$. The polynomial is positive on the interval $\left[0, x_{0}\right]$ and negative on $\left[x_{0}, 1\right]$. Thus the semigroup enters the cone \mathcal{S}_{1} at the time

$$
t_{1}=-\frac{1}{\alpha} \ln \left(-\frac{4}{3}+\frac{2 \sqrt{7}}{3}\right)
$$

5.5.2 Transposition

We consider the identity preserving semigroup generated by the transposition and the depolarizing channel i.e. by the generator $L=\alpha P+\gamma T-(\alpha+\gamma) \mathrm{Id}$, for $\alpha, \gamma \in \mathbb{R}$. Since all the quantities $T, P, I d$ commutes we have

$$
\begin{aligned}
\exp (t L) & =\exp (t \gamma(T-I d)) \exp (t \alpha(P-I d)) \\
& =e^{-t \alpha} \frac{1+e^{-2 t \gamma}}{2} I d+e^{-t \alpha} \frac{1-e^{-2 t \gamma}}{2} T+\left(1-e^{-t \alpha}\right) P,
\end{aligned}
$$

which is a convex combination of the Id, T and P.
If we take $\alpha, \gamma>0$, then in general it is a positive semigroup but not necessarily completely positive.

If the parameter $\alpha=0$ then the semigroup is just convex combination of Id and T, which converges to $\frac{1}{2}(\operatorname{Id}+T)$ as $t \rightarrow \infty$.

If $\alpha>0$, then the semigroup eventually becomes completely positive, even 1 -superpositive as it converges to P.

We compute the Choi matrix of of the semigroup $\exp (t L)$,

$$
\begin{equation*}
C_{\exp (t L)}=\rho_{t} C_{\mathrm{Id}}+\mu_{t} C_{T}+\nu_{t} C_{P}, \tag{5.5.1}
\end{equation*}
$$

where $\rho_{t}=e^{-t \alpha} \frac{1+e^{-2 t \gamma}}{2}, \mu_{t}=e^{-t \alpha} \frac{1-e^{-2 t \gamma}}{2}$ and $\nu_{t}=\left(1-e^{-t \alpha}\right)$. Using the same arguments as in Proposition 2.5.1, the Choi matrix is positive iff the eigenvalues $\frac{\nu_{t}}{n}-\mu_{t}$ and $\frac{\nu_{t}}{n}+\mu_{t}$ are positive. Combining these two conditions, we conclude that the semigroup $\exp (t L)$ becomes CP at time t iff

$$
\frac{\nu_{t}}{n} \geq\left|\mu_{t}\right| \quad \text { i.e. } \quad 2\left(e^{\alpha t}-1\right) \geq n\left|1-e^{-2 t \gamma}\right| .
$$

The above inequaility shows that even if $\gamma \gg \alpha>0$ it is possible that the semigroup not CP for certain time but ultimately becomes CP and then superpositive after finite time. If $\gamma=\alpha>0$ then substituting $x=e^{\alpha t}$ in the above inequality gives the following criterion,

$$
2 x^{3}-(2+n) x^{2}+n \geq 0 .
$$

The polynomial $p(x)=2 x^{3}-(2+n) x^{2}+n$ has two positive roots- 1 and $\frac{n+\sqrt{n^{2}+8 n}}{4}$, and $p(x) \geq 0$ for $x \geq \frac{n+\sqrt{n^{2}+8 n}}{4}$. The root 1 corresponds to the time $t=0$. So the semigroup becomes CP at time $t_{1}=\frac{1}{\alpha} \ln \frac{n+\sqrt{n^{2}+8 n}}{4}$.

We can find the time when the semigroup becomes 1-superpositive using again PPT criterion for the case $M_{2}(\mathbb{C})$.

$$
(\operatorname{Id} \otimes T) C_{\exp t L}=\left[\begin{array}{cccc}
\rho_{t}+\mu_{t}+\frac{1}{2} \nu_{t} & 0 & 0 & \mu_{t} \\
0 & \frac{1}{2} \nu_{t} & \rho_{t} & 0 \\
0 & \rho_{t} & \frac{1}{2} \nu_{t} & 0 \\
\mu_{t} & 0 & 0 & \rho_{t}+\mu_{t}+\frac{1}{2} \nu_{t}
\end{array}\right]
$$

The above matrix is positive iff the determinant $\left|\begin{array}{cc}\frac{1}{2} \nu_{t} & \rho_{t} \\ \rho_{t} & \frac{1}{2} \nu_{t}\end{array}\right|=\frac{1}{4} \nu_{t}^{2}-\rho_{t}^{2}$ is positive, which gives the condition

$$
\begin{equation*}
2 \leq e^{t \alpha}-e^{-2 t \gamma} . \tag{5.5.2}
\end{equation*}
$$

If $\gamma=\alpha>0$ then substituting $x=e^{t \alpha}$ in the abive inequality gives that

$$
x^{3}-2 x^{2}-1 \geq 0 .
$$

If ξ is the positive root of the polynomial then we see that at the time $t_{2}=\frac{1}{\nu} \ln \xi$ the semigroup becomes 1-superpositive.

Bibliography

[App19] David Applebaum, Semigroups of Linear Operators With Applications to Analysis, Probability and Physics, Cambridge University Press (2019)
[AT07] Charalambos Dionisios Aliprantis, Rabee Tourky, Cones and duality, Graduate Studies in Mathematics vol. 84, American Mathematical Society, 2007.
[BCF23(i)] B. V. R. Bhat, P. Chakraborty, U. Franz, Schoenberg Correspondence for k-(super)Positive Maps on Matrix Algebras, Positivity 27:51 (2023).
[BCF23(ii)] B. V. R. Bhat, P. Chakraborty, U. Franz, Error Basis and Quantum Channel,(preprint) arXiv: 2305.14274v1
[BCS20] Ivan Bardet, Benoît Collins, Gunjan Sapra, Characterization of Equivariant Maps and Application to Entanglement Detection, Ann. Henri Poincaré 21 (2020), 3385-3406
[BFR17] András Bátkai, Marjeta Kramar Fijavž, Abdelaziz Rhandi textitPositive Operator Semigroups :From Finite to Infinite Dimensions, Birkhäuswer, 2017
[Bhat11] B.V. R. Bhat, Linear Maps Respecting Unitary Conjugation Banach Journal of Mathematical Analysis 5(2): 1-5 (2011).
[Car04] Raffaella Carbone, Optimal Log-Sobolev Inequality and Hypercontractivity for Positive Semigroups on $M_{2}(\mathbb{C})$. Infinite Dimensional Analysis. Quantum Probability and Related Topics, vol. 7, No. 3, 317-335.
[Choi75] Man-Duen Choi, Completely Positive Linear Maps on Complex Matrices, Linear Algebra and Its Application, vol. 10, 285-290 (1975).
[CK09] Dariusz Chruściński, Andrejez Kossakowski, Spectral Conditions for Positive Maps, Communication In Mathematical Physics, 290, 1051-1064 (2009).
[CMW19] Matthias Christandl, Alexander Müller-Hermes, Michael M. Wolf, When Do Composed Maps Become Entanglement Breaking?, Ann. Henri Poincaé. 20(7):20295-20322, 2019
[COS18] Benoît Collins, H. Osaka, G. Sapra, On a Family of Linear Maps From $M_{n}(\mathbb{C})$ to $M_{n^{2}}(\mathbb{C})$. Linear Algebra Appl. 555, 398-411 (2018)
[DMS21] Repana Devendra, Nirupama Mallik, Kappil Sumesh, Mapping Cone of k Entanglement Breaking Maps. Positivity 27, 5 (2023)
[Fruc31] R. Frucht, Über die Darstellung endlicher Abelscher Gruppen durch Kollineationen, Journal für die reine und angewandte Mathematik, vol. 166 (1931).
[FS00] Uwe Franz and Michael Schürmann, Lévy processes on quantum hypergroups. In: Heyer, Herbert (ed.) et al., Infinite Dimensional Harmonic Analysis. Transactions of the 2nd Japanese-German symposium, University of Kyoto, Japan, September 20-24, 1999. p. 93-114 (2000).
[GKS76] Vittorio Gorini, Andrzej Kossakowski, E.C. Geroge Sudarshan, Completely Positive Dynamical Semigroups of N-level Systems. Journal of Mathematical Physics. 17, 821 (1976)
[HHH56] Michal Horodecki, Pawel Horodecki, Ryszard Horodecki, Separability of Mixed States: Necessary and Sufficient Conditions, Physics Letters A vol. 223, 1-8, 1996.
[HSR03] Michael Horodecki, Peter W. Shor, Mary Beth Ruskai, Entanglement Breaking Channels, Reviews in Mathematical Physics. vol. 15, No. 6, 629-641, 2003.
[HZJ22] X. Huang, T. Zhang, M. J. Zhao, N. Jing, Separability Criteria Based on The Weyl Operators. Entropy 2022, 24, 1064.
[Iss76] Irving Martin Issac, Character Theory of Finite Groups. Academic Press, 1976.
[Jam72] A. Jamiołkowski, Linear Transformations Which Preserve Trace and Positive Semidefiniteness of Operators, Reports on mathematical physics, vol. 3, no. 4 (1972).
[JPPY23] Yeong-Gwang Jung, Jeongeun Park, Sang-Jung Park, and Sang-Gyun Youn, A Universal Framework for Entanglement Detection Under Group Symmetry, arXiv: 2301.03849v1
[Kar93] G. Karpilovsky, Group Representation, Amsterdam, The Netherlands: Elsevier Science, vol 2 (1993).
[Kar94] G. Karpilovsky, Group Representation, Amsterdam, The Netherlands: Elsevier Science, vol 3 (1994).
[Kni96] Emanuel Knill, Group Representation, Error Bases and Quantum Codes. Los Alamos National Laboratory report, LAUR 96-2807 (1996).
[KR02] A. Klappenecker, M. Rötteler, Beyond Stabilizer Codes. I: Nice Error Bases. IEEE Trans. Inf. Theory 48, No. 8, 2392-2395 (2002).
[KR05] Andreas Klappenecker, Martin Rötteler, On The Monomiality of Nice Error Bases. IEEE Trans. Inf. Theory 51, No. 3, 1084-1089 (2005).
[Kra70] K. Kraus, General State Changes in Quantum Theory, Annals of Physics, 64, 311-335 (1970).
[Kye22] Seung-Hyeok Kye, Compositions and Tensor Products of Linear Maps on Matrix Algebras, arxiv: 2204.02516v2
[Lin76] Göran Lindblad, On The Generators of Quantum Dynamical Semigroups. Communications in Mathematical Physics. 48, 119-130 (1976).
[Pah70] H. Pahlings, Gruppen mit Irreduziblen Darstellungen hohen Grades, Mitt. Math. Sem. Giessen, vol 85, 27-44 (1970).
[Par06] K.R. Parthasarathy. Quantum Error Correcting Codes and Weyl Commutation Relations. In: Symmetry in Mathematics and Physics, pp. 29-43, Contemp. Math., 490, Amer. Math. Soc. (2006).
[Per96] Asher Peres, Separability Criterion for Density Matrices, Phys. Rev. Lett. 77, 1413-1415 (1996).
[PH81] J. A. Poluikis, R. D. Hill, Completely Positive and Hermitian-Preserving Linear Transformation. Linear Algebra and its Applications 35:1-10, 1981.
[Pil67] John Emanuel De Pillis, Linear Transformations Which Preserve Hermitian and Positive Semidefinite Operators, Pacific journal of mathematics, vol. 23, no. 1 (1967).
[RA07] K. S. Ranade, M. Ali, The Jamiotkowski Isomorphism and A Simplified Proof for The Correspondence Between Vectors Having Schmidt Number k and k Positive Maps. Open Syst. Inf. Dyn. 14, No. 4, 371-378 (2007).
[Sch85] Michael Schürmann, Positive and Conditionally Positive Linear Functionals on Coalgebras. Quantum Probability and Applications II, Proc. 2nd Workshop, Heidelberg/Ger. 1984, Lect. Notes Math. 1136, 475-492 (1985).
[Sko08] L. Skowronek, Quantum Entanglement and Certains Problems in Mathematics, M.S thesis, Jagiellonian Univeristy, https://chaos.if.uj.edu.pl/ ~karol/prace/skowronek08.pdf
[Sim11] Barry Simon, Convexity: An Analytical Viewpoint, Cambridge Tracts in Mathematics 187. Cambridge: Cambridge University Press 2011.
[SSZ09] Lukasz Skowronek, Erling Størmer, and Karol Życzkowski, Cones of Positive Maps and Their Duality Relations. J. Math. Phys. 50, No. 6, 062106 (2009).
[Sto63] E. Stormer, Positive Linear Maps on Operator Algebra, Acta Math. 110: 233278 (1963).
[SV70] Hans Schneider and Mathukumalli Vidyasagar, Cross-Positive Matrices. SIAM J. numer. Anal. 7, 508-519 (1970).
[Tom85] Jun Tomiyama, On The Geometry of Positive Maps in Matrix Algebras. II. Linear Algebra Appl. 69, 169-177 (1985)
[Wat18] J. Watrous, The Theory of Quantum Information, Cambridge University Press, 2018.
[Wer01] R. Werner, All Teleportation and Dense Coding Scheme, Journal of Physics A., vol 34, pp. 7081-7094 (2001).
[Wey27] H. Weyl, Quantenmechanik und Gruppentheorie, Zeitschrift für Physik 46, pp. 1-46, 1927.
[Wol12] Michael Wolf, Quantum channels and operations: guided tour, https://mediatum.ub.tum.de/doc/1701036/document.pdf

Abstract

In the first three chapters of this thesis we discuss the existing notions of different positivity of a linear map between matrix algebras e.g. k-positivity, complete positivity, k-superpositivity, separable and entangled quantum state, unitary error basis and their constructions etc. We discuss the relation between different positive cones, and their duals in detail. In the last two chapters, we present our results on the topic. We try to characterise different positive maps using a suitable basis of the space of linear maps between matrix algebras. The Weyl operators give a convenient basis of matrix algebra which is also orthonormal with respect to the Hilbert-Schmidt inner product. The properties of such a basis can be generalised to the notion of a nice error basis(NEB), as introduced by E. Knill. We can use an NEB of matrix algebra to construct an NEB for the space of linear maps between matrix algebras. Any linear map will then correspond to a coefficient matrix in the basis decomposition with respect to such basis. Positivity, complete (co)positivity or other properties of a linear map can be characterised in terms of such coefficient matrix. Finally, we will characterise the one parameter semigroup of different positive maps in terms of its generators. We prove a Schoenberg-type correspondence for non-unital semigroups which generalises an analogous result for unital semigroup proved by Michael Schürmann. It characterises the generators of semigroups of linear maps on matrix algebra which are k -positive, k -superpositive, or k entanglement breaking. We present some concrete examples of semigroup of operators and study how their positivity properties improve with time.

Keywords: Positive operators, Quantum information, Quantum channel, Semigroup of positive operators, Nice error basis, Semigroup of k-positive maps

Résumé: Dans les trois premiers chapitres de cette thèse, nous discutons des notions existantes de différentes positivités d'une application linéaire entre des algèbres de matrices, par exemple la k-positivité, la positivité complète ou le canal quantique, la k-superpositivité, état quantique séparable et intriqué, la base d'erreur unitaire et leurs constructions etc. Nous discutons en détail de la relation entre les différents cônes positifs et leurs duals. Dans les deux derniers chapitres, nous présentons nos résultats sur le sujet. Nous essayons de caractériser différentes applications positives en utilisant une base appropriée de l'espace des applications linéaires entre les algèbres de matrices. Les opérateurs de Weyl donnent une base pratique de l'algèbre des matrices qui est également orthonormée par rapport au produit scalaire de HilbertSchmidt. Les propriétés d'une telle base peuvent être généralisées à la notion de "nice error basis" (NEB), telle qu'introduite par E. Knill. Nous pouvons utiliser une NEB de l'algèbre des matrices pour construire une NEB pour l'espace des applications linéaires entre algèbres de matrices. Toute application linéaire correspondra alors à une matrice de coefficient dans la décomposition de la base par rapport à cette base. La positivité, la (co)positivité complète ou d'autres propriétés d'une application linéaire peuvent être caractérisées en termes de cette matrice de coefficients. Enfin, nous caractériserons le semigroupe à un paramètre de différentes applications positives en fonction de ses générateurs. Nous prouvons une correspondance de type Schoenberg pour les semigroupes non-unitaires qui généralise un résultat analogue pour les semigroupes unitaires prouvé par Michael Schürmann. Elle caractérise les générateurs des semigroupes de applications linéaires sur l'algèbre des matrices qui sont k -positifs, k -superpositifs, ou k rupture d'enchevêtrement. Nous présentons quelques exemples concrets de semigroupes d'opérateurs et étudions comment leurs propriétés de positivité peuvent s'améliorer avec le temps.

Mots-clés : Opérateur Positif, Canal quantique, Information quantique, Semigroupe d'opérateurs positifs, Base d'erreur, Semigroupe d'operateurs k-positifs

2020 Mathematics Subject Classification:

46N50, 47D03, 47D06, 81P42, 81P45, 81P47, 81P55, 81S22

