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Résumé en francais

La vision humaine se compose généralement de deux phases, c¢’est-a-dire une vision de bas niveau et
une vision de haut niveau. Plusieurs capteurs d’yeux humains saisissent les lumieres réfléchies par
les environnements environnants. Les neurones transfeérent ensuite les informations saisies par les
capteurs au cortex visuel ol les caractéristiques de vision de bas niveau (e.g., bord, couleur, forme,
profondeur, couleur, orientation et mouvement) sont garanties.

Les caractéristiques de bas niveau codées sont ensuite transmises a d’autres régions fonctionnelles
du cerveau humain ol des caractéristiques de haut niveau sont produites. Les fonctionnalités de haut
niveau sont ensuite utilisées pour servir de base a la naissance de la conscience (e.g., la reconnaissance
d’objets). En fait, le succes de ce systeme hiérarchique de vision humaine est dii 2 un mécanisme es-
sentiel tout au long du processus de transmission des caractéristiques, a savoir le systeme d’attention
visuelle, qui médiatise la sélection des informations importantes de maniere ascendante et descen-

dante.

D’autre part, I’apprentissage en profondeur a dominé le domaine de la vision par ordinateur au
cours des dernieres années, en raison de 1’essor des sources de calcul (e.g., les unités de traitement
graphique), de la naissance d’ensembles de données de pré-formation a grande échelle (e.g., Ima-
geNet [1]), d’une capacité d’apprentissage exceptionnelle des réseaux de neurones a convolution pro-
fonde (e.g., VGGs [2]) et d’une large application de méthodologies d’optimisation adaptative (e.g.,
I’optimiseur Adam [3]). Le succes des réseaux de neurones a convolution profonde pour des taches
telles que la classification d’images [1] et la détection d’objets [4] doit a leurs architectures con-
stituées de couches neuronales hiérarchiques. Selon une étude de visualisation de réseau neuronal
convolutif telle que [5], les cartes de caractéristiques des couches neuronales inférieures correspon-
dent a des caractéristiques de vision de bas niveau telles que les coins et les bords, tandis que les
cartes de caractéristiques de haut niveau montrent les apparences d’objets a partir d’images données.
Malgré les progres réalisés pour imiter le systeéme visuel humain, la faible capacité de généralisation
et le fonctionnement interne inexplicable des algorithmes d’apprentissage en profondeur actuels, les
empéchent d’étre directement transférés a différentes tiches difficiles. Dans les cas généraux, il ex-
iste plusieurs ensembles de données de référence avec des annotations spécifiques et des réseaux de
neurones profonds avec des architectures et des composants exclusivement congus pour des taches de
vision par ordinateur particuli¢rement difficiles.

En tant que tendance en plein essor de I’apprentissage en profondeur et de ses applications
réussies pour les taches de vision par ordinateur, la modélisation de I’attention humaine basée sur

I’apprentissage en profondeur a attiré 1’attention croissante de la communauté au cours des derni¢res
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années.

Le contexte

‘ Scénes de la vie réelle |

| |
2D 360° % 360°

RN

Représentation planaire Représentation panoramique
Modélisation de I'attention . Modélisation de I'attention
. ‘ Cerveau humain .
humaine en 2D humaine sur Panorama

=} Saillance visuelle }‘

Fig. 1 Une illustration des relations entre I’attention visuelle réelle, la modélisation de 1’attention vi-
suelle traditionnelle basée sur 2D et la modélisation de I’ attention visuelle basée sur des images/vidéos
panoramiques a 360°. Avec des caméras a 360° et des écrans montés sur la téte, la détection de
saillance visuelle basée sur un panorama a 360° est potentiellement capable de mieux imiter le com-
portement du systeme visuel humain dans des sceénes réelles, par rapport au scénario 2D. Les fleches
noires indiquent le flux d’informations. Les fleches bleues représentent le retour d’attention.

Comme le montre la fig. 1, les recherches actuelles liées a la modélisation de 1’attention humaine
sont soit basées sur deux dimensions (2D) soit sur la réalité virtuelle! images et vidéos. Généralement,
la différence entre la modélisation de ’attention visuelle basée sur la 2D et la réalité virtuelle est
double:

i. Les images/vidéos 2D sont collectées avec des caméras normales qui ne sont capables d’enregistrer
que des scenes réelles observées a partir de fenétres locales contenant un contexte limité. En par-
ticulier, les caméras VR posseédent un champ de vision de 360°x180° (Fig. 2) et sont capables
d’enregistrer tout le contexte de scenes réelles. Par conséquent, par rapport a la modélisation de
I’attention humaine basée sur 2D, la modélisation de I’attention basée sur 360° est basée sur des don-
nées contenant beaucoup plus d’indices visuels, possédant ainsi le potentiel d’imiter une attention

Dans cette thése, nous utilisons les termes de réalité virtuelle, 360°, panoramique et omnidirectionnelle indifféremment.
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visuelle humaine plus réaliste.

ii. Les comportements visuels humains de I’observation d’un écran d’ordinateur sont différents de
ceux de I’observation d’environnements immersifs avec des visiocasques. Par conséquent, la vérité
terrain (e.g., le mouvement des yeux) des tiches liées a la modélisation de 1’attention 2D/VR a ten-
dance a effectuer des distributions différentes. Par exemple, les attentions basées sur la 2D sont
biaisées au centre tandis que celles basées sur la réalité virtuelle sont biaisées par 1’équateur.

v (0°, 90°)

Image 2D

Fig. 2 Une comparaison entre la réalité virtuelle et la représentation 2D. La caméra VR capture les
scenes réelles observées a partir d’un champ de vision de 360°x180°. Les images omnidirection-
nelles collectées sont généralement représentées sous forme d’images équirectangulaires. La caméra
normale fournit des images 2D enregistrant des scénes avec un contexte limité observé a partir de
fenétres locales.

Au cours des dernieres années, des ensembles de données de référence a grande échelle basés sur
la 2D et la réalité virtuelle et des modeles d’apprentissage en profondeur ont été proposés pour faire
progresser le domaine de la modélisation de I’attention visuelle humaine.

Modélisation de I’attention humaine dans le domaine 2D. Les premiers ensembles de données de
référence tels que MIT300 [6] et CAT2000 [7] ont collecté des données sur les mouvements de 1’ceil
humain en menant des expériences de suivi oculaire basées sur des images statiques 2D. Ces ensem-
bles de données basés sur des images® ont publié des centaines ou des milliers d’images représentant
plusieurs catégories de scenes réelles, avec des cartes de fixation par image reflétant les distribu-
tions de I’attention humaine. Dans ce cas, des méthodes d’apprentissage en profondeur telles que
DeepGaze [8], SALICON [9] et DeepFix [10] ont utilisé des réseaux de neurones convolutifs pour
apprendre la correspondance entre les distributions d’images d’entrainement et les distributions de
fixations humaines. Avec une supervision des fixations humaines, ces méthodes peuvent &tre en-
trainées pour finalement représenter les régions de haute saillance sur des images non vues (ensemble
de données de test). Des ensembles de données ultérieurs tels que DHF1K [11] et LEDOV [12] ont
collecté 500 a 1K courtes vidéos représentant diverses scénes de la vie quotidienne (e.g., événements
sociaux et sports) pour étudier les comportements visuels humains dans un scénario dynamique. Des

Zhttps://saliency.tuebingen.ai/datasets.html
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recherches telles que OM-CNN [13] et ACLNet [ 1 1] ont appliqué ConvLSTM [14] (un type de réseau
neuronal récurrent largement utilisé) pour extraire les caractéristiques spatio-temporelles d’images
vidéo consécutives, afin de prédire la dynamique humaine fixations.

En fait, le mécanisme d’attention visuelle humaine est non seulement capable de guider le regard

humain, mais aussi d’aider I’homme a reconnaitre les objets importants pour la tiche de vision telle
que la compréhension de la scéne. Des recherches récentes [15, 16] ont ainsi étudié une tache rela-
tivement nouvelle, i.e., salient object segmentation (a.k.a. détection d’objets saillants ou modélisation
de I’attention visuelle au niveau de 1’objet), qui vise a segmenter finement les objets saisissant la ma-
jeure partie de I’humain attentions. Comme le développement d’ensembles de données salient object
segmentation a grande échelle tels que MSRA10K?, DUT-O [17], PASCAL-S [18] , HKU-IS [19],
DUTS [20] et SOC [21] (qui fournissent tous des masques binaires au niveau des pixels étiquetés
manuellement comme vérité terrain), des dizaines de méthodes d’apprentissage en profondeur [16]
ont il a été proposé de mener a bien votre tiche de maniere entierement-/faiblement-/non-supervisée.
En outre, des ensembles de données salient object segmentation basés sur la vidéo récemment établis
tels que VOS [22] et DAVSOD [23] fournissent des étiquettes pixel par pixel d’objets saillants parmi
des milliers d’images vidéo, permettant ainsi salient object segmentationbasé sur la vidéo. Il convient
de mentionner que divers modules d’attention [24] ont été proposés pour faciliter la modélisation de
I’attention humaine au niveau de 1’objet.
Modélisation de I’Attention Humaine en Panorama 360° Considérant le potentiel de la modélisa-
tion de I’attention a 360° pour imiter I’attention humaine réelle dans des scenes de la vie réelle, et
la possibilité d’acquérir une grande quantité d’images et de vidéos a 360° en utilisant des caméras
VR grand public telles que la série Insta360 ONE, Ricoh Theta Z1 et GoPro Max , plusieurs jeux
de données tels que [25-28] ont été proposés ces dernieres années, pour la modélisation statique ou
dynamique de I’attention humaine au niveau de la fixation. Il convient de noter que ces ensembles
de données ne fournissent que des données sur les mouvements de la téte ou des yeux comme vérité
de terrain, ne pouvant donc pas refléter strictement I’attention humaine sur des cibles saillantes spé-
cifiques. Des recherches récentes [29—32] ont exploré la détection d’objets dans des vidéos a 360°.
Cependant, ces méthodes ont été proposées pour la détection de boites englobantes et formées pour
détecter tous les objets dans des scénes a 360°, ne pouvant donc pas €tre utilisées pour explorer la
modélisation de I’attention humaine au niveau de 1’objet dans des environnements immersifs. En
regle générale, salient object segmentation basé sur des images/vidéos a 360° est encore un domaine
ouvert, sans aucun jeu de données ou méthode de référence proposé avant I’année 2019.

Objectifs& Contributions

L’ objectif principal de cette these est la modélisation de I’attention visuelle au niveau de 1I’objet
dans des environnements immersifs de réalité virtuelle* via des techniques d’apprentissage en pro-
fondeur. En effet, cette tiche n’est pas seulement étroitement liée a diverses taches classiques de vi-
sion par ordinateur telles que la classification d’images [1], la détection d’objets [4], la segmentation

Shttps://mmcheng.net/msralOk/
4a.k.a. images, vidéos ou scénes dynamiques audiovisuelles 2 360°
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d’instances [33], la segmentation sémantique [34] et la comprendre [35], mais joue également un rdle
important dans les applications potentielles s’adaptant a des scénarios réels tels que le post-traitement
de photos, la navigation, la conduite autonome, la réalité augmentée et le robot humanoide.

Pour remplir une solide theése de doctorat, cette these déméle I’ objectif principal de la modélisa-
tion de I’attention humaine au niveau de 1’objet basée sur le panorama en trois taches progressives
difficiles, i.e., i modéliser I’attention visuelle humaine au niveau de I’objet dans le champ lumineux,
avec de nouvelles techniques d’apprentissage en profondeur basées sur 1’attention; ii modélisation de
I’attention visuelle au niveau de 1’objet dans un panorama statique a 360° avec un nouveau modele
d’apprentissage en profondeur basé sur 1’attention; iii modéliser I’attention audiovisuelle au niveau
de I’objet dans un panorama dynamique a 360°, qui imite I’attention humaine réelle dans des scenes
réelles et possede un potentiel pour des applications réelles.

Ainsi, les contributions de cette theése se résument comme suit:

Un résumé. Un apergu systématique des méthodes de pointe pour la modélisation de 1’attention
humaine au niveau de la fixation et au niveau de 1’objet dans les domaines 2D et 360°. Un résumé
complet sur les modeles d’attention de pointe dans le domaine de la vision par ordinateur. Les apercus
sont présentés dans Chapter 2.

Ensembles de données&benchmarks basés sur des images/vidéos a 360°. Un nouvel ensemble
de données de référence et des études de référence completes vers une image a 360° salient object
segmentation, qui est détaillée dans Chapter 3. Il convient de noter que nous incluons a la fois la
vérité terrain au niveau de I’objet et de I’instance au niveau des pixels dans notre nouvel ensemble de
données proposé. De plus, un nouvel ensemble de données de référence et des études de référence
completes vers salient object segmentation basé sur la vidéo a 360°. En particulier, nous considérons
a la fois des signaux audio et visuels pour construire I’ensemble de données, imitant ainsi mieux le
scénario du monde réel. De plus, cette partie des travaux est incluse dans Chapter 3.

Nouvelles méthodologies vers le champ lumineux salient object segmentation. Le champ lu-
mineux salient object segmentation est un domaine relativement nouveau et, étant similaire a 360°
salient object segmentation, il est d’une grande importance pour les applications industrielles de réal-
ité augmentée. A cette fin, nous explorons les méthodes de champ lumineux salient object segmen-
tation de pointe et proposons en outre de nouveaux modeles d’apprentissage en profondeur. Les
composants clés de nos nouveaux modeles incluent divers mécanismes d’attention pour la fusion de
caractéristiques multimodales. Les travaux sont détaillés dans Chapter 4.

Nouvelles méthodologies vers panoramique salient object segmentation. Pour combler davantage
le vide du domaine du 360° salient object segmentation, nous proposons respectivement de nouveaux
modeles de référence pour mener salient object segmentation en images et vidéos 360°. La ligne
de base basée sur I’image a 360° tire parti des mécanismes d’attention pour une fusion efficace des
fonctionnalités basée sur des reperes visuels multi-vues a 360°. La ligne de base basée sur la vidéo
utilise a la fois des reperes auditifs et visuels pour repérer les cibles parmi les images d’une séquence
donnée. De nombreux résultats qualitatifs/quantitatifs ont été obtenus pour vérifier 1’efficacité ainsi
que la robustesse des méthodes proposées. Veuillez vous référer a Chapter 5 pour plus de détails sur
les travaux.
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Une navigation biref

Par conséquent, le chapitre suivant passe en revue divers types d’ensembles de données et de méthodolo-
gies de référence représentatifs liés a votre tache. En outre, sur la base de nos observations sur ces
méthodes récentes de pointe, nous résumons en outre les modeles d’attention de base utilisés non
seulement dans salient object segmentation mais également dans les tiches générales de vision par
ordinateur, afin d’établir des bases théoriques et empiriques solides pour les travaux suivants de la
these. Le troisieme chapitre présente de nouveaux ensembles de données de référence et des études
approfondies concernant la modélisation de I’attention humaine au niveau de 1’objet a 360°. Le
quatrieéme chapitre détaille nos travaux vers le champ lumineux salient object segmentation. Le cin-
quieme chapitre présente en outre nos travaux visant a créer de nouvelles bases pour la réalisation de
salient object segmentation en images et vidéos a 360°, respectivement.

En conclusion, cette these a réussi a segmenter des objets saillants a la fois en panorama 360° et
en champ lumineux. De nouveaux ensembles de données et des lignes de base basées sur 1’attention
ont été proposés pour une segmentation efficace des objets saillants dans les scénes panoramiques
statiques et dynamiques. En outre, de nouveaux modeles d’attention ont également été proposés pour
une segmentation précise des objets saillants. En tant que 1'un des points de départ de la détection
de cibles saillantes immersive basée sur le multimédia, nous espérons que cette these pourra inspirer
des idées pour de futures recherches dans les domaines de la segmentation d’objets, de la VR/AR, de
I’apprentissage audiovisuel et de I’apprentissage multimodal.



Chapter 1

Introduction

Human vision generally consists of two phases, i.e., low-level vision and high-level vision. Multiple
sensors of human eyes grasp the lights reflected by the surrounding environments. Neurons then
transfer the information grasped by sensors to visual cortex where low-level vision features (i.e.,
edge, color, shape, depth, color, orientation and motion) are generated. The coded low-level features
are then conveyed to other functional regions of human brain where high-level features are produced.
The high-level features are then used to serve as the foundation of the birth of consciousness (e.g.,
object recognition). In fact, the success of this hierarchical human vision system owes to an essential
mechanism throughout the whole process of feature transmission, namely visual attention system,
which mediates the selection of important information in a bottom-up and top-down manner.

On the other hand, deep learning has been dominating the field of computer vision during the past
years, owing to the boom of computational sources (e.g., graphics processing units (GPUs)), birth of
large-scale pre-training datasets (e.g., ImageNet [1]), outstanding learning ability of deep convolu-
tional neural networks (e.g., VGGs [2]) and wide application of adaptive optimization methodologies
(e.g., Adam optimizer [3]). The success of deep convolutional neural networks for tasks such as image
classification [ 1] and object detection [4] owes to their architectures consisting of hierarchical neural
layers. According to convolutional neural network visualization study such as [5], the feature maps of
bottom neural layers correspond to low-level vision features such as corner and edge, while high-level
feature maps show the appearances of objects from given images. Despite the progresses on mimick-
ing human visual system, poor generalization ability and inexplicable inner working of current deep
learning algorithms, both prevent them from being directly transferred to different challenging tasks.
In general cases, there are several benchmark datasets with specific annotations, and deep neural net-
works with exclusively designed architectures and components for particular challenging computer
vision tasks.

As the booming trend of deep learning and its successful applications for computer vision tasks,
deep learning based human attention modeling has been appealing increasing attention from the com-
munity during the past years.
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1.1 Context

‘ Real-Life Scenes ‘
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Fig. 1.1 An illustration of the relationships between real visual attention, traditional 2D-based visual
attention modeling and 360° panoramic images/videos-based visual attention modeling. With 360°
cameras and head-mounted displays, 360° panorama based visual saliency detection is potentially
able to better mimic the behavior of human visual system in real-life scenes, when compared to 2D
scenario. The black arrows denote information flow. The blue arrows represent attention feedback.

As shown in Fig, 1.1, current human attention modeling related researches are either based on two
dimensional (2D) or VR! images and videos. Generally, the difference between 2D and VR based
visual attention modeling is twofold:

i. 2D images/videos are collected with normal cameras which are only capable of recording real-life
scenes observed from local viewports containing limited context. Specially, VR cameras own a field-
of-view (FoV) of 360°x180° (Fig. 1.2) and are able to record the whole context of real-life scenes.
Therefore, compared to 2D based human attention modeling, 360° based attention modeling is based
on data containing much more visual cues, thus owning the potential of mimicking more realistic
human visual attention.

ii. The human visual behaviors of observing computer screen are different when compared to those
of observing immersive environments with head-mounted displays. Therefore, the ground truth (e.g.,
eye movement) of 2D/VR attention modeling related tasks tend to perform different distributions. For
instance, 2D based attentions are center-biased while VR based ones are equator-biased.

UIn this thesis, we use the terms of VR, 360°, panoramic and omnidirectional interchangeably.
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Fig. 1.2 A comparison between VR and 2D representations. VR camera captures the real-life scenes
observed from a FoV of 360°x 180°. The collected omnidirectional images are usually represented as
equirectangular images. Normal camera provides 2D images recording scenes with limited context
observed from local viewports.

During the past few years, both 2D and VR based large-scale benchmark datasets and deep learn-

ing models have been proposed to advance the field of human visual attention modeling.
Human Attention Modeling in 2D Domain. Early benchmark datasets such as MIT300 [6] and
CAT2000 [7] collected human eye movement data by conducting eye-tracking experiments based on
2D static images. These image based datasets” released hundreds or thousands of images representing
several real-life scene categories, with per-image fixation maps reflecting human attention distribu-
tions. In this case, deep learning methods such as DeepGaze [8], SALICON [9] and DeepFix [10]
used convolutional neural networks to learn the mapping between the distributions of training im-
ages and the distributions of human fixations. With a supervision of human fixations, these methods
are able to be trained to finally depict the regions of high saliency on unseen images (testing set).
Later datasets such as DHF1K [11] and LEDOV [12] collected 500 to 1K short videos represent-
ing various daily-life scenes (e.g., social events and sports) to investigate human visual behaviors in
dynamic scenario. Researches such as OM-CNN [13] and ACLNet [11] applied ConvLSTM [14]
(a type of widely used recurrent neural network) to extract spatial-temporal features of consecutive
video frames, to predict dynamic human fixations.

In fact, human visual attention mechanism is not only able to guide where human look, but
also to aid human in recognizing the objects important for vision task such as scene understand-
ing. Recent researches [15, 16] thus investigated a relatively new task, i.e., salient object segmenta-
tion (a.k.a. salient object detection or object-level visual attention modeling), which aims at finely
segmenting the objects grasping most of the human attentions. As the development of large-scale
salient object segmentation datasets such as MSRA10K3, DUT-O [17], PASCAL-S [18], HKU-
IS [19], DUTS [20] and SOC [21] (which all provide manually labeled pixel-wise binary masks

Zhttps://saliency.tuebingen.ai/datasets.html
Shttps://mmcheng.net/msralOk/
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as ground truth), dozens of deep learning methods [16] have been proposed to conduct salient ob-
ject segmentation in fully/weakly/non-supervised manners. Besides, recently established video based
salient object segmentation datasets such as VOS [22] and DAVSOD [23] provide pixel-wise labels
of salient objects among thousands of video frames, thus enabling video based salient object seg-
mentation. What is worth mentioning is that, various attention modules [24] have been proposed to
facilitate the modeling of object-level human attention.

Human Attention Modeling in 360° Panorama Considering the potential of 360° attention model-
ing in mimicking real human attention in real-life scenes, and feasibility of acquiring large amount
of 360° images and videos by using consumer-level VR cameras such as Insta360 ONE series, Ricoh
Theta Z1 and GoPro Max, several datasets such as [25-28] have been proposed in the past few years,
for static or dynamic fixation-level human attention modeling. It is worth noting that, these datasets
provide only head or eye movement data as ground truth, thus not being able to strictly reflect hu-
man attention to specific salient targets. Recent researches [29-32] explored object detection in 360°
videos. However, these methods were proposed for bounding box detection and trained to detect all
objects in 360° scenes, thus not being able to be used to explore object-level human attention mod-
eling in immersive environments. Generally, 360° image/video based salient object segmentation is
still an open area, without any benchmark datasets or methods proposed before 2019.
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1.2 Objectives&Contributions

The main focus of this thesis is the object-level visual attention modeling in VR immersive environ-
ments* via deep learning techniques. Indeed, this task is not only closely related to various clas-
sical computer vision tasks such as image classification [ 1], object detection [4], instance segmen-
tation [33], semantic segmentation [34] and scene understanding [35], but also plays an important
role in potential applications adapting to real-life scenario such as photo post-processing, navigation,
self-driving, augmented reality and humanoid robot.

To fulfill a solid PhD dissertation, this thesis disentangles the main objective of panorama-based
object-level human attention modeling into three progressive challenging tasks, i.e., i modeling object-
level human visual attention in light field, with newly propose attention-based deep learning tech-
niques; ii modeling object-level visual attention in static 360° panorama with new attention-based
deep learning model; iii modeling object-level audio-visual attention in dynamic 360° panorama,
which mimics real human attention in real-life scenes and owns potential for real-life applications.

Therefore, the contributions of this thesis are summarized as follows:

Reviews. A systematical overview of state-of-the-art methods towards fixation-level and object-level
human attention modeling in both 2D and 360° domains. A thorough review about state-of-the-
art attention models in the field of computer vision. The overviews are presented in Chapter 2.

360° image-/video-based datasets&benchmarks. A new benchmark dataset and comprehensive
benchmark studies towards 360° image salient object segmentation, which is detailed in Chapter
3. It is worth noting that we include both the object-/instance-level pixel-wise ground truth in our
newly proposed dataset. In addition, a new benchmark dataset and comprehensive benchmark studies
towards 360° video-based salient object segmentation. Specially, we consider both audio and visual
cues to construct the dataset, thus better mimicking the real-world scenario. Also, this part of works
is included in Chapter 3.

New methodologies towards light field salient object segmentation. Light field salient object
segmentation is a relatively new area and, being similar to 360° salient object segmentation, is of great
importance for industrial augmented reality applications. To this end, we explore the state-of-the-
art light field salient object segmentation methods and further propose new deep learning models. The
key components of our new models include varying attention mechanisms for multi-modal feature
fusion. The works are detailed in Chapter 4.

New methodologies towards panoramic salient object segmentation. To further fill the blank
of the field of 360° salient object segmentation, we respectively propose new baseline models to
conduct salient object segmentation in 360° images and videos. The 360° image-based baseline
takes advantage of attention mechanisms for effective feature fusion based on 360° multi-view-based
visual cues. The video-based baseline uses both auditory and visual cues to spot targets among
frames of a given sequence. Extensive qualitative/quantitative results have been conducted to verify
the effectiveness as well robustness of the proposed methods. Please refer to Chapter 5 for details of

the works.

4a.k.a. 360° images, videos or audio-visual dynamic scenes
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1.3 Outline of the thesis

Therefore, the next chapter reviews various types of representative salient object segmentation related
benchmark datasets and methodologies. Besides, based on our observations towards these recent
state-of-the-art methods, we further summarize basic attention models used in not only salient ob-
ject segmentation but also general computer vision tasks, to establish solid theoretical and empirical
foundations for the following works of the thesis. The third chapter presents new benchmark datasets
and comprehensive studies regarding 360° object-level human attention modeling. The forth chapter
details our works towards light field salient object segmentation. The fifth chapter further introduces
our works towards building new baselines for conducting salient object segmentation in 360° images
and videos, respectively.

As a conclusion, this thesis has successfully achieved salient object segmentation in both 360°
panorama and light field. New datasets and attention-based baselines have been proposed for effective
segmentation of salient objects in both static and dynamic panoramic scenes. Besides, new attention
models have also been proposed for accurate segmentation of salient objects in light field. As one
of the starting points of immersive multimedia-based salient target detection, we hope this thesis is
able to inspire ideas for future researches in the fields of object segmentation, VR/AR, audio-visual

learning and multi-modal learning.



Chapter 2

Background

2.1 Introduction

Salient object segmentation (a.k.a. salient object detection) has been continually grasping attention
from the computer vision community in the past decades [15, 16]. As shown in Fig. 2.1, commonly
seen image&video segmentation tasks including instance segmentation [4] where all instance-level
entities are pixel-wisely outlined, semantic segmentation [34, 36] where all image/video pixels are
annotated with specific object-level labels, panoptic segmentation [37] where all image/video pixels
are annotated with specific instance-level labels, and generic object segmentation [38] as shown in
the second row of Fig. 2.2 where all foreground and background objects are annotated. Being dif-
ferent to above traditional segmentation tasks, salient object segmentation aims to finely segment the
objects constantly grasping visual attention, thus being regarded as an interdisciplinary area of human
perception and object segmentation. On the other hand, the task of salient object segmentation is also
closely related to saliency prediction (a.k.a. fixation prediction) [1 1], where specific regions appeal-
ing human attention are detected (The third row of Fig. 2.2). Importantly, the task of salient object
segmentation focuses on the regions that are not only salient but also explainable from a perspective
of cognitive vision.

The following sections introduce the related tasks in details, and discuss the connections between
some of these tasks and our main focus, i.e., salient object segmentation in 360° panoramic images
and videos. Specifically, this chapter first reviews the classical human attention modeling task, i.e.,
saliency prediction (a.k.a., fixation-level attention modeling). Further, this chapter overviews various
derivative tasks, which have recently witnessed a prosperous development of salient object segmenta-
tion community. Besides, this chapter also overviews current state-of-the-art attention models in the
field of general computer vision. Finally, we coolect the formulations of current widely used salient
object segmentation metrics. Note the metrics are used for a variety of downstream tasks related to
salient object segmentation (e.g., light field/panoramic salient object segmentation). The aim of these
reviews is to provide context towards the works included in the following chapters, thus establishing
a solid foundation for the thesis.
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Fig. 2.1 The background of the task of salient object segmentation. Besides, the main focus of this
thesis is highlighted.

Fig. 2.2 A comparison of the tasks of salient object segmentation, generic object segmentation and
saliency prediction. The salient objects are annotated with bounding boxes at the first and the second
row. The saliency maps are listed at the third row. This figure is cited from [39].
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2.2 Saliency prediction

The community has witnessed a significant development of visual saliency prediction methodologies,
thanks to the booming trend of deep learning and large-scale annotations (e.g., fixations gained by
conducting eye-tracking experiments supported by widespread consumer-level Head-Mounted Dis-
plays (HMDs)). This section reviews the widely used datasets in recent two decades and advanced
deep learning methods in the last few years.

2.2.1 Saliency prediction in 2D images/videos

2D image/video-based saliency prediction has been attracting attention from the research community
during the past years (e.g., basic information regarding the widely used 2D images/videos saliency
prediction benchmark datasets can be found at MIT/Tiibingen Saliency Benchmark!). This section
briefly reviews recent development towards 2D-based saliency prediction from the aspects of widely
used datasets and representative methodologies.
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Fig. 2.3 Statistics of widely used 2D image saliency prediction datasets. This figure is cited from [40].

Image Datasets: The widely used benchmark datasets for image-based saliency prediction including
MIT300 [41], CAT2000 [7], SALICON [42] and iSUN [43]. It is worth noting that all these datasets
provide per-image fixation map as ground truth, to enable the training of fully supervised deep learn-
ing algorithms. Key information in terms of these image datasets is shown in Fig. 2.3. It is also worth

Ihttps://saliency.tuebingen.ai/datasets.html
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Fig. 2.4 Statistics of widely used 2D video saliency prediction datasets. This figure is cited from [40].

noting that, so far the biggest image-based saliency prediction dataset, i.e., SALICON, owns about
10K images of training set.

Video Datasets: The commonly used benchmark datasets for video-based saliency prediction includ-
ing DIEM [44], HOLLYWOOD-2 [45], UCF-Sports [45], DHF1K [11], LEDOV [12], Coutrot [46],
MUFVET [47] and salient-KITTI [48]. As shown in Fig. 2.4, DHF1K is so far the largest video
dataset, where about 1K videos are included. Besides, as the development of deep learning based
multi-modal learning, audio-visual saliency prediction dataset such as Coutrot [46] has been pro-
posed.

Methodologies: During the past years, convolutional neural networks (CNNs) have been the main-
stream of framework designing in the field of saliency prediction [40]. In this case, this section sum-
marizes the representative CNNs-based methods proposed in the last few years. Early method such
as SalEMA [49] used VGG-based encoder [2] to extract spatial features of given video frames and
applied ConvLSTM [14] to model temporal information among video frames. DINet [50] took advan-
tage of dilated CNNs to expand receptive field of the framework. STRA-Net [51] designed residual
attention block to conduct feature refinement based on ConvGRU [14] framework. DeepUSPS [52]
applied hand-crafted method to generate pseudo-labels for the self-supervision based saliency predic-
tion framework. Sal-DCNN [53] designed multiple decoders corresponding to multi-domain features.
UAVD [54] analyzed attention maps of different layers of VGG-based CNNs. St-Net [56] proposed
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Table 2.1 Summary of recent saliency prediction methods. 1/V/AV-Sal means image/video/audio-
visual-based saliency prediction methods, respectively.

Method  Modality Year Publication Key Words
SalEMA [49] V-Sal 2019 BMVC ConvLSTM, SOTA on DHF1K.

DINet [50]  I-Sal 2019 T™MM Dilated convolution, inception module.
STRA-Net [51] V-Sal 2019 TIP ConvGRU, residual attentive learning, attention.
DeepUSPS [52]  I-Sal 2019 NeurIPS Self-supervised learning, pseudo-labels generation.
Sal-DCNN [53] I-Sal 2019 AAAI Noise-added phase spectrum, multi-domain decoder.

UAVD [54] I-Sal 2019 CVPR Hierarchical feature visualization.

DAVE [55] AV-Sal 2019 arXiv 3D ResNet for audio-visual encoding.

St-Net [56]  V-Sal 2020 TIP spatial-temporal feature fusion, LSTM.

SalSAC [57] V-Sal 2020 AAAI ConvLSTM attention module, SOTA on DHF1K.

FastSal [58] I-Sal 2020 ICPR MobileNetV2, distillation networks.

STAViS [59] AV-Sal 2020 CVPR SOTA on Controt, bilinear layer for audio-visual fusion.

SF-Net [60] AV-Sal 2020 ECCV Salient face detection, SOTA on MUFVET, LSTM.
MMS [61] AV-Sal 2020 TIP Cross-modal kernel canonical correlation analysis.

DeepGaze [62] I-Sal 2021 ICCV Out-of-domain prediction, complementarity analysis.

STANet [63] AV-Sal 2021 CVPR Class activation mapping, weakly-supervised learning.

DAVNet [64] AV-Sal 2021 ICIP Feature pyramid module.

AViNet [65] AV-Sal 2021 IROS SoundNet block, trilinear interpolation, 3D CNNs.
GASP [66] AV-Sal 2021 IJCAI Attention mechanism, recurrent gated multi-modal unit.
HD2S [67] V-Sal 2021 cv Domain adaptive learning, domain-specific learning.

WeakFix [68]  I-Sal 2022 TIP Weakly supervised learning, object proposal, attention.
1

EEEA-Net [ I-Sal 2022 TII Knowledge distillation, pseudo-labels.

an attention-aware ConvLSTM to mine the temporal features of inputting sequences. HD2S [67]
added conspicuity modules to fuse multi-scale features extracted from CNNs. WeakFix [68] mod-
eled visual attention competition mechanism via softmax based attention modules. EEEA-Net [69]
created a teacher-student framework via pseudo-knowledge distillation. Besides, as the develop-
ment of multi-modal learning, combining the auditory and visual cues (Table. 2.1) to gain more
realistic human attention modeling has become a new trend in the saliency prediction community.
Among these methods, a variety of attention-based modules (STAViS [59], STANet [63], GASP [66],
AViNet [65]) have been proposed. DAVE [55] is the pioneer work which simply concatenated the
audio and visual features extracted from separate 3D CNNs. STAViS [59] further designed a deeply
supervised attention module to facilitate the audio-visual fusion. MMS [61] used cross-modal kernel
canonical correlation to quantify audio based saliency maps. STANet [63] designed three attention
modules for the fusion of spatial-temporal features, spatial-audio features and spatial-temporal-audio
features, respectively. Most recently, GASP [66] proposed gate attention for multi-modal late fusion.
AViNet [65] explored bilinear based fusion for the features extracted from 3D CNNs based visual en-
coder and 1D CNNs based SoundNet [70]. Please note that a detailed statistics of recent audio-visual

saliency prediction methods is presented in Table. 2.2.
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Table 2.2 Detailed comparison of audio-visual saliency prediction methods. ' indicates non-deep
learning audio encoding method. CNNs denotes convolutional neural networks.

Method  Video Type Year Audio Type Audio Encoder Audio pre-traning dataset

DAVE [55] 2D ArXiv’'19 Mono and stereo sound 3D CNNs DAVE [55]
STAVIS [59] 2D CVPR’20 Mono sound 1D CNNs [70] Flickr [70]
SF-Net [60] 2D ECCV’20 Mono and stereo sound 3D CNNs MVVA [60]

TMMS [61] 2D TIP’20 Mono sound i i

STANet [63] 2D CVPR’21 Mono and stereo sound 2D CNNs AVE [71]

DAVNet [64] 2D ICIP’21 Mono sound 1D CNNs [70] Flickr [70]
AViNet [65] 2D IROS’21 Mono sound 1D CNNs [70] Flickr [70]
GASP [66] 2D 1ICATI'21 Mono and stereo sound 3D CNNs DAVE [55]

TPO-AVS [72] 360° AT’20 Ambisonics o oo
AVS360 [73] 360° VCIP’20 Mono sound and ambisonics 3D CNNs DAVE [55]

360-SSSL [74] 360° MVA’21 Ambisonics t bt
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Fig. 2.5 An introduction of 360° panoramic saliency prediction (this figure is cited from [28]). (a) A
subject freely explores 360° content with Head-Mounted Display (HMD). (b) Fixations of all subjects
shown in 360° video frames.

2.2.2 Saliency prediction in 360° images/videos

As the popularization of 360° cameras such as Insta360 seriesZ, Ricoh Theta Z1 and GoPro Max, it
becomes easy to obtain large-scale 360° panoramic images and videos (with the field-of-view (FoV)
of 360°x180° illustrated in Fig. 2.5), which are able to be displayed with Head-Mounted Displays
(HMDs). Therefore, in the recent few years, several 360° image and video datasets (as shown in Ta-
ble. 2.3) have been established for saliency prediction in panorama. The wide FoV gives panoramic
saliency prediction a huge potential to mimic human visual attention in real-life daily scenes, making
it a popular topic not only in computer vision society but also wide interdisciplinary area of virtual
reality, augmented reality and mixed reality industries. Table. 2.3 collects detailed information re-
garding the eye-tracking experiments of each of the widely used 360° panoramic saliency prediction
datasets.

As the development of large-scale 360° saliency prediction benchmark datasets such as VR-
scenes [76] and PVS-HMEM [28], deep learning methods have enjoyed increasing attention from the
community. Some most recently proposed representative methods are collected in Table. 2.4. Specif-

Zhttps://www.insta360.com/fr/
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Table 2.3 Summary of 360° saliency prediction datasets.

Dataset Citation Images/Videos Observers Tasks
Rai, Yashas, etc. int?jolrl/rcl)igtzfmr Free viewing
Salient!360 [25] A dataset of head and eye movements for 360 images. 3840% 1920 63 with HMDs
MMSys 18, 2017. ACM. . . with eye tracker
without audition
Sitzmann, Vincent, etc. .22 1mages Free viewing
. . . . . 14/8 indoor/outdoor X
SaliencyVR [26]  Saliency in VR: How do people explore virtual environments? 169 with HMDs
81964092 .
TVCG, 2018. . L. with eye tracker
without audition
E. J. David, etc. 9/10 ilngd:)/:)(i?(())lit door 57 Free viewing
Salient!360V2 [75] A dataset of head and eye movements for 360 videos. 3840 1920 age 19-44  with HMDs
MMSys 18, 2018. ACM. . . 25F/32M  with eye tracker
without audition
Y. Xu, Y. Dong, J. Wu, Z. Sun, etc. injggr;;ifgzor 45 Free viewing
VR-scene [76] Gaze prediction in dynamic 360° immersive videos 3840 1920 age 20-24  with HMDs
CVPR 2018 with audio 20F/25M  with eye tracker
Z.Zhang, Y. Xu, J. Yu, and S. Gao 104 videos Free viewing
. . .. P Sports scenes from [29] 27 K
360saliency [77] Saliency Detection in 360° Videos with HMDs
38402160 age 20-24 .
ECCV 2018 without audio with eye tracker
C. Li, M. Xu, X. Du, and Z. Wang. 60 videos -
Bridge the gap between vqa and human behavior on omni various scenes 2l Free viewing
VQA-ODV [78] ‘ge fhe gap between vqa anc uman behavie arious scenes age 19-35  with HMDs
video: A large-scale dataset and a deep learning mode no more than 8K 78F/143M  with eve tracker
ACM MM 2018 without audio wimey
Mai, Xu, etc. 76 videos Free viewing
PVS-HMEM [25] Predicting He?d Movement in szmoramlc Video: various scenes 53 with HMDs
A Deep Reinforcement Learning Approach ranking from 3K to 8K ith eve tracker
TPAMI 2018 without audio withey
Fang-Yi Chao, etc. 15 videos Free viewin
AVP-360 [79] Audio-visual pfarception .of omn‘idirfzctional video music/conversation 45 with HMDsg
for virtual reality applications 3840x1920 with eve tracker
ICMEw 2020 with audio Y

ically, Cube360 [

] developed cube-padding technique to facilitate the 360° saliency prediction by

using 2D CNNs. SalGAN360 [81] proposed cube-map based augmentation technique to improve
the CNNs’ performance on 360° saliency prediction benchmarks. MT-DCNN [
STM to learn temporal features for viewport alignment. SalGCN proposed spherical graph CNNs
to encode 360° images. SalFOOL [
model evaluation. SalGAIL [
of the deep reinforcement learning module, to predict fixations and trajectories. ATSal [

] applied ConvL-

] explored the robustness of current metrics for 360° saliency
] applied generative adversarial learning module to learn the reward
] designed
attention stream to model global saliency. MultiVUS [87] further applied self-attention mechanism
to fuse and refine the features extracted from augmented equirectangular images. Most recent, Scan-
GAN360 [88] developed conditional generative adversarial neural network to predict scanpath and

fixations. SPVP360 [89] used spherical CNNs to conduct viewport localization.

It is worth noting that, recent methods such as PO-AVS [72], AVS360 [73] and 360-SSSL [74]
have combined both audio and visual cues of the 360° videos reflecting real-life daily scenes. These
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Table 2.4 Summary of recent 360° saliency prediction methods. PI/PV/PAV-Sal means
image/video/audio-visual-based 360° panoramic saliency prediction methods, respectively. © denotes
non-deep learning method.

Method  Modality Year Publication Key Words
Cube360 [80] PV-Sal 2018 CVPR Cube-padding, weakly-supervised.
SalGAN360 [81] PI-Sal 2018 ICMEw GAN, cube map.

MT-DCNN [82] PV-Sal 2020 TMM Viewport localization, object detection, multi-task learning.
SalGCN [83] PI-Sal 2020 ACM MM Spherical graph convolutional neural networks.
AVS360 [73] PAV-Sal 2020 VCIP 3D CNNs, audio energy map, bottleneck fusion.

SalFOOL [84] PV-Sal 2021 ICCV 360° metric robustness, KL-divergence.

SalGAIL [85] PI-Sal 2021 TIP Generative adversarial imitation learning.

ATSal [86] PV-Sal 2021 ICPR Attention mechnism, SOTA on Salient!360.

MultiVUS [87] PI-Sal 2021 Iccv Mutual information learning, contrastive learning.

TPO-AVS [72] PAV-Sal 2021 Al Multi-sensory integration, proto-objects.
360-SSSL [74] PAV-Sal 2021 MVA MFCQC, late fusion of audio-visual information.

ScanGAN360 [88] PI-Sal 2022 TVCG  Generative model. scanpath prediction, multi-task learning.
1

SPVP360 [ PV-Sal 2022 TOMM Spherical convolutional neural networks, video multi-cast.

methods took advantage of multi-modal inputs to advance saliency prediction towards multimedia ap-
plications, also to mimic more realistic human attention which is indeed influenced by both audio and
wide FoV based visual information. Considering the prospective researches regarding audio-visual
learning, Table. 2.2 further summarizes the details of recent representative audio-visual saliency
prediction frameworks. So far, the mainstream of audio-visual models’ structures are still based on
CNNs. Besides, an interesting finding is that methods (e.g., [59, 73]) taking advantage of both au-
dio and visual cues tend to show better performance on widely used public 2D/360° video saliency
detection benchmarks, respectively.

In conclusion, the task of 360° image/video based saliency prediction has experienced a boost.
However, the objective of the task dose not explain human attention towards object-level recognition.
In other words, current 2D/360° saliency prediction methods do not convey the concept of obejct-
level saliency, thus being far from AR/VR applications where the detection of objects that grasp

human attention are important.
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2.3 Salient object segmentation in 2D RGB domain

Based on the attributes/modalities of inputting data, 2D RGB based salient object segmentation (a.k.a.
salient object detection (SOD)) can be classified into five categories, i.e., image-based salient object
segmentation (I-SOD), video-based salient object segmentation (V-SOD), group (co-) salient object
segmentation (Co-SOD), high-resolution salient object segmentation (HR-SOD) and remote sensing
salient object segmentation (RS-SOD). The aim of the above mentioned classifications is to make the
salient object segmentation methods to adapt to specific application scenario. Therefore, different
types of salient object segmentation methods may focus on different challenges in terms of object
segmentation. For instance, image or video based salient object segmentation methods use merely
RGB 2D data to predict the finely structure of salient objects in commonly seen 2D images/videos.
Group salient object segmentation aims at simultaneously locating the objects (belonging to specific
category) in a group of images, thus emphasizing the intrinsic features representing specific object
categories, and are robust to appearance changes of each identical object category. Further, high-
resolution salient object segmentation methods use high-resolution images as inputs and take advan-
tage of both local and global spatial information for finely segmentation of large objects. On the
contrary, remote sensing salient object segmentation focuses on salient object segmentation in pho-
tos captured by remote sensors. Therefore, multiple extremely small salient objects at low resolution
may be collected in remote sensing salient object segmentation datasets. The commonly used datasets
and representative methodologies of each category of 2D RGB based salient object segmentation are
detailed in the following sections.

2.3.1 Image-based salient object segmentation

Table 2.5 Summary of widely used image-based salient object segmentation datasets. #Img: The
number of images/video frames. #GT: The number of object-level pixel-wise masks. Obj.-Level =
Object-Level Labels. Ins.-Level = Instance-Level Labels. Fix. GT = Fixation Maps.

Dataset Publication #Img  #GT min(W,H) max(W,H) Obj.-Level Ins.-Level Attribute Fix. GT

ECSSD [90] CVPR’13 1,000 1,000 139 400 v
DUT-O[17] CVPR’13 5,168 5,168 139 401 v v
PASCAL-S [18] CVPR’14 850 850 139 500 v v
HKU-IS[19] CVPR’15 4,447 4,447 100 500 v
DUTS [20] CVPR’15 15,572 15,572 100 500 v
ILSO [91] CVPR’17 1,000 1,000 142 400 v v
SOC[21] ECCV’18 6,000 6,000 161 849 v v v

The widely used datasets for image-based salient object segmentation are shown in Table. 2.5.
As shown in Table. 2.5, the commonly used image salient object segmentation datasets are relatively
small when compared to widely used image classification datasets such as ImageNet-1K [1] which
collects nearly 14 million 2D RGB images, since gathering manually labeled pixel-wise ground truth
for each of the salient objects is surely a time-consuming and laborious process. The largest image
salient object segmentation dataset, i.e., DUTS [20], contains about 10K images for training and 5K

images for testing. Although the task of salient object segmentation only focuses on object-level
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Fig. 2.6 Commonly seen structures of image-based salient object segmentation methods, this figure
is cited from [16]. (a) denotes multi-layer perception architecture. (b)-(f) are all convolutional neu-
ral network based frameworks. Specifically, (b) single stream model w/o hierarchical decoder, (c)
Siamese encoder, (d) side-out fusion model, (e) U-Net like structure w/ top-down and bottom-up
multi-scale fusion guidance, (f) Multi-task based decoder ensembles. (g) multi-supervision based
multi-branch structure. (h) capsule based decoder.

binary segmentation, datasets such as ILSO [91] and SOC [21] also provide instance-level pixel-
wise masks as ground truth for salient instance segmentation. And it is worth noting that only two
datasets (i.e., [17,18]) defined salient objects according to fixations gained by conducting eye-tracking
experiments. The other datasets directly regard the main objects located in/near the image center as
the salient ones. For detailed statistics of image salient object segmentation datasets, please refer to
Table. 2.5.

As for image salient object segmentation methodologies, there are hundreds of deep learning
methods proposed during the past decade. The key concepts regarding most recent methods are
collected in Table. 2.6 and Table. 2.7. The extra review regarding the previous image salient object
segmentation methodologies are detailed in [15, 16].

Generally, recent image salient object segmentation methods are almost deep learning based and
are varying in terms of not only learning paradigms (i.e., fully-/weakly-/un-supervised learning) but
also backbone structures (e.g., ResNets [142] and vision transformers [143]). Besides, image salient
object segmentation methods tend to focus on the designing of feature decoding stage (Fig. 2.6), in
order to improve model performance on multiple segmentation benchmarks. Specifically, the classical
state-of-the-art methods such as PoolNet [140], EGNet [141], MINet [126] all applied U-Net [144]
like encoder-decoder structure for the task. F3Net [122] designed side-out fusion mechanism to fa-
cilitate the fusion of hierarchical features from backbone network. More recent methods such as
CSF [129], SAMNet [105] proposed light-weight architectures containing less parameters however
showing comparable performance to the regular U-Net like models. Besides pursuing state-of-the-
art performance, most recently proposed image salient object segmentation method such as UPL [92]
explored the uncertainty of model predictions thus advancing the field of salient object segmenta-
tion towards explainable deep learning. Method such as DCFD [93] explored intrinsic features from
a perspective of causal inference, thus advancing the salient object segmentation towards robust mod-
eling. In addition, energy-based model such as SalCNet [94] tried to combine the energy-based gener-
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Table 2.6 Summary of recent 2D image based salient object segmentation methods in years of 2021-
2022.

Method Year Publication Key Words
UPL [92] 2022  AAAI Consistency based uncertainty estimation, pseudo labels.
DCFD [93] 2022 AAAI Confounding biases, de-confounded training.
SalCNets [94] 2022 AAAI Energy-based model, latent variable model.

NSS [95] 2022 AAAI Adaptive flood filling, transformer bottleneck.
TRACER [96] 2022 AAAI Masked-edge attention module, explicit edge loss.
RCSBNet [97] 2022  WACV Recursive contour-saliency Blocks.

MBAB [98] 2022 TOMM Detail modeling and body filling as sub-tasks.
NSAL [99] 2022 ™M Noise-robust adversarial learning framework/
DRNet [100] 2022 TCSVT Progressive dual attention mechanism.
SCWS [101] 2021 AAAI Saliency structure consistency loss.
PES [102] 2021 AAAI Feature shrinking module, pyramid structure.
LGSL [103] 2021 AAAI Knowledge review network with attention-based sampler.
GDC [104] 2021 AAAI BiLSTM encoder, reader-aware topic modeling.
SAMNet [105] 2021 TIP Attention, multi-scale, light-weight architecture.
MesSal [106] 2021 CVPR Mesh saliency, 2D-to-3D correspondence.
MSFNet [107] 2021 ACM MM Multi-scale fusion.
CCNet [108] 2021 TIP Decomposition of edge and skeleton priors.

VST [109] 2021 ICCV Cross modality transformer.

DHQNet [110] 2021 ICCV High-resolution refinement module.
iNAS[111] 2021 ICCv Integral search space.

SCA[112] 2021 ICCV Semantic scene context refining module.

MFNet [113] 2021 ICCV Multiple pseudo labels filter.

SSL [114] 2021 TIP Structure similarity loss, purification module.
CTD [115] 2021 ACM MM Complementary trilateral decoding.
GVT[116] 2021 NeurIPS Transformer, energy-based genenrative model.
DSR [117] 2021 NeurIPS Graph neural network, inductive bias.
PSG[118] 2021 TIP Loss function for multi-scale supervision.

DACNet [119] 2021 TIM Dense attention mechanisms based feature steering.

ative models and state-of-the-art segmentation architectures for salient object segmentation modeling.

What is worth mentioning is that, some methods listed in Table. 2.6 and Table. 2.7 own attention-
based modules designed for feature fusion or feature refinement at the hierarchical decoding lay-
ers. For instance, early method AFNet [137] built attention feedback modules between each of the
encoding-decoding layers of a U-Net like framework. GateNet [132] proposed gated attention unit
based on Sigmoid function. The gated units were added to the paths between each of the current
decoder layers and their previous layers. SAGD [124] used channel attention [145] and spatial atten-
tion [146] to refine the features before the multi-stage fusion at the decoder. Most recently, VST [109]
used transformer layers [143] at the bottleneck of the encoder-decoder framework and thus acquiring
improved model performance. DRNet [100] established residual learning module between each pair
of attention maps (original map and its reverse), thus benefiting the model’s ability of distinguishing
the salient regions from non-salient ones. NSS [95] used transformer layers to learn features based

on weak supervision of manually labeled points.
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Table 2.7 Summary of recent 2D image based salient object segmentation methods in years of 2019-
2020.

Method Year Publication Key Words
PFPNet [120] 2020 AAAI Multiple feature polishing modules.
GCPANet [121] 2020 AAAI Global context flow module.

F3Net [122] 2020 AAAI Cascaded feed-back decoder.

ADA [123] 2020 AAAI  Adversarial network for multi-spectral saliency detection.

SAGD [124] 2020 AAAI Attentional convGRU, recurrent local attention.

ScrSOD [125] 2020 CVPR Scribble annotation, scribble boosting.
MINet [126] 2020 CVPR Multi-scale interactive module.

ITNet [127] 2020 CVPR Light-weight two-stream framework.
LDF [128] 2020 CVPR Decoupled multi-supervisions.
CSF[129] 2020 ECCV Res2Net backbone, cross-stage fusion.
nRef [130] 2020 ECCV Cross domain learning.

NoiseSal [131] 2020 ECCV Noise label as auxiliary supervision.
GateNet [132] 2020 ECCV Gate attention mechanism.
DFI [133] 2020 TIP Object, edge and skeleton learning.
CAGNet [134] 2020 PR Multi-scale feature extraction.
VPL [135] 2020 TCyb Light-weight structure, hierarchical perception.
APL [136] 2020 NeurIPS Adpversarial pace learning.
AFNet [137] 2019  CVPR Boundary priors, attention feedback module.
BASNet [138] 2019  CVPR Edge priors.
CPD [139] 2019 CVPR Cascaded partial decoder.
PoolNet [140] 2019  CVPR Pyramid pooling module.
EGNet [141] 2019 ICCV Edge guidance.

In conclusion, various image salient object segmentation methodologies are able to introduce
basic techniques such as segmentation networks, and experience towards assigning training/testing
settings to the 360° panoramic salient object segmentation. However, image salient object segmen-
tation methods are all limited to 2D images representing scenes within a local viewport, from a per-
spective of omnidirectional vision. Considering the 360° x 180° FoV, 360° image processing is indeed
more challenging however necessary for the development of AR/VR applications where true human
perception must be mimicked.

2.3.2 Video-based salient object segmentation

Table. 2.8 shows detailed statistics in terms of the commonly used video-based salient object seg-
mentation (V-SOD) datasets, including SegTrackV2 [147], FBMS [148], MCL [149], ViSal [150],
DAVIS [151], UVSD [152], VOS [22] and DAVSOD [23]. Early datasets such as FBMS [148],
MCL [149] and ViSal [150] provide no more than 1K annotated video frames, while later datasets
such as DAVSOD [23] provides more than 20K consecutive video frames with manual labels. It is
worth noting that all listed V-SOD datasets provide pixel-wise binary masks as ground truth for V-
SOD task. Besides, only VOS [22] and DAVSOD [23] strictly followed the guidance of fixations to
annotate the salient objects, for the video frames contained in these two datasets own more complex
context and multiple foreground/background objects. According to the VOS [22] and DAVSOD [23],
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Table 2.8 Summary of video-based salient object segmentation datasets. #Ilmg: The number of im-
ages/video frames. #GT: The number of object-level pixel-wise masks. Obj.-Level = Object-Level
Labels. Ins.-Level = Instance-Level Labels. Fix. GT = Fixation Maps. Attr. = Attributes.

Dataset Publication  #Img  #GT min(W,H) max(W,H) Obj.-Level Ins.-Level Attr. Fix. GT

SegTrack V2 [147] ICCV’13 1,065 1,065 212 640 v
FBMS [148] TPAMI'13 13,860 720 253 960 v
MCL [149]  TIP’15 3,689 463 270 480 v
ViSal [150]  TIP’15 963 193 240 512 v
DAVIS2016 [151] CVPR’16 3,455 3,455 900 1,920 v v
UVSD [152] TCSVT’16 3262 3262 240 877 v
VoS [22] TIP’18 116,103 7,467 312 800 v v
DAVSOD [23] CVPR’19 23,938 23,938 360 640 v v v v

Table 2.9 Summary of recent video based salient object segmentation. UVOS = unsupervised video
object segmentation. SVOS = semi-supervised video object segmentation. RVOS = referring video
object segmentation. VSOD = video salient object detection.

Method Pub. Task Encoder Decoder Notes
TransAOT [153] arXiv’22 SVOS Swin-B [154] FPN Swin transformer.
YOFO [155] AAAI’22 RVOS  ResNet50 [142] BERT Image&language learning.
SITVOS [156] AAAI’22 SVOS ResNet50/18 STM [157] Transformer, Siamese.
EFS [158] AAAI'22 UVOS ResNet50 STM [157] S-measure in model.
RPCM [159] AAAT22 SVOS ResNet101 DeepLabV3 Uncertainty estimation.
CANet [160] WACV’22 UVOS ResNet101 PANet [161] Contrastive learning.
WSV [162] CVPR’21 VSOD ResNet50 ConvLSTM Scribble.
DCFNet [163] ICCV’21 VSOD ResNet101 Convs Context sensitive.
FSNet [164] ICCV’21 UVOS ResNet50 PPM [165] Optical flow.
TranspNet [166] ICCV’21  UVOS ResNet50/101 UNet [144] Sinkhorn module [167].
STINet [168] TIP’21 VSOD Convs UNet Sinkhorn
AOT [169] NeurIPS’21 SVOS MobileNetV2 [170] FPN[171] Transformer
STCN [172] NeurIPS’21 SVOS ResNet50 STM [157] L2 similarities.
TENet [173] ECCV’20 VSOD ResNet50 Convs Excitation modules.
SEGCN [174] TIP°’20  VSOD BASNet [138] BASNet [138] GCN
PCSA [175] AAATI'20 VSOD MobileNet RFB [176] Global attention.
MGA [177] ICCV’19 VSOD ResNet101/34 Convs Optical flow, ASPP.
RCRNet [178] ICCV’19 VSOD ResNet50 Ref.Mod. NER module.
SSAV [179] CVPR’19 VSOD ResNet50 Convs ConvLSTM.
COSNet [180] CVPR’19 UVOS DeepLabv3 [181] Convs Co-attention.

fixation-guided judgment is one of the reliable evidences for defining salient objects, especially for
images/videos representing challenging real-life scenes.

Video-based salient object segmentation methods’ statistics are listed in Table. 2.9. Generally,
video-based salient object segmentation methods and video object segmentation methods all aim at
finely segmenting the visually salient objects among given video frames. Therefore, most of the re-
cently proposed methods (Table. 2.9) were tested on both video based salient object segmentation and
video object segmentation benchmarks.

And it is worth noting that, the definition of learning paradigms in the field of video object seg-
mentation are different from the ones in the field of video salient object segmentation. For instance,
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weakly-supervised video salient object segmentation methods are those which use a part of the pixel-
wise ground truth or other types of ground truth (e.g., scribble, depth) as supervision for the model
training process, while weakly-supervised video object segmentation methods are those using the
ground truth of the first frame of given sequence to support the model testing process. Further, fully-
supervised video salient object segmentation methods can be fairly compared with un-supervised
video object segmentation methods. Most recently, method such as YOFO [155] processes multi-
modal inputs (language-based and visual-based) to conduct referring video object segmentation.

As for model architecture, being similar to above discussed image based salient object segmen-
tation, recent video methods also apply CNNs (e.g., ResNets [142]) or Transformers (e.g., Swin-
B [154]) to extract the features from inputting spatial-temporal cues. Obviously, effectively modeling
the temporal information within sequences is one of the main challenges of the field. Methods such
as RCRNet [178] and FSNet [164] applied classical optical flow priors to facilitate the task. Be-
sides, ConvLSTM [14] was applied as the basic component of temporal module of methods such
as SSAV [23] and WSV [162]. Importantly, video-based salient object segmentation methods such
as COSNet [180], PCSA [175], DCFNet [163], WSV [162], SITVOS [156] and TransAOT [153]
also used different attention mechanisms to improve model performance. Specifically, COSNet [180]
invented co-attention mechanism to fuse and refine the useful features extracted from consecutive
video frames. PCSA [175] proposed sequence-based global attention to enhance the learning of mov-
ing salient objects among video frames. DCFNet [163] proposed dynamic context-aware filtering
module which consists of multiple dynamic filtering units and a Softmax scoring layer. WSV [162]
built appearance-motion fusion module that consists of both channel attention [145] and spatial atten-
tion [146]. SITVOS [156] utilized multiple transformer layers to build a Siamese framework to learn
global temporal features and local spatial features. TransAOT [153] designed a transformer-based
association module at the bottleneck, to fuse and refine inter-frame spatial features.

In conclusion, video-based salient object segmentation focuses on the modeling of human atten-
tion in 2D videos, by taking advantage of both static and dynamic visual cues. However, the context
within 2D videos is far from the one in real daily life, where multiple foreground and background
objects are included in an immersive dynamic view (e.g., 360° videos record the natural scenes con-
taining global spatial-temporal context). Therefore, the state-of-the-art methodologies in 2D domain
may fail in 360° domain. However, salient object segmentation in panoramic dynamic scenes still
lacks of investigation.

2.3.3 Co-salient object segmentation

Group-based or co-salient object segmentation (CoSOD), as a specific branch of 2D RGB-based
salient object segmentation, is appealing increasing attention from the community in the past few
years. This type of methods pay attention to co-occurring salient objects among a group of given im-
ages containing totally different background scenes. Similar to image/video-based salient object seg-
mentation, recent co-salient object segmentation methods also rely on large-scale image datasets with
pixel-wise ground truth of salient objects. The commonly used datasets are concluded in Table. 2.10.
Obviously, current co-salient object segmentation datasets are relatively small when compared to im-
age/video salient object segmentation counterparts. The largest co-salient object segmentation dataset
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Table 2.10 Summary of group co-salient object segmentation datasets. #Img: The number of im-
ages/video frames. #GT: The number of object-level pixel-wise masks. Obj.-Level = Object-Level
Labels. Ins.-Level = Instance-Level Labels.

Dataset Year Publication #Img #GT Obj.-Level Ins.-Level Group

MSRC [182] 2005 ICCV 240 240 v 8
iCoseg [183] 2010 CVPR 643 643 v 38
ImgPair [184] 2011 TIP 210 210 v 105
CoSal2015 [185] 2015 CVPR 2,015 2,015 v 50
WICOS [186] 2018  AAAI 364 364 v 1
CoSOD3K [187] 2020 CVPR 3,316 3,316 v v 160
CoCA [188] 2020 ECCV 1,295 1,295 v v 80

Fig. 2.7 An illustration of group(co)-salient object segmentation. There are two groups of images
with specific classes of co-salient objects (e.g., gymnast and basketball), surrounded by similar or
totally different background scenes. This figure is cited from [189].

Table 2.11 Summary of recent group co-salient object segmentation methods.

Method  Year Publication Key Words
UFO [190] 2022 arXiv Multi-tasks, transformer, MLP, patch collaboration.
DCFM [191] 2022  CVPR Democratic Prototype Generation Module.
GLNet [192] 2022 TCyb Global local correspondence modeling.
MGEF [193] 2021 AAAI Graph convolutional network, multi-scale.
DeepACG [194] 2021 CVPR Edge-enhanced module.
GCoNet [195] 2021 CVPR Depth-wise correlation, group consensus.
CADC [196] 2021 ICCV Consensus-aware kernel construction.
ICNet [197] 2020 NeurIPS Normalized masked average pooling.
CoADNet [198] 2020  NeurIPS Group-attentive semantic aggregation.

so far is CoSOD3K [187] collecting about 3K images with both object-level and instance-level pixel-
wise ground truth.

Co-salient object segmentation methods aim at achieving robust features to represent a class of
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objects with different appearances and surrounded with different background scenes (Fig. 2.7). Em-
pirically, co-salient object segmentation methods learn to segment the visually salient objects almost
centered (or nearly centered) at the given images, also pay attention to the mining of intrinsic features
which represent a class of objects and are able to be robust to the changes of objects’ appearances and
surroundings. Therefore, when compared to traditional image-based salient object segmentation, a
key challenge of co-salient object segmentation is to detect the co-salient objects as much as possible,
and ignore rarely seen objects (a.k.a. objects do not show in all images within one group) as much
as possible. To this end, relatively early method CoADNet [198] proposed group-attentive semantic
aggregation module to extract the semantic features based on both local spatial cues of each of the
images, and global spatial cues via self-attention mechanism [199]. ICNet [197] applied normal-
ized masked average pooling to extract features representing intra-features of the given images. A
correlation fusion module was then proposed to aggregate the intra-features for inter-frame saliency
consistency modeling. Later GCoNet [195] and CADC [196] built attention consensus modules to
refine the inter-frame features for better model performance. DCFM [191] was also inspired by self-
attention [199] and thus proposing democratic feature enhancement module to refine the encoded

features from a group of images.

2.3.4 High-resolution salient object segmentation

Table 2.12 Summary of recent high resolution salient object segmentation methods.

Method  Year Publication Key Words
PGNet [200] 2022  CVPR  Cross model grafting module, swin transformer, attention.
HRMod [201] 2019 ICCV Global local fusion network.

As the popularization of new smartphones which are able to produce high-resolution (e.g., 4K,
8K) images, there is an increasing demand for high-resolution image processing techniques in com-
puter vision community. In this case, recognizing and finely segmenting the salient objects in high-
resolution images is able to facilitate the development of new smartphone applications. There-
fore, datasets such as HRSOD [201] and UHSD [200] have been recently established. Specifically,
UHRSD [200] with a training set of 4,932 images and a testing set of 988 images. It is worth noting
that each of the collected images are at 4K-8K resolutions. Besides, HRSOD [201] contains a train-
ing set of 1,610 images and 400 images for model testing. So far, the high-resolution salient object
segmentation is still a new sub-area of salient object segmentation where only a few methods (e.g.,
PGNet [200] and HRMod [201], with key concepts concluded in Table. 2.12) have been proposed.

2.3.5 Remote sensing salient object segmentation

Remote sensing salient object segmentation is a new branch of salient object segmentation where
images are collected with remote sensors on air-crafts or satellites. Specially, remote-sensing image
datasets include extremely small salient objects when compared to the ones in other salient object
segmentation related datasets (Fig. 2.8). Being similar to other topics regarding RGB salient object
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Table 2.13 Summary of recent remote sensing salient object segmentation methods.

Method  Year Publication Key Words
CorrNet [202] 2022 TGRS Light-weight feature extraction subnet, cross-layer correlation.
ACCoNet [203] 2022 TCyb Bifurcation-aggregation block.
ERPNet [204] 2022 TCyb Edge prior, recurrent network.
DAFNet [205] 2020 TIP Global context-aware attention.
LV-Net [206] 2019 TGRS Nested connection in decoder.

Fig. 2.8 An illustration of remote sensing salient object segmentation. (a)-(e) represent various chal-
lenging cases. This figure is cited from [205].

segmentation. Recent remote sensing salient object segmentation methods (Table. 2.13) focus on
the designing of decoders’ structures. LV-Net [206] designed a pyramid V-shape decoder to fuse the
multi-stage features for finely segmentation of objects in optical remote sensing images. DAFNet
[205] proposed hierarchical global context-aware attention modules, which were added to each of the
encoder layers. ERPNet [204] proposed edge-aware position unit modules, which were then added
to each of the decoding steps. ACCoNet [203] built attention based adjacent context coordination
module to facilitate adjacent feature fusion. CorrNet [202] designed light-weight framework with
feature enhanced modules consisting of cascaded channel and spatial attentions, to support the long
skip connections between each of the encoding-decoding layers.
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2.4 Salient object segmentation with 2D multi-modal data

As the recent development of depth/infra-red sensor based/light field cameras, it is easy to collect 2D
images with depth/infra red information or a variety of light field modalities such as focal stacks and
multi-view images [207]. Recent researches [207, ] show that these augmented multi-modal data
are able to boost the model performance for salient object segmentation. In the following sections,
we illustrate the details of recent development of the fields of RGB-depth/infra-red salient object
segmentation and light field salient object segmentation.

2.4.1 RGB-depth salient object segmentation

Table 2.14 Summary of RGB-depth salient object segmentation datasets. #Img: The number of
images. #GT: The number of object-level pixel-wise masks.

Dataset Year Publication #Img&#GT Sensor Resolution Scene categories
STERE [209] 2012 CVPR 1,000 Sift flow 1,200x900 Various
GIT [210] 2013 BMVC 80 Microsoft Kinect 640x480 Indoor
DES [211] 2014 ICIMCS 135 Microsoft Kinect 640x480 Indoor
NLPR [212] 2014 ECCV 1,000 Microsoft Kinect 640x480 In/Out-door
NJUD [213] 2014 ICIP 1,985 Fujiw3 1,213x 828  Movie scenes
SSD [214] 2017 ICCVw 80 Optical flow 960x1,080 Movie scenes
DUT-RGBD [215] 2019 TIP 1,200  (not provided) 400x 600 In/Out-door
SIP [216] 2020 TNNLS 929 Huawei Matel0 992x744 human-centered

RGB-depth salient object segmentation is a task where models use depth information (Fig. 2.9)
as auxiliary information to facilitate locating and segmenting the salient objects in given 2D RGB
images. Current RGB-depth salient object segmentation datasets’ scales range from about 0.1k to
no more than 2K (Table. 2.14). As images collected with different cameras (e.g., Microsoft Kinect,
Huawei Mate 10) tend to be varying in terms of depth quality, recent researches (Table. 2.15) always
test their proposed methods on five or more datasets to clarify the model effectiveness and robustness.

Specifically, recent methods (e.g., SPNet [217], CMIM [218], CDNet [219], DSAM [220], DSNet
[221], DepthNet [222]) still largely rely on attention mechanisms to implement the RGB and depth
information fusion. For instance, SPNet [217] designed channel attention based cross-modal fea-
ture enhancement module to support the feature fusion between RGB and depth encoding branches.
CMIM [218] applied dual attention module [223] to aid the refinement of features from mutual infor-
mation regularizer. CDNet [219] proposed new dynamic scheme to fuse the features extracted from
original and estimated depth maps with channel attention mechanism. DSAM [220] decomposed the
original depth map to different types of depth-based priors. A depth sensitive module was then pro-
posed to gain useful features based on the decomposed depth priors. Most recently, DSNet [221] built
attention consistency module to facilitate stable training of the proposed teacher-student framework.
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(g) NJUD - (h) DUT-RGBD (i) SIP

Fig. 2.9 An illustration of RGB-depth salient object segmentation. (a)-(i) are the examples of com-
monly used datasets for RGB-depth salient object segmentation. For each of the datasets, the ground
truth, depth map and the given image are listed from right to left. This figure is cited from [208].

2.4.2 RGB-thermal salient object segmentation

RGB-thermal salient object segmentation is a relatively newly proposed task in the computer vision
community. The task focuses on utilizing both 2D RGB images and thermal maps collected by infra-
red sensors, to conduct salient object segmentation. As shown in Fig. 2.10, the thermal maps are
able to provide complementary information regarding the saliency judgments. Specifically, as shown
in Fig. 2.10, (a) reflects the situation where thermal maps highlight the salient objects while RGB
ones do not, and (b) vice versa. So far, the commonly used RGB-thermal salient object segmenta-
tion dataset is VT series including VT821 [235], VT1000 [232] and VT5000 [236], which provide
821, 1000 and 5000 image pairs (2D RGB image and corresponding thermal infrared image), respec-
tively.

There are only a few methods exclusively proposed for RGB-thermal salient object segmenta-
tion such as CRA [231], CGL [232], RFF [233] and APNet [234]. Similar to RGB-depth salient
object segmentation methods, some of the RGB-thermal salient object segmentation models designed

different attention-based multi-modal feature fusion modules to adapt to the task. For instance, re-
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Table 2.15 Summary of recent RGB-depth salient object segmentation methods.

Method  Year Publication Key Words
DSNet [221] 2022 TIP Teacher-student network, pseudo depth maps.
DepthNet [222] 2022 TIP RGB-D correlation modeling, light weight.
ASB [224] 2022 TIP Complementary edge information mining.
MobileSal [225] 2021  TAPMI  Inverted residual block, compact pyramid refinement.
DSU [226] 2021 ICLR Depth-disentangled saliency update framework.
DSAM [220] 2021 CVPR Depth sensitive attention module.
DCF [227] 2021 CVPR Cross reference module.
RD3D [228] 2021 AAAI 3D Convs based encoder-decoder.
HAINet [229] 2021 TIP Hierarchical alternate interaction module.
CDNet [219] 2021 TIP Two-stage multi-modal feature fusion.
UTANet [230] 2021 TIP Adaptive depth-error weights.
CMIM [218] 2021 ICCcv Cascaded learning framework, mutual info regularizer.
SPNet [217] 2021 Iccv Multi-modal feature aggregation.

Table 2.16 Summary of recent RGB-thermal infrared salient object segmentation methods.

Method  Year

CRA [221] 2019
CGL [232] 2019
RFF [233] 2021
APNet [234] 2021

Publication Key Words
TCSVT Challenge-sensitive analysis, unified ranking model.
TMM Collaborative graph, joint optimization.
TCSVT Multi-scale, multi-modality, and multi-level fusion.

TETCI  Iterative adversarial learning, progressively guided optimization.

Fig. 2.10 An illustration of RGB-thermal salient object segmentation (this figure is cited from [232]).
(a)/(b) show that RGB images and their corresponding thermal maps contain complementary visual

cues.
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cent RFF [231] built complementary weighting module to dynamically assign attention weights to
RGB and thermal based features. Besides, APNet [234] applied channel and spatial attention in their
proposed progressively guided optimization module, to extract features from semantic and spatial
data.

2.4.3 Light field salient object segmentation

(d) © ®

Fig. 2.11 An illustration of light field salient object segmentation (this figure is cited from [237]).
(a)/(b)/(c) denote the given 2D RGB image, corresponding object-level pixel-wise ground-truth and
depth map, respectively. (d) means focal stacks (top) and their focal regions (bottom). (e) and (f)
denote the micro-lens based images and multi-view images, respectively.

Nowadays, it is convenient to collect different types of light field data with consumer-level light
field cameras such as Lytro products. Fig. 2.11 shows an example illustrating the main types of light
field modalities in widely used light field salient object segmentation datasets such as LFSD [238],
HFUT [239], DUTLE-F [240], DUTLF-M [24 1], Lytro [242], DUTLFV2 [237] and CITYU [243].
The detailed statistics regarding these datasets are included in Table. 2.17. Most recently established
datasets such as Lytro [242] and DUTLFV2 [237] provide all types of commonly seen light field data,
including focal stacks, multi-view images, depth maps and micro-lens based images.

Table 2.17 Summary of light field salient object segmentation datasets. #Ilmg: The number of images.
#GT: The number of object-level pixel-wise masks.

Dataset Year Publication #Img&#GT Focal Stack Multi-view Depth Micro Lens

LFSD [238] 2014 CVPR 100 v v v v
HFUT [239] 2017 TOMM 255 v v v v
DUTLF-F [240] 2019 Iccv 1,462 v v
DUTLF-M [241] 2019 IJCAI 1,580 v
Lytro [242] 2020 TIP 640 v v v v
DUTLFV2 [237] 2021 arXiv 4,204 v v v v
CITYU [243] 2021 TIP 817 v v v

With the increasing public databases, extensive light field salient object segmentation methodolo-
gies have been proposed during the last few years (Table. 2.18). Relatively early method DLLF [240]
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Table 2.18 Summary of recent light field salient object segmentation methods.

Method  Year Publication Key Words

DLLF [240] 2019 ICCV Convs for light field, late fusion architecture.

DLSD [241] 2019 IJCAI View-wise attention mechanism, light field synthesis.

MoLF [244] 2019  NeurIPS ConvLSTM, focal stack, memory-oriented feature fusion.

ERNet [245] 2020 AAAI Focal stack, teacher-student network.

LFNet [246] 2020 TIP Integration of focusness, depths and objectness cues.

MAC [242] 2020 TIP Micro lens, sampled sub-aperture images.
MTCNet [248] 2020 TCSVT 3D convs, multi-task decoder, edge prediction.
OBGNet [249] 2021 ACM MM Epipolar plane images, occlusion extraction module.

DLGLRG [250] 2021 ICCV Focal stack feature aggregation, reciprocative guidance.
GAGNN [243] 2021 TIP Multi-scale graph networks.

SANet [251] 2021 BMVC Complementary information learning, focal stack.
TCFANet [252] 2021 SPL Multi-stream framework.

PANet [253] 2021 TCyb Sharpness recognition module, multi-source learning module.
MGANet [254] 2021 ICMEw Generative adversarial networks for light field data.
MEANet [247] 2021 N.Comp. Multi-modal edge supervision.

DGENet [255] 2021 IvC Recurrent global-guided focus module.

applied VGG-based hierarchical convolutional layers to extract the features from RGB image and
its corresponding focal stacks, separately. The focal stack based features were refined by attention-
convLSTM module before the multi-modal fusion process. DLSD [24 1] designed multi-view atten-
tion module to filter the useful features. MoLF [244] proposed memory-induced mechanism based
on channel attention and ConvLSTM, to facilitate the feature extraction from focal stacks. Later ER-
Net [245] further used channel attention to support the knowledge distillation of the features extracted
from focal stacks and RGB images. LFNet [246] also took advantage of both focal stacks and RGB
images and used attention module to adjust the RGB-based features for efficient feature fusion in the
following decoding stage. Most recently proposed MEANet [247] applied channel-spatial attention
to facilitate edge priors based multi-branch supervisions for the training of the proposed framework.
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2.5 Salient object segmentation in panorama

Table 2.19 Summary of 360° panoramic datasets. #lmg: The number of images/video frames. #GT:
The number of object-level pixel-wise masks (ground truth for SOD). Pub. = Publication. Obj.-Level
= Object-Level Labels. Ins.-Level = Instance-Level Labels. Fix. GT = Fixation Maps. 1 denotes
equirectangular (ER) images.

Dataset Pub. #lmg #GT min(W,H) max(W,H) Obj.-Level Ins.-Level Fix. GT
F-360iSOD [256] ICIP’20 1077 107 1,024 2,048 v v v
360-SOD [257] JSTSP20 500" 500 512 1,024 v
360SSOD [258] TVCG’20 1,1057 1,105 546 1,024 v

As the prosperous development of 360° saliency prediction and 2D salient object segmentation,
one idea is to combine the advantages of both fields and introduce 360° salient object segmentation to
the community. The task of 360° based image/video salient object segmentation is able to mimic the
real human attention in static/dynamic immersive environment, thus advancing saliency prediction to
cognitive vision by introducing object-level saliency judgments, also closing the gap between salient
object segmentation and potential augmented/virtual reality applications where omnidirectional im-
ages based object-level saliency detection may play an important role (e.g., AR glasses display ren-
dered virtual objects based on real salient objects in 360° immersive environments).

As the main focus of this thesis, panoramic salient object segmentation has gained relatively
rare attention from the community of computer vision, mainly due to the lack of large-scale datasets
and comprehensive benchmark studies. As shown in Table. 2.19, F-360iSOD (ours) [256], 360-
SOD [257] and 360SSOD [258] are the only datasets for 360° panoramic salient object segmentation.
Besides, no dataset or method has been proposed for video-based salient object segmentation in the
past years.

To fill the blank of 360° salient object segmentation researches, this thesis systematically works
on image/video-based benchmark datasets (Chapter 3) and new baseline methodologies (Chapter 5).
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2.6 State-of-the-art attention models

This section introduces the recent attention models widely used for deep learning based computer
vision. It is widely known that human visual system largely depends on a specific mechanism, that
is able to efficiently divert human attention towards salient objects and regions for effective scene
understanding. Inspired by this physiological prior, current deep learning models added specific
modules to mimic human attention mechanism. By doing so, they acquired similar ability of detecting
key objects and scenes benefiting specific computer vision tasks, by adaptively putting more weight
on specific sets of model features leading to better predictions.

In the following sub-sections, we detail the concepts and representative state-of-the-art works
towards attention models, thus establishing solid theoretical and empirical foundations for the pre-
sentation of our works in subsequent sections.

2.6.1 Categories of attention models

27 7 24 2 7 7 2 7 2 27 7 4 7
1 Z. Z. Z. Z Z Z Z 1 Z Z. Z. Z Z Z Z 1 Z. Z. Z. Z Z Z Z
S S S
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i denotes specific domain where attention is applied.

Fig. 2.12 An illustration of six commonly seen types of attention models (or, mechanisms) applied
in current state-of-the-art deep learning methods in the field of computer vision. Based on different
operation domains (i.e., “channel — C”, “spatial — §” and “temporal — 7”) of given feature maps,
current state-of-the-art attention models can be classified into five categories, i.e., channel-wise atten-
tions, spatial attentions, temporal attentions, channel-spatial attentions, spatial-temporal attentions.
Besides above attentions operated on single branch, branch attentions can be used to fuse and refine
inter-branch-based features.

In the deep learning era, attention models have been developed and widely applied to frameworks
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Table 2.20 Descriptions corresponding to each of the attention categories. Please refer to Fig. 2.12
for visualization of each type of attention.

Attention Category Description Representative works
Selecting key channels with attention mask SENet [145],
across feature channel domain. ECANet [259], etc.

Channel attention

. . Selecting key spatial regions with attention mask GENet [260],
Spatial attention . .
across feature spatial domain. Non-local [261], etc.
Temporal attention Selecting key video frames with attention mask ~ GLTR [262],
P across feature temporal domain. TAM [263], etc.
Branch attention Selecting key branches with attention mask Highway [264],
across multiple branches of features. Condconv [265], etc.
. . Selecting key features with attention mask(s) CBAM [146],
Channel-spatial attention across both channel and spatial domains. Triplet [266], etc.
Selecting key features with attention mask(s) RSTAN [267],

ial- 1 i . .
Spatial-temporal attention across both spatial and temporal domains. STA [268], etc.

consisting of convolutional (e.g., resnets [142]) and/or transformer [143] layers. The aim of these
attention models is to adaptively select the important features with specific functions, thus improving
model performance upon specific benchmarks by a large margin.

General formulation. Generally, the attention models observe the following formulation:
Feat. = f(A(Feat.),Feat.), (2.1)

where “Feat.” denotes the inputting features of deep learning networks. A(-) means an exclusively

designed attention module that operates on specific domains of “Feat.”. f(-) defines a specific func-
tion (which is usually adding and/or concatenation operations) that combines the attention-enhanced
features “A(Feat.)” and original ones “Feat.”.

In this case, based on the types of operation domains (channel, spatial and temporal) of given fea-
tures from specific layers of deep learning networks, current state-of-the-art attention models can be
classified into five categories, i.e., channel attention, spatial attention, channel-spatial attention, tem-
poral attention and spatial-temporal attention. Besides intra attentions, another mechanism, namely
branch attention, which operates between branches of feature maps to model their inter-branch de-
pendencies. The differences of these attention mechanisms are visualized in Fig. 2.12.

In addition, Table 2.20 further details the descriptions of these six types of attentions. An expla-
nation towards six attention categories is as follows:

Channel attention denotes a type of attention modules that channel-wisely refine the given feature
maps, by adaptively generating attention mask across all feature channels. The superiority of channel
attention is that it is able to model the interdependencies between each of the channels of given
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features. Owing to the outstanding effectiveness and usability, channel attention model such as SENet
[145] has been one of the most widely used attention mechanisms (with a citation of more than 13K)
during the past few years. Later works such as ECANet [259] and GSoP-Net [269] acquired further
improvement based on the framework of SENet [145].
Spatial attention emphasizes the long-range dependencies modeling across spatial domain of given
features. Inspired by the excitation module proposed by SENet [145], GENet [260] further designed
a gather-excite module to implicitly build an attention mask, thus enabling the convolutional neural
network to learn features representing contextual long-range dependencies. Besides, representative
spatial attention models such as non-local network [261] and vision transformers [143] both high-
light the superiority of their spatially long-range dependencies modeling abilities, especially when
compared to traditional convolutional networks (e.g., [2]).
Temporal attention is proposed for temporal feature refinement when inputs are sequential visual
data such as video clips. In fact, not each of the video frames contribute equally to specific vision
tasks such as dynamic person re-identification [262] and video recognition [263], temporal attention
is thus used for temporal dependencies modeling to efficiently and effectively extract the key features.
Channel-spatial attention combines the advantages of both channel attention and spatial attention,
thus proposing to refine given features based on both channel and spatial domains. A representative
work is CBAM [146], which cascaded a channel-based module and a spatial-based module and thus
gaining attention masks for feature refinement. As a result, the proposed channel-spatial module [146]
has been widely used to refine convolutional network-based features (e.g., [2606, 1). Besides cas-
caded channel-spatial attention, representative work such as Triplet network [266] directly generated
attention mask across spatial-channel domains with a three-branch attention module.
Spatial-temporal attention is a type of attention mechanism that takes advantage of both intra-frame
spatial features and inter-frame temporal features, to facilitate specific vision tasks such as action
recognition [267] and dynamic person re-identification [268].
Branch attention is a relatively special class of attention mechanism that fuses and refines global
features from multiple branches. Representative works include Highway network [264], Condconv
[265], etc.

It is worth noting that, the decision of which type of attention to use may depend on the specific
tasks.

2.6.2 Representative attention models

As shown in Fig. 2.13, early attention model such as RAM [271] used recurrent neural network to
learn features from one local region at a time, then to select key features representing important loca-
tions. Being different to aforementioned spatial attention, i.e., GENet [266], RAM [271] transformed
given image to sequential patches and built attention mask across the patches, rather than building
attention mask across spatial domain of holistic features. Later work such as Highway network [264]
was inspired by LSTM [273] and proposed a “information highway” consisting of gate units to adap-
tively focus on key features learning.

Channel&Spatial Attention. As the success of classical “squeeze-excitation” framework (Fig. 2.14)
proposed by SENet [145], multiple works such as GSoP-Net [269], SKNet [274], ECANet [259]
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Highway Network SENet CBAM
NeurIPS 2015 CVPR 2018 ECCV 2018
This work built information This work proposed an attention This work proposed new attention
highway based on adaptive gating mechanism to adaptively recalibrate mechanism to recalibrate CNN features by
units and the idea of LSTM. CNN features in a channel-wise manner. operating on both channel-spatial domains.

1 1 1
1 1 1 T

RAM STN Non-Local Network Vision Transformer (ViT)
NeurIPS 2014 NeurIPS 2015 CVPR 2018 ICLR 2021
This work proposed a recurrent This work proposed a spatial This work used self-attention This work regards image as 16x16
attention model to adaptively transformer network to learn mechanism to model global words to model the global context
select sequential regions/locations. affine transformation. context with CNN features. with Transformer layers.

Fig. 2.13 The history towards a prosperous development of attention models in the field of computer
vision. Due to the limited space along the timeline, we only summarize several representative methods
(i.e., RAM [271], STN [272], Highway Network [264], SENet [145], Non-Local Network [261],
CBAM [146] and ViT [143]) in this figure. Please refer to Section 2.6.2 for detailed illustrations.
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Fig. 2.14 Tllustration of “squeeze-excitation” module in SENet [145]. Please note that this figure is
cited from [145].
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Fig. 2.15 Illustration of cascaded channel-spatial attention module in CBAM [146]. Please note that
this figure is cited from CBAM [146].

and CBAM [146] followed SENet and conducted further improvements based on it. Specifically,
Squeeze-excitation attention [145] emphasized the channel-wise effective features by squeezing the
spatial features with an adaptive average pooling layer and by computing channel-wise attention using
two fully-connected layers. GSoP-Net [269] replaced the squeeze module (i.e., average pooling layer)
of SENet with a proposed “global second-order” pooling layer. SKNet [274] further proposed a three-
stage (i.e., splitting, fusion and selection) attention mechanism, where the input features were split
into multiple branches and convolved with different kernels. The processed features were then fused
with squeeze-excitation attentions and summed as final output. Also based on squeeze-excitation
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Fig. 2.16 Illustration of self-attention mechanisms. (a) denotes the self-attention module used in
non-local network (note that this sub-figure is cited from [261]). (b) compares the self-attention and
multi-head self-attention mechanisms, the latter is further used in vision transformer [143] (note that
this sub-figure is cited from [199]).

mechanism, ECANet [259] focused on computing local adjacent channel attention by replacing the
two fully-connected layers of squeeze-excitation model with an 1D-convolutional layer. Besides
above channel attention-based models, CBAM [146] used a large kernel (e.g., 7 x 7) to further extract
spatial attention based on channel-wise-refined features. Similarly, BAM [275] also applied both the
channel and spatial attentions to feature refinement. However, it simply sums the attention matrix,
rather than cascading the channel-/spatial-based ones as in CBAM (Fig. 2.15).

Self-Attention. Self-attention [199] (Fig. 2.16 (b) — “dot-product attention”) is widely used in the
fields of natural language processing and multi-modal learning. Self-attention is a type of operation
where the input feature is first mapped to “query”, “key” and “value” features via fully-connected
layers, respectively. The final output feature is computed as the output of a dot product of “value”
and the result of a dot product of “query” and “key”.

99 ¢

Inspired by self-attention, especially the “query”-*“key”’-“value” mechanism, non-local network
(Fig. 2.16 (a)) proposed non-local block to model global contextual correlations in spatial domain
of features gained from convolutional layers. As the development of computational sources (e.g.,
GPUs), large-scale multi-head self-attention modules (Fig. 2.16 (b)) have been applied to vision
Transformers (e.g., ViT [143]), which advances deep learning models towards better performance on

multiple benchmarks in the fields of image classification, object detection and segmentation.
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2.7 Evaluation for salient object segmentation

Following the common settings in the field of salient object segmentation, in this thesis, we apply
four widely used metrics, i.e., F-measure (Fp) [276], MAE (A) [277], S-measure (Sg) [278] and
E-measure (Ejy) [279], to evaluate all benchmark models and our proposed methods. Generally, S
and E are the recently proposed metrics. With the pixel-wise binary ground truth and output saliency
maps, Sq quantifies the objects’ structure similarities while the Ey considers the similarities regarding
both local details and global context. Besides, Fg and .# focus only on the local per-pixel matches.
Specifically,

MAE (.#) computes the mean absolute error between the normalized predicted saliency map P €
[0, 1] and the corresponding ground truth G € {0, 1},

ZZ!Gu i) 1, 2.2)
11]

where W and H denote the width and the height of the given image.
F-measure (F3) computes both Precision and Recall, being formulated as:

(1+ B?)Precision Recall
B2Precision + Recall

PG|
|P|

where G is the ground truth and P denotes a binary mask converted from a predicted saliency map.

PG|

Fr =
A G|

2.3)

,Recall =

, with Precision =

Multiple P are computed by assigning different integral thresholds 7 (7 € [0,255]) to the saliency map.
The B2 is set to 0.3 according to [276]. Note that we may report mean, adaptive or max F-measure
scores during quantitative evaluation, to be consistent with the settings of previous benchmarks of
specific tasks.
S-measure (Sy) evaluates the structural similarities between the prediction and the ground truth. The
metric is defined as:

S=aS,+(1—a)S,, (2.4)

where S, and S, denote the region-/object-based structure similarities, respectively. a € [0,1] is
empirically set as 0.5 to arrange equal weights to both region-level and object-level quantitative eval-
uation. [278].

E-measure (Ej) is a cognitive vision-inspired metric evaluating both global and local similarities
between two binary maps. The metric is defined as:

W H
Eo= o= Y ¥ 0(GG )Pl 1), @5

i=1j=1

where ¢ represents the enhanced alignment matrix [279]. Note that we may report mean, adaptive or
max F-measure scores during quantitative evaluation, to be consistent with the settings of previous
benchmarks of specific tasks.
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2.8 Conclusion

In this chapter, we thoroughly reviewed the recent state-of-the-art works towards salient object seg-
mentation in both 2D and 360° domains. A finding is that most recently proposed models tend to
exclusively design attention modules to adapt to specific tasks (e.g., mutual attention [ 180]). Besides,
we also reviewed the basic attention models in the field of computer vision, which are essential com-
ponents for the establishment of effective deep learning models upon multiple benchmarks (i.e., light
field/360° panoramic salient object segmentation).



Chapter 3

Datasets & benchmarks on 360° images
and videos

3.1 Introduction

Chapter 2 provides general information towards the benchmark datasets (e.g., citations, scales and
annotation types), which have been widely used for multiple tasks related to salient object segmenta-
tion. This chapter carefully discusses the details of 2D RGB image and video salient object segmen-
tation datasets, and highlights several key aspects (e.g., data sources, datasets’ scales, hierarchical
annotations and salient objects’ attributes) in terms of large-scale salient object segmentation dataset
construction. This chapter then presents the details of two newly proposed 360° salient object seg-
mentation datasets, i.e., F-360iSOD' [256] and PAVS10K?, which consider the summarized key is-
sues (aspects) regarding large-scale salient object segmentation dataset construction.

It is worth noting that there was neither dataset nor benchmark exclusively designed for 360°
salient object segmentation, before the year of 2019 when F-360iSOD was proposed. Since the year
of 2019, only four datasets including 360-SOD [257], 360SSOD [258], F-360iSOD and PAVS10K
were established for conducting salient object segmentation in 360° domain.

The rarity of 360° salient object segmentation datasaet is mainly due to a lack of manual large-
scale pixel-wise annotations of salient objects contained in 360° panoramic images and videos. In
fact, acquiring pixel-wise object-level and instance-level masks is an extremely time-consuming and
laborious process. Besides, due to the annotators’ preference and stochasticity in labeling the ob-
jects, an unavoidable systematical errors tend to exist in current large-scale dense annotations’. One
may ask that, why not constructing datasets for the development of merely un-supervised and self-
supervised methods? Indeed, the training of these types of models does not require large-scale anno-
tations. However, salient object segmentation is so far a too challenging task for non fully supervised
deep learning models. In fact, current un-/self-/weakly-supervised models can seldomly be compared

I Fixation-based salient object detection in 360° images — F-360iSOD

2dataset with about 10K pixel-wise annotations for the task of panoramic audio-visual salient object segmentation —
PAVS10K

3Dense annotations denote pixel-level labels, rather than category labels in commonly seen image classification datasets.
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to fully-supervised ones [16]. Besides, datasets with large-scale dense annotations can be easily used
for the training of un-/self-/weakly-supervised models. Therefore, establishing large-scale datasets
with thorough dense annotations is a necessity to fulfill the target of this thesis.
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3.2 Key aspects for salient object segmentation datasets’ construction

This section discusses several key aspects towards large-scale dataset construction based on a thor-
ough review of previously proposed 2D RGB salient object segmentation datasets, to provide solid
theoretical and empirical foundations for the construction of datasets used for salient object segmen-
tation in 360°.

Based on Chapter 2, which presents general statistics of commonly used datasets for salient object
segmentation in multiple domains, a qualified salient object segmentation dataset must include at least
the following considerations from a perspective of theory:

* Appropriate protocol to ensure reasonable judgments towards salient objects (sometimes sub-
jective experiments are needed to aid making definitions for the salient objects).

* Specific annotation protocol to ensure correct and high-quality manual annotations.

Besides theoretical principles (a.k.a., protocols), empirical aspects are of equal importance for the
successful construction of large-scale salient object segmentation datasets. These empirical aspects

may include:

* The dataset must contain images and/or videos representing a variety of real-life scenes, where
foreground/background objects varying in categories, sizes, appearances, shapes and other
challenging attributes (such as occlusion and out-of-view) are included.

* As the task of salient object segmentation is a sub-branch of human attention modeling, the
proposed salient object segmentation dataset must include a majority of images/videos where
objects, that continually grasp human attention, exist.

* The dataset must contain large-scale images and/or videos with per-image annotations. Ac-
cording to the review of multiple types of salient object segmentation datasets in Chapter 2, the
commonly applied datasets’ scales tend to be varying. Generally, the representative datasets
tend to include a few hundreds to several thousands of annotated salient objects.

* Dense annotations can be regarded as the most special feature of salient object segmenta-
tion datasets, based on the statistics presented in the Chapter 2. To contribute qualified datasets
to the training/testing of fully supervised deep learning methods aiming at finely segmenting the
salient objects, manually labelled per-pixel binary masks corresponding to each of the images
and/or video frames within the proposed datasets must be included.

* Besides the pixel-wise labels, to facilitate following comprehensive benchmark studies, hier-
archical annotations regarding scene/object categories and challenging objects’ attributes are
necessarily included in the proposed datasets.

* Detailed statistical analysis must be conducted to clarify the feasibility and complexity of the
proposed dataset. For instance, to reflect the complexity of immersive real-life scenes, the ma-
jority of images and/or videos contained in the datasets are supposed to include salient objects

possessing multiple challenging attributes.
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The following sections illustrate the details regarding these key issues for large-scale salient ob-
ject segmentation dataset construction in a progressive manner. Specifically, the establishment of a
qualified salient object segmentation dataset can be decomposed to four progressive steps, i.e., source
data collection, protocol designing, annotation manufacturing and statistical analysis.

3.2.1 Sources

Content. Current salient object segmentation datasets directly collected 2D RGB images and videos
from the Internet by searching a variety of key words describing specific objects and scenes commonly
seen in the real life. These key words may include indoor/outdoor scenes, human-related occasions
(such as dramas, concerts, conferences, travel, sports), various object categories (such as persons,
instruments, electronics, animals), efc. Images/videos possessing these visually salient objects/scenes
are able to provide a foundation for the development of data-driven methods which aim at mimicking
human attention in real life.

Besides visually salient objects and scenes, recent datasets such as JOT [280] and SOC [21]

emphasized the importance of non-salient objects (e.g., obscure and cluttered objects shown in Fig.
3.1), which may play an important role in constructing balanced salient object segmentation datasets.
In fact, salient objects are not necessarily seen in each of the real-life scenes. [21,280] argued that
current datasets, which exclude images without salient objects, are seriously unbalanced due to the
selection bias during data collection process.
Complexity. The complexity of a dataset is usually proportional to the density of objects it con-
tains. Early image-based salient object segmentation datasets [282,283] collected images containing
only one or two visually foreground objects surrounded by simple background. Recently proposed
datasets such as SOD [284], ECSSD [90], DUT-O [17], PASCAL-S [18], HKU-IS [19] and ILSO [91]
collected images with more challenging scenes where no more than four main objects appear. Most
recently, dataset such as SOC [21] includes more challenging scenes with multiple foreground objects
and cluttered background context.

As for video-based salient object segmentation, early datasets such as ViSal [150], UVSD [152]
and DAVIS2016 [151] contain video frames with simple context consisting of only one or two spa-
tially connected foreground objects. Most recent datasets such as VOS [22] and DAVSOD [23] col-
lected more challenging dynamic scenes with four to five foreground objects per-frame.

The next section illustrates the common protocols used for gaining the salient objects out of
cluttered foreground/background scenes.

3.2.2 Protocols

Datasets’ protocols indicate the basic principles for judging and defining the salient objects. A rea-
sonable protocol is of the most important theoretical component of a qualified salient object seg-
mentation dataset. As the divergence of data conditions, protocols are largely different among the
datasets.

In 2D domain, the visually salient objects usually indicate the foreground/main objects that con-
stantly grasp human attention in static or dynamic scenes. Early datasets such as [150,282,283] tend
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(g)

Fig. 3.1 A visualization example which illustrates partial key aspects of salient object segmenta-
tion construction. The first row indicates typical pixel-wise manual annotations in current salient ob-
ject segmentation datasets, i.e., object-level (binary) and instance-level masks. The second row shows
specific real-life scenes (scattered people, pure background objects and meaningless foreground ob-
jects) tend not to be included in current most datasets. The third row shows salient objects defined
with the guidance of fixations. This figure is cited from [281].

to confound the concepts of foreground and salient objects since they only contain simple scenes with
one or two objects. However, later datasets such as [18,22,23,91,284] introduced specific protocols
to aid filtering the salient objects out of multiple foreground objects. According to psychological
research such as [285], human visual attention mechanism is able to support human to enumerate no
more than five objects at one glimpse. To mimic real object-level visual attention mechanism in chal-
lenging salient object segmentation datasets and to facilitate datasets’ annotations, several protocols
based on either explicit subjective judgments or eye-tracking experiments, have thus been proposed.

Protocols based on explicit subjective judgments. Explicit subjective judgments based protocols
directly leverage subjective opinions of multiple subjects as guidance for making definition towards
salient objects. These strategies are useful for accurately defining salient objects in scenes with simple
context (e.g., salient persons in real-life daily scenes shown in Fig. 3.1). Some representative datasets
include MSRA [282], SED [283], ASD [276], ECSSD [90], ViSal [150] and UVSD [152].

Specifically*, a voting strategy was first proposed by MSRA-A and MSRA-B [2582], where three
and nine viewers were recruited, respectively. Each of the viewers was asked to annotate one object
per image with a bounding box, the salient objects were then selected by implementing the majority

4The detailed introduction of these protocols is cited from [281].
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rule among all viewers, which is defined as:

_ er(pX>T)px

Ar
Y Px

, (3.1
where A7 is the percentage of image pixels upon which salient intensity are above a empirical thresh-
old T . Further, p, is defined as:

px=g Y, m;. (3.2)

where S is the number of subjects, m is the binary mask labeled by the sth viewer, corresponding to
the xth image.

Compared to the MSRA-A [282], Bruce-A [286] is a salient object segmentation dataset which
contains 120 relatively images with multiple (< 4) visually salient foreground objects. 70 observers
were employed to judge the salient objects. The labeling consistency between the observers is defined

as:
2 n—1 n=70

|aix Najil
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where a;; and a i are pixel-wise ground truth annotations of the ith and jth observers, corresponding
to the kth image. The Cj is a value between 0 and 1. A better overlap of labels among observers
leads to a higher C; and vice versa. As a result, the C; was reported to be relatively low when
multiple foreground objects appear on the kth image, indicating the divergence between observers is
significant. Further, 59 images with high labeling consistency (C, > 0.75) were selected.

PASCAL-S [18] is another widely-used salient object segmentation dataset. Twelve subjects were
involved to freely click on the fully segmented object regions. The final salient objects were selected
based on their saliency ranking. Note that the saliency intensity of each object region is the total
number of clicks it receives, divided by the number of subjects.

HKU-IS [19] defined salient objects also via labeling consistency metric. It directly excluded the
images with low labeling consistency. Specifically, the labeling consistency of three annotators is
defined as:

oo L)
Y (T a #0)
(s)

where ay ’ is the binary saliency mask annotated by the sth subject over the xth image. R is the ratio

(3.4)

of the pixels labeled as salient by all three subjects and the ones labeled by at least one of the three
subjects. The images with L > 0.9 were then kept for further annotations. Finally, the salient objects
were confirmed by using a majority principle (two out of three). The principle can be formulated as:

3
Se=1(Y dl >2). (3.5)
s=1

where S is the ground-truth salieny map, which may contain multiple salient objects over the xth
image.

SOC [21] is a relatively newly proposed large-scale salient object segmentation dataset, which



3.2 Key aspects for salient object segmentation datasets’ construction 51

includes a two-stage annotation procedure. At the first stage, five viewers were recruited to annotate
salient objects without the constraint of number of the objects selected. At the second stage, only
the images with high labeling consistency were reserved. The eligible images are the ones where a
majority (> 3) of viewers annotated the identical objects’. The IoU is defined as:
Area of Overla
IoU = f P (3.6)

Area of Union

As for video-based salient object segmentation datasets, RSD [287] contains multiple salient
objects with bounding box labels) in 62,356 video frames. 23 annotators were involved to construct
the dataset. Quatitatively, the saliency m; ; of the kth object in the ith frame is defined as :

_ Sik
m i

’ _stt}j.

3.7

where s;  is the number of annotators who selected the kth object in the irh frame, while }_;s; ; is the
total number of annotations in the it frame.

ViSal [150] and UVSD [152] are early video salient object segmentation datasets containing 17

and 18 dynamic scenes, respectively. In these datasets, the salient objects were simply defined as the
visual foreground objects in each of the sequences.
Protocols based on eye-tracking experiments. As the collected scenes become more complex, high
consistency between a few annotators is increasingly hard to achieve due the divergence of personal
preference. To this end, fixations (the third row of Fig. 3.1) have been widely applied (e.g., [22,23])
to facilitate the annotation of salient objects.

Specifically®, based on the eye-tracking experiments implemented in salient object segmenta-
tion datasets such as [18, 39, , —291], it has been proved that there is a consistency between
fixations and explicit subjective judgments. Depending on which, [22,23, 39] attempted to annotate
salient objects with the guidance of fixations.

JUDD-A [39] is an early salient object segmentation dataset which applied the fixations to the
annotation process of single salient object (per-image). At the first stage, multiple objects were anno-
tated pixel-wisely by two observers. Then the objects with the region containing the highest fraction
(compared to the other objects regions) of fixations were selected as salient objects.

Inspired by PASCAL-S [18], VOS [22] further annotated multiple salient objects (per-video) by
applying fixation points. Instead of counting the number of fixations in separate frames, a so-called
fixation density is defined and used to quantify the salient object annotation. Let I, € V be a key
frame presented at time ¢ in a given video (V), while O € I; be an annotated object. Note thatt; € T
(the frames within short period (T) following the selected key frame (J;)) is considered to solve the
fixation sparsity in single frame. The fixation density at the region of O can then be defined as:

Z 1( ZDfp*exp (1= t)z)), (3.8)
|O|| 2687

tyeT  pe0o

SIdentical objects are defined as objects owning > 0.8 of intersection over union (IoU) based on no more than three
bounding boxes
6The detailed introduction towards these protocols is cited from [281].
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where Dy , is formulated as:

xp—Xp) 4+ (vr —yp)?
Dﬁp:exp(_( f P) 262(yf yl’) )

s

(3.9

where J; is empirically set to 0.03 of video width (or height if it is larger than width), also & is set
to 0.1s. The salient objects in a given video were further defined by empirically thresholding their
saliency scores on the whole video scale. The saliency score S is thus defined as:

. Yiev ZOEI,D(O)‘ (3.10)

ZI,GV ZOEI, 1

More recently, DAVSOD [23] also labeled multiple salient objects in each of the videos, by com-
bining subjective annotation and fixation maps from external dataset [11]. About 5 viewers were
recruited to freely annotate several objects pixel-wisely in each of the frames, with the fixation maps
simultaneously displayed as reference. Importantly, the fixation maps contain smoothed saliency
regions, rather than disconnected fixation points.

Based on the above subjective experiments based protocols, a typical procedure including the
common steps of salient object segmentation dataset construction can be drawn (Fig. 3.2).

3.2.3 Annotations

Early datasets such as MSRA-A/B [282], RSD [287], STC [292] and DUT-O [17] provide only bound-
ing box annotations. As the models are supposed to finely segment the salient objects from given
images and videos, recent datasets such as SED1/2 [283], ASD [276], SOD [284], iCoSeg [183],
MSRASK [293], Infrared [288], ImgSal [289], CSSD [90], ECSSD [90], Bruce-A [286], THUR15K
[294], JUDD-A [39], PASCAL-S [18], UCSB [290], OSIE [291], HKU-IS [19], ViSal [150], UVSD
[152], XPIE [295], ILSO [91], DUTS [20], VOS [22], SOC [21], DAVSOD [23] and SIP [216], are
able to provide manually labeled object-level annotations (e.g., the first row of the Fig. 3.1). Further-
more, datasets such as ILSO [91], SOC [21], DAVSOD [23] and SIP [216] provide both object-level
and instance-level pixel-wise labels (e.g., the first row of the Fig. 3.1), to facilitate salient instance
segmentation related tasks.

Statistics regarding the annotations’ scales and types are presented in Table 3.1, Table 3.2 and
Tabel 3.3.
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Fig. 3.2 A flowchart represents typical process of acquiring salient objects’ annotations in current
salient object segmentation datasets. Please note that “dense annotations” in this flowchart indicate
per-image/video frame pixel-wise annotations, rather than merely per-pixel labels as mentioned in the

text. This figure is cited from [

1.
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Table 3.1 An overview in terms of annotations of widely used 2D image/video salient object segmen-
tation datasets (1/3). Pub. = publications. N.Images = number of images contained in the given image
salient object segmentation dataset. N.Sequences = number of sequences included in the given video
salient object segmentation dataset. T.Annotations = type of annotations in the given image/video
dataset. N.Annotators = number of annotators involved in the dataset labeling process. N.Subjects
= number of subjects recruited for conducting eye-tracking experiments. “-”” denotes no information
provided. This table is updated based on the statistics in [281], which collects partial statistical results
from [15].

No. Dataset Year Pub. N.mages N.Sequences T.Annotations N.Annotators N.Subjects
1 MSRA-A [282] 2007 CVPR 20,000 - Bounding Box 3 -
2  MSRA-B [282] 2007 CVPR 5,000 - Bounding Box 9 -
Pixel-wise
3 SED1 [283] 2007 CVPR 100 - . 3 -
Oject-Level
Pixel-wise
4 SED2 [283] 2007 CVPR 100 - . 3 -
Oject-Level
Pixel-wise
5 ASD [276] 2009 CVPR 1,000 - . 1 -
Oject-Level
6 RSD [287] 2009 ICME - 431 Bounding Box 23 -
Pixel-wise
7 SOD [284] 2010 TPAMI 300 - . 7 -
Oject-Level
. Pixel-wise
8 iCoSeg [183] 2010 CVPR 643 - . 1 -
Oject-Level
Pixel-wise
9 MSRASK [293] 2011 BMVC 5,000 - . 1 -
Oject-Level
Pixel-wise
10 Infrared [288] 2011 CVPR 900 - 2 15

Oject-Level
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Table 3.2 An overview in terms of annotations of widely used 2D image/video salient object segmen-
tation datasets (2/3). Pub. = publications. N.Images = number of images contained in the given image
salient object segmentation dataset. N.Sequences = number of sequences included in the given video
salient object segmentation dataset. T.Annotations = type of annotations in the given image/video
dataset. N.Annotators = number of annotators involved in the dataset labeling process. N.Subjects
= number of subjects recruited for conducting eye-tracking experiments. “-”” denotes no information
provided. This table is updated based on the statistics in [

], which collects partial statistical results

from [15].

No. Dataset Year Pub. N.Images N.Sequences T.Annotations N.Annotators N.Subjects

11 STC [292] 2011 J.CSB - 32 Bounding Box 1 -
Pixel-wise

12 ImgSal [289] 2012 TPAMI 235 - ) 19 50
Oject-Level
Pixel-wise

13 CSSD [90] 2013 CVPR 200 - ) 1 -
Oject-Level
Pixel-wise

14 ECSSD [90] 2013 CVPR 1,000 - ) 5 -
Oject-Level

15 DUT-O [17] 2013 CVPR 5,172 - Bounding Box 5 5
Pixel-wise

16  Bruce-A [286] 2013 J.VR 120 - ) 70 20
Oject-Level
Pixel-wise

17 THURI15K [294] 2014 J.VC 15,000 - . 1 -
Oject-Level
Pixel-wise

18 JUDD-A [39] 2014 TIP 900 - ) 2 15
Oject-Level
Pixel-wi

19 PASCAL-S[I8] 2014 CVPR 850 ; ewise 12 8
Oject-Level
Pixel-wise

20 UCSB [290] 2014 IV 700 - . 100 8
Oject-Level
Pixel-wise

21 OSIE [291] 2014 1.V 700 - 1 15

Oject-Level
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Table 3.3 An overview in terms of annotations of widely used 2D image/video salient object segmen-
tation datasets (3/3). Pub. = publications. N.Images = number of images contained in the given image
salient object segmentation dataset. N.Sequences = number of sequences included in the given video
salient object segmentation dataset. T.Annotations = type of annotations in the given image/video
dataset. N.Annotators = number of annotators involved in the dataset labeling process. N.Subjects
= number of subjects recruited for conducting eye-tracking experiments. “-”” denotes no information
provided. This table is updated based on the statistics in [281], which collects partial statistical results
from [15].

No. Dataset Year Pub. N.Images N.Sequences T.Annotations N.Annotators N.Subjects

Pixel-wi
22 HKU-IS[I19] 2015 CVPR 4,447 ] ixel-wise 3 )
Oject-Level

Pixel-wi
23 ViSal[150] 2015  TIP ] . ixel-wise | _
Oject-Level

Pixel-wi

24 UVSD[I52] 2016 TCSVT - 18 elwise 1 -
Oject-Level
Pixel-wise

25 XPIE [295] 2017 CVPR 10,000 - . 2 -
Oject-Level
Pixel-wise

26 ILSO [91] 2017 CVPR 1,000 - Object-Level 3 -

Instance-Level

Pixel-wi
27  DUTS[20] 2017 CVPR 15572 ] ixel-wise ] )
Oject-Level

Pixel-wi
28 VOS [22] 2017 TIP B 200 .lxe wise A ’3
Oject-Level

Pixel-wise
29 SOC [21] 2018 ECCV 6,000 - Object-Level 5 -
Instance-Level

Pixel-wise
30 DAVSOD [23] 2019 CVPR - 226 Object-Level 5 -
Instance-Level

Pixel-wise
31 SIP [216] 2020 TNNLS 1,000 - Object-Level 11 -
Instance-Level
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3.2.4 Statistical analysis

After acquiring large-scale image/video data and corresponding annotations, systematical statistical
analysis should be conducted to show the difficulty and validity of the proposed datasets. Generally,
a newly propposed dataset should be analyzed from the aspects of scales, scene/object categories,
quality and diversity of pixel-wise annotations and scene/object attributes.

Specifically, as shown in Table 3.1, Table 3.2 and Table 3.3, current salient object segmenta-
tion datasets’ scales range from several hundreds to 20K. Besides, most recently proposed image
dataset [21] is able to include 80 categories of salient objects commonly seen in real-life daily scenes,
while video dataset [23] provides about 70 classes of frequently seen realistic dynamic scenes. As
the increasingly challenging scenes collected, most recently proposed datasets (e.g., [21,23]) are able
to manufacture high-quality and diverse annotations for defined salient objects, including bounding
boxes and both object/instance-level pixel-wise masks. To facilitate comprehensive benchmark stud-
ies and inspire new models, recent datasets such as DAVIS2016 [151] and SOC [21] are able to
provide annotations labeling specific attributes of salient objects (Fig. 3.3).

3.2.5 Discussion

This section reviews the recently proposed datasets for 2D RGB salient object segmentation and
summarizes several key issues regarding large-scale salient object segmentation dataset construction.

Particularly, there are three key issues’

are of most important and should be emphasized for the
construction of large-scale salient object segmentation dataset in 360° panorama.

High-quality pixel-wise labels. Labeling salient objects with pixel-wise masks is consistent with the
prior knowledge in the field of psychology, that people tend to simultaneously pay attention to several
disconnected semantic regions [296]. Besides, to simulate the human capability of distinguishing
entities belonging to single object category, instance-level labels are also important and useful to a
well established salient object segmentation dataset.

Balanced salient object segmentation dataset. As highlighted in [21], some of the image salient
object segmentation datasets discarded images without salient objects, thus introducing selection bias
to the process of dataset construction. Considering the importance of keeping images without salient
objects, [281] emphasized three main principles for the judgement of non-salient objects. As shown
in the second row of Fig. 3.1, the divergence among viewers tend to be significant when asked to
choose the most salient person. Therefore, objects with crowded candidates of the same class tend to
be non-salient ones. Besides, the natural objects such as rocks, sky belong to background. Further,
the objects with complex shape and texture are recognized as non-salient objects. On the other hand,
clear faces, people, animals, cars and text are commonly considered as salient objects [286].
Fixation-based salient object annotation. Recent video datasets [22,23] applied the fixation data to
the salient object annotation task. However, since the thresholds are empirically fixed, the annotation
methods may not be directly applied to other video salient object segmentation datasets. Using fixa-
tion data to effectively annotate salient objects is still an open issue. Future works are suggested to
shift more attention towards fixation-based salient object segmentation.

TThe detailed introduction towards these key issues is cited from [281].
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ID Description

BC Background Clutter. The back- and foreground regions around
the object boundaries have similar colors (x2 over histograms).

DEF  Deformation. Object undergoes complex, non-rigid deformations.

MB Motion Blur. Object has fuzzy boundaries due to fast motion.

FM Fast-Motion. The average, per-frame object motion, computed
as centroids Euclidean distance, is larger than 7, = 20 pixels.
LR Low Resolution. The ratio between the average object

bounding-box area and the image area is smaller than ¢;,. = 0.1.
OCC  Occlusion. Object becomes partially or fully occluded.
oV Out-of-view. Object is partially clipped by the image boundaries.
SV Scale-Variation. The area ratio among any pair of bounding-
boxes enclosing the target object is smaller than 75, = 0.5.

AC Appearance Change. Noticeable appearance variation, due
to illumination changes and relative camera-object rotation.

EA Edge Ambiguity. Unreliable edge detection. The average ground-
truth edge probability (using [11]) is smaller than 7. = 0.5.

CS Camera-Shake. Footage displays non-negligible vibrations.

HO Heterogeneus Object. Object regions have distinct colors.

10 Interacting Objects. The target object is an ensemble of multiple,
spatially-connected objects (e.g. mother with stroller).

DB Dynamic Background. Background regions move or deform.

SC Shape Complexity. The object has complex boundaries such as

thin parts and holes.

(a)

Attr Description

AC
BO
CL

Appearance Change. The obvious illumination change in the object region.

Big Object. The ratio between the object area and the image area is larger than 0.5.
Clutter. The foreground and background regions around the object have similar color.
‘We labeled images that their global color contrast value is larger than 0.2, local color
contrast value is smaller than 0.9 with clutter images (see Sec. 3).

Heterogeneous Object. Objects composed of visually distinctive/dissimilar parts.
Motion Blur. Objects have fuzzy boundaries due to shake of the camera or motion.
Occlusion. Objects are partially or fully occluded.

Out-of-View. Part of object is clipped by image boundaries.

Shape Complexity. Objects have complex boundaries such as thin parts

(e.g., the foot of animal) and holes.

Small Object. The ratio between the object area and the image area is smaller than 0.1.

Fig. 3.3 Statistics in terms of objects’ attributes. (a) is cited from [

(b)

]. (b) is cited from SOC [

1.
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3.3 A dataset for salient object segmentation in 360° images

Considering the key aspects (issues) concluded at the last section, we propose a new image dataset for
fixation-based salient object segmentation in 360° panorama [256]. This section presents the details
of this work.

3.3.1 Introduction

The panoramic image®, which captures the content on the whole 360°x 180° viewing range surround-
ing a viewer, plays an import role in VR/AR applications and distinguishes itself from traditional 2D
image which covers only local viewport. Recently, civil Head-Mounted Displays (HMDs) have been
developed to provide observers an immersive and interactive experience by allowing them to freely
rotate their head and thus focusing on desired scenes and objects. Considering the fact that some
salient parts of the 360° image attract more human attentions than the others [26], visual saliency
prediction (a.k.a. fixation prediction) in panorama becomes one of the appealing issues in the field
of computer vision and is considered as a key to explore human observation behavior in virtual en-
vironments. The fixation prediction and salient object segmentation are both closely related to the
concept of visual saliency. Thanks to the accessibility of HMDs and eye trackers, image [25] and
video (e.g., [76-78]) datasets have been constructed for the deep learning-based fixation prediction in
panoramic content. However, [257] is the only research for 360° salient object segmentation, which

does not use the fixations as a guidance for the salient object annotation.

Fig. 3.4 Examples of the proposed fixation-based panoramic image dataset, i.e., F-360iSOD. The
first row shows four panoramic images presented as equirectangular image. The second row presents
images overlapped with thresholded fixation maps. The third row denotes object-level ground truth
for salient object segmentation. the fourth row indicates instance-level pixel-wise masks.

81n this thesis, panoramic, 360°, omnidirectional are used interchangeably.
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As shown in Fig. 3.4, 360° images tend to own richer scenes and much more foreground objects
compared to images collected in traditional 2D salient object segmentation datasets (e.g., [17-20,90]).
Therefore, it is more challenging to differentiate the salient objects from the non-salient ones in
panoramas. Preserving panoramic images with a few obvious foreground objects while discarding
those ambiguous ones may bring selection bias to the dataset, thus being inefficient for exploring the
real human attention behavior as viewing panoramic content. Based on the strong correlation between
fixation prediction and explicit human judgements [39], and the successfully established fixation-
based 2D salient object segmentation datasets [22, 23, 39], an intuition is that the salient objects in
panoramas can also be manually annotated with the assistance of fixations, thus representing the
real-world daily scenes. Thus, the main content of this section are:

* A fixation-based 360° image dataset (F-360iSOD) with both object-/instance-level pixel-wise
annotations.

* A new benchmark includes six state-of-the-art 2D salient object segmentation models [121,
—141,297], evaluated by five widely used salient object segmentation metrics [276—279,

].

* A discussion towards key issues for 360° image salient object segmentation dataset construc-
tion.

The uniqueness of the proposed F-360iSOD. As topic-related, there are two types of fixation-based
panoramic datasets focusing on head movement prediction and eye movement prediction, respec-
tively. Datasets such as 360-VHMD [27], VR-VQA48 [299] contain only head tracking data, while
Salient!360 [25], Stanford360 [26], VQA-OV [78], VR-scene [76] and 360-Saliency [77] provide
ground-truth eye fixations. Besides, 360-SOD [257] is a newly proposed omnidirectional image
dataset for salient object segmentation. However, the salient objects are labeled based on pure ex-
plicit subjective judgements, rather than fixation-based guidance. Besides, the dataset does not pro-
vide instance-level ground truth or object category labels.

3.3.2 Dataset statistics

F-360iSOD contains 107 (52 indoor/55 outdoor) panoramic images with challenging real-world daily
scenes, 1,165 salient objects (from 72 object classes) manually labeled with precise object-/instance-
level masks.

Image collection. The F-360iSOD is a 360° image dataset with totally 107 panoramic images col-
lected from Stanford360 [26] and Salient!360 [25] which contain 85 and 22 equirectangular images,
respectively®. All the images of the proposed F-360iSOD are represented as equirectangular images
with a medium resolution of 20481024 for convenient processing.

Salient object annotation. Inspired by 2D salient object segmentation datasets [22, 23, 39] where
fixation data were used to aid the salient object annotation, an expert was asked to manually annotate
(by tracing boundaries) the salient objects with both the object-/instance-level masks on the collected

9Stanford360 and Salient!360 are so far the only panoramic image datasets that provide eye movement based fixation
data.
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equirectangular images, under the guidance of fixation maps convoluted by a Gaussian with a standard
deviation empirically set to 3.34° of visual angle [25] (note that each of the Gaussian-smoothed
fixation maps is thresholded with an adaptive saliency value to keep the top one-10th of each self
before shown to the annotator). The whole annotation process has been repeated three times to pass
the quality check implemented by two other experts, before gaining the final ground truth. Besides,
nine images without any salient object annotations are reserved in F-360iSOD, to avoid the common
selection bias of 2D salient object segmentation datasets (as mentioned in “balanced datasets” at the
last section), brought by an assumption that there is at least one salient object in each of the image.
The total dataset’s pixel-wise annotations are visualized in Fig. 3.5, Fig. 3.6, Fig. 3.7 and Fig. 3.8.
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Fig. 3.5 Visualization of the proposed F-360iSOD (1/4).
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Fig. 3.7 Visualization of the proposed F-360iSOD (3/4).
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Fig. 3.8 Visualization of the proposed F-360iSOD (4/4).

Dataset statistics. In F-360iSOD, each salient object belongs to one specific class. Generally, there
are 1,165 salient objects from 72 categories, thus reflecting 7 aspects (human, text, vehicle, archi-
tecture, artwork, animal and daily stuff) of the real-life common scenes (Fig. 3.9). The “person”
category occupies the largest proportion with a number of instances of 386; other relative large object

CEINNT3 LR N3

classes include “painting”, “text”, “building”, “face” and “car”, with a number of instances of 92, 89,

86, 75 and 72, respectively.

3.3.3 Benchmark studies

In this sub-section, we detail our works towards extensive benchmark studies based on our proposed
F-360iSOD. A comprehensive benchmark study usually consists of a consistent protocol (which usu-
ally includes dataset split, traning/testing strategies for benchmark models and evaluation metrics),
and systematical qualitative/quantitative analysis towards experimental results.

Dataset split. The F-360iSOD consists of one training set and two testing sets, which are denoted
as F-360iSOD-train, F-360iSOD-testA and F-360iSOD-testB, respectively. The F-360iSOD-train
contains 68 equirectangular images from the Salient!360, while the F-360iSOD-testA collects the
remaining 17 (85 in total). Besides, the F-360iSOD-testB is established to enable the cross-testing
forsalient object segmentation models, with 22 images from the other panoramic image dataset, i.e.,
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Fig. 3.9 Statistics of object categories of the proposed 360° image salient object segmentation dataset,
i.e., F-360iSOD.

Stanford360.

Projection methods. By wearing HMDs, people are able to freely rotate their head to make mul-
tiple viewports focusing on the attractive regions of the surrounding 360° content. Based on this
prior knowledge, we apply cube map projection (where a 360° image is projected into 6 rectangular
patches) to process 68 panoramic images (from F-360iSOD-train) with multiple rotation angles (0°,
30°, 60° both horizontally and vertically [81]). Thus, we gain 54 (6x3x3) patches representative
of multiple fields of view for each of the 360° image. 3,672 (54x68) 2D patches (256x256) are
therefore generated and used as inputs for the fine-tuning of 2D salient object segmentation models.

Evaluation metrics. To measure the agreement between manually labeled ground truth and model
predictions, five widely used salient object segmentation metrics were adopted: Fg-measure [276],
weighted Fg-measure (Fbw) [298], mean absolute error (MAE) [277], structural measure (S-measure)
[278] and enhanced-alignment measure (E-measure) [279]. The details of salient object segmenta-
tion metrics are illustrated in Section 2.7. And it is worth noting that,

S=0oxS,+ (1 —a)xS,, 3.11)

where S, and S, denote the object-/region-aware structure similarities, respectively; o is empirically
setto 0.7 (& = 0.5 in 2D) to attach more importance on object structure, based on the observation that
panoramic images are usually dominated by small salient objects distributed over the whole image
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Table 3.4 A quantitative comparison between six state-of-the-art salient object segmentation models
on F-360iSOD, where F;’ means Fbw, S represents S-measure. Note that the top three results of each
column are highlighted in red, and blue, respectively.

F-360iSOD-testA F-360iSOD-testB

Methods Fy T ST MAE | Fy T S1 MAE |

SCRN [297] .551 .809 .050  .124 .708
BASNet [138] .567 .825 118 683  .048
CPD[139] .521 .763 .052 .129 .695 .032
PoolNet [140] .500 .068 716 .058
GCPANet [121] 822 045 .106 .693 .039
EGNet [141] 715 864 .045  .190 .041

(e.g., Fig. 3.4), rather than one or multiple spatially connected foreground objects located at the center
of the image.

Benchmark models. As stated in Chapter 2, convolutional networks (CNNs)-based models dominate
the field of salient object segmentation. The CNN segmentation models differentiate themselves from
other deep learning methods by predicting saliency maps as outputs, rather than classification scores.

EGNet [141] is one of the recently proposed state-of-the-art models. The method was motivated
by the idea that simultaneously learning the salient edge and object information can help improving
performance of salient object segmentation models. It modeled these two complementary infor-
mation with an independent network outside the VGG-based backbone [2]. SCRN [297] is another
newly proposed salient object segmentation model that considers the edge information. It also imple-
ments the salient object segmentation and salient edge detection in a synchronous manner, by stacking
several so-called cross refinement units in an end-to-end manner. BASNet [138] proposed residual
refinement module and hybrid loss to refine the salient objects boundaries in predicted saliency maps.
PoolNet [ 140] improved the feature extraction efficiency of multiple layers of current U-shape archi-
tecture by adding two new modules, which were both designed based on simple pooling techniques.
GCPANet [121] is a more recently proposed method which brought improvements to the traditional
bottom-up/top-down networks by proposing four new modules. CPD [139] modified the traditional
encoder-decoder framework to directly refine high-level features by generated saliency maps, without
the consideration of low-level features. The idea here is different from PoolNet and GCPANet, which
integrated both the low-/high-level features.

Benchmark results. In this study, each of the salient object segmentation models is fine-tuned on
the F-360iSOD-train with an initial learning rate of one-10th of their default, and a batch size of 1.
The training process will stop as the S-measure value on the F-360iSOD-testA starts to go down. As
a result, it takes about 20 epochs for BASNet [138], EGNet [141], CPD [139] and SCRN [297] to
converge, while 70 for PoolNet [140] and 15 for GCPANet [121]. The quantitative and qualitative
comparison between the six state-of-the-art 2D salient object segmentation models on both the F-
360iSOD-testA/B are illustrated in Table 3.4, Fig. 3.10 and Fig. 3.11, respectively.
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Fig. 3.10 F-measure curves and E-measure curves of six state-of-the-art salient object segmenta-
tion models on the proposed F-360iSOD.

3.3.4 Discussion

Challenging 360° salient object segmentation dataset. All benchmark models are constrained to
some extent on the proposed F-360iSOD, even though achieving high performances in 2D domain.
The limitation is mainly due to the challenges brought by the features of 360° dataset, such as equirect-
angular projection-induced distortions, small objects and clutter scenes, etc.

Fixation-based complexity analysis. Since the panoramic images tend to contain much more scenes
and objects than 2D images, the ambiguity of saliency judgements in panoramas should also be con-
sidered, which can be quantified by inter observer congruency (IOC) [300] and entropy based on
fixation maps, which are re-smoothed with a Gaussian with a standard deviation of 1° visual angle to
reflect human foveal size [300]. As an image with high IOC and low entropy is usually considered
to be simple, the F-360iSOD-testB should be easier to explore when compared with the F-360iSOD-
testA (Fig. 3.12), from a perspective of human judgements.

Unseen object classes. All competing models fail on the F-360iSOD-testB, mainly due to the pres-
ence of unseen object classes in Stanford360, such as sharks, bells, robots, etc. People are capable of
recognizing new object categories when provided with high-level descriptions. This strong general-
ization ability is still absent in current salient object segmentation models.

Instance-level ground truth. The proposed F-360iSOD is the first 360° dataset that provides instance-
level semantic labels for salient objects. Future salient object segmentation models are capable of
recognizing the individual instances from multiple classes, which is crucial for practical applications,
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Fig. 3.11 A qualitative comparison between six state-of-the-art salient object segmentation models on
F-360iSOD.
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Fig. 3.12 A fixation-based complexity analysis of the proposed F-360iSOD. The F-360iSOD-train,
F-360iSOD-testA/B are annotated in black, blue and red, respectively.

e.g., image captioning and scene understanding.

3.3.5 Conclusion

This section presents the proposed fixation-based 360° image dataset (F-360iSOD), with precisely
annotated salient objects/instances from multiple classes representative of real-world daily scenes. Six
recently proposed salient object segmentation methods are fine-tuned and tested on the F-360iSOD.
Results show a limit of current 2D models when directly applied to the salient object segmentation in

panoramas.
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3.4 A dataset for salient object segmentation in 360° videos

This section introduces the details towards our PAVS10K, which is the first video-based 360° dataset
proposed for salient object segmentation. Importantly, as PAVS10K uses both audio and visual cues
for salient object judgment and annotations, this is also the first audio-visual dataset in the salient
object segmentation community.

3.4.1 Introduction

Studying and modeling human attention in 360° panoramic real-life!® environment has been an im-
portant issue in the fields of computer vision and multi-modal learning. Recently, the issue gains
increasing attention from both communities as the booming development of virtual and augmented

»11 which seeks to establish a new immersive

reality industries (e.g., the recent boom of “metaverse
digital extended world facilitating more efficient social network, education, entertainment, efc.).

Particularly, as the popularization of civil 360° cameras such as GoPro Max, Ricoh Theta Z1 and
Insta360 ONE series, 360° panoramic images and videos are nowadays easily acquired. In this case,
several 360° visual saliency prediction datasets [25-28, 76, 77, 80] have been proposed, to enable
deep learning researches towards human attention modeling in 360° static and dynamic real-life daily
scenes. Besides, more recent audio-visual dataset [79] investigates the influence of audio cues towards
human perception in 360° videos. However, these datasets provide only head or eye movement data
as ground truth, thus not being able to strictly reflect human attention to specific salient targets.

Besides, recent researches [301-303] have brought much attention to audio-visual object localiza-
tion. Specifically, as the development of large-scale audio-visual datasets such as MUSIC [304], Au-
dioSet [305], AVE [71], VGGSound [306] and ObjectFolder [307], the community has recently wit-
nessed a booming trend of audio-visual researches, e.g., [308-315]. Particularly, recent audio-visual
object localization methods [301-303,316-323] are closely related to salient object segmentation in
terms of object-level attention modeling. It is worth noting that, these researches focus on the detec-
tion of sounding objects, rather than the salient objects. As a comparison, panoramic video salient
object segmentation aims to finely segment the audio-visual salient objects, where manually labeled
pixel-wise ground truth are necessary for the training and quantitative evaluation of models. In fact,
mixed reality applications such as remote collaboration [324] and virtual object rendering [325] are
closely related to object-level human attention modeling in dynamic 360° panoramas. However, so
far there is no work focuses on object-level audio-visual saliency detection in challenging panoramic
videos representing realistic scenes.

On the other hand, salient object segmentation, which mimics human attention by finely seg-
menting the visual salient objects in given images, has been constantly appealing attention from the
computer vision community during the last decade [15]. As illustrated in Chapter 2, according to
the types of training data, current salient object segmentation(a.k.a. SOD) methodologies can be
classified into eight categories, i.e., I (image)-SOD [16,21, 1, V (video)-SOD [23, s ], Co-

10<Real-life” targets indicate the objects/scenes captured by photographers in real life, thus distinguishing itself from
virtual rendered ones.
Meta: https://about .facebook.com/meta/
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SOD [195, , 1, RGBD (depth)-SOD [225, , 1, RGBT (thermal infrared)-SOD [231-233],
LF (light field)-SOD [238, ,251], HR (high resolution)-SOD [201,328] and RS (remote sensing)-
SOD [205,206]. Despite a prosperous development of the salient object segmentation community,

current state-of-the-art methods still suffer from two limitations that prevent them from modeling
unbiased human attention as in real-world daily scenes. First, these models all rely on only visual
data for the detection, thus hardly reflecting human attention in realistic circumstances where audio
cues indeed play an important role (e.g., audio-visual saliency network predicts more accurate results
than visual-only ones [59]). Besides, these methods, with so far the only audio-visual salient object
segmentation method [329] (not released), all focus on visual data with limited field-of-views (FoVs),
e.g., common 2-D images and videos, thus ignoring the rich visual cues as observed in real-life daily
scenes, where people are able to explore an omnidirectional view with the FoV of 360°x180° by
freely rotating their heads. Recent researches [256—258] shift attention to 360° panoramic image
based salient object segmentation by proposing new datasets consisting of hundreds of equirectangu-
lar (ER) images'? and corresponding pixel-wise ground truth. However, with only limited static vi-
sual cues provided by the datasets, current panoramic image-based salient object segmentation meth-
ods [257,258] are far from representing real-life object-level human attentions, where the modeling
of dynamic visual and audio information are essential.

n

N Subjects

ER Images with Fixations Overlaid Instance-Level Ground Truth Object-Level Ground Truth for PAV-SOD
Data Collection Data Annotation

Fig. 3.13 An example of our PAVS10K where coarse-to-fine annotations are provided, based on
a guidance of fixations acquired from subjective experiments conducted by multiple (V) subjects
wearing Head-Mounted Displays (HMDs) and headphones. Each (e.g., fi, f; and f,, where ran-
dom integral values {k,l,n} € [1,T]) of the total equirectangular (ER) video frames (T of the se-
quence “Speaking”(Super-class)-“Brothers”’(sub-class) are manually labeled with both object-level
and instance-level pixel-wise masks. According to the features of defined salient objects within each
of the sequences, multiple attributes, e.g., “multiple objects” (MO), “competing sounds” (CS), “ge-
ometrical distortion” (GD), “motion blur” (MB), “occlusions” (OC) and “low resolution” (LR) are
further annotated to enable detailed analysis for panoramic video salient object segmentation mod-
eling.

To model object-level audio-visual attention in realistic omnidirectional dynamic scenes, we con-
duct systematical researches, i.e., establishing the first 360° video salient object segmentation dataset

I2ER images are the most widely used lossless planar representation of 360° images.
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with hierarchical annotations (i.e., PAVS10K), building a new benchmark with state-of-the-art meth-
ods collected from multiple related fields including image-based salient object segmentation, video-
based salient object segmentation and video object segmentation. Specifically, the main contributions
of our proposed dataset and benchmark are:

* We propose a large-scale panoramic video-based salient object segmentation dataset, namely
PAVS10K, which consists of uniformly sampled 10,465 4K-resolution ER video frames (from
total 62,455 frames), with corresponding super-/sub-class labels and manually labeled object-
level and instance-level pixel-wise masks'? (Fig. 3.13). We further attach 360° salient object
segmentation related challenging attributes to each of the 67 sequences in our PAVS10K (e.g.,
Fig. 3.13). The coarse-to-fine labels enable comprehensive benchmark studies and detailed
analysis regarding 360° salient object segmentation modeling.

* We establish so far the largest 360° video-based salient object segmentation benchmark which
collects 13 state-of-the-art methods from the fields of 2D image salient object segmentation (7),
2D video salient object segmentation (2), video object segmentation (3) and panoramic image
salient object segmentation (1). For fair comparison, we systematically evaluate all 13 models
based on our PAVS10K, with four widely used salient object segmentation metrics.

3.4.2 Dataset statistics

Our PAVS10K dataset aims at segmenting the salient objects by taking advantage of both audio and
visual cues in 360° dynamic scenes. A comparison between our PAVS10K and the current widely
used salient object segmentation related datasets is shown in Table 3.5, in terms of scales, annotation
types and diversities.

In this section, we elaborate our challenging large-scale PAVS10K, i.e., the first panoramic video

salient object segmentation dataset, in terms of stimuli collection, subjective experiments, annotation
pipeline and dataset statistics.
Stimuli collection. The stimuli of PAVS10K were gained from YouTube with multiple searching
keywords (e.g., 360°/panoramic/omnidirectional video, spatial audio, ambisonics [311]). As a re-
sult, our collected stimuli cover various real-world dynamic scenes (e.g., indoor/outdoor scenes),
multiple occasions (e.g., sports, travel, concerts, interviews, dramas), different motion patterns (e.g.,
static/moving camera), and diverse object categories (e.g., human, instruments, animals). They pos-
sess a wide range of major challenges for object detection in 360° content, e.g., objects scattered far
from the equirectangular image’s equator thus suffering from serious geometrical distortions (e.g.,
salient persons annotated with attribute “geometrical distortion — GD” as shown in Fig. 3.13).

The abundant on-line audio-visual sources provide us with a solid foundation to establish a
challenging and representative benchmark dataset. As a result, we obtained 67 high-quality video
sequences with a total of 62,455 frames recorded with 62,455x40 eye movement based fixations.
Specifically, the 67 sequences are selected based on three criteria:

13Collecting the pixel-wise labels was a costly and time-consuming work, and it took us about one year to set up this
large-scale dataset.
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Table 3.5 A comparison between our proposed PAVS10K and the widely used salient object segmen-
tation (a.k.a. SOD)/video object segmentation (VOS) datasets . #Ilmg: The number of images/video
frames. #GT: The number of object-level pixel-wise masks (ground truth for SOD). Pub. = Publi-
cation. Obj.-Level = Object-Level Labels. Ins.-Level = Instance-Level Labels. Fix. GT = Fixation
Maps. T denotes equirectangular (ER) images.

Dataset Task Year #lmg  #GT min(W,H) max(W,H) Obj.-Level Ins.-Level Attribute Fix. GT Audio
ECSSD [90] I-SOD  CVPR’13 1,000 1,000 139 400 v
DUT-OMRON [17] I-SOD  CVPR’13 5,168 5,168 139 401 v v
PASCAL-S[18] I-SOD  CVPR’14 850 850 139 500 v v
HKU-IS[19] I-SOD  CVPR’15 4,447 4,447 100 500 v
DUTS [20] I-SOD  CVPR’17 15,572 15,572 100 500 v
ILSO[91] I-SOD CVPR’17 1,000 1,000 142 400 v v
SOC[21] 1I-SOD ECCV’18 6,000 6,000 161 849 v v v
SegTrack V2 [147] VOS ICCV’13 1,065 1,065 212 640 v
FBMS [148] VOS TPAMI'13 13,860 720 253 960 v
MCL [149] V-SOD TIP’15 3,689 463 270 480 v
ViSal [150]  V-SOD TIP’15 963 193 240 512 v
DAVIS2016 [151] VOS CVPR’16 3,455 3,455 900 1,920 v v
UVSD [152] V-SOD TCSVT’16 3262 3262 240 877 v
VOS [22]  V-SOD TIP’18 116,103 7,467 312 800 v v
DAVSOD [23] V-SOD  CVPR’19 23,938 23,938 360 640 v v v v
F-360iSOD [256] PI-SOD ICIP’20 1077 107 1,024 2,048 v v v
360-SOD [257] PI-SOD  JSTSP’20 5007 500 512 1,024 v
360SSOD [258] PI-SOD TVCG’20  1,1057 1,105 546 1,024 v
PAVS10K(Ours) PAV-SOD 2022 62,4557 10,465 1,920 3,840 v v v v v

* The collected video frames must be in good visual quality, i.e., 4K resolution of each video

frame.

* The collected videos must have corresponding audio files including both ambisonics and mono

sound.

* The collected video scenes must include recognizable objects which constantly grasp subjects’

attention.

Note that we manually trimmed the videos into small clips (29.6s on average) to avoid fatigue during
the collection of human eye fixations. As a result, the total video duration is about 1983s (67 x29.6s).
Subjective experiments. We detail the supportive subjective experiments from the following three

aspects, i.e., equipment, observers and experimental settings.

* Equipment. All the video clips were displayed using a HTC Vive HMD embedded with a Tobii
eye tracker with 120Hz sample rate to collect eye fixations.

* Observers. We recruited 40 participants (8 females and 32 males) aging from 18 to 34 years old
who reported normal or corrected-to-normal visual and audio acuity. Twenty participants were
randomly selected to watch videos with mono sound (group #1), while the other participants
watched videos without sound (group #2). Note that the two groups own the same gender and
age distributions. Hence, each video with each audio modality (i.e., with or without sound) was
viewed by 20 participants, and each participant viewed (task-free) each video only once.

» Settings. All the participants seated in a swivel chair, wearing a HMD with headphones, and
asked to explore the 360° panoramic videos without any specific intention. During the experi-
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ments, the starting position was fixed to the center at the beginning of every video display. To
avoid motion sickness and eye fatigue, we inserted a short rest of a five-second gray screen
between two successive videos and a long break of 20 minutes after every 20 videos. We
calibrated the system for each participant at the beginning and the end of every long break.

Coarse-to-Fine Annotations. Our annotations vary from scene/sequence level to fine pixel level,
thus enabling detailed analysis towards panoramic dynamic audio-visual salient object segmenta-
tion modeling.
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Fig. 3.14 Statistics of the proposed PAVS10K - super-/sub-category information.

Super-/Sub-Scene-Class Labeling. As shown in Fig. 3.14, our PAVS10K contains 67 videos repre-
senting 67 audio-visual scene classes. The 67 sub-classes can be categorized to three super classes
with a cue of primary sound sources, i.e., speaking (e.g., conversation, monologue), music (e.g.,
singing, instrument playing) and miscellanea (e.g., the sound of vehicle engines and horns on the
streets, crowd noise in the open air). The commonly seen sound sources are shown in Fig. 3.15.
Protocol of pixel-wise manual annotations. Our object-level and instance-level ground truth for
conducting panoramic dynamic audio-visual salient object segmentation strictly follow the audio-
visual eye fixations acquired from subjective experiments conducted by group #1 (please refer to
details in “subjective experiments”). The annotation protocol is detailed as follows:

* Inspired by the widely used empirical IoU threshold AP50 (threshold set as 50%) in the field of
object detection, we define the salient objects as the objects overlapped with top 50% saliency
(e.g., please refer to overlaid fixations as shown in Fig. 3.16).
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Fig. 3.15 Statistics of the proposed PAVS10K - Instance density (labeled frames per sequence) of
each sub-class. Sound sources of PAVS10K scenes, such as musical instruments, human instances
and animals.

* Following classical video datasets [22, 148—150], we uniformly extracted 10,465 video frames
from the total 62,455 frames with a sampling rate of 1/6, for the pixel-wise annotation.

» We apply the commonly used CVAT toolbox!# to conduct manual labeling.

* We conducted multiple annotation quality examinations to ensure high-quality pixel-wise labels
(Examples are shown in Fig. 3.17).

Object-level masks. Object-level masks denote the pixel-wise binary masks (Fig. 3.13) representing
object-level saliency. Researchers participated the manual annotation for the fixation-based salient
objects in 10,465 frames. During the labeling process, the annotators were asked to correctly seg-
ment the salient objects by finely tracing objects’ boundaries, rather than drawing rough polygons.
Finally, we obtained 10,465 object-level masks corresponding to 10,465 uniformly extracted video
frames, which were then used for panoramic dynamic audio-visual salient object segmentation model
training and quantitative evaluation. Fig. 3.15 shows the number of object-level masks of each of the
sequences of our PAVS10K.

Instance-level masks. As shown in Fig. 3.13 or Fig. 3.16, an important contribution of our PAVS10K is
the instance-level pixel-wise masks, which are rarely seen in current salient object segmentation datasets
(Table. 3.5). In fact, compared to conventional salient object segmentation, instance-level salient ob-
ject segmentation is able to mimic more realistic human visual attention. As a result, we finally
gained 19,904 instance-level salient object labels. Please refer to Fig. 3.18, Fig. 3.19, Fig. 3.20, Fig.

I4CVAT Toolbox: https://github.com/openvinotoolkit/cvat


https://github.com/openvinotoolkit/cvat
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@ SingingDancing

Fig. 3.16 Examples of challenging attributes (detailed description in Table. 3.6) on equirectangular
images from our PAVS10K, with instance-level ground truth and fixations as annotation guidance.
{fx, f1, fn} denote random frames of a given video. Please zoom-in for better view of overlaid fixa-
tions.

3.8, Fig. 3.22, Fig. 3.23 and Fig. 3.24 for randomly sampled video frames and their corresponding
object-/instance-level masks, of each of the 67 sequences within our PAVS10K.

Attributes labeling. Following the recently proposed large-scale video object segmentation [151] and
video-based salient object segmentation [23] datasets, we provide seven attributes to represent the
challenges within our PAVS10K, i.e., “Multiple Objects” (MO), “Occlusions” (OC), “Low Resolu-
tion” (LR), “Motion Blur” (MB), “Out-of-View” (OV), “Geometrical Distortion” (GD) and “Compet-
ing Sounds” (CS) (Table. 3.6).

Table 3.6 Description of each of the seven proposed attributes towards panoramic audio-visual salient
object segmentation.

Attributes. Description

MO Multiple Objects. > three objects occur simultaneously.
ocC Occlusions. Object is partially occluded.

LR Low Resolution. Object occupies < 0.5% of image area.
MB Motion Blur. Moving object with fuzzy boundaries.

ov Out-of-View. Object is cut in half in ER projection.

GD Geometrical Distortion. Distorted object in ER projection.
CS Competing Sounds. Sound objects compete for attention.

It is worth mentioning that, OV and GD (Fig. 3.13) are exclusive geometrical attributes of ER
images, and CS is a novel attribute attached to sounding stimuli, thus representing challenging audio-
visual scenes where multiple sounding objects compete for human attention. Detailed statistics of the
proposed attributes towards each of the sequences of PAVS10K are shown in Table 3.7 and Table 3.8.
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Fig. 3.17 Passed and rejected instance-level pixel-wise labels during quality examination processes.
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Fig. 3.18 Visualization of the proposed PAVS10K (1/7).




3.4 A dataset for salient object segmentation in 360° videos 79

% . - ---
.
.

el 0 | PO |
el | P | e

Fig. 3.19 Visualization of the proposed PAVS10K (2/7).
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Fig. 3.20 Visualization of the proposed PAVS10K (3/7).
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Fig. 3.21 Visualization of the proposed PAVS10K (4/7).
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Fig. 3.22 Visualization of the proposed PAVS10K (5/7).
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Fig. 3.23 Visualization of the proposed PAVS10K (6/7).
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Fig. 3.24 Visualization of the proposed PAVS10K (7/7).
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Table 3.7 Attribute details (1/2). General attributes: MO = Multiple Objects. OC = Occlusions.
LR = Low Resolution. MB = Motion Blur. 360° geometrical attributes: OV = Out-of-View. GD =
Geometrical Distortion. Audio attributes: CS = Competing Sounds.

Sequence General 360°  Audio No.
MO OC LR MB OV GD CS
French v v v v v 5
WaitingRoom v v v v v 5
Cooking v v v v v 5
Audilntro v v v 3
Ellen v 1
GroveAction v v v Y v 5
Warehouse v Vv 2
GroveConvo v v v v v 5
Surfing v v v 3
Passageway v v v oV 4
RuralDriving v v Vv v 4
Lawn v v 2
AudiAd v v v v v v 6
ScenePlay v v Vv v v 5
UrbanDriving v v v 3
ﬁ Interview v v Vv v 4
%o Telephone v v v v v 5
£ Walking v v v 3
é Bridge v v Y v 4
»>  Breakfast v v v v v 5
Debate N v v 3
BadmintonConvo v v Vv Vv Vv V v 7
Director v v v Vv v v 6
ChineseAd v v v v v v 6
Exhibition v 1
PianoConvo v v v 3
FilmingSite v v v v v 5
Brothers v v v v v v 6
Rap v v v v 4
Spanish v v v v v 5
Questions v v Y v 4
PianoMono v v v v v 5
Snowfield v v v 3
Melodrama v v v v v 5
Gymnasium v v v v v 5
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Table 3.8 Attribute details (2/2). General attributes: MO = Multiple Objects. OC = Occlusions.
LR = Low Resolution. MB = Motion Blur. 360° geometrical attributes: OV = Out-of-View. GD =
Geometrical Distortion. Audio attributes: CS = Competing Sounds.

Sequen General 360° Audio N
quence MO OC LR MB OV GD ¢S &

v

Guitar
Subway

Jazz

Bass

Canon
MICOSinging
Clarinet
Trumpet
PianoSaxophone
Chorus

Studio
Church

Duet

Blues

Violins
SingingDancing
Beach
BadmintonGym
InVehicle
Japanese
Tennis

Diesel

Park

Lion

Carriage
Platform

Dog
RacingCar
Train

Football
ParkingLot
Skiing

v v
v
v

Music (16)
NN NN
NN NN

NN N NN
\
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NN R N N N N N N N N N NENENENEN
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Dataset Features and Statistics. We analyze our proposed PAVS10K from three aspects, i.e.,
dataset’s attributes’ distributions, dataset’s ground truth distributions and salient objects’ challeng-
ing features.

* Attributes’ distributions. The attributes represent common challenges for conducting panoramic
dynamic audio-visual salient object segmentation, thus facilitating detailed analysis regarding
2D image-/video-based salient object segmentation, 360° image-/video-based salient object
segmentation and panoramic audio-visual salient object segmentation models. Specifically, as
shown in Fig. 3.25 (a), the correlated attributes denote the attributes simultaneously appearing
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Fig. 3.25 Dataset features and statistics. (a) and (b) represent the correlation and frequency of
PAVS10K’s attributes, respectively.

360-SOD 360-SSOD PAVS10K

Fig. 3.26 A comparison of ground truth distribution of our PAVS10K and two recently proposed
panoramic image salient object segmentation datasets, i.e., 360-SOD [257] and 360-SSOD [258].

in the same sequence. e.g., LR and MO show a strong correlation which indicates the two at-
tributes tend to co-appear in most of the videos. Besides, as shown in Fig. 3.25 (b), e.g., most
of the videos (59) include small objects (< 0.5% of ER image area) and more than half of the
videos (39) contain distorted objects, which illustrates that our PAVS10K is challenging.

» Equator Center Bias. As can be seen in Fig. 3.26, our PAVS10K, 360-SOD [257] and 360-
SSOD [258] all show equator-center bias. The observation is consistent to the facts that pho-
tographers tend to frame the primary objects at the equator center of the 360° cameras, in
addition, HMDs’ users usually pay more attention to regions near the equator center during
free-viewing [330,331]. Besides inter-dataset comparison, we also show the ground truth dis-
tribution of our PAVS10K in terms of each of the three super-classes (Fig. 3.26). As a result, our
PAVS10K clearly shows the equator-center biased pattern at both overall and super-class-based
levels.

* 360° objects. Following [21], we compute the normalized objects’ size of our PAVS10K. The
size distribution ranges from 0.03% to 23.00%, covering extremely small objects. In addition,
we compare the situations of conducting object detection in 2D and 360° domains (Fig. 3.28).
The appearances and sizes of 360° objects indicate the challenges for conducting salient object
segmentation in panorama.
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Fig. 3.27 Ground truth distribution over three super-classes of our proposed PAVS10K.

“Japanese”

“Spanish”

Fig. 3.28 An illustration of exclusive attributes regarding 360° salient object segmentation. (a) and
(c) denote OV and GD salient objects in equirectangular images, (b) and (d) denote the ones in local
viewports (a.k.a. common 2D cases).

3.4.3 Benchmark studies

In this sub-section, we introduce extensive benchmark experiments conducted based on the proposed
PAVS10K. In the computer vision community, especially in the field of salient object segmentation,
a comprehensive benchmark is essential to support a newly proposed task and its dataset, and is ben-
eficial for future model development based on the new task/dataset. Following the same procedure as
illustrated in Section 3.3.3, we introduce our new panoramic video salient object segmentation bench-
mark from the aspects of experimental settings and corresponding results.

Settings. Commonly, an integrated benchmark consists of consistent training/testing dataset split,
benchmark models from multiple salient object segmentation related fields, and different metrics for
quantitative evaluation of baseline models’ predictions.

Data split. All 67 videos are split into separate training and testing sets by using a random selection
strategy with a ratio of about 6:4. We thus reach a split of 40 training and 27 testing videos, with 5,796
and 4,669 video frames, respectively. Each of the 10,465 video frames are with per-pixel instance-
/object-level ground truth. The testing set is further divided into “Miscellanea” (Testl), “Music”
(Test2) and “Speaking” (Test3), consisting of 6, 6 and 15 videos respectively.

Benchmark models. To contribute a comprehensive benchmark to 360° video-based salient object
segmentation, we collect 13 state-of-the-art methods from multiple related fields, including 2D image-
base salient object segmentation methods (i.e., CPD-R [139], SCRN [297], F3Net [122], MINet [126],
LDF [128], CSFR2 [129] and GateNet [132]), 2D video-based salient object segmentation models
(i.e., RCRNet [178] and PCSA [175]), video object segmentation (i.e., COSNet [180], 3DC-Seg [332]



3.4 A dataset for salient object segmentation in 360° videos 89

and RTNet [333]) and panoramic image salient object segmentation baseline (FANet [334]). Note that
all our collected benchmark models are able to be trained in an end-to-end manner, based on the most
widely used open-source machine learning framework, i.e., PyTorch. For fair comparison, we re-
train the 13 baseline methods with the training set of our PAVS10K, based on their official publicly
available codes and recommended parameter settings.
Evaluation metrics. Following the common settings in the field of salient object segmentation, we
apply four widely used metrics, i.e., mean F-measure (Fj, where B2=0.3) [276], MAE (.#) [277], S-
measure (S¢, where a=0.5) [278] and mean E-measure (Ey) [279], to evaluate all benchmark models.
Details about the four metrics are illustrated in Section 2.7.
Performance comparison. To contribute a comprehensive benchmark, we compare all baseline
methods on our PAVS10K with and without PAVS10K training.

As a result, the quantitative results of the baseline models without/with PAVS10K training, are
illustrated in Table 3.9 and Table 3.10, respectively. Besides overall performance, we also show the

attributes-based performance of all baseline models in Table 3.11.

Table 3.9 Performance comparison of benchmark models without training on PAVS10K. I. = image-
based salient object segmentation models. V. = video-based salient object segmentation or video
object segmentation models. Sy = S-measure (@=0.5 [278]), Fg = mean F-measure ([32=0.3) [276],
Ey = mean E-measure [279], .# = mean absolute error [277]. Please note that FANet did not release
its pre-trained model during the period when we conducted the benchmark studies.

Miscellanea (Test1) Music (Test2) Speaking (Test3) PAVS10K-Test

Fg 1 Sa® Egt M| Fg1 Sal Eot M| Fg1 Sal Eot M| Fg1 Sal Eyt A
261 .623 .604 .084 .151 .506 .483 .135 .190 .526 .488 .162 .195 .545 .515 .137
271 .625 .606 .087 .206 .598 .594 .051 .218 .559 .518 .130 .226 .584 .558 .101
236 .609 .573 .082 .152 .509 .524 .150 .215 .567 .505 .105 .204 .563 .526 .110
225 .606 .573 .093 .152 .542 531 .073 .180 .523 469 .151 .183 .548 .509 .118
268 .622 .606 .083 .204 .550 .557 .087 .227 .546 .503 .137 .230 .566 .541 .112
305 .650 .624 .075 .139 510 471 .129 .189 .545 511 .128 .202 .562 .529 .116
243 637 .588 .069 .206 .594 .611 .035 .206 .569 .554 .090 .214 .591 .576 .072
280 .602 .581 .110 .181 .571 .614 .034 .232 .595 .587 .065 .230 .591 .592 .068
307 .666 .644 .062 312 .630 .683 .040 .238 .591 .542 .065 .271 .619 .601 .058
197 629 .632 .042 .104 543 548 .030 .157 .565 .594 .037 .153 575 .592 .036
231 544 523 .143 268 .578 .663 .059 .193 .540 .584 .088 .220 .550 .588 .094
331 .632 .602 .110 436 .668 .769 .016 .338 .637 .639 .045 .361 .643 .661 .054

Type Year Methods

CVPR’19 CPD-R[
ICCV’'19 SCRN [
AAAT20 F3Net [
1. CVPR’20 MINet [
CVPR’20 LDF [
ECCV’20 CSFR2[
ECCV’20 GateNet [
CVPR’19 COSNet [
ICCV’19 RCRNet [
V. AAAT20 PCSA [
BMVC’20 3DC-Seg [
CVPR’21 RTNet [

e e e e e e e e e

3.4.4 Discussion

The extensive benchmark studies based on our PAVS10K illustrate the challenges for conducting 360°
video salient object segmentation.

Overall performance. According to the detailed quantitative results, we find that both salient ob-
ject segmentation and video object segmentation state-of-the-art methods tend to show compromised
performance (as for the image context) on the testing set of our PAVS10K, when compared to their
performance on current salient object segmentation /video object segmentation benchmark datasets.
For instance, as shown in Table 3.9 and Table. 3.10, the mean value of S, of all competing meth-
ods on PAVS10K-Test are 0.534 and 0.626 without and with PAVS10K training, respectively. Be-
sides, the maximum of S, of these methods is 0.655. However, state-of-the-art video salient object
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Table 3.10 Performance comparison of benchmark models with training on PAVS10K. (P)I. =
(panoramic) image-based salient object segmentation models. V. = video-based salient object seg-
mentation or video object segmentation models. S = S-measure (=0.5 [278]), Fg = mean F-measure
([32:0.3) [276], Ey = mean E-measure [279], .# = mean absolute error [277].

Miscellanea (Test1) Music (Test2) Speaking (Test3) PAVS10K-Test

Fg1 Sat Eogt M| Fg?t Sat Egt M| Fg? Sat Eg T M| Fgt Sat Ep 1 M|
248 654 .645 .035 272 .608 .632 .018 .228 .588 .657 .026 .243 .609 .648 .026
250 .665 .615 .046 .341 .683 .664 .023 276 .636 .642 .034 .286 .655 .641 .034
257 655 .629 .040 .358 .662 .749 .021 .308 .626 .692 .027 .310 .642 .691 .029
238 .650 .625 .050 .380 .670 .716 .020 .261 .590 .635 .053 .286 .624 .652 .044
280 .663 .626 .044 389 .671 .753 .023 309 .625 .711 .037 .322 .645 .701 .035
238 .652 .642 .033 .347 .665 .693 .018 .285 .636 .700 .026 .290 .646 .684 .026
285 .677 .651 .044 290 .673 .616 .018 .260 .633 .638 .034 .273 .653 .636 .033
147 610 .553 .031 .220 .577 .541 .016 .176 .572 .570 .023 .181 .582 .559 .023
272 661 .640 .034 .403 .695 .738 .019 .282 .632 .687 .030 .310 .654 .688 .029
123 .604 574 .034 310 .657 .645 .022 .150 .571 .534 .026 .184 .600 .570 .027
300 .668 .618 .062 .326 .635 .632 .046 .289 .629 .592 .056 .300 .640 .608 .055
240 .622 .634 .038 .365 .638 .766 .020 .194 .555 .668 .028 .247 .591 .683 .029
164 610 .529 .030 .380 .646 .758 .018 .207 .566 .663 .027 .241 .596 .654 .025

Type Year Methods

CVPR’19  CPD-R [
ICCV’19 SCRN [
AAAT 20 F3Net [
I.  CVPR’20 MINet [
CVPR’20 LDF [
ECCV’20  CSFR2 [
ECCV’20 GateNet [
CVPR’19  COSNet [
ICCV’19 RCRNet [
V. AAAT20 PCSA [
BMVC’20 3DC-Seg [
CVPR’21] RTNet [
PI.  SPL20 FANet [

P e e § [ e Sl S '

Table 3.11 Performance comparison of benchmark models based on each of the attributes. Sy = S-
measure (a=0.5 [278]), Fg = mean F-measure (B?=0.3) [276], Ey = mean E-measure [279], A =
mean absolute error [277].

Image-based salient object segmentation Video-based salient object segmentation -
Attr. Metrics CPD-R SCRN F3Net MINet LDF CSFR2 GateNet COSNet RCRNet PCSA 3DC-Seg RTNet FANet
[1391 [2971 [122] [126] [128] [129]  [132] [180] [178] [175]  [332] [333] [334]
ST 610 657 644 624 648  .649 .653 .588 .661 .607 .643 595 .605
Fgt 244 288 315 288 324 292 270 .187 319 .193 302 251 258

MO Ey T 655 649 705 665 718  .69%4 .637 571 706 .580 .614 703 .676
M) 027 .034 .030 .045 .033 .027 .034 .024 .029 .027 .054 028  .025
SaT 606 655 641 619 645 645 .650 577 .652 .600 .636 586 .593
oc Fgt 260 294 329 298 335 301 276 .191 316 202 .308 259 258
Ey T 649 639 696 .651 709  .682 .622 .554 .691 570 .607 694 .668
M| 023 029  .026 .043 .028 .023 .030 .020 .025 .024 .045 024 .022
Sa T .605 .649 639 618 .637 .644 .647 .585 .650 .609 .633 590 598
LR Fgt 229 271 301 272 303 277 255 176 294 189 286 234 238
Ey T 640 636 693 .642 694  .683 .625 .565 .687 .586 .600 .688  .657
M) 025 034 .028 .045 .037 .025 .033 .022 .029 .026 .057 029 .025
ST 622 651 630 .620 .646  .638 .645 582 .642 .586 .632 595 587
MB Fgt 281 304 299 298 330 .297 281 212 .307 197 .302 271 247

Ey T 628 630 .663 637 .667  .668 .621 .563 .675 .563 599 676 .627

M| 021 029 .027 .047 .029 .021 .030 .019 .024 .022 .044 023 .020

Sa T 634 661 568 633 636 .636 .639 582 .630 599 .641 573 611

ov Fgt 311 318 167 314 309 .295 258 207 276 193 .362 210 310
Ey + 652  .638 538 .691 .676  .697 .637 .633 732 536 671 703 .679
A | 018 021 .029 .038 .039 .021 .025 .021 .029 .021 .039 022 .018
ST 630 662 639 .633 .659  .646 .658 .588 .651 578 .659 587 599
Fgt 285 309 299 294 341 304 .300 189 311 156 .320 247 245

GD Ey 1 657 .653  .669 676 .680 .674 .662 .564 .687 .538 .621 .666  .630
M| 037 042 .040 .045 .043  .035 .042 .032 .037 .036 .062 .038  .034
SaT .625 .680 .667 654 664 .670 .676 592 .680 .621 .654 602  .616
cs Fgt 277 320 357 335 361 .330 .304 197 354 217 324 269 279

Ey T 674 664 720 .691 740  .696 .655 .550 711 .590 .625 Jg11 0 .697
AL 029 035 031 035 .034 .028 .033 .026 .030 .029 .058 031 .028

segmentation methods such as SSAV [23], PCSA [175] and DCFNet [ 163] show much better perfor-
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mance on widely used video benchmark datasets, with Sy, of 0.893/0.902/0.914 on DAVIS2016 [151],
0.819/0.827/0.846 on VOS [22] and 0.724/0.741/0.741 on DAVSOD [23].

Attribute-based performance. The proposed attributes (MO, LR, OC, MB, GD, OV and CS) of our
PAVS10K enable detailed analysis towards panoramic video salient object segmentation modeling.
Especially, compared to previous video datasets [23, 151], we propose extra attributes, i.e., GD and
OV, which reflect common challenges for modeling on 360° (Fig. 3.28). As a result, COSNet [180]
acquires superior results on all attribute based testing sets only in terms of .# [277], which is the
mean value of per-pixel absolute error (Eq. 2.2). A superior .# yet weak Fg (Table 3.11) indicate
that video salient object segmentation method such as COSNet tends to be conservative for detecting
salient objects in 360° panoramic videos.

3.4.5 Conclusion

In this section, we first propose a new task, panoramic dynamic audio-visual salient object segmen-
tation, which aims at modeling both visual and audio cues to conduct salient object detection in 360°
panoramic videos. To support the task, we establish a large-scale 360° video dataset, i.e., PAVS10K,
representing various real-life scenes with good visual quality (4K-resolution). Our PAVS10K pro-
vides multiple labels including three super-classes, 67 sub-classes, seven salient object segmenta-
tion attributes, 10,465 video frames with per-frame manually labeled object-level and instance-level
masks. We further collect 13 state-of-the-art salient object segmentation /video object segmenta-
tion methods to establish so far the largest panoramic dynamic audio-visual salient object segmenta-
tion benchmark. We conduct extensive qualitative and quantitative experiments to achieve compre-
hensive benchmark studies.
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3.5 Conclusion

This chapter introduces key issues towards large-scale salient object segmentation construction, and
our newly proposed 360° image/video-based salient object segmentation datasets, i.e., F-360iSOD and
PAVS10K. Considering the blank of 360° salient object segmentation, the priority of this thesis work
was to build both image and video datasets which observe common rules of current 2D datasets. To
this end, we first summarized several key issues towards large-scale dataset construction, by detailing
the statistics of current widely used 2D image/video salient object segmentation datasets. Based on the
spotted key aspects of large-scale salient object segmentation datasets, we built the first 360° image-
based salient object segmentation dataset, namely F-360iSOD, that provides both object-/instance-
level pixel-wise ground truth. Inspired by the real-world scenes where human attention is affected by
both audio and visual cues, we further proposed the first 360° dynamic audio-visual salient object seg-
mentation dataset, namely PAVS10K, where the salient objects are annotated based on audio-visual
eye fixations. To facilitate and inspire future works based on the newly proposed F-360iSOD and
PAVS10K, we further conducted comprehensive benchmark studies.



Chapter 4

Salient object segmentation in light field

4.1 Introduction

Unlike traditional 2D RGB images, both light field and 360° based images contain extra visual cues
reflecting real-life daily scenes. For instance, light field camera is able to capture visual details at
different focus distances and thus generating a stack of images, namely focal stacks, with varying
spatial texture across image depth. On the other hand, 360° camera is able to capture global con-
text in a 360°x180° field-of-view. Therefore, modeling human attention in light field and 360°
are both important for exploring human attention mechanism in real world. In this case, besides
the main focus of our PhD work towards 360° vision, we have conducted multiple works in terms
of light field salient object segmentation. In this chapter, we summarize our proposed new salient
object segmentation methodologies in light field. Inspired by current state-of-the-art salient object
segmentation methods with various attention modules as summarized in Chapter 2, we argue that
recently proposed state-of-the-art attention models (e.g., SENet [145], CBAM [146] and Non-local
network [261]) can also be used as basic components for the development of light field salient object
segmentation models. We hereby propose new methods (Section 4.2) consisting of multiple attention
mechanisms to fuse and refine features extracted from multiple light field modalities (i.e., all-in-focus,
focal stack, depth).

Specifically, to explore multiple attention mechanisms for effective object-level attention mod-
eling with multi-modal light field data, we first proposed SA-Net. Our SA-Net exploits the rich
information of focal stacks via 3D convolutional neural networks, decodes the high-level features
of multi-modal light field data with two cascaded synergistic attention modules, and predicts the
saliency map using an effective feature fusion module in a progressive manner. As the development
of large-scale vision transformers [143], we further explored the encoder of SA-Net and thus propos-
ing SA-Net-V2, which replaces the ResNet blocks with hybrid-ViT based transformer blocks at the
all-in-focus branch of the encoder. To improve the SA-Net from a perspective of model computa-
tional burden, we further proposed CMA-Net, which consists of two novel cascaded mutual attention
modules aiming at fusing the high level features from the modalities of all-in-focus and depth.

In the following section, we detail the three proposed methods, i.e., SA-Net [251], SA-Net-V2 and
CMA-Net in a progressive manner.
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4.2 Learning synergistic attention for light field salient object segmen-
tation

4.2.1 Introduction

Recently, light field salient object segmentation [238] has attracted increasing attention owing to the
introduction of various light field benchmark datasets, such as DUT-LF [240], LFSD [238], HFUT
[239], DUT-MV [241], and Lytro Illum [242]. In addition to all-in-focus images, light field datasets
[238, , ] also provide focal stacks, multi-view images, and depth maps, where the focal stacks
are usually known as a series of focal slices focusing at different depths of a given scene while the
depth map contains holistic depth information. Unlike RGB-D salient object segmentation models,
which utilize only two modalities, i.e., RGB images and depth maps, the light field salient object
segmentation models also use multi-view images (e.g., [241, 1), or focal stacks [240, —246] as
auxiliary inputs to further improve the performance. It is worth noting that, most recent focal stack-
based deep learning light field salient object segmentation models (e.g., ERNet [245]) have achieved
state-of-the-art performances on three widely-used light field benchmark datasets [238-240].
Despite their advantages, existing works suffer from two major limitations. First, they explore
little about the complementarities between all-in-focus images and the focal stacks. Existing focal
stack-based methods [240, 244-246] applied only channel attention mechanisms to weight the key
feature channels at the decoding stage, to aid the feature fusion between the modalities of all-in-
focus and focal stack. Considering the fact that salient objects usually appear at specific depths of
a given scene, all-in-focus image may include redundant texture details compared to focal stack, in
which a focal slice focuses on a local region at specific depth and blurs the others. New cross-modal
fusion strategy, which applies more sophisticated attention mechanisms learning robust cross-modal
complementarities, may help solve the issue. Second, the methods [240, 244-246] all paid little
attention to the inter-slice modeling during the encoding stage of focal stacks. In practice, the all-in-
focus images are generated from focal stacks with a photo-montage technique [335], implying that the
former simultaneously depict the spatial details of each local region, while the latter asynchronously
focus on different local details along the sequential dimension. The relationship between focal slices
reflects the context of given scenes as the changes of depth, which is appropriate to be encoded in a
progressive manner.
SA-Net. To this end, we propose Synergistic Attention Network (SA-Net) to conduct light field
salient object segmentation with rich information from all-in-focus images and focal stacks (Fig. 4.1).
Specifically, we first employ 3D convolutional neural networks to progressively extract the sequential
features from focal stacks. At the decoding stage, we propose a synergistic attention (SA) module,
where the features from all-in-focus images and focal stacks are selectively fused and optimized to
achieve a synergistic effect for salient object segmentation. Finally, the multi-modal features are fed
to our progressive fusion (PF) module, which fuses multi-modal features and predicts the saliency
map in a progressive manner.
SA-Net-V2. Furthermore, as the development of recent transformers (e.g., ViT [143]), we replace
the resnet50 with hybrid-ViT framework at the all-in-focus branch of the encoder to improve model
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Light Field Data Focal Stack

All-in-Focus Image ' Ground Truth Ours (SA-Net) ERNet

Fig. 4.1 An example of light field salient object segmentation using our SA-Net (Ours) and a state-
of-the-art light field model, i.e., ERNet [245].

performance. In addition, we take advantage of the inter-slice features in both the encoding and
decoding processes, thus gaining an advanced version of SA-Net, namely SA-Net-V2.

All-in-focus Image Ground Truth Depth
Ours (CMA-Net) ERNetT BBSNet

Fig. 4.2 An example of light field salient object segmentation using our CMA-Net (Ours) and a state-
of-the-art RGB-D model, i.e., BBSNet [270].

CMA-Net. As the computational burden is also an important issue for evaluating the effectiveness
of deep learning models, we are inspired by RGB-D methods and thus using all-in-focus images and
depth information to conduct light field salient object segmentation with a fine-tuned SA-Net, namely
CMA-Net (Fig. 4.2).

In a nutshell, we provide several contributions as follows:

* In SA-Net, we propose the SA module to decode the high-level features from both all-in-
focus images and focal stacks with a synergistic attention mechanism. Our SA module exploits
the most meaningful information from the multi-modal multi-level features, allowing accurate
salient object segmentation by taking advantage of light field data.

¢ In SA-Net, we introduce a dual-branch backbone to encode the all-in-focus and focal stack
information, simultaneously. To the best of our knowledge, our work is the first attempt to
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utilize 3D convolutional neural networks for the feature extraction of focal stacks in the field of
light field salient object segmentation.

* In SA-Net, we design the PF module to gradually fuse the selective high-level features for the
final saliency prediction.

* In SA-Net-V2, we discard the three 3D convolutional layers at the focal stack branch of the
encoder, and replace the original 2D receptive field blocks [139] with our proposed 3D ones.
To fuse the 3D focal stack-based features and 2D all-in-focus features at high-level, we further
design a multi-head synergistic attention module (Multi-head SA).

* In CMA-Net, we propose a new cascaded mutual attention (CMA) mechanism to efficiently
fuse the RGB-D high level features. Our CMA-Net does not apply focal stacks, also avoids
processing low-level features from both the modalities, thus performing competitive inference
speed.

» Extensive experiments demonstrate that all our proposed models (SA-Net,SA-Net-V2 and CMA-
Net) outperforms dozens of state-of-the-art salient object segmentation models upon widely-
used light field datasets.

4.2.2 Related works

Related datasets and most recent representative works towards RGB-D salient object segmenta-
tion and light field salient object segmentation are summarized in Chapter 2. In this sub-section, we
further detail the related works towards light field salient object segmentation, several applications
regarding mutual attention and 3D convolutional neural networks.

Light field salient object segmentation. By the time of the release of our proposed SA-Net, there
are only 18 (11/7 traditional/deep learning-based, respectively) published methods. For traditional
ones, the early method [238] conducted light field salient object segmentation by considering back-
ground and location related prior knowledge. In addition, [336] proposed a unified architecture based
on weighted sparse coding. Later methods [239, 337-341] explored and further combined multi-
ple visual cues (e.g., depth, color contrast, light field flows and boundary prior) to detect saliency.
Most recent methods [215, 342] shifted more attention to depth information and employed cellular
automata for the saliency detection in light field. With the development of public light field datasets,
deep learning-based methods were proposed to conduct salient object segmentation task. Specifi-
cally, [241] developed a view synthesis network to detect salient objects by involving multi-views.
With multi-views as inputs, [248] further established a unified structure to synchronously conduct
salient object and edge detection. Besides, [242] applied DeepLab-v2 for salient object segmenta-
tion with multi-lens. As a mainstream, [240, 244-246] all employed ConvLSTM and channel at-
tention mechanisms at the decoding stage to detect salient objects in all-in-focus images and focal
stacks. [240] and [246] both modeled the all-in-focus and focal stack with separate encoder-decoder
architectures. Specifically, [240] added the outputs of the decoders of both the focal stack branch and
all-in-focus branch. [246] concatenated the outputs of all-in-focus branch and focal stack branch and
used the ConvLSTM [14] to refine the concatenated features. In [244], focal stack and all-in-focus
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share the same encoder. The extracted multi-modal features were further fused with memory-oriented
attention modules. The most recent [245] designed teacher network and student network to encode
the focal stack and all-in-focus respectively, and used ConvLSTM based attention module to facilitate
the distillation process between the teacher network and student network.

Mutual attentions. Mutual(co)-attention, as a specific type of attention mechanism within the multi-
branch attention category, has been used in the fields of video object segmentation (e.g., COS-
Net [180]), RGB-D salient object segmentation (e.g., S2ZMA [343]), etc.. Specifically, COSNet first
proposed to establish mutual attention module for effective feature fusion and refinement between
different video frames. S2MA [343] designed a self-mutual attention module to automatically select
useful high-level features learned from both modalities. However, mutual attention mechanism has
been seldom studied in the field of light field salient object segmentation. DLLF [240], LFNet [246],
MoLF [244] and ERNet [245] all employed classical channel attention [145] to aid the feature se-
lection and refinement from the modality of focal stacks. Recent large-scale light field salient object
segmentation benchmark studies (e.g., [244, 245]) indicate that it remains an open question how to
efficiently fuse the intrinsic features from multiple modalities for advanced detecting accuracy.

3D convolutional networks. 3D convolutional networks have proved great competence in modeling
spatial-temporal information of video data, thus dominating the video-based detection fields, such
as action recognition [344] and video object segmentation [332]. Recently, RD3D [228] was pro-
posed to address the task of salient object segmentation by using a 3D convolutional network-based
encoder-decoder structure, and achieved promising performance on widely-used RGB-D salient ob-
ject segmentation benchmarks. As for light field salient object segmentation, MTCNet [248] applied
3D convolutional network-based encoder to extract the depth features from multi-view images. The
rich high-level features gained from 3D convolutional networks were then used to infer depth maps
and facilitate the salient object segmentation task, synchronously. Since focal stacks are sequences of
focal slices focusing at different depths, learning focal stacks’ features via 3D convolutional networks
possesses great potential to boost the model performance for light field salient object segmentation,
but so far lacks investigation.

4.2.3 Focal stack-based methodologies

In SA-Net, we exploit rich cross-modal complementary information with channel attention and co-
attention mechanisms to achieve a synergistic effect between multi-level all-in-focus and focal stack
features. In addition, to capture the inter-slice information of focal stack, we employ 3D convolutional
neural networks to extract rich features from focal stacks. Fig. 4.3 shows an overview architecture of
our SA-Net, which consists of three major components, including a multi-modal encoder consisting
of 2D and 3D convolutional neural networks, two cascaded synergistic attention modules, and a
progressive fusion module.

Multi-modal encoder. As shown in Fig. 4.3, the encoder of our network is a dual-branch architecture
for synchronous feeding of the two modalities, i.e., all-in-focus images and focal stacks. For the 2D
branch, we encode an input all-in-focus image with a group of convolutional blocks. On the other
hand, focal stack is represented as a 4D tensor with the last dimension 7" denoting the number of focal
slices. We encode the focal stack with a stack of 3D convolutional blocks, which are able to jointly
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Fig. 4.3 An overview of our SA-Net. Multi-modal multi-level features extracted from our multi-
modal encoder are fed to two cascaded synergistic attention (SA) modules followed by a progressive
fusion (PF) module. The short names in the figure are detailed as follows: CoA = co-attention com-
ponent. CA = channel attention component. AA = all-in-focus-induced attention component. RB
= residual block. PF = progressive fusion module. P, = the nth saliency prediction. (De)Conv =
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capture the rich intra- and inter-slice information for accurate salient object segmentation. Note that
the same setting (7' = 12) as in [245] is adopted in our 3D branch, and a zero-padding strategy is
applied to the focal stack with less than 12 focal slices.

Synergistic attention module. As high-level features tend to reserve the essential cues (e.g., lo-
cation, shape) of salient objects while the low-level ones contain relative trivial information (e.g.,
edge) [139], our decoder only integrates high-level features to avoid redundant computational com-
plexity. Specifically, we use {f?P}+, and {f?P}?, to denote the high-level all-in-focus and focal
stack features extracted from the 2D and 3D convolutional networks of our dual-branch backbone
network, respectively.

Multi-level attention. As shown in Fig. 4.3, a receptive field block (RFB) [139] is first employed
to enrich the global context information for each convolution block. Taking the all-in-focus branch
as an example, the adjacent high-level features from the encoder are then combined with a channel
attention (CA) mechanism from [145], i.e.,

fER(i) = o(FC(ReLU (FC(P(fgpp (i+1)))))) © frrs (i) + frrs (i), 4.1

where f2B; (i) represents the ith level features provided by RFB; f2Rg (i + 1) is the up-sampled version
of f3%(i+1); o(-), FC(-), P(-), and ® denotes the Sigmoid function, fully connected layer, max
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Fig. 4.4 The architecture of the co-attention (CoA) module. C.N. = column-wise normalization. R.N.
= row-wise normalization.

pooling, and Hadamard product, respectively. The resulting feature f 2D(') is further concatenated
with the upper level feature f3R (i + 1) provided by a residual block (RB) for the feature f2D (i),
which is one of the pair-wise inputs ({ /25 (i), f2D(i)}) for the second stage of our SA module. Note
that the focal stack branch follows the consistent procedure as in all-in-focus branch since the two

branches are symmetric.

Multi-modal attention. Inspired by a mutual attention mechanism [180] proposed for cross-frame
feature fusion in the field of video object segmentation, the high-level feature interaction between the
two modalities is conducted with two cascaded co-attention (CoA) modules (Fig. 4.3). To be specific,
as shown in Fig. 4.4, given the pair-wise features {25 (i), /2D (i)} at ith layer as inputs, a similarity
matrix M; can be computed as:

F(f& )" @ F(f&a (i), (4.2)

where F(-) represents a flatten operation reshaping the 3D feature matrix f2D (i) € RE*W*C (0 a
2D one with a dimension of HW x C, ® denotes matrix multiplication. Note that we do not apply
extra weight matrix as in [180] to compute M;, since the CoA module aims at fusing the cross-modal
features with equally assigned attention. The M; is then column-/row-wisely normalized via:

= Softmax(M;) € [0,1)V*HW

4.3)
M! = Softmax(M) € [0, 1]W>AW

where So ftmax(-) normalizes each column of the similarity matrix. Therefore, the co-attention-based
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pair-wise features ({ 22, (i), f2D, (i)}) at ith layer are further defined as:

R(f&a(i) @ Mf) € [0,1]=€,
R(fea(i) @M;) € [0, 1]>C,

Con (D)

fCoA (l)

4.4)

where R(-) reshapes the given matrix from a dimension of C x HW to H x W x C. A self-gate
mechanism [180] is further employed to automatically learn the co-attention confidences (G2, G?D)
for f22, (i) and fZP, (i). Therefore the final outputs { /3% (i), fon (i)} of our SA module at ith layer are
computed as:

Fen(i) =GP @ fabu (i) and f5X (i) = G;° © fEon (i), 4.5)

where the co-attention confidence G?° = o (Conv(fZ2, (i))) with Conv(-) denoting a convolutional
layer.

By combining the channel attention (CA) and co-attenrion (CoA) module, our SA module is par-
ticularly effective in exploiting the multi-level and multi-modal complementary information, which,
therefore, provides significantly improved performance, as demonstrated by our ablation studies in
Section 4.2.5.
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Fig. 4.5 The architecture of all-in-focus-induced attention (AA) component.

Progressive fusion module. To obtain the final prediction, we further add a progress fusion (PF)
module to gradually up-sample the selective high-level features provided by our SA module (Fig.
4.3). Specifically, we first balance the focal stack and all-in-focus features with an all-in-focus-
induced attention (AA) component (Fig. 4.5) before the final fusion of the two modalities. The
AA component follows the same procedure applied in RGB-D fusion [270], i.e., unifying the channel
and spatial attention by computing:

fsh = fsn(2) and fgx = SA(CA(f5K(2))) + fix (2), (4.6)

where CA(-) and SA(-) denote spatial and channel attention components, respectively. We then con-
catenate the balanced cross-modal features and feed them to a deconvolutional block for the final
prediction P, i.e.,

P; = DB(Cat (f3R, fsX)), 4.7)
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where Cat(-) denotes the concatenation operation, and DB(-) represents a deconvolutional block con-
sisting of three deconvolutional layers [270] and convolutional layers that are organized in a cascaded
manner (Fig. 4.3).

Loss function. As shown in Fig. 4.3, our model predicts three saliency maps: {P,}3_, € [0,1]. Let
G € {0,1} denotes the ground-truth saliency map, we jointly optimize the three-way predictions by
defining a hybrid loss £:

N
(=Y lce(Pr,G) + liou(Py, G) + lem(Pr, G), (4.8)

n=1

where /pcg and /1oy denote Binary Cross Entropy (BCE) and Intersection over Union (IoU) loss,
respectively; the loss /gy = 1 — Ey with Ey denoting E-Measure [279].
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Fig. 4.6 The architecture of advanced version of SA-Net, i.e., SA-Net-V2.

SA-Net-V2. In SA-Net-V2, as shown in Fig. 4.6, the difference between SA-Net and SA-Net-
V2 mainly lies in all-in-focus encoder (as for SA-Net-V2, we took the hybrid-vit layers in DPT [345]),
SA modules (as for SA-Net-V2, we designed multi-head SA module to fuse 2D features from all-in-
focus branch and 3D futures from focal stack branch) and RFB modules (we fine-tuned RFB [139]
and adopted it to 3D feature refinement).

Implementation details. Our SA-Net and SA-Net-V2 are implemented in PyTorch and optimized
with Adam algorithm [3]. The backbone of SA-Net is based on a 2D standard ResNet50 for all-in-
focus images and an inflated 3D ResNet50 [344] for focal stacks. The 2D convolution layers in our
backbone are initialized with ImageNet-pretrained ResNet50, while the 3D convolutional layers are
initialized with a 2D weight transfer strategy [344]. During the training stage, the batch size is set
to 2, the learning rate is initialized as 1e-5 and decreased by 10% when training loss reaches a flat.
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It takes about 14 hours to train the proposed model based on a platform consists of Intel® i9-7900X
CPU@3.30GHz and one TITAN XP GPU.
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Fig. 4.7 An overview of our CMA-Net. RGB-D high level features extracted from duel-branch en-
coder are fed into two proposed cascaded mutual attention modules, followed by a group of (de-
)convolutional layers from [270]. The abbreviations in the figure are detailed as follows: AiF Image
= all-in-focus image. GT = ground truth. Resi = the ith ResNet [142] layer. (De)Conv = (de-
)convolutional layer. MA; = the ith mutual attention module. CMA = cascaded mutual attention
module. CW = column-wise normalization. RW = row-wise normalization.

4.2.4 RGB-D-based methodologies

The CMA-Netconsists of a duel-branch ResNet50 [ 142]-based encoder and a cascaded mutual attention-
based decoder.

RGB-D Encoder. Our encoder is a duel-branch architecture that consists of symmetrical convo-
lutional layers transferred from ImageNet-pretrained ResNet50 [142]. In CMA-Net, we only pro-
cess the high-level features, i.e., the features ({ fAF}4_ ) and {f>*}%_,) from the last three layers of
ResNets, to focus on salient objects’ shape and location cues [139] also to avoid extra computational
cost. The {fAF}*, and { fDep} ', are then fed into a series of receptive field blocks [139] to enrich

the global context information from each encoding level (Fig. 4.7).

Cascaded mutual attention. Similar to SA-Net, we illustrate the CMA-Net architecture from the
aspects of multi-level and multi-modal processing.

Multi-level Concatenation. The refined high level features from adjacent encoding stages, e.g.,
A (i) and f45 (i + 1) are further concatenated as fAF (i), where i (i € {2,3}) denotes the ith decod-

ing stage corresponding to the ith ResNet layer.

Mutual attention. Continually taking the ith decoding stage as an example, a similarity matrix (Sim;)
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between the features from two branches is computed as:

Sim; = F(fou (i) @ F(f&E (1)), (4.9)

where F(-) represents a flatten operation reshaping the 3D feature matrix fé&g( j) € RI>WXC o 2 2D

one with a dimension of C x HW, ® denotes matrix multiplication. Inspired by [180], the Sim; is then
column-/row-wisely normalized via:

FAIF(t) So ftmax(Sim;) € [0, I]HWXHW,

Sim

FOP(i) = So frmax(Sim}) € [0, 1]V <AV

Sim

(4.10)

where So ftmax(-) normalizes each column of the HW x HW matrix. As shown in Fig. 4.7, the

mutual attentions (fAF (i), focP(i)) for each of the branches are computed as:

foim () = R(FGin () @ F(fEsm()") € [0, 1]7W=€, @in
Dep/. Dep Fus T HxWxC ’
Sim (l> _R(FSim (l) ®F( Con(l)) ) € [Oa 1] )

where R(-) reshapes the given matrix from a dimension of C x HW to H x W x C, F(fE" (i) denotes
fused features from both branches (Fig. 4.7), which is the main difference when compared to the
counterpart in SA-Net. To further avoid unstable feature updating during the model training process,
a pair of self-adapted gate functions (G, Glpep ) are computed to gain the final mutual attention

AIF( ) Dep

matrix ( Ma (). The process can be described as:

G (i) = GMT @ £ (i) and fr (i) = GPP © fo (i), (4.12)

where ® represents Hadamard product, the gate function G4 = o(Conv(f2F(i))) with Conv(-) and
o(+) denoting a convolutional layer and a Sigmoid function, respectively. In CMA-Net, we cascade
two identical mutual attention modules to establish the decoder, thus acquiring the best performance

(see detailed ablation studies in Section 4.2.5).

Co-supervision and hybrid loss. As shown in Fig. 4.7, to stabilize the multi-modal learning process,
we apply a three-way strategy to co-supervise the training of our CMA-Net. Besides, inspired by a
multi-loss function training setting applied in [122], we combine three loss functions including widely
used binary cross entropy loss (¢gcg), intersection over union loss (¢jou) and E-loss ({fgm = 1 — Ej),
which is based on a recently proposed salient object segmentationmetric (Ey [279]). Therefore, our
hybrid loss function is denoted as:

N
(=Y lce(Pn,G) + liou(Py, G) + Lem(Py, G), (4.13)

n=1
where {P,}3_, € [0, 1] denotes the predicted three-way saliency maps, while G € {0, 1} denotes the
corresponding ground-truth binary mask.

Implementation details. Our CMA-Net is implemented in PyTorch 1.8 and optimized with Adam
algorithm [3]. During the training stage, the batch size is set to 16, the learning rate is initialized as
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le-4 with a decay rate of 0.1 for every 50 epochs. It takes about one hour to finish the training of
CMA-Net based on a platform consists of Intel® Xeon(R) W-2255 CPU @ 3.70GHz and one Quadro
RTX 6000 GPU.

4.2.5 Experiments

Settings.

Datasets. We evaluate our SA-Net, SA-Net-V2, CMA-Net and 28 state-of-the-art salient object seg-
mentation methods based on three widely-used light field datasets: DUT-LF, HFUT and LFSD, which
all provide focal stack and semantic ground truth corresponding to each of the all-in-focus images (see
detailed statistics of light field datasets in Section 2.4.3). For fair comparison, we simply follow the
settings of a top-ranking method, i.e., ERNet [245]. To be specific, 1000/100 all-in-focus images of
DUT-LF/HFUT are randomly selected as the training set, respectively, while the remains (462+155)
and the whole LFSD are used for testing. Notably, as for competing methods, we report the results
directly provided by authors or generated by officially released codes.

Metrics. We adopt the recently proposed S-measure (Sy) [278] and E-measure (Ey) [279], also the
generally agreed Mean Absolute Error (M) [277] and F-measure (Fpg) [270] as evaluation metrics
for the quantitative comparison between benchmark models and SA-Net and SA-Net-V2. Please
note that, following the benchmark in [245], we report adaptive F/E-measure scores of each of the
benchmark models.

(a) Fjg curve on DUT-LF (b) Ey curve on DUT-LF (c) Fy curve on HFUT (d) Eg curve on HFUT (e) Fg curve on LFSD  (f) E, curve on LFSD
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Fig. 4.8 F-measure (F) and E-measure (Ey) curves of state-of-the-art light field salient object seg-
mentation models and our SA-Net upon three datasets.

Comparison with state-of-the-art methods.

Quantitative results. We quantitatively compare our SA-Net, SA-Net-V2 and CMA-Net with 12/9/7
state-of-the-art RGB/RGB-D/light field salient object segmentation methods, respectively. As shown
in Table 4.1, our SA-Net-V2 outperforms all state-of-the-art salient object segmentation models by a
large margin in terms of all four evaluation metrics. We also perform a detailed comparison between
our SA-Net, CMA-Net and the competing light field salient object segmentation methods by using
F/E-measure curves. The results, shown in Fig. 4.8 and Fig. 4.10, indicate the F/E-measure curves of
our SA-Net and CMA-Net are higher than those ones of competing models.

Qualitative results. Furthermore, we show some of the predicted saliency maps in Fig. 4.9 and Fig.
4.11. As can be observed, our SA-Net and CMA-Net provide saliency maps closest to the ground
truth on various aspects, e.g., correct localization, intact object structure and clear details.
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Table 4.1 Quantitative results for different models on three benchmark datasets. The best scores are in
boldface. We train and test our SA-Net, SA-Net-V2 and CMA-Net with the setting that is consistent
with [245], which is the state-of-the-art model at present. * indicates tradition methods. - denotes
no available result. 1 indicates the higher the score the better, and vice versa for . LF = light field
salient object segmentation methods. 3D = RGB-D salient object segmentation models. 2D = 2D
image-based salient object segmentation methods.

Types Models DUT-LF [ 1 HFUT [239] LFSD [238]
Fg1t  Sot Egt Al Fgt Sat Egt AL Fgt Sat Eyt M|
SANetV2 0.941 0940 0.964 0.023 0.803 0.853 0.887 0.055 0.865 0.873 0.900 0.061
SANet 0920 0918 0.954 0.032 0.736 0.784 0.849 0.078 0.844 0.841 0.889 0.074
CMANet 0917 0918 0949 0.033 0.744 0.807 0.865 0.069 0.823 0.830 0.864 0.083

ERNetT [245] 0.889 0.899 0943 0.040 0.705 0.777 0.831 0.082 0.842 0.838 0.889 0.080

LF ERNetS [245] 0.838 0.848 0916 0.061 0.651 0.736 0.824 0.085 0.721 0.726 0.820 0.137

DLEFS [241] 0.801 0.841 0.891 0.076 0.615 0.741 0.783 0.098 0.715 0.737 0.806 0.147

LFS* [238] 0.484 0.563 0.728 0.240 0.430 0.579 0.686 0.205 0.740 0.680 0.771 0.208

MCA* [239] - - - - - - - - 0.815 0.749 0.841 0.150

WSC* [336] - - - - - - - - 0.706 0.706 0.794 0.156

DILF* [337] 0.641 0.705 0.805 0.168 0.555 0.695 0.736 0.131 0.728 0.755 0.810 0.168
]
]

S2MA [ 0.754 0.787 0.841 0.103 0.647 0.761 0.787 0.100 0.819 0.837 0.863 0.095
D3Net [ 0.790 0.822 0.869 0.084 0.692 0.778 0.827 0.080 0.804 0.825 0.853 0.095
CPFP [346] 0.730 0.741 0.808 0.101 0.594 0.701 0.768 0.096 0.524 0.599 0.669 0.186
TANet [347] 0.771 0.803 0.861 0.096 0.638 0.744 0.789 0.096 0.804 0.803 0.849 0.112
3D MMCI [348] 0.750 0.785 0.853 0.116 0.645 0.741 0.787 0.104 0.796 0.799 0.848 0.128
PDNet [349] 0.763 0.803 0.864 0.111 0.629 0.770 0.786 0.105 0.780 0.786 0.849 0.116

PCA [350] 0.762 0.800 0.857 0.100 0.644 0.748 0.782 0.095 0.801 0.807 0.846 0.112
CTMF [351] 0.790 0.823 0.881 0.100 0.620 0.752 0.784 0.103 0.791 0.801 0.856 0.119
DF [352] 0.733 0.716 0.838 0.151 0.562 0.670 0.742 0.138 0.756 0.751 0.816 0.162

F3Net [122] 0.882 0.888 0.900 0.057 0.718 0.777 0.815 0.095 0.797 0.806 0.824 0.106
GCPANet [121] 0.867 0.885 0.898 0.064 0.691 0.777 0.799 0.105 0.805 0.822 0.809 0.097
EGNet [141] 0.870 0.886 0914 0.053 0.672 0.772 0.794 0.094 0.762 0.784 0.776 0.118
PoolNet [140] 0.868 0.889 0919 0.051 0.683 0.776 0.802 0.092 0.769 0.800 0.786 0.118
PAGRN [353] 0.828 0.822 0.878 0.084 0.635 0.717 0.773 0.114 0.725 0.727 0.805 0.147
C2S [354] 0.791 0.844 0.874 0.084 0.650 0.763 0.786 0.111 0.749 0.806 0.820 0.113
R3Net [355] 0.783 0.819 0.833 0.113 0.625 0.727 0.728 0.151 0.781 0.789 0.838 0.128
Amulet [356] 0.805 0.847 0.882 0.083 0.636 0.767 0.760 0.110 0.757 0.773 0.821 0.135

2D

UCF [357] 0.769 0.837 0.850 0.107 0.623 0.754 0.764 0.130 0.710 0.762 0.776 0.169
SRM [358] 0.832 0.848 0.899 0.072 0.672 0.762 0.801 0.096 0.827 0.826 0.863 0.099
NLDF [359] 0.778 0.786 0.862 0.103 0.636 0.729 0.807 0.091 0.748 0.745 0.810 0.138
DSS [360] 0.728 0.764 0.827 0.128 0.626 0.715 0.778 0.133 0.644 0.677 0.749 0.190

Robustness of the proposed SA-Net. 1t is worth nothing that our SA-Net and SA-Net-V2 trained on
DUT-LF and HFUT also achieves promising performance on the unseen dataset, i.e., LFSD, indicat-
ing its superior generalization ability and robustness. Theoretically, the robustness of SA-Net owes to
the synergistic attention mechanism. In practice, attention mechanisms can improve network robust-
ness [146, , ] since they emphasize the most informative features and reduce the disturbance
of noisy features. Our SA module employs both channel attention and co-attention for better feature
representation, which can also improve the robustness of our model.

Efficiency of the propposed CMA-Net. 1t is worth mentioning that our CMA-Net is capable of running
at 53 fps, being much more efficient than the top-ranked ERNetT [245] which reports an inference
speed of only 14 fps. Besides, our proposed SA-Net and SA-Net-V2 have run-time of 47 fps and
26 fps during testing, respectively. Please note that the inference speed of all proposed models, i.e.,



106 Salient object segmentation in light field

SR JE JE 2K JE IR
AN AN A A
LW NN e

W e
MRS L AL e e

AiF Image Ground Truth Ours ERNetT ERNetS S2MA D3Net DILF*

Fig. 4.9 Qualitative comparison between our SA-Net and state-of-the-art light field salient object
segmentation models. x denotes traditional methods. Our SA-Net provides predictions closest to the
ground truth on various aspects. More visual results are shown in Fig. 4.14, Fig. 4.15, Fig. 4.16 and
Fig. 4.17.
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Fig. 4.10 F-measure (Fg) and E-measure (Ey) curves of state-of-the-art light field salient object seg-
mentation models and our CMA-Net upon two benchmark datasets, i.e., DUT-LF and HFUT.

SA-Net, SA-Net-V2 and CMA-Net are computed based on one Quadro RTX 6000 GPU.
Ablation studies of SA-Net.

To verify the effectiveness of each proposed module of our SA-Net, we conduct thorough ablation

studies by gradually adding key components. We first construct a baseline “B”, which extracts all-
in-focus and focal stack features with two 2D ResNet50 backbones, simply concatenates, and up-
samples the pair-wise high-level features for salient object segmentation.
Effectiveness of multi-modal encoder. To investigate the effectiveness of our multi-modal encoder,
we construct the second ablated version “ME”, which is similar to “B”, but using a 3D backbone
to extract focal stack features, consistent with our multi-model encoder (Section 4.2.3). The results,
shown in Table 4.2, indicate that “ME” outperforms “B” in terms of all evaluations, demonstrating
the effectiveness of our 3D convolutional neural network-based encoder. Besides, to confirm the
effectiveness of RFB for multi-level feature refinement, we also construct “MEQ” without using the
RFB, when compared to “ME”. The result (Table 4.2) shows that RFB benefits significantly to the
task.

Effectiveness of synergistic attention (SA) module. To investigate the effectiveness of our SA module,
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Fig. 4.11 Visual results our CMA-Net and state-of-the-art multi-modal salient object segmentation-
models. x denotes traditional methods. AiF Image = all-in-focus image.

we further construct “SA1” and “SA2”, which incorporate the SA into “ME” without and with CoA,
respectively. As shown in Table 4.2, both “SA1” and “SA2” improve the performance in comparison
with “ME”. In particular, the full version of SA (“SA2”) provides a significant improvement compared
to “ME”, indicating the importance of synergistic attention for learning the complementarities of
multi-modal features. Besides, we compare SA-Net with F-SA (Figure 4.12), which consists of
full four SA modules that fuse both the high and low level features for light field salient object
segmentation. An interesting finding is that an increase of parameters (about 1.3 million of increment)
focusing on low level features do not contribute to performance improvement (Table 4.2), which is
also consistent with the conclusion in [139].

Effectiveness of progressive fusion (PF) module. Compared with “SA2”, “PF1” uses the deconvolu-

Table 4.2 Quantitative results for the ablation studies of SA-Net on DUT-LF [240] and LFSD [238].
The best scores are in boldface. 1 indicates the higher the score the better, and vice versa for |.

Metric B MEO ME SAl SA2 PFl PF2 F-SA SA-Net

- Fgt 0871 0874 0.881 0.890 0.899 0912 0919 0913 0.920
=
o)
A M| 0051 0051 0.048 0.041 0.037 0.035 0.034 0.037 0.032
n Fgt 0811 0825 0.835 0.836 0.835 0.833 0.839 0.845 0.8344
%)
i
—

M| 0095 0.089 0.080 0.079 0.077 0.075 0.075 0.078 0.074
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Fig. 4.12 An overview of F-SA with four SA modules. CoA = co-attention component. CA = channel
attention component. AA = AiF-induced attention component. RB = residual block.
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Fig. 4.13 Visual results of ablation models.

tional block (Figure 4.3) to gradually up-sample the features for predicting the saliency map. Besides,
a three-way supervision (“PF2”) is further employed to provide a deep supervision for the training.
Finally, with the AA component (details in Section 4.2.3), our SA-Net achieves the best performance
(Table 4.2), and provides the saliency maps closest to ground truth (Figure 4.13).

Ablation studies of CMA-Net.

We conduct thorough ablation studies to further verify the effectiveness of each module of the
proposed method. We first construct basic “modell” which consists of single-branch ResNet layers
and a group of (de-)convolutional layers, without the inputs of depth maps. Followed by “model2”,
which contains the duel-branch encoder with both all-in-focus images and depth maps as inputs. As a
result, we find that depth information can be helpful for the salient object segmentation task (Tab. 4.3).
We then carefully add mutual attention mechanisms to different decoding stages. The “model3” and
“model4” are embedded with one mutual attention module at the 2"¢ and 3" stages (Section 4.2.4),
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Table 4.3 Quantitative results of the ablation studies of CMA-Net on DUT-LF [
The best scores are in boldface. 1 indicates the higher the score the better, and vice versa for |.

] and HFUT [

Metric Modell Model2 Model3 Model4 CMA-Net

Fg1  0.879 0.895 0914 0915 0.917

Se T 0.893 0911 0.916 0.916 0.918

DUT-LF Ey 1 0.931 0.943 0.949 0.950 0.949
M| 0.047 0.039 0.034 0.034 0.033

Fg1  0.697 0.704 0.727 0.729 0.744

HFUT Se T  0.792 0.795 0.791 0.791 0.807
Ey 1 0.837 0.828 0.842 0.858 0.865

M| 0074 0.078 0.076 0.071 0.069

].

respectively. Finally, we cascade two mutual attention modules (i.e., CMA-Net) and thus gaining the

best performance compared to all ablation models (Tab. 4.3).
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Fig. 4.14 Visual comparison of our SA-Net and state-of-the-art salient object segmentation models
upon DUT-LF [240] (1/2). x indicates tradition methods.
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Fig. 4.15 Visual comparison of our SA-Net and state-of-the-art salient object segmentation models
upon DUT-LF [240] (2/2). x indicates tradition methods.
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Fig. 4.16 Visual comparison of our SA-Net and state-of-the-art salient object segmentation models
upon HFUT [239]. x indicates tradition methods.
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Fig. 4.17 Visual comparison of our SA-Net and state-of-the-art salient object segmentation models
upon LFSD [238]. x indicates tradition methods.
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4.3 Conclusion

In this chapter, we proposed new methodologies for light field salient object segmentation. The new
methods can be summarized from the following two aspects:

Focal stack-based strategy. We proposed SA-Net and SA-Net-V2, which address the light field
salient object segmentationby learning synergistic attention between two light field modalities, i.e.,
all-in-focus images and focal stacks. The innovative attributes of our SA-Net are three-fold:

* It exploits the cross-modal complementary information by establishing a synergistic effect be-
tween multi-modal features.

* It is the first attempt to learn both the spatial and inter-slice features of focal stacks with 3D
convolutional neural networks.

* It predicts the saliency map with an effective fusion model in a progressive manner.

RGB-D-based strategy. Our CMA-Net, which consists of two cascaded novel mutual attention mod-
ules for RGB-D cross modal high-level feature fusion. CMA-Net achieves comparable performance
on widely used light field benchmark datasets based on four widey used salient object segmenta-
tion metrics, and a superior inference speed of 53 fps.

To varify the effectiveness of the proposed models, we conducted extensive experiments on three
widely-used light field datasets where 28 state-of-the-art salient object segmentation models and four
widely-adopted metrics are involved. Extensive qualitative and quantitative experimental results on
three light field datasets demonstrate the superiority of our SA-Net [251], SA-Net-V2 and CMA-
Net when compared to 28 competing models.

Our work towards light field salient object segmentation proved the ability of mutual attention
mechanism in multi-modal feature fusion and refinement, also inspired global-local feature fusion in
the 360° domain (Chapter 5).



Chapter 5

Salient object segmentation in 360°
images&videos

5.1 Introduction

In this chapter, we first illustrate our work towards 360° image-based salient object segmentation (Sec-
tion 5.2). Specifically, inspired by the synergistic attention proposed in our SA-Net [251], we further
propose channel-spatial mutual attention to fuse global-local features for effective salient object seg-
mentation in 360° images. As a result, our new method outperforms state-of-the-art segmentation
methods based on a 360° image-based salient object segmentation benchmark where multiple fine-
tuning and testing strategies are applied to the widely-used 360° datasets. Extensive experimental
results illustrate the effectiveness and robustness of the proposed method.

To further approximate the scenario where persons depend on both audio and visual cues to lo-
cate and recognize the salient objects in dynamic immersive environments, we summarize our work
(Section 5.3) towards 360° audio-visual salient object segmentation based on our newly proposed
panoramic audio-visual dataset, i.e., PAVS10K (Section 3.4). Specifically, we proposed a new audio-
visual conditional variational auto-encoder combining both audio and visual cues for effective and
interpretable 360° video-based salient object segmentation. As a result, our new 360° audio-visual
model is able to outperform state-of-the-art salient object segmentation and video object segmentation
methods and to estimate uncertainties towards model predictions.
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5.2 Channel-spatial mutual attention for 360° image-based salient ob-
ject segmentation

In this section, we introduce our work towards 360° image-based salient object segmentation. Specif-
ically, we conduct 360° panoramic salient object segmentation by taking advantage of both global
and local visual cues of 360° images, with a novel channel-spatial mutual attention network (CSMA-
Net). The key component of the CSMA-Net is the proposed CSMA module, which cascades channel-
/spatial-weighting-based mutual attentions. And it is worth noting that, the new CSMA is inspired by
the SA module in SA-Net as introduced in the last section.

The objective of our CSMA module is to refine and fuse the bottleneck features from two separate
encoders with different planar representations of 360° panorama as inputs, i.e., equirectangular image
and cube map.

5.2.1 Introduction

(0°,90°)
\

_ 3(180°, 0°)
1 = N o
1

(0°; fgoo) Equirectangular Image Ground Truth

360° Panorama

.] Cube Maps DDS CSMA-Net (Ours)

Fig. 5.1 An example of 360° panoramic salient object segmentation in terms of our CSMA-Net and
DDS [257], which is a state-of-the-art model.

To recall, salient object segmentation is a task aiming to finely segment the objects that grasp
most of the human attention within a given image, thus distinguishing itself from common visual
saliency prediction [361] where only informative and salient regions are identified. During the past
years, hundreds of deep learning methods have been proposed [16] to solve salient object segmenta-
tion in 2D images. Inspired by the benchmarks and methodologies of 2D salient object segmentation,
360° panoramic salient object segmentation [256] recently becomes a burgeoning field where the al-
gorithms learn to segment the salient objects in images with a 360°x180° (Fig. 5.1) field-of-view
depicting the real-life daily scenes. Owing to the importance of learning object-level human visual
attention in immersive environments [257], 360° panoramic salient object segmentation is thus con-
sidered as one of the most essential joinpoints between salient object segmentation academia and
augmented-/virtual-reality industries.
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Compared to 2D salient object segmentation, 360° salient object segmentation is a burgeoning
field where, as illustrated in Chapter 3, only three datasets have been established, i.e., 360-SOD [257],
F-360iSOD [256] and 360-SSOD [258]. To the best of our knowledge, DDS [257], FANet [334]
and SW360 [258] are the only methods exclusively designed for 360° salient object segmentation.
DDS [257] proposes a distortion-adaptive module which divides an inputting equirectangular image
into four blocks, and tries to learn the features representing the specific level of geometrical distortions
of each block locating at different regions of the given equirectangular image. The method is able
to outperform contemporary 2D salient object segmentation methods, yet considers visual cues only
from equirectangular blocks which focus less on local details compared to cube maps. FANet [334]
uses channel attention mechanism [145] to weight and fuse the features of encoders for both the
equirectangular image and cube maps. SW360 [258] designs a multi-stage framework to obtain the
final predictions with the features based on 2D patches representing the content of local viewports.
However, the proposed framework can not be trained in an end-to-end manner. Considering the large
field-of-view, unique geometrical attributes and small objects, 360° salient object segmentation is still
an opening issue that is far from being solved.

As there is no perfect planar representation for 360° images, equirectangular image contains the
entire global context while brings extreme distortions to the region far from the equator (Fig. 5.1),
cube maps alleviate the distortions of local content while give artificial boundaries between each of
the cubes thus compromising the global continuity (Fig. 5.1). To acquire a balance from this trade-
off, we follow the FANet [334] where the equirectangular image and cube map are considered for the
global and local visual cues’ modeling, respectively. Besides, to achieve more effective feature fu-
sion, we argue that more sophisticated attention mechanisms (e.g., mutual attention [180]) should be
applied to explore the complementary information of visual cues of equirectangular image and cube
map. To this end, we propose CSMA-Net, which consists of two separated encoder-decoder archi-
tectures and a novel channel-spatial mutual attention (CSMA) module fusing the bottleneck features
of both branches of equirectangular image and cube maps. As a result, our CSMA-Net outperforms
10 state-of-the-art models, as being fine-tuned and tested on multiple 360° salient object segmenta-
tion datasets.

5.2.2 Methodologies

In this section, we introduce the framework of our CSMA-Net (Fig. 5.2), which consists of two
encoder-decoder architectures and a new channel-spatial mutual attention (CSMA) module. The
whole architecture of our CSMA-Net is trained in an end-to-end manner.

Uniqueness of the proposed CSMA-Net. Our CSMA-Net is inspired by both COSNet [180] and
our SA-Net which designed mutual attention modules that operate only on spatial domain. Recently,
[223] proposed channel-wise mutual attention mechanism to facilitate feature refinement for the task
of scene segmentation. However, the idea of designing channel-spatial mutual attention in a cascaded
manner still lacks discussion. In this work, we propose to build a cascaded channel-spatial mutual
attention module to aid global-local feature fusion based on 360° images.

Encoder-decode architecture. Inspired by FANet [334], we use equirectangular image and cube
maps as the inputs, which represent the global and local visual cues of 360° image, respectively. With
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Fig. 5.2 The architecture of our CSMA-Net. The short names in the figure are detailed as follows:
CSMA = the proposed channel-spatial mutual attention module. E2C/C2E = the projection interac-
tion module which transforms the equirectangular (ER) image/cube maps to cube maps/ER image,
respectively. ASPP = atrous spatial pyramid pooling module [181]. Enc.gr = the hybrid-ViT-based
encoder [345] for equirectangular image. Enc.cy = the Res2Net-based encoder [362] for cube maps.
Dec. = the decoder from RCRNet [178].

the given equirectangular image from 360-SOD [257] or 360-SSOD [258], we first apply the “E2C”
module [363] to transform the equirectangular image to cube maps representing the local viewports
observed from six orientations. We then feed the equirectangular image and corresponding cube maps
to the separate encoders (F1g 5.2), thus gaining hierarchical features {fFR}2 | and {fM}?_, also
bottleneck features, i.e., fry ~spp and M ~spp- Further, we use the decoder structure from RCRNet [178]
and add skip connectlons to link the {{fFR}2 |, { A}, } to the corresponding decoding layers. The
bottleneck features { f¥ ASPP, ASPP} are then fed into the CSMA module for 360° spatial global-local
feature fusion.

Channel-spatial mutual attention (CSMA). Inspired by the co-attention network, i.e., COSNet
[180], which is used for video object segmentation, we propose CSMA module establishing global
connections between the bottleneck features { fERop, finbs} € RIWXC regpectively encoded from
equirectangular image and cube maps. Being different to mutual-attention networks such as COS-
Net [180] and SA-Net [251], where only spatial-wise mutual attention is considered, we also in-
troduce channel-wise operations [223] and thus establishing channel-spatial mutual attention in a
cascaded manner, as shown in Fig. 5.2. Specifically, we first compute a similarity matrix M,:

M. = F(fxspp)" @ F (fishp): (5.1)

where ® denotes matrix multiplication. ()T means the transpose of a matrix. F(-) denotes a flatten
operation which reshapes ffgpp € RIWXC (o a 2D matrix with the dimension of HW x C. M, €
REXC. We thereby gain the channel-wise mutual attention-based outputs, i.e., fCEﬁ A and fgl\l\,fA, by
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computing:

fénia = reshape(fspp ® Softmax(M.)),

(5.2)
¥y = reshape FS3h & Sofimar D).
We are then able to gain the similarity matrix M, for spatial mutual attention, by computing:
F(GER(f&a) © fonia) @ F(GEY (QMa) © foaia) T (5.3)

where © denotes Hadamard product. GER (-) means a gate function [180] that learns confidence for
the given features fCM A- With the M;, the corresponding spatial mutual attention-based results are
defined as:

FEB 1A = reshape(fE& A © Softmax(M)),

(5.4)
FEa = reshape(fQlia © Sofmax(M]')).

With the the other pair of gate functions {GgR, GgM }, we gain the final outputs of the CSMA module:

ER
Csma = G5 ( CSMA) ®fCSMA7

(5.5
e CSMA = GgM (f CSMA) @fCSMA

Please refer to Fig. 5.2 for the model visualization. Besides, the effectiveness of the proposed CSMA
module is tested in Section 5.2.3 where thorough ablation studies are presented.

Loss function. As shown in Fig. 5.2, our CSMA-Net is trained in an end-to-end manner by using
structure loss (L%) [122], which is the sum of the weighted BCE loss (wace) and the weighted IoU
loss (LS. ). Therefore, the objective function (L) for our CSMA-Net is thus defined as:

L=L5(P,Y)+L5(Pem, E2C(Y)), (5.6)

where Pzr and Py are the predictions of equirectangular image-based global and cube maps-based
local branches, respectively. Y is the ground truth (Fig. 5.2). E2C(Y) outputs cube maps correspond-
ing to the given Y.

Implementation details. Our CSMA-Net is implemented in PyTorch, trained with Adam opti-
mizer [3]. Following the common settings in 2D salient object segmentation, we initialize our dual-
branch encoder-decoder framework with DUTS-tr [20]-based pre-training. On the other hand, the
proposed CSMA is randomly initialized. For fair comparison, we simply follow FANet [334] and
resize each input equirectangular image to 512x 1,024, without using multi-scale or any data aug-
mentation strategies. During fine-tuning, the batch size is set to 1, the default learning rate is fixed to
2.5-6. It takes about 2.5 hours to fine-tune the model on the training set of 360-SOD [257], based on
the PC consisting of Intel® Xeon® W-2255 CPU@3.70GHz and one Quadro RTX-6000 GPU.

5.2.3 Experiments

Settings.
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Benchmark datasets. To validate the effectiveness as well as the robustness of our CSMA-Net,
we establish a new benchmark (Table 5.1) based on cross-validation strategy where two 360° salient
object segmentation datasets, i.e., 360-SOD [257] and 360-SSOD [258] are applied for the fine-tuning
and testing of our CSMA-Net and the 10 competing methods. 360-SOD [257], as the first 360° salient
object segmentation dataset, provides 400 and 100 equirectangular images for training (360-SOD-tr)
and testing (360-SOD-te), respectively. 360-SSOD [257] consists of training set (360-SSOD-tr) of
850 equirectangular images and a testing set (360-SSOD-te) of 255 equirectangular images. Both
datasets provide pixel-wise binary masks as ground truth.

Benchmark models. The 10 competing models include 7 state-of-the-art 2D salient object segmen-
tation methods (CPD [139], BASNet [138], MINet [126], LDF [128], CSFR2 [129], GateNet [132]
and JointCS [364]), two 360° salient object segmentation models (i.e., DDS [257] and FANet [334])
and one transformer-based segmentation model, i.e., TransUNet [365]. Following the settings of
the premier 360° salient object segmentation benchmark [257], all seven 2D salient object segmen-
tation benchmark models are based on DUTS-tr (2D salient object segmentation training set) [20]
pre-training and fine-tuned with 360° datasets in an end-to-end manner. For fair comparison, we also
train the TransUNet [365] with DUST-tr [20] before the fine-tuning process. As for FANet [334], we
directly fine-tune the model with 360° datasets and without using DUTS-tr based pre-training, since it
only accepts equirectangular images as inputs. We fine-tune each of the benchmark models with their
recommended hyper-parameters. Please note that we do not include SW360 [258] in our benchmark
since it can not be fine-tuned in an end-to-end manner.

Evaluation metrics. Following the common settings in 2D salient object segmentation, we apply four
widely used metrics, i.e., mean F-measure (Fp) [276], MAE (M) [277], S-measure (S¢) [278] and
mean E-measure (Ey) [279], for the evaluation of all benchmark models and our CSMA-Net.

Table 5.1 Performance comparison of our CSMA-Net and 10 state-of-the-art methods. S, = S-
measure (=0.5) [278], Fp = mean F-measure ([32=0.3) [276], Ey = mean E-measure [279], .4 =
mean absolute error [277]. 1/] denotes a larger/smaller value is better. £ denotes codes not released.

The three best results of each column are in red, and blue.
Fine-tuning on 360-SOD-tr [257] Fine-tuning on 360-SSOD-tr [258]

Methods Year 360-SOD-te [257] 360-SSOD-te [255] 360-SOD-te [257] 360-SSOD-te [258]

Sat Fyt Eot ML Sat Fyt Eot ML Sat Fgt Eot ML Sot Fgt Egt M1
CPD [139] CVPR’19 765 .624 .798 .030 .666 .432 .698 .051 .721 .573 .736 .031 .748 .578 .785 .03l
BASNet[138]  CVPR’19 .801 .689 .840 .024 .659 451 .728 .050 .778 .661 .804 .027 .746 597 .809 .031
MINet [126] CVPR’20 797 .708 .866 .022 .664 .456 .714 052 .746 .632 .788 .027 .747 .602 .807
LDF [128] CVPR’20 813 706 .869 .021 .673 471 730 .050 .783 .671 .824 .028 .763 .622 836 .031
CSFR2[129] ECCV’20 879 664 447 691 752 550 696 035 700 448 681 043
GateNet[132]  ECCV’20 793 .639 .791 .028 .668 .419 .681 .056 .747 560 .730 .038 .730 .504 723 .041
JointCS [364] CVPR'21 829 .749 022 741050 845 764 620 835 032
DDS [257] JSTSP’19 803 .696 .866 .023 1 % t 1 1 t % 1 1 1 1
FANet [334] SPL'20 826 749 873 021 642 420 688 .053 735 .566 .703 .034 717 .523 727 .039
TransUNet [365] arXiv'2l 815 719 .887 .023 .671 .474 057 784 693 028 028
CSMA-Net ICPR’22 .873 .833 924 .016 .698 .531 .757 .048 .829 .777 .881 .020 .784 .661 .859 .028

Performance comparison.

Quantitative results. As shown in Table 5.1, our CSMA-Net outperforms all the competing mod-
els by a large margin over two fine-tuning 360° datasets (360-SOD [257] and 360-SSOD [258]),
in terms of four widely used salient object segmentation metrics, i.e., F-measure, MAE, S-measure
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and E-measure. Among all benchmark models, CSFR2 [129] and TransUNet [365] are able to pre-
dict competing results owing to the advanced backbones, i.e., Res2Net [362] and hybrid-ViT [143].
JointCS [364], as the most recently proposed salient object segmentation model in our benchmark,
also provides close results when compared to our CSMA-Net.

Ours Equirectangular Image
DDS FANet

Fig. 5.3 An example illustrates the situation where our CSMA-Net(Ours) is able to detect small
meaningful object, which is simply neglected by current 360° salient object segmentation datasets
and models.

Qualitative results. Besides, as shown in Fig. 5.4, our CSMA-Net is able to predict results closest
to the ground truth, from the respects of four cross-validation strategies. Specifically, our CSMA-
Net provides saliency maps where salient objects are accurately spotted and finely depicted. On the
other hand, the competing models sometimes fail to detect the 360° geometrical distortions (e.g., the
2nd 5t and 6™ rows in Fig. 5.4 or small targets (e.g., the 1%, 3 and 11™ rows in Fig. 5.4). Due to
the limited space, we do not include the visualization results regrading all benchmark models in Fig.
5.4. Please refer to our supplementary materials for more qualitative results.

Ablation study.

First, as shown in Table 5.2, we verify the effectiveness of dual-branch encoder-decoder frame-
work via “w/o ASPP”, which is not loaded with ASPP [181] and any attention mechanisms. To
further prove the effectiveness of the proposed CSMA module, we design another four ablated ver-
sions of our method, train and fine-tune them according to the same setting of our CSMA-Net. The
quantitative results of fine-tuning and testing on two 360° salient object segmentation datasets re-
spectively are shown in Table 5.2. Specifically, we first design a baseline version, denoted as “w/o
Atten.”, where no attention-based global-local feature interaction conducted at the bottleneck of the
dual-branch encoder-decoder framework. We then focus on the validation of the proposed mutual-
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Table 5.2 Ablation studies for our CSMA-Net. Sy = S-measure (a=0.5), Fg = mean F-measure
(B%=0.3), Ey = mean E-measure, .# = mean absolute error. 1/] denotes a larger/smaller value is
better. The two best results of each column are in red and blue.

Methods 360-SOD-te [257] 360-SSOD-te [258]
Sat Fgt Egt AL Sat Fgt Eg1 A

w/o ASPP 864 .809 .920 .018 .777 .645 .849 .033

w/o Atten. 869 806 916 .017 .776 .656 .837 .032

w/ SM-Atten. 869 820 .923 .017 .780 .666 .846 .028
w/ CM-Atten. 870 .820 918 .016 .781 .670 .854 .028
w/ CSMA(Ours) .873 .833 .924 .016 .784 .661 .859 .028

attention mechanism, i.e., CSMA. Inspired by SA-Net [251] and COSNet [ 180], we add spatial-wise
mutual-attention module to the bottleneck of the framework, thus gaining the version “w/ SM-Atten.”.
Similarly, we replace the spatial-wise operation with channel-wise one and thus acquiring “w/ CM-
Atten.”. Further, we cascade both the channel-wise and spatial-wise mutual attentions and gain the
final version of our CSMA module, i.e., “w/ CSMA”.

As a result, all mutual attention-based versions (i.e., “w/ SM-Atten.”, “w/ CM-Atten.” and “w/
CSMA”) outperform the baseline version (“w/o Atten.”). More importantly, “w/ CSMA” provides
the best results compared to the others, indicating the effectiveness and importance of our CSMA
module.

5.2.4 Discussion

Mutual attention for 360°. Our CSMA module successfully fuse the global-local spatial information
of 360° panoramic images based on equirectangular and cubemap projections. The ablation studies
validate the effectiveness of the proposed CSMA module. Further, both the qualitative and quanti-
tative experimental results illustrate the superiority of our CSMA-Net, which owes to the proposed
mutual-attention-based global-local interactive architecture (Fig. 5.2).

Cross-validation strategy. As illustrated in Section 5.2.3, we establish so far the first 360° salient
object segmentation benchmark involving multiple fine-tuning strategies, i.e., fine-tuning on 360-
SOD-tr [257] and testing on 360-SOD-te, fine-tuning on 360-SOD-tr and testing on 360-SSOD-te,
fine-tuning on 360-SSOD-tr [258] and testing on 360-SOD-te, fine-tuning on 360-SSOD-tr and testing
on 360-SSOD-te. Based on the sufficient quantitative results (Table 5.1), we observe a performance
gap between different strategies, e.g., the mean F-measure scores of all methods based on ‘““fine-tuning
on 360-SOD-tr and testing on 360-SOD-te” and “fine-tuning on 360-SOD-tr and testing on 360-
SSOD-te” are about 0.717 and 0.459, respectively. The significant performance divergence indicates
that current deep learning-based segmentation methods are strongly data-biased.

Small objects. Besides superior performance, an interesting finding is that our CSMA-Net is able to
detect the small meaningful object in equirectangular images (Fig. 5.3), which tends to be ignored by
current 360° salient object segmentation methods such as DDS [257] and FANet [334], also be easily
regarded as non-salient objects in current datasets (e.g., an example collected from 360-SOD [257] in

Fig. 5.3) where the annotators conduct saliency judgements based on equirectangular image shown
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on PC screen, rather than Head-Mounted Displays which captures a wide field-of-view (360°x 180°)
reflecting more realistic scenes (Fig. 5.3). Thus, our CSMA-Net probably provides supports for fu-
ture augmented-/virtual-reality applications, where omnidirectional field-of-view is widely applied
for human visual attention modeling and viewport-based meaningful objects may be considered im-

portant.
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Fig. 5.4 Visualization results of our CSMA-Net(OQurs) and the state-of-the-art methods. Our CSMA-
Net is able to provide results closest to the ground truth. More visual results are presented in Fig. 5.5
and Fig. 5.6.
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Fig. 5.5 More visualization results (part 1/2) of our CSMA-Net(Ours) and the state-of-the-art meth-
ods. Note that our CSMA-Net finely depicts small or distorted salient targets in equirectangular
images.
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Fig. 5.6 More visualization results (part 2/2) of our CSMA-Net(OQurs) and the state-of-the-art meth-
ods. Note that our CSMA-Net finely depicts small or distorted salient targets in equirectangular
images.

5.2.5 Conclusion

In this section, we propose a new end-to-end deep learning method, i.e., CSMA-Net, to conduct 360°
salient object segmentation by combing the global-local priors based on multiple 360° projection tech-
niques. To carefully explore the complementary information between equirectangular image and cube
maps, we further design a channel-spatial mutual attention (CSMA) module which is able to effec-
tively fuse the 360° multi-projection-based bottleneck features. Our CSMA-Net is able to outperform
current 2D/360° state-of-the-art methods by a large margin, based on a new cross-validation-based

360° salient object segmentation benchmark.
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5.3 Audio-visual salient object segmentation in 360° videos

5.3.1 Introduction

In the Section 3.4, we illustrate our newly proposed video dataset, i.e., PAVS10K, which is the first
360° audio-visual salient object segmentation dataset reflecting various real-world scenes. Based on
PAVS10K, in this chapter, we introduce a new baseline model, i.e., the first conditional variational
auto-encoder based audio-visual network (CAV-Net), which combines both audio and visual cues to
conduct salient object segmentation in 360° immersive dynamic scenes. Generally, our CAV-Net con-
sists of a spatial-temporal visual segmentation network, a convolutional audio-encoding network and
audio-visual distribution estimation modules.

As a result, CAV-Net models both audio and visual cues for the segmentation of salient objects in
360° videos and outperforms all benchmark models. Besides, the conditional variational auto-encoder
architecture of our CAV-Net enables aleatoric uncertainty estimation upon PAVS10K. Sufficient abla-
tion studies and qualitative uncertainty estimation results indicate the effectiveness and explainability
of our method. Besides, we also illustrate several findings based on extensive qualitative and quan-
titative experimental results, from the aspects of audio-visual modeling and uncertainty-aware object
segmentation.

5.3.2 Methodologies

In this sub-section, we introduce a new conditional variational auto-encoder based audiovisual 360°
salient object segmentation baseline model, i.e., CAV-Net, from the aspects of its motivation, formu-
lation, architecture and implementation details.

Motivation.

Audio-visual modeling. To the best of our knowledge, so far there is no released panoramic audio-
visual salient object segmentation or video object segmentation method and the common issue existed
among current state-of-the-art methods is the ignorance of audio cues. Since the salient objects in our
PAVS10K are defined based on both audio and visual cues, a new baseline model which combines
both audio and visual information, seeking to achieve better performance is worth attempting.
Unique aleatoric uncertainty estimation. As shown in Fig. 5.7, an interesting finding is that, neither
sounding objects nor visual-only salient objects are necessarily regarded as salient targets from a per-
spective of audio-visual-based saliency judgments. In other words, the audio-visual saliency can not
be regarded as a simple adding-up of the visual-only saliency and auditory stimuli. The other finding
is that our PAVS10K reflects a realistic phenomenon where subjects tend to show different sensitivi-
ties towards similar audio-visual information, and thus making very different choices when deciding
to which target to pay attention. The two findings indicate that subjects’ personal preference intro-
duce unavoidable ambiguities to audio-visual saliency judgments and thus bringing “unique aleatoric
uncertainty” to the ground truth of audio-visual salient object segmentation dataset, especially when
it comes to 360° panoramic scenes where multiple foreground objects and wide background context
are included.

To estimate the “unique aleatoric uncertainty”, we further add distribution estimation modules
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Fig. 5.7 An example (“Music”-“studio”) that illustrates the divergence of saliency judgments based on
visual-only and audio-visual cues. The annotations in PAVS10K are based on audio-visual saliency,
which may vary in different frames with similar audio-visual cues.

and thus adapting our salient object segmentation deterministic model to a conditional variational
auto-encoder [366], which is able to compute the distribution of model prediction. Therefore, our
new CVAE-based audiovisual panoramic salient object segmentation network (CAV-Net) is capable
of not only modeling dynamic audio-visual cues, but also estimating the uncertainty brought by the
subjective stochasticity towards 360° audio-visual data.

Uniqueness of CAV-Net. First, our CAV-Net considers both audio and visual cues to segment the
salient objects in 360 videos, thus distinguishing itself from current image/video-based salient object
segmentation methods which consider visual-only static/dynamic cues. Besides, our CAV-Net is
formulated as an end-to-end conditional variational auto-encoder which is able to conduct salient
object segmentation and aleatoric uncertainty estimation simultaneously.

Audio-visual conditional variational auto-Encoder.

As shown in Fig. 5.8, we first design an end-to-end encoder-decoder framework learning audio-
visual input data X (consisting of both visual sequence X" and associated audio record X*) via pa-
rameter set . Specifically, 6 is the ensemble of parameters ({05, 67, 64}) modeling static-/dynamic-
visual cues and corresponding audio cues.
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Fig. 5.8 The architecture of our CAV-Net, which consists of the proposed audio-visual posterior
and prior distribution estimation modules (DEMs), a SoundNet-based audio encoder [70], a hybrid-
ViT [345]-based visual encoder, fully convolutional decoders and one non-locally enhanced temporal
module (NER) cited from RCRNet [178]. 65, 8P, 84, 7 and ¢ are model parameter sets modeling
static visual and dynamic visual cues, audio cues, prior and posterior distributions, respectively.

To further model the “unique aleatoric uncertainty” within the audio-visual salient object segmen-
tation dataset, we add extra inference modules to adapt the original audio-visual deterministic model
(0) to a new conditional variational auto-encoder, namely CAV-Net, which enables the modeling of
distribution of model prediction, i.e., P(Y|X; 0). Specifically, following the common implementation
of conditional variational auto-encoder [367], we apply two convolutional encoders for the inference
of latent variable z which is capable of generating stochastic predictions and thus enabling the esti-
mation of uncertainty of model prediction. It is worth mentioning that, this model prediction based
uncertainty reflects intrinsic noises from training data [368], thus representing the aleatoric uncer-
tainty within salient object segmentation dataset. The two inference modules are thus named as the
prior (Pz(z|X)) and posterior (Py(z|X,Y)) distribution estimation modules, where 7 and ¢ indicate
the parameter sets of the prior-/posterior-based encoders, respectively.

To train the proposed audio-visual conditional variational auto-encoder framework (CAV-Net),
we use the posterior distribution estimation module to approximate the true posterior distribution
of latent variable z. To this end, we further apply the Stochastic Gradient Variational Bayes [369]
framework to estimate the parameter sets of our CAV-Net, by maximizing the evidence lower bound:

L<97 ?, ﬂ;X) = EZ~P¢(Z\X,Y) [log(PG (Y|X7Z))] - DKL(P(P(Z‘X7Y)HP7T(Z‘X))7 (5.7

where Dgy (Py(z|X,Y)||Pz(2|X)) denotes the Kullback—Leibler divergence loss, regarded as a regular-
ization closing the gap between the prior Pr(z|X) and the posterior Py(z|X,Y). With the conditional
variational auto-encoder framework, the aleatoric uncertainty (62) can then be computed as the mean
entropy of multiple model predictions:

1
o’ =

il

T
Y H[P(Y|X;6,9)], (5.8)
t=1

where T is the number of iterations of sampling. H[-] denotes entropy operation.
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Table 5.3 Components (Comp.) of each of the modules of our CAV-Net. i denotes component does
not exist.

Comp. Modules of CAV-Net

T ¢ 6% 6P 65

#Conv2D 5 5 7 7 98
#ConviD f f & 8 k3
#ldentity  § & ¥ 56
#ReLU & 7 ¥ 69
#GELU f + & T 14
#linear 4 4 % ¥ 51
#Bilinear 2 2 % o ¥

Network architectures.

We further illustrate the structural details of our CAV-Net, consisting of a static visual encoder-
decoder (6%), a dynamic visual module (6”), an audio encoder (64) and audio-visual prior-/posterior-
distribution estimation modules (7, ¢). The detailed statistics of each module of our CAV-Net are
shown in Table 5.3.

Visual encoder-decoder. As shown in Fig. 5.8, our visual encoder-decoder framework consists of
two parts, i.e., 05 and 8, thus modeling the static and dynamic visual cues respectively. Specifically,
we resort to the strong encoding ability of vision transformers [143] and thus using the hybrid-ViT
based encoder [345] to extract the abundant visual information of 360° images. The static visual
bottleneck features f5 are then fed into a non-locally enhanced temporal module (NER) [178] to seek
inter-frame connections and thus aiding the dynamic visual cues modeling. As for the decoder, we
simply follow the state-of-the-art video-based salient object segmentation method, RCRNet [178],
and use its U-Net like skip connections to gradually refine the final visual bottleneck features fV with
an aid of hierarchical features { fiS ?:1 gained from the first three vision transformer layers [345] of
the encoder.

Audio encoder. To encode the mono sound X extracted from the given video clip, we apply the first
seven 1-D convolutional layers of the state-of-the-art network, i.e., SoundNet [70]. The output audio
feature vector 4 is then used to synchronously model the prior and posterior distributions of model
predictions (Fig. 5.8).

Audio-visual distribution estimation module. Following [367], our prior and posterior distribution
estimation modules both use five convolutional layers to extract the latent features from visual input
(Inputy in Fig. 5.8). Importantly, to fit the task of audio-visual salient object segmentation, our
distribution estimation modules take advantage of not only visual cues but also audio feature vector f4
(Input,) to estimate the distributions. Specifically, the audio-visual posterior distribution estimation
module takes the concatenation of video clip X" and ground truth Y as visual input and thus modeling
the visual latent space distribution with mean and standard deviation pair {u,*", 67" }. Similarly, the
audio counterpart with mean and standard deviation pair {u}*", 67"} can be easily gained with f4
as the input. To effectively use the audio-visual latent features, we are inspired by STAViS [59] which
uses bilinear operations to combine the multi-modal features, thus adding an extra bilinear layer (Fig.
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5.8) to the distribution estimation module to gain an audio-visual latent space distribution with mean
and standard deviation pair {u??", o'}, Following the same procedure, the prior distribution with
mean and standard deviation pair {”""°", 67"’} is acquired by using audio-visual prior distribution
estimation module. The only difference is that the prior distribution estimation module dose not need
ground truth Y as the input (Fig. 5.8).

The latent variables of both distributions are then obtained with the re-parameterization trick as:
Zpost — ‘upost 4 o.post o€, Zprior — uprior + Gprior o€, (59)

where © is the dot product operation, and € ~ .4/ (0,1). The z”"*" and z7°*' are then tiled to a 3-D
feature map with the same spatial size of bottleneck features f to enable the feature concatenation.
Implementation details.

Loss function. Following the conditional variational auto-encoder formulation (Eq. 5.7), the total
loss L of our CAV-Net (Fig. 5.8) is defined as the sum of a prediction loss LP and a latent loss LE. The

L? is the widely used structure loss [122] consisting of a weighted binary cross entropy loss Lﬁbce

a weighted IoU loss L”. . while the L' denotes the Kullback-Leibler divergence loss (the D, in Eq.

5.7). Thus, the total loss of CAV-Net is formulated as:

and

L= LP(pprior7y) -|—LP(pp0St,Y) +LL(Zprior‘ |Zpost)’ (510)

where pPri’/pPos! are model predictions sampled from prior/posterior distributions respectively. Y is
ground truth.

Algorithms. The training and testing procedures of our CAV-Net are shown in Algorithm. 1 and
Algorithm. 2 respectively, to facilitate the re-implementation of our method.

Algorithm 1 Training CAV-Net.
Input: (1) Training video clips {XY }7, associated audio clips {X*}” and ground truth {Y;}"; (2)
Maximum of learning iterations M.
Output: Parameters 05, 8 and 64 for the static visual, dynamic visual and audio feature extraction
modules respectively, 7 and ¢ for the audio-visual prior and posterior distribution estimation
modules respectively (please refer to Fig. 5.8 for structural details).

1: Initialize 65, 6P, 64, = and ¢

2: fort < 1toMdo

3: Sample video clip, corresponding audio clip and ground truth, {XiV, X?, Y,-}ﬁ’ where b is the
batch size. ‘
4: For each {XY,X2}, sample the prior z7"" ~ Pr(z|XY,X2) for T times, compute the

prior-based mean prediction pi"*"

5. Foreach {XY, X2 Y}, sample the posterior z/*" ~ Py(z|XY,X2,Y;) for T times, compute
the posterior-based mean prediction pFOSt.

6: Synchronously update all parameters (65, 82, 84, & and @) via the sum of prediction loss
and latent loss (Eq. 5.10).

7: end for

Hyper-Parameters. CAV-Net is implemented with PyTorch, optimized with Adam algorithm [3].
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Algorithm 2 Testing CAV-Net.
Input: Testing video clips {X) }* and audio clips {X*}7 .
Output: Prediction p; and uncertainty 0'1.2.

1: fori< 1tondo

2: Foreach {XY, X2}, sample 2 ~ Py (z|XY,X2) for T times, compute the mean prediction
pi and the mean entropy of multiple predictions, i.e., 67.
3: end for

Following the common settings of salient object segmentation methods, the static visual cues mod-
eling parts (6°) of our CAV-Net are initialized with DUTS-tr [20] pre-training, while parameter sets
0P, m and ¢ are randomly initialized. For fair comparison, we resize the input equirectangular video
frames to 416 x832 (smaller than 512 x 1,024 applied in state-of-the-art 360° salient object segmenta-
tion method, FANet [334]), without using multi-scale or any other data augmentation tricks. During
training, the batch size is set as 1, default video clip length is 3, learning rate initialized as 2.5 x 1075,
It takes about 9.5 hours to train the whole framework with the training set of our PAVS10K, based on
a PC consisting of Intel® Xeon® W-2255 CPU@3.70GHz and one Quadro RTX-6000 GPU.

5.3.3 Experiments

The detailed experimental settings are illustrated in Section 3.4.3. Following the same settings of
our proposed PAVS10K benchmark, we conduct thorough quantitative and qualitative experiments to
varify the effectiveness and superiority of the proposed new baseline model, i.e., CAV-Net.

Performance comparison.

Table 5.4 Performance comparison of our panoramic audio-visual network, i.e., CAV-Net and 12
state-of-the-art salient object segmentation/video object segmentation methods without training on
PAVSI10K. I. = image-based salient object segmentation. V. = video-based salient object segmenta-
tion or video object segmentation. Best result of each column is bolded.

Miscellanea (Test1) Music (Test2) Speaking (Test3) PAVS10K-Test
Fg 1 Sa® Egt M| Fg1 Sal Eot M| Fg1 Sal Eot M| Fgt Sal Eyt A
] 261 .623 .604 .084 .151 .506 .483 .135 .190 .526 .488 .162 .195 .545 .515 .137
] 271 .625 .606 .087 .206 .598 .594 .051 .218 .559 .518 .130 .226 .584 .558 .101
] 236 .609 .573 .082 .152 .509 .524 .150 .215 .567 .505 .105 .204 .563 .526 .110
] 225 606 573 .093 .152 .542 531 .073 .180 .523 .469 .151 .183 .548 .509 .118
CVPR’20 LDF[128] 268 .622 .606 .083 .204 .550 .557 .087 .227 .546 .503 .137 .230 .566 .541 .112
ECCV’20 CSFR2[129] .305 .650 .624 .075 .139 .510 471 .129 .189 .545 511 .128 .202 .562 .529 .116
ECCV’20 GateNet [132] .243 637 .588 .069 .206 .594 .611 .035 .206 .569 .554 .090 .214 .591 .576 .072

1

1

1

1

1

t

Type Year Methods

CVPR’19  CPD-R [
ICCV’19 SCRN [
AAAT20 F3Net [
I.  CVPR’20 MINet [

CVPR’19 COSNet [ 280 .602 .581 .110 .181 .571 .614 .034 .232 .595 .587 .065 .230 .591 .592 .068
ICCV’19  RCRNet [ 307 .666 .644 .062 312 .630 .683 .040 .238 .591 .542 .065 .271 .619 .601 .058
V.  AAAT20 PCSA [ 197 629 .632 .042 .104 .543 548 .030 .157 .565 .594 .037 .153 .575 .592 .036
BMVC’20 3DC-Seg [ 231 544 523 143 268 .578 .663 .059 .193 .540 .584 .088 .220 .550 .588 .094
CVPR’21 RTNet [ 331 .632 .602 .110 436 .668 .769 .016 .338 .637 .639 .045 .361 .643 .661 .054
PAV. k3 CAV-Net 410 .704 .705 .040 .466 .675 .801 .018 .391 .659 .742 .024 .414 .674 .747 .027

General Performance. To conduct thorough benchmark studies, we compare our new baseline model
CAV-Net with the competing salient object segmentation/video object segmentation models based on
two settings, i.e., with and without PAVS10K training. Specifically, we first download the officially
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Table 5.5 Performance comparison between our CAV-Net and 13 state-of-the-art methods (including
seven image-based salient object segmentation (I.), five video-based salient object segmentation or
video object segmentation (V.) and one 360° panoramic image-based salient object segmentation (PI.)
methods) with PAVS10K training.

Miscellanea (Test1) Music (Test2) Speaking (Test3) PAVS10K-Test
Fg 1 Sat Egt M| Fg1 Sat EotT M| Fg1 Sat Es 1T M| Fg1 Sat EyT A
1 248 .654 .645 .035 .272 .608 .632 .018 .228 .588 .657 .026 .243 .609 .648 .026
1 .250 .665 .615 .046 .341 .683 .664 .023 .276 .636 .642 .034 .286 .655 .641 .034
1 257 .655 .629 .040 .358 .662 .749 .021 .308 .626 .692 .027 .310 .642 .691 .029
1 .238 .650 .625 .050 .380 .670 .716 .020 .261 .590 .635 .053 .286 .624 .652 .044
] .280 .663 .626 .044 .389 .671 .753 .023 .309 .625 .711 .037 .322 .645 .701 .035
ECCV’20 CSFR2[129] .238 .652 .642 .033 .347 .665 .693 .018 .285 .636 .700 .026 .290 .646 .684 .026
ECCV’20 GateNet [132] .285 .677 .651 .044 .290 .673 .616 .018 .260 .633 .638 .034 .273 .653 .636 .033
CVPR’19 COSNet [180] .147 .610 .553 .031 .220 .577 .541 .016 .176 .572 .570 .023 .181 .582 .559 .023

]
]
1
]
1
t

Type Year Methods

CVPR’19  CPD-R [
ICCV’19 SCRN [
AAAT20 F3Net [
I.  CVPR’20 MINet [
CVPR’20 LDF [

ICCV’19 RCRNet [ 272 .661 .640 .034 403 .695 .738 .019 .282 .632 .687 .030 .310 .654 .688 .029
V.  AAAT20 PCSA [ 123 .604 574 .034 310 .657 .645 .022 .150 .571 .534 .026 .184 .600 .570 .027
BMVC’20 3DC-Seg [ 300 .668 .618 .062 .326 .635 .632 .046 .289 .629 .592 .056 .300 .640 .608 .055
CVPR’21] RTNet [ 240 .622 .634 .038 .365 .638 .766 .020 .194 .555 .668 .028 .247 .591 .683 .029
PI.  SPL20 FANet [ .164 .610 .529 .030 .380 .646 .758 .018 .207 .566 .663 .027 .241 .596 .654 .025
PAV. k3 CAV-Net 410 .704 .705 .040 .466 .675 .801 .018 .391 .659 .742 .024 .414 .674 .747 .027

released best models of each of the state-of-the-art salient object segmentation/video object segmen-
tation methods and directly test these models on the testing set of our dataset (PAVS10K-Test). As a
result, our CAV-Net outperforms all 12 state-of-the-art baselines (with publicly available pre-trained
models) based on all four metrics (Table 5.4). Further, we re-train the 13 competing methods with the
training set of our PAVS10K and test them on PAVS10K-Test (Table 5.5). Finally, our CAV-Net still
outperforms all baselines in terms of F-/S-/E-measure.

Super-Class-wise Performance. The models’ performance based on each of the super-classes of our
PAVS10K are shown in Table 5.4 and Table 5.5. As a result, our audio-visual method, CAV-Net, is
able to outperform the 13 benchmark models based on both settings. Note that following quantitative
results are all based on PAVS10K training.

Attribute-wise Performance. As shown in Table 5.6, our CAV-Net outperforms all 13 competing
baselines on all seven PAVS10K’s attributes-based testing sets, in terms of F-/S-/E-measure. The
superior performance of CAV-Net upon all attribute-based testing sets indicate that our new baseline
model successfully considers all spotted challenges for salient object segmentation modeling.
Sub-Class-wise Performance. As shown in Table 5.7, our CAV-Net ranks first on 8 and 15 testing
sequences in terms of S-measure and E-measure respectively, thus being the most robust model when
compared to all competing baselines.

Qualitative Results. As shown in Fig. 5.9, Fig. 5.10 and Fig. 5.11, our CAV-Net is able to correctly
detect the audio-visual salient objects labeled with multiple attributes. For instance, in Fig. 5.9, the
train is finely depicted even though it is seriously distorted and blurred. In Fig. 5.10, the small person
is accurately segmented. In “Spanish” (Fig. 5.11), the occluded and distorted people are correctly
detected.
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Table 5.6 Performance comparison of 13 competing models and our CAV-Net based on each of the

attributes.
I V. PL PAV.
Attr. Metrics CPD-R SCRN F3Net MINet LDF CSFR2 GateNet COSNet RCRNet PCSA 3DC-Seg RTNet FANet CAV-Net
[1391 [297]1 [122] [126] [128] [129] [I132]  [I80] [178] [175] [332] [333] [334] Ours
ST 610 657 644 624 648  .649 .653 .588 661 .607 643 595 .605 672
MO Fgt 244 283 315 288 324 292 270 .187 319 193 302 251 258 414
Est 655 649 705 665 718  .694 637 571 706 .580 614 703 .676 751
A 027 034 030 .045 .033  .027 .034 .024 .029 .027 054 .028  .025 .028
ST 606 655 641 619 645 645 .650 577 652 .600 .636 586 .593 667
oc Fgt 260 294 329 298 335 301 276 .191 316 202 .308 259 258 422
Est 649 639 .696 .651 709  .682 622 554 691 570 .607 694 668 751
AL 023 029  .026 .043 .028 .023 .030 .020 .025 .024 .045 024 .022 .022
ST 605 649 639 618 .637 .644 647 .585 .650 .609 .633 590 .598 .663
LR Fgt 229 271 301 272 303 277 255 176 294 .189 .286 234 238 392
Est 640 636 693 642 694 683 625 .565 .687 .586 .600 688  .657 738
A 025 034 028 .045 .037 .025 .033 022 .029 .026 057 029 .025 .028
SeT 622 651 630 .620 646  .638 .645 .582 642 .586 .632 595 587 .666
MB Fgt 281 304 299 298 330 .297 281 212 307 197 302 271 247 419
Est 628 630 .663 .637 .667  .668 .621 .563 675 .563 .599 676 .627 736
M) 021 029  .027 .047 029 .021 .030 .019 .024 .022 .044 023 .020 .020
Se T 634 661 568  .633 .636  .636 .639 .582 .630 .599 641 573 611 .662
ov Fgt 311 318 167 314 309 295 258 207 276 193 362 210 310 442
Es + 652 638 538 691 676  .697 637 .633 732 .536 671 703 .679 771
A L 018 021  .029 .038 .039 .02l 025 021 .029 .021 .039 022 .018 .019
ST 630 662 639 .633 659  .646 .658 .588 651 578 .659 587 599 .680
Gb Fgt 285 309 299 294 341 304 .300 .189 311 156 320 247 245 425
Es T 657 653 .669 .676 .680  .674 662 .564 .687 538 621 666  .630 739
A 037 042 040 045 .043 035 .042 .032 .037 .036 .062 .038  .034 .038
SeT 625 680 .667 654 .664  .670 676 592 .680 621 .654 602 616 .693
cs Fgt 277 320 357 335 361  .330 304 .197 354 217 324 269 279 449
Eyt 674 664 720 691 740  .696 .655 .550 11 .590 625 g1 697 762
AL 029 035 031  .035 .034  .028 .033 .026 .030 .029 .058 031 .028 .031




5.3 Audio-visual salient object segmentation in 360° videos

135

Table 5.7 Sq(a=0.5) and E, performance comparison of 13 competing models and our CAV-
Net based on each of the sequences. Sp. = Speaking. Mu. = Music. Mi. = Miscellanea. M. =

Metrics.

Super-class/Sequence M. CPD-R SCRN F3Net MINet

I

V.

PIL

PAV.

LDF CSFR2 GateNet COSNet RCRNet PCSA 3DC-Seg RTNet FANet CAV-Net

1 [297] 1 1 [128] [129] [132]  [180]  [178] [175] [332] [333] [334] Ours

Sp./Debate SeT 547 620 .605 553 566 .576 .628 514 559 569 .601 488 557 .669
Ey 1 600 752 818 .592 .829 .802 768 410 .809  .607 .640 670 702 713

Sp./BadmintonConvo Se T 712 669 617 712 613 .647 .652 613 .668 551 627 556 .635 .654
Ey T 759 672 564 824 667 671 746 612 782 449 647 682 713 762

Sp./Director Se T 679 753 701 677 156 772 726 716 755 724 726 628 672 759
Est 735 729 852 773 849 810 .681 744 774 715 .690 814 768 859

Sp./ChinescAd SeT 601 645 551 477 631 .630 .605 553 542 567 .642 534 595 .695
Ey T 504 544 548 410 597 656 .564 .662 652 .490 .689 754 523 .696

Sp./Exhibition Sa T 487 469 480 469 428 492 486 487 473 510 444 460 475 514
Ey T 486 365 460 .350 270 .508 459 S14 349 510 328 309 329 578

Sp./PianoConvo Se T 577 652 579 .607 .639 .636 .586 .603 718 .508 .685 593 632 .686
Eyt 774 673 745 833 .847 807 .693 706 .803 418 641 .694 804 .843

Sp./FilmingSite SeT 578 633 .603 610 .637 .645 .636 578 .640 631 472 551 522 .631
Es T 562 .627 626 .636 707 .654 .613 .540 628 652 441 7200727 775

Sp./Brothers SeT 673 686 .638 .655 .652 .697 .685 .662 664 669 .663 S71 623 715
Eyr 702 690 .726 718 719 .729 .643 .676 743 666 .628 671 695 783

Sp/Rap Sa T 498 477 521 343 507 525 463 482 506 495 578 633 532 .615
Ey T 530 387 .548 260 484 678 400 S13 590 566 557 .685 733 756

Sp./Spanish Sq T 606 765 746 679 .793 713 701 724 700 541 773 580 .602 766
Ey1 662 817 845 737 .876 .808 .833 795 811 495 735 577 514 .874

Sp./Questions SeT 505 640 .740 563 .605 .691 671 576 676 595 .690 530 549 702
EyT 763 609 .870 .576 .855 .700 574 .569 667  .540 .603 747 7703 724

Sp./PianoMono SeT 598 555 573 572 629 522 637 .506 611 .503 637 570 502 512
Ey T 682 736 .688 739 746 .758 .696 .500 736399 573 .693 633 748

Sp./Snowfield Se T 729 811 778 800 .819 .779 823 .601 794 584 754 704 578 .819
Ey 1 682 783 725 769 797 721 793 490 758 523 722 J77 623 814

Sp./Melodrama SeT 609 685 .655 .673 .667 .664 .617 467 .608  .605 .626 472 568 613
EyT 699 744 732 773 184 717 710 .296 730 523 .623 .624 770 .657

Sp./Gymnasium SeT 551 514 492 501 501 .507 .537 .520 520 502 501 SI1 505 533
Ey T 584 545 461 593 469 512 A87 584 S18 469 420 504 .642 591

Mu/Studio SeT 741 770 753 788 758 739 124 .637 778 758 .665 743 760 721
Ey T 745 731 832 826 .847 .756 .601 .629 .800 730 677 .837 .859 779

Mu./Church Se T 527 589 .621 566 518 624 .651 562 676 627 535 546 679 720
Ey T 451 575 731 576 715 601 .657 487 .635 579 .536 687 774 850

Mu/Duet Sq T 662 704 .698 .653 751 .648 730 553 731 .540 672 577 643 764
Es 1t 810 705 .792 .821 .808 .693 135 542 776 508 702 769 7165 .865

Mu./Blues SeT 580 742 776 722 771 734 740 .595 765 747 732 730 .600 .639
Ey T 598 688 .830 .698 .789 .766 .640 473 834 716 .687 875 612 768

Mu/Violins Se T 589 668 537 .692 .661 .631 .656 578 669 670 .653 621 .604 .642
Ey T 679 685 .507 .805 751 .754 .599 627 754 655 .679 679 779 842

Mu./SingingDancing SeT 506 .601 582 560 .561 .594 .568 521 569 558 .566 560 557 597
Ey1 500 587 758 565 .618 .589 547 452 .637  .608 532 720 705 756

Mi./Dog SeT 497 516 571 560 569 557 .562 523 562 540 .605 548 520 .603
Ey T 470 467 503 521 434 543 525 504 558 550 530 556 335 565

Mi./RacingCar Se T 770 769 763 770 772 771 791 .760 72759 749 753 762 809
Eyr 760 752 726 771 757 729 788 719 733709 715 760 708 811

Mi/Train SaT 604 616 614 607 .629 .594 .663 .501 524 515 .638 527 489 725
Ey 1 581 553 486 493 554 558 .634 351 462 418 .606 423 386 735

Mi/Football SqT 653 696 .618 .656 .668 .658 .676 .648 710 .640 .604 632 556 708
Eyt 634 676 755 .633 770 721 .663 .649 732631 .637 701 477 811

Mi./ParkingLot SeT 635 627 .624 564 640 562 .625 .548 .624 501 .688 598 .627 .656
Ey T 641 551 .600 .597 .625 .602 .610 482 612 501 599 .639 593 .661

Mi./Skiing SeT 697 728 689 727 .632 757 .695 .624 745 641 .647 599 590 672
Ey T 705 .645 .669 .661 517 .675 .605 573 716 614 554 .650 500 .586
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Fixation overlaid Ground truth Prediction

Fig. 5.9 Visualization results of our CAV-Net on sub-class “train”. “c>” denotes uncertainty map
corresponding to the prediction.
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Fixation overlaid Ground truth Prediction

Fig. 5.10 Visualization results of our CAV-Net on sub-class “snowfield”. “c?” denotes uncertainty
map corresponding to the prediction.
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Fixation overlaid Ground truth Prediction

fes

Fig. 5.11 Visualization results of our CAV-Net on sub-class “Spanish”. “c>”

corresponding to the prediction.

denotes uncertainty map

Ablation studies.

To verify the effectiveness of the proposed audio-visual distribution estimation module in our
CAV-Net, we conduct thorough ablation studies with multiple backbone strategies. Specifically,
we directly use an off-the-shelf distribution estimation module [367] as the ablation version of our
audio-visual distribution estimation module, thus gaining “Visual” and “Audio-visual” versions of our
method. As shown in Table 5.8, our “Audio-visual” models are able to outperform “Visual” models
based on each of the widely used backbones, i.e., ResNet50 [142], Res2Net50 [362] and Hybrid-
ViT [345]. As a result, the “Audio-visual” Hybrid-ViT version, which is exactly our CAV-Net, ranks
first among all ablation models in terms of all four metrics.

Besides segmentation performance, we show two more statistics of each ablation model in Table
5.8, i.e., the number of parameters (#Params) and frame-per-second (#FPS) during test-time (please
note that all measurement are based on one Quadro RTX-6000 GPU with an input resolution of
416x832). As aresult, the incremental computational burden of our CAV-Net mainly comes from the
Transformer-based backbone (e.g., 137.7 millions > 63.0 millions, 15 fps < 54 fps). As a comparison,
the proposed audio-visual DEM only brings about 3 millions of extra model parameters and slight
compromise to model inference speed (i.e., 54 fps < 59 fps, 48 fps < 51 fps, 15 fps < 16 ps).
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Table 5.8 Ablation studies of CAV-Net on our PAVSI0K. Sy = S-measure (0=0.5), Fg = mean F-
measure (f3 2=0.3), Ey = mean E-measure, .# = mean absolute error.

PAVS10K-Test

Backbone  Modallty =55 5 F,§ 7] #Params #FPS

ResNets0 [147] Visual 307 628 700 028 59.8M 59
s Audio-visual .325 .633 .698 .027 63.0M 54
Visual 283 603 659 042 62.1M 5l

ResZNeSO 13021\ diovisual 341 630 720 .036  652M 48
Visual 383 656 716 028 1346M 16

Hybrid-VIT 391\ Gio-visual 414 674 747 027 1370M 15

5.3.4 Discussion

In this sub-section, we discuss about several new findings towards 360° audio-visual salient object
segmentation, based on above extensive experimental results. Generally, we find that our new task,
i.e., 360° panoramic audio-visual salient object segmentation, is challenging for current salient object
segmentation/video object segmentation state-of-the-art methods. Besides, we gain the conclusion
that the modeling of both audio and visual cues help 360° audio-visual salient object segmentation.
Finally, we obtain the evidence proving uncertainty-aware method helps exploring the intrinsic noises
within audiovisual saliency detection dataset, thus inspiring new insights towards advanced and more
reliable 360° audio-visual salient object segmentation modeling.

Audio-visual Modeling

Based on comprehensive benchmark studies (Table 5.4, Table 5.5 and Table 5.6), our new baseline
CAV-Net proves its ability for 360° audio-visual salient object segmentation modeling. Specifically,
our CAV-Net acquires better results on PAVS10K-Test and its three super-class-based testing sets
(Table 5.4 and Table 5.5). Importantly, the consistent better results of CAV-Net on seven attribute
testing sets (Table 5.6) shows that our new model gains significant improvement in terms of mul-
tiple aspects, including detecting accuracy (via F-measure Fp), the quality of object structure (via
S-measure Sy) and the integrality of global context (E-measure Ey). Besides superior segmentation
performance, our CAV-Net also shows better computational efficiency than the current state-of-the-
art 360° image-based salient object segmentation methods such as FANet [334] and SW360 [258]. It
takes about 0.067s (which equals to 1/15s according to Table 5.8) for our CAV-Net while 0.26s/0.392s
for FANet/SW360, to process one 360° image during test-time.

In addition, the multiple backbone based ablation studies regarding the proposed audio-visual
distribution estimation module further verify the effectiveness and necessity of modeling both visual
and audio cues when conducting 360° audio-visual salient object segmentation. The conclusion is
consistent with human attention in real-world scenes where both visual and audio cues are regarded
as inputs and share different weights for influencing human judgments towards visual saliency.
Uncertainty-aware Segmentation

As illustrated in Section 5.3.2, we observe an “unique aleatoric uncertainty”, possibly introduced
by two sources of subjective stochasticity, within the 360° audio-visual salient object segmenta-
tion dataset. Thus, being different to current mainstream salient object segmentation/video object
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{4

Fixation overlaid Ground truth

CAV-Net

Fig. 5.12 An example that illustrates the interpretability of our CAV-Net via uncertainty estimation.
o7 is the uncertainty map based on multiple sampling during model testing.

segmentation methods, we resort to uncertainty estimation methodology and propose to model this
“unique aleatoric uncertainty” via conditional variational auto-encoder (Section 5.3.2). As a result,
our CAV-Net successfully reflects this “unique aleatoric uncertainty” via predicting uncertainty map.
Specifically, as shown in Fig. 5.12, our CAV-Net is able to explain the failure by highlighting the
uncertain regions, while the competing video-based salient object segmentation and video object seg-
mentation methods do not possess such an ability when making errors. Besides, the extreme uncertain
regions estimated by our CAV-Net are exactly the regions with serious subjective stochasticity indi-
cated by scattered fixations (Fig. 5.12).

Limitation and Future Work

Model performance. Although the proposed CAV-Net shows better overall results than all competing
baselines, we are still limited by the challenges of PAVS10K (e.g., our CAV-Net is unable to outper-
form all competing methods based on each of the sub-classes as shown in Table 5.7), thus failing to
build a strong baseline model that outperforms current state-of-the-art methods by a large margin. Fu-
ture works may explore deeper towards the low-level features (e.g., contrast, sharpness, brightness)
of 360° data of specific challenging sub-classes via image quality assessment techniques [370], to
improve the generalization ability of 360° audio-visual salient object segmentation models.
Aleatoric uncertainty estimation. Although our CAV-Net successfully estimates the general aleatoric
uncertainty [368] focusing on objects’ boundaries (Fig. 5.9, Fig. 5.10 and Fig. 5.11), and the unique
aleatoric uncertainty reflecting subjective stochasticity, we still have not explored deeply towards
the details of subjective stochasticity that introduce such uncertainties. Besides, future works may
consider to further improve the model performance by designing new uncertainty-aware frameworks.
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Audio modality. Both the ground truth of our PAVS10K and CAV-Net are based on mono sound.
Future works may consider to conduct panoramic audio-visual salient object segmentation via spatial
audio or ambisonics.

5.3.5 Conclusion

In this section, we illustrate the details of our proposed new baseline model, namely CAV-Net, which
is able to outperform all benchmark models and represent data uncertainty. Our CAV-Net verifies the
superiority of modeling audio-visual cues for conducting 360° audio-visual salient object segmenta-
tion, and provides explanation for 360° audio-visual salient object segmentation modeling.
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5.4 Conclusion

In this chapter, we first illustrated the details of our proposed CSMA-Net, which aims at accurately
segmenting the salient objects in 360° images. To the best of our knowledge, we are the first to
cascade channel-based and spatial-based mutual attentions, to effectively fuse and refine the high-
level features extracted from global and local context of given 360° images. To further mimic the
real-world scenes where human subjects tend to use both auditory and visual sensors to explore the
surrounding world, we further introduced CAV-Net, which takes advantage of both audio and vi-
sual cues for salient object segmentation in 360° videos and reflects the aleatoric uncertainty within
PAVS10K to some extent. To the best of our knowledge, our CAV-Net is the first publicly released
audio-visual salient object segmentation model, also the first 360° video-based salient object segmen-

tation method.



Chapter 6

Conclusion

6.1 Summary

To wrap this dissertation, we have successfully built new datasets and proposed new methodologies
to address salient object segmentation in 360° panoramic images and videos, which we hope could
serve as a starting point for object-level human visual attention modeling in immersive multi-media.

State-of-the-art methods for salient object segmentation. In Chapter 2, we have thoroughly sum-
marized the state-of-the-art methods in the field of salient object segmentation academia. Based on
the observation, we found that a lack of large-scale image/video 360° datasets seriously limited the
development of 360° panoramic salient object segmentation, which is of great importance for mim-
icking real human visual attention in real-world. In addition, from a perspective of methodology, we
concluded that current attention-based deep learning models have been widely applied in not only
general computer vision tasks but also multiple types of salient object segmentation tasks. Besides
empirical findings, modeling human visual attention with attention models is theoretically reasonable.
F-360iSOD&PAVS10K. In Chapter 3, we have detailed our works towards new dataset establish-
ment in the field of 360° salient object segmentation. We first proposed a 360° image-based salient
object segmentation dataset, namely F-360iSOD, which contains 1,165 pixel-wisely annotated salient
instances belonging to 72 object/scene classes. Considering the real-world scenes where subjects de-
pend on both audio and visual cues to locate and recognize the salient objects in 360° panoramic
field-of-view, we further established so far the first 360° audio-visual dataset, i.e., PAVS10K, which
provides 19,904 manually labeled salient instances within 10,465 360° video frames.

Salient object segmentation in light field. Compared to 2D RGB salient object segmentation, light
field salient object segmentation is relatively a new area to explore. In Chapter 4, following the
mainstream of salient object segmentation researches where attention mechanisms have been widely
applied to improve model performance, we proposed a synergistic attention network, i.e., SA-Net, to
segment salient objects by taking advantage of two light field modalities, i.e., focal stacks and all-in-
focus images. Besides, we have improved our SA-Net from both perspectives of computation burden
and segmenting accuracy, via further proposing CMA-Net and SA-Net-V2, respectively.

Salient object segmentation in 360° images&videos. In Chapter 5, we have illustrated the details
of our proposed CSMA-Net and CAV-Net, which address 360 image-based salient object segmenta-
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tion and 360° audio-visual dynamic salient object segmentation, respectively. The key component of
our CSMA-Net is a new mutual-attention module inspired by SA module in SA-Net. The CAV-Net
is a new audio-visual conditional variational auto-encoder which is not only capable of segmenting
salient objects but also estimating predictions’ uncertainty.

6.2 Future works and perspectives

Though the objective of the thesis is successfully fulfilled, a gap between salient object segmen-
tation and immersive vision still exists. In the following parts, we imagine future works towards
immersive saliency detection from two perspectives, i.e., an application of multi-modal visual cues
and an involvement of multi-dimensional auditory information.

Modeling multi-modal visual cues for 360° saliency detection. This thesis explored both omnidi-
rectional vision and light field, however, the real-world scenario is more similar to immersive light
field vision [371] which combines both. A correct modeling of real-world lights via light field tech-
niques may advance future datasets/models’ development to a new level, thus enabling salient object
segmentation to further fit real-world applications.

Specifically, future works may consider to establish new datasets collecting 360° images/videos
with depth information, thus further mimicking the real-world scenes where subjects are able to ob-
serve and recognize salient objects with 6 degree-of-freedom (DoF) (an example illustrates 6 DoF
shown in Fig. 6.1).

Multi-Sph ' S 6DoF 360°
Omnidirectional Stereo (ODS) Ir:a _c‘;e FMZF b =

View Synthesis

Fig. 6.2 Ambisonics is able to be visualized as spatial-audio-based attention maps overlaid with 360°
images. This figure is taken from [311].

Ambisonics for realistic audio-visual modeling in 360°. This thesis used mono sound to facilitate
the establishment of both large-scale video dataset (details in Chapter 3) and new baseline model (de-
tails in Chapter 5). Future works may consider to establish datasets&models by taking advantage of
ambisonics [311], which provides abundant auditory cues of multiple channels. The involvement of
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realistic multi-channel audio information may improve the effectiveness of 360° audio-visual model-
ing via introducing realistic audio-based priors (Fig. 6.2).






Chapter 7

Appendix

7.1 A Predictive uncertainty estimation network for camouflaged ob-
ject segmentation

7.1.1 Introduction

In this section, we briefly summarize our work towards the reverse task of salient object segmentation,
i.e., camouflaged object segmentation (Fig. 7.1). Being different to salient object segmentation which
mimics the function of human attention mechanism towards visually discriminative targets, segment-
ing the targets concealed in natural scenes is always counter-intuitive and thus being difficult for
human subjects.

Current state-of-the-art deep learning methods are able to learn the mapping between random in-
putting domain and target domain to solve challenging task such as camouflaged object segmentation,
however the robustness and interpretability of the models are hardly guaranteed.

Ours SINet-V2 7

Image’ -

Fig. 7.1 An example illustrating camouflaged object segmentation and uncertainty estimation. “c2” is

the sampling-based uncertainty of “Bayesian conditional variational auto-encoder”. “c2” is the output

of “predictive uncertainty approximation” module. SINet-V2 [373] is a state-of-the-art method.

Specifically, uncertainty is inherent in deep learning methods, especially those for camouflaged
object segmentation aiming to finely segment the objects concealed in background. The strong “cen-
ter bias” of the training dataset leads to models of poor generalization ability as the models learn
to find camouflaged objects around image center, which we define as “model bias”. Further, due to
the similar appearance of camouflaged object and its surroundings, it is difficult to label the accurate
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scope of the camouflaged object, especially along object boundaries, which we term as “data bias”.
To effectively model the two types of biases, we resort to uncertainty estimation and introduce predic-
tive uncertainty estimation technique, which is the sum of model uncertainty and data uncertainty, to
estimate the two types of biases simultaneously. Specifically, we present a predictive uncertainty esti-
mation network (PUENet) that consists of a Bayesian conditional variational auto-encoder to achieve
predictive uncertainty estimation, and a predictive uncertainty approximation module to avoid the
expensive sampling process at test-time. Experimental results show that our PUENet achieves both
highly accurate prediction, and reliable uncertainty estimation representing the biases within both

model parameters and the datasets.

7.1.2 Methodology

In our PUENet, we design a Bayesian neural network to capture the distribution of model param-
eters. Further, we add extra inference model and adapt our network to a conditional variational
auto-encoder [366], which is used to model the distribution of model prediction. In this way, our
framework can estimate both model uncertainty (with the Bayesian neural network) and the data un-
certainty (with the conditional variational auto-encoder). Further, we present predictive uncertainty
approximation module to approximate the sampling-based predictive uncertainty of the proposed
Bayesian conditional variational auto-encoder. The pipeline of our proposed PUENet is shown in
Fig. 7.2

Prediction Loss Latent Loss  Uncertainty Approximation Loss

v
Y
4
¥

prioryT prior
ht ~H

~>~ Pa(al)
BCVAE

Fig. 7.2 The pipeline of our PUENet, which consists of a “Bayesian conditional variational auto-
encoder” (BCVAE), and a “predictive uncertainty approximation” (PUA) module. “62” and “c2”
denote the sampling based uncertainty and approximated uncertainty, respectively.
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7.1.3 Experiments

As a result, our PUENet is able to outperform the competing models by a large margin (Table 7.1),

and gain uncertainty maps explaining the model predictions (Fig. ).

Table 7.1 Performance comparison with state-of-the-art camouflaged object segmentation models on
benchmark testing datasets. 1 indicates the higher the score the better, and vice versa for |. The two
best results of each column are in red and blue.

CAMO CHAMELEON CODIOK NC4K

Method Backbone Year [374] [375] [373] [376]
Sat Fpt Egt ML Sat Fgt Egt ML Sat Fgt Egt ML Sat Fgt Eot M1
SINet [373] ResNet50  CVPR’20 0.745 0.702 0.804 0.092 0.872 0.827 0.936 0.034 0.776 0.679 0.864 0.043 0.810 0.772 0.873 0.057
LSR [ ResNet50  CVPR’21 0.793 0.725 0.826 0.085 0.893 0.839 0.938 0.033 0.793 0.685 0.868 0.041 0.839 0.779 0.883 0.053
UJSC [364]  ResNet50  CVPR’21 0.803 0.759 0.853 0.076 0.894 0.848 0.943 0.030 0.817 0.726 0.892 0.035 0.842 0.806 0.898 0.047
MGL [377]  ResNet50 ~CVPR’21 0.775 0.726 0.812 0.088 0.893 0.834 0.918 0.030 0.814 0.711 0.852 0.035 0.833 0.782 0.867 0.052
PFNet [378] ResNet50  CVPR’21 0.782 0.744 0.840 0.085 0.882 0.826 0.922 0.033 0.800 0.700 0.875 0.040 0.829 0.782 0.886 0.053
SINet-V2 [373] Res2Net50 TPAMI'21 0.820 0.782 0.882 0.070 0.888 0.835 0.942 0.030 0.815 0.718 0.887 0.037 0.847 0.805 0.903 0.048
UJTR [379] ResNet50  ICCV’21 0.785 0.686 0.859 0.086 0.888 0.796 0.918 0.031 0.818 0.667 0.850 0.035 0.839 0.786 0.873 0.052
ResNet50 2022 0.794 0.762 0.857 0.080 0.888 0.844 0.943 0.030 0.813 0.727 0.887 0.035 0.836 0.798 0.892 0.050
PUENet Res2Net50 2022 0.834 0.806 0.889 0.067 0.897 0.858 0.940 0.027 0.844 0.774 0.910 0.029 0.862 0.830 0.913 0.042
(Ours) Hybrid-ViT 2022 0.877 0.860 0.930 0.045 0.910 0.869 0.957 0.022 0.873 0.812 0.938 0.022 0.898 0.874 0.945 0.028
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Fig. 7.3 Visual results of our method on CAMO [374].
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Fig. 7.4 Visual results of our method on CHAMELEMON [375].
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Fig. 7.5 Visual results of our method on COD10K [373].
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Fig. 7.6 Visual results of our method on NC4K [376].
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7.1.4 Conclusion

Considering the inherent “model bias” and “data bias” of camouflaged object segmentation, we pro-
pose PUENet to achieve both accurate camouflaged object segmentation model and reliable uncer-
tainty estimation. To reduce the sampling effort, we introduce PUA module to approximate the sam-
pling based predictive uncertainty and achieve sampling-free uncertainty estimation during test-time.
Further, Experimental results validate our solution. Importantly, the produced uncertainty map can
represent our limited knowledge about this task, i.e., center bias, data bias, and category bias. Al-
though reliable uncertainty can be achieved with the proposed strategy, further investigation on uncer-
tainty quantification and out-of-distribution sample estimation can lead to more advanced explainable

camouflaged object segmentation model.
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Titre: Segmentation d’objets saillants dans des images/videos 360° et champ de lumiére

Mot clés : Segmentation d’objets saillants, 360°, champ de lumiére, attention, audio-visuel, estimation de I’incertitude.

Résumé : La segmentation d’objets saillants est une tache imitant
I’attention visuelle humaine, et a constamment attiré 1’attention de
la communauté de la vision par ordinateur en raison de son énorme
potentiel pour le développement de futures applications de réalité
augmentée. Cependant, les méthodes de segmentation d’objets
saillants sont principalement formées et testées avec des images et
des vidéos 2D ol des stimuli visuels sont collectés en fonction de
rayons lumineux et d’un champ de vision limités, échouant ainsi a
s’adapter au scénario du monde réel ou les sujets humains recon-
naissent les objets saillants en (i) capturant des informations sur
le champ lumineux, (ii) en observant des scénes dans un champ
de vision panoramique a 360°. Dans cette thése, nous avons mené
des études systématiques sur la segmentation d’objets saillants sur
des images/vidéos a 360°, et proposé de nouvelles méthodologies
pour la segmentation d’objets saillants en champ lumineux. Nous
avons d’abord proposé respectivement des jeux de données image
et vidéo pour permettre la segmentation des objets saillants a 360°.
Nos ensembles de données proposés fournissent des données vi-
suelles couvrant diverses scénes quotidiennes du monde réel, avec
des objets saillants garantis annotés avec des masques pixel par
pixel au niveau de 1’objet et de I’instance, des étiquettes de classe
d’objet/scene grossieres a fines, et des attributs indiquant le com-

mun défis pour mener le segmentation d’objets saillants dans les
images/vidéos 360°. Pour contribuer davantage a la segmenta-
tion d’objets saillants a base d’images/vidéos a 360°, nous suiv-
ons les procédures courantes de segmentation d’objets saillants 2D
et établissons ainsi des études de référence completes basées sur
nos jeux de données d’images et de vidéos a 360° proposés, ob-
tenant de nouvelles découvertes qui facilitent le développement
de nouveaux modeles 360°. Pour imiter 1’attention visuelle hu-
maine dans des scenes du monde réel, nous avons donc proposé
de nouvelles méthodologies basées respectivement sur le champ
lumineux 2D, et les images/vidéos 360°. Pour étre précis, nos nou-
veaux modeles basés sur le champ lumineux ont appris une atten-
tion synergique multimodale pour une segmentation efficace des
objets saillants. Notre méthode proposée basée sur I’'image a 360°
a permis d’obtenir une amélioration significative sur plusieurs
références a 360°. Notre méthode basée sur la vidéo a 360 ° a
eu recours a une technique d’estimation aléatoire de 1’incertitude
et a tiré parti des signaux visuels et audio pour segmenter les ob-
jets saillants de maniere explicable. Nous espérons que cette these
pourra servir de point de départ pour un développement futur vers
une modélisation immersive de I’attention visuelle humaine au
niveau de I’objet basée sur le multimédia.
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Title: Salient object segmentation in 360° images/videos and light field

Keywords : Salient object segmentation, 360°, light field, attention, audio-visual, uncertainty estimation.

Abstract: Salient object segmentation is a task mimicking hu-
man visual attention, and has been constantly appealing attention
from the computer vision community owing to its huge poten-
tial for the development of future augmented reality applications.
However, state-of-the-art salient object segmentation methods are
mostly trained and tested with 2D images and videos where vi-
sual cues are collected based on limited light rays and field-of-
view, thus failing to adapt to the real-world scenario where hu-
man subjects recognize the salient objects by (i) capturing light
field information, (ii) observing scenes in a 360° panoramic field-
of-view. To close the gap between salient object segmentation
academia and real-world applications, in this thesis, we conducted
systematical studies towards 360° image-/video-based salient ob-
ject segmentation, and proposed new methodologies for light field
salient object segmentation. As current top-ranked salient object
segmentation methods are mostly fully-supervised deep learning
models, a lack of large-scale 360° image and video datasets surely
limits the development of 360° models based on the same learn-
ing paradigm. To this end, we first respectively proposed image
and video datasets to enable salient object segmentation in 360°.
Our proposed datasets provide visual data covering various real-
world daily scenes, with guaranteed salient objects annotated with

both object-level and instance-level pixel-wise masks, coarse-to-
fine object-/scene-class labels and attributes indicating the com-
mon challenges for conducting salient object segmentation in both
360° images and 360° videos. To further contribute to 360° image-
/video-based salient object segmentation, we follow the common
procedures in 2D salient object segmentation and thus establish-
ing comprehensive benchmark studies based on our proposed 360°
image and video datasets, gaining new findings that facilitate the
development of new 360° models. To mimic the human visual
attention in real-world scenes, we thus proposed new methodolo-
gies based on 2D light field, 360° images and 360° videos, respec-
tively. To be specific, our new light field-based models learned
multi-modal synergistic attention for effective salient object seg-
mentation. Our proposed 360° image-based method achieved sig-
nificant improvement on multiple 360° benchmarks. Our 360°
video-based method resorted to aleatoric uncertainty estimation
technique and took advantage of both visual and audio cues to seg-
ment salient objects in an explainable manner. We hope this the-
sis could serve as a starting point for future development towards
immersive multi-media-based object-level human visual attention
modeling.




