
HAL Id: tel-04529731
https://theses.hal.science/tel-04529731

Submitted on 2 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Salient Object Segmentation in 360° images/videos and
light field

Yi Zhang

To cite this version:
Yi Zhang. Salient Object Segmentation in 360° images/videos and light field. Signal and Image
processing. INSA de Rennes, 2022. English. �NNT : 2022ISAR0033�. �tel-04529731�

https://theses.hal.science/tel-04529731
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES SCIENCES

APPLIQUÉES DE RENNES

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Image et Vision

Par

Yi ZHANG

Salient Object Segmentation in 360° images/videos and light field
Thèse présentée et soutenue à Rennes, le 2 Novembre 2022
Unité de recherche : Institut d’Electronique et des Technologies du numéRique (IETR) - UMR CNRS
6164
Thèse N° : 22ISAR 25 / D22 - 25

Rapporteurs avant soutenance :

Olivier LEZORAY Professeur, Université de Caen, France

Jenny BENOIS Professeur, Université de Bordeaux, France

Composition du jury :

Président : Olivier LEZORAY Professeur, Université de Caen, France

Examinateurs : Aljosa SMOLIC Professeur, Haute École de Lucerne, Suisse

Ying FU Professeur, Institut de Technologie de Pékin, Chine

Wassim HAMIDOUCHE Maître de conférences, INSA de Rennes, France

Dir. de thèse : Olivier DEFORGES Professeur, INSA de Rennes, France





Table of contents

Acknowledgment 1

Résumé en français 3

1 Introduction 9
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Objectives&Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Saliency prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Saliency prediction in 2D images/videos . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Saliency prediction in 360° images/videos . . . . . . . . . . . . . . . . . . . 20

2.3 Salient object segmentation in 2D RGB domain . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Image-based salient object segmentation . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Video-based salient object segmentation . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Co-salient object segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 High-resolution salient object segmentation . . . . . . . . . . . . . . . . . . 30

2.3.5 Remote sensing salient object segmentation . . . . . . . . . . . . . . . . . . 30

2.4 Salient object segmentation with 2D multi-modal data . . . . . . . . . . . . . . . . . 32

2.4.1 RGB-depth salient object segmentation . . . . . . . . . . . . . . . . . . . . 32

2.4.2 RGB-thermal salient object segmentation . . . . . . . . . . . . . . . . . . . 33

2.4.3 Light field salient object segmentation . . . . . . . . . . . . . . . . . . . . . 35

2.5 Salient object segmentation in panorama . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 State-of-the-art attention models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Categories of attention models . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.2 Representative attention models . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Evaluation for salient object segmentation . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



iv Table of contents

3 Datasets & benchmarks on 360° images and videos 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Key aspects for salient object segmentation datasets’ construction . . . . . . . . . . 47

3.2.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 A dataset for salient object segmentation in 360° images . . . . . . . . . . . . . . . 59
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Benchmark studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 A dataset for salient object segmentation in 360° videos . . . . . . . . . . . . . . . . 70
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.2 Dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.3 Benchmark studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Salient object segmentation in light field 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Learning synergistic attention for light field salient object segmentation . . . . . . . 94

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.3 Focal stack-based methodologies . . . . . . . . . . . . . . . . . . . . . . . 97
4.2.4 RGB-D-based methodologies . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Salient object segmentation in 360° images&videos 115
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Channel-spatial mutual attention for 360° image-based salient object segmentation . 116

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Audio-visual salient object segmentation in 360° videos . . . . . . . . . . . . . . . . 127
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



Table of contents v

5.3.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Conclusion 143
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2 Future works and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 Appendix 147
7.1 A Predictive uncertainty estimation network for camouflaged object segmentation . . 147

7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

List of publications 155

References 157





Acknowledgment

I would like to thank all colleagues of IETR-VADDER, who have been providing me with their
selfless kindness during my PhD. Specially, I would like to thank Prof. Olivier Deforges, my director
of the thesis, who plays the roles of my tutor/father/friend and shows his visionary that supports me
with my researches.

Second, I would like to thank senior researchers including Dr. Jing Zhang from Australian Na-
tional University and Prof. Geng Chen from Northwestern Polytechnical University, who are willing
to cooperate with me on interesting topics closely related to the thesis, and to share with me their
excellent techniques towards conducting outstanding researches.

Importantly, I would like to thank the Chinese Scholar Council for its generous financial supports
during my PhD.

Finally, I would like to thank my family and friends for showing me unconditonal kindness and
for giving me their endless love.





Résumé en français

La vision humaine se compose généralement de deux phases, c’est-à-dire une vision de bas niveau et
une vision de haut niveau. Plusieurs capteurs d’yeux humains saisissent les lumières réfléchies par
les environnements environnants. Les neurones transfèrent ensuite les informations saisies par les
capteurs au cortex visuel où les caractéristiques de vision de bas niveau (e.g., bord, couleur, forme,
profondeur, couleur, orientation et mouvement) sont garanties.

Les caractéristiques de bas niveau codées sont ensuite transmises à d’autres régions fonctionnelles
du cerveau humain où des caractéristiques de haut niveau sont produites. Les fonctionnalités de haut
niveau sont ensuite utilisées pour servir de base à la naissance de la conscience (e.g., la reconnaissance
d’objets). En fait, le succès de ce système hiérarchique de vision humaine est dû à un mécanisme es-
sentiel tout au long du processus de transmission des caractéristiques, à savoir le système d’attention
visuelle, qui médiatise la sélection des informations importantes de manière ascendante et descen-
dante.

D’autre part, l’apprentissage en profondeur a dominé le domaine de la vision par ordinateur au
cours des dernières années, en raison de l’essor des sources de calcul (e.g., les unités de traitement
graphique), de la naissance d’ensembles de données de pré-formation à grande échelle (e.g., Ima-
geNet [1]), d’une capacité d’apprentissage exceptionnelle des réseaux de neurones à convolution pro-
fonde (e.g., VGGs [2]) et d’une large application de méthodologies d’optimisation adaptative (e.g.,
l’optimiseur Adam [3]). Le succès des réseaux de neurones à convolution profonde pour des tâches
telles que la classification d’images [1] et la détection d’objets [4] doit à leurs architectures con-
stituées de couches neuronales hiérarchiques. Selon une étude de visualisation de réseau neuronal
convolutif telle que [5], les cartes de caractéristiques des couches neuronales inférieures correspon-
dent à des caractéristiques de vision de bas niveau telles que les coins et les bords, tandis que les
cartes de caractéristiques de haut niveau montrent les apparences d’objets à partir d’images données.
Malgré les progrès réalisés pour imiter le système visuel humain, la faible capacité de généralisation
et le fonctionnement interne inexplicable des algorithmes d’apprentissage en profondeur actuels, les
empêchent d’être directement transférés à différentes tâches difficiles. Dans les cas généraux, il ex-
iste plusieurs ensembles de données de référence avec des annotations spécifiques et des réseaux de
neurones profonds avec des architectures et des composants exclusivement conçus pour des tâches de
vision par ordinateur particulièrement difficiles.

En tant que tendance en plein essor de l’apprentissage en profondeur et de ses applications
réussies pour les tâches de vision par ordinateur, la modélisation de l’attention humaine basée sur
l’apprentissage en profondeur a attiré l’attention croissante de la communauté au cours des dernières
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années.

Le contexte

Scènes de la vie réelle

Saillance visuelle

Représentation planaire Représentation panoramique

Modélisation de l'attention 
humaine en 2D

Modélisation de l'attention 
humaine sur PanoramaCerveau humain

2D 360°360°

Fig. 1 Une illustration des relations entre l’attention visuelle réelle, la modélisation de l’attention vi-
suelle traditionnelle basée sur 2D et la modélisation de l’attention visuelle basée sur des images/vidéos
panoramiques à 360°. Avec des caméras à 360° et des écrans montés sur la tête, la détection de
saillance visuelle basée sur un panorama à 360° est potentiellement capable de mieux imiter le com-
portement du système visuel humain dans des scènes réelles, par rapport au scénario 2D. Les flèches
noires indiquent le flux d’informations. Les flèches bleues représentent le retour d’attention.

Comme le montre la fig. 1, les recherches actuelles liées à la modélisation de l’attention humaine
sont soit basées sur deux dimensions (2D) soit sur la réalité virtuelle1 images et vidéos. Généralement,
la différence entre la modélisation de l’attention visuelle basée sur la 2D et la réalité virtuelle est
double:
i. Les images/vidéos 2D sont collectées avec des caméras normales qui ne sont capables d’enregistrer
que des scènes réelles observées à partir de fenêtres locales contenant un contexte limité. En par-
ticulier, les caméras VR possèdent un champ de vision de 360°×180° (Fig. 2) et sont capables
d’enregistrer tout le contexte de scènes réelles. Par conséquent, par rapport à la modélisation de
l’attention humaine basée sur 2D, la modélisation de l’attention basée sur 360° est basée sur des don-
nées contenant beaucoup plus d’indices visuels, possédant ainsi le potentiel d’imiter une attention

1Dans cette thèse, nous utilisons les termes de réalité virtuelle, 360°, panoramique et omnidirectionnelle indifféremment.
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visuelle humaine plus réaliste.
ii. Les comportements visuels humains de l’observation d’un écran d’ordinateur sont différents de
ceux de l’observation d’environnements immersifs avec des visiocasques. Par conséquent, la vérité
terrain (e.g., le mouvement des yeux) des tâches liées à la modélisation de l’attention 2D/VR a ten-
dance à effectuer des distributions différentes. Par exemple, les attentions basées sur la 2D sont
biaisées au centre tandis que celles basées sur la réalité virtuelle sont biaisées par l’équateur.

Image équirectangulaire

Image 2D

Fig. 2 Une comparaison entre la réalité virtuelle et la représentation 2D. La caméra VR capture les
scènes réelles observées à partir d’un champ de vision de 360°×180°. Les images omnidirection-
nelles collectées sont généralement représentées sous forme d’images équirectangulaires. La caméra
normale fournit des images 2D enregistrant des scènes avec un contexte limité observé à partir de
fenêtres locales.

Au cours des dernières années, des ensembles de données de référence à grande échelle basés sur
la 2D et la réalité virtuelle et des modèles d’apprentissage en profondeur ont été proposés pour faire
progresser le domaine de la modélisation de l’attention visuelle humaine.
Modélisation de l’attention humaine dans le domaine 2D. Les premiers ensembles de données de
référence tels que MIT300 [6] et CAT2000 [7] ont collecté des données sur les mouvements de l’œil
humain en menant des expériences de suivi oculaire basées sur des images statiques 2D. Ces ensem-
bles de données basés sur des images2 ont publié des centaines ou des milliers d’images représentant
plusieurs catégories de scènes réelles, avec des cartes de fixation par image reflétant les distribu-
tions de l’attention humaine. Dans ce cas, des méthodes d’apprentissage en profondeur telles que
DeepGaze [8], SALICON [9] et DeepFix [10] ont utilisé des réseaux de neurones convolutifs pour
apprendre la correspondance entre les distributions d’images d’entraînement et les distributions de
fixations humaines. Avec une supervision des fixations humaines, ces méthodes peuvent être en-
traînées pour finalement représenter les régions de haute saillance sur des images non vues (ensemble
de données de test). Des ensembles de données ultérieurs tels que DHF1K [11] et LEDOV [12] ont
collecté 500 à 1K courtes vidéos représentant diverses scènes de la vie quotidienne (e.g., événements
sociaux et sports) pour étudier les comportements visuels humains dans un scénario dynamique. Des

2https://saliency.tuebingen.ai/datasets.html

https://saliency.tuebingen.ai/datasets.html
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recherches telles que OM-CNN [13] et ACLNet [11] ont appliqué ConvLSTM [14] (un type de réseau
neuronal récurrent largement utilisé) pour extraire les caractéristiques spatio-temporelles d’images
vidéo consécutives, afin de prédire la dynamique humaine fixations.

En fait, le mécanisme d’attention visuelle humaine est non seulement capable de guider le regard
humain, mais aussi d’aider l’homme à reconnaître les objets importants pour la tâche de vision telle
que la compréhension de la scène. Des recherches récentes [15, 16] ont ainsi étudié une tâche rela-
tivement nouvelle, i.e., salient object segmentation (a.k.a. détection d’objets saillants ou modélisation
de l’attention visuelle au niveau de l’objet), qui vise à segmenter finement les objets saisissant la ma-
jeure partie de l’humain attentions. Comme le développement d’ensembles de données salient object
segmentation à grande échelle tels que MSRA10K3, DUT-O [17], PASCAL-S [18] , HKU-IS [19],
DUTS [20] et SOC [21] (qui fournissent tous des masques binaires au niveau des pixels étiquetés
manuellement comme vérité terrain), des dizaines de méthodes d’apprentissage en profondeur [16]
ont il a été proposé de mener à bien votre tâche de manière entièrement-/faiblement-/non-supervisée.
En outre, des ensembles de données salient object segmentation basés sur la vidéo récemment établis
tels que VOS [22] et DAVSOD [23] fournissent des étiquettes pixel par pixel d’objets saillants parmi
des milliers d’images vidéo, permettant ainsi salient object segmentationbasé sur la vidéo. Il convient
de mentionner que divers modules d’attention [24] ont été proposés pour faciliter la modélisation de
l’attention humaine au niveau de l’objet.
Modélisation de l’Attention Humaine en Panorama 360° Considérant le potentiel de la modélisa-
tion de l’attention à 360° pour imiter l’attention humaine réelle dans des scènes de la vie réelle, et
la possibilité d’acquérir une grande quantité d’images et de vidéos à 360° en utilisant des caméras
VR grand public telles que la série Insta360 ONE, Ricoh Theta Z1 et GoPro Max , plusieurs jeux
de données tels que [25–28] ont été proposés ces dernières années, pour la modélisation statique ou
dynamique de l’attention humaine au niveau de la fixation. Il convient de noter que ces ensembles
de données ne fournissent que des données sur les mouvements de la tête ou des yeux comme vérité
de terrain, ne pouvant donc pas refléter strictement l’attention humaine sur des cibles saillantes spé-
cifiques. Des recherches récentes [29–32] ont exploré la détection d’objets dans des vidéos à 360°.
Cependant, ces méthodes ont été proposées pour la détection de boîtes englobantes et formées pour
détecter tous les objets dans des scènes à 360°, ne pouvant donc pas être utilisées pour explorer la
modélisation de l’attention humaine au niveau de l’objet dans des environnements immersifs. En
règle générale, salient object segmentation basé sur des images/vidéos à 360° est encore un domaine
ouvert, sans aucun jeu de données ou méthode de référence proposé avant l’année 2019.

Objectifs&Contributions

L’objectif principal de cette thèse est la modélisation de l’attention visuelle au niveau de l’objet
dans des environnements immersifs de réalité virtuelle4 via des techniques d’apprentissage en pro-
fondeur. En effet, cette tâche n’est pas seulement étroitement liée à diverses tâches classiques de vi-
sion par ordinateur telles que la classification d’images [1], la détection d’objets [4], la segmentation

3https://mmcheng.net/msra10k/
4a.k.a. images, vidéos ou scènes dynamiques audiovisuelles à 360°

https://mmcheng.net/msra10k/
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d’instances [33], la segmentation sémantique [34] et la comprendre [35], mais joue également un rôle
important dans les applications potentielles s’adaptant à des scénarios réels tels que le post-traitement
de photos, la navigation, la conduite autonome, la réalité augmentée et le robot humanoïde.

Pour remplir une solide thèse de doctorat, cette thèse démêle l’objectif principal de la modélisa-
tion de l’attention humaine au niveau de l’objet basée sur le panorama en trois tâches progressives
difficiles, i.e., i modéliser l’attention visuelle humaine au niveau de l’objet dans le champ lumineux,
avec de nouvelles techniques d’apprentissage en profondeur basées sur l’attention; ii modélisation de
l’attention visuelle au niveau de l’objet dans un panorama statique à 360° avec un nouveau modèle
d’apprentissage en profondeur basé sur l’attention; iii modéliser l’attention audiovisuelle au niveau
de l’objet dans un panorama dynamique à 360°, qui imite l’attention humaine réelle dans des scènes
réelles et possède un potentiel pour des applications réelles.

Ainsi, les contributions de cette thèse se résument comme suit:

Un résumé. Un aperçu systématique des méthodes de pointe pour la modélisation de l’attention
humaine au niveau de la fixation et au niveau de l’objet dans les domaines 2D et 360°. Un résumé
complet sur les modèles d’attention de pointe dans le domaine de la vision par ordinateur. Les aperçus
sont présentés dans Chapter 2.

Ensembles de données&benchmarks basés sur des images/vidéos à 360°. Un nouvel ensemble
de données de référence et des études de référence complètes vers une image à 360° salient object
segmentation, qui est détaillée dans Chapter 3. Il convient de noter que nous incluons à la fois la
vérité terrain au niveau de l’objet et de l’instance au niveau des pixels dans notre nouvel ensemble de
données proposé. De plus, un nouvel ensemble de données de référence et des études de référence
complètes vers salient object segmentation basé sur la vidéo à 360°. En particulier, nous considérons
à la fois des signaux audio et visuels pour construire l’ensemble de données, imitant ainsi mieux le
scénario du monde réel. De plus, cette partie des travaux est incluse dans Chapter 3.

Nouvelles méthodologies vers le champ lumineux salient object segmentation. Le champ lu-
mineux salient object segmentation est un domaine relativement nouveau et, étant similaire à 360°
salient object segmentation, il est d’une grande importance pour les applications industrielles de réal-
ité augmentée. À cette fin, nous explorons les méthodes de champ lumineux salient object segmen-
tation de pointe et proposons en outre de nouveaux modèles d’apprentissage en profondeur. Les
composants clés de nos nouveaux modèles incluent divers mécanismes d’attention pour la fusion de
caractéristiques multimodales. Les travaux sont détaillés dans Chapter 4.

Nouvelles méthodologies vers panoramique salient object segmentation. Pour combler davantage
le vide du domaine du 360° salient object segmentation, nous proposons respectivement de nouveaux
modèles de référence pour mener salient object segmentation en images et vidéos 360°. La ligne
de base basée sur l’image à 360° tire parti des mécanismes d’attention pour une fusion efficace des
fonctionnalités basée sur des repères visuels multi-vues à 360°. La ligne de base basée sur la vidéo
utilise à la fois des repères auditifs et visuels pour repérer les cibles parmi les images d’une séquence
donnée. De nombreux résultats qualitatifs/quantitatifs ont été obtenus pour vérifier l’efficacité ainsi
que la robustesse des méthodes proposées. Veuillez vous référer à Chapter 5 pour plus de détails sur
les travaux.
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Par conséquent, le chapitre suivant passe en revue divers types d’ensembles de données et de méthodolo-
gies de référence représentatifs liés à votre tâche. En outre, sur la base de nos observations sur ces
méthodes récentes de pointe, nous résumons en outre les modèles d’attention de base utilisés non
seulement dans salient object segmentation mais également dans les tâches générales de vision par
ordinateur, afin d’établir des bases théoriques et empiriques solides pour les travaux suivants de la
thèse. Le troisième chapitre présente de nouveaux ensembles de données de référence et des études
approfondies concernant la modélisation de l’attention humaine au niveau de l’objet à 360°. Le
quatrième chapitre détaille nos travaux vers le champ lumineux salient object segmentation. Le cin-
quième chapitre présente en outre nos travaux visant à créer de nouvelles bases pour la réalisation de
salient object segmentation en images et vidéos à 360°, respectivement.

En conclusion, cette thèse a réussi à segmenter des objets saillants à la fois en panorama 360° et
en champ lumineux. De nouveaux ensembles de données et des lignes de base basées sur l’attention
ont été proposés pour une segmentation efficace des objets saillants dans les scènes panoramiques
statiques et dynamiques. En outre, de nouveaux modèles d’attention ont également été proposés pour
une segmentation précise des objets saillants. En tant que l’un des points de départ de la détection
de cibles saillantes immersive basée sur le multimédia, nous espérons que cette thèse pourra inspirer
des idées pour de futures recherches dans les domaines de la segmentation d’objets, de la VR/AR, de
l’apprentissage audiovisuel et de l’apprentissage multimodal.



Chapter 1

Introduction

Human vision generally consists of two phases, i.e., low-level vision and high-level vision. Multiple
sensors of human eyes grasp the lights reflected by the surrounding environments. Neurons then
transfer the information grasped by sensors to visual cortex where low-level vision features (i.e.,
edge, color, shape, depth, color, orientation and motion) are generated. The coded low-level features
are then conveyed to other functional regions of human brain where high-level features are produced.
The high-level features are then used to serve as the foundation of the birth of consciousness (e.g.,
object recognition). In fact, the success of this hierarchical human vision system owes to an essential
mechanism throughout the whole process of feature transmission, namely visual attention system,
which mediates the selection of important information in a bottom-up and top-down manner.

On the other hand, deep learning has been dominating the field of computer vision during the past
years, owing to the boom of computational sources (e.g., graphics processing units (GPUs)), birth of
large-scale pre-training datasets (e.g., ImageNet [1]), outstanding learning ability of deep convolu-
tional neural networks (e.g., VGGs [2]) and wide application of adaptive optimization methodologies
(e.g., Adam optimizer [3]). The success of deep convolutional neural networks for tasks such as image
classification [1] and object detection [4] owes to their architectures consisting of hierarchical neural
layers. According to convolutional neural network visualization study such as [5], the feature maps of
bottom neural layers correspond to low-level vision features such as corner and edge, while high-level
feature maps show the appearances of objects from given images. Despite the progresses on mimick-
ing human visual system, poor generalization ability and inexplicable inner working of current deep
learning algorithms, both prevent them from being directly transferred to different challenging tasks.
In general cases, there are several benchmark datasets with specific annotations, and deep neural net-
works with exclusively designed architectures and components for particular challenging computer
vision tasks.

As the booming trend of deep learning and its successful applications for computer vision tasks,
deep learning based human attention modeling has been appealing increasing attention from the com-
munity during the past years.
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1.1 Context

Real-Life Scenes

Visual Saliency

Planar Representation Panoramic Representation

Human Attention Modeling 
on 2D

Human Attention Modeling 
on PanoramaHuman Brain

2D 360°360°

Fig. 1.1 An illustration of the relationships between real visual attention, traditional 2D-based visual
attention modeling and 360° panoramic images/videos-based visual attention modeling. With 360°
cameras and head-mounted displays, 360° panorama based visual saliency detection is potentially
able to better mimic the behavior of human visual system in real-life scenes, when compared to 2D
scenario. The black arrows denote information flow. The blue arrows represent attention feedback.

As shown in Fig, 1.1, current human attention modeling related researches are either based on two
dimensional (2D) or VR1 images and videos. Generally, the difference between 2D and VR based
visual attention modeling is twofold:

i. 2D images/videos are collected with normal cameras which are only capable of recording real-life
scenes observed from local viewports containing limited context. Specially, VR cameras own a field-
of-view (FoV) of 360°×180° (Fig. 1.2) and are able to record the whole context of real-life scenes.
Therefore, compared to 2D based human attention modeling, 360° based attention modeling is based
on data containing much more visual cues, thus owning the potential of mimicking more realistic
human visual attention.

ii. The human visual behaviors of observing computer screen are different when compared to those
of observing immersive environments with head-mounted displays. Therefore, the ground truth (e.g.,
eye movement) of 2D/VR attention modeling related tasks tend to perform different distributions. For
instance, 2D based attentions are center-biased while VR based ones are equator-biased.

1In this thesis, we use the terms of VR, 360°, panoramic and omnidirectional interchangeably.
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Equirectangular Image

2D image 

Fig. 1.2 A comparison between VR and 2D representations. VR camera captures the real-life scenes
observed from a FoV of 360°×180°. The collected omnidirectional images are usually represented as
equirectangular images. Normal camera provides 2D images recording scenes with limited context
observed from local viewports.

During the past few years, both 2D and VR based large-scale benchmark datasets and deep learn-
ing models have been proposed to advance the field of human visual attention modeling.

Human Attention Modeling in 2D Domain. Early benchmark datasets such as MIT300 [6] and
CAT2000 [7] collected human eye movement data by conducting eye-tracking experiments based on
2D static images. These image based datasets2 released hundreds or thousands of images representing
several real-life scene categories, with per-image fixation maps reflecting human attention distribu-
tions. In this case, deep learning methods such as DeepGaze [8], SALICON [9] and DeepFix [10]
used convolutional neural networks to learn the mapping between the distributions of training im-
ages and the distributions of human fixations. With a supervision of human fixations, these methods
are able to be trained to finally depict the regions of high saliency on unseen images (testing set).
Later datasets such as DHF1K [11] and LEDOV [12] collected 500 to 1K short videos represent-
ing various daily-life scenes (e.g., social events and sports) to investigate human visual behaviors in
dynamic scenario. Researches such as OM-CNN [13] and ACLNet [11] applied ConvLSTM [14]
(a type of widely used recurrent neural network) to extract spatial-temporal features of consecutive
video frames, to predict dynamic human fixations.

In fact, human visual attention mechanism is not only able to guide where human look, but
also to aid human in recognizing the objects important for vision task such as scene understand-
ing. Recent researches [15, 16] thus investigated a relatively new task, i.e., salient object segmenta-
tion (a.k.a. salient object detection or object-level visual attention modeling), which aims at finely
segmenting the objects grasping most of the human attentions. As the development of large-scale
salient object segmentation datasets such as MSRA10K3, DUT-O [17], PASCAL-S [18], HKU-
IS [19], DUTS [20] and SOC [21] (which all provide manually labeled pixel-wise binary masks

2https://saliency.tuebingen.ai/datasets.html
3https://mmcheng.net/msra10k/

https://saliency.tuebingen.ai/datasets.html
https://mmcheng.net/msra10k/
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as ground truth), dozens of deep learning methods [16] have been proposed to conduct salient ob-
ject segmentation in fully/weakly/non-supervised manners. Besides, recently established video based
salient object segmentation datasets such as VOS [22] and DAVSOD [23] provide pixel-wise labels
of salient objects among thousands of video frames, thus enabling video based salient object seg-
mentation. What is worth mentioning is that, various attention modules [24] have been proposed to
facilitate the modeling of object-level human attention.
Human Attention Modeling in 360° Panorama Considering the potential of 360° attention model-
ing in mimicking real human attention in real-life scenes, and feasibility of acquiring large amount
of 360° images and videos by using consumer-level VR cameras such as Insta360 ONE series, Ricoh
Theta Z1 and GoPro Max, several datasets such as [25–28] have been proposed in the past few years,
for static or dynamic fixation-level human attention modeling. It is worth noting that, these datasets
provide only head or eye movement data as ground truth, thus not being able to strictly reflect hu-
man attention to specific salient targets. Recent researches [29–32] explored object detection in 360°
videos. However, these methods were proposed for bounding box detection and trained to detect all
objects in 360° scenes, thus not being able to be used to explore object-level human attention mod-
eling in immersive environments. Generally, 360° image/video based salient object segmentation is
still an open area, without any benchmark datasets or methods proposed before 2019.
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1.2 Objectives&Contributions

The main focus of this thesis is the object-level visual attention modeling in VR immersive environ-
ments4 via deep learning techniques. Indeed, this task is not only closely related to various clas-
sical computer vision tasks such as image classification [1], object detection [4], instance segmen-
tation [33], semantic segmentation [34] and scene understanding [35], but also plays an important
role in potential applications adapting to real-life scenario such as photo post-processing, navigation,
self-driving, augmented reality and humanoid robot.

To fulfill a solid PhD dissertation, this thesis disentangles the main objective of panorama-based
object-level human attention modeling into three progressive challenging tasks, i.e., i modeling object-
level human visual attention in light field, with newly propose attention-based deep learning tech-
niques; ii modeling object-level visual attention in static 360° panorama with new attention-based
deep learning model; iii modeling object-level audio-visual attention in dynamic 360° panorama,
which mimics real human attention in real-life scenes and owns potential for real-life applications.

Therefore, the contributions of this thesis are summarized as follows:
Reviews. A systematical overview of state-of-the-art methods towards fixation-level and object-level
human attention modeling in both 2D and 360° domains. A thorough review about state-of-the-
art attention models in the field of computer vision. The overviews are presented in Chapter 2.
360° image-/video-based datasets&benchmarks. A new benchmark dataset and comprehensive
benchmark studies towards 360° image salient object segmentation, which is detailed in Chapter
3. It is worth noting that we include both the object-/instance-level pixel-wise ground truth in our
newly proposed dataset. In addition, a new benchmark dataset and comprehensive benchmark studies
towards 360° video-based salient object segmentation. Specially, we consider both audio and visual
cues to construct the dataset, thus better mimicking the real-world scenario. Also, this part of works
is included in Chapter 3.
New methodologies towards light field salient object segmentation. Light field salient object
segmentation is a relatively new area and, being similar to 360° salient object segmentation, is of great
importance for industrial augmented reality applications. To this end, we explore the state-of-the-
art light field salient object segmentation methods and further propose new deep learning models. The
key components of our new models include varying attention mechanisms for multi-modal feature
fusion. The works are detailed in Chapter 4.
New methodologies towards panoramic salient object segmentation. To further fill the blank
of the field of 360° salient object segmentation, we respectively propose new baseline models to
conduct salient object segmentation in 360° images and videos. The 360° image-based baseline
takes advantage of attention mechanisms for effective feature fusion based on 360° multi-view-based
visual cues. The video-based baseline uses both auditory and visual cues to spot targets among
frames of a given sequence. Extensive qualitative/quantitative results have been conducted to verify
the effectiveness as well robustness of the proposed methods. Please refer to Chapter 5 for details of
the works.

4a.k.a. 360° images, videos or audio-visual dynamic scenes
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1.3 Outline of the thesis

Therefore, the next chapter reviews various types of representative salient object segmentation related
benchmark datasets and methodologies. Besides, based on our observations towards these recent
state-of-the-art methods, we further summarize basic attention models used in not only salient ob-
ject segmentation but also general computer vision tasks, to establish solid theoretical and empirical
foundations for the following works of the thesis. The third chapter presents new benchmark datasets
and comprehensive studies regarding 360° object-level human attention modeling. The forth chapter
details our works towards light field salient object segmentation. The fifth chapter further introduces
our works towards building new baselines for conducting salient object segmentation in 360° images
and videos, respectively.

As a conclusion, this thesis has successfully achieved salient object segmentation in both 360°
panorama and light field. New datasets and attention-based baselines have been proposed for effective
segmentation of salient objects in both static and dynamic panoramic scenes. Besides, new attention
models have also been proposed for accurate segmentation of salient objects in light field. As one
of the starting points of immersive multimedia-based salient target detection, we hope this thesis is
able to inspire ideas for future researches in the fields of object segmentation, VR/AR, audio-visual
learning and multi-modal learning.



Chapter 2

Background

2.1 Introduction

Salient object segmentation (a.k.a. salient object detection) has been continually grasping attention
from the computer vision community in the past decades [15, 16]. As shown in Fig. 2.1, commonly
seen image&video segmentation tasks including instance segmentation [4] where all instance-level
entities are pixel-wisely outlined, semantic segmentation [34, 36] where all image/video pixels are
annotated with specific object-level labels, panoptic segmentation [37] where all image/video pixels
are annotated with specific instance-level labels, and generic object segmentation [38] as shown in
the second row of Fig. 2.2 where all foreground and background objects are annotated. Being dif-
ferent to above traditional segmentation tasks, salient object segmentation aims to finely segment the
objects constantly grasping visual attention, thus being regarded as an interdisciplinary area of human
perception and object segmentation. On the other hand, the task of salient object segmentation is also
closely related to saliency prediction (a.k.a. fixation prediction) [11], where specific regions appeal-
ing human attention are detected (The third row of Fig. 2.2). Importantly, the task of salient object
segmentation focuses on the regions that are not only salient but also explainable from a perspective
of cognitive vision.

The following sections introduce the related tasks in details, and discuss the connections between
some of these tasks and our main focus, i.e., salient object segmentation in 360° panoramic images
and videos. Specifically, this chapter first reviews the classical human attention modeling task, i.e.,
saliency prediction (a.k.a., fixation-level attention modeling). Further, this chapter overviews various
derivative tasks, which have recently witnessed a prosperous development of salient object segmenta-
tion community. Besides, this chapter also overviews current state-of-the-art attention models in the
field of general computer vision. Finally, we coolect the formulations of current widely used salient
object segmentation metrics. Note the metrics are used for a variety of downstream tasks related to
salient object segmentation (e.g., light field/panoramic salient object segmentation). The aim of these
reviews is to provide context towards the works included in the following chapters, thus establishing
a solid foundation for the thesis.
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Fig. 2.1 The background of the task of salient object segmentation. Besides, the main focus of this
thesis is highlighted.

Fig. 2.2 A comparison of the tasks of salient object segmentation, generic object segmentation and
saliency prediction. The salient objects are annotated with bounding boxes at the first and the second
row. The saliency maps are listed at the third row. This figure is cited from [39].
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2.2 Saliency prediction

The community has witnessed a significant development of visual saliency prediction methodologies,
thanks to the booming trend of deep learning and large-scale annotations (e.g., fixations gained by
conducting eye-tracking experiments supported by widespread consumer-level Head-Mounted Dis-
plays (HMDs)). This section reviews the widely used datasets in recent two decades and advanced
deep learning methods in the last few years.

2.2.1 Saliency prediction in 2D images/videos

2D image/video-based saliency prediction has been attracting attention from the research community
during the past years (e.g., basic information regarding the widely used 2D images/videos saliency
prediction benchmark datasets can be found at MIT/Tübingen Saliency Benchmark1). This section
briefly reviews recent development towards 2D-based saliency prediction from the aspects of widely
used datasets and representative methodologies.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Fig. 4. Recent fixation datasets over still images. Please refer to the MIT Saliency Benchmark and the text for details.

number of highly influential static and dynamic saliency
models as follows: Attention for Information Maximiza-
tion (AIM) [21], Graph-based Visual Saliency (GBVS) [52],
Saliency Using Natural statistics (SUN) [46], Spectral
Residual saliency (SR) [53], Adaptive Whitening Saliency
(AWS) [54], Boolean Map based Saliency (BMS) [55], and
the Judd model [26]. Some classic video saliency models
include: AWS-D [56], OBDL [57], Xu et al. [58], PQFT [59],
and Rudoy et al. [60].

2.5 Deep Saliency Models

The success of convolutional neural networks (CNN) [61]
on large scale object recognition corpora [62], has brought
along a new wave of saliency models that perform markedly
better than traditional saliency models based on hand-
crafted features. Researchers leverage existing CNNs that
are trained for scene recognition and re-purpose them to
predict saliency. Often some architectural novelties are also
introduced. These models are trained in an end-to-end man-
ner, effectively formulating saliency as a regression problem
(See Fig. 6.A). To remedy the lack of sufficiently large scale
fixation datasets, deep saliency models are pre-trained on
large image datasets and are then fine-tuned on small scale
eye movement or click datasets. This procedure allows
models to re-use the semantic visual knowledge already
learned in CNNs and successfully transfer it to the task of
saliency. In what follows, I review some of the landmark
deep spatial and spatiotemporal saliency models.

2.5.1 Static Saliency Models

Fig. 6.B presents a timeline of deep saliency models since
their inception in 2014. It forms the basis according to which
models are reviewed here.

eDN: Put forth by Vig et al. [63], the eDN (ensembles of
deep networks) was the first attempt to leverage CNNs for
predicting image saliency. First, it generates a large number
of richly-parameterized 1 to 3 layer networks using biology-
inspired hierarchical features. Then, it uses hyperparameter
optimization to search for independent models that are pre-
dictive of saliency and combines them into a single model
by training a linear SVM.

DeepGaze I & II: Kümmerer et al. [64] proposed to
employ a relatively deeper CNN (pre-trained AlexNet [65])
for saliency prediction (5 layers compared to eDN’s 1-3
layers). The outputs of the convolutional layers were used to
create and train a linear model to compute image salience.
More recently, they introduced the DeepGaze II model [66]
built upon DeepGaze I. It further explores the unique contri-
butions between low-level and high-level features towards
fixation prediction and obtains the best performance on the
MIT300 dataset in terms of the AUC-Judd score.

Mr-CNN: Liu et al. [67] proposed the multi-resolution
CNN (Mr-CNN) model in which three different CNNs,
each trained on a different scale, are followed by two fully
connected layers. They fine-tuned their model over image
patches centered at fixated and non-fixated locations.

SALICON: To help bridge the semantic gap (inability
of models in predicting gaze driven by strong semantic
content) in saliency modeling, Huang et al. [16] proposed
a deep CNN (based on AlexNet, VGG-16, and GoogLeNet)

Fig. 2.3 Statistics of widely used 2D image saliency prediction datasets. This figure is cited from [40].

Image Datasets: The widely used benchmark datasets for image-based saliency prediction including
MIT300 [41], CAT2000 [7], SALICON [42] and iSUN [43]. It is worth noting that all these datasets
provide per-image fixation map as ground truth, to enable the training of fully supervised deep learn-
ing algorithms. Key information in terms of these image datasets is shown in Fig. 2.3. It is also worth

1https://saliency.tuebingen.ai/datasets.html

https://saliency.tuebingen.ai/datasets.html
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Fig. 5. Recent fixation datasets over videos. Please refer to the MIT Saliency Benchmark and the text for details.

that combines information from two pre-trained CNNs,
each on a different image scale (fine and coarse). The two
CNNs are then concatenated to produce the final map.

DeepFix: This model, by Kruthiventi et al. [68], is the first
application of fully convolutional neural networks (FCNN)
for saliency prediction. It employs 5 convolution blocks with
weights initialized from the VGG-16 which are followed
by two of their novel Location Based Convolutional (LBC)
layers to capture semantics at multiple scales. It also incor-
porates Gaussian priors to further improve learned weights.

ML-Net: Instead of using features at the final CNN lay-
ers, this model [69] combines feature maps extracted from
different levels of the VGG network to compute saliency. To
model center prior, it learns a set of Gaussian parameters
end-to-end, as opposed to using a fixed Gaussian or feeding
Gaussians to convolutional layers. Further, it benefits from
a new loss function to satisfy three objectives: 1) to better
measure similarity with the ground truth, 2) to make pre-
diction maps invariant to their maximum, and 3) to give
higher weights to locations with higher fixation probability.

JuntingNet and SalNet: Pan et al. [70] proposed a
shallow CNN (JuntingNet) and a deep CNN (SalNet) for
saliency prediction. The former is inspired by the AlexNet
and uses three convolutional and two fully connected layers,
which are all randomly initialized (i.e. trained from scratch).
The latter, contains eight convolutional layers with the first
three being initialized from the VGG network.

PDP: The Probability Distribution Prediction (PDP), pro-
posed by Jetley et al. [71], formulates the saliency as a gen-

eralized Bernoulli distribution and trains a model to learn
this distribution. It contains a deep neural network trained
completely end-to-end using a novel loss function that
pairs the classic softmax loss with functions that compute
the distances between different probability distributions.
According to Jetley et al.’s results, the new loss functions
are more efficient than traditional loss functions such as
Euclidean and Huber loss for the task of saliency prediction.

DSCLRCN: The DSCLRCN model (Deep Spatial Con-
textual Long-term Recurrent Convolutional Neural net-
work) was introduced by Liu and Han [72] in 2016. It first
learns local saliency of small image regions using a CNN.
Then, it scans the image both horizontally and vertically us-
ing a deep spatial long short-term model (LSTM) to capture
global context. These two operations allow DSCLRCN to
simultaneously and effectively incorporate local and global
contexts to infer image saliency.

SalGAN: Pan et al. [73] utilized Generative Adversarial
Networks (GANs) [74] to build the SalGAN model. It is
composed of two modules, a generator and a discrimina-
tor. The generator is learned via back-propagation using
binary cross entropy loss on existing saliency maps, which
is then passed to the discriminator that is trained to identify
whether the provided saliency map was synthesized by the
generator, or built from the actual fixations.

iSEEL: In [75], we proposed a saliency model based on
inter-image similarities and ensemble of Extreme Learning
Machines (ELM) [76]. First, a set of images similar to a given
image are retrieved. A saliency predictor is then learned

Fig. 2.4 Statistics of widely used 2D video saliency prediction datasets. This figure is cited from [40].

noting that, so far the biggest image-based saliency prediction dataset, i.e., SALICON, owns about
10K images of training set.

Video Datasets: The commonly used benchmark datasets for video-based saliency prediction includ-
ing DIEM [44], HOLLYWOOD-2 [45], UCF-Sports [45], DHF1K [11], LEDOV [12], Coutrot [46],
MUFVET [47] and salient-KITTI [48]. As shown in Fig. 2.4, DHF1K is so far the largest video
dataset, where about 1K videos are included. Besides, as the development of deep learning based
multi-modal learning, audio-visual saliency prediction dataset such as Coutrot [46] has been pro-
posed.

Methodologies: During the past years, convolutional neural networks (CNNs) have been the main-
stream of framework designing in the field of saliency prediction [40]. In this case, this section sum-
marizes the representative CNNs-based methods proposed in the last few years. Early method such
as SalEMA [49] used VGG-based encoder [2] to extract spatial features of given video frames and
applied ConvLSTM [14] to model temporal information among video frames. DINet [50] took advan-
tage of dilated CNNs to expand receptive field of the framework. STRA-Net [51] designed residual
attention block to conduct feature refinement based on ConvGRU [14] framework. DeepUSPS [52]
applied hand-crafted method to generate pseudo-labels for the self-supervision based saliency predic-
tion framework. Sal-DCNN [53] designed multiple decoders corresponding to multi-domain features.
UAVD [54] analyzed attention maps of different layers of VGG-based CNNs. St-Net [56] proposed
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Table 2.1 Summary of recent saliency prediction methods. I/V/AV-Sal means image/video/audio-
visual-based saliency prediction methods, respectively.

Method Modality Year Publication Key Words
SalEMA [49] V-Sal 2019 BMVC ConvLSTM, SOTA on DHF1K.

DINet [50] I-Sal 2019 TMM Dilated convolution, inception module.
STRA-Net [51] V-Sal 2019 TIP ConvGRU, residual attentive learning, attention.
DeepUSPS [52] I-Sal 2019 NeurIPS Self-supervised learning, pseudo-labels generation.
Sal-DCNN [53] I-Sal 2019 AAAI Noise-added phase spectrum, multi-domain decoder.

UAVD [54] I-Sal 2019 CVPR Hierarchical feature visualization.
DAVE [55] AV-Sal 2019 arXiv 3D ResNet for audio-visual encoding.
St-Net [56] V-Sal 2020 TIP spatial-temporal feature fusion, LSTM.

SalSAC [57] V-Sal 2020 AAAI ConvLSTM attention module, SOTA on DHF1K.
FastSal [58] I-Sal 2020 ICPR MobileNetV2, distillation networks.
STAViS [59] AV-Sal 2020 CVPR SOTA on Controt, bilinear layer for audio-visual fusion.
SF-Net [60] AV-Sal 2020 ECCV Salient face detection, SOTA on MUFVET, LSTM.

MMS [61] AV-Sal 2020 TIP Cross-modal kernel canonical correlation analysis.
DeepGaze [62] I-Sal 2021 ICCV Out-of-domain prediction, complementarity analysis.

STANet [63] AV-Sal 2021 CVPR Class activation mapping, weakly-supervised learning.
DAVNet [64] AV-Sal 2021 ICIP Feature pyramid module.
AViNet [65] AV-Sal 2021 IROS SoundNet block, trilinear interpolation, 3D CNNs.
GASP [66] AV-Sal 2021 IJCAI Attention mechanism, recurrent gated multi-modal unit.
HD2S [67] V-Sal 2021 IJCV Domain adaptive learning, domain-specific learning.

WeakFix [68] I-Sal 2022 TIP Weakly supervised learning, object proposal, attention.
EEEA-Net [69] I-Sal 2022 TII Knowledge distillation, pseudo-labels.

an attention-aware ConvLSTM to mine the temporal features of inputting sequences. HD2S [67]
added conspicuity modules to fuse multi-scale features extracted from CNNs. WeakFix [68] mod-
eled visual attention competition mechanism via softmax based attention modules. EEEA-Net [69]
created a teacher-student framework via pseudo-knowledge distillation. Besides, as the develop-
ment of multi-modal learning, combining the auditory and visual cues (Table. 2.1) to gain more
realistic human attention modeling has become a new trend in the saliency prediction community.
Among these methods, a variety of attention-based modules (STAViS [59], STANet [63], GASP [66],
AViNet [65]) have been proposed. DAVE [55] is the pioneer work which simply concatenated the
audio and visual features extracted from separate 3D CNNs. STAViS [59] further designed a deeply
supervised attention module to facilitate the audio-visual fusion. MMS [61] used cross-modal kernel
canonical correlation to quantify audio based saliency maps. STANet [63] designed three attention
modules for the fusion of spatial-temporal features, spatial-audio features and spatial-temporal-audio
features, respectively. Most recently, GASP [66] proposed gate attention for multi-modal late fusion.
AViNet [65] explored bilinear based fusion for the features extracted from 3D CNNs based visual en-
coder and 1D CNNs based SoundNet [70]. Please note that a detailed statistics of recent audio-visual
saliency prediction methods is presented in Table. 2.2.
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Table 2.2 Detailed comparison of audio-visual saliency prediction methods. † indicates non-deep
learning audio encoding method. CNNs denotes convolutional neural networks.

Method Video Type Year Audio Type Audio Encoder Audio pre-traning dataset
DAVE [55] 2D ArXiv’19 Mono and stereo sound 3D CNNs DAVE [55]

STAViS [59] 2D CVPR’20 Mono sound 1D CNNs [70] Flickr [70]
SF-Net [60] 2D ECCV’20 Mono and stereo sound 3D CNNs MVVA [60]
†MMS [61] 2D TIP’20 Mono sound ‡ ‡

STANet [63] 2D CVPR’21 Mono and stereo sound 2D CNNs AVE [71]
DAVNet [64] 2D ICIP’21 Mono sound 1D CNNs [70] Flickr [70]
AViNet [65] 2D IROS’21 Mono sound 1D CNNs [70] Flickr [70]
GASP [66] 2D IJCAI’21 Mono and stereo sound 3D CNNs DAVE [55]

†PO-AVS [72] 360° AI’20 Ambisonics ‡ ‡
AVS360 [73] 360° VCIP’20 Mono sound and ambisonics 3D CNNs DAVE [55]

†360-SSSL [74] 360° MVA’21 Ambisonics ‡ ‡
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Fig. 1: (a) Illustration for head movement (HM) when viewing panoramic video. (b) Demonstration for FoVs and HM positions across different subjects. The
heat map of HM positions from all subjects is also shown, which is defined as the HM map.

projected from sphere to 2D plane, but projection normally causes
distortion or content discontinuity, degrading the performance of
predicting HM positions. (2) More importantly, saliency detection
in 2D video assumes that humans are able to view all the content
of each video frame. However, this assumption does not hold for
panoramic video, as subjects can only see a limited range of the
FoV at a single sight, rather than the full panoramic range of
360◦ × 180◦.

In fact, different FoVs of panoramic video are accessible to
subjects via changing the positions of HM [16]. In this paper, we
find that different subjects are highly consistent in terms of HM
positions. This finding is based on establishing and analyzing a new
database, which consists of the HM data of 58 subjects viewing
76 panoramic video sequences. Then, we propose the offline-DHP
approach to predict the consistent HM positions on panoramic
video via generating the HM map for each single frame. The HM
maps are in the form of a sphere, and the positions in the HM
maps are thus represented by the longitude and latitude in the
geographic coordinate system (GCS) [17]. This paper visualizes
the spherical HM maps by projecting them onto the 2D plane. The
offline prediction of Figure 1-(b) demonstrates an example of the
ground-truth HM map for a panoramic video frame. Similar to
the saliency maps of 2D video, the HM maps of panoramic video
are obtained by convoluting the HM positions with a 2D Gaussian
filter1.

Specifically, our offline-DHP approach yields the HM maps
of panoramic video via predicting the HM scanpaths of multiple
agents, since subjects interactively control their HM along with
some scanpaths according to video content. First, we find from our
database that the HM scanpaths of different subjects are highly
consistent. Meanwhile, subjects are normally initialized to view
the center of the front region in the beginning frames of panoramic
video. Therefore, the HM positions at the subsequent frames can
be yielded on the basis of the predicted scanpaths. Additionally,
we find from our database that the magnitudes and directions
of HM scanpaths are similar across subjects. In light of these
findings, our offline-DHP approach models both the magnitudes
and directions of HM scanpaths as the actions of multiple DRL
agents and takes the viewed panoramic content as the observation
of the environment. As such, the DRL model can be learned to

1. The two dimensions of the Gaussian filter are longitude and latitude,
respectively.

predict HM positions. In training the DRL model, a reward is
designed to measure the difference of actions between the DRL
agents and subjects, indicating how well the agents imitate humans
in terms of HM scanpaths. Then, the reward is optimized to learn
the parameters in the DRL model. Given the learned model, the
HM maps of panoramic video are generated upon the predicted
HM positions, obtained from the scanpaths of several agents in
multiple DRL workflows.

For online HM prediction, the latest work of [18] proposed
a deep 360 pilot, which automatically shifts viewing direction
(equivalent to the HM position) when watching panoramic video.
Specifically, the salient object is detected and tracked across
panoramic video frames, via leveraging a region-based convo-
lutional neural network (RCNN) [19] and recurrent neural network.
Given the detected salient object and previous HM positions, the
deep 360 pilot predicts to transit the HM position by learning a
regressor. Since the deep 360 pilot relies heavily on one salient
object, it is only suitable for some specific scenes that include one
salient object, e.g., the sports scenes in [18]. It is still challenging
to predict HM positions online for generic panoramic video, which
may include more than one salient object (e.g., the panoramic
video in the online prediction of Figure 1-(b)). In this paper, we
propose an online approach, namely online-DHP, to predict the
HM positions on generic panoramic video. In contrast to [18], our
online-DHP approach does not need to detect the salient object
using the RCNN. Rather, our online-DHP approach is based on
attention-related content by leveraging the learned model of our
offline-DHP approach. Then, a DRL algorithm is developed in our
online-DHP approach to predict the HM positions in an online
manner. Specifically, in the DRL algorithm, the agent decides
the action of the HM scanpath in the next frame, according to
the ground-truth of the previous HM scanpath and observation of
video content. Consequently, the HM positions at the incoming
frames can be predicted for our online-DHP approach.

This paper is the first attempt to apply the DRL algorithm
in modeling human attention on panoramic video. The main
contributions of this paper are three-fold:

• We establish a new panoramic video database that consists
of HM positions of 58 subjects across 76 panoramic video
sequences, with a thorough analysis of their HM data.

• We propose an offline-DHP approach to detect HM maps of
panoramic video, and this approach predicts the consistent

Fig. 2.5 An introduction of 360° panoramic saliency prediction (this figure is cited from [28]). (a) A
subject freely explores 360° content with Head-Mounted Display (HMD). (b) Fixations of all subjects
shown in 360° video frames.

2.2.2 Saliency prediction in 360° images/videos

As the popularization of 360° cameras such as Insta360 series2, Ricoh Theta Z1 and GoPro Max, it
becomes easy to obtain large-scale 360° panoramic images and videos (with the field-of-view (FoV)
of 360°×180° illustrated in Fig. 2.5), which are able to be displayed with Head-Mounted Displays
(HMDs). Therefore, in the recent few years, several 360° image and video datasets (as shown in Ta-
ble. 2.3) have been established for saliency prediction in panorama. The wide FoV gives panoramic
saliency prediction a huge potential to mimic human visual attention in real-life daily scenes, making
it a popular topic not only in computer vision society but also wide interdisciplinary area of virtual
reality, augmented reality and mixed reality industries. Table. 2.3 collects detailed information re-
garding the eye-tracking experiments of each of the widely used 360° panoramic saliency prediction
datasets.

As the development of large-scale 360° saliency prediction benchmark datasets such as VR-
scenes [76] and PVS-HMEM [28], deep learning methods have enjoyed increasing attention from the
community. Some most recently proposed representative methods are collected in Table. 2.4. Specif-

2https://www.insta360.com/fr/

https://www.insta360.com/fr/


2.2 Saliency prediction 21

Table 2.3 Summary of 360° saliency prediction datasets.

Dataset Citation Images/Videos Observers Tasks

Salient!360 [25]
Rai, Yashas, etc.

A dataset of head and eye movements for 360 images.
MMSys ’18, 2017. ACM.

98 images
indoor/outdoor

3840×1920
without audition

63
Free viewing
with HMDs

with eye tracker

SaliencyVR [26]
Sitzmann, Vincent, etc.

Saliency in VR: How do people explore virtual environments?
TVCG, 2018.

22 images
14/8 indoor/outdoor

8196×4092
without audition

169
Free viewing
with HMDs

with eye tracker

Salient!360V2 [75]
E. J. David, etc.

A dataset of head and eye movements for 360 videos.
MMSys ’18, 2018. ACM.

19 videos
9/10 indoor/outdoor

3840×1920
without audition

57
age 19-44
25F/32M

Free viewing
with HMDs

with eye tracker

VR-scene [76]
Y. Xu, Y. Dong, J. Wu, Z. Sun, etc.

Gaze prediction in dynamic 360° immersive videos
CVPR 2018

208 videos
indoor/outdoor

3840×1920
with audio

45
age 20-24
20F/25M

Free viewing
with HMDs

with eye tracker

360saliency [77]
Z. Zhang, Y. Xu, J. Yu, and S. Gao
Saliency Detection in 360° Videos

ECCV 2018

104 videos
Sports scenes from [29]

3840×2160
without audio

27
age 20-24

Free viewing
with HMDs

with eye tracker

VQA-ODV [78]

C. Li, M. Xu, X. Du, and Z. Wang.
Bridge the gap between vqa and human behavior on omni-

video: A large-scale dataset and a deep learning mode
ACM MM 2018

60 videos
various scenes

no more than 8K
without audio

221
age 19-35
78F/143M

Free viewing
with HMDs

with eye tracker

PVS-HMEM [28]

Mai, Xu, etc.
Predicting Head Movement in Panoramic Video:

A Deep Reinforcement Learning Approach
TPAMI 2018

76 videos
various scenes

ranking from 3K to 8K
without audio

58
Free viewing
with HMDs

with eye tracker

AVP-360 [79]

Fang-Yi Chao, etc.
Audio-visual perception of omnidirectional video

for virtual reality applications
ICMEw 2020

15 videos
music/conversation

3840×1920
with audio

45
Free viewing
with HMDs

with eye tracker

ically, Cube360 [80] developed cube-padding technique to facilitate the 360° saliency prediction by
using 2D CNNs. SalGAN360 [81] proposed cube-map based augmentation technique to improve
the CNNs’ performance on 360° saliency prediction benchmarks. MT-DCNN [82] applied ConvL-
STM to learn temporal features for viewport alignment. SalGCN proposed spherical graph CNNs
to encode 360° images. SalFOOL [84] explored the robustness of current metrics for 360° saliency
model evaluation. SalGAIL [85] applied generative adversarial learning module to learn the reward
of the deep reinforcement learning module, to predict fixations and trajectories. ATSal [86] designed
attention stream to model global saliency. MultiVUS [87] further applied self-attention mechanism
to fuse and refine the features extracted from augmented equirectangular images. Most recent, Scan-
GAN360 [88] developed conditional generative adversarial neural network to predict scanpath and
fixations. SPVP360 [89] used spherical CNNs to conduct viewport localization.

It is worth noting that, recent methods such as PO-AVS [72], AVS360 [73] and 360-SSSL [74]
have combined both audio and visual cues of the 360° videos reflecting real-life daily scenes. These
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Table 2.4 Summary of recent 360° saliency prediction methods. PI/PV/PAV-Sal means
image/video/audio-visual-based 360° panoramic saliency prediction methods, respectively. † denotes
non-deep learning method.

Method Modality Year Publication Key Words
Cube360 [80] PV-Sal 2018 CVPR Cube-padding, weakly-supervised.

SalGAN360 [81] PI-Sal 2018 ICMEw GAN, cube map.
MT-DCNN [82] PV-Sal 2020 TMM Viewport localization, object detection, multi-task learning.

SalGCN [83] PI-Sal 2020 ACM MM Spherical graph convolutional neural networks.
AVS360 [73] PAV-Sal 2020 VCIP 3D CNNs, audio energy map, bottleneck fusion.

SalFOOL [84] PV-Sal 2021 ICCV 360° metric robustness, KL-divergence.
SalGAIL [85] PI-Sal 2021 TIP Generative adversarial imitation learning.

ATSal [86] PV-Sal 2021 ICPR Attention mechnism, SOTA on Salient!360.
MultiVUS [87] PI-Sal 2021 ICCV Mutual information learning, contrastive learning.
†PO-AVS [72] PAV-Sal 2021 AI Multi-sensory integration, proto-objects.

†360-SSSL [74] PAV-Sal 2021 MVA MFCC, late fusion of audio-visual information.
ScanGAN360 [88] PI-Sal 2022 TVCG Generative model. scanpath prediction, multi-task learning.

SPVP360 [89] PV-Sal 2022 TOMM Spherical convolutional neural networks, video multi-cast.

methods took advantage of multi-modal inputs to advance saliency prediction towards multimedia ap-
plications, also to mimic more realistic human attention which is indeed influenced by both audio and
wide FoV based visual information. Considering the prospective researches regarding audio-visual
learning, Table. 2.2 further summarizes the details of recent representative audio-visual saliency
prediction frameworks. So far, the mainstream of audio-visual models’ structures are still based on
CNNs. Besides, an interesting finding is that methods (e.g., [59, 73]) taking advantage of both au-
dio and visual cues tend to show better performance on widely used public 2D/360° video saliency
detection benchmarks, respectively.

In conclusion, the task of 360° image/video based saliency prediction has experienced a boost.
However, the objective of the task dose not explain human attention towards object-level recognition.
In other words, current 2D/360° saliency prediction methods do not convey the concept of obejct-
level saliency, thus being far from AR/VR applications where the detection of objects that grasp
human attention are important.
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2.3 Salient object segmentation in 2D RGB domain

Based on the attributes/modalities of inputting data, 2D RGB based salient object segmentation (a.k.a.
salient object detection (SOD)) can be classified into five categories, i.e., image-based salient object
segmentation (I-SOD), video-based salient object segmentation (V-SOD), group (co-) salient object
segmentation (Co-SOD), high-resolution salient object segmentation (HR-SOD) and remote sensing
salient object segmentation (RS-SOD). The aim of the above mentioned classifications is to make the
salient object segmentation methods to adapt to specific application scenario. Therefore, different
types of salient object segmentation methods may focus on different challenges in terms of object
segmentation. For instance, image or video based salient object segmentation methods use merely
RGB 2D data to predict the finely structure of salient objects in commonly seen 2D images/videos.
Group salient object segmentation aims at simultaneously locating the objects (belonging to specific
category) in a group of images, thus emphasizing the intrinsic features representing specific object
categories, and are robust to appearance changes of each identical object category. Further, high-
resolution salient object segmentation methods use high-resolution images as inputs and take advan-
tage of both local and global spatial information for finely segmentation of large objects. On the
contrary, remote sensing salient object segmentation focuses on salient object segmentation in pho-
tos captured by remote sensors. Therefore, multiple extremely small salient objects at low resolution
may be collected in remote sensing salient object segmentation datasets. The commonly used datasets
and representative methodologies of each category of 2D RGB based salient object segmentation are
detailed in the following sections.

2.3.1 Image-based salient object segmentation

Table 2.5 Summary of widely used image-based salient object segmentation datasets. #Img: The
number of images/video frames. #GT: The number of object-level pixel-wise masks. Obj.-Level =
Object-Level Labels. Ins.-Level = Instance-Level Labels. Fix. GT = Fixation Maps.

Dataset Publication #Img #GT min(W,H) max(W,H) Obj.-Level Ins.-Level Attribute Fix. GT
ECSSD [90] CVPR’13 1,000 1,000 139 400 ✓
DUT-O [17] CVPR’13 5,168 5,168 139 401 ✓ ✓

PASCAL-S [18] CVPR’14 850 850 139 500 ✓ ✓
HKU-IS [19] CVPR’15 4,447 4,447 100 500 ✓

DUTS [20] CVPR’15 15,572 15,572 100 500 ✓
ILSO [91] CVPR’17 1,000 1,000 142 400 ✓ ✓
SOC [21] ECCV’18 6,000 6,000 161 849 ✓ ✓ ✓

The widely used datasets for image-based salient object segmentation are shown in Table. 2.5.
As shown in Table. 2.5, the commonly used image salient object segmentation datasets are relatively
small when compared to widely used image classification datasets such as ImageNet-1K [1] which
collects nearly 14 million 2D RGB images, since gathering manually labeled pixel-wise ground truth
for each of the salient objects is surely a time-consuming and laborious process. The largest image
salient object segmentation dataset, i.e., DUTS [20], contains about 10K images for training and 5K
images for testing. Although the task of salient object segmentation only focuses on object-level
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Fig. 2. Categorization of previous deep SOD models according to the adopted network architecture. (a) MLP-based methods. (b)-(f) FCN-based
methods, mainly using (b) single-stream network, (c) multi-stream network, (d) side-out fusion network, (e) bottom-up/top-down network, and (f)
branch network architectures. (g) Hybrid network-based methods. (h) Capsule-based methods. See §2.1 for more detailed descriptions.

their non-deep counterparts, they cannot fully leverage es-
sential spatial information and are quite time-consuming, as
they need to process all visual subunits one-by-one.

2.1.2 Fully Convolutional Network (FCN)-Based Methods
To address the limitations of MLP-based methods, recent so-
lutions adopt FCN architecture [117], leading to end-to-end
spatial saliency representation learning and fast saliency
prediction, within a single feed-forward process. FCN-based
methods are now dominant in the field. Typical architectures
can be further classified as: single-stream, multi-stream, side-
fusion, bottom-up/top-down, and branched networks.
1) Single-stream network is the most standard architecture,
having a stack of convolutional layers, interleaved with
pooling and non-linear activation operations (see Fig. 2(b)).
It takes a whole image as input, and directly outputs a
pixel-wise probabilistic map highlighting salient objects.
For example, UCF [66] makes use of an encoder-decoder
network architecture for finer-resolution saliency prediction.
It incorporates a reformulated dropout in the encoder to
learn uncertain features, and a hybrid upsampling scheme
in the decoder to avoid checkerboard artifacts.
2) Multi-stream network, as depicted in Fig. 2(c), typically
consists of multiple network streams to explicitly learn
multi-scale saliency features from multi-resolution inputs.
Multi-stream outputs are fused to form a final prediction.
DCL [104], as one of the earliest attempts towards this
direction, contains two streams, which produce pixel- and
region-level SOD estimations, respectively.
3) Side-fusion network fuses multi-layer responses of a
backbone network together for SOD prediction, making use
of the complementary information of the inherent multi-
scale representations of the CNN hierarchy (Fig. 2(d)). Side-
outputs are typically supervised by the ground-truth, lead-
ing to a deep supervision strategy [118]. As a well-known
side-fusion network based SOD model, DSS [39] adds short
connections from deeper side-outputs to shallower ones.
In this way, higher-level features help lower side-outputs
to better locate salient regions, and lower-level features can
enrich deeper side-outputs with finer details.
4) Bottom-up/top-down network refines rough saliency
maps in the feed-forward pass by gradually incorporating

spatial-detail-rich features from lower layers, and produces
the finest saliency maps at the top-most layer (Fig. 2(e)),
which resembles the U-Net [119] for semantic segmentation.
This network architectures is first adopted by PiCANet [40],
which hierarchically embeds global and local pixel-wise at-
tention modules to selectively attend to informative context.

5) Branched network typically addresses multi-task learn-
ing for more robust saliency pattern modeling. They have
a single-input-multiple-output structure, where bottom layers
are shared to process a common input and top ones are
specialized for different tasks (Fig. 2(f)). For example, C2S-
Net [99] is constructed by adding a pre-trained contour
detection model [120] to a main SOD branch. Then the two
branches are alternately trained for the two tasks, i.e., SOD
and contour detection.

2.1.3 Hybrid Network-Based Methods

Some other models combine both MLP- and FCN-based
subnets to produce edge-preserving results with multi-scale
context (Fig. 2(g)). Combining pixel-level and region-level
saliency cues is a promising strategy to yield improved per-
formance, though it introduces extra computational costs.
CRPSD [105] consolidates this idea. It combines pixel- and
region-level saliency. The former is generated by fusing
the last and penultimate side-output features of an FCN,
while the latter is obtained by applying an existing SOD
model [29] to image regions. Only the FCN and fusion layers
are trainable.

2.1.4 Capsule-Based Methods

Recently, Hinton et al. [59] proposed a new family of neural
networks, named Capsules. Capsules are made up of a group
of neurons which accept and output vectors as opposed to
scalar values of CNNs, allowing entity properties to be com-
prehensively modeled. Some researchers have thus been
inspired to explore Capsules in SOD [41], [42] (Fig. 2(h)). For
instance, TSPOANet [41] emphasizes part-object relations
using a two-stream capsule network. The input features of
capsules are extracted from a CNN, and transformed into
low-level capsules. These are then assigned to high-level
capsules, and finally recognized to be salient or background.

Fig. 2.6 Commonly seen structures of image-based salient object segmentation methods, this figure
is cited from [16]. (a) denotes multi-layer perception architecture. (b)-(f) are all convolutional neu-
ral network based frameworks. Specifically, (b) single stream model w/o hierarchical decoder, (c)
Siamese encoder, (d) side-out fusion model, (e) U-Net like structure w/ top-down and bottom-up
multi-scale fusion guidance, (f) Multi-task based decoder ensembles. (g) multi-supervision based
multi-branch structure. (h) capsule based decoder.

binary segmentation, datasets such as ILSO [91] and SOC [21] also provide instance-level pixel-
wise masks as ground truth for salient instance segmentation. And it is worth noting that only two
datasets (i.e., [17,18]) defined salient objects according to fixations gained by conducting eye-tracking
experiments. The other datasets directly regard the main objects located in/near the image center as
the salient ones. For detailed statistics of image salient object segmentation datasets, please refer to
Table. 2.5.

As for image salient object segmentation methodologies, there are hundreds of deep learning
methods proposed during the past decade. The key concepts regarding most recent methods are
collected in Table. 2.6 and Table. 2.7. The extra review regarding the previous image salient object
segmentation methodologies are detailed in [15, 16].

Generally, recent image salient object segmentation methods are almost deep learning based and
are varying in terms of not only learning paradigms (i.e., fully-/weakly-/un-supervised learning) but
also backbone structures (e.g., ResNets [142] and vision transformers [143]). Besides, image salient
object segmentation methods tend to focus on the designing of feature decoding stage (Fig. 2.6), in
order to improve model performance on multiple segmentation benchmarks. Specifically, the classical
state-of-the-art methods such as PoolNet [140], EGNet [141], MINet [126] all applied U-Net [144]
like encoder-decoder structure for the task. F3Net [122] designed side-out fusion mechanism to fa-
cilitate the fusion of hierarchical features from backbone network. More recent methods such as
CSF [129], SAMNet [105] proposed light-weight architectures containing less parameters however
showing comparable performance to the regular U-Net like models. Besides pursuing state-of-the-
art performance, most recently proposed image salient object segmentation method such as UPL [92]
explored the uncertainty of model predictions thus advancing the field of salient object segmenta-
tion towards explainable deep learning. Method such as DCFD [93] explored intrinsic features from
a perspective of causal inference, thus advancing the salient object segmentation towards robust mod-
eling. In addition, energy-based model such as SalCNet [94] tried to combine the energy-based gener-
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Table 2.6 Summary of recent 2D image based salient object segmentation methods in years of 2021-
2022.

Method Year Publication Key Words
UPL [92] 2022 AAAI Consistency based uncertainty estimation, pseudo labels.

DCFD [93] 2022 AAAI Confounding biases, de-confounded training.
SalCNets [94] 2022 AAAI Energy-based model, latent variable model.

NSS [95] 2022 AAAI Adaptive flood filling, transformer bottleneck.
TRACER [96] 2022 AAAI Masked-edge attention module, explicit edge loss.
RCSBNet [97] 2022 WACV Recursive contour-saliency Blocks.

MBAB [98] 2022 TOMM Detail modeling and body filling as sub-tasks.
NSAL [99] 2022 TMM Noise-robust adversarial learning framework/

DRNet [100] 2022 TCSVT Progressive dual attention mechanism.
SCWS [101] 2021 AAAI Saliency structure consistency loss.

PFS [102] 2021 AAAI Feature shrinking module, pyramid structure.
LGSL [103] 2021 AAAI Knowledge review network with attention-based sampler.
GDC [104] 2021 AAAI BiLSTM encoder, reader-aware topic modeling.

SAMNet [105] 2021 TIP Attention, multi-scale, light-weight architecture.
MesSal [106] 2021 CVPR Mesh saliency, 2D-to-3D correspondence.

MSFNet [107] 2021 ACM MM Multi-scale fusion.
CCNet [108] 2021 TIP Decomposition of edge and skeleton priors.

VST [109] 2021 ICCV Cross modality transformer.
DHQNet [110] 2021 ICCV High-resolution refinement module.

iNAS [111] 2021 ICCV Integral search space.
SCA [112] 2021 ICCV Semantic scene context refining module.

MFNet [113] 2021 ICCV Multiple pseudo labels filter.
SSL [114] 2021 TIP Structure similarity loss, purification module.

CTD [115] 2021 ACM MM Complementary trilateral decoding.
GVT [116] 2021 NeurIPS Transformer, energy-based genenrative model.
DSR [117] 2021 NeurIPS Graph neural network, inductive bias.
PSG [118] 2021 TIP Loss function for multi-scale supervision.

DACNet [119] 2021 TIM Dense attention mechanisms based feature steering.

ative models and state-of-the-art segmentation architectures for salient object segmentation modeling.

What is worth mentioning is that, some methods listed in Table. 2.6 and Table. 2.7 own attention-
based modules designed for feature fusion or feature refinement at the hierarchical decoding lay-
ers. For instance, early method AFNet [137] built attention feedback modules between each of the
encoding-decoding layers of a U-Net like framework. GateNet [132] proposed gated attention unit
based on Sigmoid function. The gated units were added to the paths between each of the current
decoder layers and their previous layers. SAGD [124] used channel attention [145] and spatial atten-
tion [146] to refine the features before the multi-stage fusion at the decoder. Most recently, VST [109]
used transformer layers [143] at the bottleneck of the encoder-decoder framework and thus acquiring
improved model performance. DRNet [100] established residual learning module between each pair
of attention maps (original map and its reverse), thus benefiting the model’s ability of distinguishing
the salient regions from non-salient ones. NSS [95] used transformer layers to learn features based
on weak supervision of manually labeled points.
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Table 2.7 Summary of recent 2D image based salient object segmentation methods in years of 2019-
2020.

Method Year Publication Key Words
PFPNet [120] 2020 AAAI Multiple feature polishing modules.

GCPANet [121] 2020 AAAI Global context flow module.
F3Net [122] 2020 AAAI Cascaded feed-back decoder.
ADA [123] 2020 AAAI Adversarial network for multi-spectral saliency detection.

SAGD [124] 2020 AAAI Attentional convGRU, recurrent local attention.
ScrSOD [125] 2020 CVPR Scribble annotation, scribble boosting.

MINet [126] 2020 CVPR Multi-scale interactive module.
ITNet [127] 2020 CVPR Light-weight two-stream framework.
LDF [128] 2020 CVPR Decoupled multi-supervisions.
CSF [129] 2020 ECCV Res2Net backbone, cross-stage fusion.
nRef [130] 2020 ECCV Cross domain learning.

NoiseSal [131] 2020 ECCV Noise label as auxiliary supervision.
GateNet [132] 2020 ECCV Gate attention mechanism.

DFI [133] 2020 TIP Object, edge and skeleton learning.
CAGNet [134] 2020 PR Multi-scale feature extraction.

VPL [135] 2020 TCyb Light-weight structure, hierarchical perception.
APL [136] 2020 NeurIPS Adversarial pace learning.

AFNet [137] 2019 CVPR Boundary priors, attention feedback module.
BASNet [138] 2019 CVPR Edge priors.

CPD [139] 2019 CVPR Cascaded partial decoder.
PoolNet [140] 2019 CVPR Pyramid pooling module.

EGNet [141] 2019 ICCV Edge guidance.

In conclusion, various image salient object segmentation methodologies are able to introduce
basic techniques such as segmentation networks, and experience towards assigning training/testing
settings to the 360° panoramic salient object segmentation. However, image salient object segmen-
tation methods are all limited to 2D images representing scenes within a local viewport, from a per-
spective of omnidirectional vision. Considering the 360°×180° FoV, 360° image processing is indeed
more challenging however necessary for the development of AR/VR applications where true human
perception must be mimicked.

2.3.2 Video-based salient object segmentation

Table. 2.8 shows detailed statistics in terms of the commonly used video-based salient object seg-
mentation (V-SOD) datasets, including SegTrackV2 [147], FBMS [148], MCL [149], ViSal [150],
DAVIS [151], UVSD [152], VOS [22] and DAVSOD [23]. Early datasets such as FBMS [148],
MCL [149] and ViSal [150] provide no more than 1K annotated video frames, while later datasets
such as DAVSOD [23] provides more than 20K consecutive video frames with manual labels. It is
worth noting that all listed V-SOD datasets provide pixel-wise binary masks as ground truth for V-
SOD task. Besides, only VOS [22] and DAVSOD [23] strictly followed the guidance of fixations to
annotate the salient objects, for the video frames contained in these two datasets own more complex
context and multiple foreground/background objects. According to the VOS [22] and DAVSOD [23],



2.3 Salient object segmentation in 2D RGB domain 27

Table 2.8 Summary of video-based salient object segmentation datasets. #Img: The number of im-
ages/video frames. #GT: The number of object-level pixel-wise masks. Obj.-Level = Object-Level
Labels. Ins.-Level = Instance-Level Labels. Fix. GT = Fixation Maps. Attr. = Attributes.

Dataset Publication #Img #GT min(W,H) max(W,H) Obj.-Level Ins.-Level Attr. Fix. GT
SegTrack V2 [147] ICCV’13 1,065 1,065 212 640 ✓

FBMS [148] TPAMI’13 13,860 720 253 960 ✓
MCL [149] TIP’15 3,689 463 270 480 ✓
ViSal [150] TIP’15 963 193 240 512 ✓

DAVIS2016 [151] CVPR’16 3,455 3,455 900 1,920 ✓ ✓
UVSD [152] TCSVT’16 3262 3262 240 877 ✓

VOS [22] TIP’18 116,103 7,467 312 800 ✓ ✓
DAVSOD [23] CVPR’19 23,938 23,938 360 640 ✓ ✓ ✓ ✓

Table 2.9 Summary of recent video based salient object segmentation. UVOS = unsupervised video
object segmentation. SVOS = semi-supervised video object segmentation. RVOS = referring video
object segmentation. VSOD = video salient object detection.

Method Pub. Task Encoder Decoder Notes
TransAOT [153] arXiv’22 SVOS Swin-B [154] FPN Swin transformer.

YOFO [155] AAAI’22 RVOS ResNet50 [142] BERT Image&language learning.
SITVOS [156] AAAI’22 SVOS ResNet50/18 STM [157] Transformer, Siamese.

EFS [158] AAAI’22 UVOS ResNet50 STM [157] S-measure in model.
RPCM [159] AAAI’22 SVOS ResNet101 DeepLabV3 Uncertainty estimation.
CANet [160] WACV’22 UVOS ResNet101 PANet [161] Contrastive learning.

WSV [162] CVPR’21 VSOD ResNet50 ConvLSTM Scribble.
DCFNet [163] ICCV’21 VSOD ResNet101 Convs Context sensitive.

FSNet [164] ICCV’21 UVOS ResNet50 PPM [165] Optical flow.
TranspNet [166] ICCV’21 UVOS ResNet50/101 UNet [144] Sinkhorn module [167].

STINet [168] TIP’21 VSOD Convs UNet Sinkhorn
AOT [169] NeurIPS’21 SVOS MobileNetV2 [170] FPN [171] Transformer

STCN [172] NeurIPS’21 SVOS ResNet50 STM [157] L2 similarities.
TENet [173] ECCV’20 VSOD ResNet50 Convs Excitation modules.

SEGCN [174] TIP’20 VSOD BASNet [138] BASNet [138] GCN
PCSA [175] AAAI’20 VSOD MobileNet RFB [176] Global attention.
MGA [177] ICCV’19 VSOD ResNet101/34 Convs Optical flow, ASPP.

RCRNet [178] ICCV’19 VSOD ResNet50 Ref.Mod. NER module.
SSAV [179] CVPR’19 VSOD ResNet50 Convs ConvLSTM.

COSNet [180] CVPR’19 UVOS DeepLabv3 [181] Convs Co-attention.

fixation-guided judgment is one of the reliable evidences for defining salient objects, especially for
images/videos representing challenging real-life scenes.

Video-based salient object segmentation methods’ statistics are listed in Table. 2.9. Generally,
video-based salient object segmentation methods and video object segmentation methods all aim at
finely segmenting the visually salient objects among given video frames. Therefore, most of the re-
cently proposed methods (Table. 2.9) were tested on both video based salient object segmentation and
video object segmentation benchmarks.

And it is worth noting that, the definition of learning paradigms in the field of video object seg-
mentation are different from the ones in the field of video salient object segmentation. For instance,
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weakly-supervised video salient object segmentation methods are those which use a part of the pixel-
wise ground truth or other types of ground truth (e.g., scribble, depth) as supervision for the model
training process, while weakly-supervised video object segmentation methods are those using the
ground truth of the first frame of given sequence to support the model testing process. Further, fully-
supervised video salient object segmentation methods can be fairly compared with un-supervised
video object segmentation methods. Most recently, method such as YOFO [155] processes multi-
modal inputs (language-based and visual-based) to conduct referring video object segmentation.

As for model architecture, being similar to above discussed image based salient object segmen-
tation, recent video methods also apply CNNs (e.g., ResNets [142]) or Transformers (e.g., Swin-
B [154]) to extract the features from inputting spatial-temporal cues. Obviously, effectively modeling
the temporal information within sequences is one of the main challenges of the field. Methods such
as RCRNet [178] and FSNet [164] applied classical optical flow priors to facilitate the task. Be-
sides, ConvLSTM [14] was applied as the basic component of temporal module of methods such
as SSAV [23] and WSV [162]. Importantly, video-based salient object segmentation methods such
as COSNet [180], PCSA [175], DCFNet [163], WSV [162], SITVOS [156] and TransAOT [153]
also used different attention mechanisms to improve model performance. Specifically, COSNet [180]
invented co-attention mechanism to fuse and refine the useful features extracted from consecutive
video frames. PCSA [175] proposed sequence-based global attention to enhance the learning of mov-
ing salient objects among video frames. DCFNet [163] proposed dynamic context-aware filtering
module which consists of multiple dynamic filtering units and a Softmax scoring layer. WSV [162]
built appearance-motion fusion module that consists of both channel attention [145] and spatial atten-
tion [146]. SITVOS [156] utilized multiple transformer layers to build a Siamese framework to learn
global temporal features and local spatial features. TransAOT [153] designed a transformer-based
association module at the bottleneck, to fuse and refine inter-frame spatial features.

In conclusion, video-based salient object segmentation focuses on the modeling of human atten-
tion in 2D videos, by taking advantage of both static and dynamic visual cues. However, the context
within 2D videos is far from the one in real daily life, where multiple foreground and background
objects are included in an immersive dynamic view (e.g., 360° videos record the natural scenes con-
taining global spatial-temporal context). Therefore, the state-of-the-art methodologies in 2D domain
may fail in 360° domain. However, salient object segmentation in panoramic dynamic scenes still
lacks of investigation.

2.3.3 Co-salient object segmentation

Group-based or co-salient object segmentation (CoSOD), as a specific branch of 2D RGB-based
salient object segmentation, is appealing increasing attention from the community in the past few
years. This type of methods pay attention to co-occurring salient objects among a group of given im-
ages containing totally different background scenes. Similar to image/video-based salient object seg-
mentation, recent co-salient object segmentation methods also rely on large-scale image datasets with
pixel-wise ground truth of salient objects. The commonly used datasets are concluded in Table. 2.10.
Obviously, current co-salient object segmentation datasets are relatively small when compared to im-
age/video salient object segmentation counterparts. The largest co-salient object segmentation dataset
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Table 2.10 Summary of group co-salient object segmentation datasets. #Img: The number of im-
ages/video frames. #GT: The number of object-level pixel-wise masks. Obj.-Level = Object-Level
Labels. Ins.-Level = Instance-Level Labels.

Dataset Year Publication #Img #GT Obj.-Level Ins.-Level Group
MSRC [182] 2005 ICCV 240 240 ✓ 8
iCoseg [183] 2010 CVPR 643 643 ✓ 38

ImgPair [184] 2011 TIP 210 210 ✓ 105
CoSal2015 [185] 2015 CVPR 2,015 2,015 ✓ 50

WICOS [186] 2018 AAAI 364 364 ✓ 1
CoSOD3K [187] 2020 CVPR 3,316 3,316 ✓ ✓ 160

CoCA [188] 2020 ECCV 1,295 1,295 ✓ ✓ 80
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Fig. 1. Different salient object detection (SOD) tasks. (a) Traditional SOD [30]. (b) Within-image co-salient object detection (CoSOD) [31], where
common salient objects are detected from a single image. (c) Existing CoSOD, where salient objects are detected across a pair [32] or a group [33]
of images with similar appearances. (d) The proposed CoSOD in the wild, which requires a large amount of semantic context, making it more
challenging than existing CoSOD.

• First, we construct a challenging CoSOD3k dataset,
with more realistic settings. Our CoSOD3k2 is the
largest CoSOD dataset to date, with two aspects: 1) it
contains 13 super-classes, 160 groups, and 3,316 images
in total, where each super-class is carefully selected
to cover diverse scenes; e.g., Vehicle, Food, Tool, etc.;
2) each image is accompanied by hierarchical annota-
tions, including category, bounding box, object, and in-
stance, which could greatly benefit various vision tasks
(e.g., object proposal, co-location, co-segmentation, co-
instance detection, etc.), as shown in Fig. 2.

• Second, we present the first large-scale co-salient
object detection study, reviewing 40 state-of-the-
art (SOTA) models, and evaluating 18 of them on
three challenging, large-scale CoSOD datasets (iCoSeg,
CoSal2015, and the proposed CoSOD3k). A convenient
benchmark toolbox is also provided to integrate various
publicly available CoSOD datasets and multiple met-
rics for better performance evaluation. The benchmark
toolbox and results have been made publicly available
at https://dpfan.net/CoSOD3K/.

• Third, we propose a simple but effective CoEG-
Net baseline for CoSOD, which uniformly and si-
multaneously embeds the appearance and semantic
features through a co-attention projection and a basic
SOD network. Comprehensive benchmarking results
show that CoEG-Net outperforms the 18 SOTA mod-
els. Moreover, it also yields competitive visual results,
making it an efficient solution for the CoSOD task.

• Finally, we make several interesting observations, dis-
cuss the important issues arising from the benchmark
results, and suggest some future directions. Our study
serves as a potential catalyst for promoting large-scale
model comparison for future CoSOD research.

2. Collecting the CoSOD dataset is more difficult than the SOD
dataset, that is why the previous largest CoSOD dataset, i.e., [40], in
the past 15 years has only 2K images. Even for our 3K dataset, we have
spent 1 year to collect such high-quality dataset. Moreover, we also pay
more attention to provide high-quality hierarchical annotations (e.g.,
image-level and object-/instance-level) to promote related vision tasks
rather than the size of the dataset.

TABLE 1
Statistics of existing CoSOD datasets and the proposed CoSOD3k,

showing that CoSOD3k provides higher-quality and much richer
annotations. #Gp: number of image groups. #Img: number of

images. #Avg: average number of images per group. IL: whether or
not instance-level annotations are provided. Ceg: whether or not
category labels are provided for each group. BBx: whether or not
bounding box labels are provided for each image. HQ: high-quality

annotation.

Dataset Year #Gp #Img #Avg IL Ceg BBx HQ Input

MSRC [33] 2005 8 240 30 Group images
iCoSeg [41] 2010 38 643 17 X Group images

Image Pair [32] 2011 105 210 2 X∗ Two images
CoSal2015 [40] 2015 50 2,015 40 X∗ X Group images

WICOS [31] 2018 364 364 1 X Single image
CoSOD3k 2020 160 3,316 21 X X X X Group images

* denotes coarse category rather than explicitly accurate category.

This paper is based on and extends our previous
CVPR2020 version [1] in the following aspects. 1) We have
implemented a simple but effective framework of CoSOD,
which uniformly and simultaneously embeds the appear-
ance and semantic features through a sparse convolution
and a basic SOD network. Importantly, we also designed a
common feature detector, which solved with Plug-and-Play.
2) We have made a lot of efforts to improve the presentations
(e.g., dataset, framework, key results) and organizations of
our paper. We have added several new sections to describe
our new framework about the method formulation, corre-
sponding technical components, and further experiments
(e.g., comparison with baselines, running time). Besides,
several sections have been re-written to improve the read-
ability and provide more detailed explanations about the
introduction, CoSOD models, quantitative/qualitative com-
parisons, and discussions. 3) We build the first standard
Benchmark and model zoo of CoSOD, which integrates
various publicly available CoSOD datasets with uniform
input/output formats (i.e., JPEG for image; PNG for GT).
The gathered code of traditional or learning-based will be
released soon as well.

Fig. 2.7 An illustration of group(co)-salient object segmentation. There are two groups of images
with specific classes of co-salient objects (e.g., gymnast and basketball), surrounded by similar or
totally different background scenes. This figure is cited from [189].

Table 2.11 Summary of recent group co-salient object segmentation methods.

Method Year Publication Key Words
UFO [190] 2022 arXiv Multi-tasks, transformer, MLP, patch collaboration.

DCFM [191] 2022 CVPR Democratic Prototype Generation Module.
GLNet [192] 2022 TCyb Global local correspondence modeling.

MGF [193] 2021 AAAI Graph convolutional network, multi-scale.
DeepACG [194] 2021 CVPR Edge-enhanced module.

GCoNet [195] 2021 CVPR Depth-wise correlation, group consensus.
CADC [196] 2021 ICCV Consensus-aware kernel construction.
ICNet [197] 2020 NeurIPS Normalized masked average pooling.

CoADNet [198] 2020 NeurIPS Group-attentive semantic aggregation.

so far is CoSOD3K [187] collecting about 3K images with both object-level and instance-level pixel-
wise ground truth.

Co-salient object segmentation methods aim at achieving robust features to represent a class of
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objects with different appearances and surrounded with different background scenes (Fig. 2.7). Em-
pirically, co-salient object segmentation methods learn to segment the visually salient objects almost
centered (or nearly centered) at the given images, also pay attention to the mining of intrinsic features
which represent a class of objects and are able to be robust to the changes of objects’ appearances and
surroundings. Therefore, when compared to traditional image-based salient object segmentation, a
key challenge of co-salient object segmentation is to detect the co-salient objects as much as possible,
and ignore rarely seen objects (a.k.a. objects do not show in all images within one group) as much
as possible. To this end, relatively early method CoADNet [198] proposed group-attentive semantic
aggregation module to extract the semantic features based on both local spatial cues of each of the
images, and global spatial cues via self-attention mechanism [199]. ICNet [197] applied normal-
ized masked average pooling to extract features representing intra-features of the given images. A
correlation fusion module was then proposed to aggregate the intra-features for inter-frame saliency
consistency modeling. Later GCoNet [195] and CADC [196] built attention consensus modules to
refine the inter-frame features for better model performance. DCFM [191] was also inspired by self-
attention [199] and thus proposing democratic feature enhancement module to refine the encoded
features from a group of images.

2.3.4 High-resolution salient object segmentation

Table 2.12 Summary of recent high resolution salient object segmentation methods.

Method Year Publication Key Words
PGNet [200] 2022 CVPR Cross model grafting module, swin transformer, attention.

HRMod [201] 2019 ICCV Global local fusion network.

As the popularization of new smartphones which are able to produce high-resolution (e.g., 4K,
8K) images, there is an increasing demand for high-resolution image processing techniques in com-
puter vision community. In this case, recognizing and finely segmenting the salient objects in high-
resolution images is able to facilitate the development of new smartphone applications. There-
fore, datasets such as HRSOD [201] and UHSD [200] have been recently established. Specifically,
UHRSD [200] with a training set of 4,932 images and a testing set of 988 images. It is worth noting
that each of the collected images are at 4K-8K resolutions. Besides, HRSOD [201] contains a train-
ing set of 1,610 images and 400 images for model testing. So far, the high-resolution salient object
segmentation is still a new sub-area of salient object segmentation where only a few methods (e.g.,
PGNet [200] and HRMod [201], with key concepts concluded in Table. 2.12) have been proposed.

2.3.5 Remote sensing salient object segmentation

Remote sensing salient object segmentation is a new branch of salient object segmentation where
images are collected with remote sensors on air-crafts or satellites. Specially, remote-sensing image
datasets include extremely small salient objects when compared to the ones in other salient object
segmentation related datasets (Fig. 2.8). Being similar to other topics regarding RGB salient object
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Table 2.13 Summary of recent remote sensing salient object segmentation methods.

Method Year Publication Key Words
CorrNet [202] 2022 TGRS Light-weight feature extraction subnet, cross-layer correlation.

ACCoNet [203] 2022 TCyb Bifurcation-aggregation block.
ERPNet [204] 2022 TCyb Edge prior, recurrent network.
DAFNet [205] 2020 TIP Global context-aware attention.
LV-Net [206] 2019 TGRS Nested connection in decoder.ZHANG et al.: DENSE ATTENTION FLUID NETWORK FOR SALIENT OBJECT DETECTION IN OPTICAL RSIs 1311

Fig. 4. Visualization of the more challenging EORSSD dataset. The first row shows the optical RSI, and the second row exhibits the corresponding ground
truth. (a) Challenge in the number of salient objects. (b) Challenge in small salient objects. (c) Challenge in new scenarios. (d) Challenge in interferences
from imaging. (e) Challenge in specific circumstances.

Fig. 5. Statistical analysis of EORSSD dataset. (a) Type analysis of salient object. (b) Number analysis of salient object. (c) Size analysis of salient object.

including 600 training images and 200 testing images. This
is the first publicly available dataset for the RSI SOD task,
which bridges the gap between theory and practice in SOD
for optical RSIs, but the amount of data is still slightly
insufficient to train a deep learning based model. To enlarge
the size and enrich the variety of the dataset, we extend
our ORSSD dataset to a larger one named Extended ORSSD
(EORSSD) dataset with 2, 000 images and the corresponding
pixel-wise ground truth, which includes many semantically
meaningful but challenging images. Based on the ORSSD
dataset, we collect additional 1, 200 optical remote sensing
images from the free Google Earth software, covering more
complicated scene types, more challenging object attributes,
and more comprehensive real-world circumstances. During the
dataset construction, we follow the previous labeling protocol
as proposed in [51]. Specifically, for labeling the ground truth
saliency masks, in our project, we invited 9 researchers with
relevant professional backgrounds as our annotators and asked
them to independently indicate which parts of the image they
thought were visually-attractive. Based on the records of all
annotators’ decisions, we picked out as salient the commonly-
agreed regions and objects that are voted by at least half of
the annotators. After that, we carefully generate pixel-wise
saliency masks for these selected regions using Photoshop.
For clarity, the EORSSD dataset is divided into two parts, i.e.,
1, 400 images for training and 600 images for testing. Some
illustrations of the EORSSD dataset are shown in Fig. 4.

B. Dataset Statistics and Challenges
In this section, we illustrate the challenges of EORSSD

dataset by providing some visual samples in Fig. 4 and
statistical analysis in Fig. 5.

• Challenge in the number of salient objects. In the
EORSSD dataset, more often than not, there are multiple
salient objects in one image. As shown in Fig. 4(a), there
are eleven ships in the first image, and seven airplanes

in the second image. In Fig. 5(b), we count the number
of salient objects in the dataset, and scenarios with more
than two targets account for 36.5% of the total.

• Challenge in small salient objects. Target size in
optical RSIs is often very diverse due to the satellite-
and airborne-derived imaging. The resulting small object
detection problem is also a very common but challenging
problem. In the the EORSSD dataset, we collected a
number of small samples, such as the vehicle in the
first image of Fig. 4(b), and the aircraft flying through
the sea in the second image of Fig. 4(b). In Fig. 5(c),
we count the size of the salient objects in the dataset (i.e.,
the proportion of the salient object in the image), and the
scenes with a proportion of less than 10% account for
84.65% of the total. Furthermore, in 39% of the scenes,
the salient objects occupy less than 1% of the image,
which illustrates the challenge of the EORSSD dataset.

• Challenge in more abundant scenarios. In the EORSSD
dataset, we further enriched the type of scene and also
increased the difficulty of the scene, such as the cloud
map in the first image of Fig. 4(c), and buildings in the
desert in the second image of Fig. 4(c). In Fig. 5(c),
we show the main type of salient objects, including ship,
aircraft, car, building, water, island, road, etc.. Among
them, ship and aircraft accounted for the higher propor-
tion, i.e., 22.2% and 21.5%, respectively.

• Challenge in various imaging interferences. In the
EORSSD dataset, we added some interference cases due
to the imaging reasons, which is widespread in practical
applications. For example, as shown in Fig. 4(d), the air-
craft in the first image is distorted, the ship in the second
image is occluded by clouds, and the illumination distor-
tion occurs in the third image.

• Challenge in specific circumstances. In order to increase
the diversity of data samples, we collected some specific
circumstances in the EORSSD dataset. For example,
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Fig. 2.8 An illustration of remote sensing salient object segmentation. (a)-(e) represent various chal-
lenging cases. This figure is cited from [205].

segmentation. Recent remote sensing salient object segmentation methods (Table. 2.13) focus on
the designing of decoders’ structures. LV-Net [206] designed a pyramid V-shape decoder to fuse the
multi-stage features for finely segmentation of objects in optical remote sensing images. DAFNet
[205] proposed hierarchical global context-aware attention modules, which were added to each of the
encoder layers. ERPNet [204] proposed edge-aware position unit modules, which were then added
to each of the decoding steps. ACCoNet [203] built attention based adjacent context coordination
module to facilitate adjacent feature fusion. CorrNet [202] designed light-weight framework with
feature enhanced modules consisting of cascaded channel and spatial attentions, to support the long
skip connections between each of the encoding-decoding layers.
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2.4 Salient object segmentation with 2D multi-modal data

As the recent development of depth/infra-red sensor based/light field cameras, it is easy to collect 2D
images with depth/infra red information or a variety of light field modalities such as focal stacks and
multi-view images [207]. Recent researches [207, 208] show that these augmented multi-modal data
are able to boost the model performance for salient object segmentation. In the following sections,
we illustrate the details of recent development of the fields of RGB-depth/infra-red salient object
segmentation and light field salient object segmentation.

2.4.1 RGB-depth salient object segmentation

Table 2.14 Summary of RGB-depth salient object segmentation datasets. #Img: The number of
images. #GT: The number of object-level pixel-wise masks.

Dataset Year Publication #Img&#GT Sensor Resolution Scene categories
STERE [209] 2012 CVPR 1,000 Sift flow 1,200×900 Various

GIT [210] 2013 BMVC 80 Microsoft Kinect 640×480 Indoor
DES [211] 2014 ICIMCS 135 Microsoft Kinect 640×480 Indoor

NLPR [212] 2014 ECCV 1,000 Microsoft Kinect 640×480 In/Out-door
NJUD [213] 2014 ICIP 1,985 FujiW3 1,213×828 Movie scenes

SSD [214] 2017 ICCVw 80 Optical flow 960×1,080 Movie scenes
DUT-RGBD [215] 2019 TIP 1,200 (not provided) 400×600 In/Out-door

SIP [216] 2020 TNNLS 929 Huawei Mate10 992×744 human-centered

RGB-depth salient object segmentation is a task where models use depth information (Fig. 2.9)
as auxiliary information to facilitate locating and segmenting the salient objects in given 2D RGB
images. Current RGB-depth salient object segmentation datasets’ scales range from about 0.1k to
no more than 2K (Table. 2.14). As images collected with different cameras (e.g., Microsoft Kinect,
Huawei Mate 10) tend to be varying in terms of depth quality, recent researches (Table. 2.15) always
test their proposed methods on five or more datasets to clarify the model effectiveness and robustness.

Specifically, recent methods (e.g., SPNet [217], CMIM [218], CDNet [219], DSAM [220], DSNet
[221], DepthNet [222]) still largely rely on attention mechanisms to implement the RGB and depth
information fusion. For instance, SPNet [217] designed channel attention based cross-modal fea-
ture enhancement module to support the feature fusion between RGB and depth encoding branches.
CMIM [218] applied dual attention module [223] to aid the refinement of features from mutual infor-
mation regularizer. CDNet [219] proposed new dynamic scheme to fuse the features extracted from
original and estimated depth maps with channel attention mechanism. DSAM [220] decomposed the
original depth map to different types of depth-based priors. A depth sensitive module was then pro-
posed to gain useful features based on the decomposed depth priors. Most recently, DSNet [221] built
attention consistency module to facilitate stable training of the proposed teacher-student framework.
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(a) STERE (b) NLPR (c) SSD

(d) GIT (e) DES

(i) SIP

(f) LFSD

(g) NJUD (h) DUT-RGBD

Fig. 4. Examples of images, depth maps and annotations in nine RGB-D dataset, including (a) STERE [138], (b) NLPR [51], (c) SSD [85], (d) GIT [47],
(e) DES [49] , (f) LFSD [139], (g) NJUD [56], (h) DUT-RGBD [98], and (i) SIP [3]. In each dataset, the RGB image, depth map and annotation are shown
from left to right.

scenes with their corresponding depth images. This dataset
includes several challenging factors, i.e., multiple or trans-
parent objects, complex backgrounds, similar foregrounds and
backgrounds, and low-intensity environments.
• SIP [3] consists of 929 annotated high-resolution images,

with multiple salient persons in each image. In this dataset,
depth maps were captured using a real smartphone (i.e.,
Huawei Mate10). Besides, it is worth noting that this dataset
covers diverse scenes, and various challenging factors, and is
annotated with pixel-level ground truths.

Note that a detailed dataset statistics analysis (including cen-
ter bias, size of objects, background objects, object boundary
conditions, and number of salient objects) can be found in [3].

IV. SALIENCY DETECTION ON LIGHT FIELD

A. Light Field SOD Models

Existing works for SOD can be grouped into three cate-
gories according to the input data type, including RGB SOD,
RGB-D SOD, and light field SOD [155]. We have already
reviewed RGB-D based SOD models, in which depth maps

provide layout information to improve SOD performance to
some extent. However, inaccurate or low-quality depth maps
often decrease the performance. To overcome this issue, light
field SOD methods have been proposed to make use of rich
information captured by the light field. Specifically, light
field data contains an all-focus image, a focal stack, and a
rough depth map [98]. A summary of related light field SOD
works is provided in Tab VII. Further, to provide an in-depth
understanding of these models, we also review them in more
detail as follows.

Traditional/Deep Models. The classic models for light
field SOD often use superpixel-level handcrafted features [98],
[139], [141]–[146], [148], [154]. Early work [139], [146]
showed that the unique refocusing capability of light fields
can provide useful focusness, depth, and objectness cues.
Thus, several SOD models using light field data were further
proposed. For example, Zhang et al. [142] utilized a set
of focal slices to compute the background prior, and then
combined it with the location prior for SOD. Wang et al. [145]
proposed a two-stage Bayesian fusion model to integrate

Fig. 2.9 An illustration of RGB-depth salient object segmentation. (a)-(i) are the examples of com-
monly used datasets for RGB-depth salient object segmentation. For each of the datasets, the ground
truth, depth map and the given image are listed from right to left. This figure is cited from [208].

2.4.2 RGB-thermal salient object segmentation

RGB-thermal salient object segmentation is a relatively newly proposed task in the computer vision
community. The task focuses on utilizing both 2D RGB images and thermal maps collected by infra-
red sensors, to conduct salient object segmentation. As shown in Fig. 2.10, the thermal maps are
able to provide complementary information regarding the saliency judgments. Specifically, as shown
in Fig. 2.10, (a) reflects the situation where thermal maps highlight the salient objects while RGB
ones do not, and (b) vice versa. So far, the commonly used RGB-thermal salient object segmenta-
tion dataset is VT series including VT821 [235], VT1000 [232] and VT5000 [236], which provide
821, 1000 and 5000 image pairs (2D RGB image and corresponding thermal infrared image), respec-
tively.

There are only a few methods exclusively proposed for RGB-thermal salient object segmenta-
tion such as CRA [231], CGL [232], RFF [233] and APNet [234]. Similar to RGB-depth salient
object segmentation methods, some of the RGB-thermal salient object segmentation models designed
different attention-based multi-modal feature fusion modules to adapt to the task. For instance, re-
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Table 2.15 Summary of recent RGB-depth salient object segmentation methods.

Method Year Publication Key Words
DSNet [221] 2022 TIP Teacher-student network, pseudo depth maps.

DepthNet [222] 2022 TIP RGB-D correlation modeling, light weight.
ASB [224] 2022 TIP Complementary edge information mining.

MobileSal [225] 2021 TAPMI Inverted residual block, compact pyramid refinement.
DSU [226] 2021 ICLR Depth-disentangled saliency update framework.

DSAM [220] 2021 CVPR Depth sensitive attention module.
DCF [227] 2021 CVPR Cross reference module.

RD3D [228] 2021 AAAI 3D Convs based encoder-decoder.
HAINet [229] 2021 TIP Hierarchical alternate interaction module.
CDNet [219] 2021 TIP Two-stage multi-modal feature fusion.

UTANet [230] 2021 TIP Adaptive depth-error weights.
CMIM [218] 2021 ICCV Cascaded learning framework, mutual info regularizer.
SPNet [217] 2021 ICCV Multi-modal feature aggregation.

Table 2.16 Summary of recent RGB-thermal infrared salient object segmentation methods.

Method Year Publication Key Words
CRA [231] 2019 TCSVT Challenge-sensitive analysis, unified ranking model.
CGL [232] 2019 TMM Collaborative graph, joint optimization.
RFF [233] 2021 TCSVT Multi-scale, multi-modality, and multi-level fusion.

APNet [234] 2021 TETCI Iterative adversarial learning, progressively guided optimization.

160 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 1, JANUARY 2020

RGB-T Image Saliency Detection via
Collaborative Graph Learning

Zhengzheng Tu, Tian Xia, Chenglong Li , Xiaoxiao Wang, Yan Ma, and Jin Tang

Abstract—Image saliency detection is an active research topic
in the community of computer vision and multimedia. Fusing
complementary RGB and thermal infrared data has been proven
to be effective for image saliency detection. In this paper, we
propose an effective approach for RGB-T image saliency detection.
Our approach relies on a novel collaborative graph learning
algorithm. In particular, we take superpixels as graph nodes, and
collaboratively use hierarchical deep features to jointly learn graph
affinity and node saliency in a unified optimization framework.
Moreover, we contribute a more challenging dataset for the purpose
of RGB-T image saliency detection, which contains 1000 spatially
aligned RGB-T image pairs and their ground truth annotations.
Extensive experiments on the public dataset and the newly created
dataset suggest that the proposed approach performs favorably
against the state-of-the-art RGB-T saliency detection methods.

Index Terms—Image saliency detection, RGB-thermal fusion,
Collaborative graph, Joint optimization, Benchmark dataset.

I. INTRODUCTION

THE goal of image saliency detection is to estimate visu-
ally most salient and important objects in a scene, and has

wide applications in the community of computer vision and mul-
timedia. In the past decade, image saliency detection has been
extensively studied, but still faces many challenges in adverse
environments. Integrating visible and thermal infrared (RGB-
T) data has proven to be effective for several computer vision
tasks [1]–[5]. Thermal infrared cameras can capture infrared
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Fig. 1. Typically complementary advantages of RGB and thermal data.
(a) Advantages of thermal data over RGB data, where visible spectrum is influ-
enced by blur, reflective light and low illumination. (b) Advantages of RGB data
over thermal data, where thermal spectrum is influenced by thermal reflection
and thermal crossover.

radiation emitted by the object whose temperature is above ab-
solute zero, and thus are insensitive to illumination variation and
have a strong ability to penetrate haze and smog, as shown in
Fig. 1.

RGB-T image saliency detection is relatively new in the com-
puter vision community, and there are few methods to work on
it. As the initial advance, Li et al. [5] propose a multi-task man-
ifold ranking algorithm for RGB-T image saliency detection,
and built up a unified RGB-T image benchmark dataset. Al-
though this work achieves a significant step in the aspect of
RGB-T saliency detection, the performance might be limited by
the following issues: i) The handcraft features are only adopted
to compute saliency values. ii) The graph structure is fixed which
only considers the local neighbors, and not able to capture more
intrinsic relationships among graph nodes. iii) The graph con-
struction and the saliency computation are independent phases.

To handle these problems, we propose a novel approach for
RGB-T image saliency detection, and formulate RGB-T image
saliency detection as a graph learning problem. First, we segment
input RGB and thermal images jointly into a set of superpixels.
Since the deeper layers contain richer semantic information to
localize salient regions while the shallower layers have much
finer structures to retain clearly object boundaries [6]–[9], we

1520-9210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2.10 An illustration of RGB-thermal salient object segmentation (this figure is cited from [232]).
(a)/(b) show that RGB images and their corresponding thermal maps contain complementary visual
cues.
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cent RFF [231] built complementary weighting module to dynamically assign attention weights to
RGB and thermal based features. Besides, APNet [234] applied channel and spatial attention in their
proposed progressively guided optimization module, to extract features from semantic and spatial
data.

2.4.3 Light field salient object segmentation
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(a) (b) (c)

(d) (e) (f)

Fig. 1. Image elements in the proposed dataset: (a) RGB image, (b) grount truth, (c) depth map, (d) focal stack (2nd row) and corresponding focus
region (3rd row), (e) micro-image and (f) multiview.

Data Collection. We conducted our data collection with two
main goals in mind: 1) to ensure sensory rich and logistically
practical data collection, and 2) to remedy the data deficiency
problem while ensuring diversity of the benchmark dataset. We
opt for a commercially available Lytro Illum camera for our data
collection, being consistent with previous works [7], [9], [11],
[19]. Our dataset consists of a variety of indoor and outdoor
scenes captured in the surrounding environments, e.g., offices,
supermarkets, campuses, streets and so on. Moreover, our dataset
is recorded over several months under different time, lighting
conditions and camera parameters (e.g., aperture size and focal
length that determine depth of field in an image). To assure the
quality of the data, three participants were employed full time
to screen out disqualified images, such as blurred images and
images with disputable salient objects. In this way, 4204 light
field samples are included in DUTLF-V2.

Data Annotation. To ensure the accuracy and consistency for
annotation, twenty participants are instructed to label the salient
objects from the all-in-focus RGB image using a widely-used
custom segmentation tool. To further improve annotation accuracy,
all participants are pre-trained with over ten examples. To achieve
a consensus, each three of participants jointly determined the
saliency objects, and cross validated by other three ones. We
accept a consensus of at least 83 percent to be considered a
positive label. In the annotation process, the participants were first
asked to draw the coarse boundary along the salient objects, then
check the segmentation results and refine the boundaries. To this
end, we obtained corresponding 4204 accurate pixel-wise ground-
truth masks in total.

Dataset Split. To ensure evaluation consistency, the split protocol
of our dataset is similar with previous works [52], [53]. 4204
light field samples are randomly generated into the training and
testing sets at the ratio of 7:3. Specifically, 2957 samples are
for training and 1247 samples are for testing with corresponding
saliency masks. The proportion of hard samples in the training
set and test set is 57.25% and 60.22%, respectively. We note that
simple and hard samples are well balanced to split into the training
and testing sets.

3.2 Dataset Elements

To achieve versatility of our dataset, we decode the light field raw
data using the Lytro Power Tools (LPT). Each light field consists
of a RGB (all-in-focus) image, a corresponding manually labeled
ground truth, a depth image, a stack of focal slices focusing
at different depths and an array of multi-view images. We will
elaborate on each element of DUTLF-V2, illustrated in Figure 1.
Raw Light Field Data. Light field data are stored in raw files,
which save the data that come off the image sensor, namely
Light Field Raw (LFR) files. The raw light field data comprise
an array of micro-images shown in Figure 1 (e), each micro image
being projected by a respective micro lens of a micro-lens array.
LFR files can be used as initial input for either the Lytro camera
software or any other processing toolbox. In our implementation,
we use the Lytro Power Tools (LPT) to decode the LFR files into
RGB (all-in-focus) images, depth maps, focal stacks and multi
views.
RGB Image (All-in-Focus). An all-in-focus image has all parts of
the sample in focus. It can be generated using a Markov random
field (MRF) based approach by integrating the sharpest in-focus
pixels across the focal stack. We obtained 4204 all-in-focus images
with the resolution of 600 × 400, which are applicable for RGB
saliency detection.
Saliency Mask. To obtain the pixel-wise ground truth, we man-
ually labeled the salient objects from the RGB image using a
commonly used segmentation tool. Three annotators are required
to determine the salient objects in order to achieve annotation
consensus.
Depth Map. Each pixel in the depth map describes the distance
from a viewpoint to the surfaces of scene objects. Depth maps
can be generated using the focal stack. To highlight the relative
position between objects, we normalize the depth map to the range
from 0 to 255. The depth maps together with RGB images, enable
versatile application of our dataset for RGB-D saliency detection.
Focal Stack. A focal stack represents a series of images focusing
at different depths. It caters to human visual perception and is
observed in sequence with a combination of eye movements and
shifts in visual attention. In our proposed dataset, the focal stack
has different number varied from 3 to 13 (see Figure 2(d)). Most of
the focal stacks contain more than 9 slices, which can demonstrate

Fig. 2.11 An illustration of light field salient object segmentation (this figure is cited from [237]).
(a)/(b)/(c) denote the given 2D RGB image, corresponding object-level pixel-wise ground-truth and
depth map, respectively. (d) means focal stacks (top) and their focal regions (bottom). (e) and (f)
denote the micro-lens based images and multi-view images, respectively.

Nowadays, it is convenient to collect different types of light field data with consumer-level light
field cameras such as Lytro products. Fig. 2.11 shows an example illustrating the main types of light
field modalities in widely used light field salient object segmentation datasets such as LFSD [238],
HFUT [239], DUTLF-F [240], DUTLF-M [241], Lytro [242], DUTLFV2 [237] and CITYU [243].
The detailed statistics regarding these datasets are included in Table. 2.17. Most recently established
datasets such as Lytro [242] and DUTLFV2 [237] provide all types of commonly seen light field data,
including focal stacks, multi-view images, depth maps and micro-lens based images.

Table 2.17 Summary of light field salient object segmentation datasets. #Img: The number of images.
#GT: The number of object-level pixel-wise masks.

Dataset Year Publication #Img&#GT Focal Stack Multi-view Depth Micro Lens
LFSD [238] 2014 CVPR 100 ✓ ✓ ✓ ✓
HFUT [239] 2017 TOMM 255 ✓ ✓ ✓ ✓

DUTLF-F [240] 2019 ICCV 1,462 ✓ ✓
DUTLF-M [241] 2019 IJCAI 1,580 ✓

Lytro [242] 2020 TIP 640 ✓ ✓ ✓ ✓
DUTLFV2 [237] 2021 arXiv 4,204 ✓ ✓ ✓ ✓

CITYU [243] 2021 TIP 817 ✓ ✓ ✓

With the increasing public databases, extensive light field salient object segmentation methodolo-
gies have been proposed during the last few years (Table. 2.18). Relatively early method DLLF [240]
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Table 2.18 Summary of recent light field salient object segmentation methods.

Method Year Publication Key Words
DLLF [240] 2019 ICCV Convs for light field, late fusion architecture.
DLSD [241] 2019 IJCAI View-wise attention mechanism, light field synthesis.
MoLF [244] 2019 NeurIPS ConvLSTM, focal stack, memory-oriented feature fusion.
ERNet [245] 2020 AAAI Focal stack, teacher-student network.
LFNet [246] 2020 TIP Integration of focusness, depths and objectness cues.
MAC [242] 2020 TIP Micro lens, sampled sub-aperture images.

MTCNet [248] 2020 TCSVT 3D convs, multi-task decoder, edge prediction.
OBGNet [249] 2021 ACM MM Epipolar plane images, occlusion extraction module.

DLGLRG [250] 2021 ICCV Focal stack feature aggregation, reciprocative guidance.
GAGNN [243] 2021 TIP Multi-scale graph networks.

SANet [251] 2021 BMVC Complementary information learning, focal stack.
TCFANet [252] 2021 SPL Multi-stream framework.

PANet [253] 2021 TCyb Sharpness recognition module, multi-source learning module.
MGANet [254] 2021 ICMEw Generative adversarial networks for light field data.
MEANet [247] 2021 N.Comp. Multi-modal edge supervision.
DGENet [255] 2021 IVC Recurrent global-guided focus module.

applied VGG-based hierarchical convolutional layers to extract the features from RGB image and
its corresponding focal stacks, separately. The focal stack based features were refined by attention-
convLSTM module before the multi-modal fusion process. DLSD [241] designed multi-view atten-
tion module to filter the useful features. MoLF [244] proposed memory-induced mechanism based
on channel attention and ConvLSTM, to facilitate the feature extraction from focal stacks. Later ER-
Net [245] further used channel attention to support the knowledge distillation of the features extracted
from focal stacks and RGB images. LFNet [246] also took advantage of both focal stacks and RGB
images and used attention module to adjust the RGB-based features for efficient feature fusion in the
following decoding stage. Most recently proposed MEANet [247] applied channel-spatial attention
to facilitate edge priors based multi-branch supervisions for the training of the proposed framework.
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2.5 Salient object segmentation in panorama

Table 2.19 Summary of 360° panoramic datasets. #Img: The number of images/video frames. #GT:
The number of object-level pixel-wise masks (ground truth for SOD). Pub. = Publication. Obj.-Level
= Object-Level Labels. Ins.-Level = Instance-Level Labels. Fix. GT = Fixation Maps. † denotes
equirectangular (ER) images.

Dataset Pub. #Img #GT min(W,H) max(W,H) Obj.-Level Ins.-Level Fix. GT
F-360iSOD [256] ICIP’20 107† 107 1,024 2,048 ✓ ✓ ✓

360-SOD [257] JSTSP’20 500† 500 512 1,024 ✓
360SSOD [258] TVCG’20 1,105† 1,105 546 1,024 ✓

As the prosperous development of 360° saliency prediction and 2D salient object segmentation,
one idea is to combine the advantages of both fields and introduce 360° salient object segmentation to
the community. The task of 360° based image/video salient object segmentation is able to mimic the
real human attention in static/dynamic immersive environment, thus advancing saliency prediction to
cognitive vision by introducing object-level saliency judgments, also closing the gap between salient
object segmentation and potential augmented/virtual reality applications where omnidirectional im-
ages based object-level saliency detection may play an important role (e.g., AR glasses display ren-
dered virtual objects based on real salient objects in 360° immersive environments).

As the main focus of this thesis, panoramic salient object segmentation has gained relatively
rare attention from the community of computer vision, mainly due to the lack of large-scale datasets
and comprehensive benchmark studies. As shown in Table. 2.19, F-360iSOD (ours) [256], 360-
SOD [257] and 360SSOD [258] are the only datasets for 360° panoramic salient object segmentation.
Besides, no dataset or method has been proposed for video-based salient object segmentation in the
past years.

To fill the blank of 360° salient object segmentation researches, this thesis systematically works
on image/video-based benchmark datasets (Chapter 3) and new baseline methodologies (Chapter 5).
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2.6 State-of-the-art attention models

This section introduces the recent attention models widely used for deep learning based computer
vision. It is widely known that human visual system largely depends on a specific mechanism, that
is able to efficiently divert human attention towards salient objects and regions for effective scene
understanding. Inspired by this physiological prior, current deep learning models added specific
modules to mimic human attention mechanism. By doing so, they acquired similar ability of detecting
key objects and scenes benefiting specific computer vision tasks, by adaptively putting more weight
on specific sets of model features leading to better predictions.

In the following sub-sections, we detail the concepts and representative state-of-the-art works
towards attention models, thus establishing solid theoretical and empirical foundations for the pre-
sentation of our works in subsequent sections.

2.6.1 Categories of attention models
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Spatial-Temporal Attention
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Branch Attention

denotes specific domain where attention is applied.

Fig. 2.12 An illustration of six commonly seen types of attention models (or, mechanisms) applied
in current state-of-the-art deep learning methods in the field of computer vision. Based on different
operation domains (i.e., “channel – C”, “spatial – S” and “temporal – T”) of given feature maps,
current state-of-the-art attention models can be classified into five categories, i.e., channel-wise atten-
tions, spatial attentions, temporal attentions, channel-spatial attentions, spatial-temporal attentions.
Besides above attentions operated on single branch, branch attentions can be used to fuse and refine
inter-branch-based features.

In the deep learning era, attention models have been developed and widely applied to frameworks
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Table 2.20 Descriptions corresponding to each of the attention categories. Please refer to Fig. 2.12
for visualization of each type of attention.

Attention Category Description Representative works

Channel attention
Selecting key channels with attention mask SENet [145],

across feature channel domain. ECANet [259], etc.

Spatial attention
Selecting key spatial regions with attention mask GENet [260],

across feature spatial domain. Non-local [261], etc.

Temporal attention
Selecting key video frames with attention mask GLTR [262],

across feature temporal domain. TAM [263], etc.

Branch attention
Selecting key branches with attention mask Highway [264],

across multiple branches of features. Condconv [265], etc.

Channel-spatial attention
Selecting key features with attention mask(s) CBAM [146],

across both channel and spatial domains. Triplet [266], etc.

Spatial-temporal attention
Selecting key features with attention mask(s) RSTAN [267],

across both spatial and temporal domains. STA [268], etc.

consisting of convolutional (e.g., resnets [142]) and/or transformer [143] layers. The aim of these
attention models is to adaptively select the important features with specific functions, thus improving
model performance upon specific benchmarks by a large margin.

General formulation. Generally, the attention models observe the following formulation:

Feat. = f (A(Feat.),Feat.), (2.1)

where “Feat.” denotes the inputting features of deep learning networks. A(·) means an exclusively
designed attention module that operates on specific domains of “Feat.”. f (·) defines a specific func-
tion (which is usually adding and/or concatenation operations) that combines the attention-enhanced
features “A(Feat.)” and original ones “Feat.”.

In this case, based on the types of operation domains (channel, spatial and temporal) of given fea-
tures from specific layers of deep learning networks, current state-of-the-art attention models can be
classified into five categories, i.e., channel attention, spatial attention, channel-spatial attention, tem-
poral attention and spatial-temporal attention. Besides intra attentions, another mechanism, namely
branch attention, which operates between branches of feature maps to model their inter-branch de-
pendencies. The differences of these attention mechanisms are visualized in Fig. 2.12.

In addition, Table 2.20 further details the descriptions of these six types of attentions. An expla-
nation towards six attention categories is as follows:

Channel attention denotes a type of attention modules that channel-wisely refine the given feature
maps, by adaptively generating attention mask across all feature channels. The superiority of channel
attention is that it is able to model the interdependencies between each of the channels of given
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features. Owing to the outstanding effectiveness and usability, channel attention model such as SENet
[145] has been one of the most widely used attention mechanisms (with a citation of more than 13K)
during the past few years. Later works such as ECANet [259] and GSoP-Net [269] acquired further
improvement based on the framework of SENet [145].
Spatial attention emphasizes the long-range dependencies modeling across spatial domain of given
features. Inspired by the excitation module proposed by SENet [145], GENet [260] further designed
a gather-excite module to implicitly build an attention mask, thus enabling the convolutional neural
network to learn features representing contextual long-range dependencies. Besides, representative
spatial attention models such as non-local network [261] and vision transformers [143] both high-
light the superiority of their spatially long-range dependencies modeling abilities, especially when
compared to traditional convolutional networks (e.g., [2]).
Temporal attention is proposed for temporal feature refinement when inputs are sequential visual
data such as video clips. In fact, not each of the video frames contribute equally to specific vision
tasks such as dynamic person re-identification [262] and video recognition [263], temporal attention
is thus used for temporal dependencies modeling to efficiently and effectively extract the key features.
Channel-spatial attention combines the advantages of both channel attention and spatial attention,
thus proposing to refine given features based on both channel and spatial domains. A representative
work is CBAM [146], which cascaded a channel-based module and a spatial-based module and thus
gaining attention masks for feature refinement. As a result, the proposed channel-spatial module [146]
has been widely used to refine convolutional network-based features (e.g., [266, 270]). Besides cas-
caded channel-spatial attention, representative work such as Triplet network [266] directly generated
attention mask across spatial-channel domains with a three-branch attention module.
Spatial-temporal attention is a type of attention mechanism that takes advantage of both intra-frame
spatial features and inter-frame temporal features, to facilitate specific vision tasks such as action
recognition [267] and dynamic person re-identification [268].
Branch attention is a relatively special class of attention mechanism that fuses and refines global
features from multiple branches. Representative works include Highway network [264], Condconv
[265], etc.

It is worth noting that, the decision of which type of attention to use may depend on the specific
tasks.

2.6.2 Representative attention models

As shown in Fig. 2.13, early attention model such as RAM [271] used recurrent neural network to
learn features from one local region at a time, then to select key features representing important loca-
tions. Being different to aforementioned spatial attention, i.e., GENet [266], RAM [271] transformed
given image to sequential patches and built attention mask across the patches, rather than building
attention mask across spatial domain of holistic features. Later work such as Highway network [264]
was inspired by LSTM [273] and proposed a “information highway” consisting of gate units to adap-
tively focus on key features learning.
Channel&Spatial Attention. As the success of classical “squeeze-excitation” framework (Fig. 2.14)
proposed by SENet [145], multiple works such as GSoP-Net [269], SKNet [274], ECANet [259]
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RAM 
NeurIPS 2014

This work proposed a recurrent 
attention model to adaptively 

select sequential regions/locations.

STN
NeurIPS 2015

This work proposed a spatial 
transformer network to learn 

affine transformation.

Highway Network
NeurIPS 2015

This work built information 
highway based on adaptive gating 

units and the idea of LSTM.

SENet
CVPR 2018 

This work proposed an attention 
mechanism to adaptively recalibrate 

CNN features in a channel-wise manner.

Non-Local Network
CVPR 2018 

This work used  self-attention 
mechanism to model global 
context with CNN  features.

CBAM
ECCV 2018 

This work proposed new attention 
mechanism to recalibrate CNN features by 
operating on both channel-spatial domains.

Vision Transformer (ViT)
ICLR 2021 

This work regards image as 16x16 
words to model the global context 

with Transformer layers.

Fig. 2.13 The history towards a prosperous development of attention models in the field of computer
vision. Due to the limited space along the timeline, we only summarize several representative methods
(i.e., RAM [271], STN [272], Highway Network [264], SENet [145], Non-Local Network [261],
CBAM [146] and ViT [143]) in this figure. Please refer to Section 2.6.2 for detailed illustrations.
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Fig. 1. A Squeeze-and-Excitation block.

ture (Section 6.4). While the template for the building block
is generic, the role it performs at different depths differs
throughout the network. In earlier layers, it excites infor-
mative features in a class-agnostic manner, strengthening
the shared low-level representations. In later layers, the SE
blocks become increasingly specialised, and respond to dif-
ferent inputs in a highly class-specific manner (Section 7.2).
As a consequence, the benefits of the feature recalibration
performed by SE blocks can be accumulated through the
network.

The design and development of new CNN architectures
is a difficult engineering task, typically requiring the se-
lection of many new hyperparameters and layer configura-
tions. By contrast, the structure of the SE block is simple and
can be used directly in existing state-of-the-art architectures
by replacing components with their SE counterparts, where
the performance can be effectively enhanced. SE blocks are
also computationally lightweight and impose only a slight
increase in model complexity and computational burden.

To provide evidence for these claims, we develop several
SENets and conduct an extensive evaluation on the Ima-
geNet dataset [10]. We also present results beyond ImageNet
that indicate that the benefits of our approach are not
restricted to a specific dataset or task. By making use of
SENets, we ranked first in the ILSVRC 2017 classification
competition. Our best model ensemble achieves a 2.251%
top-5 error on the test set1. This represents roughly a 25%
relative improvement when compared to the winner entry
of the previous year (top-5 error of 2.991%).

2 RELATED WORK

Deeper architectures. VGGNets [11] and Inception mod-
els [5] showed that increasing the depth of a network could
significantly increase the quality of representations that
it was capable of learning. By regulating the distribution
of the inputs to each layer, Batch Normalization (BN) [6]
added stability to the learning process in deep networks
and produced smoother optimisation surfaces [12]. Building
on these works, ResNets demonstrated that it was pos-
sible to learn considerably deeper and stronger networks
through the use of identity-based skip connections [13], [14].
Highway networks [15] introduced a gating mechanism to
regulate the flow of information along shortcut connections.
Following these works, there have been further reformula-
tions of the connections between network layers [16], [17],

1. http://image-net.org/challenges/LSVRC/2017/results

which show promising improvements to the learning and
representational properties of deep networks.

An alternative, but closely related line of research has
focused on methods to improve the functional form of
the computational elements contained within a network.
Grouped convolutions have proven to be a popular ap-
proach for increasing the cardinality of learned transforma-
tions [18], [19]. More flexible compositions of operators can
be achieved with multi-branch convolutions [5], [6], [20],
[21], which can be viewed as a natural extension of the
grouping operator. In prior work, cross-channel correlations
are typically mapped as new combinations of features, ei-
ther independently of spatial structure [22], [23] or jointly
by using standard convolutional filters [24] with 1 × 1
convolutions. Much of this research has concentrated on the
objective of reducing model and computational complexity,
reflecting an assumption that channel relationships can be
formulated as a composition of instance-agnostic functions
with local receptive fields. In contrast, we claim that provid-
ing the unit with a mechanism to explicitly model dynamic,
non-linear dependencies between channels using global in-
formation can ease the learning process, and significantly
enhance the representational power of the network.

Algorithmic Architecture Search. Alongside the works
described above, there is also a rich history of research
that aims to forgo manual architecture design and instead
seeks to learn the structure of the network automatically.
Much of the early work in this domain was conducted in
the neuro-evolution community, which established methods
for searching across network topologies with evolutionary
methods [25], [26]. While often computationally demand-
ing, evolutionary search has had notable successes which
include finding good memory cells for sequence models
[27], [28] and learning sophisticated architectures for large-
scale image classification [29], [30], [31]. With the goal of re-
ducing the computational burden of these methods, efficient
alternatives to this approach have been proposed based on
Lamarckian inheritance [32] and differentiable architecture
search [33].

By formulating architecture search as hyperparameter
optimisation, random search [34] and other more sophis-
ticated model-based optimisation techniques [35], [36] can
also be used to tackle the problem. Topology selection
as a path through a fabric of possible designs [37] and
direct architecture prediction [38], [39] have been proposed
as additional viable architecture search tools. Particularly
strong results have been achieved with techniques from
reinforcement learning [40], [41], [42], [43], [44]. SE blocks

Fig. 2.14 Illustration of “squeeze-excitation” module in SENet [145]. Please note that this figure is
cited from [145].2 Woo, Park, Lee, Kweon

Channel 
Attention 
Module

Spatial
Attention
Module

Convolutional Block Attention Module

Input Feature Refined Feature

Fig. 1: The overview of CBAM. The module has two sequential sub-modules:
channel and spatial. The intermediate feature map is adaptively refined through
our module (CBAM) at every convolutional block of deep networks.

width can outperform an extremely deep ResNet with 1001 layers on the CI-
FAR benchmarks. Xception [11] and ResNeXt [7] come up with to increase the
cardinality of a network. They empirically show that cardinality not only saves
the total number of parameters but also results in stronger representation power
than the other two factors: depth and width.

Apart from these factors, we investigate a different aspect of the architecture
design, attention. The significance of attention has been studied extensively in
the previous literature [12–17]. Attention not only tells where to focus, it also
improves the representation of interests. Our goal is to increase representation
power by using attention mechanism: focusing on important features and sup-
pressing unnecessary ones. In this paper, we propose a new network module,
named “Convolutional Block Attention Module”. Since convolution operations
extract informative features by blending cross-channel and spatial information
together, we adopt our module to emphasize meaningful features along those two
principal dimensions: channel and spatial axes. To achieve this, we sequentially
apply channel and spatial attention modules (as shown in Fig. 1), so that each
of the branches can learn ‘what’ and ‘where’ to attend in the channel and spatial
axes respectively. As a result, our module efficiently helps the information flow
within the network by learning which information to emphasize or suppress.

In the ImageNet-1K dataset, we obtain accuracy improvement from various
baseline networks by plugging our tiny module, revealing the efficacy of CBAM.
We visualize trained models using the grad-CAM [18] and observe that CBAM-
enhanced networks focus on target objects more properly than their baseline
networks. Taking this into account, we conjecture that the performance boost
comes from accurate attention and noise reduction of irrelevant clutters. Finally,
we validate performance improvement of object detection on the MS COCO and
the VOC 2007 datasets, demonstrating a wide applicability of CBAM. Since we
have carefully designed our module to be light-weight, the overhead of parame-
ters and computation is negligible in most cases.

Contribution. Our main contribution is three-fold.
1. We propose a simple yet effective attention module (CBAM) that can be

widely applied to boost representation power of CNNs.

Fig. 2.15 Illustration of cascaded channel-spatial attention module in CBAM [146]. Please note that
this figure is cited from CBAM [146].

and CBAM [146] followed SENet and conducted further improvements based on it. Specifically,
Squeeze-excitation attention [145] emphasized the channel-wise effective features by squeezing the
spatial features with an adaptive average pooling layer and by computing channel-wise attention using
two fully-connected layers. GSoP-Net [269] replaced the squeeze module (i.e., average pooling layer)
of SENet with a proposed “global second-order” pooling layer. SKNet [274] further proposed a three-
stage (i.e., splitting, fusion and selection) attention mechanism, where the input features were split
into multiple branches and convolved with different kernels. The processed features were then fused
with squeeze-excitation attentions and summed as final output. Also based on squeeze-excitation
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Scaled Dot-Product Attention Multi-Head Attentioni is often based only on the current and the latest time steps
(e.g., j = i or i� 1).

The non-local operation is also different from a fully-
connected (fc) layer. Eq.(1) computes responses based on
relationships between different locations, whereas fc uses
learned weights. In other words, the relationship between xj

and xi is not a function of the input data in fc, unlike in non-
local layers. Furthermore, our formulation in Eq.(1) supports
inputs of variable sizes, and maintains the corresponding
size in the output. On the contrary, an fc layer requires a
fixed-size input/output and loses positional correspondence
(e.g., that from xi to yi at the position i).

A non-local operation is a flexible building block and can
be easily used together with convolutional/recurrent layers.
It can be added into the earlier part of deep neural networks,
unlike fc layers that are often used in the end. This allows us
to build a richer hierarchy that combines both non-local and
local information.

3.2. Instantiations

Next we describe several versions of f and g. Interest-
ingly, we will show by experiments (Table 2a) that our non-
local models are not sensitive to these choices, indicating
that the generic non-local behavior is the main reason for the
observed improvements.

For simplicity, we only consider g in the form of a linear
embedding: g(xj) = Wgxj , where Wg is a weight matrix
to be learned. This is implemented as, e.g., 1⇥1 convolution
in space or 1⇥1⇥1 convolution in spacetime.

Next we discuss choices for the pairwise function f .

Gaussian. Following the non-local mean [4] and bilateral
filters [47], a natural choice of f is the Gaussian function. In
this paper we consider:

f(xi,xj) = e
xT
i xj . (2)

Here xT
i xj is dot-product similarity. Euclidean distance as

used in [4, 47] is also applicable, but dot product is more
implementation-friendly in modern deep learning platforms.
The normalization factor is set as C(x) =

P
8j f(xi,xj).

Embedded Gaussian. A simple extension of the Gaussian
function is to compute similarity in an embedding space. In
this paper we consider:

f(xi,xj) = e
✓(xi)

T�(xj). (3)

Here ✓(xi) = W✓xi and �(xj) = W�xj are two embed-
dings. As above, we set C(x) =

P
8j f(xi,xj).

We note that the self-attention module [49] recently pre-
sented for machine translation is a special case of non-local
operations in the embedded Gaussian version. This can be
seen from the fact that for a given i, 1

C(x)f(xi,xj) becomes
the softmax computation along the dimension j. So we have

Ƨ: 1×1×1 ƴ: 1×1×1 g: 1×1×1

1×1×1

softmax

z

T×H×W×1024

T×H×W×512 T×H×W×512 T×H×W×512

THW×512 512×THW

THW×THW

THW×512

THW×512

T×H×W×512

T×H×W×1024

x
Figure 2. A spacetime non-local block. The feature maps are
shown as the shape of their tensors, e.g., T⇥H⇥W⇥1024 for
1024 channels (proper reshaping is performed when noted). “⌦”
denotes matrix multiplication, and “�” denotes element-wise sum.
The softmax operation is performed on each row. The blue boxes de-
note 1⇥1⇥1 convolutions. Here we show the embedded Gaussian
version, with a bottleneck of 512 channels. The vanilla Gaussian
version can be done by removing ✓ and �, and the dot-product
version can be done by replacing softmax with scaling by 1/N .

y = softmax(xT
W

T
✓ W�x)g(x), which is the self-attention

form in [49]. As such, our work provides insight by relating
this recent self-attention model to the classic computer vision
method of non-local means [4], and extends the sequential
self-attention network in [49] to a generic space/spacetime
non-local network for image/video recognition in computer
vision.

Despite the relation to [49], we show that the attentional
behavior (due to softmax) is not essential in the applications
we study. To show this, we describe two alternative versions
of non-local operations next.

Dot product. f can be defined as a dot-product similarity:

f(xi,xj) = ✓(xi)
T
�(xj). (4)

Here we adopt the embedded version. In this case, we set the
normalization factor as C(x) = N , where N is the number of
positions in x, rather than the sum of f , because it simplifies
gradient computation. A normalization like this is necessary
because the input can have variable size.

The main difference between the dot product and embed-
ded Gaussian versions is the presence of softmax, which
plays the role of an activation function.

Concatenation. Concatenation is used by the pairwise func-
tion in Relation Networks [40] for visual reasoning. We also
evaluate a concatenation form of f :

f(xi,xj) = ReLU(wT
f [✓(xi), �(xj)]). (5)

Here [·, ·] denotes concatenation and wf is a weight vector
that projects the concatenated vector to a scalar. As above,
we set C(x) = N . In this case, we adopt ReLU [35] in f .

(a) (b)

Fig. 2.16 Illustration of self-attention mechanisms. (a) denotes the self-attention module used in
non-local network (note that this sub-figure is cited from [261]). (b) compares the self-attention and
multi-head self-attention mechanisms, the latter is further used in vision transformer [143] (note that
this sub-figure is cited from [199]).

mechanism, ECANet [259] focused on computing local adjacent channel attention by replacing the
two fully-connected layers of squeeze-excitation model with an 1D-convolutional layer. Besides
above channel attention-based models, CBAM [146] used a large kernel (e.g., 7×7) to further extract
spatial attention based on channel-wise-refined features. Similarly, BAM [275] also applied both the
channel and spatial attentions to feature refinement. However, it simply sums the attention matrix,
rather than cascading the channel-/spatial-based ones as in CBAM (Fig. 2.15).
Self-Attention. Self-attention [199] (Fig. 2.16 (b) – “dot-product attention”) is widely used in the
fields of natural language processing and multi-modal learning. Self-attention is a type of operation
where the input feature is first mapped to “query”, “key” and “value” features via fully-connected
layers, respectively. The final output feature is computed as the output of a dot product of “value”
and the result of a dot product of “query” and “key”.

Inspired by self-attention, especially the “query”-“key”-“value” mechanism, non-local network
(Fig. 2.16 (a)) proposed non-local block to model global contextual correlations in spatial domain
of features gained from convolutional layers. As the development of computational sources (e.g.,
GPUs), large-scale multi-head self-attention modules (Fig. 2.16 (b)) have been applied to vision
Transformers (e.g., ViT [143]), which advances deep learning models towards better performance on
multiple benchmarks in the fields of image classification, object detection and segmentation.
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2.7 Evaluation for salient object segmentation

Following the common settings in the field of salient object segmentation, in this thesis, we apply
four widely used metrics, i.e., F-measure (Fβ ) [276], MAE (M ) [277], S-measure (Sα ) [278] and
E-measure (Eφ ) [279], to evaluate all benchmark models and our proposed methods. Generally, Sα

and Eφ are the recently proposed metrics. With the pixel-wise binary ground truth and output saliency
maps, Sα quantifies the objects’ structure similarities while the Eφ considers the similarities regarding
both local details and global context. Besides, Fβ and M focus only on the local per-pixel matches.
Specifically,
MAE (M ) computes the mean absolute error between the normalized predicted saliency map P ∈
[0,1] and the corresponding ground truth G ∈ {0,1},

M =
1

WH

W

∑
i=1

H

∑
j=1
| G(i, j)−P(i, j) |, (2.2)

where W and H denote the width and the height of the given image.
F-measure (Fβ ) computes both Precision and Recall, being formulated as:

Fβ =
(1+β 2)Precision Recall

β 2Precision+Recall
, with Precision =

|P∩G|
|P|

,Recall =
|P∩G|
|G|

, (2.3)

where G is the ground truth and P denotes a binary mask converted from a predicted saliency map.
Multiple P are computed by assigning different integral thresholds τ (τ ∈ [0,255]) to the saliency map.
The β 2 is set to 0.3 according to [276]. Note that we may report mean, adaptive or max F-measure
scores during quantitative evaluation, to be consistent with the settings of previous benchmarks of
specific tasks.
S-measure (Sα ) evaluates the structural similarities between the prediction and the ground truth. The
metric is defined as:

S = αSo +(1−α)Sr, (2.4)

where Sr and So denote the region-/object-based structure similarities, respectively. α ∈ [0,1] is
empirically set as 0.5 to arrange equal weights to both region-level and object-level quantitative eval-
uation. [278].
E-measure (Eφ ) is a cognitive vision-inspired metric evaluating both global and local similarities
between two binary maps. The metric is defined as:

Eφ =
1

WH

W

∑
i=1

H

∑
j=1

φ (G(i, j),P(i, j)) , (2.5)

where φ represents the enhanced alignment matrix [279]. Note that we may report mean, adaptive or
max F-measure scores during quantitative evaluation, to be consistent with the settings of previous
benchmarks of specific tasks.
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2.8 Conclusion

In this chapter, we thoroughly reviewed the recent state-of-the-art works towards salient object seg-
mentation in both 2D and 360° domains. A finding is that most recently proposed models tend to
exclusively design attention modules to adapt to specific tasks (e.g., mutual attention [180]). Besides,
we also reviewed the basic attention models in the field of computer vision, which are essential com-
ponents for the establishment of effective deep learning models upon multiple benchmarks (i.e., light
field/360° panoramic salient object segmentation).



Chapter 3

Datasets & benchmarks on 360° images
and videos

3.1 Introduction

Chapter 2 provides general information towards the benchmark datasets (e.g., citations, scales and
annotation types), which have been widely used for multiple tasks related to salient object segmenta-
tion. This chapter carefully discusses the details of 2D RGB image and video salient object segmen-
tation datasets, and highlights several key aspects (e.g., data sources, datasets’ scales, hierarchical
annotations and salient objects’ attributes) in terms of large-scale salient object segmentation dataset
construction. This chapter then presents the details of two newly proposed 360° salient object seg-
mentation datasets, i.e., F-360iSOD1 [256] and PAVS10K2, which consider the summarized key is-
sues (aspects) regarding large-scale salient object segmentation dataset construction.

It is worth noting that there was neither dataset nor benchmark exclusively designed for 360°
salient object segmentation, before the year of 2019 when F-360iSOD was proposed. Since the year
of 2019, only four datasets including 360-SOD [257], 360SSOD [258], F-360iSOD and PAVS10K
were established for conducting salient object segmentation in 360° domain.

The rarity of 360° salient object segmentation datasaet is mainly due to a lack of manual large-
scale pixel-wise annotations of salient objects contained in 360° panoramic images and videos. In
fact, acquiring pixel-wise object-level and instance-level masks is an extremely time-consuming and
laborious process. Besides, due to the annotators’ preference and stochasticity in labeling the ob-
jects, an unavoidable systematical errors tend to exist in current large-scale dense annotations3. One
may ask that, why not constructing datasets for the development of merely un-supervised and self-
supervised methods? Indeed, the training of these types of models does not require large-scale anno-
tations. However, salient object segmentation is so far a too challenging task for non fully supervised
deep learning models. In fact, current un-/self-/weakly-supervised models can seldomly be compared

1Fixation-based salient object detection in 360° images – F-360iSOD
2dataset with about 10K pixel-wise annotations for the task of panoramic audio-visual salient object segmentation –

PAVS10K
3Dense annotations denote pixel-level labels, rather than category labels in commonly seen image classification datasets.



46 Datasets & benchmarks on 360° images and videos

to fully-supervised ones [16]. Besides, datasets with large-scale dense annotations can be easily used
for the training of un-/self-/weakly-supervised models. Therefore, establishing large-scale datasets
with thorough dense annotations is a necessity to fulfill the target of this thesis.
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3.2 Key aspects for salient object segmentation datasets’ construction

This section discusses several key aspects towards large-scale dataset construction based on a thor-
ough review of previously proposed 2D RGB salient object segmentation datasets, to provide solid
theoretical and empirical foundations for the construction of datasets used for salient object segmen-
tation in 360°.

Based on Chapter 2, which presents general statistics of commonly used datasets for salient object
segmentation in multiple domains, a qualified salient object segmentation dataset must include at least
the following considerations from a perspective of theory:

• Appropriate protocol to ensure reasonable judgments towards salient objects (sometimes sub-
jective experiments are needed to aid making definitions for the salient objects).

• Specific annotation protocol to ensure correct and high-quality manual annotations.

Besides theoretical principles (a.k.a., protocols), empirical aspects are of equal importance for the
successful construction of large-scale salient object segmentation datasets. These empirical aspects
may include:

• The dataset must contain images and/or videos representing a variety of real-life scenes, where
foreground/background objects varying in categories, sizes, appearances, shapes and other
challenging attributes (such as occlusion and out-of-view) are included.

• As the task of salient object segmentation is a sub-branch of human attention modeling, the
proposed salient object segmentation dataset must include a majority of images/videos where
objects, that continually grasp human attention, exist.

• The dataset must contain large-scale images and/or videos with per-image annotations. Ac-
cording to the review of multiple types of salient object segmentation datasets in Chapter 2, the
commonly applied datasets’ scales tend to be varying. Generally, the representative datasets
tend to include a few hundreds to several thousands of annotated salient objects.

• Dense annotations can be regarded as the most special feature of salient object segmenta-
tion datasets, based on the statistics presented in the Chapter 2. To contribute qualified datasets
to the training/testing of fully supervised deep learning methods aiming at finely segmenting the
salient objects, manually labelled per-pixel binary masks corresponding to each of the images
and/or video frames within the proposed datasets must be included.

• Besides the pixel-wise labels, to facilitate following comprehensive benchmark studies, hier-
archical annotations regarding scene/object categories and challenging objects’ attributes are
necessarily included in the proposed datasets.

• Detailed statistical analysis must be conducted to clarify the feasibility and complexity of the
proposed dataset. For instance, to reflect the complexity of immersive real-life scenes, the ma-
jority of images and/or videos contained in the datasets are supposed to include salient objects
possessing multiple challenging attributes.
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The following sections illustrate the details regarding these key issues for large-scale salient ob-
ject segmentation dataset construction in a progressive manner. Specifically, the establishment of a
qualified salient object segmentation dataset can be decomposed to four progressive steps, i.e., source
data collection, protocol designing, annotation manufacturing and statistical analysis.

3.2.1 Sources

Content. Current salient object segmentation datasets directly collected 2D RGB images and videos
from the Internet by searching a variety of key words describing specific objects and scenes commonly
seen in the real life. These key words may include indoor/outdoor scenes, human-related occasions
(such as dramas, concerts, conferences, travel, sports), various object categories (such as persons,
instruments, electronics, animals), etc. Images/videos possessing these visually salient objects/scenes
are able to provide a foundation for the development of data-driven methods which aim at mimicking
human attention in real life.

Besides visually salient objects and scenes, recent datasets such as JOT [280] and SOC [21]
emphasized the importance of non-salient objects (e.g., obscure and cluttered objects shown in Fig.
3.1), which may play an important role in constructing balanced salient object segmentation datasets.
In fact, salient objects are not necessarily seen in each of the real-life scenes. [21, 280] argued that
current datasets, which exclude images without salient objects, are seriously unbalanced due to the
selection bias during data collection process.
Complexity. The complexity of a dataset is usually proportional to the density of objects it con-
tains. Early image-based salient object segmentation datasets [282, 283] collected images containing
only one or two visually foreground objects surrounded by simple background. Recently proposed
datasets such as SOD [284], ECSSD [90], DUT-O [17], PASCAL-S [18], HKU-IS [19] and ILSO [91]
collected images with more challenging scenes where no more than four main objects appear. Most
recently, dataset such as SOC [21] includes more challenging scenes with multiple foreground objects
and cluttered background context.

As for video-based salient object segmentation, early datasets such as ViSal [150], UVSD [152]
and DAVIS2016 [151] contain video frames with simple context consisting of only one or two spa-
tially connected foreground objects. Most recent datasets such as VOS [22] and DAVSOD [23] col-
lected more challenging dynamic scenes with four to five foreground objects per-frame.

The next section illustrates the common protocols used for gaining the salient objects out of
cluttered foreground/background scenes.

3.2.2 Protocols

Datasets’ protocols indicate the basic principles for judging and defining the salient objects. A rea-
sonable protocol is of the most important theoretical component of a qualified salient object seg-
mentation dataset. As the divergence of data conditions, protocols are largely different among the
datasets.

In 2D domain, the visually salient objects usually indicate the foreground/main objects that con-
stantly grasp human attention in static or dynamic scenes. Early datasets such as [150, 282, 283] tend
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Fig. 3.1 A visualization example which illustrates partial key aspects of salient object segmenta-
tion construction. The first row indicates typical pixel-wise manual annotations in current salient ob-
ject segmentation datasets, i.e., object-level (binary) and instance-level masks. The second row shows
specific real-life scenes (scattered people, pure background objects and meaningless foreground ob-
jects) tend not to be included in current most datasets. The third row shows salient objects defined
with the guidance of fixations. This figure is cited from [281].

to confound the concepts of foreground and salient objects since they only contain simple scenes with
one or two objects. However, later datasets such as [18, 22, 23, 91, 284] introduced specific protocols
to aid filtering the salient objects out of multiple foreground objects. According to psychological
research such as [285], human visual attention mechanism is able to support human to enumerate no
more than five objects at one glimpse. To mimic real object-level visual attention mechanism in chal-
lenging salient object segmentation datasets and to facilitate datasets’ annotations, several protocols
based on either explicit subjective judgments or eye-tracking experiments, have thus been proposed.

Protocols based on explicit subjective judgments. Explicit subjective judgments based protocols
directly leverage subjective opinions of multiple subjects as guidance for making definition towards
salient objects. These strategies are useful for accurately defining salient objects in scenes with simple
context (e.g., salient persons in real-life daily scenes shown in Fig. 3.1). Some representative datasets
include MSRA [282], SED [283], ASD [276], ECSSD [90], ViSal [150] and UVSD [152].

Specifically4, a voting strategy was first proposed by MSRA-A and MSRA-B [282], where three
and nine viewers were recruited, respectively. Each of the viewers was asked to annotate one object
per image with a bounding box, the salient objects were then selected by implementing the majority

4The detailed introduction of these protocols is cited from [281].
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rule among all viewers, which is defined as:

AT =
∑x∈(px>T ) px

∑x px
, (3.1)

where AT is the percentage of image pixels upon which salient intensity are above a empirical thresh-
old T . Further, px is defined as:

px =
1
S

S

∑
s=1

ms
x. (3.2)

where S is the number of subjects, ms
x is the binary mask labeled by the sth viewer, corresponding to

the xth image.

Compared to the MSRA-A [282], Bruce-A [286] is a salient object segmentation dataset which
contains 120 relatively images with multiple (≤ 4) visually salient foreground objects. 70 observers
were employed to judge the salient objects. The labeling consistency between the observers is defined
as:

Ck =
2

n(n−1)

n−1

∑
i=1

n=70

∑
j=i+1

|aik∩a jk|
|aik∪a jk|

. (3.3)

where aik and a jk are pixel-wise ground truth annotations of the ith and jth observers, corresponding
to the kth image. The Ck is a value between 0 and 1. A better overlap of labels among observers
leads to a higher Ck and vice versa. As a result, the Ck was reported to be relatively low when
multiple foreground objects appear on the kth image, indicating the divergence between observers is
significant. Further, 59 images with high labeling consistency (Ck ≥ 0.75) were selected.

PASCAL-S [18] is another widely-used salient object segmentation dataset. Twelve subjects were
involved to freely click on the fully segmented object regions. The final salient objects were selected
based on their saliency ranking. Note that the saliency intensity of each object region is the total
number of clicks it receives, divided by the number of subjects.

HKU-IS [19] defined salient objects also via labeling consistency metric. It directly excluded the
images with low labeling consistency. Specifically, the labeling consistency of three annotators is
defined as:

R =
∑x (Π

3
s=1a(s)x )

∑x 1(∑3
s=1 a(s)x ̸= 0)

. (3.4)

where a(s)x is the binary saliency mask annotated by the sth subject over the xth image. R is the ratio
of the pixels labeled as salient by all three subjects and the ones labeled by at least one of the three
subjects. The images with L > 0.9 were then kept for further annotations. Finally, the salient objects
were confirmed by using a majority principle (two out of three). The principle can be formulated as:

Sx = 1(
3

∑
s=1

a(s)x ≥ 2). (3.5)

where Sx is the ground-truth salieny map, which may contain multiple salient objects over the xth
image.

SOC [21] is a relatively newly proposed large-scale salient object segmentation dataset, which
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includes a two-stage annotation procedure. At the first stage, five viewers were recruited to annotate
salient objects without the constraint of number of the objects selected. At the second stage, only
the images with high labeling consistency were reserved. The eligible images are the ones where a
majority (≥ 3) of viewers annotated the identical objects5. The IoU is defined as:

IoU =
Area o f Overlap
Area o f Union

. (3.6)

As for video-based salient object segmentation datasets, RSD [287] contains multiple salient
objects with bounding box labels) in 62,356 video frames. 23 annotators were involved to construct
the dataset. Quatitatively, the saliency mi,k of the kth object in the ith frame is defined as :

mi,k =
si,k

∑ j si, j
. (3.7)

where si,k is the number of annotators who selected the kth object in the ith frame, while ∑ j si, j is the
total number of annotations in the ith frame.

ViSal [150] and UVSD [152] are early video salient object segmentation datasets containing 17
and 18 dynamic scenes, respectively. In these datasets, the salient objects were simply defined as the
visual foreground objects in each of the sequences.
Protocols based on eye-tracking experiments. As the collected scenes become more complex, high
consistency between a few annotators is increasingly hard to achieve due the divergence of personal
preference. To this end, fixations (the third row of Fig. 3.1) have been widely applied (e.g., [22, 23])
to facilitate the annotation of salient objects.

Specifically6, based on the eye-tracking experiments implemented in salient object segmenta-
tion datasets such as [18, 39, 286, 288–291], it has been proved that there is a consistency between
fixations and explicit subjective judgments. Depending on which, [22, 23, 39] attempted to annotate
salient objects with the guidance of fixations.

JUDD-A [39] is an early salient object segmentation dataset which applied the fixations to the
annotation process of single salient object (per-image). At the first stage, multiple objects were anno-
tated pixel-wisely by two observers. Then the objects with the region containing the highest fraction
(compared to the other objects regions) of fixations were selected as salient objects.

Inspired by PASCAL-S [18], VOS [22] further annotated multiple salient objects (per-video) by
applying fixation points. Instead of counting the number of fixations in separate frames, a so-called
fixation density is defined and used to quantify the salient object annotation. Let It ∈ V be a key
frame presented at time t in a given video (V ), while O ∈ It be an annotated object. Note that t f ∈ T
(the frames within short period (T) following the selected key frame (It)) is considered to solve the
fixation sparsity in single frame. The fixation density at the region of O can then be defined as:

D(O) =
1
||O|| ∑

t f∈T
1(∑

p∈O
D f ,p ∗ exp(−

(t f − t)2

2δ 2
t

)), (3.8)

5Identical objects are defined as objects owning > 0.8 of intersection over union (IoU) based on no more than three
bounding boxes

6The detailed introduction towards these protocols is cited from [281].



52 Datasets & benchmarks on 360° images and videos

where D f ,p is formulated as:

D f ,p = exp(−
(x f − xp)

2 +(y f − yp)
2

2δ 2
s

). (3.9)

where δs is empirically set to 0.03 of video width (or height if it is larger than width), also δt is set
to 0.1s. The salient objects in a given video were further defined by empirically thresholding their
saliency scores on the whole video scale. The saliency score S is thus defined as:

S =
∑It∈V ∑O∈It D(O)

∑It∈V ∑O∈It 1
. (3.10)

More recently, DAVSOD [23] also labeled multiple salient objects in each of the videos, by com-
bining subjective annotation and fixation maps from external dataset [11]. About 5 viewers were
recruited to freely annotate several objects pixel-wisely in each of the frames, with the fixation maps
simultaneously displayed as reference. Importantly, the fixation maps contain smoothed saliency
regions, rather than disconnected fixation points.

Based on the above subjective experiments based protocols, a typical procedure including the
common steps of salient object segmentation dataset construction can be drawn (Fig. 3.2).

3.2.3 Annotations

Early datasets such as MSRA-A/B [282], RSD [287], STC [292] and DUT-O [17] provide only bound-
ing box annotations. As the models are supposed to finely segment the salient objects from given
images and videos, recent datasets such as SED1/2 [283], ASD [276], SOD [284], iCoSeg [183],
MSRA5K [293], Infrared [288], ImgSal [289], CSSD [90], ECSSD [90], Bruce-A [286], THUR15K
[294], JUDD-A [39], PASCAL-S [18], UCSB [290], OSIE [291], HKU-IS [19], ViSal [150], UVSD
[152], XPIE [295], ILSO [91], DUTS [20], VOS [22], SOC [21], DAVSOD [23] and SIP [216], are
able to provide manually labeled object-level annotations (e.g., the first row of the Fig. 3.1). Further-
more, datasets such as ILSO [91], SOC [21], DAVSOD [23] and SIP [216] provide both object-level
and instance-level pixel-wise labels (e.g., the first row of the Fig. 3.1), to facilitate salient instance
segmentation related tasks.

Statistics regarding the annotations’ scales and types are presented in Table 3.1, Table 3.2 and
Tabel 3.3.
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Fig. 3.2 A flowchart represents typical process of acquiring salient objects’ annotations in current
salient object segmentation datasets. Please note that “dense annotations” in this flowchart indicate
per-image/video frame pixel-wise annotations, rather than merely per-pixel labels as mentioned in the
text. This figure is cited from [281].
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Table 3.1 An overview in terms of annotations of widely used 2D image/video salient object segmen-
tation datasets (1/3). Pub. = publications. N.Images = number of images contained in the given image
salient object segmentation dataset. N.Sequences = number of sequences included in the given video
salient object segmentation dataset. T.Annotations = type of annotations in the given image/video
dataset. N.Annotators = number of annotators involved in the dataset labeling process. N.Subjects
= number of subjects recruited for conducting eye-tracking experiments. “-” denotes no information
provided. This table is updated based on the statistics in [281], which collects partial statistical results
from [15].

No. Dataset Year Pub. N.Images N.Sequences T.Annotations N.Annotators N.Subjects

1 MSRA-A [282] 2007 CVPR 20,000 - Bounding Box 3 -

2 MSRA-B [282] 2007 CVPR 5,000 - Bounding Box 9 -

3 SED1 [283] 2007 CVPR 100 -
Pixel-wise

Oject-Level
3 -

4 SED2 [283] 2007 CVPR 100 -
Pixel-wise

Oject-Level
3 -

5 ASD [276] 2009 CVPR 1,000 -
Pixel-wise

Oject-Level
1 -

6 RSD [287] 2009 ICME - 431 Bounding Box 23 -

7 SOD [284] 2010 TPAMI 300 -
Pixel-wise

Oject-Level
7 -

8 iCoSeg [183] 2010 CVPR 643 -
Pixel-wise

Oject-Level
1 -

9 MSRA5K [293] 2011 BMVC 5,000 -
Pixel-wise

Oject-Level
1 -

10 Infrared [288] 2011 CVPR 900 -
Pixel-wise

Oject-Level
2 15
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Table 3.2 An overview in terms of annotations of widely used 2D image/video salient object segmen-
tation datasets (2/3). Pub. = publications. N.Images = number of images contained in the given image
salient object segmentation dataset. N.Sequences = number of sequences included in the given video
salient object segmentation dataset. T.Annotations = type of annotations in the given image/video
dataset. N.Annotators = number of annotators involved in the dataset labeling process. N.Subjects
= number of subjects recruited for conducting eye-tracking experiments. “-” denotes no information
provided. This table is updated based on the statistics in [281], which collects partial statistical results
from [15].

No. Dataset Year Pub. N.Images N.Sequences T.Annotations N.Annotators N.Subjects

11 STC [292] 2011 J.CSB - 32 Bounding Box 1 -

12 ImgSal [289] 2012 TPAMI 235 -
Pixel-wise

Oject-Level
19 50

13 CSSD [90] 2013 CVPR 200 -
Pixel-wise

Oject-Level
1 -

14 ECSSD [90] 2013 CVPR 1,000 -
Pixel-wise

Oject-Level
5 -

15 DUT-O [17] 2013 CVPR 5,172 - Bounding Box 5 5

16 Bruce-A [286] 2013 J.VR 120 -
Pixel-wise

Oject-Level
70 20

17 THUR15K [294] 2014 J.VC 15,000 -
Pixel-wise

Oject-Level
1 -

18 JUDD-A [39] 2014 TIP 900 -
Pixel-wise

Oject-Level
2 15

19 PASCAL-S [18] 2014 CVPR 850 -
Pixel-wise

Oject-Level
12 8

20 UCSB [290] 2014 J.V 700 -
Pixel-wise

Oject-Level
100 8

21 OSIE [291] 2014 J.V 700 -
Pixel-wise

Oject-Level
1 15
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Table 3.3 An overview in terms of annotations of widely used 2D image/video salient object segmen-
tation datasets (3/3). Pub. = publications. N.Images = number of images contained in the given image
salient object segmentation dataset. N.Sequences = number of sequences included in the given video
salient object segmentation dataset. T.Annotations = type of annotations in the given image/video
dataset. N.Annotators = number of annotators involved in the dataset labeling process. N.Subjects
= number of subjects recruited for conducting eye-tracking experiments. “-” denotes no information
provided. This table is updated based on the statistics in [281], which collects partial statistical results
from [15].

No. Dataset Year Pub. N.Images N.Sequences T.Annotations N.Annotators N.Subjects

22 HKU-IS [19] 2015 CVPR 4,447 -
Pixel-wise

Oject-Level
3 -

23 ViSal [150] 2015 TIP - 17
Pixel-wise

Oject-Level
1 -

24 UVSD [152] 2016 TCSVT - 18
Pixel-wise

Oject-Level
1 -

25 XPIE [295] 2017 CVPR 10,000 -
Pixel-wise

Oject-Level
2 -

26 ILSO [91] 2017 CVPR 1,000 -
Pixel-wise

Object-Level
Instance-Level

3 -

27 DUTS [20] 2017 CVPR 15,572 -
Pixel-wise

Oject-Level
- -

28 VOS [22] 2017 TIP - 200
Pixel-wise

Oject-Level
4 23

29 SOC [21] 2018 ECCV 6,000 -
Pixel-wise

Object-Level
Instance-Level

5 -

30 DAVSOD [23] 2019 CVPR - 226
Pixel-wise

Object-Level
Instance-Level

5 -

31 SIP [216] 2020 TNNLS 1,000 -
Pixel-wise

Object-Level
Instance-Level

11 -
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3.2.4 Statistical analysis

After acquiring large-scale image/video data and corresponding annotations, systematical statistical
analysis should be conducted to show the difficulty and validity of the proposed datasets. Generally,
a newly propposed dataset should be analyzed from the aspects of scales, scene/object categories,
quality and diversity of pixel-wise annotations and scene/object attributes.

Specifically, as shown in Table 3.1, Table 3.2 and Table 3.3, current salient object segmenta-
tion datasets’ scales range from several hundreds to 20K. Besides, most recently proposed image
dataset [21] is able to include 80 categories of salient objects commonly seen in real-life daily scenes,
while video dataset [23] provides about 70 classes of frequently seen realistic dynamic scenes. As
the increasingly challenging scenes collected, most recently proposed datasets (e.g., [21,23]) are able
to manufacture high-quality and diverse annotations for defined salient objects, including bounding
boxes and both object/instance-level pixel-wise masks. To facilitate comprehensive benchmark stud-
ies and inspire new models, recent datasets such as DAVIS2016 [151] and SOC [21] are able to
provide annotations labeling specific attributes of salient objects (Fig. 3.3).

3.2.5 Discussion

This section reviews the recently proposed datasets for 2D RGB salient object segmentation and
summarizes several key issues regarding large-scale salient object segmentation dataset construction.
Particularly, there are three key issues7 are of most important and should be emphasized for the
construction of large-scale salient object segmentation dataset in 360° panorama.
High-quality pixel-wise labels. Labeling salient objects with pixel-wise masks is consistent with the
prior knowledge in the field of psychology, that people tend to simultaneously pay attention to several
disconnected semantic regions [296]. Besides, to simulate the human capability of distinguishing
entities belonging to single object category, instance-level labels are also important and useful to a
well established salient object segmentation dataset.
Balanced salient object segmentation dataset. As highlighted in [21], some of the image salient
object segmentation datasets discarded images without salient objects, thus introducing selection bias
to the process of dataset construction. Considering the importance of keeping images without salient
objects, [281] emphasized three main principles for the judgement of non-salient objects. As shown
in the second row of Fig. 3.1, the divergence among viewers tend to be significant when asked to
choose the most salient person. Therefore, objects with crowded candidates of the same class tend to
be non-salient ones. Besides, the natural objects such as rocks, sky belong to background. Further,
the objects with complex shape and texture are recognized as non-salient objects. On the other hand,
clear faces, people, animals, cars and text are commonly considered as salient objects [286].
Fixation-based salient object annotation. Recent video datasets [22,23] applied the fixation data to
the salient object annotation task. However, since the thresholds are empirically fixed, the annotation
methods may not be directly applied to other video salient object segmentation datasets. Using fixa-
tion data to effectively annotate salient objects is still an open issue. Future works are suggested to
shift more attention towards fixation-based salient object segmentation.

7The detailed introduction towards these key issues is cited from [281].
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ID Description

BC Background Clutter. The back- and foreground regions around
the object boundaries have similar colors (χ2 over histograms).

DEF Deformation. Object undergoes complex, non-rigid deformations.
MB Motion Blur. Object has fuzzy boundaries due to fast motion.
FM Fast-Motion. The average, per-frame object motion, computed

as centroids Euclidean distance, is larger than τfm = 20 pixels.
LR Low Resolution. The ratio between the average object

bounding-box area and the image area is smaller than tlr = 0.1.
OCC Occlusion. Object becomes partially or fully occluded.
OV Out-of-view. Object is partially clipped by the image boundaries.
SV Scale-Variation. The area ratio among any pair of bounding-

boxes enclosing the target object is smaller than τsv = 0.5.

AC Appearance Change. Noticeable appearance variation, due
to illumination changes and relative camera-object rotation.

EA Edge Ambiguity. Unreliable edge detection. The average ground-
truth edge probability (using [11]) is smaller than τe = 0.5.

CS Camera-Shake. Footage displays non-negligible vibrations.
HO Heterogeneus Object. Object regions have distinct colors.
IO Interacting Objects. The target object is an ensemble of multiple,

spatially-connected objects (e.g. mother with stroller).
DB Dynamic Background. Background regions move or deform.
SC Shape Complexity. The object has complex boundaries such as

thin parts and holes.

Table 1: List of video attributes and corresponding descrip-
tion. We extend the annotations of [50] (top) with a comple-
mentary set of attributes relevant to video object segmenta-
tion (bottom). We refer the reader to the supplementary ma-
terial for the list of attributes for each in video in the dataset,
and corresponding visual examples.

sequence. While being different from each other, they often
solve an optimization problem with an energy defined over
a graph structure [1, 40, 48]. To model long-range spatio-
temporal connections some approaches use fully connected
graphs [35], higher-order potentials [22]. The recent work
of Märki et al. [31] efficiently approximates non-local con-
nections minimizing the graph energy in bilateral space.

Supervised approaches assume manual annotation to be
repeatedly added during the segmentation process, with a
human correcting the algorithm results in an iterative fash-
ion [2, 14, 49, 53]. These methods generally operate on-

line, forward processing frames to avoid overriding of pre-
vious manual corrections. They guarantee high segmenta-
tion quality at the price of time-consuming human supervi-
sion, hence they are suited only for specific scenarios such
as video post-production.

We evaluate a large set of the state-of-the-art approaches
on our proposed dataset, providing new insights and several
pointers to areas for future research.

3. Dataset Description

In this section we describe our new dataset DAVIS
(Densely Annotated VIdeo Segmentation) specifically de-
signed for the task of video object segmentation. Exam-

ple frames of some of the sequences are shown in Figure 1.
Based on experiences with existing datasets we first identify
four key aspects we adhere to, in order create a balanced and
comprehensive dataset.

Data Amount and Quality. A sufficiently large amount
of data is necessary to ensure content diversity and to pro-
vide a uniformly distributed set of challenges. Furthermore,
having enough data is crucial to avoid over-fitting and to
delay performance saturation, hence guaranteeing a longer
lifespan of the dataset [6]. The quality of the data also
plays a crucial role, as it should be representative of the
current state of technology. To this end, DAVIS comprises
a total of 50 sequences, 3455 annotated frames, all cap-
tured at 24fps and Full HD 1080p spatial resolution. Due
to the computational complexity being a major bottleneck
in video processing, the sequences have a short temporal
extent (about 2-4 seconds), but include all major challenges
typically found in longer video sequences, see Table 1.

Experimental Validation. For each video frame, we
provide pixel-accurate, manually created segmentation in
the form of a binary mask. While we subdivide DAVIS
into training- and a test-set to provide guidelines for future
works, in our evaluation, we do not make use of the parti-
tion, and instead consider the dataset as a whole, since most
of the evaluated approaches are not trained and a grid-search
estimation of the optimal parameters would be infeasible
due to the involved computational complexity.

Object Presence. Intuitively each sequence should con-
tain at least one target foreground-object to be separated
from the background regions. The clips in DAVIS contain
either one single object or two spatially connected objects.
We choose not to have multiple distinct objects with signif-
icant motion in order to be able to fairly compare segmen-
tation approaches operating on individual objects against
those that jointly segment multiple objects. Moreover, hav-
ing a single object per sequence disambiguates the detection
performed by methods which are fully automatic. A similar
design choice made in [27] has been successfully steering
research in salient object detection from its beginnings to
the current state-of-the-art. To ensure sufficient content di-
versity, which is necessary to comprehensively assess the
performance of different algorithms, the dataset spans four
evenly distributed classes (humans, animals, vehicles, ob-

jects) and several actions.

Unconstrained Video Challenges. To enable a deeper
analysis and understanding of the performance of an al-
gorithm, it is fundamentally important to identify the key
factors and circumstances which might have influenced
it. Thus, inspired by [50] we define an extensive set of
video attributes representing specific situations, such as
fast-motion, occlusion and cluttered background, that typ-
ically pose challenges to video segmentation algorithms.
Attributes are summarized in Table 1. They are not exclu-
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(a) ILSO (b) SOC

(c) MSCOCO (d) SOC

Fig. 5. Compared with the recent new (a) instance-level ILSO dataset [22] which is
labeled with discontinue coarse boundaries, (c) MSCOCO dataset [27] which is labeled
with polygons, our (b, d) SOC dataset is labeled with smooth fine boundaries.

Table 2. The list of salient object image attributes and the corresponding description.
By observing the characteristics of the existing datasets, we summarize these attributes.
Some visual examples can be found in Fig. 1 and Fig. 4 (f). For more examples, please
refer to the supplementary materials

Attr Description

AC Appearance Change. The obvious illumination change in the object region.
BO Big Object. The ratio between the object area and the image area is larger than 0.5.
CL Clutter. The foreground and background regions around the object have similar color.

We labeled images that their global color contrast value is larger than 0.2, local color
contrast value is smaller than 0.9 with clutter images (see Sec. 3).

HO Heterogeneous Object. Objects composed of visually distinctive/dissimilar parts.
MB Motion Blur. Objects have fuzzy boundaries due to shake of the camera or motion.
OC Occlusion. Objects are partially or fully occluded.
OV Out-of-View. Part of object is clipped by image boundaries.
SC Shape Complexity. Objects have complex boundaries such as thin parts

(e.g., the foot of animal) and holes.
SO Small Object. The ratio between the object area and the image area is smaller than 0.1.

s [1, 2, 11, 19, 22, 23, 29, 32, 37, 41, 43], we did not use the eye tracker device.
We have taken a number of steps to provide the high-quality of the annotations.
These steps include two stages: In the bounding boxes (bboxes) stage, (i)
we ask 5 viewers to annotate objects with bboxes that they think are salien-
t in each image. (ii) keep the images which majority (≥ 3) viewers annotated
the same (the IOU of the bbox > 0.8) object. After the first stage, we have
3,000 salient object images annotated with bboxes. In the second stage, we
further manually label the accurate silhouettes of the salient objects according
to the bboxes. Note that we have 10 volunteers involved in the whole steps for
cross-check the quality of annotations. In the end, we keep 3,000 images with
high-quality, instance-level labeled salient objects. As shown in Fig. 5 (b,d), the
boundaries of our object labels are precise, sharp and smooth. During the an-
notation process, we also add some new categories (e.g., computer monitor, hat,
pillow) that are not labeled in the MSCOCO dataset [27].

7) Salient Objects with Attributes. Having attributes information re-
garding the images in a dataset helps objectively assess the performance of mod-
els over different types of parameters and variations. It also allows the inspection

(a)

(b)

Fig. 3.3 Statistics in terms of objects’ attributes. (a) is cited from [151]. (b) is cited from SOC [21].
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3.3 A dataset for salient object segmentation in 360° images

Considering the key aspects (issues) concluded at the last section, we propose a new image dataset for
fixation-based salient object segmentation in 360° panorama [256]. This section presents the details
of this work.

3.3.1 Introduction

The panoramic image8, which captures the content on the whole 360°×180° viewing range surround-
ing a viewer, plays an import role in VR/AR applications and distinguishes itself from traditional 2D
image which covers only local viewport. Recently, civil Head-Mounted Displays (HMDs) have been
developed to provide observers an immersive and interactive experience by allowing them to freely
rotate their head and thus focusing on desired scenes and objects. Considering the fact that some
salient parts of the 360° image attract more human attentions than the others [26], visual saliency
prediction (a.k.a. fixation prediction) in panorama becomes one of the appealing issues in the field
of computer vision and is considered as a key to explore human observation behavior in virtual en-
vironments. The fixation prediction and salient object segmentation are both closely related to the
concept of visual saliency. Thanks to the accessibility of HMDs and eye trackers, image [25] and
video (e.g., [76–78]) datasets have been constructed for the deep learning-based fixation prediction in
panoramic content. However, [257] is the only research for 360° salient object segmentation, which
does not use the fixations as a guidance for the salient object annotation.

Fig. 3.4 Examples of the proposed fixation-based panoramic image dataset, i.e., F-360iSOD. The
first row shows four panoramic images presented as equirectangular image. The second row presents
images overlapped with thresholded fixation maps. The third row denotes object-level ground truth
for salient object segmentation. the fourth row indicates instance-level pixel-wise masks.

8In this thesis, panoramic, 360°, omnidirectional are used interchangeably.
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As shown in Fig. 3.4, 360° images tend to own richer scenes and much more foreground objects
compared to images collected in traditional 2D salient object segmentation datasets (e.g., [17–20,90]).
Therefore, it is more challenging to differentiate the salient objects from the non-salient ones in
panoramas. Preserving panoramic images with a few obvious foreground objects while discarding
those ambiguous ones may bring selection bias to the dataset, thus being inefficient for exploring the
real human attention behavior as viewing panoramic content. Based on the strong correlation between
fixation prediction and explicit human judgements [39], and the successfully established fixation-
based 2D salient object segmentation datasets [22, 23, 39], an intuition is that the salient objects in
panoramas can also be manually annotated with the assistance of fixations, thus representing the
real-world daily scenes. Thus, the main content of this section are:

• A fixation-based 360° image dataset (F-360iSOD) with both object-/instance-level pixel-wise
annotations.

• A new benchmark includes six state-of-the-art 2D salient object segmentation models [121,
138–141, 297], evaluated by five widely used salient object segmentation metrics [276–279,
298].

• A discussion towards key issues for 360° image salient object segmentation dataset construc-
tion.

The uniqueness of the proposed F-360iSOD. As topic-related, there are two types of fixation-based
panoramic datasets focusing on head movement prediction and eye movement prediction, respec-
tively. Datasets such as 360-VHMD [27], VR-VQA48 [299] contain only head tracking data, while
Salient!360 [25], Stanford360 [26], VQA-OV [78], VR-scene [76] and 360-Saliency [77] provide
ground-truth eye fixations. Besides, 360-SOD [257] is a newly proposed omnidirectional image
dataset for salient object segmentation. However, the salient objects are labeled based on pure ex-
plicit subjective judgements, rather than fixation-based guidance. Besides, the dataset does not pro-
vide instance-level ground truth or object category labels.

3.3.2 Dataset statistics

F-360iSOD contains 107 (52 indoor/55 outdoor) panoramic images with challenging real-world daily
scenes, 1,165 salient objects (from 72 object classes) manually labeled with precise object-/instance-
level masks.
Image collection. The F-360iSOD is a 360° image dataset with totally 107 panoramic images col-
lected from Stanford360 [26] and Salient!360 [25] which contain 85 and 22 equirectangular images,
respectively9. All the images of the proposed F-360iSOD are represented as equirectangular images
with a medium resolution of 2048×1024 for convenient processing.
Salient object annotation. Inspired by 2D salient object segmentation datasets [22, 23, 39] where
fixation data were used to aid the salient object annotation, an expert was asked to manually annotate
(by tracing boundaries) the salient objects with both the object-/instance-level masks on the collected

9Stanford360 and Salient!360 are so far the only panoramic image datasets that provide eye movement based fixation
data.
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equirectangular images, under the guidance of fixation maps convoluted by a Gaussian with a standard
deviation empirically set to 3.34° of visual angle [25] (note that each of the Gaussian-smoothed
fixation maps is thresholded with an adaptive saliency value to keep the top one-10th of each self
before shown to the annotator). The whole annotation process has been repeated three times to pass
the quality check implemented by two other experts, before gaining the final ground truth. Besides,
nine images without any salient object annotations are reserved in F-360iSOD, to avoid the common
selection bias of 2D salient object segmentation datasets (as mentioned in “balanced datasets” at the
last section), brought by an assumption that there is at least one salient object in each of the image.
The total dataset’s pixel-wise annotations are visualized in Fig. 3.5, Fig. 3.6, Fig. 3.7 and Fig. 3.8.
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Fig. 3.5 Visualization of the proposed F-360iSOD (1/4).
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Fig. 3.6 Visualization of the proposed F-360iSOD (2/4).
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Fig. 3.7 Visualization of the proposed F-360iSOD (3/4).
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Fig. 3.8 Visualization of the proposed F-360iSOD (4/4).

Dataset statistics. In F-360iSOD, each salient object belongs to one specific class. Generally, there
are 1,165 salient objects from 72 categories, thus reflecting 7 aspects (human, text, vehicle, archi-
tecture, artwork, animal and daily stuff) of the real-life common scenes (Fig. 3.9). The “person”
category occupies the largest proportion with a number of instances of 386; other relative large object
classes include “painting”, “text”, “building”, “face” and “car”, with a number of instances of 92, 89,
86, 75 and 72, respectively.

3.3.3 Benchmark studies

In this sub-section, we detail our works towards extensive benchmark studies based on our proposed
F-360iSOD. A comprehensive benchmark study usually consists of a consistent protocol (which usu-
ally includes dataset split, traning/testing strategies for benchmark models and evaluation metrics),
and systematical qualitative/quantitative analysis towards experimental results.

Dataset split. The F-360iSOD consists of one training set and two testing sets, which are denoted
as F-360iSOD-train, F-360iSOD-testA and F-360iSOD-testB, respectively. The F-360iSOD-train
contains 68 equirectangular images from the Salient!360, while the F-360iSOD-testA collects the
remaining 17 (85 in total). Besides, the F-360iSOD-testB is established to enable the cross-testing
forsalient object segmentation models, with 22 images from the other panoramic image dataset, i.e.,
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Fig. 3.9 Statistics of object categories of the proposed 360° image salient object segmentation dataset,
i.e., F-360iSOD.

Stanford360.

Projection methods. By wearing HMDs, people are able to freely rotate their head to make mul-
tiple viewports focusing on the attractive regions of the surrounding 360° content. Based on this
prior knowledge, we apply cube map projection (where a 360° image is projected into 6 rectangular
patches) to process 68 panoramic images (from F-360iSOD-train) with multiple rotation angles (0°,
30°, 60° both horizontally and vertically [81]). Thus, we gain 54 (6×3×3) patches representative
of multiple fields of view for each of the 360° image. 3,672 (54×68) 2D patches (256×256) are
therefore generated and used as inputs for the fine-tuning of 2D salient object segmentation models.

Evaluation metrics. To measure the agreement between manually labeled ground truth and model
predictions, five widely used salient object segmentation metrics were adopted: Fβ -measure [276],
weighted Fβ -measure (Fbw) [298], mean absolute error (MAE) [277], structural measure (S-measure)
[278] and enhanced-alignment measure (E-measure) [279]. The details of salient object segmenta-
tion metrics are illustrated in Section 2.7. And it is worth noting that,

S = α×So +(1−α)×Sr, (3.11)

where So and Sr denote the object-/region-aware structure similarities, respectively; α is empirically
set to 0.7 (α = 0.5 in 2D) to attach more importance on object structure, based on the observation that
panoramic images are usually dominated by small salient objects distributed over the whole image
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Table 3.4 A quantitative comparison between six state-of-the-art salient object segmentation models
on F-360iSOD, where Fw

β
means Fbw, S represents S-measure. Note that the top three results of each

column are highlighted in red, green and blue, respectively.

Methods
F-360iSOD-testA F-360iSOD-testB

Fw
β
↑ S ↑ MAE ↓ Fw

β
↑ S ↑ MAE ↓

SCRN [297] .551 .809 .050 .124 .708 .034
BASNet [138] .567 .825 .046 .118 .683 .048

CPD [139] .521 .763 .052 .129 .695 .032
PoolNet [140] .500 .834 .068 .136 .716 .058

GCPANet [121] .630 .822 .045 .106 .693 .039
EGNet [141] .715 .864 .045 .190 .714 .041

(e.g., Fig. 3.4), rather than one or multiple spatially connected foreground objects located at the center
of the image.

Benchmark models. As stated in Chapter 2, convolutional networks (CNNs)-based models dominate
the field of salient object segmentation. The CNN segmentation models differentiate themselves from
other deep learning methods by predicting saliency maps as outputs, rather than classification scores.

EGNet [141] is one of the recently proposed state-of-the-art models. The method was motivated
by the idea that simultaneously learning the salient edge and object information can help improving
performance of salient object segmentation models. It modeled these two complementary infor-
mation with an independent network outside the VGG-based backbone [2]. SCRN [297] is another
newly proposed salient object segmentation model that considers the edge information. It also imple-
ments the salient object segmentation and salient edge detection in a synchronous manner, by stacking
several so-called cross refinement units in an end-to-end manner. BASNet [138] proposed residual
refinement module and hybrid loss to refine the salient objects boundaries in predicted saliency maps.
PoolNet [140] improved the feature extraction efficiency of multiple layers of current U-shape archi-
tecture by adding two new modules, which were both designed based on simple pooling techniques.
GCPANet [121] is a more recently proposed method which brought improvements to the traditional
bottom-up/top-down networks by proposing four new modules. CPD [139] modified the traditional
encoder-decoder framework to directly refine high-level features by generated saliency maps, without
the consideration of low-level features. The idea here is different from PoolNet and GCPANet, which
integrated both the low-/high-level features.

Benchmark results. In this study, each of the salient object segmentation models is fine-tuned on
the F-360iSOD-train with an initial learning rate of one-10th of their default, and a batch size of 1.
The training process will stop as the S-measure value on the F-360iSOD-testA starts to go down. As
a result, it takes about 20 epochs for BASNet [138], EGNet [141], CPD [139] and SCRN [297] to
converge, while 70 for PoolNet [140] and 15 for GCPANet [121]. The quantitative and qualitative
comparison between the six state-of-the-art 2D salient object segmentation models on both the F-
360iSOD-testA/B are illustrated in Table 3.4, Fig. 3.10 and Fig. 3.11, respectively.
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Fig. 3.10 F-measure curves and E-measure curves of six state-of-the-art salient object segmenta-
tion models on the proposed F-360iSOD.

3.3.4 Discussion

Challenging 360° salient object segmentation dataset. All benchmark models are constrained to
some extent on the proposed F-360iSOD, even though achieving high performances in 2D domain.
The limitation is mainly due to the challenges brought by the features of 360° dataset, such as equirect-
angular projection-induced distortions, small objects and clutter scenes, etc.

Fixation-based complexity analysis. Since the panoramic images tend to contain much more scenes
and objects than 2D images, the ambiguity of saliency judgements in panoramas should also be con-
sidered, which can be quantified by inter observer congruency (IOC) [300] and entropy based on
fixation maps, which are re-smoothed with a Gaussian with a standard deviation of 1° visual angle to
reflect human foveal size [300]. As an image with high IOC and low entropy is usually considered
to be simple, the F-360iSOD-testB should be easier to explore when compared with the F-360iSOD-
testA (Fig. 3.12), from a perspective of human judgements.

Unseen object classes. All competing models fail on the F-360iSOD-testB, mainly due to the pres-
ence of unseen object classes in Stanford360, such as sharks, bells, robots, etc. People are capable of
recognizing new object categories when provided with high-level descriptions. This strong general-
ization ability is still absent in current salient object segmentation models.

Instance-level ground truth. The proposed F-360iSOD is the first 360° dataset that provides instance-
level semantic labels for salient objects. Future salient object segmentation models are capable of
recognizing the individual instances from multiple classes, which is crucial for practical applications,
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Fig. 3.11 A qualitative comparison between six state-of-the-art salient object segmentation models on
F-360iSOD.

Fig. 3.12 A fixation-based complexity analysis of the proposed F-360iSOD. The F-360iSOD-train,
F-360iSOD-testA/B are annotated in black, blue and red, respectively.

e.g., image captioning and scene understanding.

3.3.5 Conclusion

This section presents the proposed fixation-based 360° image dataset (F-360iSOD), with precisely
annotated salient objects/instances from multiple classes representative of real-world daily scenes. Six
recently proposed salient object segmentation methods are fine-tuned and tested on the F-360iSOD.
Results show a limit of current 2D models when directly applied to the salient object segmentation in
panoramas.
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3.4 A dataset for salient object segmentation in 360° videos

This section introduces the details towards our PAVS10K, which is the first video-based 360° dataset
proposed for salient object segmentation. Importantly, as PAVS10K uses both audio and visual cues
for salient object judgment and annotations, this is also the first audio-visual dataset in the salient
object segmentation community.

3.4.1 Introduction

Studying and modeling human attention in 360° panoramic real-life10 environment has been an im-
portant issue in the fields of computer vision and multi-modal learning. Recently, the issue gains
increasing attention from both communities as the booming development of virtual and augmented
reality industries (e.g., the recent boom of “metaverse”11 which seeks to establish a new immersive
digital extended world facilitating more efficient social network, education, entertainment, etc.).

Particularly, as the popularization of civil 360° cameras such as GoPro Max, Ricoh Theta Z1 and
Insta360 ONE series, 360° panoramic images and videos are nowadays easily acquired. In this case,
several 360° visual saliency prediction datasets [25–28, 76, 77, 80] have been proposed, to enable
deep learning researches towards human attention modeling in 360° static and dynamic real-life daily
scenes. Besides, more recent audio-visual dataset [79] investigates the influence of audio cues towards
human perception in 360° videos. However, these datasets provide only head or eye movement data
as ground truth, thus not being able to strictly reflect human attention to specific salient targets.

Besides, recent researches [301–303] have brought much attention to audio-visual object localiza-
tion. Specifically, as the development of large-scale audio-visual datasets such as MUSIC [304], Au-
dioSet [305], AVE [71], VGGSound [306] and ObjectFolder [307], the community has recently wit-
nessed a booming trend of audio-visual researches, e.g., [308–315]. Particularly, recent audio-visual
object localization methods [301–303, 316–323] are closely related to salient object segmentation in
terms of object-level attention modeling. It is worth noting that, these researches focus on the detec-
tion of sounding objects, rather than the salient objects. As a comparison, panoramic video salient
object segmentation aims to finely segment the audio-visual salient objects, where manually labeled
pixel-wise ground truth are necessary for the training and quantitative evaluation of models. In fact,
mixed reality applications such as remote collaboration [324] and virtual object rendering [325] are
closely related to object-level human attention modeling in dynamic 360° panoramas. However, so
far there is no work focuses on object-level audio-visual saliency detection in challenging panoramic
videos representing realistic scenes.

On the other hand, salient object segmentation, which mimics human attention by finely seg-
menting the visual salient objects in given images, has been constantly appealing attention from the
computer vision community during the last decade [15]. As illustrated in Chapter 2, according to
the types of training data, current salient object segmentation(a.k.a. SOD) methodologies can be
classified into eight categories, i.e., I (image)-SOD [16, 21, 326], V (video)-SOD [23, 162, 163], Co-

10“Real-life” targets indicate the objects/scenes captured by photographers in real life, thus distinguishing itself from
virtual rendered ones.

11Meta: https://about.facebook.com/meta/

https://about.facebook.com/meta/
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SOD [195,198,327], RGBD (depth)-SOD [225,228,270], RGBT (thermal infrared)-SOD [231–233],
LF (light field)-SOD [238,244,251], HR (high resolution)-SOD [201,328] and RS (remote sensing)-
SOD [205, 206]. Despite a prosperous development of the salient object segmentation community,
current state-of-the-art methods still suffer from two limitations that prevent them from modeling
unbiased human attention as in real-world daily scenes. First, these models all rely on only visual
data for the detection, thus hardly reflecting human attention in realistic circumstances where audio
cues indeed play an important role (e.g., audio-visual saliency network predicts more accurate results
than visual-only ones [59]). Besides, these methods, with so far the only audio-visual salient object
segmentation method [329] (not released), all focus on visual data with limited field-of-views (FoVs),
e.g., common 2-D images and videos, thus ignoring the rich visual cues as observed in real-life daily
scenes, where people are able to explore an omnidirectional view with the FoV of 360°×180° by
freely rotating their heads. Recent researches [256–258] shift attention to 360° panoramic image
based salient object segmentation by proposing new datasets consisting of hundreds of equirectangu-
lar (ER) images12 and corresponding pixel-wise ground truth. However, with only limited static vi-
sual cues provided by the datasets, current panoramic image-based salient object segmentation meth-
ods [257, 258] are far from representing real-life object-level human attentions, where the modeling
of dynamic visual and audio information are essential.

𝑁	Subjects

ER Images with Fixations Overlaid Instance-Level Ground Truth Object-Level Ground Truth for PAV-SOD

Fig. 3.13 An example of our PAVS10K where coarse-to-fine annotations are provided, based on
a guidance of fixations acquired from subjective experiments conducted by multiple (N) subjects
wearing Head-Mounted Displays (HMDs) and headphones. Each (e.g., fk, fl and fn, where ran-
dom integral values {k, l,n} ∈ [1,T ]) of the total equirectangular (ER) video frames (T ) of the se-
quence “Speaking”(Super-class)-“Brothers”(sub-class) are manually labeled with both object-level
and instance-level pixel-wise masks. According to the features of defined salient objects within each
of the sequences, multiple attributes, e.g., “multiple objects” (MO), “competing sounds” (CS), “ge-
ometrical distortion” (GD), “motion blur” (MB), “occlusions” (OC) and “low resolution” (LR) are
further annotated to enable detailed analysis for panoramic video salient object segmentation mod-
eling.

To model object-level audio-visual attention in realistic omnidirectional dynamic scenes, we con-
duct systematical researches, i.e., establishing the first 360° video salient object segmentation dataset

12ER images are the most widely used lossless planar representation of 360° images.



72 Datasets & benchmarks on 360° images and videos

with hierarchical annotations (i.e., PAVS10K), building a new benchmark with state-of-the-art meth-
ods collected from multiple related fields including image-based salient object segmentation, video-
based salient object segmentation and video object segmentation. Specifically, the main contributions
of our proposed dataset and benchmark are:

• We propose a large-scale panoramic video-based salient object segmentation dataset, namely
PAVS10K, which consists of uniformly sampled 10,465 4K-resolution ER video frames (from
total 62,455 frames), with corresponding super-/sub-class labels and manually labeled object-
level and instance-level pixel-wise masks13 (Fig. 3.13). We further attach 360° salient object
segmentation related challenging attributes to each of the 67 sequences in our PAVS10K (e.g.,
Fig. 3.13). The coarse-to-fine labels enable comprehensive benchmark studies and detailed
analysis regarding 360° salient object segmentation modeling.

• We establish so far the largest 360° video-based salient object segmentation benchmark which
collects 13 state-of-the-art methods from the fields of 2D image salient object segmentation (7),
2D video salient object segmentation (2), video object segmentation (3) and panoramic image
salient object segmentation (1). For fair comparison, we systematically evaluate all 13 models
based on our PAVS10K, with four widely used salient object segmentation metrics.

3.4.2 Dataset statistics

Our PAVS10K dataset aims at segmenting the salient objects by taking advantage of both audio and
visual cues in 360° dynamic scenes. A comparison between our PAVS10K and the current widely
used salient object segmentation related datasets is shown in Table 3.5, in terms of scales, annotation
types and diversities.

In this section, we elaborate our challenging large-scale PAVS10K, i.e., the first panoramic video
salient object segmentation dataset, in terms of stimuli collection, subjective experiments, annotation
pipeline and dataset statistics.
Stimuli collection. The stimuli of PAVS10K were gained from YouTube with multiple searching
keywords (e.g., 360°/panoramic/omnidirectional video, spatial audio, ambisonics [311]). As a re-
sult, our collected stimuli cover various real-world dynamic scenes (e.g., indoor/outdoor scenes),
multiple occasions (e.g., sports, travel, concerts, interviews, dramas), different motion patterns (e.g.,
static/moving camera), and diverse object categories (e.g., human, instruments, animals). They pos-
sess a wide range of major challenges for object detection in 360° content, e.g., objects scattered far
from the equirectangular image’s equator thus suffering from serious geometrical distortions (e.g.,
salient persons annotated with attribute “geometrical distortion – GD” as shown in Fig. 3.13).

The abundant on-line audio-visual sources provide us with a solid foundation to establish a
challenging and representative benchmark dataset. As a result, we obtained 67 high-quality video
sequences with a total of 62,455 frames recorded with 62,455×40 eye movement based fixations.
Specifically, the 67 sequences are selected based on three criteria:

13Collecting the pixel-wise labels was a costly and time-consuming work, and it took us about one year to set up this
large-scale dataset.
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Table 3.5 A comparison between our proposed PAVS10K and the widely used salient object segmen-
tation (a.k.a. SOD)/video object segmentation (VOS) datasets . #Img: The number of images/video
frames. #GT: The number of object-level pixel-wise masks (ground truth for SOD). Pub. = Publi-
cation. Obj.-Level = Object-Level Labels. Ins.-Level = Instance-Level Labels. Fix. GT = Fixation
Maps. † denotes equirectangular (ER) images.

Dataset Task Year #Img #GT min(W,H) max(W,H) Obj.-Level Ins.-Level Attribute Fix. GT Audio
ECSSD [90] I-SOD CVPR’13 1,000 1,000 139 400 ✓

DUT-OMRON [17] I-SOD CVPR’13 5,168 5,168 139 401 ✓ ✓
PASCAL-S [18] I-SOD CVPR’14 850 850 139 500 ✓ ✓

HKU-IS [19] I-SOD CVPR’15 4,447 4,447 100 500 ✓
DUTS [20] I-SOD CVPR’17 15,572 15,572 100 500 ✓
ILSO [91] I-SOD CVPR’17 1,000 1,000 142 400 ✓ ✓
SOC [21] I-SOD ECCV’18 6,000 6,000 161 849 ✓ ✓ ✓

SegTrack V2 [147] VOS ICCV’13 1,065 1,065 212 640 ✓
FBMS [148] VOS TPAMI’13 13,860 720 253 960 ✓

MCL [149] V-SOD TIP’15 3,689 463 270 480 ✓
ViSal [150] V-SOD TIP’15 963 193 240 512 ✓

DAVIS2016 [151] VOS CVPR’16 3,455 3,455 900 1,920 ✓ ✓
UVSD [152] V-SOD TCSVT’16 3262 3262 240 877 ✓

VOS [22] V-SOD TIP’18 116,103 7,467 312 800 ✓ ✓
DAVSOD [23] V-SOD CVPR’19 23,938 23,938 360 640 ✓ ✓ ✓ ✓

F-360iSOD [256] PI-SOD ICIP’20 107† 107 1,024 2,048 ✓ ✓ ✓
360-SOD [257] PI-SOD JSTSP’20 500† 500 512 1,024 ✓
360SSOD [258] PI-SOD TVCG’20 1,105† 1,105 546 1,024 ✓

PAVS10K(Ours) PAV-SOD 2022 62,455† 10,465 1,920 3,840 ✓ ✓ ✓ ✓ ✓

• The collected video frames must be in good visual quality, i.e., 4K resolution of each video
frame.

• The collected videos must have corresponding audio files including both ambisonics and mono
sound.

• The collected video scenes must include recognizable objects which constantly grasp subjects’
attention.

Note that we manually trimmed the videos into small clips (29.6s on average) to avoid fatigue during
the collection of human eye fixations. As a result, the total video duration is about 1983s (67×29.6s).
Subjective experiments. We detail the supportive subjective experiments from the following three
aspects, i.e., equipment, observers and experimental settings.

• Equipment. All the video clips were displayed using a HTC Vive HMD embedded with a Tobii
eye tracker with 120Hz sample rate to collect eye fixations.

• Observers. We recruited 40 participants (8 females and 32 males) aging from 18 to 34 years old
who reported normal or corrected-to-normal visual and audio acuity. Twenty participants were
randomly selected to watch videos with mono sound (group #1), while the other participants
watched videos without sound (group #2). Note that the two groups own the same gender and
age distributions. Hence, each video with each audio modality (i.e., with or without sound) was
viewed by 20 participants, and each participant viewed (task-free) each video only once.

• Settings. All the participants seated in a swivel chair, wearing a HMD with headphones, and
asked to explore the 360° panoramic videos without any specific intention. During the experi-
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ments, the starting position was fixed to the center at the beginning of every video display. To
avoid motion sickness and eye fatigue, we inserted a short rest of a five-second gray screen
between two successive videos and a long break of 20 minutes after every 20 videos. We
calibrated the system for each participant at the beginning and the end of every long break.

Coarse-to-Fine Annotations. Our annotations vary from scene/sequence level to fine pixel level,
thus enabling detailed analysis towards panoramic dynamic audio-visual salient object segmenta-
tion modeling.

Exhibition

16
16

35

Speaking

Music

Miscellanea

Fig. 3.14 Statistics of the proposed PAVS10K – super-/sub-category information.

Super-/Sub-Scene-Class Labeling. As shown in Fig. 3.14, our PAVS10K contains 67 videos repre-
senting 67 audio-visual scene classes. The 67 sub-classes can be categorized to three super classes
with a cue of primary sound sources, i.e., speaking (e.g., conversation, monologue), music (e.g.,
singing, instrument playing) and miscellanea (e.g., the sound of vehicle engines and horns on the
streets, crowd noise in the open air). The commonly seen sound sources are shown in Fig. 3.15.
Protocol of pixel-wise manual annotations. Our object-level and instance-level ground truth for
conducting panoramic dynamic audio-visual salient object segmentation strictly follow the audio-
visual eye fixations acquired from subjective experiments conducted by group #1 (please refer to
details in “subjective experiments”). The annotation protocol is detailed as follows:

• Inspired by the widely used empirical IoU threshold AP50 (threshold set as 50%) in the field of
object detection, we define the salient objects as the objects overlapped with top 50% saliency
(e.g., please refer to overlaid fixations as shown in Fig. 3.16).
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Fig. 3.15 Statistics of the proposed PAVS10K – Instance density (labeled frames per sequence) of
each sub-class. Sound sources of PAVS10K scenes, such as musical instruments, human instances
and animals.

• Following classical video datasets [22, 148–150], we uniformly extracted 10,465 video frames
from the total 62,455 frames with a sampling rate of 1/6, for the pixel-wise annotation.

• We apply the commonly used CVAT toolbox14 to conduct manual labeling.

• We conducted multiple annotation quality examinations to ensure high-quality pixel-wise labels
(Examples are shown in Fig. 3.17).

Object-level masks. Object-level masks denote the pixel-wise binary masks (Fig. 3.13) representing
object-level saliency. Researchers participated the manual annotation for the fixation-based salient
objects in 10,465 frames. During the labeling process, the annotators were asked to correctly seg-
ment the salient objects by finely tracing objects’ boundaries, rather than drawing rough polygons.
Finally, we obtained 10,465 object-level masks corresponding to 10,465 uniformly extracted video
frames, which were then used for panoramic dynamic audio-visual salient object segmentation model
training and quantitative evaluation. Fig. 3.15 shows the number of object-level masks of each of the
sequences of our PAVS10K.
Instance-level masks. As shown in Fig. 3.13 or Fig. 3.16, an important contribution of our PAVS10K is
the instance-level pixel-wise masks, which are rarely seen in current salient object segmentation datasets
(Table. 3.5). In fact, compared to conventional salient object segmentation, instance-level salient ob-
ject segmentation is able to mimic more realistic human visual attention. As a result, we finally
gained 19,904 instance-level salient object labels. Please refer to Fig. 3.18, Fig. 3.19, Fig. 3.20, Fig.

14CVAT Toolbox: https://github.com/openvinotoolkit/cvat

https://github.com/openvinotoolkit/cvat


76 Datasets & benchmarks on 360° images and videos

MO OC LR

MB GD OV

SingingDancing Questions Beach

Brothers Spanish ChineseAd

Guitar, fk Guitar, fl Guitar, fn

CS

Fig. 3.16 Examples of challenging attributes (detailed description in Table. 3.6) on equirectangular
images from our PAVS10K, with instance-level ground truth and fixations as annotation guidance.
{ fk, fl, fn} denote random frames of a given video. Please zoom-in for better view of overlaid fixa-
tions.

3.8, Fig. 3.22, Fig. 3.23 and Fig. 3.24 for randomly sampled video frames and their corresponding
object-/instance-level masks, of each of the 67 sequences within our PAVS10K.
Attributes labeling. Following the recently proposed large-scale video object segmentation [151] and
video-based salient object segmentation [23] datasets, we provide seven attributes to represent the
challenges within our PAVS10K, i.e., “Multiple Objects” (MO), “Occlusions” (OC), “Low Resolu-
tion” (LR), “Motion Blur” (MB), “Out-of-View” (OV), “Geometrical Distortion” (GD) and “Compet-
ing Sounds” (CS) (Table. 3.6).

Table 3.6 Description of each of the seven proposed attributes towards panoramic audio-visual salient
object segmentation.

Attributes. Description
MO Multiple Objects. ⩾ three objects occur simultaneously.
OC Occlusions. Object is partially occluded.
LR Low Resolution. Object occupies ⩽ 0.5% of image area.
MB Motion Blur. Moving object with fuzzy boundaries.
OV Out-of-View. Object is cut in half in ER projection.
GD Geometrical Distortion. Distorted object in ER projection.
CS Competing Sounds. Sound objects compete for attention.

It is worth mentioning that, OV and GD (Fig. 3.13) are exclusive geometrical attributes of ER
images, and CS is a novel attribute attached to sounding stimuli, thus representing challenging audio-
visual scenes where multiple sounding objects compete for human attention. Detailed statistics of the
proposed attributes towards each of the sequences of PAVS10K are shown in Table 3.7 and Table 3.8.
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Fig. 3.17 Passed and rejected instance-level pixel-wise labels during quality examination processes.
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Fig. 3.18 Visualization of the proposed PAVS10K (1/7).
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Fig. 3.19 Visualization of the proposed PAVS10K (2/7).
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Fig. 3.20 Visualization of the proposed PAVS10K (3/7).
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Fig. 3.21 Visualization of the proposed PAVS10K (4/7).
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Fig. 3.22 Visualization of the proposed PAVS10K (5/7).
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Fig. 3.23 Visualization of the proposed PAVS10K (6/7).
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Fig. 3.24 Visualization of the proposed PAVS10K (7/7).
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Table 3.7 Attribute details (1/2). General attributes: MO = Multiple Objects. OC = Occlusions.
LR = Low Resolution. MB = Motion Blur. 360° geometrical attributes: OV = Out-of-View. GD =
Geometrical Distortion. Audio attributes: CS = Competing Sounds.

Sequence
General 360° Audio

No.
MO OC LR MB OV GD CS

Sp
ea

ki
ng

(3
5)

French ✓ ✓ ✓ ✓ ✓ 5
WaitingRoom ✓ ✓ ✓ ✓ ✓ 5
Cooking ✓ ✓ ✓ ✓ ✓ 5
AudiIntro ✓ ✓ ✓ 3
Ellen ✓ 1
GroveAction ✓ ✓ ✓ ✓ ✓ 5
Warehouse ✓ ✓ 2
GroveConvo ✓ ✓ ✓ ✓ ✓ 5
Surfing ✓ ✓ ✓ 3
Passageway ✓ ✓ ✓ ✓ 4
RuralDriving ✓ ✓ ✓ ✓ 4
Lawn ✓ ✓ 2
AudiAd ✓ ✓ ✓ ✓ ✓ ✓ 6
ScenePlay ✓ ✓ ✓ ✓ ✓ 5
UrbanDriving ✓ ✓ ✓ 3
Interview ✓ ✓ ✓ ✓ 4
Telephone ✓ ✓ ✓ ✓ ✓ 5
Walking ✓ ✓ ✓ 3
Bridge ✓ ✓ ✓ ✓ 4
Breakfast ✓ ✓ ✓ ✓ ✓ 5
Debate ✓ ✓ ✓ 3
BadmintonConvo ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
Director ✓ ✓ ✓ ✓ ✓ ✓ 6
ChineseAd ✓ ✓ ✓ ✓ ✓ ✓ 6
Exhibition ✓ 1
PianoConvo ✓ ✓ ✓ 3
FilmingSite ✓ ✓ ✓ ✓ ✓ 5
Brothers ✓ ✓ ✓ ✓ ✓ ✓ 6
Rap ✓ ✓ ✓ ✓ 4
Spanish ✓ ✓ ✓ ✓ ✓ 5
Questions ✓ ✓ ✓ ✓ 4
PianoMono ✓ ✓ ✓ ✓ ✓ 5
Snowfield ✓ ✓ ✓ 3
Melodrama ✓ ✓ ✓ ✓ ✓ 5
Gymnasium ✓ ✓ ✓ ✓ ✓ 5



86 Datasets & benchmarks on 360° images and videos

Table 3.8 Attribute details (2/2). General attributes: MO = Multiple Objects. OC = Occlusions.
LR = Low Resolution. MB = Motion Blur. 360° geometrical attributes: OV = Out-of-View. GD =
Geometrical Distortion. Audio attributes: CS = Competing Sounds.

Sequence
General 360° Audio

No.
MO OC LR MB OV GD CS

M
us

ic
(1

6)

Guitar ✓ ✓ ✓ ✓ 4
Subway ✓ ✓ ✓ ✓ ✓ 5
Jazz ✓ ✓ ✓ ✓ ✓ 5
Bass ✓ ✓ ✓ ✓ ✓ 5
Canon ✓ ✓ ✓ ✓ 4
MICOSinging ✓ ✓ ✓ ✓ 4
Clarinet ✓ ✓ ✓ ✓ ✓ 5
Trumpet ✓ ✓ ✓ 3
PianoSaxophone ✓ ✓ ✓ ✓ ✓ 5
Chorus ✓ ✓ ✓ ✓ 4
Studio ✓ ✓ ✓ ✓ ✓ 5
Church ✓ ✓ ✓ ✓ 4
Duet ✓ ✓ ✓ ✓ 4
Blues ✓ ✓ ✓ ✓ 4
Violins ✓ ✓ ✓ ✓ ✓ 5
SingingDancing ✓ ✓ ✓ ✓ ✓ ✓ 6

M
is

ce
lla

ne
a

(1
6)

Beach ✓ ✓ ✓ ✓ 4
BadmintonGym ✓ ✓ ✓ ✓ 4
InVehicle ✓ ✓ ✓ ✓ 4
Japanese ✓ ✓ ✓ ✓ 4
Tennis ✓ ✓ ✓ ✓ ✓ 5
Diesel ✓ ✓ ✓ ✓ 4
Park ✓ ✓ ✓ ✓ 4
Lion ✓ ✓ 2
Carriage ✓ ✓ ✓ ✓ ✓ ✓ 6
Platform ✓ ✓ ✓ ✓ ✓ 5
Dog ✓ ✓ ✓ ✓ 4
RacingCar ✓ ✓ ✓ ✓ 4
Train ✓ ✓ ✓ ✓ 4
Football ✓ ✓ ✓ ✓ 4
ParkingLot ✓ ✓ ✓ ✓ ✓ ✓ 6
Skiing ✓ ✓ ✓ ✓ ✓ ✓ 6

No. 56 52 59 40 8 39 35 289

Dataset Features and Statistics. We analyze our proposed PAVS10K from three aspects, i.e.,
dataset’s attributes’ distributions, dataset’s ground truth distributions and salient objects’ challeng-
ing features.

• Attributes’ distributions. The attributes represent common challenges for conducting panoramic
dynamic audio-visual salient object segmentation, thus facilitating detailed analysis regarding
2D image-/video-based salient object segmentation, 360° image-/video-based salient object
segmentation and panoramic audio-visual salient object segmentation models. Specifically, as
shown in Fig. 3.25 (a), the correlated attributes denote the attributes simultaneously appearing
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Fig. 3.25 Dataset features and statistics. (a) and (b) represent the correlation and frequency of
PAVS10K’s attributes, respectively.

360-SOD 360-SSOD PAVS10K

Fig. 3.26 A comparison of ground truth distribution of our PAVS10K and two recently proposed
panoramic image salient object segmentation datasets, i.e., 360-SOD [257] and 360-SSOD [258].

in the same sequence. e.g., LR and MO show a strong correlation which indicates the two at-
tributes tend to co-appear in most of the videos. Besides, as shown in Fig. 3.25 (b), e.g., most
of the videos (59) include small objects (⩽ 0.5% of ER image area) and more than half of the
videos (39) contain distorted objects, which illustrates that our PAVS10K is challenging.

• Equator Center Bias. As can be seen in Fig. 3.26, our PAVS10K, 360-SOD [257] and 360-
SSOD [258] all show equator-center bias. The observation is consistent to the facts that pho-
tographers tend to frame the primary objects at the equator center of the 360° cameras, in
addition, HMDs’ users usually pay more attention to regions near the equator center during
free-viewing [330, 331]. Besides inter-dataset comparison, we also show the ground truth dis-
tribution of our PAVS10K in terms of each of the three super-classes (Fig. 3.26). As a result, our
PAVS10K clearly shows the equator-center biased pattern at both overall and super-class-based
levels.

• 360° objects. Following [21], we compute the normalized objects’ size of our PAVS10K. The
size distribution ranges from 0.03% to 23.00%, covering extremely small objects. In addition,
we compare the situations of conducting object detection in 2D and 360° domains (Fig. 3.28).
The appearances and sizes of 360° objects indicate the challenges for conducting salient object
segmentation in panorama.
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Fig. 3.27 Ground truth distribution over three super-classes of our proposed PAVS10K.
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Fig. 3.28 An illustration of exclusive attributes regarding 360° salient object segmentation. (a) and
(c) denote OV and GD salient objects in equirectangular images, (b) and (d) denote the ones in local
viewports (a.k.a. common 2D cases).

3.4.3 Benchmark studies

In this sub-section, we introduce extensive benchmark experiments conducted based on the proposed
PAVS10K. In the computer vision community, especially in the field of salient object segmentation,
a comprehensive benchmark is essential to support a newly proposed task and its dataset, and is ben-
eficial for future model development based on the new task/dataset. Following the same procedure as
illustrated in Section 3.3.3, we introduce our new panoramic video salient object segmentation bench-
mark from the aspects of experimental settings and corresponding results.

Settings. Commonly, an integrated benchmark consists of consistent training/testing dataset split,
benchmark models from multiple salient object segmentation related fields, and different metrics for
quantitative evaluation of baseline models’ predictions.

Data split. All 67 videos are split into separate training and testing sets by using a random selection
strategy with a ratio of about 6:4. We thus reach a split of 40 training and 27 testing videos, with 5,796
and 4,669 video frames, respectively. Each of the 10,465 video frames are with per-pixel instance-
/object-level ground truth. The testing set is further divided into “Miscellanea” (Test1), “Music”
(Test2) and “Speaking” (Test3), consisting of 6, 6 and 15 videos respectively.

Benchmark models. To contribute a comprehensive benchmark to 360° video-based salient object
segmentation, we collect 13 state-of-the-art methods from multiple related fields, including 2D image-
base salient object segmentation methods (i.e., CPD-R [139], SCRN [297], F3Net [122], MINet [126],
LDF [128], CSFR2 [129] and GateNet [132]), 2D video-based salient object segmentation models
(i.e., RCRNet [178] and PCSA [175]), video object segmentation (i.e., COSNet [180], 3DC-Seg [332]
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and RTNet [333]) and panoramic image salient object segmentation baseline (FANet [334]). Note that
all our collected benchmark models are able to be trained in an end-to-end manner, based on the most
widely used open-source machine learning framework, i.e., PyTorch. For fair comparison, we re-
train the 13 baseline methods with the training set of our PAVS10K, based on their official publicly
available codes and recommended parameter settings.
Evaluation metrics. Following the common settings in the field of salient object segmentation, we
apply four widely used metrics, i.e., mean F-measure (Fβ , where β 2=0.3) [276], MAE (M ) [277], S-
measure (Sα , where α=0.5) [278] and mean E-measure (Eφ ) [279], to evaluate all benchmark models.
Details about the four metrics are illustrated in Section 2.7.
Performance comparison. To contribute a comprehensive benchmark, we compare all baseline
methods on our PAVS10K with and without PAVS10K training.

As a result, the quantitative results of the baseline models without/with PAVS10K training, are
illustrated in Table 3.9 and Table 3.10, respectively. Besides overall performance, we also show the
attributes-based performance of all baseline models in Table 3.11.

Table 3.9 Performance comparison of benchmark models without training on PAVS10K. I. = image-
based salient object segmentation models. V. = video-based salient object segmentation or video
object segmentation models. Sα = S-measure (α=0.5 [278]), Fβ = mean F-measure (β 2=0.3) [276],
Eφ = mean E-measure [279], M = mean absolute error [277]. Please note that FANet did not release
its pre-trained model during the period when we conducted the benchmark studies.

Type Year Methods
Miscellanea (Test1) Music (Test2) Speaking (Test3) PAVS10K-Test

Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓

I.

CVPR’19 CPD-R [139] .261 .623 .604 .084 .151 .506 .483 .135 .190 .526 .488 .162 .195 .545 .515 .137
ICCV’19 SCRN [297] .271 .625 .606 .087 .206 .598 .594 .051 .218 .559 .518 .130 .226 .584 .558 .101
AAAI’20 F3Net [122] .236 .609 .573 .082 .152 .509 .524 .150 .215 .567 .505 .105 .204 .563 .526 .110
CVPR’20 MINet [126] .225 .606 .573 .093 .152 .542 .531 .073 .180 .523 .469 .151 .183 .548 .509 .118
CVPR’20 LDF [128] .268 .622 .606 .083 .204 .550 .557 .087 .227 .546 .503 .137 .230 .566 .541 .112
ECCV’20 CSFR2 [129] .305 .650 .624 .075 .139 .510 .471 .129 .189 .545 .511 .128 .202 .562 .529 .116
ECCV’20 GateNet [132] .243 .637 .588 .069 .206 .594 .611 .035 .206 .569 .554 .090 .214 .591 .576 .072

V.

CVPR’19 COSNet [180] .280 .602 .581 .110 .181 .571 .614 .034 .232 .595 .587 .065 .230 .591 .592 .068
ICCV’19 RCRNet [178] .307 .666 .644 .062 .312 .630 .683 .040 .238 .591 .542 .065 .271 .619 .601 .058
AAAI’20 PCSA [175] .197 .629 .632 .042 .104 .543 .548 .030 .157 .565 .594 .037 .153 .575 .592 .036
BMVC’20 3DC-Seg [332] .231 .544 .523 .143 .268 .578 .663 .059 .193 .540 .584 .088 .220 .550 .588 .094
CVPR’21 RTNet [333] .331 .632 .602 .110 .436 .668 .769 .016 .338 .637 .639 .045 .361 .643 .661 .054

3.4.4 Discussion

The extensive benchmark studies based on our PAVS10K illustrate the challenges for conducting 360°
video salient object segmentation.
Overall performance. According to the detailed quantitative results, we find that both salient ob-
ject segmentation and video object segmentation state-of-the-art methods tend to show compromised
performance (as for the image context) on the testing set of our PAVS10K, when compared to their
performance on current salient object segmentation /video object segmentation benchmark datasets.
For instance, as shown in Table 3.9 and Table. 3.10, the mean value of Sα of all competing meth-
ods on PAVS10K-Test are 0.534 and 0.626 without and with PAVS10K training, respectively. Be-
sides, the maximum of Sα of these methods is 0.655. However, state-of-the-art video salient object
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Table 3.10 Performance comparison of benchmark models with training on PAVS10K. (P)I. =
(panoramic) image-based salient object segmentation models. V. = video-based salient object seg-
mentation or video object segmentation models. Sα = S-measure (α=0.5 [278]), Fβ = mean F-measure
(β 2=0.3) [276], Eφ = mean E-measure [279], M = mean absolute error [277].

Type Year Methods
Miscellanea (Test1) Music (Test2) Speaking (Test3) PAVS10K-Test

Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓

I.

CVPR’19 CPD-R [139] .248 .654 .645 .035 .272 .608 .632 .018 .228 .588 .657 .026 .243 .609 .648 .026
ICCV’19 SCRN [297] .250 .665 .615 .046 .341 .683 .664 .023 .276 .636 .642 .034 .286 .655 .641 .034
AAAI’20 F3Net [122] .257 .655 .629 .040 .358 .662 .749 .021 .308 .626 .692 .027 .310 .642 .691 .029
CVPR’20 MINet [126] .238 .650 .625 .050 .380 .670 .716 .020 .261 .590 .635 .053 .286 .624 .652 .044
CVPR’20 LDF [128] .280 .663 .626 .044 .389 .671 .753 .023 .309 .625 .711 .037 .322 .645 .701 .035
ECCV’20 CSFR2 [129] .238 .652 .642 .033 .347 .665 .693 .018 .285 .636 .700 .026 .290 .646 .684 .026
ECCV’20 GateNet [132] .285 .677 .651 .044 .290 .673 .616 .018 .260 .633 .638 .034 .273 .653 .636 .033

V.

CVPR’19 COSNet [180] .147 .610 .553 .031 .220 .577 .541 .016 .176 .572 .570 .023 .181 .582 .559 .023
ICCV’19 RCRNet [178] .272 .661 .640 .034 .403 .695 .738 .019 .282 .632 .687 .030 .310 .654 .688 .029
AAAI’20 PCSA [175] .123 .604 .574 .034 .310 .657 .645 .022 .150 .571 .534 .026 .184 .600 .570 .027
BMVC’20 3DC-Seg [332] .300 .668 .618 .062 .326 .635 .632 .046 .289 .629 .592 .056 .300 .640 .608 .055
CVPR’21 RTNet [333] .240 .622 .634 .038 .365 .638 .766 .020 .194 .555 .668 .028 .247 .591 .683 .029

PI. SPL’20 FANet [334] .164 .610 .529 .030 .380 .646 .758 .018 .207 .566 .663 .027 .241 .596 .654 .025

Table 3.11 Performance comparison of benchmark models based on each of the attributes. Sα = S-
measure (α=0.5 [278]), Fβ = mean F-measure (β 2=0.3) [276], Eφ = mean E-measure [279], M =
mean absolute error [277].

Attr. Metrics
Image-based salient object segmentation Video-based salient object segmentation -

CPD-R SCRN F3Net MINet LDF CSFR2 GateNet COSNet RCRNet PCSA 3DC-Seg RTNet FANet
[139] [297] [122] [126] [128] [129] [132] [180] [178] [175] [332] [333] [334]

MO

Sα ↑ .610 .657 .644 .624 .648 .649 .653 .588 .661 .607 .643 .595 .605
Fβ ↑ .244 .288 .315 .288 .324 .292 .270 .187 .319 .193 .302 .251 .258
Eφ ↑ .655 .649 .705 .665 .718 .694 .637 .571 .706 .580 .614 .703 .676
M ↓ .027 .034 .030 .045 .033 .027 .034 .024 .029 .027 .054 .028 .025

OC

Sα ↑ .606 .655 .641 .619 .645 .645 .650 .577 .652 .600 .636 .586 .593
Fβ ↑ .260 .294 .329 .298 .335 .301 .276 .191 .316 .202 .308 .259 .258
Eφ ↑ .649 .639 .696 .651 .709 .682 .622 .554 .691 .570 .607 .694 .668
M ↓ .023 .029 .026 .043 .028 .023 .030 .020 .025 .024 .045 .024 .022

LR

Sα ↑ .605 .649 .639 .618 .637 .644 .647 .585 .650 .609 .633 .590 .598
Fβ ↑ .229 .271 .301 .272 .303 .277 .255 .176 .294 .189 .286 .234 .238
Eφ ↑ .640 .636 .693 .642 .694 .683 .625 .565 .687 .586 .600 .688 .657
M ↓ .025 .034 .028 .045 .037 .025 .033 .022 .029 .026 .057 .029 .025

MB

Sα ↑ .622 .651 .630 .620 .646 .638 .645 .582 .642 .586 .632 .595 .587
Fβ ↑ .281 .304 .299 .298 .330 .297 .281 .212 .307 .197 .302 .271 .247
Eφ ↑ .628 .630 .663 .637 .667 .668 .621 .563 .675 .563 .599 .676 .627
M ↓ .021 .029 .027 .047 .029 .021 .030 .019 .024 .022 .044 .023 .020

OV

Sα ↑ .634 .661 .568 .633 .636 .636 .639 .582 .630 .599 .641 .573 .611
Fβ ↑ .311 .318 .167 .314 .309 .295 .258 .207 .276 .193 .362 .210 .310

Eφ ↑ .652 .638 .538 .691 .676 .697 .637 .633 .732 .536 .671 .703 .679
M ↓ .018 .021 .029 .038 .039 .021 .025 .021 .029 .021 .039 .022 .018

GD

Sα ↑ .630 .662 .639 .633 .659 .646 .658 .588 .651 .578 .659 .587 .599
Fβ ↑ .285 .309 .299 .294 .341 .304 .300 .189 .311 .156 .320 .247 .245
Eφ ↑ .657 .653 .669 .676 .680 .674 .662 .564 .687 .538 .621 .666 .630
M ↓ .037 .042 .040 .045 .043 .035 .042 .032 .037 .036 .062 .038 .034

CS

Sα ↑ .625 .680 .667 .654 .664 .670 .676 .592 .680 .621 .654 .602 .616
Fβ ↑ .277 .320 .357 .335 .361 .330 .304 .197 .354 .217 .324 .269 .279
Eφ ↑ .674 .664 .720 .691 .740 .696 .655 .550 .711 .590 .625 .711 .697
M ↓ .029 .035 .031 .035 .034 .028 .033 .026 .030 .029 .058 .031 .028

segmentation methods such as SSAV [23], PCSA [175] and DCFNet [163] show much better perfor-
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mance on widely used video benchmark datasets, with Sα of 0.893/0.902/0.914 on DAVIS2016 [151],
0.819/0.827/0.846 on VOS [22] and 0.724/0.741/0.741 on DAVSOD [23].
Attribute-based performance. The proposed attributes (MO, LR, OC, MB, GD, OV and CS) of our
PAVS10K enable detailed analysis towards panoramic video salient object segmentation modeling.
Especially, compared to previous video datasets [23, 151], we propose extra attributes, i.e., GD and
OV, which reflect common challenges for modeling on 360° (Fig. 3.28). As a result, COSNet [180]
acquires superior results on all attribute based testing sets only in terms of M [277], which is the
mean value of per-pixel absolute error (Eq. 2.2). A superior M yet weak Fβ (Table 3.11) indicate
that video salient object segmentation method such as COSNet tends to be conservative for detecting
salient objects in 360° panoramic videos.

3.4.5 Conclusion

In this section, we first propose a new task, panoramic dynamic audio-visual salient object segmen-
tation, which aims at modeling both visual and audio cues to conduct salient object detection in 360°
panoramic videos. To support the task, we establish a large-scale 360° video dataset, i.e., PAVS10K,
representing various real-life scenes with good visual quality (4K-resolution). Our PAVS10K pro-
vides multiple labels including three super-classes, 67 sub-classes, seven salient object segmenta-
tion attributes, 10,465 video frames with per-frame manually labeled object-level and instance-level
masks. We further collect 13 state-of-the-art salient object segmentation /video object segmenta-
tion methods to establish so far the largest panoramic dynamic audio-visual salient object segmenta-
tion benchmark. We conduct extensive qualitative and quantitative experiments to achieve compre-
hensive benchmark studies.
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3.5 Conclusion

This chapter introduces key issues towards large-scale salient object segmentation construction, and
our newly proposed 360° image/video-based salient object segmentation datasets, i.e., F-360iSOD and
PAVS10K. Considering the blank of 360° salient object segmentation, the priority of this thesis work
was to build both image and video datasets which observe common rules of current 2D datasets. To
this end, we first summarized several key issues towards large-scale dataset construction, by detailing
the statistics of current widely used 2D image/video salient object segmentation datasets. Based on the
spotted key aspects of large-scale salient object segmentation datasets, we built the first 360° image-
based salient object segmentation dataset, namely F-360iSOD, that provides both object-/instance-
level pixel-wise ground truth. Inspired by the real-world scenes where human attention is affected by
both audio and visual cues, we further proposed the first 360° dynamic audio-visual salient object seg-
mentation dataset, namely PAVS10K, where the salient objects are annotated based on audio-visual
eye fixations. To facilitate and inspire future works based on the newly proposed F-360iSOD and
PAVS10K, we further conducted comprehensive benchmark studies.



Chapter 4

Salient object segmentation in light field

4.1 Introduction

Unlike traditional 2D RGB images, both light field and 360° based images contain extra visual cues
reflecting real-life daily scenes. For instance, light field camera is able to capture visual details at
different focus distances and thus generating a stack of images, namely focal stacks, with varying
spatial texture across image depth. On the other hand, 360° camera is able to capture global con-
text in a 360°×180° field-of-view. Therefore, modeling human attention in light field and 360°
are both important for exploring human attention mechanism in real world. In this case, besides
the main focus of our PhD work towards 360° vision, we have conducted multiple works in terms
of light field salient object segmentation. In this chapter, we summarize our proposed new salient
object segmentation methodologies in light field. Inspired by current state-of-the-art salient object
segmentation methods with various attention modules as summarized in Chapter 2, we argue that
recently proposed state-of-the-art attention models (e.g., SENet [145], CBAM [146] and Non-local
network [261]) can also be used as basic components for the development of light field salient object
segmentation models. We hereby propose new methods (Section 4.2) consisting of multiple attention
mechanisms to fuse and refine features extracted from multiple light field modalities (i.e., all-in-focus,
focal stack, depth).

Specifically, to explore multiple attention mechanisms for effective object-level attention mod-
eling with multi-modal light field data, we first proposed SA-Net. Our SA-Net exploits the rich
information of focal stacks via 3D convolutional neural networks, decodes the high-level features
of multi-modal light field data with two cascaded synergistic attention modules, and predicts the
saliency map using an effective feature fusion module in a progressive manner. As the development
of large-scale vision transformers [143], we further explored the encoder of SA-Net and thus propos-
ing SA-Net-V2, which replaces the ResNet blocks with hybrid-ViT based transformer blocks at the
all-in-focus branch of the encoder. To improve the SA-Net from a perspective of model computa-
tional burden, we further proposed CMA-Net, which consists of two novel cascaded mutual attention
modules aiming at fusing the high level features from the modalities of all-in-focus and depth.

In the following section, we detail the three proposed methods, i.e., SA-Net [251], SA-Net-V2 and
CMA-Net in a progressive manner.
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4.2 Learning synergistic attention for light field salient object segmen-
tation

4.2.1 Introduction

Recently, light field salient object segmentation [238] has attracted increasing attention owing to the
introduction of various light field benchmark datasets, such as DUT-LF [240], LFSD [238], HFUT
[239], DUT-MV [241], and Lytro Illum [242]. In addition to all-in-focus images, light field datasets
[238, 239, 242] also provide focal stacks, multi-view images, and depth maps, where the focal stacks
are usually known as a series of focal slices focusing at different depths of a given scene while the
depth map contains holistic depth information. Unlike RGB-D salient object segmentation models,
which utilize only two modalities, i.e., RGB images and depth maps, the light field salient object
segmentation models also use multi-view images (e.g., [241, 248]), or focal stacks [240, 244–246] as
auxiliary inputs to further improve the performance. It is worth noting that, most recent focal stack-
based deep learning light field salient object segmentation models (e.g., ERNet [245]) have achieved
state-of-the-art performances on three widely-used light field benchmark datasets [238–240].

Despite their advantages, existing works suffer from two major limitations. First, they explore
little about the complementarities between all-in-focus images and the focal stacks. Existing focal
stack-based methods [240, 244–246] applied only channel attention mechanisms to weight the key
feature channels at the decoding stage, to aid the feature fusion between the modalities of all-in-
focus and focal stack. Considering the fact that salient objects usually appear at specific depths of
a given scene, all-in-focus image may include redundant texture details compared to focal stack, in
which a focal slice focuses on a local region at specific depth and blurs the others. New cross-modal
fusion strategy, which applies more sophisticated attention mechanisms learning robust cross-modal
complementarities, may help solve the issue. Second, the methods [240, 244–246] all paid little
attention to the inter-slice modeling during the encoding stage of focal stacks. In practice, the all-in-
focus images are generated from focal stacks with a photo-montage technique [335], implying that the
former simultaneously depict the spatial details of each local region, while the latter asynchronously
focus on different local details along the sequential dimension. The relationship between focal slices
reflects the context of given scenes as the changes of depth, which is appropriate to be encoded in a
progressive manner.

SA-Net. To this end, we propose Synergistic Attention Network (SA-Net) to conduct light field
salient object segmentation with rich information from all-in-focus images and focal stacks (Fig. 4.1).
Specifically, we first employ 3D convolutional neural networks to progressively extract the sequential
features from focal stacks. At the decoding stage, we propose a synergistic attention (SA) module,
where the features from all-in-focus images and focal stacks are selectively fused and optimized to
achieve a synergistic effect for salient object segmentation. Finally, the multi-modal features are fed
to our progressive fusion (PF) module, which fuses multi-modal features and predicts the saliency
map in a progressive manner.

SA-Net-V2. Furthermore, as the development of recent transformers (e.g., ViT [143]), we replace
the resnet50 with hybrid-ViT framework at the all-in-focus branch of the encoder to improve model
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Light Field Data

… …

Focal Stack

All-in-Focus Image Ground Truth Ours (SA-Net) ERNet

Fig. 4.1 An example of light field salient object segmentation using our SA-Net (Ours) and a state-
of-the-art light field model, i.e., ERNet [245].

performance. In addition, we take advantage of the inter-slice features in both the encoding and
decoding processes, thus gaining an advanced version of SA-Net, namely SA-Net-V2.

All-in-focus Image Ground Truth Depth 

Ours (CMA-Net) ERNetT BBSNet

Fig. 4.2 An example of light field salient object segmentation using our CMA-Net (Ours) and a state-
of-the-art RGB-D model, i.e., BBSNet [270].

CMA-Net. As the computational burden is also an important issue for evaluating the effectiveness
of deep learning models, we are inspired by RGB-D methods and thus using all-in-focus images and
depth information to conduct light field salient object segmentation with a fine-tuned SA-Net, namely
CMA-Net (Fig. 4.2).

In a nutshell, we provide several contributions as follows:

• In SA-Net, we propose the SA module to decode the high-level features from both all-in-
focus images and focal stacks with a synergistic attention mechanism. Our SA module exploits
the most meaningful information from the multi-modal multi-level features, allowing accurate
salient object segmentation by taking advantage of light field data.

• In SA-Net, we introduce a dual-branch backbone to encode the all-in-focus and focal stack
information, simultaneously. To the best of our knowledge, our work is the first attempt to
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utilize 3D convolutional neural networks for the feature extraction of focal stacks in the field of
light field salient object segmentation.

• In SA-Net, we design the PF module to gradually fuse the selective high-level features for the
final saliency prediction.

• In SA-Net-V2, we discard the three 3D convolutional layers at the focal stack branch of the
encoder, and replace the original 2D receptive field blocks [139] with our proposed 3D ones.
To fuse the 3D focal stack-based features and 2D all-in-focus features at high-level, we further
design a multi-head synergistic attention module (Multi-head SA).

• In CMA-Net, we propose a new cascaded mutual attention (CMA) mechanism to efficiently
fuse the RGB-D high level features. Our CMA-Net does not apply focal stacks, also avoids
processing low-level features from both the modalities, thus performing competitive inference
speed.

• Extensive experiments demonstrate that all our proposed models (SA-Net,SA-Net-V2 and CMA-
Net) outperforms dozens of state-of-the-art salient object segmentation models upon widely-
used light field datasets.

4.2.2 Related works

Related datasets and most recent representative works towards RGB-D salient object segmenta-
tion and light field salient object segmentation are summarized in Chapter 2. In this sub-section, we
further detail the related works towards light field salient object segmentation, several applications
regarding mutual attention and 3D convolutional neural networks.
Light field salient object segmentation. By the time of the release of our proposed SA-Net, there
are only 18 (11/7 traditional/deep learning-based, respectively) published methods. For traditional
ones, the early method [238] conducted light field salient object segmentation by considering back-
ground and location related prior knowledge. In addition, [336] proposed a unified architecture based
on weighted sparse coding. Later methods [239, 337–341] explored and further combined multi-
ple visual cues (e.g., depth, color contrast, light field flows and boundary prior) to detect saliency.
Most recent methods [215, 342] shifted more attention to depth information and employed cellular
automata for the saliency detection in light field. With the development of public light field datasets,
deep learning-based methods were proposed to conduct salient object segmentation task. Specifi-
cally, [241] developed a view synthesis network to detect salient objects by involving multi-views.
With multi-views as inputs, [248] further established a unified structure to synchronously conduct
salient object and edge detection. Besides, [242] applied DeepLab-v2 for salient object segmenta-
tion with multi-lens. As a mainstream, [240, 244–246] all employed ConvLSTM and channel at-
tention mechanisms at the decoding stage to detect salient objects in all-in-focus images and focal
stacks. [240] and [246] both modeled the all-in-focus and focal stack with separate encoder-decoder
architectures. Specifically, [240] added the outputs of the decoders of both the focal stack branch and
all-in-focus branch. [246] concatenated the outputs of all-in-focus branch and focal stack branch and
used the ConvLSTM [14] to refine the concatenated features. In [244], focal stack and all-in-focus
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share the same encoder. The extracted multi-modal features were further fused with memory-oriented
attention modules. The most recent [245] designed teacher network and student network to encode
the focal stack and all-in-focus respectively, and used ConvLSTM based attention module to facilitate
the distillation process between the teacher network and student network.
Mutual attentions. Mutual(co)-attention, as a specific type of attention mechanism within the multi-
branch attention category, has been used in the fields of video object segmentation (e.g., COS-
Net [180]), RGB-D salient object segmentation (e.g., S2MA [343]), etc.. Specifically, COSNet first
proposed to establish mutual attention module for effective feature fusion and refinement between
different video frames. S2MA [343] designed a self-mutual attention module to automatically select
useful high-level features learned from both modalities. However, mutual attention mechanism has
been seldom studied in the field of light field salient object segmentation. DLLF [240], LFNet [246],
MoLF [244] and ERNet [245] all employed classical channel attention [145] to aid the feature se-
lection and refinement from the modality of focal stacks. Recent large-scale light field salient object
segmentation benchmark studies (e.g., [244, 245]) indicate that it remains an open question how to
efficiently fuse the intrinsic features from multiple modalities for advanced detecting accuracy.
3D convolutional networks. 3D convolutional networks have proved great competence in modeling
spatial-temporal information of video data, thus dominating the video-based detection fields, such
as action recognition [344] and video object segmentation [332]. Recently, RD3D [228] was pro-
posed to address the task of salient object segmentation by using a 3D convolutional network-based
encoder-decoder structure, and achieved promising performance on widely-used RGB-D salient ob-
ject segmentation benchmarks. As for light field salient object segmentation, MTCNet [248] applied
3D convolutional network-based encoder to extract the depth features from multi-view images. The
rich high-level features gained from 3D convolutional networks were then used to infer depth maps
and facilitate the salient object segmentation task, synchronously. Since focal stacks are sequences of
focal slices focusing at different depths, learning focal stacks’ features via 3D convolutional networks
possesses great potential to boost the model performance for light field salient object segmentation,
but so far lacks investigation.

4.2.3 Focal stack-based methodologies

In SA-Net, we exploit rich cross-modal complementary information with channel attention and co-
attention mechanisms to achieve a synergistic effect between multi-level all-in-focus and focal stack
features. In addition, to capture the inter-slice information of focal stack, we employ 3D convolutional
neural networks to extract rich features from focal stacks. Fig. 4.3 shows an overview architecture of
our SA-Net, which consists of three major components, including a multi-modal encoder consisting
of 2D and 3D convolutional neural networks, two cascaded synergistic attention modules, and a
progressive fusion module.
Multi-modal encoder. As shown in Fig. 4.3, the encoder of our network is a dual-branch architecture
for synchronous feeding of the two modalities, i.e., all-in-focus images and focal stacks. For the 2D
branch, we encode an input all-in-focus image with a group of convolutional blocks. On the other
hand, focal stack is represented as a 4D tensor with the last dimension T denoting the number of focal
slices. We encode the focal stack with a stack of 3D convolutional blocks, which are able to jointly
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Fig. 4.3 An overview of our SA-Net. Multi-modal multi-level features extracted from our multi-
modal encoder are fed to two cascaded synergistic attention (SA) modules followed by a progressive
fusion (PF) module. The short names in the figure are detailed as follows: CoA = co-attention com-
ponent. CA = channel attention component. AA = all-in-focus-induced attention component. RB
= residual block. PF = progressive fusion module. Pn = the nth saliency prediction. (De)Conv =
(de-)convolutional layer. BN = batch normalization layer. FC = fully connected layer.

capture the rich intra- and inter-slice information for accurate salient object segmentation. Note that
the same setting (T = 12) as in [245] is adopted in our 3D branch, and a zero-padding strategy is
applied to the focal stack with less than 12 focal slices.

Synergistic attention module. As high-level features tend to reserve the essential cues (e.g., lo-
cation, shape) of salient objects while the low-level ones contain relative trivial information (e.g.,
edge) [139], our decoder only integrates high-level features to avoid redundant computational com-
plexity. Specifically, we use { f 2D

i }4
i=2 and { f 3D

i }4
i=2 to denote the high-level all-in-focus and focal

stack features extracted from the 2D and 3D convolutional networks of our dual-branch backbone
network, respectively.

Multi-level attention. As shown in Fig. 4.3, a receptive field block (RFB) [139] is first employed
to enrich the global context information for each convolution block. Taking the all-in-focus branch
as an example, the adjacent high-level features from the encoder are then combined with a channel
attention (CA) mechanism from [145], i.e.,

f 2D
CA(i) = σ(FC(ReLU(FC(P( f̂ 2D

RFB(i+1))))))⊙ f 2D
RFB(i)+ f 2D

RFB(i), (4.1)

where f 2D
RFB(i) represents the ith level features provided by RFB; f̂ 2D

RFB(i+1) is the up-sampled version
of f 2D

RFB(i+ 1); σ(·), FC(·), P(·), and ⊙ denotes the Sigmoid function, fully connected layer, max
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Fig. 4.4 The architecture of the co-attention (CoA) module. C.N. = column-wise normalization. R.N.
= row-wise normalization.

pooling, and Hadamard product, respectively. The resulting feature f 2D
CA(i) is further concatenated

with the upper level feature f 2D
RB(i + 1) provided by a residual block (RB) for the feature f 2D

Cat(i),
which is one of the pair-wise inputs ({ f 2D

Cat(i), f 3D
Cat(i)}) for the second stage of our SA module. Note

that the focal stack branch follows the consistent procedure as in all-in-focus branch since the two
branches are symmetric.

Multi-modal attention. Inspired by a mutual attention mechanism [180] proposed for cross-frame
feature fusion in the field of video object segmentation, the high-level feature interaction between the
two modalities is conducted with two cascaded co-attention (CoA) modules (Fig. 4.3). To be specific,
as shown in Fig. 4.4, given the pair-wise features { f 2D

Cat(i), f 3D
Cat(i)} at ith layer as inputs, a similarity

matrix Mi can be computed as:

Mi = F( f 2D
Cat(i))

T⊗F( f 3D
Cat(i)), (4.2)

where F(·) represents a flatten operation reshaping the 3D feature matrix f 2D
Cat(i) ∈ RH×W×C to a

2D one with a dimension of HW ×C, ⊗ denotes matrix multiplication. Note that we do not apply
extra weight matrix as in [180] to compute Mi, since the CoA module aims at fusing the cross-modal
features with equally assigned attention. The Mi is then column-/row-wisely normalized via:

Mc
i = So f tmax(Mi) ∈ [0,1]HW×HW ,

Mr
i = So f tmax(MT

i ) ∈ [0,1]HW×HW ,
(4.3)

where So f tmax(·) normalizes each column of the similarity matrix. Therefore, the co-attention-based
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pair-wise features ({ f 2D
CoA(i), f 3D

CoA(i)}) at ith layer are further defined as:

f 2D
CoA(i) = R( f 2D

Cat(i)⊗Mc
i ) ∈ [0,1]H×W×C,

f 3D
CoA(i) = R( f 3D

Cat(i)⊗Mr
i ) ∈ [0,1]H×W×C,

(4.4)

where R(·) reshapes the given matrix from a dimension of C×HW to H ×W ×C. A self-gate
mechanism [180] is further employed to automatically learn the co-attention confidences (G2D

i ,G3D
i )

for f 2D
CoA(i) and f 3D

CoA(i). Therefore the final outputs { f 2D
SA (i), f 3D

SA (i)} of our SA module at ith layer are
computed as:

f 2D
SA (i) = G2D

i ⊙ f 2D
CoA(i) and f 3D

SA (i) = G3D
i ⊙ f 3D

CoA(i), (4.5)

where the co-attention confidence G2D
i = σ(Conv( f 2D

CoA(i))) with Conv(·) denoting a convolutional
layer.

By combining the channel attention (CA) and co-attenrion (CoA) module, our SA module is par-
ticularly effective in exploiting the multi-level and multi-modal complementary information, which,
therefore, provides significantly improved performance, as demonstrated by our ablation studies in
Section 4.2.5.
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Fig. 4.5 The architecture of all-in-focus-induced attention (AA) component.

Progressive fusion module. To obtain the final prediction, we further add a progress fusion (PF)
module to gradually up-sample the selective high-level features provided by our SA module (Fig.
4.3). Specifically, we first balance the focal stack and all-in-focus features with an all-in-focus-
induced attention (AA) component (Fig. 4.5) before the final fusion of the two modalities. The
AA component follows the same procedure applied in RGB-D fusion [270], i.e., unifying the channel
and spatial attention by computing:

f̂ 2D
SA = f 2D

SA (2) and f̂ 3D
SA = SA(CA( f 2D

SA (2)))+ f 3D
SA (2), (4.6)

where CA(·) and SA(·) denote spatial and channel attention components, respectively. We then con-
catenate the balanced cross-modal features and feed them to a deconvolutional block for the final
prediction P3, i.e.,

P3 = DB(Cat( f̂ 2D
SA , f̂ 3D

SA )), (4.7)
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where Cat(·) denotes the concatenation operation, and DB(·) represents a deconvolutional block con-
sisting of three deconvolutional layers [270] and convolutional layers that are organized in a cascaded
manner (Fig. 4.3).

Loss function. As shown in Fig. 4.3, our model predicts three saliency maps: {Pn}3
n=1 ∈ [0,1]. Let

G ∈ {0,1} denotes the ground-truth saliency map, we jointly optimize the three-way predictions by
defining a hybrid loss ℓ:

ℓ=
N

∑
n=1

ℓBCE(Pn,G)+ ℓIoU(Pn,G)+ ℓEM(Pn,G), (4.8)

where ℓBCE and ℓIoU denote Binary Cross Entropy (BCE) and Intersection over Union (IoU) loss,
respectively; the loss ℓEM = 1−Eφ with Eφ denoting E-Measure [279].

Conv0

Conv1

Conv2

Conv3

Conv4 Conv4

Conv3

Conv2

Conv1

Conv0

RB

CA

RB

…

RB

Conv

BN

ReLU

+

𝑓"

𝑓#$(𝑖)

2D Receptive
Field Block

2D Conv Block

3D Conv Block

CA

P
FC

ReLU

FC

𝝈

𝑓#)$(𝑖 + 1)

,
+

𝑓-.(𝑖)

C
P

Concatenation

Max Pooling

CA

CA

CA

C

C C
CoA

RB RB

C

PF

C
on

v

C
on

v

C
on

v1

D
eC

on
v1

C
on

v2

D
eC

on
v2

C
on

v3

D
eC

on
v3

H
yb

rid
Lo

ss

𝑃0 𝑃1

𝑃2
GTAiF

FS

Multi-head 
SA

AA

Hadamard
Product

T=12

T=6

T=3

C=256

C=512

C=1024

UP×2 UP×2

UP×2UP×2

C C

C C
CoA

UP×2 UP×2

T=12C=64

C

,

𝑓#)$(𝑖)

Multi-head 
SA

3D Receptive
Field Block

Fig. 4.6 The architecture of advanced version of SA-Net, i.e., SA-Net-V2.

SA-Net-V2. In SA-Net-V2, as shown in Fig. 4.6, the difference between SA-Net and SA-Net-
V2 mainly lies in all-in-focus encoder (as for SA-Net-V2, we took the hybrid-vit layers in DPT [345]),
SA modules (as for SA-Net-V2, we designed multi-head SA module to fuse 2D features from all-in-
focus branch and 3D futures from focal stack branch) and RFB modules (we fine-tuned RFB [139]
and adopted it to 3D feature refinement).

Implementation details. Our SA-Net and SA-Net-V2 are implemented in PyTorch and optimized
with Adam algorithm [3]. The backbone of SA-Net is based on a 2D standard ResNet50 for all-in-
focus images and an inflated 3D ResNet50 [344] for focal stacks. The 2D convolution layers in our
backbone are initialized with ImageNet-pretrained ResNet50, while the 3D convolutional layers are
initialized with a 2D weight transfer strategy [344]. During the training stage, the batch size is set
to 2, the learning rate is initialized as 1e-5 and decreased by 10% when training loss reaches a flat.
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It takes about 14 hours to train the proposed model based on a platform consists of Intel® i9-7900X
CPU@3.30GHz and one TITAN XP GPU.
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Fig. 4.7 An overview of our CMA-Net. RGB-D high level features extracted from duel-branch en-
coder are fed into two proposed cascaded mutual attention modules, followed by a group of (de-
)convolutional layers from [270]. The abbreviations in the figure are detailed as follows: AiF Image
= all-in-focus image. GT = ground truth. Resi = the ith ResNet [142] layer. (De)Conv = (de-
)convolutional layer. MAi = the ith mutual attention module. CMA = cascaded mutual attention
module. CW = column-wise normalization. RW = row-wise normalization.

4.2.4 RGB-D-based methodologies

The CMA-Netconsists of a duel-branch ResNet50 [142]-based encoder and a cascaded mutual attention-
based decoder.

RGB-D Encoder. Our encoder is a duel-branch architecture that consists of symmetrical convo-
lutional layers transferred from ImageNet-pretrained ResNet50 [142]. In CMA-Net, we only pro-
cess the high-level features, i.e., the features ({ f AiF

i }4
i=2 and { f Dep

i }4
i=2) from the last three layers of

ResNets, to focus on salient objects’ shape and location cues [139] also to avoid extra computational
cost. The { f AiF

i }4
i=2 and { f Dep

i }4
i=2 are then fed into a series of receptive field blocks [139] to enrich

the global context information from each encoding level (Fig. 4.7).

Cascaded mutual attention. Similar to SA-Net, we illustrate the CMA-Net architecture from the
aspects of multi-level and multi-modal processing.

Multi-level Concatenation. The refined high level features from adjacent encoding stages, e.g.,
f AiF
RFB(i) and f AiF

RFB(i+1) are further concatenated as f AiF
Con(i), where i (i ∈ {2,3}) denotes the ith decod-

ing stage corresponding to the ith ResNet layer.

Mutual attention. Continually taking the ith decoding stage as an example, a similarity matrix (Simi)
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between the features from two branches is computed as:

Simi = F( f Dep
Con (i))

T⊗F( f AiF
Con(i)), (4.9)

where F(·) represents a flatten operation reshaping the 3D feature matrix f AiF
Con(i) ∈ RH×W×C to a 2D

one with a dimension of C×HW ,⊗ denotes matrix multiplication. Inspired by [180], the Simi is then
column-/row-wisely normalized via:

FAiF
Sim (i) = So f tmax(Simi) ∈ [0,1]HW×HW ,

FDep
Sim (i) = So f tmax(SimT

i ) ∈ [0,1]HW×HW ,
(4.10)

where So f tmax(·) normalizes each column of the HW ×HW matrix. As shown in Fig. 4.7, the
mutual attentions ( f AiF

Sim (i), f Dep
Sim (i)) for each of the branches are computed as:

f AiF
Sim (i) = R(FAiF

Sim (i)⊗F( f Fus
Con(i))

T) ∈ [0,1]H×W×C,

f Dep
Sim (i) = R(FDep

Sim (i)⊗F( f Fus
Con(i))

T) ∈ [0,1]H×W×C,
(4.11)

where R(·) reshapes the given matrix from a dimension of C×HW to H×W ×C, F( f Fus
Con(i)) denotes

fused features from both branches (Fig. 4.7), which is the main difference when compared to the
counterpart in SA-Net. To further avoid unstable feature updating during the model training process,
a pair of self-adapted gate functions (GAiF

i , GDep
i ) are computed to gain the final mutual attention

matrix ( f AIF
MA (i), f Dep

MA (i)). The process can be described as:

f AIF
MA (i) = GAiF

i ⊙ f AiF
Sim (i) and f Dep

MA (i) = GDep
i ⊙ f Dep

Sim (i), (4.12)

where ⊙ represents Hadamard product, the gate function GAiF
i = σ(Conv( f AiF

Sim (i))) with Conv(·) and
σ(·) denoting a convolutional layer and a Sigmoid function, respectively. In CMA-Net, we cascade
two identical mutual attention modules to establish the decoder, thus acquiring the best performance
(see detailed ablation studies in Section 4.2.5).

Co-supervision and hybrid loss. As shown in Fig. 4.7, to stabilize the multi-modal learning process,
we apply a three-way strategy to co-supervise the training of our CMA-Net. Besides, inspired by a
multi-loss function training setting applied in [122], we combine three loss functions including widely
used binary cross entropy loss (ℓBCE), intersection over union loss (ℓIoU) and E-loss (ℓEM = 1−Eφ ),
which is based on a recently proposed salient object segmentationmetric (Eφ [279]). Therefore, our
hybrid loss function is denoted as:

ℓ=
N

∑
n=1

ℓBCE(Pn,G)+ ℓIoU(Pn,G)+ ℓEM(Pn,G), (4.13)

where {Pn}3
n=1 ∈ [0,1] denotes the predicted three-way saliency maps, while G ∈ {0,1} denotes the

corresponding ground-truth binary mask.

Implementation details. Our CMA-Net is implemented in PyTorch 1.8 and optimized with Adam
algorithm [3]. During the training stage, the batch size is set to 16, the learning rate is initialized as
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1e-4 with a decay rate of 0.1 for every 50 epochs. It takes about one hour to finish the training of
CMA-Net based on a platform consists of Intel® Xeon(R) W-2255 CPU @ 3.70GHz and one Quadro
RTX 6000 GPU.

4.2.5 Experiments

Settings.
Datasets. We evaluate our SA-Net, SA-Net-V2, CMA-Net and 28 state-of-the-art salient object seg-
mentation methods based on three widely-used light field datasets: DUT-LF, HFUT and LFSD, which
all provide focal stack and semantic ground truth corresponding to each of the all-in-focus images (see
detailed statistics of light field datasets in Section 2.4.3). For fair comparison, we simply follow the
settings of a top-ranking method, i.e., ERNet [245]. To be specific, 1000/100 all-in-focus images of
DUT-LF/HFUT are randomly selected as the training set, respectively, while the remains (462+155)
and the whole LFSD are used for testing. Notably, as for competing methods, we report the results
directly provided by authors or generated by officially released codes.

Metrics. We adopt the recently proposed S-measure (Sα ) [278] and E-measure (Eφ ) [279], also the
generally agreed Mean Absolute Error (M) [277] and F-measure (Fβ ) [276] as evaluation metrics
for the quantitative comparison between benchmark models and SA-Net and SA-Net-V2. Please
note that, following the benchmark in [245], we report adaptive F/E-measure scores of each of the
benchmark models.
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Fig. 4.8 F-measure (Fβ ) and E-measure (Eφ ) curves of state-of-the-art light field salient object seg-
mentation models and our SA-Net upon three datasets.

Comparison with state-of-the-art methods.
Quantitative results. We quantitatively compare our SA-Net, SA-Net-V2 and CMA-Net with 12/9/7
state-of-the-art RGB/RGB-D/light field salient object segmentation methods, respectively. As shown
in Table 4.1, our SA-Net-V2 outperforms all state-of-the-art salient object segmentation models by a
large margin in terms of all four evaluation metrics. We also perform a detailed comparison between
our SA-Net, CMA-Net and the competing light field salient object segmentation methods by using
F/E-measure curves. The results, shown in Fig. 4.8 and Fig. 4.10, indicate the F/E-measure curves of
our SA-Net and CMA-Net are higher than those ones of competing models.

Qualitative results. Furthermore, we show some of the predicted saliency maps in Fig. 4.9 and Fig.
4.11. As can be observed, our SA-Net and CMA-Net provide saliency maps closest to the ground
truth on various aspects, e.g., correct localization, intact object structure and clear details.



4.2 Learning synergistic attention for light field salient object segmentation 105

Table 4.1 Quantitative results for different models on three benchmark datasets. The best scores are in
boldface. We train and test our SA-Net, SA-Net-V2 and CMA-Net with the setting that is consistent
with [245], which is the state-of-the-art model at present. ⋆ indicates tradition methods. - denotes
no available result. ↑ indicates the higher the score the better, and vice versa for ↓. LF = light field
salient object segmentation methods. 3D = RGB-D salient object segmentation models. 2D = 2D
image-based salient object segmentation methods.

Types Models
DUT-LF [240] HFUT [239] LFSD [238]

Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓

LF

SANetV2 0.941 0.940 0.964 0.023 0.803 0.853 0.887 0.055 0.865 0.873 0.900 0.061
SANet 0.920 0.918 0.954 0.032 0.736 0.784 0.849 0.078 0.844 0.841 0.889 0.074
CMANet 0.917 0.918 0.949 0.033 0.744 0.807 0.865 0.069 0.823 0.830 0.864 0.083
ERNetT [245] 0.889 0.899 0.943 0.040 0.705 0.777 0.831 0.082 0.842 0.838 0.889 0.080
ERNetS [245] 0.838 0.848 0.916 0.061 0.651 0.736 0.824 0.085 0.721 0.726 0.820 0.137
DLFS [241] 0.801 0.841 0.891 0.076 0.615 0.741 0.783 0.098 0.715 0.737 0.806 0.147
LFS⋆ [238] 0.484 0.563 0.728 0.240 0.430 0.579 0.686 0.205 0.740 0.680 0.771 0.208
MCA⋆ [239] - - - - - - - - 0.815 0.749 0.841 0.150
WSC⋆ [336] - - - - - - - - 0.706 0.706 0.794 0.156
DILF⋆ [337] 0.641 0.705 0.805 0.168 0.555 0.695 0.736 0.131 0.728 0.755 0.810 0.168

3D

S2MA [343] 0.754 0.787 0.841 0.103 0.647 0.761 0.787 0.100 0.819 0.837 0.863 0.095
D3Net [216] 0.790 0.822 0.869 0.084 0.692 0.778 0.827 0.080 0.804 0.825 0.853 0.095
CPFP [346] 0.730 0.741 0.808 0.101 0.594 0.701 0.768 0.096 0.524 0.599 0.669 0.186
TANet [347] 0.771 0.803 0.861 0.096 0.638 0.744 0.789 0.096 0.804 0.803 0.849 0.112
MMCI [348] 0.750 0.785 0.853 0.116 0.645 0.741 0.787 0.104 0.796 0.799 0.848 0.128
PDNet [349] 0.763 0.803 0.864 0.111 0.629 0.770 0.786 0.105 0.780 0.786 0.849 0.116
PCA [350] 0.762 0.800 0.857 0.100 0.644 0.748 0.782 0.095 0.801 0.807 0.846 0.112
CTMF [351] 0.790 0.823 0.881 0.100 0.620 0.752 0.784 0.103 0.791 0.801 0.856 0.119
DF [352] 0.733 0.716 0.838 0.151 0.562 0.670 0.742 0.138 0.756 0.751 0.816 0.162

2D

F3Net [122] 0.882 0.888 0.900 0.057 0.718 0.777 0.815 0.095 0.797 0.806 0.824 0.106
GCPANet [121] 0.867 0.885 0.898 0.064 0.691 0.777 0.799 0.105 0.805 0.822 0.809 0.097
EGNet [141] 0.870 0.886 0.914 0.053 0.672 0.772 0.794 0.094 0.762 0.784 0.776 0.118
PoolNet [140] 0.868 0.889 0.919 0.051 0.683 0.776 0.802 0.092 0.769 0.800 0.786 0.118
PAGRN [353] 0.828 0.822 0.878 0.084 0.635 0.717 0.773 0.114 0.725 0.727 0.805 0.147
C2S [354] 0.791 0.844 0.874 0.084 0.650 0.763 0.786 0.111 0.749 0.806 0.820 0.113
R3Net [355] 0.783 0.819 0.833 0.113 0.625 0.727 0.728 0.151 0.781 0.789 0.838 0.128
Amulet [356] 0.805 0.847 0.882 0.083 0.636 0.767 0.760 0.110 0.757 0.773 0.821 0.135
UCF [357] 0.769 0.837 0.850 0.107 0.623 0.754 0.764 0.130 0.710 0.762 0.776 0.169
SRM [358] 0.832 0.848 0.899 0.072 0.672 0.762 0.801 0.096 0.827 0.826 0.863 0.099
NLDF [359] 0.778 0.786 0.862 0.103 0.636 0.729 0.807 0.091 0.748 0.745 0.810 0.138
DSS [360] 0.728 0.764 0.827 0.128 0.626 0.715 0.778 0.133 0.644 0.677 0.749 0.190

Robustness of the proposed SA-Net. It is worth nothing that our SA-Net and SA-Net-V2 trained on
DUT-LF and HFUT also achieves promising performance on the unseen dataset, i.e., LFSD, indicat-
ing its superior generalization ability and robustness. Theoretically, the robustness of SA-Net owes to
the synergistic attention mechanism. In practice, attention mechanisms can improve network robust-
ness [146, 353, 359] since they emphasize the most informative features and reduce the disturbance
of noisy features. Our SA module employs both channel attention and co-attention for better feature
representation, which can also improve the robustness of our model.

Efficiency of the propposed CMA-Net. It is worth mentioning that our CMA-Net is capable of running
at 53 fps, being much more efficient than the top-ranked ERNetT [245] which reports an inference
speed of only 14 fps. Besides, our proposed SA-Net and SA-Net-V2 have run-time of 47 fps and
26 fps during testing, respectively. Please note that the inference speed of all proposed models, i.e.,
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AiF Image Ground Truth Ours ERNetT ERNetS LFS⋆ DILF⋆S2MA D3Net

Fig. 4.9 Qualitative comparison between our SA-Net and state-of-the-art light field salient object
segmentation models. ⋆ denotes traditional methods. Our SA-Net provides predictions closest to the
ground truth on various aspects. More visual results are shown in Fig. 4.14, Fig. 4.15, Fig. 4.16 and
Fig. 4.17.
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Fig. 4.10 F-measure (Fβ ) and E-measure (Eφ ) curves of state-of-the-art light field salient object seg-
mentation models and our CMA-Net upon two benchmark datasets, i.e., DUT-LF and HFUT.

SA-Net, SA-Net-V2 and CMA-Net are computed based on one Quadro RTX 6000 GPU.

Ablation studies of SA-Net.
To verify the effectiveness of each proposed module of our SA-Net, we conduct thorough ablation

studies by gradually adding key components. We first construct a baseline “B”, which extracts all-
in-focus and focal stack features with two 2D ResNet50 backbones, simply concatenates, and up-
samples the pair-wise high-level features for salient object segmentation.

Effectiveness of multi-modal encoder. To investigate the effectiveness of our multi-modal encoder,
we construct the second ablated version “ME”, which is similar to “B”, but using a 3D backbone
to extract focal stack features, consistent with our multi-model encoder (Section 4.2.3). The results,
shown in Table 4.2, indicate that “ME” outperforms “B” in terms of all evaluations, demonstrating
the effectiveness of our 3D convolutional neural network-based encoder. Besides, to confirm the
effectiveness of RFB for multi-level feature refinement, we also construct “ME0” without using the
RFB, when compared to “ME”. The result (Table 4.2) shows that RFB benefits significantly to the
task.

Effectiveness of synergistic attention (SA) module. To investigate the effectiveness of our SA module,
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AiF Image Ground Truth Ours ERNetT ERNetS LFS⋆ DILF⋆MoLF BBSNet

Fig. 4.11 Visual results our CMA-Net and state-of-the-art multi-modal salient object segmentation-
models. ⋆ denotes traditional methods. AiF Image = all-in-focus image.

we further construct “SA1” and “SA2”, which incorporate the SA into “ME” without and with CoA,
respectively. As shown in Table 4.2, both “SA1” and “SA2” improve the performance in comparison
with “ME”. In particular, the full version of SA (“SA2”) provides a significant improvement compared
to “ME”, indicating the importance of synergistic attention for learning the complementarities of
multi-modal features. Besides, we compare SA-Net with F-SA (Figure 4.12), which consists of
full four SA modules that fuse both the high and low level features for light field salient object
segmentation. An interesting finding is that an increase of parameters (about 1.3 million of increment)
focusing on low level features do not contribute to performance improvement (Table 4.2), which is
also consistent with the conclusion in [139].

Effectiveness of progressive fusion (PF) module. Compared with “SA2”, “PF1” uses the deconvolu-

Table 4.2 Quantitative results for the ablation studies of SA-Net on DUT-LF [240] and LFSD [238].
The best scores are in boldface. ↑ indicates the higher the score the better, and vice versa for ↓.

Metric B ME0 ME SA1 SA2 PF1 PF2 F-SA SA-Net

D
U

T-
L

F Fβ ↑ 0.871 0.874 0.881 0.890 0.899 0.912 0.919 0.913 0.920

M ↓ 0.051 0.051 0.048 0.041 0.037 0.035 0.034 0.037 0.032

L
FS

D Fβ ↑ 0.811 0.825 0.835 0.836 0.835 0.838 0.839 0.845 0.844

M ↓ 0.095 0.089 0.080 0.079 0.077 0.075 0.075 0.078 0.074
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Fig. 4.12 An overview of F-SA with four SA modules. CoA = co-attention component. CA = channel
attention component. AA = AiF-induced attention component. RB = residual block.
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Fig. 4.13 Visual results of ablation models.

tional block (Figure 4.3) to gradually up-sample the features for predicting the saliency map. Besides,
a three-way supervision (“PF2”) is further employed to provide a deep supervision for the training.
Finally, with the AA component (details in Section 4.2.3), our SA-Net achieves the best performance
(Table 4.2), and provides the saliency maps closest to ground truth (Figure 4.13).

Ablation studies of CMA-Net.
We conduct thorough ablation studies to further verify the effectiveness of each module of the

proposed method. We first construct basic “model1” which consists of single-branch ResNet layers
and a group of (de-)convolutional layers, without the inputs of depth maps. Followed by “model2”,
which contains the duel-branch encoder with both all-in-focus images and depth maps as inputs. As a
result, we find that depth information can be helpful for the salient object segmentation task (Tab. 4.3).
We then carefully add mutual attention mechanisms to different decoding stages. The “model3” and
“model4” are embedded with one mutual attention module at the 2nd and 3rd stages (Section 4.2.4),
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Table 4.3 Quantitative results of the ablation studies of CMA-Net on DUT-LF [240] and HFUT [239].
The best scores are in boldface. ↑ indicates the higher the score the better, and vice versa for ↓.

Metric Model1 Model2 Model3 Model4 CMA-Net

DUT-LF

Fβ ↑ 0.879 0.895 0.914 0.915 0.917
Sα ↑ 0.893 0.911 0.916 0.916 0.918
Eφ ↑ 0.931 0.943 0.949 0.950 0.949
M ↓ 0.047 0.039 0.034 0.034 0.033

HFUT

Fβ ↑ 0.697 0.704 0.727 0.729 0.744
Sα ↑ 0.792 0.795 0.791 0.791 0.807
Eφ ↑ 0.837 0.828 0.842 0.858 0.865
M ↓ 0.074 0.078 0.076 0.071 0.069

respectively. Finally, we cascade two mutual attention modules (i.e., CMA-Net) and thus gaining the
best performance compared to all ablation models (Tab. 4.3).
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DILF⋆

Fig. 4.14 Visual comparison of our SA-Net and state-of-the-art salient object segmentation models
upon DUT-LF [240] (1/2). ⋆ indicates tradition methods.
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ERNetT
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Fig. 4.15 Visual comparison of our SA-Net and state-of-the-art salient object segmentation models
upon DUT-LF [240] (2/2). ⋆ indicates tradition methods.
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AiF Image

Ground Truth

SA-Net

ERNetT

ERNetS
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D3Net

LFS⋆

DILF⋆

Fig. 4.16 Visual comparison of our SA-Net and state-of-the-art salient object segmentation models
upon HFUT [239]. ⋆ indicates tradition methods.
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AiF Image

Ground Truth

SA-Net

ERNetT

ERNetS
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Fig. 4.17 Visual comparison of our SA-Net and state-of-the-art salient object segmentation models
upon LFSD [238]. ⋆ indicates tradition methods.
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4.3 Conclusion

In this chapter, we proposed new methodologies for light field salient object segmentation. The new
methods can be summarized from the following two aspects:
Focal stack-based strategy. We proposed SA-Net and SA-Net-V2, which address the light field
salient object segmentationby learning synergistic attention between two light field modalities, i.e.,
all-in-focus images and focal stacks. The innovative attributes of our SA-Net are three-fold:

• It exploits the cross-modal complementary information by establishing a synergistic effect be-
tween multi-modal features.

• It is the first attempt to learn both the spatial and inter-slice features of focal stacks with 3D
convolutional neural networks.

• It predicts the saliency map with an effective fusion model in a progressive manner.

RGB-D-based strategy. Our CMA-Net, which consists of two cascaded novel mutual attention mod-
ules for RGB-D cross modal high-level feature fusion. CMA-Net achieves comparable performance
on widely used light field benchmark datasets based on four widey used salient object segmenta-
tion metrics, and a superior inference speed of 53 fps.

To varify the effectiveness of the proposed models, we conducted extensive experiments on three
widely-used light field datasets where 28 state-of-the-art salient object segmentation models and four
widely-adopted metrics are involved. Extensive qualitative and quantitative experimental results on
three light field datasets demonstrate the superiority of our SA-Net [251], SA-Net-V2 and CMA-
Net when compared to 28 competing models.

Our work towards light field salient object segmentation proved the ability of mutual attention
mechanism in multi-modal feature fusion and refinement, also inspired global-local feature fusion in
the 360° domain (Chapter 5).



Chapter 5

Salient object segmentation in 360°
images&videos

5.1 Introduction

In this chapter, we first illustrate our work towards 360° image-based salient object segmentation (Sec-
tion 5.2). Specifically, inspired by the synergistic attention proposed in our SA-Net [251], we further
propose channel-spatial mutual attention to fuse global-local features for effective salient object seg-
mentation in 360° images. As a result, our new method outperforms state-of-the-art segmentation
methods based on a 360° image-based salient object segmentation benchmark where multiple fine-
tuning and testing strategies are applied to the widely-used 360° datasets. Extensive experimental
results illustrate the effectiveness and robustness of the proposed method.

To further approximate the scenario where persons depend on both audio and visual cues to lo-
cate and recognize the salient objects in dynamic immersive environments, we summarize our work
(Section 5.3) towards 360° audio-visual salient object segmentation based on our newly proposed
panoramic audio-visual dataset, i.e., PAVS10K (Section 3.4). Specifically, we proposed a new audio-
visual conditional variational auto-encoder combining both audio and visual cues for effective and
interpretable 360° video-based salient object segmentation. As a result, our new 360° audio-visual
model is able to outperform state-of-the-art salient object segmentation and video object segmentation
methods and to estimate uncertainties towards model predictions.



116 Salient object segmentation in 360° images&videos

5.2 Channel-spatial mutual attention for 360° image-based salient ob-
ject segmentation

In this section, we introduce our work towards 360° image-based salient object segmentation. Specif-
ically, we conduct 360° panoramic salient object segmentation by taking advantage of both global
and local visual cues of 360° images, with a novel channel-spatial mutual attention network (CSMA-
Net). The key component of the CSMA-Net is the proposed CSMA module, which cascades channel-
/spatial-weighting-based mutual attentions. And it is worth noting that, the new CSMA is inspired by
the SA module in SA-Net as introduced in the last section.

The objective of our CSMA module is to refine and fuse the bottleneck features from two separate
encoders with different planar representations of 360° panorama as inputs, i.e., equirectangular image
and cube map.

5.2.1 Introduction

(0°, 0°) (90°, 0°)

(180°, 0°)

(270°, 0°)

(0°, 90°)

(0°, -90°) Equirectangular Image Ground Truth

DDS CSMA-Net (Ours)Cube Maps

360° Panorama

Fig. 5.1 An example of 360° panoramic salient object segmentation in terms of our CSMA-Net and
DDS [257], which is a state-of-the-art model.

To recall, salient object segmentation is a task aiming to finely segment the objects that grasp
most of the human attention within a given image, thus distinguishing itself from common visual
saliency prediction [361] where only informative and salient regions are identified. During the past
years, hundreds of deep learning methods have been proposed [16] to solve salient object segmenta-
tion in 2D images. Inspired by the benchmarks and methodologies of 2D salient object segmentation,
360° panoramic salient object segmentation [256] recently becomes a burgeoning field where the al-
gorithms learn to segment the salient objects in images with a 360°×180° (Fig. 5.1) field-of-view
depicting the real-life daily scenes. Owing to the importance of learning object-level human visual
attention in immersive environments [257], 360° panoramic salient object segmentation is thus con-
sidered as one of the most essential joinpoints between salient object segmentation academia and
augmented-/virtual-reality industries.
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Compared to 2D salient object segmentation, 360° salient object segmentation is a burgeoning
field where, as illustrated in Chapter 3, only three datasets have been established, i.e., 360-SOD [257],
F-360iSOD [256] and 360-SSOD [258]. To the best of our knowledge, DDS [257], FANet [334]
and SW360 [258] are the only methods exclusively designed for 360° salient object segmentation.
DDS [257] proposes a distortion-adaptive module which divides an inputting equirectangular image
into four blocks, and tries to learn the features representing the specific level of geometrical distortions
of each block locating at different regions of the given equirectangular image. The method is able
to outperform contemporary 2D salient object segmentation methods, yet considers visual cues only
from equirectangular blocks which focus less on local details compared to cube maps. FANet [334]
uses channel attention mechanism [145] to weight and fuse the features of encoders for both the
equirectangular image and cube maps. SW360 [258] designs a multi-stage framework to obtain the
final predictions with the features based on 2D patches representing the content of local viewports.
However, the proposed framework can not be trained in an end-to-end manner. Considering the large
field-of-view, unique geometrical attributes and small objects, 360° salient object segmentation is still
an opening issue that is far from being solved.

As there is no perfect planar representation for 360° images, equirectangular image contains the
entire global context while brings extreme distortions to the region far from the equator (Fig. 5.1),
cube maps alleviate the distortions of local content while give artificial boundaries between each of
the cubes thus compromising the global continuity (Fig. 5.1). To acquire a balance from this trade-
off, we follow the FANet [334] where the equirectangular image and cube map are considered for the
global and local visual cues’ modeling, respectively. Besides, to achieve more effective feature fu-
sion, we argue that more sophisticated attention mechanisms (e.g., mutual attention [180]) should be
applied to explore the complementary information of visual cues of equirectangular image and cube
map. To this end, we propose CSMA-Net, which consists of two separated encoder-decoder archi-
tectures and a novel channel-spatial mutual attention (CSMA) module fusing the bottleneck features
of both branches of equirectangular image and cube maps. As a result, our CSMA-Net outperforms
10 state-of-the-art models, as being fine-tuned and tested on multiple 360° salient object segmenta-
tion datasets.

5.2.2 Methodologies

In this section, we introduce the framework of our CSMA-Net (Fig. 5.2), which consists of two
encoder-decoder architectures and a new channel-spatial mutual attention (CSMA) module. The
whole architecture of our CSMA-Net is trained in an end-to-end manner.
Uniqueness of the proposed CSMA-Net. Our CSMA-Net is inspired by both COSNet [180] and
our SA-Net which designed mutual attention modules that operate only on spatial domain. Recently,
[223] proposed channel-wise mutual attention mechanism to facilitate feature refinement for the task
of scene segmentation. However, the idea of designing channel-spatial mutual attention in a cascaded
manner still lacks discussion. In this work, we propose to build a cascaded channel-spatial mutual
attention module to aid global-local feature fusion based on 360° images.
Encoder-decode architecture. Inspired by FANet [334], we use equirectangular image and cube
maps as the inputs, which represent the global and local visual cues of 360° image, respectively. With
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Fig. 5.2 The architecture of our CSMA-Net. The short names in the figure are detailed as follows:
CSMA = the proposed channel-spatial mutual attention module. E2C/C2E = the projection interac-
tion module which transforms the equirectangular (ER) image/cube maps to cube maps/ER image,
respectively. ASPP = atrous spatial pyramid pooling module [181]. Enc.ER = the hybrid-ViT-based
encoder [345] for equirectangular image. Enc.CM = the Res2Net-based encoder [362] for cube maps.
Dec. = the decoder from RCRNet [178].

the given equirectangular image from 360-SOD [257] or 360-SSOD [258], we first apply the “E2C”
module [363] to transform the equirectangular image to cube maps representing the local viewports
observed from six orientations. We then feed the equirectangular image and corresponding cube maps
to the separate encoders (Fig. 5.2), thus gaining hierarchical features { f ER

i }3
i=1 and { f CM

i }3
i=1, also

bottleneck features, i.e., f ER
ASPP and f CM

ASPP. Further, we use the decoder structure from RCRNet [178]
and add skip connections to link the {{ f ER

i }3
i=1, { f CM

i }3
i=1} to the corresponding decoding layers. The

bottleneck features { f ER
ASPP, f CM

ASPP} are then fed into the CSMA module for 360° spatial global-local
feature fusion.

Channel-spatial mutual attention (CSMA). Inspired by the co-attention network, i.e., COSNet
[180], which is used for video object segmentation, we propose CSMA module establishing global
connections between the bottleneck features { f ER

ASPP, f CM
ASPP} ∈ RH×W×C respectively encoded from

equirectangular image and cube maps. Being different to mutual-attention networks such as COS-
Net [180] and SA-Net [251], where only spatial-wise mutual attention is considered, we also in-
troduce channel-wise operations [223] and thus establishing channel-spatial mutual attention in a
cascaded manner, as shown in Fig. 5.2. Specifically, we first compute a similarity matrix Mc:

Mc = F( f ER
ASPP)

T⊗F( f CM
ASPP), (5.1)

where ⊗ denotes matrix multiplication. (·)T means the transpose of a matrix. F(·) denotes a flatten
operation which reshapes f ER

ASPP ∈ RH×W×C to a 2D matrix with the dimension of HW ×C. Mc ∈
RC×C. We thereby gain the channel-wise mutual attention-based outputs, i.e., f ER

CMA and f CM
CMA, by
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computing:

f ER
CMA = reshape( f ER

ASPP⊗Softmax(Mc)),

f CM
CMA = reshape( f CM

ASPP⊗Softmax(MT
c )).

(5.2)

We are then able to gain the similarity matrix Ms for spatial mutual attention, by computing:

Ms = F(GER
C ( f ER

CMA)⊙ f ER
CMA)⊗F(GCM

C ( f CM
CMA)⊙ f CM

CMA)
T, (5.3)

where ⊙ denotes Hadamard product. GER
C (·) means a gate function [180] that learns confidence for

the given features f ER
CMA. With the Ms, the corresponding spatial mutual attention-based results are

defined as:

f̂ ER
CSMA = reshape( f ER

CMA⊗Softmax(Ms)),

f̂ CM
CSMA = reshape( f CM

CMA⊗Softmax(MT
s )).

(5.4)

With the the other pair of gate functions {GER
S ,GCM

S }, we gain the final outputs of the CSMA module:

f ER
CSMA = GER

S ( f̂ ER
CSMA)⊙ f̂ ER

CSMA,

f CM
CSMA = GCM

S ( f̂ CM
CSMA)⊙ f̂ CM

CSMA.
(5.5)

Please refer to Fig. 5.2 for the model visualization. Besides, the effectiveness of the proposed CSMA
module is tested in Section 5.2.3 where thorough ablation studies are presented.
Loss function. As shown in Fig. 5.2, our CSMA-Net is trained in an end-to-end manner by using
structure loss (LS) [122], which is the sum of the weighted BCE loss (LS

wbce) and the weighted IoU
loss (LS

wiou). Therefore, the objective function (L) for our CSMA-Net is thus defined as:

L = LS(PER,Y )+LS(PCM,E2C(Y )), (5.6)

where PER and PCM are the predictions of equirectangular image-based global and cube maps-based
local branches, respectively. Y is the ground truth (Fig. 5.2). E2C(Y ) outputs cube maps correspond-
ing to the given Y .
Implementation details. Our CSMA-Net is implemented in PyTorch, trained with Adam opti-
mizer [3]. Following the common settings in 2D salient object segmentation, we initialize our dual-
branch encoder-decoder framework with DUTS-tr [20]-based pre-training. On the other hand, the
proposed CSMA is randomly initialized. For fair comparison, we simply follow FANet [334] and
resize each input equirectangular image to 512×1,024, without using multi-scale or any data aug-
mentation strategies. During fine-tuning, the batch size is set to 1, the default learning rate is fixed to
2.5-6. It takes about 2.5 hours to fine-tune the model on the training set of 360-SOD [257], based on
the PC consisting of Intel® Xeon® W-2255 CPU@3.70GHz and one Quadro RTX-6000 GPU.

5.2.3 Experiments

Settings.
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Benchmark datasets. To validate the effectiveness as well as the robustness of our CSMA-Net,
we establish a new benchmark (Table 5.1) based on cross-validation strategy where two 360° salient
object segmentation datasets, i.e., 360-SOD [257] and 360-SSOD [258] are applied for the fine-tuning
and testing of our CSMA-Net and the 10 competing methods. 360-SOD [257], as the first 360° salient
object segmentation dataset, provides 400 and 100 equirectangular images for training (360-SOD-tr)
and testing (360-SOD-te), respectively. 360-SSOD [257] consists of training set (360-SSOD-tr) of
850 equirectangular images and a testing set (360-SSOD-te) of 255 equirectangular images. Both
datasets provide pixel-wise binary masks as ground truth.
Benchmark models. The 10 competing models include 7 state-of-the-art 2D salient object segmen-
tation methods (CPD [139], BASNet [138], MINet [126], LDF [128], CSFR2 [129], GateNet [132]
and JointCS [364]), two 360° salient object segmentation models (i.e., DDS [257] and FANet [334])
and one transformer-based segmentation model, i.e., TransUNet [365]. Following the settings of
the premier 360° salient object segmentation benchmark [257], all seven 2D salient object segmen-
tation benchmark models are based on DUTS-tr (2D salient object segmentation training set) [20]
pre-training and fine-tuned with 360° datasets in an end-to-end manner. For fair comparison, we also
train the TransUNet [365] with DUST-tr [20] before the fine-tuning process. As for FANet [334], we
directly fine-tune the model with 360° datasets and without using DUTS-tr based pre-training, since it
only accepts equirectangular images as inputs. We fine-tune each of the benchmark models with their
recommended hyper-parameters. Please note that we do not include SW360 [258] in our benchmark
since it can not be fine-tuned in an end-to-end manner.
Evaluation metrics. Following the common settings in 2D salient object segmentation, we apply four
widely used metrics, i.e., mean F-measure (Fβ ) [276], MAE (M ) [277], S-measure (Sα ) [278] and
mean E-measure (Eφ ) [279], for the evaluation of all benchmark models and our CSMA-Net.

Table 5.1 Performance comparison of our CSMA-Net and 10 state-of-the-art methods. Sα = S-
measure (α=0.5) [278], Fβ = mean F-measure (β 2=0.3) [276], Eφ = mean E-measure [279], M =
mean absolute error [277]. ↑/↓ denotes a larger/smaller value is better. ‡ denotes codes not released.
The three best results of each column are in red, green and blue.

Methods Year
Fine-tuning on 360-SOD-tr [257] Fine-tuning on 360-SSOD-tr [258]

360-SOD-te [257] 360-SSOD-te [258] 360-SOD-te [257] 360-SSOD-te [258]
Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓

CPD [139] CVPR’19 .765 .624 .798 .030 .666 .432 .698 .051 .721 .573 .736 .031 .748 .578 .785 .031
BASNet [138] CVPR’19 .801 .689 .840 .024 .659 .451 .728 .050 .778 .661 .804 .027 .746 .597 .809 .031
MINet [126] CVPR’20 .797 .708 .866 .022 .664 .456 .714 .052 .746 .632 .788 .027 .747 .602 .807 .029
LDF [128] CVPR’20 .813 .706 .869 .021 .673 .471 .730 .050 .783 .671 .824 .028 .763 .622 .836 .031
CSFR2 [129] ECCV’20 .847 .779 .879 .017 .664 .447 .691 .049 .752 .550 .696 .035 .700 .448 .681 .043
GateNet [132] ECCV’20 .793 .639 .791 .028 .668 .419 .681 .056 .747 .560 .730 .038 .730 .504 .723 .041
JointCS [364] CVPR’21 .829 .749 .889 .022 .679 .489 .741 .050 .791 .700 .845 .026 .764 .620 .835 .032

DDS [257] JSTSP’19 .803 .696 .866 .023 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
FANet [334] SPL’20 .826 .749 .873 .021 .642 .420 .688 .053 .735 .566 .703 .034 .717 .523 .727 .039

TransUNet [365] arXiv’21 .815 .719 .887 .023 .671 .474 .754 .057 .784 .693 .851 .028 .771 .642 .847 .028

CSMA-Net ICPR’22 .873 .833 .924 .016 .698 .531 .757 .048 .829 .777 .881 .020 .784 .661 .859 .028

Performance comparison.
Quantitative results. As shown in Table 5.1, our CSMA-Net outperforms all the competing mod-
els by a large margin over two fine-tuning 360° datasets (360-SOD [257] and 360-SSOD [258]),
in terms of four widely used salient object segmentation metrics, i.e., F-measure, MAE, S-measure
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and E-measure. Among all benchmark models, CSFR2 [129] and TransUNet [365] are able to pre-
dict competing results owing to the advanced backbones, i.e., Res2Net [362] and hybrid-ViT [143].
JointCS [364], as the most recently proposed salient object segmentation model in our benchmark,
also provides close results when compared to our CSMA-Net.

Ground Truth Overlaid Spherical Viewport

Equirectangular ImageOurs

DDS FANet

Fig. 5.3 An example illustrates the situation where our CSMA-Net(Ours) is able to detect small
meaningful object, which is simply neglected by current 360° salient object segmentation datasets
and models.

Qualitative results. Besides, as shown in Fig. 5.4, our CSMA-Net is able to predict results closest
to the ground truth, from the respects of four cross-validation strategies. Specifically, our CSMA-
Net provides saliency maps where salient objects are accurately spotted and finely depicted. On the
other hand, the competing models sometimes fail to detect the 360° geometrical distortions (e.g., the
2nd, 5th and 6th rows in Fig. 5.4 or small targets (e.g., the 1st, 3rd and 11th rows in Fig. 5.4). Due to
the limited space, we do not include the visualization results regrading all benchmark models in Fig.
5.4. Please refer to our supplementary materials for more qualitative results.
Ablation study.

First, as shown in Table 5.2, we verify the effectiveness of dual-branch encoder-decoder frame-
work via “w/o ASPP”, which is not loaded with ASPP [181] and any attention mechanisms. To
further prove the effectiveness of the proposed CSMA module, we design another four ablated ver-
sions of our method, train and fine-tune them according to the same setting of our CSMA-Net. The
quantitative results of fine-tuning and testing on two 360° salient object segmentation datasets re-
spectively are shown in Table 5.2. Specifically, we first design a baseline version, denoted as “w/o
Atten.”, where no attention-based global-local feature interaction conducted at the bottleneck of the
dual-branch encoder-decoder framework. We then focus on the validation of the proposed mutual-
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Table 5.2 Ablation studies for our CSMA-Net. Sα = S-measure (α=0.5), Fβ = mean F-measure
(β 2=0.3), Eφ = mean E-measure, M = mean absolute error. ↑/↓ denotes a larger/smaller value is
better. The two best results of each column are in red and blue.

Methods
360-SOD-te [257] 360-SSOD-te [258]

Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓
w/o ASPP .864 .809 .920 .018 .777 .645 .849 .033
w/o Atten. .869 .806 .916 .017 .776 .656 .837 .032
w/ SM-Atten. .869 .820 .923 .017 .780 .666 .846 .028
w/ CM-Atten. .870 .820 .918 .016 .781 .670 .854 .028
w/ CSMA(Ours) .873 .833 .924 .016 .784 .661 .859 .028

attention mechanism, i.e., CSMA. Inspired by SA-Net [251] and COSNet [180], we add spatial-wise
mutual-attention module to the bottleneck of the framework, thus gaining the version “w/ SM-Atten.”.
Similarly, we replace the spatial-wise operation with channel-wise one and thus acquiring “w/ CM-
Atten.”. Further, we cascade both the channel-wise and spatial-wise mutual attentions and gain the
final version of our CSMA module, i.e., “w/ CSMA”.

As a result, all mutual attention-based versions (i.e., “w/ SM-Atten.”, “w/ CM-Atten.” and “w/
CSMA”) outperform the baseline version (“w/o Atten.”). More importantly, “w/ CSMA” provides
the best results compared to the others, indicating the effectiveness and importance of our CSMA
module.

5.2.4 Discussion

Mutual attention for 360°. Our CSMA module successfully fuse the global-local spatial information
of 360° panoramic images based on equirectangular and cubemap projections. The ablation studies
validate the effectiveness of the proposed CSMA module. Further, both the qualitative and quanti-
tative experimental results illustrate the superiority of our CSMA-Net, which owes to the proposed
mutual-attention-based global-local interactive architecture (Fig. 5.2).

Cross-validation strategy. As illustrated in Section 5.2.3, we establish so far the first 360° salient
object segmentation benchmark involving multiple fine-tuning strategies, i.e., fine-tuning on 360-
SOD-tr [257] and testing on 360-SOD-te, fine-tuning on 360-SOD-tr and testing on 360-SSOD-te,
fine-tuning on 360-SSOD-tr [258] and testing on 360-SOD-te, fine-tuning on 360-SSOD-tr and testing
on 360-SSOD-te. Based on the sufficient quantitative results (Table 5.1), we observe a performance
gap between different strategies, e.g., the mean F-measure scores of all methods based on “fine-tuning
on 360-SOD-tr and testing on 360-SOD-te” and “fine-tuning on 360-SOD-tr and testing on 360-
SSOD-te” are about 0.717 and 0.459, respectively. The significant performance divergence indicates
that current deep learning-based segmentation methods are strongly data-biased.

Small objects. Besides superior performance, an interesting finding is that our CSMA-Net is able to
detect the small meaningful object in equirectangular images (Fig. 5.3), which tends to be ignored by
current 360° salient object segmentation methods such as DDS [257] and FANet [334], also be easily
regarded as non-salient objects in current datasets (e.g., an example collected from 360-SOD [257] in
Fig. 5.3) where the annotators conduct saliency judgements based on equirectangular image shown
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on PC screen, rather than Head-Mounted Displays which captures a wide field-of-view (360°×180°)
reflecting more realistic scenes (Fig. 5.3). Thus, our CSMA-Net probably provides supports for fu-
ture augmented-/virtual-reality applications, where omnidirectional field-of-view is widely applied
for human visual attention modeling and viewport-based meaningful objects may be considered im-
portant.
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Fig. 5.4 Visualization results of our CSMA-Net(Ours) and the state-of-the-art methods. Our CSMA-
Net is able to provide results closest to the ground truth. More visual results are presented in Fig. 5.5
and Fig. 5.6.
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Fine-tuning on 360-SOD-tr & Testing on 360-SOD-te Fine-tuning on 360-SOD-tr & Testing on 360-SSOD-te

Image

Ground Truth

CPD

BASNet

MINet

LDF

CSFR2

GateNet

JointCS

FANet

TransUNet

Ours

Fig. 5.5 More visualization results (part 1/2) of our CSMA-Net(Ours) and the state-of-the-art meth-
ods. Note that our CSMA-Net finely depicts small or distorted salient targets in equirectangular
images.
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Fine-tuning on 360-SSOD-tr & Testing on 360-SOD-te Fine-tuning on 360-SSOD-tr & Testing on 360-SSOD-te
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Fig. 5.6 More visualization results (part 2/2) of our CSMA-Net(Ours) and the state-of-the-art meth-
ods. Note that our CSMA-Net finely depicts small or distorted salient targets in equirectangular
images.

5.2.5 Conclusion

In this section, we propose a new end-to-end deep learning method, i.e., CSMA-Net, to conduct 360°
salient object segmentation by combing the global-local priors based on multiple 360° projection tech-
niques. To carefully explore the complementary information between equirectangular image and cube
maps, we further design a channel-spatial mutual attention (CSMA) module which is able to effec-
tively fuse the 360° multi-projection-based bottleneck features. Our CSMA-Net is able to outperform
current 2D/360° state-of-the-art methods by a large margin, based on a new cross-validation-based
360° salient object segmentation benchmark.
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5.3 Audio-visual salient object segmentation in 360° videos

5.3.1 Introduction

In the Section 3.4, we illustrate our newly proposed video dataset, i.e., PAVS10K, which is the first
360° audio-visual salient object segmentation dataset reflecting various real-world scenes. Based on
PAVS10K, in this chapter, we introduce a new baseline model, i.e., the first conditional variational
auto-encoder based audio-visual network (CAV-Net), which combines both audio and visual cues to
conduct salient object segmentation in 360° immersive dynamic scenes. Generally, our CAV-Net con-
sists of a spatial-temporal visual segmentation network, a convolutional audio-encoding network and
audio-visual distribution estimation modules.

As a result, CAV-Net models both audio and visual cues for the segmentation of salient objects in
360° videos and outperforms all benchmark models. Besides, the conditional variational auto-encoder
architecture of our CAV-Net enables aleatoric uncertainty estimation upon PAVS10K. Sufficient abla-
tion studies and qualitative uncertainty estimation results indicate the effectiveness and explainability
of our method. Besides, we also illustrate several findings based on extensive qualitative and quan-
titative experimental results, from the aspects of audio-visual modeling and uncertainty-aware object
segmentation.

5.3.2 Methodologies

In this sub-section, we introduce a new conditional variational auto-encoder based audiovisual 360°
salient object segmentation baseline model, i.e., CAV-Net, from the aspects of its motivation, formu-
lation, architecture and implementation details.
Motivation.
Audio-visual modeling. To the best of our knowledge, so far there is no released panoramic audio-
visual salient object segmentation or video object segmentation method and the common issue existed
among current state-of-the-art methods is the ignorance of audio cues. Since the salient objects in our
PAVS10K are defined based on both audio and visual cues, a new baseline model which combines
both audio and visual information, seeking to achieve better performance is worth attempting.
Unique aleatoric uncertainty estimation. As shown in Fig. 5.7, an interesting finding is that, neither
sounding objects nor visual-only salient objects are necessarily regarded as salient targets from a per-
spective of audio-visual-based saliency judgments. In other words, the audio-visual saliency can not
be regarded as a simple adding-up of the visual-only saliency and auditory stimuli. The other finding
is that our PAVS10K reflects a realistic phenomenon where subjects tend to show different sensitivi-
ties towards similar audio-visual information, and thus making very different choices when deciding
to which target to pay attention. The two findings indicate that subjects’ personal preference intro-
duce unavoidable ambiguities to audio-visual saliency judgments and thus bringing “unique aleatoric
uncertainty” to the ground truth of audio-visual salient object segmentation dataset, especially when
it comes to 360° panoramic scenes where multiple foreground objects and wide background context
are included.

To estimate the “unique aleatoric uncertainty”, we further add distribution estimation modules
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Fig. 5.7 An example (“Music”-“studio”) that illustrates the divergence of saliency judgments based on
visual-only and audio-visual cues. The annotations in PAVS10K are based on audio-visual saliency,
which may vary in different frames with similar audio-visual cues.

and thus adapting our salient object segmentation deterministic model to a conditional variational
auto-encoder [366], which is able to compute the distribution of model prediction. Therefore, our
new CVAE-based audiovisual panoramic salient object segmentation network (CAV-Net) is capable
of not only modeling dynamic audio-visual cues, but also estimating the uncertainty brought by the
subjective stochasticity towards 360° audio-visual data.
Uniqueness of CAV-Net. First, our CAV-Net considers both audio and visual cues to segment the
salient objects in 360 videos, thus distinguishing itself from current image/video-based salient object
segmentation methods which consider visual-only static/dynamic cues. Besides, our CAV-Net is
formulated as an end-to-end conditional variational auto-encoder which is able to conduct salient
object segmentation and aleatoric uncertainty estimation simultaneously.
Audio-visual conditional variational auto-Encoder.

As shown in Fig. 5.8, we first design an end-to-end encoder-decoder framework learning audio-
visual input data X (consisting of both visual sequence XV and associated audio record XA) via pa-
rameter set θ . Specifically, θ is the ensemble of parameters ({θ S,θ D,θ A}) modeling static-/dynamic-
visual cues and corresponding audio cues.
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Fig. 5.8 The architecture of our CAV-Net, which consists of the proposed audio-visual posterior
and prior distribution estimation modules (DEMs), a SoundNet-based audio encoder [70], a hybrid-
ViT [345]-based visual encoder, fully convolutional decoders and one non-locally enhanced temporal
module (NER) cited from RCRNet [178]. θ S, θ D, θ A, π and ϕ are model parameter sets modeling
static visual and dynamic visual cues, audio cues, prior and posterior distributions, respectively.

To further model the “unique aleatoric uncertainty” within the audio-visual salient object segmen-
tation dataset, we add extra inference modules to adapt the original audio-visual deterministic model
(θ ) to a new conditional variational auto-encoder, namely CAV-Net, which enables the modeling of
distribution of model prediction, i.e., P(Y |X ;θ). Specifically, following the common implementation
of conditional variational auto-encoder [367], we apply two convolutional encoders for the inference
of latent variable z which is capable of generating stochastic predictions and thus enabling the esti-
mation of uncertainty of model prediction. It is worth mentioning that, this model prediction based
uncertainty reflects intrinsic noises from training data [368], thus representing the aleatoric uncer-
tainty within salient object segmentation dataset. The two inference modules are thus named as the
prior (Pπ(z|X)) and posterior (Pϕ(z|X ,Y )) distribution estimation modules, where π and ϕ indicate
the parameter sets of the prior-/posterior-based encoders, respectively.

To train the proposed audio-visual conditional variational auto-encoder framework (CAV-Net),
we use the posterior distribution estimation module to approximate the true posterior distribution
of latent variable z. To this end, we further apply the Stochastic Gradient Variational Bayes [369]
framework to estimate the parameter sets of our CAV-Net, by maximizing the evidence lower bound:

L(θ ,ϕ,π;X) = Ez∼Pϕ (z|X ,Y )[log(Pθ (Y |X ,z))]−DKL(Pϕ(z|X ,Y )||Pπ(z|X)), (5.7)

where DKL(Pϕ(z|X ,Y )||Pπ(z|X)) denotes the Kullback–Leibler divergence loss, regarded as a regular-
ization closing the gap between the prior Pπ(z|X) and the posterior Pϕ(z|X ,Y ). With the conditional
variational auto-encoder framework, the aleatoric uncertainty (σ2) can then be computed as the mean
entropy of multiple model predictions:

σ
2 =

1
T

T

∑
t=1

H[P(Y |X ;θ ,ϕ)], (5.8)

where T is the number of iterations of sampling. H[·] denotes entropy operation.



130 Salient object segmentation in 360° images&videos

Table 5.3 Components (Comp.) of each of the modules of our CAV-Net. ‡ denotes component does
not exist.

Comp.
Modules of CAV-Net

π ϕ θ A θ D θ S

#Conv2D 5 5 7 7 98
#Conv3D ‡ ‡ ‡ 8 ‡
#Identity ‡ ‡ ‡ ‡ 56

#ReLU ‡ ‡ 7 ‡ 69
#GELU ‡ ‡ ‡ ‡ 14
#Linear 4 4 ‡ ‡ 51

#Bilinear 2 2 ‡ ‡ ‡

Network architectures.

We further illustrate the structural details of our CAV-Net, consisting of a static visual encoder-
decoder (θ S), a dynamic visual module (θ D), an audio encoder (θ A) and audio-visual prior-/posterior-
distribution estimation modules (π , ϕ). The detailed statistics of each module of our CAV-Net are
shown in Table 5.3.

Visual encoder-decoder. As shown in Fig. 5.8, our visual encoder-decoder framework consists of
two parts, i.e., θ S and θ D, thus modeling the static and dynamic visual cues respectively. Specifically,
we resort to the strong encoding ability of vision transformers [143] and thus using the hybrid-ViT
based encoder [345] to extract the abundant visual information of 360° images. The static visual
bottleneck features f S are then fed into a non-locally enhanced temporal module (NER) [178] to seek
inter-frame connections and thus aiding the dynamic visual cues modeling. As for the decoder, we
simply follow the state-of-the-art video-based salient object segmentation method, RCRNet [178],
and use its U-Net like skip connections to gradually refine the final visual bottleneck features f V with
an aid of hierarchical features { f S

i }3
i=1 gained from the first three vision transformer layers [345] of

the encoder.

Audio encoder. To encode the mono sound XA extracted from the given video clip, we apply the first
seven 1-D convolutional layers of the state-of-the-art network, i.e., SoundNet [70]. The output audio
feature vector f A is then used to synchronously model the prior and posterior distributions of model
predictions (Fig. 5.8).

Audio-visual distribution estimation module. Following [367], our prior and posterior distribution
estimation modules both use five convolutional layers to extract the latent features from visual input
(InputV in Fig. 5.8). Importantly, to fit the task of audio-visual salient object segmentation, our
distribution estimation modules take advantage of not only visual cues but also audio feature vector f A

(InputA) to estimate the distributions. Specifically, the audio-visual posterior distribution estimation
module takes the concatenation of video clip XV and ground truth Y as visual input and thus modeling
the visual latent space distribution with mean and standard deviation pair {µ post

V ,σ post
V }. Similarly, the

audio counterpart with mean and standard deviation pair {µ post
A ,σ post

A } can be easily gained with f A

as the input. To effectively use the audio-visual latent features, we are inspired by STAViS [59] which
uses bilinear operations to combine the multi-modal features, thus adding an extra bilinear layer (Fig.
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5.8) to the distribution estimation module to gain an audio-visual latent space distribution with mean
and standard deviation pair {µ post ,σ post}. Following the same procedure, the prior distribution with
mean and standard deviation pair {µ prior,σ prior} is acquired by using audio-visual prior distribution
estimation module. The only difference is that the prior distribution estimation module dose not need
ground truth Y as the input (Fig. 5.8).

The latent variables of both distributions are then obtained with the re-parameterization trick as:

zpost = µ
post +σ

post ⊙ ε, zprior = µ
prior +σ

prior⊙ ε, (5.9)

where ⊙ is the dot product operation, and ε ∼N (0,1). The zprior and zpost are then tiled to a 3-D
feature map with the same spatial size of bottleneck features f V to enable the feature concatenation.

Implementation details.

Loss function. Following the conditional variational auto-encoder formulation (Eq. 5.7), the total
loss L of our CAV-Net (Fig. 5.8) is defined as the sum of a prediction loss LP and a latent loss LL. The
LP is the widely used structure loss [122] consisting of a weighted binary cross entropy loss LP

wbce and
a weighted IoU loss LP

wiou, while the LL denotes the Kullback–Leibler divergence loss (the DKL in Eq.
5.7). Thus, the total loss of CAV-Net is formulated as:

L = LP(pprior,Y )+LP(ppost ,Y )+LL(zprior||zpost), (5.10)

where pprior/ppost are model predictions sampled from prior/posterior distributions respectively. Y is
ground truth.

Algorithms. The training and testing procedures of our CAV-Net are shown in Algorithm. 1 and
Algorithm. 2 respectively, to facilitate the re-implementation of our method.

Algorithm 1 Training CAV-Net.

Input: (1) Training video clips {XV
i }n

i , associated audio clips {XA
i }n

i and ground truth {Yi}n
i ; (2)

Maximum of learning iterations M.
Output: Parameters θ S, θ D and θ A for the static visual, dynamic visual and audio feature extraction
modules respectively, π and ϕ for the audio-visual prior and posterior distribution estimation
modules respectively (please refer to Fig. 5.8 for structural details).

1: Initialize θ S, θ D, θ A, π and ϕ

2: for t← 1 to M do
3: Sample video clip, corresponding audio clip and ground truth, {XV

i ,X
A
i ,Yi}b

i where b is the
batch size.

4: For each {XV
i ,X

A
i }, sample the prior zprior

i ∼ Pπ(z|XV
i ,X

A
i ) for T times, compute the

prior-based mean prediction pprior
i .

5: For each {XV
i ,X

A
i ,Yi}, sample the posterior zpost

i ∼ Pϕ(z|XV
i ,X

A
i ,Yi) for T times, compute

the posterior-based mean prediction ppost
i .

6: Synchronously update all parameters (θ S, θ D, θ A, π and ϕ) via the sum of prediction loss
and latent loss (Eq. 5.10).

7: end for

Hyper-Parameters. CAV-Net is implemented with PyTorch, optimized with Adam algorithm [3].
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Algorithm 2 Testing CAV-Net.

Input: Testing video clips {XV
i }n

i and audio clips {XA
i }n

i .
Output: Prediction pi and uncertainty σ2

i .
1: for i← 1 to n do
2: For each {XV

i ,X
A
i }, sample zprior

i ∼ Pπ(z|XV
i ,X

A
i ) for T times, compute the mean prediction

pi and the mean entropy of multiple predictions, i.e., σ2
i .

3: end for

Following the common settings of salient object segmentation methods, the static visual cues mod-
eling parts (θ S) of our CAV-Net are initialized with DUTS-tr [20] pre-training, while parameter sets
θ D, π and ϕ are randomly initialized. For fair comparison, we resize the input equirectangular video
frames to 416×832 (smaller than 512×1,024 applied in state-of-the-art 360° salient object segmenta-
tion method, FANet [334]), without using multi-scale or any other data augmentation tricks. During
training, the batch size is set as 1, default video clip length is 3, learning rate initialized as 2.5×10−6.
It takes about 9.5 hours to train the whole framework with the training set of our PAVS10K, based on
a PC consisting of Intel® Xeon® W-2255 CPU@3.70GHz and one Quadro RTX-6000 GPU.

5.3.3 Experiments

The detailed experimental settings are illustrated in Section 3.4.3. Following the same settings of
our proposed PAVS10K benchmark, we conduct thorough quantitative and qualitative experiments to
varify the effectiveness and superiority of the proposed new baseline model, i.e., CAV-Net.
Performance comparison.

Table 5.4 Performance comparison of our panoramic audio-visual network, i.e., CAV-Net and 12
state-of-the-art salient object segmentation/video object segmentation methods without training on
PAVS10K. I. = image-based salient object segmentation. V. = video-based salient object segmenta-
tion or video object segmentation. Best result of each column is bolded.

Type Year Methods
Miscellanea (Test1) Music (Test2) Speaking (Test3) PAVS10K-Test

Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓

I.

CVPR’19 CPD-R [139] .261 .623 .604 .084 .151 .506 .483 .135 .190 .526 .488 .162 .195 .545 .515 .137
ICCV’19 SCRN [297] .271 .625 .606 .087 .206 .598 .594 .051 .218 .559 .518 .130 .226 .584 .558 .101
AAAI’20 F3Net [122] .236 .609 .573 .082 .152 .509 .524 .150 .215 .567 .505 .105 .204 .563 .526 .110
CVPR’20 MINet [126] .225 .606 .573 .093 .152 .542 .531 .073 .180 .523 .469 .151 .183 .548 .509 .118
CVPR’20 LDF [128] .268 .622 .606 .083 .204 .550 .557 .087 .227 .546 .503 .137 .230 .566 .541 .112
ECCV’20 CSFR2 [129] .305 .650 .624 .075 .139 .510 .471 .129 .189 .545 .511 .128 .202 .562 .529 .116
ECCV’20 GateNet [132] .243 .637 .588 .069 .206 .594 .611 .035 .206 .569 .554 .090 .214 .591 .576 .072

V.

CVPR’19 COSNet [180] .280 .602 .581 .110 .181 .571 .614 .034 .232 .595 .587 .065 .230 .591 .592 .068
ICCV’19 RCRNet [178] .307 .666 .644 .062 .312 .630 .683 .040 .238 .591 .542 .065 .271 .619 .601 .058
AAAI’20 PCSA [175] .197 .629 .632 .042 .104 .543 .548 .030 .157 .565 .594 .037 .153 .575 .592 .036
BMVC’20 3DC-Seg [332] .231 .544 .523 .143 .268 .578 .663 .059 .193 .540 .584 .088 .220 .550 .588 .094
CVPR’21 RTNet [333] .331 .632 .602 .110 .436 .668 .769 .016 .338 .637 .639 .045 .361 .643 .661 .054

PAV. ‡ CAV-Net .410 .704 .705 .040 .466 .675 .801 .018 .391 .659 .742 .024 .414 .674 .747 .027

General Performance. To conduct thorough benchmark studies, we compare our new baseline model
CAV-Net with the competing salient object segmentation/video object segmentation models based on
two settings, i.e., with and without PAVS10K training. Specifically, we first download the officially
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Table 5.5 Performance comparison between our CAV-Net and 13 state-of-the-art methods (including
seven image-based salient object segmentation (I.), five video-based salient object segmentation or
video object segmentation (V.) and one 360° panoramic image-based salient object segmentation (PI.)
methods) with PAVS10K training.

Type Year Methods
Miscellanea (Test1) Music (Test2) Speaking (Test3) PAVS10K-Test

Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓

I.

CVPR’19 CPD-R [139] .248 .654 .645 .035 .272 .608 .632 .018 .228 .588 .657 .026 .243 .609 .648 .026
ICCV’19 SCRN [297] .250 .665 .615 .046 .341 .683 .664 .023 .276 .636 .642 .034 .286 .655 .641 .034
AAAI’20 F3Net [122] .257 .655 .629 .040 .358 .662 .749 .021 .308 .626 .692 .027 .310 .642 .691 .029
CVPR’20 MINet [126] .238 .650 .625 .050 .380 .670 .716 .020 .261 .590 .635 .053 .286 .624 .652 .044
CVPR’20 LDF [128] .280 .663 .626 .044 .389 .671 .753 .023 .309 .625 .711 .037 .322 .645 .701 .035
ECCV’20 CSFR2 [129] .238 .652 .642 .033 .347 .665 .693 .018 .285 .636 .700 .026 .290 .646 .684 .026
ECCV’20 GateNet [132] .285 .677 .651 .044 .290 .673 .616 .018 .260 .633 .638 .034 .273 .653 .636 .033

V.

CVPR’19 COSNet [180] .147 .610 .553 .031 .220 .577 .541 .016 .176 .572 .570 .023 .181 .582 .559 .023
ICCV’19 RCRNet [178] .272 .661 .640 .034 .403 .695 .738 .019 .282 .632 .687 .030 .310 .654 .688 .029
AAAI’20 PCSA [175] .123 .604 .574 .034 .310 .657 .645 .022 .150 .571 .534 .026 .184 .600 .570 .027
BMVC’20 3DC-Seg [332] .300 .668 .618 .062 .326 .635 .632 .046 .289 .629 .592 .056 .300 .640 .608 .055
CVPR’21 RTNet [333] .240 .622 .634 .038 .365 .638 .766 .020 .194 .555 .668 .028 .247 .591 .683 .029

PI. SPL’20 FANet [334] .164 .610 .529 .030 .380 .646 .758 .018 .207 .566 .663 .027 .241 .596 .654 .025
PAV. ‡ CAV-Net .410 .704 .705 .040 .466 .675 .801 .018 .391 .659 .742 .024 .414 .674 .747 .027

released best models of each of the state-of-the-art salient object segmentation/video object segmen-
tation methods and directly test these models on the testing set of our dataset (PAVS10K-Test). As a
result, our CAV-Net outperforms all 12 state-of-the-art baselines (with publicly available pre-trained
models) based on all four metrics (Table 5.4). Further, we re-train the 13 competing methods with the
training set of our PAVS10K and test them on PAVS10K-Test (Table 5.5). Finally, our CAV-Net still
outperforms all baselines in terms of F-/S-/E-measure.
Super-Class-wise Performance. The models’ performance based on each of the super-classes of our
PAVS10K are shown in Table 5.4 and Table 5.5. As a result, our audio-visual method, CAV-Net, is
able to outperform the 13 benchmark models based on both settings. Note that following quantitative
results are all based on PAVS10K training.
Attribute-wise Performance. As shown in Table 5.6, our CAV-Net outperforms all 13 competing
baselines on all seven PAVS10K’s attributes-based testing sets, in terms of F-/S-/E-measure. The
superior performance of CAV-Net upon all attribute-based testing sets indicate that our new baseline
model successfully considers all spotted challenges for salient object segmentation modeling.
Sub-Class-wise Performance. As shown in Table 5.7, our CAV-Net ranks first on 8 and 15 testing
sequences in terms of S-measure and E-measure respectively, thus being the most robust model when
compared to all competing baselines.
Qualitative Results. As shown in Fig. 5.9, Fig. 5.10 and Fig. 5.11, our CAV-Net is able to correctly
detect the audio-visual salient objects labeled with multiple attributes. For instance, in Fig. 5.9, the
train is finely depicted even though it is seriously distorted and blurred. In Fig. 5.10, the small person
is accurately segmented. In “Spanish” (Fig. 5.11), the occluded and distorted people are correctly
detected.



134 Salient object segmentation in 360° images&videos

Table 5.6 Performance comparison of 13 competing models and our CAV-Net based on each of the
attributes.

Attr. Metrics
I. V. PI. PAV.

CPD-R SCRN F3Net MINet LDF CSFR2 GateNet COSNet RCRNet PCSA 3DC-Seg RTNet FANet CAV-Net
[139] [297] [122] [126] [128] [129] [132] [180] [178] [175] [332] [333] [334] Ours

MO

Sα ↑ .610 .657 .644 .624 .648 .649 .653 .588 .661 .607 .643 .595 .605 .672
Fβ ↑ .244 .288 .315 .288 .324 .292 .270 .187 .319 .193 .302 .251 .258 .414
Eφ ↑ .655 .649 .705 .665 .718 .694 .637 .571 .706 .580 .614 .703 .676 .751
M ↓ .027 .034 .030 .045 .033 .027 .034 .024 .029 .027 .054 .028 .025 .028

OC

Sα ↑ .606 .655 .641 .619 .645 .645 .650 .577 .652 .600 .636 .586 .593 .667
Fβ ↑ .260 .294 .329 .298 .335 .301 .276 .191 .316 .202 .308 .259 .258 .422
Eφ ↑ .649 .639 .696 .651 .709 .682 .622 .554 .691 .570 .607 .694 .668 .751
M ↓ .023 .029 .026 .043 .028 .023 .030 .020 .025 .024 .045 .024 .022 .022

LR

Sα ↑ .605 .649 .639 .618 .637 .644 .647 .585 .650 .609 .633 .590 .598 .663
Fβ ↑ .229 .271 .301 .272 .303 .277 .255 .176 .294 .189 .286 .234 .238 .392
Eφ ↑ .640 .636 .693 .642 .694 .683 .625 .565 .687 .586 .600 .688 .657 .738
M ↓ .025 .034 .028 .045 .037 .025 .033 .022 .029 .026 .057 .029 .025 .028

MB

Sα ↑ .622 .651 .630 .620 .646 .638 .645 .582 .642 .586 .632 .595 .587 .666
Fβ ↑ .281 .304 .299 .298 .330 .297 .281 .212 .307 .197 .302 .271 .247 .419
Eφ ↑ .628 .630 .663 .637 .667 .668 .621 .563 .675 .563 .599 .676 .627 .736
M ↓ .021 .029 .027 .047 .029 .021 .030 .019 .024 .022 .044 .023 .020 .020

OV

Sα ↑ .634 .661 .568 .633 .636 .636 .639 .582 .630 .599 .641 .573 .611 .662
Fβ ↑ .311 .318 .167 .314 .309 .295 .258 .207 .276 .193 .362 .210 .310 .442

Eφ ↑ .652 .638 .538 .691 .676 .697 .637 .633 .732 .536 .671 .703 .679 .771
M ↓ .018 .021 .029 .038 .039 .021 .025 .021 .029 .021 .039 .022 .018 .019

GD

Sα ↑ .630 .662 .639 .633 .659 .646 .658 .588 .651 .578 .659 .587 .599 .680
Fβ ↑ .285 .309 .299 .294 .341 .304 .300 .189 .311 .156 .320 .247 .245 .425
Eφ ↑ .657 .653 .669 .676 .680 .674 .662 .564 .687 .538 .621 .666 .630 .739
M ↓ .037 .042 .040 .045 .043 .035 .042 .032 .037 .036 .062 .038 .034 .038

CS

Sα ↑ .625 .680 .667 .654 .664 .670 .676 .592 .680 .621 .654 .602 .616 .693
Fβ ↑ .277 .320 .357 .335 .361 .330 .304 .197 .354 .217 .324 .269 .279 .449
Eφ ↑ .674 .664 .720 .691 .740 .696 .655 .550 .711 .590 .625 .711 .697 .762
M ↓ .029 .035 .031 .035 .034 .028 .033 .026 .030 .029 .058 .031 .028 .031
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Table 5.7 Sα (α=0.5) and Eφ performance comparison of 13 competing models and our CAV-
Net based on each of the sequences. Sp. = Speaking. Mu. = Music. Mi. = Miscellanea. M. =
Metrics.

Super-class/Sequence M.
I. V. PI. PAV.

CPD-R SCRN F3Net MINet LDF CSFR2 GateNet COSNet RCRNet PCSA 3DC-Seg RTNet FANet CAV-Net
[139] [297] [122] [126] [128] [129] [132] [180] [178] [175] [332] [333] [334] Ours

Sp./Debate
Sα ↑ .547 .620 .605 .553 .566 .576 .628 .514 .559 .569 .601 .488 .557 .669
Eφ ↑ .600 .752 .818 .592 .829 .802 .768 .410 .809 .607 .640 .670 .702 .713

Sp./BadmintonConvo
Sα ↑ .712 .669 .617 .712 .613 .647 .652 .613 .668 .551 .627 .556 .635 .654
Eφ ↑ .759 .672 .564 .824 .667 .671 .746 .612 .782 .449 .647 .682 .713 .762

Sp./Director
Sα ↑ .679 .753 .701 .677 .756 .772 .726 .716 .755 .724 .726 .628 .672 .759
Eφ ↑ .735 .729 .852 .773 .849 .810 .681 .744 .774 .715 .690 .814 .768 .859

Sp./ChineseAd
Sα ↑ .601 .645 .551 .477 .631 .630 .605 .553 .542 .567 .642 .534 .595 .695
Eφ ↑ .504 .544 .548 .410 .597 .656 .564 .662 .652 .490 .689 .754 .523 .696

Sp./Exhibition
Sα ↑ .487 .469 .480 .469 .428 .492 .486 .487 .473 .510 .444 .460 .475 .514
Eφ ↑ .486 .365 .460 .350 .270 .508 .459 .514 .349 .510 .328 .309 .329 .578

Sp./PianoConvo
Sα ↑ .577 .652 .579 .607 .639 .636 .586 .603 .718 .508 .685 .593 .632 .686
Eφ ↑ .774 .673 .745 .833 .847 .807 .693 .706 .803 .418 .641 .694 .804 .843

Sp./FilmingSite
Sα ↑ .578 .633 .603 .610 .637 .645 .636 .578 .640 .631 .472 .551 .522 .631
Eφ ↑ .562 .627 .626 .636 .707 .654 .613 .540 .628 .652 .441 .720 .727 .775

Sp./Brothers
Sα ↑ .673 .686 .638 .655 .652 .697 .685 .662 .664 .669 .663 .571 .623 .715
Eφ ↑ .702 .690 .726 .718 .719 .729 .643 .676 .743 .666 .628 .671 .695 .783

Sp./Rap
Sα ↑ .498 .477 .521 .343 .507 .525 .463 .482 .506 .495 .578 .633 .532 .615
Eφ ↑ .530 .387 .548 .260 .484 .678 .400 .513 .590 .566 .557 .685 .733 .756

Sp./Spanish
Sα ↑ .606 .765 .746 .679 .793 .713 .701 .724 .700 .541 .773 .580 .602 .766
Eφ ↑ .662 .817 .845 .737 .876 .808 .833 .795 .811 .495 .735 .577 .514 .874

Sp./Questions
Sα ↑ .505 .640 .740 .563 .605 .691 .671 .576 .676 .595 .690 .530 .549 .702
Eφ ↑ .763 .609 .870 .576 .855 .700 .574 .569 .667 .540 .603 .747 .703 .724

Sp./PianoMono
Sα ↑ .598 .555 .573 .572 .629 .522 .637 .506 .611 .503 .637 .570 .502 .512
Eφ ↑ .682 .736 .688 .739 .746 .758 .696 .500 .736 .399 .573 .693 .633 .748

Sp./Snowfield
Sα ↑ .729 .811 .778 .800 .819 .779 .823 .601 .794 .584 .754 .704 .578 .819
Eφ ↑ .682 .783 .725 .769 .797 .721 .793 .490 .758 .523 .722 .777 .623 .814

Sp./Melodrama
Sα ↑ .609 .685 .655 .673 .667 .664 .617 .467 .608 .605 .626 .472 .568 .613
Eφ ↑ .699 .744 .732 .773 .784 .717 .710 .296 .730 .523 .623 .624 .770 .657

Sp./Gymnasium
Sα ↑ .551 .514 .492 .501 .501 .507 .537 .520 .520 .502 .501 .511 .505 .533
Eφ ↑ .584 .545 .461 .593 .469 .512 .487 .584 .518 .469 .420 .504 .642 .591

Mu./Studio
Sα ↑ .741 .770 .753 .788 .758 .739 .724 .637 .778 .758 .665 .743 .760 .721
Eφ ↑ .745 .731 .832 .826 .847 .756 .601 .629 .800 .730 .677 .837 .859 .779

Mu./Church
Sα ↑ .527 .589 .621 .566 .518 .624 .651 .562 .676 .627 .535 .546 .679 .720
Eφ ↑ .451 .575 .731 .576 .715 .601 .657 .487 .635 .579 .536 .687 .774 .850

Mu./Duet
Sα ↑ .662 .704 .698 .653 .751 .648 .730 .553 .731 .540 .672 .577 .643 .764
Eφ ↑ .810 .705 .792 .821 .808 .693 .735 .542 .776 .508 .702 .769 .765 .865

Mu./Blues
Sα ↑ .580 .742 .776 .722 .771 .734 .740 .595 .765 .747 .732 .730 .600 .639
Eφ ↑ .598 .688 .830 .698 .789 .766 .640 .473 .834 .716 .687 .875 .612 .768

Mu./Violins
Sα ↑ .589 .668 .537 .692 .661 .631 .656 .578 .669 .670 .653 .621 .604 .642
Eφ ↑ .679 .685 .507 .805 .751 .754 .599 .627 .754 .655 .679 .679 .779 .842

Mu./SingingDancing
Sα ↑ .506 .601 .582 .560 .561 .594 .568 .521 .569 .558 .566 .560 .557 .597
Eφ ↑ .500 .587 .758 .565 .618 .589 .547 .452 .637 .608 .532 .720 .705 .756

Mi./Dog
Sα ↑ .497 .516 .571 .560 .569 .557 .562 .523 .562 .540 .605 .548 .520 .603
Eφ ↑ .470 .467 .503 .521 .434 .543 .525 .504 .558 .550 .530 .556 .335 .565

Mi./RacingCar
Sα ↑ .770 .769 .763 .770 .772 .771 .791 .760 .772 .759 .749 .753 .762 .809
Eφ ↑ .760 .752 .726 .771 .757 .729 .788 .719 .733 .709 .715 .760 .708 .811

Mi./Train
Sα ↑ .604 .616 .614 .607 .629 .594 .663 .501 .524 .515 .638 .527 .489 .725
Eφ ↑ .581 .553 .486 .493 .554 .558 .634 .351 .462 .418 .606 .423 .386 .735

Mi./Football
Sα ↑ .653 .696 .618 .656 .668 .658 .676 .648 .710 .640 .604 .632 .556 .708
Eφ ↑ .634 .676 .755 .633 .770 .721 .663 .649 .732 .631 .637 .701 .477 .811

Mi./ParkingLot
Sα ↑ .635 .627 .624 .564 .640 .562 .625 .548 .624 .501 .688 .598 .627 .656
Eφ ↑ .641 .551 .600 .597 .625 .602 .610 .482 .612 .501 .599 .639 .593 .661

Mi./Skiing
Sα ↑ .697 .728 .689 .727 .632 .757 .695 .624 .745 .641 .647 .599 .590 .672
Eφ ↑ .705 .645 .669 .661 .517 .675 .605 .573 .716 .614 .554 .650 .500 .586
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Fixation overlaid Ground truth Prediction 𝝈𝟐

Fig. 5.9 Visualization results of our CAV-Net on sub-class “train”. “σ2” denotes uncertainty map
corresponding to the prediction.



5.3 Audio-visual salient object segmentation in 360° videos 137

Fixation overlaid Ground truth Prediction 𝝈𝟐
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Fig. 5.10 Visualization results of our CAV-Net on sub-class “snowfield”. “σ2” denotes uncertainty
map corresponding to the prediction.
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Fixation overlaid Ground truth Prediction 𝝈𝟐
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Fig. 5.11 Visualization results of our CAV-Net on sub-class “Spanish”. “σ2” denotes uncertainty map
corresponding to the prediction.

Ablation studies.

To verify the effectiveness of the proposed audio-visual distribution estimation module in our
CAV-Net, we conduct thorough ablation studies with multiple backbone strategies. Specifically,
we directly use an off-the-shelf distribution estimation module [367] as the ablation version of our
audio-visual distribution estimation module, thus gaining “Visual” and “Audio-visual” versions of our
method. As shown in Table 5.8, our “Audio-visual” models are able to outperform “Visual” models
based on each of the widely used backbones, i.e., ResNet50 [142], Res2Net50 [362] and Hybrid-
ViT [345]. As a result, the “Audio-visual” Hybrid-ViT version, which is exactly our CAV-Net, ranks
first among all ablation models in terms of all four metrics.

Besides segmentation performance, we show two more statistics of each ablation model in Table
5.8, i.e., the number of parameters (#Params) and frame-per-second (#FPS) during test-time (please
note that all measurement are based on one Quadro RTX-6000 GPU with an input resolution of
416×832). As a result, the incremental computational burden of our CAV-Net mainly comes from the
Transformer-based backbone (e.g., 137.7 millions > 63.0 millions, 15 fps < 54 fps). As a comparison,
the proposed audio-visual DEM only brings about 3 millions of extra model parameters and slight
compromise to model inference speed (i.e., 54 fps < 59 fps, 48 fps < 51 fps, 15 fps < 16 fps).
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Table 5.8 Ablation studies of CAV-Net on our PAVS10K. Sα = S-measure (α=0.5), Fβ = mean F-
measure (β 2=0.3), Eφ = mean E-measure, M = mean absolute error.

Backbone Modality
PAVS10K-Test

Fβ ↑ Sα ↑ Eφ ↑ M ↓ #Params #FPS

ResNet50 [142]
Visual .307 .628 .700 .028 59.8M 59

Audio-visual .325 .633 .698 .027 63.0M 54

Res2Net50 [362]
Visual .283 .603 .659 .042 62.1M 51

Audio-visual .341 .630 .720 .036 65.2M 48

Hybrid-ViT [345]
Visual .383 .656 .716 .028 134.6M 16

Audio-visual .414 .674 .747 .027 137.7M 15

5.3.4 Discussion

In this sub-section, we discuss about several new findings towards 360° audio-visual salient object
segmentation, based on above extensive experimental results. Generally, we find that our new task,
i.e., 360° panoramic audio-visual salient object segmentation, is challenging for current salient object
segmentation/video object segmentation state-of-the-art methods. Besides, we gain the conclusion
that the modeling of both audio and visual cues help 360° audio-visual salient object segmentation.
Finally, we obtain the evidence proving uncertainty-aware method helps exploring the intrinsic noises
within audiovisual saliency detection dataset, thus inspiring new insights towards advanced and more
reliable 360° audio-visual salient object segmentation modeling.

Audio-visual Modeling
Based on comprehensive benchmark studies (Table 5.4, Table 5.5 and Table 5.6), our new baseline

CAV-Net proves its ability for 360° audio-visual salient object segmentation modeling. Specifically,
our CAV-Net acquires better results on PAVS10K-Test and its three super-class-based testing sets
(Table 5.4 and Table 5.5). Importantly, the consistent better results of CAV-Net on seven attribute
testing sets (Table 5.6) shows that our new model gains significant improvement in terms of mul-
tiple aspects, including detecting accuracy (via F-measure Fβ ), the quality of object structure (via
S-measure Sα ) and the integrality of global context (E-measure Eφ ). Besides superior segmentation
performance, our CAV-Net also shows better computational efficiency than the current state-of-the-
art 360° image-based salient object segmentation methods such as FANet [334] and SW360 [258]. It
takes about 0.067s (which equals to 1/15s according to Table 5.8) for our CAV-Net while 0.26s/0.392s
for FANet/SW360, to process one 360° image during test-time.

In addition, the multiple backbone based ablation studies regarding the proposed audio-visual
distribution estimation module further verify the effectiveness and necessity of modeling both visual
and audio cues when conducting 360° audio-visual salient object segmentation. The conclusion is
consistent with human attention in real-world scenes where both visual and audio cues are regarded
as inputs and share different weights for influencing human judgments towards visual saliency.

Uncertainty-aware Segmentation
As illustrated in Section 5.3.2, we observe an “unique aleatoric uncertainty”, possibly introduced

by two sources of subjective stochasticity, within the 360° audio-visual salient object segmenta-
tion dataset. Thus, being different to current mainstream salient object segmentation/video object
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CAV-Net 𝝈𝟐

3DC-Seg RCRNet

Fixation overlaid Ground truth

Fig. 5.12 An example that illustrates the interpretability of our CAV-Net via uncertainty estimation.
σ2 is the uncertainty map based on multiple sampling during model testing.

segmentation methods, we resort to uncertainty estimation methodology and propose to model this
“unique aleatoric uncertainty” via conditional variational auto-encoder (Section 5.3.2). As a result,
our CAV-Net successfully reflects this “unique aleatoric uncertainty” via predicting uncertainty map.
Specifically, as shown in Fig. 5.12, our CAV-Net is able to explain the failure by highlighting the
uncertain regions, while the competing video-based salient object segmentation and video object seg-
mentation methods do not possess such an ability when making errors. Besides, the extreme uncertain
regions estimated by our CAV-Net are exactly the regions with serious subjective stochasticity indi-
cated by scattered fixations (Fig. 5.12).
Limitation and Future Work
Model performance. Although the proposed CAV-Net shows better overall results than all competing
baselines, we are still limited by the challenges of PAVS10K (e.g., our CAV-Net is unable to outper-
form all competing methods based on each of the sub-classes as shown in Table 5.7), thus failing to
build a strong baseline model that outperforms current state-of-the-art methods by a large margin. Fu-
ture works may explore deeper towards the low-level features (e.g., contrast, sharpness, brightness)
of 360° data of specific challenging sub-classes via image quality assessment techniques [370], to
improve the generalization ability of 360° audio-visual salient object segmentation models.
Aleatoric uncertainty estimation. Although our CAV-Net successfully estimates the general aleatoric
uncertainty [368] focusing on objects’ boundaries (Fig. 5.9, Fig. 5.10 and Fig. 5.11), and the unique
aleatoric uncertainty reflecting subjective stochasticity, we still have not explored deeply towards
the details of subjective stochasticity that introduce such uncertainties. Besides, future works may
consider to further improve the model performance by designing new uncertainty-aware frameworks.
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Audio modality. Both the ground truth of our PAVS10K and CAV-Net are based on mono sound.
Future works may consider to conduct panoramic audio-visual salient object segmentation via spatial
audio or ambisonics.

5.3.5 Conclusion

In this section, we illustrate the details of our proposed new baseline model, namely CAV-Net, which
is able to outperform all benchmark models and represent data uncertainty. Our CAV-Net verifies the
superiority of modeling audio-visual cues for conducting 360° audio-visual salient object segmenta-
tion, and provides explanation for 360° audio-visual salient object segmentation modeling.
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5.4 Conclusion

In this chapter, we first illustrated the details of our proposed CSMA-Net, which aims at accurately
segmenting the salient objects in 360° images. To the best of our knowledge, we are the first to
cascade channel-based and spatial-based mutual attentions, to effectively fuse and refine the high-
level features extracted from global and local context of given 360° images. To further mimic the
real-world scenes where human subjects tend to use both auditory and visual sensors to explore the
surrounding world, we further introduced CAV-Net, which takes advantage of both audio and vi-
sual cues for salient object segmentation in 360° videos and reflects the aleatoric uncertainty within
PAVS10K to some extent. To the best of our knowledge, our CAV-Net is the first publicly released
audio-visual salient object segmentation model, also the first 360° video-based salient object segmen-
tation method.



Chapter 6

Conclusion

6.1 Summary

To wrap this dissertation, we have successfully built new datasets and proposed new methodologies
to address salient object segmentation in 360° panoramic images and videos, which we hope could
serve as a starting point for object-level human visual attention modeling in immersive multi-media.

State-of-the-art methods for salient object segmentation. In Chapter 2, we have thoroughly sum-
marized the state-of-the-art methods in the field of salient object segmentation academia. Based on
the observation, we found that a lack of large-scale image/video 360° datasets seriously limited the
development of 360° panoramic salient object segmentation, which is of great importance for mim-
icking real human visual attention in real-world. In addition, from a perspective of methodology, we
concluded that current attention-based deep learning models have been widely applied in not only
general computer vision tasks but also multiple types of salient object segmentation tasks. Besides
empirical findings, modeling human visual attention with attention models is theoretically reasonable.

F-360iSOD&PAVS10K. In Chapter 3, we have detailed our works towards new dataset establish-
ment in the field of 360° salient object segmentation. We first proposed a 360° image-based salient
object segmentation dataset, namely F-360iSOD, which contains 1,165 pixel-wisely annotated salient
instances belonging to 72 object/scene classes. Considering the real-world scenes where subjects de-
pend on both audio and visual cues to locate and recognize the salient objects in 360° panoramic
field-of-view, we further established so far the first 360° audio-visual dataset, i.e., PAVS10K, which
provides 19,904 manually labeled salient instances within 10,465 360° video frames.

Salient object segmentation in light field. Compared to 2D RGB salient object segmentation, light
field salient object segmentation is relatively a new area to explore. In Chapter 4, following the
mainstream of salient object segmentation researches where attention mechanisms have been widely
applied to improve model performance, we proposed a synergistic attention network, i.e., SA-Net, to
segment salient objects by taking advantage of two light field modalities, i.e., focal stacks and all-in-
focus images. Besides, we have improved our SA-Net from both perspectives of computation burden
and segmenting accuracy, via further proposing CMA-Net and SA-Net-V2, respectively.

Salient object segmentation in 360° images&videos. In Chapter 5, we have illustrated the details
of our proposed CSMA-Net and CAV-Net, which address 360 image-based salient object segmenta-
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tion and 360° audio-visual dynamic salient object segmentation, respectively. The key component of
our CSMA-Net is a new mutual-attention module inspired by SA module in SA-Net. The CAV-Net
is a new audio-visual conditional variational auto-encoder which is not only capable of segmenting
salient objects but also estimating predictions’ uncertainty.

6.2 Future works and perspectives

Though the objective of the thesis is successfully fulfilled, a gap between salient object segmen-
tation and immersive vision still exists. In the following parts, we imagine future works towards
immersive saliency detection from two perspectives, i.e., an application of multi-modal visual cues
and an involvement of multi-dimensional auditory information.
Modeling multi-modal visual cues for 360° saliency detection. This thesis explored both omnidi-
rectional vision and light field, however, the real-world scenario is more similar to immersive light
field vision [371] which combines both. A correct modeling of real-world lights via light field tech-
niques may advance future datasets/models’ development to a new level, thus enabling salient object
segmentation to further fit real-world applications.

Specifically, future works may consider to establish new datasets collecting 360° images/videos
with depth information, thus further mimicking the real-world scenes where subjects are able to ob-
serve and recognize salient objects with 6 degree-of-freedom (DoF) (an example illustrates 6 DoF
shown in Fig. 6.1).2 B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin

Fig. 1. Our approach takes 360° omnidirectional stereo video as input and predicts
multi-sphere images that enable six degree-of-freedom 360° view synthesis in real time.
This produces a more comfortable and immersive VR video viewing experience.

unseen regions via hallucination or inpainting. Further, for video, we want this
view synthesis to happen quickly, preferably in real time when applied to a stereo
360° camera feed, so as to avoid preprocessing and allow live applications.

Our approach is to simultaneously estimate depth and inpaint the holes by
using a learning-based approach on a layer-based scene representation. Inspired
by recent work on stereo magnification [49, 65] and light field fusion [33], we
learn to decompose a scene into multi-sphere images (MSI), each with RGB
and alpha (RGBA) values. This is created by a network architecture which
supports stereo 360° input in the omnidirectional stereo format, uses spherically-
aware convolutions and losses, and maintains temporal consistency for video
without additional network parameters via spherical single-image transform-
inverse regularization [15]. We demonstrate quantitatively and qualitatively that
these contributions increase reconstruction quality both spatially and temporally
against existing view expansion methods, and that our approach can be applied
and rendered in real time to 4K videos on modern GPUs. Our contributions are:
– A multi-sphere image scene representation for omnidirectional view synthesis.
– A method to recover the MSI representation from ODS imagery via a learning-

based soft spherical 3D reconstruction method. This uses an architecture and
losses for spherical images, including spherical temporal consistency.

– A real-time inference and VR rendering engine for MSI from ODS input.
These are complemented by an open-source system, with mono (ERP) and stereo
360° (ODS) renderers to generate synthetic training data [18, 45, 50], TensorFlow
models, real-time TensorFlow and TensorRT inference within Unity that outputs
to GPU textures, and a real-time multi-sphere video renderer in Unity. Please
see our project webpage at visual.cs.brown.edu/matryodshka.

2 Related Work

360° video stitching builds on seminal work in panorama image stitching
[5, 54], which automatically aligns and blends multiple photos of a scene into a
single, wide field-of-view panorama. Subsequent work on stitching 360° videos
[28, 39] addresses temporally coherent stitching from multi-view video input, as
commonly used in commercial 360° videos. However, monocular 360° videos only
provide views for a single center of projection, and hence no depth perception.
Omnidirectional stereo (ODS) is a circular projection [21, 37, 41] that improves

Fig. 6.1 An illustration of RGB-Depth 360° visual data. This figure is taken from [372].

REC-STREET YT-CLEAN YT-MUSIC YT-ALL

STFT ENV EMD STFT ENV EMD STFT ENV EMD STFT ENV EMD

SPATIAL PRIOR 0.187 0.958 0.492 1.394 2.063 1.478 4.652 4.355 3.479 2.691 3.394 2.246
U-NET BASELINE 0.180 0.935 0.449 1.361 2.039 1.403 4.338 4.678 2.855 2.658 3.239 2.137

OURS-NOVIDEO 0.178 0.973 0.450 1.370 2.081 1.428 4.220 4.591 2.654 2.635 3.200 2.117
OURS-NORGB 0.158 0.779 0.425 1.339 1.847 1.405 3.664 3.569 2.432 2.546 2.907 2.063

OURS-NOFLOW 0.172 0.784 0.440 1.349 1.778 1.402 3.615 3.467 2.403 2.455 2.665 2.023
OURS-NOSEP 0.152 0.790 0.422 1.381 1.773 1.415 3.627 3.602 2.447 2.435 2.694 2.050

OURS-FULL 0.158 0.767 0.419 1.379 1.776 1.417 3.524 3.366 2.350 2.447 2.649 2.019

Table 1: Quantitative comparisons. We report three quality metrics (Sec 3.3): Envelope distance (ENV),
Log-spectral distance (LSD), and earth-mover’s distance (EMD), on test videos from different datasets (Sec 3.4).
Lower is better. All results within 0.01 of the top performer are shown in bold.
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Figure 3: Qualitative Results. Comparison between predicted and recorded FOA. Spatial audio is visualized
as a color overlay over the frame, with darker red indicating locations with higher audio energy.

Real time performance The proposed procedure can generate 1s of spatial audio at 48000Hz
sampling rate in 103ms, using a single 12GB Titan Xp GPU (3840 cores running at 1.6GHz).

Baselines Since spatial audio generation is a novel task, no established methods exist for comparison
purposes. Instead, we ablate our architecture to determine the relevance of each component, and
compare it to the prior spatial distribution of audio content and a popular, domain-independent
baseline architecture. Quantitative results are shown in Table 1.

To determine the role of the visual input, we remove the RGB encoder (NORGB), the flow encoder
(NOFLOW), or both (NOVIDEO). We also remove the separation block entirely (NOSEP), and
multiply the localization weights with the input mono directly. The results indicate that the network
is highly relying on visual features, with NOVIDEO being one of the worse performers overall.
Interestingly, most methods performed well on REC-STREET and YT-CLEAN. However, the visual
encoder and separation block are necessary for more complex videos as in YT-MUSIC and YT-ALL.

Since the main sound sources in 360◦ videos often appear in the center, we validate the need
for a complex model by directly using the prior distribution of audio content (SPATIAL-PRIOR).
We compute the spatial prior Ē(θ) by averaging the energy maps E(θ, t) of (Eq. 5) over all
videos in the training set. Then, to induce the same distribution on test videos, we decompose
Ē(θ) into its spherical harmonics coefficients (cw, cx, cy, cz) and upconvert the input mono using
(φw(t), φx(t), φy(t), φz(t)) = (1, cx/cw, cy/cw, cz/cw) i(t). As shown in Table 1, relying solely on
the prior distribution is not enough for accurate ambisonic conversion.

We finally compare to a popular encoder-decoder U-NET architecture, which has been sucessfully
applied to audio tasks such as audio super-resolution [31]. This network consists of a number of
convolutional downsampling layers that progressively reduce the dimension of the signal, distilling
higher level features, followed by a number of upsampling layers to restore the signal’s resolution. In
each upsampling layer, a skip connection is added from the encoding layer of equivalent resolution.
To generate spatial audio, we modify the U-NET architecture by setting the number of units in the
output layer to the number of ambisonic channels, and concatenate video features to the U-Net
bottleneck (i.e., the lowest resolution layer). Our approach significantly outperforms the U-NET
architecture, which demonstrates the importance of an architecture tailored to the task of spatial audio
generation.

7

Fig. 6.2 Ambisonics is able to be visualized as spatial-audio-based attention maps overlaid with 360°
images. This figure is taken from [311].

Ambisonics for realistic audio-visual modeling in 360°. This thesis used mono sound to facilitate
the establishment of both large-scale video dataset (details in Chapter 3) and new baseline model (de-
tails in Chapter 5). Future works may consider to establish datasets&models by taking advantage of
ambisonics [311], which provides abundant auditory cues of multiple channels. The involvement of
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realistic multi-channel audio information may improve the effectiveness of 360° audio-visual model-
ing via introducing realistic audio-based priors (Fig. 6.2).





Chapter 7

Appendix

7.1 A Predictive uncertainty estimation network for camouflaged ob-
ject segmentation

7.1.1 Introduction

In this section, we briefly summarize our work towards the reverse task of salient object segmentation,
i.e., camouflaged object segmentation (Fig. 7.1). Being different to salient object segmentation which
mimics the function of human attention mechanism towards visually discriminative targets, segment-
ing the targets concealed in natural scenes is always counter-intuitive and thus being difficult for
human subjects.

Current state-of-the-art deep learning methods are able to learn the mapping between random in-
putting domain and target domain to solve challenging task such as camouflaged object segmentation,
however the robustness and interpretability of the models are hardly guaranteed.

Image GT Ours SINet-V2 𝝈𝒆𝟐 𝝈𝒂𝟐

Fig. 7.1 An example illustrating camouflaged object segmentation and uncertainty estimation. “σ2
e ” is

the sampling-based uncertainty of “Bayesian conditional variational auto-encoder”. “σ2
a ” is the output

of “predictive uncertainty approximation” module. SINet-V2 [373] is a state-of-the-art method.

Specifically, uncertainty is inherent in deep learning methods, especially those for camouflaged
object segmentation aiming to finely segment the objects concealed in background. The strong “cen-
ter bias” of the training dataset leads to models of poor generalization ability as the models learn
to find camouflaged objects around image center, which we define as “model bias”. Further, due to
the similar appearance of camouflaged object and its surroundings, it is difficult to label the accurate
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scope of the camouflaged object, especially along object boundaries, which we term as “data bias”.
To effectively model the two types of biases, we resort to uncertainty estimation and introduce predic-
tive uncertainty estimation technique, which is the sum of model uncertainty and data uncertainty, to
estimate the two types of biases simultaneously. Specifically, we present a predictive uncertainty esti-
mation network (PUENet) that consists of a Bayesian conditional variational auto-encoder to achieve
predictive uncertainty estimation, and a predictive uncertainty approximation module to avoid the
expensive sampling process at test-time. Experimental results show that our PUENet achieves both
highly accurate prediction, and reliable uncertainty estimation representing the biases within both
model parameters and the datasets.

7.1.2 Methodology

In our PUENet, we design a Bayesian neural network to capture the distribution of model param-
eters. Further, we add extra inference model and adapt our network to a conditional variational
auto-encoder [366], which is used to model the distribution of model prediction. In this way, our
framework can estimate both model uncertainty (with the Bayesian neural network) and the data un-
certainty (with the conditional variational auto-encoder). Further, we present predictive uncertainty
approximation module to approximate the sampling-based predictive uncertainty of the proposed
Bayesian conditional variational auto-encoder. The pipeline of our proposed PUENet is shown in
Fig. 7.2
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Fig. 7.2 The pipeline of our PUENet, which consists of a “Bayesian conditional variational auto-
encoder” (BCVAE), and a “predictive uncertainty approximation” (PUA) module. “σ2

e ” and “σ2
a ”

denote the sampling based uncertainty and approximated uncertainty, respectively.
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7.1.3 Experiments

As a result, our PUENet is able to outperform the competing models by a large margin (Table 7.1),
and gain uncertainty maps explaining the model predictions (Fig. ).

Table 7.1 Performance comparison with state-of-the-art camouflaged object segmentation models on
benchmark testing datasets. ↑ indicates the higher the score the better, and vice versa for ↓. The two
best results of each column are in red and blue.

Method Backbone Year
CAMO CHAMELEON COD10K NC4K

[374] [375] [373] [376]
Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓

SINet [373] ResNet50 CVPR’20 0.745 0.702 0.804 0.092 0.872 0.827 0.936 0.034 0.776 0.679 0.864 0.043 0.810 0.772 0.873 0.057
LSR [376] ResNet50 CVPR’21 0.793 0.725 0.826 0.085 0.893 0.839 0.938 0.033 0.793 0.685 0.868 0.041 0.839 0.779 0.883 0.053
UJSC [364] ResNet50 CVPR’21 0.803 0.759 0.853 0.076 0.894 0.848 0.943 0.030 0.817 0.726 0.892 0.035 0.842 0.806 0.898 0.047
MGL [377] ResNet50 CVPR’21 0.775 0.726 0.812 0.088 0.893 0.834 0.918 0.030 0.814 0.711 0.852 0.035 0.833 0.782 0.867 0.052
PFNet [378] ResNet50 CVPR’21 0.782 0.744 0.840 0.085 0.882 0.826 0.922 0.033 0.800 0.700 0.875 0.040 0.829 0.782 0.886 0.053

SINet-V2 [373] Res2Net50 TPAMI’21 0.820 0.782 0.882 0.070 0.888 0.835 0.942 0.030 0.815 0.718 0.887 0.037 0.847 0.805 0.903 0.048
UJTR [379] ResNet50 ICCV’21 0.785 0.686 0.859 0.086 0.888 0.796 0.918 0.031 0.818 0.667 0.850 0.035 0.839 0.786 0.873 0.052

PUENet
ResNet50 2022 0.794 0.762 0.857 0.080 0.888 0.844 0.943 0.030 0.813 0.727 0.887 0.035 0.836 0.798 0.892 0.050
Res2Net50 2022 0.834 0.806 0.889 0.067 0.897 0.858 0.940 0.027 0.844 0.774 0.910 0.029 0.862 0.830 0.913 0.042

(Ours) Hybrid-ViT 2022 0.877 0.860 0.930 0.045 0.910 0.869 0.957 0.022 0.873 0.812 0.938 0.022 0.898 0.874 0.945 0.028
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Fig. 7.3 Visual results of our method on CAMO [374].
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Fig. 7.4 Visual results of our method on CHAMELEMON [375].
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Fig. 7.5 Visual results of our method on COD10K [373].
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Fig. 7.6 Visual results of our method on NC4K [376].
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7.1.4 Conclusion

Considering the inherent “model bias” and “data bias” of camouflaged object segmentation, we pro-
pose PUENet to achieve both accurate camouflaged object segmentation model and reliable uncer-
tainty estimation. To reduce the sampling effort, we introduce PUA module to approximate the sam-
pling based predictive uncertainty and achieve sampling-free uncertainty estimation during test-time.
Further, Experimental results validate our solution. Importantly, the produced uncertainty map can
represent our limited knowledge about this task, i.e., center bias, data bias, and category bias. Al-
though reliable uncertainty can be achieved with the proposed strategy, further investigation on uncer-
tainty quantification and out-of-distribution sample estimation can lead to more advanced explainable
camouflaged object segmentation model.
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Titre: Segmentation d’objets saillants dans des images/videos 360° et champ de lumière
Mot clés : Segmentation d’objets saillants, 360°, champ de lumière, attention, audio-visuel, estimation de l’incertitude.

Résumé : La segmentation d’objets saillants est une tâche imitant
l’attention visuelle humaine, et a constamment attiré l’attention de
la communauté de la vision par ordinateur en raison de son énorme
potentiel pour le développement de futures applications de réalité
augmentée. Cependant, les méthodes de segmentation d’objets
saillants sont principalement formées et testées avec des images et
des vidéos 2D où des stimuli visuels sont collectés en fonction de
rayons lumineux et d’un champ de vision limités, échouant ainsi à
s’adapter au scénario du monde réel où les sujets humains recon-
naissent les objets saillants en (i) capturant des informations sur
le champ lumineux, (ii) en observant des scènes dans un champ
de vision panoramique à 360°. Dans cette thèse, nous avons mené
des études systématiques sur la segmentation d’objets saillants sur
des images/vidéos à 360°, et proposé de nouvelles méthodologies
pour la segmentation d’objets saillants en champ lumineux. Nous
avons d’abord proposé respectivement des jeux de données image
et vidéo pour permettre la segmentation des objets saillants à 360°.
Nos ensembles de données proposés fournissent des données vi-
suelles couvrant diverses scènes quotidiennes du monde réel, avec
des objets saillants garantis annotés avec des masques pixel par
pixel au niveau de l’objet et de l’instance, des étiquettes de classe
d’objet/scène grossières à fines, et des attributs indiquant le com-

mun défis pour mener le segmentation d’objets saillants dans les
images/vidéos 360°. Pour contribuer davantage à la segmenta-
tion d’objets saillants à base d’images/vidéos à 360°, nous suiv-
ons les procédures courantes de segmentation d’objets saillants 2D
et établissons ainsi des études de référence complètes basées sur
nos jeux de données d’images et de vidéos à 360° proposés, ob-
tenant de nouvelles découvertes qui facilitent le développement
de nouveaux modèles 360°. Pour imiter l’attention visuelle hu-
maine dans des scènes du monde réel, nous avons donc proposé
de nouvelles méthodologies basées respectivement sur le champ
lumineux 2D, et les images/vidéos 360°. Pour être précis, nos nou-
veaux modèles basés sur le champ lumineux ont appris une atten-
tion synergique multimodale pour une segmentation efficace des
objets saillants. Notre méthode proposée basée sur l’image à 360°
a permis d’obtenir une amélioration significative sur plusieurs
références à 360°. Notre méthode basée sur la vidéo à 360 ° a
eu recours à une technique d’estimation aléatoire de l’incertitude
et a tiré parti des signaux visuels et audio pour segmenter les ob-
jets saillants de manière explicable. Nous espérons que cette thèse
pourra servir de point de départ pour un développement futur vers
une modélisation immersive de l’attention visuelle humaine au
niveau de l’objet basée sur le multimédia.

Title: Salient object segmentation in 360° images/videos and light field
Keywords : Salient object segmentation, 360°, light field, attention, audio-visual, uncertainty estimation.

Abstract: Salient object segmentation is a task mimicking hu-
man visual attention, and has been constantly appealing attention
from the computer vision community owing to its huge poten-
tial for the development of future augmented reality applications.
However, state-of-the-art salient object segmentation methods are
mostly trained and tested with 2D images and videos where vi-
sual cues are collected based on limited light rays and field-of-
view, thus failing to adapt to the real-world scenario where hu-
man subjects recognize the salient objects by (i) capturing light
field information, (ii) observing scenes in a 360° panoramic field-
of-view. To close the gap between salient object segmentation
academia and real-world applications, in this thesis, we conducted
systematical studies towards 360° image-/video-based salient ob-
ject segmentation, and proposed new methodologies for light field
salient object segmentation. As current top-ranked salient object
segmentation methods are mostly fully-supervised deep learning
models, a lack of large-scale 360° image and video datasets surely
limits the development of 360° models based on the same learn-
ing paradigm. To this end, we first respectively proposed image
and video datasets to enable salient object segmentation in 360°.
Our proposed datasets provide visual data covering various real-
world daily scenes, with guaranteed salient objects annotated with

both object-level and instance-level pixel-wise masks, coarse-to-
fine object-/scene-class labels and attributes indicating the com-
mon challenges for conducting salient object segmentation in both
360° images and 360° videos. To further contribute to 360° image-
/video-based salient object segmentation, we follow the common
procedures in 2D salient object segmentation and thus establish-
ing comprehensive benchmark studies based on our proposed 360°
image and video datasets, gaining new findings that facilitate the
development of new 360° models. To mimic the human visual
attention in real-world scenes, we thus proposed new methodolo-
gies based on 2D light field, 360° images and 360° videos, respec-
tively. To be specific, our new light field-based models learned
multi-modal synergistic attention for effective salient object seg-
mentation. Our proposed 360° image-based method achieved sig-
nificant improvement on multiple 360° benchmarks. Our 360°
video-based method resorted to aleatoric uncertainty estimation
technique and took advantage of both visual and audio cues to seg-
ment salient objects in an explainable manner. We hope this the-
sis could serve as a starting point for future development towards
immersive multi-media-based object-level human visual attention
modeling.


