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Fortunately for me, I know well enough what I want, and am basically
utterly indifferent to the criticism that I work to hurriedly. In answer to
that, I have done some things even more hurriedly theses last few days.

– Vincent Van Gogh
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Résumé de la these en français

Introduction

L’année 2020 restera gravée dans notre mémoire comme l’année où le monde
entier a été confronté à une pandémie mondiale sans précédent. La COVID-19,
causée par le virus SARS-CoV-2, est apparue pour la première fois en Chine en
décembre 2019 et s’est rapidement propagée dans le monde entier [1]. L’Organisation
mondiale de la santé l’a déclarée pandémie en mars 2020 [1]. La nouveauté de l’agent
pathogène, associée aux incertitudes initiales concernant ses modes de transmissions,
sa pathogénicité et ses conséquences graves, a posé un défi sans précédent aux
systèmes de santé publique du monde entier, entraînant une crise sanitaire sans
précédent. En conséquence, des mesures strictes telles que des formes de distanciation
sociale, notamment des confinements et des couvre-feux, ont été rapidement mises en
place pour contenir la propagation du virus [2]. Avant la disponibilité généralisée des
vaccins, la mise en œuvre de restrictions à grande échelle est devenue une stratégie
cruciale utilisée par les gouvernements pour atténuer l’impact de l’épidémie sur
la santé publique et le bien-être de la société. À la suite de la deuxième vague
(fin année 2021), l’Europe a connu des changements significatifs avec le lancement
de campagnes de vaccination et l’émergence de nouveaux variants. Bien que la
vaccination soit avérée très efficace pour protéger contre les infections et réduire les
conséquences graves [3, 4], la mise en œuvre d’interventions non pharmacologiques
a joué un rôle vital dans le contrôle de la propagation du virus jusqu’à ce que des
niveaux élevés d’immunité de la population puissent être atteints [5].

Les modèles mathématiques ont été essentiels pour guider les politiques publiques
en évaluant l’efficacité des mesures de distanciation sociale [6, 7]. Cependant, avant
l’avènement de la science des données, le manque de données sur les interactions
humaines limitait l’applicabilité pratique de ces modèles aux scénarios réels. La
nature mondiale de la crise sanitaire de la COVID-19, associée à la collecte et au partage
généralisé de données provenant de sources multiples, ainsi qu’à l’augmentation des
ressources informatiques, a facilité l’utilisation de modèles mathématiques en temps
réel pour informer la prise de décision basée sur les données. Cela s’est produit à
une échelle sans précédent par rapport aux épidémies précédentes. Par conséquent,
la communauté de la santé publique a de plus en plus reconnu l’importance de
l’utilisation de la modélisation mathématique pour le contrôle des maladies, car elle
est devenue un outil indispensable.

L’objectif de cette thèse est de réaliser une analyse approfondie de l’efficacité des
restrictions à grande échelle mises en place pour lutter contre l’épidémie de COVID-
19 en France. En nous appuyant sur diverses sources de données disponibles,
notamment des données épidémiologiques et comportementales, cette recherche
vise à fournir des informations précieuses sur les résultats et les implications de
ces restrictions. Elle évalue l’impact des interventions non pharmacologiques sur le
control de la transmission du virus, l’allégement de la pression sur le système de
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santé et l’évaluation des atteintes potentielles à la liberté individuelle. Cette thèse
présente deux modèles mathématiques de la transmission de la maladie. Le premier
modèle, désigné comme modèle #1, est un modèle compartimental structuré par âge
utilisé pour évaluer la situation épidémique en temps réel et réaliser une analyse
de scénarios tout au long de la pandémie. Le deuxième modèle discuté dans cette
thèse, désigné comme modèle #2, est un modèle de métapopulation compartimental
qui intègre la connectivité spatiale pour évaluer rétrospectivement l’efficacité des
stratégies mises en œuvre et de certaines alternatives.

Epidémie de COVID-19 en France

En France, le premier cas de COVID-19 a été confirmé en Janvier 2020 [8]. Au cours
des deux premières années de la pandémie de COVID-19, la majorité des pays
ont mis en place différentes formes de restriction afin d’endiguer les vagues de
COVID-19. En France, trois confinements nationales ont été appliquées au cours de
cette période en réponse aux trois premières vagues : une première confinement
strict en mars-mai 2020 (première vague) [9], une deuxième confinement modéré
avec ouverture des écoles en octobre-décembre 2020 (deuxième vague)[10], et une
troisième confinement légèr autorisant plus de temps à l’extérieur en mars-mai 2021,
avec un assouplissement progressif des restrictions s’achevant en juin (troisième
vague, en raison du variant Alpha) [11]. Entre le deuxième et le troisième confinement,
la population française a passé plusieurs mois sous couvre-feu nocturne (see Figure)
[12]. Toutes les fermetures ont été appliquées à l’échelle nationale. Toutefois, avant
les deuxième et troisième confinements, les autorités françaises ont temporairement
opté pour des restrictions plus localisées au niveau départemental afin de cibler
localement l’augmentation des taux de transmission.
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Figure. Pandémie de COVID-19 en France entre Mars 2020 et Juin 2021 Le panneau montre
le nombre d’admissions hebdomadaires à l’hôpital (histogramme vert) et le pourcentage
du variant Alpha au fil du temps (histogramme bleu, axe des ordonnées de droite). Les
zones indiquées en vert font référence aux mesures de distanciation sociale : confinement
pendant la première vague, confinement pendant la deuxième vague, confinement pendant
la troisième vague (vert foncé), et couvre-feu entre les deux (vert clair).
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Modélisation de la propagation du COVID-19

Pour simuler la propagation du virus SARS-CoV-2, j’ai utilisé deux approches différentes
: la première est un modèle compartimental [13] basé sur l’âge (modèle #1), tandis que
la seconde est un modèle de métapopulation (modèle #2) [14]. Les deux sont destinés à
répondre à differentes questions.

Dans le modèle #1, j’ai divisé la population en quatre groupes d’âge : 0-10 ans, 11-18 ans,
19-64 ans et 65 ans et plus, afin de tenir compte des variations de gravité de la maladie et
des contacts entre les différents groupes d’âge [15]. La matrice des contacts, qui régit les
interactions entre les groupes d’âge, a été modélisée en tenant compte à la fois du stade
d’infection et du temps, afin de simuler les changements de comportement liés à l’apparition
des symptômes, à la perception du risque et aux mesures telles que la distanciation sociale
[16, 17, 18]. De plus, le modèle a pris en compte le variant Alpha et les effets de la vaccination,
en évaluant l’efficacité du vaccin contre l’infection, les symptômes graves et la transmission
conditionnelle à l’infection.

Le modèle #2, était basé sur une structure de métapopulation à l’échelle régionale, en
divisant la population suivantes les 12 régions de la France métropolitaine. Ce modèle a
pris en compte la force quotidienne d’infection en tenant compte de différentes sources de
transmission, notamment les résidents infectés qui ne se déplacent pas, les visiteurs infectés
en provenance d’autres régions et les résidents qui reviennent après avoir été précédemment
infectés dans d’autres régions [19]. Le modèle a utilisé un schéma compartimental similaire
à SEIR (SEIHR), avec des sous-populations pour différents états de vaccination, et a intégré
toutes les données disponibles, y compris celles sur la saisonnalité et la pénétration du
variant Alpha, au niveau régional.

Les paramètres des modèles (à l’exception du taux de transmission) ont été obtenus à partir
des données disponibles. Le taux de transmission a été estimé en calibrant les modèles sur
les données d’admissions à l’hôpital.

Résultats et discussion

L’application de mesures restrictives à grande échelle au sein d’une population a un impact
significatif sur la propagation d’une maladie [20, 21, 22, 23, 24, 25]. Dans cette thèse, deux
nouveaux modèles ont été développés pour quantifier l’efficacité et la durabilité de certaines
interventions, dans le but de fournir des stratégies d’évaluation applicables à différents
contextes et scénarios.

L’analyse met en évidence le rôle crucial joué par la mise en place de restrictions à grande
échelle, notamment les confinements et les couvre-feux, dans la maîtrise de la propagation
de la COVID-19 en France. Ces mesures ont contribué de manière significative à réduire les
taux d’infection et à soulager la pression sur les systèmes de santé. Cependant, elles n’ont
pas été sans défis ni effets indésirables, tels que difficultés économiques, problèmes de santé
mentale et une fatigue générale de la population.

Pour faire face aux défis actuels et futurs posés par les pandémies, il est essentiel d’adopter
diverses approches et modèles [26, 27]. Le choix d’un cadre de modélisation doit être adapté
aux questions spécifiques et aux données disponibles. Les études présentées dans cette
thèse se sont principalement concentrées sur l’évaluation de l’efficacité des interventions à
l’échelle de la population de régions spécifiques ou à l’échelle nationale.

Dans l’article #1, nous avons analysé l’efficacité de différentes mesures de confinement pour
contrôler la propagation du COVID-19, en comparant plusiers scénarios de confinement
sévère et modéré, en utilisant la perte d’adhésion observée empiriquement. Nous avons
confirmé que les confinements courts de haute intensité seraient plus efficaces pour contrôler
l’épidémie que les confinements modérés, mais surtout: (i) nous avons montré que les
interventions modérées seraient plus largement affectées par la perte d’adhésion, avec le
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risque de compromettre le contrôle de l’épidémie si elles étaient maintenues pendant une
longue période. (ii) Nous avons introduit un "indice de détresse" basé sur des données
pour comparer l’impact des différentes interventions sur la qualité de vie de la population.
(iii) Nous avons constaté que pour des valeurs intermédiaires de l’indice de détresse,
les enfermements stricts plus courts (4 semaines) sont largement plus efficaces que les
enfermements modérés plus longs (6 semaines). Le concept d’acceptabilité a souvent été
considéré comme un argument potentiel contre la mise en œuvre d’interventions précoces et
strictes [28, 29]. Cependant, les résultats de notre recherche remettent en question cette notion
et suggèrent que le fait d’opter pour des interventions plus douces au lieu de politiques
strictes peut avoir des conséquences négatives à long terme, en particulier lorsqu’elles sont
prolongées dans le temps et que l’adhésion à ces mesures diminue.

De nombreuses études ont exploré les effets des interventions non pharmaceutiques dans
la gestion de la pandémie de COVID-19 [5, 30, 31, 32, 33, 22, 20, 34], y compris les mesures
locales dans des régions spécifiques. Cependant, ces études traitaient souvent les régions de
manière indépendante, négligeant l’impact de la mobilité interrégionale sur la transmission
de la maladie. Dans l’article #2, il a été constaté que les effets de débordement dus à la
mobilité influençaient considérablement l’efficacité des interventions locales, entraînant des
écarts dans les réductions estimées du nombre de reproduction pouvant aller jusqu’à 40%.
Les principales conclusions sont : (i) le troisième confinement au printemps 2021 était tout
aussi efficace que le deuxième confinement à l’automne 2020, malgré les différences entre
les deux mandats. (ii) Le couvre-feu nocturne à partir de 18 heures était considérablement
efficace lorsqu’il était associé à la fermeture du secteur de la gastronomie. Même s’il était
maintenu longtemps, cette stratégie pourrait préserver l’activité d’un plus grand nombre de
secteurs d’emploi. (iii) Des confinements répétés (au lieu du couvre-feu) pourraient réduire
à la fois les impacts sur la santé et sociétaux, mais cette stratégie doit être mise en œuvre de
manière proactive, lorsque le nombre d’hospitalisations est encore faible.

Des questions importantes restent à explorer, telles que l’efficacité des interventions à
différentes échelles spatiales, la gestion des autres variants du virus et la prise en compte de
la fatigue de la population face aux mesures répétées.

Avec la crise de la pandémie derrière nous, nos découvertes offrent une compréhension
exhaustive et plus précise des mesures de contrôle nécessaires à la phase à moyen terme
d’une pandémie de virus respiratoire, de l’alerte initiale à la campagne de vaccination de
masse. L’expérience spécifique de la France, où différentes interventions ont été mises en
œuvre, alimente un éventail d’options ainsi que leur évaluation pour informer les plans de
préparation à la pandémie contre les menaces futures.

Enfin, l’intégration de la modélisation dans la prise de décision politique devrait devenir
une pratique courante pour mieux gérer les pandémies et autres crises.
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Abstract

After one year of COVID-19 mitigation, in the spring of 2021, European countries
faced sustained viral circulation of the Alpha variant. As vaccination campaigns
advanced, the challenge persisted: finding a balance between the effectiveness of
long-lasting interventions and their impact on quality of life. This thesis combines
insights drawn from two studies conducted in France, with the aim of evaluating
the efficacy and sustainability of the interventions employed between 2020 and 2021,
while also proposing more sustainable alternatives preserving their effectiveness.

We first employed an age-structured compartmental model to assess the real-time
epidemic situation and conducted scenario analyses. Optimal scenarios were identi-
fied by the integration of intervention efficacy and a data-driven index accounting for
the intensity and duration of social distancing measures. Our findings indicate that
shorter and strict lockdowns tend to be considerably more effective than prolonged
and moderate ones, all while maintaining a similar level of public discomfort and
individual freedoms.

Subsequently, we employed a regionally-based metapopulation model to retro-
spectively evaluate the effectiveness of the implemented strategies and potential
alternatives, taking into account the interconnectivity between regions in France. The
results revealed that the spatial interplay between regions significantly influenced
the outcomes of nationwide interventions, particularly in regions characterized by
high mobility rates. Moreover, our analysis showed that implementing stop-and-
go lockdowns early enough, instead of a prolonged curfew period, could have
substantially reduced both the healthcare and societal burdens.

Our results contribute to characterize the success and failures of implemented
strategies, highlighting the complexity of balancing effectivness and sustainability.
These findings also highlights the importance of considering geographical connec-
tivity in the implementation and evaluation of public health policies. Results can
inform policymakers and health authorities in designing targeted interventions, thus
enhancing the overall effectiveness of management strategies.





Resumé

Après un an de lutte contre la COVID-19, au printemps 2021, les pays européens ont
dû faire face à une circulation virale soutenue avec le variant Alpha. Alors que les
campagnes de vaccination progressaient, le défi persistait: trouver un équilibre entre
l’efficacité des mesures à long terme et leur impact sur la qualité de vie. Cette thèse
combine les enseignements de deux études menées en France, dans le but d’évaluer
l’efficacité et la durabilité des interventions mises en œuvre entre 2020 et 2021, tout
en proposant des alternatives plus durables préservant leur efficacité.

Dans un premier temps, nous avons utilisé un modèle compartimental structuré
par âge pour évaluer la situation épidémique en temps réel et réalisé des analyses
de scénarios. Les scénarios optimaux ont été identifiés en intégrant l’efficacité des
interventions à un indice basé sur les données tenant compte de l’intensité et de
la durée des mesures de distanciation sociale. Nos résultats indiquent que les
confinements courts et stricts sont nettement plus efficaces que les confinements
prolongés et modérés, tout en maintenant un niveau similaire d’inconfort public et
de libertés individuelles.

Par la suite, nous avons utilisé un modèle de métapopulation basé sur les régions
pour évaluer rétrospectivement l’efficacité des stratégies mises en œuvre et des
alternatives potentielles, en tenant compte de l’interconnexion entre les régions
françaises. Les résultats ont révélé que l’interaction spatiale entre les régions influ-
ençait significativement les effets des interventions nationales, en particulier dans
les régions caractérisées par des taux de mobilité élevés. De plus, notre analyse a
montré que la mise en place de confinements intermittents, au lieu d’une période de
couvre-feu prolongée, aurait pu réduire considérablement à la fois la charge sanitaire
et sociétale.

Nos résultats contribuent à caractériser le succès et les échecs des stratégies mises en
œuvre, mettant en évidence la complexité de trouver un équilibre entre l’efficacité
et la durabilité. Ces conclusions soulignent également l’importance de prendre en
compte la connectivité géographique dans la mise en œuvre et l’évaluation des
politiques de santé publique. Ces résultats peuvent informer les autorités sanitaires
dans la conception d’interventions ciblées, renforçant ainsi l’efficacité globale des
stratégies de gestion.
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Introduction 1
The year 2020 will remain etched in our memory as the year when the entire world
faced an unprecedented global pandemic. COVID-19, caused by the SARS-CoV-2
virus, first appeared in China in December 2019 and quickly spread around the
globe [1]. The World Health Organization declared it a pandemic in March 2020
[1]. The novelty of the pathogen, coupled with initial uncertainties regarding its
modes of transmission, pathogenicity, and severe outcomes, posed an unprecedented
challenge to public health systems worldwide, leading to an overwhelming health
crisis. As a result, stringent measures such as strict forms of social distancing,
including lockdowns and curfews, were swiftly implemented to contain the virus’s
spread [2]. In France, the government announced the first nationwide lockdown
starting March 17, 2020 [3].

Similar to many other countries, France was ill-prepared when the pandemic struck,
experiencing shortages of masks and tests [4]. Additionally, numerous public hospi-
tals were on strike [4]. Prior to the widespread availability of vaccines, implementing
large-scale restrictions became a crucial strategy employed by governments to mit-
igate the epidemic’s impact on public health and societal well-being. As the year
2021 began, following the second wave, Europe witnessed significant changes as
vaccination campaigns were initiated simultaneously with the emergence of new
variants. While vaccination has proven highly effective in protecting from infections
and in reducing severe outcomes [5, 6], the implementation of non-pharmaceutical
interventions (NPIs) played a vital role in controlling the spread of the virus until
high levels of population immunity could be achieved [7].

Mathematical models have played a pivotal role in addressing the crisis in this
challenging landscape, serving as valuable tools to inform public policies [8, 9]. They
have played a central role in estimating the effectiveness of various social distancing
measures.

Epidemiological models have been employed since their introduction in 1927 [10],
operating under the assumption that the transmission and progression of diseases
can be explained by a relatively simple set of rules adaptable to different pathogens.
However, until the advent of data science, the lack of data on human interactions
limited the practical applicability of these models to real-world scenarios. The global
nature of the COVID-19 health crisis, along with the widespread collection and
sharing of data from multiple sources, combined with increased computational
resources, has facilitated the use of real-time mathematical models to inform data-
driven decision-making on an unprecedented scale compared to previous epidemics.
Consequently, the public health community has increasingly recognized the impor-
tance of employing mathematical modeling for disease control, as it has become an
indispensable tool in addressing this problem [8, 11].

This dissertation aims to conduct a comprehensive analysis of the effectiveness of
large-scale restrictions implemented against the COVID-19 outbreak in France. Our
assessment encompassed both the real-time efficacy of interventions and the potential
consequences of alternative governmental decisions. Throughout the pandemic
timeline, we employed different models that we developed. Drawing on various
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available data sources, including epidemiological and behavioral data, this research
seeks to provide valuable insights into the outcomes and implications of these
restrictions. It evaluates the impact of NPIs in curbing virus transmission, alleviating
pressure on the healthcare system, and assessing potential infringements on personal
freedom.

This thesis introduces two mathematical models of disease transmission. The first
model presented, referred to as model #1, is an age-structured compartmental
model employed to assess the real-time epidemic situation and perform scenario
analysis throughout the pandemic. The second model discussed in this thesis,
referred to as model #2, is a compartmental metapopulation model that incorporates
spatial connectivity to retrospectively evaluate the effectiveness of implemented
or alternative strategies. The thesis is organized as follows. Chapter 2 provides an
overview of the management of the COVID-19 pandemic in France, outlining the
research context and the challenges encountered during the parameterization of
the models. Chapter 3 details the mathematical framework used to construct the
COVID-19 transmission models.

Chapter 4 (article #1, model #1) focuses on the modeling work conducted immediately
after the emergence of the Alpha variant. It identifies optimal control strategies
against the third wave by considering effectiveness, sustainability, and adherence
to social distancing interventions through a data-driven stress index. Chapter 5
(article #2, model #2) presents a study evaluating France’s response to COVID-19
accounting for the spatial connectivity of time-varying inter-regional mobility. In
the list below I also provide a list of additional articles on COVID-19 pandemic that I
co-authored, and which are related to the works presented in this thesis. The last
chapter of this thesis (Chapter 6) contains a summary of the results and a discussion
of their reliability, assumptions, limitations, as well as the potential future research
directions. The models were designed in Python and C++, while data analysis,
pre-post data processing and graphing were performed in Python.

Research articles published as first author contained in this thesis

Laura Di Domenico*, Chiara E. Sabbatini*, Pierre-Yves Boëlle et al.
Adherence and sustainability of interventions informing optimal control against the COVID-
19 pandemic.
Communications Medicine, 1 (1), 57, 2021.
Cited in this thesis as article #1 [12]. (*co-first)

Research articles submitted as first author contained in this thesis

Chiara E. Sabbatini, Giulia Pullano, Laura Di Domenico et al.
The impact of spatial connectivity on NPIs effectiveness.
BMC infectious diseases, under review.
Cited in this thesis as article #2.
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Research articles published and related to this thesis

Laura Di Domenico, Giulia Pullano, Chiara E. Sabbatini, Pierre-Yves Boëlle, Vittoria
Colizza.
Impact of lockdown in Île-de-France and possible exit strategies.
BMC Medicine, 18, 240 (2020).
Cited in this thesis as [13].

Laura Di Domenico, Giulia Pullano, Chiara E. Sabbatini, Pierre-Yves Boëlle, Vittoria
Colizza.
Modeling safe protocols for reopening schools during the COVID-19 pandemic in France.
Nature Communications, 12,1073 (2021).
Cited in this thesis as [14].

Laura Di Domenico*, Giulia Pullano*, Chiara E. Sabbatini et al.
Underdetection of COVID-19 cases in France threatens epidemic control.
Nature, 590, 134-139(2021).
Cited in this thesis as [15].

Laura Di Domenico, Chiara E. Sabbatini, Giulia Pullano, Daniel Lévy-Bruhl, Vittoria
Colizza.
Impact of January 2021 curfew measures on SARS-CoV-2 B.1.1.7 scirculation in France.
Eurosurveillance, 26, 2100272 (2021).
Cited in this thesis as [16].
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The COVID-19 pandemic presented an unparalleled global challenge, demanding
swift and efficient actions to mitigate its impact. Within this chapter, I provide an
exhaustive overview of the elements needed to assess the efficacy of these restrictive
measures. We will delve into multiple aspects, including the timeline and nature of
implemented interventions, the use of mathematical models in shaping epidemic
responses, the parameterization and validation of these models, as well as the
encountered challenges throughout this process. Our analysis covers the period
from early 2020 to June 2021 and not the entirety of the pandemic.

2.1 Timeline and type of interventions

Having a clear timeline of events is crucial for understanding the actions that were
undertaken. The COVID-19 pandemic caused by the SARS-CoV-2 virus originated
in China in December 2019 and swiftly became a global threat. The World Health
Organization (WHO) officially declared it a pandemic on March 11, 2020 [1]. Conse-
quently, strict forms of social distancing measures were implemented in numerous
countries, including France. In this context, assessments of intervention effectiveness
offer important tools to facilitate the real-time sharing of insights regarding efficacy,
ineffectiveness, potential strategies, and their suitability for specific groups.

On January 24, 2020, the first case of COVID-19 in both Europe and France was
confirmed in Bordeaux, then, a cluster of cases was detected in Haute Savoie on
February 8, 2020 [17]. As the epidemic rose in the country, the French government
ordered a national lockdown on March 17, 2020 [18]. The aim of these measures
was to increase social distancing between individuals and break the chains of
transmission to prevent the healthcare system from being overwhelmed. As the
pandemic unfolded, various European countries responded to the crisis by enacting
their own strategies and measures. Each country tailored its approach based on its
specific circumstances, healthcare systems, and socio-economic factors. For instance,
Sweden adopted a milder approach with a focus on voluntary measures [19], while
countries like Austria and Italy implemented testing strategies coupled with strict
lockdown measures [20].

Lockdowns in France required people to stay at home except for essential reasons
such as buying food or seeking medical attention. All non-essential businesses,
including restaurants and cafes, were closed, and public gatherings were prohibited.
Schools and universities were also closed. After eight weeks of lockdown, as rates of
infection started to fall, the French government exited lockdown on May 11, 2020
[21].

Restrictive measures were gradually relaxed [15]. From May 2020, testing capabilities
(Test Treat Isolate (TTI)) were progressively increased, enabling the implementation
of a strategy based on identifying and isolating infected individuals and tracing their
contacts. However, due to the limited level of immunity acquired by the population
during the first wave and following the easing of measures, an increase in cases
and hospitalizations was observed by the end of summer 2020 [15]. As a result, in
September 2020 [22], targeted restrictions were implemented in areas with a high
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incidence of the virus, such as closing bars and restaurants and banning gatherings
of more than 10 people. On October 17, 2020, night-time curfew measures were
enforced in several areas with degrading indicators. Due to the rapid surge in the
number of infections, a second national lockdown was put in place starting October
30, 2020 [23]. The restrictions imposed were less stringent compared with the first
national lockdown in the spring 2020 (Figure 2.1, stringency index [24], presented
in Chapter 3.1.5), as schools and a larger number of job sectors were allowed to
remain open. Short trips were limited to a maximum radius of one kilometer from
home. Bars, restaurants, gyms and other non-essential services were closed, and
then reopened on November 28, 2020, while maintaining strict sanitary protocols
and limiting the number of customers. The lockdown was lifted on December 15,
2020, with the application of a night-time curfew (8pm to 6am) [25].

Soon after the appearance of the Alpha variant in France, curfew hours were
anticipated nationally between 6pm and 6am on January 16, 2021 [26]. Following
the rise in cases due to the Alpha epidemic, on March 20, 2021 localized lockdowns
were implemented in the regions of Île-de-France, Haute-de-France and other French
departments. The lockdown was then extended to the whole country on April 3,
2021, with the closure of all non-essential activities [27].

Differently from the second lockdown, the third lockdown included mobility re-
strictions only for trips exceeding 10 km from the place of residence. The stringent
stay-at-home mandates imposed during the other lockdowns turned into endorsing
outdoor activities as a preventive measure against transmission in enclosed settings.
This third nationwide lockdown ended on May 3, 2021. Then the government began
to gradually ease other restrictions, including lifting the night-time curfew and
allowing some businesses to reopen [28].

In June 2021, as vaccination rates increased and cases continued to decline, the
government lifted most remaining restrictions, including the requirement to wear
masks outdoors. All these measures are summarized in Table 2.1.

Figure 2.1: Timeline of the COVID-
19 pandemic in France from March
2020 to June 2021. Left y-axis:
weekly hospital admissions observed
in metropolitan France. Right y-axis:
frequency of Alpha variant in the coun-
try (%) (stucked plot) and stringency
index [24] (%)(dotted plot). Shades
green bands in the plot indicate pe-
riods of restrictions, the lockdowns
(dark green) and the night-time curfew
period (light green). Vertical dotted
lines and horizontal arrows indicate
different periods of school closure.
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Table 1. Description of the restrictions applied in France between September 2020 and June 2021.  

Period Brief description of the applied NPIs Abbreviation 

March 17 – May 10 First nationwide lockdown. Closure of schools levels. Ban on 
non-work-related travel, authorized only essential purchases 
for grocery and health reasons.  

LD1 

October 17– October 29 Night-time curfew (9pm to 6am) in several French 
departments. 

- 

October 30 – December 14 Second nationwide lockdown. Primary and secondary schools 
remained open, subject to strict health protocols. Grocery 
shops and factories continued to operate, medical-related 
appointments remained possible. Bars, restaurants, gyms 
and other non-essential services were closed. Displacements 
were limited to a maximum radius of one kilometer from 
home. 

LD2 

December 15 – January 15 Night-time curfew in place between 8pm and 6am every day. Curfew 8pm 

January 16 – March 19 Night-time curfew hours extended to between 6pm and 6am 
every day. 

Curfew 6pm  
pre-holidays / 
holidays / post-
holidays* 

March 20 – May 2 Third lockdown imposed on March 20 in in 16 departments 
at high incidence (including the whole of Île-de-France, 
Hauts-de-France, one department of Normandy and one 
department of Provence-Alpes-Côte d'Azur). The lockdown 
was then extended nationwide on April 3. Schools remained 
closed for an extended duration, with the planned holiday 
closure being prolonged of an additional one or two weeks 
(for primary and middle/high schools, respectively). Non-
essential activities were closed. A declaration was required 
for travel beyond 10 km of one's place of residence. Stay-at-
home orders were replaced with recommendations to 
encourage spending time outdoors, aiming to reduce 
transmission in closed spaces. 

LD3 

*We splitted the period of curfew 6pm into three distinct phases: before school holidays, during school holidays, and after school holidays. 
These three phases vary by region because the two-week school breaks are applied at different times in France (see Table S2). 

 

Table 2.1: Description of the restric-
tions applied in France between March
2020 and June 2021.

2.2 Mathematical modeling for outbreak response

Epidemic modeling involves a range of approaches that use mathematical, statistical,
and computational tools to investigate the transmission of infectious diseases in host
populations. Mathematical models are employed to capture the intricate dynamics of
disease transmission and they offer a framework that allows to formalize assumptions
regarding the processes we aim to comprehend [29, 30].

There are many reasons for employing modeling techniques. For example, the
nonlinear nature of epidemic dynamics [31, 32]. Modeling also allows for the
consideration of uncertainty related to all the parameters that describe the disease
and its spread [33, 34, 35]. In addition, models offer valuable insights into various
aspects of epidemic response, such as the estimation of pathogen spread parameters
(through fitting procedures, mathematical models can help identify key parameters
that govern pathogen spread, e.g. the transmission rate), exploring future scenarios
or retrospectively assessing the efficacy of interventions. Furthermore, the models
allow us to disentangle the temporal and spatial factors at play, thus enabling us to
better understand the dynamics of spread.

While a single model may address multiple questions, it often requires significant
adaptations to account for different temporal and spatial scales, as well as changes
in the environment and human behaviors. This flexibility became evident during
the COVID-19 pandemic, where different models were extensively used to tackle
various policy issues [36, 37]. As the pandemic unfolded and new challenges arose,
also the questions that needed to be answered evolved. Consequently, the models
we developed tracked, from the pandemic onset, the inherent characteristics of the
virus and adapted to simulate the ongoing social distancing interventions in place,
following the timeline.
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During the initial phase of the epidemic, models played a crucial role in real-time
risk assessment. When the first cases of SARS-CoV-2 were reported in Wuhan,
China, the extent of community spread remained uncertain. A modeling study [38]
estimated that there were between 400 and 4,000 cases with symptoms appearing
before January 12, 2020, indicating a much higher disease incidence compared to
the officially reported 41 cases in Wuhan by January 16, 2020. Another study [39]
focused on the detection rate and revealed that, by mid-February, only 4 out of 10
imported cases worldwide had been identified through surveillance systems. Even
with travel restrictions and border controls in place, the disease rapidly spread to
nearly every corner of the world within a matter of weeks [40]. Among European
countries, France emerged as one particularly vulnerable to the importation of cases
from China [41].

Shortly thereafter, as the virus had already spread extensively in France, authorities
implemented a lockdown, prompting the need to swiftly evaluate the expected
impact on disease transmission. It was also crucial to devise safe exit strategies to
prevent a rapid resurgence once the lockdown measures were lifted. In this context,
our compartmental model (model #1), described in Chapter 3) was developed [13].
The model was fitted using hospital admission data to estimate key parameters
such as the basic reproduction number (𝑅0) and the proportion of the population
infected. Furthermore, the model was also parameterized with available mobility
reduction data [42], to mimic the social distancing interventions by reconstructing
the associated changes of contacts engaged.

Through simulations incorporating various durations of lockdown and gradually
relaxed social interventions, potential strategies were identified to effectively control
the epidemic while preventing healthcare system overload during the reopening
phase. Our analysis assessed also the impact of reopening schools [14]. In addition,
in another work [15], we integrated the transmission model with virological and
participatory surveillance data to quantitatively assess spatial and temporal detection
rates. This allowed us to evaluate the performance of the testing system, identify
limitations, and propose practical improvements. As the situation progressed, the
compartmental model was further extended to incorporate multiple strains and
the progress of the vaccination campaign. A two-strain mathematical model was
employed to assess the differential effects of night-time curfew measures on the
Alpha variant and previous strains, providing projections for various scenarios
involving social distancing and vaccination rates in anticipation of the third wave in
March 2021 [16].

The first article discussed in this thesis, article #1, uses the two-strain compartmental
model (model #1) to analyze optimal intervention strategies for controlling the third
wave. By incorporating historical mobility data and model-derived estimates, we
simulated interventions of varying intensities and durations, taking into account
the potential decline in adherence over time. Additionally, a distress index was
introduced to quantitatively compare the sustainability and effectiveness of different
social distancing measures. In this work the focus was on assessing the effectiveness
of interventions at the population level within a specific region (Île-de-France), and
the spatial structure was not included in the model.

On the other hand, the second article presented in this thesis, article #2, aimed
to retrospectively evaluate the effectiveness of adopted or alternative strategies,
accounting also for connectivity between regions. To enable the evaluation of
intervention scenarios at the regional level, a spatially structured metapopulation
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model (model #2) was introduced. We underlined the importance of considering
spatial connectivity between regions, through mobility, when evaluating intervention
strategies. Additionally, the study analyzes alternative policy decisions alongside
the evaluation of implemented interventions.

The selection of a modeling framework depends on the specific questions to be
addressed and the available data [35]. In this thesis, the primary objectives revolved
around evaluating the effectiveness of interventions at different scales. In the
following sections I address the challenges, obstacles, and limitations we have
encountered in using these models.

2.3 Model parametrization and validation

One of the essential requirements for all modeling processes is data [43, 44]. Math-
ematical models prove valuable as they enable the integration of different data
sources. However, it is important to underline that the effectiveness of the modeling
process is strongly tied to the accuracy, completeness, and timeliness of the data
used [45]. In the context of an emerging disease, data availability is not only limited
but also prone to biases due to its reliance on uncertain information [46].

In the following subsections, I will present several datasets that have been used. In
the methods section (Chapter 3) I describe in detail how these data were integrated
into our models (see also Figure 2.2).

Model fitting and parameters 
estimation bridges models and 
data

To design 
interventions

To evaluate 
effectiveness

To inform and evaluate 
interventions

Data inform models, 
models inform data 
collection

Models

Fitting and 
parameters 
estimation

Data

Interventions

Figure 2.2: Relationships between
interventions, models and data, in-
spired from ref. [46].

Hospital surveillance data

These data are in general less biased due to their reduced proneness to underreporting.
Unlike the number of detected cases, the hospital data remains overall consistent in
terms of detection and sampling. Consequently, they are extensively employed in
modeling studies [47, 15, 13, 48, 49]. Nonetheless, they do present with the drawback
of inherent delays, attributed to the latency, incubation, and infection stages of
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the disease. All our models were fitted to daily hospitalization data to capture the
trajectory of the epidemic over time. We used regional or national data obtained
from the SIVIC database [50], which tracks daily hospital admissions of patients for
COVID-19 in public or private hospitals. Originally established in 2016, the SIVIC
database was modified to specifically monitor the number of admissions in both
regular hospitals and intensive care units.

Seroprevalence data

In situations where pathogens involve a significant number of unreported infections
(for instance, due to asymptomatic cases), relying solely on surveillance data may not
yield accurate estimations of the actual incidence and prevalence. Seroprevalence
data play a central role in validating model calibration. All of our models have
been validated against these data. We compared the projections of our models for
individuals testing positive for antibodies (AB+) with the independent serological
surveys conducted in 2020-2021 (prior to the start of the vaccination campaign)
[51, 52].

Biological and epidemiological data

Biological parameters are also important to parametrize a transmission model,
such as the duration of the infectious period, the infectivity of symptomatic and
asymptomatic cases, hospitalization probabilities, etc. During the initial stages of
the epidemic, uncertainty surrounding these parameters highlights the need to
perform numerous sensitivity analyses to explore how changes to these model
parameters could affect future epidemic trajectories. For instance, in our work
Ref. [13], assumptions and sensitivity analyses about the fraction of asymptomatic
infections were necessary and were revised as more evidence became available.

Virological and genomic surveillance data

Genetic sequencing plays a crucial role in tracking the emergence of novel variants,
providing deeper insights into the epidemic’s dynamics and its propagation. Some
SARS-CoV-2 variants disappeared immediately, while others, characterized by
several key mutations, adapted well, such as the Alpha variant. Within our models,
detailing the spatial and frequency distribution of variant dissemination is important,
as is quantifying its advantages over historical strains. The Alpha variant, initially
detected in the United Kingdom [53], quickly spread to all European countries [54]
and a large-scale genome sequencing initiative was conducted in France on Jan. 7-8
(Flash #1 survey [55], the first in a series of surveys). Starting from week 6 of 2021, a
new virological surveillance protocol was introduced to provide estimates of the
weekly frequency of viruses carrying specific mutations. This protocol involved the
use of second-line RT-PCR tests with specific primers that allowed to detect the key
mutations associated with the variants of interest [55, 56]. We use data from these
surveys to describe the spread of variants in France. To model the variant, we have
also considered both its transmission advantage compared to historical variants and
the heightened risk of hospitalization. Both of these parameters have been estimated
from the literature (see Chapter 3).
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Vaccination data and vaccine effectivness

Vaccinations and treatments are key interventions for epidemic management. In
France the vaccination campaign’s progress was tracked through available data on
the administration of vaccine doses [57], which provided information at both the
regional level and by vaccination stage (first or second dose) and by age. We have
considered the impact of vaccination on various aspects: effectiveness in preventing
infection, reducing the risk of contracting the disease for vaccinated individuals
compared to those unvaccinated; effectiveness in preventing severe symptoms,
reducing the likelihood that vaccinated individuals develop severe symptoms in
case of infection; and effectiveness in reducing transmission, decreasing the risk that
vaccinated individuals who are infected transmit the disease to others compared to
the unvaccinated.

Seasonality data

In our studies, we also took into account the influence of seasonal factors. A
number of studies have suggested that SARS-CoV-2 transmission is seasonally
varying, modulated by environmental variables and environmentally-mediated
social behavior [58, 59, 60, 61]. We integrated seasonality by using the estimates
provided in Ref.[62] based on daily data from the National Oceanic and Atmospheric
Administration

Contact data

Another key ingredient in epidemic models is the interaction between individuals.
These interactions are encoded through contact rates (which can be age-specific)
that quantify the frequency and duration of contacts between individuals [63]. Our
models incorporate data on social contacts, which have been adjusted over time to
account for behavioral changes during the implementation of different NPIs. The
pre-pandemic contact data (i.e., when no interventions are in place) are taken from a
study conducted by Beraud in 2012 [63].

Mobility data

Human mobility assumes a twofold role within epidemic contexts. On one hand,
mobility data can be integrated into a model to simulate the spatial propagation of
the epidemic, as the act of moving from one place to another can either facilitate
or impede the transmission of infections [64, 65]. On the other hand, it is notable
that mobility restrictions have played a central role in responding to the COVID-19
epidemic [66, 67, 13] since social distancing measures primarily hinge on movement
limitations. Mobility reductions can thus be incorporated into models to simulate
the effects of social distancing interventions.

The mobility data used were extracted from two different data sources. One comes
from mobile telephony data provided by Orange Business Service Flux Vision [67].
The data include origin-destination travel flows of mobile phone users. Origin-
destination matrices were aggregated at the regional level to compute coupling
probabilities between regions. The other was derived from the estimated presence
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at workplaces obtained from Google Mobility Reports [68]. This dataset provides
the relative change in the number of daily visitors in workplaces compared to a
pre-pandemic baseline.

2.4 Challenges

The use of mathematical models to provide assessments of implemented interven-
tions faces numerous obstacles, both in modeling the interventions themselves and
in evaluating their effectiveness. These challenges include uncertainties in model
parameters, the complexity of real-world epidemics, limitations in data availability,
underlying assumptions, prediction complexities, and difficulties in effective com-
munication. Moreover, this complexity is enhanced by the context of an ongoing
epidemic, characterized by rapidly evolving situations and the need for constant
updates in both model structures (such as with the emergence of new variants or the
beginning of vaccination campaigns) and parameter values (for instance, in response
to emerging evidence).

During lockdown periods, a specific challenge emerged concerning understanding
the changes in social contacts adopted by the population. In our modeling works [13,
15], we wanted to simulate the implemented social distancing measures, using only
pre-pandemic contact data, mobility reductions, and various behavioral indicators
extracted from studies. Our approach involved reconstructing a synthetic contact
matrix and adjusting the contacts made by different age classes based on the available
data (see Chapter 3). After generating distinct contact matrices for various lockdown
interventions, all of which are capable of capturing epidemic dynamics, it became
crucial to assess whether the reduced effectiveness of one intervention compared to
another (e.g., the first lockdown versus the second) was inherent to the intervention
itself or resulted from a lack of adherence by the population. In article #1, we
analyzed the effectiveness of various social distancing strategies, considering the
level of adherence as well.

Not only can adherence to an intervention modify its effectiveness, but also numerous
other factors that change over time. The reason mathematical models are used is
because they allow distinguishing the factors that contribute to epidemic dynamics
by explicitly modeling them. For example, by explicitly including factors such as
seasonality, the presence of vaccines, and the existence of multiple viral strains, it
becomes possible to quantify the impact of each of them in relation to the intervention,
as done in article #2 and described in Chapter 3.

Moreover, the definition of intervention effectiveness can be based on various
epidemiological and health indicators. In both works presented in this thesis,
we evaluated hospital-related indicators combined with indices that measure the
restrictions on personal freedom induced by an intervention.

All these factors have contributed to the intricacy of effective communication with
both public health authorities and the general public. The complexity of epidemic
dynamics has posed challenges in communicating risks and facilitating informed
decision-making. For instance, after the 2020 Christmas holidays, hospitalization
rates began rising, resulting in a plateau by early February. Our multi-strain model
(model #1) explained this plateau as the result of two opposing dynamics: a decline
in viral circulation for the historical strains, and a continued rise of the Alpha variant.
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The overall trajectory masked the true impact of the variant; the flattened dynamics
indicated no immediate threat to authorities and the public. However, it was essential
to communicate that reinforcing the existing NPIs would be necessary to avert a
substantial resurgence in cases (this was addressed in a press conference with the
Ministry of Health [69] on February 18, 2021).
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Within this chapter, I present two of the mathematical models we used to simulate
the transmission of COVID-19 (model #1 and model #2). Both models simulate the
early stages of the epidemic and then take into account the spread of the Alpha
variant and the introduction of vaccines. I introduce the different behavioural data
sources and how they were incorporated into the models. I present the inference
frameworks used to fit them, and finally I introduce different behavioral indicators
that have been created during the pandemic.

3.1 Age structured compartmental model

The first modelling approach we used, lied on compartmental model [70]. Let N , be
the number of people within the population under consideration - we do not consider
any demographic process (natural births, natural deaths, etc.) and we assume that
the size of the population is large and does not change over time. We first categorize
individuals into mutually exclusive groups, called compartments, based on disease
status. A simple example is the so called SEIR model, where individuals are divided
into:

• Susceptible (S): individuals that can contract the infection.
• Exposed (E): individuals who have been exposed to the disease but are not yet

infectious.
• Infected (I): individuals who carry the disease that can transmit it to susceptible

individuals.
• Recovered (R): individuals who have recovered from the disease and are no

longer infectious.

The SEIR model consists of these four compartments. Alternative models can be
created by adjusting the underlying assumptions or by adding supplementary
compartments. To trace the evolution of the SEIR model over time, the variables S(t),
E(t), I(t), and R(t) are employed to represent the number of susceptible, exposed,
infected, and recovered individuals. To describe how these variables change with time,
we can build a system of differential equations; where only transitions of the following
type are allowed: 𝑆 −→ 𝐸 : 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 𝐸 −→ 𝐼 : 𝑖𝑛 𝑓 𝑒𝑐𝑡𝑖𝑜𝑛, 𝐼 −→ 𝑅 : 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

Now, we have to establish the rates (probabilities per unit time) at which the
transitions can occur:

• 𝛽 : rate of infection per contact (called transmission rate).
• 𝜖: rate at which an exposed person becomes infectious.
• 𝜇: recovery rate.

The rate at which susceptible individuals (S) enter the infected compartment can be
calculated as the product of the infection rate 𝛽 and the number of contacts with
infectious individuals.
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At this stage, the homogeneous mixing approximation [71] is commonly used, meaning
that individuals have an equal chance of interacting with each other. By calling C the
number of contacts per person, a fraction of these contacts, 𝐶 𝐼(𝑡)

𝑁 , will be established
with infected individuals.

Ultimately, the rate for the 𝑆 −→ 𝐸 transition is defined as 𝜆(𝑡) = 𝛽𝐶 𝐼(𝑡)
𝑁 , which is

also known as the force of infection .

Compartments in compartmental models can also be expanded to include spatially
or age stratified conditions, where individuals are grouped by location or age. In the
latter case, the population is divided into n age groups. This allows for more detailed
analysis of disease transmission, as parameters such as susceptibility, transmissibility,
and mixing patterns can vary by age. Each individual in compartment 𝑆𝑖 , i.e. a
susceptible individual of age 𝑖, experiences an age-specific force of infection 𝜆𝑖 ,
which is driven by the normalized per capita number of contacts 𝐶𝑖 , 𝑗 [72] that an
individual of age 𝑖 has with an individual of age 𝑗, the likelihood of contacting every
infectious individual from every age group 𝑗, and the transmissibility per contact
𝛽:

𝜆𝑖(𝑡) = 𝛽
∑
𝑗
𝐶𝑖 𝑗(𝑡)

𝐼 𝑗(𝑡)
𝑁

(3.1)

with 𝑗 ∈ {1, 2, .., 𝑛}. I will explore more in detail the role of the entries 𝐶𝑖 𝑗 of the
matrix 𝐶 in Sec. 3.1.1.

To model the outbreak of COVID-19 (in article #1), we used a compartmental
model that follows the transmission dynamics outlined in Figure 3.1a. The model
incorporates four age classes: young children (yc -[0, 10 y.o.]); adolescents (t - [11, 18
y.o.]); adults (a - [19, 64 y.o.]); and the elderly (s - [65, 100+ y.o.) or older. We based
our model on demographic and age profile data Figure 3.1b and generalized the
classic SEIR model.

It is worth noting that evidence suggested that individuals with coronavirus may be
infectious even before manifesting symptoms [73]. Thus, we divided the incubation
period into two stages: the first stage is the exposed (E) compartment, where
individuals are infected but not yet infectious, and the second stage is the prodromic
phase (𝐼𝑝), during which individuals become capable of transmitting the virus. At
the end of the prodromic phase, individuals may either remain asymptomatic (𝐼𝑎𝑠)
or develop symptoms.

For those who develop symptoms, our model considers different degrees of severity,
ranging from paucisymptomatic individuals (𝐼𝑝𝑠) to individuals with mild (𝐼𝑚𝑠)
or severe symptoms (𝐼𝑠𝑠). We have incorporated knowledge from various studies
indicating that children have a lower propensity to show clinical symptoms and
are either asymptomatic or paucisymptomatic once infected. Also, children in both
classes (yc and t) are less susceptible than adults (Table 3.1). Hospitalization rates,
were informed by data from SIVIC dataset [50]. The force of infection can then be
rewritten:

𝜆𝑖(𝑡) = 𝑠𝑖𝛽
∑
𝑘

∑
𝑗
𝑟𝛽(𝑘, 𝑗)𝐶𝑖 𝑗(𝑘, 𝑡)

𝐼𝑘,𝑗(𝑡)
𝑁

(3.2)
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Incubation period 5.2 days [74]
Duration of prodromal phase 1.5 days, computed as the frac-

tion of pre-symptomatic trans-
mission events out of pre-
symptomatic plus symptomatic
transmission events.

[75]

Latency period 3.7 days (incubation period - pro-
dromal phase)

-

Probability of being asymptomatic 0.4 [76]
If symptomatic, probability of being
paucisymptomatic

1 for children, adolescents. 0.2
for adults, seniors

[45]

If symptomatic, probability of de-
veloping mild symptoms

0 for children, adolescents.
0.7704 for adults. 0.546 seniors

[45,
77, 47]

If symptomatic, probability of de-
veloping severe symptoms

0 for children, adolescents.
0.0296 for adults. 0.254 seniors

[77,
47]

Mean generation time 6.6 days [78]
Infectious period 2.3 days (to match the generation

time)
-

Relative infectiousness of 𝐼𝑝 , 𝐼𝑎𝑠 , 𝐼𝑝𝑠 0.25 for children. 0.55 for adoles-
cents, adults, seniors

[79]

Relative susceptibility 0.5 for children, adolescents. 1
for adults, seniors

[80]

Table 3.1: Parameters, values, and
sources used to define the COVID-19
compartmental model.

where 𝑘 indicates the infectious compartments, i.e. 𝐼𝑘 = 𝐼𝑝 , 𝐼𝑎𝑠 , 𝐼𝑝𝑠 , 𝐼𝑚𝑠 , 𝐼𝑠𝑠 , and the
indexes 𝑖 , 𝑗 indicate the corrisponding age group. The parameter 𝑠𝑖 ∈ [0, 1] represents
the age-dependent susceptibility profile. The parameter 𝑟𝛽 ∈ [0, 1] modulates the
infectiousness, according to both age and type of symptoms developped. All model
parameters (except the transmission rate) were informed from evidence available
(See Table 3.1).

3.1.1 Parametrization of contact matrices and adaptive behavior

The patterns of contact between individuals and groups play a crucial role in
determining the risk of infection, and are therefore key components in modeling
outcomes. In 2012, Beraud et al. [63] conducted a study in France to gather data
on social contacts through surveys. Participants were randomly assigned a day
of the week to document every person they came in contact with. Contacts were
categorized as either skin-to-skin (physical contacts - e.g. a hug, 𝐶𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙), or no-
skin-to-skin (nonphysical contacts - e.g. a conversation, 𝐶𝑛𝑜𝑛−𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙). The setting
where the contact occurred (home, work, school, leisure, transport, or other, 𝐶𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ,
with 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈ {ℎ𝑜𝑚𝑒, 𝑤𝑜𝑟𝑘, 𝑠𝑐ℎ𝑜𝑜𝑙, 𝑙𝑒 𝑖𝑠𝑢𝑟𝑒 , 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝑜𝑡ℎ𝑒𝑟}) was specified
for each contact. We have 𝐶𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑝ℎ𝑦𝑖𝑐𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐶𝑛𝑜𝑛−𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ; thus the baseline
contact matrix is the result of different contributions (Figure 3.2). And it represents
the mixing in a pre-pandemic scenario, without any NPI put in place.

Modifications were made to the baseline contact matrix to model changes in behavior.
In simpler terms, our approach consisted in predicting how the baseline contact
matrix modifies according to the adaptive behavior induced by NPIs in place. We
modify contacts not only in specific settings but also for specific age groups, more
precisely:
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Figure 3.1: Compartmental
scheme and demography. (a)
S=Susceptible, E=Exposed, Ip=
Infectious in the prodromic phase,
Ias=Asymptomatic Infectious,
Ips=Paucysymptomatic Infectious,
Ims=Symptomatic Infectious with
mild symptoms, Iss=Symptomatic
Infectious with severe symptoms,
H=severe case admitted to the
hospital, R=Recovered. (b) Age profile
in France corresponding to younger
children, teenagers, adults, seniors.

S E Ip

Ias

Ips

Ims

Iss H

R

Latency period

Incubation period

Infectious period

(a)

(b)

Younger children: [0,11) years old


Adolescents: [11,19) years old


Adults: [19,65) years old


Seniors: [65,100+) years old


• School closure : During full school closures, the contact matrix for schools was
removed [81]. During partial attendance periods, the number of contacts at
school for children and adolescents was reduced based on their attendance [82].
A modified school matrix was constructed with reduced elements, considering
the proportion of students not attending school (𝐶̂𝑖 , 𝑗 ,𝑠𝑐ℎ𝑜𝑜𝑙 = 𝐶𝑖 , 𝑗 ,𝑠𝑐ℎ𝑜𝑜𝑙 ·(1 −
𝑝𝑖) · (1− 𝑝 𝑗) where 𝑝𝑖 is the age-specific proportion of children/adolescents not
attending school). This framework was used to parameterize contact matrices
during the exit phase from the first lockdown (Figure 2.1) and simulate
scenarios of school reopening [13, 14].

• Remote working : Contacts at work were adjusted based on the percentage of
workers not going to work, using estimates from mobile phone location data
provided by Google Mobility Reports [68]. These data capture changes in
the number of people visiting workplaces compared to pre-pandemic levels.
The work contact matrix was modified accordingly, considering the reduction
percentage (𝐶̂𝑖 , 𝑗 ,𝑤𝑜𝑟𝑘 = 𝐶𝑖 , 𝑗 ,𝑤𝑜𝑟𝑘 · (1 − 𝑝)2, where 𝑝𝑖 = 𝑝 is the percentage of
workers not going to work. Data are not available by age-group). For contacts
on transport, the percentage of workers not going to work was combined with
the fraction of workers within each age group (considering that contacts on
transport are not solely engaged in relation to work). Household contacts were
increased proportionally [63] .

• Other activities : To take into account the full (or partial) closure of non-essential
activities, restrictions on mass gatherings, or similar measures, we decreased
the number of contacts in the matrices "leisure" and "other" [68].

• Avoidance of physical contacts : After the first lockdown, public health authorities
persisted in recommending preventive measures like avoiding close physical
contact and maintaining social distancing. A survey conducted by Santé
publique France gathered data on the adoption of these measures [83]. To
incorporate this information into the contact matrices, we decreased the
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=

+ + +

+ +

Figure 3.2: Contact matrix in the
baseline scenario (no intervention), ob-
tained as the sum of different "location
matrices". Each "location matrix" ac-
counts for physical and non-physical
contacts.

number of physical contacts in all settings except households, taking into
account the proportion of the population that reported avoiding physical
contact (𝐶̂𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑛𝑜𝑛−𝑝ℎ𝑦𝑠𝑦𝑐𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + (1 − 𝑘) · 𝐶𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 , being 𝑘 the proportion
of individuals adopting physical distancing).

• Heightened risk aversion : Additionally, we took into account the potential
reduction in contacts among seniors by a specific percentage. This reduction
could reflect the implementation of a targeted social distancing strategy for
age groups at higher risk, or it could be a result of increased risk perception.
In France, during the phase following the initial lockdown, data from the
CoviPrev survey [83] showed evidence of this behavior. Therefore, when
parameterizing the contact matrix, we considered a reduction in the elements
associated with the senior age group.

Furthermore, the change in behaviour due to illness has been taken into account. We
made the assumption that individuals with severe symptoms (𝐼𝑠𝑠) would self-isolate
and voluntarily reduce their number of contacts by 75%, based on observations from
the 2009 H1N1 pandemic [84]. Thus, the contact matrix associated with the infectious
compartment 𝐼𝑠𝑠 in the force of infection was defined as 0.25 times the baseline
contact matrix. To simulate the effects of the test, trace, and isolate (TTI) strategy [85],
we did not explicitly create a separate compartment for it. Instead, we incorporated
its impact by assuming that a certain percentage of infectious individuals would
reduce their contacts by 90% and self-isolate upon testing positive. This reduction
was applied directly to the contact matrix. To accommodate any delays in testing and
self-isolation, individuals in their prodromic stage (𝐼𝑝) were assumed to maintain
their contacts as in the baseline.

3.1.2 Modeling two-strains

Genomic surveillance data [55] indicates that the Alpha variant of SARS-CoV-2
began circulating in France towards the end of 2020 and replaced previous strains
by February 2021 [16]. A large-scale genome sequencing initiative called Flash
surveys [56] was implemented in January, which showed that the Alpha variant was
responsible for 3.3% of detected COVID-19 cases in France on January 8, 2021, with
significant regional variations ranging from 0.2% to 6.9%. The Alpha variant has been
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associated with increased transmissibility [55, 86, 87] and severity [86, 88] compared
to the previous strain. With this information, we can constructed a two-strain model
to simulate the co-circulation of the Alpha variant and the previous strain. We can
extend the compartmental model of Figure 3.1a to explicitly differentiate individuals
infected with the Alpha variant. Practically we divide all the compartments of our
model (except for of the susceptible one) in two: one that takes into account the
infections due to the historical strains, the other considers those due to the Alpha
variant. The force of infection is also be splitted into two and take the form:

𝜆𝑖(𝑡) = 𝑠𝑖𝛽ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙
∑
𝑘

∑
𝑗
𝑟𝛽(𝑘, 𝑗)𝐶𝑖 𝑗(𝑘, 𝑡)

𝐼ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝑘, 𝑗 (𝑡)
𝑁

+

𝑠𝑖𝛽𝐴𝑙𝑝ℎ𝑎
∑
𝑘

∑
𝑗
𝑟𝛽(𝑘, 𝑗)𝐶𝑖 𝑗(𝑘, 𝑡)

𝐼𝐴𝑙𝑝ℎ𝑎𝑘,𝑗 (𝑡)
𝑁

(3.3)

The transmission rate of the Alpha variant is expressed as 𝛽𝐴𝑙𝑝ℎ𝑎 = 𝑧𝛽ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 ,
where 𝑧 = 1.59 denotes the factor representing the Alpha transmission advantage
[55, 86, 87]. Upon entering the 𝐸ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 or 𝐸𝐴𝑙𝑝ℎ𝑎 compartments, individuals will
undergo disease progression. Complete cross-immunity is assumed, meaning that
those who were infected with one strain cannot be infected by the other strain. To
account for the higher risk of hospitalization associated with the Alpha variant
[86, 88], the probability of developing severe symptoms is increased (increased
hospital risk equal to 1.64).

3.1.3 Modeling vaccination

Starting from December 27, 2020, a massive vaccination campaign started in France,
prioritizing individuals at higher risk, including the elderly, vulnerable individuals,
and healthcare workers. The campaign’s progress was tracked through available
data on the administration of vaccine doses, which provided information at both
the regional level and by vaccination stage (first or second dose) and by age
[57]. To incorporate the impact of vaccination, the compartmental model was
stratified based on vaccination status, distinguishing between individuals who
were unvaccinated, those who received one dose, and those who received two
doses. The administration of first and second doses was modeled taking into
account the reported vaccination rate [57]. We considered the impact of vaccination
on the following factors: (i) effectiveness against infection, lowering the risk of
contracting the disease for vaccinated individuals compared to those who were not
vaccinated𝑉𝐸𝑖𝑛 𝑓 ; (ii) effectiveness against severe symptoms, reducing the likelihood
of vaccinated individuals developing severe symptoms that require hospitalization
if they do become infected 𝑉𝐸ℎ𝑜𝑠𝑝 |𝑖𝑛 𝑓 ; and (iii) effectiveness against transmission,
decreasing the risk of vaccinated infected individuals transmitting the disease to
others compared to unvaccinated individuals 𝑉𝐸𝑡𝑟𝑎𝑛𝑠𝑚 .

Let 𝑉𝐸ℎ𝑜𝑠𝑝 be the efficacy against severe symptomatic infection, not conditional to
infection, as the estimates reported in clinical trials. We can retrieve the corresponding
conditional effects 𝑉𝐸ℎ𝑜𝑠𝑝 |𝑠𝑦𝑚𝑝𝑡 , knowing that:

1 −𝑉𝐸ℎ𝑜𝑠𝑝 = (1 −𝑉𝐸𝑖𝑛 𝑓 ) · (1 −𝑉𝐸ℎ𝑜𝑠𝑝 |𝑖𝑛 𝑓 )
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The force of infection on 𝑆𝑤𝑖 , susceptible individuals of age group 𝑖 with vaccination
status 𝑤 is:

𝜆𝑤𝑖 (𝑡) = 𝑠𝑖(1−𝑉𝐸𝑤𝑖𝑛 𝑓 )
∑
𝑣
∑
𝑠𝑡𝑟𝑎𝑖𝑛

∑
𝑘
∑
𝑗 𝑟𝛽(𝑥, 𝑗)𝛽𝑠𝑡𝑟𝑎𝑖𝑛(1−𝑉𝐸𝑣𝑡𝑟𝑎𝑛𝑠𝑚)𝐶𝑖 𝑗(𝑘, 𝑡)

𝐼𝑠𝑡𝑟𝑎𝑖𝑛,𝑣𝑘,𝑗 (𝑡)
𝑁

where 𝑠𝑡𝑟𝑎𝑖𝑛 = ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙, 𝐴𝑙𝑝ℎ𝑎 indicates the strain of the infected compartment,
and 𝑤, 𝑣 represent the vaccination status of the susceptible and the infectious
compartment respectively. The efficacy against hospitalization further reduces the
probability of developing severe symptoms. It was assumed that the vaccines would
become effective 14 days after injection.

3.1.4 Calibration, validation and reproductive numbers

The compartmental model used in this study is a stochastic model with discrete
time steps, each representing one day. The epidemic was initialized with a group of
infectious individuals in the adult compartment, and simulations were conducted
for the entire period of 2020 - 2021. Multiple independent stochastic runs were
performed so that results included median values and 95% probability ranges. The
model was fitted against daily hospital admission data, obtained from the SIVIC
database [50]. The model was fitted by estimating the transmission rate per contact
(𝛽) in subsequent time windows. Each time window corresponds to a specific phase
of the pandemic, characterized by the NPI implemented.

In the pre-pandemic phase (January-March 2020), we estimated {𝛽𝑝𝑟𝑒−𝐿𝐷 , 𝑡0}, where
𝛽𝑝𝑟𝑒−𝐿𝐷 represents the transmission rate per contact and 𝑡0 is the starting date of
the simulation. For each subsequent phase (e.g. first lockdown, exit from lockdown,
second lockdown, etc.), we estimated 𝛼(𝑝ℎ𝑎𝑠𝑒), which is a scaling factor for the phase-
specific transmission rate per contact. This means that the previously mentioned
transmission rate per contact 𝛽, is a time-dependent parameter that varies for
each phase, multiplied by the scaling factor 𝛼(𝑝ℎ𝑎𝑠𝑒). This scaling factor captures
temporal variations in the transmission rate that are not captured through the
parameterization of contact matrices, such as mask usage.

A Poisson likelihood function was maximized to obtain the parameter estimates:

L(𝐷𝑎𝑡𝑎 |Θ) =
𝑡𝑛∏
𝑡=𝑡1

𝑃𝑜𝑖𝑠𝑠(𝐻𝑜𝑏𝑠(𝑡)|𝐻𝑝𝑟𝑒𝑑(𝑡 ,Θ)) (3.4)

Θ is the set of parameters that we want to evaluate. 𝐻𝑜𝑏𝑠(𝑡) is the empirical number
of hospital admissions on day 𝑡. 𝐻𝑝𝑟𝑒𝑑(𝑡) is the number of hospital admissions
foreseen by the model on day 𝑡. 𝑃𝑜𝑖𝑠𝑠(·|𝐻𝑝𝑟𝑒𝑑(𝑡)) is the mass function of a Poisson
distribution with mean 𝐻𝑝𝑟𝑒𝑑(𝑡) and [𝑡1 , 𝑡𝑛] is the time interval considered for the
fit.

The parameter space was explored using grid-search to find the maximum likelihood
estimator (MLE), which was determined by evaluating the log-likelihood function.
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The transmissibility per contact is a crucial parameter for calculating the basic
reproductive number (𝑅0).𝑅0 represents the growth factor of consecutive generations
in an epidemic and can be derived from a matrix known as the next generation
matrix (NGM), denoted as 𝐾 [89]. To calculate 𝑅0, we can construct two matrices: 𝐹,
which describes the generation of new infections, and𝑉 , which represents transitions
within infected individuals (e.g. recovery). The entry−𝑉−1

𝑖 𝑗 denotes the expected time
an individual in compartment 𝑗 spends in infected compartment 𝑖, while the entry
𝐹𝑖 𝑗 represents the rate at which an infected individual in compartment 𝑗 generates
individuals in infected compartment 𝑖. Thus, the entry−𝐹𝑉−1

𝑖 𝑗 represents the expected
number of infected offspring in state i produced by an individual currently in
infected state 𝑗. By defining 𝐾 as −𝐹𝑉−1, the basic reproduction number (𝑅0) can be
determined as its largest eigenvalue. Additionally, the effective reproductive number
𝑅(𝑡) at a specific time 𝑡 can be calculated by considering the effective susceptible
population at that time, rather than using the total population size.

3.1.5 Behavioral indicators, counterfactual scenarios

In this paragraph, I present behavioral indicators that we used in article #1 (Chapter
4).

Loss of adherence. In article #1, we examined how mobility levels, based on mobile
phone data [67], changed during the implementation of the same measure in order
to understand how adherence to policies evolved over time. For instance, during the
first lockdown, mobility levels remained relatively stable over the weeks. However,
during the second lockdown, a significant increase in mobility was observed after
3 weeks from the beginning, indicating a spontaneous decline in adherence to the
imposed policies.

We fit the model to hospital admission data during the second wave, we calculated
the relative increase in the reproduction number after the initial three weeks of the
lockdown compared to its start. This computation provided an estimate of the loss
of adherence and was employed to inform counterfactual lockdown scenarios.

Distress index. When analyzing different lockdown scenarios, we need to evaluate
their intensity, duration, adherence, and their impact on quality of life. To address
this, we introduced a distress index based on mobility data [67]. This index was
calculated by considering weekly mobility reductions, as social distancing measures
primarily rely on restricting movement, and the reduction in mobility can be seen
as a measure of the perceived limitations on individual freedom due to imposed
restrictions.

In calculating the distress index, we took into account the overall reduction in mobility,
assessing the relative variation in the number of origin-destination displacements
compared to a pre-pandemic baseline. Origin-destination travel flows were obtained
from Orange mobile phone records [67]. The distress index represents the sum of
the absolute values of weekly mobility reductions during the period when each
restriction was in place. The index was normalized to a scale from 0 to 10 (with 10
representing a strict 8-weeks lockdown and 0 indicating absence of restrictions).

Stringency index. The stringency index [24] is a composite measure that takes
into account various indicators such as restrictions on public gatherings, stay-at-
home requirements, school closures, and travel bans. It quantifies the intensity of
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government policies on a scale from 0 to 100, with a higher value indicating a stricter
response. It is shown in Figure 2.1.

Lockdown scenarios. Starting in March 2021 (week 11, 2021), we compared the impact
of various COVID-19 control measures. We compared scenarios assuming curfew
conditions with those involving lockdowns lasting 2 to 8 weeks. Our analysis consid-
ered strict and moderate lockdowns, based on mobility changes and transmissibility
during the first and second lockdowns. We also explored different starting dates
for lockdowns, from week 11 to week 15 in 2021. For lockdowns exceeding 2 weeks,
we examined scenarios with full adherence and those with decreasing adherence.
Adherence decline was modeled as an increase in the reproductive number.

3.2 Metapopulation model

In the context of disease transmission, mobility fluxes can substantially impact the
likelihood of encounters, exposure patterns, and the probability of transmission
[90, 91, 92]. The metapopulation approach offers a natural framework for examining
the interplay between mobility, spatial structure, and epidemic transmission. This
structured approach integrates compartmental models into a system that explicitly
accounts for individual movements and space. The model assumes that the popula-
tion is spatially fragmented into sub-populations, or patches, that represent distinct
entities. Each patch undergoes local disease transmission, while also interacting
with other patches through mobility. The metapopulation model has a multiscale
structure that includes individual patches, each containing a population of indi-
viduals whose health status is modeled by a compartmental model. The dynamics
of each compartment account for the possibility of contact between individuals
and changes in their health status based on the infection dynamics. By using this
approach, it is possible to capture the spatial heterogeneity of disease transmission,
including local outbreaks and their potential spread to other regions (Figure 3.3a).
The metapopulation model has a network structure where subpopulations are nodes
connected by individual movements; mobility fluxes between patches can be: explicit
or effective. The explicit approach defines mechanistic individual movements [93, 94],
while the effective approach accounts for mobility patterns through force of infection
generated by infectious individuals [95, 96]. With this effective approach, individuals
residing in patch 𝑖 are subjected to a force of infection that is proportionate to the
coupling between subpopulations, even if they do not explicitly move from one
patch to another. Both methods are informed by mobility data such as mobile phone,
commuting, or air traffic data.

We used an effective stochastic non-Markovian (as it has memory of the home
location of individuals [97, 98]) transmission model with a structure at the regional
level. The population was divided in the 12 regions of mainland France (excluding
Corsica). In each region, the model accounted for disease transmission due to (i)
infected residents not moving (ii) infected visitors coming from other regions and
(iii) returning residents previously infected in other regions. These three terms were
embedded in the force of infection 𝜆𝑖(𝑡) as follows:

𝜆𝑖(𝑡) = 𝜆𝑖𝑖(𝑡) +
∑
𝑗≠𝑖

𝜆𝑣𝑗𝑖(𝑡) +
∑
𝑗≠𝑖

𝜆𝑟𝑖𝑗(𝑡)
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


𝜆𝑖𝑖(𝑡) = 𝛽𝑖(𝑡)𝑝2
𝑖𝑖(𝑡)

𝐼𝑖(𝑡)
𝑁̂𝑖(𝑡)

𝜆𝑣𝑗𝑖(𝑡) = 𝛽𝑖(𝑡)𝑝𝑖𝑖(𝑡)𝑝 𝑗𝑖
𝐼 𝑗(𝑡)
𝑁̂𝑖(𝑡)

𝜆𝑟𝑖𝑗(𝑡) = 𝛽 𝑗(𝑡)𝑝𝑖 𝑗(𝑡)
𝐼 𝑗(𝑡)
𝑁̂𝑗(𝑡)

where 𝛽𝑖(𝑡) was the transmission rate of region 𝑖 at time 𝑡, 𝑝𝑖 𝑗(𝑡) the coupling
probability between regions 𝑖 and 𝑗 inferred from mobility data (Chapter 3.2.1), and
𝑁̂𝑖(𝑡) = 𝑝𝑖𝑖(𝑡)𝑁𝑖 + ∑

𝑗≠𝑖 𝑝 𝑗𝑖(𝑡)𝑁𝑗 and 𝐼𝑖(𝑡) = 𝑝𝑖𝑖(𝑡)𝐼𝑖(𝑡) + ∑
𝑗≠𝑖 𝑝 𝑗𝑖(𝑡)𝐼 𝑗(𝑡) , were the

effective population and the effective number of infections in region 𝑖, respectively
[99].

Transmission dynamics followed a SEIR-like compartmental scheme (Figure 3.3b), in
which individuals were divided into 5 health status: susceptible, exposed, infectious,
hospitalized and recovered. Thus we simplified the scheme of Figure 3.1 for the sake
of different the research questions, also beacause these simplifications align with the
common practice in metapopulation models, where the primary focus is mobility
[100, 101]. We did not consider the age structure of the population, similarly to what
commonly done in COVID-19 metapopulation models [100, 102]. Age-specific mixing
is absorbed in the estimate of the regional transmissibility.

Hospital admission rate was informed from French hospital data for patient tra-
jectories (SIVIC database [50]); parameters, values, and sources used to define the
compartmental model are listed in Table 3.2.

Figure 3.3: Metapopulation model,
compartmental scheme with vacci-
nation. (a) Scheme of metapopula-
tion model. (b) Compartments (top)
account for infections due to histori-
cal strains for non-vaccinated people.
Analogous compartments are consid-
ered for vaccinated individuals (not
shown for the sake of visualization).
S=Susceptible, E=Exposed, I= Infec-
tious, H=severe case admitted to the
hospital, R=Recovered.

S E I

H

R

+2 layers for vaccinated individuals: 1st dose, 2nd dose
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3.2.1 Mobility

Individual trajectories captured from mobile phones can offer valuable insights for
developing epidemic models. Anonymized aggregated mobility fluxes extracted
from mobile phone signaling data were provided by the Orange business service
Flux Vision [67]. Specifically, we had access to aggregated, de-identified origin-
destination matrices reporting the daily number of user displacements among 1,436
geographical areas of mainland France. Geographical areas are defined according to
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Incubation period 5.2 days [74]
Duration of prodromal phase 1.5 days, computed as the frac-

tion of pre-symptomatic trans-
mission events out of pre-
symptomatic plus symptomatic
transmission events.

[75]

Latency period 3.7 days (incubation period - pro-
dromal phase)

-

Mean generation time 6.6 days [78]
Infectious period 2.9 days (to match the generation

time)
-

Time from infection to hospital 10.2 days -
Time from symptoms onset to hos-
pitalization

5 days [103]

If infected, probability of going to
hospital

2.1% [104]

Table 3.2: Parameters, values, and
sources used to define the COVID-19
compartmental model.

the 2018 EPCI level (Établissements Publics de Coopération Intercommunale). The
anonymization procedure was approved by the French data protection authority
CNIL (Commission Nationale de l’Informatique et des Libertés). Origin-destination
matrices were aggregated at regional level to compute weekly coupling probabilities
𝑝𝑖 𝑗 between regions and were used to inform the metapopulation model.

The coupling probability between 𝑖 and 𝑗 for a given week 𝑝𝑖 𝑗 is defined as the
probability that a resident in 𝑖 visits 𝑗 due to his mobility trajectory:

𝑝𝑖 𝑗 =
𝑤𝑖 𝑗∑
𝑘 𝑤𝑖𝑘

Where 𝑤𝑖 𝑗 is the average number of daily trips between 𝑖 and 𝑗 for a given week.

3.2.2 Effective modeling of variants and seasonality

To model how the Alpha variant spread over time and across different regions,
we modulate transmissibility accordingly to the variant penetration, transmission
advantage. In this context, we also decided to explicity include seasonality when
modeling the transmission.

The penetration of the variant was estimated by analyzing Flash surveys data [55]
and by fitting them with a logistic function, resulting in a modulating factor that
varys daily by regions (Equation 3.6).

The transmission advantage was estimated by calculating the daily effective repro-
ductive numbers independently for each strain (wildtype or Alpha) and fitting the
daily ratio 𝑅𝐴𝑙𝑝ℎ𝑎

𝑅𝑤𝑖𝑙𝑑𝑡𝑦𝑝𝑒
with a zero-degree and a second-degree polynomial over time.

The magnitude of the transmission advantage varied over time, decreasing from
1.58 in week 5, 2021 to 1.42 in week 22, 2021, similarly to what observed in United
Kingdom [105]. These effects could be associated with vaccination, as vaccines
may reduce outward transmission by reducing viral loads [105, 106]. To model the
increased severity with respect to the historical strains, we considered a 64% increase
in hospitalization rates, following Ref.[88].
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Several studies have investigated the relationship between SARS-CoV-2 transmission
and weather factors, recognizing climate as a driver in the coronavirus SARS-CoV-2
spread. To integrate seasonality into our model we used the estimates provided
in the Ref. [107]. The variable allows us to estimate the variation in transmission
rate induced by climatic factors. To have a smooth variable over time, we assumed
that seasonality behaves sinusoidally over a year. We fitted the estimates with a
sinusoidal function with 1-year period, one per each region, in order to obtain
daily values of the seasonality factor 𝜎𝑖(𝑡) affecting transmission in region 𝑖 on day
𝑡. 𝜎𝑖(𝑡) is defined between an 18% reduction in summer (on average) and a 23%
increase in reverse (on average). We used a least-squares optimization function for
the seasonality parameter fit.

𝛽𝑖(𝑡) = 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑖 (𝑡)[(1 − 𝐴𝑖(𝑡)) + 𝜂𝑖(𝑡) · 𝐴𝑖(𝑡)] · 𝜎𝑖(𝑡) (3.6)

where 𝑖 indicates the region. The parameter 𝐴𝑖 ∈ [0, 1] is region-dependent and is
used to account for the variant penetration. The parameter 𝜂𝑖(𝑡) is used to modulate
the transmission advantage of the Alpha variant. The parameter 𝜎𝑖(𝑡) accounts for
weather conditions.

3.2.3 Inference framework and validation

Model parameters were estimated in a Bayesian framework by sampling the posterior
parameter distribution obtained by updating prior beliefs based on a likelihood
function. The likelihood function is evaluated on daily data of regional hospital
admissions (Equation 3.7). We assumed that observed data followed a Poisson
distribution with mean 𝐻𝑝𝑟𝑒𝑑, that is the daily number of hospital admissions
predicted by the model. The log-likelihood function is of the form:

𝑙𝑜𝑔L(𝑑𝑎𝑡𝑎 |Θ) =
𝑖12∑
𝑖=𝑖1

𝑡𝑒𝑛𝑑∑
𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑙𝑜𝑔𝑃𝑜𝑖𝑠𝑠(𝐻𝑜𝑏𝑠(𝑡 , 𝑖)|𝐻𝑝𝑟𝑒𝑑(𝑡 , 𝑖,Θ)) (3.7)

where Θ = {𝛽𝑖1 , . . . , 𝛽𝑖12} indicates the regional transmission rates to be estimated.
𝐻𝑜𝑏𝑠(𝑡 , 𝑖) is the observed number of hospital admissions on day 𝑡 in the region 𝑖 ,
𝐻𝑝𝑟𝑒𝑑(𝑡 , 𝑖,Θ) is the number of hospital admissions predicted by the model using
parameter values Θ, 𝑃𝑜𝑖𝑠𝑠(·|𝐻𝑝𝑟𝑒𝑑(𝑡 , 𝑖,Θ)) is the probability mass function of a
Poisson distribution with mean 𝐻𝑝𝑟𝑒𝑑(𝑡 , 𝑖,Θ), and [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑] is the time window
considered for the fit. The time windows used for the fit were defined based on
the interventions applied in France; specifically: pre-second lockdown period (Sept
21,2020 – region dependent date), second lockdown period (region dependent
date - Nov 22, 2020), curfew 8p.m (Dec 15, 2020 – Jan 15, 2021), curfew 6pm pre
holidays (Jan 16, 2021 – region dependent date due to school holidays), curfew 6p.m.
during holidays (region dependent date due to school holidays), curfew 6p.m. post
holidays (region dependent date due to school holidays– region dependent date),
third lockdown period (region dependent date – Jun 13, 2021).

We used Markov Chain Monte Carlo (MCMC) to obtain posterior distributions.
We used three independent chains, with each chain performing 3000 steps, to
approximate the posterior distribution. We used the Metropolis-Hasting algorithm
to accept or reject the set of parameters at each step.
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To demonstrate that our model was able to estimate the parameters with the proposed
inference approach and does not suffer from identifiability issues, we performed the
following synthetic experiment. We parameterized the model using as priors the set
of parameter values estimated with the first MCMC, and we re-calibrated the model
with another MCMC procedure. By retrieving the same set of parameter values, we
showed that the model was well identified and could be calibrated without bias.

To initialize the model, we first fitted a stochastic region-independent transmission
model (from Ref. [15]) on the 12 French regions. We then fitted though maximum
likelihood a Gumbel-r distribution on the prevalence in each compartment predicted
by the model on March 1, 2020 (end of week 9). The choice of the Gumbel-r
distribution was based in terms of AIC (Akaike Information Criterion) among a set
of commonly used distributions.

For each stochastic run of the metapopulation model, the initial condition for each
compartment was sampled from the corresponding Gumbel-r distribution. This
procedure allowed to initialize the model in March 2020, while maintaining in the
model the variability associated with a trajectory seeded at the start of the epidemic
(late January 2020).

We validated the model by comparing its predictions of the percentage of antibody-
positive people with seroprevalence estimates from multiple studies at different
dates [51, 52].

We performed 200 stochastic simulations to compute median values and associated
95% probability ranges for all quantities of interest.

3.2.4 Behavioral indicators, counterfactual scenarios

Normalcy index. The Normalcy index, introduced by The Economist [108], measures
changes in human behavior based on a set of daily indicators to evaluate how life
has been affected since the onset of the pandemic. The index tracks eight different
variables (sports attendance, time at home, traffic congestion, retail footfall, office
occupancy, flights, film box office and public transport) to quantify an overall score.
The pre-pandemic activity level was set at a normalcy index of 100 to ease comparison.
During the second lockdown and curfews, the index for France was computed to be
between 38 and 53, indicating that progress toward returning to pre-pandemic life
was around halfway.

Counterfactual scenarios. We simulated various alternative policy scenarios re-
garding the implementation of lockdowns in France. These scenarios included a
"stop-and-go" approach, where lockdowns were periodically applied and lifted, in
contrast to the nighttime curfew between the second and third lockdowns in France.
Since French authorities did not define specific thresholds for imposing restrictions,
and for the purpose of comparing different policy choices, we established criteria
for initiating and ending lockdowns based on per-capita hospital admissions. As a
reference value for triggering lockdowns (𝑇), we used the per-capita hospitalization
rate in the region with the highest hospitalization incidence during the second
lockdown, namely the Auvergne-Rhône-Alpes region (ARA). This level represented
the maximum hospital occupancy that authorities deemed sustainable. For the
release threshold (𝑅), we instead considered the average hospitalization incidence
across regions at the time the second lockdown was lifted. Unlike the triggering
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threshold, the release threshold does not have a maximum capacity constraint, so
we used the average value.

We then varied these threshold values to evaluate the impact of interventions
triggered or released at different levels. Specifically, a nationwide lockdown was
initiated when the first region reached the trigger threshold (region 𝑖 with 𝑇𝑖 = 𝑇; all
others had𝑇𝑗 < 𝑇), and it was lifted when the last region reached the release threshold
(𝑅𝑘 = 𝑅;𝑅 𝑗 < 𝑅). We systematically varied and examined these thresholds.

For our simulations, we used the transmissibility and inter-regional mobility values
from the second lockdown for the first nationwide lockdown in the "stop-and-go"
series, and for subsequent simulated lockdowns, we employed values from the third
lockdown.

Effective days under restrictions. Given the heterogeneity of the measures imple-
mented in the period under study (second lockdown, curfew, third lockdown), days
spent under restriction could not be accounted with equal weights. We thus defined
a measure of “effective day 𝐷𝑡” spent under restriction, based on the Normalcy
index [108] associated to the interventions, as follows

𝐷𝑡 =
𝑁(𝑝𝑟𝑒𝐿𝐷2) − 𝑁(𝑡)

𝑁(𝑝𝑟𝑒𝐿𝐷2) − 𝑁(𝐿𝐷2)
where 𝑁(𝑡) is the Normalcy index at time 𝑡. Effective days are an output of the type,
stringency and duration of restrictions considered in the study (the ones applied in
France and the ones considered in the scenarios) and are used for comparison across
policies.



Can we strike a balance between the
effectiveness and sustainability of

interventions? 4
In this chapter, I present a work that uses the age-structured model (model #1,
presented in Chapter 3.1) to identify optimal intervention strategies for controlling
the third wave of the pandemic. We explored the complex interplay between epi-
demic dynamics, vaccination efforts, societal adherence, and policy sustainability.
We conducted simulations considering interventions of different intensities and
durations, considering also the possibility of loss of adherence over time. To quanti-
tatively compare the sustainability and effectiveness of different NPIs, we introduced
an index called "distress index". The results of this work helped to offer valuable
insights into the outcomes of the interventions and their potential consequences
in the future. The article was published in Communications Medicine [12]. The
additional information referred to in article #1 can be found in the Supplementary
Materials section of the thesis.

4.1 Introduction

The emergence of the SARS-CoV-2 Alpha variant in December 2020 sent shockwaves
through Europe, disrupting the management of the COVID-19 pandemic (Chapter
2.1). Just as some governments were easing interventions after the second wave,
the variant’s alarming spread compelled swift action. A few months later, with
vaccination rates lagging behind in continental Europe and the Alpha variant
fueling a third wave, a significant challenge emerged. How could countries rely on
heavy restrictions once again to reduce viral circulation and improve the epidemic
situation?

Moderate LD

Curfew

Strict LD

Strict LD

w/ continuous loss

Moderate LD

w/ continuous loss

Moderate LD

w/ limited loss

8 weeks LD

INTERVENTIONS DISTRESS INDEX
2 weeks 4 weeks 6 weeks 8 weeks

Strict LD 2.50 5.00 7.50 10.00

Strict LD w/ limited loss of adherence - 4.51 6.53 8.54

Strict LD w/ continuous loss of adherence - - 6.14 7.45

Moderate LD 1.55 3.09 4.64 6.19

Moderate LD w/ limited loss of adherence - 2.79 4.04 5.29

Moderate LD w/ continuous loss of adherence - - 3.80 4.61

Curfew 0.92 1.84 2.76 3.67

Figure 4.1: Timecourse of weekly
hospital admissions in Île-de-France
for lockdown scenarios of varying
stringency, duration, and adherence
and distress index. Top row: lockdown
duration of 8 weeks., vaccination pace
accelerated to 300,000 first doses/day
since the start of April. Interventions
are applied in w12 and assume a delay
of one week to the peak in hospital ad-
missions. Dots refer to data; filled dots
correspond to the data used to fit the
model and to provide the trajectory
for the curfew scenario void dots cor-
respond to more recent data. Curves
refer to the median trajectory; shaded
areas around the curves correspond
to the 95% probability range obtained
from 250 stochastic simulations. The
type of intervention is coded by dif-
ferent line colors. Horizontal dashed
lines refer to the peak of the first and
second wave in the region. Results for
strict lockdown scenarios with full ad-
herence or loss of adherence overlap;
for this reason, we do not show the
scenario with limited loss of adher-
ence. Bottom row: distress index val-
ues according to different scenarios
and different duration of lockdowns
(expressed in weeks)
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The article analyzed the efficacy of different social distancing strategies with a focus
on both sustainability and adherence. After one year into the pandemic, characterized
by intense restrictions, that were prolonged over time, the NPIs chosen to control
the emerging third wave had to consider several crucial aspects. In addition to
preventing the healthcare system from collapsing, it was important to assess the
impact of these interventions on personal freedom limitations and the potential loss
of adherence to the imposed measures. Sustainability of interventions depended
on the intensity and duration of restrictions. Long-lasting measures could lead to
decreased adherence and potential negative impacts on the population’s mental
health and quality of life. Over time, there was a risk of decreased adherence to
restrictions and adherence to intervention strategies played a key role in limiting
virus transmission [109]. However, the level of adherence might vary influenced by
factors such as public trust, information dissemination and personal risk perception
[110]. Surveys conducted in France have revealed an increase in anxiety among
the population since the implementation of long-standing interventions during the
pandemic [83]. This suggested that even less severe measures could have a significant
impact on quality of life if prolonged over time.

The study used the two-strain transmission model with vaccination (model #1) to
explore different intervention scenarios. The explored scenarios were analyzed in
relation to past implemented measures: both strict lockdowns, like the first one, and
more moderate ones, like the second, simulating various durations and potential
declines in adherence. The study was applied to the real situation of Île-de-France,
where simulations could guide policy decisions, offering a range of options to strike
a balance between the sustainability and effectiveness of NPIs. This highlighted how
different options would lead to compatible outcomes.

The efficacy of interventions was measured using various epidemiological and
healthcare indicators, such as hospital incidence, cumulative hospital admissions,
and hospital pressure (which is defined as the number of weeks during which
hospital admissions remained above the peak level observed during the second
wave). To quantify the sustainability of interventions, a distress index was defined
(Figure 4.1, Chapter 3.1.5). This index measures the impact of restrictions in terms
of limitations on individual freedom, based on mobility changes. Mobility data
proves valuable in quantifying the sustainability of the intervention strategies, which
encompasses both their duration and intensity. This index takes into account the
total duration of the lockdown, the intensity of the interventions, and the level of
adherence. We opted for a cumulative measure to enable comparisons between
different lockdown strategies that may differ not only in their stringency but also in
their acceptance and duration.

The study also conducted a secondary analysis, including testing accelerated vacci-
nation plans, impact of seasonality, and different strategies for phasing out restric-
tions.

4.2 Article #1: Adherence and sustainability of
interventions informing optimal control against the
COVID-19 pandemic
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Abstract

Background After one year of stop-and-go COVID-19 mitigation, in the spring of 2021

European countries still experienced sustained viral circulation due to the Alpha variant. As

the prospect of entering a new pandemic phase through vaccination was drawing closer, a

key challenge remained on how to balance the efficacy of long-lasting interventions and their

impact on the quality of life.

Methods Focusing on the third wave in France during spring 2021, we simulate intervention

scenarios of varying intensity and duration, with potential waning of adherence over time,

based on past mobility data and modeling estimates. We identify optimal strategies by

balancing efficacy of interventions with a data-driven “distress” index, integrating intensity

and duration of social distancing.

Results We show that moderate interventions would require a much longer time to achieve

the same result as high intensity lockdowns, with the additional risk of deteriorating control

as adherence wanes. Shorter strict lockdowns are largely more effective than longer mod-

erate lockdowns, for similar intermediate distress and infringement on individual freedom.

Conclusions Our study shows that favoring milder interventions over more stringent short

approaches on the basis of perceived acceptability could be detrimental in the long term,

especially with waning adherence.
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Plain language summary
In the spring of 2021, social distan-

cing measures were strengthened in

France to control the third wave of

COVID-19 cases. While such mea-

sures are needed to slow the spread

of the virus, they have a significant

impact on the population’s quality of

life. Here, we use mathematical

modelling based on hospital admis-

sion data and behavioural and health

data (including data on mobility,

indicators of social distancing, risk

perception, and mental health) to

evaluate optimal COVID-19 control

strategies. We look at the effects of

interventions, their sustainability and

the population’s adherence to them

over time. We find that shorter, more

stringent measures are likely to have

similar effects on viral circulation and

healthcare burden to long-lasting,

less stringent but less sustainable

interventions. Our findings have

implications for the design and

implementation of public health

measures to control future COVID-

19 waves.
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The emergence of the SARS-CoV-2 Alpha variant in
December 20201,2 disrupted the management of COVID-19
pandemic in Europe. The alert arrived as some governments

were lifting interventions that had been applied to curb the second
wave. Some countries, such as the UK and Ireland, were forced to
rapidly implement strict lockdowns to control the explosion of cases
due to the variant. Others maintained or strengthened their restric-
tions because of concerns over the new variant3.

Few months after, with vaccination lagging behind (25% of the
population of the European Union with a first dose on May 1,
2021 vs. 44% in the US, 51% in the UK, and 62% in Israel4) and a
third wave due to the Alpha variant, continental Europe faced the
challenge of relying once again on heavy restrictions to reduce
sustained viral circulation and improve the epidemic situation
approaching the summer. But what is the optimal strategy, given
vaccination rollouts, the epidemic conditions, and the sustain-
ability of long-lasting restrictive policies? On one side, limited
available options remain beyond high intensity interventions,
once milder layers of social distancing have been accumulated,
strengthened, and extended over time (e.g., curfew, closure of
restaurants and bars, closure of schools). On the other side, the
efficacy and long-term sustainability of the adopted policies are
potentially threatened by loss of adherence and policy-induced
fatigue5,6, affecting the quality of life of the population.

Building on observed adherence waning and introducing a
data-driven measure capturing the limitations on individual
freedom resulting from restrictions, we compared intervention
scenarios of varying intensity and duration, and examined the
role of adherence and sustainability on optimal epidemic control.
The study is applied to the third wave in Île-de-France—the Paris
region, the most populated of France and heavily hit by the
pandemic—accounting for vaccination rollout plans, seasonality,
and plans for the phasing out of restrictions.

We show that long-lasting interventions of moderate strin-
gency achieve the same reductions in viral circulation and
healthcare burden of shorter but higher stringency restriction, but
at the expense of a higher distress in the population. This is
exacerbated if adherence to policy wanes over time.

Methods
Data
Hospital surveillance data. We used regional daily hospital
admission data, collected in the SIVIC database7. The database
includes the number of admissions of COVID-19 confirmed
patients to regular hospital or intensive care units. Hospital data are
corrected for notification delays and do not suffer changes in
detection or sampling, unlike the number of detected cases. As such,
they provide a robust data source and have been used throughout
2020 in France for pandemic assessment and response8–11.

Mobility data. Mobility reductions shown in Fig. 1 were extracted
from two different data sources. Overall mobility was recon-
structed from mobile phone data provided by Orange Business
Service Flux Vision12,13. Data included origin-destination travel
flows of mobile phone users among 1436 geographical areas in
France. Each area corresponds to a group of municipalities,
defined according to the 2018 EPCI level (Établissements Publics
de Coopération Intercommunale14). Mobility reduction in a given
week was computed as the relative variation of the number of
trips with respect to the prepandemic baseline. Estimated pre-
sence at workplaces was obtained from Google Mobility
Reports15. This dataset provides the relative change in the daily
number of visitors to places of work compared to a prepandemic
baseline, based on Google location-history data.

Indicators of social distancing, risk perception, mental health.
Several initiatives collect data over time through surveys to
explore individual behaviours in response to COVID-19 pan-
demic. Here we use data from YouGov16 and Santé publique
France17. Surveys gather self-reported data, tracking compliance
with preventive measures (e.g., avoiding social gatherings or
contacts with other people, frequency of the use of masks), as well
as risk perception and mental health indicators (e.g., fear to
contract the virus, anxiety, depression). Indicators for specific
social distancing behaviors (avoiding gatherings, use of masks)
are used in addition to mobility data described above. YouGov
surveys cover multiple countries and provide data at least every
2 weeks. Santé publique France polls collect data at the national
level at least every month.

Ethics statement. Orange Business Service Flux Vision aggregated
mobility travel flows were previously anonymised in compliance
with strict privacy requirements, presented to and audited by the
French data protection authority (CNIL, Commission Nationale
de l’Informatique et des Libertés). They were accessed under
license for this study. The study did not require an ethical
approval as it involved review of publicly available documents,
involved analyses that were based on previously published stu-
dies, involved aggregated and anonymous data, did not involve
evaluation of experimental or patient data.

SARS-CoV-2 two-strain transmission model. We used a sto-
chastic discrete age-stratified two-strain transmission model,
integrating data on demography18, age profile18, social contacts19,
mobility15, and adoption of preventive measures17. The model
accounts for the co-circulation of two strains and vaccination.
Four age classes are considered: [0–11], [11–19], [19–65], and
65+ years old (children, adolescents, adults and seniors respec-
tively). Transmission dynamics follows a compartmental scheme
specific for COVID-19 (Supplementary Fig. 1) where individuals
are divided into susceptible, exposed, infectious, hospitalized, and
recovered. The infectious phase is divided into two steps: a pro-
dromic phase (Ip) and a phase where individuals may remain
either asymptomatic (Ias, with probability pa= 40%20) or develop
symptoms. We distinguished between different degrees of severity
of symptoms, ranging from pauci-symptomatic (Ips), to indivi-
duals with mild symptoms (Ims), or severe symptoms (Iss)
requiring hospitalization11,21. The duration of the infectious
period was computed from the estimated mean generation time
of 6.6 days22 (Supplementary Fig. 2). Prodromic, asymptomatic
and pauci-symptomatic individuals have a reduced
transmissibility23. A reduced susceptibility is considered for
children and adolescents, along with a reduced relative trans-
missibility for children, based on available evidence24–27. We
assume that infectious individuals with severe symptoms reduce
of 75% their number of contacts because of the illness they
experience. Parameter values and corresponding sources are
reported in the Supplementary Table 1. Sensitivity analysis on the
probability of being asymptomatic, the susceptibility of younger
age classes and transmissibility of children was performed in
previous works8,9,28.

Contact matrices are parametrized over time to account for
behavioral response to social distancing interventions and
adoption of preventive measures. Contacts at school, work and
on transports are considered according to the French school
calendar, school closures, and presence at workplaces estimated by
Google. Physical contacts are reduced based on data from regular
large-scale surveys conducted by Santé Publique France8. Contacts
engaged by seniors are subject to an additional reduction of 30%,
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to account for evidence of a higher risk aversion behavior of the
older age class compared to other age classes8.

Alpha variant. Genomic and virological surveillance to identify
specific mutations are in place in France since the start of 2021 to
monitor variants over time. The first large-scale genome

sequencing initiative (called Flash1 survey) was conducted on
January 7–8 and analyzed all positive samples provided by par-
ticipating laboratories29. The proportion of the Alpha variant in
Île-de-France was estimated to be 6.9%, compared to the national
estimate of 3.3%, making Île-de-France the region with the
highest penetration registered in the country. Flash surveys are
performed on average every two weeks on a sample of sequences.

a b c

d e f

g h i

Fig. 1 COVID-19 pandemic waves in Île-de-France, with associated mobility reductions, social distancing, risk perception, and psychosocial burden. a–c
Weekly hospital admissions in Île-de-France during the first (a; weeks 10–20, March 2–May 17, 2020), second (b; weeks 41–52, October 5–December 27,
2020), and third (c; weeks 6–16, February 8–April 25, 2021) pandemic wave. Dots refer to data; filled dots correspond to the data used to fit the model,
void dots correspond to data outside the inference window. Curves and shaded areas correspond to median fitted trajectories and 95% probability ranges,
obtained from n= 250 independent stochastic runs. Horizontal dashed lines refer to the peak of the first and second wave in the region. d–f Mobility
reduction in Île-de-France during the first (d), second (e), and third (f) pandemic wave. Yellow histograms represent the variation of mobility with respect
to prepandemic levels, based on the number of trips extracted from mobile phone data12. Blue curves show the estimated change in presence at workplace
locations over time with respect to prepandemic levels based on Google location-history data15. Shaded rectangles in the plots of the first two rows
correspond to social distancing measures (strict lockdown in the first wave, moderate lockdown in the second wave, strengthened measures in the third
wave). The second week of the second lockdown and the third week of the strengthened measures against the third wave have lower mobility and
presence at workplaces due to bank holidays in the week. Vertical dotted gray lines correspond to school holiday periods. g–i Percentage of individuals
avoiding crowded public places16 (g), percentage of individuals scared to contract COVID-1916 and prevalence of anxiety in the context of COVID-19
epidemic (h)17 as functions of time; scattered plot between the percentage of individuals scared to contract COVID-19 and the percentage of individuals
avoiding crowded places (i) in the time period October 2020–April 2021 (full time period shown in Supplementary Fig. S5), with the results of a Pearson
correlation test (effect size 0.71, p-value < 10−3). Results for these indicators refer to the national scale. Shaded rectangles in panels g, h correspond to
social distancing measures as in panels a–f.
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Starting week 6, 2021 a new protocol for virological surveillance
was implemented to provide more timely estimates on the weekly
frequency of detected viruses with specific mutations. It was based
on second-line RT-PCR tests with specific primers that allow the
detection of the main mutations that characterize the variants of
concern. They must include at least the N501Y mutation and
allow to distinguish the Alpha variant from the Beta or the
Gamma variants. The frequency of the Alpha variant over time in
Île-de-France is reported in the Supplementary Fig. 3.

We considered the co-circulation of the Alpha variant together
with the historical strains, assuming complete cross-immunity.
An increase in transmissibility of 59% (95% credible interval:
54–65%)29 was considered for the Alpha variant compared to the
historical strains. This early estimate was obtained from the
Flash1 and Flash2 survey in France, and it is in line with other
estimates1,2. To account for uncertainty in the transmission
advantage and possible changes due to restrictions, we also show
for sensitivity the results assuming 40% of increase in
transmissibility, i.e., the lower estimate provided by ref. 2.
(Supplementary Fig. 11). We considered a 64% increase in
hospitalization rates, following evidence of an increased risk of
hospitalization after infection due to the Alpha variant compared
with other lineages30,31. The frequency of the Alpha variant was
initialized in the model on January 7, 2021 using the estimates of
the first large-scale nationwide genomic surveillance survey
(Flash1). The model was validated against virological and
genomic surveillance data10 on prevalence of Alpha variant over
time. The Alpha variant was estimated to become dominant in
the region by mid-February 202110 (Supplementary Fig. 3).

Vaccination rollout campaign. Administration of vaccines was
included in the model according to the vaccination rhythm
adopted in France starting January 2021. We considered the
administration of 100,000 doses per day (including first and sec-
ond doses) at the national level from the end of January (w04),
accelerated to 200,000 first doses per day starting the beginning of
March (w10), and 300,000 first doses per day starting April (w13).
Rollout plans were expressed in terms of first administrations
from March on to follow the objectives of authorities, delaying the
administration of the second dose to reach a higher coverage in a
smaller timeframe. Higher vaccination paces (400,000–800,000
doses/day) were also tested (Supplementary Fig. 9). Paces are
defined at the national level, and the number of doses is pro-
portionally distributed to the region according to the population
eligible for the vaccine. Vaccination is prioritized to the older age
class, assuming 80% coverage, and then shifted to adults con-
sidering 50% coverage, according to surveys on vaccine
hesitancy32. Vaccination to healthcare personnel and patients in
long-term care facilities, performed at the start of the vaccination
program, could not be explicitly included.

We considered 75% vaccine efficacy against infection33 and
65% vaccine efficacy against transmission34, estimated after the
first injection. We further considered 80% vaccine efficacy against
symptoms given infection, computed from the estimated vaccine
reduction of symptomatic disease34,35 estimated at 95% after the
second dose, and found to be similar after the first dose36. As the
landscape for vaccine efficacy rapidly evolves, we also tested
vaccine efficacy against transmission equal to 40%37 (Supple-
mentary Fig. 13). We assumed efficacy to start 3 weeks after the
first injection, and tested a delay of 2 weeks for sensitivity
(Supplementary Fig. 14).

Inference framework. The model is fitted to daily hospital
admission data through a maximum likelihood procedure, by
estimating the transmission rate in each pandemic phase. More

precisely, prior to the first lockdown and in absence of inter-
vention (period January–March 2020), we estimated {β, t0} where
β is the transmission rate per contact and t0 is the date of the start
of the simulation. Then, in each phase we estimated αphase, i.e., the
scaling factor of the transmission rate per contact specific to the
pandemic phase under study (e.g., lockdown, exit from lockdown,
summer, start of second wave, second lockdown, etc.). The
transmission rate per contact in each phase is then defined as the
transmission rate per contact in the pre-lockdown phase β mul-
tiplied by the scaling factor αphase. A pandemic phase is defined by
the interventions implemented (e.g., lockdown, curfew, and other
restrictions) and activity of the population (school holidays,
summer holidays, etc.). The effective reproductive number is
derived from the estimated transmission rate through the next
generation matrix approach38. The likelihood function is of the
form

L DatajΘð Þ ¼
Ytn

t¼t1

PoissðHobs tð ÞjHpred t;Θð ÞÞ ð1Þ

where Θ indicates the set of parameters to be estimated, Hobs(t) is
the observed number of hospital admissions on day t, Hpred(t, Θ)
is the number of hospital admissions predicted by the model on
day t using parameter values Θ, Poiss(⋅∣Hpred(t, Θ)) is the
probability mass function of a Poisson distribution with mean
Hpred(t, Θ), and [t1, tn] is the time window considered for the fit.

For Île-de-France, we seeded the model with 140 infected
individuals to reduce the strong fluctuations associated with
fitting the rapid increase and the high peak of hospitalizations
observed in the first wave (the region was one of the areas mostly
affected by the epidemic in early 2020). Simulations progress
throughout 2020 to build immunity in the population. The model
was validated against the estimates of three independent
serological surveys conducted in France8. We used 250 stochastic
simulations to compute median values and associated 95%
probability range for all quantities of interest.

First lockdown, second lockdown, curfew. French authorities
implemented two national lockdowns in 2020 to face the rapid
surge of COVID-19 cases observed in the first and second wave.
The first lockdown started on March 17, 2020 and lasted 8 weeks.
It involved strict mobility restrictions outside home, together with
closure of schools and non-essential activities. A less stringent
lockdown was implemented for 6 weeks, starting on October 30,
2020. Schools remained open and a larger number of job sectors
were allowed to operate. Measures were relaxed in the last two
weeks of the lockdown, with the reopening of all retail for
Christmas shopping. The second lockdown was lifted in mid-
December with the application of a curfew starting at 8 pm, then
anticipated in January 2021 to 6 pm to face increasing SARS-
CoV-2 spread. Starting March 20, 2021, strengthened measures
were additionally put in place in the region of Île-de-France to
curb the third wave. These measures included mobility restric-
tions for trips exceeding 10 km, closure of business and of schools
(1 week for primary schools, 2 weeks for middle and high schools
in addition to 2-week school holidays in April). Values of the
stringency index according to the timeline of interventions
applied in France can be found in the Supplementary Fig. 4.

Loss of adherence. We used mobility data during the second
lockdown and estimates of mobility reductions over time to assess
if adherence to adopted policy waned over time, given unchanged
restrictions. Focusing on the second lockdown, we compared the
mobility reduction and reproductive number estimated in the first
3 weeks of lockdown implementation (w45–47, November
2–November 22, 2020) with respect to the following week. We
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considered the average over the first-3-week period to smooth out
the effect of the national holiday on November 11, altering
mobility and presence at work with respect to a regular week.

Lockdown scenarios. Starting from week 12, 2021 (March 22,
2021), we compared a scenario assuming unchanged curfew
conditions—as estimated in week 11 (curfew scenario)—with the
trajectories resulting from the application of a lockdown for a
duration of 2–8 weeks. We modeled the effect of a strict lockdown
and a moderate lockdown based on measured mobility reductions
and estimated transmissibility conditions during the first and
second lockdowns, respectively, before relaxation emerged. The
delay from the date of implementation of lockdown and the peak
of hospitalizations was estimated to be 9 days during the first
lockdown in the region, and varied between 7 and 12 days across
regions8. In our scenarios we assumed a 7-day delay, and tested
10 days for sensitivity (Supplementary Fig. 12). We also tested
lockdown scenarios with different starting dates, ranging from
w11 to w15, 2020 (Supplementary Figs. 6-S7).

For lockdowns longer than 2 weeks, we compared scenarios
assuming full adherence with situations characterized by a loss of
adherence over time. We modeled the loss of adherence
throughout interventions by a relative increase in the reproduc-
tive number, according to estimates from the second lockdown.
We applied it after 2 weeks from implementation of interventions
(to model a faster dynamics of adherence waning compared to the
one observed in the second lockdown), and considered it limited
in time (one drop) or continuous (repeated drops every two
weeks).

Distress index. In order to quantify the infringement on indivi-
dual freedom associated with lockdowns and provide a measure
of the policy impact on the quality of life, we introduced a
quantity called distress index. This measure takes into account
both the duration and the intensity of restrictions. It is defined as
the sum of the absolute values of weekly mobility reductions, over
the number of weeks in which each restriction is maintained, and
normalized to a scale from 0 to 10 (10 representing a strict
8-weeks lockdown and 0 the absence of restrictions). In case of a
strict or moderate lockdown without loss of adherence, we con-
sidered the mobility reductions recorded during the two inter-
ventions in 2020, respectively, and varied durations from 2 to
8 weeks. Loss of adherence is computed with a variation of the
mobility reduction after 2 weeks (limited loss) and repeated every
2 weeks (continuous loss), according to estimates from the second
lockdown. We took the end of January 2021 (w04) as reference
for the mobility reduction associated with curfew.

Seasonality. Multiple studies have investigated the relationship
between SARS-CoV-2 transmission and weather factors, includ-
ing temperature, humidity, ultraviolet radiation39, suggesting that
summer conditions may help in reducing transmission of the
virus. Seasonal factors and simultaneous social distancing inter-
ventions are difficult to disentangle; however, containment
measures are estimated to have a larger impact on the epidemic
compared to seasonal effects only. Considering the estimated
dependence of the reproductive number on UV radiation40 and
temperature41, we extracted data on downward UV radiation at
the surface and daily temperature recorded in Paris, in Île-de-
France, in the last three years (2018–2020)42 to derive an
approximate estimate of the reduction in the transmission rate
induced by climate factors for the region under study.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Adherence and impact of interventions of varying stringency
and duration. During the strict lockdown implemented to curb
the first wave (March–May 2020), mobility showed a reduction of
68.9% in the region compared to the prepandemic level (65%
reduction at the national level12) that remained fairly constant
over time (Fig. 1a, d). The associated effective reproductive
number was estimated to be 0.73 [95% confidence interval: 0.72,
0.74]. During the second wave (October–December 2020,
Fig. 1b), a less stringent lockdown was enforced, corresponding to
an effective reproductive number of 0.88 [95% CI: 0.86, 0.90]
estimated in the first 3 weeks of implementation (w45–47,
November 4–22, 2020), before relaxation occurred. Recorded
mobility and estimated presence at work decreased but remained
almost two times higher compared to the first lockdown (average
mobility reduction of 42.6% in the first 3 weeks compared to
prepandemic levels) and showed a rapid and marked increase
over time (Fig. 1e). This loss of adherence occurred remarkably
faster (after the third week) and more substantially during the
second lockdown compared to the first. The mobility reduction
with respect to the prepandemic phase went from 42.6% in the
first 3 weeks to 34.3% in the fourth week of the lockdown (w48,
November 23–29, 2020), corresponding to a relative change of
19%. This was associated to an estimated relative increase of
10.9% in the effective reproductive number. Higher mobility was
registered later, in the last 2 weeks of the lockdown (w49–50,
November 30–December 13, 2020), due to the reopening of
shops. The second lockdown was lifted with the application of an
8 pm curfew, then anticipated to 6 pm in January. The resulting
effective reproductive number was estimated to be 0.90 [95% CI:
0.86–0.93] for the historical strains and 1.43 [95% CI: 1.37–1.48]
for the Alpha variant at the end of January10.

Indicators obtained from surveys report that fear of contracting
COVID-19 showed an overall decrease over time after the second
wave in France, whereas prevalence of anxiety in the population
showed an increasing tendency, despite the lower stringency of
restrictions. Performing a linear regression in this time window
(i.e., October 2020–April 2021), we found a weekly average
reduction of −0.31% for individuals scared to contract the virus,
and −0.39% for individuals avoiding crowded places. In the same
time window, we found an average weekly increase of +0.13% in
the prevalence of anxiety in the population (Fig. 1h). Fear of
contracting COVID-19 showed a positive correlation with the
behavior of avoiding crowded places (Pearson r= 0.71, p < 10−4,
in the time period from w40 (September 28–October 4, 2020) to
w15 (April 12–18, 2021), shown in Fig. 1g; results are robust
when extending the timeframe of analysis). We observed a non-
significant association between the prevalence of anxiety in the
population and adoption of social distancing (Pearson r= 0.2,
p= 0.46, in the time period from w11 in 2020 (March 9–15,
2020) to w11 in 2021 (March 15–21, 2021) (Supplementary
Fig. 5).

Starting mid-February 2021, the region witnessed a sustained
rise in hospitalizations leading to the start of the third wave
(Fig. 1c). We fitted the model up to week 11 (March 15–21, 2021),
when the region was still under curfew before strengthened
measures were applied on March 20 to control the third wave. We
then simulated intervention scenarios starting week 12, 2021,
with stringency, efficacy and potential loss of adherence informed
by past mobility data12 and modeling estimates8,9.
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Regardless of adherence, the strict lockdown was predicted to
be the only measure able to achieve a rapid decrease of the
epidemic trajectories (Figs. 2 and 3), in line with observations in
the UK and Ireland following similar interventions. It would
outperform moderate lockdowns of any duration, on both short-
and longer-term epidemic impacts. Starting from about
3000 weekly hospitalizations at the time measures were applied,
admissions would be reduced to less than 400 when exiting a
strict lockdown of at least 1 month vs. more than 2000 after a
moderate lockdown (Fig. 3a). Even with adherence waning, a
strict lockdown would reduce the epidemic to the levels recorded
at the exit of the first lockdown in May 2020 (670 weekly
admissions in w20, 433 in w21, 330 in w22 in 2020), and it would
be maintained low by increasing immunization rates. These levels
would also enable a better control of viral circulation through
test-trace-isolate when partially alleviating restrictions8,43. Impor-
tantly, a short circuit-breaker44 of 2 weeks, after which curfew
was restored, was predicted to be already enough to rapidly
reduce hospitalizations to levels below the ones of February 2021.
Rebounds at the end of the short lockdown would be prevented
by maintaining a certain degree of social distancing (curfew) and
increasing immunization, with stronger reductions over time for
increasing vaccination rhythms (from 300,000 to 500,000 first
doses/day since April; Fig. 2).

Obtaining results equivalent to a short strict lockdown would
require moderate interventions to last longer than 2 months, and
could potentially be compromised by loss of adherence to
restrictions (Fig. 3a). This could slowdown and stop the decrease
in hospital admissions, leading to a plateau or a rise in
hospitalizations after several weeks of moderate lockdown,
potentially higher than the peak of the third wave (Figs. 2 and
3a). This occurs in our scenarios as repeated drops in adherence
over time may reduce the efficacy of a lockdown to values lower
than a simple curfew after a few weeks, because of the small
difference between the estimated efficacies of the second
lockdown (before relaxation) and curfew conditions. Since
moderate lockdowns would not be able to considerably reduce
viral circulation, they would entail a larger impact on the hospital
system (median hospitalizations in the period w12–w26 around
38,000–50,000 compared to 10,000–23,000 for strict lockdowns,
Fig. 3c) for a longer time (median 6–10 weeks with hospitaliza-
tion incidence above the peak of the second wave compared to at
most 2 weeks for a strict lockdown of any duration, Fig. 3d). This
impact would be more substantial if adherence waned, leaving the
hospital system under high pressure for twice the amount of time
(median 12 weeks above the peak of the second wave assuming
continuous adherence loss, compared to 6 weeks for full
adherence, corresponding to 80% of the time period under study).

a b c d

e f g h

Fig. 2 Timecourse of weekly hospital admissions in Île-de-France for lockdown scenarios of varying stringency, duration, and adherence. a–d:
vaccination pace accelerated to 300,000 first doses/day since the start of April, lockdown duration of two (a), four (b), six (c), or eight (d) weeks.; e–h: as
in a–d, but assuming 500,000 first doses/day. Interventions are applied in w12 and assume a delay of one week to the peak in hospital admissions. Dots
refer to data; filled dots correspond to the data used to fit the model and to provide the trajectory for the curfew scenario; void dots correspond to more
recent data. Curves refer to the median trajectory; shaded areas around the curves correspond to the 95% probability ranges obtained from n= 250
independent stochastic simulations. The type of intervention is coded by different line colors; the abbreviation LD stands for lockdown. Horizontal dashed
lines refer to the peak of the first and second wave in the region. Results for 2 weeks lockdown scenarios with or without loss of adherence overlap, as loss
of adherence occurs in the third week. Results for strict lockdown scenarios with full adherence or loss of adherence overlap; for this reason, we do not
show the scenario with limited loss of adherence.
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Despite different trajectories, our model anticipates that
moderate lockdowns could reach at the end of June the
hospitalization levels measured in May 2020 (670 weekly
admissions) if adherence was maintained over time, similarly to
a short strict lockdown, and with no advantage compared to
curfew measures at this stage (Fig. 3b). Adherence loss would lead
to higher hospital admission levels.

Removing contacts at schools, we found that the two weeks of
school closure for spring holidays (w15–16) would have a marked
impact on the efficacy of moderate lockdowns, otherwise with
schools open. They would allow flattening the curve and avoiding
even longer plateaus in critical conditions before the accrued
effect of immunization would decrease the epidemic (Supple-
mentary Fig. 8).

Optimizing interventions’ sustainability by minimizing policy-
induced distress. Another critical dimension associated with the
nature of interventions—besides their stringency, duration, and
adherence—is their sustainability over time, which is a

combination of intensity of restrictions and how long they last.
To account for this aspect, we introduced a distress index, inte-
grating the intensity, duration, and adherence level in each sce-
nario, and providing a quantitative measure of the policy-induced
distress perceived on average by an individual. The higher the
distress index and the lower is the sustainability of the measure.

Moderate lockdowns of less than 6 weeks are all characterized
by low levels of distress (<4), similar to those of a curfew and of a
2-week strict lockdown (Fig. 4; estimated values of the distress
index are reported in the Supplementary Table 2). In this range of
distress values, a net advantage was observed for the short strict
lockdown that substantially reduced the total number of
hospitalizations (23,000 vs. an average of 47,000) and hospital
pressure (2 weeks vs. more than 8 weeks). High values of the
distress index (>7) were associated exclusively to strict and long
lockdowns (of 6 weeks, with full adherence, or longer, also with
adherence waning over time), which correspond to the most
effective measures in suppressing viral circulation and reducing
the healthcare impact, but also the least sustainable.

a b

dc

Fig. 3 Impact of loss of adherence on intervention efficacy, for varying stringency and duration of interventions. Weekly hospital admissions at the end
of the lockdown (a), weekly hospital admissions at the end of June (w26) (b), cumulative hospital admissions computed over the time period w12–w26 (c),
hospital pressure, defined as the number of weeks in which hospital admissions remain above the peak level achieved during the second wave, in the period
w12–w26 (d) as functions of the adherence level—full adherence over time, limited loss of adherence, continuous loss of adherence over time. The point
with the curfew (gray circle) represents the estimate under the curfew scenario with no additional intervention, and is shown for comparison. Results refer
to a vaccination rhythm accelerated to 300,000 first doses/day since April. Symbol types refer to the stringency of intervention (squares representing a
strict lockdown scenario, diamonds representing a moderate lockdown scenario). Color shades of the symbol contour refer to the duration (weeks) of the
lockdown intervention (from the lightest shade corresponding to 2 weeks, to the darkest one corresponding to 8 weeks); the abbreviation LD in the legend
stands for lockdown. Plots show median values; error bars represent 95% probability ranges, obtained from n= 250 independent stochastic runs (gray
points). Horizontal dashed lines in panel (a) refer to the peak of the first and second wave in the region; horizontal dashed line in panel (b) refers to the
level of mid-May 2020 at the exit of the first lockdown.
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There exists, however, quite a diversified range of intervention
options that, for moderate distress (index between 4 and 7),
would achieve better control of the epidemic than moderate
lockdowns. One-month strict lockdowns would largely outper-
form moderate interventions in terms of health metrics while
inducing similar distress, as the latter must be maintained for a
longer duration. Six- or eight-week moderate lockdowns would
lead to about three times as many patients hospitalized and about
three to six times the hospitalization incidence at the end of June
compared to interventions that exhibit a similar distress level as a
strict lockdown of 1 month. If moderate lockdown restrictions
were less respected over time, epidemiological and healthcare
indicators would considerably worsen, for relatively small gains in
lowering the policy-induced distress.

Vaccination and seasonality while managing reopening plans.
According to weather data for Île-de-France, an average increase
of 23 kJ/m2 in UV radiation and of 11 °C in temperature were
registered from March to June in the last three years. Based on the
estimated relation between climate factors and the reproductive
number40,41, this increase would correspond to a 7.7% and 7.3%
reduction in viral transmission, respectively. In the following, we
explore values up to 30% reductions of the transmissibility
starting from May, to also account for reductions resulting from
changes of behaviors associated with the upcoming summer (e.g.,
more time spent outdoor, increased ventilations of indoor
environments, etc.).

Further acceleration of vaccination pace coupled with the
potential effect of seasonality may act in synergy to (i) counteract
the deterioration of the epidemic due to the waning of adherence
over time, or (ii)—if stronger—bring down the epidemic faster
than what is expected from moderate interventions. Figure 5
shows the interplay of these factors assuming that seasonality acts
on reducing viral transmission starting May. Keeping the planned
vaccination rhythm at 300,000 first injections per day since April,
a 5–10% reduction of transmission induced by seasonality would
be necessary to absorb the potential loss of adherence against
moderate interventions by the end of June (label (1)). Without
counting on seasonal effects, vaccination rollout should increase
by 33% (i.e., from 300,000 to 400,000 first doses per day). Larger
seasonality (>20%) or accelerations in vaccination rollouts (up to
800,000 first doses per day) would be able to compensate for the
larger cumulated number of patients requiring hospitalization

due to adherence loss (label (2)). Reaching by the start of the
summer the weekly admissions achieved by an imperfectly
adhered 1-month strict lockdown would require substantial
seasonality coupled with large increases in vaccination rhythms
(contour line at 300 in the top row of Fig. 5).

In all situations, a certain degree of social distancing is required
to accompany the gradual lifting of lockdown to avoid slowdowns
or rebounds (bottom row of Fig. 5). Even the summer conditions
estimated in mid-July 2020, but considering schools in session,
may lead to an epidemic resurgence if incidence is high, despite
the growth in population immunity and summer seasonality.
Results show that a progressive transition in phasing out
restrictions is essential, and they further support the importance
to lower the incidence level to better manage potential rebounds
while reopening.

Discussion
Managing sustained viral circulation after long periods of social
distancing measures of varying intensity faces the challenge to
reduce the strain on the healthcare system and to limit long-
lasting or stringent interventions affecting the quality of life of the
population. Moreover, with accelerating vaccination campaigns
and the prospects of reopening the society, adherence waning
may represent a threat to phasing out restrictions. Using Île-de-
France as a case study, we compared the efficacy of different
measures against their sustainability and potential for case
resurgence due to imperfect adherence of the population. Given
the high incidence levels reached by the epidemic in the region by
mid-March 2021, exceeding the peak of the second wave10, only
high intensity interventions would have been able to rapidly curb
viral circulation, allowing the region to considerably reduce the
burden of hospitalization after only 2 weeks and despite loss of
adherence. Once incidence substantially declined, the manage-
ment of the epidemic could largely benefit from test-trace-isolate
strategies8,43 and the large-scale availability of self-test kits for
iterative screening45, while immunization due to vaccination
builds up in the population. Hospitals could more rapidly restore
routine care beyond COVID-19. Moreover, rapidly reaching low
incidence levels would also lower the potential for SARS-CoV-2
evolution conferring fitness advantages, and allow a better control
of the possible emergence or importation of variants of concern46.

Moderate interventions as the strategy adopted in
November–December 2020 to curb the second wave constitute

a b c

Fig. 4 Intervention efficacy vs. associated policy-induced distress. Weekly hospital admissions at the end of June (w26) (a), cumulative hospital
admissions (computed in the time period w12–w26) (b), hospital pressure, defined as the number of weeks in which hospital admissions remain above the
peak level achieved during the second wave, in the period w12–w26 (c) as functions of the distress index. Results refer to the accelerated vaccination pace
of 300,000 first doses/day since April. Symbol types refer to the stringency of intervention (squares representing a strict lockdown scenario, diamonds
representing a moderate lockdown scenario, void circle representing the projection under the curfew scenario). Color shades of the symbol contour refer to
the duration (weeks) of the lockdown intervention (from the lightest shade corresponding to 2 weeks, to the darkest one corresponding to 8 weeks); the
abbreviation LD in the legend stands for lockdown. Adherence to moderate and strict lockdowns is coded with the fill color (filled symbols with the color of
the scenario correspond to scenarios with full adherence, void symbols represent scenarios with limited loss of adherence, blue filled-in symbols
correspond to scenarios with continuous loss of adherence). Plots show median values; error bars represent 95% probability ranges obtained from n= 250
independent stochastic runs (gray points). Horizontal dashed line in panel (a) refers to the level of mid-May 2020 at the exit of the first lockdown.
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suboptimal options for the management of the epidemic till
summer. Their efficacy remains limited because of the Alpha
variant’s higher transmissibility1,2,29 and still low immunization
levels (15.7% population vaccinated with a first dose in the region
by April 20). Our results show that these measures should be
maintained for much longer to reach incidence values similar to
the result of a short and strict circuit-breaker44, at the expense of
a large number of severe cases requiring hospital care, a con-
tinuously high pressure on the hospital system, and high levels of
distress cumulated over time. The strengthened measures in place
during the spring 2021, based on closure of non-essential busi-
nesses, ban on gatherings and recommendations to telework, are

similar in intensity to the moderate scenarios considered in this
study, as also confirmed by the similarity of the stringency
index47 (Supplementary Fig. 4). These were however accom-
panied by the advanced closure of schools just before the 2 weeks
regular school holidays in April that provided an extra break on
the epidemic evolution showing in the observed trend.

Despite different trajectories, epidemic conditions by the time
summer starts are predicted to be similar across intervention
scenarios (with the exception of high intensity interventions
lasting 1 month or longer, largely suppressing the epidemic) and
close to the curfew scenario in absence of additional restrictions.
Differences in how the epidemic is managed throughout spring

a b c
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Fig. 5 Impact of vaccination, seasonality, and reopening plans. a–f Heatmaps show median values of weekly hospital admissions at the end of June (w26)
(a–c) and cumulative hospital admissions in the time period w12–w26 (d–f), as functions of vaccination rhythm (y-axis) and seasonal reduction in
transmission (x-axis) for moderate lockdowns of 8 weeks with full adherence (a, d), limited loss of adherence (b, e), continuous loss of adherence (c, f).
The abbreviation LD stands for lockdown, contour lines indicate reference values of specific scenarios defined in the legends. Circled numbers refer to a
subset of conditions of interventions (heatmaps from left to right), vaccination and seasonality (variables in the y- and x-axis in each heatmap) achieving
the same outcome, identified by the contour lines (see legend) and discussed in the main text. g–i Plots show projections of the weekly hospital admissions
under different hypotheses for the reopening conditions, assumed right after lifting the moderate lockdown (orange curves), or through a progressive
transition (blue curves): conditions experienced in mid-July 2020, but with schools in session (g); curfew scenarios with 40% fewer individuals respecting
physical distancing (h); curfew scenarios with 15% fewer individuals respecting physical distancing (i). Curves and shaded areas correspond to median
trajectories and 95% probability ranges, obtained from n= 250 independent stochastic runs. In all plots, gray continuous line refers to a scenario in which
curfew conditions as in week 11 are restored after the moderate lockdown. Dots refer to data; filled dots correspond to the data used to fit the model and to
provide the trajectory for the curfew scenario; void dots correspond to data outside the inference time window showing the peak of the third wave.
Scenarios assume a 10% reduction in transmissibility due to seasonality (except for the mid-July 2020 conditions that already embed seasonal aspects)
and a vaccination rhythm of 300,000 first doses per day starting April. Plots showing projections for the reopening conditions, assumed right after lifting
the strict lockdown are shown in Supplementary Fig. 10.
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are absorbed over time thanks to vaccination. However, large
disparities remain for cumulative epidemiological and public
health indicators, depending on whether early suppression or
mitigation were achieved by the interventions. This would have
an impact not only throughout the third wave (by increasing the
overall number of hospitalizations, patients requiring critical care,
and deaths), but also on the medium-to-long term due to the
rising number of individuals who are likely to suffer from long-
term health consequences following a COVID-19 infection (long
COVID)48,49. Early estimates indicate that about 10% of indivi-
duals testing positive for COVID-19 exhibit symptoms after
4 months48, and about 3/4 of hospitalized patients report at least
one symptom after 6 months49—mainly fatigue, muscle weak-
ness, sleep difficulties, anxiety, depression. Choosing a 2-week
strict lockdown against an 8-week moderate lockdown would
correspond to estimated 30,000 avoided long COVID cases
among detected infections from mid-March to the end of June.

The choice of interventions inevitably also impacts the quality
of life of the population due to imposed restrictions, leading to
possible spontaneous relaxation. The shorter the measure’s
application, the less likely it is to observe adherence waning over
time. Interventions of high intensity but short duration may
therefore constitute an optimal approach to reduce both epidemic
and healthcare burdens, while minimizing possible loss of
adherence as well as policy-induced distress. Evidence from
OECD countries after one year of COVID-19 pandemic show
that swift lockdown measures were overall less restrictive of civil
liberties, thanks to achieved control, compared to recurrent
mitigation policies severely impacting individual freedom50.
Indeed, moderate or mild (curfew) interventions cumulate dis-
tress over time, as they need to be implemented for much longer
to achieve the reduction of health indicators, with the potential
risk of losing population adherence. This would considerably
worsen both incidence and cumulative indicators, slowing down
or stopping the decrease in incidence obtained with restrictions,
thus remaining on a long plateau at sustained viral circulation, as
occurred after the second wave. If relaxation against measures is
left uncontrolled, epidemic rebounds can also be expected. At the
same time, loss of adherence would correspond to a limited gain
in personal freedom, when averaged overall individuals (−26% in
distress index by continuously losing adherence in moderate
lockdowns lasting 8 weeks), compared to interventions of lower
stringency (−60% in distress index from an 8-week moderate
lockdown to a 2-week strict lockdown).

In our study, loss of adherence occurs over time and is
informed from observed increases in mobility during the second
lockdown and corresponding estimated impact on the epidemic,
during unchanged restrictions and recommendations. We did not
consider initial adherence to restrictions different from what was
measured in the first and second lockdown. While lower initial
adherence may be expected as stringent social distancing mea-
sures are being applied for the third time, this may also depend
on the acceptability of new measures, clarity of restriction and
recommendations. For example, a recent survey showed that
about 70% of individuals approved the strengthened measures
recently applied in France, however almost half of them planned
to disobey the rules51. Also, adherence loss should not be con-
fused with population response to restrictions induced by socio-
economic conditions and life circumstances6,12,13,52. Prior work
showed that this response—despite numerical differences
depending on the stringency of measures (first lockdown, second
lockdown, localized curfew at 8 pm, nationwide curfew at 6 pm)
—is associated to the composition of the population, with blue-
collar jobs and household crowding emerging as determinants of
higher mobility during restrictions in France13.

We introduced an index integrating mobility reduction and
duration of restrictions to provide a quantitative measure of
policy-induced distress along the spectrum of varying stringency.
This is meant to integrate the impact of restrictions infringing on
individual freedom, as well as psychosocial effects of prolonged
measures, linked for example to isolation, uncertainty, loss of
purpose, and lack of social contacts53,54. While both distress
index and adherence were informed from data, we did not con-
sider an explicit relation between distress and adherence loss,
potentially leading to feedback mechanisms reinforcing relaxation
for increasingly long durations. Related to “pandemic fatigue”, a
concept often introduced as the presumed cause to limited
adherence, this relation remains highly debated6. Some behavioral
scientists warned against an ill-defined concept used to justify
avoiding strict and/or early interventions6,55. Different features
and origins of fatigue are likely at play—including for example life
constraints independent of motivation, as discussed above—that
would require a range of definitions, data, and frameworks for
analysis. A study on data from 14 countries showed that adher-
ence to physical distancing evolved following a U-shape between
March and December 20205. However, in France this drop would
correspond to the summer period, between the first two waves,
during which restrictions were lifted and only recommendations
on the use of personal preventive measures were in place. As
such, it does not relate to the adherence loss throughout inter-
ventions considered here. Different indicators obtained from
surveys show that fear of contracting COVID-19 decreased over
time after the second wave in France, while anxiety continued to
increase in the population. We found a positive association
between fear and social distancing (expressed by the percentage of
individuals avoiding crowded places), confirming the role that
risk perception has in shaping health-related behaviors56. How-
ever, we did not find a significant association between increasing
anxiety, concurrent with lasting restrictions, and decreasing social
distancing (Supplementary Fig. 5). So far there exists little evi-
dence on the mechanisms of action of behavioral interventions
that could improve our understanding and be leveraged to boost
policy observance.

Available evidence indicates that interventions implemented in
2020 largely reduced the incidence of COVID-199,11,57–60, in the
absence of effective treatments and prior to vaccination. Sub-
stantial differences were observed between analyses aiming to
assess the efficacy of single social distancing measures (e.g., clo-
sure of schools, businesses, all but essential services, ban on mass
gatherings and public events, restrictions on movements and
stay-at-home orders). Our study did not focus on isolated mea-
sures, but considered the estimated efficiency of policy packages
that were deployed during the first and second wave in France,
along with observed policy compliance and wane in time. A
lockdown as strict as the first one is unlikely to reach nowadays
the efficiency observed last year, and for this reason we con-
sidered reduced adherence, which we show would marginally
affect the results. The two lockdowns implemented in 2020 did
not differ exclusively for the closure or opening of schools, but
also for the mobility levels and presence at workplace estimated
from data. Behaviors related to mobility, presence at work and
school are not independent and we currently lack enough data to
parameterize their relationship. In addition, alternative versions
of interventions allowing time outdoor where risk of transmission
is reduced61—such as recommendations in place during the third
wave—may reshape mobility, contacts and associated risk in ways
different than previously observed, preventing their assessment
on the basis of historical data. Open questions remain on the
combination and sequence of restrictions to be progressively lif-
ted after the lockdown, as specific measures are too detailed for
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mathematical models to quantify (e.g., reopening of restaurants).
Strategic prioritization will likely depend on countries’ interests.

Vaccination is key to exit the health crisis; however, our
numerical evidence shows that epidemic management still needs
to rely on social distancing to curb viral transmission, confirming
prior work62–64. Increasing vaccination rollout coupled with 5-
30% reduction in transmission due to seasonal effects would be
able to compensate for the slowdown or rebound effects of
adherence waning or fast reopening. Multiple studies have
investigated the relationship between SARS-CoV-2 transmission
and weather. Results suggest that warm and humid conditions,
and high UV radiation levels, are less favorable to disease
spread39. Based on previous estimates40,41, we derived that the
average increase in UV radiation and temperature reported in Île-
de-France from March to June corresponds to ~10% reduction in
transmission. Additional mitigating effects are expected due to
seasonal behavior, with individuals spending more time outdoor
than indoor, and aerating indoor settings more compared to
winter time. But misconceptions on seasonality may generate
excessive trust in the public altering their risk perception, and in
authorities affecting their decision-making65. Despite a building
literature on the topic, there remain aspects that are difficult to
measure and include a strong behavioral component. A large
second wave started last year in the United States during summer
because of early reopening, and cases started to rise in France
from mid-July 2020, paving the way to the second wave in the fall.
Lifting restrictions with the conditions experienced in mid-July
2020 is expected to lead to an epidemic rebound if incidence is
high. We did not consider here the situation at the end of the first
lockdown in spring 2020 because it was characterized by the
maintenance of cautious behaviors, and additional levers existed
that continued curbing transmission after lockdown was lifted
(e.g., the increase in mask use, from 45% in mid-May 2020 to
>70% at the end of the summer17, also due to mask mandates).
Managing the epidemic while gradually releasing non-
pharmaceutical interventions through the summer should
mainly rely on the speed of vaccination rollout.

Our study has a set of limitations. It is applied to a region only,
as indicators for France hide a variable situation at the local level,
limiting the accuracy of modeling approaches extended to the
whole country. Geographical heterogeneity depends on the
evolving epidemic situation, population immunity due to natural
infection, and variant frequency, so that results are not directly
generalizable to other regions. We did not consider waning of
immunity66 or reinfections over the time frames modeled. We
assumed the transmissibility advantage of the Alpha variant from
early estimates in France29, in agreement with other studies1,2;
however, this may be altered over time by social distancing and
competition with other strains. Assuming a smaller transmissi-
bility advantage for the variant would lead to lower incidence
projections; however, it would not be able to capture the evolu-
tion in time of the Alpha variant’s frequency in the region
(Supplementary Figs. 3, 11). We did not consider the interaction
with other variants, such as the Beta variant or the Gamma
variant, that are already present in the country and show so far
limited diffusion. If these variants can at least partially escape
natural or vaccine-induced immunity67, they may pose a chal-
lenge for the management of the epidemic as population
immunity increases. Our approach is not suited to account for
contacts in low-risk and high-risk conditions, e.g., in closed ill
aerated settings vs. open settings, but seasonal reductions effec-
tively account for these aspects. Modeled vaccination rhythms
according to authorities’ plans were slightly faster than observed.
By May 4, 23.6% of the population was vaccinated with a first
dose in the model, compared to 20.3% according to data; how-
ever, this is not expected to affect our findings. We did not

consider slowdowns that were recently observed after the tem-
porary stop of AstraZeneca vaccine administration, undermining
demand relatively to other vaccines. We considered 50% coverage
in the adult population, following the declared intentions to get
vaccinated of this age class in France32, but we did not consider
changes in this expected coverage due to a possible reduction in
perceived risk in relation to the successful reduction of epidemic
incidence68 or the application of measures targeting the non-
vaccinated population thus incentivizing uptake. Our findings
and prior work show that relaxing social distancing with limited
immunization may result in epidemic rebounds62–64. We did not
consider the economic impact of social distancing measures, as
our study focused on the epidemiological, healthcare, and beha-
vioral components. There is increasing evidence, however, that
economic growth, public health, and civil liberties do not need to
be in opposition in the management of the COVID-19 crisis, with
countries aiming for elimination faring largely better than
countries adopting mitigation strategies50. Also, we did not
consider health impacts beyond COVID-19 that can result from a
high pressure on the hospital system. Psychosocial impact was
instead introduced through a simplified empirically-driven indi-
cator based on restricted mobility, the core of many social dis-
tancing measures. However, this indicator is an average, therefore
it hides the effects on vulnerable populations who may experience
disproportionately higher distress6,13,52. Also, being informed by
mobility only, it aims at providing a measure of infringement of
personal freedoms, but without explicitly capturing other ele-
ments associated with the quality of life54. However, the
increasing trend in anxiety observed following the second wave
and throughout a prolonged application of curfew measures
supports the idea of a progressive buildup of distress concurrent
with lasting restrictions.

Control of the epidemic in a partially immunized population
depends, in non-linear ways, on the interplay between the char-
acteristics of the circulating variants, the stringency of social
distancing measures, vaccination rollout plans, and population
adherence to measures and vaccination. Mathematical models
help to unravel the complexity of these interactions, accounting
for the uncertainties characterizing some of these aspects, and to
quantitatively inform on the optimal solutions for epidemic
control. Our study shows that favoring milder interventions over
more stringent approaches limited in time on the basis of per-
ceived acceptability could be detrimental in the long term, espe-
cially with waning adherence.

Data availability
The mobility data supporting the findings of this study were available to authors from the
Orange Business Service Flux Vision within the framework of the research project ANR
EVALCOVID-19 (ANR-20-COVI-0007). Restrictions apply to the availability of these
data, which were used under license, and so are not publicly available. Access to the data
can be requested from Orange Business Service Flux Vision on a contractual basis. All
other indicators used in the study are publicly available online at the links provided in the
references. Hospitalization data were obtained from the SIVIC dataset7. Presence at
workplaces was obtained from Google Mobility Reports15 specific to Île-de-France
region. Indicators of social distancing (“Avoiding crowded public places”)69 and risk
perception (“% people who say they are ‘very’ or ‘somewhat’ scared that they will
contract COVID-19”)70 were obtained from YouGov.uk. Data on mental health were
obtained from Santé publique France17, in the section “Santé mental - Prévalences et
évolutions de l’anxiété”. Source data for the main figures in the manuscript can be
accessed as Supplementary Data 1-5.

Code availability
Analyses were carried out in Python 3.8.5. Code for the transmission model is available
on GitHub71.
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4.3 Discussion

We analyzed the effectiveness of different lockdown measures in controlling the
spread of COVID-19, with a focus on comparing severe and moderate lockdown
scenarios, using the empirically observed loss of adherence. We confirmed that high
intensity lockdowns would be more efficient in controlling the epidemic in a shorter
time compared to moderate lockdowns, but most importantly:

• We showed that moderate interventions would be more largely affected by
adhesion loss, with the risk of compromising the control of the epidemic if
these were kept for a long time.

• We introduced a data-driven "distress index" to compare the impact of different
interventions on the quality of life of the population.

• We found that for intermediate values of the distress index, shorter strict lock-
downs (≤4 weeks) are largely more effective than longer moderate lockdowns
(≥6 weeks)

The concept of acceptability was often seen as a potential argument against imple-
menting early and strict interventions [111, 112]. However, our research findings
challenge this notion and suggest that opting for milder interventions instead of
stringent policies may have negative consequences in the long run, particularly when
they are prolonged in time and when adherence to these measures decreases.

Our study revealed that implementing severe lockdown measures had a rapid
and significant impact on reducing the spread of the epidemic. This resulted in a
swift relief of the burden on hospitals and the resumption of non-COVID medical
services. Furthermore, by maintaining low levels of the virus during the gradual exit
phase, we were able to achieve better control over viral circulation [15], supported
for example by a robust TTI system. Interestingly, we found that a strict two-week
closure, followed by the reinstatement of a curfew during the exit phase, could
bring about substantial improvements in the epidemic situation within a very short
period of time. In contrast, moderate lockdown measures took longer to yield results
comparable to those achieved by strict measures. Prolonged interventions resulted
in a prolonged plateau in the epidemic, which kept hospitals under pressure for
several weeks. Moreover, if adherence to the restrictions declined over time, the
effectiveness of moderate interventions decreased significantly. This does not occur
for strict interventions.

The global scientific community widely agrees that mass vaccination has proven to
be the most effective approach in mitigating the impact of the COVID-19 pandemic
[113]. However, during the study period, effective epidemic control still required the
implementation of significant social distancing measures [12, 114]. From a public
health perspective, social distancing and vaccination are interventions that provide
greater benefits when applied simultaneously [115]. Moreover, during the study
period, it was crucial to convey the message that vaccination was a complement to
social distancing measures and not a substitute [116].

Another factor that has contributed to the alleviation of social distancing measures
during the summer, alongside vaccines, was the impact of seasonality. Seasonality
encompasses not just climatic factors but also human behavior, given that people tend
to spend more time outdoors in the summer. Even during the transition following the
first wave, studies were emerging to quantify the seasonal effects on transmissibility.



4.3 Discussion 47

As the summer of 2021 approached, it was estimated that this seasonal behavior
mitigates transmission, resulting in a decrease in transmissibility of approximately
10% [117, 118]. Nevertheless, due to lingering uncertainties linked to this factor, our
scenario analysis explored a spectrum of values, ranging from the more cautious
"no reduction" to an optimistic 30%.

From our simulations, it was observed that doubling the speed of vaccine adminis-
tration coupled with seasonal effects reducing transmissibility by 5-10% would have
been sufficient to compensate for the effects of adherence waning (refer to Figure 6
in the paper (article #2) and Figure 4.2). Lifting restrictions with the conditions ex-
perienced in mid-July 2020 was expected to lead to an epidemic rebound. Managing
the epidemic while gradually releasing non-pharmaceutical interventions should
have mainly relied on the speed of the vaccination rollout.

It is crucial to acknowledge the limitations of our study. We hypothesized that
the loss of adherence would have a similar impact regardless of the intensity of
lockdown measures, although various studies on adherence have been conducted in
different regions of the world, revealing that adherence varies over time and across
different protective behaviors. For instance, there is an increase in adherence to
low-cost and habitual behaviors like mask-wearing, while the same is not observed
for high-cost and sensitive behaviors such as physical distancing [119]. Another
aspect we did not consider in our study was the repetition of implemented restrictive
measures. Common sense suggests that adherence might also be related to the
number of occurrences, meaning that the same measure could be less effective when
implemented for the second or third time. This aspect has not been investigated in
France, as the same sequence of interventions has never been repeated, however, it
could be an interesting study for countries such as Italy and Chile

The distress index used in our study, which measures policy-induced distress based
on mobility data, did not account for specific demographic groups or vulnerable
populations disproportionately affected by the measures. Moreover, it cannot be
directly compared with other indicators, such as the stringency index or mental
health indicators that measure anxiety or disorders. Our study measured adherence
overall and not by age group, other studies have shown that younger participants
were more likely to make misrepresentations and not adhere [120].

Until now, our discussions have mainly focused on the measures applied from
the third wave onwards. However, in order to thoroughly assess the sustainability
of these measures, we should also consider a longer time horizon. It is crucial
to acknowledge another limitation of the study, which is the absence of analysis
regarding alternative options overall time period, such as scenarios where the
curfew was never implemented. This lack of evaluation of alternatives could have a
considerable impact on the long-term sustainability of the measures adopted. There
could have been alternative approaches that were equally effective or even more
sustainable from both economic and social perspectives.
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Figure 4.2: Impact of acceler-
ated vaccination and seasonality.
Heatmaps show median values of
weekly hospital admissions at the end
of June (w26) (top row) and cumula-
tive hospital admissions in the time
period w12-w26 (bottom row), as func-
tions of vaccination rhythm (y axis)
and seasonal reduction in transmis-
sion (x axis) for moderate lockdowns
of 8 weeks with full adhesion (left),
limited loss of adhesion (center), con-
tinuous loss of adhesion (right). Con-
tour lines indicate values of reference
of specific scenarios or situations de-
fined in the legends. Circled numbers
refer to conditions of interest discussed
above. Plots in the fourth column show
hospital admissions over time (weekly
admissions, top row; cumulative ad-
missions, bottom row) associated to
the conditions labelled by the circled
numbers. Curves refer to the median
trajectory; shaded areas around the
curves correspond to the 95% proba-
bility range obtained from 250 stochas-
tic simulations. The type of interven-
tion is coded by different line colors;
the vaccination rhythm is coded by
different line types; the reduction in
transmissibility due to seasonality is
coded by different color shades. Hor-
izontal solid lines correspond to the
value of the contour line indicated by
the circled number in the top right-
hand corner.
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Evaluating the effectiveness of
COVID-19 interventions: a spatial

perspective 5
This chapter focuses on analyzing the effectiveness of COVID-19 interventions
implemented in France, from September 2020 to June 2021. The central aspect of this
investigation has been to quantify the impact of each implemented measure (different
lockdowns, nighttime curfews), considering both health and societal indicators. We
also considered the spatial connectivity among different regions, emphasizing how
the effectiveness of these measures has been influenced by interregional mobility
flows. Once we have set all these elements, we analyzed further the effects of NPIs
and we proposed alternative scenarios. Scenarios such as early implementation of
intermittent lockdowns instead of the prolonged periods of nighttime curfew.

Throughout this chapter, I will examine and analyze the findings presented in
article #2. The additional information referred to in article #1 can be found in the
Supplementary Materials section of the thesis.

5.1 Introduction

Throughout the course of the health crisis, several European nations, including
France, Germany, and the UK, implemented national lockdowns. These measures
included restricted movement, the closure of non-essential businesses, and limitations
on social gatherings [121]. In contrast, countries such as Sweden and the Netherlands
adopted more relaxed strategies, primarily relying on voluntary guidelines [121].
Italy, on the other hand, adopted a tiered system to implement targeted and localized
measures [121, 122]. Nighttime curfews were imposed in some countries, while
others chose not to implement them [121, 123]. Additionally, various factors, such as
seasonal conditions and the emergence of more transmissible variants, influenced
the effectiveness of NPIs both in terms of timing and geographical location [124, 12,
125, 62].

The diversity of interventions adopted and of the situations across different territories
prompted us to ponder the questions: Can we quantify the relative contributions of
temporal and spatial factors on NPIs’ effectiveness? What if France had implemented
different measures? How would the outcomes have been altered, in terms of health
and societal indicators? The analysis presented in article #1 led us to consider an
extended time horizon, encompassing evaluations of alternative approaches over a
longer duration. For example, this could involve evaluating the feasibility and conse-
quences of implementing intermittent lockdowns throughout the designated period,
thus avoiding the prolonged period of moderate measures (e.g. 188 consecutive
days under curfew in France) that has proven to be burdensome for the population
[12, 126].

To address these questions, a more precise quantification of the measures’ impact
was necessary, enabling the simulation of alternative scenarios. We evaluated the
effectiveness of various implemented NPIs, with a particular focus on nighttime
curfews, an aspect that has received limited attention in the existing literature
[127, 128, 129, 130]. For every NPI implemented we disentangled the relative con-
tributions of spatial and temporal factors (vaccination efforts, seasonal patterns,
new variants seeding, increased variant transmissibility, etc.), so it was possible to
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distinguish the role of the drivers that influenced epidemic dynamics and estimate
their effectiveness.

Furthermore, observations of spatial spread patterns during various phases of the
epidemic [50] (e.g., a second wave with a spatial concentration in the south-east and
a third wave was initially shaped by the spread of the Alpha variant in the north and
the Marseille region) prompted us to investigate the influence of human mobility on
the efficacy of interventions, unveiling insights into the importance of interregional
connectivity and its role in introducing an additional layer of complexity to the
pandemic dynamics.

We thus introduced a regionally-based spatially-explicit epidemic metapopulation
model (model #2). Using (model #2), informed by mobile phone data in France, we
captured the interplay between regional epidemics and provided a more compre-
hensive understanding of the effectiveness of lockdowns and curfews of various
type.

This study underscores the importance of considering geographical connectivity
in the formulation and assessment of public health policies. These findings have
the potential to guide policymakers and health authorities in crafting targeted
interventions, thereby enhancing the overall effectiveness of their management
strategies.

5.2 Article #2: The impact of spatial connectivity on
NPIs effectiveness
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Abstract

Background. France implemented a combination of non-pharmaceutical interven-
tions (NPIs) to manage the COVID-19 pandemic between September 2020 and
June 2021. These included a lockdown in the fall 2020 – the second since the start
of the pandemic – to counteract the second wave, followed by a long period of
nighttime curfew, and by a third lockdown in the spring 2021 against the Alpha
wave. Interventions have so far been evaluated in isolation, neglecting the spatial
connectivity between regions through mobility that may impact NPI effectiveness.

Methods. Focusing on September 2020 – June 2021, we developed a regionally-based
epidemic metapopulation model informed by observed mobility fluxes from daily
mobile phone data and fitted the model to regional hospital admissions. The model
integrated data on vaccination and variants spread. Scenarios were designed to assess
the impact of the Alpha variant, characterized by increased transmissibility and risk
of hospitalization, of the vaccination campaign and alternative policy decisions.

Results. The spatial model better captured the heterogeneity observed in the
regional dynamics, compared to models neglecting inter-regional mobility. The
third lockdown was similarly effective to the second lockdown after discounting for
immunity, Alpha, and seasonality (51% vs 52% median regional reduction in the
reproductive number 𝑅0, respectively). The 6pm nighttime curfew with bars and
restaurants closed, implemented in January 2021, substantially reduced COVID-19
transmission. It initially led to 49% median regional reduction of 𝑅0, decreasing to
43% reduction by March 2021. In absence of vaccination, implemented interventions
would have been insufficient against the Alpha wave. Counterfactual scenarios
proposing a sequence of lockdowns in a stop-and-go fashion would have reduced
hospitalizations and restriction days for low enough thresholds triggering and lifting
restrictions.

Conclusions. Spatial connectivity induced by mobility impacted the effectiveness of
interventions especially in regions with higher mobility rates. Early evening curfew
with gastronomy sector closed allowed authorities to delay the third wave. Stop-
and-go lockdowns could have substantially lowered both healthcare and societal
burdens if implemented early enough, compared to the observed application of
lockdown-curfew-lockdown, but likely at the expense of several labor sectors. These
findings contribute to characterize the effectiveness of implemented strategies and
improve pandemic preparedness.

Keywords. COVID-19, NPIs, modeling, curfew, restrictions.
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INTRODUCTION

Non-pharmaceutical interventions (NPIs) represented the primary response to the
COVID-19 pandemic in 2020-2021 before mass vaccination campaigns reached a
substantial fraction of the population in Europe1. After the generalized use of strict
lockdowns during the first wave2−9, combinations of NPIs reached finer granularity
in the second and third waves10, occurring in the fall 2020 and in the spring 2021,
respectively. These included the closure of certain business sectors (e.g. restaurants,
retail and leisure venues), remote education for specific school levels (e.g. high school),
bans of gatherings, mobility restrictions, and nighttime curfews at different hours, in
addition to less stringent lockdowns. They were meant to manage a rapidly evolving
context characterized by the emergence of the first variant of concern11,12 and the
rollout of vaccination1, while pandemic fatigue developed in the population13−15.

Spatial heterogeneities in COVID-19 resurgence16 and in the geographic seeding of
the Alpha variant further added to the complexity of the pandemic phase between
the fall 2020 and the summer 2021. In France, the second wave showed a clear
spatial pattern with a resurgence in the south-east of the country (Figure 1a), likely
fueled by summer displacements to touristic destinations. In contrast, the third wave
was initially shaped by the seeding of the Alpha variant in the north and in the
region of Marseille (Provence-Alpes-Côte d’Azur; Figure 1a) then invading other
regions through mobility. Population response to nationwide restrictions varied
regionally17,18 with the potential to affect the epidemiological impact both locally and
in other regions connected through mobility fluxes. Spatial connectivity determines
geographic spillover events19−21 and source-sink mechanisms22,23 that can weaken
local control policies. Estimating NPIs’ effectiveness and societal burden while
accounting for all these elements is key to adequately plan for the medium-term
phase of a pandemic, i.e. following the initial emergency and before mass vaccination
allows lifting restrictions.

Here, we introduced a regionally-based spatially-explicit epidemic metapopulation
model that integrates mobility fluxes estimated from mobile phone data to study the
COVID-19 pandemic in France between September 2020 and June 2021. Accounting
for spatiotemporal heterogeneities, we estimated the effectiveness of implemented
NPIs by disentangling spatial and temporal effects (inter-regional mobility, Alpha
variant seeding and penetration, seasonality, vaccination). We also examined alter-
native policy options to the ones implemented by authorities to best balance the
epidemiological and healthcare impacts of interventions with the resulting burden
of restrictions. The aim was to improve the guidance of policy decisions for the
medium-term management of future pandemic threats.

METHODS

Restrictions

In Table 1 we describe the main restrictions implemented in France during the
study period (September 2020 – June 2021). In response to the second wave, on
October 17, 2020, a nighttime curfew from 9pm to 6am was enforced in several
areas with degrading indicators. Due to the rapid surge in the number of infections,
a national lockdown was put in place starting October 30, 2020. The restrictions
imposed were less stringent compared with the first national lockdown in the spring
2020, as schools and a larger number of job sectors were allowed to remain open.
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Bars, restaurants, gyms, leisure venues and other non-essential services were closed.
Displacements were limited to a maximum radius of one kilometer from home. The
lockdown was lifted on December 15, 2020, with the application of a nighttime
curfew (8pm – 6am). Soon after the detection of the Alpha variant on the French
territory in early 2021, curfew hours were extended nationally between 6pm and 6am
on January 16, 2021. Following the rise in cases due to the Alpha epidemic initiating
the third wave, on March 20, 2021 localized lockdowns were implemented in the
regions of Île-de-France, Haute-de-France and in few other French departments at
high incidence. The lockdown was extended to the whole country soon after on April
3, 2021, with the closure of non-essential activities. The gastronomy sector remained
closed and the curfew was maintained starting at 7pm. However, differently from
the second lockdown, schools were closed for most of the period, extending the
planned closure for school holidays of 1 week in the primary schools, and of 2 weeks
in the middle and high schools. Movements restrictions were only applied to trips
exceeding 10km from the place of residence. Also, stay-at-home orders of the second
lockdown were converted into recommendations to spend time outdoor to limit
transmission in closed settings in this period. The third lockdown ended on May 3,
2021.

Data

Mobility Anonymized aggregated mobility fluxes extracted from mobile phone
signaling data were provided by the Orange business service Flux Vision18,24. Data
included de-identified origin-destination matrices reporting the daily number of
user displacements among 1,436 EPCI (Établissements Publics de Coopération
Intercommunale) areas in mainland France. The anonymization procedure was
approved by the French data protection authority CNIL (Commission Nationale
de l’Informatique et des Libertés). Origin-destination matrices were aggregated at
regional level to compute weekly coupling probabilities 𝑝𝑖 𝑗 between regions 𝑖 and
𝑗 and inform our model (see the Model subsection), The coupling probability 𝑝𝑖 𝑗
for a given week is defined as the probability that a resident in 𝑖 visits 𝑗 due to his
mobility trajectory:

𝑝𝑖 𝑗 =
𝑤𝑖 𝑗∑
𝑘 𝑤𝑖𝑘

where 𝑤𝑖 𝑗 is the average number of daily trips between 𝑖 and 𝑗 for a given week.
We considered the daily average to avoid daily fluctuations in the weekly pattern.
We chose as a pre-pandemic baseline period the week 6, 2020 (February 03, 2020 –
February 09, 2020), as in previous work17.

Seasonality. A number of studies have suggested that SARS-CoV-2 transmission is
seasonally varying, modulated by environmental variables and environmentally-
mediated social behavior25−28. We integrated seasonality in the regional transmissi-
bility (see Model subsection) based on estimates provided in Ref.29. These estimates
quantify the impact of seasonal climatic conditions on transmission rate based on
daily data from the National Oceanic and Atmospheric Administration (Figure S12,
Supplementary Materials). We fitted the estimates with a sinusoidal function with
1-year period, one per each region, in order to obtain daily values of the seasonality
factor 𝜎𝑖(𝑡) affecting transmission in region 𝑖 on day 𝑡. We used a least-squares
optimization function for the fit.
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Alpha variant. According to genomic surveillance data30, the Alpha variant started to
circulate in France at the end of 2020 and replaced the previous SARS-CoV-2 strains
in March 202131. Results of a large-scale genome sequencing initiative launched in
January (so-called Flash surveys30) showed that the Alpha variant was responsible
for 3.3% of detected COVID-19 cases on January 8, 2021 at the national level, with
large spatial heterogeneity, ranging from 0.2% penetration to 6.9%. We modeled the
overall virus transmissibility (i.e. wild strain and Alpha variant) by accounting for
the regional frequency of Alpha over time and its transmission advantage, to be
fitted (Figure S12). We modeled the presence of Alpha over time in each region by
modulating transmissibility according to the daily variant penetration and its daily
transmission advantage (see Model subsection). In agreement with prior estimates30,
we found that the SARS-CoV-2 Alpha variant was 58% more transmissible than the
wild type in the invasion phase. We also considered a 64% increase in hospitalization
rate32.

Vaccination. We modeled three different vaccination strata, i.e. unvaccinated, vac-
cinated with one dose or with two doses, based on data on the administration of
doses by region33 (Figure S12). We assumed vaccines to be effective 14 days after
injection. We considered 60% vaccine effectiveness against infection and 15% against
transmission after the first injection34,35, increasing to 87.5% and 68%, respectively,
after the second injection35,36. We considered 80% vaccine effectiveness against
hospitalization after one dose, and 97,2% after two doses34,36. We did not consider
waning in vaccine effectiveness in the timeframe under study.

Normalcy index. The Economist’s Normalcy index37 is a measure of the impact of
the pandemic on human behavior, integrating multiple daily indicators of human
activities in a score from 0 to 100, with 100 representing the pre-pandemic level (Figure
S1). We used the Normalcy index to define the effective days under restrictions (see
the corresponding subsection).

Model

Metapopulation model summary. We used a discrete stochastic non-Markovian trans-
mission model with a metapopulation structure at the regional level. The population
was divided in the 12 regions of mainland France (excluding Corsica). The daily
force of infection 𝜆𝑖 in region 𝑖 at time 𝑡 accounts for disease transmission due to
(i) infected residents not moving out of the region (𝜆𝑖𝑖) (ii) infected visitors coming
from other regions (𝜆𝑣𝑗𝑖) and (iii) returning residents previously infected in other
regions (𝜆𝑟𝑖𝑗)

38:
𝜆𝑖 = 𝜆𝑖𝑖 +

∑
𝑗≠𝑖

𝜆𝑣𝑗𝑖 +
∑
𝑗≠𝑖

𝜆𝑟𝑖𝑗

Let 𝛽𝑖(𝑡) be the transmission rate of region 𝑖 on day 𝑡, 𝑝𝑖 𝑗(𝑡) the coupling probability
between regions 𝑖 and 𝑗 estimated from mobility data; let 𝑁̂𝑖(𝑡) = 𝑝𝑖𝑖(𝑡)𝑁𝑖 +∑
𝑗≠𝑖 𝑝 𝑗𝑖(𝑡)𝑁 𝑗 and 𝐼𝑖(𝑡) = 𝑝𝑖𝑖(𝑡)𝐼𝑖(𝑡) +∑

𝑗≠𝑖 𝑝 𝑗𝑖(𝑡)𝐼 𝑗(𝑡) be the effective population and
the effective number of infections in region 𝑖 on day 𝑡, respectively38. Then, the daily
force of infection can be written as
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


𝜆𝑖𝑖(𝑡) = 𝛽𝑖(𝑡)𝑝2
𝑖𝑖(𝑡)

𝐼𝑖(𝑡)
𝑁̂𝑖(𝑡)

𝜆𝑣𝑗𝑖(𝑡) = 𝛽𝑖(𝑡)𝑝𝑖𝑖(𝑡)𝑝 𝑗𝑖
𝐼 𝑗(𝑡)
𝑁̂𝑖(𝑡)

𝜆𝑟𝑖𝑗(𝑡) = 𝛽 𝑗(𝑡)𝑝𝑖 𝑗(𝑡)
𝐼 𝑗(𝑡)
𝑁̂𝑗(𝑡)

where 𝛽𝑖 (𝑡) accounts for both seasonality and the presence of the Alpha variant.
All variables in the previous equations depend on daily time 𝑡, but we dropped
the dependence for the sake of clarity. We indicate with 𝐴𝑖(𝑡) ∈ [0, 1] the variant’s
penetration in region 𝑖 on day 𝑡, with 𝜂𝑖(𝑡) the transmission advantage of the Alpha
variant, and with 𝜎𝑖(𝑡) the seasonality factor. The resulting transmission rate in
region 𝑖 on day 𝑡 can be written as:

𝛽𝑖 (𝑡) = 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑖 (𝑡) · [(1 − 𝐴𝑖(𝑡) + 𝜂𝑖(𝑡) · 𝐴𝑖(𝑡)] · 𝜎𝑖(𝑡)
With 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑖 (𝑡) being the fitted transmission rate. We considered a SEIHR compart-
mental scheme (Figure S2 of the Supporting Materials, SM), including susceptible,
exposed, infectious, hospitalized and recovered. The model was stratified by three
different vaccination status. All the data presented before were integrated in the
model at the regional level (SM). Parameters, values, and sources used to define
the compartmental scheme are listed in Table S1. The study period ranges from
September 21, 2020 to June 13, 2021 (w39-2020 to w23-2021), to capture the second
and third COVID-19 waves.

Inference framework and validation. Model parameters were estimated in a Bayesian
framework using Markov Chain Monte Carlo (MCMC) method (SM). The likelihood
function was evaluated on daily data of regional hospital admissions. The log-
likelihood function is of the form:

logL(𝑑𝑎𝑡𝑎 |Θ) =
12∑
𝑖=1

𝑡𝑒𝑛𝑑∑
𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑙𝑜𝑔 𝑃𝑜𝑖𝑠𝑠
(
𝐻𝑜𝑏𝑠 (𝑡 , 𝑖)

��𝐻𝑝𝑟𝑒𝑑 (𝑡 , 𝑖, Θ))

where Θ =
{
𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐1 , . . . , 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐12

}
indicates the regional transmission rates to

be estimated. 𝐻𝑜𝑏𝑠 (𝑡 , 𝑖) is the observed number of hospital admissions on day 𝑡 in
the region 𝑖 , 𝐻𝑝𝑟𝑒𝑑 (𝑡 , 𝑖, Θ) is the number of hospital admissions predicted by the
model using parameter values Θ, 𝑃𝑜𝑖𝑠𝑠

(·��𝐻𝑝𝑟𝑒𝑑 (𝑡 , 𝑖,Θ)) is the probability mass
function of a Poisson distribution with mean 𝐻𝑝𝑟𝑒𝑑 (𝑡 , 𝑖,Θ), and [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑] is the
time window considered for the fit. The time windows used for the fit are defined
based on the interventions applied in France (Table 1). When the time window
includes a lockdown, we also fitted the time from lockdown implementation to
hospitalization peak for each region, to better capture the peak and the decline
of the epidemic curve that may vary regionally based on population response39

(Table S3). We validated the model by comparing its predictions of the percentage
of antibody-positive people with seroprevalence estimates from multiple studies at
different dates40,41. Modeling results were in good agreement with the serological
estimates, both at the regional and at the national levels (Figures S13, S14, SM
section 2.4).
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Reproductive numbers. We computed the regional basic reproductive numbers
with the next-generation approach42 for each time window of the fit. The resulting
estimates are obtained from the fitted transmissibility values of the metapopulation
model that account for the mobility process. We distinguished between the basic
reproductive number 𝑅0 obtained from the fitted transmissibility 𝛽𝑖(𝑡) that includes
seasonality and the increasing frequency of Alpha, and the intrinsic basic reproduc-
tive number 𝑅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐0 that discounts for the seasonal and variant effects, in order
to compare different time windows. Analogously, we computed the corresponding
effective reproductive numbers, 𝑅 and 𝑅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 , accounting for immunity.

Counterfactual lockdown scenarios. We modeled alternative policy scenarios
with respect to the lockdown-curfew-lockdown policy implemented in France, and
considered stop-and-go nationwide lockdowns, i.e. repeated lockdowns intercut
by periods with no restrictions. As French authorities did not establish thresholds
to apply restrictions, we considered stop-and-go lockdown scenarios triggered
and released by a given threshold of per-capita hospital admissions, and then we
systematically explored these thresholds. We used as reference value 𝑇 of the trigger
threshold the hospitalizations per capita in the region at the highest hospitalization
incidence when the second lockdown was applied, i.e. the Auvergne-Rhône-Alpes
region (ARA). This level corresponds effectively to the highest hospital occupation
that authorities deemed sustainable. For the release threshold 𝑅 we considered
instead the average hospitalization incidence reported across regions at the moment
of lifting the second lockdown. We used the average value because, differently from
the triggering threshold, the release threshold is not constrained to a maximum
capacity.

We systematically explored different values of trigger and release thresholds, ex-
pressed as percentage threshold variations (from T to T-95%, from R+5% to R-90%).
Given a pair of values of trigger and release thresholds, a nationwide lockdown
is activated in the stop-and-go lockdown scenarios when a region first reaches 𝑇,
and it is lifted when the last region reaches 𝑅. A table with the threshold values is
included in the SM (Table S5). In the scenarios we simulate a repetition of lockdowns,
triggered and lifted according to the above rules, assuming that their stringency
would be equal to the one estimated for the second lockdown applied in France
(LD2) for the first lockdown in the stop-and-go series, and to the one estimated for
the third lockdown applied in France (LD3) for the following lockdowns simulated
in the series. This was done to align with the observed political choice of moving
from a lockdown largely imposing at-home restrictions (LD2) to one promoting time
spent outdoors (LD3). In each simulated nationwide lockdown in the stop-and-go
scenarios, the transmissibility and the inter-regional mobility are set to the estimated
values of the corresponding lockdown applied in France in the period under study
(LD2 or LD3, Figure S23). The phasing out of each lockdown was simulated through
a two-week piecewise linear function to capture a progressive return to normality
after restrictions43 (Figure S22).

Effective days under restrictions. We used the Normalcy index37 to weight the
days under restrictions by capturing population response and to compare restriction
days across intervention scenarios. We defined an “effective day” D𝑡 spent under
restrictions as

D𝑡 =
N(𝑝𝑟𝑒 𝐿𝐷2) −N(𝑡)

N(𝑝𝑟𝑒 𝐿𝐷2) −N(𝐿𝐷2)
where N(𝑡) is the Normalcy index at time 𝑡. D𝑡 ranges from 0 to 1, with 0 correspond-
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ing to the pre-lockdown situation in early October 2020 and 1 representing a day
under the second lockdown. We estimated D𝑡 = 0.58 under curfew (average over
all curfew types, applied from December 2020 to April 2021) and D𝑡 = 0.77 in the
third lockdown. Effective days are also computed for the counterfactual scenarios,
based on the duration of implementation emerging from the choice of the trigger
and release thresholds.

Non-spatial model. We tested a non-spatial model, i.e. a model where regions are
not coupled by mobility (𝑝𝑖 𝑗 = 0). We fitted the model to the regional hospital
admission data (Figure S15) and evaluated its performance in comparison to the
metapopulation model integrating mobility. We performed a model selection test
using the deviance information criterion (DIC) and we evaluated the errors of each
model using the mean absolute error (MAE) metric. (Subsection 2.5 of the SM).

Role of the funding source. The funders had no role in study design, data collec-
tion, data analysis, data interpretation, writing of the manuscript, and decision to
submit.

RESULTS

In the fall of 2020, French authorities introduced control measures in response to the
growing epidemic (Figure 1, Table 1). The nighttime curfew implemented in few
departments on October 17 was followed by a national lockdown on October 30, the
second since the start of the pandemic. Inter-regional mobility dropped by 43-85% in
the first three weeks of lockdown compared to pre-pandemic levels, depending on
the region (Figure 1b). By fitting the metapopulation model to hospital admission
data (Figure 1c), we estimated a regional median reduction of the basic reproductive
number 𝑅0 of 45% (IQR 42-52%) during the second lockdown compared to the
pre-lockdown value in early October 2020 (Figure 2a). The 8pm nighttime curfew
implemented to phase out the second lockdown in mid-December was not enough
to limit community transmission (𝑅 > 1; Figure 2b), due to winter seasonality and
Alpha initial spread. Anticipating at 6pm the start of the nighttime curfew on January
16, 2021 resulted in 𝑅 < 1 in all regions except Île-de-France and Hauts-de-France.
Such control however deteriorated over time, due to Alpha becoming dominant in
the country. Inter-regional mobility remained fairly stable during this time, with
a reduction of 23-70% across regions compared to pre-pandemic level, with the
exception of the increase registered in February for the school holidays.

Discounting for Alpha and seasonality allows us to compare the effectiveness of the
6pm curfew throughout the period in which the variant was becoming dominant,
while entering into the spring season. Little change was estimated during the school
holidays (𝑅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐0 reduction of 49% (IQR 46-51%) vs. 48% (IQR 44-52%) in the
pre-holiday period), but the effectiveness lowered afterwards (𝑅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐0 reduction
of 43% (IQR 40-44%) post-holiday). Effectiveness varied comparably in all regions
during these 3 periods with the 6pm curfew (Spearman correlation r=0.9, p<0.01;
Figure S19), but less so when comparing 8pm and 6pm curfew periods (r=0.6,
p=0.04). With hospital admissions rapidly increasing (estimated regional median
𝑅=1.14 (IQR 1.11-1.19)), on March 20 authorities enforced a third lockdown in the
highest incidence areas (Île-de-France, Haute-de-France, and few other departments;
Figure 1a), then extended it nationwide on April 3, till May 3.
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The third lockdown resulted in 6% higher Normalcy index compared to the second
lockdown (Figure S1). A small mobility drop was registered passing from the curfew
to the third lockdown (Figure 1b). We estimated a 20% (IQR 18-23%) regional median
reduction of 𝑅0 during the third lockdown (Figure 2a), i.e. less than half the value
achieved with the application of the second lockdown. By discounting seasonality
and the Alpha variant, our model indicates however that the intrinsic effectiveness
of the two lockdowns was rather similar (𝑅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐0 reduction of 52% (IQR 49-59%)
in the second lockdown vs. 51% (IQR 48-52%) in the third).

NPI effectiveness varied regionally throughout the period under study (Figure 2c,
Figure 3a). The metapopulation model integrating observed inter-regional mobility
was found to be statistically preferable with respect to a non-spatial model neglecting
connectivity (Table S4), yielding a lower mean absolute error in 64% of the regions
(Figure S16). Relative deviations on the estimates of 𝑅 obtained with a non-spatial
model compared to the metapopulation approach could be >40% and were found
to increase with increasing mobility for a given regional population (Spearman
correlation r=0.46, p< 10-4, Figure 3b).

Alpha spread was estimated to be responsible for 129,335 (IQR 112,290-144,396)
additional hospitalizations in mainland France, corresponding to 41% of the overall
hospitalizations recorded in the study period (Figure S10). Our model predicted
that Île-de-France, the region of Paris, was the most impacted by the variant (50%of
the overall hospitalizations), followed by Hauts-de-France (48%). The least impacted
was Nouvelle Aquitaine (29%). This result was not exclusively explained by the
geographical seeding of Alpha (Figure 1a). Indeed, if Île-de-France reported the
largest variant frequency at the start of January 2021 (Figure S20), such ranking was
rapidly altered by mid-January, despite the same control measures being applied
nationwide. Vaccination was estimated to prevent 255,195 (IQR 224,993-279,502)
hospitalizations in mainland France in the time period under study, equal to 81%
of the hospitalizations that were actually reported (Figure S20). An anticipated
and faster vaccination rollout, as implemented in the UK, would have prevented
additional 122,877 (IQR 107,404-137,971) hospitalizations (i.e. additional 39%). Most
importantly, without vaccination, implemented NPIs would have not been sufficient
to control the Alpha variant (Figure S20c).

The application of nighttime curfew allowed authorities to manage the pandemic
between the second and third waves, albeit maintaining a high incidence of cases
and hospitalizations. To examine whether additional policies could have been more
beneficial, we explored counterfactual scenarios with stop-and-go lockdowns. With
the trigger and release thresholds (𝑇 and 𝑅 in Figure 4 and Figure 5; see also
Methods) computed from the experience of the second lockdown in France in
the fall 2020, three lockdowns would have been needed to manage the pandemic
between September 2020 and June 2021, reducing by 22% the effective days under
restrictions, but increasing hospitalizations by 40%. Also, the impact on regional
healthcare would have largely varied, with Bretagne, for example, predictive to
have an increase of 190% of its hospitalizations (Figure 5c). The second of the three
lockdowns foreseen under this scenario would have lasted more than 3 months to
control the rise of the Alpha wave (January– April 2021; Figure 5b).

Reducing the trigger and release thresholds, i.e. applying and lifting the lockdowns
at lower per capita hospital admissions than observed, would have decreased
hospitalizations (Figure 4a, Figure 5a) and increased the effective days under
restrictions (Figure 4b), through two to four lockdowns (Figure 4c). For example,
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maintaining the same number of effective days under restriction as observed,
our model predicts that it could have been possible to largely reduce national
hospitalizations by around 40% through the early application of two (e.g. with
𝑇 −35% and 𝑅−70% thresholds) or three lockdowns (e.g. with 𝑇 −70% and 𝑅−35%
thresholds). However, this would have been achieved with a long uninterrupted
lockdown period (>4 months; Figure 5b).

The interface between decreasing hospitalizations and increasing restriction days
yields an intermediate region of threshold values where both quantities are reduced
compared to observations, thus limiting both the healthcare and societal burdens.
Adopting these criteria, a higher benefit would be on average achieved in the
reduction of hospital patients (17%, IQR 9-27%; Figure 4d) compared to the reduction
of effective days under restrictions (6%, IQR 3-10%; Figure 4e), and with a benefit
for more than 70% of the regions (Figure S21). This would be obtained with two
lockdowns in most of the cases (59% of the scenarios), whereas higher lifting
thresholds would induce three (38% of scenarios) or four (3%) lockdowns (Figure
4f).

DISCUSSION

Using an epidemic metapopulation model integrating time-varying inter-regional
mobility and spatial effects, we provided a detailed analysis of the impact of different
measures applied in France between September 2020 to June 2021. Despite their
different nature, we showed that the third lockdown (spring 2021) was similarly
effective to the second lockdown (fall 2020), after discounting for the transmissibility
of the circulating variants, immunity, and seasonal effects (Figure 2a). We found a
strong difference in the estimated impact of the nighttime curfew starting at 8pm
or 6pm, with the latter being able to considerably reduce community transmission
(coupled with gastronomy and leisure sectors closed, Figure 2b). Under the observed
vaccination campaign and NPIs, Alpha was estimated to be responsible for 41% of
observed hospitalizations. Conversely, without vaccines, we found that implemented
measures would not have been enough to control the Alpha wave (Figure S18, S20).
Finally, stop-and-go lockdowns triggered early enough would have resulted in lower
hospitalizations and effective days under restrictions compared to the observed
lockdown-curfew-lockdown (Figure 4).

Our analysis demonstrates that the spatial model better captures the observed
regional dynamics compared to non-spatial models that neglect case importations
across regions coupling regional epidemics (Figure S15, Table S4). This finding
highlights the importance of considering mobility and spatial data to better char-
acterize epidemic transmission processes and evaluate interventions. Even if these
interventions are applied nationwide, local conditions (e.g. incidence, penetration of
a variant of concern, seasonal effects, human response to interventions) can be rather
heterogeneous geographically, so that spillover events across different areas have
unexpected implications for the local epidemic dynamics and control. We found
that reproductive number estimates were largely affected by the spatial connectivity
fueling regional epidemics, with relative deviations that may be larger than 40% and
generally higher for higher shares of incoming mobility compared to the number of
inhabitants (Figure 3b). Careful considerations should therefore be given to local
estimates neglecting the impact of continuous importations from outside areas.
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Our analysis confirms the large effectiveness of lockdowns in controlling transmission,
in line with prior works5,7,8,44,45. Despite their difference in the granularity and
definition of restrictions (stay-at-home orders with schools open during the second
lockdown vs. stay-outdoor recommendations with extended school holidays in the
third lockdown), the two lockdowns implemented in France in the period under
study had similar impact on the epidemic. They reduced the intrinsic transmissibility
by 52% and 51%, respectively (Figure 2a), compared to the situation in October
2020 for a rather similar Normalcy index. Our findings therefore suggest that the
higher effective reproductive number reached during the third lockdown in France
compared to the second (𝑅=0.89 vs. 𝑅=0.67, respectively (Figure 2b)) was mainly
the result of the Alpha variant spread, characterized by a higher transmissibility,
and not of different stringency of restrictions or lower adherence of the population31.
Similar transmission reductions were estimated for the most stringent tier applied in
Italy in the same period (52% reduction)46, and corresponding to Normalcy index
values close to the ones of the French lockdowns.

We produced new evidence on the effectiveness of intermediate-stringency NPIs,
such as nighttime curfews, for which there was little available literature31,47,48.
Coupled with the closure of the gastronomy sector, the curfew starting at 6pm
was found to be considerably effective, suggesting that a moderate intervention
focusing restrictions on certain sectors and times of the day may be a viable control
option while ensuring a larger functioning of the economy. Over a longer period
of time, however, we found that curfew lost effectiveness in all regions (Figure 2b),
suggesting that pandemic fatigue13−15 likely settled in the population. Maintaining
it for a long time (in France it was implemented for a total of 188 consecutive days)
should therefore be evaluated in light of expected population adherence15 and the
potential increase in the prevalence of mental health issues15. Regional responses
changed in a similar way to changing NPIs, but to a lesser degree when comparing
the nighttime curfew starting at 8pm with the one starting at 6pm. This suggests that
anticipating the start of the curfew required different organizations of daily routines
which may be specific to the regional contexts. Prior work already pointed out the
role of local socio-economic factors and labor structure in driving the response to
restrictions17,18,49. This also limits the generalizability of our curfew results to other
societal contexts, as it will depend on local social habits involving mixing activities
that may be efficiently restricted by the curfew.

The first half of 2021 witnessed a race between the rollout of vaccines and the spread
of the Alpha variant. We found that both vaccines and NPIs were key to control the
Alpha wave50. Specifically, without vaccines, stricter measures should have been
adopted to avoid hospital saturation (Figure S18).

Other countries opted for different policies, repeating lockdowns. We showed that
stop-and-go lockdowns (intercut with periods of no restrictions) could have achieved
a substantial reduction of hospitalizations (-40%) for similar number of effective days
under restrictions compared to the policy implemented in France, i.e. the application
of two lockdowns intercut with a long period of curfew (Figure 4, Figure 5). This
result would require however acting early, at low hospitalization incidence43,51˘53.
In the balance between ensuring epidemic control and limiting societal impact,
we also found a range of thresholds to trigger and release lockdowns that would
reduce both hospitalizations and overall effective days under restrictions. However,
in the pandemic phase characterized by a more transmissible and severe variant,
this would translate in the implementation of a rather long second lockdown (to
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compensate for the absence of the curfew in between lockdowns), raising again
issues of sustainability and acceptance14, 15 (Figure 5).

Our work has a number of limitations due to simplifying assumptions in our
analysis. First, we did not consider the age structure of the population, asymptomatic
transmission, or changes of travel behavior when infectious, similarly to what
commonly done in COVID-19 metapopulation models43,54 where the complexity
of the model lies in its spatial dimension. Age-specific mixing and the impact of
asymptomatic transmission and travel avoidance behavior are effectively absorbed
in the estimate of the regional transmissibility and may be a factor behind resulting
regional variations17,55. Second, in the stop-and-go lockdown scenarios we considered
a 2-week relaxation to phase out restrictions43, reproducing what happened in France.
Other countries opted instead for more structured tiered systems to guarantee a
better control in lifting interventions46,56. Also, the thresholds considered to trigger
and lift interventions in the scenarios are based on per-capita hospital admissions,
implicitly assuming equal hospital capacity across regions. While regional variations
exist, the crisis also showed a certain flexibility in adjusting such capacity according
to needs7. Finally, we used the Normalcy index to define the effective days under
restrictions and compare interventions of different stringencies. Other indicators can
be defined using the mobility data, which was at the core of restrictions, as we did in
prior work15. Different indicators should instead be used for a more comprehensive
analysis that may include also economic aspects and the impact on mental health
whose prevalence was found to increase substantially throughout the curfew in
France15.

CONCLUSIONS

Our analysis provides a detailed overview of the epidemiological impact of the
various NPIs and of the vaccination campaign implemented in France from September
2020 to June 2021. Using a spatially-explicit regional metapopulation model allows us
to disentangle the effects of spatial and temporal drivers – seasonality, Alpha variant
geographic seeding and penetration over time, vaccination rollout, time-varying
inter-regional mobility – in the estimates of the effectiveness of lockdowns and
curfews of different type. Our findings help the design of preparedness plans for the
medium-term management of respiratory virus pandemics.
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FIGURES AND TABLES

Table 1. Description of the restrictions applied in France between September 2020 and June 2021.  

Period Brief description of the applied NPIs Abbreviation 

October 17– October 29 Night-time curfew (9pm to 6am) in several French 
departments. 

- 

October 30 – December 14 Second nationwide lockdown. Primary and secondary schools 
remained open, subject to strict health protocols. Grocery 
shops and factories continued to operate; medical-related 
appointments remained possible. Bars, restaurants, gyms 
and other non-essential services were closed. Displacements 
were limited to a maximum radius of one kilometer from 
home. 

LD2 

December 15 – January 15 Night-time curfew in place between 8pm and 6am every day. Curfew 8pm 

January 16 – March 19 Night-time curfew hours extended to between 6pm and 6am 
every day. 

Curfew 6pm  
pre-holidays / 
holidays / post-
holidays* 

March 20 – May 2 Third lockdown imposed on March 20 in in 16 departments 
at high incidence (including the whole of Île-de-France, 
Hauts-de-France, one department of Normandy and one 
department of Provence-Alpes-Côte d'Azur). The lockdown 
was then extended nationwide on April 3. Schools remained 
closed for an extended duration, with the planned holiday 
closure being prolonged to one or two weeks (for primary 
and middle/high schools, respectively). Non-essential 
activities were closed. A declaration was required for travel 
beyond 10 km of one's place of residence. Stay-at-home 
orders were replaced with recommendations to encourage 
spending time outdoors, aiming to reduce transmission in 
closed spaces. 

LD3 

*We splitted the period of curfew 6pm into three distinct phases: before school holidays, during school holidays, and after school holidays. 
These three phases vary by region because the two-week school breaks are applied at different times in France (see Table S2). 
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(a) (c)

(b)

COVID-19 pandemic in French regions between September 2020 and June 2021 . (a)
Regional maps of the per capita hospital admissions as of October 30, 2020 (left, start of the
first lockdown) and March 20, 2021 (center, start of the third lockdown in regions IDF, HDF,
in one department of NOR and one department of PACA). Hospital admissions displayed
on the maps are obtained from a weekly rolling mean of the data. Regional map of the
frequency of the Alpha variant (%) as of January 27, 2021 (right, date of the second genomic
surveillance survey). Abbreviations refer to the regions: ARA, Auvergne-Rhône-Alpes; BFC,
Bourgogne-Franche-Comté; BRE, Brittany; CVL, Centre-Val de Loire; GRE, Grand Est; HDF,
Hauts-de-France; IDF, Île-de-France, the region of Paris; NAQ, Nouvelle Aquitaine; NOR,
Normandy; OCC, Occitanie; PACA, Provence-Alpes-Côte d’Azur; PDL, Pays de la Loire. (b)
Variation of regional outgoing mobility from Île-de-France to other regions with respect
to pre-pandemic levels. The time intervals indicated over the x-axis refer to (planned or
enforced) school closures. (c) For each region, the panel shows the model (orange curve
and shaded area indicating the median and 95% probability range) fitted to daily hospital
admissions data (gray dots). Each plot also shows the percentage of Alpha variant over time
(blue histogram, right y-axis). The dashed horizontal line refers to the threshold triggering
the second lockdown. Black arrows at the top of each plot correspond to social distancing
measures: the second lockdown during the second wave in the fall 2020 (continuous line),
followed by the curfew (dashed line) from January to March 2021, and the third lockdown
during the third wave in the spring 2021 (continuous line).



21

(a) (c)(b)

Estimated impact of implemented NPIs. a) Reduction in the estimated regional basic
reproductive numbers 𝑅0 associated to the implemented NPIs compared with the values
estimated before the second lockdown. Box plots represent the median (line in the middle
of the box), interquartile range (box limits) and 2.5th and 97.5th percentiles (whiskers)
of the estimated values for the 12 French regions. Filled boxplots represent reductions
estimated by the fit accounting for all time-varying processes (𝑅0); void boxplots represent
the same reductions discounting the seasonal and Alpha effects (𝑅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐0 ). (b) Estimates
of the regional effective reproductive numbers 𝑅 for the implemented NPIs; box plots as
defined in (a). Filled boxplots represent fit estimates accounting for all time-varying processes
(𝑅); void boxplots represent the same estimates discounting the seasonal and Alpha effects
(𝑅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐). (c) Regional effective reproductive numbers R for the second lockdown (LD2,
dark blue dots), third lockdown (LD3, light blue dots) and the 6pm nighttime curfew in the
period following the winter holidays (yellow dots). Dots represent median reproductive
number values and error bars the 95% confidence interval. LD2: second lockdown in the
fall 2020; curfew 8pm: nighttime curfew starting at 8pm, from mid December 2020 to mid
January 2021; curfew 6pm pre-holidays: mid January 2021 to mid February 2021; curfew
6pm holidays: mid February 2021 to late February 2021; curfew 6pm post-holidays: late
February 2021 to early April 2021 (see Table S2); LD3: third lockdown in the spring 2021.
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(a) (b)

Spatial vs. non spatial model. (a) Regional effective reproductive numbers R for the
second lockdown (LD2, dark blue dots), third lockdown (LD3, light blue dots) and the 6pm
nighttime curfew in the period following the winter holidays (yellow dots). Dots represent
median reproductive number values. Filled symbols refer to the estimates obtained with the
spatial model, void symbols represent the estimates obtained with the non-spatial model, i.e.
neglecting inter-regional mobility. (b) Scattered plot between the incoming mobility divided
by the patch population and the relative deviation in the estimated effective reproductive
numbers obtained with the non-spatial model, for the different NPIs applied (six dots for
each region, referring to six different NPIs). Colors of the dots refer to the regions. Results
of a Spearman correlation test (r=0.46, p-value<10-4). LD2: second lockdown in the fall
2020; curfew 8pm: nighttime curfew starting at 8pm, from mid December 2020 to mid
January 2021; curfew 6pm pre-holidays: mid January 2021 to mid February 2021; curfew
6pm holidays: mid February 2021 to late February 2021; curfew 6pm post-holidays: late
February 2021 to early April 2021 (see Table S2); LD3: third lockdown in the spring 2021.



23

(a) (b) (c)

(d) (e) (f)

Impact of stop-and-go lockdown scenarios on hospitalizations, effective days under
restrictions, and number of lockdowns. (a-c) Heatmaps showing the relative variation in
cumulative hospital admissions (a), the relative variation in effective days under restrictions
(b), and the number of lockdowns (c), as functions of the thresholds for trigger (y-axis) and
release (x-axis) of nationwide lockdowns. Relative changes are computed with respect to
observations. The red squares indicate specific values of trigger and release threshold that
are discussed in the main text and presented in detail in Figure 5. Numerical values are
reported only in the area where both hospitalizations and effective days under restrictions
are reduced by the lockdowns compared to observations. (d,e) Probability distributions of
the relative variations in hospitalizations (d) and in effective days spent under restrictions (e)
compared to observations, in the region of the trigger-release parameter space where both
quantities are reduced by the lockdowns. The vertical dashed lines represent the median
values of the distribution. (f) Histogram of the percentage of scenarios with a given number
of lockdowns, among the scenarios that reduce both hospitalizations and effective days.
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(a)

(b) (c)

Regional trajectories of stop-and-go lockdown scenarios for specific trigger and release
thresholds. (a) Trajectory of regional daily hospital admissions, model fit vs. stop-and-go
lockdown scenarios for three different choices of the trigger and release thresholds, indicated
by the dashed horizontal lines (top:𝑇, 𝑅; center:𝑇−70%, 𝑅−35%; bottom:𝑇−35%, 𝑅−70%).
(b) Regional timeline of lockdowns, observed (gray areas) vs. lockdown scenarios (red bars).
Gray shaded areas in the plots correspond to social distancing measures: the second lockdown
during the second wave in the fall 2020 (darker gray), followed by the curfew (lighter gray)
from January to March 2021, and the third lockdown during the third wave in the spring
2021 (darker gray). The vertical dashed line denotes the anticipation of the nighttime curfew
at 6pm, on January 16, 2021. (c) Variation in hospitalizations by region under the lockdown
scenario compared to observations
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5.3 Discussion

A large number of works have addressed the impact of non-pharmaceutical in-
terventions in the management of the COVID-19 pandemic [7, 131, 132, 133, 134,
135, 136, 137, 16, 13, 124]. Some of them also focused on the local level, evaluating,
e.g., control measures in regions or departments [16, 13]. But these geographical
areas were considered independently, neglecting the mobility that connects them
from a spatial and epidemiological points of view. By focusing on the second and
third COVID-19 waves in France, here we show that spillovers due to inter-regional
mobility largely affect the effectiveness of the local NPIs, with deviations in the
estimated reproductive number reductions that can be as high as 40%. Using a
regionally-based epidemic metapopulation model, our study thus uncovers that:

• The third lockdown in spring 2021 was similarly effective to the second
lockdown in fall 2020, despite the rather different mandates.

• The nighttime curfew starting at 6pm was considerably effective when coupled
with the gastronomy sector closed. Even if kept for long, this strategy could
maintain active a larger number of job sectors.

• Repeated lockdowns (instead of the curfew) could lower both the healthcare
and societal impacts, but this strategy needs to be performed proactively, when
hospitalization numbers are still low.

The use of a spatially-explicit regional metapopulation model with time-varying
inter-regional mobility proved critical in capturing observed regional dynamics. The
incorporation of spatial data enhanced the understanding of epidemic transmission
processes, emphasizing the importance of mobility patterns in shaping outbreaks.
Our findings are also supported by another study conducted in the United States
[138], where the spillover effects of NPIs significantly impact COVID-19 transmission,
explaining 61.2% of the nationally accumulated confirmed cases, and it is demon-
strated that strengthening NPIs in regions with high internal human mobility can
effectively reduce cumulative cases nationwide.

Our research provides a comprehensive and accurate understanding of the control
measures required during the medium-term phase of a respiratory virus pandemic,
from the initial alert to the mass vaccination campaign. NPI measures played
overwhelming roles in mitigating the pandemic, with varied effects across space
and time, in agreement with other multi-country studies [133, 135].

Lockdowns have proven highly effective in controlling transmission, reducing the
virus’s transmissibility by approximately 50%. Despite differences in lockdown
granularity and restriction definitions between the second and the third lockdown
implemented in France (impact of stay-at-home orders vs. stay-outdoor recommen-
dations), they exhibited similar effectiveness in curbing the virus’s spread. The
gradient in the effectiveness of lockdown measures - the second lockdown had a
larger impact compared to the third one - was primarily due to the spread of the
Alpha variant, rather than variations in the stringency of restrictions or reduced
population adherence.

Our research also underscores the importance of intermediate-stringency NPIs, like
nighttime curfews, in controlling community transmission. Even during periods
with moderate restrictions, there was a notable decrease in the effective reproductive
number. This is likely attributed to the combined effects of other NPIs, such as the
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closure of the gastronomy sector. This implies that less strict interventions can prove
equally efficient in containing transmission, particularly when highly contagious
variants are not prevalent. The 8 p.m. and 6 p.m. curfews were able to reduce the
effective reproductive number by 15% and 32%, respectively (See. Supplementary
Materials), compared to the estimates before the second national lockdown. The
strengthening of restrictions was significant in reducing the reproductive number
below 1 [139, 16, 124]. Similar results were found in Italy, where a tiered system of
restrictions was implemented, gradually increasing the intensity of interventions
based on regions’ healthcare indicators [122]. In regions where NPIs were strength-
ened, the reproductive number dropped below one [122]. The Italian tiered system
also led to comparable reductions in the effective reproductive number compared
to the preceding nationwide restrictions, with reductions ranging from 15% to 52%
based on the tier in place. Conversely, the reductions in the effective reproductive
number induced by the tiered system in the UK were smaller, ranging from 2% to
10% [140]. The Italian tiered system, the UK tired system and the curfews applied
in France are not directly comparable because the policies in place were different,
however, the national stringency index for the period assumes comparable values
for France and Italy while it assumes lower values for the UK [24]. Other published
work on curfews in Luxembourg [141] and Spain [142] found a relatively small or
insignificant impact. However, these countries implemented curfews after 10 p.m.,
not as early as in France, where curfews start at 6 p.m. Over a longer period of time,
however, we found that the curfew lost effectiveness in all regions. Moreover, it has
been shown that even the mildest measures induce fatigue in the population and
that even if effective they are not easily sustainable in the long run [12].

School holidays during the curfew period were estimated to have a negligible overall
impact, despite prior work identified their contribution to further slowing down the
epidemic in specific regions [12, 16]. This may be explained by the asynchronous
holiday timing in France where school holidays are staggered across three geographic
zones. Holidays may contribute to reduce mixing within the region, but increase
inter-regional mobility potentially fueling the epidemic at destination (not under
holiday). This process is inverted as the three zones enter and exit their holiday
period, likely resulting in an overall balanced effect. Over a longer period of time,
however, we found that curfew became less efficient in all regions, suggesting that
pandemic fatigue likely settled in the population. This finding aligns with another
study conducted in France [124], which showed that school closures had a limited
effect on transmission.

During the period under examination, there was a race between two opposing forces:
the vaccination campaigns and the spread of the Alpha variant, while the population
was still subjected to a series of significant restrictions until the beginning of the
summer of 2021. Without the vaccines, the Alpha wave (i.e., the third wave in France)
would have been larger and would have led to an additional 255,000 hospitalized
patients in the first six months; the implemented measures would not have been
sufficient to prevent the collapse of the healthcare system.

Moreover, the study explores the potential of stop-and-go lockdowns as an alternative
intervention strategy. Implemented early enough, stop-and-go lockdowns could
achieve a substantial reduction in hospitalizations with a comparable number
of days under restrictions as observed during curfew implementation. However,
the longer lockdown periods required during the pandemic phase with highly
transmissible variants raise concerns about sustainability and societal acceptance. Our
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implementation of lockdown-only scenarios is grounded in well-defined guidelines,
particularly in terms of the criteria for triggering and releasing lockdown measures
[143]. However, it’s in France was observed a lack of centralized guidelines based
on critical epidemiological factors (hospitalization rates or incidence rates) [144].
Although France introduced a five-tiered alert system in the fall of 2020 [145],
ranging from no restrictions (level 1, "zone verte") to maximum alert (level 5, "Etat
d’urgence sanitaire"), these levels were not used as triggers for lockdowns. During the
second and third waves of the pandemic, the incidence rates did reach the threshold
for accessing level 4, however, the specific criteria employed for implementing
or easing these restrictions were never made publicly available. It is crucial to
emphasize that transparent communication of these criteria and objectives is of
paramount importance. Such communication not only fosters public compliance but
also provides the population with well-founded justifications for the policies aimed
at achieving desired outcomes [143, 146].

In addition to the limitations already highlighted in the article, there are others
that are worth noting. Given the specificity and granularity of the interventions, the
interpretation of their effects should only be made within a specific implementation
context and cannot be directly extrapolated to others. We did not consider age
groups in the study; age-specific mixing is absorbed into the regional transmissibility
estimate; in a country with a different age structure composition of the population,
the effectiveness of the NPIS would likely be different from our prediction range.
An additional reason why our results are not directly applicable to other contexts.
It is worth noting that we did not extend the study period further because the
dynamics of the epidemic were primarily driven by the evolution of immunity in the
population induced by vaccination. We did not estimate the effect of other NPIs, such
as the TTI system, as well as the use of other barrier measures like mask-wearing.
Furthermore, we did not incorporate adherence loss into the measurement of
intervention effectiveness and when assessing the sustainability of the interventions
with effective days, we did not take into account the fatigue that these measures can
induce: this is an interesting avenue of further investigation.

In our study, we have conducted a comprehensive analysis that offers valuable insights
into the epidemiological impact of various NPIs in France from September 2020
to June 2021. Understanding the complex interplay between different intervention
strategies, regional dynamics, and temporal aspects is essential in devising effective
response plans to combat future pandemics of respiratory viruses. With the pandemic
crisis behind, our findings offer an exhaustive and more accurate understanding of
control measures needed in the medium-term phase of a respiratory virus pandemic,
from the initial alert to the mass vaccination campaign. The specific experience
of France, where interventions of different types were implemented, nourishes a
portfolio of options along with their assessment to inform pandemic preparedness
plans against future threats.
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The implementation of large-scale restrictive measures within a population has a
significant impact on the spread of a disease [16, 13, 131, 132, 133, 133, 134, 135, 136, 137].
In this thesis, we have developed two new models to quantify some interventions’
effectiveness and sustainability, aiming to provide assessment strategies applicable
to different contexts and scenarios.

Our analysis underscores the crucial role played by the implementation of large-
scale restrictions, including lockdowns and curfews, in containing the spread of
COVID-19 in France. These measures significantly contributed to reducing infection
rates and relieving pressure on healthcare systems [12]. The timing and stringency of
restrictions emerged as critical factors for their effectiveness, especially in the context
of the rapidly evolving European landscape in late 2020 and the first half of 2021,
where new variants and vaccination campaigns altered the efficacy of interventions
and our pre-existing knowledge of them.

While these restrictions proved effective in mitigating the healthcare crisis, they
were not without challenges and adverse effects. Economic hardships, mental health
issues, and overall population fatigue were notable consequences that continue to
demand ongoing attention and further study [147].

To address the ongoing and future challenges posed by pandemics, it is essential to
treat them with various approaches and models: the choice of a modeling framework
should align with the specific questions and the available data [148, 149]. In the
research presented in this thesis, our primary focus centered on assessing the
efficacy of population-level interventions within specific regions or at the national
level. Our aim did not include the examination of transmission within particular
contexts (e.g., schools, workplaces, gastronomy sectors), as this would necessitate
distinct frameworks and data sources [150, 151]. Furthermore, we did not incorporate
the consideration of risk exposure heterogeneity, based on factors dividing the
population, such as socio-economic variables. This is however possible, through, for
instance, the implementation of agent-based models.

Future research should emphasize the robustness of our findings and their general-
izability. This can be achieved by varying specific contexts. For example, our articles
were conducted in the presence of the Alpha variant and the observed vaccination
campaign pace. How would our results change in the face of a slower or faster
vaccination rhythm? How would outcomes be altered by a more contagious yet less
severe variant? Can we find a ballpark of results that remain consistent?

Also, vaccination campaigns have achieved widespread coverage in many countries
and allowed for the relaxation of non-pharmacological interventions after several
months [57, 152]. However, the management of COVID-19 has been further challenged
by subsequent waves of variants such as Delta and Omicron, with vaccine protection
vanishing over time [153, 154]. The need for booster doses became evident, but the
optimal timing for booster administration was less clear. Further interesting studies
could involve post-vaccination phase modeling, considering factors such as waning
immunity, immune escape, and variant characteristics.
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Modeling can also help assess the optimal spatial scales for interventions. Future
research may explore how regional stop-and-go lockdowns, for instance, compare
to the national-level policies adopted in France or alternative policies observed in
other European countries. The diversity of national or targeted approaches taken
by countries to address the COVID-19 pandemic reflects, in part, the substantial
uncertainty surrounding how policies translate into outcomes. National restrictions
would provide a standardized and consistent approach throughout the country but
have significant economic and social consequences. Conversely, local-level restrictions
enable targeted measures in regions with higher infection rates, minimizing economic
and livelihood impacts. However, concerns have arisen regarding how this decision
would affect healthcare indicators (e.g. hospital pressure). Additionally, transmission
and implemented policies are intrinsically linked across regions, with interventions
in one region producing spatial spillover effects on neighboring areas, influencing
human behavior, as demonstrated by various studies [155, 156, 157].

Furthermore, future research could investigate how policies, typically defined within
specific administrative areas (e.g., counties, departments, or regions), adapt to
different spatial scales. While administrative boundaries represent a useful spatial
scheme to define local policies, the spatial dynamics of the epidemic are inherently
defined by the mobility of individuals. For example, neighboring departments that
are highly connected by daily mobility also have highly coupled local epidemics, i.e.
the epidemic in one department strongly impacts the epidemic in the other (e.g. in
the departments of the Île-de-France region). In such situations, not representing
epidemiologically independent entities, single departments would not identify the
best scale of application of interventions, and a larger set of departments -defined
on human mobility- could potentially represent a better choice. This research could
determine the most epidemiologically-relevant spatial scale for local interventions
in high-risk areas while minimizing unnecessary restrictions elsewhere.

In the first study presented, we took into account adherence to restrictions. However,
we note that the observed loss of adherence is primarily fatigue-induced [158, 159].
This fatigue may be attributed to the time spent under restrictions or to the iteration
of the same measures being implemented. In the context of our studies, it could be
interesting to investigate how iteration, such as the stop-and-go scenarios discussed,
can influence fatigue and adherence. In order to find a subset of interventions aimed
at reducing such waning in aderence.

As pandemics can impact every facet of society, preparedness plans must address
the emergence of new pathogens in a multidimensional manner. These plans should
focus on the healthcare system and the associated direct burden of disease (e.g.,
hospital occupancy, mortality, healthy life years lost), the indirect burden of disease
(e.g., disability and delayed unrelated care, mental well-being), the economy (e.g.,
productivity loss, unemployment), disruptions to essential community services, and
long-term social impact. Such plans should be flexible enough to address pathogens
of different types (viral, bacterial), transmitted through different routes, with varying
levels of transmissibility and severity at the time of contraction. Furthermore, they
should have the capability to adjust measures based on the current state and evolution
of the pandemic. An important goal for future research is to provide a blueprint
for making faster and better decisions for managing pandemics caused by various
pathogens.

Another notable aspect to consider is the potential unlocked when collecting a
huge amount of data on COVID-19 across different waves, scales and countries.
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Deep learning methods are progressively finding applications in healthcare and
medical fields [160, 161, 162, 163, 164]. The vast reservoir of data at our disposal
opens up exciting avenues for the application of deep learning methodologies. These
methodologies can serve a multitude of purposes, ranging from the analysis and
prediction of time series data using recurrent neural networks (RNNs) [164] to the
identification of intricate spatial patterns and high-risk regions through convolutional
neural networks (CNNs) [164]. It is worth noting that these architectures are just a
fraction of the deep learning techniques available. An interesting direction would be
to conduct methodological research to understand how to apply these techniques to
public health problems.

Furthermore, making the integration of modeling into policy decisions a standard
practice can also lead to broader applications in various types of crises, including
social, energy, and climate-related ones.
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0.1 Supplementary methods

0.1.1 SARS-CoV-2 two-strain transmission model

Compartmental model and parameters

Supplementary Figure 1 shows the compartmental scheme used to describe COVID-
19 disease progression.Parameter values related to infection due to historical strains
are reported in Supplementary Table 1. Parameters values for the Alpha variant are
presented in the Methods section. When vaccination starts, we assumed that doses
might be given to either susceptible or recovered individuals with equal probability.
Efficacy of vaccination is described in the Methods section; such efficacy would only
have an impact on the susceptible population.

Generation time distribution

The generation time distribution was computed based on the approach of Ref.1. Let
𝑋 and 𝑌 be the random variables describing the latency period and the infectious
period, respectively. Then the distribution of the generation time is the result of the
convolution 𝑔ℎ𝑠 with 𝑔 being the probability density function of𝑋 and ℎ𝑠(𝑡) = 1−𝐻(𝑡)

𝐸(𝑌)
where 𝐻 is the cumulative distribution function of 𝑌, and 𝐸(𝑌) is the mean. In the
compartmental model under consideration (Supplementary Figure S1), we have
that 𝑋 is exponentially distributed with rate 𝜖, and𝑌 is the sum of two exponentially
distributed random variables (prodromic phase and infectious period, with rate 𝜇𝑝
and 𝜇 respectively). Computations show that the corresponding generation time
distribution is

𝑓 (𝑡) = 𝜖𝜇𝑝𝜇

(𝜇𝑝 + 𝜇)(𝜇 − 𝜇𝑝) [
𝜇

𝜖 − 𝜇𝑝
(𝑒−𝜇𝑝 𝑡 − 𝑒−𝜖𝑡) − 𝜇𝑝

(𝜖 − 𝜇) (𝑒
−𝜇𝑡 − 𝑒𝜖𝑡)]

Given the values of 𝜖 and 𝜇𝑝 informed from the literature (Supplementary Table 1),
we chose 𝜇 so that the mean of the generation time equals to 6.6 days. The shape of
the distribution is displayed in Supplementary Figure 2 and it closely resembles a
gamma distribution with mean 6.6 and shape parameter 1.87, estimated in Ref2.

Frequency of the Alpha variant over time

Supplementary Figure 3 reports the proportion of infections associated with Alpha
variant, from genomic (Flash surveys) and virological surveillance data (see Methods).
Weekly data have been normalized on Alpha and historical strains for comparison
with model outcomes, as the two-strains model does not account for additional
variants. Model predictions agree well with observed data. Discrepancies between
model and data appear in the month of April after strengthened measures were
applied, and may be due to the interaction of Alpha (B.1.1.7) with Beta (B.1.351) and
Gamma (P.1) variants, slowly expanding their diffusion in the region, and neglected
in the model. The figure also shows the model outcomes obtained assuming that
Alpha variant is 40% more transmissible than the historical variants, i.e. the lower



0.2 Supplementary Note 1: Additional results 7

estimate provided in Ref3. Results show that with this hypothesis the model is not
able to capture the evolution in time of frequency of the Alpha variant.

0.1.2 Stringency index

The stringency index4 is a quantity based on multiple indicators that include
restrictions on public gatherings, stayat-home requirements, school closures and
travel bans. It provides a measure on the intensity of government policies, with a
numerical value ranging from 0 to 100 (a higher value indicates a stricter response).
Supplementary Figure 4 shows the stringency index for France. If policies vary
locally (e.g. at the regional level), the national index corresponds to that of the
region with the strictest restrictions. The strengthened measures adopted at the
end of March in Île-de-France, are of a similar intensity to the moderate lockdown
implemented to curb the second wave.

0.2 Supplementary Note 1: Additional results

0.2.1 Behavioral indicators vs risk perception and psychosocial
burden

Supplementary Figure 5 reports the correlation analysis between adoption of social
distancing and prevalence of anxiety in the population. We observed a non-significant
association between these two quantities. The figure also shows that the association
found between adoption of social distancing and fear to contract the virus since the
second wave (Figure 1 of the main paper) holds when extended to the whole time
period.

0.2.2 Results for different hospitalization levels triggering
lockdowns

We show results for different hospitalization levels triggering interventions, i.e.
interventions applied at different starting dates. Supplementary Figure 6 and
Supplementary Figure 7 complete the results presented in Figure 2 and Figure
4 of the main text, referring to interventions applied at week 12, i.e. when weekly
hospital admissions reached 2,900.

0.2.3 Impact of school holidays

In Supplementary Figure 8, we present the results obtained assuming schools to
be open in w15-w16, to evaluate the effect of school holidays in those two weeks.
We found that, under moderate interventions, hospitalizations would reach higher
peaks and the epidemic would be less easily controlled, if schools were always in
session.



8 Contents

0.2.4 Impact of different vaccination rhythms

Supplementary Figure 9 shows the effect of different vaccination rollouts on the
scenarios presented in the main text.

0.2.5 Phasing out strict lockdowns

Supplementary Figure 10 shows the impact of a progressive transition in phasing
out a 2-week strict lockdown, analogously to results of Figure 5 of the main paper
for moderate lockdowns. Results support the importance to lower the incidence level
to better manage possible rebounds while reopening.

0.3 Supplementary Note 2: Sensitivity analysis

Here we present the results of our sensitivity analysis. We test a different value for
the transmissibility advantage of the Alpha variant, different assumptions on the
delay from the implementation of the restrictions to the peak and different vaccine
efficacies.

0.3.1 Sensitivity on increase in transmission due to Alpha variant

We assessed the impact of a smaller transmissibility advantage (40% increase vs. 59%
increase considered in the main text). Under this assumption, interventions are more
effective in controlling the epidemic (Supplementary Figure 11). This assumption is
however not compatible with the registered evolution of the Alpha variant in time
in the region (see Supplementary Figure 3).

0.3.2 Sensitivity on the delay from implementation of the
intervention to peak

We assessed the impact of a different delay from the implementation of the inter-
vention to peak, which is set to 7 days in the main text, based on estimates from
lockdowns implemented in 2020. Results remained robust: assuming a 10-day delay
leads to differences in the ballpark of estimations (Supplementary Figure 12).

0.3.3 Vaccine efficacy

Supplementary Figure 13 reports the sensitivity on vaccine efficacy against trans-
mission. We tested 40% vaccine efficacy against transmission, with respect to 65%
efficacy assumed in the main text. We found no significant differences in hospital
admission trajectories, owing to an already high efficacy against contracting the
infection, playing a major role in reducing epidemic activity. Supplementary Figure
14 shows the results of the sensitivity on the delay between vaccine administration
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and vaccine efficacy (2 weeks vs. 3 weeks considered in the main results). As expected,
a shorter delay anticipates the effect of vaccination on the epidemic evolution, but
does not affect the general results presented in the main text.
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0.4 Supplementary Tables 1-2

Supplementary Table 1. Parameters, values, and sources used to define the compartmental model
for infection due to historical strains in absence of vaccines.
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Intervention
Distress index

2 
weeks

4 
weeks

6 
weeks

8 
weeks

Strict LD 2.50 5.00 7.50 10.00

Strict LD w/ limited loss of adherence 4.51 6.53 8.54

Strict LD w/ continuous loss of adherence 6.14 7.45

Moderate LD 1.55 3.09 4.64 6.19

Moderate LD w/ limited loss of adherence 2.79 4.04 5.29

Moderate LD w/ continuous loss of adherence 3.80 4.61

Curfew 0.92 1.84 2.76 3.67

Supplementary Table 2. Distress index associated to lockdown scenarios with different duration,
intensity and adherence. Distress index corresponding to curfew conditions lasting 2 to 8 weeks is
shown for comparison.

0.5 Supplementary Figures 1-14
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Supplementary Figure 1. Two-strains compartmental scheme with vaccination. Compartments with
continuous line (top) account for infections due to historical strains, compartments with dashed line
(bottom) account for infections due to the Alpha variant. Analogous compartments are considered
for vaccinated individuals (not shown for the sake of visualization). S=Susceptible, E=Exposed, Ip=
Infectious in the prodromic phase, Ias=Asymptomatic Infectious, Ips=Paucysymptomatic Infectious,
Ims=Symptomatic Infectious with mild symptoms, Iss=Symptomatic Infectious with severe symptoms,
H=severe case admitted to the hospital, R=Recovered.
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Supplementary Figure 2. Distribution of the generation time. The generation time distribution
corresponding to our compartmental model (blue) in comparison with the distribution estimated in
Ref.2 (orange).

Supplementary Figure 3. Prevalence of Alpha variants over time. Estimated percentage of Alpha
cases in Île-de-France over time, considering a 59% (95% CI: 54–65%) higher transmissibility (red) and
a 40% higher transmissibility (blue) for the variant. Circles represent the estimates from the genomic
surveillance in the Flash surveys (Flash1 on 7–8 January, Flash2 on 27 January, Flash3 on 16 February).
Squares represent results from weekly virological surveillance screening allowing the detection of the
N501Y mutation specific to the Alpha variant. We estimated 95% CI assuming a normal distribution.
Flash3 survey estimates have larger CI as sequencing was performed on a smaller sample of viruses.
Horizontal bars in weekly virological surveillance correspond to the week of reference.
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Supplementary Figure 4. Strincency index in France. Estimated stringency index for France over
time. Shaded rectangles in the plot correspond to social distancing measures applied during the
three waves (strict lockdown in the first wave, moderate lockdown in the second wave, strengthened
measures in the third wave).

Supplementary Figure 5. Risk perception, social distancing, anxiety during COVID-19 pandemic.
Prevalence of anxiety in the context of COVID-19 pandemic (left)16 as functions of time; scattered
plot between the prevalence of anxiety and the percentage of individuals avoiding crowded public
places17 in the time period March 2020 - April 2021, with the results of a Pearson correlation test,
effect size 0.2, p-value 0.46 (center). Scattered plot between the fear to contract COVID-19 and the
percentage of individuals avoiding crowded public in the time period March 2020 - April 2021,
with the results of a Pearson correlation test, effect size 0.88, p-value < 10-3 (right). Results for these
indicators refer to the national scale.
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Supplementary Figure 6. Impact of timing of interventions on the timecourse of weekly hospital
admissions. From left to right: increasing levels of weekly hospital admissions triggering lockdowns,
corresponding to implementing interventions starting from w11 up to w15. From top to bottom:
increasing lockdown duration (weeks). Solid curves refer to the median overall trajectory, obtained
under the vaccination rollout of 300k first doses administered per day starting April. Dashed curves
show the same for an accelerated vaccination rhythm (500k first doses/day starting April). The
shaded area around the curves corresponds to the 95% probability range obtained from n=250
stochastic simulations. The type of intervention is coded by different line colors. Dots refer to data;
filled dots correspond to the data used to fit the model and to provide the trajectory for the curfew
scenario; void dots correspond to more recent data. Horizontal dashed lines refer to the peak of
the first and second wave in the region. A 7-day delay is assumed from the implementation of the
intervention to the peak.
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Supplementary Figure 7. Impact of timing of interventions on the intervention efficacy and
associated policy-induced distress. From left to right: weekly hospital admissions at the end of June
(w26), cumulative hospital admissions (computed in the time period w12-w26), hospital pressure,
defined as the number of weeks in which hospital admissions remain above the peak level achieved
during the second wave, in the period w12-w26 as functions of the distress index. From top to bottom:
increasing levels of weekly hospital admissions triggering lockdowns corresponding to implementing
interventions in w11, w13, w14 or w15. Results refer to the accelerated vaccination pace of 300,000
first doses/day since April. Color shades of the symbol contour refer to the duration (weeks) of
the lockdown intervention (from the lightest shade corresponding to 2 weeks, to the darkest one
corresponding to 8 weeks). Adherence to moderate and strict lockdowns is coded with the fill color
(filled symbols with the color of the scenario correspond to scenarios with full adherence, void
symbols represent scenarios with limited loss in adherence, blue filled-in symbols correspond to
scenarios with continuous loss in adherence).
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Supplementary Figure 8. Impact of school holidays on the timecourse of weekly hospital admissions
in Île-de-France for interventions of varying intensity, duration, and adherence. From left to right:
increasing lockdown duration, expressed in weeks. Top row: vaccination pace accelerated to 300,000
first doses/day since the start of April; bottom row: 500,000 first doses/day. Interventions are applied
in w12 and assume a delay of one week to the peak in hospital admissions. Schools are assumed to be
open in w15-16. Dots refer to data; filled dots correspond to the data used to fit the model and to
provide the trajectory for the curfew scenario; void dots correspond to more recent data. Curves refer
to the median trajectory; shaded areas around the curves correspond to the 95% probability range
obtained from n=250 stochastic simulations. The type of intervention is coded by different line colors.
Horizontal dashed lines refer to the peak of the first and second wave in the region. Results for strict
lockdown scenarios with full adherence or loss of adherence overlap. For this reason, we do not show
the scenario with limited loss of adherence.

Supplementary Figure 9. Impact of accelerated vaccination. Results refer to interventions applied in
w12. From left to right: weekly hospital admissions at the end on June (w26), cumulative hospital
admissions (computed in the time period w12-w26). All outcomes are shown as functions of the
vaccination rhythm (doses/day since April). Color shades of the symbol contour refer to the duration
(weeks) of the lockdown intervention (from the lightest shade corresponding to 4 weeks, to the
darkest one corresponding to 8 weeks). Adherence to moderate and strict lockdowns is coded with
the fill color (filled symbols with the color of the scenario correspond to scenarios with full adherence,
void symbols represent scenarios with limited loss in adherence, blue filled-in symbols correspond to
scenarios with continuous loss in adherence). Plots show median values; error bars represent 95%
probability obtained from n = 250 independent stochastic runs.
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Supplementary Figure 10. Impact of different exit conditions after a 2-week strict lockdown on the
timecourse of weekly hospital admission. Plots show projections of the weekly hospital admissions
under different hypotheses for the reopening conditions. Progressive transition after lockdown is
modeled with 4 weeks of curfew (lighter line) or 6 weeks of curfew (darker line) followed by exit
conditions experienced in mid-July 2020, but with schools in session (left); curfew scenarios with 40%
fewer individuals respecting physical distancing (center); curfew scenarios with 15% fewer individuals
respecting physical distancing (right). Scenarios assume a 10% reduction in transmissibility due to
seasonality (except for the mid-July 2020 conditions that already embed seasonal aspects) and a
vaccination rhythm of 300,000 first doses per day starting April. Curves refer to the median overall
trajectory and the shaded area around the curves corresponds to the 95% probability range obtained
from n=250 stochastic simulations.

Supplementary Figure 11. Projected impact of interventions on the healthcare system, assuming a
40% transmission increase for Alpha strain. Results refer to interventions applied in w12. From left
to right: increasing lockdown duration (weeks). Curves refer to the median overall trajectory, obtained
under the vaccination pace of 300k first doses administered per day starting April. The shaded
area around the curves corresponds to the 95% probability range obtained from n=250 stochastic
simulations. The type of intervention is coded by different line colors. Line type indicates increase in
transmission due to Alpha infection; 59% solid line vs 40% dotted line. Dots refer to data; filled dots
correspond to the data used to fit the model and to provide the trajectory for the curfew scenario; void
dots correspond to more recent data. Horizontal dashed line refers to the peak of the second wave in
the region. A 7-day delay is assumed from the implementation of the intervention to the peak.
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Supplementary Figure 12. Impact of a longer delay in peak after restriction implementation on the
timecourse of weekly hospital admissions. From left to right: increasing levels of weekly hospital
admissions triggering lockdowns corresponding to implementing interventions in w11 to w15. From
top to bottom: increasing lockdown duration (weeks). Curves refer to the median overall trajectory,
obtained under the vaccination pace of 300k first doses administered per day starting April. The
shaded area around the curves corresponds to the 95% probability range obtained from n=250
stochastic simulations. The type of intervention is coded by different line colors. Line type indicates
the assumed delay from the implementation of the intervention to the peak; solid line corresponds
to a 7 day-delay, dotted-dashed line corresponds to a 10-day delay. Dots refer to data; filled dots
correspond to the data used to fit the model and to provide the trajectory for the curfew scenario;
void dots correspond to more recent data. Horizontal dashed line refers to the peak of the second
wave in the region.

0.6 Supplementaary references

1. Svensson, A. A note on generation times in epidemic models. Math. Biosci. 208,
300–311 (2007).

2. Cereda, D. et al. The early phase of the COVID-19 outbreak in Lombardy, Italy.
arXiv:2003.09320 [q-bio] http://arxiv.org/abs/2003.09320 (2020).

3. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage
B.1.1.7 in England. Science 372, (2021).

4. Hale, T. et al. A global panel database of pandemic policies (Oxford COVID-19
Government Response Tracker). Nat. Hum. Behav. 5, 529–538 (2021).

5. Lauer, S. A. et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19)
From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern.
Med. 172, 577–582 (2020).

6. Ferretti, L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic control
with digital contact tracing. Science 368, eabb6936 (2020).

7. Lavezzo, E. et al. Suppression of a SARS-CoV-2 outbreak in the Italian municipality
of Vo’. Nature 584, 425–429 (2020).



0.6 Supplementaary references 19

8. Riccardo, F. et al. Epidemiological characteristics of COVID-19 cases and estimates
of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March
2020. Eurosurveillance 25, 2000790 (2020).

9. Salje, H. et al. Estimating the burden of SARS-CoV-2 in France. Science 369, 208–211
(2020).

10. Lapidus, N. et al. Do not neglect SARS-CoV-2 hospitalization and fatality risks in
the middle-aged adult population. Infect. Dis. Now (2021) doi:10.1016/j.idnow.2020.12.007.

11. Goldstein, E., Lipsitch, M. Cevik, M. On the Effect of Age on the Transmission of
SARS-CoV-2 in Households, Schools, and the Community. J. Infect. Dis. 223, 362–369
(2021).

12. Galmiche, S. et al. Etude des facteurs sociodémographiques, comportements
et pratiques associés à l’infection par le SARS-CoV-2 (ComCor). https://hal-
pasteur.archives-ouvertes.fr/pasteur-03155847 (2021).

13. Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination
of novel coronavirus (SARS-CoV2). Science (2020) doi:10.1126/science.abb3221.

14. Davies, N. G. et al. Age-dependent effects in the transmission and control of
COVID-19 epidemics. Nat. Med. 26, 1205–1211 (2020).

15. Viner, R. M. et al. Susceptibility to SARS-CoV-2 Infection Among Children and
Adolescents Compared With Adults: A Systematic Review and Meta-analysis. JAMA
Pediatr. 175, 143 (2021).

16. Santé Publique France. CoviPrev : une enquête pour suivre l’évolution des com-
portements et de la santé mentale pendant l’épidémie de COVID-19. https://www.san
tepubliquefrance.fr/etudes-et-enquetes/coviprev-uneenquete- pour-suivre-l-evolution-
des-comportements-et-de-la-sante-mentale-pendant-l-epidemie-de-covid-19 (2020).

17. YouGov.co.uk. COVID-19 Public Monitor. https://yougov.co.uk/covid-19 (2021).





Article #2
The impact of spatial connectivity on

NPIs effectiveness

Chiara E. Sabbatini1, Giulia Pullano2, Laura Di Domenico1, Stefania Rubrichi3,
Shweta Bansal2, Vittoria Colizza1,∗

1Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public
Health, Paris, France. 2Department of Biology, Georgetown University, Washington,
DC, USA. 3Orange Labs, Sociology and Economics of Networks and Services (SENSE),
Chatillon, France. ∗corresponding author: vittoria.colizza@inserm.fr





Contents

Contents 5
0.1 Normalcy and Stringency index . . . . . . . . . . . . . . . . . . . . 6
0.2 SARS-CoV-2 transmission model . . . . . . . . . . . . . . . . . . . . 6

0.2.1 Compartmental model and parameters . . . . . . . . . . . . 6
0.2.2 Inference framework . . . . . . . . . . . . . . . . . . . . . . 8
0.2.3 Parameters fitted in the MCMC procedure . . . . . . . . . . 10
0.2.4 Model inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
0.2.5 Model validation . . . . . . . . . . . . . . . . . . . . . . . . 21

0.3 Spatial vs. Non-spatial model . . . . . . . . . . . . . . . . . . . . . . 23
0.4 Counterfactual scenarios . . . . . . . . . . . . . . . . . . . . . . . . 25
0.5 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

0.5.1 Estimated impact of implemented NPIs on the reproductive
number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

0.5.2 Impact of the Alpha variant and of the vaccination rhythm on
the hospitalizations . . . . . . . . . . . . . . . . . . . . . . . 27

0.5.3 Impact of different nationwide interventions . . . . . . . . . 28
0.6 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

0.6.1 Impact of relaxation after exiting lockdowns . . . . . . . . . 28
0.6.2 Impact of transmissibility and mobility conditions during

lockdowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
0.6.3 Impact of weekly rolling average of data . . . . . . . . . . . 31
0.6.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



6 Contents

0.1 Normalcy and Stringency index

In Figure S1, we show two indicators, the Normalcy and the Stringency index, for
France and four other European countries. The Economist’s Normalcy index1 and
the Stringency index2 are two measures used to evaluate the impact of the pandemic
on human behavior and government policies.

The Normalcy index tracks eight different variables (sports attendance, time at home,
traffic congestion, retail footfall, office occupancy, flights, film box office and public
transport) to quantify an overall score. The pre-pandemic activity level was set at
a Normalcy index of 100 to ease comparison. In the period including the second
lockdown, the curfew, and the third lockdown, the index for France was computed
to be between 37 and 64. The Stringency index quantifies the intensity of government
policies. Figure S1 shows that in the period under study Normalcy and Stringency
index took complementary values, suggesting a duality between the two indicators.
In the main analysis we use the Normalcy index instead of the Stringency index
because it captures not only the stringency of interventions but also the behavioral
response.

Figure S1. Indicators (left) Normalcy index over time for UK, Italy, Germany, Denmark and France. Shaded rectangle in the
plot corresponds to the period of the study. (right) Stringency index over time for UK, Italy, Germany, Denmark and France.
Shaded areas in the plot corresponds to the period of the second lockdown, third lockdown (dark grey) and night-time curfew
in between (light grey). The horizontal arrow highlights the study period.

0.2 SARS-CoV-2 transmission model

0.2.1 Compartmental model and parameters

Figure S2 shows the compartmental scheme used to describe COVID-19 disease
progression. Individuals are divided into susceptible (S), exposed (E), infectious (I),
hospitalized (H) and recovered (R). Hospitalized patients are quarantined and they
do not transmit the infection. Parameter values related to infection due to historical
strains are reported in Table S1. We used estimates available in the literature to inform
the average durations of the latency, infectious, and hospitalized compartments in
the current work. More in detail:

We set the average latency period to 𝜖−1 = 3.7 days, based on the average length
of the incubation period (𝜃−1 = 5.2 days, from Ref.3) and discounting the period
between onset of infectiousness and onset of symptoms (𝜇−1

𝑝 = 1.5 days, from Ref.4,
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computed from the estimates of Ref.5). We set the average infectious period to
𝜇−1 = 2.9 days to match the estimate of the generation time (6.6 days, from Ref.6).
We set the average time spent in the hospital to 21 days from Ref.4. A time lag of
3.6 days was introduced to delay the entry into the hospitalization compartment to
align with the estimates on time from onset to hospital admission7.

The complexity of the metapopulation approach with time-varying mobility coupling
the French regions required some simplifications in the compartmental structure.
For example, we did not consider asymptomatic or presymptomatic transmission.
Such simplifications were commonly adopted in other metapopulation models used
to study the COVID-19 pandemic8,9.

Parameters values for the Alpha variant are presented in the Methods section of the
main text. When vaccination starts, we assumed doses to be distributed to either
susceptible or recovered individuals with equal probability. Vaccination effectiveness
is described in the Methods section and reported in Table S1.
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Figure S2. Compartmental scheme with vaccination. Compartments with no-lines (top) account for infections due to historical
strains for non-vaccinated people. Analogous compartments are considered for vaccinated individuals (dashed and solid
lines). S=Susceptible, E=Exposed, I= Infectious, H=severe case admitted to the hospital, R=Recovered. 𝑉𝐸ℎ𝑜𝑠𝑝 |𝑖𝑛 𝑓 has been
computed using the relationship: 1 −𝑉𝐸ℎ𝑜𝑠𝑝 = (1 −𝑉𝐸𝑖𝑛 𝑓 ) · (1 −𝑉𝐸ℎ𝑜𝑠𝑝 |𝑖𝑛 𝑓 ). 𝑉𝐸𝑡𝑟𝑎𝑛𝑠𝑚 is embedded in the force of infection.
Variables are defined in Table S1
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Table S1. Parameters, values, and sources used to define the compartmental model for infection due to historical strains.

0.2.2 Inference framework

The time windows used for the fit are defined based on the interventions applied
in France (Table 1, Table S2), specifically: pre-second lockdown (Sept 21,2020 –
region dependent date), second lockdown (region dependent date – Nov 22, 2020),
curfew 8pm (Dec 15, 2020 – Jan 15, 2021), curfew 6pm pre holidays (Jan 16, 2021 –
region dependent date due to school holidays), curfew 6pm during holidays (region
dependent date due to school holidays), curfew 6pm post holidays (region dependent
date due to school holidays – April 3, with the exception of few departments), third
lockdown (April 3, with the exception of few departments – Jun 13, 2021).
Table S2.Time windows used for curfews implementation.

NPIs Time window used Regions

Curfew 6pm pre holidays Jan 16, 2021 – Feb 6, 2021 ARA,BFC,NAQ

Jan 16, 2021 – Feb 20, 2021 BRE,CVL,GRE,HDF, NOR,PACA, PDL

Jan 16, 2021 – Feb 13, 2021 IDF,OCC

Curfew 6pm holidays Feb 7, 2021 – Feb 21, 2021 ARA,BFC,NAQ

Feb 21, 2021 – Mar 7, 2021 BRE,CVL,GRE,HDF, NOR,PACA, PDL

Feb 14, 2021 – Feb 28, 2021 IDF,OCC

Curfew 6pm post holidays Feb 22, 2021 – Apr 3, 2021 ARA,BFC,NAQ

Mar 8, 2021 – Apr 3, 2021* BRE,CVL,GRE,HDF, NOR,PACA, PDL

Feb 29, 2021 – Apr 3 2021* IDF,OCC

*third lockdown applied earlier (on Mar 20, 2021) in IDF, HDF, PACA. 


The model was initialized on March 1, 2020 from estimated prevalence obtained
from prior work14, which was validated against serological data. Each stochastic run
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of the metapopulation model was initialized on that date by sampling the prevalence
of each compartment from a Gumbel-r distribution. Its cumulative distribution
function is given by:

𝐹(𝑥;𝜇, 𝛽) = 𝑒−𝑒
−(𝑥−𝜇)

𝑏

where 𝛽 is the scale parameter, which controls the spread or dispersion of the
distribution; 𝜇 is the location parameter, which represents the location of the
distribution on the x-axis. In our analysis, we opted for the Gumbel distribution as it
resulted to be the best distribution in terms of AIC among a set of commonly used
distributions (Alpha, Gamma, Invgamma Levy, Loggamma, Lognorm, Powernorm,
Norm) when fitting the prevalence estimated in our prior work14 through a maximum
likelihood approach. We chose this initialization procedure as surveillance data
prior to March 1, 2020 were of lower quality given that the surveillance system for
hospitalizations was being developed, and this hindered the fitting procedure of
the metapopulation model prior to the exponential increase of cases. In addition,
fitting the early start of the pandemic requires also fitting the seeding date in each
region, i.e. potentially in the month of December 2019. However, we lack mobility
data for the end of 2019, therefore we were forced to use a region-specific model for
the fit of the early phase, without spatial connectivity, and then use its results to
initialize our metapopulation model. We expect this not to impact the successive
spatial dynamics because of the small epidemic size prior to March 1, 2020 and
of the time distance between the initialization (March 2020) and the period under
study (starting September 2020). This is further supported by the validation of the
model at subsequent dates and by the model selection analysis illustrating how
the metapopulation model better describes the observed dynamics compared to a
non-spatial model.

The metapopulation model fitted the epidemic trajectories of hospital admission
data from March 1, 2020 to June 13, 2121.

Model parameters were estimated in a Bayesian framework by sampling the posterior
parameter distribution obtained by updating prior beliefs based on a likelihood
function. The likelihood function is evaluated on daily data of regional hospital
admissions (Methods section Inference framework and validation). We used Markov
Chain Monte Carlo (MCMC) to obtain posterior distributions, assuming a uniform
prior. We used three independent chains, with each chain performing 3000 steps, to
approximate the posterior distribution. We used the Metropolis-Hasting algorithm
to accept or reject the set of parameters at each step. We performed 200 stochastic
simulations to compute median values and associated 95% probability ranges for all
quantities of interest.

To demonstrate that our model is able to estimate the parameters with the proposed
inference approach and does not suffer from identifiability issues, we performed the
following synthetic experiment. We parameterized the model using as priors the set
of parameter values estimated with the first MCMC, and we re-calibrated the model
with another MCMC procedure. By retrieving the same set of parameter values, we
showed that the model was well identified and could be calibrated without bias.
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0.2.3 Parameters fitted in the MCMC procedure

We used daily hospital admission data at the regional level to fit the model.

The values of the fitted transmission rates (𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑖 (𝑡)) and time from lockdown
implementation to hospitalization peak are reported in Table S3. The distributions
of the fitted parameters are reported in Figures S3-S11.
Table S3. Values of the fitted parameters. The parameter 𝛽 refers to the intrinsic transmission rate 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑖 defined in the
main text.
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βintrinsic βintrinsic βintrinsic

Pre LD2

Figure S3. Histograms of samples. We reported the histograms of sampled values for the 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (𝑝𝑟𝑒𝐿𝐷2) parameter in each
region, obtained from three independent chains (yellow, orange and blue histogram), after discarding the burn-in period.
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βintrinsic βintrinsic βintrinsic

LD2

Figure S4. Histograms of samples. We reported the histograms of sampled values for the 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (𝐿𝐷2) parameter in each
region, obtained from three independent chains (yellow, orange and blue histogram), after discarding the burn-in period.
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βintrinsic βintrinsic βintrinsic

Curfew 8 pm

Figure S5. Histograms of samples. H We reported the histograms of sampled values for the 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (curfew 8pm) parameter
in each region, obtained from three independent chains (yellow, orange and blue histogram), after discarding the burn-in
period.
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Curfew 6 pm pre-holidays

βintrinsic βintrinsic βintrinsic

Figure S6. Histograms of samples. We reported the histograms of sampled values for the 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (curfew 6pm pre-holidays)
parameter in each region, obtained from three independent chains (yellow, orange and blue histogram), after discarding the
burn-in period.
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βintrinsic βintrinsic βintrinsic

Curfew 6 pm holidays

Figure S7. Histograms of samples. We reported the histograms of sampled values for the 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (curfew 6pm holidays)
parameter in each region, obtained from three independent chains (yellow, orange and blue histogram), after discarding the
burn-in period.
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βintrinsic βintrinsic βintrinsic

Curfew 6 pm post-holidays

Figure S8. Histograms of samples. We reported the histograms of sampled values for the 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (curfew 6pm post-holidays)
parameter in each region, obtained from three independent chains (yellow, orange and blue histogram), after discarding the
burn-in period.
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βintrinsic βintrinsic βintrinsic

LD3

Figure S9. Histograms of samples. We reported the histograms of sampled values for the 𝛽𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (𝐿𝐷3) parameter in each
region, obtained from three independent chains (yellow, orange and blue histogram), after discarding the burn-in period.
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LD2

Figure S10. Histograms of samples. We reported the histograms of sampled values for the 𝑑𝑒𝑙𝑎𝑦(𝐿𝐷2) parameter in each
region, obtained from three independent chains (yellow, orange and blue histogram), after discarding the burn-in period.
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LD3

Figure S11.Histograms of samples. We reported the histograms of sampled values for the 𝑑𝑒𝑙𝑎𝑦(𝐿𝐷3) parameter in each
region, obtained from three independent chains (yellow, orange and blue histogram), after discarding the burn-in period.
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0.2.4 Model inputs

In the figure (Figure S12) we show the model inputs, including the change in
seasonality over time, the percentage of vaccine doses administrated over time, the
mobility reduction, and the Alpha variant penetration over time. All these inputs
were used in the model at the regional level.

Estimates from data from Ref.15 on the impact of seasonal climatic conditions on
transmissibility yield an average increase of 23% of transmissibility during winter. A
stronger seasonal effect is observed in northern areas with respect to the south, with
a maximum difference of 17 days in the winter peak observed across regions (Figure
S12a). We fitted the estimates with a sinusoidal curve, one for each region, using a
least-squares optimization function.

A large-scale vaccination campaign started in France on December 27, 2020, prioritiz-
ing the population at risk (elderly, vulnerable individuals and healthcare personnel).
Data on the number of vaccine doses administered16 included information at the
regional level and by stage of vaccination (1st or 2nd dose). By June 12, 2021, around
30 million first injections had been distributed17, corresponding to 45% of the total
population and 20.8% of the total population was fully vaccinated with a second dose
(Figure S12b). For comparison, we also tested scenarios following the vaccination
pace adopted in the United Kingdom18, where the fraction of population with a first
dose reached 45% by April 15, 2021.

Different protocols were adopted over time for genome sequencing surveys to assess
variant circulation. Flash#1 and Flash#2 surveys analyzed PCR-positive samples19.
Flash#1 was conducted on Jan 8, identifying 3.3% of new cases due to Alpha. Flash#2
analyzed 10,261 samples from Jan 27, identifying 261 samples that were confirmed
as Alpha variant (13.0%). Due to the need for more timely variant surveillance, a
new protocol was introduced in week 6, 2021. It estimated the weekly frequency of
detected viruses with specific mutations, including the N501Y mutation found in the
Alpha variant, using second-line RT-PCR tests. Variant penetration was estimated by
fitting the Flash surveys data19 with a logistic function (Figure S12d). To quantify the
transmission advantage, we first estimated the daily effective reproductive numbers
independently for each strain (wildtype or Alpha) at the national level starting
on week 5, 2021. We then fitted the daily ratio 𝑅𝐴𝑙𝑝ℎ𝑎

𝑅𝑤𝑖𝑙𝑑𝑡𝑦𝑝𝑒
with a zero-degree and a

second-degree polynomial over time to allow possible variations of the transmission
advantage over time. In agreement with prior estimates19, we found that initially
the SARS-CoV-2 Alpha variant was 1.58 times more transmissible than the wild
type. The magnitude of the transmission advantage varied over time, decreasing
from 1.58 in week 5, 2021 to 1.42 in week 22, 2021, similarly to what observed in
United Kingdom20. These effects could be associated with vaccination, as vaccines
may reduce outward transmission by reducing viral loads13,20.
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(a) (b) (c) (d)

Figure S12. Model inputs and indicators. (a) Estimated effect of seasonality on the transmission over the study period. Regions
are represented with solid lines of different colors: Île-de-France (IDF), Centre-Val de Loire (CVL), Bourgogne-Franche-Comté
(BFC), Normandy (NOR), Hauts-de-France (HDF), Grand Est (GRE), Pays de la Loire (PDL), Brittany (BRE), Occitanie (OCC),
Nouvelle Aquitaine (NAQ), Auvergne-Rhône-Alpes (ARA), Provence-Alpes-Cote d’Azur (PACA). (b) Percentage of vaccinated
people with at least one dose (dotted lines) and with two doses (solid lines) according to data16. Grey lines represent the
twelve French regions, red lines represent France. (c) Estimated change in mobility by region and by intervention based on
Orange mobility data21. Dark blue squares represent the second lockdown period, light blue squares represent the third
lockdown period and orange squares represent the curfew implemented at 6p.m. before the school holidays. (d) Percentage of
Alpha variant over time. Grey lines represent the twelve French regions, red line represents France.

0.2.5 Model validation

By including the processes of seroconversion and seroreversion following estimates
of Ref.22,we compared model projections of antibody positive people (AB+) with
serological estimates23,24(Figures S13, S14, Methods section). Modelling results are
in good agreement with the serological estimates in the large majority of the regions
and for the whole France.
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Figure S13. Model predictions versus serological estimates, french regions. For each region the panel shows the predicted
percentage of antibody positive people (AB+) over time (purple curves and shaded areas for median and 95% probability
range) and serological estimates of, Santé publique France (SpF)23 (filled squares) and ref.24 (void squares in IDF, GRE, NAQ).
The square’s colors refer to the different dates studies were conducted. Medians and 95% confidence intervals for model
projections are obtained from n = 200 independent stochastic runs. Plots are reported for all 12 regions of mainland France :
Île-de-France (IDF), Centre-Val de Loire (CVL), Bourgogne–Franche– Comté (BFC), Normandy (NOR), Hauts-de-France (HDF),
Grand Est (GRE), Pays de la Loire (PDL), Brittany (BRE), Occitanie (OCC), Nouvelle Aquitaine (NAQ), Auvergne–Rhône–Alpes
(ARA), Provence–Alpes–Cote d’Azur (PACA).
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Figure S14. Model predictions versus serological estimates, nationwide estimates. (left) Model predicted percentage of
antibody positive people (AB+) over time for France (purple curves and shaded areas for median and 95% probability
ranges) and serological estimates of Santé publique France (SpF)23, the square’s colors refer to the different dates studies were
conducted. (right) Model prediction of the percentage of antibody positive people versus the serological estimates per region
(filled dots) and France (void dots) from Santé publique France (SpF)23. Error bars correspond to 95% probability ranges. The
circles’s colors refer to the different dates studies were conducted.

0.3 Spatial vs. Non-spatial model

We compared our metapopulation model with a non-spatial one, by fitting the
transmission rates separately for each model, with and without spatial dependence.
The model without spatial dependence considers that regions are not coupled by
mobility. The resulting Deviance information criterion (DIC) shows that our model
better describes the observed trajectories (Table S4, Figure S15), thus indicating that
accounting for connections between regions is important to capture the epidemic
dynamics.
Table S4. Deviance information criterion (DIC) values values for the two versions of the model.

Metapopulation model (i.e. 
model used in the study)

Non-spatial model

DIC 36642.16 51536.97
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Figure S15. COVID-19 pandemic trajectory in French regions: comparison between metapopulation model used in the study
and the non-spatial model. For each region, the panel shows the calibration of the model on data of daily hospital admissions
with the metapopulation model (orange) and the non-spatial model (blue). Black dots indicate data, lines represent the median
curve, shaded areas correspond to 95% probability ranges. Medians and 95% probability ranges for model projections are
obtained from 200 independent stochastic runs. The abbreviations in the upper right corner of each plot stand for the name
of the region. ARA : Auvergne-Rhône-Alpes, PACA : Provence-Alpes-Cote d’Azur, BFC : Bourgogne-Franche-Comté, HDF
: Hauts-de-France, IDF: Île-de-France, GRE: Grand Est, NOR: N rmandy, OCC : Oc citanie, CVL: Centre-Val d Loire, PDL :
Pays de l a Loire, NAQ: Nouvelle Aq uitaine, BRE: Brittany. Grey areas in the plots correspond to social distancing measures:
lockdown during the second wave, lockdown during the third wave, and curfew in between.

We also computed the mean absolute error (MAE) for each run of each model. We
obtained a lower MAE for the spatial model in 7 regions out of 11 (64%; for IDF the
errors are compatible), Figure S16.
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Figure S16. MAE: comparison between metapopulation model used in the study and the non-spatial model. For each region,
the panel shows the mean absolute error. Circles represent the averaged MAE and its standard error estimated values for the
200 independent stochastic runs. Filled circles represent the estimates with the metapopulation model; void circles represent
estimates with the non-spatial one. Plots are reported for all 12 regions of mainland France : Île-de-France (IDF), Centre-Val de
Loire (CVL), Bourgogne-Franche-Comté (BFC), Normandy (NOR), Hauts-de-France (HDF), Grand Est (GRE), Pays de la Loire
(PDL), Brittany (BRE), Occitanie (OCC), Nouvelle Aquitaine (NAQ), Auvergne-Rhône-Alpes (ARA), Provence-Alpes-Cote
d’Azur (PACA).

0.4 Counterfactual scenarios

Table S5 and Table S6 provided additional information on counterfactual scenarios.
Table S5 reports the values for the trigger (𝑇) and release (𝑅) thresholds of simulated
lockdowns expressed in terms of daily hospital admissions per 100,000. Table S6
reports the days spent under restrictions, for both the observed situation and the
counterfactual scenarios discussed in the main text.
Table S5. Reference thresholds for trigger and release stop-and-go lockdowns. Values refer to daily hospital admissions per
100,000.
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Table S6. Days spent under lockdowns.

0.5 Additional results

We present in this section some additional results of our analyses not shown in the
main text.

0.5.1 Estimated impact of implemented NPIs on the reproductive
number

Figure S17. Estimated impact of implemented NPIs. Reduction in the estimated effective reproductive numbers R associated
to the implemented social distancing interventions compared with the values estimated before the second lockdown. Box plots
represent the median (line in the middle of the box), interquartile range (box limits) and 2.5th and 97.5th percentiles (whiskers)
of the estimated values for the 12 French regions. Filled boxplots represent reductions estimated by the fit accounting for all
time-varying processes; void boxplots represent reductions estimated in the absence of the Alpha variant and seasonality
effects.
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Figure S18. Estimated impact of implemented NPIs, in absence of vaccination. Estimates of the effective reproductive
numbers for the implemented social distancing interventions in absence of vaccination. Box plots represent the median (line in
the middle of the box), interquartile range (box limits) and 2.5th and 97.5th percentiles (whiskers) of the estimated values for
the 12 French regions. Filled boxplots represent reductions estimated by the fit accounting for all time-varying processes; void
boxplots represent reductions estimated in the absence of the Alpha variant and seasonality effects.

Figure S19.Correlations between basic reproductive numbers during different interventions. The panel shows the correlation
of the basic reproductive number 𝑅0 during the period with curfew at 6p.m. before holidays and curfew at 8 p.m., curfew at
6 p.m. during holidays, curfew at 6 p.m. after holidays. Each dot represents a French region and correlation is done across
regions.

0.5.2 Impact of the Alpha variant and of the vaccination rhythm on
the hospitalizations



28 Contents

Figure S20. Impact of the Alpha variant and of the vaccination rhythm on hospitalizations. (a) Variation in the number of
hospitalizations (period September 2020 - June 2021) due to the Alpha variant with respect to observations. The green bars
represent a scenario without the Alpha variant. (b) Frequency of Alpha variant (%), by region according to Flash surveys . The
light grey bars represent Flash #1, the dark grey bars represent Flash #2. (c) Variation in the number of hospitalizations (period
September 2020 - June 2021) due to the vaccination rhythm compared to observations. The dark blue bars represent a scenario
without vaccines, the light blue bars represent a context with the vaccination pace observed in the United Kingdom18. In the
three panels, the empty bars represent values for France, the filled bars represent the regional values.

0.5.3 Impact of different nationwide interventions

Figure S21. Regions benefitting from nationwide lockdowns compared to observations. Probability distribution of the
percentage of regions benefitting from the lockdowns compared to observations, in the phase space where both effective days
and hospitalizations are reduced. From left to right: hospitalizations, effective days under restrictions.

0.6 Sensitivity analysis

Here we present the results of our sensitivity analysis on some assumptions consid-
ered in the model used in the main paper. We used the value 𝑇, 𝑅 of trigger and
release described in the main text, as an illustrative example.

0.6.1 Impact of relaxation after exiting lockdowns

We assume that population behavior did not change immediately with policies: the
population continued to adhere to public health measures being progressively lifted,
such as physical distancing, during the reopening phase. We assume two weeks
relaxation in the main text. Other studies25 found that transmission rate during the
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reopening phases following the lifting of lockdowns remained similar to the one
observed during lockdowns. Here we explore one week relaxation or no relaxation
(Figure S22), and we find that the progressive reopening helps further dampening
the waves over time.

Figure S22. Impact of relaxation after exiting lockdowns on daily hospital admissions. Solid curves refer to the median
trajectory, obtained under the condition of 2 weeks relaxation. Dotted and dashed curves show the same for 1 week relaxation
o no relaxation, respectively. The shaded area around the curves corresponds to the 95% probability range obtained from
n=200 stochastic simulations. The abbreviations in the upper right corner of each plot stand for the name of the region. IDF:
Île-de-France, CVL: Centre-Val de Loire, BFC : Bourgogne-Franche-Comté, NOR: Normandy, HDF: Hauts-de-France, GRE:
Grand Est, PDL : Pays de la Loire, BRE: Brittany, NAQ: Nouvelle Aquitaine, OCC : Occitanie, ARA: Auvergne-Rhône-Alpes,
PACA: Provence-Alpes-Côte d’Azur. Dashed horizontal red lines refer to the trigger threshold relative to the second lockdown.
It is estimated based on the 7-days rolling average value of the hospital admissions per capita in the Auvergne-Rhone-Alpes
region, on October 30, 2020, rescaled by the regional population, the green ones to the ones observed on December 15, 2020,
calculated as the average value between regions and rescaled to the region’s population.
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0.6.2 Impact of transmissibility and mobility conditions during
lockdowns

In the main text, we simulated the stringency and mobility reductions experienced
in the French second lockdown (LD2) for the initial lockdown in the stop-and-go
series, and the stringency and mobility reductions experienced in the French third
lockdown (LD3) for the subsequent simulated lockdowns. This was done to align
with the applied policies aiming towards a larger freedom over time. Here we show
the results using only the lockdown as the second phase (Figure S23). Assuming
that all simulated lockdowns in the stop-and-go series have the same stringency
and mobility reduction as the French second lockdown does not bring substantial
changes to our results. This is due to the similarity of estimated effectiveness of LD2
and LD3.
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Figure S23. Impact of transmissibility and mobility conditions during lockdowns on daily hospital admissions. Blue solid
curves refer to the median trajectory, obtained under the main scenario conditions. Red solid curves show the same assuming
the conditions of the second lockdown for all the epidemic waves. The shaded area around the curves corresponds to the 95%
probability range obtained from n=200 stochastic simulations. The abbreviations in the upper right corner of each plot stand
for the name of the region. IDF: Île-de-France, CVL: Centre-Val de Loire, BFC : Bourgogne-Franche-Comté, NOR: Normandy,
HDF: Hauts-de-France, GRE: Grand Est, PDL : Pays de la Loire, BRE: Brittany, NAQ: Nouvelle Aquitaine, OCC : Occitanie,
ARA: Auvergne-Rhône-Alpes, PACA: Provence-Alpes-Côte d’Azur. Dashed horizontal lines refer to the hospitalization per
capita. Dashed horizontal red lines refer to the trigger threshold relative to the second lockdown. It is estimated based on the
7-days rolling average value of the hospital admissions per capita in the Auvergne-Rhone-Alpes region, on October 30, 2020,
rescaled by the regional population, the green ones to the ones observed on December 15, 2020, calculated as the average value
between regions and rescaled it to the region’s population.

0.6.3 Impact of weekly rolling average of data

We show that fitting the model to the weekly rolling average to hospital admission
data does not alter the estimates of the epidemiological impact of the NPIs (Figure
S24).
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Figure S24. Impact of hospitalization data on NPI effectiveness. Reduction in the estimated regional basic reproductive
numbers 𝑅0 associated to the second lockdown (LD2) compared with the values estimated before the second lockdown using
raw data and a weekly average of the data. Box plots represent the median (line in the middle of the box), interquartile range
(box limits) and 2.5th and 97.5th percentiles (whiskers) of the estimated values for the 12 French regions. Filled boxplots
represent reductions estimated by the fit accounting for all time-varying processes (𝑅0); void boxplots represent the same
reductions discounting the seasonal and Alpha effects (𝑅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐0 ).
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