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Titre : Modélisation numérique tridimensionnelle des effets de site en Interaction Sol-Structure
par une méthode adaptée aux problèmes sismiques de très grande taille

Keywords : Interaction Sol-Structure, Effets de site, Méthode des éléments de frontière, Méthode
multipôles rapide, Méthode des éléments finis.

Résumé : Les études récentes ont montré l’influence de la géométrie et de la lithologie du site
sur l’amplification de l’onde sismique incidente. Disposer d’outils de simulation est nécessaire pour
l’analyse du risque sismique des ouvrages. Néanmoins, les effets de site sont souvent découplés des
calculs d’interaction sol-structure vu la taille des domaines à considérer et de la complexité des
modèles. L’objectif de cette thèse est de développer une stratégie de calcul numérique d’interaction
sol-structure permettant de prendre en compte les effets de site dans un contexte industriel. Pour
ce faire, un couplage entre la méthode des éléments finis (FEM) et la méthode des éléments de
frontière accélérée par la méthode multipp̂le rapide (FM-BEM) est développé dans ce travail. La
BEM permet de modéliser des problèmes dans des domaines de très grande taille ou infinis mais
est gourmande en temps de calculs. Avec la méthode accélérée, il est possible de considérer des
géologies plus complexes et d’accéder à des gammes de fréquences plus élevées par rapport à des
approches classiques (purement FEM ou couplage BEM-FEM), grace à l’accélération du produit
matrice-vecteur dans la résolution par un solveur itératif. La mise en place de cette approche
s’appuie sur le code FEM industriel Code_Aster (EDF R&D) et le code FM-BEM Coffee (CNRS)
développé par S. Chaillat.

La FM-BEM est d’abord utilisée pour la modélisation de cas de sols réalistes afin de valider ses
paramètres pour une utilisation dans un cadre industriel. Une stratégie de couplage FM-BEM/FEM
est ensuite développée à l’aide d’une technique de sous-structuration dynamique oû la structure (et
éventuellement le sol proche) est modélisée par la FEM, alors que le sol infini est représenté par un
opérateur d’impédance et des forces sismiques, construits avec la méthode FM-BEM. L’opérateur
d’impédance et les forces sismiques, qui sont calculés sur une base réduite afin d’en réduire le coût de
calcul, sont validés sur des cas canoniques (demi-espace homogène, bassin à géométrie variable...).
L’influence sur la réponse de la structure de la forme du bassin, de l’angle d’incidence des ondes
ainsi que du rapport de célérité des ondes entre les couches est alors étudiée et la réponse de la
structure comparée aux cas oû les effets de site seraient absents. Enfin, la méthodologie de couplage
mise en place est utilisée pour effectuer des calculs d’interaction sol-structure sur des structures
dans le bassin de Grenoble.
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Title : Three-dimensional numerical modeling of site effects in Soil-Structure Interaction for
large scale seismic problems

Keywords : Soil-Structure Interaction, Site effects, Boundary element method, Fast multipole
method, Finite element method.

Abstract : Recent studies have shown the influence of the geometry and lithology of the site on
the amplification of the incident seismic wave. Having simulation tools is necessary to seismic risk
analysis of structures. Nevertheless, site effects are often decoupled from soil-structure interaction
computations given the size of the domains to be considered and the complexity of the models.
The objective of this work is to develop a numerical method to simulate soil-structure interaction,
that also takes into account site effects. To this aim, a coupling strategy between the finite
element method (FEM) and the fast multipole accelerated boundary element method (FM-BEM) is
proposed. The BEM is well suited to deal with large-scale or infinite domains but is very expensive
in terms of memory requirements or computational time. Once accelerated with the Fast Multipole
Method, the FM-BEM allows to model more complex geologies and to consider a higher frequency
range compared to classical approaches (purely with the FEM or with a standard BEM-FEM
coupling) thanks to the acceleration of the matrix-vector product needed in the iterative solver.
The implementation of this strategy is based on the FEM code Code_Aster (EDF R&D) and the
FM-BEM code Coffee (CNRS) developed by S. Chaillat.

In this work, FM-BEM is first used to model soils with realistic mechanical characteristics and
to validate the parameters of the method in an industrial context. An FM-BEM/FEM coupling
strategy is then proposed using a dynamic substructuring technique where the structure (and
possibly the near soil) is modelled by the FEM, while the infinite soil is represented by an impedance
operator and seismic forces, computed with the FM-BEM. The impedance operator and the seismic
forces, which are computed on a reduced basis in order to reduce computational costs, are then
validated on canonical cases (homogeneous half-space, basin with variable geometry ...). The
influence on the response of the structure of the shape of the basin, the angle of incidence of the
waves as well as the ratio of the wave velocities between the layers is then studied and the response of
the structure is compared to cases where the site effects are absent. Finally, the proposed coupling
methodology is used to simulate soil-structure interaction on a configuration such as structures in
the Grenoble basin.

iv



To Sofia, Jude, and Imane,
light of the lights



vi



Contents

Remerciements v

Contents vii

List of Figures ix

List of Tables xvii

1. Introduction 1
1.1. Site effects and Soil-Structure Interaction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Causes of site effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Seismic wave propagation and amplification in an elastic medium . . . . . . . . . . . 6
1.4. Numerical methods to model elastic wave propagation in soils . . . . . . . . . . . . . 8
1.5. Main ingredients of the boundary element method . . . . . . . . . . . . . . . . . . . 11
1.6. Fast multipole accelerated boundary element method . . . . . . . . . . . . . . . . . . 13
1.7. Aim and outline of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2. Capabilities of the fast multipole accelerated boundary element method to model elastic
soils 23
2.1. Analysis of the numerical efficiency: benefits of the FM-BEM . . . . . . . . . . . . . 24
2.2. Transition between the BEM and the FM-BEM . . . . . . . . . . . . . . . . . . . . . 25
2.3. Choice of the density of points in an industrial context . . . . . . . . . . . . . . . . . 26
2.4. Effects of the artificial truncation of the free surface . . . . . . . . . . . . . . . . . . 28
2.5. Speed-up of the multi-frequency computations . . . . . . . . . . . . . . . . . . . . . . 30
2.6. Fourier synthesis to obtain results in the time domain . . . . . . . . . . . . . . . . . 31
2.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3. Fast methods to model Soil-Structure Interaction 35
3.1. Coupling between fast BEMs and FEM . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2. Variational formulation of Soil-Stucture Interaction . . . . . . . . . . . . . . . . . . . 37

vii



Contents

3.3. Efficient computation of Soil-Structure Interaction problems . . . . . . . . . . . . . . 40

4. Validation of the impedance operator and seismic force for reference case studies 43
4.1. Evaluation of the impedance operator in the case of a homogeneous half-space . . . . 44
4.2. Impedance operator for hemispherical basin in half-space with material contrasts . . 59
4.3. Seismic force for a homogeneous basin . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4. Seismic force in the case of a heterogeneous basin . . . . . . . . . . . . . . . . . . . . 73
4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5. Structural response for piecewise homogeneous media 79
5.1. Definition of the test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2. Influence of the basin shape on the response of the structure . . . . . . . . . . . . . . 84
5.3. Effect of an obliquely incident wave on the response of the structure . . . . . . . . . 92
5.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6. Application on realistic configuration of Soil Structure Interaction 107
6.1. Modelling of the Grenoble valley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2. Illustration of site effects due to geological and topographical structure . . . . . . . . 110
6.3. Illustration of the site effects on the response in the presence of buildings . . . . . . . 116
6.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7. Conclusions and directions for future work 121
7.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2. Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendices 125

A. Analytic solutions: diffraction of incident plane waves 125
A.1. Case of an incident plane P-wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.2. Case of an incident plane SV-wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 129

viii



List of Figures

1.1. Propagation of a wave from the source to the site [59]. . . . . . . . . . . . . . . . . . 2
1.2. Recorded accelerations during the 1985 Mexico earthquake. . . . . . . . . . . . . . . 3
1.3. Interference between two waves in the case of a concave topography. . . . . . . . . . 4
1.4. Illustration of the amplification of SH-waves in a homogeneous medium (model of

Caracas from [25]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5. Trapping of waves in a stratified medium. The softest soil is in light green, while the

stiffest soil is in dark green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6. Site effect due to the basin shape and velocity contrast. The alluvial basin is depicted

in pink. The bedrock is depicted in brown. . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7. Motion induced by a P-wave (left) and a S-wave (right). . . . . . . . . . . . . . . . . 7
1.8. FMM: illustration of the position of points and of poles. . . . . . . . . . . . . . . . . 14
1.9. FMM: definition of the adjacent cells [7]. . . . . . . . . . . . . . . . . . . . . . . . . 16
1.10. Comparaison of necessary elementary operations between FM-BEM and classical

BEM [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.11. Multi-level subdivision of the domain [32]. . . . . . . . . . . . . . . . . . . . . . . . 18

2.1. Hemispherical basin in a elastic half-space. . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2. Computational time per iteration with respect to the number of degrees of freedom

for the standard and Fast Multipole accelerated BEM. . . . . . . . . . . . . . . . . . 25
2.3. Relative errors with respect to the analytic solution for the FM-BEM (red and blue

lines) and BEM (black and green symbols) to solve incident plane wave propagation
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4. Relative errors for different meshing criterion. . . . . . . . . . . . . . . . . . . . . . . 27
2.5. Total computational time per computation for the two meshing criteria: six or ten

points per S-wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6. Number of iterations with respect to the frequency for the two meshing criteria: six

or ten points per S-wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7. Relative error for different truncation error. . . . . . . . . . . . . . . . . . . . . . . . 29

ix



List of Figures

2.8. Total computational time per computation, with respect to the frequency for different
size of the free surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9. Impact of the use of an initial guess on the number of iterations. . . . . . . . . . . . 31
2.10. Test case considered to check the accuracy of the Fourier synthesis to obtain results

in the time domain. The point in red corresponds to the point where the surface
displacement is evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11. Input Ricker signal for the Fourier synthesis. . . . . . . . . . . . . . . . . . . . . . . . 32
2.12. Amplitude of the vertical displacement at the post-processing with respect to the

frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.13. Amplitude of the vertical displacement at the post-processing point with respect to

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1. Subdomain method: schematic and notation. . . . . . . . . . . . . . . . . . . . . . . 38

4.1. Illustration of the two configurations considered for the validation of the impedance
operator for a homogeneous half-space: surface (right) and embedded (left) footings. 44

4.2. Illustration of the rigid body modes of a circular surface footing. . . . . . . . . . . . 45
4.3. Example of a mesh of a surface circular footing on a homogeneous half-space. . . . . 46
4.4. Circular surface footing on a homogeneous half-space: Validation of the computation

of the impedance of the horizontal mode K11 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the standard BEM using
Miss3D code (denoted Miss3D) and the solution extracted from [60] (denoted Sieffert). 47

4.5. Circular surface footing on a homogeneous half-space: Validation of the computation
of the impedance of the vertical mode K33s (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by standard BEM using Miss3D
code (denoted Miss3D) and the solution extracted from [60] (denoted Sieffert). . . . 48

4.6. Circular surface footing on a homogeneous half-space: Validation of the computation
of the impedance of the rocking mode K44 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by standard BEM using Miss3D
code (denoted Miss3D) and the solution extracted from [60] (denoted Sieffert). . . . 49

4.7. Circular surface footing on a homogeneous half-space: Validation of the computation
of the impedance of the torsion mode K66 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by standard BEM using Miss3D
code (denoted Miss3D) and the solution extracted from [60] (denoted Sieffert). . . . 50

4.8. Influence of the truncation radius on the oscillations reported in the impedance
computed with the FM-BEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9. Impedance for an interface in a bounded domain: model considered. . . . . . . . . . 52
4.10. Computation of the impedance for the horizontal and the vertical modes of an

interface in a bounded domain. Comparison of the solution with FM-BEM (denoted
COFFEE) and FEM (denoted Code_Aster). . . . . . . . . . . . . . . . . . . . . . . 53

4.11. Example of a mesh of an embedded cylindrical footing on a homogeneous half-space. 54

x



List of Figures

4.12. Embedded cylindrical footing: Validation of the computation of the impedance of
the horizontal mode K11 (Equation 3.7): comparison between the FM-BEM solution
(denoted COFFEE), the solution given by standard BEM using Miss3D code (denoted
Miss) and the solution extracted from [60] (denoted Sieffert). . . . . . . . . . . . . . 55

4.13. Embedded cylindrical footing: Validation of the computation of the impedance of
the vertical mode K33 (Equation 3.7): comparison between the FM-BEM solution
(denoted COFFEE), the solution given by standard BEM using Miss3D code (denoted
Miss) and the solution extracted from [60] (denoted Sieffert). . . . . . . . . . . . . . 56

4.14. Embedded cylindrical footing: Validation of the computation of the impedance of
the rocking mode K44 (Eq 3.7): comparison between the FM-BEM solution (denoted
COFFEE), the solution given by standard BEM using Miss3D code (denoted Miss)
and the solution extracted from [60] (denoted Sieffert). . . . . . . . . . . . . . . . . . 57

4.15. Embedded cylindrical footing: Validation of the computation of the impedance of
the torsion mode K66 (Eq 3.7): comparison between the FM-BEM solution (denoted
COFFEE), the solution given by standard BEM using Miss3D code (denoted Miss)
and the solution extracted from [60] (denoted Sieffert). . . . . . . . . . . . . . . . . . 58

4.16. Embedded cylindrical footing: Validation of the computation of the impedance of
the coupling of the rocking mode and the torsion mode K15 (Eq. 3.7): comparison
between the FM-BEM solution (denoted COFFEE), the solution given by standard
BEM using Miss3D code (denoted Miss) and the solution extracted from [60] (denoted
Sieffert). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.17. Surface and embedded circular footings in the case (i) of a hemispherical basin in a
half-space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.18. Coupling FEM-BEM strategy for the case of a surface or embedded footings (case of
a hemispherical basin in a half-space). . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.19. Circular surface footing on a homogeneous half-space. Validation of the computation
of the impedance of the horizontal mode K11 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert). . . . . . . . . . 62

4.20. Circular surface footing on a homogeneous half-space. Validation of the computation
of the impedance of the vertical mode K33 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert). . . . . . . . . . 62

4.21. Circular surface footing on a homogeneous half-space. Validation of the computation
of the impedance of the rocking mode K44 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given the FEM-BEM coupling (Code_Aster)
and the solution extracted from [60] (denoted Sieffert). . . . . . . . . . . . . . . . . . 63

xi



List of Figures

4.22. Circular surface footing on a homogeneous half-space. Validation of the computation
of the impedance of the torsion mode K66 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert). . . . . . . . . . 63

4.23. Comparison of K33 for two different wave velocities. . . . . . . . . . . . . . . . . . . 64

4.24. Circular surface footing on a multi-domain basin. Validation of the computation of
the impedance of the horizontal mode K11 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert homogeneous)
in the case of a homogeneous half-space. . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.25. Circular surface footing on a multi-domain basin. Validation of the computation
of the impedance of the vertical mode K33 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert homogeneous)
in the case of a homogeneous half-space. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.26. Circular surface footing on a multi-domain basin. Validation of the computation
of the impedance of the rocking mode K44 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert homogeneous)
in the case of a homogeneous half-space . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.27. Circular surface footing on a multi-domain basin. Validation of the computation of
the impedance of the horizontal mode K66 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert homogeneous)
in the case of a homogeneous half-space . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.28. Embedded cylindrical footing on a homogeneous half-space. Validation of the computation
of the impedance of the horizontal mode K11 (Eq 3.7): comparison between the FM-
BEM (denoted COFFEE), FEM-BEM coupling (Code_Aster) solutions. . . . . . . . 68

4.29. Embedded cylindrical footing on a homogeneous half-space. Validation of the computation
of the impedance of the vertical mode K33 (Eq 3.7): comparison between the FM-
BEM (denoted COFFEE), FEM-BEM coupling (Code_Aster) solutions. . . . . . . . 68

4.30. Embedded cylindrical footing on a homogeneous half-space. Validation of the computation
of the impedance of the rocking mode K44 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.31. Embedded cylindrical footing on a homogeneous half-space. Validation of the computation
of the impedance of the torsion mode K66 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xii



List of Figures

4.32. Embedded cylindrical footing on a multi-domain basin. Validation of the computation
of the impedance of the horizontal mode K11 (Eq 3.7): comparison between the FM-
BEM (denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions. . . . 70

4.33. Embedded cylindrical footing on a multi-domain basin. Validation of the computation
of the impedance of the vertical mode K33 (Eq 3.7): comparison between the FM-
BEM (denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions. . . . 70

4.34. Embedded cylindrical footing on a multi-domain basin. Validation of the computation
of the impedance of the rocking mode K44 (Eq 3.7): comparison between the FM-
BEM (denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions. . . . 71

4.35. Embedded cylindrical footing on a multi-domain basin. Validation of the computation
of the impedance of the torsion mode K66 (Eq 3.7):comparison between the FM-BEM
(denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions. . . . . . . 71

4.36. Surface footing on a homogeneous half-space. . . . . . . . . . . . . . . . . . . . . . . 72

4.37. Validation of the computation of the seismic force for the coupling of SV-wave
with the horizontal mode f11: comparison between the FM-BEM solution (denoted
COFFEE) and the solution given by classical BEM (denoted Miss3D). . . . . . . . . 72

4.38. Validation of the computation of the seismic force for the coupling of P-wave with the
vertical mode f33: comparison between the FM-BEM solution (denoted COFFEE)
and the solution given by classical BEM (denoted Miss3D). . . . . . . . . . . . . . . 73

4.39. Surface and embedded footings in the case of a hemispherical basin in half-space. . . 73

4.40. Surface and embedded footings in the case of a hemispherical basin in half-space. . . 74

4.41. Validation of the computation of the seismic force for the coupling of SV-wave
with the horizontal mode f11: comparison between the FM-BEM solution (denoted
COFFEE) and the solution given by the FEM-BEM coupling (Code_Aster). . . . . 74

4.42. Validation of the computation of the seismic force for the coupling of P-wave with the
vertical mode f33: comparison between the FM-BEM solution (denoted COFFEE)
and the solution given by the FEM-BEM coupling (Code_Aster). . . . . . . . . . . . 75

4.43. Validation of the computation of the seismic force for the coupling of SV-wave
with the horizontal mode f11: comparison between the FM-BEM solution (denoted
COFFEE), the solution given by Code_Aster. . . . . . . . . . . . . . . . . . . . . . . 75

4.44. Validation of the computation of the seismic force for the coupling of P-wave with the
horizontal mode f33: comparison between the FM-BEM solution (denoted COFFEE),
the solution given by Code_Aster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.45. Embedded cylindrical footing. Validation of the computation of the seismic force
for the coupling of SV-wave with the horizontal mode f11: comparison between the
FM-BEM (denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions. 76

4.46. Embedded cylindrical footing. Validation of the computation of the seismic force
for the coupling of SV-wave with the horizontal mode f33: comparison between the
FM-BEM (denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions. 77

xiii



List of Figures

5.1. Types of basin used: Case (a) hemispherical basin in homogeneous half-space (left)
and Case (b) horizontally stratified basin (right). . . . . . . . . . . . . . . . . . . . . 80

5.2. Types of basin used: Case (a) hemispherical basin in homogeneous half-space (left)
and Case (b) horizontally stratified basin (right). . . . . . . . . . . . . . . . . . . . . 84

5.3. Polarization of the plane waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4. Free field displacements along the (a) X-, (c) Y- and (e) Z-direction; and displacements

along the (b) X-, (d) Y- and (f) Z-direction at the base of the structure. A vertical
incident unit plane SV-wave is imposed as a loading. . . . . . . . . . . . . . . . . . . 87

5.5. Free field displacements along the (a, b) X-, (c, d) Y- and (e, f) Z-direction. A
vertical incident unit plane SH-wave is imposed as a loading. . . . . . . . . . . . . . 89

5.6. Free field displacements along the (a) X-, (c) Y- and (e) Z-direction; and displacements
along the (b) X-, (d) Y- and (f) Z-direction at the base of the structure. A vertical
incident unit plane P-wave is imposed as a loading. . . . . . . . . . . . . . . . . . . . 91

5.7. Oblique incident plane wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.8. Horizontal displacement along the X-direction at the base of the structure. An

incident unit plane SV-wave is imposed as a loading for various angle of incidence. . 93
5.9. Horizontal displacement along the Y-direction at the base of the structure. An

incident unit plane SV-wave is imposed as a loading for various angle of incidence. . 94
5.10. Vertical displacement along the Z-direction at the base of the structure. An incident

unit plane SV-wave is imposed as a loading for various angle of incidence. . . . . . . 95
5.11. Total displacement at the base of the structure. An incident unit plane SV-wave is

imposed as a loading for various angle of incidence. . . . . . . . . . . . . . . . . . . . 96
5.12. Horizontal displacement along the X-direction at the base of the structure. An

incident unit plane SH-wave is imposed as a loading for various angle of incidence. . 97
5.13. Horizontal displacement along the Y-direction at the base of the structure. An

incident unit plane SH-wave is imposed as a loading for various angle of incidence. . 98
5.14. Vertical displacement along the Z-direction at the base of the structure. An incident

unit plane SH-wave is imposed as a loading for various angle of incidence. . . . . . . 99
5.15. Total displacement at the base of the structure. An incident unit plane SH-wave is

imposed as a loading for various angle of incidence. . . . . . . . . . . . . . . . . . . . 100
5.16. Horizontal displacement along the X-direction at the base of the structure. An

incident unit plane P-wave is imposed as a loading for various angle of incidence. . . 101
5.17. Horizontal displacement along the Y-direction at the base of the structure. An

incident unit plane P-wave is imposed as a loading for various angle of incidence. . . 102
5.18. Vertical displacement along the Z-direction at the base of the structure. An incident

unit plane P-wave is imposed as a loading for various angle of incidence. . . . . . . . 103
5.19. Total displacement at the base of the structure. An incident unit plane P-wave is

imposed as a loading for various angle of incidence. . . . . . . . . . . . . . . . . . . . 104

6.1. Grenoble basin: layers and shape of the basin. . . . . . . . . . . . . . . . . . . . . . . 108

xiv



List of Figures

6.2. Top and bottom view of the mesh of Grenoble basin, with the chosen location for the
center and border points are indicated in red. . . . . . . . . . . . . . . . . . . . . . . 110

6.3. Displacement at the free surface of the basin. A vertical incident unit plane SV-wave
is imposed as a loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4. Displacement at the free surface of the basin. A vertical incident unit plane SH-wave
is imposed as a loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5. Displacement at the free surface of the basin. A vertical incident unit plane P-wave
is imposed as a loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6. Displacement at the free surface of the basin in the X-direction. A vertical incident
unit plane SV-wave is imposed as a loading. . . . . . . . . . . . . . . . . . . . . . . . 115

6.7. Displacement at the free surface of the basin in the Y-direction. A vertical incident
unit plane SH-wave is imposed as a loading. . . . . . . . . . . . . . . . . . . . . . . . 115

6.8. Displacement at the free surface of the basin in the Z-direction. A vertical incident
unit plane P-wave is imposed as a loading. . . . . . . . . . . . . . . . . . . . . . . . . 116

6.9. Displacement at the free surface of the basin. A vertical incident unit plane SV-wave
is imposed as a loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.10. Displacement at the free surface of the basin. A vertical incident unit plane SH-wave
is imposed as a loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.11. Displacement at the free surface of the basin. A vertical incident unit plane P-wave
is imposed as a loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.1. Diffraction of an incident plane P-wave by a free surface. . . . . . . . . . . . . . . . . 126
A.2. Diffraction of an incident plane S-wave by a free surface. . . . . . . . . . . . . . . . . 127

xv



xvi



List of Tables

4.1. Static stiffness of a circular surface footing of radius R on a homogeneous half-space
of Poisson’s ratio ν. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1. Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in
ux direction. The most important modes in this direction are indicated in blue. . . . 82

5.2. Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in
uy direction. The most important modes in this direction are indicated in blue. . . . 82

5.3. Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in
uz direction. The most important modes in this direction are indicated in blue. . . . 83

6.1. Mechanical parameters used to model the layers of the bedrock. . . . . . . . . . . . . 108
6.2. Mechanical parameters used to model the layers of the sedimentary basin. . . . . . . 109
6.3. Depth of the layer under the center point of the basin 6.2. . . . . . . . . . . . . . . . 111
6.4. Depth of the layer under the border point of the basin 6.2. . . . . . . . . . . . . . . . 111
6.5. Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in

ux direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.6. Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in

uy direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.7. Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in

uz direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xvii



xviii



Chapter 1
Introduction

Contents
1.1. Site effects and Soil-Structure Interaction . . . . . . . . . . . . . . . . . . 2

1.2. Causes of site effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Topographic site effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2. Lithologic site effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3. Geometric site effects of sedimentary basins . . . . . . . . . . . . . . . . . 5

1.3. Seismic wave propagation and amplification in an elastic medium . . . 6

1.4. Numerical methods to model elastic wave propagation in soils . . . . . 8

1.4.1. Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2. Discontinuous Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.3. Spectral Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.4. Boundary Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5. Main ingredients of the boundary element method . . . . . . . . . . . . 11

1.5.1. Boundary integral equations . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2. The boundary element method (BEM) . . . . . . . . . . . . . . . . . . . . 12

1.5.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6. Fast multipole accelerated boundary element method . . . . . . . . . . . 13

1.6.1. Foundations of the fast multipole method . . . . . . . . . . . . . . . . . . 14

1.6.2. The single level FMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.3. The multi-level FMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7. Aim and outline of this work . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



1.1. Site effects and Soil-Structure Interaction

1.1. Site effects and Soil-Structure Interaction

The regulations on the seismic design of structures are often based on safety factors that ensure,
more or less conservatively, the mechanical resistance of the structure. In order to quantify seismic
design margins, more realistic models are becoming more and more common. The increasing use of
non-linear behaviour models is a significant proof of this. In this context, it is important to work on
a better characterisation not only of the non-linear dynamic behaviour of the structures, but also of
the seismic loading used in the studies. To this end, in the recent years, collaborative projects have
been organised with a strong desire to increase exchanges between seismologists and earthquake
engineering specialists (see for example the projects E2VP [45] and QUEST [38]).

Defining the seismic loading consists in evaluating three different phenomena (Figure 1.1): (i) the
effect of the seismic source inherent to the properties of the fault, (ii) the propagation of the seismic
wave from the fault to the site, and finally (iii) the site effects related to the topography and lithology
of the site. A rigorous definition of the seismic loading requires an advanced grasp of each of these
phenomena.

Figure 1.1.: Propagation of a wave from the source to the site [59].

The scope of this work is the evaluation of the site effects in Soil-Structure Interaction. The motion
induced in a structure by an earthquake depends on the intensity and the frequency content of
the seismic wave in general, but also, more locally, on the geological properties of the soil around
the structure. Therefore, assessing the importance of the topography, heterogeneities between soil
layers (induced by the velocity contrast between layers) and the shape of the sedimentary basin is
necessary for better predicting the response of the structure to an earthquake.

Soil-Structure Interaction (SSI) is the study of the interaction between the soil and the structure
under a seismic loading. It consists in evaluating how the ground motion affects the structural
response and how the structure motion affects the incident seismic wave. Solving such a coupled
system requires, in most cases, a numerical solution. Models that incorporate the necessary physical
mechanisms can be costly both in time and memory requirements. The numerical simulation of the
response of a structure to a seismic wave requires to consider two different components of the model:
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1. Introduction

the soil and the structure. It is a multi-scale problem: the structure has a characteristic length of
few tens meters, and the soil has a characteristic length that can reach few kilometers.

In addition to SSI, it is known that the topography of the bassin, its different layers (i.e. heterogeneities)
can affect the frequency content of a seismic wave, as well as induce in certain configurations an
amplification or attenuation of the wave, locally around the structure. The 1985 Mexico earthquake
exhibited such effects. On Figure 1.2, an attenuation of the wave amplitude is noted in the
Teacalco and UNAM stations in comparison with the accelerations recorded in the Campos station
located near the epicentre of the earthquake. However the site effects abruptly caused seismic wave
amplification in the sedimentary basin (station SCT). Even if the city of Mexico was located at
400km from the earthquake epicenter, the accelerations recorded in Mexico were larger than the
ones recorded near the epicentre.

Figure 1.2.: Recorded accelerations during the 1985 Mexico earthquake.

It is then essential to predict the occurrence of these phenomena by numerically simulating site
effects when considering Soil-Structure Interaction. The number of parameters influencing the
structure response being too wide, e.g. the characteristics of the soil, of the seismic fault and the
geology around the structural, only the effects of the most important parameters can be taken into
account [31]. In the following, only the topography and the lithology parameters are considered.

1.2. Causes of site effects

Site effects are related to the mechanical properties of the different layers of soil and to the geological
distribution of the strata and topography of a given site. In this Section, these different aspects are
recalled.
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1.2. Causes of site effects

1.2.1. Topographic site effects

The topography of a site influences directly the incident seismic wave, causing an amplification or
an attenuation of the wave amplitude.

interferences

Figure 1.3.: Interference between two waves in the case of a concave topography.

Concave topographies cause an amplification (for example in the case of mountains and hills),
whereas convex topographies can cause attenuation of the wave amplitude. Figure 1.3 illustrates
graphically the origin of these constructive and destructive interferences. A more complex example
is the model of Caracas from [25]. Figure 1.4 presents the results for a homogeneous model with
a topographic relief. Results show that the wave amplitude at the top of the mountain is equal to
twice the amplitude of the incident wave, due to the amplification of the seismic wave because of
the concave topography of the basin in this location.

Figure 1.4.: Illustration of the amplification of SH-waves in a homogeneous medium (model of Caracas
from [25]).

1.2.2. Lithologic site effects

The stratification of the sedimentary layers exhibits in general a decrease of the wave velocity in
the upper layers. Deeper layers are subjected to higher confining stresses, therefore presenting
higher elastic modulus. For engineering porpuses, the bedrock is considered as the uppermost layer
which presents shear wave velocity higher than 800 m/s. This contrast of wave velocities causes a
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trapping of the waves and thus an amplification of the motion. This phenomenon depends on the
wave velocity contrast, layer’s thickness and the frequency content of the incident wave. This effect
tends also to extend the duration of the free-field signal. Figure 1.5 illustrates this phenomenon in
the case of two horizontal layers, where the light green soil is softer than the dark green soil, and
thus causes wave trapping in the softer layer.

Figure 1.5.: Trapping of waves in a stratified medium. The softest soil is in light green, while the
stiffest soil is in dark green.

A sedimentary basin can also filter high frequencies in some cases. Indeed, high frequencies being
generally dominant in the bedrock while lower frequencies dominate the response of the softer soils,
the stratigraphy of the soils causes an amplification of the amplitude of the low frequencies and an
attenuation of the high frequencies due to the filtering effect of soft soils [35].

1.2.3. Geometric site effects of sedimentary basins

The shape of the sedimentary basin itself may cause a decrease or amplification of waves (Figure 1.6).
These effects, coupled with the lithological effects, can lead to the focusing of waves and the
generation of surface waves [25].

5



1.3. Seismic wave propagation and amplification in an elastic medium

Figure 1.6.: Site effect due to the basin shape and velocity contrast. The alluvial basin is depicted in
pink. The bedrock is depicted in brown.

Modeling the site effects is based on modeling the propagation on a wave in the considered medium.
This thesis is within the framework of elastodynamic soils. The following Section presents the
theoritical aspects of the wave propagation in elastodynamics.

1.3. Seismic wave propagation and amplification in an elastic
medium

In the following, Ω denotes an elastic medium. The fundamental equation of elastodynamics in the
time-domain writes:

div(σ) + f
d

= ρü, ∀ t, ∀ x ∈ Ω (1.1)

where u is the displacement vector, ü is the second time derivative of the displacement, σ is the
stress tensor, f

d
is the body force vector and ρ is the density.

Under the hypothesis of small perturbations (SPH), the stress tensor writes: σ = C : ε, with ε

the infinitesimal strain tensor that can be written as a function of the displacement vector u as:
ε = 1

2(grad(u) + (grad(u))t), C the stiffness tensor, ()t the transpose operator and grad is the
gradient operator.

In this work, soils with a linear viscoelastic isotropic constitutive law, and constant characteristics
per layer are considered. This is a first approximation of the behaviour of the soil. It is used for
large models where the computational cost of more complex constitutive law is prohibitive or when
there is little knowledge on the properties of the soil. In this context, within each soil layer, the
stiffness tensor C depends of only two parameters. Expressing equation (1.1) in terms of Lamé

parameters (λ and µ) and displacement writes:

(λ+ 2µ) grad(div(u))− µ curl(curl(u)) + f
d

= ρü, (1.2)

where grad, div and curl denotes the gradient, divergence and curl operators respectively.
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To simplify equation (1.2), the Helmholtz decomposition [34] is used, under the assumption of
smoothness and decay of u. It consists in introducing a scalar potential Φ and a vector potential Ψ

that satisfy u = grad(Φ)+curl(Ψ) with div(Ψ) = 0. The potentials Φ et Ψ are uniquely determined
as the solutions of equations (1.3) and (1.4) with:

∆Φ = div(u), (1.3)

and ∆Ψ = −curl(u). (1.4)

Introducing this decomposition in equation (1.2) gives:

grad((λ+ 2µ)∆Φ− ρΦ̈) + curl(µ∆Ψ− ρΨ̈) = 0. (1.5)

From equation (1.5), the unicity of the decomposition leads to the separation of the potentials Φ

and Ψ:

(λ+ 2µ)∆Φ = ρΦ̈, (1.6)

µ∆Ψ = ρΨ̈. (1.7)

Both equations (1.6) and (1.7) take the form of a wave equation. Since ∆Φ = div(u), the potential
Φ can be regarded as a particle traveling in the direction parallel to the direction of propagation
with a velocity Cp =

√
λ+2µ
ρ . Waves resulting from the potential Φ are called compression waves

or P-waves, because they cause compression and dilatation of the medium they propagate through
(Figure 1.7, left). Since ∆Ψ = −curl(u), the potential Ψ can be regarded as a particle traveling in
the direction orthogonal to the direction of propagation with a velocity Cs =

√
µ
ρ . Waves resulting

from the potential Ψ are called shear waves or S-waves (Figure 1.7, right).

Figure 1.7.: Motion induced by a P-wave (left) and a S-wave (right).

The shear and compression waves are called body waves because they are three dimensional waves
that propagate through material volume, contrary to the surface waves that propagate on interfaces
between layers of the material or in the free surface.

In this work, the solution of elastodynamic problems in the Fourier domain is considered. The
fundamental equation of elastodynamics in the Fourier domain writes:
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1.4. Numerical methods to model elastic wave propagation in soils

div(σ) + f
d

= −ρω2u. (1.8)

The transition from the time domain to the Fourier domain is done by the Fourier transform r̃(f),
which is defined as:

r̃(f) = F (r) =

∫ +∞

−∞
r(t)e+i2πftdt, (1.9)

while the inverse Fourier transform is defined as:

r(t) = F−1(r̃) =
1

2π

∫ +∞

−∞
r̃(f)e−i2πftdf. (1.10)

1.4. Numerical methods to model elastic wave propagation in soils

There exist different methods to model site effects. The principle is to evaluate the response of a
basin to the propagation of seismic waves. Each method has its advantages and limitations, and is
more or less adapted to a certain type of problem. Depending on the geometric complexity of the
medium, the material characteristics of the soil layers, the frequency content of the seismic signals,
and on the computational ressources at hand, one method is more appropriate than another.

Several benchmarks and projects [45, 38] in the scientific community have been performed to
evaluate the relevance of the use of these methods. In what follows, the most common methods are
briefly presented: the finite element method (FEM), the discontinuous Galerkin method (DGM),
the spectral element method (SEM) and the boundary element method (BEM).

1.4.1. Finite Element Method

The finite element method is based on a volume discretisation of the computational domain. It
has the advantage to offer the possibility to treat domains with complex geometries, non-linearities
and a large range of materials with complex constitutive laws. However, for large problems, the
number of unknowns grows quickly, because the entire volume is meshed. In addition, it can suffer
from dispersion and pollution effects [57] and it is not very well-suited to treat infinite or semi-
infinite media. One has to artificially truncate the computational domain. However, it is not a
strong limitation since there exist methods to overcome this issue such as the use of non-reflecting
boundary conditions or PMLs [42, 37, 19, 2, 3].

Recent works, based on the use of the FEM have been conducted in the community to evaluate
site effects. The work on the Abruzzo site in Italy [52] can be cited for example. This work has
demonstrated the importance to take into account the lithological effects of the basin. In the work,
the modelling was limited in 2D due to the complexity of the geologic situation. The work by
Restrepo & al. [55] on the simulation of seismic wave propagation in the metropolitan area of
Medellín in the Aburrá Valley can also be mentionned. It is an earthquake-pone region of the
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Colombian Andes that exhibits moderate to strong topographic irregularities [55]. They show how
realistic topography greatly modifies the ground response.

1.4.2. Discontinuous Galerkin Method

The Discontinuous Galerkin method (DGM) was introduced by Reed and Hill in 1973 [54] to solve
the neutron transport equation. This method is quite similar to the finite element method, with
the difference that the continuity of the unknowns at the nodes is not imposed [36]. The method
relies on piecewise continuous shape functions per element. The main advantages of this method
are: (i) the simplicity to generate a mesh since unstructured meshes can be used, (ii) the fact that
models with strong heterogeneities can be easily treated and (iii) it is particularly well-suited for
parallelisation. However, the discontinuity of the unknowns at the nodes considerably increases the
size of the system to solve.

The method is currently used by different groups world-wide. The work in the group of Warburton [48]
that concentrates on the massively parallel computing aspects of the method can be mentioned.
The method has also been applied for realistic configurations, see e.g. the application to the Nice
basin [53]. In addition, the results of the DGM [27] have been compared to the results of the
spectral element method (SEM) and finite differences method (FDM) in the framework of the
E2VP project [46, 13] to simulate a virtual M1.3 event. DGM results have shown a good fit with
SEM and FDM results. Finally, the method is also applied to consider non-linear problem, see e.g.
in [6].

1.4.3. Spectral Element Method

The spectral element method combines the flexibility of the finite element method with the high
accuracy of spectral methods. As a results, it overcomes the problem of numerical dispersion, thanks
to the high-order approximation of the variational problem in elastodynamics [59]. Similarly to the
finite element method, it is not very well-suited to model infinite media. However, a lot of works
are related to the use of special elements such as Perfectly Matched Layers [2, 15, 19, 39] to avoid
this drawback. The main drawback of the method is the mesh generation since it is formulated
for hexahedral mesh. In practice, it is sometimes hard to mesh a complex geological structure or a
realistic topography with hexahedra. Nevertheless, some works are trying to overcome this difficulty
[63, 40].

The method has been used for example for the quantification of site effects at the Matsuzaki site
in Japan [51] or for the quantitative assessment of site effects in the Volvi Basin in the E2VP
project [46]. The method is also used to model wave propagation in non-linear media [50] and
to evaluate the "source-to-site" seismic scenarios for strong ground motion prediction [29, 30].
Very recently, the method has been coupled with the FEM to model soil-structure interaction [64].
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The main challenge is to couple two methods with very different polynomial degrees in the shape
functions.

1.4.4. Boundary Element Method

The Boundary Element Method (BEM) is based on the discretisation of a boundary integral equation
expressed on the boundary of the domain. As a result, only the boundary of the domain is
discretised, leading to a drastic reduction of the number of unknowns of the problem and of the
difficulties related to the meshing of the volume of a complex geometry [4]. The unknowns of the
system to solve are defined on the surface of the domain and possibly its interfaces. The BEM is well
suited to study wave propagation in infinite media, since the radiation conditions are intrinsically
taken into account in the formulation. The BEM also avoids the numerical dispersion that can
appear in the simulation with the finite element method. However, one of the drawbacks of the
BEM is the computational cost to assembly the fully-populated matrix of the system. If the mesh
is composed of N DOFs on the boundary, the cost to assembly and store this matrix is of the order
of O(N2).

The method has been used for example in the study of site effects in the Nice basin [58]. Amplification
factors up to 16 times in seismic spectral ratios in the free surface at low frequencies, compared to a
reference of a homogeneous half-space have been identified. This study highlights the good quality
of the results of the BEM for the study and the quantification of site effects. However, this study
has been limited to 2D site effects due to the very large computational costs of the method. The
BEM was also used to study the 3D amplification of the seismic waves in canonical problems [47].
In this case, the BEM solution was accelerated by the fast multipole method to allow the simulation
of 3D configurations. It has highlighted the importance of the velocity contrast and the asymmetry
of the basin in the amplification of the waves at the free surface.

The BEM is also used in an industrial context at EDF R&D. The substructure method is available
for SSI calculations with Code_Aster : while the structure is modeled by FE, the soil is modeled
with boundary elements using MISS3D software [18].

1.4.5. Conclusions

In many cases and whatever numerical method is used, as in the project E2VP [45], the studies
are either done in 2D (which represents a simplification of the model), or they are limited to low
frequencies because of the high computational cost. However, seismic signals have generally a non-
zero frequency spectra over frequencies in the order of 0− 20Hz. In addition, the basin geometries
can not always be represented in 2D, because they may represent lateral heterogeneities which
must be considered in models. It is therefore important to develop a numerical solver to simulate
propagation problems for complex models (lithology, topography ...).
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1. Introduction

One of the recent advances in this area has been the application of the fast multipole method (FMM)
to accelerate the boundary element method [7] in 3D for higher frequencies in elastodynamics. With
this fast BEM, it is possible to combine the flexibility of boundary elements to model complex
geometries ( without having to mesh inside the treated domains) with the acceleration of the
resolution of the system offered by the fast multipole method. Indeed, one of the drawbacks of
the standard (non accelerated) BEM is the cost of the solution of the system with an iterative
solver of the order of O(N2) per iteration. The fast multipole method allows to lower the cost to
O(Nlog(N)).

1.5. Main ingredients of the boundary element method

In what follows, the boundary integral equations are presented, as well as the corresponding
numerical method: the boundary element method (BEM) in the Fourier domain.

1.5.1. Boundary integral equations

The reciprocity theorem. Let Ω be an elastic solid bounded in space, its boundary being ∂Ω.
The reciprocity theorem derives from the principle of virtual work and gives the relation between
two elastodynamic states (u(1), σ(1), F (1)) and (u(2), σ(2), F (2)):∫

∂Ω
[Tn(u(1)).u(2) − Tn(u(2)).u(1)]dS = ρ

∫
Ω

[F (2).u(1) − F (1).u(2)]dV (1.11)

with Tn(u) = σ.n the vector of surface forces applied on the surface of outward normal n.

Helmholtz fundamental solution for the free space. A boundary integral equation is
defined by the use of some special solutions that are called fundamental solutions or Green’s
functions. To simplify, we first introduce the Helmholtz fundamental solution G. It is defined
as the impulse response of an inhomogeneous linear differential equation for a specific domain, with
defined boundary conditions. In the case of the Helmholtz equation, G is solution of the equation
∆G(x, y) + k2G(x, y) + δ(y − x) = 0, where δ is the unit impulse. When the studied domain is the
free space, the solution of the equation is simply given by:

G(|y − x|, k) =
eik|y−x|

4π|y − x|
.

Fundamental solutions for an elastic free space. A fundamental solution is by definition
a solution of the equation (1.8) (displacement Uki (x, y, k) and stress tensor Σk

ij(x, y, k)) associated
to a unitary punctual force load applied in a fixed point x: ρF (y) = δ(y − x)ek; k ∈ {1, 2, 3}[4]. It
depends on the geometry of the domain and the boundary conditions of the problem.

In the following, the fundamental solution of the free space formulated by Yoshida [61] is used. The
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1.5. Main ingredients of the boundary element method

advantage of this formulation is that each term can be expressed in terms of partial derivates of the
Helmholtz fundamental solution G, allowing to extend existing work to 3D elastodynamics:

Uki (x, y, kp, ks) =
1

k2
sµ

[(δqsδik − δqkδis)
∂

∂xq

∂

∂ys
G(|y − x|, ks) +

∂

∂xi

∂

∂yk
G(|y − x|, kp)] (1.12)

T ki (x, y, kp, ks) = Cijhl
∂

∂yl
Ukh (x, y, kp, ks)nj(y) (1.13)

with T ki the vector of surface forces applied on the surface of outward normal n, hence T ki = Σk
ijnj ,

and Cijhl the terms of the stiffness tensor.
Integral representation. Using the reciprocity theorem (1.11), taking as first elastodynamic
state the unknowns of the problem and as second elastodynamic state the fundamental solution,
the displacement is expressed in all points x /∈ ∂Ω as follows:

c uk(x) =

∫
∂Ω

[ti(y)Uki (x, y, kp, ks)− ui(y)T ki (x, y, kp, ks)]dSy +

∫
Ω
ρFi(y)Uki (x, y, kp, ks)dVy (1.14)

with c = 1 if x ∈ Ω, c = 0 otherwise.

Thanks to this, in the absence of volume forces, it is possible to evaluate in all points the displacement
(and to deduce the stresses and deformations) from boundary conditions on the boundary of the
domain. It remains to define an equation to obtain unknowns on the boundary. In the following,
the problem in the absence of body forces is considered.
Boundary integral equation. When x ∈ ∂Ω, a singularity occurs in x = y. With the help
of a limiting process, the singular elastodynamic integral equation can be expressed as an equation
linking unknowns on the boundary ∂Ω [7]:

cik(x)ui(x) =

∫
∂Ω
ti(y)Uki (x, y, kp, ks)dSy − (PV )

∫
∂Ω
ui(y)T ki (x, y, kp, ks)dSy (1.15)

where (P.V.) indicates a Cauchy principal value singular integral [4] and cik = 1
2δik if the boundary

is smooth enough around x [4]. The integral representation and the boundary integral equation
are valid for both internal and external problems [7]. This method is based on the knowledge of
the fundamental solution and the reciprocity theorem. The fact that the method relies on the
fundamental solution implies that it can only be used to solve linear problems. This formulation is
well-suited to study infinite or semi-infinite elastodynamic medium because the radiation condition
at infinity is implicitly taken into account in the formulation (with the fundamental solution).

1.5.2. The boundary element method (BEM)

Thanks to the integral representation, one needs to solve the problem only on the boundary of
the domain, to then be able to evaluate the displacements everywhere in the volume. There
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1. Introduction

exist different approach to discretise the boundary integral equation. In this work the collocation
approach is used. It consists in enforcing the integral equation to be verified exactly in a finite
number of collocation points [4].

The numerical solution of the boundary integral equation is based on a boundary element discretization
of the surface ∂Ω and boundary unknowns (u, t). It leads to a linear system of the kind:

H u+G t = 0. (1.16)

In this work, u is the displacement vector evaluated at nodes (i.e. linear interpolation of the
displacements) and t is the vector of surfaces forces evaluated per element (i.e. piecewise constant
interpolation of the displacements). Matrices H and G are fully-populated.

Taking into account the boundary conditions, and separating known displacements and forces from
unknowns, the system can be assembled in the following way:

K v = f (1.17)

where v represents the vector of unknowns and f the vector of specified boundary conditions.

1.5.3. Conclusions

Advantages of the BEM. The boundary element method relies on a discretisation of the surface
of the domain only, leading to a drastic reduction of the number of unknowns of the system. This
also makes it possible to simplify the mesh in the case of complicated models. This method is also
suitable for the modelling of infinite media. Finally, the radiation condition is implicitly taken into
account in the formulation.

Drawbacks of the BEM. The method is limited to the solution of linear problems because of the
use of a fundamental solution. The system gives a costly, non-symmetric matrix to assemble and
store (complexity O(N2)). However, these drawbacks are not absolute limits of the method. There
exist accelerated methods to avoid the memory and computation time limits that could appear
using the standard BEM. Among these methods, the fast multipole method applied to integral
equations [7, 9], as well as the hierarchical matrix method [20, 11] have been shown to be efficient
methods to model elastic waves. The acceleration of BEM by FMM or by H-matrix being recent,
there has not yet been a exhaustive comparison between the performance of the two methods in
elastodynamics. Some previous partial comparisons [26] conclude that the FMM is somehow less
expensive in terms of CPU time and in memory.
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1.6. Fast multipole accelerated boundary element method

In this section, the foundations of the fast multipole method applied to integral boundary equations
are presented. Then, two variants of the fast multipole method: single-level and multi-level are
presented. Finally, the advantages and drawbacks of the method are discussed.

1.6.1. Foundations of the fast multipole method

The fast multipole method (FMM) was introduced by Greengard and Rokhlin [33]. It is based on
a reformulation of the fundamental solutions in term of a product of functions depending of only x
or y. This variable separation vectorises the solution. The integrals that depend on y are computed
once and for all and reused when the collocation point x is changed, thus decreasing the complexity
of the matrix assembly that was of O(N2).

This method comes as a response to one of the limitations of the BEM, which is the computational
cost in terms of CPU time and memory. Applying this method to the BEM (see Section 1.5)
permits to accelerate the solution of elastodynamic problems by reducing the cost of computing the
integrals.

The fundamental solutions being written as partial derivatives of the Helmholtz fundamental solution
(see Section 1.5), they can be expressed with the plane wave decomposition of G(r, k) [7]:

G(|r|, k) = lim
L→∞

∫
ŝ∈S

eikŝ.(y−y0)GL(ŝ, r0, k)e−ikŝ.(x−x0)dŝ (1.18)

where L is a truncation parameter, k the wave number, and the vectors x0 and y
0
are two poles close

enough from x and y respectively: r = y − x and r0 = y
0
− x0 (Figure 1.8). S represents the unit

sphere and ŝ a quadrature point for the integral on the latter [7]. Importantly, in Equation (1.18),
the components x and y are separated.

Figure 1.8.: FMM: illustration of the position of points and of poles.

The function GL is defined in terms of Legendre polynomials Pn and the spherical Hankel functions
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1. Introduction

of the first kind h(1)
n :

GL(ŝ, r0, k) =
ik

16π2

L∑
n=0

(2n+ 1)inh(1)
n (k|r0|)Pn(cos(ŝ, r0)). (1.19)

From there, the fundamental solutions can be expressed on the basis of this decomposition:

Uki (x, y, k) = lim
L→∞

∫
ŝ∈S

eikpŝ.(y−y0)Uk,pi,L (ŝ, r0)e−ikpŝ.(x−x0)dŝ+

lim
L→∞

∫
ŝ∈S

eiksŝ.(y−y0)Uk,si,L (ŝ, r0)e−iksŝ.(x−x0)dŝ

(1.20)

T ki (x, y, k) = lim
L→∞

∫
ŝ∈S

eikpŝ.(y−y0)T k,pi,L (ŝ, r0)e−ikpŝ.(x−x0)dŝ+

lim
L→∞

∫
ŝ∈S

eiksŝ.(y−y0)T k,si,L (ŝ, r0)e−iksŝ.(x−x0)dŝ

(1.21)

The transfer functions of the fundamental solutions are expressed as a combination of partial
derivatives of the transfer function GL:

Uk,pi,L (ŝ, r0) =
γ2

µ
ŝiŝkGL(ŝ, r0, kp) (1.22)

T k,pi,L (ŝ, r0) =
iksγ

3

µ
CijhlŝlŝhŝkGL(ŝ, r0, kp)nj(y) (1.23)

Uk,si,L (ŝ, r0) =
1

µ
(δik − ŝiŝk)GL(ŝ, r0, ks) (1.24)

T k,si,L (ŝ, r0) =
iks
µ

(δhk − ŝhŝk)CijhlŝlGL(ŝ, r0, ks)nj(y) (1.25)

where indices p and s designate the functions specific to the P and S waves, respectively.

This development is valid only if the points x and y are far enough. With fundamental solutions
thus formulated, it is not possible to assemble the matrix of the system explicitly: only the matrix-
vector product is evaluated K.v. This implies that the system can only be solved by an iterative
solver. Finally, this formulation of the FMM is not very accurate in the low frequency regime due
to the divergence of the spherical Hankel functions of the first kind h(1)

p (k|r0|) when k|r0| → 0. This
plane wave decomposition of the fundamental solution is used in the following two versions of the
FMM.

1.6.2. The single level FMM

To drive the evaluation of the matrix-vector product, a regular decomposition of the domain with
cubic cells is introduced in the single-level FMM. The poles x0 et y

0
in the reformulation of the

fundamental solutions are defined as the centres of the cubes. Since the plane wave expansion is
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1.6. Fast multipole accelerated boundary element method

valid only if x and y are far enough, the adjacent cells (close to each other) are distinguished from
those that are not (see Figure 1.9). Adjacent cells are composed of cells that share at least one
point in common. The FMM is only applied between two points x and y belonging to non-adjacent
cells.

Figure 1.9.: FMM: definition of the adjacent cells [7].

For adjacent cells, the standard BEM is applied. This is equivalent to write that for each collocation
point x:

(K.u)(x) = (K.u)FM (x) + (K.u)near(x) (1.26)

f(x) = fnear(x) + fFM (x) (1.27)

The parts fnear and (K)near are assembled by the standard BEM method once and for all (i.e. for
all the iterations of the iterative solver). These two operations are not very expensive because the
adjacent cells of a given cell correspond to a small portion of the cells. The remaining contributions
are assembled by the FMM. The term fFM (x) is assembled once and for all by the FMM. The
evaluation of the term (K.u)FM (x) is reevaluated at each iteration of the iterative solver.

The advantage of the FMM is that it reduces the number of elementary operations performed to
solve the system: instead of going through all the points of integration, each time we want to
evaluate the system in one point x, the performed operations are vectorized and re-used later.

The single-level FMM consists of three basic steps as it can be seen in Figure 1.10. For a given cell
Cx and a cell Cy non-adjacent to Cx, the information contained in the integration points included
in Cy are first factorised in the center of Cy (at the point y0

). Then the information is transferred to
the cell Cx (and more precisely to its center x0). Finally, from there, a last transfer of information
to the collocation points of the Cx cell is made. In the following, a case where surface forces are
imposed and displacements are unknown, is considered to illustrate the complete algorithm.
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1. Introduction

Figure 1.10.: Comparaison of necessary elementary operations between FM-BEM and classical
BEM [7].

The first step of the single-level FMM is to compute the multipole moments for all the cells Cy:

Rs,uk (ŝ, Cy) = −iks[δikŝj + δjkŝi − 2ŝiŝj ŝk]

∫
∂Ω∩Cy

ui(y)nj(y)eiksŝ.(y−y0)dSy (1.28)

Rp,uk (ŝ, Cy) = −iksγ3[
2ν

1− 2ν
δij + 2ŝiŝj ]

∫
∂Ω∩Cy

ui(y)nj(y)eikpŝ.(y−y0)dSy (1.29)

Rs,tk (ŝ, Cy) =
1

µ
[δka − ŝaŝk]

∫
∂Ω∩Cy

ta(y)eiksŝ.(y−y0)dSy (1.30)

Rp,tk (ŝ, Cy) =
γ2

µ

∫
∂Ω∩Cy

ŝata(y)eikpŝ.(y−y0)dSy (1.31)

Next, local expansions are computed for each cell Cx by going through all the non-adjacent cells of
Cx:

Ls,uk (ŝ, Cx) =
∑

Cy /∈A(Cx)

GL(ŝ, r0, ks)R
s,u
k (ŝ, Cy) (1.32)

Lp,uk (ŝ, Cx) =
∑

Cy /∈A(Cx)

GL(ŝ, r0, kp)R
p,u
k (ŝ, Cy) (1.33)

Ls,tk (ŝ, Cx) =
∑

Cy /∈A(Cx)

GL(ŝ, r0, ks)R
s,t
k (ŝ, Cy) (1.34)

Lp,tk (ŝ, Cx) =
∑

Cy /∈A(Cx)

GL(ŝ, r0, kp)R
p,t
k (ŝ, Cy) (1.35)

The contribution of the FMM can now be computed by approaching the integral on the unit sphere
by a quadrature rule of Q quadrature points ŝq ∈ S. Note wq the weights of the quadrature points.

(K.u)FMk (x) ≈
Q∑
q=1

wq[e
−iksŝq .(x−x0)Ls,uk (ŝq, Cx) + e−ikpŝq .(x−x0)Lp,uk (ŝq, Cx)] (1.36)
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fFM (x) ≈
Q∑
q=1

wq[e
−iksŝq .(x−x0)Ls,tk (ŝq, Cx) + e−ikpŝq .(x−x0)Lp,tk (ŝq, Cx)] (1.37)

This method reduces the complexity of the computation of a matrix-vector product (i.e. at each
iteration) from O(N2) to O(N3/2).

1.6.3. The multi-level FMM

The goal is to optimise the previously presented method by having the smallest possible adjacent
cells and the largest possible non-adjacent cells. This can be done by subdividing the space, not with
only one level, but rather in several levels with a decreasing cell size (see Figure 1.11). With this
improvement, the complexity of the computation of a matrix-vector product (i.e. at each iteration)
reduces from O(N2) to O(N log(N)). This time, for the computation of the contributions of the

Figure 1.11.: Multi-level subdivision of the domain [32].

FMM part, the information is transmitted between several different levels. We note in the following
C

(l)
y the cell Cy of the level l and l the level at the smallest cell size (leaf level of the tree). The

steps to compute (K.u)FM (x) at each iteration are the following:
•Initialization: Multipole moments for the cells at level l are first computed.
•Upward pass: Multipole moments are recursively computed for all cells from the bottom, up to
level 2, ie:

Rs,uk (ŝ, C(l)
y ) =

∑
C

(l+1)
y ∈S(C

(l)
y )

eiksŝ.(y
(l+1)
0 −y

0
(l)Rs,uk (ŝ, C(l+1)

y ) (1.38)

Rp,uk (ŝ, C(l)
y ) =

∑
C

(l+1)
y ∈S(C

(l)
y )

eikpŝ.(y
(l+1)
0 −y

0
(l)Rp,uk (ŝ, C(l+1)

y ) (1.39)

•Transfer: The first terms of the local expansions for each cell of a given level l are computed for
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2 ≤ l ≤ l. The interaction list I(C) of a C cell is defined as the set of cells that are not adjacent
but whose parents were adjacent to the parent cell of C.

Ls,uk (ŝ, C(l)
x ) =

∑
C

(l)
y ∈I(C

(l)
x )

GL(ŝ, r0, ks)R
s,u
k (ŝ, C(l)

y ) (1.40)

Lp,uk (ŝ, C(l)
x ) =

∑
C

(l)
y ∈I(C

(l)
x )

GL(ŝ, r0, kp)R
p,u
k (ŝ, C(l)

y ) (1.41)

•Downward pass: For each level l such that 3 ≤ l ≤ l, the local expansion is added to the contribution
of the parent levels.

Ls,uk (ŝ, C(l)
x ) = Ls,uk (ŝ, C(l)

x ) + e−iksŝ.(x
(l−1)
0 −x0(l)Ls,uk (ŝ, C(l−1)

x ) (1.42)

Lp,uk (ŝ, C(l)
x ) = Lp,uk (ŝ, C(l)

x ) + e−ikpŝ.(x
(l−1)
0 −x0(l)Lp,uk (ŝ, C(l−1)

x ) (1.43)

When the level l is reached, the contributions of the FMM part are computed with Formula (1.36).

1.6.4. Conclusions

Advantages of the FMM: This method allows to lower the algorithmic complexity of the method
from a complexity of O(N2) for the classical BEM, to a complexity of O(N

3
2 ) for the single-level

FMM, and finally to a complexity of O(Nlog(N)) for the multi-level FMM.

This reduces the computational time compared to a classical BEM approach. In addition, memory
requirements are less important than using the standard BEM. Thus, not only the FMM algorithm
has a lower complexity than the conventional BEM, but also there is no need to store the matrix
K because only the matrix-vector product is computed. All this makes the method very interesting
to simulate elastic wave propagation in large infinite or semi-infinite media.

Drawbacks of the FMM: The previously presented formulation of the FMM is not very adapted
to the low frequency regime due to the divergence of the spherical Hankel functions of the first
kind h(1)

p (k|r0|) when k|r0| → 0. Thus, at low frequencies, it is advantageous to use the standard
BEM, knowing that in this frequency ange, models do not need high mesh refinement, which gives
relatively small size systems.

1.7. Aim and outline of this work

This work was initiated in a post-Fukushima context, from a wish of EDF R&D to improve its
modeling of the site effects in the seismic hazard assessment in order to have a better knowledge of
the margins in the design of its nuclear power plants. So far, EDF R&D had at hand a numerical
method to model the structural response to an earthquake in the case of a stratified soil, through a
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classical boundary element method coupled with the finite element method. This approach offered
moderate possibilities in terms of complexity of the geometry, size of the problem and frequency
range of interest. These limitations were mainly due to the rapid increase of the computational cost
with the number of degrees of freedom. The site effects were also often decoupled from soil-structure
interaction computations, because of the large-scale characteristics of the considered domains. The
aim of this thesis is to go beyond these limitations and to open the possibility to perform numerical
soil-structure interaction analysis which take into account the site effects (i.e. including the geometry
of the site and its lithological properties) all of this within a reasonable computational cost. The
proposed computational strategy consists in a combination of the acceleration of the boundary
element method offered by the fast multipole method to model wave propagation in infinite media
and the flexibility of the finite element method to model the structure and materials.

This thesis is organised as follows. Its main contents are divided into six chapters.

This first chapter has introduced the context of site effects and its importance in the soil-structure
interaction analysis. The different causes of site effects that are sought to be taken into account
in this thesis have been detailed and the different numerical methods to model site effects have
been briefly presented. The theoretical aspects of the boundary element method have then been
presented, followed by the fast multipole method.

The second chapter is about the evaluation of the impact of the modelling parameters on the
accuracy and efficiency of the fast multipole method (FM) in an industrial context. The parameters
studied are the acceleration offered by the fast multipole method, compared to the classical BEM,
the choice of space discretisation criterion and the impact of the truncation radius of the free-
surface on the accuracy of the results and the computational cost. Finally, a method to speed-up
the multi-frequency analysis is proposed and results in the time domain are presented by using
Fourier synthesis.

The third chapter presents a variational formulation of Soil-Structure Interaction within the scope
of application of this work. The chosen strategy for the coupling of Code_Aster and Coffee is
detailed.

The fourth chapter the coupling strategy (i.e., the impedance operator and the seismic forces) is
numerically validated. The validation adresses canonical problems of surface and embedded footing
in homogeneous basins and basins with a material contrast. The results are compared with reference
solutions.

The fifth chapter adresses the use of the proposed coupling to study the impact of site effects on
the response of a structure with an embedded cylindrical footing in the case of a soil composed of a
hemispherical basin in a homogeneous half-space. The influence of the shape of the hemispherical
basin is studied with respect to the velocity ratio, and results are compared to the case of a stratified
soil. The impact of the angle of incidence of the waves is then analysed.

The sixth chapter concerns the application of the coupling to a more realistic basin. The chosen basin
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is the Grenoble basin, which presents an interesting geometry with a topography, a stratigraphy
and a non-planar bedrock. Results for the response of the Grenoble basin to a plane incident wave
with and without a structure are presented and discussed.
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2.1. Analysis of the numerical efficiency: benefits of the FM-BEM

The FM-BEM for elastodynamics is already developed and implemented in Coffee [7]. In this
chapter, the impact of the modeling parameters on the accuracy and numerical efficiency of the FM-
BEM, in an industrial context, is evaluated. The test case consists of a hemisperical basin embedded
in an infinite elastic half-space (Figure 2.1). Both media have the same mechanical characteristics.
This models presents two main advantages: (i) analytical solutions for the propagation of plane
waves in a homogeneous elastic half-space are known in the time-harmonic domain; (ii) it contains
two discretized domains, which offers the possibility to test the multi-domain (piecewise homogeneous)
configuration.

Figure 2.1.: Hemispherical basin in a elastic half-space.

This chapter is organised as follows. In Section 2.1, the gain of the fast multipole method compared
to the classical boundary element method is quantified, both in term of computational time and
memory requirements. The performances are compared to the expected theoretical ones. Since the
FM-BEM formulation used here is not suitable for low frequencies, the Section 2.2 aims at defining
an empirical criterion to determine the domain of validity of the FMM. In Section 2.3, a meshing
criterion for the space discretisation is defined. The criterion is a compromise between an acceptable
accuracy and a low computational cost, in an industrial context. The FM-BEM formulation used
in Coffee is a reformulation of the fundamental solutions of the full-space [7]. To solve a problem
of the propagation of a seismic wave in a elastodynamic half-space, the fundamental solution of
the half-space which takes into account the free surface in its formulation is either used, or the
fundamental solution of the free-space is used but implies the necessity to mesh the free surface
far enough to have a model accurate enough. In Section 2.4, the accuracy of different models with
different truncation radius of the free surface are compared, to determine the effect of this parameter
on the accuracy of the FM-BEM solutions. After determining the optimal parameters to use the
FM-BEM, Section 2.5 presents a way to accelerate the solution by taking benefit of the iterative
solver. Section 2.6 presents results in the time-domain obtained by a Fourier synthesis.

2.1. Analysis of the numerical efficiency: benefits of the FM-BEM

In the following, the computational costs of BEM and FM-BEM are compared, in terms of time
and memory requirements, with respect to the number of degrees of freedom.

Figure 2.2 reports the computational time per iteration to solve the problem of the propagation of
a seismic plane wave in the hemispherical domain in an infinite half-space defined in Figure 2.1. In
this simplified example, both media have the same mechanical properties (Cs = 870 m/s, Cp =
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2. Capabilities of the fast multipole accelerated boundary element method to model elastic soils

1727 m/s, ν = 0.33). The aim is to compare the efficiency of the FM-BEM and BEM, for an
increasing number of degrees of freedom.
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Figure 2.2.: Computational time per iteration with respect to the number of degrees of freedom for
the standard and Fast Multipole accelerated BEM.

Figure 2.2 shows the impact of the FMM on the computational time. The BEM solution has a
theoretical complexity of O(N2) per iteration, while the FM-BEM has a complexity of O(N logN)

per iteration. These theoretical complexities are numerically found as can be seen in Figure 2.2.
The use of a BEM solver can easily cost up to ten times more than with the FM-BEM. For problems
with more than 30 000 DOFs, the BEM computational cost becomes too important to be viable
while the FM-BEM computations can easily exceed 100 000 DOFs. Given that the cost given in the
figure 2.2 is relative to a single iteration, the gain in terms of computational time is more important
as the number of iterations increases, which is always the case in higher frequencies. It is clear that
the FM-BEM is a very interesting alternative to solve seismic wave propagation problems. It allows
to solve problems in larger domains or for a larger frequency range.

2.2. Transition between the BEM and the FM-BEM

One of the limitations of the FMM formulation used in this work is that it is not accurate in
the low frequency regime due to the divergence of the spherical Hankel functions of the first kind
h

(1)
p (k|r0|), when k|r0| → 0 (see Section 1.6). In an industrial context, there is a need to determine

accurately the transition zone between the BEM and the FM-BEM. The criterion should consist
of an empirical non-dimensional frequency to determine where the accuracy of the FM-BEM is
acceptable. To assess the accuracy of the FM-BEM, results obtained with FM-BEM are compared
to the results obtained with the classical BEM. The reference model used is again a hemispherical
basin of radius R = 100 m in a homogeneous half-space (Figure 2.1). To simplify this study, both
media have the same mechanical characteristics (Cs = 870 m/s, Cp = 1727 m/s, ν = 0.33). Two
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2.3. Choice of the density of points in an industrial context

configurations are considered: the propagation of incident plane P- or SV-waves.
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Figure 2.3.: Relative errors with respect to the analytic solution for the FM-BEM (red and blue lines)
and BEM (black and green symbols) to solve incident plane wave propagation problems.

Relative errors with respect to the analytical solution are plotted in Figure 2.3: red and blue lines if
the FM-BEM is used or black and green symbols if the standard BEM is used. It can be noticed that
the error of the FM-BEM solver is high up to 7Hz, it can exceed 100% for some frequencies. This is
clearly the effect of the divergence of the spherical Hankel functions. For frequencies higher than 7Hz,
i.e. λs

R = 1.25 (λs being the wavelength of the SV-wave and R being the radius of the hemisphere),
the difference of the error between FM-BEM and BEM is smaller than 1%. Throughout the rest of
this work, the standard BEM is used for non-dimensional frequencies smaller than λs

R = 1.25 .

2.3. Choice of the density of points in an industrial context

The aim of this section is to determine a meshing criterion, i.e. a good compromise between the
accuracy of the results and the computational time. The criterion is based on numerical experiments.
The reference model used is a hemispherical basin of radius R = 100m in a homogeneous half-
space (Figure 2.1). Both media have the same mechanical characteristics (Cs = 870 m/s, Cp =

1727 m/s, ν = 0.33). Problems are solved in the time-harmonic domain with the FM-BEM. Each
problem is solved for a specific frequency. The frequency range of interest is [7Hz, 25.Hz] with a
frequency step ∆f = 0.2Hz. Two levels of discretization are compared: a model where the geometry
is meshed with a criterion of six points per S-wavelength and a model where the geometry is meshed
with a criterion of ten elements per S-wavelength. The relative error of each model is compared
with the analytical solution of an incident vertical plane P- or SV-wave in a homogeneous infinite
elastic half-space. The relative errors computed for each model are given in Figure 2.4 for the two
meshing criteria.
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Figure 2.4.: Relative errors for different meshing criterion.

In this example, the errors introduced by the FMM for all frequencies are reported even though
it was seen that this acceleration method should not be used for low frequencies. Importantly, it
is noticed that the discrepancy between the results obtained with the two meshes is always of the
order of few percents for the frequencies of interest. However the computation cost is almost double
if the density of points goes from six to ten points per S-wavelength (see Figure 2.5). This result
is in agreement with the theoretical complexity of the FMM of the order of O(N logN). Another
interesting remark is that the accuracy or computational time does not depend on the kind of
incident plane wave.
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Figure 2.5.: Total computational time per computation for the two meshing criteria: six or ten points
per S-wavelength.

Finally, if the total computational time depends naturally on the meshing criterion (and thus on the
number of degrees of freedom), it seems from Figure 2.6 that the number of iterations depends also
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2.4. Effects of the artificial truncation of the free surface

on the frequency but is not sensitive to the number of degrees of freedom. This result is in agreement
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Figure 2.6.: Number of iterations with respect to the frequency for the two meshing criteria: six or
ten points per S-wavelength.

with theoretical results given by Darbas and Le Louer [23]. In order to avoid the dependency with
respect to the frequency, an efficiency preconditioner should be used. But this problem is still an
open question in the context of the FMM. The issue is that the system matrix is not assembled to
reduce the computational cost and memory requirements. It is thus difficult to define an efficient
preconditioner. Tentative to use an algebraic preconditioner using only the small part of the matrix
assembled has shown moderate efficiency [12] and cannot remove the dependency to the frequency.
On the other hand, analytical preconditioners [10] are extremely efficient but have not yet been
proposed for piecewise homogeneous domains.

It can be concluded from these tests that a meshing criterion of six points per S-wavelength is
a good compromise between accuracy and computational cost in our industrial context. In the
following, this criterion is respected. In addition, since the mechanical parameters of the soil are
always polluted with some errors, it is not necessary to spent too much time to obtain an accurate
solution to an inaccurate model.

2.4. Effects of the artificial truncation of the free surface

The truncation of the free surface is an important parameter in modelling wave propagation
problems using the current FM-BEM formulation, which relies on a reformulation of the fundamental
solution of the elastic full space. This would not be an issue if the elastic half-space fundamental
solution was used. However the development of an efficient FMM solver is not an easy task (see the
preliminary work [8])

To evaluate the impact of the truncation radius on the accuracy of the solution, computations are
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2. Capabilities of the fast multipole accelerated boundary element method to model elastic soils

performed for the case of a hemispherical domain in an infinite half-space defined in Figure 2.1,
subjected to a vertically incident plane P- or SV-wave. Both media have the same mechanical
properties (Cs = 870 m/s, Cp = 1727 m/s, ν = 0.33). The frequency range of interest is
[0, 2Hz,24Hz], which is equivalent to a S-wave length of range [36, 25m,4350m] . The value of the
truncation radius is a function of the radius of the hemisphere. Results for truncation radius values
equal to 3R, 4R, 5R are compared to analytical solutions (R being the radius of the hemisphere).
Figure 2.7 reports the relative error for each model with respect to the frequency. The error is
compared to the analytical solution for the propagation of an incident plane wave in an elastic
homogeneous half-space.

The L2 relative error is computed as √∫
Γ(uh − uana)2∫

Γ u
2
ana

,

where uh is the displacement solution computed by Coffee, uana is the analytical displacement
solution, and Γ is the boundary interface of the discretised problem.

1 10 100
frequencies (Hz)

1

10

100

1000

L
2-

er
ro

r 
(%

)

3R_P-wave
4R_P-wave
5R_P-wave
3R_S-wave
4R_S-wave
5R_S-wave

Figure 2.7.: Relative error for different truncation error.

Again, the FM-BEM is used for all the frequencies even though it should not be used in the low
frequency regime. It would be more accurate (and not very more expensive) to use the standard
BEM in that regime. It seems that the truncation radius does not influence much the results.

On the other hand, the increase of the size of the meshed free surface is very expensive in terms of
computational time (see Fig. 2.8). Thus, it drastically increases the number of degrees of freedom
of the problem. The truncation radius is chosen to be fixed to 4 times the characteristic size of the
basin, in order to take into account other effects, such as the velocity contrast and the topography,
not modeled in this comparison.
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Figure 2.8.: Total computational time per computation, with respect to the frequency for different size
of the free surface.

2.5. Speed-up of the multi-frequency computations

The FMM is intrinsically based on the use of an iterative solver, GMRES [56] in this work. Since our
goal is to obtain results in the time domain with a Fourier synthesis, there is a need to perform many
computations in the frequency domain. The use of an iterative solver is an advantage in this context.
If a direct solver was used, each solution would be expensive and independent. On the other hand, an
iterative solver is very efficient. The main limitation could be the growing number of iterations while
the frequency increases. It is proposed to use the solution of the previous computation as an initial
guess of the iterative solver while sweeping through the frequencies. This method supposes that,
given a small enough frequency step, the solution at any point of the mesh is smooth with respect
to the frequency. This method leads to a reduction of the number of iterations and thus a reduction
of the computational time. Figure 2.9 reports the number of iterations to converge GMRES to a
tolerance of 10−3 while activating or not the use of a zero initial guess (red lines) or an appropriate
initial guess based on the solution at the previous frequency (black lines). Again, the case of a
hemispherical basin of radius R = 100 m in a homogeneous half-space (Figure 2.1) is considered.
Both media have the same mechanical characteristics (Cs = 870 m/s, Cp = 1727 m/s, ν = 0.33).
The slopes presented on Figure 2.9 are probably problem dependent, it is not the important result.
The aim of this method is to minimise the computational cost by limiting the increase of the number
of iterations increases with the frequency. This preconditioning method allows to run computations
with 50 000 DOFs with an average CPU-time of seven minutes per frequency, for a total of 120

frequencies, while the computations without initializations took 35 minutes of CPU-time on average
per frequency. Computations were run on the EDF intern cluster "ASTER5".
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Figure 2.9.: Impact of the use of an initial guess on the number of iterations.

2.6. Fourier synthesis to obtain results in the time domain

In the following, the accuracy of the Fourier synthesis to obtain results in the time domain is
checked.

Again, the hemispherical basin with radius R = 80m (Fig. 2.10) is considered. In agreement with
previous numerical evidences, the free surface is truncated at a distance equal to 4R and the standard
(non-accelerated) BEM is used for the low frequency regime, i.e. frequencies smaller than 7 Hz.

Figure 2.10.: Test case considered to check the accuracy of the Fourier synthesis to obtain results in the
time domain. The point in red corresponds to the point where the surface displacement
is evaluated.

A wave front of plane waves is imposed (Figure 2.11), whose amplitude takes the form of a Ricker
signal u = r(t− z

c )ez. The frequency range of interest is set to [0.2Hz, 19.Hz] with a frequency step
of ∆f = 0.2 Hz, and a time step ∆t = 0.01 s.
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2.6. Fourier synthesis to obtain results in the time domain

Figure 2.11.: Input Ricker signal for the Fourier synthesis.

Figures 2.12 and 2.13 present the vertical displacement obtained with Coffee at a point located at
a depth equal to R = 80 m (Fig. 2.10) and denoted post-processing point in the following. It is
compared to the analytical solution of an incident vertical P-wave in a homogeneous medium (see
Appendix A).
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Figure 2.12.: Amplitude of the vertical displacement at the post-processing with respect to the
frequency.

Figure 2.13 reports the vertical displacement obtained by Fourier synthesis at the post-processing
point. The results provided by Coffee both in the frequency and in the time domain are in very
good agreement with the analytical solution, validating the numerical method.
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2. Capabilities of the fast multipole accelerated boundary element method to model elastic soils

Figure 2.13.: Amplitude of the vertical displacement at the post-processing point with respect to time.

2.7. Conclusions

In this chapter, the computational efficiency and accuracy of the FM-BEM to model elastic wave
propagation in an industrial context has been checked. The theoretical complexities of the FM-BEM
(O(N logN)) and the standard BEM (O(N2)) are numerically recovered. The acceleration offered
by the FM-BEM allows a way faster solution of problems compared to the standard BEM.

An empirical criterion has been proposed to determine the transition between the BEM and the
FM-BEM. This transition is needed because the FMM formulation used in this work is not accurate
in the low frequency regime. The criterion retained is λs

R = 1.25 (λs being the wavelength of the
SV-wave and R the a characteristic length of the model).

In addition, since the FM-BEM is based on a reformulation of the fundamental solutions of the free-
space, it is necessity to mesh the free surface. A parametric study on the impact of the truncation
radius on the accuracy of the solution has been performed. The retained criterion is to truncate
the free surface at a distance equal to four times the characteritic length of the basin.

The FM-BEM relying on an iterative solver, it is taken benefit of. The solution at a given frequency
is used as an initial guess for the iterative solution at the next frequency. It has been shown to
reduce the number of iterations and to limit the increase of the number of iterations as the frequency
increases.

Finally, results in the time-domain obtained by Fourier synthesis have been presented for a simple
problem, and compared to the reference solution.
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3.1. Coupling between fast BEMs and FEM

In the previous Chapter, the impact of the use of an accelerated BEM to solve wave propagation in
elastodynamic media is assessed in terms of computational efficiency and expected accuracy. The
aim of this chapter is to present a strategy of coupling of fast BEM with FEM. Different works that
were interested in coupling fast-BEM with FEM for soil-structure interaction or structure–acoustic
field interaction are first presented briefly. A variational formulation of Soil-Structure Interaction
is then presented within the scope of application of this work. Finally, the chosen strategy for the
coupling of Code_Aster and Coffee is detailed and explained.

3.1. Coupling between fast BEMs and FEM

In this Section are presented different works that aimed to couple fast BEM and FEM. This is not
intended to be comprehensive but rather to give an overview of the different approaches for these
kind of techniques.

The closest work to this thesis is that of Eva Grasso [32] who proposed an approach to couple the
finite element method and the fast-multipole boundary element method to model three-dimensional
time-harmonic visco-elastodynamics problems in unbounded domains. The work presented two
strategies of coupling the FM-BEM with FEM. The first one is an iterative procedure based on a
sequential interface relaxation method, such that at each iteration of the algorithm, a smoothing
procedure is applied on the boundary conditions transmitted between the FEM domain and the
FM-BEM domain in order to guarantee and speed up the convergence. This method was tested on
simple geometries with homogeneous materials. The second developped strategy was a simultaneous
approach. The algorithm is based on the fast solution of the BEM global system of equations and by
an implicit condensation of the FEM internal degrees of freedom performed at each global iteration
of the iterative solver. The simultaneous approach algorithm proved to be stable for models with
simple shapes.

Always in the time-harmonic elastodynamics, a coupling of finite element and fast boundary element
methods for the solution of dynamic soil–structure interaction problems was proposed in [21]. The
application of hierarchical matrices in the boundary element formulation was used to accelerate the
resolution of the BEM part in order to allow considering much larger problems compared to classical
methods. Three coupling methodologies were presented and their computational performance
assessed through numerical examples, namely direct, iterative and monolithic coupling strategies. It
was shown that the direct coupling approach was less efficient than the iterative one, as it requires the
assembly of a dynamic soil stiffness matrix, while the computation time remained quasi independent
of the wave velocity ratio in the case of problems with differents mechanical characteristics between
the FEM and BEM parts, but increases with frequency. The computational efficiency of the iterative
coupling schemes, on the other hand, showed a much stronger correlation with the wave velocity
ratio between materials of the FEM part and the BEM part. The monolithic coupling scheme was
also relatively insensitive to the value of the wave velocity ratio, but the overall computational
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3. Fast methods to model Soil-Structure Interaction

performance of this methodology showed poor performance compared to the iterative algorithms.

In the domain of the simulation of structure–acoustic field interaction, Fischer and Gaul [28]
proposed a coupling algorithm based on Lagrange multipliers [28] in the time-harmonic domain.
The resulting system is solved by an iterative procedure in which the matrix–vector products of
the boundary element operators are evaluated efficiently by the fast multipole boundary element
method, the presented mortar coupling algorithm for structure–acoustic field interaction allowing
the coupling of non-conforming discretizations. This method was tested on canonical examples and
compared to an analytic series solution, giving satisfactory results. The method was also tested on
a practical case of the vibration of a box made from steel sheets in a water pool and compared to
experimental results, showing good correlation between the principal behaviour of simulation and
experiment, with noticeable differences between numerical and experimental results.

In the following, a method for coupling boundary element method accelerated by fast multipole
method with finite element method is presented. The choice is made to use Coffee for the FM-BEM
part and Code_Aster for the FEM part, the aim being to choose the least intrusive method of
coupling in terms of changes in both codes.

3.2. Variational formulation of Soil-Stucture Interaction

Soil-Structure Interaction problems can be solved either by a monolithic approach [41] which consists
in applying a single approach (generally the finite element method) to the complete problem and thus
necessitating to use a non-reflecting boundary condition in the soil to ensure the radiation condition.
Alternatively, a substructuring approach [16, 49] (which is similar to a domain decomposition
method) can be applied, where the whole computational domain is subdivided into several subdomains,
which allows to apply in each subdomain the method that is best suited to it.

In this work, the latter method is used. In the present case of Soil-Structure Interaction problems,
the subdomains are in general (a) a bounded domain Ωb containing the building and possibly a
portion of the soil (surrounding close-range environment) and (b) an unbounded domain (the soil
modelled as a linear elastic medium). The two domains are connected through the shared interface
Γ (Fig. 3.1). Moreover, the unbounded domain Ωs is assumed to coincide with a homogeneous
elastic half-space Ω0 having a planar boundary Γ0 except possibly in a finite neighbourhood of Ωb

(so that in particular the surfaces Γs and Γ0 coincide except possibly in a finite region). It is then
natural to use the finite element method (FEM) to model the bounded domain Ωb and boundary
element method (BEM) to model the unbounded domain Ωs.

So far within EDF, the subregion approach for solving SSI problems was implemented by means of
the code Miss3D, developped during the PhD thesis of D. Clouteau [16], for solving wave propagation
problems by using the boundary element method, coupled with Code_Aster.

In this work, an association of Code_Aster with an accelerated fast multipole BEM is proposed,
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Figure 3.1.: Subdomain method: schematic and notation.

using for that purpose the code Coffee that resulted from S. Chaillat’s thesis [7]. The aim is to
exceed the well-known limitations, in terms of memory requierement and computational time, of
non-accelerated BEM solvers, such as Miss3D, induced by the fully-populated nature of the integral
operators in the classical BEM.

The finite element approximation of Ωb is based on the following weak formulation, written in the
frequency domain:∫

Ωb

σb(ub) : ε(w)dV − ω2

∫
Ωb

ρbub.wdV = F (w) + 〈tnb(ub),w〉Γ, ∀w ∈ W (3.1)

where ub is the displacement vector in Ωb, W is the space of kinematically admissible virtual
displacements in Ωb, σb(ub) is the stress tensor associated to ub by means of the chosen constitutive
model in Ωb, and tnb represents the stress vector relative to Ωb on Γ ( tnb(ub) = σb(ub).nb). The
linear functional F :W → R synthesizes all loadings applied to Ωb outside of the interface Γ.

The field us in Ωs, corresponding to the displacement in the soil, satisfies the homogeneous equation
of elastodynamics div (σs(us)) + ρsω

2us = 0 (the constituve relation us → σs(us) assumed to be
linear elastic), as well as the free surface condition tns(us) = 0 on Γ0 (Γ0 = ∂Ωs \ Γ). The
kinematic and dynamic compatibility conditions linking the solutions in both domains Ωs and Ωb

are the transmission conditions

ub = us, tnb(ub) + tns(us) = 0 on Γ.

To solve the above-described coupled problem, the displacement in Ωs is additively decomposed as
us = ui + ur + uc, where:

(i) ui is a given incident field, which implies that it is solution of the equation div (σs(ui)) +

ρsω
2ui = 0 in Ω0 (in the absence of any lithologic or topographic perturbation), satisfying

tns(ui) = 0 on Γ0.
(ii) ur satisfies div (σs(ur)) + ρsω

2ur = 0 in Ωs, ui + ur = 0 on Γ and tns(ur) = 0 on Γs;
this field represents the diffraction of the incident field ui due to lithologic and topographic
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perturbations, and depends linearly on the trace of ui on Γ through the above equations.
(iii) uc is the radiated displacement in Ωs resulting from the motion of Ωb, transmitted through

the interface Γ: the condition ui + ur = 0 on Γ imply that the trace of ub and uc on Γ are
equal.

The term 〈tnb(ub),w〉Γ in (3.1) is now expanded by taking into account the decomposition of us
and the compatibility of the solutions between Ωs and Ωb:

〈tnb(ub),w〉Γ = −〈tns(us),w〉Γ = −〈tns(ui + ur),w〉Γ − 〈tns(uc),w〉Γ
= 〈f s,w〉Γ − 〈tns(uc),w〉Γ, (3.2)

having introduced the seismic force density f s := −tns(ui + ur) on Γ resulting from the incident
field. This seismic force reflects the presence of a given incident field ui in Ωs: it depends linearly
on ui, and thus in particular vanishes if ui = 0.

The auxilliary problem defining the field us = us[v] in Ωs resulting from a prescribed displacement
v on the interface is introduced as well:

div (σs(us)) + ρsω
2us = 0 (in Ωs), tns(us) = 0 (on Γs), us = v (on Γ). (3.3)

With this definition, we have in particular that ur = −us[ui]. The computation of the seismic force
f s then requires the solution of (3.3) with v = −ui.

The force density tns(us[v]) created on Γ by us[v] depends linearly on the displacement data v.
Accordingly, let Z be the linear impedance operator such that

tns(us[v]) = Z(ω)v on Γ. (3.4)

The operator Z(ω) operates the condensation of the unbounded soil region Ωs on the interface Γ.

With these definitions, and since ub = uc on Γ, (3.2) becomes

〈tnb(ub),w〉Γ = 〈f s,w〉Γ − 〈Z(ω)ub,w〉Γ. (3.5)

Equation (3.1) can be rewritten, by incorporating (3.5), in the condensed form

K(ub,w) + ω2M(ub,w) + 〈Z(ω)ub,w〉Γ = F (w) + 〈f s,w〉Γ. (3.6)

An approximation space in the form ofWh = V ect
(

(Φi)1≤i≤n , (Ψj)1≤j≤m
)
⊂ W is then considered,

such that each (vector) basis function Φi has a vanishing trace on Γ. To evaluate the contribution
of 〈tnb(ub),w〉Γ to the weak formulation (3.1), we approximate ub on Γ as ub =

∑
j u

j
bΨj , while
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virtual displacements w are chosen as w = Ψk (1 ≤ k ≤ m), which gives

〈Z(ω)ub,w〉Γ =
∑
j

ujb〈tns(Ψj),Ψk〉Γ =
∑
j

ujb〈ZΨj ,Ψk〉Γ =
∑
j

ujbZkj , (3.7)

which defines the coefficients Zkj of the projection of the impedance operator Z on the subspace
V ect

(
(Ψi)1≤i≤m

)
, and

〈f s,w〉Γ = 〈f s,Ψk〉Γ = 〈−tns(ui + ur),Ψk〉Γ = fsk, (3.8)

which defines the coefficients fsk asociated with the corresponding projection of the seismic force
f s.

The evaluation of the coefficients Zkj requires the solution of m problems (3.3) corresponding to
v = Ψi (1 ≤ i ≤ m).

The numerical resolution of the weak formulation (3.6) by the finite element method requires the
computation of the impedance operator Z and the seismic force f s projected on Wh, which means
that the Zkj coefficients defined by (3.7) and fsk coefficients defined by (3.8) have to be evaluated
numerically. This entails the numerical solution of m + 1 problems of the type (3.3) in Ωs. In
this work, the choice is made to solve these problems with the fast multipole accelerated boundary
element method, which is well adapted to the modelling of infinite media and applicable to cases
where the finite element discretization of Ωb would generate a high number of degrees of freedom
on Γ.

3.3. Efficient computation of Soil-Structure Interaction problems

As it was concluded in Section 3.2, a substructuring method was used to solve the problem through
the computation of the impedance operator and the seismic force. The computation of those
requieres the construction of an approximation space in the form ofWh = V ect

(
(Φi)1≤i≤n , (Ψj)1≤j≤m

)
,

such that Φi is equal to zero on Γ.

For an efficient resolution of the soil-structure interaction problem, the approximation space Wh

must be optimal. One way of ensure this is to reduce the number of them+1 required computations
of problems of the type (3.3), with the construction of a reduced basis of the problem through a
Rayleigh-Ritz procedure [43].

There are different methods to solve dynamic substructuring method through a reduced basis based
of a Rayleigh-Ritz procedure, such as the method proposed by Macneal [44] where the reduction
basis consists of free interface modes to represent the dynamics inside the substructure and the
attachment modes which are the response of the substructure corresponding to a unit force applied
at the interface, but also the method proposed by Craig and Bampton [1], the dynamics inside
the substructure are defined with a fixed interface condition, completed with the constraint modes
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3. Fast methods to model Soil-Structure Interaction

which consists of producing a unit displacement for one degree of freedom of the interface at a time,
the others being blocked. The reduced Craig-Bampton basis produces nearly diagonal matrices and
thus leads to an efficient method to solve problems with the finite element method [24].

In the construction ofWh = V ect
(

(Φi)1≤i≤n , (Ψj)1≤j≤m
)
, the vectors Φi are null at the interface.

The Craig-Bampton method is compatible with this condition and the choice is made to use it to
build the approximation spaceWh. The reduced basis is then composed of dynamic modes (Φi)1≤i≤n

built on the eigenmodes of Ωb with a fixed interface Γ, and of constraint modes (Ψj)1≤j≤m which
describes the interface kinematics with producing each time a unit displacement for each degree of
freedom and blocking the others. Consequently, there are as many constraint modes m as degrees of
freedom in the interface. Even if this method reduces the size of the approximation space Wh, the
number of degrees of freedom at the interface Γ can be large, and thus makes the computation of
the impedance and the seismic forces costly and potentially leads to a large discrezized impedance
operator. The strategy consisis then in reducing the size ofWh while focusing on building a reduced
basis of the constraint modes. The reduced basis of the constraint modes will be computed as the
eigenmodes of the dynamic system composed of the stiffness and mass matrix condensated at the
DOFs of the interface [5].

In conclusion, the SSI problem can be solved with a substructuring method through a Craig-
Bampton procedure. The domain Ωb is modelled with the FEM though Code_Aster, and an
approximation space is constructed based on a reduced basis composed of dynamic modes (Φi)1≤i≤n

and constraint modes (Ψj)1≤j≤m. The impedance operator and the seismic forces are then computed
by solving m + 1 problem of type (3.3) in Ωs with FM-BEM through Coffee. In the following
diagram, the procedure of coupling Code_Aster with Coffee is schematically explained.
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Initialize model
in Code_Aster

Generate volumic
mesh of Ωb

Generate boundary
mesh of Ωs

Assembly of the
matrices of the system

of the FEM part

Compute the dynamic
modes (Φi)1≤i≤n

of Ωb with the
interface Γ fixed

Compute the
constraints

modes Ψ of Γ

Compute the reduced
basis of constraints
modes (Ψj)1≤j≤m

Assembly the approximation space
Wh = V ect

(
(Φi)1≤i≤n , (Ψj)1≤j≤m

)
Generate the entry files in the Coffee format

m computations
with Coffee with

imposed displacement
(Ψj)1≤j≤m at
the interface Γ

computation with
Coffee with imposed
incident plane wave

Compute the terms
of the impedance

operator Z expressed
in the reduced basis
of the constraints
mode (Ψj)1≤j≤m

Compute the terms
of the seismic force
vector f s expressed
in the reduced basis
of the constraints
mode (Ψj)1≤j≤m

Assembly and resolution of the
system in the reduced basis

K(ub) + ω2M(ub) + Z(ω)(ub) = F (w) + f s.

Restitution of the results in the physical basis.
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4.1. Evaluation of the impedance operator in the case of a homogeneous half-space

The aim of this chapter is to validate the evaluation of impedance operator and the seismic force
with the FM-BEM (see Chapter 3). Two cases are addressed: the case when the hemispherical
basin and the half-space have the same mechanical properties (i.e. homogeneous half-space), and
the case where there is a contrast of two between the wave velocity of the hemispherical basin and
the homogeneous half-space. The terms of the impedance operator for a circular surface footing and
an embedded cylindrical footing in a homogeneous half-space are first compared to other references
in Section 4.1. The impedance for a circular surface footing and an embedded footing in a medium
composed of a hemispherical basin in a homogeneous half-space are then presented in Section
4.2. These results are compared to impedances computed with the FEM (i.e. Code_Aster). The
validation of the seismic force is addressed in Section 4.3. Seismic forces computed with FM-BEM
in the case of a circular footing are compared to results computed with the standard BEM. In
Section 4.4, seismic forces computed with the FM-BEM in the case of a surface circular footing or
an embedded cylindrical footing in a medium composed of a hemispherical basin in a homogeneous
half-space are compared to seismic forces computed with the FEM.

4.1. Evaluation of the impedance operator in the case of a
homogeneous half-space

The impedance operator (Section 3.2) is computed numerically using the FM-BEM in the case of
a surface or an embedded footing (Figure 4.1). In the following, the numerical results obtained
with FM-BEM are compared to reference numerical solutions available in the literature, namely
impedance operators from the book Manuel des fonctions d’impédance of Sieffert and Cevaer [60]
and the validation test cases of the standard BEM code Miss3D [17]. These solutions are already
used at EDF, and considered as accurate solutions, available as Verification & Validation test cases
for Code_Aster. Note that these are only reference approximate solutions, not exact analytic
solutions.

Figure 4.1.: Illustration of the two configurations considered for the validation of the impedance
operator for a homogeneous half-space: surface (right) and embedded (left) footings.

The impedances are plotted against the non-dimensional circular frequency defined by a0 = ωR/Cs,
where Cs is the S-wave velocity, ω the angular frequency and R the radius of the footing.
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4. Validation of the impedance operator and seismic force for reference case studies

4.1.1. Mode basis considered: rigid body modes

Throughout Section 4.1, only rigid body modes of the footing are taken into account. They consist
in kinematically admissible displacements with no deformation of the footing: the three possible
translations and the three rotations for an underformable body. More precisely, the following rigid
body modes are considered:

• Horizontal mode: displacement along the horizontal axis ex or ey. All the degrees of freedom
of the footing are blocked except the horizontal direction (ex or ey) where a unit displacement
is imposed (Figure 4.2a);

• Vertical mode: displacement along the vertical axis ez. All the degrees of freedom of the
footing are blocked except the vertical direction where a unit displacement is imposed (Figure
4.2b);

• Rocking mode: unit rotation of the undeformable footing around the horizontal axes ex or ey
(Figure 4.2c);

• Torsion mode: unit rotation of the undeformable footing around the vertical axis ez (Figure
4.2d).

In the following, results obtained with FM-BEM are validated with respect to the reference solutions
by comparing the values of the impedance operator projected on a reduced basis composed of these
rigid body modes [22]. Only the diagonal terms are presented.

(a) horizontal mode (b) vertical mode (c) rocking mode (d) torsion mode

Figure 4.2.: Illustration of the rigid body modes of a circular surface footing.

4.1.2. Numerical validations: circular surface footing on a homogeneous elastic
half-space

The case of a circular surface footing is considered. The footing has a radius of R = 0.5m (Figure
4.3), the free surface is truncated at a distance equal to 4R. The mechanical properties of the soil
are: µ = 1. (N/m2), ρ = 1. (kg/m3), ν = 0.33. The frequency range of interest is [0.05Hz, 1.6Hz],
such that a0 ∈ [0.15, 5.02].
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4.1. Evaluation of the impedance operator in the case of a homogeneous half-space

Figure 4.3.: Example of a mesh of a surface circular footing on a homogeneous half-space.

Table 4.1.: Static stiffness of a circular surface footing of radius R on a homogeneous half-space of
Poisson’s ratio ν.

Mode Vertical Horizontal Rocking Torsion
Static stiffness K33 = 4µR

1−ν K11 = 8µR
2−ν K44 = 8µR3

3(1−ν) K66 = 16µR3

3

The impedance operator (Eq 3.7) values presented in the following are normalized by the static
stiffness (see Table 4.1) relevant for each body mode of the interface, the purpose being to compare
simulations performed with different configurations (i.e. material properties and dimensions). In
the book Manuel des fonctions d’impédance and in Miss3D, the same quantities are used to obtain
non-dimensional impedances. The values of the impedance operator being complex numbers, the
real part, imaginary part, modulus and argument of these complex numbers are presented in Figures
4.4, 4.5, 4.6 and 4.7. It is known that the imaginary part of the impedance for both the rocking and
torsion modes stands for the radiation damping caused by the energy dissipation of the radiated
displacement resulting from the motion of the structure.

For the case of the horizontal mode, the results obtained with Coffee are close to both references
(Figure 4.4). Nevertheless, oscillations are observed in the real part of the solution obtained with
Coffee. These oscillations are less apparent in the imaginary part, the modulus and the argument,
mainly due to the scale factor. The oscillations would be then much more apparent if the figures
were normalized by the maximum value of each parameter.
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Figure 4.4.: Circular surface footing on a homogeneous half-space: Validation of the computation of
the impedance of the horizontal mode K11 (Eq 3.7): comparison between the FM-BEM
solution (denoted COFFEE), the solution given by the standard BEM using Miss3D code
(denoted Miss3D) and the solution extracted from [60] (denoted Sieffert).

It is worth noting that both "references" are simplified numerical solutions. As a result, it is difficult
to assess the absolute accuracy of any of these references. However, in the case of a surface circular
footing in a homogeneous half-space, analytical solutions in the quasi-static regime are available
(see Table 4.1). Since the results obtained with the FM-BEM are normalized by the static stiffness,
the real part of the normalized impedances should be close to 1 in the low-frequency limit.

For the case of the vertical mode (Figure 4.5), results present the same pattern as for the horizontal
mode: oscillations for the real part of the impedance while being in good agreement with the
reference solutions. Note that since the two reference solutions are issued from simplified computations,
differences between the results with Miss3D and the results of [60] are also observed. For both the
horizontal and vertical modes, the low-frequency limit of the real part of the impedance is close to
1, as expected.
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Figure 4.5.: Circular surface footing on a homogeneous half-space: Validation of the computation of
the impedance of the vertical mode K33s (Eq 3.7): comparison between the FM-BEM
solution (denoted COFFEE), the solution given by standard BEM using Miss3D code
(denoted Miss3D) and the solution extracted from [60] (denoted Sieffert).

For the rocking (Figure 4.6) and torsion (Figure 4.7) modes, the discrepancies between the impedance
computed with FM-BEM and both references become more important. But all the solutions follow
the same pattern of evolution with respect to the frequency. The oscillations are also less pronounced
compared to the horizontal and vertical modes. Since the impedance is normalized by the static
stiffness, the real part and modulus of the impedance are again expected to be close to one in
the quasi-static regime. The quasi-static value of the impedance for the rocking mode exhibits
a significant gap of about 10% with the analytical static stiffness. This problem has also been
observed in some results in the reference book of Miss3D (i.e., with standard BEM). To overcome
this problem, more complex elements have been introduced in Miss3D. The same improvement can
be done in Coffee but it is has not been considered in this work due to time constraints.
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Figure 4.6.: Circular surface footing on a homogeneous half-space: Validation of the computation of
the impedance of the rocking mode K44 (Eq 3.7): comparison between the FM-BEM
solution (denoted COFFEE), the solution given by standard BEM using Miss3D code
(denoted Miss3D) and the solution extracted from [60] (denoted Sieffert).
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Figure 4.7.: Circular surface footing on a homogeneous half-space: Validation of the computation of the
impedance of the torsion mode K66 (Eq 3.7): comparison between the FM-BEM solution
(denoted COFFEE), the solution given by standard BEM using Miss3D code (denoted
Miss3D) and the solution extracted from [60] (denoted Sieffert).
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4. Validation of the impedance operator and seismic force for reference case studies

The numerical results obtained with the FM-BEM are considered to be accurate enough in an
industrial context. The impedances follow the general pattern of the evolution of the reference
solutions with respect to the frequency.

To understand the oscillations in the FM-BEM solution, a parametric study is performed. The
sensitivity of the results to the truncation radius is checked. Figure 4.8 reports the impedance
for the horizontal mode of a surface circular footing in a homogeneous half-space. The impedance
is again normalized by the static stiffness and represented with respect to the non-dimensional
frequency a0. The results for different radius of truncation radius (ie 1.5R, 2R, 4R, 10R, 15R, R
being the radius of the circular footing) are compared to the reference solution extracted from [60].
It is noted that the frequency of the oscillations increases while the amplitude decreases when the
truncation of the free surface radius is increased.
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Figure 4.8.: Influence of the truncation radius on the oscillations reported in the impedance computed
with the FM-BEM.

One possible explanation of the oscillations between standard BEM and FM-BEM solutions is
the used of different fundamental solutions. In the standard BEM, the fundamental solution of a
stratified half-space is used, while in the FM-BEM, the fundamental solution of the full-space is
used. As a result, it is thus necessary to mesh the free surface up to a certain distance where it is
truncated. The oscillations in the impedances might be caused by the reflection of surface waves
at the artificial truncation of the free surface. Such phenomenon are observed in other fields where
BEM is used for elastic wave propagation in half-space, e.g. nanophotonics [62]. To validate this
assumption, the impedance of an interface in a bounded domain is computed next, using FM-BEM,
in Subsection 4.1.3.
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4.1. Evaluation of the impedance operator in the case of a homogeneous half-space

4.1.3. Numerical validation: impedance for an interface in a bounded domain

Previous results for an unbounded domain have shown oscillations of the FM-BEM solutions around
the reference solutions. A parametric study of the variation of the results with respect to the
truncation radius allowed to conclude that the frequency of the oscillations increases while the
amplitude decreases when the truncation radius of the free surface is increased.

Another way to validate that these oscillations are caused by the truncation of the free surface
is to compute the impedance of an interface in a bounded domain. In that case, the truncation
of the free surface is avoided. The impedance computed with the FM-BEM is compared with an
impedance computed with the FEM (i.e. with Code_Aster). The computation of the impedance
of the interface is equivalent to the computation of the Schur complement of the DOFs outside the
interface of the global dynamic matrix of the finite element model, expressed in the eigenmodes
basis. Let K and M be respectively the stiffness and the mass matrix of the finite element model
and Z = K−ω2M the global dynamic matrix of the finite element mode. The DOFs on the interface
are denoted by an index int and the DOFs outside the interface are denoted by an index out. The
Z matrix can be written in blocks separating the DOFs inside and outside the interface as follows:

Z =

[
Z
int,int

Z
int,out

Z
out,int

Z
out,out

]

The Schur complement S of the block Z
out,out

of Z is defined as S = Z
int,int

−Z
int,out

.Z−1
out,out

.Z
out,int

.
The i, j term of the impedance expressed in a reduced basis corresponding to the Φi and Φj

eigenmodes is computed as tΦi.S.Φj .

The model considered consists in a cube with an edge of 100 m. The cube is homogeneous, visco-
elastic with isotropic constitutive properties defined by Cs = 870 m/s, ρ = 2710 kg/m3, ν = 0.33,
βp = βs = 5%. Damping is used in this model to avoid the division by zero at the resonance
frequencies, i.e. to regularize the evaluation. The model (Figure 4.9) is fixed at the base. The

Interface

Fixed boundary condition

Figure 4.9.: Impedance for an interface in a bounded domain: model considered.
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4. Validation of the impedance operator and seismic force for reference case studies

impedance is computed on the upper face of the cube with both the FM-BEM and the FEM, for
the horizontal and vertical modes.
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Figure 4.10.: Computation of the impedance for the horizontal and the vertical modes of an interface
in a bounded domain. Comparison of the solution with FM-BEM (denoted COFFEE)
and FEM (denoted Code_Aster).

Figure 4.10 presents the real part of the impedance (horizontal and vertical modes) of the interface
obtained with both the FM-BEM and the FEM. Results with both methods are consistent. In this
bounded configuration, the impedance computed with the FM-BEM does not present the artificial
oscillations. This observation supports the hypothesis that the origin of the oscillations is the
artificial truncation of the free surface. It is therefore expected that these oscillations will disappear
by using a version of the FM-BEM that is based on the half-space fundamental solution, as proposed
in [8]. Since it is an involved task, it is not considered in this thesis and is left as future work, which
should result in improved accuracy for the impedance evaluation.

4.1.4. Numerical validation: embedded cylindrical footing in a homogeneous
half-space

Now that the case of a circular surface footing is validated and the cause of the oscillations identified,
the case of a cylindrical embedded footing in a homogeneous half-space is considered. Results with
the FM-BEM are compared to reference solutions. The footing has a radius of R = 100 m and a
depth D = 200 m (Figure 4.11). The free surface is truncated at a distance of 4R. Mechanical
properties of the homogeneous visco-elastic soil are: Cs = 870m/s, ρ = 2710kg/m3, ν = 0.25, βp =

1%, βs = 0.5%. Impedances presented in the following are normalized by values of the same
dimension, because there is no known analytical static stiffness of the impedance corresponding
to the rigid body modes, and so was the choice in Miss3D and the book of Sieffert. Hence,
impedances for the horizontal and vertical modes are normalized by µR (i.e. K11/(µR), K22/(µR)

andK33/(µR)), impedances for the rocking and torsion modes are normalized by µR3 (i.e. K44/(µR
3),

K55/(µR
3) and K66/(µR

3)). Impedances for coupling between horizontal and rocking are no longer
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4.1. Evaluation of the impedance operator in the case of a homogeneous half-space

negligible due to the lose of the symmetries, are normalized by µR2 (i.e. K15/(µR
2)). Values

presented for Miss3D are extracted from the validation test cases of the code, with a maximum
value for a0 = 3, 5 as in the validation test case.

Figure 4.11.: Example of a mesh of an embedded cylindrical footing on a homogeneous half-space.

The results for the horizontal and vertical modes (Figures 4.12 and 4.13) are similar to those obtained
in the case of a surface circular footing. The reference solutions and impedances obtained with the
FM-BEM are in good agreement. Again, the real part of the impedance exhibits oscillations, as
observed in the case of a surface circular footing.

The results for the horizontal mode (see Figure 4.12 ) show an important gap in the real part of the
impedance for the three values compared (results of FM-BEM, results of classical BEM and results
from [60]), while the imaginary part of the impedance of the three values are in good agreement.
The real part of the impedance of the horizontal mode exhibits important amplitude of oscillations.

54



4. Validation of the impedance operator and seismic force for reference case studies

0 1 2 3 4 5
a

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Im
pe

da
nc

e

K11 COFFEE
K11 Miss
K11 Sieffert

(a) real part

0 1 2 3 4 5
a

0

0

50

100

150

200

Im
pe

da
nc

e

K11 COFFEE
K11 Miss
K11 Sieffert

(b) imaginary part

0 1 2 3 4 5
a

0

0

50

100

150

200

Im
pe

da
nc

e

K11 COFFEE
K11 Miss
K11 Sieffert

(c) modulus

0 1 2 3 4 5
a

0

0

0,5

1

1,5

2

Im
pe

da
nc

e 
(r

ad
)

K11 COFFEE
K11 Miss
K11 Sieffert

(d) argument

Figure 4.12.: Embedded cylindrical footing: Validation of the computation of the impedance of
the horizontal mode K11 (Equation 3.7): comparison between the FM-BEM solution
(denoted COFFEE), the solution given by standard BEM using Miss3D code (denoted
Miss) and the solution extracted from [60] (denoted Sieffert).

The results for the vertical mode (see Figure 4.13) are similar to those obtained in the case of a
surface circular footing. Again, the real part of the impedance exhibits oscillations, as observed
in the surface circular footing. However it can be considered that the reference solutions and
impedances obtained with FM-BEM are in good agreement, because even if there is oscillations,
the values of the impedances are of the same magnitude.
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4.1. Evaluation of the impedance operator in the case of a homogeneous half-space
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Figure 4.13.: Embedded cylindrical footing: Validation of the computation of the impedance of the
vertical mode K33 (Equation 3.7): comparison between the FM-BEM solution (denoted
COFFEE), the solution given by standard BEM using Miss3D code (denoted Miss) and
the solution extracted from [60] (denoted Sieffert).

Results for the rocking (Fig. 4.14) and torsion (Fig. 4.15) modes evaluated with the FM-BEM exhibit
oscillations similarly to the case of a surface circular footing. In addition, they both significantly
deviate from the two references for the real part of the impedance. This deviation can be explained
by the scaling factor of the problem. Both reference solutions have been obtained for canonical
models, i.e. with unitary mechanical properties (µ = 1., ρ = 1., ν = 0.25) and a radius of the
footing of 0.5 m. The FM-BEM results are normalized by µR for horizontal and vertical modes, and
by µR3 for rocking and torsion modes. These terms do not correspond to the static impedance, as it
is the case for the circular surface footing. They are just used to have comparable non-dimensional
impedances.

Similarly, the reference solutions and impedances obtained by FM-BEM are in good agreement for
the imaginary part, with a greater slope of the imaginary part of the impedance for the rocking
mode computed with FM-BEM compared to references.
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Figure 4.14.: Embedded cylindrical footing: Validation of the computation of the impedance of
the rocking mode K44 (Eq 3.7): comparison between the FM-BEM solution (denoted
COFFEE), the solution given by standard BEM using Miss3D code (denoted Miss) and
the solution extracted from [60] (denoted Sieffert).
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Figure 4.15.: Embedded cylindrical footing: Validation of the computation of the impedance of
the torsion mode K66 (Eq 3.7): comparison between the FM-BEM solution (denoted
COFFEE), the solution given by standard BEM using Miss3D code (denoted Miss) and
the solution extracted from [60] (denoted Sieffert).
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4. Validation of the impedance operator and seismic force for reference case studies

The impedance term associated with the coupling between the horizontal mode and the rocking
mode (Fig. 4.16) exhibits the same pattern as the horizontal mode and the rocking mode, since it
is a combination of both modes: oscillations with respect to the non-dimensional frequency and a
shift in the value of the impedance compared with both references.
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Figure 4.16.: Embedded cylindrical footing: Validation of the computation of the impedance of the
coupling of the rocking mode and the torsion mode K15 (Eq. 3.7): comparison between
the FM-BEM solution (denoted COFFEE), the solution given by standard BEM using
Miss3D code (denoted Miss) and the solution extracted from [60] (denoted Sieffert).

4.2. Impedance operator for hemispherical basin in half-space with
material contrasts

This section concerns the validation of impedances computed with the FM-BEM in the case of multi-
domain basins. The model consists of a hemispherical basin in an infinite half-space (Figure 4.17).
Two cases are studied: (i) a case where both domains have the same mechanical characteristics,
which is equivalent to a homogeneous half-space, and (ii) a case with a velocity contrast, such
that the hemispherical domain has wave velocities equal to half the corresponding velocities of the
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4.2. Impedance operator for hemispherical basin in half-space with material contrasts

half-space material. Two kinds of footings are studied: a surface circular footing and an embedded
circular footing. The interface for which the impedance is computed is the footing (red line in
Fig. 4.17).

Figure 4.17.: Surface and embedded circular footings in the case (i) of a hemispherical basin in a
half-space.

The goal of the case (i) is to validate impedances computed with FM-BEM in the case of a multi-
domain model (basin embedded in a half-space) where both media have the same mechanical
characteristics. This case corresponds to the previous configuration validated but allows to check
the accuracy of the handling of multi-domain problems. The mechanical characteristics of the basin
and half-space in the homogeneous case are Cs = 1740 m/s, Cp = 3455 m/s, ν = 0.33.

The goal of the model (ii) with a velocity contrast is to validate the computation of impedances
with the FM-BEM in the case of a multi-domain model (basin embedded in a half-space) with a
velocity contrast. The mechanical characteristics of the two domains are:

• characteristics of the hemispherical basin: Cs = 870 m/s, Cp = 1727 m/s, ν = 0.33;

• characteristics of the half-space: Cs = 1740 m/s, Cp = 3455 m/s, ν = 0.33.

Since the coupling between the FEM (i.e. Code_Aster) and the standard BEM (i.e. Miss3D)
has already been extensively validated at EDF, the FM-BEM results are compared with these
results. It is worth noting that the standard BEM used at EDF is based only on the layered
half-space fundamental solutions, such that it is not possible to use only the BEM (i.e. Miss3D)
to consider configurations with hemispherical basins. On the other hand, the FM-BEM uses the
full-space fundamental solutions, so that it is not necessary to couple the FM-BEM with the FEM
to consider basin problems. Figure 4.18 presents the strategy adopted to define the FEM-BEM
coupling solution: the hemispherical basin is modelled with the FEM (blue domain in the figure),
while the half-space is modelled with the BEM (black domain in the figure). The FEM/BEM
interface is the interface between the hemispherical basin and the half-space (orange line in the
figure). The impedance of the footing (red line in the figure) is then computed as the force resulting
from the application of a unitary displacement corresponding to the different rigid body modes.

The elements used in the finite element volume mesh of the hemispherical basin are linear hexahedra,
meshed with a density of six elements per S-wavelength. The hexahedra, albeit hard to generate, are
necessary in this case. It is observed that the use of tetrahedra generates a global model stiffer than
it should be. Hence, for the evaluation of the impedance of a surface circular footing in the quasi-
static case, for which an analytical solution is available (see Table 4.1), the model with tetrahedra
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4. Validation of the impedance operator and seismic force for reference case studies

gives quasi-static stiffness overestimated up to three times compared to the value of the analytical
solution. On the other hand, the model with the hexahedra give results in good agreement with
the analytical solutions.

Footing Finite elements

Boundary elements

Footing Finite elements

Boundary elements
FEM/BEM interface

FEM/BEM interface

Figure 4.18.: Coupling FEM-BEM strategy for the case of a surface or embedded footings (case of a
hemispherical basin in a half-space).

The hemispherical basin has a radius of 100 m. The free surface is truncated at a distance equal
to four times the radius of the hemispherical basin. The surface footing has a radius of 30m. The
embedded cylindrical footing has a radius of 30 m and a depth of 21 m. The frequency range of
interest is [0.2 Hz, 24 Hz]. The motivation behind the use of these dimensions and frequency range
is to have a model that can be treated at the same time by the FM-BEM (i.e. Coffee) and the FEM-
BEM coupling (i.e. Code_Aster), so that there is a way to compare both results. The model used
in Coffee consists of 20, 000 DOFs, i.e. a relatively small problem for the FM-BEM. The interface
between FEM and BEM elements in the model used in Code_Aster contains 3, 000 DOFs. Again,
the FM-BEM has the capabilities to solve problems much larger problems than the one treated here,
but the main hindrance would be the ability to compare the results with other numerical codes.

4.2.1. Circular surface footing

Results for impedance of circular surface footing are presented, for both the homogeneous case (i)
and the case with a velocity contrast (ii). The impedances are plotted with respect to the non-
dimensional circular frequency defined by a0 = ωR/Cs and are normalized by the static stiffness of
a surface circular footing in a homogeneous half-space (Table 4.1).

Homogeneous half-space. This case has already been validated in the previous section. A
fictitious new domain is now added. The goal is to check the accuracy of the code in the case of
a multi-domain instead of a homogeneous domain. Results are compared to impedances operators
from the book of Sieffert and Cevaer [60].

Impedances computed with the FM-BEM (i.e. with Coffee) and with the FEM-BEM coupling (i.e.
Code_Aster) for the horizontal, vertical, rocking and torsion modes are presented in Figures 4.19, 4.20, 4.21
and 4.22. They show a good agreement with the analytical static stiffness, except the impedance
of the rocking mode obtained with the FEM-BEM, which presents 13% of relative error to the
analytical static stiffness.
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Figure 4.19.: Circular surface footing on a homogeneous half-space. Validation of the computation
of the impedance of the horizontal mode K11 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert).
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Figure 4.20.: Circular surface footing on a homogeneous half-space. Validation of the computation
of the impedance of the vertical mode K33 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert).
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Figure 4.21.: Circular surface footing on a homogeneous half-space. Validation of the computation of
the impedance of the rocking mode K44 (Eq 3.7): comparison between the FM-BEM
solution (denoted COFFEE), the solution given the FEM-BEM coupling (Code_Aster)
and the solution extracted from [60] (denoted Sieffert).
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Figure 4.22.: Circular surface footing on a homogeneous half-space. Validation of the computation
of the impedance of the torsion mode K66 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert).
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4.2. Impedance operator for hemispherical basin in half-space with material contrasts

Impedances computed with the FM-BEM for the horizontal and vertical modes are conform to the
reference impedance operator from [60], while impedances for the horizontal, vertical and rocking
modes computed with the FEM-BEM (i.e. Code_Aster) coupling are conform to the reference up
to a frequency that depends on the mode. Then they tend to diverge from the reference. This might
be explained by the eingenmodes of the hemispherical basin modelled with the FEM.

To check this hypothesis, computations are performed with FEM-BEM (i.e Code_Aster) on two
models with the same geometry as in Section 4.2 which consists of a homogeneous half-space,
but with different mechanical characteristics: one with mechanical characteristics such that Cs =

870 m/s, Cp = 1727 m/s and ν = 0.33 and another one wih mechanical characteristics such that
Cs = 1740 m/s, Cp = 3455 m/s and ν = 0.33. Both results are compared in Figure 4.23, where the
impedance of the vertical mode is presented with respect to the frequency (in Hz) without being
normalized. Both models have the same mesh. The only change is in the mechanical characteristics.
The aim is to check if the divergence that occurs in the impedance of the FEM-BEM model is due to
the eigenmodes of the hemispherical basin, and not to some numerical errors. This will be verified if
the frequency where the divergence occurs is divided by two when the wave-velocity is also divided
by two.
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Figure 4.23.: Comparison of K33 for two different wave velocities.

Figure 4.23 shows that, as expected, by dividing the velocity of the hemispherical basin by two, the
frequency range for which the perturbation in the impedance occurs is also divided by two. This
confirm the hypothesis that this frequency corresponds to one of the eigenmodes of the hemispherical
basin.

In addition, It can be seen on Figure 4.22 that the real part of the impedance for the torsion mode
computed with the FEM-BEM coupling (i.e. Code_Aster) is in agreement with the reference up to
a certain frequency, then it diverges from the reference, while the imaginary part is different from
the reference. This approach to compute the impedance operator with the FEM-BEM coupling is
not accurate to represent the torsion mode. It might be due to the type of elements used (linear
hexahedra elements). The use of quadratic hexahedra might allow more flexibility to the finite
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4. Validation of the impedance operator and seismic force for reference case studies

element model. All these results show the interest of replacing the current FEM-BEM approach
with a purely FM-BEM approach. This new approach is accurate for all frequencies of interest in
our industrial context.

Basin with material contrast. Once the simulated homogeneous domain (i.e. two domains with
the same mechanical parameters) validated, a basin with two domains is considered. The impedances
computed with the FM-BEM and the FEM-BEM coupling are normalized by the static stiffness
of an infinite half-space presenting the mechanical characteristics of the hemispheric basin. Thus,
the purpose is to compare the stiffness in the quasi-static regime, i.e. it is supposed to be close
to 1 in the normalized values of the impendance. The impedances for a circular surface footing in
homogeneous half-space, extracted from [60], are plotted along with the results to assess the impact
of the velocity contrast on the impedance.
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Figure 4.24.: Circular surface footing on a multi-domain basin. Validation of the computation of
the impedance of the horizontal mode K11 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert homogeneous) in
the case of a homogeneous half-space.

Impedances computed with the FM-BEM (i.e. with Coffee) and with the FEM-BEM coupling (i.e.
Code_Aster) for the horizontal, vertical, rocking and torsion modes are presented in Figures 4.24, 4.25, 4.26
and 4.27. Results show a good agreement between the impedances computed with the FEM-BEM
coupling and the FM-BEM. Similarly to the case of a homogeneous medium, the torsion mode is not
properly handled by the FEM-BEM coupling. Impedances of the horizontal, vertical and rocking
modes oscillate around the corresponding impedances for the homogeneous case, for both the real
part and the imaginary part of the impedance. The oscillations can reach up to twice the value of
the impedance of the homogeneous case. They correspond to the resonance of the hemispherical
basin. The presence of these peaks permits to determine on the figures the resonance frequencies of
the hemispherical basin.

65
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Figure 4.25.: Circular surface footing on a multi-domain basin. Validation of the computation of the
impedance of the vertical modeK33 (Eq 3.7): comparison between the FM-BEM solution
(denoted COFFEE), the solution given by the FEM-BEM coupling (Code_Aster) and the
solution extracted from [60] (denoted Sieffert homogeneous) in the case of a homogeneous
half-space.
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Figure 4.26.: Circular surface footing on a multi-domain basin. Validation of the computation of the
impedance of the rocking mode K44 (Eq 3.7): comparison between the FM-BEM solution
(denoted COFFEE), the solution given by the FEM-BEM coupling (Code_Aster) and the
solution extracted from [60] (denoted Sieffert homogeneous) in the case of a homogeneous
half-space
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Figure 4.27.: Circular surface footing on a multi-domain basin. Validation of the computation of
the impedance of the horizontal mode K66 (Eq 3.7): comparison between the FM-
BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster) and the solution extracted from [60] (denoted Sieffert homogeneous) in
the case of a homogeneous half-space
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4.2. Impedance operator for hemispherical basin in half-space with material contrasts

4.2.2. Embedded cylindrical footing

Finally, the case of embedded cylindrical footing is considered for both the homogeneous case (i)
and the case with a velocity contrast (ii). The impedances are not normalized because there is
no analytical static solution. In addition, both models presented in the figures (i.e. impedances
computed with Coffee and Code_Aster) correspond to identical configurations with the same
geometries and the same mechanical properties. There is no need to normalize the results before
comparing them.

Homogeneous half-space. Figures 4.28, 4.29, 4.30 and 4.31 present the impedances for the
horizontal, vertical, rocking and torsion modes.
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Figure 4.28.: Embedded cylindrical footing on a homogeneous half-space. Validation of the
computation of the impedance of the horizontal mode K11 (Eq 3.7): comparison between
the FM-BEM (denoted COFFEE), FEM-BEM coupling (Code_Aster) solutions.
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Figure 4.29.: Embedded cylindrical footing on a homogeneous half-space. Validation of the
computation of the impedance of the vertical mode K33 (Eq 3.7): comparison between
the FM-BEM (denoted COFFEE), FEM-BEM coupling (Code_Aster) solutions.
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Results for the horizontal, vertical and rocking modes between the FM-BEM and the FEM-BEM
coupling are in agreement, below the frequency that corresponds to the eigenmodes of the hemispherical
basin. The impedance of the torsion mode, similarly to the case of the surface footing, differs from
the others. The impedance of the rocking mode computed with the FEM-BEM coupling is largely
influenced by the resonance of the eigenmodes of the hemispheric basin for a0 greater than 1.
Values of the impedance of the rocking mode computed with Code_Aster will not be taken into
consideration for a0 greater than 1.
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Figure 4.30.: Embedded cylindrical footing on a homogeneous half-space. Validation of the
computation of the impedance of the rocking modeK44 (Eq 3.7): comparison between the
FM-BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster).
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Figure 4.31.: Embedded cylindrical footing on a homogeneous half-space. Validation of the
computation of the impedance of the torsion modeK66 (Eq 3.7): comparison between the
FM-BEM solution (denoted COFFEE), the solution given by the FEM-BEM coupling
(Code_Aster).

Basin with a material contrast. Figures 4.32, 4.33, 4.34 and 4.35 present the impedances for the
horizontal, vertical, rocking and torsion modes. Results observed are similar to the homogeneous
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4.2. Impedance operator for hemispherical basin in half-space with material contrasts

case: while the horizontal and vertical modes show a good agreement between the impedances
computed with the FM-BEM and the FEM-BEM coupling, differences are observed in the rocking
mode for a0 greater than 1. The torsion mode shows similar results than for the homogeneous case.
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Figure 4.32.: Embedded cylindrical footing on a multi-domain basin. Validation of the computation of
the impedance of the horizontal mode K11 (Eq 3.7): comparison between the FM-BEM
(denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions.
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Figure 4.33.: Embedded cylindrical footing on a multi-domain basin. Validation of the computation
of the impedance of the vertical mode K33 (Eq 3.7): comparison between the FM-BEM
(denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions.
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Figure 4.34.: Embedded cylindrical footing on a multi-domain basin. Validation of the computation
of the impedance of the rocking mode K44 (Eq 3.7): comparison between the FM-BEM
(denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions.
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Figure 4.35.: Embedded cylindrical footing on a multi-domain basin. Validation of the computation
of the impedance of the torsion mode K66 (Eq 3.7):comparison between the FM-BEM
(denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions.

4.3. Seismic force for a homogeneous basin

This section concerns the validation of the computation of the seismic forces (as defined in Chapter 3
after eq. (3.2)) performed by the coupling of the FM-BEM (i.e. Coffee) with the FEM (i.e.
Code_Aster) for Soil-Structure Interaction computations. The reference solutions are now computed
with the FEM (i.e. with Code_Aster). Each term of the seimic force corresponds to a type of wave
(P or SV or SH) and a single mode. Hence, if the number of interface modes is m, each term of
the seismic force fij corresponds to a given wave j ∈ P, SV, SH and a given mode i ∈ 1 . . .m. As
a result, the number of terms of the seismic force is equal to three (corresponding to three kinds of
waves) times the number of modes.

The validation is performed with (i) a homogeneous half-space (constituted by a single medium) and
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4.3. Seismic force for a homogeneous basin

(ii) a multi-domain half-space formed by a hemispherical basin embedded in an infinite half-space.
Results are compared to the seimic forces computed with the standard (non accelerated) BEM only
by means of the Miss3D module available in with Code_Aster.

4.3.1. Circular surface footing

First, results for the computation of the seismic forces in the case of a circular surface footing
on a homogeneous half-space are presented. The mechanical characteristics of the soil are defined
by Cs = 870 m/s, Cp = 1727 m/s, ν = 0.33 and the footing has a radius of 100 m (Fig. 4.36).
The results of the FM-BEM are compared to the seismic forces computed with classical BEM code
Miss3D in Figures 4.37 and 4.38.

Figure 4.36.: Surface footing on a homogeneous half-space.
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Figure 4.37.: Validation of the computation of the seismic force for the coupling of SV-wave with the
horizontal mode f11: comparison between the FM-BEM solution (denoted COFFEE)
and the solution given by classical BEM (denoted Miss3D).

Each time, the real and imaginary parts of the seismic force are presented. A good agreement
between the results of the FM-BEM and of the standard BEM are observed. Nevertheless, oscillations
are observed in the seismic force corresponding to the real parts of the seismic forces computed with
the standard BEM, due to the reflection of surface waves in the border of the meshed model. The
results obtained with Miss3D involved the tuning of some empirical parameters of the code to obtain
the best result. The computations presented here have shown an important sensitivity to the chosen
parameters. However, for a fair comparison, we need to say that the model here is not favorable to
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Figure 4.38.: Validation of the computation of the seismic force for the coupling of P-wave with the
vertical mode f33: comparison between the FM-BEM solution (denoted COFFEE) and
the solution given by classical BEM (denoted Miss3D).

Miss3D as the sensitivity of the results to the parameters is more important for homogeneous cases,
while for stratified soils with velocity contrasts it is a lot less sensitivity.

4.4. Seismic force in the case of a heterogeneous basin

This Section concerns the validation of the seismic forces computed with the FM-BEM in the
case of multi-domain basin. The model consists of a hemispherical basin in an infinite half-space
(Figure 4.39). The model features a velocity contrast, such that the hemispherical domain has
wave velocities equal to half the velocities of the half-space. The cases of a surface footing and a
embedded footing are studied. The mechanical characteristics of the soil are:

• characteristics of the hemispherical basin: Cs = 870 m/s, Cp = 1727 m/s, ν = 0.33;

• characteristics of the half-space: Cs = 1740 m/s, Cp = 3455 m/s, ν = 0.33.

The hemispheric basin has a radius of 100 m. The free surface is truncated at a distance equal to
four times the radius of the hemispherical basin. The surface footing has a radius of 30 m. The
embedded cylindrical footing has a radius of 30 m and a depth of 21 m. The frequency range of
interest is [0.2 Hz, 24 Hz].

Figure 4.39.: Surface and embedded footings in the case of a hemispherical basin in half-space.
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4.4. Seismic force in the case of a heterogeneous basin

The reference solution consists in computing the seismic forces with a FEM-BEM coupling in
Code_Aster, i.e. by modelling the half-space with the BEM and the hemispherical basin with
the FEM (see Figure 4.40).

Footing Finite elements

Boundary elements

Footing Finite elements

Boundary elements
FEM/BEM interface

FEM/BEM interface

Figure 4.40.: Surface and embedded footings in the case of a hemispherical basin in half-space.

4.4.1. Circular surface footing

Results on Figures 4.41 and 4.42 for the circular surface footing show a good agreement between the
FM-BEM and the FEM-BEM coupling. Besides the amplitude of certain eigenmodes is different,
both curves follow the same tendance globally. For frequencies lower than 5Hz, the real part of the
seismic forces are constant with respect to the frequency while the imaginary close to zero. The
model exhibits the behaviour of a quasi-static system. There is no energy dissipated due to the
radiated waves. These waves are reflected in large parts on the boundary between the hemispherical
basin and the soil, due to the velocity contrast between the two media.
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Figure 4.41.: Validation of the computation of the seismic force for the coupling of SV-wave with the
horizontal mode f11: comparison between the FM-BEM solution (denoted COFFEE)
and the solution given by the FEM-BEM coupling (Code_Aster).
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Figure 4.42.: Validation of the computation of the seismic force for the coupling of P-wave with the
vertical mode f33: comparison between the FM-BEM solution (denoted COFFEE) and
the solution given by the FEM-BEM coupling (Code_Aster).

In order to confirm the previous results, the homogeneous case is studied. The seismic forces are
computed in the case of a homogeneous half-space with the following mechanical characteristics:
Cs = 1740 m/s, Cp = 3455 m/s, ν = 0.33. As seen in Figures 4.43 and 4.44, the system starts
to dissipate energy from the first frequencies, as expected in the case of a homogeneous infinite
half-space respecting the condition of radiation, which validates the used model with a material
contrast.
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Figure 4.43.: Validation of the computation of the seismic force for the coupling of SV-wave with the
horizontal mode f11: comparison between the FM-BEM solution (denoted COFFEE),
the solution given by Code_Aster.
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Figure 4.44.: Validation of the computation of the seismic force for the coupling of P-wave with the
horizontal mode f33: comparison between the FM-BEM solution (denoted COFFEE),
the solution given by Code_Aster.

4.4.2. Embedded cylindrical footing

Results of the embedded cylindrical footing presented in Figures 4.45 and 4.46 are similar to the
results of the circular surface footing. Both methods of computation of the seismic forces are in
good agreement with some differences in the amplitude of the eigenmodes of the system. Similarly
to the surface case, the system behaves as in quasi-static for frequencies lower than 5Hz.
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Figure 4.45.: Embedded cylindrical footing. Validation of the computation of the seismic force for the
coupling of SV-wave with the horizontal mode f11: comparison between the FM-BEM
(denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions.
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Figure 4.46.: Embedded cylindrical footing. Validation of the computation of the seismic force for the
coupling of SV-wave with the horizontal mode f33: comparison between the FM-BEM
(denoted COFFEE) and the FEM-BEM coupling (Code_Aster) solutions.

4.5. Conclusion

The coupling strategy between the FEM and the FM-BEM outlined in Chapter 3 has been validated
in this chapter. The computation of impedance operator and seismic forces have been compared
to reference solutions for various models. The validation cases included surface and embedded
footings, in homogeneous soils and soils with a velocity contrast between the infinite half-space and
the hemispheric basin. In general, results computed with the FM-BEM are in good agreement with
the reference solutions. The oscillations observed in the homogeneous cases are not observed in case
of multi-domain models with velocity contrasts.
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Chapter 5
Structural response for piecewise homogeneous
media
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5.1. Definition of the test case

In this Chapter, results on the evaluation of site effects in the soil-structure interaction, using the
coupling method of Chapter 3, are presented. In Chapter 4, the approach has been validated by
comparisons with existing solutions. In this Chapter, the capabilities of this method coupling fast
BEM and FEM are used to study the site effects on a building on top of a sedimentary basin.

5.1. Definition of the test case

Choice of sedimentary basin. Two different kind of soils (Figure 5.1) are used in this Chapter.
The case (a) is a hemispherical basin in a homogeneous half-space. The radius of the hemisphere is
R = 100 m. The case (b) is a horizontally stratified basin with two layers, the upper layer having a
thickness of 100 m. It is clear that the larger the radius of the hemispherical basin is, the closer to
the case of a stratified basin the response should be. The problem (a) is solved with the coupling of
the FM-BEM (code Coffee) with the FEM (code Code_Aster). Since the FM-BEM uses the full-
space fundamental solutions, the mesh must include a truncated free surface, which is truncated at
a distance equal to 4R. The problem (b) is solved with the coupling of the standard BEM (code
Miss3D based on the layered half-space fundamental solutions) with the FEM (code Code_Aster).

In both cases, a circular embedded footing (with a 30 m radius and a 21.21 m depth) is placed in
the sedimentary basin (Fig. 5.1).

Figure 5.1.: Types of basin used: Case (a) hemispherical basin in homogeneous half-space (left) and
Case (b) horizontally stratified basin (right).

Modeling of the structure. The structure of interest is a six-story building (with a 42.3 m height)
which is modelled by a concentrated mass in each floor, with an equivalent one-dimensional beam
connecting the concentrated masses (Fig. 5.1). The interest of modeling the building with an
equivalent one-dimensional structure with concentrated masses is to approach the structure by a
quite simple model, with few degrees of freedom (six degrees of freedom per concentrated mass:
three translations and three rotations), which nevertheless gives enough informations about the
response of the structure. The response of the structure at each floor can then be used to later
model each floor separately.

The approach presented in Chapter 3 relying on a reduced basis. In this Chapter, the selected
reduced basis consists of eigenmodes of the structure that represents up to 80% of the total mass of
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5. Structural response for piecewise homogeneous media

the structure, and the six rigid body modes of the footing. To achieve this criterion, the effective
mass is relied upon: it represents the mass moved by a mode in a certain direction (in this case:
the X,Y and Z direction). The unit effective mass µ(Φ, d) of the Φ mode in the direction d for the
case of a structure of total mass mt is computed as

µ(Φ, d) =
(tΦ.M.D)2

tΦ.M.Φ
.

1

mt
.

In this specific case, the structure is characterised by the eigenmodes presented in Tables 5.1, 5.2
and 5.3.
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5.1. Definition of the test case

Table 5.1.: Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in ux
direction. The most important modes in this direction are indicated in blue.
Frequencies (Hz) Unit effective mass Cumulated unit effective mass
1.28601E+00 8.42591E-33 8.42591E-33
1.46002E+00 5.86449E-01 5.86449E-01
3.05322E+00 1.45367E-37 5.86449E-01
3.50889E+00 1.47033E-01 7.33482E-01
3.94676E+00 3.60907E-33 7.33482E-01
5.49576E+00 1.72825E-32 7.33482E-01
6.82155E+00 3.16887E-02 7.65171E-01
7.12905E+00 9.95722E-35 7.65171E-01
8.06154E+00 1.55499E-02 7.80721E-01
8.16988E+00 2.85748E-32 7.80721E-01
9.33858E+00 2.50355E-02 8.05756E-01
9.78819E+00 3.44869E-34 8.05756E-01
1.06265E+01 6.57818E-39 8.05756E-01
1.48843E+01 8.46278E-33 8.05756E-01
1.93325E+01 1.53139E-34 8.05756E-01

Table 5.2.: Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in uy
direction. The most important modes in this direction are indicated in blue.
Frequencies (Hz) Unit effective mass Cumulated unit effective mass
1.28601E+00 5.79638E-01 5.79638E-01
1.46002E+00 8.94693E-34 5.79638E-01
3.05322E+00 1.44059E-01 7.23697E-01
3.50889E+00 5.22772E-31 7.23697E-01
3.94676E+00 6.86120E-29 7.23697E-01
5.49576E+00 4.32442E-02 7.66941E-01
6.82155E+00 2.41801E-32 7.66941E-01
7.12905E+00 5.47312E-03 7.72415E-01
8.06154E+00 3.75832E-32 7.72415E-01
8.16988E+00 3.25206E-02 8.04935E-01
9.33858E+00 2.15027E-35 8.04935E-01
9.78819E+00 2.44724E-33 8.04935E-01
1.06265E+01 1.07710E-03 8.06012E-01
1.48843E+01 1.80911E-33 8.06012E-01
1.93325E+01 1.30421E-33 8.06012E-01
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5. Structural response for piecewise homogeneous media

Table 5.3.: Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in uz
direction. The most important modes in this direction are indicated in blue.
Frequencies (Hz) Unit effective mass Cumulated unit effective mass
1.28601E+00 6.16785E-35 6.16785E-35
1.46002E+00 2.20294E-33 2.26462E-33
3.05322E+00 5.09186E-33 7.35648E-33
3.50889E+00 8.92100E-33 1.62775E-32
3.94676E+00 7.07028E-01 7.07028E-01
5.49576E+00 3.88665E-32 7.07028E-01
6.82155E+00 1.16674E-34 7.07028E-01
7.12905E+00 1.45962E-39 7.07028E-01
8.06154E+00 1.44076E-33 7.07028E-01
8.16988E+00 4.39184E-32 7.07028E-01
9.33858E+00 2.54579E-33 7.07028E-01
9.78819E+00 3.17257E-02 7.38754E-01
1.06265E+01 8.92598E-34 7.38754E-01
1.48843E+01 4.01711E-02 7.78925E-01
1.93325E+01 2.68998E-02 8.05825E-01

This footing has geometrical characteristics (i.e. 30 m radius) that are of significant magnitude in
comparison with the geometrical characteristic length of the sedimentary basin (ie 100 m). This
may allow to show the impact of the site effects concerning the shape of the basin.

Parametric study. The mechanical characteristics of the soil are modified in order to see the
interactions between site effects (due to material contrasts and by the geometry of the basin) and
the response of the structure. The mechanical characteristics of the inner basin (light green in
Figure 5.1) are fixed in all examples to Cs = 870 m/s, Cp = 1727 m/s and ν = 0, 33, while the
characteristics of the outer soil are varied to achieve a given contrast with respect to the inner soil
parameters. The incident fields considered are a unit harmonic plane wave, P-waves, SH-waves or
SV-waves. The angle of incidence of each of the three waves is varied such that it takes the following
values: 0o, 10o, 20o and 30o. The range of frequencies of interest is [0.2Hz, 20Hz], with a step of
0.2Hz.

In the following, the quantities of interest are the displacements along each of the directions of the
base of the structure, in time-harmonic domain. Such quantities will be called transfer functions in
the following. The response of the point of interest in the structure to the incident field is reported
in each case. The results are presented as functions of the frequency, which is normalized by the first
resonance frequency of the upper layer of the stratified basin. It is well known that the resonance
frequency of the n-th mode of a layered soil, in the case of an incident plane wave with a velocity
V , is equal to fn = (2n− 1)V/4h, with h the thickness of the layer. As a result, the first resonance
frequency is equal to fs = Cs/4h when considering an incident SV-wave or SH-wave, while it is equal
to fp = Cp/4h when considering an incident P-wave. The modes of the structure corresponding to
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5.2. Influence of the basin shape on the response of the structure

the direction of interest are also plotted in the figures with the quantities of interest: they correspond
to the frequencies with significant effective unit mass shown (in blue) in Tables 5.1, 5.2 and 5.3.

5.2. Influence of the basin shape on the response of the structure

This section considers the influence of the basin shape on the response of the structure. The
characteristic length of the basin is close enough to the size of the basin for the site effects to have
a significant effect on the response of the structure.

In this section, the structure is laid on two type of soils (Figure 5.2): a hemispherical basin in a
homogeneous half-space (case a) and a horizontally stratified soil (case b). The case (a) is solved
with the coupling of the FM-BEM code Coffee with the FEM code Code_Aster, the model consists
of 4644 nodes and 9334 elements (the mesh of the free surface included). The case (b) is solved
with the coupling of the standard BEM code Miss3D with the FEM code Code_Aster, the model
consists of 887 nodes and 1268 elements, as only the interface between the BEM part and the FEM
part is meshed, since the BEM formulation used is based on the layered half-space fundamental
solutions.

The hemispherical basin has a R = 100 m radius, and the upper layer of the stratified soil has a
thickness of 100 m. Results are presented for velocity contrasts C2

s/C
1
s = C2

p/C
1
p = 1, 2 and 4. In

both cases, a circular embedded footing of a radius of 30 m and a depth of 21.21 m is placed in
the sedimentary basin. The FM-BEM/FEM interface and the BEM-FEM interface are the circular
embedded footing (shown in red in Fig. 5.2).

Figure 5.2.: Types of basin used: Case (a) hemispherical basin in homogeneous half-space (left) and
Case (b) horizontally stratified basin (right).

Excitation by plane waves, namely a SV-wave, a SH-wave and a P-wave of unit amplitude, are
imposed. Results are presented separately for each type of wave. The P-wave and SV-wave
propagate in the XZ-plane (Fig. 5.3). The SH-wave is orthogonal to both other waves (Fig. 5.3).

For the layered soil, the plane waves are expected to cause displacement only in the direction of
their respective polarization.
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5. Structural response for piecewise homogeneous media

X

Z

SV-wave SH-wave P-wave

Figure 5.3.: Polarization of the plane waves.

In the following, for each type of wave (SV-wave, SH-wave and P-wave), the free-field at the bottom
center of the footing (i.e. the displacement in the absence of structure) and the displacement at the
base of the structure are shown. The displacement being complex-valued, its modulus is chosen as
a representative value.

5.2.1. SV-wave

Figures 5.4(b) (d) and (f) present the results for the horizontal displacement along the X-direction,
the horizontal displacement along the Y-direction and the vertical displacement along the Z-direction
at the base of the structure. Figures 5.4(a) (c) and (e) present the results of the horizontal
displacement along the X-direction, the horizontal displacement along the Y-direction and the
vertical displacement along Z-direction at the bottom of the cylinder, in the absence of the structure.
The aim of presenting the free-field displacement is to evaluate its influence on the response of the
structure. Those displacements result from imposing a unit plane SV-wave in vertical incidence.

The largest component of the displacement is along the X-direction, which is expected since the
polarization of the SV-wave is along the same direction. Concerning the free-field, displacement
along Y-direction and Z-direction are expected to vanish for both the stratified and the hemispherical
basin, due to the symmetries of the problem. However, the free field in the Y-direction and
Z-direction shows non-negligible values, this might be due to numerical errors caused by the
approximation due to the tolerance of the iterative solver (here fixed at 0.005), the geometrical
error due to the discretization of the mesh with triangular linear elements and the truncation of the
free surface.

In the following, the only quantity of interest is the displacement along the X-direction. The
comparison of the results for the homogeneous case of the hemispherical basin and the stratified
basin shows good correspondance as expected and validates the modelization, for both results of

85



5.2. Influence of the basin shape on the response of the structure

the free-field and the response at the base of the structure.

The response of the structure in the X-direction is driven by the horizontal eigenmodes of the
structure at frequencies close to corresponding eigenfrequencies, while it is driven by the free-field
for frequencies relatively far from the eigenfrequencies in the X-direction.

The amplitude of the response at the base of the structure when driven by the eigemodes of the
structure are relatively small (always lower than 1) compared to the values of the amplitude of the
response when driven by the free-field that can reach values up to 18 (velocity ratio of 4) and up
to 3 (velocity ratio of 2) for the case of the hemispherical basin and values up to 4 (velocity ratio
of 4) and up to 2 (velocity ratio of 2) for the case of the stratified basin. The peaks of the response
correspond to the peaks of the response of the free-field.

The transfer function of the structure in the hemispherical basin have globally larger values than
that of the stratified basin. Also, both the stratified basin and the hemispherical basin exhibited an
increase of the transfer function caused by an increase of the velocity contrast, however the increase
of the transfer function caused by an increase in the velocity ratio in the case of the hemispherical
basin is more important than that of the stratified basin, due to the 3D shape of the hemispherical
basin.
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Figure 5.4.: Free field displacements along the (a) X-, (c) Y- and (e) Z-direction; and displacements
along the (b) X-, (d) Y- and (f) Z-direction at the base of the structure. A vertical incident
unit plane SV-wave is imposed as a loading.
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5.2. Influence of the basin shape on the response of the structure

5.2.2. SH-wave

Figures 5.5(b) (d) and (f) present the results of the horizontal displacement along the X-direction,
the horizontal displacement along the Y-direction and the vertical displacement along the Z-direction
at the base of the structure. Figures 5.5(a) (c) and (e) present the results of the horizontal
displacement along the X-direction, the horizontal displacement along the Y-direction and the
vertical displacement along Z-direction at the bottom of the cylinder. In the absence of the structure,
the aim of presenting the free-field displacement is to evaluate its influence on the response of the
structure. Those displacements result from imposing a unit plane SH-wave in vertical incidence.

The largest component of the displacement is along the Y-direction, which is expected since the
polarization of the SH-wave is along the same direction. In the following, the only quantity of
interest considered is the displacement along the Y-direction.

The comparison of the results for the homogeneous case of the hemispherical basin and the stratified
basin shows good correspondance as expected and validates the modelization, for both results of
the free-field and the response at the base of the structure.

Similarly to the case where an SV-wave was imposed, the response of the structure in the Y-
direction is mainly driven by the eigenmodes of the structure at frequencies close to corresponding
eigenfrequencies, and it is driven by the free-field for frequencies relatively far from the eigenfrequencies
in the Y-direction. Also, the amplitude of the response at the base of the structure when driven by
the eigenmodes of the structure is relatively small (always lower than 1) compared to the values of
the amplitude of the response when driven by the free-field that can reach values up to 20 for the
case of the hemispherical basin and values up to 4 for the case of the stratified basin. The peaks
of the response correspond to the peaks of the response of the free-field. As it was the case when
applying an SV-wave, the transfer function of the structure in the hemispherical basin have globally
larger values than that of the stratified basin. Also, both the stratified basin and the hemispherical
basin exhibit an increase of the transfer function caused by an increase of the velocity contrast.
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Figure 5.5.: Free field displacements along the (a, b) X-, (c, d) Y- and (e, f) Z-direction. A vertical
incident unit plane SH-wave is imposed as a loading.
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5.2. Influence of the basin shape on the response of the structure

5.2.3. P-wave

Figures 5.6(b) (d) and (f) present the results of the horizontal displacement along the X-direction,
the horizontal displacement along the Y-direction and the vertical displacement along the Z-direction
at the base of the structure. Figures 5.6(a) (c) and (e) present the results of the horizontal
displacement along the X-direction, the horizontal displacement along the Y-direction and the
vertical displacement along Z-direction at the bottom of the cylinder, in the absence of the structure.
As before, the aim of presenting the free-field displacement is to evaluate its influence on the response
of the structure. Those displacements result from imposing a unit plane P-wave in vertical incidence.

The largest component of the displacement is along the Z-direction, which is expected since the
polarization of the P-wave is along the same direction. In the following, the only quantity of
interest considered is the displacement along the Z-direction.

The comparison of the results for the homogeneous case of the hemispherical basin and the stratified
basin shows good correspondance as expected and validates the modelization, for both results of
the free-field and the response at the base of the structure.

Similarly to the case where an SV-wave was imposed, the response of the structure in the Z-
direction is mainly driven by the eigenmodes of the structure at frequencies close to corresponding
eigenfrequencies, and it is driven by the free-field for frequencies relatively far from the eigenfrequencies
in the Z-direction. Also, the amplitude of the response at the base of the structure when driven by
the eigenmodes of the structure are relatively small (always lower than 1) compared to the values
of the amplitude of the response when driven by the free-field that can reach values up to 10 for the
case of the hemispherical basin and values up to 12 for the case of the stratified basin. The peaks
of the response correspond to the peaks of the response of the free-field. As it was the case when
applying an SV-wave, the transfer function of the structure in the hemispherical basin have globally
larger values than that of the stratified basin. Also, both the stratified basin and the hemispherical
basin exhibited an increase of the transfer function caused by an increase of the velocity contrast.
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Figure 5.6.: Free field displacements along the (a) X-, (c) Y- and (e) Z-direction; and displacements
along the (b) X-, (d) Y- and (f) Z-direction at the base of the structure. A vertical incident
unit plane P-wave is imposed as a loading.
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5.3. Effect of an obliquely incident wave on the response of the structure

5.3. Effect of an obliquely incident wave on the response of the
structure

This section examines the influence of the angle of incidence of an incident plane wave on the
response of the structure, more specifically on the base of the structure, in the case of the hemispherical
basin in a homogeneous half-space. Three kind of waves are used separately: SV-wave, SH-wave
and P-wave (Figure 5.3). The angles of incidence considered are θ = 0o, 10o, 20o and 30o (Figure
5.7).

X

Z

Figure 5.7.: Oblique incident plane wave.

The problem is solved with the coupling of the FM-BEM code Coffee with the FEM code Code_Aster,
the model consists of 4644 nodes and 9334 elements (the mesh of the free surface included).

The hemispherical basin has a radius of R = 100 m, a circular embedded footing with a radius
30 m and a depth of 21.21 m is placed in the sedimentary basin. The FM-BEM/FEM interface is
the circular embedded footing (in red in Figure 5.7). Results are presented for velocity contrasts
C2
s/C

1
s = C2

p/C
1
p = 1, 2, 4.

5.3.1. SV-wave

Figures 5.8, 5.9, 5.10 and 5.11 present the results of the horizontal displacement along the X-
direction, the horizontal displacement along the Y-direction, the vertical displacement along Z-

direction and the total displacement norm defined as ‖ ut ‖=
√
| ux |2 + | uy |2 + | uz |2. Those are

the resulting displacements of imposing a unit plane SV-wave.

The first remark is that the displacement in the Y-direction is almost null: imposing a SV-wave in
the XZ-plane does not generate displacement outside of this plane.
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5. Structural response for piecewise homogeneous media

Concerning the displacement along X and Z: the transfer functions of the three different velocity
ratios (C = 1, 2, 4) exhibits similar pattern for the four angles of incidence. The transfer functions
are also driven by the eigenmodes for frequencies close to the eigenfrequencies and driven by the
free-field when not close to the eigenfrequencies. Globally, the incidences of θ = 0o, 10o and 20o

have similar transfer functions while the incidence of θ = 30o is globally more important than the
latters. Important maximum amplifications are observed for the velocity contrast of C = 2, 4, with
values up to 19 in the X-direction for a velocity ratio of two and 27 for a velocity ratio of 4, but for
different frequencies, probably because of the shift in the eigenfrequencies of the hemispherical basin
due to the change in the velocity ratio. Maximum amplifications in the Z-directions for velocity
ratios of 2 and 4 reached values of 2 and 9 respectively.
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Figure 5.8.: Horizontal displacement along the X-direction at the base of the structure. An incident
unit plane SV-wave is imposed as a loading for various angle of incidence.
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(c) velocity contrast C = 4

Figure 5.9.: Horizontal displacement along the Y-direction at the base of the structure. An incident
unit plane SV-wave is imposed as a loading for various angle of incidence.
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Figure 5.10.: Vertical displacement along the Z-direction at the base of the structure. An incident unit
plane SV-wave is imposed as a loading for various angle of incidence.
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An important quantity to look into is the total displacement, since the incident wave has now non-
null components along the X-direction and Z-direction, it is hard to determine if the increase of
displacement along the Z-direction with the angle, was due to the increase to the component of the
incident SV-wave along the Z-direction, or due to other phenomena.
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Figure 5.11.: Total displacement at the base of the structure. An incident unit plane SV-wave is
imposed as a loading for various angle of incidence.

Figure 5.11 shows the evolution of the total displacement for various incidence angles and a fixed
velocity contrast. The transfer function is again seen to increase as the incidence angle increases, for
all velocity contrasts. The gap between the different angles get more important with the increase
of the angle: tranfer functions for the vertical angle are similar to the transfer function of the case
of the incident angle of θ = 10o while the difference between the transfer functions of the wave
with the incident angle of θ = 20o and the transfer functions of the wave with the incident angle of
θ = 30o are noticeable.

The total displacement also exhibits the tendency of transfer functions becoming smoother as the
velocity contrast increases, the eigenmodes of the structure becoming less noticeable.
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5.3.2. SH-wave

Figures 5.12, 5.13, 5.14 and 5.15 present the results of the horizontal displacement along the X-
direction, the horizontal displacement along the Y-direction, the vertical displacement along Z-
direction and the total displacement norm defined as ut =

√
u2
x + u2

y + u2
z. Those are the resulting

displacement of imposing a unit plane SH-wave.

The first remark is that the displacement in the X-direction and Z-direction is almost null: this is
consistent with Section 5.2. Only the displacement along the Y-direction is non-null.

The different angles shows similar results at fixed velocity contrast, as well as an increase of the
maximum amplification with the increase of the velocity ratio. The total displacement confirms this
tendency since there is no other components besides the displacement along the Y-direction.
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Figure 5.12.: Horizontal displacement along the X-direction at the base of the structure. An incident
unit plane SH-wave is imposed as a loading for various angle of incidence.
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(c) velocity contrast C = 4

Figure 5.13.: Horizontal displacement along the Y-direction at the base of the structure. An incident
unit plane SH-wave is imposed as a loading for various angle of incidence.
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(c) velocity contrast C = 4

Figure 5.14.: Vertical displacement along the Z-direction at the base of the structure. An incident unit
plane SH-wave is imposed as a loading for various angle of incidence.
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5.3. Effect of an obliquely incident wave on the response of the structure
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(c) velocity contrast C = 4

Figure 5.15.: Total displacement at the base of the structure. An incident unit plane SH-wave is
imposed as a loading for various angle of incidence.

5.3.3. P-wave

Figures 5.16, 5.17, 5.18 and 5.19 present the results of the horizontal displacement along the X-
direction, the horizontal displacement along the Y-direction, the vertical displacement along Z-
direction and the total displacement norm defined as ut =

√
u2
x + u2

y + u2
z. Those are the resulting

displacement of imposing a unit plane P-wave.

The first remark is that the displacement in the Y-direction is almost null: imposing a P-wave in
the XZ-plane does not generate displacement outside of this plane. Also, the transfer functions for
other components are driven by the eigenmodes for frequencies close to the eigenfrequencies and by
the free-field other frequencies.

Concerning the displacement along X: it is noticeable that the transfer functions increase with the
angle, for all the velocity ratios, which can be explained by the increase of the component of the
incident wave in the X-direction with the increase of the angle. The maximum amplification of the
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5. Structural response for piecewise homogeneous media

transfer function also increases with the increase of the velocity ratio: up to 5, 5 for the velocity
contrast of 2 and up to 9 for the velocity contrast of 4, which is to be expected as the wave is
amplified with the increase of the velocity contrast.

Concerning the displacement along Z: changing the angle of incidence does not seem to influence
much on the transfer function, while the velocity contrast influences much more the amplitude of
the transfer function and the maximum amplifications observed, with an increase of the latters with
the velocity ratio, which is expected. The low influence of changing the angle on the response of
the structure must be due to the cylindrical shape of the footing and its size compared with the
size of the hemispherical basin.
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(c) velocity contrast C = 4

Figure 5.16.: Horizontal displacement along the X-direction at the base of the structure. An incident
unit plane P-wave is imposed as a loading for various angle of incidence.
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(c) velocity contrast C = 4

Figure 5.17.: Horizontal displacement along the Y-direction at the base of the structure. An incident
unit plane P-wave is imposed as a loading for various angle of incidence.
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0 1 2 3 4 5
frequency/f

p

0

0,5

1

1,5

2

T
ra

ns
fe

r 
fu

nc
tio

n

θ=0
θ=10
θ=20
θ=30

(a) velocity contrast C = 1

0 1 2 3 4 5
frequency/f

p

0

1

2

3

4

5

6

7

T
ra

ns
fe

r 
fu

nc
tio

n

θ=0
θ=10
θ=20
θ=30

(b) velocity contrast C = 2
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(c) velocity contrast C = 4

Figure 5.18.: Vertical displacement along the Z-direction at the base of the structure. An incident unit
plane P-wave is imposed as a loading for various angle of incidence.

103



5.4. Conclusion

The total displacement has globally the same pattern as the transfer function of the Z-direction, with
the difference of an added peak of amplification of the transfer functions of the velocity contrasts
of 2 and 4 due to peak caused by the first eigenfrequency in the X-direction.
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Figure 5.19.: Total displacement at the base of the structure. An incident unit plane P-wave is imposed
as a loading for various angle of incidence.

5.4. Conclusion

The following conclusions can be reached from Chapter 5:

• applying an SV-wave or a P-wave does not generate displacements outside of the plane in the
Y-direction, and similarly, the application of an SH-wave do not generate displacements in
the X-direction of in the Z-direction;

• the response at the base of the structure is driven by the eigenmodes of the structure when the
frequency is close to the eigenfrequencies of the structure, while it is driven by the free-field
response for other frequencies;
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5. Structural response for piecewise homogeneous media

• the velocity ratio between the bedrock and the hemispherical basin has a more important
influence on the response of the structure than the angle of incidence;

• an increase of the velocity ratio was accompanied by an increase of the maximum amplitude
of the transfer functions.
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Chapter 6
Application on realistic configuration of Soil
Structure Interaction
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6.1. Modelling of the Grenoble valley

The main goal of this work is to take into account site effects in the study of soil-structure
interaction. In the previous chapters, academic examples were studied to assess the proposed
numerical approach. Now that the method is validated, a more realistic configuration is considered:
an Alpine valley (Grenoble). The Grenoble valley has the advantage to present three kinds of site
effects (see Fig. 6.1): topographical effects due to the complex topography, lithological effects due
to the different layers in the basin and the geometry of the interface between the bedrock and the
sedimentary basin, and geometric effects due to the Y shape of the basin. It is therefore a good
scenario to quantify the influence of site effects on the response of a building.

Two cases are treated. First, the response of the alluvial basin without any structure is considered,
in order to quantify the site effects. Then, the response of the basin with a structure is evaluated.

(a) Layers in Grenoble basin.
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Figure 6.1.: Grenoble basin: layers and shape of the basin.

6.1. Modelling of the Grenoble valley

The mechanical parameters of the bedrock and sedimentary basin models are as proposed in [14].
For the bedrock, the P and S velocities and the density are set to constant values in four areas (see
Table 6.1). In order to keep the number of degrees of freedom reasonable, the four different areas
are not considered but only the first one.

Depth ρ cs cp
0-3 km 2720 3200 5600
3-27 km 2720 3430 5920
27-35 km 2920 3810 6600
> 35 km 3320 4450 8000

Table 6.1.: Mechanical parameters used to model the layers of the bedrock.
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6. Application on realistic configuration of Soil Structure Interaction

In the sedimentary basin, the velocity profile increases with the depth z. The proposed models are:

cp(z) = 1450 + 1.2z, cs(z) = 300 + 19
√
z, ρ = 2140 + 0.125z.

Since the use of a BEM imposes a piecewise homogeneous domain, the sedimentary basin is
decomposed into five homogeneous layers of depth 100 or 200 m. The corresponding mechanical
parameters are summarized in Table 6.2.

Layer Depth ρ cs cp
1 0-100 2146.25 434 1510
2 100-300 2165 568 1690
3 300-500 2190 680 1930
4 500-700 2215 765 2170
5 700-1000 2246.25 854 2470

Table 6.2.: Mechanical parameters used to model the layers of the sedimentary basin.

The BE mesh has been provided by Adrien Loseille from INRIA Saclay. Each homogeneous layer
is meshed in order to have at least ten points per S-wavelength at the frequency of 1 Hz. Mesh
conformity requirements at interfaces induce densities of about ten points per smallest S-wavelength
on interfaces. As a result, the interface between layers 4 and 5 is adapted to domain 4 but is too
dense for domain 5. This situation is sub-optimal for the FM-BEM [7]. The efficiency of the FM-
BEM is based on the use of a uniform mesh with a moderate (about 10) density of points per
wavelength. If the interface between the bedrock and the layer 5 is meshed to achieve ten points
per S-wavelength in the layer 5, then the bedrock is about 4 times too dense. This results in a
artificially "too" large matrix for the near contributions. In order to avoid this issue that is beyond
the scope of this thesis and due to limited computational resources, the parameters of the bedrock
are replaced by the parameters of the layer 5. It is known that this trick will reduce the site effects
due to the material contrasts. But this is a preliminary attempt to model this realistic configuration.
Some improvements on the FM-BEM are required to consider such large scale problems with high
velocity contrasts.

The model consists of 890.000 DOFs. Difficulties were met when solving the problem: some
frequencies required more than 5.000 iterations. Hence, the tolerance of the iterative solver was
set to 0, 01 for all frequencies, besides the frequency f = 0, 8 Hz where the tolerance was set to
0, 15 and the frequency f = 0, 9 Hz where the tolerance was set to 0, 10. This tolerances for the
latter frequencies are not sufficient for a modelling with an appropriate accuracy. The results for
these frequencies should be analyzed with caution.

The Grenoble valley was previously treated and modeled with FM-BEM in [7]. The main differences
with [7] is that the topography was not taken into account (as the free surface was considered
horizontal), the sedimentary basin was homogeneous (while it is layered here) and the analysis was
performed for two frequencies of 0, 3 Hz and 0, 6 Hz. In this work, the ambition is to better take
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6.2. Illustration of site effects due to geological and topographical structure

into account the topography and the layers inside the sedimentary basin, as well as treat higher
frequencies.

The quantities of interest in the following are the modulus of the displacement in the three directions
(X,Y and Z).

6.2. Illustration of site effects due to geological and topographical
structure

In this section, the response of the sedimentary basin (without any building) to vertically incident
plane P-, SV- or SH-waves is considered. For each configuration, the response for each frequency
(from 0.1 Hz to 1Hz with a step of 0.1 Hz) is reported, at two locations called "center" and "border"
(see Fig. 6.2). These two locations are chosen to illustrate two specific configurations. The center
point is located in the middle of the basin (see Fig. 6.2). It is on top of the five layers, the
stratification of the layers and their thickness is given in Table 6.3. It should illustrate the effects
of the layers in the sedimentary basin. On the other hand, the border point is located near the
bedrock, the stratification of the layers and their thickness is given in Table 6.4. It is chosen to
check the sensitivity to the material discontinuity and the topography effect near the point (see
Fig. 6.2).

Center

Border

(a) Top view of the mesh of
Grenoble basin.

(b) Bottom view of the mesh of
Grenoble basin.

Figure 6.2.: Top and bottom view of the mesh of Grenoble basin, with the chosen location for the
center and border points are indicated in red.
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6. Application on realistic configuration of Soil Structure Interaction

Layer Thickness (m)
1 100
2 200
3 200
4 200
5 13

Table 6.3.: Depth of the layer under the center point of the basin 6.2.

Layer Thickness (m)
1 100

Table 6.4.: Depth of the layer under the border point of the basin 6.2.

The displacement modulus at the border point and center point along the three directions (X,Y
and Z) for each kind of wave is now presented, in the absence of the structure, for various cases of
incident waves.

The displacement resulting from imposing a unit vertical incident SV-wave is plotted in Figure 6.3.
Resonance of the basin at around 0, 4 Hz and 0, 8 Hz can be observed for both observation points.
The maximum amplitude of the transfer function in the X-direction is about 5 while the other
directions (Y and Z) have maximum amplitude of 2, 5.
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6.2. Illustration of site effects due to geological and topographical structure
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(a) Horizontal displacement along the X-direction
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(b) Horizontal displacement along the Y-direction
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(c) Vertical displacement along the Z-direction

Figure 6.3.: Displacement at the free surface of the basin. A vertical incident unit plane SV-wave is
imposed as a loading.

The displacement resulting from imposing a unit vertical incident SH-wave is plotted in Figure 6.4.
Resonance of the basin at around 0, 7 Hz can be observed for both observation points. The maximum
amplitude of the transfer function in the Y-direction is about 6, 5 while the other directions (X and
Z) present amplitude about half the amplitude of the Y direction.
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(a) Horizontal displacement along the X-direction
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(b) Horizontal displacement along the Y-direction
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(c) Vertical displacement along the Z-direction

Figure 6.4.: Displacement at the free surface of the basin. A vertical incident unit plane SH-wave is
imposed as a loading.

The displacement resulting from imposing a unit vertical incident P-wave is plotted in Figure 6.5.
The transfer function of the Z-direction presents values of around 2 with a maximum of 5 at the
frequency 0, 8 Hz, while transfer functions in other directions are globally lower than 2.

113



6.2. Illustration of site effects due to geological and topographical structure
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(a) Horizontal displacement along the X-direction
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(b) Horizontal displacement along the Y-direction
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(c) Vertical displacement along the Z-direction

Figure 6.5.: Displacement at the free surface of the basin. A vertical incident unit plane P-wave is
imposed as a loading.

Figures 6.6, 6.7 and 6.8 present the modulus of the amplitude of the displacement at the free-surface
of the Grenoble basin, subjected respectively to a SV-wave, SH-wave and P-wave, for the frequency
of 0, 2 Hz and the frequency of 0, 6 Hz. This displacements were computed with Coffee. The
waveforms look smooth. Also, the observed wavelengths on the figures for the frequency of 0, 6 Hz
are, as expected, smaller than the wavelengths for the frequency of 0, 2 Hz.
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6. Application on realistic configuration of Soil Structure Interaction

(a) Grenoble basin harmonic response to a unit
incident wave at frequency f = 0, 2Hz.

(b) Grenoble harmonic response to a unit incident
wave at frequency f = 0, 6Hz.

Figure 6.6.: Displacement at the free surface of the basin in the X-direction. A vertical incident unit
plane SV-wave is imposed as a loading.

(a) Grenoble basin harmonic response to a unit
incident wave at frequency f = 0, 2Hz.

(b) Grenoble basin harmonic response to a unit
incident wave at frequency f = 0, 6Hz.

Figure 6.7.: Displacement at the free surface of the basin in the Y-direction. A vertical incident unit
plane SH-wave is imposed as a loading.

115



6.3. Illustration of the site effects on the response in the presence of buildings

(a) Grenoble basin harmonic response to a unit
incident wave at frequency f = 0, 2Hz.

(b) Grenoble basin harmonic response to a unit
incident wave at frequency f = 0, 6Hz.

Figure 6.8.: Displacement at the free surface of the basin in the Z-direction. A vertical incident unit
plane P-wave is imposed as a loading.

6.3. Illustration of the site effects on the response in the presence
of buildings

In this section, the response of a structure in the sedimentary basin to vertical incident plane P-,
SV- or SH-waves is considered. Two positions of the structure are considered: at the center of
the basin and at the border of the basin (see Figure 6.2). For each configuration, the response for
each frequency (from 0.1 Hz to 1Hz with a step of 0.1 Hz) is reported, at the two locations. The
characteristics of the structure are represented by its eigenfrequencies presented in Tables 6.5, 6.6
and 6.7. The unit effective mass µ(Φ, d) of the Φ mode in the direction d for the case of a structure
of total mass mt is computed as

µ(Φ, d) =
(tΦ.M.D)2

tΦ.M.Φ
.

1

mt
.

A structure with such eigenfrequencies is not intended as a realistic case. Its use aims at demonstrating
the feasibility of computing a Soil-Structure Interaction in a basin similar to Grenoble.

The displacement at the base of the structure resulting from imposing a unit vertical incident
SV-wave is plotted in Figure 6.9. The displacement in the X-direction oscillates around 2 for the
center location and around 1 for the border location. Displacements along the Y-direction and the
Z-direction are globally smaller than 1.
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6. Application on realistic configuration of Soil Structure Interaction

Table 6.5.: Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in ux
direction.
Frequencies (Hz) Unit effective mass Cumulated unit effective mass

1.39807E-01 1.45240E-01 1.45240E-01
1.65790E-01 5.02591E-01 6.47832E-01
3.23638E-01 9.16629E-04 6.48748E-01
3.83109E-01 1.02963E-01 7.51711E-01
3.94676E-01 2.28776E-22 7.51711E-01
5.60840E-01 2.62729E-03 7.54338E-01
5.86603E-01 2.67613E-06 7.54341E-01
7.36783E-01 3.70235E-02 7.91364E-01
8.49459E-01 2.79543E-04 7.91644E-01
9.31534E-01 1.43493E-02 8.05993E-01
9.78819E-01 2.17639E-23 8.05993E-01

Table 6.6.: Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in uy
direction.
Frequencies (Hz) Unit effective mass Cumulated unit effective mass

1.39807E-01 4.53792E-01 4.53792E-01
1.65790E-01 1.42943E-01 5.96735E-01
3.23638E-01 1.15466E-01 7.12201E-01
3.83109E-01 1.00316E-03 7.13204E-01
3.94676E-01 6.56849E-24 7.13204E-01
5.60840E-01 9.06114E-04 7.14110E-01
5.86603E-01 4.55650E-02 7.59675E-01
7.36783E-01 2.76924E-05 7.59703E-01
8.49459E-01 4.30319E-02 8.02735E-01
9.31534E-01 1.37576E-03 8.04111E-01
9.78819E-01 3.65937E-23 8.04111E-01

Table 6.7.: Frequencies, unit effective mass and cumulated effective mass for the eigenmodes in uz
direction.
Frequencies (Hz) Unit effective mass Cumulated unit effective mass

1.39807E-01 2.09507E-24 2.09507E-24
1.65790E-01 1.06217E-23 1.27168E-23
3.23638E-01 1.68076E-22 1.80792E-22
3.83109E-01 1.53105E-21 1.71185E-21
3.94676E-01 7.07028E-01 7.07028E-01
5.60840E-01 2.85067E-24 7.07028E-01
5.86603E-01 3.22747E-23 7.07028E-01
7.36783E-01 1.10284E-24 7.07028E-01
8.49459E-01 5.06814E-25 7.07028E-01
9.31534E-01 1.61136E-23 7.07028E-01
9.78819E-01 3.17257E-02 7.38754E-01
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6.3. Illustration of the site effects on the response in the presence of buildings
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(a) Horizontal displacement along the X-direction
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(b) Horizontal displacement along the Y-direction
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(c) Vertical displacement along the Z-direction

Figure 6.9.: Displacement at the free surface of the basin. A vertical incident unit plane SV-wave is
imposed as a loading.

The displacement at the base of the structure resulting of imposing a unit vertical incident SH-wave
is plotted in Figure 6.10. The results present similarities with the SV-wave case: the displacement
along the Y-direction oscilated around 2 in the center position and around 1 in the border position,
while displacement and X and Z-direction are globally smaller than 1.
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(a) Horizontal displacement along the X-direction
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Figure 6.10.: Displacement at the free surface of the basin. A vertical incident unit plane SH-wave is
imposed as a loading.

The displacement at the base of the structure resulting of imposing a unit vertical incident P-wave is
plotted in Figure 6.11. The transfer function along the Z-direction has a maximum of 5 at frequency
0, 8 Hz while other directions are globally smaller than 1.
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Figure 6.11.: Displacement at the free surface of the basin. A vertical incident unit plane P-wave is
imposed as a loading.

6.4. Conclusion

In this section, the previously presented coupling method of FM-BEM with FEM for the modelling
of Soil-Structure Interaction problems was used for the case of the Grenoble valley. It allowed to
give results for a basin that would present extreme difficulties if it were to be solved with classical
BEM. However, some difficulties were met when dealing with the mesh of the Grenoble valley and
the convergence of the

In analyzingthe results, It is observed that, for our structure, the maximum amplitudes were met
in the direction of the incident wave, namely in the X-direction for the SV-wave, Y-direction for
the SH-wave and Z-direction for the P-wave. For each wave, the maximum amplification each time
was of 5 times of the amplitude of the incident wave. It can also be observed that the response at
the base of the structure was globally more important in the case of a structure at the center of the
basin, compared with the case of the structure in the border of the basin.
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Chapter 7
Conclusions and directions for future
work

7.1. Conclusions

The main objective of this work was to develop a computational strategy to take into account
site effects in the numerical simulation of Soil-Structure Interaction. This work is restricted to
lithologic, topographic and geometric site effects. A requirement for the numerical model was to
allow including several kilometres around the structure in the near-field region (modelled using the
FEM) while being applicable to wide frequency ranges. The most important point is to choose
the most appropriate numerical approach in this context, where wave propagation problems to be
solved involve large media and large numbers of degrees of freedom.

In Chapter 1, the different kind of site effects that are taken into account are recalled and the main
possible numerical methods to model wave propagation. The boundary element method (BEM)
is used to model the soil. The main advantages are to rely on a discretisation of the domain
boundary only (thus reducing drastically the number of degrees of freedom of the model) and to
take into account the radiation condition implicitly in the formulation. The finite element method
is used to model the structure. The drawbacks of the boundary element method, mainly in terms of
computational times and memory requirements, are overcome by using the fast multipole method
to accelerate the solution of the BEM system. The principles of the fast multipole accelerated
boundary element method (FM-BEM) have then been presented, and the main advantages and
drawbacks of the method explained.

After presenting the framework of this thesis, several numerical experiments have been conducted in
Chapter 2 with the objective of evaluating the impact of the modelling parameters on the accuracy
and efficiency of the acceleration offered by the fast multipole method. The complexity of the
FM-BEM has been compared to the standard BEM and the theoretical complexities observed
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numerically. Since the FM-BEM formulation is not appropriate for very low frequencies, an empirical
parameter to determine the transition between the standard BEM and FM-BEM has been proposed.
Discretisation parameters, namely the meshing criterion and the truncation of the free surface
(necessary due to the use of a reformulation of the fundamental solution of the free-space in the
fast multipole formulation) have then been determined in an industrial context as a compromise
between the accuracy and the computational cost. A method for speeding up the solution of wave
propagation problems in the case of multiple frequency studies (e.g. for solving transient problems
by means of Fourier synthesis), consisting of initializing the iterative solver (GMRES in this work)
by the solution of the previous frequency, has been proposed and its efficiency checked (in terms
of the reduction of the number of iterations for reaching convergence). Since the FM-BEM used
is based on the solution of time-harmonic elastodynamic problems, Fourier-synthesis analysis has
been performed to obtain results in the time domain, which are compared to analytic solutions.

The parameters of the FM-BEM being validated for an industrial context, Chapter 3 has presented
the proposed coupling of the FM-BEM with the FEM. The coupling is done through an impedance
and a seismic force computed at the interface between the FM-BEM mesh and the FEM mesh.
To keep computational costs within reasonable limits, the coupling strategy has been formulated
in a reduced basis composed of the eigenmodes of the structure and the eigenmodes of the FM-
BEM/FEM interface.

Chapter 4 was then dedicated to the validation of the evaluation of the impedances and seismic
forces. These entities have been compared with simple canonical test cases solutions extracted from
the bibliography. Also, more complex models composed of a hemispherical basin in a homogeneous
half-space have been used to validate the impedances and seismic forces, in the case of wave velocity
contrasts and surface or embedded footings. The comparison of the results to various references has
shown a good overview of the quality of the results. Some differences between the computed results
and reference ones have been discussed and explained.

The main entities of the coupling, namely the impedance and the seismic forces being validated
at this point, Chapter 5 presented some soil-structure interaction computations. The configuration
used was a simple FEM model for a building with 42.3 m height, and a circular footing with a
radius of 30 m and a depth of 21.21 m. The structure was embedded in a soil composed of a
hemispherical basin in a homogeneous half-space. Two studies were conducted. The first one aimed
at studying the impact of the shape of the hemispherical basin on the response of the structure.
This case has then been compared with a horizontally layered soil with the same velocity contrast
between the two media. Various velocity ratios (1, 2 and 4) and types of plane waves (SV, SH and
P) have been considered and the results compared in terms of amplification of the incident wave.
The second study concerned the impact of the angle of incidence of the plane wave on the response
of the structure. Various angles were used to apply the plane waves (SV, SH and P) and the impact
on the response of the structure has been discussed. Results showed in general a more important
impact of the shape of the basin than the incidence angle. The amplification due to the shape of
the basin was in all the three type of waves more important than in the case of the horizontally
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layered soil.

Finally, the coupling was used on a realistic configuration of soil-structure interaction on the
Grenoble basin. Difficulties were encountered due to the high velocity contrast between the bedrock
and the basin layers: the computation cost of the near contributions was too high. The mechanical
characteristics of the bedrock have been modified to meet the mechanical characteristics of the lower
layer of the basin. A first study was conducted to compare the response of the basin at two different
points of the free-surface in the absence of structure. A second one was conducted to compare the
site effects on the response of a structure positioned in two different points of the basin.

7.2. Directions for future work

This work was the first step towards the development of an efficient FM-BEM/FEM coupling to
study soil-structure interaction. The results are encouraging in terms of accuracy and computational
times. However, further work should be performed to improve the efficiency of the method to
consider more realistic structures and basin geometries. Some possible directions for future work
are briefly discussed.

Parallelisation of the FM-BEM. Since results in the time domain are considered, a first
parallelisation has been performed by considering various frequencies at the same time. However, it
should be possible to consider larger problems by parallelising the FM-BEM. One level of parallelism
could be achieved by considering the various layers of a basin in parallel. The last level of parallelism
is a more intrusive approach, it consists in parallelising the FM-BEM approach, i.e. by considering
various cells in parallel.

Preconditioner. It has been observed numerically that the number of iterations to achieve
convergence grows with the frequency, the number of degrees of freedom and the number of layers in
a basin. In addition, since the FM-BEM is used in our context for a large frequency range to obtain
results in the time domain, the largest frequency can require a prohibitive number of iterations
before to converge, since the number of iterations necessary increases with the frequency. The
definition of an optimal preconditioner is thus a crucial issue. In fact it can be the limiting factor
to consider larger problems. An optimal preconditioner for the FM-BEM would allow to overcome
this impediment. The issue is that the matrix of the system is not assembled to reduce the memory
requirements. Some algebraic preconditioners using the matrix of the near contributions have been
tested, and found to bring moderate improvement [12], typically reducing the computational cost
by a factor of about 2-3, but not achieving frequency-insensitive iteration counts. On the other
hand, analytic preconditioners, i.e. the definition of well conditioned integral equations have been
shown to be very efficient to reduce the number of iterations [10], in particular by achieving iteration
counts that are nearly independent on the working frequency. However these preconditioners are
much more involved to implement, and for that reason have been so far applied only on Dirichlet
problems in homogeneous domains. It would be interesting to understand more precisely why
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algebraic preconditioners are not efficient while analytic preconditioners are close to be optimal and
if it is possible to combine the two approaches.

Definition of an iterative solver for multiple right hand sides. The proposed strategy to
model soil structure interaction is based on the computation of a seismic force and an impedance
operator projected on a reduced basis of the eigenmodes of the interface. This approach, as presented
here, is not yet optimal as it requires solving multiple systems with the same matrix but different
right-hand sides. Using a iterative solver allowing for multiple right hand sides would be expected
to reduce the overall computational cost of a coupled FM-BEM analysis.

Application of the H-matrices to the near contributions. An important enhancement of the
method would be to get rid of the high computational time required by the near contributions when
the velocity contrast is high. In such configurations, the FM-BEM is not optimal because the meshes
in the two adjacent media are conforming and must be fine enough for the medium with the shortest
wavelength. As a result the mesh is way too fine for the slower medium, and the computation of
the near contributions is using up unnecessary large amounts of time and memory. In fact the
FM-BEM is efficient for a constant density of points per S-wavelength. A possible strategy would
be to accelerate the assembly of the near contributions by using the H-matrix approach [11].
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Appendix A
Analytic solutions: diffraction of incident plane
waves

A.1. Case of an incident plane P-wave

We consider the propagation of an incident harmonique P-wave in a isotropic homogeneous elastic
half-space. We note θ the angle of incidence with respect to the vector ez in the plane ex, ez. This
wave has a unit amplitude. The elastic medium is determined by Cp, i.e. the velocity of the P-waves,
Cs, i.e. the velocity of the S-waves and the ratio γ = Cp/Cs. We note (E, ν) the Young’s modulus
and the Poisson’s ratio of the elastic soil.

The incident plane P-wave is reflected by the free surface and generates a P wave and a S-wave
(Fig. A.1). The reflexion angle α of the S-wave is given by:

sin θ

Cp
=

sinα

Cs

The condition sinα = Cs
Cp

sin θ < 1 is always satisfied. The P-wave does not generate out-of-plane
displacements. The displacement components with respect to ey are equal to zero. The other
components for each wave are given byU

ip
x = sin(θ) exp[ikp(x sin(θ) + z cos(θ)]

U ipz = cos(θ) exp[ikp(x sin(θ) + z cos(θ)]
(A.1)

U
rp
x = Rp sin(θ) exp[ikp(x sin(θ)− z cos(θ)]

U rpz = −Rp cos(θ) exp[ikp(x sin(θ)− z cos(θ)]
(A.2)
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A.1. Case of an incident plane P-wave

Figure A.1.: Diffraction of an incident plane P-wave by a free surface.

U rsx = Rs cos(α) exp[iks(x sin(α)− z cos(α)]

U rsz = Rs sin(α) exp[iks(x sin(α)− z cos(α)]
(A.3)

Where we have denoted U ip the incident plane P-wave, U rp the reflected plane P-wave and the
reflected plane S-wave. The total displacement is given by the sum of these three displacements:

U t = U ip + U rp + U rs.

To determine the constants Rp and Rs, we use the free surface condition. The stress tensor σ is
given by the Hooke law:

σ =
E

1 + ν
(ε+

ν

1− 2ν
tr(ε)I) (A.4)

where the strain tensor ε is equal to the symmetric gradient of the displacement vector.
The free surface condition σ.n = 0 (with n = ez the normal to the free surface) is decomposed into
three equations satisfied on any point of the free surface:

σxz = 0,

σyz = 0,

σzz = 0.

(A.5)

The equation σyz = 0 is intrinsically satisfied. We now have two equations for the two unknowns
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A. Analytic solutions: diffraction of incident plane waves

(Rp, Rs). Noting, C = 1−2ν
1−ν

sin(2θ) tan(2α)

2( ν
1−ν sin2(θ)+cos2(θ))

we obtain

Rp = C−1
C+1

Rs = (1−Rp) sin(2θ)
γ cos(2α) .

(A.6)

A.2. Case of an incident plane SV-wave

We consider the propagation of an incident harmonique SV-wave in a isotropic homogeneous elastic
half-space. We note θ the angle of incidence with respect to the vector ez in the plane ex, ez. This
wave has a unit amplitude. The elastic medium is determined by Cp, i.e. the velocity of the P-waves,
Cs, i.e. the velocity of the S-waves and the ratio γ = Cp/Cs. We note (E, ν) the Young’s modulus
and the Poisson’s ratio of the elastic soil.

The incident plane SV-wave is reflected by the free surface and generates a P wave and a S-wave
(Fig. A.2). The reflexion angle α of the P-wave is given by:

sin θ

Cs
=

sinα

Cp
.

Unlike the case of an incident plane P-wave, these exists a critical angle θc for which θ > θc ⇒
sin(α) =

Cp
Cs

sin(θ) > 1. In that case, surface waves are generated at the interface. In the following
we assume that θ < θc

Figure A.2.: Diffraction of an incident plane S-wave by a free surface.

The incident S-wave does not generate out-of-plane displacements. The displacement components
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with respect to ey are equal to zero. The other components for each wave are given byU isx = cos(θ)exp[iks(x sin(θ) + z cos(θ)]

U isz = − sin(θ)exp[iks(x sin(θ) + z cos(θ)]
(A.7)

U rsx = Rs cos(θ)exp[iks(x sin(θ)− z cos(θ)]

U rsz = Rs sin(θ)exp[iks(x sin(θ)− z cos(θ)]
(A.8)

U
rp
x = Rp sin(α)exp[ikp(x sin(α)− z cos(α)]

U rpz = −Rp cos(α)exp[ikp(x sin(α)− z cos(α)]
(A.9)

Where we have denoted U is the incident plane S-wave, U rs the reflected plane S-wave and U rp the
reflected plane P-wave. The total displacement is given by the sum of these three displacements:
U t = U is + U rs + U rp.

To determine the constants Rp and Rs, we use the free surface condition. The stress tensor σ is
given by the Hooke law:

σ =
E

1 + ν
(ε+

ν

1− 2ν
tr(ε)I) (A.10)

where the strain tensor ε is equal to the symmetric gradient of the displacement vector.
The free surface condition σ.n = 0 (with n = ez the normal to the free surface) is decomposed into
three equations satisfied on any point of the free surface:

σxz = 0

σyz = 0

σzz = 0

(A.11)

The equation σyz = 0 is intrinsically satisfied. We now have two equations for the two unknowns
(Rp, Rs). Noting, C = 2ν−1

1−ν
tan(2θ)

2 sin(2α)( ν
1−ν sin2(α) + cos2(α)) we obtainRs = 1+C

1−C ,

Rp = −γ(Rs + 1)2ν−1
1−ν

sin(2θ)

2( ν
1−ν sin2(α)+cos2(α))

.
(A.12)
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Titre : Modélisation numérique tridimensionnelle des effets de site en Interaction Sol-Structure par une méthode adaptée
aux problèmes sismiques de très grande taille
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Résumé : Les études récentes ont montré l’influence de
la géométrie et de la lithologie du site sur l’amplification de
l’onde sismique incidente. Disposer d’outils de simulation
est nécessaire pour l’analyse du risque sismique des
ouvrages. Néanmoins, les effets de site sont souvent
découplés des calculs d’interaction sol-structure vu la taille
des domaines à considérer et de la complexité des modèles.
L’objectif de cette thèse est de développer une stratégie
de calcul numérique d’interaction sol-structure permettant
de prendre en compte les effets de site dans un contexte
industriel. Pour ce faire, un couplage entre la méthode des
éléments finis (FEM) et la méthode des éléments de frontière
accélérée par la méthode multipp̂le rapide (FM-BEM) est
développé dans ce travail. La BEM permet de modéliser
des problèmes dans des domaines de très grande taille ou
infinis mais est gourmande en temps de calculs. Avec la
méthode accélérée, il est possible de considérer des géologies
plus complexes et d’accéder à des gammes de fréquences plus
élevées par rapport à des approches classiques (purement
FEM ou couplage BEM-FEM), grace à l’accélération du
produit matrice-vecteur dans la résolution par un solveur
itératif. La mise en place de cette approche s’appuie sur le

code FEM industriel Code_Aster (EDF R&D) et le code
FM-BEM Coffee (CNRS) développé par S. Chaillat.
La FM-BEM est d’abord utilisée pour la modélisation de
cas de sols réalistes afin de valider ses paramètres pour
une utilisation dans un cadre industriel. Une stratégie de
couplage FM-BEM/FEM est ensuite développée à l’aide
d’une technique de sous-structuration dynamique oû la
structure (et éventuellement le sol proche) est modélisée
par la FEM, alors que le sol infini est représenté par un
opérateur d’impédance et des forces sismiques, construits
avec la méthode FM-BEM. L’opérateur d’impédance et les
forces sismiques, qui sont calculés sur une base réduite
afin d’en réduire le coût de calcul, sont validés sur des
cas canoniques (demi-espace homogène, bassin à géométrie
variable...). L’influence sur la réponse de la structure de la
forme du bassin, de l’angle d’incidence des ondes ainsi que
du rapport de célérité des ondes entre les couches est alors
étudiée et la réponse de la structure comparée aux cas oû
les effets de site seraient absents. Enfin, la méthodologie de
couplage mise en place est utilisée pour effectuer des calculs
d’interaction sol-structure sur des structures dans le bassin
de Grenoble.

Title : Three-dimensional numerical modeling of site effects in Soil-Structure Interaction for large scale seismic problems

Keywords : Soil-Structure Interaction, Site effects, Boundary element method, Fast multipole method, Finite element
method.

Abstract : Recent studies have shown the influence of the
geometry and lithology of the site on the amplification of the
incident seismic wave. Having simulation tools is necessary
to seismic risk analysis of structures. Nevertheless, site
effects are often decoupled from soil-structure interaction
computations given the size of the domains to be considered
and the complexity of the models. The objective of this work
is to develop a numerical method to simulate soil-structure
interaction, that also takes into account site effects. To
this aim, a coupling strategy between the finite element
method (FEM) and the fast multipole accelerated boundary
element method (FM-BEM) is proposed. The BEM is
well suited to deal with large-scale or infinite domains
but is very expensive in terms of memory requirements
or computational time. Once accelerated with the Fast
Multipole Method, the FM-BEM allows to model more
complex geologies and to consider a higher frequency range
compared to classical approaches (purely with the FEM
or with a standard BEM-FEM coupling) thanks to the
acceleration of the matrix-vector product needed in the
iterative solver. The implementation of this strategy is based

on the FEM code Code_Aster (EDF R&D) and the FM-
BEM code Coffee (CNRS) developed by S. Chaillat.
In this work, FM-BEM is first used to model soils with
realistic mechanical characteristics and to validate the
parameters of the method in an industrial context. An
FM-BEM/FEM coupling strategy is then proposed using a
dynamic substructuring technique where the structure (and
possibly the near soil) is modelled by the FEM, while the
infinite soil is represented by an impedance operator and
seismic forces, computed with the FM-BEM. The impedance
operator and the seismic forces, which are computed on a
reduced basis in order to reduce computational costs, are
then validated on canonical cases (homogeneous half-space,
basin with variable geometry ...). The influence on the
response of the structure of the shape of the basin, the angle
of incidence of the waves as well as the ratio of the wave
velocities between the layers is then studied and the response
of the structure is compared to cases where the site effects
are absent. Finally, the proposed coupling methodology is
used to simulate soil-structure interaction on a configuration
such as structures in the Grenoble basin.
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