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Résumé étendu

Contexte

Décrire le comporte une onde acoustique incidente est diffusée par un corps
élastique immergé dans un fluide est un problème d’une importance majeure
pour la détection et l’identification d’objets immergés. Ce phénomène doit être
simulé dans de nombreux domaines industriels, tels que le contrôle non destructif,
l’imagerie médicale, la réduction acoustique dans l’industrie automobile, ou encore
la discrétion acoustique et l’identification de cibles dans l’industrie navale [71,
109, 141]. Ce problème est dit couplé : il s’agit de deux systèmes physiques (un
système acoustique et un système élastique) qui interagissent l’un avec l’autre par
le biais de conditions de transmission, de sorte que la résolution indépendante de
l’un des systèmes est impossible sans la résolution simultanée de l’autre. Pour
résoudre un tel problème couplé, il est naturel d’exploiter le fait que les deux
systèmes interagissent au moyen d’interfaces communes: les équations de chaque
système peuvent être résolues séparément et alternativement, puis les conditions
de continuité de l’interface relient les solutions des systèmes. L’objectif principal
des algorithmes de résolution basés sur des solutions séparées dans chaque système
est de mettre à jour ces solutions itérativement jusqu’à ce que les conditions de
continuité soient vérifiées. De cette manière, deux méthodes numériques différentes
peuvent être utilisées pour résoudre les équations dans chaque sous-domaine.
Cela permet de bénéficier des avantages respectifs des deux méthodes distinctes.
Cette approche de résolution d’un problème couplé en considérant deux domaines
séparément est une méthode de décomposition de domaine.

Dans ce travail, nous étudions des méthodes de décomposition de domaine dites
"globales en temps" pour résoudre des problèmes couplés acoustiques-élastiques
transitoires. L’objectif est de développer un algorithme itératif à convergence
garantie, puis de mettre en oeuvre une procédure numérique efficace basée sur cet
algorithme. Cette méthode sera ensuite validée sur des cas simples, puis appliquée
à des problèmes à dynamique rapide de dispersion d’ondes de choc acoustiques par
des structures élastiques immergées, ce qui permettra de simuler des configurations
réalistes rencontrées dans l’industrie navale.

Chapitre 1 : Décomposition de domaine pour les problèmes
transitoires

Le premier chapitre de cette étude vise à introduire les méhodes de décomposition



de domaine, et spécifiquement, les méthodes permettant de traiter des problèmes
transitoires acoustique-élastiques. Dans la Section 1.1, on commence par décrire
le principe des méthodes de Schwarz dans le domaine fréquentiel, qui est l’origine
historique des méthodes de décomposition de domaine. Pour ce faire, on s’appuie
sur deux exemples : un problème elliptique et un problème de propagation d’onde.
On montre alors que l’algorithme itératif de Schwarz original ne converge pas sys-
tématiquement, et on introduit les méthodes de Schwarz optimisées, basées sur
l’optimisation des conditions limites définies sur les frontières des sous-domaines.
Une revue de la littérature concernant ces méthode permet de mettre en évidence
que les conditions limite de type Robin sont très largement employées pour constru-
ire des algorithmes itératifs convergents.

La Section 1.2 présente ensuite deux stratégies existantes permettant de prendre
en compte la variable temporelle dans les méthodes de décomposition de domaine.
La première méthode consiste à discrétiser le temps à l’aide d’un schéma implicite,
puis d’utiliser une méthode de Schwarz afin de résoudre un problème fréquentiel
à chaque pas de temps. Une autre possibilité consiste à utiliser une méthode de
décomposition du domaine globales en temps, qui consistent à discrétiser à la fois
l’espace et le temps pour chaque sous-domaine.

Le chapitre se termine par une brève revue de la littérature actuelle concer-
nant les méthodes de décomposition de domaine adaptées à la résolution de prob-
lèmes d’interaction fluide-structure transitoires. On souligne qu’il existe très peu de
travaux décrivant des méthodes globale en temps permettant de traiter des prob-
lèmes acoustiques-élastiques transitoires, notamment parce que ces problèmes ont
été peu étudiés théoriquement. Ce manque de résultats théoriques est un obsta-
cle à la construction d’algorithmes itératifs convergents permettant de résoudre ces
problèmes.

Chapitre 2 : Un couplage acoustique-élastique global en temps
convergent

L’objectif du Chapitre 2 est de définir une procédure de décomposition de do-
maine itérative globale en temps, permettant de résoudre des problèmes acoustique-
élastiques transitoires, avec une convergence garantie. Une telle procédure a été mise
en oeuvre précédement [146], en alternant des résolutions de problèmes d’évolution
de Neumann sur l’ensemble de l’intervalle de temps dans chaque sous-domaines
fluide et solide. Cependant, des problèmes de convergence ont été observés.Nous
avons donc deux objectifs : (i) expliquer mathématiquement la non-convergence de
la procédure itérative basée sur des résolutions de sous-problèmes d’évolution de
Neumann, et (ii) proposer une nouvelle méthode de couplage itérative, globale en
temps, avec une convergence garantie. Cette nouvelle méthode que nous proposons
est adaptée des méthodes classiques de relaxation de forme d’onde de Schwarz op-
timisée (optimized Schwarz waveform relaxation) et repose sur des conditions aux
limites optimisées dans chaque sous-domaine.

Dans la section 2.1, nous commençons par décrire le problème d’interaction
fluide-structure transitoire continu. Nous établissons ensuite des résultats de solv-
abilité pour ce problème. Les résultats présentés diffèrent par la régularité des
données de transmission considéres sur l’interface acoustique-élastique. Ces résul-
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tats de solvabilité montrent la dépendance continue des solutions aux données et
fournissent des correspondances entre les régularités des données et des solutions.
Ces informations sont essentielles pour concevoir des algorithmes de couplage con-
vergents.

En nous appuyant sur ces correspondances entre données et solutions pour le
problème acoustique-élastique transitoire, nous introduisons ensuite, dans la sec-
tion 2.3, une première méthode itérative, globale en temps, inspirée des méthodes
de relaxation de forme d’onde de Schwarz. Cette première méthode est basée sur
la résolution itérative de problèmes aux valeurs limites initiales de Neumann. Nous
rappelons les résultats classiques de solvabilité des problèmes d’évolution de Neu-
mann et mettons en évidence la perte de régularité espace-temps de la solution
trace définie sur l’interface, par rapport à la régularité de la donnée. Des observa-
tions similaires sont ensuite conduites pour une procédure globale en temps ismilaire
basée sur des résolutions sucessives de problèmes d’évolution de Dirichlet. Ces ré-
sultats permettent de justifier la non-convergence de la méthode itérative observée
initialement [146].

Dans la Section 2.4, nous proposons une seconde méthode itérative globale en
temps, basée sur l’alternance des résolutions de problèmes d’évolution de Robin dans
chaque sous-domaine. Nous rappelons les résultats de solvabilité pour les problèmes
aux valeurs limites initiales de Robin et mettons en évidence la conservation de la
régularité espace-temps de la solution trace définie sur l’interface, par rapport à la
régularité de la donnée.

Nous prouvons la convergence de cette nouvelle procédure itérative globale dans
le temps dans la Section 2.5. Enfin, la Section 2.6 présente une illustration numérique
sur un problème acoustique-élastique 2D simple, qui met en évidence l’effet de la
régularité des données sur la solution.

Chapitre 3 : Une méthode itérative FEM/Z-BEM globale en
temps

Le Chapitre 3 propose une application de l’algorithme itératif global en temps pour
simuler des problèmes complexes d’interaction fluide-structure. Pour obtenir le
solveur le plus efficace possible, une méthode des éléments finis (FEM) et une méth-
ode des éléments de frontière rapide (Z-BEM) sont utilisées. La Z-BEM permet de
résoudre très efficacement les problèmes de propagation d’ondes transitoires dans
des domaines linéaires homogènes non bornés. Le résultat fourni par cette méth-
ode est obtenu sur tout l’intervalle de temps. La Z-BEM est donc une méthode
naturellement adaptée aux algorithmes globaux en temps, et particulièrement au
couplage itératif Robin-Robin que nous proposons. D’autre part, la méthode des
éléments finis est la plus appropriée pour modéliser le comportement non linéaire
des structures.

La Section 3.1 rappelle brièvement la théorie des équations intégrales de frontière
transitoires ainsi que celle de la BEM, puis la Section 3.2 donne quelques rappels sur
le principe et les particularités de la Z-BEM. La Section 3.3 est dédiée à la validation
de la méthode numérique de couplage FEM/Z-BEM sur un exemple d’interaction
fluide-structure 2D simple. La convergence est évaluée et nous étudions ensuite
les valeurs optimales des paramètres de couplage impliqués dans les conditions de
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transmission Robin. Nous comparons également la convergence de l’algorithme
Robin-Robin avec d’autres types d’itérations globales en temps (Dirichlet-Dirichlet
et Neumann-Neumann). Dans la Section 3.4, on montre que la vitesse de con-
vergence de la méthode FEM/Z-BEM itérative globale en temps peut encore être
améliorée. Un problème d’interaction fluide-structure 2D plus complexe est traité,
d’une part pour valider que le choix des valeurs des paramètres de couplage des
conditions de Robin permet bien d’optimiser la vitesse de convergence, et d’autre
part, pour évaluer l’accélération de la convergence induite. Nous appliquons égale-
ment une méthode accélération de point fixe appelée ∆2 d’Aitken, pour réduire
davantage le nombre d’itérations. On propose également dans la Section 3.5, une
nouvelle approximation haute fréquence adaptée à la Z-BEM avec des conditions
limite de Robin, qui permet de réduire considérablement le nombre de problèmes
BEM à résoudre à chaque itération.

Enfin, la Section 3.6 détaille comment cette méthode FEM/Z-BEM peut être
appliquée à des problèmes d’UNDEX complexes et réalistes et en souligne les avan-
tages pratiques, ainsi que les limitations. En effet, le couplage FEM/Z-BEM proposé
repose sur la disponibilité de conditions limite de Robin non-homogènes acoustique
et élastique. Or, de telles conditions limites de Robin élastiques peuvent ne pas être
disponibles dans certains logiciels de simulations, ce qui pourrait limiter l’utilisation
de ce couplage dans des contextes industriels.

Chapitre 4 : Un couplage acoustique/acoustique-élastique global
en temps convergent

Le but du Chapitre 4 est donc de s’affranchir de la nécessité d’utiliser des condition
limite de Robin non homogènes élastiques, et de proposer un couplage itératif global
en temps alternatif pour résoudre des problèmes acoustiques-élastodynamiques tran-
sitoires, toujours avec une convergence garantie mais sans utiliser de conditions lim-
ites de Robin élastiques. Pour ce faire, on considère une nouvelle décomposition de
domaine: déplace l’interface de couplage dans le milieu acoustique, de sorte qu’elle ne
coïncide plus avec la surface fluide-structure et qu’on doit résoudre un sous-problème
acoustique et un sous-problème acoustique-élastique à chaque itération.

Nous rappelons dans la Section 4.1, l’importance d’un tel couplage alternatif
et ses avantages. La Section 4.3 introduit ensuite la définition du problème et les
notations, puis dans la Section 4.3.2 nous présentons la définition des nouvelles
itérations globales en temps. Les conditions limites de Robin sont imposées dans
le domaine acoustique uniquement. La convergence garantie de ces itérations est
prouvée dans la Section 4.4. Nous validons numériquement notre procédure avec
une méthode FEM/Z-BEM dans la Section 4.5, en considérant des problèmes 2D
simples, avant de résoudre des problèmes aux géométries 3D plus complexes dans le
Chapitre 5.

Chapitre 5 : Un couplage non intrusif dans un contexte indus-
triel. Application aux explosions sous-marines

Le dernier chapitre de ce travail vise à de démontrer que l’algorithme itératif de
décomposition de domaine que nous avons développé, basé sur les résolutions suc-
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cessives de problèmes d’évolution de Robin dans chaque sous-domaine, permet bien
de traiter des phénomènes couplés complexes, se déroulant dans le contexte des ex-
plosions sous-marines en champ lointain. En pratique, nous visons à coupler deux
solveurs de manière non-intrusive, selon la procédure itérative acoustique/acoustique-
élastique décrite dans le Chapitre 4. Pour traiter la partie acoustique/élastique in-
térieure du problème par éléments finis, nous utilisons le logiciel FEM Code_Aster,
développé par EDF [64], et pour traiter le domaine acoustique non borné extérieur,
nous utilisons un solveur Z-BEM 3D rapide développé au laboratoire POEMS.

L’objectif de la Section 5.1 est de valider le couplage acoustique/acoustique-
élastique non intrusif, lorsqu’un solveur FEM industriel est utilisé. Nous insistons
sur certaines difficultés de mise en œuvre liées à l’architecture du solveur, dont
le comportement ne peut être modifié. La procédure de couplage est validée sur
un problème d’interaction fluide-structure 3D simple, en considérant une sphère
élastique et un champ acoustique incident transitoire uniforme. Dans la Section 5.2,
nous proposons une extension à notre méthode de couplage permettant de simuler le
comportement de navires de surface. Pour ce faire, il faut tenir compte des conditions
limites de la surface libre. L’emploi de fonctions de Green du demi-espace permet
de modifier le solveur Z-BEM rapide à cet effet.

Après une briève présentation des caractéristiques d’une explosion sous-marine
dans la Section 5.3, l’objectif final est de traiter un cas réaliste de sous-marin soumis
à une onde de choc produite par une explosion sous-marine en champ lointain. Un
cas d’étude réaliste et proche des applications industrielles visées est présenté :
on considère une coque de sous-marin élastique faisant face à une onde de choc
acoustique incidente et on met en place les outils nécessaires à sa résolution. Enfin,
dans la Section 5.4, nous donnons quelques perspectives d’améliorations qui pourront
guider les futurs études et développements numériques.

Conclusion et perspectives

Conclusion. Dans ce mémoire, un algorithme de décomposition de domaine global
en temps à convergence garantie, permettant de résoudre des problèmes acoustiques-
élastiques transitoires a été proposé, et une méthode numérique FEM/Z-BEM a été
mise en oeuvre. Dans un premier temps, nous avons montré la solvabilité du prob-
lème acoustique-élastique transitoire pour différentes régularités espace-temps de la
donnée. Nous avons également étudié la solvabilité des problèmes aux valeurs lim-
ites initiales acoustique et élastodynamique transitoires, avec des conditions limites
de type Robin, Neumann et Dirichlet. Cette première partie du travail a permis, en
soulignant les différentes régularités espace-temps des solutions, de montrer la con-
servation de la régularité de la solution trace des problèmes acoustique et élastique
de Robin, par rapport à la régularité de la donnée. En nous basant sur ces obser-
vations, nous avons proposé un algorithme de décomposition de domaine global en
temps, basé sur les résolutions successives de problèmes d’évolution de Robin, et nous
avons prouvé sa convergence. Nous avons ainsi développé un couplage itératif, global
en temps, à convergence garantie, permettant d’utiliser deux méthodes numériques
distinctes, de manière non intrusive. Cette stratégie a ensuite été mise en œuvre
pour coupler deux méthodes numériques efficaces: une méthode des éléments finis
et une approche Z-BEM combinant (i) une méthode d’éléments de frontière (BEM)
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accélérée par la méthode des matrices hiérarchiques dans le domaine de Laplace et
(ii) une quadrature de convolution. Plusieurs améliorations ont été proposées pour
accélérer la convergence des itérations, et la méthode a été validée sur des problèmes
académiques, fournissant ainsi des résultats prometteurs pour le traitement futur de
cas industriels réalistes.

Perspectives. Cette première étude sur les méthodes de décomposition de domaine
globales en temps pour les problèmes acoustiques-élastiques transitoires a ouvert de
nombreuses perspectives. A court terme on propose par exemple d’intégrer la méth-
ode globale en temps permettant de traiter l’interaction entre une onde de choc
acoustique et une structure élastique, au sein d’un outil numérique adapté au traite-
ment de l’ensemble des phénomènes physiques intervenant lors de l’interaction fluide-
structure entre une explosion sous-marine en champ lointain et des sous-marins ou
des navires de surface. Cet outil pourrait être utilisé pour traiter de manière unifiée
à la fois l’onde de choc et le mouvement des bulles.

Annexes

Le mémoire se termine avec cinq annexes qui donnent des détails sur :

• Les solutions semi-analytiques de problèmes acoustiques-élastiques 2D à symétrie
radiale.

• L’évaluation semi-analytique du facteur de convergence des itérations acous-
tique/ acoustique-élastiques.

• Une preuve de solvabilité pour un problème de Neumann transitoire (résultat
énoncé dans le corps principal du document).

• Une preuve de solvabilité pour un problème de Robin transitoire (résultat
énoncé dans le corps principal du document).

• La mise en oeuvre de la Z-BEM.
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Deux publications supplémentaires sont actuellement en préparation : (i) présen-
tant la preuve de convergence des itérations acoustique-élastiques globales en temps,
correspondant au contenu du Chapitre 2, Sections 2.4 et 2.5; et (ii) sur le couplage
acoustique/acoustique-élastique, correspondant au contenu du Chapitre 4.
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Introduction

Context

The problem of determining how an incoming acoustic wave is scattered by an elas-
tic body immersed in a fluid is of major importance in detecting and identifying
submerged objects. This class of problem is generally called a fluid-structure inter-
action. This phenomena needs to be simulated in many industrial fields, such as
non-destructive testing, medical imaging, noise reduction in the automobile indus-
try, or acoustic discretion and target identification in naval industry [71, 109, 141].

Figure 1: Acoustic wave scattered by an elastic body immersed in a fluid.

This problem is coupled : it consists in two different physical systems (an acoustic
and an elastic) which interact with each other through kinematical and dynami-
cal transmission conditions, so that the independent solution of any one system is
impossible without simultaneous solution of the others. A natural way to solve a
coupled problem is to exploit the fact that the two systems interact by means of
common interfaces. The equations of each system are solved separately and alterna-
tively. The interface continuity conditions relate the solutions of the systems. The
main objective of solution algorithms based on separate solution in each system is to
(iteratively) update them until the continuity conditions are verified. Generally, dis-
tinct domains describe different physical situations. For example, in a fluid-structure
interaction problem, the fluid and the structure equations can be solved separately
[74, 197]. In this way, one numerical method can be used to solve the equations of
the fluid, and another method to treat the equations of the solid. It enables to profit
from respective advantages of two distinct methods and to evade their drawbacks.
This approach to solve a coupled problem by considering two domains separately is
a domain decomposition method.



Domain decomposition methods are a family of methods to couple different par-
tial differential equations (PDE) models [66, 170]. The main idea is to divide the
computational domain of a PDE into smaller sub-domains and to split the problem
into initial boundary value problems defined on the sub-domains. The PDE is solved
separately on each sub-domain. The independent solutions do not yield the global
solution of the initial problem. But the construction of a convergent sequence of
local solutions can be achieved by iteratively solving local sub-problems and allow-
ing sub-domains to exchange boundary information between the successive iterates.
Generally, domain decomposition consists in ensuring that the transmission condi-
tions between sub-domains are optimally prescribed. This domain of research is very
active. We focus on time-domain decomposition methods to solve acoustic/elastic
coupled evolution problems.

This work is motivated by applications in naval engineering. It is a part of
the ongoing research collaboration between Naval Group Research and the POEMS
teams at ENSTA Paris. It started with the PhD thesis of D. Mavaleix-Marchessoux
[146]. The present PhD is funded by Naval Group and the Direction Générale de
l’Armement (DGA) (through the Agence de l’Innovation de Défense (AID)). The
overall goal of this collaboration is to accurately assess the potential effects of far-
field underwater explosions on submarines and surface ships (UNDEX). An accurate
prediction of underwater explosions effects could help improving hull designs to resist
these loads and avoid weaknesses in designs leading to premature or catastrophic
failures. Since the work of R. Cole [48], whose publications form the basis of most
of the research on UNDEX, it has been extensively studied both at Naval Group
[126, 136, 146] and at the Direction Générale de l’Armement [15, 30].

The modelling of the fluid-structure interaction taking place in this configuration
is however not simple. During a far-field UNDEX, two types of solicitations are
involved at two different time scales. A primary acoustic wave with a steep front
(fast excitation, characteristic time of the order of a few milliseconds, fluid considered
as linear acoustic) is first created by the explosion. The explosion then releases an
oscillating gas bubble that creates a second, slower overall movement of heavy fluid
that solicits the ship at low frequencies and over a longer time interval.

These two phenomena therefore have distinct effects and have both to be taken
into account in distinct ways. It is possible to consider that during the rapid phase
(shock wave) the fluid is acoustic, and that during the slow phase (oscillating bubble)
the fluid is potential [146]. These approximations are reasonable in an industrial
context and enable the use of linear fluid models. Nowadays the reference procedure
used to evaluate these two phenomena and their effects on a submarine, is an iterative
step-by-step procedure that couples two codes: one to model the structure (based on
a finite element method) and one for the fluid (based on a conventional boundary
element method) [74]. However, the code used for the fluid does not solve the
transient wave equation, but only an approximate version. Moreover, accelerated
numerical boundary element methods (BEM) have appeared and reached maturity.
There is therefore a need to develop new, effective and accurate modelling tools to
solve industrial underwater explosions problems.

In the previous study made in the framework of the Naval Group/ POEMS col-
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Figure 2: Typical bubble motion and free-field pressure history for an
undervwater explosion [186].

laboration, D. Mavaleix-Marchessoux [146] worked on the primary acoustic shock
wave and the movement of heavy fluid created by the far-field explosion. He associ-
ated two numerical methods: a finite element method (FEM) and a fast boundary
element method (BEM). For the oscillating gas bubble, he proposed an efficient
method based on an iterative FEM-BEM coupling at each time step (the fluid prob-
lem being quasi-static). For the shock wave, the acoustic fluid was treated with an
improved boundary element method (Z-BEM) that implies a global treatment of
the time interval. An iterative FEM/Z-BEM coupling over the whole time interval
was tested, to take advantage of the global-in-time nature of the Z-BEM. This cou-
pling was based on a sequence of Neumann evolution problems defined in each fluid
and solid sub-domain and was found to be non-convergent. During the shock wave
phase, the Z-BEM was finally used to compute the initial reflected field, and the
fluid-structure interaction problem was solved using the FEM in both domains. It is
however not an optimal solution because for a complex geometry, a 3D volume mesh
has to be generated with a geometrically complex internal boundary. Moreover, this
volume mesh must then be truncated, which may create unwanted reflections be-
cause of the approximation of the radiation condition. This complex 3D volume
mesh could be avoided with a global-in-time iterative FEM/Z-BEM procedure.

The present work thus focuses on the proposition of a global-in-time iterative
domain decomposition method to solve transient acoustic/elastic problems, and on
its implementation as a coupled FEM/Z-BEM method. We have the three following
objectives:
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• We aim at coupling the FEM and the Z-BEM. It implies to use a global-in-time
coupling, with iterations over the whole time interval.

• The iterative method must have a guaranteed convergence.

• We seek to explain why some procedures (e.g. solving successive Neumann
evolution problems) do not lead to convergent algorithms.

Thesis contributions

To meet these requirements, we have followed three milestones, both theoretical and
numerical.

We first aim at constructing domain decomposition algorithms for the fast-time
fluid-structure interaction problem with guaranteed convergence. The work pre-
sented here is part of the research on non-overlapping Schwarz methods for wave
propagation problems. The first developments date back to 1991 with the PhD
thesis of B. Després [59], where a convergent domain decomposition algorithm was
proposed, using optimised "Robin" boundary conditions in each subdomains. These
Robin conditions are a combination of Dirichlet and Neumann traces and pave the
way to the development of Optimised Schwarz methods. These methods were ex-
tended to evolution problems through global-in-time methods, also called Schwarz
Waveform Relaxation methods [84]. They rely on the successive solutions of evo-
lution problems, also termed initial-boundary value problems (IBVP), in each sub-
domains. The first contribution of this PhD work is theoretical and consists in
extending the convergence analysis of non-overlapping domain decomposition meth-
ods to evolution fluid-structure interaction problems. To design convergent coupling
algorithms, it turns out that the knowledge of data-to-solution mappings for the con-
tinuous transient fluid-structure interaction problem, and also for IBVPs involved
in a domain decomposition approach, is essential. We thus derive new solvability
results for the transient fluid-structure interaction problem (see the article [24]). We
also highlight the loss of regularity of the trace solution when solving a Neumann
evolution IBVP, while on the contrary, the regularity is preserved for a Robin evolu-
tion IBVP. This observation is particularly original since it differs from the classical
regularity results known for elliptic problems in time. It also has a direct influence
on the convergence of the algorithms considered to solve a fluid-structure interac-
tion problem: while the convergence of the algorithm based on Neumann boundary
conditions could not be proved, we show the superiority of the coupled algorithm
based on Robin boundary conditions. Adapting the multi-trace formalism proposed
in the recent paper [49] to evolution problems, we provide a proof of convergence
for the global-in-time Robin iterations.

The second contribution is to design an efficient numerical method from the
convergent algorithm we proposed. The elastic solid is modelled with the Finite El-
ement Method, whereas the unbounded fluid medium is treated in the framework of
boundary integral equations, using the Boundary Element Method, with an efficient
Z-BEM method. Following the work of [146], the Z-BEM method is accelerated by
H-matrices and a high-frequency approximation is used to reduce the number of
frequency BEM problems solved. We also propose a high-frequency approximation
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well-suited for acoustic evolution problems with Robin conditions. We validate the
method with academic numerical examples.
An important question is to choose the coupling parameters appearing in the Robin
boundary conditions definition. They are not easy to choose and require a crucial
tuning to get efficiency. Based on the physical interpretation of the problem and on
the thickness of the elastic structure, we propose to choose these parameters with re-
spect to the elastic and acoustic impedances. The efficiency gain is then highlighted.
Imposing non-homogeneous Robin boundary conditions might not be possible in in-
dustrial FEM solvers, and it might be impossible to use this global-in-time iterative
algorithm. To overcome this problem, we present an alternative global-in-time iter-
ative method, based on the resolutions of an acoustic and an acoustic/elastic Robin
IBVPs in each subdomain. Its convergence is proved and the influence of the cou-
pling parameter value are investigated. It might then be the most efficient solution
for the targeted industrial applications.

Finally, the third contribution is to show the capabilities of the approach in the
industrial context. To this aim, we investigate the possibility to use the algorithm
in a non-intrusive way, with distinct commercial or open source solvers. We also
extend our global-in-time iterative method to surface ships or to submarines in
shallow waters. Using the method of images, we adapt the Z-BEM by modifying
the fundamental solution to take the free-surface or the sea bed into account. The
efficiency of the the global-in-time iterative method is illustrated with 3D fluid-
structure interaction problems.

Outline of the work

This dissertation is decomposed into five chapters. In Chapter 1, we give an overview
on the literature of domain decomposition methods. We emphasise on the meth-
ods adapted for evolution problems and on the optimised conditions developed to
improve the algorithms convergence.

In Chapter 2, we theoretically study the well-posedness of the target coupled
fluid-structure interaction problem, but also for the IBVPs defined on each subdo-
main and formulated with different boundary conditions. These solvability results
have a direct impact on the convergence of the iterative algorithms and allow to
justify the iterations convergence or non-convergence. The study of the solutions
regularities leads to the definition and the comparison of two global-in-time itera-
tive couplings, based on Neumann and Robin transmission conditions respectively.
In particular, we prove the convergence of the iterative global-in-time algorithm
formulated with Robin boundary conditions.

We propose in Chapter 3 a global-in-time iterative FEM/Z-BEM coupling al-
gorithm with guaranteed convergence. Numerical experiments allow to verify the
effective convergence of the algorithm based on Robin IBVPs. This chapter is then
devoted to the numerical analysis of a particular choice of the coupling parameter
value introduced in the Robin condition. We investigate its influence on the con-
vergence speed, and propose an optimal choice. We also use relaxation and Aitken
acceleration to speed up the convergence.

In Chapter 4, a second acoustic/acoustic-elastic convergent algorithm is theoret-
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ically studied. It is based on a new domain decomposition and an acoustic-acoustic
coupling interface with Robin transmission conditions. We prove the convergence of
the iterations and expose which advantages derive from its use. We implement the
algorithm with a FEM/Z-BEM iterative coupling and show its convergence on 2D
examples.

This work concludes with the treatment of more complex underwater explosion
problems in Chapter 5. We first extend the procedure to emmerged elastic obstacles
by adapting the Z-BEM method to take a free-surface into account. We then consider
a 3D submarine stiffened hull subjected to a remote underwater explosion. The
purpose of this chapter is to show the efficiency of the computational method when
used with an industrial code (Code_Aster).

The document ends with conclusions and research perspectives that could follow
on from this thesis.
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CHAPTER 1

Domain decomposition methods for transient
problems

Domain decomposition methods (DDM) are not new and date back to the 1870s.
Since then, many variations and improvements have been developed. Domain de-
composition (DD) is nowadays a large field of research and the literature is vast.
For general references, the reader may refer to [66, 93, 170]. [78] provides an exten-
sive historical review. The objective in this chapter is not to provide an exhaustive
review of these methods, but rather to show the references that inspired our work.
Our final goal in this work is to solve fluid-structure interaction problems in the
time domain with domain decomposition methods. Therefore, the present chapter
first gives some reminders about DD methods for elliptic and time-harmonic wave
propagation problems, and it is then mainly focused on time-domain DDMs. In
Section 1.1, we study some time-harmonic DDMs on particular cases. We aim at
illustrating the influence of the choice of boundary conditions in each subdomain,
on the convergence of the iterative domain decomposition methods. Section 1.2 is
then devoted to DDMs for evolution problems, and more precisely on global-in-time
iterative methods. We also focus on the optimisation of the boundary conditions
in each subdomain when the domain decomposition iterations do converge. Finally,
we focus in Section 1.3 on DDMs for transient fluid-structure interaction problems.
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1.1. Generalities on domain decomposition methods

1.1 Generalities on domain decomposition methods

Our final goal in this work is to solve fluid-structure interaction problems in the time
domain using domain decomposition methods. The purpose of this first Section is
thus to explain the concept of domain decomposition methods. We first expose the
original Schwarz method in the frequency domain: we show on a Poisson problem
that this original iterative algorithm does not converge when the geometry is de-
composed into non-overlapping subdomains, and also illustrate how the convergence
of the iterations depends on the size of the overlap. We then describe the interest
of the optimised Schwarz methods and review some well-known optimised transmis-
sion conditions. Some ideas will later be transposed in the time domain, to address
evolution problems.

1.1.1 The original Schwarz algorithm

Schwarz methods were initially introduced by H. Schwarz [180] to establish the exis-
tence and uniqueness of solutions for the Poisson equation with prescribed boundary
values on regions with non-smooth boundaries. The idea is to split the irregular do-
main into sub-domains with more regular boundaries and to set up an adapted
iterative method to exchange information between the subproblems. A basic exam-
ple consists in considering the Poisson equation on a region Ω with a zero Dirichlet
data given on the domain boundary ∂Ω.{

−∆u = f in Ω,

u = 0 on ∂Ω.
(1.1)

Let suppose that Ω is partitioned into two overlapping subdomains Ωi (with i=1,2) as
illustrated on Figure 1.1. The original Schwarz alternating algorithm is an iterative
method based on solving alternatively sub-problems in domains Ω1 and Ω2. Under
some regularity assumptions on f and the boundaries of the subdomains (usually
f is square-summable and the boundaries are Lipschitz), the solution is proved to
exist as the limit of a sequence of local solutions (un1 , un2 ) constructed with an initial
guess (u01, u

0
2). The algorithm updates (un1 , u

n
2 ) → (un+1

1 , un+1
2 ) by

−∆un+1
1 = f in Ω1 −∆un+1

2 = f in Ω2 (1.2)
un+1
1 = 0 on Σ1, then, un+1

2 = 0 on Σ2, (1.3)
un+1
1 = un2 on σ1 un+1

2 = un+1
1 on σ2. (1.4)

H. Schwarz proved the convergence of the alternating algorithm using the max-
imum principle and thus the well-posedness of the Poisson problem in complex
geometries. The Schwarz method thus requires at each iteration the solution of two
subproblems of the same kind than the original problem. In this case, Dirichlet-
type boundary conditions are imposed across the interfaces for each subproblem.
The method can be extended to more than two subdomains. In this case the formu-
lation must ensure that the newest available information at the interfaces is always
taken, if several choices are possible. The convergence of the method for many sub-
domains can be proved with similar arguments to those for the original Schwarz
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1.1. Generalities on domain decomposition methods

Figure 1.1: Example of partition into two subdomains Ω1 and Ω2, with
and without overlap.

method with two subdomains. This original algorithm is however not parallel as
the local problem in the sub-domain Ω1 must be solved before the local problem in
the sub-domain Ω2. Later P.-L. Lions modified the original Schwarz algorithm (1.4)
that is sequential, to enable its parallelisation and proved its convergence using the
maximum principle [132]. The parallel Schwarz algorithm is an iterative method
which updates (uni ) → (un+1

i ), at the same time in all subdomains i (i = 1 and 2 for
example) by

−∆
(
un+1
i

)
= f in Ωi, (1.5)

un+1
i = 0 on Σi, (1.6)
un+1
i = un3−i on σi. (1.7)

The only modification is the iteration index in the second transmission condition,
which makes this method parallel: given an initial guess (u01, u02), we simultaneously
compute both subdomain solutions in parallel at each iteration n.

It easy to show that the classical Schwarz algorithms (both alternating and
parallel) do not always converge with Dirichlet transmission conditions. We now
consider two 2D model problems to illustrate this non-convergence: first, an elliptic
problem in the non-overlapping case, and then a propagative (non-elliptic) problem.

Elliptic problem. We first consider a classical 2D elliptic example. The objective
is to prove the convergence in an overlapping case and to show the dependence of
the convergence factor to the overlap size d. The problem is defined on Ω = R2 for
a positive and real parameter α:

(−∆+ α)u = f on Ω

where Ω is unbounded, f is a source term and u is bounded at infinity. The un-
bounded 2D domain Ω is decomposed into Ω = Ω1 ∪Ω2, with Ω1 :=]−∞, d[×R and
Ω2 :=]0,∞[×R (Figure 1.2). The positive parameter d defines the overlap size and
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1.1. Generalities on domain decomposition methods

Figure 1.2: 2D overlapping partition of Ω into two subdomains Ω1 =
[−∞, d]× R and Ω2 = [0,∞]× R.

d=0 defines the non-overlapping case. Given initial guesses u01 and u02, the parallel
Schwarz algorithm consists in computing at each iteration n:{

(−∆+ α)un+1
1 (x, .) = f(x, .) in Ω1

un+1
1 (d, .) = un2 (d, .){

(−∆+ α)un+1
2 (x, .) = f(x, .) in Ω2

un+1
2 (0, .) = un1 (0, .)

where the local solutions u1 and u2 are bounded at infinity. We define the error to
the exact solution u:

eni := u− uni (i = 1, 2). (1.8)

By linearity the error verifies{
(−∆+ α) en+1

1 (x, .) = 0 on Ω1

en+1
1 (d, .) = en2 (d, .)

(1.9)

{
(−∆+ α) en+1

2 (x, .) = 0 on Ω2

en+1
2 (0, .) = en1 (0, .)

(1.10)

For a given Fourier variable k, let the Fourier transform in the y direction be denoted
by

û(x, k) := (Fu) (x, k) =
∫

R
u(x, y)e−ikydy.

By taking the partial Fourier transform of the first line of (1.9) in the vertical
direction y: (

α− ∂2

∂x2
+ k2

)
ên+1
1 (x, k) = 0 in Ω1.

This is an ordinary differential equation (ODE) whose solution has the form

ên+1
1 (x, k) =

∑
j

γj(k)exp (λj(k)x)

10



1.1. Generalities on domain decomposition methods

We then compute

λ1(k) = λ+(k) =
√
α + k2 and λ2(k) = λ−(k) = −

√
α + k2

Therefore
ên+1
1 (x, k) = γn+1

+ (k)exp
(
λ+(k)x

)
There is no second term as the solution must be bounded at x = −∞ which implies
γn+1
− = 0 ∀n, k. We then reformulate this expression to introduce the overlap value

d, by changing the value of the coefficient γ+ at each iteration

ên+1
1 (x, k) = γn+1

1 (k)exp
(
λ+(k)(x− d)

)
We follow the same procedure for the subdomain Ω2 and equation (1.10). An ex-
pression for the error ê2 is obtained as

ên+1
2 (x, k) = γn+1

2 (k)exp
(
λ−(k)x

)
To obtain the convergence factor, γn+1

1 and γn+1
2 have to be determined. We use the

interface condition (at x = d and x = 0) and we obtain

γn+1
1 (k) = γn+1

2 (k)exp(λ−(k)d) and γn+1
2 (k) = γn+1

1 (k)exp(−λ+(k)d)

The relation linking the successive iterations n+ 1 and n− 1 is then given by

γn+1
j (k) = ϱ(k, α, d)2γn−1

j (k) (1.11)

with the convergence factor ϱ

ϱ(k, α, d) = e−
√
α+k2d. (1.12)

The convergence factor ϱ and the convergence rate of the algorithm depends on the
overlap size d. The algorithm convergence rate is reduced when the overlap size
becomes smaller. Moreover, in the non-overlapping case (d= 0), the convergence
factorϱ is identically equal to 1 and the algorithm does not converge. But when
d>0, ϱ < 1 and the convergence is guaranteed. This dependence of the convergence
rate on the size of the overlap is valid for operators verifying the maximum principle
(for which the solution decays with respect to the boundary values) [170].

The original Schwarz algorithm only converges for elliptic problems with a non-
zero overlap region. If the initial Schwarz algorithm [180] is indeed based on an
overlapping partition and the first convergence proof of Lions [133] actually rests on
the existence of the overlap, overlapping strategies however present many drawbacks
for practical implementations. First of all, the size of the local sub-problems is
increased by the size of the overlap, making the local solves somehow unnecessarily
more expensive. In addition, the generation of overlapping mesh partitions and the
implementation of overlapping domain decomposition methods are more involved
than non-overlapping strategies. These limitations are not prohibitive and many
successful methods are built on overlapping partitions, however, we only consider
non-overlapping methods in this work.

11



1.1. Generalities on domain decomposition methods

Propagation problem. We now consider another non-elliptic example for wave
propagation to determine the expression of its theoretical convergence factor and
show its non-convergence. The Helmholtz problem is defined on Ω = R2 by(

−∆− ω2

c2

)
u = f, in Ω (1.13)

where c is the acoustic velocity and f is a source term of frequency ω. u satisfies
the Sommerfeld radiation condition at infinity. We then denote the wave number
κ = ω

c
. Ω is decomposed with the same spacial decomposition Ω = Ω1 ∪ Ω2 as for

the elliptic problem (Figure 1.2). For an initial guess (u01, u
0
2) the classical parallel

Schwarz algorithm consists in computing at each iteration n > 0{
(−∆− κ2)un+1

1 (x, .) = f(x, .) in Ω1

un+1
1 (d, .) = un2 (d, .)

(1.14)

{
(−∆− κ2)un+1

2 (x, .) = f(x, .) in Ω2

un+1
2 (0, .) = un1 (0, .)

(1.15)

where un1 and un2 both verify the Sommerfeld radiation condition at infinity. Due
to the negative sign of the order zero term, the Helmholtz operator is not positive.
(1.14) and (1.15) are not necessarily well-posed. Moreover, even when the local
problems are well-posed, a bad convergence rate is expected. Following a procedure
similar to the one for the elliptic problem, we consider the error to the analytical
solution eni := u − uni (i=1,2) and thus by linearity, the case f(x, .) = 0. By using
the partial Fourier transform in y direction, we solve two ODEs:{(

− ∂2

∂x2
− κ2 + k2

)
ên+1
1 = 0

ên+1
1 (d, k) = ên+1

2 (d, k)

and {(
− ∂2

∂x2
− κ2 + k2

)
ên+1
2 = 0

ên+1
2 (0, k) = ên+1

1 (0, k).

The solutions ên1 and ên2 verify the relations

ên+1
j = Aje

λ(k)x +Bje
−λ(k)x, j = 1, 2,

where λ(k) is the root of the characteristic equation λ2 + (κ2 − k2) = 0. We have

λ(k) =

{ √
k2 − κ2 for |k| ≥ κ

i
√
κ2 − k2 for |k| < κ.

(1.16)

λ(k) is a complex valued function, which is real for the vanishing modes (|k| ≥ κ)
and imaginary otherwise (|k| < κ). We then use the interface condition (at x = d
and x = 0). Since the Sommerfeld radiation condition excludes the incoming modes
at infinity, we obtain the solutions

ên+1
1 (x, k) = ên+1

1 (d, k)eλ(k)(x−d)

ên+1
2 (x, k) = ên+1

2 (0, k)e−λ(k)x.
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1.1. Generalities on domain decomposition methods

We use the interface condition (at x = d and x = 0) and we obtain

ên+1
1 (d, k) = ên−1

1 (d, k)e−2λ(k)d and ên+1
2 (d, k) = ên−1

2 (d, k)e−2λ(k)d

We finally have the relation

ên+1
j (d, k) = ϱ(k, d)2ên−1

j (d, k)

where the convergence factor ϱ is

ϱ(k, d) = e−λ(k)d

with λ(k) given by (1.16). In the non-overlapping case d = 0, the convergence factor
ϱ(k, d) is equal to 1 and the classical Schwarz algorithm does not converge. But even
in the overlapping case, as λ(k) is imaginary, this convergence factor is complex and
equal to 1 in modulus. For this reason the classical Schwarz algorithm does not
converge for the Helmholtz equation, even in the overlapping case. This conclusion
and the result about the elliptic problems witout overlap, led P.-L. Lions to propose
optimised Schwarz methods.

1.1.2 Robin conditions

In the original Schwarz algorithm, the information coming from an adjacent sub-
domain is communicated to the local sub-problem through a non-homogeneous
Dirichlet (as proposed by Schwarz [180]) or Neumann boundary condition. How-
ever, such an algorithm does not converge for non-overlapping partition. There are
cases such as Helmholtz problems, where they do not converge even with a non-zero
overlap. These drawbacks have all historically been avoided by introducing different
boundary conditions at the interfaces between subdomains in the local sub-problems.
This motivated the development of optimised Schwarz methods. The idea proposed
by Lions [133] for the Laplace equation is to combine Dirichlet and Neumann traces
using a real coupling parameter, to form Robin transmission conditions. Després
then proposed in [59] to use Robin conditions to solve the Helmholtz equation with
a domain decomposition algorithm. These Robin conditions allow the convergence,
whereas classical Dirichlet or Neumann conditions lead to a non-convergent algo-
rithm. As an illustration we show in this section how Robin boundary conditions
improve the convergence of the Schwarz algorithm. We focus on the the same model
problems as in Section 1.1.1.

Elliptic problem. The algorithm introduced by P.L. Lions [132] for the elliptic
problem is based on improving Schwarz methods by replacing the Dirichlet interface
conditions by Robin interface conditions, parameterised by a parameter kc to be
specified later. Given initial guesses u01 and u02, the parallel Schwarz algorithm
consists in computing at each iteration n > 0:{

(−∆+ α)un+1
1 (x, .) = f(x, .) in Ω1(

∂
∂n1

+ kc

)
un+1
1 (d, .) =

(
∂
∂n1

+ kc

)
un2 (d, .)
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1.1. Generalities on domain decomposition methods

{
(−∆+ α)un+1

2 (x, .) = f(x, .) in Ω2(
∂
∂n2

+ kc

)
un+1
2 (0, .) =

(
∂
∂n2

+ kc

)
un1 (0, .)

where un1 and un2 both verify the Sommerfeld radiation condition at infinity. Follow-
ing a similar convergence analysis to the one for the Dirichlet Helmholtz problem
[66], we show a relation similar to (1.11) with a convergence factor

ϱ(k, α, d) =

∣∣∣∣λ(k)− kc
λ(k) + kc

∣∣∣∣ e−λ(k)d (1.17)

where λ(k) =
√
α + k2. For any Robin parameter kc with a positive real part,

the convergence factor ϱ is strictly lower than 1 in modulus and the algorithm
does converge independently of the overlap size d. Compared to the convergence
factor (1.12) for the classical Schwarz method, the convergence factor (1.17) for the
optimised Schwarz method with Robin condition improves the convergence by a
factor

ϱ(k, α, 0) =

∣∣∣∣λ(k)− kc
λ(k) + kc

∣∣∣∣ < 1.

We also observe that by taking the limit kc → ∞ , the previous case with the
Dirichlet transmission condition is restored (and ϱ tends to 1 when there is no
overlap). By setting kc = 0, the Neumann transmission condition is obtained, which
has the same non convergent behaviour as the Dirichlet case.

P.L. Lions also developed in [132] a proof of convergence for this algorithm with
impedance-type conditions. This proof is based on the decay of an energy estimate
defined on the interface. It consists in summing the energy identities verified by
the error (defined by (1.8)) over the iterations, and showing that the energy, ver-
ified by the error, tends to zero with the number of iterations. The idea for this
proof was then used, for example for the Helmholz equation in [61] and for the
Maxwell equations in [62]. An optimal choice for the parameters kc is also proposed
to minimise the convergence factor. In the elliptic case, due to the form of the
convergence factor (1.17), it is clear that ϱ is optimal (ϱ = 0) for the optimal value
kc = λ(k) =

√
α + k2.

Propagation problem. In [60], Després introduces Robin conditions in the Helmholtz
problem, with the same decomposition illustrated in Figure 1.2. The idea is to
rewrite the usual transmission conditions, which correspond to the continuity of the
solution and its normal derivative, by recombining them in Robin-type conditions,
using a special coefficient iκ. Given initial guesses u01 and u02, the Després algorithm
consists in computing at each iteration n > 0:{

(−∆− κ2)un+1
1 (x, .) = f(x, .) in Ω1(

∂
∂n1

+ kc

)
un+1
1 (d, .) =

(
∂
∂n1

+ kc

)
un2 (d, .)

(1.18)

{
(−∆− κ2)un+1

2 (x, .) = f(x, .) in Ω2(
∂
∂n2

+ kc

)
un+1
2 (0, .) =

(
∂
∂n2

+ kc

)
un1 (0, .)

(1.19)

with kc = iκ and where un1 and un2 both verify the Sommerfeld radiation condition
at infinity.
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In [61], Després proves that the local boundary value problems (1.18) and (1.19)
are always well-posed, i.e. that they all admit a unique solution, for any value of κ.
This also means that in the discrete setting the local matrices are always invertible.
This is a necessary condition for guaranteed convergence which is not satisfied with
Dirichlet or Neumann boundary conditions. Following a similar convergence analysis
to the one for the Dirichlet Helmholtz problem [66], the convergence factor is

ϱ(k, d) =

∣∣∣∣λ(k)− kc
λ(k) + kc

∣∣∣∣ e−λ(k)d (1.20)

where λ(k) is still given by (1.16) and kc = iκ. For vanishing modes (|k| ≥ κ) λ(k) is
still real and negative such that the Schwarz algorithm converges and is converging
faster for larger overlap sizes. But now, for the propagative modes (|k| < κ), the
overlapping size d does not play any role in the convergence and as iκ has a positive
imaginary part, the convergence factor ϱ is strictly lower than 1 in modulus. In [59],
Després proves the guaranteed convergence of the relaxed iterative method to the
solution, using a proof based on the decay of energy estimate defined on the interface.
Although the optimised Schwarz method without relaxation may converge in some
particular configurations, in the general case the relaxation is necessary.

An improved version of the Després conditions was also suggested in [79]. “Two-
sided Robin transmission conditions” are derived with two different coefficients αi
(i=1,2) instead of a unique kc. They are termed by opposition to the “one-sided”
version defined by (1.18) and (1.19). At each iteration n > 0, the conditions are(

∂

∂n1

+ α1

)
un+1
1 (d, .) =

(
∂

∂n1

+ α2

)
un2 (d, .) (1.21)

and (
∂

∂n2

+ α2

)
un+1
2 (0, .) =

(
∂

∂n2

+ α1

)
un1 (0, .) (1.22)

where α1 and α2 are complex. They must be chosen with a strictly positive imaginary
part to ensure the well-posedness of the local sub-problems [79]. As the convergence
factor is defined by (1.20), we also show that ϱ is optimal (ϱ = 0) for the optimal
value α1 = α2 = λ(k), with λ(k) defined by (1.16). This value annihilates the con-
vergence factor and ensures the optimal convergence of the schema (in two iterations
for a two domain decomposition) [79].

More generally, these Robin coupling parameters are used as optimisation pa-
rameters to improve the convergence and their choice is crucial to guarantee good
convergence properties. The classical approach to find an optimised value for αi
consists in following the optimisation strategy proposed in the optimised Schwarz
methods literature [78]. In these classical works, a convergence analysis of coupled
problems with Robin transmission conditions have been derived, based on the ap-
plication of a Fourier transform. The Fourier transform is applied in one direction
and the theoretical convergence factor is defined. This theoretical expression is then
minimised. This optimisation strategy has been applied to a great variety of prob-
lems: Helmholtz equation [142], maxwell equation [65] or scattering problem [189]
for example. These studies all show a large improvement on the convergence prop-
erties. It is efficient for problems with a straight interface, but the Fourier approach
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fails for curved interfaces. As a result, the first optimisation analyses were only
performed for simple 2D problems. In [65] a 3D optimisation procedure is derived
for a Maxwell equation and in [87] a 3D convergence analysis is performed on a
diffusion-reaction problem. A similar but more general optimisation procedure is
adapted in [88] for spherical interfaces.

Other conditions. Thereafter, many variations of this original idea have been
proposed, by using more sophisticated local and non-local impedance operators to
construct the conditions. A review of the transmission operator used in transmission
conditions for time-harmonic propagative problems is given for example in [167].
These boundary conditions must satisfy the following three requirements:

• They must link the trace solutions of each sub-domain at iteration n, to the
trace solutions of the neighbouring sub-domain at iteration n-1, in order to
couple the sub-problems.

• They must be consistent, at convergence, with the exact transmission condi-
tions.

• They must ensure that the local subproblems are well-posed and that the
method is convergent.

Remark. The term impedance is justified by the fact that such an operator has
the homogeneity of an impedance. From a more physical point of view, this type
of condition can be seen as a way to ensure a coupling that provides consistency
with certain limiting cases. For FSI for example, when the fluid or solid density
goes to zero, then the other medium has to get a free surface boundary condition.
Otherwise, when the density goes to infinity, the other medium has to get a wall
boundary condition. Neither Dirichlet nor Neumann coupling condition would work
in both limits, but the impedance coupling condition does.

These optimised algorithms for time-harmonic problems show how crucial the
choice of the conditions is to construct convergent iterative algorithms. It also
shows that: it is often necessary to use impedance-like boundary conditions to obtain
a convergent non-overlapping domain decomposition method, and that optimising
these impedance conditions has a direct impact on the convergence. While similar
observations can be derived for evolution problems (the ones we study in this work),
additional difficulties arise.

1.2 Specificities of domain decomposition method
in the time domain

For parabolic equations two approaches can be adopted. One possibility is to discre-
tise in time first using an implicit scheme and then to employ the Schwarz method
in order to solve the steady problems at each time step. Another possibility is to use
the space-time domain decomposition method. This method consists in discretis-
ing the space and the time interval, differently for each subdomain according to its
physical properties. In this Section, we compare the two approaches in the context
of transient fluid-structure interaction (FSI).
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1.2.1 Step-by-step methods

Classical domain decomposition methods to treat evolution problems consists in uni-
formly discretising the time on the whole domain by an implicit schema. At a fixed
time step, the resulting equation is equivalent to an elliptic problem in each sub-
domain, which can be solved in parallel. At each time step, information is shared
through the interface Γ. There are a lot of applications of this iterative domain
decomposition method, for parabolic problems for example [36] or for hyperbolic
problems [9].
For step-by-step DDMs, we can consider explicit algorithms, also called weakly or
loosely coupled strategies. In each subdomain, the steady subproblems are solved
only once per time step and do not satisfy the exact equilibrium conditions on the
interface. This can induce instabilities in these explicit coupling schemes.
The other way is to treat implicitly the coupling conditions at each time step with
implicit algorithms, leading to a strongly or fully coupled system. The coupled
problem is then solved via subiterations between subdomains and the exact equilib-
rium conditions are verified. In this case, the numerical schema is stable. But the
drawback is a relatively large number of subiterations to solve and the increasing
computational cost.
For FSI, it has been shown in the literature that the stability of explicit coupling
schemes is dictated by the amount of added-mass effect in the system. These ex-
plicit algorithms are especially not recommended for problems with comparable
fluid and structure densities (which means a high added mass effect), as they lead
to unconditional numerical instability, the so-called added-mass instability [6, 40].
These explicit scheme are thus more used for FSI problems with compressible flows
[117, 151, 199]. Implicit and semi-implicit couplings have been developed for incom-
pressible fluids and problems with high added-mass effect. Despite their additional
computational cost due to the iterations within each time step, they prevent a lot of
stability issues [6, 75, 119, 160]. There are then two difficulties. The first one is to
reduce the number of iterations required. Either relaxation techniques can be used
[119], or quasi-Newton techniques, which update the interface data communicated
between the subproblems with a Newton-Raphson approach [58]. Both can be com-
bined as in [187]. The second one consists in making each iteration fast. There are
for example different types of preconditioners [198] or different ways to discretise
the unknowns to speed up the numerical solution [144].

Different strategies rely on the choice of transmission conditions to solve the
steady sub-problems at each iteration. Like for time-harmonic problems, Dirichlet
conditions were first used, then Robin and more complex conditions [132, 170]. In
particular, transmission conditions are designed to minimise the convergence rate
in [112]. For FSI problems, the transmission conditions are usually the kinematic
and dynamic interface conditions between the solid and the fluid: the velocity of
the fluid is prescribed at the fluid-structure interface to be the velocity of the struc-
ture, and the traction on the surface of the structure is computed using the fluid
pressure and viscous stress. In other words, the kinematic and dynamic interface
conditions are enforced by applying a Dirichlet boundary condition in the fluid sub-
domain and a Neumann boundary condition in the solid subdomain, resulting in a
Dirichlet–Neumann schema. As it is based on the physical transmission conditions
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this scheme is often the simplest to use within an explicit scheme, but it is however
very sensitive to the fluid density and to the added-mass effect especially for in-
compressible fluids. The Dirichlet–Neumann coupling is sometimes unconditionally
unstable [40]. For this reason and as there is no proof of guaranteed convergence, the
Dirichlet-Neumann coupling iterations sometimes diverge. Other boundary condi-
tions have been explored to improve the algorithms stability. It is proposed in [6] to
replace the Dirichlet boundary condition for the fluid solver by a Robin boundary
condition. The new Robin-Neumann conditions are shown to be mathematically
equivalent with the conventional Dirichlet-Neumann conditions [56]. Rather than
transferring Dirichlet or Neumann interface data, the two contributions are lin-
early combined through Robin conditions. In some cases this scheme can highly
reduce the added-mass instability and improve the convergence rate compared to a
Dirichlet-Neumann scheme, when the linear Robin combination parameter is care-
fully selected [6, 37]. It opened the way to a whole family of coupling strategies:
Robin-Neumann, Robin-Dirichlet, Robin-Robin [7, 37, 160, 188]. In particular the
Robin-Robin schema is also often used [7, 86, 88, 89]. These Robin-based methods
are now very popular as they allow a loosely-coupled and yet added-mass-free FSI
coupling. However, many studies still investigate the optimisation of these boundary
conditions through the choice of the coupling parameter value for both subproblems.

Coupling parameter optimisation for step-by-step procedures. The cou-
pling parameter in the Robin boundary conditions is the term which balances the
Neumann and Dirichlet contributions. It is denoted αi in (1.21) and (1.22). The
value of this coupling parameter does not have any impact on the mathematical
model (as long as it is nonzero). However, it impacts the numerical convergence
of the procedure. Some studies have shown through numerical experiments, that
different values of αi can strongly improve or deteriorate the numerical stability.
Nonetheless, the determination of an appropriate value for a specific problem is still
an open question [37, 160]. Generally speaking, for FSI problems, decreasing αi
tends to improve the numerical stability of the coupling by weighting the Neumann
contribution. However it slows down the convergence and reduces the solution ac-
curacy, in the sense that for a given convergence bound the remaining artificial flux
increases. On the other hand when αi increases, the Dirichlet part increases the
added-mass instability [37].

The classical approach to define an optimised Robin coupling parameter in the
context of step-by-step procedures consists in analysing simplified problems on par-
ticular geometries and deriving suggestions for the choice of αi. These simplified
problems are simple enough to be analysed theoretically but feature a behaviour
similar to the more complex systems so that the theoretical optimised values might
be reused. There are different strategies, as illustrated in [86] for an haemodynamics
application:

• In [159], an heuristic method to design αi based on simplified model equations
is proposed. The structure model is reduced to a 1D model, by using a mem-
brane model that approximates a thin structure behaviour. The membrane
equation is inserted into the fluid equation as a boundary term and the FSI
problem becomes a fluid problem with a suitable Robin boundary condition.
This formulation leads to a plausible approximation of the fluid coefficient αi,
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depending on the physical densities, the geometry and the time step. With this
optimised Robin condition, it is shown that a speed-up of up to one order of
magnitude can be achieved. Another heuristic approximation is proposed for
the structure coefficient in [6]. The same strategy is used for many other FSI
problems with a high added-mass effect and the convergence is systematically
improved [7, 159, 160].

• Some other studies use a modal analysis as described for time-harmonic prob-
lems in Section 1.1.2. The modal analysis might be adapted from the optimised
Schwarz methods literature for elliptic problems [78]. A rigorous convergence
analysis is for example proposed in [86] to define a theoretical optimised Robin
coupling parameter value, for three different reduced FSI problems (Laplace,
Helmoltz and Maxwell equations). A Fourier transform in one direction, and
the convergence factor is explicitly defined in the frequency space. Minimising
this factor for all the relevant frequencies of the problem allows to find an
optimised expression for αi, which is then used for all the time steps. This
optimisation strategy is more general and confirmed by 2D numerical experi-
ments. The proposed optimised parameter significantly improves the conver-
gence rate of the Robin-Robin schemes. Another analytical study about a
Robin-Neumann step-by-step schema is also investigated in [37], with a sim-
plified FSI model featuring an Euler-Bernoulli beam and a 2D incompressible,
inviscid flow. For this problem, a semi-analytical solution can be found, us-
ing the method of separation of variables and Fourier series. It enables to
find an explicit form for the convergence factor, depending on αi, which can
be minimised. Similar methods are reused in a lot of works [63, 89, 158].
The optimised expression for αi obtained on a simplified problem can then be
used for more complex problems with comparable behaviours and still provide
meaningful stability results [89].

A recent work also investigates the use of a spatially varying Robin interface con-
ditions [38]. In the case of a non-uniform structure, the Robin parameter value in
the boundary condition for the structure subproblem varies with the local material
and geometric properties. Two numerical tests show that a spatially varying Robin
interface condition can clearly improve the solution accuracy for the same compu-
tational cost. In [34], the authors propose an adaptive time step strategy, to adapt
the value αi at each time step. This strategy is also efficient in the case of large
added mass effect. The numerical experiments show that this method is accurate
with respect to the case of fixed small time steps and saves significant computational
effort.

Some studies propose other approaches to reduce the impact of the Robin pa-
rameter on the number of iterations, and thus the importance of finding a good
choice. It is shown in [7] that a Robin-Robin schema can be reformulated as precon-
ditioned Richardson iterations over an adapted interface equation. This allows to
introduce more efficient Krylov methods for the solution of the FSI problem, which
are less sensitive to the Robin parameter value [7]. Another recent work [188] has
derived an acceleration method for Robin-Neumann iterations, which also reduces
the performance dependence to αi. The interface Robin-Neumann/quasi-Newton
accelerated schema is proposed to "relax" the Robin fluid traction by means of an
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Aitken’s relaxation method (firstly introduced in the context of FSI in [57]). The
numerical tests show a large reduction of the dependency on the Robin parameter.
With that, finding a good choice for the parameter αi may still be beneficial, but is
no longer of primary importance.

In conclusion, for most of the FSI problems solved with a step-by-step par-
titioned procedure, the optimal coupling parameter value αi depends on a lot of
parameters (material properties, geometry, time step size), rests upon simplified or
approximated equations, and is highly problem-dependent. The proposed optimi-
sation methods however enable an important first estimation of optimised coupling
parameters. In particular, the acceleration techniques that also reduces the algo-
rithm dependence on αi are promising. But finding the best Robin parameter is still
an ongoing research topic.

Drawbacks of step-by-step procedures. Step-by-step algorithms have some
drawbacks. First, it is necessary to impose a uniform time discretisation for all sub-
domains. They loose one of the main features of domain decomposition algorithms,
namely to adapt the solution process to the physical properties of the subdomain.
It is still possible to refine in space. But for evolution problems this is not sufficient,
since the space and time discretisation are linked in general by stability constraints
and conditions on the dispersion of the numerical scheme. Secondly, the algorithm
needs to communicate small amounts of information at each time step. In the con-
text of parallel computing, each communication involves in addition to the cost for
the data transmitted a startup cost independent of the amount of data transmitted.
The interest of this strategy can thus be reduced due to the communication time.
An algorithm with a reduced number of communications would be more interesting.
Finally, this step-by-step strategy is sometimes not adapted to efficient numerical
methods. For example, a global-in-time method as Z-BEM, which is a very efficient
way to solve transient BIEs (see Section 3.1), is not adapted to step-by-step coupling
strategies. In this case, global-in-time strategies are required.

1.2.2 Schwarz waveform relaxation methods

The Optimised Schwarz Methods were originally developed for stationary problems
and have also been adapted to time-domain problems with step-by-step solutions, or
with global-in-time strategies. The most used global-in-time approaches are based
on Waveform Relaxation (WR) methods. In the work of Picard, an iterative method
of successive approximations is proposed to prove the existence of solutions of a spe-
cific class of ordinary differential equations of the form du/dt = f(u) [168]. This
method distributes the computation on parallel computers by partitioning the sys-
tem into subsystems and then use a Picard iteration to compute the global solution.
The author showed that the convergence of the iterations was sufficient to prove
the solution existence. This method was then parallelised by [128] to numerically
solve a system of ODEs for problems related to integrated circuits. The waveform
relaxation is a sort of domain decomposition method and has then been used to
extend the classical Schwarz methods to time dependent problems [84, 90]. It led
to the creation of Schwarz waveform relaxation (SWR) algorithms. These methods
are based on a spatial decomposition of the domain similarly to classical DDMs for
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(a) (b)

Figure 1.3: (a) Schematic representation of the information exchange be-
tween two subdomains with a step-by-step domain decom-
position method. (b) Schematic representation of the tran-
sient information exchange between two subdomains with a
global-in-time domain decomposition method, over a finite
time interval.

stationary problems, but preserve the time dimension. Time dependent subprob-
lems are solved on each subdomain over the whole time interval [0, T ] and transient
boundary information are communicated through the interface. The subproblems
solutions are then iterated, by means of global-in-time iterations [22]. Figure 1.3 il-
lustrates the information transmission between subdomains for a step-by-step DDM
and a Schwarz waveform relaxation method (global-in-time DDM). These global-in-
time strategies have been adapted for various transient problems: parabolic PDEs
[5, 90], wave equation [81] or advection diffusion equation [19]. Relying on a DDM
approach, the spatial decomposition still enable the subdomains to have different
physics, discretisations or numerical treatments. Moreover, one main computational
advantage of WR methods over step-by-step approaches is that different time dis-
cretisations can be used for different components of the system according to the
physical properties [99, 104].

Robin conditions for global-in-time procedures. The first Schwarz waveform
relaxation (SWR) algorithm used Dirichlet conditions on the interfaces. For exam-
ple in [82], a Dirichlet-Neumann and a Neumann-Neumann Waveform Relaxation
method are proposed, as a natural generalisation of optimised Schwarz methods
(OSM) for transient problems. But Schwarz waveform relaxation algorithms con-
verge relatively slowly (except sometimes when the time interval is bounded and
very short). Moreover it was shown in [81] that the Dirichlet transmission conditions
used for the transmission of the information do not allow to construct non-overlaping
SWR algorithm (see [19] for example).

To improve this convergence rate, optimised transmission conditions have been
proposed. The corresponding algorithms are called optimised Schwarz waveform
relaxation. Among other possibilities, Robin SWR uses Robin transmission condi-
tions, Optimal SWR is related to transparent transmission conditions, and quasi-
optimal SWR is based on accurate absorbing conditions. Generally speaking, opti-
mised Schwarz waveform relaxation usually refers to Robin SWR, where the Robin
parameters are optimised to ensure the fastest convergence possible of the algo-
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rithm. Robin SWR was first introduced in [81] for one-dimensional wave and heat
equations. The authors use Robin conditions and show that it leads to convergent
non-overlapping Schwarz waveform relaxation algorithms. This optimised algorithm
converges in a finite number of steps, equal to the number of subdomains. Since
these first studies, the optimised Robin conditions have been used to solve a large
number of problems: diffusion problems [104], parabolic problems [5], or advection
reaction diffusion equations [19, 145].

Coupling parameter optimisation for optimised Schwarz waveform relax-
ation methods. Using optimised Schwarz waveform relaxation algorithms, the
fundamental question is the selection of the Robin coupling parameter to optimise
the convergence of the algorithm. A lot of research has been devoted to the determi-
nation of the optimal choice, for example for the wave equation [80] or the shallow
water equation [145].

Two main strategies exist to find the optimal coupling parameter. The most
common one consists in performing a convergence analysis to obtain an explicit
estimate of the convergence factor and then to optimise it [19, 100]. It is usual to
use a Fourier transform with respect to time to express the convergence factor in
the frequency domain. Then the convergence factor is used to calculate an efficient
Robin parameter in a defined range of frequencies [5, 51]. However, this strategy is
problem dependent and the optimisation must be solved for each problem. The study
in [5] also shows that there is not always a single Robin coefficient value, that would
optimise the convergence independently of the number of iterations performed. The
optimal value might change depending on the targeted iteration count and solution
accuracy.

Some other studies use the theory of absorbing boundary conditions first intro-
duced by [68] for the wave equation. These conditions allow to treat equations on an
unbounded Ω domain. The problem is solved on a bounded sub-domain Ωb. To en-
sure that the solution on Ωb corresponds to the solution on Ω, a boundary conditions
on ∂Ωb is imposed such that no wave reflects on this boundary. These conditions
have been applied to domain decomposition to make the interface between two sub-
domains "transparent" [153]. This leads to the so-called "Optimal SWR" methods,
which have the optimal convergence of Schwarz algorithms in the sense that the algo-
rithm converges in as many iterations as there are sub-domains [80]. These optimal
transparent transmission operators are however non-local Dirichlet-to-Neumann op-
erators. They can not be easily used in an algorithm and are inefficient due to their
large computational cost [3]. They have to be locally approximated, usually with a
Taylor development [145]. In [145] both methods (optimisation of the convergence
rate and approximation of transparent conditions with a Taylor development) are
compared for a convection-diffusion problem. The algorithm convergence rate is
shown to be smaller when obtained with a Taylor’s expansion for the high frequen-
cies but the situation is reversed for low frequencies. Alternatively, some studies
search for more specific approximations of the transparent operators. In [4], a par-
ticular asymptotic expansion is used instead of a Taylor development to derive an a
priori approximation.

In the field of optimised Schwarz waveform relaxation it is nowadays clear that
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using Robin boundary conditions in each subdomain rather than Neumann or Dirich-
let can improve the convergence rate. However there are still a lot of ongoing studies
on how to choose the coupling parameters values.

Convergence. There are two classical approaches to analyse the convergence of
optimised Schwarz waveform relaxation algorithms. First, analyses were based on
energy estimates [51, 80, 99, 104, 145]. Energy estimates are useful tools for proving
well-posedness of initial boundary value problems. They have been used to analyse
the convergence of Schwarz algorithms for steady problems before [59, 132]. Most
of the convergence analysis proposed in the literature are based on this kind of
approach. These convergence analyses are mostly performed using the continuous
model, but we can mention for example [99] which proposes convergence proofs by
energy estimates at the discrete (or semi-discrete) time level. This approach is quite
general but does not provide an explicit expression of the convergence rate. For
this reason, there are few studies that concretely estimate the convergence factor of
Schwarz waveform relaxation methods (SWR). As a result, it is difficult to derive
an explicit optimised value for the Robin parameter.

More detailed information on the convergence can be obtained using Fourier
analysis, as first introduced in [90]. This second approach was essential for the opti-
misation of transmission conditions, see for example [19, 51] for parabolic problems,
and [80] for the wave equation. Fourier transforms are used, then the classical do-
main decomposition methods developed for steady problems (as described in Section
1.1.1) are used, allowing to obtain convergence rates for each Fourier mode. When
used for optimised Schwarz waveform relaxation methods, this approach thus helps
choosing an optimised value for the Robin coupling parameter, that optimises the
convergence factor over the bounded range of frequencies relevant to the analysis.
We can also mention an alternative approach, based on discrete-time analysis: for
simple schemes, it is based on the Z-transform (a discrete equivalent to the Laplace
transform) rather than on Fourier transform [47, 102]. However, for both of these
methods, numerical results obtained with this choice of Robin parameters do not
always perform as efficiently as expected [193]. It is due to the fact that the Fourier-
or Z-transform supposes an infinite time interval, while the actual simulation is
necessarily performed on a finite one. The recent article [83] illustrates that the
classical Fourier analysis result for Schwarz waveform relaxation does not predict
the convergence rate for evolution problems. The authors propose a new Fourier
analysis combined with kernel estimates that can explain more precisely the conver-
gence phases of Schwarz waveform relaxation methods and that is also a new way to
optimise the convergence factor in Robin boundary conditions. It has however only
been applied for the heat equation and for the advection-reaction-diffusion equation.

The convergence of waveform relaxation methods depends on the type of equa-
tions that are solved, on the boundary conditions and also on the considered time
interval. In [84] and [90], two classical bounds for the convergence of the original
non-optimised SWR algorithms were derived when applied to the heat equation,
both in one and higher spatial dimensions. An overlapping SWR method is studied
in [84] and its linear convergence on unbounded time intervals (or long time win-
dows) is shown for the heat equation by maximum principle arguments. At the same
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time, [90] proves the superlinear convergence of the SWR method with overlap on
bounded time intervals (for the convection-diffusion equation). More generally, SWR
algorithms are known to have different convergence regimes: for linear dissipative
systems of ODEs on long time windows, convergence is in general linear [35] whereas
over short time windows, superlinear convergence is often observed [22]. The same
conclusion is derived for the heat equation for example [84]. The convergence de-
pendence on the considered time interval is a major difference to the step-by-step
DDMs. Moreover [83] shows that SWR methods have different convergence phases
when applied to the heat equation, which contrast to the linear convergence of the
Schwarz methods for steady problems. For a time dependent heat equation the
SWR method is shown to have first a rapid convergence phase, followed by a slow
down, and finally convergence increases again to become superlinear. These differ-
ent convergence phases were recently illustrated and justified with a Fourier mode
analysis, but only with Dirichlet boundary conditions in the subdomains and with
an overlap. Moreover the convergence analysis is justified in this article for large
time intervals, but not for short time intervals. There are thus still a lot of ongoing
works aiming at precisely estimating the convergence of SWR methods.

Remark. In this section we presented two approaches to treat transient problems
with DDMs, the step-by-step methods based on domain decomposition and SWR
methods. There are however other time parallel approaches developed to parallelised
the solution of transient ODEs. We can mention multiple shooting [175], space-time
multigrid methods [156] or direct time parallel methods [96]. A recent review on
this topic is given in [164]. Comparisons between these strategies to time parallelise
the computations might be found in [195] and in [106] for example.

1.3 DDMs for transient fluid-structure interaction
problems

In this work, we focus on a transient fluid-structure interaction problem that we
want to solve with a DDM, to iteratively use two distinct solvers in a non-intrusive
manner. Our goal is to develop a global-in-time iterative domain decomposition
method inspired from the SWR methods and adapted for a transient FSI problem.
As illustrated in Section 1.2.1, most of the DDM used to solve fluid-structure inter-
action problems rely on step-by-step procedures, because of a mathematical obstacle
preventing the development of this kind of global-in-time DDMs for fluid-structure
interaction. As mentioned in Section 1.2.2, in domain decomposition approaches,
the knowledge of the well-posedness for the continuous transient fluid-structure in-
teraction problem, and also for initial-boundary value problems (IBVPs) involved,
is essential in designing coupling algorithms. For the analysis of these transient
IBVPs, mathematical methods and results are available and well documented since
over a half-century (see for example [131]).

The acoustic scattering by a linear elastic obstacle has been extensively treated
for the time-harmonic regime [107, 108, 141]. The study of the existence and unique-
ness of its solution goes back at least to 1986 [101]. Usually in these studies, the
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acoustic domain is unbounded and modeled with a boundary integral equation or
by adding artificial absorbing conditions to truncate the domain. A more general
case with a Lipschitz incident scattering wave is considered in [16]. In this arti-
cle, the well-posedness of the frequency-domain counterpart of the acoustic-elastic
FSIP (2.7) is established, with the variational approach and an artificial boundary.

However, there are very few results regarding the well-posedness of transient
acoustic/elastic scattering problems. For the problem in the time domain, [13] uses
a Laplace transform to show the well-posedness in the Laplace domain and then
to deduce the well-posedness of the weak problem in time domain. This implies to
introduce an artificial truncature to the fluid domain and an absorbing boundary
condition based on a Dirichlet-to-Neumann operator. Another solvability result for
the 3D problem is given in [129]. The authors extend the framework of [69, Ch.
7], based on the convergence of Galerkin approximations for IBVPs. The authors
consider the variational form of a fluid-structure interaction problem and search for
weak solutions that converge in the weak sense to a limit which solves the original
strong formulation of the problem. Since our main objective in this work is to
extend the principle of global-in-time domain decomposition methods to transient
acoustic/elastic scattering problems, the first step will be to study and extend the
current solvency results concerning these transient problems.

1.4 Conclusion

In this work, we will focus on an evolution fluid-structure interaction problem and
solve it with a domain decomposition method. Two classical ways of treating tran-
sient problems with DDM approaches are step-by-step and SWR approaches. We
have seen that step-by-step procedures have three disadvantages: they require as
many resolutions in each sub-domain as there are time steps during the simulation
time, and are efficient only if each stationary resolution has a low computational
cost. And they need to impose a uniform time step for all subdomains, which means
loosing one of the main features of DDMs, namely to adapt the numerical method
to the physical properties of the subdomain. Lastly, the algorithm needs to com-
municate at each time step, which implies an additional computational cost due to
the transmitted data, but also to an overhead cost independent of the amount of
data transmitted. In parallel programming it is particularly recommended not to
often communicate small amounts of information, and it can be very interesting to
communicate larger packages of data at once over larger time interval.

To avoid these disadvantages, global-in-time domain decomposition methods
were introduced [80]. They consist in solving time-dependent problems in the sub-
domains, in parallel, and exchange information through the space-time interface
Γ × [0, T ], instead of exchanging information at each time step. Procedures of this
type are interesting when we want to use a costly or global-in-time numerical method
in one subdomain and it is impossible to perform it for each time step for the whole
simulation time. It also enables to use different time steps in each subdomain ac-
cording to its physical properties [99, 104]. It is becoming a popular computational
method for solving evolution partial differential equations in parallel. In the op-
timised Schwarz waveform relaxation literature, the fundamental question is the
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selection of the Robin parameter to optimise the convergence of the algorithm.
Unlike step-by-step methods, SWR approaches have rarely been used to solve

FSI problems. In this work we thus propose a DDM inspired from optimised Schwarz
waveform relaxation for rapid transient fluid-structure interaction problems and pro-
vide a mathematical analysis of its convergence.
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CHAPTER 2

A convergent global-in-time acoustic-elastic
coupling

The objective of this chapter is to define a global-in-time iterative procedure based
on a domain decomposition strategy to solve transient fluid-structure interaction
problems, with a guaranteed convergence. Such an algorithm has been carried out
before [146], by alternating resolutions of Neumann evolution problems over the
whole time interval in the fluid and solid subdomains, but convergence issues have
been observed. We therefore have two goals: (i) to mathematically explain these
Neumann non-convergence and (ii) to propose an alternative global-in-time iterative
coupling method, with a guaranteed convergence. This method is adapted from the
classical optimised Schwarz waveform relaxation methods and relies on optimised
boundary conditions in each subdomain.
To reach these goals, we first state the continuous transient FSI problem in Sec-
tion 2.1. We then establish solvability results for this problem. The results differ
by the assumed regularity on the transmission data on the acoustic-elastic interface.
These solvability results provide mappings between the data and solution regular-
ities, which are essential in designing convergent coupling algorithms. Knowing
these data-to-solution mappings for the transient FSI problem, we then introduce
in Section 2.3 a global-in-time iterative procedure, inspired from Schwarz Waveform
Relaxation methods. This method is based on the iterative resolution of Neumann
initial-boundary value problems (IBVPs). We then recall classical solvability re-
sults for the Neumann evolution problem and highlight the loss of the space-time
regularity of the solution on the interface of the Neumann and Dirichlet problem
with respect to the regularity of the data. These results allow to justify the non-
convergence of the iterative method and prompt us in Section 2.4, to propose a
second iterative method based on alternating Robin evolution problems solutions
in each subdomain. We recall solvability results for the Robin IBVPs and high-
light the conservation of the space-time regularity of the solution on the interface
of the Robin problem with respect to the regularity of the data. In Section 2.5, we
prove the convergence of this global-in-time iterative procedure. Finally, Section 2.6
presents a numerical illustration on a 2D test case which highlights the effect of data
regularity on the solution.
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2.1 Coupled fluid-structure interaction problem def-
inition

In this section, we introduce the linear evolution problem governing the transient
scattering of acoustic waves by an elastic obstacle. We consider a bounded linear
elastic solid Ωs submerged in a linear acoustic fluid (mass density ρf , acoustic wave
velocity cf ) occupying the unbounded fluid region Ωf := Rd\Ωs (where d = 2 or d =
3 is the spatial dimension). We denote by Γ := ∂Ωf = ∂Ωs the Lipschitz continuous
boundary separating the solid and fluid domains, and by n the unit outward normal
to Γ with respect to the solid domain. The elasticity tensor C is elliptic, the other
coefficients cf , ρf , ρs being positive and bounded away from 0. The fluid variables
are the velocity potential ϕ, the velocity v = ∇ϕ and the pressure p = −ρf∂tϕ. The
solid variables are the displacement u and the stress vector t := σ[u].n.

28



2.1. Coupled fluid-structure interaction problem definition

Figure 2.1: FSI configuration: geometry and notations.

We consider a velocity potential field ϕ, assumed to satisfy the wave equation

−∆ϕ+
1

c2f
∂2t ϕ = 0 in Ωf × R. (2.1)

as the main variable describing the fluid motion. The primary excitation is a linear
incident velocity potential field ϕinc, that solves at all times the homogeneous wave
equation in Rd, i.e.,

−∆ϕinc +
1

c2f
∂2t ϕ

inc = 0 in Rd × R.

We assume that no disturbance caused by the presence of the elastic solid occurs
before t = 0 (ϕinc(., t) = 0 in a neighbourhood of Ωs for any t < 0). The main
variable describing the solid motion is taken as the displacement u, verifying the
elastic wave equation

−∆su+ ρs∂
2
t u = 0 in Ωs × [0, T ],

where ∆s is the Navier differential operator such that ∆s = div (C : ∇su) . The FSI
then occurs due to the kinematical and dynamical transmission conditions (TCs):

(a) ∂nϕ = ∂tu.n (b) t[u] = ρf∂tϕn in Γ× [0, T ] (2.2)

which express the continuity across Γ of the normal velocity and the traction vec-
tor. Moreover it is convenient to additively decompose the fluid variable ϕ in the
FSIP definition. This decomposition can be done in several ways and influences the
definition of the TCs (2.2):

1. The simplest additive decomposition consists in introducing a scattered field
and to decompose ϕ according to

ϕ = ϕinc + ϕsc.

The transmission conditions (2.2) can then be expressed in terms of ϕsc as

∂nϕ
sc = ∂tu.n−∂nϕinc, t[u] = ρf∂tϕ

scn+ρf∂tϕincn in Γ×[0, T ].
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2.1. Coupled fluid-structure interaction problem definition

2. Introducing a Neumann-reflected and a radiated fields:

ϕ = ϕinc + ϕref
N + ϕrad

The radiated field is the additive correction to the fluid motion induced by the
interfacial motion. The reflected field ϕref is defined so that the fluid motion
for a rigid and motionless solid is given by ϕRef := ϕinc + ϕref

N and obtained by
the resolution of an initial-boundary value problem:

∆ϕref
N − 1

c2
∂2t ϕ

ref
N = 0 on Ωf × [0, T ],

∂nϕ
ref
N = −∂nϕinc on Γ× [0, T ],

ϕref
N (0) = ∂tϕ

ref
N (0) = 0 in Ωf .

3. Introducing a Robin-reflected and a radiated fields

ϕ = ϕinc + ϕref
R + ϕrad

where ϕref
R is defined on the basis of the acoustic Robin IBVP, with a positive

factor ka:
∆ϕref

R − 1

c2
∂2t ϕ

ref
R = 0 on Ωf × [0, T ],

(ka∂n − ρf∂t)ϕ
ref = −(ka∂n − ρf∂t)ϕ

inc on Γ× [0, T ],

ϕref
R (0) = ∂tϕ

ref
R (0) = 0 on Ωf .

(2.3)

Using either of the foregoing additive decompositions, the coupled FSIP is thereafter
formulated in terms of ϕ, as the main unknown for the fluid response. The main
unknown ϕ is either referring to the scattered ϕsc or to the radiated variable ϕrad,
depending on the chosen decomposition. In this chapter, we focus on an equivalent
non-dimensional version of the FSI problem, obtained by expressing the coordinates
x, t, field variables, ϕ,u, t and material parameters C, ρs as

x = bx̂, t =
bt̂

cf
, ϕ = bcf ϕ̂, u = bû, t = ρfc

2
f t̂, C = ρfc

2
f Ĉ, ρs = ρf ρ̂s

where b is a characteristic length. We hence consider the dimensionless IBVP (2.4).
It consists of the standard exterior acoustic problem (2.4)(a) coupled with the elas-
todynamic equation (2.4)(b) governing the equilibrium of an elastic scatterer via the
TCs (2.4)(c). The first transmission condition is a dynamic interface condition and
the second is a kinematic interface condition, imposed to ensure the continuity of
the normal component of the velocity.

∆ϕ− ∂2t ϕ = 0 in Ωf × [0, T ], ϕ(0) = ∂tϕ(0) = 0 in Ωf (a)
−∆su+ ρs∂

2
t u = 0 in Ωs × [0, T ], u(0) = ∂tu(0) = 0 in Ωs (b)

t = ∂tϕn+hn, ∂nϕ = ∂tu.n+ ν in Γ× [0, T ] (c)
(2.4)
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2.1. Coupled fluid-structure interaction problem definition

where h and ν are prescribed time-dependent normal velocity and traction jumps
across Γ, whose values depend on the chosen decomposition of ϕ:

1. ν = −∂nϕinc h = ∂tϕ
inc (

ϕ = ϕinc + ϕsc)
2. ν = 0 h = ∂t

(
ϕinc + ϕref

N

) (
ϕ = ϕinc + ϕref

N + ϕrad)
3. ν = − 1

ka
∂t
(
ϕinc + ϕref

R

)
h = ∂t

(
ϕinc + ϕref

R

) (
ϕ = ϕinc + ϕref

R + ϕrad) (2.5)

All field variables of the system (2.4) are assumed to be at initial rest, so that
homogeneous initial conditions are prescribed. The decomposition in a scatter-
ing and a radiation problem allows to deal with compactly supported variables in
the coupled problem (2.4). As the radiated variable are at initial rest, all fluid
variables are supported in a bounded fluid domain at any finite time t: Ωf(t) =
{x ∈ Ωf | ∥x− Γ∥ < cf t}. A consequence is that there is no need to artificially
truncate the fluid domain and to add an absorbing boundary condition like in [16]
and [13]. To simplify the notation, we omit thereafter the superscript "rad", with
all fluid variables, which are understood to pertain to the radiated motion.

Variational formulation. In Rd, we use the spaces

L2(Ω) :=

{
f |
∫
Ω

f 2 <∞
}
, and H1(Ω) :=

{
f | f ∈ L2(Ω),∇f ∈

(
L2(Ω)

)d}
.

In addition to the standard Sobolev spaces L2 (Ωf ) ,L
2(Ωs) := L2

(
Ωs,Rd

)
, H1(Ωf )

and H1(Ωs) := H1
(
Ωs,Rd

)
, we will use the spaces H1

∆(Ωf ) and H1
∆(Ωs) defined by

H1
∆(Ωf ) =

{
ϕ ∈ H1(Ωf ),∆ϕ ∈ L2(Ωf )

}
and

H1
∆(Ωs) =

{
u ∈ H1(Ωs),∆su ∈ L2(Ωs)

}
.

We use the abbreviation for all the spaces as Cm
T (X) for the space Cm([0, T ];X) of

m times continuously differentiable functions f : [0, T ] → X with values in a Hilbert
space X.

To write this FSIP (2.4) in weak form, we use the standard approach. We
multiply by time-independent test functions ϕ̃ ∈ H1 (Ωf ) and ũ ∈ H1 (Ωs) for
the wave equation and the elastodynamic equation respectively and perform an
integration by parts. We denote (v, w)Γ or (v,w)Γ the L2(Γ) scalar products. The
variational formulation involves the bilinear forms a, b (for the fluid domain) and
A,B (for the solid domain) defined by

a(ϕ, ϕ̃) =
∫
Ωf

∇ϕ.∇ϕ̃dΩ, b(ϕ, ϕ̃) =
∫
Ωf
ϕϕ̃dΩ,

A(u, ũ) =
∫
Ωs

∇su : C : ∇sũdΩ, B(u, ũ) =
∫
Ωs
ρsu.ũdΩ.

(2.6)

where ∇su := 1
2

(
∇u+ (∇su)T

)
is the linearised strain tensor associated with a

displacement u in Ωs and C and ρs are the material parameters of the solid.
We then use the classical Green identities [148, Thm 4.4] for both the fluid and

the solid media for Lipschitz domains Ωf and Ωs. Using the TCs in the resulting
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2.2. Solvability results

interfacial integrals, the FSI problem (2.4) can be recast in variational form: find
(ϕ,u) ∈ C0

T (H
1) ∩ C1

T (L
2) such that, for all

(
ϕ̃, ũ

)
∈ H1,a(ϕ(t), ϕ̃) + b(∂2t ϕ(t), ϕ̃) +A(u(t), ũ) +B(∂2t u(t), ũ) + I(∂tu(t), ∂tϕ(t), ũ, ϕ̃) = Ft(ũ, ϕ̃)

u(0) = ∂tu(0) = 0 in Ωs ϕ(0) = ∂tϕ(0) = 0 in Ωf ,

(2.7)
where Ft is the linear functional associated with the time-dependent interface data
(h, ν), given by

Ft(ũ, ϕ̃) := (h(t)n, ũ)Γ −
(
ν(t), ϕ̃

)
Γ

(2.8)

and I is the coupling bilinear form, given by

I
(
u, ϕ, ũ, ϕ̃

)
:= − (∂tϕ,n.ũ)Γ +

(
∂tu.n, ϕ̃

)
Γ
. (2.9)

The FSI problem (2.4) and the variational problem (2.7) are equivalent in the
following sense [24, Sec. 8]:

Proposition 1. (ϕ,u) ∈ C0
T (H

1)∩C1
T (L

2) solves the FSIP (2.4) if and only if (ϕ,u)
solves the variational problem (2.7).

2.2 Solvability results

In this section, we analyse the well-posedness of the continuous transient acoustic-
elastic scattering problem (2.4) and provide existence and uniqueness results, as well
as continuous data-to-solution maps. Several results are given for different spatial
regularity of the data. The proofs of well-posedness are given in Section 2.7.

Generally speaking, a mathematical problem is well-posed if its solution (a)
exists, (b) is unique and (c) depends continuously on the problem data. For the
linear FSIP (2.4), requirement (c) leads to a data g in a space D and a solution ϕ
in a solution space X, verifying ∥ϕ∥X ≤ C ∥g∥D for some constant C. Depending on
D and X, multiple data-to solution mappings may be established. These mappings
will be used later to design a convergent domain decomposition coupling algorithm.

The acoustic scattering by a linear elastic obstacle has been previously treated
for the time-harmonic regime [107, 108, 141]. A more general case with a Lipschitz
incident scattering wave is considered in [16]. In this article, the well-posedness of the
frequency-domain counterpart of the acoustic-elastic FSIP (2.4) is established, with
the standard variational approach and an artificial boundary. For the transient case,
solvability results for the 2D transient FSIP in variational form are given in [13], but
a 2D Dirichlet-to-Neumann map is used to artificially truncate the domain. Another
solvability result for the 3D problem is given in [129] by extending the framework of
[69, Ch. 7], based on the convergence of Galerkin approximations for IBVPs. While
useful in abstract, those results are not well suited for studying the convergence of
acoustic-elastic coupling iterations.

This motivated us to formulate and prove new solvability results for the transient
acoustic-elastic scattering problem that can be later used to prove the convergence of
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domain decomposition method based on global-in-time coupling iterations (see Sec-
tion 2.5). We want these iterations to converge in L2([0, T ], L2(Γ)) norm of iteration
residuals, written in terms of velocities and conormal derivative of fluid and solid
quantities on the shared interface Γ. In this context, the specificity of our work is
that we establish solvability results for the FSIP, such that the relevant parts of the
solution have a L2([0, T ], L2(Γ)) regularity on Γ, while keeping regularity require-
ments on the data as low as possible to allow severe loadings potentially undergone
in practice by submerged structures. To allow the least restrictive possible assump-
tions on the data, we focus on the weak forms of the FSIP (2.7). Three solvability
results are derived, for different space regularity for the data. Theorem 2.2.1 is es-
tablished for an interfacial data with a H−1/2(Γ) space regularity. Theorem 2.2.2
assumes an improved space regularity, H1/2(Γ) for that data. Finally Theorem 2.2.3
is established by mean of a Sobolev interpolation using the theorems 2.2.1 and 2.2.2.
The transmission data has L2(Γ) regularity in space in that case. It is the main re-
sult for the justification of the iterative coupling procedure. These results and their
proofs, detailed in Section 2.7, are an important contribution provided by this work.

To derive the first two results, we use a classical methodology based on the
semigroup theory [28, 54, 114]. This method yields well-posedness results for strong
(in time) solutions which are then used as a basis to obtain well-posedness results
in the weak form for variational formulations. It consists in two main ideas:

1. We first assume a sufficient regularity in the data with respect to time to allow
the existence of classical time derivatives wherever needed. We reformulate the
evolution problem as a first-order system in time, and prove the existence and
uniqueness of the strong solution using the Hille-Yosida theorem.

2. We then use energy identities and density arguments to extend the solvability
results to a problem in weak form, assuming lower data regularity.

In the literature, the classical variational analysis framework for evolutions partial
differential equations was primarily developed for homogeneous boundary conditions
and body sources, not for transmission problems with interfacial data. It can how-
ever be adapted to cases involving non-homogeneous boundary data, which do not
correspond to the classical theory, by reformulating the transmission problem to the
classical format [110].

Spaces and norms definition.

We consider the FSI transmission problem (2.4) and its variational formulation (2.7).
We denote Ωs the elastic solid bounded by Γ = ∂Ωs, submerged in an acoustic fluid
domain Ωf := R3 \Ωs. T is a chosen finite duration. We use shorthand notations for
product spaces of potential-displacement pairs (or their velocities) equipped with
the relevant graph norm, denoted

L2 := L2(Ωf )× L2(Ωs), Hs := Hs(Ωf )×Hs(Ωs), H1
∆ := H1

∆(Ωf )×H1
∆(Ωs)

and product spaces of pairs of interfacial traces or transmission data, denoted as

Hs(Γ) := Hs(Γ)×Hs(Γ), L2(Γ) := H0(Γ).
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2.2. Solvability results

Those results are formulated in terms of spaces of functions f : [0, T ] → X with
values in a Hilbert space X, which are taken as either Cm

T (X) or L2([0, T ];X),
Hm([0, T ];X) (often abbreviated as L2

T (X), Hm
T (X), respectively), equipped with

the respective norms

∥ϕ∥2L2([0,T ];H) =

∫ T

0

∥ϕ(t)∥2H dt, ∥ϕ∥2Hm([0,T ];H) =
m∑
k=0

∫ T

0

∥∥∂kt ϕ(t)∥∥2H dt.
For the L2(Γ) and L2(Γ) norms, we retain the standard definitions ∥ϕ∥2Γ :=

∫
Γ
ϕ2dS

and ∥u∥2Γ :=
∫
Γ
|u|2 dS.

Solvability results.

For the first result we consider transmission data with the “standard” space regularity
for the variational problem (2.7).

Theorem 2.2.1 (Primary solvability result, data in H−1/2(Γ)). Let Γ be a Lipschitz
closed surface. Let (ν, hn) ∈ H1

T (H
−1/2(Γ)) with (ν, hn)(0) = (ν ′, h′n)(0)= (0, 0).

Then, the transmission problem admits a unique solution (ϕ,u) with

(ϕ,u) ∈ C0
T (H

1), (ϕ′,u′) ∈ C0
T (L

2)

If (ν, hn) ∈ H2
T (H

−1/2(Γ)) with (ν, hn)= (0, 0), we have

(ϕ,u) ∈ C0
T (H

1
∆), (ϕ′,u′) ∈ C0

T (H
1), (ϕ′′,u′′) ∈ C0

T (L
2).

The proof for this Theorem 2.2.1 is given in Section 2.7. Then, still motivated
by the objective of proving the convergence of global-in-time coupling iterations, we
want to establish a solvability result for the FSIP with a transmission data that
has L2(Γ) regularity in space. We therefore aim at applying Sobolev interpolation
and we thus first consider cases where the data has identical regularity in time but
improved regularity in space relative to Theorem 2.2.1.

Theorem 2.2.2 (Primary solvability result, data in H1/2(Γ)). Let Γ be a C1,1 closed
surface. Let (ν, hn) ∈ L2

T (H
1/2(Γ)). Then, the transmission problem admits a unique

solution (ϕ,u) with

(ϕ,u) ∈ C0
T (H

1), (ϕ′,u′) ∈ C0
T (L

2).

If (ν, hn) ∈ H1
T (H

1/2(Γ)) with (ν, hn)= (0, 0), we have

(ϕ,u) ∈ C0
T (H

2), (ϕ′,u′) ∈ C0
T (H

1), (ϕ′′,u′′) ∈ C0
T (L

2).

Taking advantage of this to obtain corresponding improvement on the solution
space regularity is not straightforward. For instance, elliptic regularity arguments
cannot be readily invoked due to insufficient regularity of the accelerations. The
energy estimates used to prove Theorem 2.2.2 also do not directly adapt to data
with extra spatial smoothness. The main steps of the proof thus have to be mod-
ified, allowing to obtain by the same general approach the following additional set
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2.3. Global-in-time iterative coupling procedures

of primary solvability results, proved in Section 2.7. Finally, to design a conver-
gent coupling method based on global-in-time iterations, it convenient to consider
transmission data whose space regularity is L2(Γ) rather than H1/2(Γ) or H−1/2(Γ).
Interpolation space arguments (see [131, Ch 1, 4]) are applicable to Theorems 2.2.1
and 2.2.2, yielding additional solvability mappings.

Theorem 2.2.3 (Interpolation solvability result). Let Γ be a C1,1 closed surface.
Let (ν, hn) ∈ H1

T (L
2(Γ)) with (ν, hn)(0)= (0, 0). Then, the transmission problem

admits a unique solution (ϕ,u) with

(ϕ,u) ∈ C0
T (H

3/2), (ϕ′,u′) ∈ C0
T (H

1/2).

In addition, the velocities have boundary traces, with ϕ′ |Γ∈ L2
T (Γ) and u′ |Γ∈ L2

T (Γ)
and we also have ∂nϕ |Γ∈ L2

T (Γ) and t[u] |Γ∈ L2
T (Γ).

This solvability result 2.2.3 is proved in Section 2.7. Here, the mapping de-
rived has a data with L2(Γ) space regularity while the solution has Neumann traces
∂nϕ, t [u] and boundary traces of velocities ϕ′,u′ in L2

T (Γ), which is very useful for
the analysis and justification of domain decomposition methods based on iteratively
solving IBVPs in each domain. This result in particular will be used in Section 2.5
to prove the convergence of a domain decomposition algorithm to solve the FSIP
(2.4). This also implies that both the acoustic and elastodynamic components of the
transient FSIP (2.4) are Robin solutions whose respective Robin data is in L2

T (Γ).
These three solvability results provide mappings between the data and solution

regularities. They are reported in the article [24]. The third Theorem 2.2.3 in
particular, is an original result. It assumes transmission data with a space regularity
L2(Γ) and is useful to justify the convergence of iterations based on alternative
solutions of IBVPs in each sub-domains.

2.3 Global-in-time iterative coupling procedures

In this section we introduce an iterative global-in-time method to solve a FSI prob-
lem. Many non-overlapping domain decomposition methods, including the Schwarz
waveform relaxation methods (see Section 1.2.2) consist, for the present context of
transient problems, in the construction of sequences (ϕn,un)n≥0 which converge to
the solution (ϕ,u) of problem (2.4) as n→ ∞, each iterate (ϕn,un) solving a pair of
decoupled initial-boundary value problems (IBVPs) in Ωf×[0, T ] and Ωs×[0, T ]. We
then justify with mathematical arguments how the choice of the IBVPs boundary
conditions influence the iterations convergence.

2.3.1 Global-in-time iterative method for transient FSI prob-
lems

The resolution of a coupled problem like the radiation problem (2.4) with a parti-
tioned approach inspired from SWR, leads to study two boundary value problems
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2.3. Global-in-time iterative coupling procedures

defined in each subdomain. We consider one acoustic initial boundary value prob-
lem in the Ωf fluid domain, and one elastodynamic IBVP in the Ωs solid domain.
Recalling that we omit the mention "rad" of all the radiated variables in (2.4), the
elastodynamic IBVP at each iteration n ≥ 1 is assumed to have the form:

−∆su
n + ρs∂

2
t u

n = 0 in Ωs × [0, T ],

Πs [u
n] = Gs

[
un−1, ϕn−1

]
on Γ× [0, T ],

un(0) = ∂tu
n(0) = 0 in Ωs.

(2.10)

Similarly, the acoustic IBVP at each iteration n ≥ 1 is assumed to have the form:
∆ϕn − ∂2t ϕ

n = 0 in Ωf × [0, T ],

Πf [ϕ
n] = Gf

[
un−1, ϕn−1

]
on Γ× [0, T ],

ϕn(0) = ∂tϕ
n(0) = 0 in Ωf .

(2.11)

Πs and Πf are boundary operators such that un → Πs[u
n] and ϕn → Πf [ϕ

n], to be
specified. At iteration n, Gs [ϕ

n−1,un−1] and Gf [ϕ
n−1,un−1] are boundary data that

depend on the interfacial quantities for the previous iterate n− 1, and on their first
derivatives. We will note gs

n = Gs [u
n−1, ϕn−1] and gnf = Gf [u

n−1, ϕn−1]. With the
notations ϕ = ϕ[gf ] and u = u[gs] emphasising the dependence of these solutions on
the respective boundary data, the iterative DDM consists in an algorithm defining
a data sequence (gnf ,gs

n)n≥0 such that the solution iterates verify the transmission
conditions of the coupled FSIP (2.4c) in Γ× [0, T ], in the limit n→ ∞, i.e.:

(a)
(
t[gs

n]− ∂tϕ[g
n
f ]n− hn

)
→ 0, (b)

(
∂nϕ[g

n
f ]− ∂tu[gs

n]n− ν
)
→ 0 (2.12)

with h and ν defined by (2.5). To satisfy these TCs in the limit, the sequence(
gnf ,gs

n
)

of data must have a definition that depends on the choice of the boundary
operators Πs and Πf . Indeed, the boundary operators and data must be such that
if the iterative process converges, the limiting equalities

Πs [u] = Gs [u, ϕ] , and Πf [ϕ] = Gf [u, ϕ] (2.13)

are equivalent to the transmission conditions (2.4c) of the original FSIP. Natural
choices for Πs and Πf include

• boundary operators based on Neumann boundary conditions:

Πs[u] := t[u] and Πf [ϕ] := ∂nϕ.

They specify the value of the (co)normal derivatives of the primary variables
on Γ.

• boundary operators based on Dirichlet boundary conditions:

Πs[u] := ∂tu and Πf [ϕ] := ∂tϕ.

They specify the value of the velocities on the boundary Γ.
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2.3. Global-in-time iterative coupling procedures

• boundary operators based on Robin boundary conditions:

Πs[u] := t[u] +K∂tu and Πf [ϕ] := −∂tϕ+K∂nϕ.

where K : L2(Γ) → L2(Γ) and K : L2(Γ) → L2(Γ) are time-independent
symmetric, positive and boundedly invertible operators.

There exist other type of conditions ([66], [99], [113]).

Assume for the sake of argument that the iterative procedure is convergent, IB-
VPs (2.10) and (2.11) are solved until the difference between two successive iterates
is small enough (stagnation criterion). For a given tolerance ϵ, the satisfaction of
the criterion

∥(∂tun − ∂tu
n−1) .n∥2L2

T (Γ) + ∥(∂nϕn − ∂nϕ
n−1)∥2L2

T (Γ)

∥∂tun−1.n∥2L2
T (Γ) + ∥∂nϕn−1∥2L2

T (Γ)

≤ ϵ (2.14)

indicates that the solution has converged. In case of convergence, the transmis-
sion residual quantities associated with given boundary trace solutions also have to
converge towards zero:

esol
v :=

∥∂nϕn − (∂tu
n.n+ ν)∥2L2

T (Γ)

∥∂nϕn∥2L2
T (Γ)

→
n→∞

0, (2.15)

and

esol
p :=

∥t[un].n− (h+ ∂tϕ
n)∥2L2

T (Γ)

∥t[un].n∥2L2
T (Γ)

→
n→∞

0. (2.16)

A third indicator ev,p combining the two interfacial transmission residuals is defined
on the interface Γ by:

ev,p :=
∥∂nϕn − (∂tu

n.n+ ν)∥2L2
T (Γ) + ∥t[un].n− (h+ ∂tϕ

n)∥2L2
T (Γ)

∥∂nϕn∥2L2
T (Γ) + ∥t[un].n∥2L2

T (Γ)

. (2.17)

2.3.2 Coupling iterations using Neumann boundary condi-
tions

It could be found natural to adapt the IBVPs (2.10) and (2.11) by choosing

Πs[u] := t[u] and Πf [ϕ] := ∂nϕ

as boundary operators, based on the TCs (2.4c) of the coupled FSIP (2.4). In this
case, it is straightforward to see that a sequence (gf ,gs) of Neumann data defined
on Γ× [0, T ] by

Gs

[
ϕn−1

]
:=
(
∂tϕ

n−1 + h
)
n, and Gf

[
un−1

]
:= ∂tu

n−1.n+ ν (2.18)
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will satisfy the TCs (2.4c) in the limit n → ∞ if the iterations are convergent.
We thus may define at each iteration, two Neumann IBVPs. In Ωs the Neumann
elastodynamic IBVP is:

−∆su
n + ρs∂

2
t u

n = 0 in Ωs × [0, T ],

t[u]n = Gs

[
ϕn−1

]
on Γ× [0, T ],

un(0) = ∂tu
n(0) = 0 in Ωs,

(2.19)

and in Ωf the acoustic Neumann IBVP is:
∆ϕn − ∂2t ϕ

n = 0 in Ωf × [0, T ],

∂nϕ
n = Gf

[
un−1

]
on Γ× [0, T ],

ϕn(0) = ∂tϕ
n(0) = 0 in Ωf .

(2.20)

However, Neumann conditions are known, in the domain decomposition theory,
to often lead to convergence issues [39, 127] (see Section 1.1.1). Indeed, coupling
iterations based on the Neumann IBVPs (2.19) and (2.20) were implemented in [146]
and numerically found to diverge. To explain this non-convergence, we investigate
the behaviour of this iterative procedure from a mathematical point of view.

Solvability results for the Neumann IBVPs

We now look at the well-posedness of the two Neumann IBVPs (2.19) and (2.20) and
study the regularity of their trace solutions. The solvability of Neumann evolution
problems is well-documented [110, 124, 125, 194]. In our case we are especially
interested to recall some mappings between data and solution spaces, as they play
an essential to explain the observed non-convergence of the global-in-time iterative
algorithm based on problems (2.19) and (2.20).

We mention that the well-posedness proof for an evolution Neumann IBVP is
given for example in [110, Sec 8.3]. The solvability mappings obtained are not quite
optimal (see [125] for optimal results regarding the regularity requirements) but the
proof is clear and concise. For completeness we provide a proof in Appendix C
which follows the same methodology as for the FSIP (2.4) in Section 2.7, and yields
the same solvability results as in [110]. As with the FSIP (2.4), the well-posedness
result are first derived for the strong solution, using the semigroup theory and the
Hille-Yosida theorem. Functional-analysis arguments are then used to additionally
obtain well-posedness in the weak framework of variational formulations.

The generic elastodynamic Neumann IBVP in Ωs is given by:
−∆su+ ρs∂

2
t u = 0 in Ωs × [0, T ],

t[u] = gs on Γ× [0, T ],

u(0) = ∂tu(0) = 0 in Ωs.

(2.21)

and the generic acoustic Neumann IBVP in Ωf by:
∆ϕ− ∂2t ϕ = 0 in Ωf × [0, T ],

∂nϕ = gf on Γ× [0, T ],

ϕ(0) = ∂tϕ(0) = 0 in Ωf .

(2.22)
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The well-posedness proof is based on the application of the Hille-Yosida theorem
(see Appendix C) and enables to prove the following solvability result:

Proposition 2 (Strong solvability for the Neumann IBVP). For the acoustic and
the elastodynamic Neumann IBVP, we have:
1. For gs ∈ C2

T (H
−1/2(Γ)), such that gs(0) = 0, the system (2.21) has a unique

solution u which verifies

u ∈ C1
T (H

1(Ωs)) ∩ C0
T (H

1
∆(Ωs)).

2. For gf ∈ C2
T (H

−1/2(Γ)), such that gf (0) = 0, the system (2.22) has a unique
solution ϕ which verifies

ϕ ∈ C1
T (H

1(Ωf )) ∩ C0
T (H

1
∆(Ωf )).

This well-posedness proof also allows to derive useful energy estimates. For the
Neumann IBVP (2.22), we derive the following estimate:

Lemma 2.3.1. For any datum gf ∈ C2
T (H

−1/2(Γ)) defined on [0, T ], with gf (0) = 0,
the strong solution U = (ϕ, ∂tϕ) of the Neumann IBVP (2.22) verifies the estimate

sup
t∈[0,T ]

∥U(t)∥2H1(Ωf )
≤ C∥gf∥2H1

T (H−1/2(Γ)).

The constant C > 0 depends on T and Γ but not on the datum gf .

These estimates indicate that the norm of the solution in the energy space is con-
trolled by the norm of the datum. The solution ϕ and its time derivative ∂tϕ thus
continuously depend the data. We follow the same method and derive similar en-
ergy estimates for the elastic IBVP (2.21). These estimates verified by the problems
strong solutions then allow to obtain the following solvability theorem for the Neu-
mann IBVPs in variational form, under weaker regularity assumptions on the data.

We consider the variational forms of problems (2.21) and (2.22). They are defined
with the bilinear forms a, b, A,B (2.6). The elastic displacement u verifies the weak
identity:

Find u(t) ∈ H1(Ωs) such thatA(u(t), ũ) +B(∂2t u(t), ũ) = (gs(t), ũ)Γ ∀ũ ∈ H1(Ωs), t ∈ [0, T ]

u(0) = ∂tu(0) = 0 in Ωs

(2.23)

and the velocity potential in Ωf verifies the weak identity:

Find ϕ(t) ∈ H1(Ωf ) such thata(ϕ(t), ϕ̃) + b(∂2t ϕ(t), ϕ̃) = −(gf (t), ϕ̃)Γ ∀ϕ̃ ∈ H1(Ωf ), t ∈ [0, T ]

ϕ(0) = ∂tϕ(0) = 0 in Ωf

(2.24)

where gf and gs are the boundary data. The energy identity 2.3.1 allows to prove
the following solvability result:
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Theorem 2.3.2 (solvability of Neumann IBVPs). Let Γ be a Lipschitz closed sur-
face. Let gf ∈ H1

T (H
−1/2(Γ)) and gs ∈ H1

T (H
−1/2(Γ)), with gf (0) = 0 and gs(0) = 0.

Then:

1. The elastodynamic Neumann IBVP (2.23) has a unique solution u verifying
(continuously in gs)

u ∈ C0
T (H

1(Ωs)), ∂tu ∈ C0
T (L

2(Ωs)).

2. The acoustic Neumann IBVP (2.24) has a unique solution ϕ verifying (continu-
ously in gf)

ϕ ∈ C0
T (H

1(Ωf )), ∂tϕ ∈ C0
T (L

2(Ωf )).

Deterioration of Neumann data iterates

These solvability results (proved in Appendix C, and also presented in [110, Sec 8.3])
highlight that transient Neumann IBVPs do not preserve the space-time regularity of
the solutions. Theorem 2.3.2 shows that for a Neumann datum g ∈ H1

T (H
−1/2(Γ)),

the IBVP (2.24) has a solution ϕ in C0
T (H

1(Ωf )). By comparison with elliptic
or frequency domain Neumann BVPs with H−1/2(Γ) Neumann data, the solution
therefore loses about one order of regularity in time with respect to g. Equivalently,
the solution ϕ can be in C1

T (L
2(Ωf )), preserving the time regularity, but the spatial

regularity then decreases, and defining a trace solution in velocity is not possible.
The paper [125] contains many results on the well-posedness of the Neumann IBVP
in terms of data-to-solution mappings. For example [125, Theorem 3.1.(iii)] states
that:

If g ∈ H1
T (L

2(Γ)), then: ϕ ∈ C0
T (H

3/2(Ω))

∂tϕ ∈ C0
T (H

α(Ω))

∂tϕ |Γ ∈ C0
T (H

α−1/2(Γ)),

where α is a known constant slightly larger than 1/2. In this case, the boundary
trace of the velocity solution is well-defined. But the time regularity of ∂tϕ |Γ (and
∂tu |Γ similarly) is insufficient for (2.18) to generate H1

T (L
2(Γ)) Neumann data for

the next iteration. As a result, Neumann-Neumann iterations based on (2.18), (2.19)
and (2.20) are such that the regularity of the successive Neumann data gns and gnf
deteriorates as iterations progress, making it impossible for them to converge in any
space chosen a priori.

This contrasts with the well-known results for second-order elliptic Neumann
BVPs, for which the above deterioration does not occur. As an example, the latter
kind of problem typically has the form

Find ϕ ∈ H1(Ω), a(ϕ, ϕ̃) = g(ϕ̃) for all ϕ̃ ∈ H1(Ω),

with a bilinear form a that is coercive on H1(Ω). For an interfacial Neumann data
g with H−1/2(Γ) space regularity, this elliptic problem has, by the Lax-Milgram
theorem, a unique solution ϕ ∈ H1(Ω) [124]. A gain of 3/2 in Sobolev regularity
is thus achieved from the data g to the solution ϕ in Ω. Consequently, for classical
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second order elliptic cases, the Neumann data yields the same time regularity for
the trace solution in velocity ∂tϕ |Γ. By contrast Theorem 2.3.2 shows the same
gain in spatial Sobolev regularity for the Neumann IBVP solution, but at the cost
of one unit of Sobolev regularity in time. All the available results on the solvability
of transient Neumann IBVPs confirm this observation and show that the Sobolev
interior regularity of the solution ϕ is about 1/2 above that of the Neumann data g,
with same regularity in time for both, instead of 3/2 for time-harmonic Neumann
BVPs [124, 125, 194].

2.3.3 Coupling iterations using Dirichlet boundary conditions

Alternatively, an iterative method based on Dirichlet boundary conditions can be
proposed. We adapt the IBVPs (2.10) and (2.11) by choosing

Πs[u] := u and Πf [ϕ] := ϕ

as boundary operators. In this case, it is straightforward to see that to satisfy the
TCs (2.4c) at convergence, a sequence (Gs, Gf ) of Dirichlet data has to be defined
on Γ× [0, T ] by

Gs

[
ϕn−1

]
:=

∫ t

0

(
∂nϕ

n−1 − ν
)
n(τ)dτ, and Gf

[
un−1

]
:=

∫ t

0

(t[u]n−1.n−h)(τ)dτ

(2.25)
We thus define at each iteration, two Dirichlet IBVPs. In Ωs the Dirichlet elastody-
namic IBVP is: 

−∆su
n + ρs∂

2
t u

n = 0 in Ωs × [0, T ],

un = Gs

[
ϕn−1

]
on Γ× [0, T ],

un(0) = ∂tu
n(0) = 0 in Ωs,

(2.26)

and in Ωf the acoustic Dirichlet IBVP is:
∆ϕn − ∂2t ϕ

n = 0 in Ωf × [0, T ],

ϕn = Gf

[
un−1

]
on Γ× [0, T ],

ϕn(0) = ∂tϕ
n(0) = 0 in Ωf .

(2.27)

These conditions are used to specify the value of the velocities on Γ (instead of the
pressure and elastic stress which were imposed through Neumann conditions).

Solvability results for the Dirichlet IBVPs

The well-posedness for the Dirichlet IBVPs (2.27) and (2.26) has been proved and the
associated data-to-solution mappings has been studied. A well-posedness proof for a
second order hyperbolic Dirichlet BVP is given in [123] using a classical methodology
based on energy estimates and functional analysis arguments, and different data-
to-solution mappings are derived. We consider the generic elastodynamic Dirichlet
IBVP in Ωs given by:

−∆su+ ρs∂
2
t u = 0 in Ωs × [0, T ],

u = gs on Γ× [0, T ],

u(0) = ∂tu(0) = 0 in Ωs.

(2.28)
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and the generic acoustic Dirichlet IBVP in Ωf given by:
∆ϕ− ∂2t ϕ = 0 in Ωf × [0, T ],

ϕ = gf on Γ× [0, T ],

ϕ(0) = ∂tϕ(0) = 0 in Ωf .

(2.29)

According to [123, Theorem 2.1], the following solvability result holds:

Proposition 3 (Strong solvability for the acoustic Dirichlet IBVP). For gf ∈
H1
T (Γ), the system (2.29) has a unique solution ϕ which verifies

ϕ ∈ C0
T (H

1(Ωf )), ∂tϕ ∈ C0
T (L

2(Ωf )), ∂nϕ |Γ∈ L2
T (Γ).

This result provides a continuous data-to-solution mapping. Stronger solvability
results are also given there under stronger hypotheses on the data regularity. The
solvability results in [123] holds for a generic Dirichlet evolution problem of the form

A(x, t)ϕ+ ∂2t ϕ = f in Ω× [0, T ]

with a Dirichlet boundary condition on Γ and initial conditions at t = 0. The
operator A is a second order elliptic operator. This regularity result thus also applies
for the elastodynamic IBVP (2.28) and hold a similar data-to-solution mapping. In
particular, gs ∈ H1

T (Γ) results in t[u] |Γ∈ L2
T (Γ).

With reference to (2.25), solving (2.26) with Gs[ϕ
n−1] ∈ H1

T (Γ) and (2.27)
with Gf [u

n−1] ∈ H1
T (L

2(Γ)) yields data for the next iterate that verify Gs[ϕ
n] ∈

H1
T (L

2(Γ)) and Gf [u
n] ∈ H1

T (L
2(Γ)). This indicates that, like their Neumann-

Neumann counterpart, Dirichlet-Dirichlet iterations suffer from progressive deterio-
ration of regularity and are thus unsuitable for the present global-in-time iterative
treatment. It is moreover easy to verify, using classical regularity results, that the
time-harmonic version of Dirichlet-Dirichlet iterations does not undergo progres-
sive regularity degradation, and thus is a valid candidate for such iterations (whose
convergence then remains to be established).

2.3.4 Iterative loss of space-time regularity for boundary traces

We illustrated how Neumann and Dirichlet IBVPs admit trace solutions whose reg-
ularity is insufficient for maintaining the regularity of the successive Dirichlet or
Neumann data as iterations progress. Theorem 2.3.2 for example shows that tran-
sient Neumann IBVPs have solutions whose spatial regularity is lower (by about
one unit) than that of the solutions of second-order elliptic Neumann BVPs. Conse-
quently, for transient Neumann IBVPs, the boundary trace solution in velocity is not
always well-defined and when it is defined, it has a lower regularity compared to the
boundary data. Theorem 3 shows a similar behaviour for Dirichlet IBVPs. These
observations are well-known [110, 123, 125] but are especially important for iterative
domain decomposition methods that proceed by generating convergent sequences of
IBVP solutions in each domain.
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In fact, global-in-time iterations involving Neumann (or Dirichlet) boundary con-
ditions in each subdomain, as defined in Section 2.3.2, are likely to be badly con-
vergent or non convergent, since they resort to recursively defined Neumann (or
Dirichlet) IBVPs, whose data deteriorates in regularity as iterations progress. As
an example, consider an elliptic acoustic iterative example defined in Ω, with the
following Neumann boundary conditions in Γ, for any n > 0:{

∂nϕ
n = iωun−1.n

t[u]n = iωϕn−1n

where ω is the frequency and un−1, an elastic displacement value defined on Γ. The
boundary data being un−1.n ∈ L2(Γ), classical elliptic regularity results implies that
the problem has a solution ϕn ∈ H1(Ω) at least, and therefore, a boundary trace
solution nϕn |Γ∈ L2(Γ). In this case, the L2(Γ) regularity of the trace solution is
preserved and iterating the elliptic problem solutions allows to stay in a fixed reg-
ularity space. A well-posedness proof for a time-harmonic acoustic-elastic problem
presented in [16], shows similar regularity results. On the contrary, consider an
equivalent time-domain Neumann problem as described in Section 2.3.2, with the
following transient Neumann boundary conditions on Γ:{

∂nϕ
n = ∂tu

n−1.n

t[u]n = ∂tϕ
n−1n

If the boundary data ∂tu
n−1 is in H1

T (L
2
T (Γ)), the solvability results [125] imply

that the problem has a solution ϕn ∈ C0
T (H

3/2(Ω)) and therefore, a boundary trace
solution in velocity ∂tϕ

nn ∈ C0
T (H

α−1/2(Γ)). It is thus impossible to keep con-
trol variable iterates in a fixed regularity space (in H1

T (L
2
T (Γ)) for example), which

is a prerequisite to build convergent iterations. This explain the non-convergence
of global-in-time iterations based on Neumann IBVPs observed in [146]. Dirichlet
IBVPs solutions have the same behaviour and a similar procedure based on alter-
nating Dirichlet IBVPs resolutions should present the same convergence problems
(see Section 3.3.2).

Alternatively, in the context of global-in-time domain decomposition, it is known
that using Robin boundary conditions in each subdomain instead of Neumann or
Dirichlet can improve the convergence rate (see Chapter 1). This thus lead us to
consider an alternative global-in-time iterative procedure based on Robin IBVPs.

2.4 Global-in-time iterative procedure based on Robin
boundary conditions

The previous observations prompt us to consider another iterative procedure. In
[146], the author suggests to modify the boundary conditions of each elastodynamic
and acoustic evolution problem, at each iteration, and to choose impedance type
conditions (Robin conditions) to improve the iterations convergence.
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2.4.1 Coupling iterations using Robin boundary conditions

We now choose a linear combination of interfacial variables for the boundary oper-
ators in the IBVPs (2.10) and (2.11):

Πs[u] := t[u] +K∂tu, and Πf [ϕ] := −∂tϕ+K∂nϕ (2.30)

where K : L2(Γ) → L2(Γ) and K : L2(Γ) → L2(Γ) are two linear time-independent
symmetric, positive and boundedly invertible operators. In Ωs, the elastodynamic
Robin IBVP is given for n ≥ 1 by:

−∆su
n + ρs∂

2
t u

n = 0 in Ωs × [0, T ],

t[un] +K∂tu
n = Gs

[
un−1, ϕn−1

]
on Γ× [0, T ],

un(0) = ∂tu
n(0) = 0 in Ωs.

(2.31)

In Ωf , the acoustic Robin IBVP is:
∆ϕn − ∂2t ϕ

n = 0 in Ωf × [0, T ],

−∂tϕn +K∂nϕ
n = Gf

[
un−1, ϕn−1

]
on Γ× [0, T ],

ϕn(0) = ∂tϕ
n(0) = 0 in Ωf .

(2.32)

In the elastic condition t[u] = Gs −K∂tu the stress vector applied on the surface
is modified with a quantity of opposite direction to the velocity. Similarly in the
acoustic condition p = Gf − Kv the pressure p = −∂tϕ applied on the surface
is modified by a quantity of opposite direction to the velocity (K and K being
positive). If the iterations are convergent, the solution iterates (un, ϕn) must verify
the TCs (2.4c) of the coupled FSIP (2.4) in Γ × [0, T ], in the limit n → ∞. While
the forms of the Neumann data for the Neumann IBVPs in Section 2.3.2 and the
Dirichlet data for the Dirichlet IBVPs in Section 2.3.3 were straightforward and
directly derived from the TCs, choosing the form of the Robin boundary data for
the Robin IBVPs (2.31) and (2.32) is less evident.

2.4.2 Robin boundary conditions definition

The form of the Robin boundary conditions must be chosen to allow the convergence
to the TCs with the iterations. We now aim at defining the exact form of the Robin
boundary data Gs and Gf . Inspired by [49] where iterations with Robin boundary
conditions are proved to be convergent and used to solve Helmholtz equations, we
first introduce incoming and outgoing trace operators to reformulate the Robin
iterations.

Incoming and outcoming trace operators.

The incoming trace operators are defined by

B(u) = t[u] +K∂tu and B(ϕ) = −∂tϕ+K∂nϕ. (2.33)

These trace operators can be understood as incoming operators on Γ in the sense
that traces satisfying B(ϕ) = 0 or B(u) = 0 are incoming relative to Ωf and
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Ωs. We recall that K and K are two linear operators. They are assumed to be
symmetric, positive and coercive L2

T (Γ) → L2
T (Γ) operators (they are thus invertible

with bounded inverse). The elastic transmission operator K is additionally chosen
to be of the form

Kw = Ks(n.w)n+KT (Pw), (2.34)

where P := I − n ⊗ n is the projection on the tangent plane at a point of Γ. The
linear operator KT assumed to be symmetric and positive, is a mapping between
tangential vector fields (i.e. vector fields w such that w.n = 0 on Γ). In particular
n.KT (Pw) = 0 for any vector field w.

Still following [49], we also add two outgoing trace operators

B(ϕ) = ∂tϕ+K∂nϕ and B(u) = −t[u] +K∂tu, (2.35)

as it will prove very convenient to express all boundary traces as combinations of
incoming and outgoing traces. They are termed "outgoing" traces in the sense
that traces satisfying B(ϕ) = 0 or B(u) = 0 are outgoing relative to Ωf or Ωs,
respectively. B and B act on functions defined in Ωf , while B and B act on functions
in Ωs. All relevant boundary traces can be formulated as combinations of incoming
and outgoing traces. Relations (2.33) and (2.35) can readily be inverted and any
set of Dirichlet and Neumann traces on Γ are given in terms of the incoming and
outgoing traces by

∂nϕi =
1
2
K−1

(
B(ϕ) +B(ϕ)

)
; ∂tϕ = 1

2

(
B(ϕ)−B(ϕ)

)
t = 1

2

(
B(u)−B(u)

)
; ∂tu = 1

2
K−1

(
B(u) +B(u)

) (2.36)

With these notations and choosing

Πs[u] = B(u), and Πf [ϕ] = B(ϕ)

the Robin conditions (2.30) at iteration n are written

B(un) = Gs[u
n−1, ϕn−1] and B(ϕn) = Gf [u

n−1, ϕn−1], (2.37)

The left hand side quantities are the incoming traces of ϕn−1 and un−1 through Γ,
while the right hand side quantities are the Robin boundary data depending on
the traces ϕn−1 and un−1 of the previous iterate. Moreover at convergence, the
transmission conditions (2.4c) have to be verified and take the form

n
(
B(ϕ)−B(ϕ)

)
+
(
B(u)−B(u)

)
= 2hn, (a)

K−1
(
B(ϕ) +B(ϕ)

)
−K−1

s

(
n.B(u) + n.B(u)

)
= 2ν. (b)

(2.38)

These equations will help defining the appropriate form for Gs and Gf .

Derivation of RR iterations.

The Robin global-in-time iterations for the FSIP (2.4) can be formulated by means
of the following heuristic. It can be thought of as an example of the "LArge Time
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INcrement" (LATIN) framework, as it follows the general approach of this method
of computational mechanics [122, 155]. It consists in alternating the verification of
two sets of equations, namely{

(ε) : uncoupled evolution equations for each medium Ωs,Ωf

(τ) : transmission equations linking the two media at their shared interface Γ.

In our case, (ε) are the uncoupled evolution problems (2.10) and (2.11) with arbitrary
Robin datum, while (τ) refer to the TCs (2.4c).

Let then (gs
n−1, gn−1

f ) be some Robin datum. Let u[gs
n−1], ϕ[gn−1

f ] solve the
Robin IBVPs (2.10) and (2.11), and have well-defined velocity and Neumann traces
(or, equivalently, incoming and outgoing traces) on Γ. We then define the next
datum iterate (gs

n, gnf ), and resulting solution iterate (un, ϕn) = (u[gs
n], ϕ[gnf ]), by

requiring that the transmission conditions (2.4c) be verified by the final incoming
traces and the initial outgoing traces. We accordingly set

(B(ϕ),B(u)) = (B(ϕn),B(un)) and (B(ϕ),B(u)) = (B(ϕn−1),B(un−1))

in (2.38) and solve the resulting equations for (B(ϕn),B(un)). This results in the
final incoming traces being given by

B(un) = Gs[u
n−1, ϕn−1], and B(ϕn) = Gf [u

n−1, ϕn−1] (2.39)

with
Gf [u, ϕ] =

(
I − 2KsH

−1
)
B(ϕ) + 2KH−1n.B(u) + 2KH−1 (h+Ksν) ,

Gs[u, ϕ] = 2nKsH
−1B(ϕ) +

(
I− 2nKH−1n

)
B(u)− 2nKH−1 (h+Ksν) + 2hn,

(2.40)
in terms of the initial outgoing traces (with H := K+Ks and I the identity operator
in L2

T (Γ)). Equations (2.39), (2.40) constitute the proposed iterations based on
Robin conditions. These iterations thus consist in (i) evaluating the datum (gs

n, gnf )
and (ii) solving the Robin IBVPs (2.10) and (2.11) with that datum. Choosing
adapted values for the positive parameters K and Ks can improve the convergence
rate, as we will study later (see Section 3.3.3). Iterations can be started by solving
problems (2.10) and (2.11) with arbitrarily chosen (gs

0, g0f ). The simplest choice is
to set (gs

0, g0f ) = (0, 0), yielding B(u0) = 0 and B(ϕ0) = 0 in formulas (2.40).

In this work, we will implement these iterations in a simpler form, by using the
particular values K = kaI, Ks = ksI and KT = ks(I − n ⊗ n) (with ka, ks > 0) in
the transmission operators. In this case, the incoming and outgoing traces are given
by

B(ϕ) = −∂tϕ+ ka∂nϕ, B(u) = t[u] + ks∂tu

B(ϕ) = ∂tϕ+ ka∂nϕ, B(u) = −t[u] + ks∂tu.

We haveKH−1 = ka/(ka+ks)I andKsH
−1 = ks/(ka+ks)I, and the iterations (2.39)

can be given a more-explicit form with

Gf [u, ϕ] =
ka − ks
ka + ks

B(ϕ) +
2ka

ka + ks
n.B(u) +

2ka
ka + ks

(h+ ksν)

Gs[u, ϕ] =
2ks

ka + ks
B(ϕ)n+

(
I− 2ka

ka + ks
n⊗ n

)
.B(u)− 2ka

ka + ks
(h− ksν)n+ 2hn.
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2.4. Global-in-time iterative procedure based on Robin boundary conditions

Matrix notation.

Still following [49], we now introduce matrix notations, in order to express Gs and
Gf in a compact form. These notations will also be very helpful for studying the
convergence of Robin-Robin coupling iterations thereafter. We set

B =

{
B(ϕ)

B(u)

}
, B :=

{
B(ϕ)

B(u)

}
, H :=

{
ν

hn

}
. (2.41)

The corresponding standard L2 scalar product and norm on Γ× [0, T ] are then

(B,B′)Γ,T := (B,B′)Γ,T + (B,B′)Γ,T ; ∥B∥2Γ,T := (B,B)Γ,T .

With the weighting operator matrix

K :=

[
K−1 0

0 K−1

]
,

we define the weighted L2
T (L

2(Γ)) space-time scalar product and norm by

(B,B′)Γ,T,K := (B,KB′)Γ,T ; ∥B∥2Γ,T,K := (B,KB)Γ,T .

By virtue of the assumptions made on K and K, the norms ∥.∥2Γ,T and ∥.∥2Γ,T,K are
equivalent. We will denote by L2

T (Γ) the space of sets of boundary traces B with
finite norm ∥B∥2Γ,T or ∥B∥2Γ,T,K. Using these notations, the transmission conditions
(2.38) take the form

B = XB + LH,

while the iterative procedure based on Robin iteration equations (2.37) becomes

Bn = XBn−1 + LH (2.42)

where the vector H holds the transmission data and the operator matrices X and L
are given by

X = I + 2

[
−KsH

−1 KH−1n

nKsH
−1 −nKH−1n

]
, L =

[
2KH−1Ks 2KH−1n

−2nKH−1Ks 2I− 2nKH−1n

]
.

We note that the left hand side quantity is the incoming trace operator defined on Γ,
while the right hand side quantity depends on the outgoing trace operator. In other
words, this equation (2.42) expresses that on Γ, the incoming traces for the current
iterate n are formulated in terms of the outgoing traces of the previous iterate n−1.

The matrix operator X (which plays the role of the exchange operator in [49]) has
two properties, both easily checked by inspection, that will prove crucial for proving
the convergence of Robin global-in-time iterations (see Section 2.5). Firstly, it is its
own inverse:

XX = I =

[
I 0

0 I

]
. (2.43)
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2.4. Global-in-time iterative procedure based on Robin boundary conditions

Secondly, we have
X′KX = K

so that X defines an isometry for the ∥.∥2Γ,T,K norm:

∥XB∥2Γ,T,K = ∥B∥2Γ,T,K ∀B ∈ L2
T (Γ)

In particular, the iteration equation (2.42) can be inverted using the property (2.43),
giving the identity

Bn−1 = X (Bn − LH)

which plays a key role in the convergence proof for the iterative process. Upon
convergence, (2.42) becomes

B = XB + LH,

which is equivalent to the TCs (2.4c).
Likewise, considering a simpler form for these iterations, by using the particular

values K = kaI, Ks = ksI and KT = ks(I − n ⊗ n) (with ka, ks > 0) in the
transmission operators, the operator matrix X and L become

X =

[
ka−ks
ka+ks

2ka
ka+ks

n
2ka
ka+ks

n I− 2ka
ka+ks

n⊗ n

]
, L =

[
2kaks
ka+ks

2ka
ka+ks

2kaks
ka+ks

n 2I− 2ka
ka+ks

n

]
.

Relaxed iterations. An alternative scheme can be defined with "relaxed" Robin
transmission conditions. This relaxation, used for example by [80] or recently in [49]
for Robin iterative algorithms, introduces a tunable relaxation parameter 0 < r < 1
that expands the scope of convergence rate optimisation. The iterations (2.39)
become

B(ϕn) = (1− r)B(ϕn−1) + rGf [u
n−1, ϕn−1] (2.44)

and
B(un) = (1− r)B(un−1) + rGs[u

n−1, ϕn−1] (2.45)

with Gs[u
n−1, ϕn−1] and Gf [u

n−1, ϕn−1] still given by (2.40), and where 0 < r ≤ 1
is the relaxation parameter. Iterations (2.39) then correspond to (2.44) and (2.45)
with r = 1. Using the matrix notations, the relaxed Robin iteration equation (2.42)
becomes

Bn = (1− r)Bn−1 + rXBn−1 + rLH.

This iteration equation can be inverted as well, yielding

Bn−1 = X

[
1

r
Bn +

(
1− 1

r

)
Bn−1 − LH

]
(2.46)

This reformulation of the transmission conditions and the Robin-Robin iterations in
terms of incoming and outgoing traces is crucial for proving the convergence of the
proposed Robin iterations (see Section 2.5).
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2.4. Global-in-time iterative procedure based on Robin boundary conditions

2.4.3 Solvability results for the Robin IBVPs

The convergence of the proposed Robin-Robin iterations relies in part in solvability
results for Robin acoustic and elastodynamic IBVPs. We thus address now this is-
sue, and focus on how the solvability depends on the Robin boundary datum. These
solvability results will play a key role in the justification of the forthcoming domain
decomposition iterative algorithm (see Section 2.5). The proof of well-posedness
follows the same method as for the FSIP (2.4) in Section 2.2 and for the Neumann
evolution problems in Section 2.3.2. This proof is detailed in Appendix D. The
well-posedness result are first derived for the strong solution, using the semigroup
theory and the Hille-Yosida theorem. Functional-analysis arguments are then used
to additionally obtain well-posedness in the weak framework of variational formula-
tions.
The generic elastodynamic Robin IBVP has the form:

−∆su+ ρs∂
2
t u = 0 in Ωs × [0, T ],

t[u] + ks∂tu = gs on Γ× [0, T ],

u(0) = ∂tu(0) = 0 in Ωs.

(2.47)

Likewise, the generic acoustic Robin IBVP is of the form:
∆ϕ− ∂2t ϕ = 0 in Ωf × [0, T ],

−∂tϕ+ ka∂nϕ = gf on Γ× [0, T ],

ϕ(0) = ∂tϕ(0) = 0 in Ωf .

(2.48)

Their variational formulations are defined with the bilinear forms a, b, A,B (2.6).
The elastic displacement u verifies the weak identity:

Find u(t) ∈ H1(Ωs) such thatA(u(t), ũ) + C(∂tu(t), ũ) +B(∂2t u(t), ũ) = (gs(t), ũ)Γ ∀ũ ∈ H1(Ωs), t ∈ [0, T ]

u(0) = ∂tu(0) = 0 in Ωs

(2.49)
and the velocity potential in Ωf verifies the weak identity:

Find ϕ(t) ∈ H1(Ωf ) such thata(ϕ(t), ϕ̃) + c(∂tϕ(t), ϕ̃) + b(∂2t ϕ(t), ϕ̃) = − 1
ka
(gf (t), ϕ̃)Γ ∀ϕ̃ ∈ H1(Ωf ), t ∈ [0, T ]

ϕ(0) = ∂tϕ(0) = 0 in Ωf

(2.50)
where gf and gs are Robin boundary data and where the bilinear forms c and C are:

c
(
ϕ, ϕ̃

)
:=

ρf
ka

∫
Γ

ϕϕ̃dΓ and C(∂tu, ũ) := ks

∫
Γ

∂tuũdΓ (2.51)

The bilinear forms c and C are involved in the Robin problems (2.49) and (2.50), but
neither appear in Neumann or Dirichlet IBVPs nor in the target FSI transmission
problem (2.7). This feature results in different properties of the solutions in terms of
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2.4. Global-in-time iterative procedure based on Robin boundary conditions

their regularity and those differences in turn affect the convergence of iterative FSI
solution algorithms. The well-posedness proof is based, again, on the application
of the Hille-Yosida theorem (see Appendix D) and enables to prove the following
solvability result:

Proposition 4 (Strong solvability for the Robin IBVP). For the acoustic and the
elastodynamic Robin IBVP, we have:
1. For gs ∈ C2

T (L
2(Γ)), with gs(0) = 0, the system (2.47) has a unique solution u

which verifies
u ∈ C1

T (H
1(Ωs)).

2. For gf ∈ C2
T (L

2(Γ)), with gf (0) = 0, the system (2.48) has a unique solution ϕ
which verifies

ϕ ∈ C1
T (H

1(Ωf )).

This well-posedness proof also allows to derive useful energy estimates. For the
Robin IBVP (2.48) these estimates are given by:

Lemma 2.4.1. For any datum gf ∈ C2
T (L

2(Γ)) defined on [0, T ], with gf (0) = 0,
the strong solution U = (ϕ, ∂tϕ) of the Robin IBVP (2.48) verifies the estimate

sup
t∈[0,T ]

∥U(t)∥2H1(Ωf )
≤ C∥gf∥2L2

T (Γ).

The velocity trace on Γ also verifies the estimate

∥∂tϕ∥2L2
T (Γ) ≤ C∥gf∥2L2

T (Γ).

The constants C > 0 in each estimate depend on T and Γ but not on the datum gf .

These estimates indicate that the norm of the solution in the energy space is con-
trolled by the norm of the datum. The solution ϕ and its time derivative ∂tϕ thus
continuously depend the data. We follow the same method and derive similar en-
ergy estimates for the elastic IBVP (2.47). These estimates verified by the problems
strong solutions then allow to obtain the following solvability theorem for the Robin
IBVPs in variational form, under weaker regularity assumptions on the data:

Theorem 2.4.2 (Solvability of Robin IBVPs). Let Γ be a Lipschitz closed surface.
Let gs ∈ L2

T (Γ) and gf ∈ L2
T (Γ). Then:

1. The elastodynamic Robin IBVP (2.49) has a unique solution u verifying (contin-
uously in gs)

u ∈ L2
T (H

1(Ωs)), ∂tu ∈ L2
T (Ωs), ∂tu|Γ ∈ L2

T (Γ).

2. The acoustic Robin IBVP (2.50) has a unique solution ϕ verifying (continuously
in gf)

ϕ ∈ L2
T (H

1(Ωf )), ∂tϕ ∈ L2
T (Ωf ), ∂tϕ|Γ ∈ L2

T (Γ).

Moreover, the above results on velocity traces imply that we also have

∂nϕ|Γ ∈ L2
T (Γ), t[u]|Γ ∈ L2

T (Γ).
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2.5. Proof of convergence for the iterative algorithm

Unlike the Neumann and Dirichlet IBVPs, this solvability result highlights that tran-
sient Robin IBVPs produce boundary velocities and (co)normal derivatives whose
regularity is the same as that of the Robin data. As an illustration, consider a
time-domain Robin-Robin iteration as described in Section 2.3.4, with the following
transient Robin boundary conditions on Γ:{

−∂tϕn + ka∂nϕ
n = Gf [u

n−1, ϕn−1]

t[u]n + ks∂tu
n = Gs [u

n−1, ϕn−1]

If the boundary datum Gf [u
n−1, ϕn−1] is in L2

T (Γ), according to the Theorem 2.4.2,
the Robin IBVP admits a velocity solution with L2

T (Ω) interior regularity. In this
case, the boundary trace solution in velocity is well-defined in L2

T (Γ). Transient
Robin IBVPs thus have solutions whose regularity is similar to that of solutions of
second-order elliptic Robin BVPs. Most importantly, the next Robin data gener-
ated by (2.39) will have the same regularity. In other words, unlike their Neumann-
Neumann and Dirichlet-Dirichlet counterpart, Robin-Robin iterations do not expe-
rience regularity degradation.

Conclusion. The Robin acoustic and elastodynamic IBVPs are shown to be well-
posed. Moreover, the recursive iterations with Robin boundary conditions can be
shown to preserve the L2

T (Γ) regularity of all interfacial variables: each Robin da-
tum (Gs, Gf ) given by (2.40) is a L2

T (Γ) function, which in turn ensures that the
next global-in-time Robin iterate has a L2

T (Γ) regularity and so on. This obser-
vation is very important for iterative domain decomposition methods that proceed
by generating convergent sequences of IBVP solutions in each domain. In fact,
global-in-time iterations involving Robin IBVPs will be shown in the next section
not to suffer from the regularity-preservation issue observed with the global-in-time
Neumann iterations and to produce a convergent iterative method.

2.5 Proof of convergence for the iterative algorithm

A sequence of Robin IBVPs solutions preserves the regularity of the velocity trace
solution from one iteration to another. For a transmission data (ν, hn) ∈ L2

T (L
2
T (Γ)),

the procedure preserves the regularity of all the velocity interface variables. We now
develop a proof of convergence for the iterations in time-domain based on Robin
IBVPs, under the solvability assumptions of Theorem 2.4.2. The case of a time-
harmonic acoustic-acoustic problem is considered in [49]. The proof is based on
establishing that the error between an iterate and the converged solution vanishes
in the limit of infinitely many iterations. We follow a similar methodology.

Having reformulated the Robin TCs in terms of incoming and outgoing traces, the
proof of convergence is based on establishing that the error between an iterate and
the converged solution vanishes in the limit of infinitely many iterations. ϕ, v,u, t
are the converged interfacial traces on Γ (which solve the FSIP (2.4)). We introduce
error fields ϕq − ϕ, vq − v,uq − u and tq − t at the q-th iteration. To limit notation
repetitions the notations ϕq etc. refer to error fields, rather than absolute fields, for
the remainder of this section. The errors ϕq verify the homogeneous wave equation
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2.5. Proof of convergence for the iterative algorithm

in Ωf , while uq solve the homogeneous elastodynamic equation in Ωs. In particular
we assume that H = 0 in (2.41), which means that the velocity and pressure jumps
h and ν are equal to zero. We introduce the energy Eq(s) of the q-th iterate error
at time s given by

Eq(s) :=
1

2
E (ϕq(s),uq(s)) (2.52)

where the energy functional E is defined, for any pair (ϕ,u) ∈ C0
T (H

1(Ωf )×H1(Ωs))
satisfying (2.4a,b), by

E (ϕ(s),u(s)) := a (ϕ(t), ϕ(s)) + b (ϕ′(s), ϕ′(s)) + A (u(s),u(s)) +B (u′(s),u′(s)) ,
(2.53)

with the bilinear forms a, b for the fluid domain and A,B for the solid defined
by (2.6). E (ϕ(s),u(s)) is thus the sum of the potential and kinetic energies reached
in the fluid and solid from a state of initial rest; in particular E (ϕ(s),u(s)) ≥ 0.
The convergence proof will entail showing that Eq(s) → 0 as q → ∞. We start the
discussion with an important identity for (2.52) and its summation over iterates.

Lemma 2.5.1. For any set of fluid and solid variables solving the field equations,
the energy Eq(s) at any finite time s ≤ T is related to the incoming and outgoing
traces by

Eq(s) =
1

4
∥Bq∥2Γ,s,K − 1

4

∥∥Bq
∥∥2
Γ,s,K

Moreover, let N be any integer, and assume H = 0. The energies, incoming and
outgoing traces of the first N relaxed iterate verify the identity

N−1∑
q=0

{
Eq(s) +

1

r

(
1

r
− 1

)∥∥XBq − Bq
∥∥2
Γ,s,K

}
+

1

r

∥∥BN
∥∥2
Γ,s,K

=
1

r

∥∥B0
∥∥2
Γ,s,K

(2.54)

Since the right-hand side in (2.54) does not depend on N while all terms are
positive, the sum has a finite limit as N → ∞, implying that

lim
q→∞

{
Eq(T ) +

1

r

(
1

r
− 1

)∥∥XB
q − Bq

∥∥2
Γ,s,K

}
= 0 (2.55)

The fact that the error fields vanish in the limit q → ∞ cannot be inferred solely
from lim

q→∞
Eq(T) =0. It requires additional arguments. Here, the fact that Eq(s)

vanishes at any time s ≤ T together with the boundedness of the right-hand side
of (2.54) for any value s ≤ T of the final time allows to establish convergence for
any 0 < r ≤ 1.

Proof of lemma 2.5.1. Observing that equations (2.35) can be inverted and that (2.36)
gives the trace variables in terms of the incoming and outgoing traces, it allows to
express the right-hand side of (2.54) in terms of the incoming and outgoing traces

−ρf (vq, ∂tϕq)Γ,s + (tq, ∂tu
q)Γ,s =

1

4

(
(B +B), k−1(B −B)

)
Γ,s,K +

1

4

(
(B+B), (ks)

−1(B−B)
)
Γ,s,K

=
1

4
∥Bq∥2Γ,s,K − 1

4

∥∥B
q∥∥2

Γ,s,K

(2.56)
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2.5. Proof of convergence for the iterative algorithm

Using the above equality in (2.52) yields the first identity of the lemma.
Then, since the traces of successive iterates of the error fields satisfy (2.46) with
H = 0, we rewrite B

q in terms of Bq and Bq+1, to obtain

−ρf (vq, ∂tϕq)Γ,s + (tq, ∂tu
q)Γ,s =

1

4
∥Bq∥2Γ,s,K − 1

4

∥∥∥∥X

[
1

r
Bq+1 +

(
1− 1

r

)
Bq
]∥∥∥∥2

Γ,s,K

=
1

4
∥Bq∥2Γ,s,K − 1

4

∥∥∥∥1rBq+1 +

(
1− 1

r

)
Bq
∥∥∥∥2
Γ,s,K

.

(2.57)
The the second equality is stemming from the isometry property of X. The Hilbert
space identity∥∥∥∥1ra+

(
1− 1

r

)
b

∥∥∥∥2 = 1

r
∥a∥2 +

(
1− 1

r

)
∥b∥2 − 1

r

(
1− 1

r

)
∥a− b∥2

can then be applied in the above right-hand side. We have∥∥∥∥1rBq+1 + (1− 1

r
)Bq
∥∥∥∥2
Γ,s,K

=
1

r

∥∥Bq+1
∥∥2
Γ,s,K

+(1−1

r
) ∥Bq∥2Γ,s,K−

1

r
(1−1

r
)
∥∥Bq+1 − Bq

∥∥2
Γ,s,K

After noticing that the transition equation (2.46) with H = 0 gives Bq+1 − Bq =
r(X − BqBq), the identity (2.57) becomes

−ρf (vq, ∂tϕq)Γ,s+(vqi , ∂tϕ
q
i )Γ,s =

1

4r
∥Bq∥2Γ,s,K−

1

4r

∥∥Bq+1
∥∥2
Γ,s,K

+
1

4
(1−1

r
)
∥∥XB

q − Bq
∥∥2
Γ,s,K

Using the above equality in the right-hand side of (2.52) and rearranging so that
the left and right-hand sides of the resulting identity feature only positive terms, we
obtain

Eq(s) +
1

4r

∥∥Bq+1
∥∥2
Γ,s,K

+
1

4

(
1

r
− 1

)∥∥XB
q − Bq

∥∥2
Γ,s,K

=
1

4r
∥Bq∥2Γ,s,K (2.58)

(noticing that 1
r

(
1
r
− 1
)
> 0 for any 0 < r ≤ 1). We finally perform N successive

iterations (with 0 < q ≤ N − 1), sum the energy equalities (2.58) for each iteration
and notice a telescopic sum effect (the same terms 1

4r
∥Bq∥2Γ,s,K appearing in the left-

and right-hand sides of the sum for 1 < q ≤ N − 1 and cancelling each other). This
results in the second identity claimed in the lemma.

Considering the energy defined at each iteration q as a function of the error
fields, lemma 2.5.1 reformulates it as a function of the incoming and outgoing trace
operators. The summation of the energies at each iteration shows that the error
fields, and then the energy, tend towards 0 in the limit of the number of iterations.

Theorem 2.5.2. The two-operator global-in-time iterations are convergent: ∥ϕq(s)∥H1(Ωf )
,

∥∂tϕq(s)∥L2(Ωf )
, ∥uq(s)∥H1(Ωs)

∥∂tuq(s)∥L2(Ωs)
all vanish in the limit q → ∞ for the

error fields, uniformly in time.
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2.5. Proof of convergence for the iterative algorithm

Proof of theorem 2.5.2. The identity (2.54) holds for any choice of final time s ≤ T .
In particular, we have

N−1∑
q=0

Eq(s) ≤ 1

4r

∥∥B0
∥∥2
Γ,s,K

= B(s)

We notice that s → B(s) is continuous, positive and non-decreasing, it is hence
bounded above by B(T ). By definition of 2Eq(s)

2Eq(s) = a (ϕq(s), ϕq(s))︸ ︷︷ ︸
∥∇ϕq(s)∥2ρf

+b (∂tϕ
q(s), ∂tϕ

q(s))︸ ︷︷ ︸
∥∂tϕq(s)∥2ρf

+A (uq(s),uq(s))︸ ︷︷ ︸
∥∇uq(s)∥2ρs

+B (∂tu
q(s), ∂tu

q(s))︸ ︷︷ ︸
∥∂tuq(s)∥2ρs

(2.59)
where ∥·∥ρf , ∥·∥ρs denote weighted versions (by ρf and ρs, respectively) of the L2(Ωf )

and L2(Ωs) norms. Therefore we have

N−1∑
q=0

∥∂tϕq(s)∥2ρf ≤ B(s),
N−1∑
q=0

∥∂tuq(s)∥2ρs ≤ B(s)

implying that ∥∂tϕq(s)∥2ρf and ∥∂tuq(s)∥2ρs vanish in the limit q → ∞. Moreover
ϕq(t) =

∫ t
0
∂tϕ

q(s)ds, so

N−1∑
q=0

∥ϕq(t)∥2ρf ≤
∫ t

0

N−1∑
q=0

∥∂tϕq(s)∥2ρf ds ≤
∫ t

0

B(s)ds

and by definition of (2.59), which gives a majoration of

N−1∑
q=0

∥∇ϕq(s)∥2ρf ≤ 2
N−1∑
q=0

Eq(s) ≤ 2B(s)

we obtain:
N−1∑
q=0

∥∇ϕq(t)∥2ρf + ∥ϕq(t)∥2ρf =
N−1∑
q=0

∥ϕq(t)∥2H1(Ωf )
≤
∫ t

0

B(s)ds+ 2B(t) ∀s ≤ T

as the right hand side doesn’t depend on q, in the limit of q → ∞.

lim
q→∞

∥ϕq(t)∥H1(Ωf )
= 0 ∀t ∈ [0, T ]

Likewise uq(t) =
∫ t
0
∂tu

q(s)ds, so

N−1∑
q=0

∥uq(t)∥2ρs ≤
∫ t

0

N−1∑
q=0

∥∂tuq(s)∥2ρs ds ≤
∫ t

0

B(s)ds.

By definition of (2.59), we have a majoration of

N−1∑
q=0

∥∇uq(s)∥2ρs ≤ 2
N−1∑
q=0

Eq(s) ≤ 2B(s),
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2.5. Proof of convergence for the iterative algorithm

and we then apply the Korn’s inequality (see e.g. [46, Thm. 6.15-1]), which gives a
majoration of ∥uq(s)∥2H1(Ωs)

using the jacobian matrix symmetric part ε(uq(s)):

∥uq(t)∥2H1(Ωs)
≤ CK

(
∥uq(t)∥2L2(Ωs)

+ ∥ε(uq(t))∥2L2(Ωs)

)
with CK > 0

This majoration implies
N−1∑
q=0

∥uq(t)∥2H1(Ωs)
≤ CK

(
N−1∑
q=0

∥uq(t)∥2ρs +
1

2

N−1∑
q=0

∥∇uq(t)∥2ρs

)

≤ CK

(∫ t

0

B(s)ds+B(t)

)
as the right hand-side of (2.60) doesn’t depend on q, in the limit of q → ∞

⇒ lim
q→∞

∥uq(t)∥H1(Ωs)
= 0 ∀t ∈ [0, T ] (2.60)

This convergence result shows that the error fields vanish in energy norm in the
respective domains in the limit q → ∞ for the error fields, uniformly in time.

For the relaxed iterations (with a relaxation parameter r: 0 < r < 1), we can
prove a stronger convergence result. As for Helmholtz, [49] shows a stronger result,
namely the geometric convergence, we would like to prove the geometric convergence
of the Robin-Robin global-in-time iterations. But in the case of relaxed iterations
in the time-domain, we only show the following result

Theorem 2.5.3. Let 0 < r < 1. The two-operator relaxed iterations based on Robin
boundary conditions are convergent: ∥ϕq(t)∥H1(Ωf )

, ∥∂tϕq(t)∥L2(Ωf )
, ∥uq(t)∥H1(Ωs)

and ∥∂tuq(t)∥L2(Ωs)
all vanish in the limit q → ∞ for the error fields, uniformly

in time. In addition, the Robin error trace iterates Bq vanish in the limit q → ∞.
If in addition the target FSI solution has its incoming and outgoing traces in L2

T (Γ),
the incoming trace iterates also converge in L2

T (Γ) to the FSI traces:

Bq → B in L2
T (Γ) (q → ∞).

Proof of theorem 2.5.3. For 0<r<1, (2.55) implies that the sequence of partial
N−1∑
q=0

∥∥XB
q − Bq

∥∥2
Γ,T,K

=
N−1∑
q=0

∥∥Bq+1 − Bq
∥∥2
Γ,T,K

is convergent with N → ∞ from which we deduce that Bq is a Cauchy sequence
of elements of L2

T (Γ), and hence has a limit B ∈ L2
T (Γ) since L2

T (Γ) is complete.
Moreover, we must have B = 0 since otherwise the Robin problem with data B that
defines the converged error fields would have a solution of nonzero energy.

Now, we assume the target FSI solution has its boundary traces B⋆, B
⋆ in B ∈

L2
T (Γ). The absolute trace iterates Bq + B⋆ generated by the iterations verify(

Bq+1 + B⋆
)
− (Bq + B⋆) = Bq+1 − Bq

and hence also define a Cauchy sequence in B ∈ L2
T (Γ). Therefore the absolute trace

iterates converge to B⋆.
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2.6. Numerical illustration

Conclusion. We have shown that the error fields vanish in energy norm in the
respective domains with the number of iterations, for any choice of positive coupling
parameters ka, ks and of relaxation parameter r. This proves the convergence of
the global-in-time coupling iterations based on Robin IBVPs, to the solution of the
FSIP (2.4). We highlight that the proof is based on the particular form of the Robin
datum at each iteration. Provided that these Robin data are well chosen at each
iteration, convergence of the iterations is then guaranteed and they allow to solve
the coupled FSIP. The availability of tunable parameters (impedances ka, ks and
relaxation parameter r) expands the scope of convergence rate optimisation.

The two-operator variant was introduced reflexively by analogy with [49] (for
time-harmonic acoustic-acoustic coupling) where it is necessary to obtain a geo-
metric convergence for the relaxed iterations. It is however unclear in the present
transient case whether the iterations convergence is geometric, and it has not been
shown for the moment.

2.6 Numerical illustration

To illustrate the consequences of the above theorems on solutions space-time regu-
larity, we consider a 2D configuration representative of the interaction between an
acoustic wave and an immersed elastic solid. This 2D problem permits to illustrate
how the solution of FSI transmission problem (2.4) depends on the data’s space-time
regularity. We consider the scattering of a wave by a bounded 2D elastic cylinder
Ωs, immersed in an acoustic fluid occupying the unbounded fluid region (Figure 2.2).
We assume 2D conditions and plane strain deformations for the solid. Both media
are at initial rest. The coupled FSI problem is defined on the exterior surface Γ.

Figure 2.2: Schematic representation of a fluid-structure interaction
problem between an incident acoustic plane wave ϕinc and
an elastic domain Ωs(ρs, cs).

The potential fluid has a time dependent velocity potential ϕ(t), a velocity v =
∇ϕ and a pressure p = −ρf∂tϕ ∀t ∈ [0, T ]. The solid variables are the displacement
u and the stress vector t := σ[u].n, where n is the outward unit normal to Ωs. We
numerically solve problem with an incident acoustic wave field ϕinc of the form of

ϕinc(t,x) = f(t− 1

c
p̂.x)
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2.6. Numerical illustration

where the function t → f(t) defines the time modulation of the propagating pulse
and is assumed to have a compact support T. The unit vector p̂ defines the direction
of propagation. f is defined by

f(t) =

a(2
t

Tp
)γ × (2− 2

t

Tp
)γ if t ∈ [0, Tp],

0 if t > Tp,

(2.61)

The exponent γ allows to impose the space-time regularity of the problem’s data.
In the numerical results, we use a = 108, a time parameter Tp = 4.675 10−4. The
obstacle has a characteristic length L and its height is l. The fluid and structure
physical parameters are listed in Table 2.1. The time interval [0, T ] has a final time
T = 2.3 10−3 s and is discretised with M = 1118 time steps (∆t = 1.7 10−6s).

We used a global-in-time iterative FEM/Z-BEM method based on Robin bound-
ary conditions (see Section 3.3). The GMRES tolerance for the BEM frequency-
domain solver is set to 10−6 and the accuracy ϵ of the discrete inverse Z transform is
set to 10−5. 1778 boundary elements are used on the exterior boundary and the 2D
spatial elastic discretisation has 1.54 104 DOF (mesh size h= 0.005 m). We solve the
fluid-structure interaction problem with an iterative global-in-time FEM/Z-BEM
coupling. We use an in-house FEM solver Matlab, based on the programmation
material provided in [25]. We also developed a in-house fast Z-BEM solver Matlab
based on the CQM method as described in [147]. We use an H-matrix method [43,
97] and a high frequency approximation (HFA) [146] to accelerate the resolution.
For each transient BEM problem, 70 harmonic BEM problems corresponding to the
lowest frequencies are computed and the other frequency solutions are approximated
with an HFA. These 70 resolutions allow to solve the transient BEM problem with
an error lower than 1% compared to the transient BEM solution obtained without
HFA (see Section 3.5). We consider three values of γ and solve the FSI problem with

cf ρf E cmat ρs ν L l
1500 1000 210 109 6.0202 103 7800 0.3 1.5 0.8
m.s−1 kg.m−3 kg.m−1.s−2 m.s−1 kg.m−3 / m m

Table 2.1: Fluid and solid properties used.

the three corresponding load. We use the same spatial and time discretisations for
the three problems. Importantly, the load defined by γ = 3 is the only one to have a
sufficient space-time regularity to meet the requirement of Theorem 2.2.3 and to al-
low the definition of a solution in C0([0, T ]). In Figure 2.3, we show for a given point
on fluid-structure boundary (depicted on Figure 2.2): (a) the normalised elastic nor-
mal velocity with respect to time and (b) the normalised total fluid pressure also
with respect to time, obtained after convergence of the global-in-time coupling. The
convergence is reached when the relative error on the transmission residuals (2.17)
becomes smaller than 10−3, which is obtained after 49 iterations for the most reg-
ular case (γ = 3). As expected, with the discontinuous incident load γ = 1, the
solution is discontinuous and strongly affected by instability phenomena. The load
with a discontinuous derivative γ = 2 also shows instabilities and discontinuities but
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2.6. Numerical illustration

to a lesser extent. Finally, the load γ = 3 is the only one that provides a regular
solution in time. The space-time regularity of the data also affects the convergence

Figure 2.3: Scattering by a 2D cylinder: (a) comparison between the nor-
malised fluid normal velocities obtained with three different
loads regularities and (b) comparison between the normalised
fluid pressures obtained with three different loads regulari-
ties.

of the iterative algorithm. To observe the algorithm convergence, we use the error
indicator (2.17) defined on the transmission residuals in velocity and stress on the
interface Γ. On Figure 2.4 the convergence of the transmission residuals with respect
to the number of iterations is depicted, for three loads with different regularities.
We observe that the convergence rate improves with the regularity of the imposed
load: 49 iterations are necessary to reach the convergence for the most regular case
(γ = 3) while 62 iterations are needed for the less regular one (γ = 1).

Figure 2.4: Scattering by a 2D cylinder: convergence of indicator ev,p
on the transmission residuals with the iterations, for three
different loads regularities (∆t = 1.7 10−6, El=1778, kc =
ρscf , Aitken acceleration).
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2.7. Proofs of solvability results

2.7 Proofs of solvability results

This section is now devoted to the proof of the three solvability theorems of Sec-
tion 2.2. We first recall some results we will use. We begin by recalling the weak
form of the first Green identity for both the fluid and the solid media, as they will
be repeatedly invoked in this work. The following theorem rephrases Theorem 4.4
of [148].

Theorem 2.7.1 (first Green identities.). Let Ωs be a bounded Lipschitz domain; its
complement Ω = Rd \ Ωs then being an unbounded Lipschitz domain. The outward
unit normal n to Ωs is used on the common boundary Γ = ∂Ω = ∂Ωs for both
domains. We denote by γ and γs the trace operators Ω and Ωs, respectively.
Let u, v ∈ H1(Ω). If in addition ∆u ∈ L2(Ω), we have

(∇u,∇v)Ω = (−∆u, v)Ω − (∂nu, γv)Γ (2.62)

Likewise, let u,v ∈ H1(Ωs). If in addition ∆su ∈ L2(Ω), we have

(C : ∇su,∇sv)Ωs
= (−∆su,v)Ωs

+ (t[u], γv)Γ (2.63)

The signs in front of the last terms of both identities stem from the orientation
convention chosen for Γ.

2.2.1. Proof of Theorem 2.2.1

Theorem 2.2.1 is proven by means of the Hille-Yosida theorem. Its main steps are
as follows: (i) recast the FSIP (2.4) in a first-order form; (ii) define a boundary
data lifting; (iii) apply the Hille-Yosida theorem for the complementary part of the
FSI solution, which obeys a non-homogeneous first-order system with homogeneous
interface conditions; (iv) show that a weaker norm of the strong solution is controlled
by a weaker norm of the data; and finally (v) define by density a weak solution
satisfying the variational formulation (2.7).

Existence and uniqueness of a strong solution.

(i) First-order form of the FSIP.

In preparation to applying the Hille-Yosida theorem, we begin by recasting the
FSIP into a first-order differential problem. Setting ψ := ϕ′ and v := u′ to treat
the velocities as separate unknowns, the system (2.4) yields the following first-order
system for U(t) := (ϕ, ψ,u,v)T (t):

U′ + AU = 0, U(0) = 0, BU = H (2.64)

where H := (ν, hn)T is the boundary data. The unbounded differential operator A
in Ωf × Ωs × Ωf × Ωs is defined by

A =


0 −I 0 0

−∆ 0 0 0

0 0 0 −I

0 0 −∆s 0

 .
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2.7. Proofs of solvability results

Applying A and the boundary operator B defined in Γ× Γ to U, gives

AU =


−ψ
−∆ϕ

−v

−ρ−1
s ∆su

 , BU =

{
∂nϕ− v.n

t− ρfψn

}
. (2.65)

Due to the form of U, we define the Hilbert space H by

H := H1 × L2 = H1(Ωf )×H1(Ωs)× L2(Ωf )× L2(Ωs)

and the scalar product given, for any U, Ũ in H, by

(U, Ũ)H := a(ϕ, ϕ̃) + b(ϕ, ϕ̃) + A(u, ũ) +B(u, ũ) + b(ψ, ψ̃) +B(v, ṽ), (2.66)

using the bilinear forms (2.6). Let also the space HA and its scalar product (·, ·)HA

be defined by

HA := {U ∈ H, AU ∈ H} = H1
∆ ×H1,

(
U, Ũ

)
HA

=
(

U, Ũ
)
H
+
(
AU, AŨ

)
H
.

(2.67)
We set the domain D(A) of operator A defined by (2.65) as

D(A) = {U ∈ HA, BU = 0} .

This domain embeds the interfacial constraints BU = 0 as essential conditions.
Finally, the following density property, proved in [24, Sec. 8], is crucial for applying
the Hille-Yosida theorem:

Lemma 2.7.2. The space D(A) is a dense subspace of (H, ∥ · ∥H).

We note that the norm ∥.∥H arising from (2.67) is equivalent to the standard
Sobolev product norm of H1(Ωf ) × H1(Ωs) × L2(Ωf ) × L2(Ωs) = H. This follows
from the fact that relevant Sobolev norms in Ωf or Ωs can be expressed in terms of
the bilinear forms (2.6), the L2(Ωf ) and H1(Ωf ) norms being then given by

∥ϕ∥2Ωf
= b(ϕ, ϕ), ∥ϕ∥21,Ωf

= a(ϕ, ϕ) + b(ϕ, ϕ). (2.68)

and the L2(Ωs) and H1(Ωs) norms by

∥u∥2Ωs
= B(u,u), ∥u∥21,Ωs

= A(u,u) +B(u,u). (2.69)

The norms given by (2.69) are equivalent to the usual L2 and H1 norms, for the
solid thanks to Korn’s inequality [46, Thm 6.15] and the assumed properties of the
material parameters.
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2.7. Proofs of solvability results

(ii) Interface data lifting.

To apply the Hille-Yosida theorem to the IBVP problem in first-order form, we
need change the unknowns in order to obtain a system similar to (2.64) but with
homogeneous boundary conditions. This is achieved by lifting the boundary data ν
and h. This operation consists in finding a vector of functions UL = (ϕL, ψL,uL,vL)
that verify the boundary conditions BUL = H. Moreover, it is convenient to have
UL also verify the initial-rest conditions. To this end, let µ ∈ R, µ ̸= 0. The system

(µI + A)UL = 0, BUL = H, (2.70)

has a unique solution UL. More precisely, we have the solvability result:

Lemma 2.7.3. Let the data H ∈ XT

(
H−1/2(Γ)

)
for some Banach space X, with

H := (0,0)T . Then, the system (2.70) has a unique solution UL, defined by UL =
{ϕL, ψL,uL,vL}T ∈ XT (H), verifying ∥UL∥XT (H) ≤ C∥H∥XT (H−1/2(Γ)).

Proof of Lemma 2.7.3. Eliminating ψL and vL, the remaining equations of sys-
tem (2.70) are

−∆ϕL + µ2ϕL = 0 in Ωf × [0, T ], −∆suL + ρsµ
2uL = 0 in Ωs × [0, T ],

∂nϕL − µuL.n = ν on Γ× [0, T ], t[uL]− µϕLn = hn on Γ× [0, T ].

They define for each t ∈ [0, T ] a transmission problem, which is set in weak form as

Find (ϕ,u)(t) ∈ H1, A
(
ϕ(t),u(t); ϕ̃, ũ

)
= Ft(ϕ̃, ũ) for all (ϕ̃, ũ) ∈ H1 (2.71)

with

A
(
ϕ(t),u(t); ϕ̃, ũ

)
= a(ϕ, ϕ̃)+µ2b(ϕ, ϕ̃)+A(u, ũ)+µ2B(u, ũ)+µ

(
u.n, ϕ̃

)
Γ
−µ (ϕn, ũ)Γ

and Ft defined by (2.8). The bilinear forms are defined by (2.6). To apply the
Lax-Milgram theorem, the bilinear form A has to be continuous and coercive. For
the coercivity, we note that, if we choose

(
ϕ̃, ũ

)
= (ϕ,u), then(

u.n, ϕ̃
)
Γ
− (ϕn, ũ)Γ = 0.

This implies that for any (ϕ,u) ∈ H1, we have,

A
(
ϕ,u; ϕ̃, ũ

)
≥ C∥(ϕ,u)∥2H1 ,

for some C > 0, i.e., that the bilinear form A is coercive on H1. Moreover, the
linear functional Ft is continuous on H1 by assumption on (ν, hn). Problem (2.71)
is therefore uniquely solvable in H1 by Lax-Milgram’s theorem. The remaining
equations of (2.70) then give (ψL,vL) = µ (ϕL,uL) ∈ H1, which gives the problem
solvability. Finally, we have for each t ∈ [0, T ], ∥UL(t)∥H ≤ C∥H(t)∥H−1/2(Γ), hence
the claimed space-time estimate.
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2.7. Proofs of solvability results

Remark. For each t ∈ [0, T ], the system (2.70) is elliptic, hence the solvability
result (Lemma 2.7.3) by invoking the standard Lax-Milgram argument. Moreover,
the interior and boundary spatial regularity of ϕL and ψL results from usual elliptic
regularity theory.

The interface data lifting now consists in reformulating the FSI system (2.64)
using the new unknown Uc = {ϕC , ψC ,uC ,vC}T defined by Uc := U − UL. Since U
and UL respectively verify (2.64) and (2.70) and introducing the generic system

Z′ + AZ = F, BZ = 0, Z(0) = 0 t ∈ [0, T ] (2.72)

where Z is the unknown and F is the datum. It follows that Uc solves system (2.72)
with the particular data F := µUL−U′

L. This reformulation of the initial IVTP as a
non-homogeneous first-order system with homogeneous interface conditions allows
now to apply the Hille-Yosida theorem.

(iii) Application of the Hille-Yosida theorem.

The format of (2.72), together with the density property of Lemma 2.7.2, allows its
solvability to be decided for any right-hand side F having appropriate regularity, if
it satisfies the conditions of the Hille-Yosida theorem [91, Chap. II, Theorem 1.3].
The application of this theorem yields the desired strong solvability result:

Proposition 5 (Strong solvability for the FSIP). Assume that either F ∈ C1
T (H)

or F ∈ C0
T (D(A)). Then, the system (2.72) has a unique solution Z ∈ C1

T (H) ∩
C0
T (D(A)).

Proof of Proposition 5. To prove the solvability of problem (2.72) using the Hille-
Yosida theorem, we need to verify that there exists λ ∈ R such that Aλ = A + λI :
D(A) → H is maximal monotone. Aλ is said to be maximal monotone if it satisfies

1. (AλU,U)H ≥ 0 for any U ∈ D(A) (Aλ monotone),
2. For any F ∈ H,∃U ∈ D(A) such that (Aλ + I)U = F (Aλ + I surjective).

Proving that the above conditions are indeed met will be facilitated by the following
lemma:

Lemma 2.7.4. For any U ∈ D(A), we have

(a) (AU,U)H = −b(ψ, ϕ)−B(v,u), (b) 2|(AU,U)H| ≤ ∥U∥2H.

Proof of Lemma 2.7.4. We obtain the first identity by using the definitions (2.65) of
A and (2.66) of the scalar product (., .)H. Applying the first Green identity (2.62):

(AU,U)H = b (∆ϕ, ψ) + (∂nϕ, ψ)Γ + b (−ψ, ϕ) + b (−∆ϕ, ψ) +B
(
ρ−1
s ∆su,v

)
+ (t[u],v)Γ +B(−v,u) +B

(
−ρ−1

s ∆su,v
)

= (∂nϕ, ψ)Γ + b (−ψ, ϕ) + (t[u],v)Γ +B(−v,u)

Using the essential conditions BU = 0 yields (a). Then, (b) results from applying
Young’s inequality to the right-hand side of (a) and recalling the definition (2.66)
of ∥U∥2H.
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2.7. Proofs of solvability results

To apply the Hille-Yosida theorem, we then prove of the monotonicity of Aλ and
the surjectivity of Aλ + I.

1. Monotonicity. Using definitions (2.65) of A and (2.66) of the scalar product in
H and applying Lemma 2.7.4a, we obtain after rearrangement

(AU,U)H + λ(U,U)H = λa (ϕ, ϕ) + λA (u,u) + λb (ϕ, ϕ)

+ λb (ψ, ψ)− b (ψ, ϕ) + λB (u,u) + λB (v,v)− λB (v,u)

= λa(ϕ, ϕ) + λA(u,u) +
1

2
b (ϕ− ψ, ϕ− ψ) +

1

2
B (u− v,u− v)

+

(
λ− 1

2

)
[b(ϕ, ϕ) + b(ψ, ψ)] +

(
λ− 1

2

)
[B(u,u) +B(v,v)] ,

(2.73)
implying that (AU,U)H + λ(U,U)H ≥ 0, i.e. monotonicity holds, for any λ ≥ 1

2
.

2. Surjectivity. Now, for µ = λ+1, we investigate whether the equation (A+µI)U =
F is solvable for U = (ϕ, ψ,u,v)T ∈ D(A) given F = (f, f , g,g)T ∈ H, i.e. that of
the system

(a) µϕ− ψ = f in Ωf ,

(b) µψ −∆ϕ = g in Ωf ,

(c) µu− v = f in Ωs

(d) µ2v −∆su = g in Ωs,

(e) ∂nϕ− v.n = 0 on Γ,

(f) t− ψn = 0 on Γ.
(2.74)

Using (a) and (c) to eliminate ψ and v with the first two equations, the problem on
(ϕ,u) defined by the remaining equations (b), (d), (e) and (f) reads

(b) µ2ϕ−∆ϕ = g + µf in Ωf ,

(d) µ2u− ρ−1
s ∆su = g + µf in Ωs,

(e) ∂nϕ− µu.n = −f .n on Γ,

(f) t− µϕn = −fn on Γ,

and is set in variational form as

Find (ϕ,u) ∈ H1, A
(
ϕ(t),u(t); ϕ̃, ũ

)
= Ft(ϕ̃, ũ) for all (ϕ̃, ũ) ∈ H1 (2.75)

where A is the bilinear form in problem (2.71) and

Ft(ϕ̃, ũ) =
(
g + µf, ϕ̃

)
+
(
f .n, ϕ̃

)
Γ
+ (g + µf , ũ)− (fn, ũ)Γ .

The bilinear form A is already known to be coercive on H1, and the linear functional
F is continuous on H1 for any F ∈ H. Problem (2.75) is hence uniquely solvable
by the Lax-Milgram theorem. On reconstructing (ψ,v) from (2.74a,c) this implies
the unique solvability of (2.74) in D(A), and hence of the system (A+ µI)U = F in
D(A) for any F ∈ H.

3. Conclusion. Choosing µ = λ + 1, the monotonicity (1) and the surjectivity (2)
show that A+λI : D(A) → H is maximal monotone for any λ ≥ 1

2
. The Hille-Yosida

theorem [91, Chap. II, Theorem 1.3] hence applies to the generic system (2.72), and
gives Proposition 5.
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At this point, we have shown that the system (2.72) has a unique strong solution
Uc for any F = µUL − U′

L with sufficient regularity. According to Lemma 2.7.3,
we also know that if H ∈ C2

T (H
−1/2) with H(0) = 0, we have UL ∈ C2

T (H) with
UL(0) = 0. Moreover, by definition, the FSI strong solution is given by U = UL+Uc

and
U ∈ C1

T (H) ∩ C0
T (D(A)).

Existence and uniqueness of a weak solution We now aim at finding a weak
solution of the variational problem (2.7). It will be defined and shown to exist on
the basis of energy estimates verified by the strong solution U.

(iv) Energy estimates.

To show the energy estimates and then define the weak solution for problem (2.7),
we need to show that U admits another representation. We will need the following
Lemma:

Lemma 2.7.5. Let Z solve (2.72) for given F. If F(0) = 0 and either F ∈ C2
T (H)

or F ∈ C1
T (D(A)), we have Z ∈ C1

T (D(A)), and its time derivative Z′ ∈ C1
T (H) ∩

C0
T (D(A)) solves

(i) (Z′)′ + AZ′ = F′ and BZ′ = 0 in [0, T ],

(ii) Z′(0) = 0.

Proof of Lemma 2.7.5. The system (2.72) may be differentiated in time (since all
quantities are C1 in time with values in the requisite spaces); moreover, Z′(0) =
F(0)− AZ(0) = 0.

Using the Lemma 2.7.5 and introducing Z that solves (2.72) with F = UL, we have
that

U = UL + µZ − Z′. (2.76)

We now establish estimates for the strong solution given by (2.76) to show that a
weaker norm of the strong solution is controlled by a weaker norm of the data.

Lemma 2.7.6. For any H ∈ C2
T (H

−1/2(Γ)) with H(0) = 0, the strong solution U of
the FSI system (2.64) verifies the estimate

sup
t∈[0,T ]

∥U(t)∥2H ≤ C∥H∥2
H1

T (H−1/2(Γ))
. (2.77)

If H ∈ C3
T (H

−1/2(Γ)) with H(0) = H′(0) = 0, we have the higher-regularity estimate

sup
t∈[0,T ]

∥U(t)∥2HA
≤ C∥H∥2

H2
T (H−1/2(Γ))

. (2.78)

The constant C > 0 in each estimate depends on T and Γ but not on H.
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Proof of Lemma 2.7.6. We recall the representation (2.76) of U. Testing the system
Z′ + AZ = UL against Z, we have (Z′,Z)H = (UL,Z)H − (AZ,Z)H which, using
Lemma 2.7.4 for U = Z ∈ C1

T (D(A)), gives

2 (Z′(τ),Z(τ))H ≤ 2 (UL(τ),Z(τ))H + ∥Z(τ)∥2H
Integrating over τ ∈ [0, t], we thus obtain

∥Z(t)∥2H ≤ 2

∫ t

0

∥Z(τ)∥2Hdτ + ∥UL∥2L2
T (H) t ∈ [0, T ]. (a)

The same derivation applies to Z′ (by testing against Z′ the system (Z′)′+AZ′ = U′
L

obeyed by Z′, see Lemma 2.7.5), to obtain

∥Z′(t)∥2H ≤ 2

∫ t

0

∥Z′(τ)∥2Hdτ + ∥U′
L∥2L2

T (H), t ∈ [0, T ]. (b)

As usual, Grönwall’s lemma plays a key role in the derivation of such estimates. The
following version [54, Chap. 18] is used:

Lemma 2.7.7 (Grönwall’s lemma). Let the univariate function Φ ∈ L∞([0, T ])
verify Φ(t) ≥ 0 almost everywhere in [0, T ]. Assume in addition that the inequality

Φ(t) ≤ C1

∫ t

0

Φ(s)ds+ C2

holds almost everywhere in [0, T ] for some constants C1, C2 ≥ 0. Then:

Φ(t) ≤ C2 exp(C1t).

In particular, if C2 =0, Φ(t)=0 almost everywhere in [0, T ].

Grönwall’s lemma is applicable to inequalities (a) and (b) with, respectively,
Φ(t) = ∥Z(t)∥2H and Φ(t) = ∥Z′(t)∥2H. Consequently there exists C > 0 such that

∥Z(t)∥2H ≤ C∥UL∥2L2
T (H), ∥Z′(t)∥2H ≤ C∥U′

L∥2L2
T (H) t ∈ [0, T ]. (c)

Since UL ∈ C2
T (H), estimate (2.77) follows by using (c) in the solution represen-

tation (2.76) and Lemma 2.7.3. If H in fact verifies the given higher-regularity
assumptions and initial conditions, the estimates (2.77) apply to both U and U′

with datum H and H′ respectively. Since U′(t) = AU(t) holds in H, we have for all
t ∈ [0, T ]:

∥U(t)∥2HA
= ∥U(t)∥2H + ∥AU(t)∥2H = ∥U(t)∥2H + ∥U′(t)∥2H ≤ C∥H∥2

H2
T (H−1/2(Γ))

.

and we similarly obtain estimate (2.78).

We have shown that the FSI system (2.64) is well-posed. The energy estimates
of Lemma 2.7.6 now show that the solution U with a data H ∈ C2

T (H
−1/2) is in fact

controlled in the weaker C0
T (H) norm, by the weaker H1

T (H
−1/2(Γ)) norm of the data

H. Moreover, for any data with extra regularity in time such as H ∈ C3
T (H

−1/2(Γ)),
the solution U is controlled in the C0

T (HA) norm and by the weaker H2
T (H

−1/2(Γ))
norm of the data, with higher regularity. We are now going to use these energy
estimates to obtain a well-posedness result for the FSIP in weak form, under weaker
regularity assumptions on the data H.
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(v) Existence and uniqueness of a weak solution.

We now aim at reaching the main goal of this contribution and proving a solvability
result for the FSIP in variational form, under weaker regularity assumptions on
H, using the estimate (2.77). To this aim, let consider some transmission data
H = (ν, hn) ∈ H1

T (H
−1/2(Γ)) with H(0) = 0. Since C2

T

(
H−1/2(Γ)

)
is dense in

H1
T

(
H−1/2(Γ)

)
, there exists a sequence Hn = (νn, hnn) ∈ C2

T

(
H−1/2(Γ)

)
such that

(νn, hnn) → (ν, hn) ∈ H1
T (H

−1/2(Γ)) [29, Sec. 8.3]. As, according to Theorem 5, the
FSI system (2.64) is well-posed, it has for each data Hn a unique solution Un. This
solution is given by (2.76) with Z solving (2.72) for F = Un

L. Applying by linear
superposition the energy estimate (2.77) to the data Hn − Hm and corresponding
solution Un − Um, we readily find that (Un) is a Cauchy sequence in C0

T (H). Upon
taking the limit n→ ∞ in that estimate, the limit U ∈ C0

T (H) of Un satisfies

sup
t∈[0,T ]

∥U(t)∥2H ≤ C∥H∥2
H1

T (H−1/2(Γ))
,

This limit U defines the expected weak solution of the variational FSI problem (2.7).
We now need to prove that this is actually the case, and that U is the only such
solution.

1. U defines a weak solution of the variational problem (2.7). Let (ϕ̃, ũ) ∈ H1 be
a pair of time-independent functions, and let φ ∈ C∞

0 ([0, T ]). We write the wave
equations verified (by virtue of (2.64)) by each ϕn in L2(Ωf × [0, T ]) and un in
L2(Ωs × [0, T ]) in the weak form, for the test functions ϕ̃φ and ũφ. Integrating in
time, we have∫ T

0

(
−∆ϕn + ϕ′′

n, ϕ̃
)
Ωf

φ(t)dt+

∫ T

0

(−∆sun + ρsu
′′
n, ũ)Ωs

φ(t)dt = 0.

We first perform integrations by parts in space using the first Green identity which
is valid since each (ϕn,un) belongs to C0

T (H
1
∆). We then express ∂nϕn and t[un] by

means of the transmission conditions (which they verify in the L2
T (H

−1/2(Γ)) sense),
to obtain∫ T

0

[
a
(
ϕn, ϕ̃

)
+ b
(
ϕ′′
n, ϕ̃
)
+ A (u′′

n, ũ) +B (u′′
n, ũ) + I

(
ϕ′,u′; ϕ̃, ũ

)]
φ(t)dt

=

∫ T

0

[
(hnn(t), ũ)Γ −

(
νn(t), ϕ̃

)
Γ

]
φ(t)dt.

The bilinear forms a, b, A,B defined by (2.6) and I by (2.9). Then, all time deriva-
tives are transferred to the test function φ with integrations by parts, since φ ∈
C∞

0 ([0, T ]). It yields∫ T

0

[
a(ϕn, ϕ̃) + A (un, ũ)

]
φ(t)dt+

∫ T

0

[
b(ϕn, ϕ̃) +B (un, ũ)

]
φ′′(t)dt

−
∫ T

0

[
I(ϕn,un, ϕ̃, ũ)

]
φ′(t)dt =

∫ T

0

[
(hnn(t), ũ)Γ −

(
νn(t), ϕ̃

)
Γ

]
φ(t)dt.
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By assumption Hn → H in L2
T (H

−1/2(Γ)), which implies the convergence Un → U in
L2
T (H). Moreover, using the continuity properties of the bilinear forms a, b, A,B, I,

the limiting form of the above identity as n→ ∞ is∫ T

0

[
a(ϕ, ϕ̃) + A (u, ũ)

]
φ(t)dt+

∫ T

0

[
b(ϕ, ϕ̃) +B (u, ũ)

]
φ′′(t)dt

−
∫ T

0

[
I(ϕ,u, ϕ̃, ũ)

]
φ′(t)dt =

∫ T

0

[
(hn, ũ)Γ −

(
ν, ϕ̃
)
Γ

]
φ(t)dt.

for any φ ∈ C∞
0 ([0, T ]). The components of U therefore satisfy the variational

formulation (2.7) as an equality in D′([0, T ]), in the sense of distributions in the
time variable.

2. Uniqueness. Assume that the variational formulation (2.7) has two distinct
nonzero solutions U1 and U2 for the same datum H, both satisfying initial-rest
conditions. By linearity, the components of W := U1 − U2 must then solve the
homogeneous form of the variational problem (2.7) with H = 0. The function Z(t) :=∫ t
0

W(s)ds is also at initial-rest and (by integration over the time interval [0, t]) solves
the same homogeneous variational problem. Moreover, due to the integration in
time, Z ∈ C0

T (D(A))∩C1
T (H), i.e., is a strong solution of the homogeneous evolution

problem. By Proposition 5, we must hence have Z = 0, implying W = 0. This proves
the uniqueness of the weak solution and the proof of the first part of Theorem 2.2.1
is complete.

3. Data with higher time regularity. If in fact H ∈ H2
T (H

−1/2(Γ)) with H(0) =
H′(0) = 0, the previous analysis applies to both H and H′, so that (ϕ,u) ∈ C1

T (H
1)

and (ϕ′,u′) ∈ C1
T (L

2). In particular, (ϕ′′,u′′) ∈ C0
T (L

2). Since, in addition, each
(ϕn,un) in the limiting process verifies the homogeneous wave equation, the limit
(ϕ,u) satisfies (∆ϕ,∆su) ∈ C0

T (L
2). Hence (ϕ,u) ∈ C0

T (H
1
∆), and the claimed

regularity for the second part of Theorem 2.2.1 follows.

2.2.2. Proof of Theorem 2.2.2.

The proof method for Theorem 2.2.2 relies on the general steps previously used for
Theorem 2.2.1.

(i) First-order form of the FSIP.

The FSIP reads the same first-order form as (2.64)

U′ + AU = 0, U(0) = 0, BU = H (2.79)

To account for the assumed additional regularity in space of the data H, A is now
considered as an operator on D(A) with domain D(A2), where

D(A2) := {U ∈ D(A) such that AU ∈ D(A) ⊂ HA} , ∥U∥2D(A2) := ∥U∥2HA
+ ∥AU∥2HA

.
(2.80)
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The main modifications in the proof steps, relative to the first proof of theorem 2.2.1
in Section 2.7, then result from replacing the spaces H and D(A) with D(A) and
D(A2), respectively, in the application of the Hille-Yosida theorem to the sys-
tem (2.79). We note that the space D(A2) embeds not only the interfacial con-
straints U = 0 given by the equation BU = 0, but also the additional higher-order
constraints B(AU) = 0, i.e.

(a) ∂nψ − ρ−1
s n.∆su = 0, (b) t−∆ϕn = 0 (2.81)

as essential conditions. The following counterpart of the density property of Lemma 2.7.2,
proved in [24, Sec. 8], is verified by D(A2):

Lemma 2.7.8. The space D(A2) is a dense subspace of both (HA, ∥ · ∥HA
) and

(D(A), ∥ · ∥HA
).

(ii) Interface data lifting.

Towards applying the Hille-Yosida theorem, problem (2.79) needs as before to be
recast as a first-order system with homogeneous TCs. We define again the lifting UL

of H by the system (2.70). The extra regularity in space of H directly translates into
corresponding extra regularity for UL: adapting Lemma 2.7.3 and using elliptic reg-
ularity at each t, if H ∈ XT

(
H1/2(Γ)

)
for some Banach space X, the system (2.70)

has a unique solution UL ∈ XT (HA), verifying ∥UL∥XT (HA) ≤ C∥H∥XT (H1/2(Γ)).

(iii) Application of the Hille-Yosida theorem.

We apply again the Hille-Yosida theorem to the generic problem (2.72) using the
unknown Uc := U−UL and the data F := µUL−U′

L. The definition (2.80) of D(A)
is such that the Hille-Yosida theorem still applies to A : D(A2) → D(A), via a direct
transposition of the arguments of the proof of Theorem 2.2.1 in Section 2.7 and with
the help of the following adaptation of Lemma 2.7.4:

Lemma 2.7.9. For any U ∈ D(A2), we have

(a) (AU,U)HA
= −b(ψ, ϕ)−B(v,u)− b(∆ϕ, ψ)−B(∆su,v)

(b) 2|(AU,U)HA
| ≤ ∥U∥2HA

.
(2.82)

Proof. Lemma (2.7.9) is obtained by using identity (a) of Lemma 2.7.4 with U
replaced by AU.

Then we can verify that all conditions of the Hille-Yosida theorem are satisfied:

1. Monotonicity. Thanks to Lemma 2.7.9, identity (2.73) also holds for AU instead
of U, replacing all components of U by those of AU in the right-hand side. The
monotonicity of Aλ := A+λI : D(A2) → D(A) follows in the same way, still subject
to λ ≥ 1

2
.

2. Surjectivity. The solvability in D(A2) of (A + µI)U = F for given F ∈ D(A) is
still decided by the variational problem (2.75). The regularity assumption F ∈ D(A)
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implies the desired smoothness of its unique solution U, namely U, AU, A2U being
in H, by elliptic regularity. This regularity in turn allows each component of the
equality AU + ηU = F to hold in H1/2(Γ), and we use those relations to compute

t[vL]−(∆ϕL)n = gn−t[f ] = 0, ∂nψL−(ρ−1
s ∆suL).n = g.n−∂nf = 0 on Γ,

(2.83)
since the constraints BU = 0 are satisfied by both U (by the definition of prob-
lem (2.75)) and F ∈ D(A). Concluding, (A + µI)U = F has a unique solution
U ∈ D(A2) for any F ∈ D(A).

3. Conclusion. Choosing µ = λ+ I, A+ λI : D(A2) → D(A) is maximal monotone
for any λ ≥ 1

2
. The Hille-Yosida theorem hence applies to the generic system (2.72).

The Hille-Yosida theorem on its strong solvability now holds with H,D(A) replaced
by D(A),D(A2).

Following the same arguments as in Section 2.7, the FSI solution U = UL + Uc

is unique and the FSI system (2.64) then admits a unique solution U ∈ C1
T (D(A))∩

C0
T (D(A2)).

(iv) Energy estimates.

To derive energy estimates, we start by observing that for any F ∈ C1
T (D(A)), the

solution Z ∈ C0
T (D(A2)) of the generic system (2.72) verifies

(a) sup
t∈[0,T ]

∥Z(t)∥2HA
≤ C∥F∥2L2

T (HA), (b) sup
t∈[0,T ]

∥Z′(t)∥2HA
≤ C∥F′∥2L2

T (HA).

(2.84)
Both inequalities stem from repeating the proof of Lemma 2.7.6 leading to inequal-
ities (c) there, with H,D(A) replaced by HA, D(A2) and invoking the improved
Green identity of Lemma 2.7.9.

Let now H ∈ C2
T (H

1/2(Γ)) with H(0) = 0, so that UL ∈ C2
T (HA) and UL(0) = 0.

Invoking Lemma 2.7.8, there exists a sequence Um
L ∈ C2

T (D(A2)) with Um
L (0) = 0

such that ∥UL−Um
L ∥C2

T (HA) → 0. Let then Zm ∈ C1
T (D(A))∩C0

T (D(A2)) solve (2.72)
with F = Um

L . The representation (2.76) of U solving the FSI system (2.64) suggests
to define the approximating sequence Um given by either

(a) Um = ηZm − Z′
m + UL, (b) Um = (ηI + A)Zm + (UL − Um

L ) (2.85)

(with case (b) obtained by using in (a) the equality Z′
m = Um

L − AZm in HA).
Applying estimate (2.84a) with F = Um

L to (2.85b), we have

sup
t∈[0,T ]

∥Um(t)∥2H ≤ sup
t∈[0,T ]

C∥Zm(t)∥2HA
≤ C∥Um

L ∥2L2
T (HA). (2.86)

Alternatively, estimates (2.84a,b) with F = Um
L applied to (2.85a) give

sup
t∈[0,T ]

∥Um(t)∥2HA
≤ C∥Um

L ∥2H1
T (HA). (2.87)

Remark. By contrast with the proof of Theorem 2.2.1, estimates (2.86) and (2.87)
cannot be directly obtained for the FSI solution U from its representation (2.76), as
Z in the latter does not verify B(AZ) = 0 and thus is not in D(A2), preventing the

69



2.7. Proofs of solvability results

use of Lemma 2.7.9b. Identity (a) in Lemma 2.7.9 could of course be augmented with
interfacial terms (so as to remove the requirement B(AU) = 0 there) but the result-
ing appearance of higher-order derivatives in interfacial terms would prove equally
problematic. Hence our recourse, permitted by the density result of Lemma 2.7.8,
to approximations (2.85) of U that have the correct interfacial traces while allowing
to invoke Lemma 2.7.9.

(v) Variational problem.

We note that Um ∈ C1
T (D(A)) ∩ C0

T (D(A2)) defined by (2.85) solves the system

(i) U′
m + AUm = Fm,

(ii) Um(0) = 0,

(iii) BU = H,

with the components (fm, fm, gm,gm) of Fm given by

fm = µ(ϕmL − ϕL)− (ϕmL
′ − ϕ′

L), fm = µ(umL − uL)− (umL
′ − u′

L), (2.88)
gm = µ(ψmL − ψL)− (ψmL

′ − ψ′
L), gm = µ(vmL − vL)− (vLm′ − vL′). (2.89)

Consequently, after eliminating ψm,vm, the remaining unknowns ϕm,um of Um are
found to satisfy the inhomogeneous wave equations

−∆ϕm + ϕ′′
m = f ′

m + gm in Ωf , −∆sum + ρsu
′′
m = ρs(f

′
m + gm) in Ωs. (2.90)

Proceeding as in Section 2.1, we take weighted residuals of the above equations
using the same test functions ϕ̃φ and ũφ, apply the Green identities, use the TCs
and transfer all time derivatives to φ via integration by parts. This results in the
identity∫ T

0

{[
a
(
ϕm, ϕ̃

)
+A (um, ũ)

]
φ(t) +

[
b
(
ϕm, ϕ̃

)
+B (um, ũ)

]
φ′′(t)−

[
I
(
ϕm,um; ϕ̃, ũ

)]
φ′(t)

}
dt

=

∫ T

0

[
(hn(t), ũ)Γ −

(
ν(t), ϕ̃

)
Γ

]
φ(t)dt+

∫ T

0

[
b
(
f ′m + gm, ϕ̃

)
+B

(
f ′m + gm, ũ

)]
φ(t)dt.

(2.91)

Either estimate (2.86) or (2.87) implies that Um is a Cauchy sequence in C0
T (H),

while the last integral in (2.91) vanishes as m→ ∞ by the definition of Um
L . Taking

the limit m→ ∞ in (2.91), the limit (ϕ,u) ∈ H1 of (ϕm,um)m is as a result found to
verify the variational formulation (2.7) for any datum H ∈ C2

T (H
1/2(Γ)). Moreover,

taking the limit m → ∞ in estimates (2.86) and (2.87), the limit U verifies the
estimates

(a) sup
t∈[0,T ]

∥U(t)∥2H ≤ C∥UL∥2L2
T (HA), (b) sup

t∈[0,T ]
∥U(t)∥2HA

≤ C∥UL∥2H1
T (HA). (2.92)

Then, considering some transmission data H ∈ L2
T (H

1/2(Γ)), there exists a se-
quence Hn ∈ C2

T (H
1/2(Γ)) with Hn(0) = 0 such that ∥Hn − H∥L2

T (H1/2(Γ)) → 0. A
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lifting Un
L ∈ C2

T (HA) can be associated to each Hn, leading to Un solving the vari-
ational problem (2.7) for that data. The estimate (2.92a) shows that Un defines a
Cauchy sequence in C0

T (H), whose limit U ∈ C0
T (H) also satisfies the variational

formulation (2.7) and depends continuously on ∥H∥L2
T (H1/2(Γ).

Similarly, approximating H ∈ H1
T (H

1/2(Γ)) with H(0) = 0 by a sequence Hn ∈
C2
T (H

1/2(Γ)) with Hn(0) = 0, Un is, by the estimate (2.92b) applied to (Un,Un
L), a

Cauchy sequence in C0
T (HA). Its limit U satisfies the variational formulation (2.7)

and, by taking the limit n→ ∞ in (2.92b), depends continuously on ∥H∥H1
T (H1/2(Γ).

Moreover, we have (ϕ′′,u′′) = (∆ϕ, ρ−1
s ∆su) ∈ C0

T (L
2). Thanks to the latter and

the assumed regularity of Γ, elliptic regularity provides (ϕ,u) ∈ C0
T (H

2).

Conclusion. The FSIP (2.4) and the variational problem (2.7) being equivalent
(by Prop. 1), the proof of Theorem 2.2.2 is complete for the two considered cases.

2.2.3. Proof of Theorem 2.2.3.

Once multiple primary solvability mappings such as those of Theorem 2.2.1 and
Theorem 2.2.2 are available, other mappings results follow by interpolation argu-
ments. In particular, we can now find mappings for which the data has L2(Γ) space
regularity and solution has boundary traces in velocity in L2

T (Γ) and L2
T (Γ).

(i) Proof of regularity from interpolation.

Interpolating the data and solution spaces given by Theorem 2.2.1 and Theorem 2.2.2,
and invoking the interpolation property for spaces of continuous functions with
Hilbert range (see e.g. [131, Chap. 1, Sec. 14.2]), we deduce the continuity of the
following data-to-solution mappings:

(ν,h) ∈
[
H1
T (H

1/2(Γ)), H1
T (H

−1/2(Γ))
]
1/2

→ (ϕ,u) ∈
[
C0
T (H

2), C0
T (H

1)
]
1/2

→ (ϕ′,u′) ∈
[
C0
T (H

1), C0
T (L

2)
]
1/2

(2.93)

where [X, Y ]θ denotes the interpolation space with weight θ ∈ [0, 1] (in particular
[X, Y ]0 = X and [X, Y ]1 = Y ). Moreover, we have[
H1
T (H

1/2(Γ)), H1
T (H

−1/2(Γ))
]
1/2

= H1
T

([
H1/2(Γ), H−1/2(Γ)

]
1/2

)
= H1

T (L
2(Γ)),[

C0
T (H

2), C0
T (H

1)
]
1/2

= C0
T

(
[H2, H1]1/2

)
= C0

T (H
3/2),[

C0
T (H

1), H1
T (L

2)
]
1/2

= C0
T

(
[H1, L2]1/2

)
= C0

T (H
1/2).

(2.94)
Using these equalities in the above mappings yields the claimed continuous map-
pings:

(ν,h) ∈ H1
T (L

2(Γ)) → (ϕ,u) ∈ C0
T (H

3/2),

(ν,h) ∈ H1
T (L

2(Γ)) → (ϕ′,u′) ∈ C0
T (H

1/2).
(2.95)
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(ii) Proof of boundary trace of velocity.

The above data-to-velocity mapping falls just short of the applicability of the trace
theorem. Useful estimates for boundary traces may however be obtained using the
following lemma (proved in [24, Sec 8]):

Lemma 2.7.10 (Integral identities on boundary traces). Let the interface Γ be a
C1,1 closed surface. Let Θ ∈ C1

c (D;Rd) be an extension in a neighbourhood D of Ωs

of the unit normal on Γ (such an extension exists, see [130, Chap. I, Lemma 3.1]).
Any pair (ϕ,u) solving −∆ϕ + ϕ′′ = 0 in Ωf × [0, T ] and −ρ−1

s ∆su + u′′ = 0 in
Ωs × [0, T ] verifies the integral identity

∥ϕ′∥2Γ,T+∥u′∥2Γ,T+∥∂nϕ∥2Γ,T+∥∂nu∥2Γ,T,Q−1 = ∥∇sϕ∥2Γ,T+∥∇su∥2Γ,T,C+C(ϕ,u;Θ),

(2.96)

where ∇sϕ := ∇ϕ−∂nϕn is the tangential gradient of ϕ (∇sϕ is entirely determined
by the boundary trace ϕ|Γ of ϕ, see e.g. [154, Sec. 2.5.6]), Q is the symmetric positive
definite Christoffel matrix (defined by Qik = Cijkℓnknℓ), ∥f∥2Γ,T,A := (A.f , f)Γ,T for A
symmetric positive definite, and we have

C(ϕ,u;Θ) =
(
|ϕ′|2 − |∇ϕ|2, DivΘ

)
Ωf ,T

+ 2 ((∇ϕ⊗∇ϕ),∇Θ)Ωf ,T

+ 2 (ϕ′,∇ϕ.Θ)Ωf
|T0 +

(
|u′|2 −∇u : C : ∇u, DivΘ

)
Ωs,T

+ 2 (∇u : C : ∇u,∇Θ)Ωs,T
+ 2 (u′,∇u.Θ)Ωs

|T0 .

(2.97)

We then temporarily assume that the data is in H1
T (H

1/2(Γ)), i.e., sufficiently
smooth to lead to a solution smooth enough to justify all integrations by parts
producing (2.96). We first note that

|C(ϕ,u;Θ)| ≤ C∥(ν, hn)∥2H1
T (L2(Γ)). (a)

This follows directly from the interior regularity result of (i) for the space-time
norms, and from Theorem 2.2.1 for the space norms at t = T . We also have

∥∇Sϕ∥2Γ,T + ∥∇Su∥2Γ,T,C ≤ C∥(ν, hn)∥2H1
T (L2(Γ)) (b)

by similar arguments together with:

• available estimates for surface gradients, see e.g. [148, Lemma 4.23]

• the (uniform on Γ) inequality |∂nu|2 ≤ C|∂nu.Q−1.∂nu| ≤ C|∂nu|2 exploiting
classical ellipticity properties of the elasticity tensor C.

Since in addition t[u] = n.C : ∇Su+Q+ ∂nu, we have

∥t[u]∥2Γ,T ≤ C
(
∥∂nu∥2Γ,T + ∥∇su∥2Γ,T

)
≤ C

(
∥∂nu∥2Γ,T + ∥(ν, hn)∥2H1

T (L2(Γ))

)
(c)

We finally use (a), (b) and (c) in (2.97) and obtain

∥ϕ′∥2Γ,T + ∥∂nϕ∥2Γ,T + ∥u′∥2Γ,T + ∥u[u]∥2Γ,T ≤ C∥(ν, hn)∥2H1
T (L2(Γ)). (2.98)

All claims of (ii) finally follow by the density of H1
T (H

1/2(Γ)) in H1
T (L

2(Γ)).
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2.8 Conclusion

This chapter had two purposes: (i) to mathematically study the well-posedness of
all the continuous evolution problems involved in the construction of a convergent
iterative global-in-time algorithm to solve fluid-structure interaction problems and
(ii) to use these solvability results to prove the convergence of the global-in-time
iterations based on the successive solutions of Robin IBVPs.
The solvability results for the transient acoustic-elastic scattering problem, the Neu-
mann IBVPs and the Robin IBVPs show that

• The data-to-solution mappings we recall for the acoustic-elastic coupled prob-
lem provide important information regarding the transmission data regularity
needed to obtain a L2

T (H
1) trace solution regularity. We highlight in particu-

lar the difference with classical time-harmonic results for FSIPs, where a data
(ν, hn) ∈ L2

T (H
−1/2(Γ)) is sufficient to imply a solution with L2

T (H
1) space-

time regularity. For the transient FSI problem (2.4) one extra unit of data
regularity either in space or in time is needed to reach such a solution.

• Transient Neumann IBVPs have solutions whose regularity is lower than that
of the transmission data. This is characteristic of the Neumann evolution
problem and contrasts with classical second-order elliptic cases for which the
Neumann data yields the same time regularity for the trace solution in velocity.
For example in the elliptic case, an interfacial Neumann data with H−1/2(Γ)
space regularity entails a solution with the same regularity. Consequently an
iterative procedure based on the successive resolutions of Neumann IBVPs in
each subdomain cannot be proved convergent.

• Transient Robin IBVPs present different regularity properties. We highlight
that their velocity trace solutions remain in the same space of regularity as the
transmission data. Consequently, we show that an iterative procedure based
on successive resolutions of such Robin IBVPs remain in a fixed regularity
space and might be convergent.

We used these original data-to-solution mappings to prove that an algorithm based
on successive resolutions of Robin IBVPs for a data H ∈ H1

T (Γ) is convergent in
L2
T (Γ), as well as iterations based on relaxed Robin boundary conditions (2.44)

and (2.45). The algorithm proposed in this chapter has thus a guaranteed conver-
gence and allows to solve a transient FSI problem. A first numerical illustration
shows that a minimal space-time regularity in needed for the data H to reach a
continuous solution in time with the Robin global-in-time iterations, which meet
the requirement of the solvability results we proved.

In the next chapter, these procedures are numerically applied and compared in
order to confirm the theoretical conclusions obtained in this chapter.
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CHAPTER 3

A global-in-time FEM/Z-BEM iterative method

In this chapter, we propose to apply the global-in-time iterative method to simulate
complex fluid-structure interaction problems. To obtain the most efficient solver we
couple the FEM and the Z-BEM methods. The Z-BEM allows to solve transient wave
propagation problems in unbounded linear homogeneous domains very efficiently.
Its definition makes it a natural candidate for global-in-time algorithms. Its use is
therefore perfectly suitable for the iterative Robin-Robin coupling that we propose.
On the other hand, finite elements are the most appropriate method for modelling
the potentially complex and non-linear behaviour of structures. In Section 3.1,
we recall the theory of transient boundary integral equations as well as of BEMs.
Then Section 3.2 gives some reminders about the principle and the particularities
of the Z-BEM. In Section 3.3, the coupling method is validated numerically on a
simple 2D FSI example. The convergence is evaluated and we then study the optimal
values of the coupling parameters involved in the Robin transmission conditions. We
also compare the Robin-Robin algorithm convergence with other types of global-in-
time iterations (Dirichlet-Dirichlet, Neumann-Neumann). In Section 3.4, we further
improve the convergence of our global-in-time iterative FEM/Z-BEM coupling. The
optimised coupling parameters are applied to a more complex 2D problem, with the
aim of validating our estimate for the optimised Robin coupling parameter value
and evaluating the convergence acceleration. We also apply a Aitken’s fixed-point
acceleration to further reduce the number of iterations. In Section 3.5 we propose
a new high-frequency approximation adapted for the Z-BEM procedure with Robin
boundary conditions, that drastically reduces the number of time-harmonic BEM
problems to solve. Finally we detail how this FEM/Z-BEM method can be applied
to realistic complex UNDEX problems without major adjustment (Section 3.6).
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3.1 Boundary element methods

Boundary element methods (BEM) correspond to the discretisation of boundary
integral equations (BIE). It was historically introduced for time-harmonic elasto-
statics by [172] and [52]. The BEM was then extended to evolution problems with
the addition of some techniques initially developed for finite element methods (mesh
techniques, shape functions, Gauss quadrature...) [17, 121]. This method is based
on the reformulation of the PDE as a boundary integral equation and on the knowl-
edge of a fundamental solution characteristic of the domain. The boundary integral
representation is usually obtained with a reciprocity theorem and a Green’s identity
[178]. The derivation for acoustic problems in unbounded domains is described in
Section 3.1.1. To solve an exterior problem, only the evaluation of the fields on the
boundary of the domain is needed. This drastic reduction of the problem size is
one of the BEM main advantages. The BEM is therefore well-suited for unbounded
media or problems where the surface versus volume ratio is small. Moreover the
BEM can easily handle unbounded domains as it intrinsically accurately takes into
account the radiation condition at infinity [154]. It does not require to approxi-
mate absorbing or transparent boundary conditions to truncate the computational
domain, which thus avoid undesirable reflections [94, 152].

The BEM have been shown to be competitive to volume discretisation methods
in the context of scattering problems [12]. But one main difficulty remains: the
necessary knowledge of problem-specific Green’s functions. This leads to significant
restrictions on the range of the problems to which BEMs can be applied.
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3.1. Boundary element methods

For linear and homogeneous media, fundamental solutions and their derivatives
are generally available. Some of them, particularly in the case of acoustics are de-
tailed in [26]. On the other hand, non-linearities and inhomogeneous media are
rarely included in the formulation, as Green’s functions are hardly explicitly known.
They would generally introduce volume integrals and require the volume to be dis-
cretised, removing the main advantages of the BEM.

Another numerical difficulty is related to the fundamental solutions. By defini-
tion, they are singular at some points and, the singularity increases with the order
of derivation. In fact, these fundamental solutions have a strong singularity when
it is evaluated on a field point y equal to the source (or collocation) point x. For
example, the classical fundamental solution for free space generated by a unit point
source located at x is given by

G(y,x) =
1

4πr
, r := |r| = |y − x| .

For transient acoustic wave propagation problems in an unbounded domain, with
a point source applied at y with a time modulated intensity f(t), the free space
fundamental solution is given by

G(y − x, t | f) =
f(t− r

c
)

4πr
, r := |x− y| .

As a consequence, to solve boundary integral equations with the BEM, the accurate
evaluation of singular (and hypersingular) integrals is therefore necessary. And if this
singularity is not integrable, one has to regularise the integral which is then defined
in a distributional sense. This is nowadays well known and very well addressed [190].

One can finally mention the progress that has made it possible to overcome one
of the initial drawbacks of the BEM: the extension to problems involving unbounded
material interfaces. Recent advances for time-harmonic problems of scattering from
unbounded material interfaces have led to the development of highly efficient solvers,
using in particular the windowed Green’s function (WGF) method (see for example
[120]).

The BEM is mainly used for time-harmonic problems, for which only a spatial
discretisation is necessary. Two main discretisation approaches exist: the collocation
method, which consists of enforcing a BIE at a finite number of points [26], and
the Galerkin method, a variational approach based on a weak form of the BIE. In
contrast to the collocation method, the Galerkin approach may entail a symmetric
system of equations (at the cost of evaluating double surface integrals) which is
very useful for its mathematical analysis [26]. Independently of the discretisation
method chosen, a fully-populated matrix system is obtained due to the use of Green’s
functions. It can be written in the general form[

K
]
{ϕ} = {f}

where {ϕ} represents the N unknown degrees of freedom (DOF), while the N × N
matrix of influence coefficients

[
K
]

contains evaluations of the boundary integrals.
This fully-populated matrix is a major drawback of the BEM. The storage of such
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3.1. Boundary element methods

a system has a quadratic cost and its solution with a direct solver (a LU factori-
sation for example) has a cubic complexity. With an iterative solver (GMRES for
example [173]), each iteration requires one evaluation of the matrix-vector product[
K
]
{ϕ}, a task requiring a computing time of order O(N2). With nit iterations to

achieve convergence, the system resolution thus requires O(nitN2) operations. Stan-
dard BEMs are therefore hardly applicable for problems larger than N=O(104) on
personal desktop. For time-harmonic problems this also limits the frequency range
possibly studied, as the boundary mesh size is related to the problem frequency.

This complexity can however be improved by applying fast boundary element
methods to reduce the memory requirement and speed-up a matrix-vector prod-
uct. We mention two fast boundary element methods: the fast multipole method
(FMM) and hierarchical matrices (H-matrix). The FMM reformulates the funda-
mental solution with a series expansion in order to factorise some operations [41,
53, 95]. The computational complexity of each matrix-vector product using the
FMM for oscillatory kernels is reduced to O(Nlog(N)) instead of O(N2) for classical
BEMs. The second fast boundary element method is purely algebraic and consists
in partitioning the system matrix into several block matrices of various sizes and
then approximating these matrices by low rank submatrices. The matrices are hier-
archically partitioned into blocks using the H-matrix concept proposed in [97] and
the blocks are approximated using a compression algorithm, such as the adaptative
cross approximation [135] or the hybrid cross approximation for example [27]. Both
FMM and H-matrix methods have been compared for example in [33].

Most of previous works on fast BEMs have been done for time-harmonic problems
but this work concerns boundary element methods for transient acoustic problems.
In Section 3.1.1 the transient differential acoustic problem is defined and reformu-
lated as a boundary integral equation.

3.1.1 BIE for transient wave propagation

We first consider an acoustic domain Ω without any obstacle, bounded by a boundary
Γ = ∂Ω. The scalar velocity potential ϕ verifies the wave equation and for example
a Neumann BC

∆ϕ− 1
c2f

∂2ϕ
∂t2

= 0 ∀(t,x) ∈ [0, T ]× Ω,

∇ϕ.n = g ∀(t,x) ∈ [0, T ]× Γ,

ϕ(0,x) = ∂ϕ
∂t
(0,x) = 0 ∀x ∈ Ω

(3.1)

where T ∈]0,+∞[ is the finite duration, and cf is the fluid sound velocity. In the
time domain for a finite T, there is no need to specify radiation conditions, because
the propagation takes place in a finite domain, due to the finite speed cf , and so
the support of ϕ(t, .) is a bounded region of Ω for all t ∈ [0, T ]. The Neumann BC
involves n, the outward normal to Ω and a function g defined on Γ. The problem is
at initial rest. In general, initial conditions are not zero and there are body sources
[26].

To establish the boundary integral equation of (3.1), we consider a fixed point
y∈ Ω and an impulsive point source is applied at y, with a time modulated amplitude
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3.1. Boundary element methods

δ(t) (Figure 3.1). The acoustic wave propagation problem is
∆G− 1

c2f

∂2G
∂t2

+ δ(y − x)δ(t) = 0 ∀(t,x) ∈ [0, T ]× Ω,

∇G.n = g ∀(t,x) ∈ [0, T ]× Γ,

G(0,x) = ∂G
∂t
(0,x) = 0 ∀x ∈ Ω.

(3.2)

Figure 3.1: Impulsive point source in a bounded domain Ω.

The solution G of the problem is the free space fundamental solution and for 3D
acoustic problems, it is given by:

G = (t,x,y|δ) = δ(t− r/cf )

4πr
, r = ∥y − x∥ .

The idea is to apply the time convolution between (3.2) satisfied by the impulsive
fundamental solution G and the solution ϕ(t,x). The time convolution product ⋆ is
defined for causal functions by

(u ⋆ v) =

∫ t

0

u(t− τ)v(τ)dτ =

∫ t

0

v(t− τ)u(τ)dτ = (v ⋆ u) , ∀t ≥ 0.

The convolution product has two important properties:

∂(u ⋆ v)

∂t
=
∂u

∂t
⋆ v =

∂v

∂t
⋆ u (3.3)

and for a Dirac distribution δ the convolution product with a function f holds

f(t) =

∫ t

0

f(t− τ)δ(τ)dτ = (f ⋆ δ) (t).

Equation (3.2) becomes∫ t

0

[
∆G(t− τ)− 1

c2f
∂2tG(t− τ)

]
ϕ(τ)dτ +

∫ t

0

δ(y − x)ϕ(t− τ)δ(τ)dτ = 0,

⇒ (∆G ⋆ ϕ) (t,x)− 1

c2f

(
∂2tG ⋆ ϕ

)
(t,x) + δ(y − x)ϕ(t,x) = 0.

(3.4)
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3.1. Boundary element methods

As the solution ϕ verifies the wave equation, using the property (3.3), the second
term is reformulated as

1

c2f

(
∂2tG ⋆ ϕ

)
(t,x) =

1

c2f

(
G ⋆ ∂2t ϕ

)
(t,x) = (G ⋆∆ϕ) (t,x). (3.5)

Recalling the second Green’s identity

∀u, v ∈ H1
∆(Ω)

∫
Ω

[∆u.v − u.∆v] dV =

∫
∂Ω

[
∂u

∂n
v − u.

∂v

∂n

]
dΓ.

we integrate (3.5) over the domain Ω to write the variational formulation of (3.4).
Since G is a distribution and is not integrable, the integral representation has to
be obtained by a limiting process. As described in [148], we consider a truncated
domain Ωϵ ⊂ Ω obtained by removing a ball of radius ϵ and centre y, and when
ϵ→ 0, the boundary integral representation writes∫

Γ

[∂nG ⋆ ϕ−G ⋆ ∂nϕ] (t,x)dΓ + ϕ(t,y) = 0 ∀(t,x) ∈ [0, T ]× Ω.

Due to the singularity of fundamental solution G, this boundary integral represen-
tation is not valid when y = x. Obtaining the boundary integral equation defined
on the boundary Γ is therefore the most difficult part, because a passage to the limit
when y → x is necessary. The interested reader may refer to [23] in order to read
the complete derivation of the boundary integral equation. As an illustration, we
consider the exterior problem depicted on Figure 3.2: the boundary is Γs = ∂Ωs

surrounded by a spherical bounded domain Ωf . The sphere of radius R is bounded
by a boundary Γf and its centre is a point within Ωs.

Figure 3.2: Geometrical notations used for the derivation of the bound-
ary integral equation for an exterior wave propagation prob-
lem.

Let y be a fixed point of the domain. For the domain Ωf , the boundary integral
equation is defined on the boundary ∂Ωf = Γf ∩Γs. However, R being large enough
so that all the variables vanish on Γf due to causality. The boundary integral
representation equations is written in a uniform way with a parameter κ, depending
on the position of y in the domain:

κϕ(t,y) =

∫
Γs

(∂nϕ(t,x) ⋆ G(t,x,y)− ∂nG(t,x,y) ⋆ ϕ(t,x)) dΓs
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3.1. Boundary element methods

with κ = 1 if y ∈ Ω, κ = 0 if y ∈ R3 \ Ω and κ = 1/2 if y ∈ Γ. Let now y be a
point on Γs and n the outward normal to Ωf . According to the usual convention
the equation is written as a function of the outward normal ns = −n to Ωs:

1

2
ϕ(t,y) = −

∫
Γs

(∂nsϕ(t,x) ⋆ G(t,x,y)− ∂nsG(t,x,y) ⋆ ϕ(t,x)) dΓs (3.6)

It is classical to introduce the single-layer and double-layer retarded potentials de-
fined with densities f, g by:

G {f} (t,y) =
∫
Γx

G(t,y−x)⋆f(t,x)dΓx, H{g} (t,y) =
∫
Γx

∂G

∂n
(t,y−x)⋆g(t,x)dΓx

for y ∈ R3 \ Γ. The boundary integral equation (3.6) reads as:

1

2
ϕ(t,y) = H{ϕ} (t,y)− G

{
∂ϕ

∂n

}
(t,y) (t,y) ∈ [0, T ]× Γs (3.7)

3.1.2 Numerical solutions of time-domain BIEs

Efficient solvers for ime domain boundary integral equations are still not as devel-
oped as for elliptic problems. A review of the available methods is given in [50]. The
transient BEM problem (3.7) can be solved either directly in the time domain, using
time-domain Galerkin methods or time-stepping collocation methods, or through a
transfer in the complex frequency domain with Laplace-transform based approaches.
All these approaches have different advantages and drawbacks.

1. Space-time Galerkin boundary element methods. One option is to use a
Galerkin method to discretise the retarded boundary integral equation [10, 67].
This leads to a space–time weak formulation of the BIE. The integral problem
can then be discretised by a stable scheme and a discrete space- and time-
dependent system can thus be built. The main advantage of these approaches
is the possibility to use variable time steps. But these methods are also very
expensive in terms of computational and storage costs since they require double
integrations both in space. Moreover, such formulations require an adequate
choice of the time step size. If improved and more stable versions have been
published [1, 10], an improperly chosen time step size still leads to instabilities
or numerical damping. The spatial integration domains are generally delimited
by wave fronts and are very complicated to handle numerically, especially in
the case of curved boundary elements. These issues can be overcome with the
help of specially designed time basis functions [177], of adapted quadrature
schemes [154] or by analytically performing some of the involved integrations
[2]. Finally fast boundary element methods for space-time formulations are
hard to formulate [191] and these methods are thus not widely used for large
industrial problems. The method is for example implemented in a parallelised
BEM software for general engineering problems [149].

2. Retarded potential methods. These approaches are based on the time
discretisation of the boundary integral equation with an implicit scheme. The
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most frequently adopted discretisation scheme is the collocation technique with
a direct step-by-step evaluation of the time convolution: an elliptic boundary
integral equation is solved at each time step [143]. These so called marching-
on-time (MOT) solvers present two major drawbacks that have been partly
overcome. First, at each time step, the elliptic problem has a non-zero initial
data, which is unconvenient for boundary integral method, usually used with
vanishing initial conditions and volume forces, and non-homogeneous bound-
ary data. Various strategies have been developed to overcome this problem
[50]. Secondly these methods are often unstable and require a very precise
choice of time step. A too large or too small time step leads to important
instabilities, high computational costs (especially for rapid problems) or un-
desirable numerical damping. The field of fast solvers that are based on MOT
is relatively well-developed and many improvements to overcome this draw-
back have been proposed, for example with a proper choice of temporal basis
functions, implicit time-stepping schemes, or carefully designed spatial inte-
gration schemes [176]. Finally, the mathematical analysis of such methods
remain incomplete as in more than two dimensions stability and convergence
of collocation schemes can only be shown for special geometries [55].

3. Methods based on a Laplace (or Fourier) transform. A third way to
evaluate the time convolution in the time-domain BIE is to apply a convolution
quadrature method (CQM), as developed by C. Lubich [139]. The convolution
quadrature method combines Laplace (or Fourier) transform of the fundamen-
tal solution and a usual time-stepping approach [11, 98, 179]. This results in a
stable and efficient time-stepping algorithm. CQM-based solution algorithms
are becoming a popular approach to solve time domain BIEs, since they rely
on the relative simplicity of frequency-domain BEMs. These methods allow
to apply many robust techniques developed for frequency domain problems
(including fast solvers based on fast multipole method). The main drawback
is the time step for the time discretisation whose size must be constant. A
generalisation to non-uniform time schemes is therefore not straightforward
[137].

In this work we focus on the third category and especially on the so called "Z-BEM"
procedure.

3.2 Z-BEM

In this section we describe the Z-BEM. This method is not new but it is important
to understand the constraints we have to deal with to define an iterative framework.
We first introduce the main principles of the convolution quadrature method (CQM)
where a convolution product is evaluated with a tailored quadrature. We then
explain how the CQM is used to solve transient BIEs in the context of Z-BEM.
We finally introduce some high-frequency approximation to improve the method
efficiency.
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3.2.1 General principle of the convolution quadrature method

The CQM was historically proposed in [139] and [140] by C. Lubich. It provides a
stable time-stepping scheme using the Laplace transform of the fundamental solu-
tion. The CQM enables to reformulate time-domain BIEs in the frequency domain.
In this work we consider time-domain boundary integral equations which include
two convolution products, such as

1

2
ϕ(t,y) =

∫
Γ

∂G

∂n
(t, r) ⋆ ϕ(t,x)dΓx −

∫
Γ

G(t, r) ⋆
∂ϕ

∂n
(t,x)dΓx. (3.8)

We introduce the unknown f = ∂ϕ
∂n

. ∀t ≥ 0, we want to evaluate q(t) given by

q(t) = (G ⋆ f)(t) =

∫ t

0

G(t− τ)f(τ)dτ =

∫ t

0

f(t− τ)G(τ)dτ = (f ⋆ G)(t). (3.9)

G can be expressed in terms of its Laplace transform G using the Bromwich integral
(or inverse Mellin formula), applying then Fubini’s theorem. It follows:

q(t) =
1

2iπ

∫ γ+i∞

γ−i∞
G(s)

∫ t

0

es(t−τ)f(τ)dτds.

The starting point of the CQM is to introduce a time continuous function h, param-
eterised by s:

h(t; s) =

∫ t

0

es(t−τ)f(τ)dτ.

We observe that h is solution of the ODE{
dh
dt
(h; s) = sh(t; s) + f(t)

h(t ≤ 0; s) = 0
(3.10)

If we split the time interval [0, T ] into N + 1 time steps of equal length ∆t = T/N
and introduce the discrete time levels tn = n∆t. Our goal is now to determine the
discrete values qn = q(tn) of the convolution product q at the discrete times tn. The
ODE (3.10) is then solved numerically with hn(s) = h(tn; s). Various integration
scheme can be used, e.g. an Euler integration scheme or a multistep scheme. With
a general linear k-step scheme, it follows:{

dhn(s)
dtn

= 1
∆t

∑k
j=0 αjhn+j−k(s) =

∑
βj(shn+j−k(s) + fn+j−k)

h−p(s) = f−p = 0 ∀p ∈ [1, k]
(3.11)

The coefficients αj and βj depend on the multistep scheme we choose. We then
introduce the Z-transform. It converts a discrete transient signal into a complex
frequency-domain representation. It might be considered as a discrete equivalent of
the Laplace transform. The Z-transform Z [(xn)] (ξ) of a discrete-time signal (xn)
is defined by

Z : (xn) = {x0, x1, ...} 7→ Z [(xn)] (ξ) =
∞∑
n=0

xnξ
n ≡ X (ξ) , ξ ∈ C. (3.12)
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Using this definition, we multiply (3.11) by ∆tξn for some ξ ∈ C, and take its
Z-transform. By summing over n from 0 to ∞, we obtain

k∑
j=0

αjξ
nhn+j−k(s) = ∆t

k∑
j=0

βjξ
n(shn+j−k(s) + fn+j−k)

⇒
k∑
j=0

αjξ
k−j(hn+j−k(s)ξ

n+j−k) = ∆t
k∑
j=0

βjξ
k−j(shn+j−kξ

n+j−k + fn+j−kξ
n+j−k)

⇒
k∑
j=0

αjξ
k−jH(ξ; s) = ∆t

k∑
j=0

βjξ
k−j(sH(ξ; s) + F (ξ))

Introducing the ratio p(ξ) =
∑k

j=0 αjξ
k−j∑k

j=0 βjξ
k−j

, H and F are then related through

H(ξ, s) =
1

p(ξ)
∆t

− s
F (ξ)

Finally the Z-transform Q(ξ) = Z[qn] {ξ} of the convolution product qn = q(tn) is
given by:

Q(ξ) =
1

2iπ

∫ γ+i∞

γ−i∞
G(s)H(ξ; s)ds =

1

2iπ

∫ γ+i∞

γ−i∞
G(s)

1
p(ξ)
∆t

− s
F (ξ)ds

where G is a complex-valued function, defined and derivable at any point, with
values in C. γ is a closed path belonging to the domain of definition of G and
s = p(ξ)

∆t
is a point that does not belong to γ. Assuming the applicability of the

residue theorem, we evaluate this integral’s residual in the complex plan at s = p(ξ)
∆t

.
The convolution product is finally given by

Q(ξ) = G

(
p(ξ)

∆t

)
F (ξ) . (3.13)

From this relation, there are several ways of using the CQM to solve time-domain
boundary integral equations. Historically, the CQM proposed by C. Lubich consists
in decomposing the Z-transforms G and F into series

G(s) =
∞∑
m=0

ωm(∆t, G)ξ
m, and F (ξ) =

∞∑
j=0

fjξ
j

and in expressing the convolution product as a product.

Q(ξ) = G(s)F (ξ) =
∞∑
m=0

∞∑
j=0

ωm(∆t, G)fjξ
m+j

In this way, the convolution product is a series, whose coefficients ωm(∆t, G) are
calculated in the frequency domain. There exists different strategies to efficiently
compute these weights [12, 139]. As F (ξ) is known (it is the Z transform of the
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discretised data ∂ϕ
∂n
(tn)), and asG(s) =

∑∞
m=0 ωm(∆t, G)ξ

m, the convolution product
Q(ξ), and thus the BEM operators are numerically evaluated if we know the weights
ωm. It is then easy to obtain the discrete-time convolution product qn, expressed
by taking the term of rank n in the series, divided by ξn = ξm+j. Using this
discretised convolution product in the boundary integral equation and taking the
Z-transform of the obtained equation leads to a full-populated matrix system where
the coefficient are the quadrature weights. This approach is detailed in [98] and
[12]. It is also applied with different integration schemes for example in [45]. This
procedure however requires the quadrature weights to be calculated before solving
the BIE, and their explicit formulation can be expensive to compute.

Another possibility is to use the CQM to discretise in time the whole transient
wave propagation problem. The resulting equation can be reformulated as a BIE
in the frequency domain [179] and then be solved with a classical frequency-domain
BEM. This method is used for example in [21] and [120]. We follow this approach
in the next Section.

3.2.2 Z-BEM

The Z-BEM consists in reformulating the time-domain BIE in the complex frequency
domain. Based on (3.13), with r = ∥y − x∥ and s = p(ξ)

∆t
:

1

2
Φ(ξ,y)−

∫
Γ

∂G

∂n
(s, r)Φ(ξ,x)dΓ +

∫
Γ

G(s, r)
∂Φ

∂n
(ξ,x)dΓ = 0 (3.14)

where Φ(ξ, .) is the Z transform of the series ϕn = ψ(tn, .). To solve a Neumann
problem, ∂nΦ is the data and Φ is the unknown in (3.14). After spatial discretisation
of Γ in N boundary elements, this BIE is written as a matrix system of the form:

[H] (s) {Φ} = [G] (s) {∂nΦ} , s =
p(ξ)

∆t
, (3.15)

where {Φ} represents the N unknown degrees of freedom, {∂nΦ} is a vector of N
evaluations of the data on Γ and [H] and [G] are N×N matrix discretisations of the
double-layer and single-layer operators respectively, as used in (3.7). It can easily
be solved with the BEM in the complex frequency domain. The solution Ψ(., ξ)
is evaluated in the Laplace domain. The time domain solution ϕn(tn, .) is then
obtained by taking the term of rank n in the series Φ and applying the Cauchy’s
residue theorem on a closed contour C of radius ρ:

ψ(tn, .) =
1

2iπ

∫
C

Φ(ξ, .)ξ−(n+1)dξ ∀n ∈ N

In practice, we use a trapezoidal quadrature rule to evaluate the integral. The
contour C of integration is discretised with L complex frequencies

ϕ(tn, .) ≃
1

L

L−1∑
k=0

Φ(ξk, .)ξ
−n
k ∀n ∈ [0,M ]

These L complex values are defined by ξk = ρe2iπk/L. Each coefficient ϕ(tn, .) is
then obtained from L = 2Nt complex evaluations. It has been shown that ρ must
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be chosen such as ρL = ϵ, in order to reach a O(ϵ) accuracy. This computation
has a O(L log L) complexity. The L values of the complex frequencies s = p(ξ)

∆t

at which a frequency BEM problem must be solved, only depend on the desired
accuracy ϵ required for the evaluation of the integral and on the time discretisation
(on the time step size ∆t and on the number M of time steps) [139]. There are thus
L− 1 = 2Nt− 1 Z-transforms Φ to calculate, which requires the resolution of 2Nt-1
frequency BIEs of the form (3.14). However as Φ = Φ, half of the complex values
are conjugate of the first ones (ξ2Nt−k = ξk), which allows to solve only M+1 BIEs.
The problem can finally be solved with a computational cost with respect to time of
O(Mlog(M)). Figure 3.3 illustrates the dependence of the CQM complex frequencies

Figure 3.3: Numerical representation of L=2Nt=200 complex frequen-
cies sk for different time step values, using a BDF2 scheme
(Nt=100, ϵ = 10−5).

to the time discretisation. Six different time steps ∆t are considered. For each
∆t, the interval [0, T ] with T = M∆t is used to define L=2Nt ξk and L complex
frequencies sk = p(ξk)

∆t
, with a BDF2 scheme and Nt=100. This Figure 3.3 illustrates

that the Z-BEM complex frequencies sk only depend on the time discretisation:
on the time step ∆t and on the total number M of time steps. The choice of ∆t
impacts the radius of curvature of the ellipse in the complex plane and thus the
maximum amplitude taken by the complex frequencies: the smaller the time step
is, the larger the corresponding complex frequencies are. The total number of time
steps M discretising the time interval determines the density of points on this ellipse.

After recalling the principles of the Z-BEM, we now use it to define an iterative
global-in-time FEM/Z-BEM coupling, following the algorithm described in Chap-
ter 2. The next section aims at verifying the numerical behaviour of the coupling.
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3.3 Global-in-time FEM/Z-BEM Robin-Robin iter-
ative coupling

In this Section, we analyse the convergence of a global-in-time FEM/Z-BEM itera-
tive procedure based on Robin boundary conditions, applied to a 2D FSI problem.
This problem has the advantage of admitting a semi-analytical solution. Its conver-
gence can thus be analysed theoretically.

3.3.1 Model 2D FSI problem analysis

A bounded elastic ring Ωs of interior and exterior radius Rint and Rext is immersed
in a acoustic fluid (mass density ρf , acoustic wave velocity cf ) occupying the un-
bounded fluid region Ωf := R2 \Ωs (see Figure 3.4). A uniform normal pressure pint

is prescribed on the interior surface Γint of this radially symmetric geometry, which
creates a deformation in the elastic solid and a radiated FSI problem on the exterior
interface. We assume 2D conditions and plane strain deformations for the solid.
Both media are at initial rest. The potential fluid has a time dependent velocity
potential ϕ(t), a velocity v(t) = ∇ϕ(t) and a pressure p(t) = −ρf∂tϕ(t) ∀t ∈ [0, T ].
The solid variables are the displacement u and the stress vector t := σ[u].n. We
use a global-in-time iterative FEM/Z-BEM method based on Robin BCs.

Figure 3.4: Radially-symmetric pressurised elastic annulus in an acoustic
fluid.

Knowing the semi-analytical solution of the 2D radially symmetric problem (see
Appendix A), we first validate the convergence of the iterative Robin-Robin coupling
procedure. The relative L2 error between the known semi-analytical solution and
the computed result is evaluated. All numerical results of this section have been
obtained with an in-house global-in-time FEM/Z-BEM code (the Z-BEM code is
described and validated in Appendix E.2) and under the following conditions: the
incident pressure is a spherical wave that propagates in an acoustic medium at
speed cf , before interacting with the interior surface (r=Rint) of the annulus. The
fluid and structure physical parameters are listed in Table 3.1. The time interval
[0, T ] is discretised with Nt= 1500 time steps (∆t = 1.7 10−6s). The number L of
complex frequencies is set to twice the number of time steps: L = 2 Nt= 3000. The
accuracy ϵ of the discrete inverse Z-transform is set to 10−5 and the value of ρBEM
is set according to ϵ, such that ρBEML = ϵ [146]. The backward differentiation
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formula of order 2 (BDF2) is used and the GMRES tolerance for the frequency-
domain fast BEM solver is 10−6. The 45 first BIEs are solved and a high frequency
approximation is used to approximate the other frequency solutions (the method is
detailed in Section 3.5), which enables to approximate the transient BEM solution
with an error smaller than 10−2. We consider a very smooth incident pressure pint
applied on the intern boundary:{

pint(t) = a(2t/Tp)
γ × (2− 2t/Tp)

γ if t ∈ [0, Tp],

pint(t) = 0 if t > Tp.
(3.16)

This causal signal is five time derivable, with an amplitude a=108 and a time pa-
rameter Tp = 3 10−4s. To evaluate the algorithm’s convergence speed we consider

Name cf ρf E cmat ρs ν Rint Rext

Value 1500 1000 210 109 6.0202 103 7800 0.3 0.9 1
Unity m.s−1 kg.m−3 kg.m−1.s−2 m.s−1 kg.m−3 / m m

Table 3.1: Fluid and solid properties.

the relative error in L2-norm between a variable (computed on the whole interface
and on the whole time interval) and the semi-analytical solution:

eresv :=
∥vi − vanalytic∥L2([0,T ],Γext)

∥vanalytic∥L2([0,T ],Γext)

and eresp :=
∥pi − panalytic∥L2([0,T ],Γext)

∥panalytic∥L2([0,T ],Γext)

(3.17)

where vi and pi are the fluid velocity and the fluid pressure at iteration i evaluated
on the interface. They correspond to the relative errors in pressure and velocity
at iteration i. When the convergence is reached, the transmission conditions are
verified at the interface

∂nϕ = ∂tu.n and t[u] = h.n− p.n

To estimate the number of iterations required to reach the convergence when no
reference solution is available, indicators on transmission residuals in velocity and
pressure we use esol

v and esol
p defined by (2.15). A third indicator ev,p combining the

two interfacial variables is defined in Section 2.3.2 by (2.17). As a first validation
both fluid pressure and normal velocity solutions on the acoustic-elastic interface
are obtained numerically with a coupling parameter kc = ρfcf . After 10 global-
in-time iterations with Robin boundary conditions, the iterative algorithm and the
semi-analytical method are seen in Figure 3.5a and Figure 3.5b to be in good agree-
ment. As illustrated in Figure 3.6a, the relative errors eresv and eresp compared to the
semi-analytical solution are lower than 10−3 after 6 and 9 iterations respectively. Fig-
ure 3.6b shows the convergence of the relative errors esol

p , e
sol
v and ev,p, with respect

to the number of iterations. In this case, 9 FEM/Z-BEM global-in-time iterations
are needed to reach ev,p < 10−3. Both Figures 3.6a and 3.6b show a stepwise de-
crease: there is a successive decrease in the velocity error esol

v at one iteration, and
then in the pressure error esol

p at the next iteration. As a result, the overall error on
residual ev,p (in red in the Figure) taking into account the two transmission residuals
decreases in a smooth way.
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(a) (b)

Figure 3.5: (a) Fluid pressure p at a node ∈ Γext obtained with a semi-
analytical method and a global-in-time FEM/Z-BEM itera-
tive algorithm (∆t = 1.7 10−6, Nt = 1500, El=2336). Rel-
ative error : esol

p =0.50%. (b) Normal fluid velocity at a
node ∈ Γext obtained with a semi-analytical method and
a global-in-time FEM/Z-BEM iterative algorithm (∆t =
1.7 10−6, Nt = 1500, El=2336). Relative error : eresv =0.05%.

(a) (b)

Figure 3.6: (a) eresv and eresp with respect to the analytic solution ver-
sus the number of iterations (∆t = 1.7 10−6, Nt = 1500,
El=2336). (b) esol

v , esol
p and ev,p on transmission residuals

versus the number of iterations (∆t = 1.7 10−6, Nt = 1500,
El=2336).
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3.3.2 Comparison of algorithms based on Robin, Neumann
and Dirichlet boundary conditions

In domain decomposition methods, when using transient step-by-step iterative meth-
ods it is common to use Neumann boundary conditions at the interface (see [82] for
example). However for global-in-time iterative procedures we have shown (Sec-
tion 2.3.2) that the loss of space-time regularity of the solutions of Neumann evo-
lution problems do not allow the boundary traces to remain in a fixed regularity
space and that it prevents the construction of a convergent iterative algorithm. As
an illustration, we perform a few global-in-time iterations with the algorithm based
on Neumann BCs as described in Section 2.3.2 on the radially-symmetric 2D prob-
lem (Figure 3.4). We consider a high-frequency 2D radially-symmetric problem as
schematised in Figure 3.4 with the same material properties (Table 3.1). The time
interval [0, T ] is discretised with Nt= 2000 time steps (∆t = 7.0 10−7s) and the
causal signal defined by (3.16) has a time parameter Tp = 50∆t = 3.5 10−5s.

Figure 3.7 shows the relative error on the analytical solution esol
p with respect

to the iterations when using three types of boundary conditions. When Robin
conditions are used the error (in black) converges within 10 iterations. On the other
hand, using Neumann (in blue) or Dirichlet (in red) boundary conditions does not
enable esol

p to converge.
The fluid pressure evaluated on a point of the boundary is represented as a

function of time at three different Neumann-based iterations in Figure 3.8a. It
clearly illustrates the loss of regularity. At each iteration the solution p becomes
less and less regular. For similar reasons global-in-time iterations based on Dirichlet
conditions do not allow convergence either. We also perform a few iterations with
the algorithm based on Dirichlet BCs in both subdomains. A loss of regularity at
each iteration is also found by observing the evolution of the fluid pressure with
respect to time in Figure 3.8b.

We have transmission conditions for three kinds of conditions (Robin in black,
Neumann in blue and Dirichlet in red). These results obtained for a very simple
configuration show that the algorithm based on Robin boundary conditions is better
than the others for step-by-step iterative procedures. Some "mixed" algorithms have
been proposed in the literature based on Robin and Neumann conditions or on Robin
and Dirichlet conditions [6, 7, 76]. The Robin and Dirichlet boundary conditions are
in particular sometimes used as it is the easiest to implement [56, 188]. However,
for global-in-time iterative procedures however, only the numerical scheme based on
Robin boundary conditions has a guaranteed convergence.

3.3.3 Optimal parameters for the Robin boundary conditions

In the previous example we have used a Robin coupling parameter equal to the
acoustic impedance (kc = ρfcf ). It is justified first by a dimensional analysis because
the parameter kc carries impedance unit. In addition for a high frequency radiation
problem, the behaviour of the fluid pressure on an elastic surface can be described
by p = ρfcfu(t) (with u the fluid velocity) [146]. The aim of this section is to
check if another value could be more efficient. An option is to consider two distinct
coupling parameters, the first noted ka for the acoustic domain and the other noted
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Figure 3.7: Relative error on pressure esol
p compared to the semi-

analytical solution with the iterations for different numerical
schemes, for a 2D radially-symmetric problem (∆t=7.0e-07,
El=2336, kc = ρfcf ).

(a) Neumann boundary conditions. (b) Dirichlet boundary conditions.

Figure 3.8: Pressure evaluated on a point of Γ with respect to time at
three iterations for the algorithm based on Neumann trans-
mission conditions (a) and on Dirichlet transmission condi-
tions (b) (∆t = 7.0 10−7, Nt = 2000, El=2336).
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ks for the elastic structure. To answer this question, it is possible on this simple
radially-symmetric problem to semi-analytically estimate the value of the coupling
parameter that maximises the convergence speed. The iterative procedure is based
now on two Robin transmission conditions of the form{

ka∂nϕ
i+1(t)− ρf∂tϕ

i+1(t) = gif (t)

t[ui+1](t) + ks∂tu
i+1 = gs

i(t)

where ka and ks are the coupling parameters and gf and gs are the boundary terms
depending on the variables obtained at the previous iterate according to the defini-
tion (2.40). Another well-known approach to speed up the convergence is to consider
relaxed transmission conditions of the form{

ka∂nϕ
i+1(t)− ρf∂tϕ

i+1(t) = (1− r)gi−1
f (t) + rgif (t)

t[ui+1](t) + ks∂tu
i+1 = (1− r)gs

i−1(t) + rgs
i(t)

with r ∈]0, 1[. For the 2D radially-symmetric problem, the coupling parameters
values to optimise the convergence rate can be evaluated with a semi-analytical
analysis.

Theoretical convergence speed for the radially-symmetric FSI problem.
To evaluate the theoretical convergence speed of the global-in-time iterations de-
pending on the coupling and relaxation parameters, we consider the semi analytical-
solution (Appendix A) and the matrix system (9) defined in Appendix A. This ma-
trix system defines three coefficients A, B and C, characterising the acoustic-elastic
semi-analytical solution. The convergence of the error of the coupled problem is
estimated by expressing, at a fixed frequency s, the matrix relation between the
errors on the coefficients at two successive iterations, in the formA1 − Aext

B1 −Bext

C1 − Cext

 = [M ]

A0 − Aext

B0 −Bext

C0 − Cext

 .
We aim at determining the matrix [M ]. For a fixed frequency s, we express the
variables of the radiated problem with modified Bessel functions. The Robin radi-
ated problem verifies the internal pressure condition on the inner surface (r = a)
and possibly relaxed Robin conditions on the exterior interface (r = b). These three
relations link the variables of iterations 0 and 1:

t1(a, s) = 0

(p1 + kav1)(b, s) = h− (t0 − kasu0).n+ ν)(b, s)

(t1 + kssu1)(b, s) = n(h− p0 + ks(v0 − ν))(b, s)

(3.18)

To rewrite these relations with the modified Bessel functions, we use K ′
0(z) =

−K1(z), I
′
1(z) = I0(z) − 1

z
I1(z) and K ′

1(z) = −K0(z) − 1
z
K1(z). We also introduce

the short-hand notations

Ti(r) :=

[
l
s

c
I ′1(

sr

c
) +

λ

r
I1(

sr

c
)

]
and Tk(r) :=

[
l
s

c
K ′

1(
sr

c
) +

λ

r
K1(

sr

c
)

]
.
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A1Ti(a) +B1Tk(a) = 0

C1

[
−ρfsK0(

sb
cf
)− kas

cf
K1(

sb
cf
)
]

= h+ ν + A0[−Ti(b) + kasI1(
sb
c
)]

+B0[−Tk(b) + kasK1(
sb
c
)]

A1

[
Ti(b) + kssI1(

sb
c
)
]
n+ B1

[
Tk(b) + kssK1(

sb
c
)
]
n = hn− νn

+C0

[
ρfsK0(

sb
cf
)− ks

s
cf
K1(

sb
cf
)
]
n

As these relations are verified by the coefficients of the converged solution Aext, Bext

and Cext, it is also verified by the differences A0 − Aext, B0 − Bext and C0 − Cext.
We have a system of the form

[
Rg
]A1 − Aext

B1 −Bext

C1 − Cext

 =
[
Rd
]A0 − Aext

B0 −Bext

C0 − Cext

 . (3.19)

Subtracting the two matrix systems entails the elimination of the boundary terms
h and ν which are independent of the iteration number n. As the modified Bessel
functions admit the large-argument expansions (8), when one subtract the converged
solution, the matrix [Rg] and [Rd] have the form:

[
Rg
]
=


Ti(a) Tk(a) 0

0 0 −s
(
ρfK0(

sb
cf
) + ka

cf
K1(

sb
cf
)
)

Ti(b) + kssI1(
sb
c
) Tk(b) + kssK1(

sb
c
) 0


[
Rd
]
=


0 0 0

−Ti(b) + kasI1(
sb
c
) −Tk(b) + kasK1(

sb
c
) 0

0 0
[
ρfsK0(

sb
cf
)− ks

s
cf
K1(

sb
cf
)
]
n


The spectral radius of [M ] =

[
Rg
]−1 [

Rd
]

is the convergence factor of the algorithm
and must be smaller than 1 to ensure the convergence of the iterations. The smaller
it is, the larger the convergence rate of the iterative algorithms. It is defined by

ϱs(s) = max
(
λ

([
Rg
]−1 [

Rd
]))

where λ are the eigenvalues of
[
Rg
]−1 [

Rd
]
. To determine an optimal value of ka

and ks taking into account all the complex frequencies, we consider as the spectral
radius, the maximum of all eigenvalues for all the complex frequencies.

ϱ(ka, ks) = max
s

ϱs(s) (3.20)

This convergence factor ϱ does not depend on the mesh discretisation or on the
impulsion (Tp value for example).

92



3.3. Global-in-time FEM/Z-BEM Robin-Robin iterative coupling

Relaxation. Taking the relaxation into account, the three equations (14) defined
in Appendix A linking two successive iterations become

t1(a, s) = 0

(p1 + kav1)(b, s) = (1− r)(p0 + kav0)(b, s) + r
[
h− (t0 − kasu0).n+ ν)(b, s)

]
(t1 + kssu1)(b, s) = (1− r)(t0 + kssu0)(b, s) + r [n(h− p0 + ks(v0 − ν))(b, s)]

and only the matrix [Rd] changes. It has then the form:
0 0 0

r
(
−Ti(b) + skaI1

(
sb
c

))
r
(
−Tk(b) + skaK1

(
sb
c

))
α
[
ρfsK0

(
sb
cf

)
+ ska

cf
K1

(
sb
cf

)]
−α
[
Ti(b) + sksI1

(
sb
c

)]
−α
[
Tk(b) + sksK1

(
sb
c

)]
r
[
ρfsK0

(
sb
cf

)
− sks

cf
K1

(
sb
cf

)]


(with α = r − 1).

Using the analytical definition, the global-in-time iterative algorithm theoretical
convergence factor is determined by assessing the value of (3.20). We first consider
one coupling parameter kc (ks = ka = kc). Figure 3.9a shows the spectral radius
value depending on the coupling parameter kc and on the complex frequency s.
The algorithm convergence factor is then the maximal value of ϱs(s) taking all the
complex frequencies into account. Figure 3.9b shows the convergence factor for the
radially-symmetric example (with L = 2Nt = 3000 frequencies) as a function of the
value of the coupling parameter kc. In this case, Figure 3.9b shows that choosing
the coupling parameter as kc = 0.9ρfcf allows to minimise the spectral radius of
the system (15) linking two successive iterations (ϱ = 0.24) and thus to maximise
the convergence speed of the iterative algorithm. This optimal value is close to the
physical value of the acoustic impedance which was thus a good a priori choice.

Similarly Figure 3.10 shows the iterative algorithm convergence factor ϱ depend-
ing on the coupling parameter value kc and the relaxation parameter r. This semi-
analytical calculation highlights the convergence factor high sensitivity to the choice
of kc and the existence of a relaxation parameter value that minimises system (15)
spectral radius for each value of kc. For example with kc = ρfcf , the spectral radius
is minimal (ϱ =0.28) without relaxation (r=1). Relaxation might however be useful
in some cases, as for kc = 7ρfcf , a relaxation parameter r=0.8 reduces the spectral
radius to ϱ =0.78 instead of 0.86 without relaxation. In conclusion, in the absence of
physical information enabling a good a priori choice of the value of kc = ka = ks, us-
ing relaxation might improve the convergence. But otherwise choosing kc according
to the physics or to an analytical analysis is more efficient. Figure 3.10 also shows
the convergence factor evolution when kc tends to 0. The fluid pressure (or elastic
traction) is then enforced as a Neumann condition and the convergence factor tends
to 1, slowing down the convergence excessively (as illustrated in Section 3.4).

This simplified FSI problem with a radially-symmetric geometry allows to derive
an a priori suggestion for the optimal choice of kc, depending on some physical
parameters. This estimation might then be used for other transient FSI problems.
This is the usual approach to determine a priori optimal values of the coefficients
in the Robin transmission conditions that minimise the number of iterations in
partitioned algorithms [6, 37, 86, 161].

93



3.3. Global-in-time FEM/Z-BEM Robin-Robin iterative coupling

(a) (b)

Figure 3.9: (a) Spectral radius of
[
Rg
]−1 [

Rd
]

depending on the cou-
pling parameter, for several complex frequencies.(b) Spectral

radius of
[
Rg
]−1 [

Rd
]

taking all the complex frequencies into
account.

Figure 3.10: Semi-analytical convergence factor depending on the cou-
pling parameter kc and the relaxation parameter r (∆t =
1.7 10−6, Nt = 1500, El=2336). (b) Spectral radius of[
Rg
]−1 [

Rd
]

taking all the complex frequencies into ac-
count.
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3.3. Global-in-time FEM/Z-BEM Robin-Robin iterative coupling

Fully numerical validation. These semi-analytical observations are validated by
numerical experiments, summarised in Table 3.2. For several pairs of parameters
(kc, r) we show the number of iterations needed to reach the convergence. We con-
sider the convergence reached when the relative error on the transmission residuals
ev,p < 10−3, with ev,p defined by (2.17).The number of iterations is in agreement with
the expected spectral radius values. We show on Figure 3.11a that the iterative al-
gorithm based on Robin boundary conditions converges with a larger convergence
rate for a value of kc = 0.9ρfcf , without relaxation, as predicted by the theoretical
spectral radius value. We also observe that the relaxation only slightly improves
the convergence speed when kc = 7ρfcf (reduction by three iterations), as predicted
by the convergence factor values. A bad choice of the relaxation parameter value
can however have a drastic negative effect on the convergence as illustrated by the
example kc = ρfcf . By adding a relaxation with r = 0.2 the number of iterations is
multiplied by 4 compared to the case without relaxation (see Figure 3.11b). The op-
timal relaxation parameter value highly depends on the chosen coupling parameter
kc.

From this analysis we can conclude that if a good guess of the Robin kc co-
efficient is known, either from the physics or from an analytical analysis (such as
here kc = ρfcf), the iterative algorithm is more efficient without relaxation. How-
ever, if a good guess is not available the relaxation might improve the convergence
rate. For general cases where no semi-analytical solution can be determined, it is
therefore preferable to choose another acceleration method whose efficiency does not
depend on the choice of coupling parameters (for example the Aitken acceleration,
see Section 3.4.2).

Coupling factor f (kc =fρfcf ) 0.2 0.2 1 1 1 0.9 7 7
Relaxation parameter r 1 0.2 1 0.5 0.2 1 1 0.8
Spectral radius ϱ 0.83 0.96 0.28 0.54 0.80 0.24 0.86 0.78
Numerical iterations 44 >100 10 19 40 9 45 42

Table 3.2: Theoretical values of spectral radius ϱ and number of itera-
tions to reach convergence (ev,p < 10−3) for couples of param-
eters (kc, r).

Remark. It is worth noticing that the optimal value for the Robin coupling pa-
rameter kc does not depend on the time discretisation. Previous studies have shown
that time-stepping iterative procedures based on Robin’s transmission conditions
generally have an optimal value of coupling parameter that depends on the time
discretisation [6, 86, 159] in contrast to our global-in-time iterative procedure. This
optimal value does not depend on the spatial discretisation either. This is similar
to the step-by-step iterative procedures used for transient FSI problems where the
optimal kc value is independent on the mesh parameter size [86], but contrasts with
the Robin optimal parameter values for harmonic problems [79].

Two-sided Robin iterations. We now relax the constraint that the same Robin
condition has to be used in the acoustic and elastic problems. It is the approach used
for time-harmonic problems in [79] for example. The semi-analytical values of the
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(a) (b)

Figure 3.11: (a) Convergence of the indicator ev,p on interfacial residuals
for three values of kc (∆t = 1.7 10−6, Nt = 1500, El=2336).
(b) Convergence of the indicator ev,p on interfacial residuals
for kc = ρfcf and three values of r (∆t = 1.7 10−6, Nt =
1500, El=2336).

convergence factor (3.20) depending on ka and ks are shown in Figure 3.12. These
semi-analytical results on the convergence factor are numerically validated as they
are consistent with respect to the number of numerical iterations needed to reach
convergence presented in Table 3.3. By minimising the convergence factor of the
iterations, the optimal value for the coupling parameters is found to be very close to
the physical acoustic impedance (ka = ks = ρfcf ) and entails a convergence factor
ϱ = 0.24. Choosing distinct values for ka and ks does not seems to be interesting in
this case. Similar Robin conditions on both sides of the interface (ka = ks) seems
to be an optimal choice when one of the two values is imposed (e.g. ka), especially
as the convergence factor is quite robust to the variations of ks. However this

Coupling factor f (ka =fρfcf ) 0.2 0.2 1 1 3 3 3
Coupling factor fs (ks =fsρfcf ) 1 0.2 1 0.2 3 1 0.2
Spectral radius ϱ 0.93 0.83 0.28 0.66 0.70 0.71 0.74
Numerical iterations >100 44 10 20 25 26 32

Table 3.3: Theoretical values of convergence factor ϱ and number of
iterations to reach convergence (ev,p < 10−3) for couples of
parameters (ka, ks).

depends on the problem parameters. Table 3.4 shows the theoretical convergence
factor ϱ depending on the thickness of the elastic part (e = Rext − Rint). It shows
that when the geometry changes and the thickness increases, the choice ka = Zc
and ks = Zs might becomes optimal. For thicker elastic obstacles, for example
e=10, ka = ks = Zc is still a good choice as the convergence factor is then 0.12,
but choosing ka = Zc and ks = Zs entails an optimal convergence factor ϱ = 0.01
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Figure 3.12: Semi-analytical convergence factor depending on the cou-
pling parameters ka and ks (∆t = 1.7 10−6, Nt = 1500,
El=2336).

(2 iterations). For very thin elastic obstacles, the elastic domain has a smaller
influence on the coupling and the influence of the acoustic domain is predominant.
For thick obstacles the influences of both domains have to be taken into account,
so the acoustic and elastic impedances have to be include in the Robin boundary
conditions in each subdomain. This observation is consistent with the physics and
also with the literature on FSI coupling with Robin conditions [7, 159, 161]. This
literature highlights some cases where it makes sense to take different ka and ks. It
is especially common to choose both parameters equal to the elastic and acoustic
impedances (ks = ρmatcmat and ka = ρfcf ), as they both carry impedance units
[161].

Table 3.4 shows that the choice of ka and ks highly depends on the geometry and
especially on the structure thickness. When the structure is thick enough (e ≥ 2
for this example), it is preferable to choose the acoustic and elastic Robin coupling
parameters equal to the acoustic and elastic impedances, according to the physics.
However, when the structure is thin, its impact on fluid-structure coupling is limited
and choosing the both Robin coupling parameters equal to the acoustic impedance
is preferable.

Tables 3.5 and 3.6 show the theoretical convergence factor depending on the
ratio of both domains densities, for a fixed thickness e = 0.1 (Table 3.5) or e = 9
(Table 3.6). For both thin and thick geometries the convergence factor only slightly
varies with the fluid and structure densities ratio. For a thin structure, Table 3.5
shows that the optimised nature of the choice ka = ks = ρfcf is robust to the
values of the densities. We observe that the convergence factor improves when the
structure density decreases and becomes closer to the density of a fluid. For a thick
structure, Table 3.6 also shows that choosing ka = Zc and ks = Zs entails the lowest
convergence factor and that the densities ratio does not have a great influence on ϱ.

Finally the theoretical convergence factor ϱ is evaluated depending on the Young
modulus value E for two different geometries in Tables 3.7 (e = 0.1) and 3.8 (e = 9).
For both thin and thick geometries the convergence factor is seen to be independent
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Coupling parameter ka 0.2 Zc 0.2 Zc 0.2 Zc Zc Zc 3Zc Zc Zs
Coupling parameter ks Zc 0.5 Zc 0.2Zc Zc 0.5Zc 0.2Zc Zs Zs

e=0.01 (Rext = 1.01) 0.93 0.89 0.82 0.20 0.34 0.79 0.93 0.96
e=0.1 (Rext = 1.1) 0.93 0.89 0.82 0.28 0.34 0.74 0.87 0.93
e=1 (Rext = 2) 0.92 0.88 0.81 0.25 0.33 0.74 0.44 0.66
e=2 (Rext = 3) 0.90 0. 0.88 0.81 0.21 0.32 0.21 0.46
e=4 (Rext = 5) 0.89 0.87 0.81 0.16 0.32 0.72 0.05 0.22
e=9 (Rext = 10) 0.89 0.87 0.81 0.12 0.32 0.71 0.01 0.09

Table 3.4: ϱ variation depending on the thickness e (Rint=1, ρf
ρmat

=
0.128).

Coupling parameter ka 0.2 Zc 0.2 Zc 0.2 Zc Zc Zc 3Zc Zc Zs
Coupling parameter ks Zc 0.5 Zc 0.2Zc Zc 0.5Zc 0.2Zc Zs Zs
ρf
ρmat

= 0.01 0.93 0.89 0.81 0.32 0.37 0.73 0.92 0.87
ρf
ρmat

= 0.128 0.93 0.89 0.82 0.28 0.35 0.71 0.87 0.93
ρf
ρmat

= 0.5 0.93 0.89 0.82 0.20 0.34 0.75 0.73 0.85

Table 3.5: Theoretical values of convergence factor ϱ for couples of pa-
rameters (ka, ks) and different physical parameters values
(Zc = ρfcf , Zs = ρmatcmat and e=0.1).

Coupling parameter ka 0.2 Zc 0.2 Zc 0.2 Zc Zc Zc 3Zc Zc Zs
Coupling parameter ks Zc 0.5 Zc 0.2Zc Zc 0.5Zc 0.2Zc Zs Zs
ρf
ρmat

= 0.01 0.93 0.89 0.82 0.12 0.33 0.72 0.01 0.09
ρf
ρmat

= 0.128 0.89 0.87 0.81 0.12 0.32 0.71 0.01 0.09
ρf
ρmat

= 0.5 0.76 0.81 0.80 0.11 0.30 0.70 0.01 0.08

Table 3.6: Theoretical values of convergence factor ϱ for couples of pa-
rameters (ka, ks) and different physical parameters values
(Zc = ρfcf , Zs = ρmatcmat and e=0.1).

on this material parameter.

Coupling parameter ka 0.2Zc 0.2Zc 0.2Zc Zc Zc 3Zc Zc Zs
Coupling parameter ks Zc 0.5Zc 0.2Zc Zc 0.5Zc 0.2Zc Zs Zs

E=390.109 kg.m−1s −2 0.93 0.89 0.82 0.27 0.34 0.74 0.90 0.95
E=210.109 kg.m−1s −2 0.93 0.88 0.81 0.28 0.35 0.71 0.87 0.93
E=69.109 kg.m−1s −2 0.93 0.89 0.82 0.25 0.34 0.74 0.86 0.93

Table 3.7: ϱ variation depending on E (0.1, ρf
ρmat

= 0.128).
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Coupling parameter ka 0.2Zc 0.2Zc 0.2Zc Zc Zc 3Zc Zc Zs
Coupling parameter ks Zc 0.5Zc 0.2Zc Zc 0.5Zc 0.2Zc Zs Zs

E=390.109 kg.m−1s −2 0.90 0.88 0.81 0.11 0.32 0.70 0.02 0.15
E=210.109 kg.m−1s −2 0.89 0.87 0.81 0.12 0.32 0.71 0.01 0.09
E=69.109kg.m−1s −2 0.85 0.86 0.81 0.11 0.32 0.68 0.01 0.05

Table 3.8: ϱ variation depending on E (e = 9, ρf
ρmat

= 0.128).

From this analysis on a simple radially-symmetric FSI problem, we validate the
convergence of the global-in-time FEM/Z-BEM iterations based on Robin boundary
conditions. We conclude that a good guess for the Robin coupling coefficient can
be derived on this simplified problem. For our test case with a thin elastic object,
choosing ka = ks = ρfcf minimises the convergence factor and maximises the con-
vergence rate. For thicker obstacles, the elastic domain influence on the coupling
increases and choosing ks = ρmatcmat and ka = ρfcf becomes an optimal choice.
This is in agreement with the physics and the literature on FSI coupling. Moreover,
the optimised aspect of this choice is robust with respect to the time step ∆t, the
mesh discretisation, the excitation Tp, the elastic obstacle thickness e and the ma-
terial parameters. In the absence of a simplified semi-analytical solution providing
an indication of the optimal choice of ka and ks, choosing ka and ks according to
the physical impedances seems to be a good default choice. In the next section
we consider a different 2D FSI problem to test whether this optimised value of the
coupling parameters can be efficiently used.

3.4 Convergence acceleration

We now consider another two-dimensional FSI problem with the aim of (i) testing
the optimised values for parameters ka and ks on a fully 2D FSI problem with a
different geometry, and (ii) defining a problem-independent acceleration.

In contrast to the semi-analytical analysis in Section 3.3, for which the radially-
symmetric geometry was necessary to derive the conclusion on the analytical rate
of convergence, the observations regarding the coupling parameters and the rate of
convergence in this section are independent of the problem parameters and geometry.

We consider the scattering of a wave by a non radially-symmetric 2D cylinder
as described in Section 2.6 and illustrated in Figure 3.13. We use the same fluid
and structure physical parameters and the same discretisation parameters as listed
in Table 2.1. We consider a smooth incident causal signal ϕinc of the form of

ϕinc(t,x) = f(t− 1

c
p̂.x)

where the function t → f(t) defines the time modulation of the propagating pulse.
It is assumed to have a compact support T. f is defined by (2.61) with γ = 3. A
HFA is used and for this 2D problem 70 harmonic BEM problems corresponding to
the lowest frequencies are computed (see Section 3.5).
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Figure 3.13: Schematic representation of a fluid-structure interaction
problem between an incident acoustic plane wave ϕinc in an
acoustic domain Ω(ρ, cf ) and an elastic domain Ωs(ρs, cs).

3.4.1 Optimised Robin coupling parameters

The numbers of global-in-time iterations to reach the convergence (ev,p < 10−3) are
reported in Table 3.9 for different values of ka and ks. As no semi-analytical solution
is available for this non radially symmetric example, the convergence is evaluated
with the relative L2 error ev,p on transmission residuals (2.17). Moreover, it is not
possible to evaluate the semi-analytical convergence factor nor to predict the values
of the coupling and relaxation parameters that optimise the convergence rate. We
therefore choose coupling parameter values similar to those in Table 3.3 to verify
if ka = ks = ρfcf is still a good choice regarding the convergence rate. While the

Coupling factor f (ka =fρfcf ) 1 1 3 3
Coupling factor fs (ks =fsρfcf ) 1 0.2 3 0.2
Numerical iterations 49 96 > 100 > 100

Table 3.9: Number of numerical iterations to converge (ev,p < 10−3) for
couples of parameters (ka, ks), with e = 1.5 and ρf

ρmat
= 0.128.

algorithm converges for all coupling parameters values, choosing ka = ks = ρfcf
considerably reduces the number of global-in-time iterations needed to reach the
convergence. The pressure and velocity solutions at convergence are evaluated at
three different locations A, B and C of the structure surface Γ (see Figure 3.13).
The fluid pressure and the elastic stress in A, B and C are given on Figure 3.14a,
Figure 3.15a and Figure 3.16a as functions of time. The fluid and elastic normal
velocities in A, B and C are given on Figure 3.14b, Figure 3.15b and Figure 3.16b.
All the Figures have been obtained with ka = ks = ρfcf after 49 iterations.

3.4.2 Aitken’s acceleration

As observed in Section 3.3.3, adding a relaxation with a fixed parameter r does not
systematically improve the algorithm convergence rate and sometimes even bring
along a drastic decrease in efficiency. As the optimal value of the relaxation param-
eter (which depends on the coupling parameters ka and ks) is initially unknown, an
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(a) (b)

Figure 3.14: (a) Normalised fluid pressure and elastic stress evaluated
on point A. (b) Normalised fluid and elastic velocities eval-
uated on point A.

(a) (b)

Figure 3.15: (a) Normalised fluid pressure and elastic stress evaluated on
point B. (b) Normalised fluid and elastic velocities evaluated
on point B.

(a) (b)

Figure 3.16: (a) Normalised fluid pressure and elastic stress evaluated on
point C. (b) Normalised fluid and elastic velocities evaluated
on point C.
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adaptive method is proposed to redefine an optimal relaxation parameter value at
each iteration. We consider Aitken’s ∆2 dynamic relaxation proposed by [111]. This
acceleration is classically employed for the determination of an iteration dependent
relaxation parameter r∗i . This method provides a simple procedure to determine r∗i ,
based on the results of two subsequent iterations. Despite its simplicity, Aitken’s re-
laxation significantly speeds up convergence of fixed-point iterative algorithms and it
is often applied in the literature, especially for fluid–structure interaction problems
[6, 119, 188].

At each iteration, a coefficient r∗i is defined and used in a linear combination of
g and g (the boundary terms depending on the variables obtained at the previous
iterate in Section 2.4) to define modified transmissions conditions. The idea is that
the iterations can be viewed as fixed-point iterations for the incoming traces B. We
note F(B) the solution of two Robin IBVPs in each subdomain, for a given incoming
trace B. The iterations thus takes the form

Bn+1 = F(Bn), with F(B) := XSB + H = XB + H.

At each iteration we consider two candidate B0 and B1 and set F0 := F (B0), F1 :=
F (B1). Next we linearly interpolate (B0,B1) by defining

B(r) := B1 + r(B0 − B1), F (r) := F1 + r(F0 − F1)

and seek to define the next iterate B2 as B2 = B(r), choosing r such that B(r) is the
closest to a fixed point:

r∗ = arglim
r

∥F (r)− B(r)∥22
which is easily found to be given by

r∗ =
(∆1,∆1 −∆0)

∥∆1 −∆0∥22
, ∆0 := B0 − F0,∆1 := B1 − F1

The next iterate is hence

B2 = B(r∗) = B1 + r∗(B0 − B1)

The iterative process becomes

• Choose an initial guess B0, evaluate F0 := F (B0).

• Set B1 := F0 (this iterate thus coincides with the one produced by classical
iterations), evaluate F1 := F (B1).

• For n ≥ 1, generate subsequent iterates using

Bn+1 = Bn + r∗n(Bn−1 − Bn) with r∗n =
(∆n,∆n −∆n−1)

∥∆n −∆n−1∥22
.

For a FSI problem and iterations based on Robin BCs, the condition in each sub-
domain is modified to{

ka∂nϕ
i+1(t)− ρf∂tϕ

i+1(t) = gi(t) + r∗i (g
i−1(t)− gi(t))

t[ui+1](t) + ks∂tu
i+1(t) = gi(t) + r∗i (g

i−1(t)− gi(t))
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(a) (b)

Figure 3.17: (a) Convergence of the indicator ev,p on interfacial residuals
with and without Aitken acceleration (∆t = 1.7 10−6, kc =
ρfcf ). (b) Convergence of the indicator ev,p on interfa-
cial residuals with and without Aitken acceleration (∆t =
1.7 10−6, kc = 3ρfcf ).

We compare in Figures 3.17a and 3.17b the transmission residuals convergence for
the 2D acoustic-elastic problem (Figure 3.4) with Aitken acceleration and without
any acceleration for two values of coupling parameter kc (ka = ks = kc). These two
comparisons show that the Aitken acceleration systematically optimises the conver-
gence rate. At least, this Aitken acceleration will never imply a slower convergence
than the algorithm without acceleration, as it provides at each iteration an opti-
mised r∗. The positive effect is especially seen in Figure 3.17b. The convergence for
kc = 3ρfcf without acceleration is very oscillating and becomes almost linear with
the Aitken algorithm.

3.5 High-frequency approximations for an efficient
FSI Robin problem

Another important strategy to improve the algorithm efficiency is to reduce the
number of harmonic BEM problems solved, independently of the problem geometry
and physical parameters as well as of the choice of values of the coupling parameters
ka and ks. The Z-BEM procedure allows to treat time-domain problems by solv-
ing frequency domain BIEs. These resolutions can be accelerated using fast-BEM
methods. However [146] shows that the procedure, still lacks efficiency when dealing
with rapid transient problems. A high frequency approximation (HFA) is proposed
to drastically reduce the number of frequency BEM problems to solve. In fact, using
small time steps ∆t implies that some of the complex frequencies sk(ξk) = p(ξk)

∆t
have

a high amplitude. The idea is thus to rely on an asymptotic HFA of solutions to the
boundary integral equation. When |sk| = |p(ξk)|

∆t
> fHFA some threshold frequency

fHFA, the HFA is used. Otherwise the fast BEM is used (when |sk| ≤ fHFA). The
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main issue is to define the HFA and its validity frequency range. In [146] a high
frequency approximations is formulated according to the decomposition (2) of the
fluid variables into three variables: an incident field, a Neumann-reflected field and
a radiated field. The pressure is decomposed as

p = pinc + pref
N + prad (3.21)

This decomposition is described in Section 2.1. For this specific decomposition, two
HFA are defined for the two types of problems arising during the resolution of a
FSI problem with a monolithic approach or with an iterative Neumann-Neumann
coupling procedure: one for the reflected problem and one for the radiation problem.

Radiated problem. To derive a high frequency approximation, we consider the
case of a surface Γ vibrating at a high frequency. The radiated pressure is created at
a point x by the interactions between this point and the nearby points, which can
be considered as belonging to the tangent plane at Γ in x. The radiated pressure
created by this tangent plane can therefore be approximated by the pressure radiated
by a high frequency plane: p = ρfcu [146]. Thus, from a sufficiently high frequency
fHFA, it is no longer necessary to solve the frequency domain BEM problems to
determine p. When an explicit HFA is available, allowing to evaluate pHFA, the
cut-off frequency fHFA is set by considering the ratio:

δ(s) =
||pBEM(s)− pHFA(s)||2

||pBEM(s)||2
where pBEM is the BEM computation result and pHFA is the pressure evaluated with
the HFA. When δ(sk) is smaller than a chosen tolerance, the HFA is used for all the
higher frequencies s > sk.

Reflected problem. Constructing a high frequency approximation for the re-
flected problem is more complex, as the fluid velocity remains unknown before pRef

is calculated. The first idea proposed by [8] is called the Kirchhoff high frequency
approximation. It consists in choosing at each point x of the boundary Γ, a reflected
value depending on the incident wave and on the normal to Γ. The reflected pressure
pref can first be simply approximated by:{

pHFA(x, t) = 0 si d(x).n > 0

pHFA(x, t) = 2pinc(x, t) si d(x).n < 0

This simple approximation gives correct results near the surface Γ, where |d(x).n| ∼
1 but not in the vicinity of |d(x).n| ∼ 0. There is a discontinuity between two mesh
points. The idea proposed in [146] is to consider a variable coefficient R(x) linking
the Z-transforms of pHFA and pinc. We introduce the ratio

R(x, s) :=
P (x, s)

P inc(x, s)

For a convex obstacle, it is shown that as |s| increases, this ratio becomes constant
[44]. We can therefore consider that from a cut-off frequency fHFA,

R(x, s) = R(x, fHFA) ∀s, |s| > fHFA
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and so
PHFA(x, s) = R(x, fHFA)P

inc(x, s) ∀s, |s| > fHFA

Improvement if the efficiency. The Z-BEM method without HFA allows to reach
a spatial complexity of O(NlogN), with N the number of DOF. The complexity in
time is O(NtlogNt). However, using the HFA, the Z-BEM method reaches a O(1)
complexity in time, since for any number Nt of time steps in the problem, only a
small fixed number of frequency problems is solved. For all complex frequencies
s = p(ξ)

∆t
such as

s ≥ fHFA

the HFA is used. Thanks to this approximation, the Z-BEM is a very competitive
method to solve time-domain boundary integral equations. The method efficiency is
illustrated in [146] on some examples: the radiation of an acoustic wave into a fluid
by a deformable structure with prescribed velocity, and the scattering of an abrupt
wave by simple and realistic geometries.

Extension to Robin conditions. When using a different decomposition for the
fluid variables or a problem with another type of boundary condition, it is necessary
to define a new HFA. For example, the Robin-Robin iterative coupling procedure is
based on the decomposition (1) and on Robin IBVPs. In order to improve this it-
erative Robin-Robin coupling procedure, we propose here a different high-frequency
asymptotic approximation, adapted for Robin BCs. We consider the decomposi-
tion (3.21) (also described in Section 2.1). For a Robin radiation problem, the
Robin BC on the acoustic-elastic interface Γ at a time t > 0, with two positive
parameters ka and ks, is written

(p+ ka∂nϕ)(t, .) = h(t) + (−t(t, .) + ks∂tu(t, .))︸ ︷︷ ︸
g(t)

.n on Γ (3.22)

where ϕ and p := −ρ∂tϕ are the fluid variables, and u and t are the solid displace-
ment and stress. h is the pressure jump related to the incident pressure according to
(2.5) (ν = 0 in this case). We thus denote the right hand-side member g(t) defined
on the interface Γ. We note r the characteristic length of the obstacle. Using a
Laplace transform, with s as the Laplace variable, (3.22) becomes

(−ρsϕ+ ka∂rϕ)(s, r) = (h+ kssu−
λ

ν
(1− ν)

∂u

∂r
− λ

r
u)(s, r). (3.23)

We introduce the notation

R(s) := (−ρs+ ka∂r)

and (3.23) becomes
R(s)ϕ(s, r) = g(s)

In the case of an acoustic-elastic problem such as (2.4), the fluid and solid variables
verify second-order homogeneous differential equations (the wave equation and the
elastodynamic equation). They thus are linear combinations of the modified Bessel
functions of order 1 and 0 (see A). In particular, the fluid velocity potential yields

ϕ(s, r) = C(s)K0(s, r) and ∂rϕ(s, r) = −sC(s)K1(s, r).
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In order to derive an HFA we also introduce ϕ0(s, r), the fluid velocity potential for
an unit excitation {

R(s)ϕ(s, r) = R(s)C(s)K0(s, r) = g(s)

R(s)ϕ0(s, r) = R(s)C0(s)K0(s, r) = 1

with ϕ and ϕ0 which verify the linear relation

ϕ(s, r) = ϕ0(s, r)g(s).

By linearity, the coefficient C0 is given by

C0(s) =
1

R(s)K0(s, r)− kasK1(s, r)
=

1

−ρsK0(s, r)− kasK1(s, r)

such that

ϕ(s, r) = C0(s)K0(s, r)g(s) =
−K0(s, r)

ρsK0(s, r) + kasK1(s, r)
g(s)

The limiting case |s| → +∞ yields the high-frequency behaviour of the surface
velocity potential:

lim
|s|→+∞

ϕ

g
(s, r) = lim

|s|→+∞

−K0(s, r)

ρsK0(s, r) + kasK1(s, r)

=
−πe−s

√
2πs

[
ρsπe−s
√
2πs

+ kasπe−s√
2πs

]
=

−1

s
× 1

ρ+ ka

The explicit HFA for the radiated pressure field on the surface in the case of a Robin
FSI problem is then

p(s) = −ρsϕ(s) = 1

1 + ka
ρ

g(s) . (3.24)

The approximated time synthesis procedure then relies on the evaluation of relative
differences

δHFA(s) =

∥∥ϕBEM(s)− ϕHFA(s)
∥∥
L2∥∥ϕBEM(s)

∥∥
L2

until it becomes smaller than a chosen tolerance tolHFA. When δHFA(s) < tolHFA,
solving the frequency BEM problems are not necessary anymore and the Robin HFA
(3.24) is used for all the higher complex frequencies.

Remark. This HFA for a FSI interaction with Robin boundary condition also allows
to retrieve the HFA proposed by [146] for a Neumann problem. The limiting case
ka → +∞ in the Robin BC (3.23) is an asymptotic approximation of the Neumann
boundary condition:

lim
ka→+∞

(−ρsϕ+ ka∂rϕ) = lim
ka→+∞

(h+ kasu− λ
ν
(1− ν)∂u

∂r
− λ

r
u)

⇒ lim
ka→+∞

ka∂rϕ = lim
ka→+∞

kasu
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The HFA (3.24) then becomes

lim
ka→+∞

kap

g
= lim

ka→+∞

ka

1 + ka
ρ

= ρ

The radiated pressure for a Robin problem can then be asymptotically approximated
by

p(b, s) = ρ
g

ka
= ρsu(b, s).

This is the simple HFA for radiation problem. Physically this HFA express the
radiated pressure as the pressure locally radiated by a vibrating infinite plate [126].

Numerical verification. We consider again the 2D elastic cylinder Ωs immersed
in an acoustic fluid domain Ωf (see Section 3.3). We use the same parameters and
the incident load has an exponent γ = 3. We solve a time-domain Robin radiation
problem on the exterior surface, with the Z-BEM procedure with and without the
Robin high-frequency approximation (3.24). Table 3.10 shows the relative error with
respect to the number of frequency BEM solutions computed. For this example, 70
BEM resolutions are needed for the error to be smaller than 10−2. Figure 3.18 hows
the fluid pressure evaluated on a point of the coupling interface Γe with the time,
for different HFA approximations.

Computed BEM solutions 5 35 50 60 70 150 2706
Relative space-time L2 error 1.05 0.063 0.021 0.011 0.008 0.003 0
Percentage of BIEs solved (%) 0.2 1.3 1.8 2.2 2.6 5.5 100

Table 3.10: Relative space-time L2 error between the numerical solutions
computed with and without HFA, depending on the number
of computed frequency BEM problems.

3.6 Global-in-time FEM/Z-BEM coupling for UN-
DEX

We have applied the global-in-time iterative method with a FEM/Z-BEM coupling
and validated its convergence on 2D examples. The next objective is to use this
method to solve realistic UNDEX problems. As explained in Section 2.1, a classic
approach in FSI is to decompose the fluid variables into three components, one
incident component, one reflected component and one radiated component:

p = pinc + pref + prad

where pinc is the incident pressure field. The reflected field pref is defined so that
the fluid motion for a rigid and motionless solid is given by adding the incident and
reflected component (pinc + pref). The radiated field prad is the additive correction
to the fluid motion induced by the interfacial motion. For an acoustic shock wave
problem in time domain, [146] presents an efficient Z-BEM/FEM/FEM method to
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3.6. Global-in-time FEM/Z-BEM coupling for UNDEX

Figure 3.18: HFA validation for the radiation problem with Robin BCs.
Comparison between the Z-BEM fluid pressure and the Z-
BEM-HFA fluid pressure on a point of Γe (∆t = 1.7 10−6,
El = 1778).

compute the solution of the transient coupled FSI problem in three steps, (i) the
reflected pressure pref is computed on the whole time interval and on the whole
fluid domain, using the Z-BEM procedure; (ii) the nodal forces f associated to the
pressure pinc + pref are computed on each point of interface Γ, for each time step
of the whole interval, and (iii) the structure deformation and the radiated fluid
pressure prad are computed with a monolithic FEM/FEM resolution of the FSI
problem, between the structure and a truncated 3D volume mesh for the exterior
water, that is refined only near the FSI interface. The nodal forces f are used on the
interface Γ as an input. This strategy allows to successfully solve a rapid transient
UNDEX problem. As only the radiated pressure is computed with finite elements,
the whole fluid domain doesn’t have to be discretised and only a small part of the
3D fluid domain needs is meshed. This makes it possible to solve rapid transient
problems involving large structures, with relatively reasonable computation times.
Both solvers are used as black boxes, without internal modification. This algorithm
is then easily usable to solve realistic problems in an industrial context. It is for
example now directly usable by Naval Group. However, the method described in
[146] has still some drawbacks compared to a global-in-time FEM/Z-BEM iterative
coupling based on Robin boundary conditions as described in Chapter 2:

• A non-uniform complex 3D volume mesh has to be generated for the fluid
volume around the structure, with a geometrically complex internal boundary
(submarine surface). This might entail the creation of a very refined mesh and
increase the computation time.

• The volume mesh has be truncated and an approximation of the radiation
condition has to be imposed, which may entail unwanted reflections.

These two drawbacks can be overcome by using the global-in-time FEM/Z-BEM
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iterative coupling. Meshing a part of the acoustic domain is no longer necessary
with the FEM/Z-BEM procedure and the boundary element method intrinsically
model the radiation condition correctly, so the absence of unwanted reflections is
guaranteed. It is also possible to use plate or shell elements to model the elastic
domain behaviour and thus completely avoid any volume mesh. It should however
be noted that in the case of shell elements, the transmission conditions have to be
reformulated to take account of the plate theory. We also highlight the following
additional benefits:

• The coupling is very efficient, especially since the frequency BEM operators
can be reused at each iteration. When combined with the HFA, only a few
BEM operators have to be computed once and store. Moreover, the FEM and
Z-BEM resolutions are performed in parallel at each iteration. The total com-
putation time of the resolution is therefore only limited by the FEM resolution
time at each iteration.

• It is no longer necessary to carry out a preliminary computation of the re-
flected pressure before the radiated pressure calculation, as only a scattered
component is considered, which also reduces the computation time.

• The use of the Z-BEM method allows the total acoustic solution to be com-
puted in the whole fluid domain, including far away from the ship. This can
not be done with the FEM/FEM/Z-BEM method used in [146] because in this
case the Z-BEM is only used to calculate the reflected component of the acous-
tic solution. For example this is useful to accurately evaluate the influence of
the explosion on the acoustic signature of the submarine without refining a
fluid mesh far away from the structure.

• Using a global-in-time iterative procedure with guaranteed convergence allows
the use of fixed point acceleration methods (as Aitken’s ∆2 acceleration) to
optimise the choice of the coupling parameters value in order to minimise the
number of iterations, even on complex problems.

3.7 Conclusion

We have proposed and discussed the efficiency of a global-in-time iterative coupling
based on Robin boundary conditions. This coupling implemented with a FEM/Z-
BEM method has been validated on 2D examples and the coupling parameters values
have been optimised by using a simplified 2D problem for which a semi-analytical
solution is available. An Aitken fixed-point acceleration strategy has been used
as well as a high frequency approximation adapted for Robin evolution problems.
In this way we derived an efficient numerical method for solving high frequency
transient FSI problems.

In the context of UNDEX, the iterative global-in-time method based on Robin
BCs is a promising alternative to overcome the drawbacks of an Z-BEM/FEM/FEM
method, as it neither requires the imposition of radiation boundary conditions, nor
the pre-calculation of the reflected pressure by finite elements, and increases the
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efficiency of resolution. We have shown that the use of Robin BCs is essential for
the convergence of this kind of coupling. The main problem that could prevent
the industrial use of such an iterative procedure is the need to use a FEM solver
offering the possibility to impose non-homogeneous Robin BCs. Commercial solvers
do not always propose this kind of boundary conditions. In such a case, a possible
solution would be to consider an alternative iterative coupling strategy, involving
an acoustic-acoustic interface. This strategy, developed in Chapter 4, will avoid the
use of a Robin elastic condition.
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CHAPTER 4

A convergent global-in-time acoustic/acoustic-
elastic coupling

Our goal is to study all the possible configurations where a black box coupling can be
used. For this reason, we design in this chapter an iterative global-in-time coupling
with guaranteed convergence that solves transient acoustic-elastodynamic problems
and that does not use non-homogeneous Robin boundary conditions in the elastic
domain. We recall in Section 4.1 the importance of this alternative coupling and
its advantages. Section 4.3 introduces the problem definition and the notations.
Then, in Section 4.3.2, we present the global-in-time iterations based on the solu-
tions of well-posed Robin IBVPs. The Robin boundary conditions are imposed in
the acoustic domain only. We prove the iterations convergence in Section 4.4. We
numerically validate our procedure with a FEM/Z-BEM numerical method in Sec-
tion 4.5 on simple 2D problems before considering more complex 3D geometries in
Chapter 5.
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4.1. Why another coupling algorithm?
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4.1 Why another coupling algorithm?

We want to consider all the possible options to use a FEM solver in non-intrusive
fashion in our coupling strategy. In particular, Robin boundary conditions (BCs)
are not available in some FE solvers. For example in Abaqus, non-homogeneous
Robin BCs are not accessible for the modelling of the structure, preventing the im-
plementation of the acoustic/elastic coupling procedure detailed of Chapter 2. An
alternative way to solve the coupled FSI problem is to decompose differently the
domains, in order to perform an acoustic/acoustic coupling with acoustic/acoustic
transmission conditions. As illustrated in Figure 4.1, the idea is to model the struc-
ture and a small region of fluid around the structure, using the FEM, while the
remainder of the fluid domain is treated with a BEM. The iterative global-in-time
FEM/Z-BEM coupling based on an acoustic/acoustic coupling interface, hereafter
named acoustic-acoustic FEM/Z-BEM, presents three main additional advantages
compared to the previous approach:

1. Inhomogeneous Robin impedance-like boundary conditions might be available
for an acoustic domain in some finite element solvers while it might not for an
elastic domain.

2. Modelling part of the fluid domain with the FEM allows to introduce nonlin-
earities. For example in the context of UNDEX, the phenomenon of cavitation
appears in the vicinity of the hull for surface ships, when the shock wave re-
flects on the free surface and creates an important pressure drop. Since the
BEM is only suitable for linear equations, it is natural to take this phenomena
into account in the FEM solver.

3. In the case of the acoustic/elastic global-in-time coupling, the physical bound-
ary of the ship is the support of the coupling interface and the mesh for the
BEM. The frequency-domain BEM resolutions therefore have a high compu-
tational cost due to the large number of boundary elements to model the
geometry complexity. In the case of an acoustic/acoustic-elastic coupling, the
coupling interface is a boundary that has no physical meaning and it can be
arbitrary chosen. The use of a very smooth coupling interface (for example a
sphere) reduces the number of boundary elements, and thus the computational
cost of the frequency-domain BEM resolutions. From a mathematical point
of view, it is then easier to satisfy the criterion of minimum spatial regularity
needed to obtain useful data-to-solution mappings and solvability results.
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4.2. Acoustic/acoustic-elastic coupling definition

Figure 4.1: Domain decomposition for an acoustic-acoustic coupling:
FEM (solid and interior fluid), and BEM (exterior fluid)
parts.

4.2 Acoustic/acoustic-elastic coupling definition

We consider again an elastic solid immersed in an acoustic fluid, but the coupling
interface is now moved inside the fluid domain. We define a unbounded fluid sub-
domain Ωe and the complementary fluid-structure sub-domain Ωi := Ωs

i ∩ Ωf
i , com-

posed of a bounded elastic solid Ωs
i and a bounded fluid region Ωf

i surrounding the
solid. The sub-domains Ωe and Ωi have a shared interface Γe = ∂Ωe = Ωf

i ∩Ωe and
the sub-domain Ωi has an internal boundary Γi = ∂Ωs

i = Ωs
i ∩Ωf

i . In this model, Ωs
i

and Ωe do not share any interface (Figure 4.2). We denote by ne the unit outward
normal to Γe and ni the unit outward normal to Γi.
In both sub-domains, the fluid has the same physical properties. We distinguish the
notation for the physical quantities as follows

• Exterior fluid: velocity potential ϕe, velocity ve = ∇ϕe, pressure pe = −ρf∂tϕe

• Interior fluid: velocity potential ϕi, velocity vi = ∇ϕi, pressure pi = −ρf∂tϕi

• Solid: displacement u, Cauchy stress σ[u]

Figure 4.2: Domain decomposition for an acoustic-acoustic coupling :
notations.
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4.2. Acoustic/acoustic-elastic coupling definition

The incident wave is defined by the velocity potential ϕinc, which solves at all times
the homogeneous wave equation and is perturbed by the presence of the solid. The
FSI between Ωi

s and Ωi
f occurs due to the kinematic and dynamical transmission

conditions (2.2) defined on Γi as described in Section 2.1. They express the con-
tinuity across Γi of the normal velocity and the traction vector. In addition, we
introduce another exterior boundary Γe and two transmission conditions:

a) ρf∂tϕi = ρf∂tϕe b) ∂nϕi = ∂nϕe on Γe × [0, T ] (4.1)

which express the continuity of the fluid pressure and fluid velocity across the fluid-
fluid interface Γe. We described the FSI problem with the velocity potential ϕ. As
for the acoustic/elastic procedure in Section 2.1, ϕe is decomposed with one of the
following possible decompostions:

1. The simpliest additive decomposition consists in introducing a scattered field
and to decompose ϕe according to ϕe = ϕinc

e + ϕsca
e . In this case, the transmis-

sion conditions (4.1) expressed in terms of ϕsca
e read

ρf∂tϕi = ρf∂tϕ
sca
e + ρf∂tϕ

inc
e , ∂nϕi = ∂nϕ

inc
e + ∂nϕ

sca
e in Γe × [0, T ].

2. Introducing a Neumann-reflected field and a radiated field ϕe = ϕinc
e +ϕref

e +ϕrad
e .

The reflected fluid motion is defined by the reflection IBVP

−∆ϕref
e +

1

c2f
∂2t ϕ

ref
e = 0 in Ωe × [0, T ],

 ∂nϕ
ref
e = −∂nϕinc

e in Γe × [0, T ]

ϕref
e (·, 0) = ∂tϕ

ref
e (·, 0) = 0 in Ωe.

3. Introducing a Robin-reflected field and a radiated field ϕe = ϕinc
e + ϕref

e + ϕrad
e .

The reflected fluid motion is defined by a reflection IBVP with a Robin BC:

−∆ϕref
e +

1

c2f
∂2t ϕ

ref
e = 0 in Ωe × [0, T ],

(ke∂n − ρf∂t)ϕ
ref
e = (−ke∂n + ρf∂t)ϕ

inc
e in Γe × [0, T ]

ϕref
e (·, 0) = ∂tϕ

ref
e (·, 0) = 0 in Ωe,

where ke is a positive factor.

Using either of these additive decompositions, the coupled FSIP (4.2) is formulated
with ϕe as the main unknown, referring either to the scattered ϕsca

e or to the radiated
variable ϕrad

e , depending on the chosen decomposition.
In this chapter, we focus on an equivalent non-dimensional version of the FSIP,

obtained by expressing the coordinates x, t, field variables, ϕe, ϕi,u, t and material
parameters as

x = bx̂, t =
bt̂

cf
, ϕe = bcf ϕ̂e, ϕi = bcf ϕ̂i, u = bû, t = ρfc

2
f t̂, ρs = ρf ρ̂s

where b is a characteristic length. We hence consider the dimensionless IBVP (4.2).
It consists of the standard exterior Helmholtz problem (4.2c), an interior Helmholtz

114
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problem (4.2b) and the elastodynamic equation (4.2a) governing the equilibrium of
an elastic scatterer. The equations are coupled through a dynamic and a kinematic
interface conditions (4.2d) defined on the acoustic/elastic interface Γi. They are
imposed to ensure the continuity of the stress and of the normal component of the
velocity. The acoustic equations are coupled through two transmission conditions
(4.2e) defined on Γe.

−∆su+ ρ∂2t u = 0 in Ωs
i × [0, T ], u(0) = ∂tu(0) = 0 in Ωs

i (a)
∆ϕi − ∂2t ϕi = 0 in Ωf

i × [0, T ], ϕi(0) = ∂tϕi(0) = 0 in Ωf
i (b)

∆ϕe − ∂2t ϕe = 0 in Ωe × [0, T ], ϕe(0) = ∂tϕe(0) = 0 in Ωe (c)
t = ∂tϕni, ∂nϕ = ∂tu.ni in Γi × [0, T ] (d)
− ∂tϕi = −∂tϕe − sp, ∂nϕi = sv + ∂nϕe in Γe × [0, T ] (e)

(4.2)
In the TCs (4.2e), sv and sp are prescribed time-dependent normal velocity and
pressure jumps across Γe. These terms depend on the chosen decomposition of ϕe

1. sp = ∂tϕ
inc
e sv = ∂nϕ

inc
e

(
ϕ = ϕinc

e + ϕsca
e

)
2. sp = ∂tϕ

Ref
e = ∂t(ϕ

inc
e + ϕref

e ) sv = 0
(
ϕ = ϕinc

e + ϕref
e + ϕrad

e

)
3. sp = ∂tϕ

Ref
e = ∂t(ϕ

inc
e + ϕref

e ) sv =
1

ke
∂n(ϕ

inc
e + ϕref

e )
(
ϕ = ϕinc

e + ϕref
e + ϕrad

e

)
As in Section 2.1, the system is assumed to be at rest at the beginning and homo-
geneous initial conditions are prescribed. The decomposition in a scattering and a
radiation problem allows to deal with compactly supported variables in the coupled
problem. To simplify the notations, we omit thereafter the superscript “rad” (or
"sca"), with all the fluid variables understood to pertain to the radiated motion in
Ωe (the complete fluid motion being recovered by adding back the relevant “Ref”
quantities), ϕe now refers to ϕrad

e (or ϕsca
e ).

Remark. Since the fluid is at initial rest and is excited only by the interface motion,
the radiated variable ϕe has a bounded support at any finite time. Thanks to the
decomposition into a reflected and a radiated problems, the infinite exterior domain
does not need to be artificially truncated and the introduction of a DtN operator,
such as proposed in [13], is not necessary.

4.3 Global-in-time iterative procedure based on acous-
tic/acoustic Robin boundary conditions

In this section we introduce an iterative global-in-time method to solve a transient
FSI problem. As in Section 2.3, we construct sequences (ϕne , ϕ

n
i ,u

n)n≥0 which con-
verge to the solution (ϕe, ϕi,u) of problem (4.2) as n→ ∞, each iterate (ϕne , ϕ

n
i ,u

n)
solving a pair of decoupled IBVPs in Ωe × [0, T ] and Ωi × [0, T ]. We then justify
with mathematical arguments how the choice of the IBVPs boundary conditions
influence the iterations convergence.
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4.3.1 General acoustic/acoustic iterative method for tran-
sient FSI problems

The resolution of the coupled problem (4.2) with a partitioned approach leads to
study two boundary value problems defined in each subdomain. We consider one
acoustic initial boundary value problem in the Ωe fluid domain and one acoustic/e-
lastodynamic IBVP in the domain Ωi

f ∩ Ωi
s. The exterior acoustic IBVP at each

iteration n ≥ 1 is assumed to have the form:
∆ϕne − ∂2t ϕ

n
e = 0 in Ωe × [0, T ]

Πn
e [ϕ

n
e ] = Ge[ϕ

n−1
e , ϕn−1

i ] on Γe × [0, T ],

ϕne (0) = ∂tϕ
n
e (0) = 0 in Ωe.

(4.3)

Similarly, the acoustic/elastodynamic IBVP at each iteration n ≥ 1 is assumed to
have the form: 

−∆su
n + ρs∂

2
t u

n = 0 in Ωs
i × [0, T ],

∆ϕni (t,x)− ∂2t ϕ
n
i (t,x) = 0 in Ωf

i × [0, T ],

Πn
i [ϕ

n
i ] = Gi[ϕ

n−1
e , ϕn−1

i ] on Γe × [0, T ],

ϕni (0) = ∂tϕ
n
i (0) = 0 in Ωf

i ,

un(0) = ∂tu
n(0) = 0 in Ωs

i .

(4.4)

Πe and Πi are boundary operators such that ϕne → Πe[ϕ
n
e ] and ϕni → Πi[ϕ

n
i ], to be

specified. At iteration n, Ge[ϕ
n−1
e , ϕn−1

i ] and Gi[ϕ
n−1
e , ϕn−1

i ] are boundary data that
depend on interfacial quantities for the previous iterate n− 1 and possibly on their
normal or time derivatives. We will note

gne := Ge[ϕ
n−1
e , ϕn−1

i ], and gni := Gi[ϕ
n−1
e , ϕn−1

i ].

With the notations ϕe = ϕe[ge] and ϕi = ϕi[gi] emphasising the dependence of
these solutions on the respective boundary data, the iterative DDM consists in an
algorithm defining a data sequence (gne , g

n
i )n≥0 such that the solution iterates verify

the transmission conditions of the coupled FSIP (4.2e) in Γe × [0, T ], in the limit
n→ ∞, i.e.:

(a) (−∂tϕi[gni ] + ∂tϕe[g
n
e ] + sp) → 0, (b) (∂nϕi[g

n
i ]− sv − ∂nϕe[g

n
e ]) → 0. (4.5)

To satisfy these TCs in the limit, the sequence (gne , g
n
i ) of data must have a different

definition depending on the boundary operators Πe and Πi. Indeed, the boundary
operators and data must be such that if the iterative process converges, the limiting
equalities

Πe [ϕe] = Ge [ϕe, ϕi] , and Πi [ϕi] = Gi [ϕe, ϕi] (4.6)

are equivalent to the transmission conditions (4.2e) of the original FSIP. The regu-
larity results on Neumann IBVPs and the observations regarding the loss of space-
time regularity of their solutions in Section 2.3.2, prompt us to directly consider an
iterative procedure based on Robin IBVPs.
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4.3.2 Acoustic/acoustic iterative method with Robin bound-
ary conditions

We choose a linear combination of interfacial varibales for the boundary operators
in the IBVPs (4.3) and (4.4):

Πe[ϕe] := −∂tϕe +Ke∂nϕe and Πi[ϕi] := ∂tϕi +Ki∂nϕi (4.7)

where Ke : L
2(Γe) → L2(Γe) and Ki : L

2(Γe) → L2(Γe) are time-independent sym-
metric, positive and boundedly invertible operators. The exterior acoustic IBVP (4.3)
becomes, at each iteration n ≥ 1

∆ϕne − ∂2t ϕ
n
e = 0 in Ωe × [0, T ]

−∂tϕne +Ke∂nϕ
n
e = gne on Γe × [0, T ],

ϕne (0) = ∂tϕ
n
e (0) = 0 in Ωe.

(4.8)

The interior acoustic/elastodynamic IBVP (4.4) becomes at each iteration n ≥ 1

−∆su
n + ρs∂

2
t u

n = 0 in Ωs
i × [0, T ],

∆ϕni (t,x)− ∂2t ϕ
n
i (t,x) = 0 in Ωf

i × [0, T ],

∂tϕ
n
i +Ki∂nϕ

n
i = gni on Γe × [0, T ],

ϕni (0) = ∂tϕ
n
i (0) = 0 in Ωf

i ,

un(0) = ∂tu
n(0) = 0 in Ωs

i .

(4.9)

If the iterations are convergent, the solution iterates (ϕne , ϕ
n
i ,u

n) are required to
verify the TCs (4.2e) in Γe × [0, T ], in the limit n → ∞. To derive the form of the
Robin boundary data for the Robin IBVPs (4.8) and (4.9), adapt the methodology
used to derive and justify the acoustic/elastic iterations in Section 2.4.2.

4.3.3 Robin boundary conditions definition.

We now aim at defining the exact form of the Robin boundary data Ge and Gi.
Still inspired by [49] where iterations with Robin boundary conditions are proved to
be convergent and used to solve Helmholtz equations, we first introduce incoming
and outgoing trace operators to formulate the Robin iterations based on BCs of the
form (4.7).

Incoming and outcoming trace operators.

The incoming trace operators Be and Bi are defined by

Be(ϕe) = −∂tϕe +Ke∂nϕe Bi(ϕi) = ∂tϕi +Ki∂nϕi (4.10)

As in Section 2.4.2, these trace operators can be understood as incoming operators
on Γe in the sense that acoustic motions satisfying Be(ϕe) = 0 or Bi(ϕi) = 0 are
incoming relative to Ωe and Ωf

i respectively. Still following [49], we also introduce
two outgoing trace operators Be and Bi:

Be(ϕe) = ∂tϕe +Ke∂nϕe Bi(ϕi) = −∂tϕi +Ki∂nϕi. (4.11)
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They are "outgoing" traces in the sense that motions satisfying Be(ϕe) = 0 or
Bi(ϕi) = 0 are outgoing relative to Ωe and Ωf

i . All boundary traces involved in Robin
BCs (4.7) can be formulated as combinations of incoming and outgoing traces: rela-
tions (4.10) and (4.11) can readily be inverted and any set of velocity and Neumann
traces on Γe are given in terms of the incoming and outgoing traces by

∂nϕe =
1
2
K−1
e

(
Be(ϕe) +Be(ϕe)

)
; ∂tϕe =

1
2

(
Be(ϕe)−Be(ϕe)

)
∂nϕi =

1
2
K−1
i

(
Bi(ϕi) +Bi(ϕi)

)
; ∂tϕi =

1
2

(
Bi(ϕi)−Bi(ϕi)

)
.

(4.12)

With these notations and choosing

Πe[ϕe] = Be(ϕe), and Πi[ϕi] = Bi(ϕi)

the Robin conditions (4.7) at iteration n are written

Be(ϕ
n
e ) = Ge[ϕ

n−1
e , ϕn−1

i ] and Bi(ϕ
n
i ) = Gi[ϕ

n−1
e , ϕn−1

i ], (4.13)

The left-hand side quantities are the incoming traces of ϕn−1
e and ϕn−1

i through
Γe, while the right hand side quantities are the Robin boundary data depending
on the traces ϕn−1

e and ϕn−1
i of the previous iterate. Moreover at convergence, the

transmission conditions (4.2e) have to be verified. Expressed using the incoming
and outgoing traces, they are given by(

Bi(ϕi)−Bi(ϕi)
)
+
(
Be(ϕe)−Be(ϕe)

)
= 2sp, (a)

K−1
i

(
Bi(ϕi) +Bi(ϕi)

)
−K−1

e

(
Be(ϕe) +Be(ϕe)

)
= 2sv. (b)

(4.14)

These equations will help defining appropriate choices for Ge and Gi.

Derivation of RR iterations.

The Robin global-in-time iterations for the FSIP (4.2) are, again, formulated by
means of the LATIN heuristic [122, 155].

Let then (gn−1
e , gn−1

i ) be some Robin datum. Let ϕe[gn−1
e ], ϕi[g

n−1
i ] solve the

Robin IBVPs (4.8) and (4.9), and have well-defined velocity and Neumann traces
(or, equivalently, incoming and outgoing traces) on Γe. We then define the next
datum iterate (gne , g

n
i ), and resulting solution iterate (ϕne , ϕ

n
i ) = (ϕe[g

n
e ], ϕi[g

n
i ]), by

requiring that the transmission conditions (4.2e) be verified by the final incoming
traces and the initial outgoing traces. We accordingly set

(Be(ϕe), Bi(ϕi)) = (Be(ϕ
n
e ), Bi(ϕ

n
i )),

and
(Be(ϕe), Bi(ϕi)) = (Be(ϕ

n−1
e ), Bi(ϕ

n−1
i ))

in (4.14) and solve the resulting equations for (Be(ϕ
n
e ), Bi(ϕ

n
i )). This results in the

final incoming traces being given by

Be(ϕ
n
e ) = Ge[ϕ

n−1
e , ϕn−1

i ], and Bi(ϕ
n
i ) = Gi[ϕ

n−1
e , ϕn−1

i ] (4.15)
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with

Ge[ϕe, ϕi] = 2KeH
−1Bi + (Ke −Ki)H

−1Be + 2KeH
−1(sp −Kisv),

Gi[ϕe, ϕi] = 2KiH
−1Be + (Ki −Ke)H

−1Bi + 2KiH
−1(sp +Kesv),

(4.16)

in terms of the initial outgoing traces (with H := Ke+Ki). Equations (4.15), (4.16)
constitute the proposed iterations based on Robin conditions. These iterations thus
consist in (i) evaluating the datum (gne , g

n
i ) and (ii) solving the Robin IBVPs (4.4)

and (4.3) with that datum. In this work, we will implement these iterations in
a simpler form, by using the particular values Ke = keI, Ki = kiI. Choosing
adapted values for the positive parameters ke and ki can improve the convergence
rate, as we will study later (see Section 3.3.3). Iterations can be started by solving
problems (2.10) and (2.11) with arbitrarily chosen (g0e , g

0
i ). The simplest choice is

to set (g0e , g
0
i ) = (0, 0), yielding Be(ϕ

0
e) = 0 and Bi(ϕ

0
i ) = 0 in formulas (4.16).

Matrix notation.

Still following [49] and transposing the approach of Chapter 2, we introduce matrix
notations in order to express Ge and Gi in a compact form. These notations will
be very helpful for studying the convergence of Robin acoustic:acoustic coupling
iterations thereafter. We set

B =

{
Be(ϕe)

Bi(ϕi)

}
, B =

{
Be(ϕe)

Bi(ϕi)

}
and H =

{
sp

sv

}
. (4.17)

The corresponding L2 scalar product and norm on Γe × [0, T ] are then

(B,B′)Γe,T := (Be, B
′
e)Γe,T + (Bi, B

′
i)Γe,T , ∥B∥2Γe,T

:= (B,B)Γe,T .

With the weighting operator matrix

K =

[
k−1
e 0

0 k−1
i

]
,

we define the weighted versions of the L2
T (Γe) space-time scalar product and norm

by
(B,B′)Γ,T,K := (B,KB′)Γe,T , ∥B∥2Γe,T,K

:= (B,KB)Γe,T .

We denote L2
T (Γe) the space of sets of boundary traces B with finite norm ∥B∥2Γe,T

or ∥B∥2Γe,T,K
. Using these notations, the transmission conditions (4.14) take the

compact form
B = XB + LH, (4.18)

while the iterative procedure based on Robin acoustic/acoustic iteration equations
(4.13) becomes

Bn = XBn−1 + LH (4.19)

where the operator matrices X and L are given by

X =

[
(Ke −Ki)H

−1 2KeH
−1

(Ki −Ke)H
−1 2KiH

−1

]
, L =

[
2KeH

−1 −2KeKiH
−1

2KiH
−1 2KeKiH

−1

]
.
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This operator has the same two main properties as the acoustic-elastic X operator
in Section 2.4.2, namely:

XX = I and X′KX = K

so that X defines an isometry for the ∥·∥Γe,T,K
norm:

∥XB∥2Γe,T,K
= ∥B∥2Γe,T,K

∀B ∈ L2
T (Γe).

The iteration equation (4.19) can therefore be inverted giving the identity

Bn−1 = X (Bn − LH)

which plays a key role in the convergence proof for the iterative process. If itera-
tions (4.19) converge, their limit satisfies the transmission conditions (4.18).

Relaxed iterations. We also consider a relaxed version of iterations (4.19). In-
troducing a relaxation parameter r ∈ [0, 1], the Robin data iterates are defined
by:

Be(ϕ
n
e ) = (1− r)Be(ϕ

n−1
e ) + rGe[ϕ

n−1
e , ϕn−1

i ],

Bi(ϕ
n
i ) = (1− r)Bi(ϕ

n−1
i ) + rGi[ϕ

n−1
e , ϕn−1

i ],
(4.20)

instead of (4.15), with Ge[ϕ
n−1
e , ϕn−1

i ] and Gi[ϕ
n−1
e , ϕn−1

i ] still given by (4.16). Iter-
ations (4.15) then correspond to (4.20) with r = 1. Using the matrix notation, the
relaxed Robin iteration equation (4.18) becomes

Bn = (1− r)Bn−1 + r
[
XBn−1 + LH

]
instead of (4.19). This iteration equation can be inverted as well, yielding

Bn−1 = X(1− r) + r

[
1

r
Bn + (1− 1

r
)Bn−1 − LH

]
. (4.21)

This reformulation of the transmission conditions and the Robin-Robin iterations in
terms of incoming and outgoing traces is crucial for proving the convergence of the
proposed Robin acoustic/acoustic iterations (see Section 4.4).

4.3.4 Solvability of acoustic and acoustic-elastic Robin IB-
VPs.

For an iterative procedure based on sequentially solving Robin IBVPs, it is necessary
to verify the IBVPs well-posedness. The generic exterior Robin IBVP has the form

−∆ϕe + ∂2t ϕe = 0 in Ωe × [0, T ]

−∂tϕe + ke∂nϕe = ge on Γe × [0, T ]

ϕe(0) = ∂tϕe(0) = 0 in Ωe.

(4.22)
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Likewise, the generic FSI interior IBVP has the form

−∆ϕi + ∂2t ϕi = 0 in Ωf
i × [0, T ]

−∆s[u] + ρs∂
2
t u = 0 in Ωs

i × [0, T ]

∂nϕi = ∂tu.ni and t = ∂tϕini on Γi × [0, T ]

∂tϕi + ki∂nϕi = gi on Γe × [0, T ]

ϕi(0) = ∂tϕi(0) = 0 in Ωf
i and u(0) = ∂tu(0) = 0 in Ωs

i

(4.23)
We choose to define the scalar L2(Ωe), L2(Ωf

i ), H1(Ωe) and H1(Ωf
i ) norms using the

bilinear forms a, b of the acoustic weak formulation (2.6):

∥ϕ∥2Ω = b(ϕ, ϕ), ∥ϕ∥21,Ω = a(ϕ, ϕ) + b(ϕ, ϕ). (4.24)

We do likewise for the norms of vector fields in the elastic domain Ωs
i , using the

bilinear forms A,B of the elastodynamic weak formulation (2.6). We choose to
equip the spaces L2(Ωs

i ) := L2
(
Ωs
i ,R

d
)

and H1(Ωs
i ) := H1

(
Ωs
i ,R

d
)

of vector-valued
functions with the norms defined by

∥u∥2Ωs
i
= B(u,u), ∥u∥21,Ωs

i
= A(u,u) +B(u,u). (4.25)

To write (4.22) and (4.23) in a weak form, we also introduce the bilinear forms

ce(ϕ, ϕ̃) =
1

ke

∫
Γe

ϕϕ̃dΓe and ci(ϕ, ϕ̃) =
1

ki

∫
Γe

ϕϕ̃dΓe.

With time-independent test functions ϕ̃ and using the bilinear forms a, b, A,B (2.6),
the acoustic Robin IBVP in variational form is:
Find ϕe such that, ∀ϕ̃ ∈ H1(Ωe), t ∈ [0, T ]:a(ϕe(t), ϕ̃) + b(∂2t ϕe(t), ϕ̃) + ce

(
∂tϕe(t), ϕ̃

)
= − 1

ke
(ge(t), ϕ̃)Γe

ϕe(0) = ∂tϕe(0) = 0.
(4.26)

and in Ωi, the acoustic/elastic Robin IBVP has the form:
Find (ϕi,u) such that, ∀ϕ̃ ∈ H1(Ωf

i ), ũ ∈ H1(Ωs
i ), t ∈ [0, T ]:

a(ϕi, ϕ̃) + b(∂2t ϕi, ϕ̃) + ci(∂tϕi(t), ϕ̃)

+ A(u, ũ) +B(∂2t u, ũ) = −(∂nϕi(t), ϕ̃)Γi
− 1

ki
(gi(t), ϕ̃)Γe + (t(t), ũ)Γi

ϕi(0) = ∂tϕi(0) = 0 and u(0) = ∂tu(0) = 0.
(4.27)

These Robin IBVPs have the same forms as the acoustic and elastic Robin IBVPs in
Section 2.4.3 and thus behave in the same way. The solvabilty results are obtained
following the same proof steps as described in Appendix D. They read:

Theorem 4.3.1 (solvability of Robin IBVPs). Let Γ be a Lipschitz closed surface.
Let ge ∈ L2

T (Γe) and gi ∈ L2
T (Γe). Then:
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1. The acoustic Robin IBVP (4.22) has a unique solution ϕe verifying (continuously
in ge)

ϕe ∈ L2
T (H

1(Ωe)), ϕ′
e ∈ L2

T (Ωe), ϕ′
e|Γe ∈ L2

T (Γe). (4.28)

2. The acoustic/elastic Robin IBVP (4.23) has a unique solution ϕi verifying (con-
tinuously in gi)

ϕi ∈ L2
T (H

1(Ωf
i )), ϕ′

i ∈ L2
T (Ω

f
i ), ϕ′

i|Γe ∈ L2
T (Γe). (4.29)

These Robin evolution problems preserve the space-time regularity of their trace
solutions compared to the data. Robin data ge ∈ L2

T (Γe) and gi ∈ L2
T (Γe) produce

solutions which belong to

ϕe ∈ L2
T

(
H1(Ωe)

)
, ∂tϕe ∈ L2

T

(
L2(Ωe)

)
,

ϕi ∈ L2
T

(
H1(Ωf

i )
)
, ∂tϕi ∈ L2

T

(
L2(Ωf

i )
)
,

and the boundary traces of the velocities verify

∂tϕe |Γe , ∂tϕi |Γe∈ L2
T (Γe) .

The iterative method based on the successive solutions of Robin IBVPs (4.26)
and (4.27) will thus preserve the L2

T (Γe) regularity of all the interfacial variables
as iterations progress.

4.4 Proof of convergence of the acoustic-acoustic it-
erative algorithm

Like for the acoustic/elastic coupling in Section 2.5, the proof of convergence for the
global-in-time iterations is based on establishing that the error between an iterate
and the converged solution vanishes in the limit of infinitely many iterations.

The proof is based on establishing that the error between an iterate and the
exact FSI solution has a vanishing norm in the limit of infinitely many iterations.
We consider the interface traces ϕe, ϕi, ve := ∂nϕe and vi := ∂nϕi on Γe (which solve
the governing system (4.2a)- (4.2c) for the FSI problem). We introduce error fields
ϕqe− ϕe, v

q
e − ve, ϕ

q
i − ϕi and vqi − vi at the q-th iteration. Notations ϕqe, vqe , ϕ

q
i , v

q
i will

refer to those error fields, rather than to the absolute iterates, for the remainder
of this section. The errors ϕqe verify the homogeneous wave equation in Ωe, while
ϕqi solve the homogeneous wave equation in Ωf

i . We introduce likewise the error
fields tq − t and uq − u, which will hereon be denoted as tq and uq and verify the
homogeneous elastic equation. In particular, we assume that H = 0, which means
that the velocity and pressure jumps sv and sp are equal to zero.

Using the weak equalities (4.26) and (4.27), with the test functions set equal to
the time derivative of the corresponding primary variable at the same time instant,
the error variables (ϕqe, vqe) verify the identities

a(ϕqe(t), ∂tϕ
q
e(t)) + b(∂2t ϕ

q
e(t), ∂tϕ

q
e(t)) = −(vqe(t), ∂tϕ

q
e(t))Γe t ∈ [0, T ]
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while the variables ϕqi , v
q
i , t

q
i ,u

q
i , similarly verify

a(ϕqi , ∂tϕ
q
i ) + b(∂2t ϕ

q
i , ∂tϕ

q
i ) + A(uq, ∂tu

q) +B(∂2t u
q, ∂tu

q)

= −(vqi , ∂tϕ
q
i )Γi

+ (vqi , ∂tϕ
q
i )Γe + (tq, ∂tu

q)Γi
, t ∈ [0, T ].

(4.30)
The transmission conditions verified on Γi by the error fields ∂nϕqi , ∂tϕ

q
i , t

q and ∂tuq
imply that the term (tq(t), ∂tu

q(t))Γi
is written

(tq(t), ∂tu
q(t))Γi

= (∂tϕ
q
i (t),n.∂

q
tu(t))Γi

= (∂tϕ
q
i (t), v

q
i (t))Γi

(4.31)

We then introduce the energy Eq(s) of the q-th iterate error at time s, given by

Eq(s) :=
1

2
E (ϕqe(s), ϕ

q
i (s)) (4.32)

where the energy functional E is defined, for any (ϕe, ϕi,u) ∈ C0
T

(
H1(Ωe)×H1(Ωf

i )×H1(Ωs
i )
)

satisfying (4.2a,b,c), by

E (ϕe(s), ϕe(s)) := a(ϕe(s), ϕe(s)) + b(ϕ′
e(s), ϕ

′
e(s)) + a(ϕi(s), ϕi(s))

+b(ϕ′
i(s), ϕ

′
i(s)) + A(u(s),u(s)) +B(u′(s),u′(s)).

(4.33)

Eq(s) is obtained by integrating (4.30) over t∈ [0, s] (where s ∈ [0, T ] is arbitrary).
Using the identity (4.31) to eliminate (tq(t), ∂tu

q(t))Γi
and −(vqi , ∂tϕ

q
i )Γi

in the right
hand side, we also get

Eq(s) = −(vqe , ∂tϕ
q
e)Γe,s + (vqi , ∂tϕ

q
i )Γe,s. (4.34)

Eq(s) is the sum of the potential and kinetic energies reached in the solid domain
and in both fluid domains, from a state of initial rest; in particular E(s) ≥ 0. The
proof of convergence follows the same ideas as the proof of convergence for acoustic-
elastic iterations (Section 2.5). We start by showing that Eq(s) → 0 as q → ∞, and
we then show that the error fields vanish in energy norm in the respective domains
with the number q of iterations, for any choice of positive coupling parameters ke, ki
and of relaxation parameter r.

Lemma 4.4.1. For any set of fluid and solid variables solving the field equations,
the energy Eq(s) at any finite time s ≤ T is related to the incoming and outgoing
traces by

Eq(s) =
1

4
∥Bq∥2Γe,s,K

− 1

4

∥∥Bq
∥∥2
Γe,s,K

Moreover, let N be any integer, and assume H = 0. The energies, incoming and
outgoing traces of the first N relaxed RR iterates verify the identity

N−1∑
q=0

{
Eq(s) +

1

r
(
1

r
− 1)

∥∥XB
q − Bq

∥∥2
Γe,s,K

}
+

1

r

∥∥BN
∥∥2
Γe,s,K

=
1

r

∥∥B0
∥∥2
Γe,s,K

(4.35)

Proof. (4.10) and (4.11) can readily be inverted, any set of Dirichlet and Neumann
traces on Γe being given in terms of the incoming and outgoing traces by

∂tϕe = −1
2
(Be −Be)

ve = 1
2ke

(Be +Be)

∂tϕi = 1
2
(Bi −Bi)

vi = 1
2ki

(Bi +Bi)
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These formulas allow to express the right-hand side of identity (4.35) in terms of
the incoming and outgoing traces, following the trace notations (4.17),

[−(vqe , ∂tϕ
q
e)Γe,s + (vqi , ∂tϕ

q
i )Γe,s] =

1

4

(
(Be +Be),

(
Be −Be

)
ke

)
Γe,s,K

+
1

4

(
(Bi +Bi),

(Bi −Bi)

ki

)
Γe,s,K

=
1

4
∥Bq∥2Γe,s,K

− 1

4

∥∥∥B
q
∥∥∥2
Γe,s,K

Using the above equality in (4.35) yields the first identity of the Lemma 4.4.1. Then,
since the traces of successive iterates of the error fields satisfy (4.21) with H = 0,
we rewrite B

q in terms of Bq and Bq+1, to obtain

− (vqe , ∂tϕ
q
e)Γe,s + (vqi , ∂tϕ

q
i )Γe,s =

1

4
∥Bq∥2Γe,s,K − 1

4

∥∥∥∥X

[
1

r
Bq+1 + (1− 1

r
)Bq
]∥∥∥∥2

Γe,s,K

=
1

4
∥Bq∥2Γe,s,K − 1

4

∥∥∥∥1rBq+1 + (1− 1

r
)Bq
∥∥∥∥2
Γe,s,K

(4.36)

with the second equality stemming from the isometry property of X. The Hilbert
space identity∥∥∥∥1ra+

(
1− 1

r

)
b

∥∥∥∥2 = 1

r
∥a∥2 +

(
1− 1

r

)
∥b∥2 − 1

r

(
1− 1

r

)
∥a− b∥2

can then be applied in the above right-hand side. We have∥∥∥∥1rBq+1 +

(
1− 1

r

)
Bq
∥∥∥∥2
Γe,s,K

=
1

r

∥∥Bq+1
∥∥2
Γe,s,K

+

(
1− 1

r

)
∥Bq∥2Γe,s,K

−1

r

(
1− 1

r

)∥∥Bq+1 − Bq
∥∥2
Γe,s,K

.

After noticing that the transition equation (4.21) with H = 0 gives

Bq+1 − Bq = r(XBq − Bq),

the identity (4.36) becomes

−(vqe , ∂tϕ
q
e)Γe,s + (vqi , ∂tϕ

q
i )Γe,s =

1

4r
∥Bq∥2Γe,s,K − 1

4r

∥∥Bq+1
∥∥2
Γe,s,K

+
1

4
(1− 1

r
)
∥∥XB

q − Bq
∥∥2
Γe,s,K

Using the above equality in the right-hand side of (4.34) and rearranging so that
the left and right-hand sides of the resulting identity feature only positive terms, we
obtain

Eq(s) +
1

4r

∥∥Bq+1
∥∥2
Γe,s,K

+
1

4

(
1

r
− 1

)∥∥XB
q − Bq

∥∥2
Γe,s,K

=
1

4r
∥Bq∥2Γe,s,K

(4.37)

(noticing that 1
r
(1
r
− 1) > 0 for any 0 < r ≤ 1). We finally perform N successive RR

iterations (with 0 < q ≤ N − 1), sum the energy equalities (4.37) for each iteration
and notice a telescopic sum effect (the same terms 1

4r
∥Bq∥2Γe,s,K

appearing in the left-
and right-hand sides of the sum for 1 < q ≤ N − 1 and cancelling each other), and
this results in the second identity claimed in the Lemma 4.4.1.
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Since the right-hand side in (4.35) does not depend on N while all terms are
positive, the sum has a finite limit as N → ∞, implying that

lim
q→∞

{
Eq(s) +

1

r
(
1

r
− 1)

∥∥XB
q − Bq

∥∥2
Γe,s,K

}
= 0, s ∈ [0, T ]. (4.38)

Considering the energy defined at each iteration q as a function of the error fields,
lemma 4.4.1 reformulates it as a function of the incoming and outgoing trace oper-
ators. The summation of the energies at each iteration shows that the error fields,
and then the energy, tend towards 0 in the limit of the number of iterations.

Theorem 4.4.2. The two-operator global-in-time acoustic/acoustic Robin itera-
tions are convergent: ∥ϕqe(s)∥H1(Ωe)

, ∥∂tϕqe(s)∥L2(Ωe)
, ∥ϕqi (s)∥H1(Ωf

i )
, ∥∂tϕqi (s)∥L2(Ωf

i )
,

∥uq(s)∥H1(Ωs
i )

and ∥∂tuq(s)∥L2(Ωs
i )

all vanish in the limit q → ∞ for the error fields,
uniformly in time.

Proof of theorem 4.4.2. The identity (4.37) holds for any choice of final time s ≤ T .
In particular, we have

N−1∑
q=0

Eq(s) ≤ 1

r

∥∥B0
∥∥2
Γe,s,K

= B(s) (4.39)

We notice that s → B(s) is continuous, positive and non-decreasing, it is hence
bounded above by B(T ). Recalling the definition (4.32) of Eq(s) and (4.24), (4.25)
of norms, we first have

∥∂tϕqe(s)∥
2
Ωe

≤ Eq(s), ∥∂tϕqi (s)∥
2

Ωf
i
≤ Eq(s), ∥∂tuq(s)∥2Ωs

i
≤ Eq(s).

Inequality (4.39) provides

N−1∑
q=0

∥∂tϕqe(s)∥
2
Ωe

≤ B(s) ≤ B(T ),
N−1∑
q=0

∥∂tϕqi (s)∥
2

Ωf
i
≤ B(T ),

N−1∑
q=0

∥∂tuq(s)∥2Ωs
i
≤ B(T )

(4.40)
implying that ∥∂tϕqe(s)∥

2
Ωe

, ∥∂tϕqi (s)∥
2

Ωf
i

and ∥∂tuq(s)∥2Ωs
i

vanish in the limit q →
∞. Moreover, taking into account the relevant initial conditions, we have ϕqe(t) =∫ t
0
∂tϕ

q
e(s)ds, for t ∈ [0, T ] so that

∥ϕqe(s)∥
2
Ωe

≤ T

∫ s

0

∥∂tϕqe(t)∥
2
Ωe
dt

and likewise for ϕqi (t) and uq(t). We hence have

(a)
N−1∑
q=0

∥ϕqe(s)∥
2
Ωe

≤ T

∫ s

0

B(t)dt, (b)
N−1∑
q=0

∥ϕqi (s)∥
2

Ωf
i
≤ T

∫ s

0

B(t)dt,

(c)
N−1∑
q=0

∥uq(s)∥2Ωs
i
≤ T

∫ s

0

B(t)dt.

(4.41)
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Next, we note α(s) := B(s) + T
∫ s
0
B(t)dt and we add inequality (4.41a), (4.41b) or

(4.41c) to (4.39). Recalling the definition (4.32) of E(s), we deduce, ∀t ≤ T :

(a)
N−1∑
q=0

∥∇ϕqe(t)∥
2
Ωe

+ ∥ϕqe(t)∥
2
Ωe

=
N−1∑
q=0

∥ϕqe(t)∥
2
1,Ωe

≤ α(s)

(b)
N−1∑
q=0

∥∇ϕqi (t)∥
2

Ωf
i
+ ∥ϕqi (t)∥

2

Ωf
i
=

N−1∑
q=0

∥ϕqi (t)∥
2

1,Ωf
i
≤ α(s)

and

(c)
N−1∑
q=0

∥∇uq(t)∥2Ωs
i
+ ∥uq(t)∥2Ωs

i
=

N−1∑
q=0

∥uq(t)∥21,Ωs
i
≤ α(s).

As α is a positive and increasing function, we find the the uniform (in time) bounds:

N−1∑
q=0

∥ϕqe(s)∥
2
1,Ωe

≤ α(T ),
N−1∑
q=0

∥ϕqi (s)∥
2

1,Ωf
i
≤ α(T ), s ∈ [0, T ], (4.42)

as well as
N−1∑
q=0

∥uq(s)∥21,Ωs
i
≤ CKα(T ), sß[0, T ], (4.43)

applying the Korn’s inequality [46, Thm 6.15], which gives a majoration of ∥uq(s)∥21,Ωs
i

for some CK > 0 for the elastic component. Therefore ∥ϕqe(s)∥
2
1,Ωe

, ∥ϕqi (s)∥
2

1,Ωf
i

and ∥uq(s)∥21,Ωs
i

also vanish in the limit q → ∞. Moreover, integrating the esti-
mates (4.42) and (4.43) over s ∈ [0, T ] implies that the corresponding L2([0, T ])
norms of the error fields also vanish in the limit q → ∞.

Conclusion. Similarly to the result presented in Chapter 2 for the acoustic-elastic
coupling based on Robin boundary conditions and on a acoustic-elastic coupling
interface, we have shown for the new acoustic/acoustic-elastic coupling that the
error fields vanish in energy norm in the respective domains with the number of
iterations, for any choice of positive coupling parameters ke and ki and of relaxation
parameter r. This result comes from the fact that the Robin problems solved in each
subdomain preserve the regularity during the resolution. As detailed in Section 2.4.3,
the Robin evolution problems involved in the acoustic/acoustic-elastic global-in-time
iterations have velocity interfacial variables with the same regularity as the datum.
The proof of the guaranteed algorithm’s convergence is due to this important and
original result, provided a minimum regularity assumption on this datum, so that
the definition of the interfacial solution traces is possible. This procedure presents
significant advantages compared to the two previous ones. In particular Robin
impedance-like boundary conditions might be easier to impose in a fluid domain
in a black box context (as for example in Code_Aster software [64]). Moreover
treating a part of the fluid domain by a finite element method will allow to introduce
nonlinearities in this part, and thus to treat more easily the cavitation phenomenon.
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4.5 Validation and optimisation of the acoustic-acoustic
FEM/Z-BEM coupling

The goal of this section is to validate the convergence of our global-in-time acoustic/acoustic-
elastic iterations based on Robin boundary conditions and on an acoustic/acoustic
coupling interface. We therefore solve the simple 2D acoustic-elastic problem in-
troduced in Section 3.3.1. As the algorithm convergence does not depend on the
used numerical method, we choose a FEM/Z-BEM coupling accelerated with a high-
frequency approximation as described in Section 3.5. In addition to the validation
of our procedure, this example also permits to (i) optimise the values for the Robin
coupling parameters ki and ke, (ii) compare the acoustic/acoustic-elastic procedure
convergence rate to the acoustic/elastic one, and (iii) investigate the influence of the
size of the interior fluid domain Ωf

i on the overall algorithm convergence.

4.5.1 Coupling validation: 2D test case

To validate our iterative global-in-time coupling procedure, we now consider the 2D
problem represented on Figure 4.3. A bounded elastic ring Ωs

i is immersed in a
acoustic fluid (mass density ρf , acoustic wave velocity cf ) occupying the unbounded
fluid region. The fluid domain is separated into two parts: Ωf

i is the interior fluid
domain bounded by a circular boundary Γe and Ωe is the exterior fluid domain such
as Ωe := R2 \

(
Ωs
i ∩ Ωf

i

)
. A uniform normal pressure pint(t) is applied to the solid

interior surface Γi, which creates a deformation in the elastic solid and a radiated
FSI problem on the exterior interface. The physical and numerical parameters are
the same as for the example in Section 3.3.1 and the fluid and structure physi-
cal parameters are listed in Table 3.1. The interior and exterior surface are set at
Rint = 0.9m and Rext = 1m respectively. The acoustic-acoustic interface Γe is set at
a distance d=1.1m. The coupled solution is evaluated on the interface Γe. For this
first test, the iterations are performed without acceleration and with the coupling
parameters ke = ki = ρfcf . Since we know the semi-analytical solution for this

Figure 4.3: Radially-symmetric pressurised annulus with a finite element
mesh for the interior acoustic-elastic domain and BEM ele-
ments for the exterior acoustic domain.
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acoustic/acoustic-elastic problem (see Appendix A.2), we can validate the iterative
acoustic/acoustic-elastic algorithm with a FEM/Z-BEM numerical procedure, by
evaluating the convergence of the transmission residuals on the acoustic-acoustic
boundary Γe and the relative L2 error between the analytical and computed solu-
tions. The iterative procedure consists in solving the IBVPs (4.3) and (4.4) until
the difference between two successive iterates is small enough (stagnation criterion).
For a given tolerance ϵ, the satisfaction of the criterion

∥(∂tϕne − ∂tϕ
n−1
e )∥2L2

T (Γe)
+
∥∥(∂tϕni − ∂tϕ

n−1
i

)∥∥2
L2
T (Γe)

∥∂tϕn−1
e ∥2L2

T (Γe)
+
∥∥∂tϕn−1

i

∥∥2
L2
T (Γe)

≤ ϵ (4.44)

indicates that the solution has converged. In case of convergence, the transmis-
sion residual quantities associated with given boundary trace solutions also have to
converge towards zero:

esol
p =

∥(−∂tϕe − sp) + ∂tϕi∥L2([0,T ],Γe)

∥∂tϕi∥L2([0,T ],Γe)

, (4.45)

and

esol
v =

∥∂nϕi − (∂nϕe + sv)∥L2([0,T ],Γe)

∥∂nϕi∥L2([0,T ],Γe)

. (4.46)

We also consider a global dimensionless transmission residual ev,p, combining the
two interfacial transmission residuals, defined on Γe by

ev,p :=

√√√√∥(−∂tϕe − sp) + ∂tϕi∥2L2([0,T ],Γe)
+ ∥∂nϕi − (∂nϕe + sv)∥2L2([0,T ],Γe)

∥∂nϕi∥2L2([0,T ],Γe)
+ ∥∂tϕi∥2L2([0,T ],Γe)

(4.47)

Figure 4.4a shows the coupled velocity and pressure solutions of the FSI prob-
lem at iteration 12 compared to the semi-analytical solutions. At this iteration, the
transmission residuals are esol

v = 4 10−4 and esol
p = 2 10−4, and the global dimen-

sionless transmission residual is ev,p =3 10−4. The convergence of the errors esol
v ,

esol
p and of the global transmission residual ev,p are displayed on Figure 4.4b. As in

Section 3.4 for the acoustic/acoustic-elastic algorithm, here the new acoustic-elastic
algorithm based convergence rate can be improved with an Aitken’s ∆2 acceleration.
This example confirms the verification of the transmission conditions and thus, the
convergence and the correctness of the method.

4.5.2 Coupling parameter optimisation

We first used a Robin coupling parameter equal to the acoustic impedance on both
subdomains (ke = ki = ρfcf ). As in Section 3.3.3 for RR acoustic/elastic iter-
ations, we now look for an a priori optimal values for ke and ki that minimises
the number of global-in-time iterations to reach a given accuracy. We consider the
radially-symmetric 2D acoustic/acoustic-elastic problem described in Section 4.5.1
which admits a semi-analytical solution (see Appendix A.2). The Robin BCs for
the acoustic/acoustic-elastic iterations are defined by (4.15) and (4.16). To estimate
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(a) (b)

Figure 4.4: (a) Dimensionless radially-symmetric scattered pressures pe,
pi and velocities ve, vi on Γe. Numerical results obtained us-
ing the acoustic/acoustic Robin-Robin coupling method are
compared to semi-analytical reference values, ev,p = 3.10−4.
(b) Errors esol

v , esol
p and ev,p on the transmission residuals for

an acoustic/acoustic-elastic radially-symmetric problem.

the convergence factor, we evaluate the spectral radius ϱ of the matrix linking two
successive iterations. We described in Appendix B the semi-analytical analysis to
determine ϱ for this radially symmetric problem. The method is similar to the one in
Section 3.3.3 for acoustic/elastic Robin iterations. The evolution of the convergence
factor ϱ depending on ke and ki is shown in Figure 4.5 and some values are provided
in Table 4.1.

Figure 4.5 clearly illustrates the minimisation of the convergence factor ϱ when
both Robin coupling parameters are equal to the acoustic impedance, ke = ki = ρfcf .
This optimal value for ki and ke is similar to the one for the acoustic-elastic iterations
as it is shown in Section 3.3.3 for a similar radially-symmetric problem. Moreover,
the optimised convergence factor takes the same value for both algorithms (ϱ =
0.255 for the acoustic/acoustic-elastic iterations and ϱ = 0.24 for acoustic/elastic
iterations), which implies a similar number of global-in-time iterations to reach the
convergence. As for the acoustic/elastic iterations in Chapter 3, using a simplified
problem and a semi-analytical solution helps to determine an optimal a priori value
for the coupling parameters to improve the algorithm convergence rate.

Coupling factor fi (ki = fiρfcf ) 0.2 0.2 1 1 1 3 7
Coupling factor fe (ke = feρfcf ) 1 0.2 1 0.5 0.2 3 0.5
Convergence factor ϱ 0.64 0.63 0.26 0.61 0.76 0.59 0.93

Table 4.1: Theoretical values of the convergence factor ϱ for couples of
parameters (ke, ki).

Influence of the distance of Γe to the elastic domain. We now investigate
the influence of the acoustic-acoustic coupling interface position on the algorithm
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Figure 4.5: Semi-analytical convergence factor depending on the cou-
pling parameters ke and ki (∆t = 1.7 10−6, a=0.9, b=1,
d=1.1).

efficiency in the case of FEM/Z-BEM coupling. It has already been shown for FSI
problem solved with finite elements, that the size of the fluid mesh and the fluid
thickness from the ship surface to the exterior boundary of fluid are of great impor-
tance to improve the numerical efficiency and accuracy [169]. These observations
are however specific to the numerical method we use and have not been previously
studied for a FEM/Z-BEM coupling.

Table 4.2 provides semi-analytical convergence factor ϱ values for different values
of ke and ki, for different positions of the coupling interface Γe (d is the radius of
the spherical acoustic-acoustic interface and is strictly greater than the radius of
the acoustic-elastic boundary b=1). The optimal ϱ (evaluated at ki = ke = ρfcf ) is
shown to be only slightly affected by the radius d of the spherical coupling interface.
But increasing this distance d reduces the convergence factor taken for all the other
values of ki and ke, up to a certain distance. In our example, from d=3, the values
taken by ϱ are almost no longer affected. In addition, from d = 3 the optimal
convergence factor ϱ is not only reached for ki = ke = ρfcf , but also for a large part
of the values that ke and ki can take. In Table 4.2 from d=3 we find ϱ=0.25 for almost
all ke and ki values. Figures 4.6a and 4.6b illustrate that when the coupling interface
distance increases, the choice of coupling parameters values has a smaller impact
on the convergence factor and therefore on the speed of convergence. This can be
physically interpreted as when the distance between the acoustic/acoustic coupling
interface and the elastic obstacle increases, the obstacle has less influence on the
coupling. The fluid behaviour is predominant in the interior acoustic/elastic domain
Ωi. The iterative coupling algorithm thus behaves as if two identical homogeneous
fluids were on either side of the interface.

Furthermore, the optimised ϱ is then the same as for RR iterations (ϱ = 0.25),
which means that adding an acoustic-acoustic interface does not increase the number
of iterations required to achieve convergence. As the distance d has no influence on
the number of iterations required to reach the convergent, d should be minimised.
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(a) (b)

Figure 4.6: Semi-analytical convergence factor depending on the cou-
pling parameters for (a) d=1.1 and (b) for d=7.

When the optimal coupling factor is known (here ki = ke = ρfcf ), the interface then
has to be as close as possible to the elastic obstacle in order to minimise the volume
of fluid to be meshed, maximise the domain treated with the Z-BEM and accelerate
the computation.

Coupling factor fi (ki = fiρfcf ) 0.2 0.2 1 1 1 3 3
Coupling factor fe (ke = feρfcf ) 1 0.2 1 0.5 0.2 3 1

d=1.1 0.64 0.63 0.26 0.61 0.76 0.59 0.58
d=1.2 0.60 0.59 0.27 0.57 0.68 0.47 0.49
d=1.5 0.54 0.32 0.25 0.36 0.57 0.35 0.38
d=2 0.51 0.28 0.25 0.27 0.48 0.27 0.27
d=3 0.49 0.25 0.25 0.25 0.45 0.25 0.25
d=7 0.47 0.25 0.25 0.25 0.44 0.25 0.25

Table 4.2: Convergence factor value for various acoustic-acoustic inter-
face radius values d and ke and ki values (∆t = 1.7 10−6,
Nt = 1500, a=0.9, b=1).

We perform some numerical acoustic/acoustic Robin iterations to verify the algo-
rithm behaviour depending on the value of ϱ. The convergence of the transmission
residual ev,p is displayed on Figure 4.7. We show that the iterative algorithm con-
verges with a larger convergence rate for a value of ke = ki = ρfcf , as predicted
by the theoretical spectral radius value. The number of iterations is seen to be in
agreement with the expected spectral radius values of Table 4.1.
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Figure 4.7: Convergence of the indicator ev,p on interfacial residuals for
three couples of Robin parameters (ke, ki).

4.6 Conclusion

The main purpose of this chapter was to design and validate an alternative global-in-
time iterative algorithm to solve an acoustic-elastodynamic transient problem, based
on an acoustic-acoustic coupling interface and Robin coupling conditions. The con-
vergence of the global-in-time acoustic/acoustic-elastic iterations has been proved
in Section 4.4. We have then validated the convergence of the algorithm by imple-
menting it with a FEM/Z-BEM coupling and using a HFA. We have improved the
algorithm convergence rate by choosing optimal values of Robin coupling parameter
and an adapted coupling interface distance from the elastic obstacle. We have shown
that choosing the coupling parameters equal to the acoustic impedance improves the
convergence. Finally we have shown that increasing the acoustic-acoustic interface
distance improves the convergence speed, up to a fixed distance from which the
convergence rate is not influenced anymore.

The goal of Chapter 5 is now to use the capabilities of this convergent iterative
algorithm to solve more realistic transient rapid 3D problems with more complex
geometries.
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CHAPTER 5

Non-intrusive coupling in an industrial con-
text. Application to underwater explosions.

The purpose of this chapter is to demonstrate that the domain decomposition it-
erative algorithm we have developed, based on the successive solutions of Robin
evolution problems in each subdomain, allows to deal with complex phenomena tak-
ing place in the context of underwater explosions. In practice, we aim at coupling
two 3D solvers in a black box manner, according to the acoustic/acoustic-elastic
iterative procedure detailed in Chapter 4. To treat the finite element interior acous-
tic/elastic part of the problem, we use the open-source FEM software Code_Aster,
developed by EDF (Électricité de France) [64]. To deal with the unbounded exterior
acoustic domain, we use an in-house 3D Z-BEM solver.
In Section 5.1 we detail the validation of the non-intrusive acoustic/acoustic-elastic
coupling when an industrial FEM solver is used in a black box manner. We insist on
some additional implementation difficulties related to the solver architecture. The
coupling procedure is then validated on the simple 3D FSI problem of an elastic
sphere in a uniform time-dependent incident acoustic field. To simulate the hydro-
acoustic sound radiation of surface ships, the free surface boundary condition has
to be taken into account. In Section 5.2 we consider half-space Green functions to
improve the Z-BEM solver in the context of free-surface boundary condition. Sec-
tion 5.3 is dedicated to an overview of the characteristics of an underwater explosion
and especially of its primary acoustic shock wave. The final goal is to deal with a
realistic case of a submarine subjected to a shock wave produced by a far-field un-
derwater explosion. Finally in Section 5.4, we give some ideas for future studies and
numerical developments.
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5.1 Non-intrusive 3D FEM/Z-BEM coupling vali-
dation

In Chapters 2, 3 and 4 we have considered the design, implementation and validation
of two convergent domain decomposition iterative procedures. The first one (acous-
tic/elastic Robin iterations see Section 2.4) requires inhomogeneous Robin boundary
conditions (BC) to be imposed on acoustic and elastic subdomains. This is not pos-
sible with some industrial FEM solvers. For this reason, we consider only the second
algorithm (acoustic/acoustic-elastic Robin iterations detailed in Section 4.3) in this
chapter. It has the advantage of only requiring inhomogeneous Robin BCs to be
imposed on acoustics subdomains. The notations used in this chapter are presented
in Figure 5.1.

Figure 5.1: Domain decomposition for an acoustic-acoustic coupling :
notations.

5.1.1 Finite element model for a time-domain elastic-acoustic
problem

Depending on the choice of the variables to describe the state of the fluid, different
numerical formulations of the vibro-acoustic coupling can be found in the literature
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[70, 183]. The pressure p, the fluid velocity potential ϕ, or both variable can be
chosen, and each choice corresponds to a coupling formulation (us, p), (us, ϕ) or
(us, p, ϕ) [115, 183]. The three formulations are equivalent, but they all have advan-
tages and drawbacks. In particular, the formulation (us, ϕ) has the advantage to
correspond to the form of the fluid equations we expressed in Section 2.1 in terms of
velocity potential [70]. As described in [115], this formulation allows the definition
of symmetric matrices. Its main drawback is generally the presence of an additional
coupling term Kc in the global damping matrix (see (5.1)). It is a problem for modal
analysis, as the resolution of a quadratic eigenvalue problem is needed in this case.
However, for time-domain analysis, the form of the global damping matrix does not
add any complexity. The formulation in (us, ϕ) is thus a symmetric formulation
that does not introduce more degrees of freedom as it would be the case with a
formulation in (us, p, ϕ).

In the context of underwater explosions, the incident shock wave is discontinuous
(see Section 5.3). To avoid regularity problems related to this pressure discontinuity,
it is possible to use regularised models to represent the shock wave. However, even
regularised, these incident wave models have low regularities in time. The fluid
equations should thus preferably be written in terms of velocity potential ϕ only,
instead of pressure variable p, to gain a degree of regularity in time.

(us, ϕ) formulation. The weak formulation in (us, ϕ) of the fluid-structure interior
problem with a Robin boundary condition is given by (4.27). Considering an external
force gi applied on the boundary of the fluid domain through a Robin BC of the
form (4.7), we have

ρf∂tϕi + ki∂nϕi = gi on Γe × [0, T ].

The fluid-structure conditions at the interface Γi are defined by (2.2) as Neumann
conditions:

∂nϕi = ∂tu.n and t[u] = ρf∂tϕin on Γi × [0, T ].

The dynamic of the spatially discretised coupled problem using FEM is then de-
scribed by a system of ordinary differential equations:[
Ms 0

0 ρfMf

][
Üs(t)

ϕ̈i(t)

]
+

[
Ks 0

0 ρfKf

][
Us(t)

ϕi(t)

]
+

[
0 −ρfKc

−ρfKc Q

][
U̇s(t)

ϕ̇i(t)

]
=

[
0

G(t)

]
(5.1)

where the vectors Us and ϕ contain respectively the nodal values of the structural
displacements and fluid velocity potentials. The block matrices Ms, Mf , Ks, Kf

and the right-hand side F are defined by:
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(Ms)ij =

∫
Ωs

ρsNs
i .N

s
j , (Ks)ij =

∫
Ωs

ϵs
(
Ns

j

)
: C : ϵs (N

s
i )

(Mf )ij =

∫
Ωf

1

c2
Nf
i .N

f
j , (Kf )ij =

∫
Ωf

∇Nf
i .∇Nf

j ,

(Kc)ij =

∫
Γe

Nf
j (N

s
i .ns), (G)i =

∫
Γe

gi.N
f
i ,

(Q)ij = −
ρ2f
ki

∫
Γe

N f
i .N

f
j ,

(5.2)

where (Ns
i )i=1,...,ns and (N f

i )i=1,...,nf
are the finite element basis functions in the

structural part and in the fluid part, respectively. The matrices Ms, Mf are the mass
matrices of the structural and fluid parts, respectively, and are symmetric positive
definite. The matrices Ks, Kf are the stiffness matrices of the structural and fluid
parts and are symmetric positive semi-definite. There are three additional matrices.
Two mass matrix defined on the boundary Γi are related to the terms −ρf (vi, ũ)Γi

and (t, ϕ̃)Γi
and represent the fluid-structure coupling. The third matrix Q is linked

to the Robin condition added on the boundary Γe of the truncated fluid domain
and represents the term

ρ2f
ki
(∂tϕi, ϕ̃)Γe . Finally, the vector G is the right-hand side

related to the load gi, imposed on the boundary.

5.1.2 Code_Aster for domain decomposition methods and vi-
broacoustic problems

The Code_Aster software is available on the website "www.code-aster.org". One
of the strengths of this software is the integration in a single environment of many
physical phenomena (thermal, acoustic, hydration, drying, etc.), types of finite ele-
ments, and constitutive models (steel, concrete, geomaterials, etc.) related to me-
chanics. It enables a wide range of static and dynamic analyses, including multi-
physics, multi-scale, non-linear or coupled system modelling (fluid-structure, soil-
structure, soil-fluid-structure...). It is often used for transient fluid-structure inter-
action studies [72, 105, 192], and in particular for vibroacoustic applications [20,
115, 171].

The introduction of different fluid-structure formulations and of the Robin bound-
ary conditions (inhomogeneous impedance conditions) on the boundary of an acous-
tic domain is a recent feature of Code_Aster 2022. Previous versions only included
the (us, p, ϕ) formulation. The formulation in (us, ϕ), which is needed to implement
the Robin acoustic/acoustic global-in-time iterations described in Chapter 4, has
been implemented in Code_Aster 2022 and validated as part of L. Khoun’s PhD
work [115].

Another advantage of Code_Aster is the possibility to use non-homogeneous
Robin boundary conditions in an acoustic domain. These conditions enable for
example to use Code_Aster within non-invasive domain decomposition coupling
methods [92, 165]. The non-homogeneous acoustic Robin boundary conditions in
Code_Aster have been developed in [115]. This recent development allows to use
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an impedance Q defined by:

Q = −
ρ2f
Zc
C = −

ρ2f
ki
C

where C is the boundary mass matrix. The user has to pay attention to the coeffi-
cient used in the code: the calculation of the impedance matrix Q is done with the
functions AFFE_CHAR_MECA, and the user can choose the impedance value Zc. To
impose the Robin boundary condition (4.7), Zc = ki has to be chosen.

In Code_Aster the impedance matrix Q associated with a Robin impedance
condition applied on a surface "surfaceA" is assembled with the commands [115]:

1 Char_Q = AFFE_CHAR_MECA( MODELE = Model ,
2 IMPE_FACE = _F(GROUP_MA = ’ surfaceA ’ ,
3 IMPE = ki , ) , ) ;
4 El_Q = CALC_MATR_ELEM( OPTION = ’IMPE_MECA’ ,
5 MODELE = Model ,
6 CHARGE = Char_Q,
7 CHAM_MATER = MATER, )
8 Q = ASSE_MATRICE( MATR_ELEM = El_Q, NUME_DDL = N_DDL)

Validation of Code_Aster inhomogeneous Robin conditions. We first verify
these conditions on a 2D radially-symmetric acoustic-elastic example, represented
on Figure 5.2. A 2D elastic annulus Ωs of interior radius Rint and exterior radius
Rext is immersed in a circular acoustic fluid domain Ωf of radius Ra, bounded by
a boundary Γe. The physical and numerical parameters are the same as for the
example in Section 3.3.1 and the fluid and structure physical parameters are listed
in Table 3.1. The interior and exterior surface are set at Rint = 0.9m and Rext = 1m
respectively. The acoustic-acoustic interface Γe is set at a distance d=1.1m. A
transient Robin condition is imposed on Γe:

[p+ kivn] (t, Ra) = g(t)

with

{
g(t) = a(2t/Tp)

γ × (2− 2t/Tp)
γ if t ∈ [0, Tp],

g(t) = 0 if t > Tp

with a time parameter Tp = 4.67 10−4s, a Robin coupling parameter ki = ρfcf and
an exponent γ = 3. The problem is entirely modelled by finite elements (quadratic
elements in Code_Aster). The problem is representative of an acoustic-elastic prob-
lem that would be solved with a global-in-time FEM/Z-BEM iterative coupling. The
fluid pressure evaluated on the fluid-structure interface obtained using Code_Aster
is compared with the pressure obtained by a FEM solution with the in-house Matlab
finite element solver (Figure 5.3). The relative difference between both numerical
transient solutions is evaluated by

enum
p :=

∥vi − vanalytic∥L2([0,T ],Γi)

∥vanalytic∥L2([0,T ],Γi)

,
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Figure 5.2: 2D elastic annulus immersed in a circular fluid domain of
radius Ra, bounded by a circular boundary Γe on which a
Robin boundary condition is imposed.

Figure 5.3: Fluid pressure p evaluated on a point of the coupling inter-
face Γi computed with Code_Aster and compared with the
Matlab FEM result (enum

p = 0.013).

138



5.1. Non-intrusive 3D FEM/Z-BEM coupling validation

Mesh elements 1665 3418 13727 28297 222360
enum
p 1.37 10−2 1.18 10−2 1.12 10−2 1.10 10−2 1.09 10−2

Table 5.1: Error enum
p against the number of FEM elements.

and we verify the convergence of the error with the mesh discretisation. With
second-order quadratic finite elements, the errors enum

p are given in Table 5.1. The
comparison allows to validate the accuracy of the Robin condition imposed via
Code_Aster. The availability of this condition makes it possible to consider the im-
plementation of an acoustic/acoustic-elastic FEM/Z-BEM coupling, with the FEM
contribution performed using Code_Aster.

Space-time variable pressure load in Code_Aster.

Another difficulty comes from the space-time nature of the pressure load in the
context of global-in-time iterations. In order to execute global-in-time iterations,
the information exchanged at each iteration between the FEM and Z-BEM solvers
consists of the values of a surface variable, on the nodes of the coupling surface,
for the entire time interval. For a surface Γe with N nodes and a time interval
containing Nt time steps, the Z-BEM solution of an acoustic problem (4.8) allows
to find a Robin boundary data gni defined on Γe with N ×Nt values. This boundary
data is imposed as N nodal forces defined by (5.2). The FEM solver solves a general
second-order ordinary differential equation of the form:

MẌ(t) +QẊ(t) +KX(t) = G(t)

X(t = 0) = X0

Ẋ(t = 0) = Ẋ0

where the matrices M,Q and K are defined by (5.1), X(t) = {Us(t);ϕi(t)} is the
time dependent vector of unknowns and the right-hand side G is a time dependent
vector of nodal forces.

To solve this equation with Code_Aster, the dynamical vibration analysis are
usually done with the operator DYNA_VIBRA (see Code_Aster documentation). The
classical way of calling this operator is to provide the assembled mass matrix M,
stiffness matrix K and damping matrix Q, as well as the characteristics of the nu-
merical scheme (in this case a Newmark scheme) and the chosen solver (in this case
MUMPS). The command is finally:

1 MY_RESU = DYNA_VIBRA(TYPE_CALCUL = ’TRAN’ ,
2 BASE_CALCUL = ’PHYS ’ ,
3 MATR_MASS = M,
4 MATR_RIGI = K,
5 MATR_AMOR = Q,
6 SCHEMA_TEMPS = _F(SCHEMA=’NEWMARK’ ,
7 BETA=0.25∗(1.0 − alpha ) ∗(1.0− alpha ) ,
8 GAMMA = 0.5− alpha ) ,
9 INCREMENT = (_F(INST_INIT = 0 ,

10 INST_FIN = T,
11 PAS = dt , ) ) ,
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12 SOLVEUR = _F(METHODE=’MUMPS’ , ) ,
13 EXCIT = (_F(VECT_ASSE = G) , ) ,
14 )

However in this case, the excitation is imposed on the surface by the operator
VECT_ASSE and it consists in a vector G containing N nodal forces imposed on
each node of the coupling surface. This G does not depend on the time and cannot
describe the temporal evolution of surface stress. It is possible to impose a vari-
able stress over time using an optional time-dependent function FT, describing the
temporal variation of the vector G:

1 EXCIT = (_F(VECT_ASSE = G, FONC_MULT = FT) , ) ,

this time variation must be described by an explicit function and applied uniformly
to all the nodal forces. In the case of a global-in-time FEM/Z-BEM coupling, it
is necessary to impose different nodal forces on each node of the coupling surface,
whose variation in time is not described by an explicit function, but is the result
of a Z-BEM calculation. It cannot be done in the classical way in Code_Aster.
One alternative option is to use pressure loads of type evol_char. In this case, the
dynamic load is imposed in DYNA_VIBRA by means of the command

1 EXCIT = (_F(CHARGE = resuChar ) , ) ,

where resuChar is a data structure of type evol_char. This structure can only be
created by the operators LIRE_RESU or CREA_RESU. The inconvenient of LIRE_RESU
is that this operator only reads two formats: IDeas or MED. In our case, we choose
to use CREA_RESU, to create a result file in ASTER format directly with Code_aster.
CREA_RESU is used as:

1 resuChar=CREA_RESU(OPERATION =’AFFE ’ ,
2 TYPE_RESU =’EVOL_CHAR’ ,
3 NOM_CHAM =’PRES ’ ,
4 AFFE =( _F(CHAM_GD=presOne , INST=0.0 ,) ,
5 _F(CHAM_GD=presTwo , INST=1.0 ,) ,
6 _F(CHAM_GD=presThree , INST=2.0 ,) ,
7 )
8 )

where AFFE contains Nt lines. The arguments presOne, presTwo, presThree... are
vectors containing the N nodal forces at a time step. These fields of type cham_no
have to be created in Code_aster with CREA_CHAMP and read with LIRE_TABLE. It
has the advantage of being able to read any data format, unlike LIRE_RESU. The
manipulation of space-time data files is difficult to implement and the resulting pro-
cedure is very time-consuming. There is currently no simple alternative for imposing
a space-time variable pressure load in Code_aster, which may be an important lim-
itation to its use in an industrial context.

Future developments regarding the table manipulations are planned in Code_aster.
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It will probably be possible to use Python functions and numpy tables in the future
versions of Code_aster. It will significantly simplify and speed up this part of the
procedure.

5.1.3 Validation of the 3D FEM/Z-BEM coupling using Code
Aster

The first numerical model consists in an elastic hollow sphere Ωs
i of exterior radius

Rext and interior radius Rint, immersed in an acoustic unbounded domain. The shell
and fluid are both at initial rest, and a source point is located inside the sphere (see
Figure 5.4). The source point creates a radially-symmetric incident field ϕinc equal
to the 3D transient fundamental solution

ϕinc(r, t|f) := f(t− r

cf
) with f(t|a) =

{
a( 2t

Tpulse
)3(2− 2t

Tpulse
)3 if t ∈ [0, Tpulse]

0 otherwise

where a is the amplitude and Tpulse = 1.1 is the width of the pulse. We look
for the induced acoustic pressure in the fluid domain, evaluated for example, on
the spherical acoustic/acoustic coupling surface Γe = {r = RAA}. To solve the
exterior fluid part of the problem, we use the in-house 3D Z-BEM Matlab solver
described in Appendix E.3. The time interval is discretised with Nt = 176 time
steps (∆t = 2 10−2). El = 33750 BEM elements are used to discretise the boundary
and 30 frequency BEM problems are solved before using the HFA. The geometrical
and physical parameters are listed in Table 5.2. The coupling parameters used

Figure 5.4: Schematic radially-symmetric 3D pressurised sphere with a
finite element mesh for the interior acoustic-elastic domain
and BEM elements for the exterior acoustic domain.

in the Robin boundary conditions are chosen according to the acoustic impedance:
ke = ki = ρf∗cf = 1500kg.s−1m−2. The convergence is evaluated with the evaluation
of the error er on the transmission residuals:

er :=

√√√√∥pi − (pe − sp)∥2L2([0,T ],Γe) + ∥vi − (ve + sv)∥2L2([0,T ],Γe) ρ
−1
f

∥vi∥2L2([0,T ],Γe) + ∥pi∥2L2([0,T ],Γe) ρ
−1
f
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Name cf ρf cmat ρmat E Rint Rext RAA

Value 1.5 1000 1.1602 1000 1000 0.9 1.2 2.2
Unity m.s−1 kg.m−3 m.s−1 kg.m−3 kg.m−1.s−2 m m m

Table 5.2: Physical properties of the structure and the fluid in the first
study case 5.1.3.

where sp and sv are the pressure and velocity jumps evaluated on the acoustic/a-
coustic interface Γe. Figure 5.5a shows the convergence of er with respect to the
number of iterations, with and without Aitken acceleration (see Section 3.4.2). The
Aitken algorithm is shown to be more efficient for this 3D test case than for the 2D
tests in Section 4.5.2. The convergence is reached (er < 10−3) within 10 iterations
performed with the acoustic/acoustic-elastic coupling, which validate the coupling
procedure. Figure 5.5b shows that the pressure pe evaluated on Γe computed using
the FEM/Z-BEM procedure verifies the transmission condition pi = pe − sp.

(a) (b)

Figure 5.5: 3D pressurised sphere: (a) error on transmission residuals
er computed with the 3D FEM/Z-BEM coupling, with and
without Aitken acceleration, as a function of the iterations.
(b) pressure induced on the surface Γe. esolp = 1.2 10−4.

5.2 Free surface

So far, we have only considered structures submerged at a sufficient depth for the
effect of the free surface to be neglected. However, there are also industrial de-
mands for modelling surface vessels or submarines emerging at the surface as well as
submarines submerged close to the sea bed. To simulate the hydro-acoustic sound
radiation of surface ships, the free surface boundary condition has to be taken into
account. In acoustics, half-space problems are problems where an infinite plane
divides a whole acoustic domain into two half-space domains, with the source and
the object located above the infinite plane, as illustrated in Figure 5.6. When using
a classical boundary element method, with an infinite space Green function, the
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free surface has to be discretised and truncated. In this case, the surface integra-
tion within the boundary integral equation must be done over the whole surface
boundaries bounding the acoustic domain. This will inevitably increase the compu-
tation time. An alternative approach consists in using the method of images and
introducing an half-space Green’s function (HSGF) [150, 181, 185]. The HSGF will
account analytically for the boundary condition on the plane and it will thus limit
the support of the boundary mesh to the surface of the finite vibrating obstacle
[181]. HSGF are extensively used in the context of BEMs and integral equations
for scattering or radiating boundaries [14, 31, 32, 134, 202]. [162] provides different
methods to construct half-space Green’s functions, based on the boundary condi-
tion of the infinite plane. For the perfectly reflecting plane, the Green’s function
must satisfy the Neumann condition on the plane, i.e. ∂nG = 0. We introduce
G̃ = G(x, y) + G(x, ŷ), where ŷ is the image point of y, when reflected through
the plane [73, 182]. Similarly, if a homogeneous Dirichlet boundary condition is
considered on the plane then the revised Green’s function is G̃ = G(x, y)−G(x, ŷ).
More generally, the modified Green’s function is G̃ = G(x, y) + βG(x, ŷ) with β
representing the reflection coefficient of the plane (−1 ≤ β ≤ 1).

Figure 5.6: Impulsive point source in a domain Ω, bounded by a surface
(S); Notations.

In the case of an air-liquid free surface, the Green’s function for an half-space is
given by

G̃(r, r̂) =

(
1

r
+ β

1

r̂

)
with β = 1. (5.3)

5.2.1 Fast Z-BEM with half-space Green’s functions

The Z-BEM is based on the solution of time-harmonic acoustic boundary integral
equations. The use of HSGFs for time-harmonic problems is well-documented [31,
103, 134].

As described in Section 3.2.2, solving a time-harmonic boundary integral equa-
tion consists, after discretisation, in solving a matrix system of the form

[K] {ϕ} = {f} (5.4)
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where {ϕ} represents the N unknown degrees of freedom, {f} is a N-vector contain-
ing the discretised traces of the data on the boundary, while the N × N matrix of
influence coefficients [K] contains evaluations of the boundary integrals. Unlike for
FEM, the matrix [K] is fully populated. Solving this system with a direct solver
entails a O(N3) complexity. It is thus impossible to solve large-scale problems with
such solvers. An efficient way to solve large BEM problems consists in using itera-
tive algorithms such as the Generalised Minimal RESidual method (GMRES) [174].
This iterative method is based on the construction of Krylov subspaces that are
expanded at each new iteration. In this method, the main time-consuming task is
the evaluation of the matrix-vector product [K] {v} at each GMRES iteration. The
complexity of such a matrix-vector product is O(N2) if either the matrix is stored
or if it is re-evaluated at each GMRES iteration using standard BEMs.

The goal of accelerated BEMs is therefore to speed up the evaluations of [K] {v}
without actually forming the full matrix [K]. Two families of acceleration methods
are often used. On the one hand, hierarchical matrix (H-matrix) based solvers have
been developed. They partition the dense linear system, and approximate it into
a data-sparse system. Sub-blocks in the matrix are accurately estimated by low-
rank matrices to reduce storage and computational costs. It is a fully algebraic
method [43, 97]. Alternatively, the Fast Multipole Method (FMM) is based on a
reformulation of the fundamental solution with a plane wave expansion in order
to factorise some operations [53, 157]. It is known that the FMM can reduce the
computational and memory complexity of the BEM from O(N2) to O(NlogN) for
oscillatory kernels such as the Helmholtz kernel [200]. Acoustic FMM formulations
in the frequency domain have been investigated for example in [42, 77, 118].

H-matrix and fast multipole method

[146] has shown that, in the context of UNDEX, both methods are useful and have
their advantages and drawbacks. FMM is very efficient and flexible for wave propa-
gation problems. It has been used in [146] to accelerate the Z-BEM computation of
the reflected fluid pressure resulting from the interaction of the shock wave and the
submarine. H-matrices have been used to accelerate the solution of the oscillating
bubble problem.

An important aspect to decide if we use FMM or H-matrix it that, when perform-
ing global-in-time FEM/Z-BEM iterations, the same transient BEM problem has to
be solved at each iteration n, with a different transient right-hand side member gn.
It implies to solve a set of frequency-BEM problems of the form:

[H] (s) {Φn} = [G] (s) {gn}

with right-hand side member gn depending on the frequency s and on the iteration
n, while the BEM matrices [H] and [G] are fixed. Such problems are termed multiple
right-hand side, as only the data gn (and of course the solution Φn) is changing from
one iteration to another [184]. Even though hierarchical matrix are known to be
suboptimal for wave problems, they are still efficient and they are very appropriate
for multiple right-hand sides problems. In the present work, we thus choose to use
H-matrix to accelerate the Z-BEM computation.
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An efficient way to deal with multiple right-hand side problems is to compute
and store the H-matrix representations once and for all when solving the first BEM
system and reuse them at each iteration, to compute the matrix-vector product
required in the GMRES method [18]. Moreover, since we use a high-frequency
approximation (as described in Section 3.5), only a few H-matrix representations
have to be stored. On the contrary, the FMM does not assemble nor store the
matrices, implying that matrix-vector product sequences must be computed again
for each BEM problem.

Finally, a third advantage for the H-matrix method is that it is a purely algebraic
approach. Unlike other methods such as FMM, it is therefore independent of the
form of the fundamental solution. It is thus easy to adapt the method with the half-
space Green function and to take the free surface into account in the FEM/Z-BEM
global-in-time iterations.

Remark. In the same way, it is possible to use an half-space fundamental solu-
tion to take the sea bed into account in the case of a submarine in shallow water.
The procedure is the same, but the boundary condition changes. The sea bed is
represented with a Dirichlet boundary condition instead of a Neumann one. It is
however not possible with this method to take both a free surface and the sea-bed
into account at the same time.

Validation: Z-BEM with a half-space Green’s function

We first validate the Z-BEM when the method of images is used. The free surface is
defined by a homogeneous Neumann condition imposed on a plane with normal −→ez .
The 3D Z-BEM solver described in Appendix E.3 is used with a half-space Green’s
function. We consider the same 3D problem as in Appendix E.3 and we add a free
surface (S) which refers to the plan (x, y) (Figure 5.7). We consider a sphere Ω with
a boundary ∂Ω = Γ, immersed in an acoustic domain Ωf := R2 \ Ω, and a point
source fixed in the interior domain Ω. The point source produces an acoustic field
ϕ equal to the 3D transient fundamental acoustic solution

ϕ(x, y, z, t|f) := G(x, y, z, t|f) = f(t− r/cf )

4πr

with f(t|a) =

{
at3(Tpulse − t)3 if t ∈ [0, Tpulse]

0 otherwise

where a is the amplitude and Tpulse is the width of the pulse. As G is the fundamental
solution for a point source, it verifies the boundary integral equation for an exterior
Dirichlet problem:

H{ϕ} (x, t) = −G {∂nϕ} (x, t) ∀x ∈ Γ

In Appendix E.3, the Z-BEM solver behaviour without free surface is validated by
solving this equation with a datum ϕ and an unknown q = ∂nϕ, and verifying that
q = ∂nϕ = ∂nG. To validate the 3D Z-BEM solver with a free surface, we now solve
the boundary integral equation

H̃
{
Φ̃
}
(x) = −G̃ {q̃} (x) ∀x ∈ Γ
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Figure 5.7: Sketch of a sphere with an interior point source, immersed in
a fluid domain bounded by a free surface.

where H̃ and G̃ are the boundary operators modified with the half-space Green’s
function, Φ̃ :=

(
ϕ+ ϕ̂

)
is the datum evaluated on both the surface Γ and its sym-

metric Γ̂, and q is the unknown. We verify that q =
(
∂nϕ+ ∂nϕ̂

)
≃
(
∂nG+ ∂nĜ

)
.

The HFA does not change and is still defined by (51). The geometrical and physical
parameters are listed in Table 5.3. Nt = 234 time steps are used to discretised the
time interval, El = 33750 BEM elements are used to discretise the boundary and
40 frequency BEM problems are solved before using the HFA. We first place the

Name cf ρf xcentre xsource ∆t Tmax

Value 1 1000 [0; 0;−2.5] [0.2;−0.4;−2.8] 6 10−2 14
Unity m.s−1 kg.m−3 m m s s

Table 5.3: Fast Z-BEM with half-space Green function: physical proper-
ties for the validation case 5.2.1.

sphere Ω at a depth of Zdepth = −2.5m. Figure 5.8a shows the normal derivative
∂nϕ evaluated with the 3D Z-BEM solver on a point of the boundary Γ as a function
of the time. This numerical solution is compared to the analytical solution ∂nG. We
evaluate the relative L2 error between the analytical and the numerical solutions.
The relative error is 1.0 10−3. As a comparison, the black curve shows the solution
∂nG in the case where the free surface is not taken into account. As illustrated in
Figure 5.8b, a similar test, but for a sphere placed at a deeper depth Zdepth = −10m,
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yields the same transient solution as in the case where the free surface is not taken
into account. The deeper the depth of the sphere, the less influence the free surface
has on the diffracted solution field.

In Table 5.4 we show the convergence of the relative error with the number of
frequency BEM problems solved before using the HFA. When 40 BEM problems are
solved, the relative error is 1.0 10−3. From 80 frequency BEM problems solved, the
error converges and reaches 4.4 10−4.

(a) (b)

Figure 5.8: Numerical solution ∂nϕ and analytical ∂nG evaluated on a
point of Γ for an acoustic scattering problem with a free
surface (a) Zdepth = −2.5m, err =1.0 10−3. (b) Zdepth =
−10m, err =1.0 10−3.

BEM problems solved 20 40 50 70 80 100
Relative error 1.3 10−2 1.0 10−3 6.9 10−4 4.5 10−4 4.4 10−4 4.4 10−4

Table 5.4: Relative error with the number of frequency BEM problems
solved in the Z-BEM before using the HFA.

Test case: spherical elastic hull immersed in an acoustic domain with a
free surface

We now validate the FEM/Z-BEM coupling procedure when a free-surface is added
by considering a simple 3D study case. An elastic sphere immersed in an acoustic
domain. The acoustic domain is bounded by an horizontal infinite plane located at
Z = 0. The sphere is submitted to a radial exterior excitation ϕinc, as illustrated
in Figure 5.9. As for the first 3D validation cases in Section 5.1.3, we use a fast
FEM/Z-BEM method with Code_Aster for the FEM part and Matlab for the Z-
BEM part, and the global-in-time acoustic/acoustic-elastic coupling method. For
the numerical illustration, the loading under consideration is a radially symmetric
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Figure 5.9: Sketch of an elastic sphere immersed in an acoustic half-
space.

incident wave, whose profile is given by:

ϕ(r, t|f) = f(t+ r/cf ) with f(t|a) =

{
at3(Tpulse − t)3 if t ∈ [0, Tpulse]

0 otherwise

where a = 103 is the amplitude and Tpulse = 1.1s is the width of the pulse. The
elastic spherical hull is placed at Zdepth = −10m, the Robin coupling parameters
are ke = ki = cfρf = 104 kg.s−1m−2. The geometrical and physical parameters are
listed in Table 5.5. El=33750 BEM elements are used to mesh the acoustic/acoustic
spherical interface and 30 frequency BEM problems are solved before using the HFA.
We also use an Aitken acceleration to improve the convergence rate. Figure 5.10a

Name cf ρf cmat ρmat E Rint Rext RAA

Value 10 1000 1.1602 1000 1000 0.9 1.2 2.2
Unity m.s−1 kg.m−3 m.s−1 kg.m−3 kg.m−1.s−2 m m m

Table 5.5: Spherical elastic hull with a free-surface: physical properties.

illustrates the convergence of the error indicator ev,p defined by (4.47) on Γe, which
combines the two interfacial variables (velocity and pressure). 28 global-in-time
Robin iterations are needed for the error to reach ev,p < 10−2. The numerical
solutions in velocity pi and pe− sp are evaluated on a point of the acoustic/acoustic
interface Γe after 28 iterations, and displayed in Figure 5.10b as functions of the
time. They are shown to verify the transmission condition pi = pe − sp.
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(a) (b)

Figure 5.10: (a) Convergence of ev,p on transmission residuals with the
number of iterations for a 3D FSI problem with a free sur-
face. (b) Numerical solutions pe − sp and pi evaluated on a
point of Γe. esolp = 5 10−2.

5.2.2 Z-BEM for partially emerged ships

We have dealt so far with elastic hulls immersed in (bounded) acoustic domains,
taking the presence of a free-surface (or a sea bed) into account. We now aim
at considering partially emerged objects and still using the method of images. The
method requires some adaptations but the general principle is the same as described
in Section 5.2.1.

For a partially emerged object of boundary Γ, some degrees of freedom of the
boundary also belong to the free surface (S). They are thus in Γ and in the symmetric
boundary Γ̂, as illustrated in Figure 5.11. Unlike when the structure is completely
immersed and no point is common to both boundaries (Section 5.2.1), in this case,
the half-space fundamental solution is singular at these points. If x ∈ (S) the
evaluation of Ĝ(r̂) = (4π ∥x− ŷ∥)−1 is singular for y = x̂ = x. A simple way to
treat this singularity consists in making a distinction between the positions of the
degrees of freedom of Γ and evaluating:

If x /∈ (S), G̃(r, r̂) = G(r) + Ĝ(r̂),

If x ∈ (S), G̃(r, r̂) = 2G(r).

We thus evaluate G(r) = (4π ∥x− y∥)−1 instead of Ĝ(r̂) = (4π ∥x− ŷ∥)−1. Using
this trick, we avoid the evaluation of the additional singular terms due to the method
of images.
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5.2. Free surface

Figure 5.11: Sketch of a partially emerged ship and its image with re-
spect to surface (S).

Validation: Z-BEM with a partially emerged sphere.

We first validate the Z-BEM for an acoustic scattering problem in the case where
an obstacle is partially emerged. We consider a similar 3D validation case as in
Section 5.2.1. A sphere Ω of radius R = 0.8m with a boundary ∂Ω = Γ, is partially
immersed in an acoustic domain Ωf , as schematised in Figure 5.12. The centre of the
sphere is placed at Zdepth = 0.4m (above the free surface (S)). A point source fixed
in the interior domain Ω. The point source produces an acoustic field ϕ equal to
the 3D transient fundamental acoustic solution G. We solve the boundary integral
equation for an exterior Dirichlet problem:

H̃
{
Φ̃
}
(x) = −G̃ {q̃} (x) ∀x ∈ Γ

where H̃ and G̃ are the boundary operators modified with the half-space Green’s
function, Φ̃ :=

(
ϕ+ ϕ̂

)
is the datum evaluated on both the surface Γ and its sym-

metric Γ̂, and q̃ is the unknown. We verify that q̃ =
(
∂nG+ ∂nĜ

)
. The HFA does

not change and is still defined by (51). The geometrical and physical parameters
are listed in Table 5.6. Nt = 234 time steps are used to discretised the time interval,
El = 9049 BEM elements are used to discretise the boundary and 40 frequency
BEM problems are solved before using the HFA.

Name cf ρf xcentre xsource ∆t Tmax

Value 1 1000 [0; 0; 0.4] [0;−0.05;−0.05] 6 10−2 14
Unity m.s−1 kg.m−3 m m s s

Table 5.6: Fast Z-BEM with half-space Green function: physical proper-
ties for the validation case 5.2.1.
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5.2. Free surface

Figure 5.12: Sketch of a sphere with an interior point source, partially
immersed in a fluid domain bounded by a free surface.

Figure 5.13: Numerical solution ∂nϕ and analytical ∂nG evaluated on
a point of Γ for an acoustic scattering problem with an
emerged sphere.
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Figure 5.13 shows the normal derivative ∂nϕ evaluated with the 3D Z-BEM solver
on a point of the boundary Γ as a function of the time. This numerical solution
is compared to the analytical solution ∂nG. The relative error evaluated on the
time interval [0, T ] is 3 10−2. Although further work will be required to assess the
convergence and efficiency of this Z-BEM procedure adapted for a partially emerged
structure, this first numerical example enables to validate the method. The next step
will be to implement this modified Z-BEM in a FEM/Z-BEM coupling and to solve
simple FSI problems with partially emerged structures. In the future, it will also
be interesting to compare the results obtained for a industrial model of submarine
facing a shock wave, while fully immersed in the water and partially emerged.

5.3 Modelling the interaction between a shock wave
and a submarine

This last section aims at solving an industrial problem related to the main appli-
cation of this PhD work: the fluid-structure interaction between the shock wave
emitted by a far-field underwater explosion and a realistic submarine hull. The pur-
pose is to demonstrate that the numerical coupling method we developed is robust
in an industrial context.

As described in the introduction, a conventional underwater explosion produces
two physical phenomena. It generates first a shock wave, propagating in the water
at almost the sound speed. And in a second time, an oscillating gas bubble is
produced. Its oscillations, due to a difference between its internal and external
pressures, generates flows of heavy fluid, and secondary pressure waves are created
when the bubble is the most contracted, as schematised in Figure 2. During a far-
field explosion, the explosion charge is smaller or it is located far enough from the
ship so that the primary impact of the explosion comes from the shock wave, and the
ship’s structural response is limited to elastic deformations. For a far-field explosion,
the bubble migrates to the free surface without having its movement disturbed by
the presence of the structure. As a remark, we stress out that the term "far-field"
is distinct from the notion of "far" in classical wave propagation theory.

When modelling the far-field UNDEX, there are two important assumptions: (i)
the shock wave and the oscillations of gas bubbles are far enough from the submerged
structure, so that they can be modelled without taking into account the presence of
the structure, and (ii) they occur on sufficiently distinct time scales and thus affect
the ship separately.

In this work we focus on the first phenomenon, the primary shock wave and
on its simulation. However, it should be remembered that the two phenomena are
physically linked because they are due to the same explosion and that it is essential
to consider both to obtain a realistic model of the total impact of an explosion on a
naval structure [85, 94]. To model the shock wave, we use a common approximation
used in the naval industry, which is recalled in the next section.
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Modelling of the primary acoustic shock wave

An underwater explosion generally consists in a sudden release of a large quantity of
energy of a chemical nature and immediately releases a shock wave which propagates
in the surrounding water domain at a speed equal to several times the speed of
propagation of acoustic waves in water. After a very short distance, the wave velocity
decays and stabilises at the speed of sound in water (cf = 1500 m/s). During the
first brief supersonic phase, the energy carried by the wave reduces before reaching
a quasi-stable value. Once this stabilised phase is reached, the shock wave is called
primary shock wave. This shock wave occurs at a short time-scale and in the high
frequencies (between 3 and 7 kHz for cf = 1500 m/s). As discussed in [146], a first
approximation of the shock wave model consists in considering that the supersonic
shock wave turns into an acoustic wave that propagates in the fluid at a constant
speed according to the wave equation (2.1). Moreover, the deformations and the
displacements are considered small and the water is a perfect fluid, homogeneous,
isotropic, where the flow is non-viscous and irrotational [48]. The fluid flow admits
a velocity potential ϕ = ϕ(x, t), defined at any time t and any point x by:

v(x, t) = −∇ϕ(x, t)

where v is the fluid velocity field. Under these hypotheses, it is shown in [146] that
the dynamic pressure p is simply reduced to

p = −ρf∂tϕ.

Experimental measurements have been used to determine an expression of the inci-
dent pressure pinc = −ρf∂tϕinc, associated with the primary wave. Different profiles
have been proposed and compared, with large variations in the evaluation of the
shock wave energy [116, 196]. In particular, [85] described the shock wave as a
sudden jump, within less than 10−7 seconds, to a pressure peak pm of 1 to 10 MPa.
This jump is followed by a double-exponential decay of time constant τ between
10−3 and 10−4 seconds:

pinc(t) = 0, t < 0

pinc(t) = pme
−t/τ , 0 ≤ t ≤ τ

pinc(t) = α1e
−β1t/τ + α2e

−β2t/τ , τ ≤ t ≤ 7τ

(5.5)

α1, α2, β1 and β2 are numerical coefficients, obtained from experimental data, that
depend on the type of the explosive material. We adopt this model for our last
numerical example in this section.

Discontinuous shock wave

The shock wave models (5.5) and (5.5) are discontinuous in time and it could cause
regularity problems as a minimal space-time regularity is needed for the global-in-
time iterative algorithm to converge (see Chapter 2). For the acoustic IBVP as (2.20)
to be well-posed, ϕ has to be of sufficient regularity for the variational form of the
problem to be meaningful in the sense of distributions. As the double-exponential
model chosen for the pressure is discontinuous, in practice the incident pressure is

153



5.3. Modelling the interaction between a shock wave and a submarine

regularised by considering that the jump to the magnitude pm is smoothly performed
during a very short time. In this work, we will then consider a double-exponential
model of the shock wave with well-chosen coefficients so it verifies the wave equation,
and we will slightly regularise the pressure jump in order to gain some regularity in
time. For example, we will modify the incident pressure given by (5.5) to make it
vary smoothly from zero to its maximum during a small time interval of τ/20.

Numerical case study: a submarine facing a shock wave

The example we want to consider is an elastic submarine. The geometry is derived
from a modern generic submarine, the BB2, based on a variant of the “Joubert” hull
form design [166]. The mesh, provided by Naval Group Research, is modified to add a
structural volume and also a volume of acoustic FEM elements around the boundary
(see Figure 5.14). The acoustic/elastic finite element mesh has 3 105 elements. The
incident pressure wave is described by (5.5). While all the numerical tools needed to

Figure 5.14: 3D view of the finite element mesh used for the
acoustic/acoustic-elastic FEM/Z-BEM coupling.

solve this industrial problem have now been validated and are available, the analyses
are still in progress.

Limitations of the present FEM/Z-BEM iterative coupling for UNDEX

The main limitation of the acoustic/acoustic-elastic iterative coupling presented here
is the need to mesh an arbitrary truncated volume of fluid around the elastic struc-
ture. As the thickness of this finite element fluid part can be very small, the impact
on the FEM calculation cost is limited. However, this additional finite element mesh
increases the difficulty to generate adapted refined meshes when dealing with com-
plex interface shapes Γ. This difficulty already highlighted in [146] is not overcome
by the global-in-time FEM/Z-BEM coupling method presented here.

154



5.3. Modelling the interaction between a shock wave and a submarine

The iterative coupling method is based on FEM and Z-BEM solvers, both able to
analyse complex geometries. Code_Aster can treat complex mechanical materials.
The Z-BEM solver is limited to linear fluid models and is not adapted for complex
fluid flow. This is not an important limitation, first because in the context of a
far-field UNDEX, during the shock wave propagation, considering the shock wave
as an ideal acoustic wave is propagating in a linear fluid is a fair approximation.
Moreover, one part of fluid around the structure is treated with the FEM. This fluid
part treated with Code_Aster enables to add some local non-linear phenomena as
cavitation. However, as Code_Aster is not a CFD code, it is limited to linear
acoustic models or added matrices models based on a potential fluid approach, and
complex cavitation models are not available. Finally, since the acoustic/acoustic-
elastic global-in-time coupling convergence does not depend on the chosen numerical
methods, this limitation could be overcome by using a different FEM solver instead
of Code_Aster.

Regarding our numerical implementation, Code_Aster has many advantages,
including the possibility of using a very large number of material behaviour models,
which is very useful to model the structure response to an UNDEX. In addition,
as it is a free software, it is highly modular and improvements adapted to user
requests are constant. Finally, the possibility of using non-homogeneous Robin
boundary conditions in an acoustic domain is essential to implement a global-in-
time iterative FEM/Z-BEM coupling. However, a major drawback is the imposition
of non-homogeneous variable loads. As detailed in Section 5.1, the manipulation of
space-time data files is difficult to implement and the resulting procedure is very
time-consuming. The communication step between the two solvers at each iteration
is therefore limiting and cannot currently be improved. The method proposed in
this chapter does allow Code_Aster to be coupled with a Z-BEM solver, but the
manipulation of space-time data files is difficult to implement and the resulting
procedure is very time-consuming. The communication step between the two solvers
at each iteration is therefore limiting and cannot currently be improved. In an
industrial context, it will be essential to improve and speed up this part. Future
python functions are planned to be added to Code_Aster, which would probably
make it easier to manipulate data arrays.

155



5.4. Conclusion

5.4 Conclusion

Based on the algorithms developed in Chapters 2 to 4, this Chapter presented some
improvements and industrial applications of the global-in-time acoustic/acoustic-
elastic iterative method.

We have shown the capabilities of the algorithm to treat realistic industrial FSI
problems. We have shown that it allows to use solvers in a black-box manner. We
have used the FEM solver Code_Aster as an illustration and detailed a way to
couple it with a Z-BEM solver. We have also shown that the algorithm enables to
treat large and complex problems involving complex geometries and high frequency
loading. The iterative FEM/Z-BEM coupling has these characteristics thanks to an
optimal choice of the Robin coupling parameter in each subdomain, of acceleration
methods in the Z-BEM solver (H-matrices, HFA, parallel solution of the frequency
BEM problems, re-use of the BEM operators at each iteration) and of an optimal
definition of the acoustic/acoustic coupling interface, allowing to reduce the volumic
FEM mesh to the minimal distance. A first numerical proof of concept for the
FEM/Z-BEM coupling is given by considering a pressurised elastic hollow sphere
immersed in a linear fluid domain.

To model submarines located near the free-surface and also partially emerged
ships, we have extended the method to the case of an half-space. Using the method
of images, we have modified the Green’s function in the Z-BEM solver to take into ac-
count the free surface boundary condition. We have validated this improved Z-BEM
combined with the H-matrix method by simulating the behaviour of a deformable
spherical elastic hull immersed in an acoustic domain.
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Conclusions and perspectives

This work proposes a global-in-time domain decomposition method well-suited
for FSI problems. The main application we have in mind is the design of naval struc-
tures subjected to underwater explosion. This work has been supported by fundings
from the French company Naval Group Research and the Direction Générale de
l’Armement (DGA) (through the Agence de l’Innovation de Défense (AID)). We
first emphasise our contributions both in terms of theoretical and numerical devel-
opments.

Main algorithmic and theoretical results.

Chapter 1 highlights the existence of various domain decomposition methods for
transient problems. We stress that the use of modified boundary conditions generally
improves the algorithm convergence and we highlight in particular the advantages of
the Robin boundary conditions. It is nowadays clear that the use of Robin boundary
conditions in each subdomain improves the convergence rate compared to Neumann
or Dirichlet ones. But the challenge is to determine the optimal coupling parameters
in these Robin conditions. Different methods exist and there are still a lot of ongoing
research on how to choose the coupling parameters. Our literature review also shows
that, until this work, there was no global-in-time iterative domain decomposition
method adapted to the modelling of transient acoustic/elastic problems.

Chapter 2 is one of our most significant contribution. It concerns the mathe-
matical analysis of a general time-domain acoustic–elastic interaction problem. We
consider the scattering of a time-domain acoustic wave by a bounded elastic ob-
stacle which is immersed in a homogeneous fluid and we provide existence and
uniqueness results, as well as continuous data-to-solution maps. Solvability results
are established for three cases, which differ by the assumed regularity in space of
the transmission data on the acoustic-elastic interface. We then introduce a Robin-
Robin global-in-time iterative procedure, inspired from Schwarz Waveform Relax-
ation methods, adapted to acoustic/elastic transient problems and based on Robin
boundary conditions in each subdomain. We also provide the convergence proof
of the iterative method. These Robin-Robin global-in-time iterations have a guar-
anteed convergence, which does not depend in practice on the chosen numerical
methods.
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We propose a proof of concept of the method for coupled FSI problems using
a global-in-time FEM/Z-BEM coupling in Chapter 3. We numerically solve simple
2D scattering problems to illustrate the algorithm convergence and optimise its be-
haviour. Semi-analytical solutions enable to validate the global-in-time algorithm,
but also to explicitly characterise the algorithm convergence speed in a particular
case, and thus to optimise it. In particular, we show that optimal Robin coupling
parameters can be defined according to the physics, in terms of acoustic and elastic
impedances. The Robin parameters are easy to choose and do not require compli-
cated tuning to get an efficient convergence rate. It is a major advantage compared
to many classical step-by-step DDMs. We also propose a high-frequency approxi-
mation adapted to Robin boundary conditions, that allows to considerably improve
the Z-BEM procedure.

We then propose an acoustic/acoustic-elastic global-in-time iterative method
based on Robin boundary conditions in each subdomain. We provide the conver-
gence proof of the iterative method. This alternative method has a guaranteed
convergence and allows to solve FSI problems with a different domain decomposi-
tion.

We finally carry out more realistic 3D simulations. The underwater explosions
applications presented in Chapter 5 confirm the efficiency of the FEM/Z-BEM
global-in-time coupling and the possibility to use it in an industrial context, with
commercial solvers. To be able to consider more realistic configurations, the iter-
ative method are improved by introducing the possibility to treat surface ships or
partially emerged submarines thanks to the use of an half-space Green function in
the Z-BEM method.

Main numerical developments.

Even though this work was not started from scratch, important numerical develop-
ments have been done to illustrate the efficiency of the proposed algorithm.

A FEM/Z-BEM code has been developed in Matlab to obtain the 2D results
presented in Chapters 2 and 3. This program solves 2D transient acoustic-elastic
problems using a FEM solver and a Z-BEM solver accelerated by the H-matrix
method. The main software development contributions are:

• The 2D FEM program used is the one of [25]. We have nevertheless imple-
mented some improvements to allow the use of a boundary mass matrix, of
Robin boundary conditions and the solution of acoustic-elastic FEM prob-
lems. Two versions of the solver are available, either to solve elastic FEM
problems (in the context of an acoustic/elastic iterative coupling method as
described in Chapter 2) or acoustic/elastic FEM problems (in the context of an
acoustic/acoustic-elastic iterative coupling method as described in Chapter 4).

• A fast 2D Z-BEM solver has been implemented from scratch. It is based on a
fast frequency domain BEM solver for Helmholtz problems (accelerated with
the H-matrix method). The Z-BEM algorithm has then been implemented to
recover the time-domain solution (see Appendix E). To improve the program
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efficiency, the frequency BEM solutions are computed in parallel and a high-
frequency approximation is implemented.

• The coupling FEM/Z-BEM procedure consists in an initialisation script which
computes and stores the H-matrix structures for the complex frequencies lower
than the cut-off frequency chosen for the HFA. Then a second script calls both
solvers in parallel and computes at each iteration the new Robin boundary
data. There are two versions for this procedure, for the acoustic/elastic itera-
tive method and for the acoustic/acoustic-elastic iterative method respectively.
The user can use both versions with or without an Aitken’s acceleration algo-
rithm.

The 3D results presented in Chapter 5 have been obtained through a coupling
between a Matlab BEM solver and Code_Aster for the FEM part.

• A 3D Z-BEM solver has been developed from an existing fast frequency BEM
solver for Laplace problems. This solver has been adapted for Helmholtz equa-
tions, and the Z-BEM algorithm has then been implemented to recover the
time-domain solution. We have also added a free-surface option, allowing to
use this solver for half-space problems.

• In Code_Aster, a python routine has been developed to take into account
non-homogeneous space-time pressure loading (see Section 5.1.2).

• The coupling FEM/Z-BEM procedure has been developed with Matlab and
Python. It consists of an initialisation script which defines two mesh files, one
volumic mesh readable by Code_Aster and one surface mesh of the coupling
interface. The program then contains a second bash script that calls in parallel
and in command line, the command files for each FEM and Z-BEM solvers.
This script also computes at each iteration the new Robin boundary data and
saves it as text format.

Although the efficiency of the mentioned codes can be improved in many ways,
these developements enabled us to derive a concrete proof of concept of the Robin-
Robin global-in-time iterative methods, which is promising for future use in indus-
trial applications.

Directions for future work.

This work results in two efficient convergent iterative methods to solve transient
fluid-structure interaction problems. A first application of this work consists in
an efficient iterative FEM/Z-BEM method. Even though it is already an efficient
algorithm, there are still room for improvement.

Numerical improvements of the FEM/Z-BEM procedure. To use this
FEM/Z-BEM coupling procedure in an industrial context, some improvements can
be proposed. Among the possibilities, we could consider non-matching volume and
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surface meshes for the FEM and the Z-BEM part, in order to avoid an overly re-
fined FEM mesh. This can be done with a mesh interpolation procedure. Finally
the current manipulation of space-time data files in Code_Aster results in a very
time-consuming procedure. Future python functions are planned to be added to
Code_Aster, which will probably make it easier to manipulate data arrays and open
new possibilities to accelerate this part of the procedure.

A very interesting prospect is also to consider a Z-BEM adapted to non-zero
initial conditions. This improvement would enable to consider a problem over a
long time interval in several short sub-intervals and to solve them in parallel. By
choosing the time discretisation of these sub-problems with the same time step and
the same number of time steps, the same complex frequencies and therefore the same
H-mat structures could be reused in the Z-BEM. This would considerably reduce
the computational cost. Further work is still needed in this direction to adapt the
Z-BEM procedure.

Industrial application to underwater explosions. We aim at integrating the
results of this research in an internal tool for the structural design of the fluid-
structure interaction between a far-field underwater explosion and submarines or
surface ships, which would be used by Naval Group to treat the whole UNDEX
phenomena, i.e. the shock wave and the bubble movement, in an unified way. This
implies to work on the junction between the two phenomena. Numerical smoothing
procedures can be used [146], but there is still no clear method to blend the two
phases for realistic configurations.

We developed a FEM/Z-BEM solver to model scattering problems caused by the
shock waves of far-field underwater explosions. In this context, we could improve
the model to consider more realistic underwater explosion problems. Unlike the sub-
marines, in the case of a surface ship the shock wave also creates a non-linear cavi-
tation phenomenon in the fluid near the hull. It can severely damage the structure.
Cavitation consists in a rapid formation and collapse of gas bubbles in the water,
which occurs when the pressure of the water drops below the vaporisation pressure.
In this case, the boiling temperature can decrease to the ambient temperature of

Figure 5.15: Cavitation region treated with finite elements in an under-
water explosion event.

the liquid, which leads to the formation of gas bubbles. In the case of submarines
the pressure of the surrounding fluid is high enough to prevent cavitation. But for
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surface vessels or submarines stationed near the surface, this phenomenon cannot
be neglected [201]. An implementation of this phenomena in the fluid FEM part
within the acoustic/acoustic-elastic iterative method would be a useful addition to
this work. To achieve this, a non-linear behaviour law has to be considered for the
fluid in the acoustic domain modelled with acoustic finite elements. We could choose
a non-linear fluid pressure model as described for example in [138]. The distance
between the acoustic/acoustic coupling interface and the boundary of the ship would
then be defined physically, as the region in which cavitation usually occurs (Figure
5.15).
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Appendices

A Semi-analytical solution for a radially symmetric
2D test case

A.1 Acoustic-elastic analytical solution

In Section 3.3, we consider the radially symmetric 2D annular elastic solid repre-
sented on Figure 3.4. This elastic ring Ωs of interior and exterior radius Rint and
Rext is immersed in a acoustic fluid (mass density ρf , acoustic wave velocity cf )
occupying the unbounded fluid region Ωf := R2 \Ωs. We assume 2D conditions and
plane strain deformations for the solid. Both media are at initial rest. A uniform
internal pressure pint(t) is prescribed on the interior surface Γint, which creates a de-
formation in the elastic solid and a radiated FSI problem on the exterior interface.
This coupled FSI problem admits a known semi-analytical solution. The potential
fluid has a time dependent velocity potential ϕ(t), a velocity v(t) = ∇ϕ(t) and a
pressure p(t) = −ρf∂tϕ(t) ∀t ∈ [0, T ]. The solid variables are the displacement u
and the stress vector t := σ[u].n.
Semi-analytical coupled solution. Semi-analytical solutions are often used in the
UNDEX field. The method consists in solving a wave equation with a decomposition
of the solution on an infinite base of Bessel’s functions. Each coefficient of the
decomposition verifies the equation, and the solution is then approximated with a
truncated summation. An example in the context of UNDEX is given by [126].
For an elastic annulus of interior and exterior radius a and b, embedded in an
unbounded acoustic fluid, the solid displacement u and fluid velocity potential ϕ
verify the following system of equations:

∆ϕ− 1

c2f
∂ttϕ = 0 in Ωf × [0, T ]

∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
=

1

c21

∂2u

∂t2
in Ωs × [0, T ][

λ

ν

(
(1− ν)

∂u

∂r
+ ν

u

r

)]
(a, t) = −pint(t) on Γint × [0, T ][

λ

ν

(
(1− ν)

∂u

∂r
+ ν

u

r

)]
(b, t) = −ρf∂tϕ(b, t) on Γ× [0, T ]

∂tu(b, t) = ∂rϕ(b, t) on Γ× [0, T ]

where λ, µ are the Lamé elastic constants, c1 =
√

(λ+ 2µ)/ρs is the compression
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wave velocity. By taking the Laplace transform, the system becomes

∆ϕ− 1

c2f
s2ϕ = 0 in Ωf (a)

∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
=

1

c21
s2u in Ωs (b)[

λ

ν

(
(1− ν)

∂u

∂r
+ ν

u

r

)]
(a, s) = −pint(s) on Γint (c)[

λ

ν

(
(1− ν)

∂u

∂r
+ ν

u

r

)]
(b, s) = −ρfsϕ(b, s) on Γ (d)

su(b, s) = ∂rϕ(b, s) on Γ (e)

where p, u and ϕ are the Laplace transforms of p, u and ϕ. The second-order homo-
geneous differential equations (a) and (b) are the modified Bessel equations of order
1 and 0, respectively, such that

u(r, s) = A(s)I1(
rs

c
) +B(s)K1(

sr

c
), ϕ(r, s) = C(s)K0(

sr

c
) (6)

with ϕ containing no term with I0 to enforce its decay as r → ∞ and where I1, K1, K0

are modified Bessel functions. The variables of the coupled problem expressed with
the modified Bessel functions are:

u0(r, s) = A0I1(
sr
c
) +B0K1(

sr
c
)

p0(r, s) = −ρfsC0K0(
sr
cf
)

v0(r, s) = ∂rϕ(r, s) = − s
cf
C0K1(

sr
cf
)

t0(r, s) = A0[
λ
ν
(1− ν) s

c
I ′1(

sr
c
) + λ

r
I1(

sr
c
)] +B0[

λ
ν
(1− ν) s

c
K ′

1(
sr
c
) + λ

r
K1(

sr
c
)]

with c2 = λ(1−ν)
λρs

. The boundary condition (c) and kinematic and dynamic conditions
(d) and (e) imply that the constants A, B and C solve the equations:

λ
ν
(1− ν)

[
A(s) s

c
I ′1
(
sa
c

)
+B(s) s

c
K ′

1(
sa
c
)
]
+ λ

a

[
A(s)I1

(
sa
c

)
+B(s)K1

(
sa
c

)]
= −pint(s)

λ
ν
(1− ν)

[
A(s) s

c
I ′1
(
sb
c

)
+B(s) s

c
K ′

1(
sb
c
)
]
+ λ

b

[
A(s)I1

(
sb
c

)
+B(s)K1

(
sb
c

)]
= −ρfC(s) bcfK1

(
sb
cf

)
sA(s)I1(

sb
c
) + sB(s)K1

(
sb
c

)
= −C(s) s

cf
K1

(
sb
cf

)
that correspond to the matrix system:

[M ]

A(s)B(s)

C(s)

 =

−p
int(s))

0

0

 (7)

with [M ] defined by

[M ] =


λ
ν
(1− ν) s

c
I ′1
(
sa
c

)
+ λ

a
I1
(
sa
c

)
λ
ν
(1− ν) s

c
K ′

1

(
sa
c

)
+ λ

a
K1

(
sa
c

)
0

λ
ν
(1− ν) s

c
I ′1
(
sb
c

)
+ λ

b
I1
(
sb
c

)
λ
ν
(1− ν) s

c
K ′

1

(
sb
c

)
+ λ

b
K1

(
sb
c

)
−sρfK0

(
sb
cf

)
cfI1

(
sb
c

)
cfK1

(
sb
c

)
K1

(
sb
cf

)


178



A. Semi-analytical solution for a radially symmetric 2D test case

We will denote [P ] :=
{
−pint(s); 0; 0

}
. We then use the relations

K ′
0 (z) = −K1 (z) , I

′
1 (z) = I0 (z)−

1

z
I1 (z) and K ′

1 (z) = −K0 (z)−
1

z
K1 (z)

Moreover, the modified Bessel functions admit the large-argument expansions (see
[163], Sec 10.40):

In(z) =
ez

(2πz)1/2

(
1 +O

(
1

z

))
, Kn(z) =

πe−z

(2πz)1/2

(
1 +O

(
1

z

))
|z → ∞| (8)

For large values of the argument z when |z| → ∞, In(z), Kn(z) can’t be numerically
evaluated with a good accuracy because of the exponential behaviour. To address
this problem, let normalise the versions În, K̂n of In and Kn be defined by

În(z) := e−Re(z)In(z), K̂n(z) := ezKn(z)

where we rely on the assumption that Re(z) ≥ 0. Expressing the asymptotic expan-
sions (8) in terms of În, K̂n, we obtain

În(z) =
eiIm(z)

(2πz)1/2

(
1 +O

(
1

z

))
, K̂n(z) =

( π
2z

)1/2(
1 +O

(
1

z

))
|z| → ∞

These expressions depend on z1/2 which is smoother and thus allows to evaluate
large values of the argument z. The system (7) can then be recast in terms of În, K̂n

with normalised coefficients Â, B̂ and Ĉ :

Â(s) := eRe(
sb
c
)A(s), B̂(s) := e−

sa
c B(s), Ĉ(s) := e

− sb
cf C(s)

With these definitions and denoting l = λ
ν
(1 − ν), za = sa

c
and zb =

sb
c

the system
(7) becomes:
eRe(za−zb)

[
l sc Î1

′
(za) +

λ
a Î1 (za)

]
l sc K̂1

′
(za) +

λ
a K̂1 (za) 0

l sc Î1
′
(zb) +

λ
b Î1(zb) e(za−zb)

[
l sc K̂1

′
(zb) +

λ
b K̂1(zb)

]
−sρf K̂0

(
sb
cf

)
Î1 (zb) e(za−zb)K̂1 (zb)

1
cf
K̂1

(
sb
cf

)

Â(s)B̂(s)

Ĉ(s)

 = [P ]

(9)
and the solutions take the form:

u(r, s) = Âe−Re(
s(r−b)

c
)Î1

(sr
c

)
+ B̂e

s(a−r)
c K̂1

(sr
c

)
(10)

ϕ(r, s) = Ĉe
s(b−r)

cf K̂0

(
sr

cf

)
(11)

These solutions in the Laplace domain are used to proceed the synthesis of the
corresponding time-domain solution. (9) shows that the coefficients (A,B,C) are
proportional to the Laplace transform P (s), for every complex frequency s. From
expression (6) there exist functions U(r, s) and Φ(r, s) such that

u(r, s) = U(r, s)P (s) and ϕ(r, s) = Φ(r, s)P (s)
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with U(r, s) and Φ(r, s) that depend on reference coefficients (A0, B0, C0) according
to

U(r, s) = A0(s)Î1

(sr
c

)
+B0(s)K̂1

(sr
c

)
and Φ(r, s) = C0(s)K̂0

(
sr

cf

)

A(s) = A0(s)p(s)

B(s) = B0(s)p(s)

C(s) = C0(s)p(s)

With this decomposition the solution (6) is thus the Laplace image of a time con-
volution. It can then be numerically evaluated at discrete times using the inverse
Z-transform. This semi-analytical solution will be used as a reference validation
solution for checking the numerical iterative coupling algorithms, for example in
Section 3.3 and 4.5.1.

In the case where a decomposition of the fluid variables into reflected and radiated
components is used (ϕ = ϕinc + ϕref + ϕrad), the reflected solution can be obtained
with a similar method and different boundary condition, and the radiated solution
is then obtained by linear superposition, subtracting the reflected solution from the
complete coupling solution.

Reflected semi-analytic solution. The reflected solution is used for example to
validate the acoustic-elastic FEM solver on a reflection FSI problem in Section 3.3.
Let ur denote the displacement in the annular solid domain subjected to the same
incident pressure. We now impose a zero displacement on the exterior surface Γ.
The solution to this problem is a reflected solution by analogy to the decomposition
of the acoustic field used for solving FSI problems generated by incident shock waves.
After a Laplace transform, the reflected solution satisfies:

[
∂2ur

∂r2
+

1

r

∂ur

∂r
− ur

r2

]
(r, s) =

1

c21
s2ur(r, s) in Ωs (a)[

λ

ν

(
(1− ν)

∂ur

∂r
+ ν

ur

r

)]
(a, s) = −pint(s) on Γint (b)

ur(b, s) = 0 on Γ (c)

It is therefore given by

ur(r, s) = AR(s)I1(
rs

c
) +B(s)K1(

rs

c
)

where the constants AR, BR solve the equation[
λ
ν
(1− ν) s

c
I ′1(

as
c
) + λ

a
I1(

as
c
) λ

ν
(1− ν) s

c
K ′

1(
as
c
) + λ

a
K1(

as
c
)

I1(
bs
c
) K1(

bs
c
)

]{
AR

BR

}
= {P}

with {P} :=

{
−pint(s)

0

}
. On setting the normalised coefficients ÂR, B̂R to

ÂR(s) := eRe(
sb
c
)AR(s), B̂R(s) := e−

sa
c BR(s)
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and using again the normalised modified Bessel functions, the system becomes[
eRe( s(a−b)

c
)
[
λ
ν
(1− ν) s

c
Î1

′
(as
c
) + λ

a
Î1(

as
c
)
]

λ
ν
(1− ν) s

c
K̂1

′
(as
c
) + λ

a
K̂1(

as
c
)

Î1(
bs
c
) e

s(a−b)
c K̂1(

bs
c
)

]{
ÂR

B̂R

}
= {P}

while the solution ur(r, s) is given by

ur(r, s) = eRe( s(r−b)
c

)ÂR(s)Î1(
sr

c
) + e(

s(a−r)
c

)B̂R(s)K̂1(
sr

c
) (12)

Radiated semi-analytical solution. Finally, we define urad(r, s) := u − ur, a
radiating displacement responsible for setting the fluid into (radiating) motion. In
the Laplace domain and by virtue of linear superposition, the radiated solution is
obtained by subtracting the reflected solution (12) from the complete solution (10).
The reflected elastic displacement is thus given in the solid domain (0 < r < b) by

urad(r, s) = eRe( s(r−b)
c )

(
Â− ÂR

)
Î1

(sr
c

)
+ e(

s(a−r)
c )

(
B̂ − B̂R

)
K̂1

(sr
c

)
and in the same way, in the fluid domain, for any r > b:

ϕ
rad

(r, s) = e
s(b−r)

cf ĈK̂0

(
sr

cf

)

A.2 Acoustic/acoustic-elastic analytical solution

In Section 4.5, we consider another configuration: the radially symmetric 2D annular
elastic solid represented is immersed in a fluid and a coupling acoustic-acoustic
interface is at a distance r = d from the elastic boundary as represented on Figure 16.
This elastic ring Ωs

i of interior and exterior radius Rint and Rext is immersed in a
acoustic interior fluid Ωf

i (mass density ρf , acoustic wave velocity cf ) bounded by
Γi
⋂

Γe. An unbounded fluid region is defined Ωe := R2 \ (Ωs

⋂
Ωf
i ). We assume

2D conditions and plane strain deformations for the solid. Both media are at initial
rest. A uniform internal pressure pint(t) is prescribed on the interior surface Γint.
Two time dependent velocity potentials are defined for the interior and exterior fluid
domains : ϕi(t) and ϕe(t), two velocities vi(t) = ∇ϕi(t), ve(t) = ∇ϕe(t), and two
pressures pi(t) = −ρf∂tϕi(t) and pie(t) = −ρf∂tϕe(t) ∀t ∈ [0, T ]. The solid variables
are the displacement u and the stress vector t := σ[u].n.

Semi-analytical coupled solution. Following the same method as in the previous
section for an elastic annulus of interior and exterior radius a and b, embedded in
an unbounded acoustic fluid and with an acoustic-acoustic interface of radius d,
the solid displacement u and fluid velocity potentials ϕi and ϕe verify the following
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Figure 16: Radially-symmetric pressurised annulus with a finite element
mesh for the interior acoustic-elastic domain and BEM ele-
ments for the exterior acoustic domain.

system of equations:

∆ϕi −
1

c2f
∂2t ϕi = 0 in Ωf

i × [0, T ]

∆ϕe −
1

c2f
∂2t ϕe = 0 in Ωe × [0, T ]

∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
=

1

c21

∂2u

∂t2
in Ωs

i × [0, T ][
λ

ν

(
(1− ν)

∂u

∂r
+ ν

u

r

)]
(a, t) = −pint(t) on Γint × [0, T ][

λ

ν

(
(1− ν)

∂u

∂r
+ ν

u

r

)]
(b, t) = −pi(b, t) on Γi × [0, T ]

∂tu(b, t) = ∂rϕi(b, t) on Γi × [0, T ]

− ρf∂tϕi(d, t) = −ρf∂tϕe(d, t) on Γe × [0, T ]

∂rϕi(d, t) = ∂rϕe(d, t) on Γe × [0, T ]

where λ, µ are the Lamé elastic constants, c =
√

(λ+ 2µ)/ρs is the compression
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wave velocity. By taking the Laplace transform, the system becomes

∆ϕi −
1

c2f
s2ϕi = 0 in Ωf

i (a)

∆ϕe −
1

c2f
s2ϕe = 0 in Ωe (b)

∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
=

1

c21
s2u on Ωs

i (c)[
λ

ν

(
(1− ν)

∂u

∂r
+ ν

u

r

)]
(a, s) = −pint(s) on Γint (d)[

λ

ν

(
(1− ν)

∂u

∂r
+ ν

u

r

)]
(b, s) = ρfsϕi(b, s) on Γi (e)

su(b, s) = ∂rϕi(b, s) on Γi (f)

− ρfsϕi(d, s) = −ρfsϕe(d, s) on Γe (g)

∂rϕi(d, s) = ∂rϕe(d, s) on Γe (h)

where pi, pe, u, ϕi, ϕe and are the Laplace transforms of pi, pe, u, ϕi and ϕe. The
second-order homogeneous differential equations (a), (b) and (c) are modified Bessel
equations of order 1 and 0, respectively, such that

u(r, s) = A(s)I1

(sr
c

)
+B(s)K1

(sr
c

)
,

ϕi(r, s) = C(s)K0

(
sr

cf

)
+D(s)I0

(
sr

cf

)
, and ϕe(r, s) = E(s)K0

(
sr

cf

)
with ϕe containing no term with I0 to enforce its decay as r → ∞ and where
I1, K1, K0 are modified Bessel functions. The variables of the coupled problem ex-
pressed with the modified Bessel functions are:

u0(r, s) = A0I1(
sr
c
) +B0K1(

sr
c
)

p0i (r, s) = −ρfsC0K0

(
sr
cf

)
− ρfsD0I0

(
sr
cf

)
p0e(r, s) = −ρfsE0K0

(
sr
cf

)
v0i (r, s) = − s

cf
C0K1

(
sr
cf

)
+ s

cf
D0I1

(
sr
cf

)
v0e(r, s) = − s

cf
E0K1

(
sr
cf

)
t
0
(r, s) = A0[

λ
ν
(1− ν) s

c
I ′1(

sr
c
) + λ

r
I1(

sr
c
)] +B0[

λ
ν
(1− ν) s

c
K ′

1(
sr
c
) + λ

r
K1(

sr
c
)]

with c2 = λ(1−ν)
λρs

. The boundary condition (d), (e), (f) and the kinematic and
dynamic conditions (g) and (h) imply that the constants A, B, C, D and E solve
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A. Semi-analytical solution for a radially symmetric 2D test case

the five equations:

l
[
A(s) scI

′
1

(
sa
c

)
+B(s) scK

′
1(
sa
c )
]
+ λ

a

[
A(s)I1

(
sa
c

)
+B(s)K1

(
sa
c

)]
= −pint(s)

l
[
A(s) scI

′
1

(
sb
c

)
+B(s) scK

′
1(
sb
c )
]
+ λ

b

[
A(s)I1

(
sb
c

)
+B(s)K1

(
sb
c

)]
= ρfsC(s)K0

(
sb
cf

)
+ρfsD(s)I0

(
sb
cf

)
sA(s)I1(

sb
c ) + sB(s)K1

(
sb
c

)
= −C(s) scfK1

(
sb
cf

)
+D(s) scf I1

(
sb
cf

)
−ρfsC(s)K0

(
sd
cf

)
− ρfsD(s)I0

(
sd
cf

)
= −ρfsE(s)K0

(
sd
cf

)
−C(s) scfK1

(
sd
cf

)
+D(s) scf I1

(
sd
cf

)
= −E(s) scfK1

(
sd
cf

)
with l := λ

ν
(1− ν). This corresponds to the matrix system

[M ]


A(s)

B(s)

C(s)

D(s)

E(s)

 =


−pint(s))

0

0

0

0

 (13)

with [M ] being

l s
c
I ′1
(
sa
c

)
+ λ

a
I1
(
sa
c

)
l s
c
K ′

1

(
sa
c

)
+ λ

a
K1

(
sa
c

)
0 0 0

l s
c
I ′1
(
sb
c

)
+ λ

b
I1
(
sb
c

)
l s
c
K ′

1

(
sb
c

)
+ λ

b
K1

(
sb
c

)
−sρfK0

(
sb
cf

)
−sρfI0

(
sb
cf

)
0

cfI1
(
sb
c

)
cfK1

(
sb
c

)
K1

(
sb
cf

)
I1

(
sb
cf

)
0

0 0 ρfsK0

(
sd
cf

)
−ρfsI0

(
sd
cf

)
ρfsK0

(
sd
cf

)
0 0 − s

cf
K1

(
sd
cf

)
s
cf
I1

(
sd
cf

)
s
cf
K1

(
sd
cf

)


We use the relationsK ′

0 (z) = −K1 (z) , I
′
0 (z) = I1 (z) , I

′
1 (z) = I0 (z)−1

z
I1 (z) and K ′

1 (z) =
−K0 (z)− 1

z
K1 (z), the large-argument expansions for the modified Bessel functions

and the normalised the versions În, K̂n of In and Kn as defined in Appendix A.1.
The system (13) can then be recast in terms of În, K̂n with normalised coefficients
Â, B̂, Ĉ, D̂ and Ê:

Â(s) := eRe(
sb
c
)A(s), B̂(s) := e

sa
c B(s)

Ĉ(s) := e
sb
cf C(s), D̂(s) := e

−Re( sd
cf

)
D(s), Ê(s) := e

sd
cf E(s)

With these definitions and denoting α := eRe(za−zb)
[
l s
c
Î1

′
(za) +

λ
a
Î1 (za)

]
, za = sa

c
,

zb =
sb
c

, and zd = sd
cf

, [M ] in (13) becomes:

α l s
c
K̂1

′
(za) +

λ
a
K̂1 (za) 0 0 0

l s
c
Î1

′
(zb) +

λ
b
Î1(zb) e(za−zb)

[
l s
c
K̂1

′
(zb) +

λ
b
K̂1(zb)

]
−sρf K̂0

(
sb
cf

)
−sρf e

Re(
s(b−d)

cf
)
Î0

(
sb
cf

)
0

Î1 (zb) e(za−zb)K̂1 (zb)
1
cf
K̂1

(
sb
cf

)
e
Re(

s(b−d)
cf

)
Î1

(
sb
cf

)
0

0 0 e
s(b−d)

cf ρf sK̂0

(
sd
cf

)
−ρf sÎ0

(
sd
cf

)
ρf sK̂0

(
sd
cf

)
0 0 −e

s(b−d)
cf s

cf
K̂1

(
sd
cf

)
s
cf
Î1

(
sd
cf

)
s
cf
K̂1

(
sd
cf

)
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and the solutions take the form

u(r, s) = Âe−Re(
s(r−b)

c
)Î1

(sr
c

)
+ B̂e

s(a−r)
c K̂1

(sr
c

)
ϕi(r, s) = Ĉe

s(b−r)
cf K̂0

(
sr

cf

)
+ D̂e

Re( sr
cf

)−Re( sd
cf

)
Î0

(
sr

cf

)
and

ϕe(r, s) = Êe
s(r−d)

cf K̂0

(
sr

cf

)
These solutions in the Laplace domain are used to proceed the synthesis of the
corresponding time-domain solution. (9) shows that the coefficients (A,B,C,D,E)
are proportional to the Laplace transform P (s), for every complex frequency s.
From (6) there exist functions U(r, s), Φi(r, s) and Φe(r, s) such that

u(r, s) = U(r, s)P (s), ϕi(r, s) = Φi(r, s)P (s) and ϕe(r, s) = Φe(r, s)P (s)

with U(r, s) and Φ(r, s) that depend on reference coefficients (A0, B0, C0, D0, E0)
according to

U(r, s) = A0(s)Î1

(sr
c

)
+B0(s)K̂1

(sr
c

)
,

Φi(r, s) = C0(s)K̂0

(
sr

cf

)
+D0(s)Î0

(
sr

cf

)
and Φe(r, s) = E0(s)K̂0

(
sr

cf

)


A(s) = A0(s)p(s)

B(s) = B0(s)p(s)

C(s) = C0(s)p(s)

D(s) = D0(s)p(s)

E(s) = E0(s)p(s)

With this decomposition with modified Bessel functions the solution is the Laplace
image of a time convolution. It can then be numerically evaluated at discrete times
using the inverse Z-transform. This semi-analytical solution will be used as a refer-
ence validation solution for checking the numerical iterative coupling algorithms in
Section 4.5.1 and Chapter 5.

In the case where a decomposition of the fluid variables with reflected and ra-
diated components is used (ϕ = ϕinc + ϕref + ϕrad), the reflected solution can be
obtained with a similar method and different boundary condition, and the radiated
solution is then obtained by linear superposition, subtracting the reflected solution
from the complete coupling solution.

B Convergence factor evaluation for acoustic/ acoustic-
elastic iterations

In Section 4.5.2 we consider a simple radially-symmetric problem to semi-analytically
estimate the values of the coupling parameters ke and ki that maximises the iterative
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B. Convergence factor evaluation for acoustic/ acoustic-elastic iterations

algorithm speed of convergence. At each iteration i, the acoustic/acoustic-elastic
procedure is based on two Robin transmission conditions of the form{

−ρf∂tϕi+1
e (t) + ke∂nϕ

i+1
e (t) = gie(t)

−ρf∂tϕi+1
i (t)− ki∂nϕ

i+1
i (t) = gii(t)

where ke and ki are the coupling parameters, ge and gi are the boundary terms de-
pending on the variables obtained at the previous iterate. To evaluate the theoretical
convergence speed of the Robin-Robin iterations depending on the coupling and re-
laxation parameters values, we consider the semi analytical-solution (Appendix A)
and the matrix system (13). This matrix system defines five coefficients A, B, C, D
and E characterising the semi-analytical solution. The convergence of the error of
the coupled problem is estimated by expressing, at a fixed frequency s, the matrix
relation between the errors on the coefficients at two successive iterations, in the
form : 

A1 − Aext

B1 −Bext

C1 − Cext

D1 −Dext

E1 − Eext

 = [M ]


A0 − Aext

B0 −Bext

C0 − Cext

D0 −Dext

E0 − Eext


and we aim at determining the matrix [M ]. For a fixed frequency s, we express the
variables of the radiated problem with the modified Bessel functions. The Robin
radiated problem verifies the internal pressure condition on the inner surface (r =
a), the kinematical and dynamical transmission conditions on the acoustic-elastic
interface (r = b) and possibly relaxed Robin conditions on the exterior acoustic-
acoustic interface (r = d). For each complex frequency s these five relations link the
variables of iterations 0 and 1:

t
1
.n = 0 on r = a

t
1
.n = −p0i on r = b

v1i = su0 on r = b

−ρf∂tϕ1
i − ki∂nϕ

1
i = −ρf∂tϕ0

i + kiv
0
i−

2ki
ki + ke

[
sp + ke(v

0
e + sv) + kiv

0
i − ρf∂tϕ

0
i + ρf∂tϕ

0
e

]
on r = d

−ρf∂tϕ1
e + ke∂nϕ

1
e = −ρf∂tϕ0

e − kev
0
e+

2ke
ke + ki

[
sp + ki(v

0
i − sv) + kev

0
e − ρf∂tϕ

0
i + ρf∂tϕ

0
e

]
on r = d

(14)
To rewrite these relations with the modified Bessel functions, we use K ′

0(z) =
−K1(z), I

′
0(z) = I1(z), I

′
1(z) = I0(z) − 1

z
I1(z) and K ′

1(z) = −K0(z) − 1
z
K1(z). At

iteration i the elastic displacement u and the fluid velocity potentials ϕi, ϕe on each
side of the acoustic-acoustic interface are:

ui(s, r) = Ai(s)I1(
sr
c
) +Bi(s)K1(

sr
c
)

ϕii(s, r) = Ci(s)K0(
sr
cf
) +Di(s)I0(

sr
cf
)

ϕie(s, r) = Ei(s)K0(
sr
cf
)
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B. Convergence factor evaluation for acoustic/ acoustic-elastic iterations

We also introduce the short-hand notations

Ti(r) :=

[
l
s

c
I ′1(

sr

c
) +

λ

r
I1(

sr

c
)

]
and Tk(r) :=

[
s

c
K ′

1(
sr

c
) +

λ

r
K1(

sr

c
)

]
.

A1Ti(a) +B1Tk(a) = 0

A1Ti(b) +B1Tk(b) = C0ρf sK0

(
sb

cf

)
+D0ρf sI0

(
sb

cf

)
−C1

s

cf
K1

(
sb

cf

)
+D1

s

cf
I1

(
sb

cf

)
= A0sI1

(
sb

c

)
+B0sK1

(
sb

c

)
C1

[
−ρf sK0

(
sd

cf

)
+
ski

cf
K1

(
sd

cf

)]
+

D1

[
−ρf sI0

(
sd

cf

)
−
ski

cf
I1

(
sd

cf

)]
= C0

[
−ρf sK0

(
sd

cf

)
− ki

s

cf
K1

(
sd

cf

)
+

2ki

ke + ki

(
ki
s

cf
K1

(
sd

cf

)
+ ρf sK0

(
sd

cf

))]
+D0

[
−ρf sI0

(
sd

cf

)
+ ki

s

cf
I1

(
sd

cf

)
−

2ki

ke + ki

(
ki
s

cf
I1

(
sd

cf

)
− ρf sI0

(
sd

cf

))]
+E0

[
−2ki

ke + ki

(
−ke

s

cf
K1

(
sd

cf

)
+ ρf sK0

(
sd

cf

))]
E1

[
−ρf sK0(

sd

cf
)−

ske

cf
K1(

sd

cf
)

]
= C0

[
−2ke

ke + ki

(
s
ki

cf
K1

(
sd

cf

)
+ ρf sK0

(
sd

cf

))]
+D0

[
2ke

ke + ki

(
s
ki

cf
I1

(
sd

cf

)
− ρf sI0

(
sd

cf

))]
+E0

[
−ρf sK0

(
sd

cf

)
+ ke

s

cf
K1

(
sd

cf

)
+

2ke

ke + ki

(
ρf sK0

(
sd

cf

)
− ke

s

cf
K1

(
sd

cf

))]

As these relations are verified by the coefficients of the converged solution Aex, Bex,
Cex, Dex and Eex, they are also verified by the differences A0 − Aex, B0 − Bex,
C0 − Cex, D0 −Dex and E0 − Eex such that we have a system of the form

[
Rg

]

A1 − Aext

B1 −Bext

C1 − Cext

D1 −Dext

E1 − Eext

 =
[
Rd

]

A0 − Aext

B0 −Bext

C0 − Cext

D0 −Dext

E0 − Eext

 (15)

Subtracting the two matrix systems entails the elimination of the boundary terms
h and ν which are independent of the iteration number. As the modified Bessel
functions admit the large-argument expansions (8), when one subtract the converged
solution, it gives the forms of the matrix [Rg] and [Rd]. Then the spectral radius of

[M ] =
[
Rg

]−1 [
Rd

]
is the convergence factor of the algorithm and must be smaller

than 1 to ensure the convergence of the iterations. In fact, the smaller it is, the
faster the convergence rate of the iterative algorithm is

ϱs(s) = max
(
λ

([
Rg

]−1 [
Rd

]))
To determine an optimal value of ke and ki that take into account all the complex
frequencies, we consider as the spectral radius, the maximum of all eigenvalues for all
the complex frequencies. For the acoustic/acoustic-elastic iterations the procedure
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B. Convergence factor evaluation for acoustic/ acoustic-elastic iterations

is similar to the acoustic-elastic iterations in Section 3.3.3. Here the theoretical
convergence factor is

ϱ(ke, ki) = max
s

ϱs(s) (16)

This convergence factor ϱ does not depend on the mesh discretisation or on the
impulsion (Tp value for example).

Relaxation. Taking the relaxation into account, the three equations (14) linking
two successive iterations become



t
1
.n((a, s) = 0

t
1
.n(b, s) = −p0(b, s)
v1(b, s) = su0(b, s)

(−ρf∂tϕ1
i − ki∂nϕ

1
i ) (d, s) = (1− r) [−ρf∂tϕ0

i − ki∂nϕ
0
i ] (d, s) + rg0i (d, s)

(−ρf∂tϕ1
e + ke∂nϕ

1
e) (d, s) = (1− r) [−ρf∂tϕ0

e + ke∂nϕ
0
e] (d, s) + rg0e(d, s)

and only the matrix [Rd] changes.
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C. Proof of solvability for Neumann IBVPs

C Proof of solvability for Neumann IBVPs

We prove the well-posedness for the acoustic and elastic Neumann IBVPs (2.20)
and (2.19) given by Theorem 2.3.2. The approach follows the same steps as that
of the FSIP (2.4) in Section 2.7. We first assume a sufficient regularity in the data
with respect to time to allow the existence of classical time derivatives wherever
needed. We reformulate the evolution problem as a first-order in time, and prove the
existence and uniqueness of the strong solution using the Hille-Yosida theorem. We
then use energy identities to extend the solvability results to a problem in weak form,
assuming lower data regularity. To illustrate the steps of the proof of solvability we
consider an acoustic Neumann IBVP of the form

−∆ϕ+ ∂2t ϕ = 0 in Ω× [0, T ],

∂nϕ = g in Γ× [0, T ],

ϕ(0) = ∂tϕ(0) = 0 in Ω.

(17)

Initial rest is assumed since the FSIP of interest is to be solved under that assumption
and we use the same space and norm definitions as introduced in Section 2.2. We
prove the well-posedness of problem (17) and focus on how the solvability depends
on the Neumann datum g.

Existence and uniqueness of a strong solution.

(i) First-order form of the Neumann IBVP.
In preparation to applying the Hille-Yosida theorem, we begin by recasting the
IBVP (17) in first-order form, setting ψ := ∂tϕ to treat the velocity as a separate un-
known. The system (17) yields the following first-order system for U(t) := (ϕ, ψ) (t):

U′ + AU = 0 in Ω× [0, T ], U(0) = 0 in Ω, BU = g in Γ× [0, T ]. (18)

where g is the boundary data. The unbounded differential operator A in Ω×Ω and
the boundary operator B are defined by

AU =

{
−ψ
−∆ϕ

}
and BU = ∂nϕ. (19)

Due to the form of U, we define the Hilbert space H by

H := H1(Ω)× L2(Ω)

equipped with the scalar product

(U, Ũ)H := a(ϕ, ϕ̃) + b(ϕ, ϕ̃) + b(ψ, ψ̃), (20)

using the bilinear forms (2.6). We note that the norm ∥·∥H arising from (20) is
equivalent to the standard Sobolev product norm of H1(Ω)×L2(Ω) and that relevant
Sobolev norms in Ω can be expressed in terms of the bilinear forms as (2.68). Let
also the space HA and its scalar product (·, ·)HA

be defined by

HA := {U ∈ H, AU ∈ H} = H1
∆(Ω)×H1(Ω),(

U, Ũ
)
HA

=
(

U, Ũ
)
H
+
(
AU, AŨ

)
H
.
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C. Proof of solvability for Neumann IBVPs

We set the domain D(A) of the operator A as

D(A) = {U ∈ HA, BU = 0} .

This domain embeds the interfacial constraints BU = 0 as essential conditions.

(ii) Interface data lifting.
To put the system in a form allowing the invocation of the Hille-Yosida theorem, we
need to define a data lifting and obtain a first-order system with homogeneous BC.
This operation consists in finding a function pair UL := (ϕL, ψL) in Ω× [0, T ] such
that g = ∂nϕL. Moreover, it is convenient to have (ϕL, ψL) also verify the initial-rest
conditions. To this end, assume that g ∈ C2

T (H
−1/2(Γ)), g(0) = 0. Let µ ∈ R, µ ̸= 0;

the system
−∆ϕL + µψL = 0 in Ω× [0, T ],

ψL − µϕL = 0 in Ω× [0, T ],

∂nϕL = g on Γ× [0, T ].

(21)

has a unique solution UL(t) := (ϕL(t), ψL(t)). More precisely:

Lemma C.1. Let g ∈ C2
T

(
H−1/2(Γ)

)
such that g(0) = 0. Then, the system (21)

has a unique solution UL = {ϕL, ψL} ∈ C2
T (H) = C2

T (H
1 × L2(Ω)), verifying

∥UL∥C2
T (H) ≤ C1∥g∥C2

T (L2(Γ)).

Proof of Lemma C.1. Eliminating ψL in the system (34), the remaining equations
are

−∆ϕL + µ2ϕL = 0 in Ω× [0, T ],

∂nϕL = g on Γ× [0, T ].

They define for each t ∈ [0, T ] an elliptic boundary-value problem. Writing this
problem in weak form and using the first Green identity in space (2.62), the velocity
potential in Ω verifies:

Find ϕ(t) ∈ H1
∆(Ω),

a
(
ϕ, ϕ̃

)
+ µ2b

(
ϕ, ϕ̃

)
= −

(
g(t), ϕ̃

)
Γ

∀ϕ̃ ∈ H1
∆(Ω).

The bilinear forms are defined by (2.6). For any ϕ ∈ H1(Ω), we have a (ϕ, ϕ) +
µ2b (ϕ, ϕ) ≥ C ∥ϕ∥2H1(Ω) for some C > 0, meaning that the bilinear form a + µ2b is

coercive on H1(Ω). Moreover, the linear functional ϕ̃→
(
g(t), ϕ̃

)
Γ

is continuous on
H1(Ω) by assumption on g. Problem (34) is therefore uniquely solvable in H1(Ω)
by Lax-Milgram’s theorem. The claimed solvability follows from obtaining ψL with
the remaining equation of (21) and noting that ∆ϕL = µψL ∈ L2(Ω), the regularity
in time of the solution matching that of the data since the governing operator is
time-independent.

Remark. For each t ∈ [0, T ], the system (21) is elliptic, hence the solvability
result (Lemma C.1) by invoking the standard Lax-Milgram argument. Moreover,
the interior and boundary spatial regularity of ϕL and ψL results from usual elliptic
regularity theory.
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C. Proof of solvability for Neumann IBVPs

(iii) Application of the Hille-Yosida theorem.
We then define the new unknown Uc(t) := (ϕc, ψc) (t) by Uc = U−UL. Since U and
UL verify (17) and (21), the new unknown Uc is found to verify

−∆ϕc + ∂tψc = (µ− ∂t)ψL in Ω× [0, T ]

−ψc + ∂tϕc = (∂t − µ)ϕL in Ω× [0, T ]

∂nϕc = 0 in Γ× [0, T ]

ψc(0) = ϕc(0) = 0 in Ω.

(22)

with an homogeneous Neumann BC. This system takes the generic operator form,
t ∈ [0, T ]:

dUc

dt
+ AUc = F, Uc(0) = 0, BUc = 0. (23)

This reformulation of the initial Robin IBVP as a non-homogeneous first-order sys-
tem with homogeneous interface conditions allows to apply the Hille-Yosida theorem
to prove its solvability. This yields the desired strong solvability result:

Proposition 6 (Strong solvability for the Neumann IBVP). For any g ∈ C2
T (H

−1/2(Γ))
such that g(0) = 0, the system (23) has a unique solution Uc = (ϕc, ψc) such that

Uc ∈ C0
T (D(A)) ∩ C1

T (H) .

Proof of Proposition 6. To prove the solvability of problem (23), we check that it
verifies the conditions of the Hille-Yosida theorem. In the present context, we need
to verify that there exists λ ∈ R such that Aλ = A + λI : D(A) → H, which is
maximal monotone. Aλ is said to be maximal monotone if it satisfies

1. (AλU,U)H ≥ 0 for any U ∈ D(A) (Aλ monotone),
2. For any F ∈ H,∃U ∈ D(A) such that (Aλ + I)U = F (Aλ + I surjective).

1. Monotonicity. Recalling the definitions (19) of A and (20) of the scalar product
in H, we have

(AU,U)H+λ(U,U)H = −a (ψ, ϕ)−b (ψ, ϕ)−b (∆ϕ, ψ)+λ [a (ϕ, ϕ) + b (ϕ, ϕ) + a (ψ, ψ)] .

Since by assumption ϕ ∈ H1
∆(Ω), the first Green identity in space (2.62), holds

−b (∆ϕ, ψ) = a (ψ, ϕ) + (∂nϕ, ψ)Γ = a (ψ, ϕ) (24)

(recalling that the normal n points inwards of Ω), it can be applied in the above
equality. We also recall that the Neumann condition implies ∂nϕ = 0 on Γ. Thus,

(AU,U)Hcal = (∂nϕ, ψ)− b (ψ, ϕ) , U ∈ HcalA,

= −b (ψ, ϕ) , U ∈ D(A)

Rearranging terms, it gives, for U ∈ D(A):

(AU,U)H + λ(U,U)H = λa (ϕ, ϕ) + λb (ϕ, ϕ) + λb (ψ, ψ)− b (ψ, ϕ)

= λa (ϕ, ϕ) +
1

2
b (ϕ− ψ, ϕ− ψ) +

(
λ− 1

2

)
[b (ϕ, ϕ) + b (ψ, ψ)]
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implying that (AU,U)H + λ(U,U)H ≥ 0, i.e. monotonicity holds, for any λ ≥ 1
2
.

2. Surjectivity. Now, for µ ∈ R, we consider the solvability in D(A) of (A+µI)U = F
for a given F = (f1, f2)

T ∈ H, i.e. that of the system

(a) µϕ− ψ = f1 in Ω,

(b) µψ −∆ϕ = f2 in Ω,

(c) ∂nϕ = 0 on Γ

(25)

Using (a) to eliminate ψ, the problem on ϕ defined by the two remaining equations
(b) and (c) reads

(b) µ2ϕ−∆ϕ = f2 + µf1 in Ω, (c) ∂nϕ = 0 on Γ

and is set in variational form as
Find ϕ ∈ H1

∆(Ω),

a
(
ϕ, ϕ̃

)
+ µ2b

(
ϕ, ϕ̃

)
=
(
f2 + µf1, ϕ̃

)
Γ

for all ϕ̃ ∈ H1
∆(Ω).

(26)

The bilinear form a+ µ2b is already known to be coercive on H1(Ω), and the linear
functional ϕ̃ →

(
f2 + µf1, ϕ̃

)
Ω

is clearly continuous on H1(Ω) for any (f1, f2) ∈ H.
Consequently, Lax-Milgram’s theorem applies again and problem (26) is uniquely
solvable. On reconstructing ψ from (25a) this implies the unique solvability in D(A)
of (25), and hence of the system (A+ µI)U = F for any F ∈ H.

3. Conclusion. Choosing µ = λ + 1, the monotonicity (1) and the surjectivity (2)
show that A+λI : D(A) → H is maximal monotone for any λ ≥ 1

2
. The Hille-Yosida

theorem [91, Chap. II, Theorem 1.3] hence applies to the generic system (23) and
gives Proposition 6.

At this point, we know according to Lemma C.1, that if g ∈ C2
T (H

−1/2(Γ)) with
g(0) = ∂tg(0) = 0, we have UL ∈ C2

T (H) with UL(0) = 0. We have also shown that
the system (23) has a unique strong solution Uc for any F = µUL−U′

L with sufficient
regularity. Moreover, by definition, the strong solution of the Neumann IBVP (17)
is given by U = UL + Uc, so that

U ∈ C0
T (HA) ∩ C1

T (H).

Existence and uniqueness of a weak solution

We now aim at finding a weak solution of the Neumann IBVP. It will be defined
and shown to exist on the basis of energy estimates verified by the strong solution
U. We set the Neumann IBVP (17) in weak form as:

Find ϕ ∈ H1(Ω),

a
(
ϕ(t), ϕ̃

)
+ b
(
∂2t ϕ(t), ϕ̃

)
= −

(
g(t), ϕ̃

)
Γ

for all ϕ̃ ∈ H1(Ω).
(27)

(iv) Energy estimates. To define the weak solution for the Neumann IBVP (18),
we first derive energy estimates verified by the strong solution U of problem (17).
The estimate is given by the following Lemma:
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Lemma C.2 (Energy estimates). For any g ∈ C2
T (H

−1/2(Γ)) with g(0) = 0, the
strong solution U of the Neumann IBVP (17) verifies the estimate

sup
t∈[0,T ]

∥U(t)∥2H ≤ C∥g∥2H1
T (H−1/2(Γ)). (28)

The constant C > 0 depends on T and Γ but not on the datum g.

Proof of Lemma C.2. The first step consists in testing the Neumann IBVP (18) with
ϕ̃ = ∂tϕ at each time instant s ∈ [0, T ] and applying the Green identity in space (24)
to the strong solution. This yields, for s ∈ [0, T ]:

2 (AU + U′,U)H = 2 (AU,U)H +
d

dt
(U,U)H = 0

→ 2 (g, ψ)Γ − 2b (ψ, ϕ) +
d

dt
(U,U)H = 0.

On integrating the above equality over s ∈ [0, t], we obtain

2 (U(t),U(t))H = −2

∫ t

0

(g(s), ψ(s))Γ ds+ 2

∫ t

0

b (ψ(s), ϕ(s)) ds. (29)

We now majorise the right-hand side of this equation. Firstly, since g ∈ H1
T (H

−1/2(Γ))
with g(0) = 0 by assumption, we can apply the Green identity in time to

∫ t
0
(g(s), ψ(s))Γ ds

to obtain ∫ t

0

(g(s), ψ(s))Γ ds = (g(t), ϕ(t))Γ −
∫ t

0

(∂tg(s), ϕ(s))Γ ds

and Young’s inequality applied to each term in the right-hand side then gives

2

∫ t

0

(∂tg(s), ϕ(s))Γ ds − 2 (g(t), ϕ(t))Γ ≤ α ∥ϕ(t)∥2H1/2(Γ) +
1

α
∥g(t)∥2H−1/2(Γ)

+

∫ t

0

[
β ∥ϕ(s)∥2H1/2(Γ) +

1

β
∥∂tg(s)∥2H−1/2(Γ)

]
ds.

We then use the theorem of continuity of the trace which holds

∥ϕ(t)∥2H1/2(Γ) ≤ cT ∥ϕ(t)∥2H1(Ω) ,

with cT the continuity constant of the trace theorem. Recalling the definition of the
scalar product (20), we thus have ∥ϕ(t)∥2H1/2(Γ) ≤ cT (U,U)H. Secondly, we apply
the Young’s inequality the second term b (ψ(s), ϕ(s)) in the right-hand side of (29).
The equation (29) becomes

2 (U,U)H ≤αcT (U,U)H +
1

α
∥g(t)∥2H−1/2(Γ) +

∫ t

0

[
βcT (U,U)H (s) +

1

β
∥∂tg(s)∥2H−1/2(Γ)

]
ds

+

∫ t

0

[
γ ∥ψ(s)∥2L2(Γ) +

1

γ
∥ϕ(s)∥2L2(Γ)

]
ds.
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We choose α = 1
cT

and γ = 1 such that

(U,U)H (t) ≤ C1

∫ t

0

(U,U)H (s)ds+ cT ∥g(t)∥2H−1/2(Γ) +

∫ t

0

1

β
∥∂tg(s)∥2H−1/2(Γ) ds

≤ C1

∫ t

0

(U,U)H (s)ds+D1 ∥g∥2H1
T (H−1/2(Γ))

by virtue of the fact that H1
T (H

−1/2(Γ)) ⊂ C0
T

(
H−1/2(Γ)

)
with continuous injec-

tion. Gronwall’s lemma 2.7.7 can then be applied to this inequality, with Φ(s) =
(U,U)H (s) and C2 = D1 ∥g∥2H1

T (H−1/2(Γ)). It results in

∥U(t)∥2H ≤ C ∥g∥2H1
T (H−1/2(Γ)) , t ∈ [0, T ].

We finally have the Lemma C.2. This estimate shows that a weaker norm of the
strong solution U is controlled by a weaker norm of the data.

(v) Existence and uniqueness of a weak solution. Estimate (28) shows that
the strong solution U with data g ∈ C2

T (H
−1/2(Γ)) in fact has its weaker C0

T (H)
norm controlled by the weaker H1

T (H
−1/2(Γ)) norm of the data. This allows to

obtain a well-posedness result for the Neumann IBVP in variational form, under
weaker regularity assumptions on the data g.

To this aim, we take any Neumann data g ∈ H1
T (H

−1/2(Γ)) with g(0) = 0. Let
ĝ(t) = g(t)− t

T
g(T ), we have ĝ ∈ H1

0

(
[0, T ];H−1/2(Γ)

)
. As the space C2

C([0, T ];H
−1/2(Γ))

is dense in H1
0 ([0, T ];H

−1/2(Γ)), there exists a sequence ĝn ∈ C2
T (H

−1/2(Γ)) approx-
imating ĝ. An approximating sequence gn of g therefore exists, such that

∥gn − g∥H1
T (H−1/2(Γ)) → 0.

By Proposition 6, the Neumann IBVP (18) has for each data gn a unique solution
Un ∈ C1

T (H) ∩ C0
T (HA). We apply by linear superposition the estimate (28) to the

data gn − gm and corresponding solution Un − Um. We readily find that (Un) is
a Cauchy sequence in C0

T (H) and therefore converge to a limit U ∈ C0
T (H) since

C0
T (H) is complete. Upon taking the limit n → ∞ in that estimate, the limit U

satisfies
sup
t∈[0,T ]

∥U(t)∥2H ≤ C ∥g∥2H1
T (H−1/2(Γ)) .

The limit U is the expected weak solution of the Neumann IBVP in variational
form (27). We still need to prove that this is indeed the case, and that the limit U
is the only such solution.

1. U defines a solution of the variational problem (27). Let ϕ̃ ∈ H1(Ω) be a
time-independent function and let φ ∈ C∞

0 ([0, T ]). Each Un is a strong solution and
Un ∈ HA, so each Un verifies the wave equation in L2

T (Ω). Testing against ϕ̃φ the
wave equation, we have ∫ T

0

(
−∆ϕn + ϕ′′

n, ϕ̃
)
Ω
φ(t)dt = 0. (30)

194



C. Proof of solvability for Neumann IBVPs

We first apply the Green identity (2.62) and express ∂nϕn by means of the Neumann
boundary condition (which is verified in the L2

T (Γ) weak sense), to obtain∫ T

0

[
a
(
ϕn, ϕ̃

)
+ b
(
ϕ′′
n, ϕ̃
)]
φ(t)dt = −

∫ T

0

(
gn(t), ϕ̃

)
Γ
φ(t)dt

in terms of the bilinear forms a, b defined by (2.6). Then, all time derivatives are
transferred to φ via integrations by parts, without any boundary terms, yielding
(since φ ∈ C∞

0 ([0, T ]))∫ T

0

[
a
(
ϕn, ϕ̃

)
φ(t) + b

(
ϕn, ϕ̃

)
φ′′(t)

]
dt = −

∫ T

0

(
gn(t), ϕ̃

)
Γ
φ(t)dt.

By assumption, we have gn → g in L2
T (H

−1/2(Γ)), which implies Un → U in L2
T (H).

Using the continuity of the bilinear forms a, b, we take the limit n → ∞ in the
above variational formulation, which gives, for any φ ∈ C∞

0 ([0, T ])∫ T

0

[
a
(
ϕ, ϕ̃

)
φ(t) + b

(
ϕ, ϕ̃

)
φ′′(t)

]
dt = −

∫ T

0

(
g(t), ϕ̃

)
Γ
φ(t)dt.

The components of U therefore satisfy the variational formulation (27) in the sense
of distributions in the time variable with support in [0, T ].

2. Uniqueness. Assume that the variational formulation (27) has two distinct
nonzero solutions U1 and U2 for the same datum g, both satisfying initial-rest con-
ditions. By linearity, the components of W := U1 − U2 = (ξ, ∂tξ), must then solve
the homogeneous form of the variational problem (27), for all ϕ̃ ∈ H1(Ω),∫ s

0

[
a
(
ξ(t), ϕ̃

)
+ b
(
∂2t ξ(t), ϕ̃

)]
dt = 0,

with (ξ, ∂tξ) ∈ L2
T (H). The antiderivative Z(t) :=

∫ t
0

W(s)ds is also at initial-rest and
(by integration over the time interval [0, t]) solves the same homogeneous variational
problem. Moreover, as a result of the integration in time Z ∈ C1

T (H) ∩ C0
T (D(A)),

i.e., is a strong solution of the homogeneous evolution problem. By Proposition 6,
we must hence have Z = 0, implying W = 0. This proves the uniqueness of the weak
solution. This concludes the proof of the Theorem 2.3.2.
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D Proof of solvability for Robin IBVPs (Theorem 2.4.2)

We prove the well-posedness for the acoustic and elastic Robin IBVPs (2.48) and (2.47)
given by Theorem 2.4.2. The approach is similar to the one for the FSIP (2.4) in
Section 2.7. We follow the same main steps: we first assume a sufficient regularity
in the data with respect to time to allow the existence of classical time derivatives
wherever needed. We reformulate the evolution problem as a first-order in time,
and prove the existence and uniqueness of the strong solution using the Hille-Yosida
theorem. We then use energy identities to extend the solvability results to a problem
in weak form, assuming lower data regularity. To illustrate the steps of the proof of
solvability we consider an acoustic Robin IBVP of the form

−∆ϕ+ ∂2t ϕ = 0 in Ω× [0, T ],

−∂tϕ+ kc∂nϕ = g in Γ× [0, T ],

ϕ(0) = ∂tϕ(0) = 0 on Ω.

(31)

Initial rest is assumed since the FSIP of interest is to be solved under that assumption
and we use the same space and norm definitions as introduced in 2.2. We prove the
well-posedness of (31) and focus on how the solvability depends on the Robin datum
g.

Existence and uniqueness of a strong solution.

(i) First-order form of the Robin IBVP.
In preparation to applying the Hille-Yosida theorem, we begin by recasting the
IBVP (31) in first-order form. We set ψ := ∂tϕ to treat the velocity as separate un-
known. The system (31) yields the following first-order system for U(t) := (ϕ, ψ) (t):

U′ + AU = 0, U(0) = 0, BU = g (32)

where g is the boundary data. The unbounded differential operator A in Ω×Ω and
the boundary operator B are defined by

AU =

{
−ψ
−∆ϕ

}
and BU = kc∂nϕ− ψ. (33)

We use the same Hilbert spaces H, HA and scalar products as defined in Appendix C.
We set the domain D(A) of operator A as

D(A) = {U ∈ HA, BU = 0} .

This domain embeds the Robin interfacial constraints BU = 0 as essential condi-
tions.

(ii) Boundary data lifting.
To put the system in a form allowing the invocation of the Hille-Yosida theorem, we
need to define a data lifting and obtain a first-order system with homogeneous BC.
This operation consists in finding a function pair UL := (ϕL, ψL) in Ω× [0, T ] such
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that g = kc∂nϕL − ψL. Moreover, it is convenient to have (ϕL, ψL) also verify the
initial-rest conditions. To this end, assume that g ∈ C2

T (L
2(Γ)), g(0) = g′(0) = 0.

Let µ ∈ R, µ ̸= 0; the system

−∆ϕL + µψL = 0 in Ω× [0, T ],

ψL − µϕL = 0 in Ω× [0, T ],

kc∂nϕL − ψL = g on Γ× [0, T ].

(34)

has a unique solution UL(t) := (ϕL(t), ψL(t)). More precisely:

Lemma D.1. Let g ∈ C2
T (L

2(Γ)) such that g(0) = 0. Then, the system (34)
has a unique solution UL = {ϕL, ψL} ∈ C2

T (H) = C2
T (H

1(Ω) × L2(Ω)), verifying
∥UL∥C2

T (H) ≤ C1∥g∥C2
T (L2(Γ)).

Proof of Lemma D.1. Eliminating ψL in the system (34), the remaining equations
are

−∆ϕL + µ2ϕL = 0 in Ω× [0, T ],

kc∂nϕL − µϕL = g on Γ× [0, T ].

They define for each t ∈ [0, T ] a boundary-value problem. Writing this problem
in weak form and using the first Green identity (2.62), the velocity potential in Ω
verifies:

Find ϕ(t) ∈ H1(Ω),

a
(
ϕ, ϕ̃

)
+ µ2b

(
ϕ, ϕ̃

)
+
µ

kc

(
ϕ, ϕ̃

)
Γ
= − 1

kc

(
g, ϕ̃
)
Γ

∀ϕ̃ ∈ H1(Ω).

The bilinear forms are defined by (2.6). To apply the Lax-Milgram theorem, the
bilinear form a

(
ϕ, ϕ̃

)
+ µ2b

(
ϕ, ϕ̃

)
+ µ

kc

(
ϕ, ϕ̃

)
Γ

has to be continuous and coercive,

and ϕ̃ 7→
(
g(t), ϕ̃

)
has to be continuous on H1(Ω). We obtain the continuity by

using the triangle and Cauchy-Schwarz inequalities, and then applying theorem of
continuity of the trace:∣∣∣∣a(ϕ, ϕ̃)+ µ2b

(
ϕ, ϕ̃

)
+
µ

kc

(
ϕ, ϕ̃

)
Γ

∣∣∣∣ ≤ ∣∣∣a(ϕ, ϕ̃)+ µ2b
(
ϕ, ϕ̃

)∣∣∣+ µ

kc

∣∣∣(ϕ, ϕ̃)
Γ

∣∣∣
≤ ∥ϕ∥H1(Ω) .

∥∥∥ϕ̃∥∥∥
H1(Ω)

+
µ

kc
∥ϕ∥L2(Γ) .

∥∥∥ϕ̃∥∥∥
L2(Γ)

≤ ∥ϕ∥H1(Ω) .
∥∥∥ϕ̃∥∥∥

H1(Ω)
+
µ

kc
C2
T ∥ϕ∥H1(Ω) .

∥∥∥ϕ̃∥∥∥
H1(Ω)

≤
(
1 +

µ

kc
C2
T

)
∥ϕ∥H1(Ω) .

∥∥∥ϕ̃∥∥∥
H1(Ω)

where CT is the constant of continuity of the trace operator on Γ. The continuity of
the right handside term is also obtained with the theorem of continuity of the trace:

∥ϕ∥L2(Γ) ≤ ∥ϕ∥H1/2(Γ)

≤ CT ∥ϕ∥H1(Ω) .
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Moreover, as (ϕ, ϕ)Γ ≥ 0, for any ϕ ∈ H1(Ω) we have

a (ϕ, ϕ) + µ2b (ϕ, ϕ) +
µ

kc
(ϕ, ϕ)Γ ≥ ∥ϕ∥2H1(Ω) ,

which gives the coercivity on H1(Ω) of the bilinear form. Problem (34) is therefore
uniquely solvable in H1(Ω) by Lax-Milgram’s theorem. The remaining equation (34)
then gives ψL = µϕL ∈ H1(Ω) and as ∆ϕL = µψL ∈ L2(Ω), the governing operator
is time independent, so the regularity in time of the solution matches that of the
data. Lax-Milgram’s theorem finally gives

∥UL(t)∥H ≤ C∥g(t)∥L2(Γ) for each t ∈ [0, T ],

hence the claimed space-time estimate.

Remark. For each t ∈ [0, T ], the system (34) is elliptic, hence the solvability
result (Lemma D.1) by invoking the standard Lax-Milgram argument. Moreover,
the interior and boundary spatial regularity of ϕL and ψL results from usual elliptic
regularity theory.

(iii) Application of the Hille-Yosida theorem.
We then define the new unknown Uc(t) := (ϕc, ψc) (t) by Uc = U−UL. Since U and
UL verify (31) and (34), Uc is found to verify

−∆ϕc + ∂tψc = (µ− ∂t)ψL in Ω× [0, T ]

−ψc + ∂tϕc = (∂t − µ)ϕL in Ω× [0, T ]

−ψc + kc∂nϕc = 0 in Γ× [0, T ]

ψc(0) = ϕc(0) = 0 in Ω.

This system takes the generic operator form, t ∈ [0, T ]:

dUc

dt
+ AUc = F, Uc(0) = 0, BUc = 0. (35)

Uc solves (35) with the particular data F = µUL − U′
L. This reformulation of

the initial Robin IBVP as a non-homogeneous first-order system with homogeneous
interface conditions allows to apply the Hille-Yosida theorem to prove its solvability.
This yields the desired strong solvability result:

Proposition 7 (Strong solvability for the Robin IBVP). Assume that either F ∈
C1
T (H) or F ∈ C0

T (D(A)). Then, the system (35) has a unique solution

Uc ∈ C1
T (H) ∩ C0

T (D(A)).

Proving the Proposition 7 will be facilitated by the following lemma:

Lemma D.2. For any U ∈ HA, we have

(AU,U)H =
1

kc
∥ψ∥2Γ +

1

kc
(g, ψ)Γ − b (ψ, ϕ)

198



D. Proof of solvability for Robin IBVPs (Theorem 2.4.2)

Proof of Lemma D.2. We obtain the identity by using the definition (20) of the
scalar product (., .)H and the first Green identity (2.62):

(AU,U)H = a (−ψ, ϕ) + b (−ψ, ϕ) + b (−∆ϕ, ψ)

= b (∆ϕ, ψ) + (∂nϕ, ψ)Γ + b (−ψ, ϕ) + b (−∆ϕ, ψ)

=
1

kc
∥ψ∥2L2(Γ) +

1

kc
(g, ψ)Γ − b (ψ, ϕ)

Proof of Proposition 7. To prove the solvability of problem (35), we check that it
verifies the conditions of the Hille-Yosida theorem. In the present context, we need
to verify that there exists λ ∈ R such that Aλ = A + λI : D(A) → H, which is
maximal monotone. Aλ is said to be maximal monotone if it satisfies

1. (AλU,U)H ≥ 0 for any U ∈ D(A) (Aλ monotone),
2. For any F ∈ H,∃U ∈ D(A) such that (Aλ + I)U = F (Aλ + I surjective).

1. Monotonicity. Using definitions (33) of A and (20) of the scalar product in H
and appling Lemma D.2, we obtain

(AU,U)H + λ(U,U)H =
1

kc
∥ψ∥2L2(Γ) +

1

kc
(g, ψ)Γ − b (ψ, ϕ) + λa (ϕ, ϕ)

+ λb (ϕ, ϕ) + λb (ψ, ψ)
(36)

for any U ∈ D(A). Rearrangind terms it gives

(AU,U)H + λ(U,U)H =
1

kc
∥ψ∥2L2(Γ) +

1

kc
(g, ψ)Γ + λa (ϕ, ϕ)

+
1

2
b (ϕ− ψ, ϕ− ψ) +

(
λ− 1

2

)
[b (ϕ, ϕ) + b (ψ, ψ)] ,

implying that (AU,U)H + λ(U,U)H ≥ 0, i.e. monotonicity holds, for any λ ≥ 1
2
.

2. Surjectivity. Now, for µ ∈ R, we investigate whether the equation (A+µI)U = F
is solvable for U = (ϕ, ψ) ∈ D(A) given F = (f1, f2) ∈ H, i.e. that of the system

(a) µϕ− ψ = f1 in Ω,

(b) µψ −∆ϕ = f2 in Ω,

(c) kc∂nϕ− ψ = 0 on Γ

(37)

Using (a) to eliminate ψ, the problem on ϕ defined by the two remaining equations
(b) and (c) reads

(b) µ2ϕ−∆ϕ = f2 + µf1 in Ω, (c) kc∂nϕ− µϕ = −f1 on Γ

and is set in variational form as

Find ϕ ∈ H1(Ω),

a
(
ϕ, ϕ̃

)
+ µ2b

(
ϕ, ϕ̃

)
+
µ

kc

(
ϕ, ϕ̃

)
Γ
=
(
f2 + µf1, ϕ̃

)
Ω
+

1

kc

(
f1, ϕ̃

)
Γ

(38)
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for all ϕ̃ ∈ H1(Ω). The bilinear form a
(
ϕ, ϕ̃

)
+ µ2b

(
ϕ, ϕ̃

)
+ µ

kc

(
ϕ, ϕ̃

)
Γ

is already

known to be coercive on H1(Ω), and the linear functional ϕ̃ →
(
f2 + µf1, ϕ̃

)
Ω
+

1
kc

(
f1, ϕ̃

)
Γ

is continuous on H1(Ω) for any F = (f1, f2) ∈ H. Consequently, Lax-
Milgram’s theorem applies again and problem (38) is uniquely solvable. Elliptic reg-
ularity then shows that ϕ ∈ H1

∆(Ω), whereupon reconstructing ψ with the remaining
equation yields ψ ∈ H1(Ω). The system (A+µI)U = F is therefore uniquely solvable
in D(A) for any F ∈ H.

3. Conclusion. Choosing µ = λ + 1, the monotonicity (1) and the surjectivity (2)
show that A+λI : D(A) → H is maximal monotone for any λ ≥ 1

2
. The Hille-Yosida

theorem [91, Chap. II, Theorem 1.3] hence applies to the generic system (35) and
gives Proposition 7.

At this point, we know according to Lemma D.1, that if g ∈ C2
T (L

2) with g(0) =
0, we have UL ∈ C2

T (H) with UL(0) = 0. We also have shown that the system (35)
has a unique strong solution Uc for any F = µUL − U′

L with sufficient regularity. If
F ∈ C1

T (H), then Uc ∈ C1
T (H). Moreover, by definition, the strong solution of the

Robin IBVP (31) is given by U = UL + Uc and

U ∈ C1
T (H) ∩ C0

T (HA).

Existence and uniqueness of a weak solution

We now aim at finding a weak solution of the Robin IBVP. It will be defined and
shown to exist on the basis of energy estimates verified by the strong solution U.
We set the Robin IBVP (31) in weak form as:

Find ϕ ∈ H1(Ω),

a
(
ϕ(t), ϕ̃

)
+ b
(
∂2t ϕ(t), ϕ̃

)
+

1

kc
c
(
∂tϕ(t), ϕ̃

)
Γ
= − 1

kc

(
g(t), ϕ̃

)
Γ

for all ϕ̃ ∈ H1(Ω).

(39)

(iv) Energy estimates. To define the weak solution for the Robin IBVP (32),
we first derive energy estimates verified by the strong solution U of problem (31).
These estimates are given by the following Lemma:

Lemma D.3 (Energy estimates). For any g ∈ C2
T (L

2(Γ)) with g(0) = 0, the strong
solution U of the Robin IBVP (31) verifies the estimate

sup
t∈[0,T ]

∥U(t)∥2H ≤ C∥g∥2L2
T (Γ). (40)

Moreover, the velocity trace on Γ verifies the estimate

∥ψ∥2L2
T (Γ) ≤ C∥g∥2L2

T (Γ). (41)

The constants C > 0 in each estimate depend on T and Γ but not on the datum g.
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Proof of Lemma D.3. The first step consists in testing the Robin IBVP (32). On
expressing (AU,U)H by means of Lemma D.2 at each time instant s ∈ [0, T ], this
yields:

2 (AU + U′,U)H = 0

2 (AU,U)H +
d

dt
(U,U)H = 0

2

kc
∥ψ∥2L2(Γ) +

2

kc
(g, ψ)Γ − 2b (ψ, ϕ) +

d

dt
(U,U)H = 0

On integrating the above equality over s ∈ [0, t], we obtain

2

kc

∫ t

0

∥ψ(s)∥2L2(Γ) ds+ (U,U)H = − 2

kc

∫ t

0

(g(s), ψ(s))Γ ds+ 2

∫ t

0

b (ψ(s), ϕ(s)) ds.

We now majorise the right-hand side of this equality. Applying Young’s inequality
to each term in the right-hand side with α = β = 1, gives

2

kc

∫ t

0

∥ψ(s)∥2L2(Γ) ds+ (U,U)H (t) ≤
∫ t

0

[
∥ϕ(s)∥2L2(Ω) + ∥ψ(s)∥2L2(Ω)

]
ds

+

∫ t

0

[
∥g(s)∥2L2(Γ) + ∥ψ(s)∥2L2(Γ)

]
ds.

(42)

Adding a term
∫ t
0
a(ϕ(s), ϕ(s))ds to the right-hand side of the above inequality, we

have

1

kc

∫ t

0

∥ψ(s)∥2L2(Γ) ds+(U,U)H (t) ≤
∫ t

0

[
∥ϕ(s)∥2L2(Ω) + ∥ψ(s)∥2L2(Ω)

]
ds+

1

kc

∫ t

0

∥g(s)∥2L2(Γ) ds

which implies

(U,U)H (t) ≤
∫ t

0

(U,U)H (s)ds+
1

kc

∫ t

0

∥g(s)∥2L2(Γ) ds.

Grönwall’s lemma plays as usual, a key role in the derivation of energy estimates.
We use the version (2.7.7), with Φ(s) = (U,U)H (s) and C2 = 2

kc

∫ t
0
∥g(s)∥2L2(Γ) ds.

Consequently there exists C > 0 such that

∥U(t)∥2H ≤ C ∥g∥2L2
T (Γ) t ∈ [0, T ]. (43)

i.e. the sought estimate (40) holds. This estimate shows that a weaker L2
T (H)

norm of the strong solution U is controlled by a weaker norm L2
T (Γ) of the data g.

Moreover, we can then use (42) to obtain an estimate on the boundary velocity.

1

kc

∫ t

0

∥ψ(s)∥2L2(Γ) ds ≤
∫ t

0

(U,U)H (s)ds+
1

kc
∥g∥2L2

T (Γ) .

As
∫ t
0
(U,U)H (s)ds ≤ (U,U)L2

T (H) ≤ CT ∥g∥2L2
T (Γ) and using the energy estimate (43),

we then obtain

1

kc

∫ t

0

∥ψ(s)∥2L2(Γ) ds ≤ t (U,U)H (t) +
1

kc
∥g∥2L2

T (Γ) ≤
(
tC +

1

kc

)
∥g∥2L2

T (Γ) .

which gives the final energy estimate for the velocity trace of the strong solution.
We finally have the Lemma D.3 and the sought energy estimates.
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(v) Existence and uniqueness of a weak solution. Estimate (40) shows that
the strong solution U with data g ∈ C2

T (L
2(Γ)) in fact has its weaker C0

T (H) norm
controlled by the weaker L2

T (Γ) norm of g. This allows to obtain a well-posedness
result for the Robin IBVP in variational form, under weaker regularity assumptions
on the data g.

To this aim, let g ∈ L2
T (Γ) be some transmission data. By a density argument,

as the space {f ∈ C2
T (L

2(Γ)), f(0) = 0} is dense in L2
T (Γ), there exists a sequence

gn ∈ C2
T (L

2(Γ)) with gn(0) = 0 such that

∥gn − g∥L2
T (Γ) → 0.

By Proposition 7, the Robin IBVP (32) has for each data gn a unique solution
Un ∈ C1

T (H) ∩ C0
T (HA). We apply by linear superposition the estimate (40) to the

data gn − gm and corresponding solution Un − Um. We readily find that (Un) is
a Cauchy sequence in C0

T (H), which therefore converges to some limit U ∈ C0
T (H)

since the space C0
T (H) is complete. Upon taking the limit n → ∞ in the estimate

(41), the limit U satisfies

sup
t∈[0,T ]

∥U(t)∥2H ≤ C ∥g∥2L2
T (Γ) .

The limit U is the expected weak solution of the Robin IBVP in variational form (39).
We still need to prove that this is indeed the case, and that the limit U is the only
such solution.

1. U defines a solution of the variational problem (39). Let ϕ̃ ∈ H1(Ω) be a
time-independent function and let φ ∈ C∞

0 ([0, T ]). Each Un is a strong solution and
Un(t) ∈ HA, so each ϕn verifies the wave equation in L2

T (Ω). Testing against ϕ̃φ the
wave equation, we have ∫ T

0

(
−∆ϕn + ϕ′′

n, ϕ̃
)
Ω
φ(t)dt = 0. (44)

We first apply the Green identity (2.62) and express ∂nϕn by means of the Robin
boundary condition (which is verified in the L2

T (Γ) weak sense), to obtain∫ T

0

[
a
(
ϕn, ϕ̃

)
+ b
(
ϕ′′
n, ϕ̃
)
+

1

kc

(
ϕ′
n, ϕ̃
)
Γ

]
φ(t)dt =

−1

kc

∫ T

0

(
gn(t), ϕ̃

)
Γ
φ(t)dt

in terms of the bilinear forms a, b defined by (2.6). Then, all time derivatives are
transferred to φ via integrations by parts in time, without any boundary terms,
yielding (since φ ∈ C∞

0 ([0, T ])∫ T

0

[
a
(
ϕn, ϕ̃

)
φ(t) + b

(
ϕn, ϕ̃

)
φ′′(t) +

1

kc

(
ϕn, ϕ̃

)
Γ
φ′(t)

]
dt =

−1

kc

∫ T

0

(
gn(t), ϕ̃

)
Γ
φ(t)dt.

We have Un → U in L2
T (H) and, by assumption, we have gn → g in L2

T (Γ). Using
the continuity of the bilinear forms a, b, we take the limit n → ∞ in the above
variational formulation, which gives, for any φ ∈ C∞

0 ([0, T ])∫ T

0

[
a
(
ϕ, ϕ̃

)
φ(t) + b

(
ϕ, ϕ̃

)
φ′′(t) +

1

kc

(
ϕ, ϕ̃

)
Γ
φ′(t)

]
dt =

−1

kc

∫ T

0

(
g(t), ϕ̃

)
Γ
φ(t)dt.
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The components of U therefore satisfy the variational formulation (39) in the sense
of distributions in the time variable with support in [0, T ].

2. Uniqueness. Assume that the variational formulation (39) has two distinct
solutions U1 and U2 for the same datum g, both satisfying initial-rest conditions.
By linearity, the components of W := U1 − U2 = (ξ, ∂tξ), must then solve the
homogeneous form of the variational problem (39): for all ϕ̃ ∈ H1(Ω),∫ s

0

[
a
(
ξ(t), ϕ̃

)
+ c
(
∂tξ(t), ϕ̃

)
+ b
(
∂2t ξ(t), ϕ̃

)]
dt = 0,

with (ξ, ∂tξ) ∈ L2
T (H). The antiderivative Z(t) :=

∫ t
0

W(s)ds is also at initial rest and
(by integration over the time interval [0, t]) solves the same homogeneous variational
problem. Moreover, as a result of the integration in time, Z ∈ C1

T (H) ∩ C0
T (D(A)),

i.e., is a strong solution of the homogeneous evolution problem. By Proposition 7,
we must hence have Z = 0, implying W = 0. This proves the uniqueness of the weak
solution. This concludes the proof of the Theorem 2.4.2.
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E In-house Z-BEM solvers

This appendix presents a complementary validations regarding the in-house 2D Mat-
lab Z-BEM solver used in Chapters 2 and 4. These validations and studies of con-
vergence are done by comparison to analytical solutions on simple 2D problems.
We developed our frequency BEM solver, which solves frequency acoustic Robin
problems, and our Z-BEM solver, which solves time-domain acoustic Robin prob-
lems on Matlab. Both are validated by solving respectively a frequency-domain
and a time-domain problem, for which an analytical solution is known. We then
introduce a high frequency approximation (HFA) adapted to the acoustic problem
with Robin boundary condition. This approximation completes the high frequency
approximations proposed by [146] for Neumann acoustic problems.

E.1 Acoustic Robin problems in frequency-domain

As detailed in Chapter 1, we aim to solve the boundary integral equation (BIE)
associated with a transient wave propagation problem. The scalar velocity potential
ϕ verifies the wave equation and the boundary value problem (3.1) in the acoustic
domain Ω. The BIE defined on Γf is (3.7). At an iteration n, the boundary integral
equation we aim to solve is:

1

2
ϕn(x, t)−H{ϕn} (x, t) = −G

{
∂nϕ

n-1} (x, t) ∀t ∈ [0, T ], with x ∈ Γ (45)

where ∂tui-1.n and ϕn are the normal elastic velocity at the previous iteration n− 1
and the fluid velocity potential at iteration n, defined on the interface Γ. Introducing
a Robin boundary condition, with a coupling parameter ka:

−ρ∂tϕn + ka∂nϕ
n = fn−1

the boundary integral equation (45) is written with the velocity potential ϕn and its
temporal derivative:(

1

2
Id−H

)
{ϕn} (x, t) = − 1

ka
G
{
ρ∂tϕ

n + fn−1
}
(x, t) ∀t ∈ [0, T ], with x ∈ Γ

(46)
As we aim to define an equivalent problem in the frequency-domain to use the CQM
procedure, we use the Laplace transform of ϕn, with a Laplace variable s. With the
Laplace transform, a convolution product becomes:

q(t) =
(
Ġ ⋆ ϕn

)
(t) =

∫ t

0

Ġ(t− τ)ϕn(τ)dτ

=

∫ t

0

(
1

2πi

∫ γ+i∞

γ−i∞
L
{
Ġ(t)

}
es(t−τ)

)
ϕn(τ)dτ

=
1

2πi

∫ +∞

−∞
L
{
Ġ(t)

}
h(t; s)ds

where h is the term h(t; s) =
∫ t
0
es(t−τ)ϕn(τ)dτ . Moreover, the Laplace transform of

G is
L
{
Ġ(t)

}
= s ∗ L {G(t)} −G(0) = s ∗G(s)−G(0)
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with G(0) = 0 because G is the fundamental function defined by G(r, t|f) =
1
2π

∫ ct
r

f(t−η/c)√
η2−r2

dη and it is zero everywhere except in r=0 at t=0. The Laplace trans-

form of the convolution product is finally

Q(ξ) = s ∗G(p(ξ)
∆t

)F (ξ)

where s = p(ξ)
∆t

is the problem’s complex frequency. G is the Green function Laplace
transform and F is the Z-transform of f . They are defined in Section 3.2.1. The
Robin frequency problems are then for all x ∈ Γ:(
1

2
Id−H

)
{Φn} (x, s)+ρfs

ka
G {Φn} (x, s) = − 1

ka
G
{
h− tn−1.n+ ka(∂tu

n−1.n) + kaν
}

(47)

Numerical validation of the 2D frequency BEM solver. We choose to validate
our in-house frequency BEM solver on a simple configuration: an acoustic plane
wave Φinc = eik.x is defined by an angle of incidence θ and a wave number k :=
k[cos(θ); sin(θ)], with k = is

cf
. It propagates in an unbounded acoustic medium Ωf

at speed cf before interacting with a circular obstacle Ωs of radius a, whose surface
is Γ. The reflected field Φ verifies the problem:

Find Φ such that


(∆ + k2)Φ = 0 in Ωf

(−ρs− ka∂n)Φ|Γ = Φinc
|Γ on Γ

lim
x→∞

∥x∥1/2 (∇Φ. x
∥x∥ − ikΦ) = 0

The acoustic incident wave is decomposed with the Jacobi identity in the form:

Φinc(r, θ) =
∑
m∈Z

(−i)mJm(kr)eimθ (48)

where Jm is the first order Bessel function and the reflected solution is expressed as
a Fourier series in r and θ:

Φ(r, θ) =
∑
m∈Z

ψm(r)e
imθ

where the ψm coefficients are linear solutions of the Helmholtz equation in polar
coordinates such as

(∆ + k2)ψm = (r2∂2r + r∂r + (k2 −m2))ψm = 0

which implies that ψm(r) = Jm(kr). Introducing the modified Bessel functions
∀m ∈ Z : {

H
(1)
m (x) := Jm(x) + iYm(x)

H
(2)
m (x) := Jm(x)− iYm(x)

the reflected field ϕ holds as

Φ(r, θ) =
∑
m∈Z

A+
mH

(1)
m (kr)eimθ + A−

mH
(2)
m (kr)eimθ
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As Φ must satisfy the Sommerfeld radiation condition, it implies that A−
m = 0 for

all m ∈ Z. Finally, the Robin boundary condition on Γ (r=a) provides the relation:

kaA
+
mH

(1)
m

′
(ka)eimθ + sρfA

+
mH

(1)
m (k a) = −(−i)mJm(k a)

And we deduce the analytical form of the reflected field

Φ∗(r, θ) =
∑
m∈Z

−(−i)mJm(k a)
(kaH

(1)
m

′
(k a) + ρfsH

(1)
m (k a))

H(1)
m (k r)eimθ for any r > a (49)

We replace in (47) the excitation term h− t.n− ka(∂tu.n) by a plane wave Φinc as
defined by (48), and we compare the analytical field (49) to the numerical solution
trace Φ on the boundary Γ. We choose a complex frequency s = −iπ, the circular
boundary has a radius a=1 and E=800 boundary elements, the wave’s angle of
incidence is θ=0 and the coupling parameter is ka = cfρf = 1. Figure 17 shows the
boundary trace Φ(θ) on Γ computed using the frequency BEM solver. It agrees very
well with the analytical solution Φ∗. For this example, the relative error between
the computed solution and the analytical solution is

eresΦ :=
∥Φn − Φ∗∥L2([0,T ],Γ)

∥Φ∗∥L2([0,T ],Γ)

= 3, 6.10−3.

This is corroborated by Figure 18 which shows the analytical field Φ∗ and the integral
representation in the exterior domain computed from the frequency BEM solution.

Figure 17: Numerical boundary trace Φ computed with the BEM solver
for a Robin BC and analytical solution Φ∗ on Γ as a functions
of θ (a = 1, k = π). eresΦ = 3.6 10−3.

E.2 2D Z-BEM acoustic solver

Our Z-BEM solver is validated on a transient Robin acoustic problem. The Z-BEM
solver developed on Matlab uses the frequency BEM solver validated in Section E.1.
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Figure 18: Integral representation of Φ in Ωf and analytical solution Φ∗

as functions of r(a = 1, θ = r, k = π). eresΦ = 3.5 10−5.

We consider a fixed point source x placed at the origin in an acoustic interior domain
Ωint
f . The point source produces an acoustic field ϕinc equal to the 2D fundamen-

tal acoustic solution G in time-domain, with a time-modulated intensity f(t) and
quiescent past [26]:

ϕinc(x, z, t|f) := G(x, z, t|f) = 1

2π

∫ ct

r

f(t− η/c)√
η2 − r2

dη

with f(t|a) =

{
at4(Tpulse − t)4 if t ∈ [0, Tpulse]

0 else

where a is the pulse’s amplitude and Tpulse is its width. The source function f(t) is
assumed to be twice continuously differentiable and identically vanishing for t < 0.
The fundamental solution G depends on t through all the retarded times t− η/v for
r/t ≤ v ≤ c.

Remark. This contrasts with the 3D free-space fundamental solution (see Sec-
tion E.3). For the 3D solution, only the retarded time t − r/c appears, due to
causality, the fact that information travels at finite speed c through the medium.
In 2D, this lagging effect reflects the fact that the 2D solution results from an in-
tegration of its 3D counterpart over ] −∞,+∞[, i.e. is actually the wave function
generated in the 3D free space by an infinite line of point sources.

As G is the 2D acoustic fundamental solution for a point source it verifies the
BIE for the exterior problem in Ωext

f . The solution ϕ verifies

1

2
ϕ(x, t) = H{ϕ} (x, t)− G

{
∂ϕ

∂n

}
(x, t) x, y ∈ Γ (50)
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Solving the Dirichlet exterior problem consists in determining the unknown trace
q = ∂ϕ

∂n
on the boundary using the CQM algorithm and checking that the numerical

computation of q is equal to the analytical derivative of the known fundamental
solution G. The circular boundary Γ has a radius a=1 and is discretised with E =
1700 boundary elements. The celerity is c=2000 and the angle of incidence is θ = 0.
The time interval [0, 3.4 10−3] sec is discretised by Nt =550 time steps, which
corresponds to L=1100 complex frequencies. The Z-BEM algorithm is accelerated
with an H-matrix method and we use the numerical parameters Nleaf = 50, η = 3
and a tolerance ϵ = 10−4. The numerically computed reflected trace ∂nϕ(x, t) and
the analytical normal derivative ∂nG evaluated on a boundary element are depicted
on Figure 19. With this discretisation the relative space-time L2 error on the trace
q = ∂ψ

∂n
evaluated on the interface is δ(Γ) = 0.035, which validates the Z-BEM

algorithm with CQM and H-matrix methods. The error’s convergence with the mesh

Figure 19: Numerical boundary trace ∂nϕ and analytical solution ∂nG on
an boundary element of Γ (∆t = 1.7 10−6, Nt = 1118, El =
2336).

size is ensured as, at a fixed mesh density, the more boundary elements are used, the
smaller the relative space-time L2 error on boundary is. The numerical parameters
of some computations of the trace solution dϕ

dn
and the corresponding relative errors

are provided in Table 7 (with a fixed size of boundary element 3.7 10−3).

E.3 3D Z-BEM acoustic solver

In this Section we validate the in-house Z-BEM solver on 3D transient acoustic
problem. We consider reference problems for which the analytical solution is known.

Frequency BEM resolution. The Matlab 3D frequency BEM solver is verified
by solving the boundary integral equation (50) with Dirichlet boundary condition.
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Number of boundary elements 1400 1700 1800 2500 5000
Circle radius 0.824 1 1.0594 1.472 2.94
Relative CQM error 4.41% 4.36% 4.33% 4.21% 3.79 %

Table 7: Relative space-time L2 error on the trace of ∂nϕ = ∂nG with
the number of mesh elements, at fixed mesh density

To verify the BEM solver, we choose the data as the normal derivative of the fun-
damental solution G of the Helmholtz equation for a 3D sphere with a radius r = 1
(in this case the solution does not depend on the angles θ and ψ):

∂nϕ = ∂nG =
e−ikr

r2
(1 + ikr).

The solution is the trace

ϕ = G =
e−ikr

r

on the 3D sphere. Table 8 and 9 (for 7 and 12 points per wavelength) show that the
relative L2 error on the trace on the boundary is smaller than 5.10−3 for 7 points per
wavelength and smaller than 3.5 10−3 for 12 points per wavelength, which verifies
the 3D BEM solver. For high-frequency problems, it is necessary to substantially
refine the mesh to preserve a sufficient number of points per wavelength (10 points
per wavelength is the usual condition).

|k| Mesh elements BEM error Hmat BEM error Calculation (Hmat)
2.03 2562 4.273 10−3 4.248 10−3 15.2 s
3.65 10242 1.477 10−3 1.473 10−3 64.6 s
8.15 40962 6.133 10−4 6.099 10−4 398.0 s
9.95 61033 1.011 10−3 1.019 10−3 725.0 s

Table 8: Relative error depending on the frequency, with and without H-
mat acceleration (7 points per wavelength, η = 3, nleaf = 20).

|k| Mesh elements BEM error Hmat BEM error Calculation (Hmat)
1.19 2562 3.63 10−3 3.50 10−3 15 s
2.38 10242 / 1.30 10−3 227 s
4.76 40962 / 4.66 10−4 281 s
5.81 61033 / 9.38 10−4 2260 s

Table 9: Relative error depending on the frequency, with and without H-
mat acceleration (12 points per wavelength, η = 3, nleaf = 20).

Transient Z-BEM resolution. To validate the transient Z-BEM solver, we con-
sider a sphere Ωs and an infinite exterior domain Ω := R3 \ Ωs. The spherical
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boundary is Γ = ∂Ωf = ∂Ωs. An arbitrary fixed point z is in the interior acoustic
domain Ωs and has a time-modulated intensity f(t) and quiescent past. We define
the incident potential

ϕref := G(x, z, t|f) = (G(x, z, .) ⋆ f) (t) x ∈ Ω, z ∈ Ωs

The source function f(t) is assumed to be twice continuously differentiable and
identically vanishing for t < 0. The function ϕref is thus causal and as it is equal to
the fundamental solution G, it solves(

∆− 1

c2
∂2t

)
ϕref(x, t) = 0 in Ω

The 3D fundamental solution for the infinite space is

G[x,y, t|f ] = f(t− r/c)

4πr

and depends on t through the retarded time t − r
c
, due to causality. To verify the

CQM algorithm we define the Dirichlet trace on Γ:

ϕref(x, t) = G(x, z, t) ⋆ f(t)

and compute the Z transform of the series
(
ϕref(x, tn)

)
n∈N

as

Φ
ref
(x, ξ) = G

(
x, z,

p(ξ)

∆t

)
× F (ξ)

where we denote s(ξ) = p(ξ)
∆t

, the CQM complex frequencies (p is the backward
differentiation formula of order 2 scheme BDF2). G is the Laplace transform of the
fundamental solution defined by

G (x, z, s) =
e

−sr
c

4πr

and F (ξ) is the Z transform of the series (f(tn))n∈N. We then solve a boundary
integral problem for each complex frequency s(ξ) = p(ξ)

∆t
.

1

2
Φ

ref
(x, ξ)−H

{
Φ

ref
}
(x, ξ) = −G {Q} (x, ξ) ∀t ∈ [0, T ], with x ∈ Γ.

The inverse Z transform of Q(x, ξ) gives the transient solution q(x, t) and we ver-
ify the relative L2 error between the numerical q and the analytical ∂nϕref(x, t) =
∂nG (x, z, t | f) = ∇G.n, using G first derivative given by [23]:

G,j (x, z, t | f) =
−r,j
4πr2

[
f(t− r/c) +

r

c
ḟ(t− r/c)

]
.

Some frequency problems do not need to be solved: the definition of a HFA allows
only the lowest-frequency problems to be solved. For higher frequencies we use the
HFA described in [147], which involves the pressure p and velocity u:

−ρ∂tϕ(t) = ρc∂nϕ(t), t ∈ [0, T ].
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In the frequency domain, the HFA is written

∂nΦ(s) = −s
c
Φ

ref
(s), (51)

where Φ is the the Laplace transform of ϕ, with a Laplace variable s.

Numerical validation. We consider a sphere with a radius r = 1. The wave
celerity is c = 1 and there is an interior point source that has a time-modulated
amplitude f(t):

f(t) =

{
t4(T − t)4 if t ∈]0, T [
0 otherwise

with a pulse width T=4.5. The time step is chosen according to the pulse width:
∆t = T

55
= 8.10−2. The 36 first frequency BEM problems are solved with the

frequency BEM solver. Taking the higher frequencies into account does not improve
the relative error on the solution ∂nG (less than 3% of improvement), so we use
the high frequency approximation from the 36th computation. The relative error
computed on the whole time interval, on a node of the boundary Γ is:

er =

∥∥q(x, t)− ∂nu
ref(x, t)

∥∥
L2([0,T ])

∥∂nuref(x, t)∥L2([0,T ])

, x ∈ Γ

The normal derivative ∂nG computed with a Z-BEM solver is illustrated on Figure
20 on a node of the boundary Γ, and compared to the analytical solution.

Figure 20: Relative L2 error on ∂nϕ : er = 1.2 10−2 (∆t = 8 10−2, Nt =
76, T=4.5, HFA= 36).
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Titre : Méthode de décomposition de domaine pour les problèmes couplés acoustique-élastiques, dans le
domaine temporel. Application aux explosions sous-marines

Mots clés : Couplage acoustique-élastique; Décomposition de domaine; Méthode itérative

Résumé : Ce travail étudie les approches glo-
bales en temps de décomposition de domaine
pour résoudre des problèmes transitoires d’inter-
action fluide-structure. Afin de déterminer un al-
gorithme optimal, nous étudions dans un premier
temps la solvabilité des problèmes élastodynamiques
et acoustiques transitoires avec des conditions aux
frontières de type Robin et de Neumann. Nous
énonçons des résultats de solvabilité, en soulignant
les différentes régularités espace-temps des solu-
tions. Nous étudions également la solvabilité du
problème couplé élastodynamique-acoustique tran-
sitoire. Puis en nous basant sur ces résultats
mathématiques, nous proposons ensuite un algo-
rithme itératif global en temps basé sur les conditions
aux limites de type Robin pour le problème couplé et
prouvons sa convergence.
Ces résultats sont ensuite mis en œuvre pour
coupler deux méthodes numériques efficaces. La
réponse du fluide en temps discret est obtenue à
l’aide d’une approche Z-BEM qui combine (i) une
méthode d’éléments de frontière (BEM) accélérée par
la méthode des matrices hiérarchiques dans le do-
maine de Laplace et (ii) une quadrature de convolu-

tion. La réponse de la structure est modélisée à l’aide
de la méthode des éléments finis. Nous développons
de cette manière une méthode numérique de cou-
plage itérative globale en temps à convergence ga-
rantie, permettant en outre d’utiliser deux méthodes
numériques distinctes de manière non intrusive.
Plusieurs améliorations sont ensuite proposées : une
méthode d’accélération de convergence est mise en
œuvre et une approximation à haute fréquence est
proposée pour améliorer l’efficacité de la Z-BEM.
On propose ensuite un deuxième couplage itératif
global-en-temps basé sur une interface acoustique-
acoustique, dont la convergence est également
démontrée. Ce couplage permet ensuite d’introduire
des effets non linéaires dus au phénomène de cavita-
tion pour préciser le modèle fluide. La Z-BEM est enfin
adaptée en utilisant la méthode des images pour per-
mettre la prise en compte d’une surface libre.
Cette méthode est appliquée à des problèmes à dy-
namique rapide de dispersion d’ondes de choc acous-
tiques par des structures élastiques immergées et
permet de simuler des configurations réalistes ren-
contrées dans l’industrie navale.

Title : Domain decomposition method for coupled acoustic-elastic problems in the time domain. Application to
underwater explosions.

Keywords : Acoustic-elastic coupling; Domain decomposition method; Iterative method

Abstract : This work addresses global-in-time do-
main decomposition approaches for the numerical so-
lution of transient fluid-structure interaction problems.
To determine an optimal algorithm, we first study the
solvability for the transient acoustic and elastodyna-
mic problems with Robin and Neumann boundary
conditions. We state solvability results along with the
different space-time regularities of the solutions. We
also study the solvability for the transient coupled
elastodynamic-acoustic problem. Using on these ma-
thematical results we then propose a global-in-time
iterative algorithm based on Robin boundary condi-
tions for the coupled elastodynamicacoustic problem
and we prove its convergence.
These results are leveraged to design a computa-
tional methodology by coupling two efficient numeri-
cal methods. The fluid response is formulated in the
discrete-time domain, using a Z-BEM approach that
combines (i) a boundary element method (BEM) ac-
celerated with hierarchical matrix implemented in the

Laplace domain and (ii) a convolution quadrature me-
thod. The structure response is modelled using the
finite elements method. We thus propose a global-in-
time iterative coupling with guaranteed convergence,
which enables the use of two distinct numerical me-
thods in a non-intrusive manner.
Several improvements are then explored : an accele-
ration method is implemented and a high-frequency
approximation is proposed to improved the Z-BEM ef-
ficiency. A second iterative global-in-time coupling ba-
sed on an acoustic-acoustic interface is then propo-
sed and its convergence is also proved. This coupling
enables the addition of non linear effects due to the
cavitation phenomenon to derive a more realistic fluid
model. The Z-BEM is lastly adapted using the method
of images to take a free surface into account.
This method is applied on fast-time problems of
acoustic shock wave scattering by submerged elastic
structures and enables to simulate realistic configura-
tions from naval industry.
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