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Synthèse

Titre : La propagation circulaire de croyances comme modèle d’inférences opti-
males et sous-optimales dans le cerveau : extension de l’algorithme et proposition
d’implémentation neurale

Résumé : Le modèle d’inférence circulaire est un modèle bayésien de troubles psy-
chiatriques, initialement conçu pour rendre compte des manifestations cliniques de la
schizophrénie et de la psychose. L’inférence circulaire repose sur l’algorithme de propa-
gation circulaire de croyances, un algorithme d’inférence probabiliste approximative qui
propose un paramètre additionnel comparé à l’algorithme de propagation de croyances
ou Belief Propagation. Ce paramètre est appelé le facteur de correction des boucles. Il
fixe la quantité de circularité dans l’inférence et est considéré comme représentant le
niveau d’équilibre (local) entre les processus d’excitation et d’inhibition dans le réseau
cérébral supposé réaliser les opérations d’inférence probabiliste. Dans ce cadre, les raison-
nements circulaires et les symptômes psychotiques émaneraient d’une diminution du fac-
teur de correction de boucles, c’est-à-dire d’un faible niveau d’inhibition comparé au
niveau d’excitation.
Le travail présenté dans cette thèse permet d’appuyer le modèle d’inférence circulaire
comme modèle d’inférences pathologiques (par exemple les hallucinations et les idées
délirantes), d’inférences presque-optimales, et entre les deux d’inférences sous-optimales
non cliniques, allant des biais usuels d’inférence (comme l’illustrent les phénomènes de
perception bistable et de prise de décision hâtive, et la confiance excessive généralisée) aux
comportements infracliniques comme le fait de croire en des théories du complot malgré
des éléments contredisant ces théories.
De plus, cette thèse développe le modèle d’inférence circulaire de façons diverses. Pre-
mièrement, conceptuellement, en procurant à l’algorithme de propagation circulaire de
croyances une fondation théorique, ce qui est réalisé en le reliant à des algorithmes exis-
tants comme la propagation fractionnaire de croyances. Deuxièmement, de façon plus pra-
tique, en proposant des implémentations neurales (réseaux de neurones à rate ou à spikes,
pour des variables binaires ou gaussiennes) et des mécanismes d’apprentissage biologique-
ment plausibles décrivant tous les deux comment les inférences probabilistes pourraient
être réalisées dans le cerveau en utilisant cet algorithme. Enfin, le modèle est développé
sur le plan théorique, en examinant les propriétés de convergence de l’algorithme de prop-
agation circulaire, en formulant l’algorithme pour des distributions de probabilité plus
complexes que précédemment, et en proposant une généralisation avec l’algorithme de
propagation circulaire étendu.

Mots clés : psychiatrie computationnelle, neurosciences théoriques, inférence proba-
biliste, propagation des convictions, inférence circulaire, propagation circulaire des con-
victions, déséquilibre excitation-inhibition, schizophrénie, psychose



Synthesis

Title: Circular Belief Propagation as a model for optimal and suboptimal inference in
the brain: extending the algorithm and proposing a neural implementation

Abstract: Circular Inference is a Bayesian model of psychiatric disorders, previously
designed to account for clinical manifestations of schizophrenia and psychosis. Circular In-
ference relies on the Circular Belief Propagation algorithm, an approximate probabilistic
inference algorithm that proposes an additional parameter compared to Belief Propa-
gation, called the loop correction factor. This loop correction factor sets the amount of
circularity in the inference and is seen as a proxy to the (local) level of excitation-inhibition
balance in the brain network assumed to perform probabilistic inferences. According to
this framework, circular reasoning and psychotic symptoms arise for lowered loop correc-
tion factor, which would mean, for low levels of inhibition compared to excitation.
The work presented in this thesis provides further evidence for Circular Inference as a
model of pathological inferences (e.g., hallucinations and delusions), near-optimal infer-
ences, and in between non-clinical suboptimal inferences, ranging from usual inference
biases (exemplified by the bistable perception and the jumping to conclusions phenom-
ena, and the general overconfidence) to sub-clinical behavior like believing in conspiracy
theories despite contradicting evidence.
Additionally, this thesis develops the Circular Inference model in different ways. First,
conceptually, by providing the Circular BP algorithm with a theoretical foundation, which
is done by relating it to existing algorithms such as Fractional BP. Second, more prac-
tically, by proposing neural implementations (rate networks and spiking networks, for
binary or Gaussian variables) and biologically-plausible learning mechanisms overall de-
scribing how probabilistic inferences could be carried out in the brain using this algorithm.
Finally, the model is expanded theoretically, by investigating the convergence properties
of the algorithm, by writing Circular BP for more complex probability distributions than
previously, and by generalizing the initial Circular BP into extended Circular BP.

Keywords: computational psychiatry, theoretical neuroscience, probabilistic inference,
belief propagation, circular inference, circular belief propagation, excitation-inhibition
imbalance, schizophrenia, psychosis



Résumé en français

Le cerveau humain est extrêmement performant pour effectuer des tâches complexes, et
en particulier, des tâches probabilistes. Ces tâches, par définition, impliquent des informa-
tions incertaines ou bruitées. Elles se retrouvent dans la vie de tous les jours – estimer quel
âge a la personne en face de nous, décider quand partir de chez soi pour être à l’heure à 95 %
– et pourtant, sont d’une grande complexité mathématique. L’hypothèse naturelle découlant
de ces observations est que le cerveau humain représente d’une manière ou d’une autre les
probabilités via ses neurones, et effectue des calculs probabilistes de façon (quasi-)optimale
via l’activité de ces mêmes neurones.

Différentes hypothèses mathématiques ont été formulées pour proposer une implémen-
tation (relativement) biologiquement plausible 1. de cette représentation des probabilités
et 2. de ces calculs probabilistes, dans le cas des distributions de probabilité sur des vari-
ables binaires. Des candidats naturels sont, respectivement, des neurones se déchargeant
proportionnellement aux quantités qu’ils encodent (liées directement aux probabilités), et
l’algorithme de Propagation de Croyances (« PC », en anglais Belief Propagation) qui réalise
une opération mathématique dite de marginalisation de probabilité. Cet algorithme agit sur
des graphes et permet de propager l’information arrivant dans le réseau (dans l’exemple, la
couleur des cheveux de la personne en face de nous) par un échange de messages entre ses
nœuds au niveau de ses arêtes. Plus précisément, un message envoyé par un noeud A à un
noeud B est composé de l’information totale reçue par le noeud A arrivant de l’extérieur du
réseau, et des noeuds connectés à A sauf le noeud B (c’est-à-dire, le message allant de B à
A). Cette exclusion permet à l’information de ne pas être réverbérée. En effet, dans le cas
contraire, si l’information que le nœud B envoie à A était renvoyée à B (elle-même renvoyée à
A, etc.), cela donnerait lieu à une amplification sans raison de l’information et des croyances,
donnant lieu à un excès de confiance des noeuds du réseau en comparaison à la réalité. Ce
modèle de représentation et de calcul probabiliste est un modèle purement abstrait (défini al-
gorithmiquement) pouvant potiellement expliquer le comportement. Néanmoins, le modèle
peut être rapproché de la biologie sur le plan intuitif. En effet, les noeuds du réseau peuvent
représenter chacun une population de neurones représentant collectivement la probabilité
d’une variable mathématique, et les arêtes du réseau peuvent représenter chacun un faisceau
de connexions entre ces populations de neurones. L’échange de messages pourrait se faire
entre des neurones excitateurs du cerveau, tandis que les neurones inhibiteurs pourraient
empêcher que l’information ne se réverbère en effectuant l’opération d’exclusion (du message
allant de B à A), contrôlant ainsi les échanges d’informations entre les neurones excitateurs.

C’est justement la perturbation, partielle ou totale, de ce mécanisme d’exclusion (de
l’information provenant du noeud B) qui définit l’algorithme de Propagation Circulaire de
Croyances (« PCC », en anglais Circular Belief Propagation). Une partie de l’information
envoyée de B à A retourne à B à cause de la réciprocité des connexions et de la perturbation,
ce qui constitue une boucle de longueur 2. La perturbation introduit des excès de confiance et
des potentielles erreurs de raisonnements, ce qui a motivé le modèle dit « modèle d’inférence
circulaire » basé sur l’algorithme de Propagation Circulaire de Croyances. La quantité de
circularité de l’inférence est contrôlée par des paramètres associés au arêtes du graphe, dits
taux de correction des boucles (égaux à 1 dans le cas de l’algorithme PC, et inférieurs à
1 dans le cas de l’algorithme PCC). Le modèle d’inférence circulaire vise à modéliser les
croyances aberrantes et plus particulièrement l’état de psychose, définit comme un trouble
mental de perte de contact avec la réalité et caractérisé par des pensées délirantes (croyances
non partagées par la majorité et résistant à des informations qui les contredisent) ou des
hallucinations (voir ou entendre des choses absentes). Biologiquement parlant, selon la vision
simpliste adoptée ci-dessus, la perturbation du taux de correction des boucles pourrait venir
d’un défaut d’inhibition : l’information envoyée entre populations excitatrices n’est pas
suffisamment atténuée, et est donc réverbérée. Un défaut d’inhibition déplace l’équilibre
de la balance excitation-inhibition dans le cerveau. Ce déplacement d’équilibre est une des



principales caractérisations de la schizophrénie, même s’il reste à clarifier biologiquement
si c’est la véritable cause du trouble psychiatrique ou si cela serait une conséquence d’une
autre cause – par exemple, de la perturbation du système dopaminergique ou encore d’une
disconnection anatomique.

Suite à sa définition algorithmique en 2013, le modèle d’inférence circulaire été développé.
Il a par exemple été utilisé pour modéliser le comportement lors d’une tâche probabiliste de
combinaison d’information chez des personnes atteintes de schizophrénie et des personnes
dans la population générale. De façon conforme à l’idée du spectre de la psychose, les per-
sonnes avec la plus grande perturbation comportementale dans la tâche (mesurée par le taux
de correction des boucles) étaient celles qui avaient les symptômes les plus intenses. Néan-
moins, le modèle d’inférence circulaire manque cruellement d’avancées qui permettraient de
le considérer comme biologiquement plausible, c’est-à-dire comme une façon possible dont
le cerveau pourrait effectuer des raisonnements probabilistes.

Cette thèse permet de développer le modèle d’inférence circulaire de plusieurs manières,
à la fois sur le plan pratique et sur le plan théorique. Sur le plan pratique, une proposition
d’implémentation neurale claire du modèle est précisée, permettant de relier directement la
perturbation de l’algorithme (quantité d’exclusion du message) à des quantités biologiques.
De plus, le modèle est utilisé dans son cadre initial – modéliser les troubles psychiatriques
– cette fois-ci avec une vision plus concrète biologiquement, en l’occurrence, en prévoyant
avec le modèle d’inférence circulaire des différences expérimentales particulières dans les
données d’imagerie cérébrale entre la population schizophrène et non schizophrène. Ensuite,
le modèle est utilisé hors de son cadre initial de modélisation de la pathologie, via l’utilisation
de ce même modèle pour expliquer des phénomènes sous-optimaux et quasi-optimaux dans la
population générale. Ensuite, sur le plan théorique, l’algorithme de Propagation Circulaire
de Croyances est étudié, notamment ses propriétés de convergence et sa relation à des
algorithmes existants, ce qui permet d’en formaliser une généralisation, plus puissante et
tout autant réaliste biologiquement.

Tout d’abord, une proposition d’implémentation neurale claire du modèle est précisée
dans le chapitre 4. Cette implémentation neurale comporte deux types d’unités. D’une part,
les nœuds de représentation (population de neurones excitateurs et inhibiteurs) encodent la
probabilité marginale de la variable mathématique associée au nœud. D’autre part, les
nœuds de contrôle (population de neurones excitateurs et inhibiteurs) contrôlent le flux
d’information entre les noeuds de représentation ; plus précisément, ces nœuds de contrôle
encodent la part d’information redondante devant être soustraite des quantités échangées
entre les nœuds de représentation. Cette proposition d’implémentation neurale permet de
relier directement la perturbation de l’algorithme (taux d’exclusion du message provenant
de B et arrivant en A) au gain synaptique du nœud de contrôle associé à la connexion A vers
B, et localisé au niveau du nœud de représentation A. Si les neurones, dans l’implémentation
naïve, se déchargent proportionnellement aux quantités qu’ils encodent, ce travail propose
également une implémentation utilisant des neurones spikant, donc plus proches de la réalité,
pour une représentation neurale plus plausible, même si les moindres détails biologiques
n’apparaissent pas tous.

Le modèle de cerveau entier découlant de l’implémentation neurale de l’algorithme PCC
(où un nœud du graphe représente une région cérébrale) permet d’expliquer des résultats
expérimentaux liés à la schizophrénie ; voir section 2.3. Un premier résultat expérimental est
celui des sur-activations relatives aux hallucinations chez les patients schizophrènes, dans
des régions spécifiques du cerveau (les zones associatives) qui sont fortement connectées
au reste du cerveau et sont donc cruciales pour une transmission efficace de l’information.
Dans le modèle neural, les connecteurs du réseau (nœuds fortement connectés servant de
relai entre les modules du réseau et au sein des modules), sont également suractivés lorsque
la circularité de l’inférence augmente (ce qui correspond à une diminution des taux de
correction des boucles). Un deuxième résultat expérimental est celui de la perturbation du
réseau de connectivité fonctionnelle dans la schizophrénie, dans le sens d’une plus grande



ségrégation des modules anatomiques. Ce résultat est également prédit par le modèle via
une modification du taux de correction des boucles.

Ensuite, le modèle d’inférence circulaire permet de modéliser le phénomène de perception
bistable, une manifestation connue de la sous-optimalité du cerveau ; voir section 2.2. Ce
phénomène, étudié principalement en laboratoire, correspond à l’alternance spontanée entre
deux possibles interprétations d’une image ; par exemple, le cube de Necker (figure 2D
représentant un cube 3D en transparence) peut être interprété de deux façons : cube vu d’en
haut ou d’en bas. Les caractéristiques de l’alternance entre les possibles interprétations –
temps moyen entre chaque alternance – font que le cerveau ne raisonne pas de façon optimale.
Le modèle d’inférence circulaire, sous-optimal par nature puisque défini par la perturbation
d’un algorithme, modélise des propriétés critiques de ce phénomène de perception bistable.
Ces propriétés impliquent les lois de Levelt caractérisant les processus de rivalité binoculaire.

De façon intéressante, la perturbation de l’algorithme PC (lui-même sous-optimal si le
graphe a des cycles) définissant l’algorithme PCC peut aller dans le sens d’une amélioration
de l’algorithme PC. En effet, il est possible d’exclure plus que nécessaire via un taux de cor-
rection supérieur à 1, ce qui crée une rétroaction négative au niveau des cycles de longueur
2. Cela permet de se prémunir des rétroactions positives dues aux cycles du graphe (de
longueur 3, 4, 5, …). Plus généralement, il est possible d’apprendre les taux de correction de
boucle permettant de contrecarrer les réverbérations naturelles d’information retournant à
l’envoyeur. Cette compensation n’est que partielle, mais fonctionne en pratique. Plus pré-
cisément, le bon taux de correction permet de réaliser des inférences de qualité remarquable,
pour un graphe donné, pour n’importe quels signaux entrant dans le réseau. L’apprentissage
peut se faire de manière supervisée, en fournissant des exemples d’entraînement d’inférences
exactes afin de trouver les bons taux de correction de boucle ; voir chapitre 3. Par ailleurs,
un apprentissage non-supervisé de type Hebbien et homéostatique est proposé pour appren-
dre les gains synaptiques, des types d’apprentissage qui ont été précédemment proposé pour
modéliser la façon dont le cerveau pourrait apprendre les connexions neuronales ; voir section
4.5.

Cette amélioration de l’algorithme PC avec PCC conduit à considérer d’autres algo-
rithmes d’inférence probabiliste approximée ; voir chapitre 3. En effet, l’algorithme PCC
est une modification simple de l’algorithme de PC et permet de contrecarrer l’effet des
boucles, rendant l’inférence moins sous-optimale. La même idée (retirer la contribution
des cycles du graphe) pourrait être utilisée pour améliorer d’autres algorithmes d’inférence
probabiliste approximée ayant une forme similaire à l’algorithme PC. L’algorithme de Prop-
agation Circulaire de Croyances (« PCC ») à relié à celui existant de Propagation Fraction-
naire de Croyances (« PFC »), très proche conceptuellement. Tous les deux généralisent
l’algorithme PC avec des paramètres supplémentaires permettant de réaliser des inférences
de meilleure qualité. La généralisation existante de l’algorithme PFC pousse naturellement
à une généralisation de PCC. Cet algorithme PCC généralisé comporte des paramètres
additionnels correspondant biologiquement aux poids des connexions entre les nœuds de
représentation, à la force des signaux entrant dans le graphe, et au gain synaptique des
nœuds de représentation. L’algorithme PCC généralisé a de meilleures garanties théoriques
et de meilleurs résultats pratiques que PFC ou PCC, et est plus plausible biologiquement
que l’algorithme PFC généralisé.

Enfin, l’algorithme PCC, défini initialement dans le cas particulier où de distributions
de probabilités sur des variables binaires, est formulé dans le chapitre 5 dans le cas de
variables quelconques, discrètes ou continues. Dans le cas particulier où les variables sont
gaussiennes, l’algorithme peut être implémenté neuralement très facilement, de manière très
similaire au cas où les variables sont binaires, avec simplement deux fois plus de neurones
(une sous-population représentant la moyenne de la distribution, et une autre représentant
sa variance). Il n’est pas clair dans quelle mesure il existerait une implémentation neurale
directe de l’algorithme dans le cas général, c’est-à-dire dans le cas où les variables ne sont ni
binaires ni gaussiènnes. Néanmoins, dans ce cas général, et sans se préoccuper d’une possi-



ble implémentation dans le cerveau, l’algorithme PCC (généralisé ou non) peut être utilisé
en tant que tel dans la recherche en intelligence artificielle comme alternative à l’algorithme
PC, améliorant sa performance dans les taches d’inférence probabiliste (utilisée dans de nom-
breuses applications réelles). L’apprentissage supervisé permet d’apprendre les paramètres
du modèle pour effectivement améliorer la performance, mais ne prend un temps raisonnable
que dans le cas d’un graphe de taille modeste. Pour des graphes avec un grand nombre de
nœuds, l’apprentissage non supervisé peut être utilisé, permettant d’obtenir de bons résul-
tats également, cette-fois sans avoir besoin de produire des exemples d’entraînement, ce qui
rend l’apprentissage utilisable en pratique dans un temps raisonnable.

L’algorithme PCC propose une vision simple du spectre de la psychose, où la quantité
de symptômes serait proportionnelle à la perturbation des taux de correction de boucles
par rapport à leur valeur optimale. Sur le moyen terme, il serait souhaitable de trouver
ces quantités en utilisant uniquement des données d’imagerie cérébrales (via le modèle neu-
ral dévelopés dans cette thèse) et par ailleurs uniquement des données comportementales,
afin de vérifer les corrélations attendues entre ces paramètres. Des études sont en cours
pour caractériser des population infra-cliniques situées sur le spectre de la psychose entre
l’optimalité et la pathologie, adhérant par exemple aux théories complotistes ou ayant des
croyances anormales inchangeables mais sans hallucinations.
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Chapter 1

Introduction

The confidence that individuals have in their beliefs depends mostly on the quality of
the story they can tell about what they see, even if they see little.

— Daniel Kahneman, Thinking, Fast and Slow

1.1 General context

The research field of computational neuroscience aims at designing models of the brain and testing
them on behavioral and/or brain data in order to understand better our own functioning and
imperfections. The brain being an incredibly complex organ (the cerebral cortex contains more
than 10 billion neurons) and our experimental techniques being limited, it is simply impossible
to model all its details. Research in computational neuroscience is guided by two different
classes of approaches to building neural models: mechanistic (bottom-up) versus normative (top-
down). Mechanistics approaches attempt to simulate a biological process using a descriptive
model of neural circuits with the highest amount of detail possible (anatomical-functional data
coming from brain imaging, neuromodulators, etc.) and study how neural computations can
give rise to behavior. On the contrary, normative approaches start from the level of behavior
and formulate hypotheses concerning the function of a brain area, before potentially proposing
how the cortical circuitry might implement the computations necessary to fulfill this function.
Altogether, mechanistic and normative approaches each have their pros and cons (Eliasmith and
Trujillo, 2014), and together offer complementary views to understand the brain.

More recently, a sub-branch of computational neuroscience has been growing: computational
psychiatry (Wang and Krystal, 2014; Stephan and Mathys, 2014; Seriès, 2020). Its goal is to
explain the origins and mechanisms of psychiatric symptoms , most of the time by considering
first a model of normal functioning, and by altering something in it to account for clinical
differences between a psychiatric population and a healthy (that is, non-psychiatric) population.
Both mechanistic and normative approaches are used.

In this thesis, I question how probabilistic reasoning is made possible by the brain. More
precisely, I consider the Circular Inference model, a normative model of how the brain performs
suboptimal inference, previously proposed by Jardri and Denève as a model of schizophrenia and
more broadly, of psychosis (Jardri and Denève, 2013a). I develop this model mathematically
and question its biological plausibility. I also suggest that this model is not only a good one for
psychiatric disorders but also for normal functioning.

1



1. Introduction

1.2 Inference in the brain

1.2.1 Probabilistic reasoning in everyday life
Humans face situations of uncertainty on a daily basis. This includes sensory processing: for
instance, we are remarkably good at determining the age or origin of a person based on a
simple photograph. More precisely, we are able to make an educated guess, and estimating the
uncertainty associated with that guess. Common situations of uncertainty also include motor
control: we are able to play the piano or reach the light switch at night, not 100% accurately
because making the exact same movement twice is impossible, but approximately, and we are
able to estimate our precision very well. Finally, another common example of dealing with
uncertainty on a daily life is cognitive reasoning. Should I get vaccinated from COVID-19 given
the amount of evidence at hand? How early should I leave my apartment to be on time at my
friends’ for dinner? Should I invest money in the stock market now or wait?1

The fact that people are good at carrying out probabilistic inferences - that is, form conclu-
sions or opinions based on known facts or evidence, here probabilistic - has been confirmed in the
laboratory. Psychophysical and behavioral experiments suggest that humans perform probabilis-
tic reasoning when perceiving objects (Knill and Richards, 1996; Kersten et al., 2004), moving
(Wolpert et al., 1995; Körding and Wolpert, 2004), or reasoning (Tenenbaum et al., 2006; Chater
et al., 2006).

This idea that the human brain performs probabilistic reasoning is commonly referred to as
the Bayesian brain hypothesis, as it relies on Bayes’ rule (Bayes, 1763) named after Thomas Bayes.
Bayes’ rule which states how to determine a conditional probability or posterior probability (e.g.,
probability of being close to a tree given our senses) given some prior knowledge (e.g., probability
of being in a forest) and sensory evidence (e.g., visual or auditory clues). Models originating
from Bayes’ rule are referred to as Bayesian models. Similarly, probabilistic inference is also
referred to as Bayesian inference.

In fact, not only behavior (meaning in practice, response of subjects to a task) but also neural
responses themselves can be analysed in terms of the posterior distribution. The underlying
intuition is that the probability of events is represented somehow by neurons, basic components
of the brain. Bayesian theories of the brain investigate how probabilistic inference could be
carried out in practice (Knill and Pouget, 2004; Doya et al., 2007; Lochmann and Denève, 2011;
Pouget et al., 2013); see also section 1.3 for more detail. In order to understand how the brain
can perform Bayesian inference, we provide in the following section necessary mathematical
definitions which will help build our model.

1.2.2 The problem: Inference in probabilistic graphical models
The object of study is a probability distribution p(x), where x = (x1, x2, . . . , xn). The distribu-
tion can be decomposed into a product of conditionally independent factors that each describes
interactions between distinct subsets of variables (Koller and Friedman, 2009; Wainwright and
Jordan, 2008):

p(x) ∝
∏
(i,j)

ψij(xi, xj)
∏
i

ψi(xi) (1.1)

where we consider only unitary and pairwise interactions for simplicity. Note, however, that
everything can be extended to any factorization of p(x), that is, any Markov random field (MRF)
(Kschischang et al., 2001) involving higher-order potentials (e.g. ψijk(xi, xj , xk)), as explained
in section 5.2.

1Hopefully, PhD students do not have to face such a dilemma.
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1.2. Inference in the brain

As Figure 1.1A shows, the probability distribution can be represented graphically as a graph-
ical model called factor graph, composed of variable nodes xi and factor nodes ψij and ψi. ψi
represents prior knowledge about variable xi, while ψij describes the interactions between xi and
xj . Importantly, ψi also represents the potential sensory observations (e.g., noisy measurement
of xi). Indeed, adding local measurements of the form p(y|x) =

∏
p(yi|xi) to the prior model

p(x), the posterior distribution becomes p(x|y) ∝ p(x)p(y|x). Consequently, introducing sensory
observations is equivalent to modifying the potentials {ψi(xi)} into {ψi(xi)p(yi|xi)}. In the ex-
ample of vision, if xi ∈ {−1,+1} represents the presence (or absence) of tree in the environment
of the person, ψi(xi) provides information about whether we should expect trees (low value if
the person is a sailor or lives in a desert), and ψij(xi, xj) represents the relation between xi and
xj , which is necessary to use knowledge of other variables (xj) to estimate xi; for instance, if xj
represents the presence (or absence) of a leaf, then ψij(xi, xj) describes the fact that the presence
of a leaf is often correlated to the presence of a tree and the absence of a leaf is often correlated
to the absence of a tree (in case there is are leaves, knowledge about the presence of snow would
be helpful as well, for instance).

A B

Figure 1.1: Understanding the Belief Propagation (BP) algorithm update equa-
tion and the Circular BP impairment. (A) The probability distribution p(x) is repre-
sented by a so-called factor graph with pairwise potentials ψij and unitary potentials ψi. Here
p(x) = ψ12(x1, x2)ψ15(x1, x5)ψ16(x1, x6)ψ23(x2, x3)ψ27(x2, x7)ψ1(x1)ψ3(x3)ψ6(x6)ψ7(x7). (B)
Belief Propagation aims at estimating marginals pi(xi) by exchanging messages in the proba-
bilistic graph. The message m1→2 (dotted black line) sent by node x1 to node x2 represents
the information brought by the subgraph composed of nodes x1, x5 and x6, about x2 (but not
information brought by nodes x2, x3 or x7). This message m1→2 depends on three components
(see full black lines). First, all the messages received by node x1 from its neighbors except x2.
Second, the unitary potential ψ1 at node x1. Third, the interaction ψ12 between nodes x1 and
x2. The estimated marginal or belief bi(xi) is formed based on all messages sent to node xi. See
Equations (1.3) and (1.4) for more details. Note that in the example taken, the probabilistic
graph is an acyclic graph and BP is thus exact. On the contrary, with Circular BP, m1→2
depends on a fourth component: the message m2→1 sent in the other direction (full red line)
with weight 1 − α12; see Equations (1.12) and (1.13) for more details. Because it reverberates
the same piece of information (for instance through x2 → x1 → x2), Circular BP is not an exact
algorithm.
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Given partial and noisy information {ψi(xi)} about x, one might want to compute the
marginal probabilities of the distribution p:

pi(xi) ≡
∑
x\xi

p(x) =
∑
x\xi

p(x1, . . . , xn) (1.2)

This is the inference problem which is considered in this thesis. Interestingly, the same methods
used to obtain marginals pi(xi) can be used to compute marginals of groups of variables, e.g.,
pairwise marginals pij(xi, xj) ≡

∑
x\{xi,xj}

p(x); see Appendix A.

Unfortunately, direct calculation of the marginals pi(xi) can take exponential time in the
number of variables n, as the formula above simply suggests to evaluate p(x1, . . . , xn) where for
all possible x1, . . . , xi−1, xi+1, . . . , xn for a given xi (overall 2n−1 terms) and sum all these terms.
That is why algorithms have been developed, where an algorithm is by definition “a procedure for
solving a mathematical problem in a finite number of steps, that frequently involves repetition of
an operation”, to solve this inference problem. Such approximate inference algorithms includes
the Belief Propagation algorithm and sampling methods. The advantage of these algorithms is
to be orders of magnitude faster than the simple summation or terms described above, but their
drawback is that they produce only approximate marginal probabilities bi(xi) ≈ pi(xi).

Other inference problems exist besides the marginalization problem. This includes finding
the most probable configuration of x given the observations (known as the maximum a posteriori
or MAP problem) argmaxx p(x), or computing the partition function (proportionality constant
of Equation (1.1), ensuring that the probability distribution sums to 1). However, we focus in
this thesis on the particular inference problem of finding the marginals of p(x).

1.3 Neural implementations of probabilistic inference

Although the idea that humans perform Bayesian inference is now well established, it is much less
clear how inference is implemented in practice in human brains at the level of neural circuits. The
two important points are how to represent probabilities using neurons, and how to implement
probabilistic computations in neural circuits.

The representation problem The first important question is how neural activities possibly
encode for probabilities (representation problem). For reviews on the topic, see Fiser et al. (2010);
Pouget et al. (2013); Aitchison and Lengyel (2017). The most intuitive idea, called direct variable
coding, is that neurons did not represent probabilities, but instead directly represent quantities
that they encode. For instance, neurons would spike more often when their encoded quantity (for
instance light intensity) is high; see for example Olshausen and Field (1996). Another form of
direct variable coding is sampling theories of the brain (Shi and Griffiths, 2009; Fiser et al., 2010;
Berkes et al., 2011; Buesing et al., 2011; Probst et al., 2015; Orbán et al., 2016; Aitchison and
Lengyel, 2016; Echeveste et al., 2020), which assume that responses of neurons reflect a sample
of a possible value taken by the variable, that is, of the posterior distribution associated to this
variable.

However, it is now widely known that it is not necessarily the case, even in sensory areas
like the primary visual cortex Knierim and van Essen (1992). Predictive coding theories (Rao
and Ballard, 1999; Friston and Kiebel, 2009) hypothesize that some neurons represent prediction
errors, that is, the mismatch between the sensory input conveyed by feedforward connections
(from sensory cortical areas) and the prediction of this sensory input conveyed by feedback
connections (from areas higher in the cortical hierarchy). Rao and Ballard (1999), as most
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articles on the topic, proposes a model with two classes of neurons: some encoding the variable
directly, and some other encoding for prediction errors.

An alternative view is that neurons encode for parameters of the posterior probability dis-
tribution (see Fiser et al. (2010); Raju and Pitkow (2016)), not the variable (or the prediction
error on the variable) itself. The most simple example of it is the probability code hypothesis,
which claims that the firing rate of a neuron is proportional to the posterior probability of a
variable, or of some range of this variable; see Lee and Mumford (2003). A highly related rep-
resentation is the log-probability code (see for instance Barlow (1969)), according to which the
firing rate is proportional to the log-posterior probability of the variable. An example of it is
probabilistic population codes (PPC) (Zemel et al., 1998; Ma et al., 2006), which decomposes the
log-probability into a sum of basis functions and proposes that a population of neurons encodes
for parameters of these basis functions.

The implementation problem The second problem is how neural circuits perform proba-
bilistic inference (implementation problem), once the type of representation has been decided
(Denève et al., 2001; Rao, 2006; Ma et al., 2006; Beck et al., 2008; Lochmann and Denève, 2011;
Moreno-Bote and Drugowitsch, 2015; Orbán et al., 2016; Spratling, 2016). Each kind of represen-
tational code has it advantages and drawbacks, and types inference problems on which they fit
naturally, leading to a straightforward neural implementation proposition of these problems. For
example, probability codes easily perform sums of probability distributions (which Bayes’ rule re-
quires for marginalization) by simply summing neural activities. Similarly, log-probability codes
easily multiply probability distributions (which Bayes’ rule requires for evidence integration and
cue combination) also by summing neural activities. In the case of sampling codes, implementing
Markov Chain Monte Carlo (MCMC) methods like Gibbs sampling (Geman and Geman, 1984)
also naturally lead to neural implementations of inference. Finally, in both probability codes
and log-probability codes, the neural implementation of Bayesian inference is straightforward:
the circuit directly performs the probabilistic computations required from a particular inference
algorithm.

In particular, message-passing algorithms appear to be natural candidates for the neural
implementation of probabilistic inference (Pitkow and Angelaki, 2017; Parr et al., 2019). Indeed,
a possibility is that the brain contains networks whose structure mirrors probabilistic graphs and
that the network activity corresponds to the message-passing algorithm in the underlying graph
(Shon and Rao, 2005; Steimer et al., 2009; Parr and Friston, 2018). Such algorithms involve
an exchange of information between nodes of a graph representing the probability distribution,
which can be seen as spikes sent between populations of neurons encoding for particular features.
Chapter 4 discusses the neural implementation of a particular message-passing algorithm, Belief
Propagation, and its variant Circular Belief Propagation, which are both formally introduced in
the next section.

1.4 Belief Propagation and Circular Belief Propagation

We first provide some background on the Belief Propagation algorithm, an approximate inference
method aiming at computing approximate marginals pi(xi) of a given distribution p(x).

1.4.1 Gentle introduction to Belief Propagation
The Belief Propagation (BP) algorithm or sum-product algorithm (Pearl, 1988) is a message-
passing algorithm performing approximate inference on a probabilistic graph or factor graph.
To do so, BP spreads probabilistic information everywhere in the graph via messages which
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are sent between nodes of the graph. The algorithm consists of repeating an update operation
on messages. Repeating this update operation allows messages to spread knowledge, which is
initially only available at the extremities of the graph through the unitary potentials ψi(xi).
For simplicity, we consider here an example of probability distribution whose corresponding
probabilistic graph has no cycles (see Figure 1.1A).

BP consists of repeating an update process of messages being exchanged between nodes xi
(see Figure 1.1B) where representing nodes are variables of the distribution p(x). The message
from node xi to node xj represents probabilistic (i.e., unsure) information about the receiver
node xj given all the local evidence available at node xi and the relation between variables xi
and xj . More precisely, the message from node xi to xj is computed based on three components.
First, the messages collected by xi from all its neighbors except xj ; indeed, xi should convey to
xj information unknown to xj so it does get mixed with new information. Second, the message
from xi to xj depends on external information ψi about the state of xi. Finally, the message
from xi to xj depends on the pairwise potential ψij describing how xi and xj depend on each
other; for instance it could encode for the fact that it does not usually rain when the sun is
shining, or that flu is associated with fever.

Once the external information has been transmitted to all the nodes of the graph, running
the update operation once again would not modify the value of the messages. The algorithm is
said to have converged. The marginal probability of xi is simply obtained by combining all the
messages received by node xi (that is, from all its neighbors, in addition to the external message
representing ψi).

For a particular probability distribution whose corresponding probabilistic graph has no cy-
cles, as in the example taken in Figure 1.1, the marginal probabilities computed by the BP algo-
rithm are in fact equal to the exact marginals obtained by computing directly

∑
x\xi p(x1, . . . , xn)

(brute force method). The intuitive reason why marginals are exact for acyclic graphs is the fol-
lowing: the message sent from xi to xj is the information brought by all the part of the graph
connected to xi, and not only xi itself: in Figure 1.1B, the message from x1 to x2 represents all
the information from the subgraph composed x1, x5 and x6 about the state of variable x2 (see
Figure 1.1B).

Although the algorithm was initially designed for probability distributions represented by
acyclic graphs, BP can be applied to cyclic graphs by extension, by using the same update oper-
ation as for acyclic graphs (Frey and MacKay, 1998). Cycles in a probabilistic graph represent
cyclic conditional dependencies between variables (concept A causes concept B which causes con-
cept C, itself causing concept A). In this case, the BP algorithm is sometimes called the Loopy
Belief Propagation algorithm: indeed, messages travel through loops or cycles of the graph; see
also Figure 3.1. The BP algorithm does not necessarily converge on such general graphs, and
when it converges it produces incorrect marginals which are more or less accurate depending on
the probability distribution (see legend of Figure 3.1). The reason why BP is not exact for cyclic
graphs is that the same evidence travels in the network multiple times because of loops, and is
mistaken for new evidence (Pearl, 1988). BP has been extensively studied empirically (Murphy
et al., 1999; Weiss, 2000; Mooij and Kappen, 2004; Litvak et al., 2009), which has led to a better
understanding of the convergence and performance of BP, depending on the cylic graph. It turns
out that when (loopy) BP converges, it produces beliefs which are a good approximation of the
true marginals. However, when it does not converge, oscillating beliefs can have very little to do
with the correct marginals. The convergence (or absence of convergence) of BP in a cyclic graph
depends on the graph topology and in particular, the size of the network, the average degree
and the size of the cycles (long cycles are better for convergence). But the graph topology is not
the only criterion: a given graph structure with different values of ψi and ψij can lead to BP
oscillating or instead converging. The quality of BP is nearly independent of the network size.
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Importantly, for sparse cyclic graphs, BP usually performs very well, which allows us to use
this algorithm for many concrete applications like computer vision and medical diagnosis. In fact,
BP was used in the early 1990s without strong theoretical insights as to why it achieved such
good practical results. The BP algorithm admits as a particular case the famous Kalman Filter
(Yedidia et al., 2003). Furthermore, BP applied to a particular bipartite graph is equivalent to
Low Density Parity Check Codes (Gallager, 1962), an example of error-correcting code (Berrou
et al., 1993) used in some Wifi standards and which has been adopted as the fifth generation
mobile communication (5G) standards (Sun et al., 2019).

1.4.2 Less gentle introduction to Belief Propagation
We continue this introduction by providing the mathematical definition of the Belief Propagation
algorithm. This section requires a stronger mathematical background of the reader.

1.4.2.1 Definition

Belief Propagation is a variational inference method which performs approximate inference on a
probabilistic graph. It approximates the marginals of the distribution by making variable nodes
xi share all the probabilistic information available with the rest of the network. It does this by
sending messages to other variable nodes. These messages represent all probabilistic information
(observed variables, prior distribution over variables) brought from a part of the network to node
xj . The algorithm consists of running iteratively the following update message equation on the
graph, where we consider here pairwise factor graphs or Markov networks:2

mnew
i→j(xj) ∝

∑
xi

ψij(xi, xj)ψi(xi)
∏

k∈N (i)\j

mold
k→i(xi) (1.3)

where N (i) is the set of neighbors of node xi in the graph. Messages are for instance initialized
uniformly over the nodes (mi→j(xj) = 1/N (j)). Once messages have converged, approximate
marginal probabilities (or beliefs) are computed as:

bi(xi) ∝ ψi(xi)
∏

k∈N (i)

mk→i(xi) (1.4)

Note the form of the update in Equation (1.3), which explains the alternative name of Belief
Propagation: the sum-product algorithm. An crucial feature of the BP algorithm is the message
exclusion principle (k ∈ N (i) \ j): to compute mi→j , all messages coming to node xi are taken
into account and combined, except the message in the opposite direction mj→i.

As stated above, (Loopy) BP has initially been used because of its empirical performance,
but lacked a deep theoretical comprehension as to why the algorithm worked so well in practice.
However, in the early 2000s, a theoretical foundation of BP emerged (Yedidia et al., 2001; Heskes,
2002) based upon the approximation of the variational distribution b(x) ≈ p(x) as if its associated
probabilistic graph were acyclic (Bethe approximation), as further explained in the following
section. This initial work was subsequently completed with various results on the convergence
properties of BP (Tatikonda and Jordan, 2002; Tatikonda, 2003; Ihler et al., 2005; Mooij and
Kappen, 2005, 2007b; Knoll and Pernkopf, 2017; Leisenberger et al., 2021), the goodness of BP
through the estimation of the BP error (Wainwright et al., 2003; Taga and Mase, 2006; Ihler,
2007; Mooij and Kappen, 2009; Shi et al., 2010), and the properties of the Bethe free energy and

2For a more mathematically accessible version of the message update equation, refer to the binary case
described in section 1.4.4 and particularly to Equation 1.14.
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Algorithm 1 Belief Propagation algorithm in a pairwise factor graph
1: for all directed edges i→ j do
2: mi→j(xj)← some distribution {Initialize the messages}
3: end for
4: repeat
5: for all directed edges xi → xj do
6: mnew

i→j(xj)←
∑
xi

ψij(xi, xj)ψi(xi)
∏

k∈N (i)\j
mk→i(xi) {Update the messages}

7: end for
8: m← mnew

9: until convergence
10: for all nodes xi do
11: bi(xi)← ψi(xi)

∏
k∈N (i)

mk→i(xi) {Compute the beliefs}

12: end for

Figure 1.2: Propagation of probabilistic information by the Belief Propagation algo-
rithm. The graph is the same as in Figure 1.1. The BP algorithm consists of running the same
update equation on messages until convergence of the messages. Initially, information is only
available locally at the nodes through unitary potentials ψi (external information about variable
xi). In an acyclic graph, the information propagates into the network without “coming back”,
because of the absence of cycles.

its fixed points (Heskes et al., 2002; Heskes, 2004; Watanabe and Fukumizu, 2009; Watanabe,
2011; Weller et al., 2014; Knoll and Pernkopf, 2017).

1.4.2.2 Theoretical idea behind Belief Propagation

Here we provide the theoretical background underlying the Belief Propagation algorithm defined
by Equations (1.3) and (1.4), respectively message update equation and expression the belief
(approximate marginal probability).

Problem We consider here a probability distribution p(x) composed of pairwise factors, with
continuous and/or discrete variables x1, x2, . . . , xn. However, for completeness we also consider
the general case (any probability distribution written as a Markov random field) in section 5.2,

8



1.4. Belief Propagation and Circular Belief Propagation

where we state and demonstrate message update equations of BP applied to a general factor
graph.

First, we start by writing the general variational problem: given the true probability distri-
bution p(x), we want to find an approximating probability distribution b(x), whose marginals
are easier to compute than those of p(x). In practice, in order to find b(x), we want to minimize
the Kullback–Leibler divergence between p(x) and b(x):

DKL(b∥p) =
∑

x
b(x) log

(
b(x)
p(x)

)
(1.5)

Minimizing DKL(b∥p) will result in a probability distribution b(x) “close” to the original distri-
bution p(x).

The true probability distribution p(x) is written p(x) = e−E(x)

Z where Z is a normalization
constant ensuring that

∑
x
p(x) = 1.

=⇒ DKL(b∥p) =
∑

x
b(x) log(b(x)) + log(Z) +

∑
x
b(x)E(x) (1.6)

which can also be written

DKL(b∥p) = −Sb − Fb + Ub (1.7)

where Sb = −
∑
x
b(x) log(b(x)) is the variational entropy, F = − log(Z) is the Helmholtz free

energy, and Ub =
∑
x
b(x)E(x) is the variational average energy. The Gibbs free energy (also

called the variational free energy) is defined as G = Ub−Sb, which we want to minimize in order
to minimize the KL divergence.

However, given the probability distribution p(x) and the variational distribution b(x), it can
be tricky to compute the entropy term Sb. This is contrary to Ub, which can be decomposed
very easily:

Ub =
∑

x
b(x)E(x)

= −
∑

x
b(x)

∑
i,j

ψij(xi, xj)−
∑
x

b(x)
∑
i

ψi(xi)

= −
∑
i,j

∑
xi,xj

bij(xi, xj)ψij(xi, xj)−
∑
i

∑
xi

bi(xi)ψi(xi) (1.8)

Proposed solution As it is not possible to easily compute Sb (the entropy of b(x)), Belief
Propagation estimates it as if the factor graph representing b(x) were a tree (i.e., were acyclic).
This means that:

b(x) ≈
∏
i,j

bij(xi, xj)
bi(xi)bj(xj)

∏
i

bi(xi) (1.9)

9



1. Introduction

where bij(xi, xj) ≡
∑

x\(x1,x2)
b(x) and bi(xi) ≡

∑
x\xi

b(x). This is equivalent to approximating the

entropy Sb of b(x) as follows:

−Sb =
∑

x
b(x) log(b(x))

≈
∑
x

b(x)
∑
(i,j)

log
( bij(xi, xj)
bi(xi)bj(xj)

)
+
∑
x

b(x)
∑
i

log(bi(xi))

≈
∑
(i,j)

∑
(xi,xj)

bij(xi, xj) log
( bij(xi, xj)
bi(xi)bj(xj)

)
+
∑
i

∑
xi

bi(xi) log(bi(xi)) (1.10)

which gives the following approximation of the Gibbs Free Energy, known as the Bethe Free
Energy: G ≈ GBethe, where:

GBethe =
∑
(i,j)

∑
(xi,xj)

bij(xi, xj) log
( bij(xi, xj)
bi(xi)bj(xj)

)
−
∑
(i,j)

∑
(xi,xj)

bij(xi, xj) log
(
ψij(xi, xj)

)
+
∑
i

∑
xi

bi(xi) log
(
bi(xi)

)
−
∑
i

∑
xi

bi(xi) log
(
ψi(xi)

)
(1.11)

The Belief Propagation algorithm thus consists of minimizing the Bethe Free Energy GBethe to
find some probability distribution b(x) and eventually, the marginals of b(x) which are hypothe-
sized to be close to the marginals of the initial distribution p(x).

From Gibbs free energy approximation to messages Appendix A shows that the min-
imization of the Bethe Free Energy given in Equation (1.11) leads to the BP algorithm shown
in Algorithm 1. The messages mi→j are related to the Lagrange multipliers of the constrained
optimization problem. Indeed, the goal of the algorithm, as seen above, is to try and to minimize
the Bethe Free Energy under the constraints

∑
xi

bi(xi) = 1 and
∑
xi

bij(xi, xj) = bj(xj) (as b(x) is

a probability distribution). The message update equation in the Belief Propagation algorithm is
not a gradient descent procedure on the Bethe Free Energy, but instead a fixed-point equation.
In other words, the fixed points of BP correspond to stationary points of the Bethe free energy
(Yedidia et al., 2003). In fact, it was later shown that stable fixed points of BP are minima of
the Bethe Free Energy (Heskes et al., 2002). In the case where the system has one fixed point
and this fixed point is stable, the BP procedure is guaranteed to converge to the unique fixed
point, that is, to the global minimum of the Bethe Free Energy. However, in the general case,
BP might converge only to a local optimum of the Bethe free energy, or not converge at all.

Note that in the case where the initial distribution can be represented by a tree, Equation (1.9)
is not an approximation, which explains why BP is exact when applied to acyclic probabilistic
graphs.

1.4.3 Circular Belief Propagation
Building on the previous section, we provide here a definition of the Circular Belief Propagation
algorithm.

1.4.3.1 Definition of Circular BP

The Circular BP algorithm was initially defined in Jardri and Denève (2013a) as an extension to
the BP algorithm. Its message update equation is the same as the one for BP, with the exception

10



1.4. Belief Propagation and Circular Belief Propagation

of parameter αi→j , the loop correction factor :3

mi→j(xj) ∝
∑
xi

ψij(xi, xj)ψi(xi)
∏

k∈N (i)\j

mk→i(xi)mj→i(xi)1−αi→j (1.12)

which, in the case α = 1, is BP (see Equation (1.3)). The only difference with BP is the final
term mj→i(xi)1−αi→j , meaning that the message in the opposite direction mj→i is partly taken
into account for the computation of mi→j . Beliefs are computed the same way as for BP:

bi(xi) ∝ ψi(xi)
∏

k∈N (i)

mk→i(xi) (1.13)

Note that αi→j is assigned to a directed edge (i, j). However, in most of this thesis, we will
consider α to be a symmetric matrix: αi→j = αj→i, which will be written αij in this case (αij
is assigned to the undirected edge (i, j)).

For a definition of Circular BP applied on any factor graph (not necessarily pairwise as
considered throughout this thesis), see section 5.2.

Algorithm 2 Circular Belief Propagation algorithm in a pairwise factor graph
1: for all directed edges i→ j do
2: mi→j(xj)← some distribution {Initialize the messages}
3: end for
4: repeat
5: for all directed edges xi → xj do
6: mnew

i→j(xj)←
∑
xi

ψij(xi, xj)ψi(xi)
∏

k∈N (i)\j
mk→i(xi)mj→i(xi)1−αij {Update the

messages}
7: end for
8: m← mnew

9: until convergence
10: for all nodes xi do
11: bi(xi)← ψi(xi)

∏
k∈N (i)

mk→i(xi) {Compute the beliefs}

12: end for

1.4.3.2 Theoretical motivation behind Circular Belief Propagation

The Circular BP algorithm was defined in Jardri and Denève (2013a) with the goal of modeling
aberrant beliefs in general, and psychosis in particular (within a model called the “Circular
Inference” model). Psychosis is a mental disorder defined by a loss of contact with reality
characterized by seeing or hearing things that do not exist (hallucinations), or believing in things
in a unshakable manner despite being contradicted by rational arguments (delusions). See more
about the link between Circular BP and psychosis in section 1.5.

The theoretical intuition behind the change appearing in Equation (1.12) is the following
(for the biological intuition behind the introduction of parameter α, seen as a level of excitation-
inhibition imbalance, see section 1.6). Instead of having node xi only send to node xj all in-
formation it collected from its neighbors (except, of course, xj) as in BP, node xi also sends
information coming from xj (mj→i) “weighted” by some factor 1 − αij (power weight in the

3For a more mathematically accessible version of the equation in the binary case, refer to Equation 1.18.
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initial formulation, multiplicative weight in the log-domain as shown in the following section)
which is called the level of circularity. If the circularity 1− αij ̸= 0, then node xj receives from
node xi some information that it already knew (as it previously sent it to node xi via mj→i), in
addition to information collected by node xi from its other neighbors. The message sent from
xi to xj thus comes back to xi.

In other words, probabilistic information, instead of being properly spread out throughout
the network, is being reverberated and treated multiple times. As shown in Figure 1.4, this
generally leads beliefs to be overconfident, meaning that the approximate marginals are closer
to the extreme values (0% and 100%) than they should be if we were to apply exact inference.

1.4.4 BP and Circular BP for binary distributions
1.4.4.1 BP for binary distributions

Throughout this thesis (with the exception of chapter 5) ), the probability distributions p(x) on
which we would like to perform inference are assumed to be distributions over binary variables:
xi ∈ {−1,+1}. In this case, BP, defined in Equation (1.3), takes a very simple form in the
log-domain (the proof is left to the reader):

Mnew
i→j = fij

( ∑
k∈N (i)\j

Mk→i +Mext→i

)
(1.14)

where Mi→j ≡ 1
2 log

(mi→j(xj=+1)
mi→j(xj=−1)

)
represents the information about variable xj brought by

variable xi. Mext→i ≡ 1
2 log

(ψi(xi=+1)
ψi(xi=−1)

)
represents alternatively prior information over a variable

xi, or here a noisy sensory observation providing information about the variable (e.g. auditory
and visual sense; ext stands for “external”). fij is a sigmoidal function given in the general case
by:

fij(x) = 1
2

log

(
ψ1,1
ij e

2x + ψ1,0
ij

ψ0,1
ij e

2x + ψ0,0
ij

)
(1.15)

where ψxi,xjij is simply a notation for ψij(xi, xj).
However, in simulations, we consider a particular class of distributions over binary variables

called the Ising models (also known as Boltzmann machines) from statistical physics (Ising, 1925;
Baxter, 1982). In Ising models, pairwise factors take a specific form: ψij(xi, xj) ∝ exp(Jijxixj).
Function fij then takes a simple form (see also Mooij and Kappen (2007b)):

fij(x) = ϕ−1(ϕ(Jij)ϕ(x)
)

(1.16)

where ϕ is the hyperbolic tangent tanh. fij is a sigmoidal function controlled by parameter Jij ;
see Figure 1.3B. Function fij is different from identity because there is some bounded “trust”
between nodes xi and xj , which comes from the parameter Jij being bounded.

Equation (1.14) only involves log-messages M (after convergence of the messages, beliefs are
computed according to Equation (1.13)). This equation can be rewritten using log-messages M
and log-beliefs B: 

Mnew
i→j = fij(Bi −Mj→i)

Bi =
∑

j∈N (i)

Mj→i +Mext→i

(1.17a)

(1.17b)
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Figure 1.3: Running the Belief Propagation (BP) algorithm and its variant, the
Circular Belief Propagation (CBP) algorithm. (A) Example of acyclic graph taken for
the simulation. In our example, the probability distribution corresponds to an Ising model:
pairwise potentials ψij(xi, xj) ∝ exp(Jijxixj) and unitary potentials ψi(xi) ∝ exp(Mext→ixi)
where xi ∈ {−1; +1} (binary case). Jij is generated randomly (∼ N (0, 3)), as well as Mext→i

(∼ N (0, 2)). (B) The update function fij for both BP and CBP (see Equations (1.17a) and
(1.19a)) is a parametric sigmoidal function close to the hyperbolic tangent. The parameter Jij
represents the level of trust between variables xi and xj . (C) Belief Propagation is a message-
passing algorithm which consists of running the update equation (1.17a) until convergence of
the messages. The approximate marginals, or beliefs, are defined by Equation (1.17b). Here the
beliefs found by BP are exact as the graph has no cycles. (D) The Circular Belief Propagation
algorithm is a parametric form of the Belief Propagation algorithm with parameter αij assigned
to each edge (i, j) of the graph. It is identical to BP for α = 1. In the simulation, α is taken
uniformly over the edges, equal to 0.5.
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Figure 1.4: Circular Belief Propagation (α < 1) produces overconfident beliefs in
acyclic probabilistic graphs, whereas Belief Propagation (α = 1) is exact. In this
example, weights of the (acyclic) graph Jij are taken as positive, and Circular BP is applied to
the graph with α taken uniformly over the edges. Circular BP was initially developed with the
idea of α < 1 which i to an imbalance between excitation and inhibition in favor of excitation
causing an amplification of information, also known as double-counting, and eventually leading to
overconfident beliefs (or marginals). On the contrary, BP would correspond to a perfect balance
between excitation and inhibition. For information, we also picture here the situation α > 1 for
which the network becomes underconfident. The graph was randomly generated and randomly
weighted. One point corresponds to the approximate marginal under Circular BP versus exact
marginal, for a given node and example. The full line represents the average of all points.

where Bi ≡ 1
2 log

( bi(xi=+1)
bi(xi=−1)

)
is by definition half of the log odds (odds is a synonym for likelihood

ratio or probability ratio). The approximate marginal probabilities are given by bi(xi = ±1) =
σ(±2Bi), i.e., bi(xi) ∝ exp(Bixi).

Equation (1.17a) means that node xi sends to xj everything it knows (Bi) except what xj
communicated to xi (Mj→i). In the case of acyclic graphs, this strategy is optimal to spread
information in the network, that is, without self-reinforcement of beliefs (case where some in-
formation would be communicated from xi to xj , then back from xj to xi, …). This intuitively
explains why BP is exact in this case.

However, BP can perform poorly in cyclic graphs (Murphy et al., 1999; Weiss, 2000); see
chapter 3.

1.4.4.2 Circular BP for binary distributions

Similarly to BP, the Circular BP algorithm (Jardri and Denève, 2013a) is written in the binary
case very simply:

Mnew
i→j = fij

( ∑
k∈N (i)\j

Mk→i + (1− αij)Mj→i +Mext→i

)
(1.18)

or equivalently, 
Mnew
i→j = fij(Bi − αijMj→i)

Bi =
∑

j∈N (i)

Mj→i +Mext→i

(1.19a)

(1.19b)
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where

fij(x) = 1
2

log

(
ψ1,1
ij e

2x + ψ1,0
ij

ψ0,1
ij e

2x + ψ0,0
ij

)
(1.20)

in the general case, and
fij(x) = ϕ−1(ϕ(Jij)ϕ(x)

)
(1.21)

in the specific case of Ising models for which ψij(xi, xj) ∝ exp(Jijxixj). Function fij for Circular
BP has the same expression as function fij used in BP. The only difference between Circular BP
and BP is that Circular BP has an additional parameter α in Equation (1.19a). BP corresponds
to the particular case α = 1. Note that we considered the special case αi→j = αj→i ≡ αij above
(i.e., we assumed that α is a symmetric matrix).

1.5 Circular BP as model of impaired behavior

The Circular Belief Propagation algorithm was proposed in Jardri and Denève (2013a) as way of
modeling aberrant percepts, overconfidence in patients with schizophrenia in probabilistic tasks
and resistance to illusions, as well as the learning of wrong associations and of false beliefs (the
resulting model is called the “Circular Inference model”). This leads us in the next paragraph
to describe what schizophrenia (SCZ) is.

Schizophrenia and the psychosis continuum Schizophrenia a serious mental illness that
interferes with a person’s ability to think clearly, manage emotions, make decisions and relate to
others (definition from the National Alliance on Mental Illness). The disorder generally appears
at the beginning of adult life, and affects around 1% of the world’s population during their
lifetime. It is characterized by a variety of symptoms, which have been categorized into three
clinical dimensions: positive symptoms, negative symptoms and disorganization. People with
disorganization are people who struggle to remember things, organize their thoughts or complete
tasks. Negative symptoms stand for an absence of normal functions; examples include apathy,
lack of motivation and interest, and displaying little feeling in emotional contexts. Finally, the
positive symptoms correspond to thinking or behavior that the person with schizophrenia did
not have before becoming ill. This includes hallucinations (seeing things or smelling things that
others cannot perceive, and most commonly, hearing voices) and delusions (false beliefs which
do not change, even when new ideas or facts are presented to the person - most commonly
paranoid thoughts). Contrary to the other clinical dimensions, which take place constantly,
positive symptoms occur intermittently, producing a state called psychosis, also known as a
psychotic episode.

However, diagnosing schizophrenia is not straightforward. The diagnosis is currently defined
on a pure clinical basis (that is, based on the person’s report of symptoms and not neural data,
for instance), in the absence of reliable biological markers. This leaves a part of subjectivity and
therefore leads to a certain inter-rater variability: different diagnoses can potentially be made
by different psychiatrists for the same individual. People diagnosed with schizophrenia have a
strong clinical heterogeneity by nature. Indeed, when based on categorical disease classifications,
e.g., International Classification of Diseases (ICD) or Diagnostic and Statistical Manual of Mental
Disorders (DSM), schizophrenia is characterized by the conjunction of psychiatric symptoms (e.g.
delusions, hallucinations, disorganization, etc.), none of them being specific, but easing clinical
diagnosis by defining a threshold on the psychosis spectrum (see Figure 1.5). In particular,
although the most specific symptom of schizophrenia is auditory hallucinations (followed by
delusions), voice hearers are not necessarily diagnosed with schizophrenia; see the Hearing Voices
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Figure 1.5: Illustration of the idea of psychosis continuum or psychosis spectrum.
SCZ stands for schizophrenia.

community. On the contrary, patients diagnosed with schizophrenia do not necessarily hear voices
but may instead experience non-sensory delusions such as persecutory beliefs.

In addition to the clinical symptoms described above, the behavior of people with schizophre-
nia differs in many ways from people without. A common experimental result differentiating
people with SCZ from others is the jumping-to-conclusions effect. This effect is defined by the
tendency to make decisions more quickly, on the basis of less evidence, and with more confidence.
The jumping-to-conclusion effect has been associated with the presence of delusions (Huq et al.,
1988; Garety et al., 1991; Moritz and Woodward, 2005; Speechley et al., 2010) and is quite logi-
cally frequently observed in SCZ and paranoia (Averbeck et al., 2011; Evans et al., 2015). Note
here that the confidence in ones’ beliefs does not directly relate to the accuracy of the belief:
one might have the correct belief (e.g., option A is more probable than option B) given all the
evidence at hand, but be more/less confident than what the evidence truly suggests.

Treating SCZ requires a multi-axis strategy, gathering medications, cognitive therapy and
remediations, social supports, etc. Despite a recognized effectiveness, a significant number of pa-
tients who undergo treatment may still experience some symptoms (including psychotic episodes),
even if these symptoms are less severe or frequent. That is why the comprehension of schizophre-
nia through basic science and theoretical research needs to advance, to better detect the disease,
allow living better with this complex illness, and propose better treatments, ideally curing it
completely.

Circular Inference as model of the mental health continuum As stated above, Circu-
lar Inference (based on the Circular BP algorithm) is a model of schizophrenia and psychosis.
(Jardri and Denève, 2013a) introduces Circular BP and proposes that this algorithm is used to
perform inference in the brain. Jardri and Denève also provide a sketchy idea of how a network
of excitatory and inhibitory populations might carry out this algorithm, without proposing a neu-
ral implementation per se. The algorithm, as shown in Figure 1.4, causes overconfidence in the
beliefs for α < 1. The jumping-to-conclusions phenomenon is interpreted as a misinterpretation
of nearly uninformative evidence (noise or non-significant information) because of the amplifica-
tion of the signal. Disorganization is explained by the strong temporal oscillations arising in the
algorithm in the event of contradicting evidence, where the beliefs alternate between opposite
conclusions as the algorithm runs (before a very slow convergence). Furthermore, the article tack-
les the problem of learning of causal links (strength of relationships between variables) through a
Hebbian-like learning rule, yet without precise neural interpretation. As it relies on an impaired
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inference, the learning is also affected. The article shows how relationships between concepts
can be learned despite being unrelated in reality, which is seen as the formation of a delusional
idea. Finally, the authors show how reverberating specifically the sensory information or the
prior knowledge allows for even more flexibility in the type of false inferences performed by the
network, as a result of an imbalance between the effective “weighting” of the prior versus of the
sensory evidence. Hallucinations and resistance to certain perceptual illusions, both observed in
schizophrenia (Notredame et al., 2014), are an example of such false inferences. More specifically,
Jardri and Denève propose that positive symptoms of schizophrenia originate from the reverber-
ation of sensory evidence (which amounts to giving more weight to the sensory evidence with
respect to the prior). Denève and Jardri (2016) develops further the link between the Circular
Inference model and experimental evidence, with a focus on the notion of hierarchy (in neural
circuits and in the associated generative model). For instance, the increased activation (measure
by the BOLD signal in fMRI) observed during hallucinations in specific brain regions called as-
sociation sensory cortices was related to the amount of belief update at the nodes located at the
middle of the hierarchy during a simulated “hallucination” in the network. Additionally, Jardri
et al. (2017) tests experimentally the ideas behind the Circular Inference model, that is, the
corruption of the sensory evidence by the prior knowledge (or the reverse, or both). The paper
models the confidence levels reported by people with and without schizophrenia in a probabilistic
task (variant of the “beads task” (Huq et al., 1988)) which consists of combining two kinds of
probabilistic information thought of prior and sensory evidence. To do so, a proxy equation,
which qualitatively corresponds to the idea behind Circular BP (but is different from the Circu-
lar BP algorithm), is put forward. Fitting the model to the reported beliefs shows a correlation
between the amount of ascending loops (controlling for the reverberation of the sensory evidence
information) and the severity of the positive symptoms. Unexpectedly (because the Circular
Inference was initially designed to account for positive symptoms of schizophrenia), the amount
of descending loops also correlates with the severity of the negative symptoms, and the total
amount of loops correlates with the severity of disorganized symptoms. Importantly, the model
captures inter-participant variability and not only group averages. A predictive coding-like model
involving modified effective weights to the prior or sensory evidence could not explain, contrary
to Circular BP, the jumping-to-conclusions effect observed in the confidence levels even for small
amounts of sensory evidence. Overall, the article provides an interesting link between the Cir-
cular Inference model and the entirety of the symptoms types observed in schizophrenia. More
recently, Simonsen et al. (2021) (see also its commentary Seriès (2021)) uses Circular Inference to
model a probabilistic task involving social cognition. Precisely, the authors used the same proxy
equation as in Jardri et al. (2017) to model a social version of the beads task, where participants
had to report their level of confidence based on some “sensory evidence” and the confidence
levels of other people. Similarly to the results of Jardri et al. (2017), the amount of sensory
loops correlated with the amount of positive symptoms (including hallucinations, delusions, and
bizarre behavior). Additionally, contrary to Jardri et al. (2017), the amount of sensory (and not
prior) loops correlated with the amount of negative symptoms (including anhedonia-asociality,
avolition-apathy, and attention).

Furthermore, Circular Inference could model pathologically-induced psychosis and among
others, the effects of the ketamine drug, a non-competitive NMDA receptor antagonist which
has been proposed as pharmacological model of schizophrenia, as its produces behavioral and
cognitive disturbances that are consistent with symptoms of schizophrenia (Krystal et al., 1994;
Adler et al., 1999; Newcomer et al., 1999) and has been reliably associated with delusional
thinking Corlett et al. (2006). Note that Bayesian models have already been used to account
for the effects of ketamine (Corlett et al., 2007, 2016; Salvador et al., 2020). By extension,
the Circular Inference model could be applied to the anti-NMDAR encephalitis auto-immune
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disease, which affects NMDA receptors like ketamine and is accompanied by symptoms such
as initial psychosis and long-lasting memory deficits, which are also features of schizophrenia
(Kayser and Dalmau, 2016). Likewise, Bayesian models have been used to understand the effects
of anti-NMDAR encephalitis (Stein et al., 2020).

However, the Circular Inference model is not specific to schizophrenia and psychosis: it could
explain some suboptimal choices made by humans and animals in the general case (where optimal-
ity is defined with respect to the laws of probability) Intriguingly, people without schizophrenia
also show signs of circular inference in the probabilistic tasks of Jardri et al. (2017) and Simonsen
et al. (2021), although in lower quantities than in people with schizophrenia. This suggests the
presence of circular reasoning in the general population. However, Jardri et al. (2017) reports an
absence of significant correlation between the non-clinical delusional score (measured by the PDI
scale (Peters et al., 2004)) and the amount of loops in the group of people without schizophrenia.

Related to the last point, Circular Inference could be a useful model for the formation and
maintenance of conspiracy beliefs and similarly, of persecutory beliefs or unshakable strange
beliefs in general (work in progress). Such beliefs may be observed in people exhibiting some
vulnerabilities to uncertainty while being below the threshold for the diagnosis of schizophrenia.
This “vulnerability to uncertainty” can be revealed in probabilistic tasks where uncertainty is
high: the Circular Inference model indeed predicts that in the face of ambiguity, differences
between perfect Bayesian observers (α = 1) and people suffering from psychosis (α < 1) are
maximal. Examples of such tasks can be found in bistable perception experiments, one of which
is modeled using Circular BP in section 2.2.

Moreover, the Circular Inference model could help understand the effects of psychedelic drugs.
These effects, which differ from but remind the symptoms of schizophrenia, include distorted
perception, visual and multimodal hallucinations and synaestesia. In fact, the Circular Belief
Propagation algorithm provides an account of “classic psychedelics” (serotonergic agonists like
DMT, LSD, and psilocybin), by showing that descending loops give rise to crossmodal percepts
and stronger illusions (Leptourgos et al., 2021). This contrasts with ascending loops explain-
ing jumping to conclusions, unimodal hallucinations and reduced vulnerability to illusions as
observed in schizophrenia.

Finally, the Circular Inference model can potentially be applied to other diseases or neu-
rodevelopmental disorders. One example is the autism spectrum disorder, which shares certain
symptoms with schizophrenia, might be explained using similar biological arguments (e.g., the
excitatory-inhibitory imbalance (Rubenstein and Merzenich, 2003)), and are often modeled simi-
larly (Lanillos et al., 2020). A recent study (Chrysaitis et al., 2021) tests the presence of circular
reasoning in autism by using the same probabilistic task as in Jardri et al. (2017). The modeling
did not show any sign of circular inferences in the behavioural data, which (of course) does not
mean that this link between the Circular Inference model and autism should not be investigated
further. Other psychiatric disorders have been related to the idea of imbalance between exci-
tation and inhibition, including attention-deficit hyperactivity disorder (ADHD) (Karch et al.,
2012), depression (Luscher et al., 2011) and bipolar disorders (Sakai et al., 2008), and therefore
could also possibly be explained using this model. Lastly, epsilepsy is not a psychiatric disorder
but has consistently been related to impaired inhibitory function (Treiman, 2001), and people
with epsilepsy have an increased risk of schizophrenia and of schizophrenia-like psychosis (Cas-
cella et al., 2009). This opens the question of whether the Circular Inference model could be
used to model this neurological disorder.

Cortical hierarchy and the different types of information loops in Circular BP The
Circular BP algorithm is defined as a specific impairment of standard BP, whereby the message
going from the sender node i to the receiver node j gets reverberated back to the sender i (and
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is later counted as if it initially came from node j). A consequence of this is that information
travelling in the probabilistic graph gets overcounted (self-amplification phenomenon, also known
as positive feedback). As several other Bayesian models of the brain, the Circular Inference model
(Jardri and Denève, 2013a) goes beyond the idea of multidirectional reverberation of information
by investigating whether reverberation of the sensory evidence specifically (or alternatively, of
the prior knowledge only) could potentially explain the symptoms of schizophrenia. This idea
builds upon the notion of cortical hierarchy.

Felleman and Van Essen (1991) proposes a detailed cortical organization of the visual area
and somatosensory/motor areas of the macaque monkey, by splitting subregions into a hierar-
chical graph composed of 14 levels. This graph is built from the anatomical definition of what
a feedforward or feedback connection is: a feedforward pathway goes from superficial layers to
layer 4, and a feedback pathway goes from deep or superficial layers to outside layer 4. The great
majority of pathways involve reciprocal connections between areas. Intriguingly, the resulting hi-
erarchical organization of the cortex defined by anatomy (feedforward versus feedback pathways)
corresponds to a hierarchy of concepts: edges and lines are encoded in the primary visual cortex
V1 (at the bottom of the hierarchy), shapes in V2 (above V1), objects in V4 (above V2), up to
faces in the inferior temporal cortex IT (above V4). This shows that visual processing is hierar-
chical, building features of higher complexity while going up in the hierarchy. A consequence of
this is that receptive fields increase in size and complexity with the level in the cortical hierarchy
(Hubel and Wiesel, 1962). An extension of this idea is that the entire brain, that is, not only the
visual and somatosensory/motor cortices, has a hierarchical organization (Hilgetag and Goulas,
2020).

It has been hypothesized that cortical hierarchies implement a model of the world’s causal
structure which translates into a hierarchical probabilistic graph, describing how noisy sensory
inputs are caused by hidden states of the environment (e.g., presence of a car or not). In that
respect, the notion of cortical hierarchy is equivalent to the notion of hierarchy between nodes
of the probabilistic graph, given the assumption that lower-level concepts are encoded in brain
regions which are located lower in the cortical hierarchy, as it is the case for vision. According to
this view, the brain performs hierarchical Bayesian inference on this causal model of the world
(Lee and Mumford, 2003; Summerfield and Koechlin, 2008; Rohe and Noppeney, 2015; Diaconescu
et al., 2017) in the wild variety of tasks involving making probabilistic inference, which includes
visual perception. The type of pathway (feedforward or feedback) determines the direction of
information flow: sensory evidence, coming from lower sensory areas as V1, is propagated toward
higher areas through feedforward connections, and prior information, encoded in higher areas,
propagates through feedback connections down the hierarchy (as most connections are reciprocal
in the cortex). The hierarchy in the probabilistic graph is defined by the level of the concept
encoded by variable xi versus xj . This is a rather natural concept in vision, where low-level
features like angles can be combined to create more evolved shapes, and eventually, objects or
faces. It generalizes to any Bayesian network, an oriented graph which describes the causal
dependencies between concepts. For instance, a disease is composed of (i.e., “causes”) particular
symptoms and therefore the variable encoding for the presence of disease is above the variable
encoding for the presence of a particular symptom.

Considering the reverberation of the sensory evidence only (or of the prior knowledge only)
in the Circular BP algorithm requires differentiating the case where node i is above node j in
the (hierarchically organized) probabilistic graph from when i is below j in the update of the
message mi→j (see Equation (1.12)). This requires αi→j to depend on the relative position of
node i and node j in the hierarchy. We talk of “ascending” loops to mean that information going
up the cortical hierarchy (i.e., sent from node j to i where i is above j) is reverberated back
(to node j). Therefore, the message mi→j contains partly the message in the opposite direction
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mj→i. In other words, sensory evidence travelling up the hierarchy is reverberated back, thus
corrupting the prior knowledge. The amount of ascending loops is controlled by αi→j for i
above j in the hierarchy (a presence of ascending loops means that αi→j ̸= 1). On the contrary,
“descending” loops involve information going down the hierarchy (high-level prediction) being
reverberated back to the top and treated as sensory evidence. This corresponds to αi→j ̸= 1 for
i below j in the hierarchy). Mathematically, having potentially different amounts of ascending
and descending loops is equivalent to allow α from Circular BP to be an asymmetric matrix:
αi→j ̸= αj→i.

Ascending loops and descending loops might account for different phenomena (Jardri and
Denève, 2013a). The effect of ascending loops is to create overconfidence in sensory observations
and therefore explain several features of schizophrenia like the so-called “positive” symptoms.
These involve the jumping-to-conclusions effect, the resistance to prior-based perceptual illusions.
Jardri et al. (2017) evens shows a correlation between the level of symptoms of people with
schizophrenia and the amount of ascending loops in a probabilistic task similar to the well-
known beads task (Huq et al., 1988). On the contrary, descending loops were used to model the
effects of psychedelic drugs (Leptourgos et al., 2021), that is, crossmodal percepts and stronger
illusions, and could be related to negative symptoms of schizophrenia (Jardri et al., 2017). It
is hypothesized in Jardri and Denève (2013b) that ascending and descending loops must have
different anatomical substrates and could be differently affected by lesions, deficits in GABA
receptors or neuromodulation.

As previously stated in section 1.4.3.1, some parts of the thesis differentiate ascending from
descending loops (e.g. section 2.2), whereas some others (in fact most others) don’t and consider
α to be a symmetric matrix: αi→j = αj→i ≡ αij .

1.6 Motivation behind Circular BP: excitation-inhibition imbalance

The underlying biological idea behind the Circular Inference model is that the level of circularity
1 − α controls for the amount of “excitation-inhibition imbalance”. This requires to define the
notion of balance between excitation and inhibition, and of its disturbance.

E-I balance Two processes fight in the brain: excitation and inhibition. Neural circuits, which
in general do not show runaway excitation and do not fall silent either, are said to balance exci-
tation and inhibition: we talk of “E-I balance”. The resulting state is controlled by the relative
numbers and activities of excitatory (typically glutamatergic) and inhibitory (typically GABAer-
gic) neurons (Rubenstein and Merzenich, 2003). Interestingly, experiments show a balance over
time: when excitation to a given neuron increases, inhibition increases proportionally. This is
also true over space. Experiments show that the ratio between the number of excitatory and
inhibitory synapses is constant, both across dendritic branches of a single neuron and across
neurons (Liu, 2004), which is referred to as structural balance. Furthermore, the E/I ratio (ratio
of excitatory to inhibitory inputs), measured by the ratio of excitatory to inhibitory synaptic
strengths, is found constant across neurons (Liu, 2004; Xue et al., 2014), which is referred to as
functional balance.

There are two opposing theories on the degree of balance between excitation and inhibition,
loose balance (Ahmadian and Miller, 2021) or tight balance (Denève and Machens, 2016), de-
pending on whether the sum of excitatory and inhibitory inputs to a neuron is comparable in
size or much smaller than the excitatory and inhibitory inputs. These opposing theories are
associated to different predictions. The debate remains open for now as measuring excitatory
and inhibitory currents simultaneously in a given neuron is impossible; instead, researchers mea-
sure independently the average excitatory and the average inhibitory conductances. Despite
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the development of new tools (e.g. Trakoshis et al. (2020)), there is currently a lack of robust
biomarkers of the E-I balance that would be non-invasive and applicable in humans on a large
scale.

However, the idea of balance between excitatory and inhibitory processes is now commonly
accepted. Inhibition is seen as a way to help the network being efficient (low spiking rates
corresponds to low energy consumption by the brain), robust to noise, and fast. It is also
hypothesized to help reduce randomness in cortical operations (Wehr and Zador, 2003). The
apparent random firing of cortical neurons has been seen as a consequence of the balance between
excitatory (positive) and inhibitory (negative) synaptic currents: indeed, in this case, the network
evolves on a chaotic or quasi-chaotic attractor. The importance of the E-I balance appears in
biophysically realistic models of working memory, in particular because it is a necessary condition
for the stability of the attractor network (Wang, 2006; Loh et al., 2007; Rolls et al., 2008; Murray
et al., 2014). Lastly, inhibition prevents an explosion of cortical activity which might take place
with excitatory neurons only, and which reminds the epileptic seizures (bursts of activity seen in
epilepsy).

E-I imbalance If a change occurs to excitation and/or inhibition, neural circuits reach a new
state (or a new set of states) while in general maintaining stability and activity in the network
(Sohal and Rubenstein, 2019). This is referred to as “E-I imbalance”, or disturbance of the E-I
balance. For instance, if the level of excitation increases, then the network activity increases until
more inhibition is recruited, which produces a new balanced state. As pointed out by Sohal and
Rubenstein (2019), this definition of the alteration in E-I balance suggests that excitation and
inhibition are unidimensional entities, which is an oversimplified view because there are different
subtypes of excitatory or inhibitory neurons. However, this simple concept can help understand
the mechanisms underlying neuropsychiatric disorders, particularly autism spectrum disorder
and schizophrenia (Foss-Feig et al., 2017).

The “imbalance” between excitation and inhibition in favor of excitation may lead to to hy-
perexcitability of the cortex and increased neuronal noise according to Rubenstein and Merzenich
(2003). More generally, it has been hypothesized that the balance between excitation and in-
hibition is abnormal in many neuropsychiatric conditions, including schizophrenia and autism
(Rubenstein and Merzenich, 2003; Gao and Penzes, 2015; Canitano and Pallagrosi, 2017; Sohal
and Rubenstein, 2019; Trakoshis et al., 2020). More precisely, there is strong biological evidence
for an increased E/I ratio in schizophrenia (and other neuropsychiatric disorders) in the pre-
frontal cortex, as a result of impaired functioning of inhibitory (GABAergic) interneurons which
causes cortical disinhibition (Lewis et al., 2005; Yoon et al., 2010; Marín, 2012; Selten et al.,
2018).

The hypothesis of an increased E/I ratio in schizophrenia is backed by experiments in which
a modification of the E/I ratio changed the behavior of healthy animals or humans, in ways
which remind the symptoms of schizophrenia. For instance, an increase of the balance between
excitation and inhibition in the medial prefrontal cortex of the mouse induced using optogenetic
techniques causes social deficits (Yizhar et al., 2011). Notably, these social deficits partly disap-
pear after a subsequent elevation of inhibition by increasing the activity of particular inhibitory
neurons: PV interneurons (see also Lewis et al. (2012)). Similarly, an increase in activity of PV
interneurons improves the impaired social behavior in an animal model of autism (Selimbeyoglu
et al., 2017). Moreover, the ketamine drug, which is hypothesized to increase the E/I ratio by
perturbing NMDA receptors (a type of glutamate receptors) on inhibitory interneurons, causes
cognitive impairments frequently observed in schizophrenia like working memory deficits (Mur-
ray et al., 2014), impaired decision-making (Lam et al., 2017), but also other schizophrenia-like
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symptoms like perceptual aberrations, delusional ideas, thought disorder and changes in affect
(Krystal et al., 2005).

In the biophysical models of working-memory mentioned above, an impairment in the level of
excitation (through NMDA or AMPA) and/or inhibition (through GABA) leads to schizophrenia-
like symptoms. This involves working-memory impairments (unstable memories for decreased
excitation; see Murray et al. (2014)), cognitive impairments (jumping from one thought to an-
other as a result of the flattening of the attractor landscape by decreasing both excitation and
inhibition), and potentially positive symptoms of schizophrenia like hallucinations (see Jardri
and Denève (2013b) for a review of attractor models of hallucinations).

Circular BP and E-I imbalance The idea behind the Circular Belief Propagation algorithm
is the one of a lack of control in information transmission, which corresponds at the intuitive
level to a disturbance of the excitation/inhibition balance in favor of excitation (Jardri and
Denève, 2013a,b; Jardri et al., 2016). A perfect balance (α = 1), which amounts to BP, controls
exactly for the loops of information and therefore avoids reverberations (at least for acyclic
probabilistic graphs which was the only case considered before this thesis). Increased excitation
relative to inhibition corresponds to α < 1 and is pictured as information (exchanged between
pyramidal cells) not being properly properly controlled by inhibitory interneurons, leading to
reverberation of signals between excitatory populations of neurons (information reverberation).
Finally, increased inhibition relative to excitation corresponds to α > 1 (this hypothesis is not
considered to model positive symptoms of schizophrenia with the Circular Inference model).

In local cortical circuits, pyramidal cells (excitatory neurons) are interconnected in a positive-
feedback manner, and GABAergic neurons (inhibitory neurons) operate a negative-feedback loop
(Shu et al., 2003). A potential network that might implement the algorithm could be composed
of excitatory and inhibitory populations, where excitatory populations are responsible for ex-
changing information, and inhibitory populations are responsible for controlling this exchange
(remove the effects of positive feedback). The state of the network (approximate marginals after
convergence of the algorithm) is modified as a consequence of the impairment in the algorithm
(circularity or lack of inhibitory control). However, the network remains stable and active, that is,
excitation does not run away and inhibition does not shut down the network activity completely.

1.7 Circular BP in the realm of computational psychiatry models

The Circular Inference model, based on the Circular Belief Propagation algorithm, is not the only
computational model of psychosis, schizophrenia, and psychiatric diseases in general. Here we
mention the different classes of models of schizophrenia and autism. For excellent reviews on the
subject, see Valton et al. (2017), which discusses normative and mechanistic models of schizophre-
nia, and Lanillos et al. (2020), which focuses on mechanistic models of both schizophrenia and
autism.

Bayesian models of mental disorders relying on Circular BP (Jardri and Denève, 2013a) or
predictive coding (Adams et al., 2013) are at the heart of this thesis (see more on the predictive
coding theories of the brain and their link with Circular BP in section 5.3.4). However, Bayesian
models (which are by nature normative) are not the only way of modelling psychiatric disorders.
In fact, mechanistic approaches exist to understand mental disorders, as well as other normative
approaches than Bayesian models. In fact, distinct hypothesizes have been made concerning
the origin of schizophrenia, including the dopamine hypothesis, the glutamate hypothesis, the
GABAergic hypothesis, and the disconnection hypothesis (Valton et al., 2017). These hypotheses
gave rise to a huge diversity of models which includes biophysical models, reinforcement learning
models, Hopfield networks and other artificial neural networks, etc. At the extreme opposite end
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from normative Bayesian models, we can mention the biophysical models of working-memory
(Wang, 2006; Murray et al., 2014; Loh et al., 2007; Rolls et al., 2008). These models incorporate
different types of neurotransmitters and base the network on experimentally-measured (concen-
trations/)synaptic connections. For instance, Wang (2006) uses integrate-and-fire neurons (both
excitatory pyramidal cells and inhibitory interneurons) and models their modulation by NMDA
receptors. Loh et al. (2007); Rolls et al. (2008) go a step further by including not only NMDA
receptors but also AMPA and GABA to their model.

Note that these hypotheses (dopamine, glutamate, GABAergic or disconnection) are not
necessarily mutually exclusive, as all systems are linked. For example, an alteration in the
dopaminergic system (dopamine hypothesis) could lead to reduced synaptic connectivity or ab-
normal functional connectivity (disconnection hypothesis), possibly as a way to compensate for
the dysfunction initially introduced (Lewis and Gonzalez-Burgos, 2006). Finally, these hypothe-
ses of course relate to Bayesian models impairments, although currently only hypothetically.
Circular Inference for instance relies on the hypothesis of excitation-inhibition imbalance, which
is tightly linked to the GABAergic hypothesis of schizophrenia, but also relates to the dopamine
and glutamate hypotheses (see Jardri and Denève (2013a)). Furthermore, the work presented in
section 2.3 (Bouttier et al., 2021) shows that an impairment of the level of excitation-inhibition
balance leads to abnormal functional connectivity, which is consistent with the dysconnection
hypothesis of schizophrenia.

In this “jungle” of models, the mathematics are different, levels of advancement are different
(some remain for now at the algorithmic level without proposed implementation), and the exact
processes modelled can be different as well (for instance, a significant proportion of models
only account for the positive symptoms of schizophrenia, whereas others model disorganization
(Lanillos et al., 2020)). Taken together, these models, as diverse as they may be, contribute
towards the same goal of understanding psychiatric disorders, by trying to explain experimental
brain and behavioral data collected on people suffering from these disorders, as well as animal
models or pharmacological models of the disease.

1.8 Unanswered questions and aims of this thesis

The Circular Inference model (Jardri and Denève, 2013a), based on the Circular Belief Propa-
gation algorithm, has been proposed to account for psychosis and subsequently developed and
tested in several articles (Denève and Jardri, 2016; Jardri et al., 2017; Leptourgos et al., 2017;
Chrysaitis et al., 2021; Leptourgos et al., 2021). Nevertheless, several questions remain unan-
swered before one can state with more certainty that it is a potentially good model of the way
the brain implements probabilistic inference. The first limitation of the model is that it considers
a specific (and restrictive) class of probability distributions, whose associated graphical models
are acyclic, pairwise, and represent exclusively binary variables. The second limitation, linked to
the first one, is that Circular Inference is only a model of impaired behavior and considers that
α = 1 (BP) symbolizes optimal inference, as it would be the case for a perfect Bayesian observer.
However, for distributions with loops, not only Circular BP (that is, 0 ≤ α < 1) but also BP
itself may carry out really poor inferences and sometimes be unstable, a fact that the current
model completely disregards. The third limitation of the model is that the change introduced in
Circular BP based upon BP is not normative and instead rather ad-hoc. The fourth limitation
is that the few propositions of neural implementation are either too vague or formulated on a
modified Circular BP (see section 4.1), and make implementation hypotheses without testing
them by simulating the network. Finally, the model lacks confrontation to experimental brain
data.
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The work presented here aims at filling (some of) these gaps. All the scientific questions
tackled in this thesis point in the same direction, that is, the long-term validation or rejection of
the model. Circular Inference is a normative model (see section 1.1 for a definition) and therefore
it relies on abstract assumptions (here, that the Circular Belief Propagation algorithm is used
by the brain to perform inference). As any normative model, it is important to validate or reject
it, and a good way to progress toward this goal is to test its capabilities by stepping out of its
comfort zone (which is behavioral modelling in this case). Another important step is to generate
predictions, be it behavioral or most importantly, neural. This is a common criticism towards
all Bayesian models of the brain (including predictive coding and BP), which cannot be proven
false as long as they stay conceptual. The only way to generate such predictions is to build a
precise enough proposition of implementation of the model in neural circuits.

This thesis is organized as follows. In chapter 2, we provide further evidence for Circular BP
as a model of suboptimal behavior. First, we use the algorithm to model bistable perception, a
badly understood phenomenon for which the Circular Inference model was initially not designed.
The model naturally captures various aspects of bistability, including Levelt’s laws, which is
not the case for a model with proper loop correction, that is, without circularity. This leads
the way to fitting bistable perception (behavioral) data to the model. Second, we propose a
large-scale model of the brain by hypothesizing that the generative network mirrors the small-
world anatomical structure found in brain imaging experiments. Using this large-scale model,
we replicate using numerical simulations particular disturbances in the functional connectivity
observed in schizophrenia.

In chapter 3, we show that the Circular BP algorithm can be used as a model of optimal
behavior (thus answering our interrogation about BP not being a good model of optimal be-
havior). We develop extended Circular BP, an algorithm which naturally generalizes Circular
BP and relate it to existing approximate inference algorithms, therefore providing a normative
foundation to the Circular Inference model. We show that this extended Circular BP algorithm
significantly outperforms BP in cyclic probabilistic graphs, and performs approximate inference
with a very impressive quality even for fully dense probabilistic graphs.

In chapter 4, we propose a neural implementation of Circular BP applied to probability
distributions over binary variables, and recover the effects of Circular BP using all this imple-
mentation. More precisely, we map the algorithm onto a network composed of rate units, which
implements the algorithm exactly. Furthermore, we describe a more biologically-plausible imple-
mentation composed of spiking units (integrate-and-fire neurons), which approximate Circular
BP very well. We also provide a biologically plausible learning algorithm for parameters of
Circular BP, inspired by the principles of excitation-inhibition balance and efficient information
transmission.

Finally, in chapter 5, we generalize the restrictive case of binary variables as used previously.
We formulate the Circular BP algorithm on general factor graphs instead of pairwise graphs.
We further investigate a special case of the algorithm where variables are continuous instead of
discrete: Gaussian Circular BP. This leads us to propose a rate model implementation of the
algorithm, which is very similar to the one proposed for binary variables. Finally, we relate
Gaussian Circular BP to predictive coding theories of mental disorders.
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Chapter 2

Circular Belief Propagation as model of
suboptimal behavior

Summary of Chapter 2

We provide in this chapter further evidence for Circular BP as a model of suboptimal behavior.
First, we use the algorithm to model bistable perception, a badly understood phenomenon for
which the Circular Inference model was initially not designed. The model naturally captures
various aspects of bistability, including Levelt’s laws, which is not the case for a model with
proper loop correction, that is, without circularity. This leads the way to fitting bistable percep-
tion (behavioral) data to the model. Second, we propose a large-scale model of the brain based
on Circular BP by hypothesizing that the generative network mirrors the small-world anatom-
ical structure found in brain imaging experiments. Using this large-scale model, we replicate
using numerical simulations particular disturbances in the functional connectivity observed in
schizophrenia, as well as targeted overactivation in specific brain regions.
This chapter is based on the two following articles. Section 2.2 corresponds to A functional theory
of bistable perception based on dynamical circular inference, by P. Leptourgos, V. Bouttier, R.
Jardri and S. Denève (2020), PLoS Comput Biol 16(12): e1008480. Section 2.3 corresponds to
Circular inference predicts nonuniform overactivation and dysconnectivity in brain-wide connec-
tomes, by V. Bouttier, S. Duttagupta, S. Denève and R. Jardri (2021), Schizophrenia Research.

2.1 Introduction

After presenting the Circular Belief Propagation algorithm and its link to psychiatric disorders
and excitation-inhibition balance, we tackle in this chapter the modeling of “suboptimal behavior”
with the Circular BP algorithm.

An optimal evaluation of one’s confidence is simply the estimation of a marginal probability
using the laws of probability (including Bayes’ rule) given all the pieces of evidence at hand:
optimality is defined here in the Bayesian sense. This means most of the time perceiving the
right object or taking the right decision. However, this can also account for illusions (Geisler and
Kersten, 2002; Lee and Mumford, 2003) like motion illusions (Weiss et al., 2002) in which the
prior knowledge biases the sensory information and can fool us to taking wrong decisions with
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respect to the sensory evidence alone, but optimal decisions with respect to the sensory evidence
and prior together.

Suboptimality is by definition the contrary of optimality. By nature, it is impossible to show
that a given human is a suboptimal Bayesian observer, because it would mean showing that
this human takes optimal decisions in all possible situations. However, behavioral experiments
suggest that no human is a perfect Bayesian observer, as our decisions are sometimes suboptimal.
We focus in this chapter on two concrete examples of such suboptimality: the bistable perception
phenomenon and schizophrenia.

Bistable perception, a phenomenon observed in the general population consisting of spon-
taneous alternations between two possible interpretations of a single situation, is by nature a
suboptimal process. The brain should indeed perceive both possible percepts at the same time,
and does not. We assume here that perception is done subconsciously , which implies that what
we perceive at a given time (e.g., the Necker cube from above) is the exact translation of our
beliefs (here, that means that the probability that the Necker cube is from above is above 50%).

Schizophrenia is a mental disorder which is linked to suboptimality as well. Symptoms of
schizophrenia are in fact manifestations of extreme suboptimality. For example, visual or auditory
hallucinations can be seen as a wrong integration of sensory evidence and prior information, where
highly unreliable and/or non-significant information (“noise”) is perceived as if the information
were strong. Delusions - having abnormal beliefs which do not change or hardly change despite
contrary evidence - is a manifestation of suboptimality as well, because Bayes’ rule states that
beliefs should be updated if new information gets added. Finally, other differences experimentally
observed between people with and without schizophrenia suggest that the probabilistic inference
system differs in many ways between the two populations. An example of that is the jumping
to conclusions phenomenon - taking decisions faster and being overconfident about it - which
is observed in schizophrenia and can be seen as a wrong (i.e., suboptimal in Bayesian terms)
accumulation of evidence over time.

Altogether, this chapter, which shows that bistable perception and some characteristics of
schizophrenia can be accounted using Circular Belief Propagation, provides further evidence for
the algorithm to be a good model of suboptimal behavior.

2.2 Circular BP as model of bistable perception

This section 2.2 corresponds to the following published article: A functional theory of bistable
perception based on dynamical circular inference, by P. Leptourgos, V. Bouttier, R. Jardri and
S. Denève (2020), PLoS Comput Biol 16(12): e1008480.

2.2.1 Abstract
When we face ambiguous images, the brain cannot commit to a single percept; instead, it switches
between mutually exclusive interpretations every few seconds, a phenomenon known as bistable
perception. While neuromechanistic models, e.g., adapting neural populations with lateral inhi-
bition, may account for the dynamics of bistability, a larger question remains unresolved: how
this phenomenon informs us on generic perceptual processes in less artificial contexts. Here,
we propose that bistable perception is due to our prior beliefs being reverberated in the corti-
cal hierarchy and corrupting the sensory evidence, a phenomenon known as “circular inference”.
Such circularity could occur in a hierarchical brain where sensory responses trigger activity in
higher-level areas but are also modulated by feedback projections from these same areas. We
show that in the face of ambiguous sensory stimuli, circular inference can change the dynamics of
the perceptual system and turn what should be an integrator of inputs into a bistable attractor
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2.2. Circular BP as model of bistable perception

switching between two highly trusted interpretations. The model captures various aspects of
bistability, including Levelt’s laws and the stabilizing effects of intermittent presentation of the
stimulus. Since it is related to the generic perceptual inference and belief updating mechanisms,
this approach can be used to predict the tendency of individuals to form aberrant beliefs from
their bistable perception behavior. Overall, we suggest that feedforward/feedback information
loops in hierarchical neural networks, a phenomenon that could lead to psychotic symptoms
when overly strong, could also underlie perception in nonclinical populations.

2.2.2 Introduction
All perceptual systems have one fundamental goal: to interpret the surrounding environment
based on unreliable sensory evidence. In most cases, this task is performed very accurately,
and the correct interpretation is found. Sometimes, perceptual systems fail to detect any mean-
ingful interpretation (e.g., when sensory evidence is too degraded) or converge to the wrong
interpretation (e.g., visual illusions (Weiss et al., 2002; Notredame et al., 2014)). Finally, a third
possibility occurs (mainly in lab conditions (Arnold, 2011)) when ambiguity is high; the system
detects more than one plausible interpretations but instead of committing to one interpretation,
it switches every few seconds, a phenomenon known as bistable perception (Blake and Logothetis,
2002). Despite ongoing scientific efforts, there has been no unanimous agreement either on the
causes of bistability or on its functional role.

The dominant mechanistic view on bistable perception suggests that it results from the com-
petition between different neuronal populations, each of them encoding a different interpretation
of the sensory signal (Blake, 1989). The two populations suppress each other via lateral inhi-
bition, while some form of slow negative feedback (e.g., spike frequency adaptation or synaptic
depression) acts on the dominant population, weakening the interpretation that is currently per-
ceived (Lago-Fernández and Deco, 2002; Laing and Chow, 2002; Wilson, 2003; Noest et al., 2007;
Wilson, 2007; Vattikuti et al., 2016). Additionally, injected noise renders irregular switching
and in some models, it can even be the driving force of oscillatory behavior (Moreno-Bote et al.,
2007; Shpiro et al., 2009; Panagiotaropoulos et al., 2013; Huguet et al., 2014). Although these
models have proven quite successful in describing different experimental observations (and link-
ing them to the underlying neural mechanisms), they do not address functional considerations
about bistable perception.

To overcome this issue, other groups suggested functional models of bistability, largely based
on the idea that the brain is an inference machine and perception is equivalent to a probabilistic
process (e.g., (Brascamp et al., 2018); see also (Hohwy et al., 2008; Weilnhammer et al., 2017) for
predictive coding, or (Sundareswara and Schrater, 2008; Reichert et al., 2011; Gershman et al.,
2012) for sampling). However, some crucial questions remain largely unanswered from a purely
normative perspective, namely, (1) why would a system form such strong percepts based on
ambiguous sensory evidence, but only in some cases, and why do the percepts persist in such a
way instead of switching rapidly, and (3) how the behavior of individuals in bistable perception
tasks may predict their performance in other probabilistic inference tasks.

In the present paper, we address the problem of bistable perception by proposing a functional
model with a well-defined interpretation in terms of generic neural processes. Based on previous
experimental findings, we suggest that bistability could be a perceptual manifestation of circular
inference (CI), a form of belief propagation in which priors and likelihoods are reverberated in the
cortical hierarchy and consequently corrupted by each other (Jardri and Denève, 2013a; Denève
and Jardri, 2016). More specifically, bistable perception could be imposed by the presence of
“descending loops”, where high-level beliefs are combined with sensory representations (through
feedback connections), and subsequently reinforce themselves (through feedforward connections).
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This results in the perceptual system “seeing what it expects” instead of the truly ambiguous
image (Leptourgos et al., 2017). Of note, previous work from our group linked CI with patho-
logical brain function, as in the case of schizophrenia (Jardri et al., 2017) but also to a smaller
extent with physiological functioning (Leptourgos et al., 2020b).

In the following sections, we derive the dynamics of inference in the presence of ambiguous
sensory stimuli and inference loops. The consequence of CI is to replace what is normally
a slow temporal integration of unreliable sensory evidence with a bistable attractor switching
between two highly trusted interpretations. We demonstrate that such a model can reproduce
well-known qualitative aspects of bistability, including the four Levelt’s laws and the stabilizing
effect of intermittent presentation, while it also makes testable quantitative predictions (e.g.,
about the behavior of patients suffering from schizophrenia). Since circularity arises from an
imbalance between neural excitation and inhibition in recurrent brain circuits (Leptourgos et al.,
2017; Jardri et al., 2016), our approach bridges normative interpretations of bistable perception
with plausible underlying neural mechanisms.

2.2.3 Methods
Here, we introduce a CI model of bistable perception and highlight its underlying functional
assumptions. For reasons of clarity, we refer to the example of the Necker cube, an ambiguous
2D figure which is compatible with 2 different 3D cubes and generates bistability: a cube that
is “seen from above” (later called the SFA interpretation) and a cube that is “seen from below”
(later called the SFB interpretation) (Fig 2.1A). Note that the model can be generalized to any
other stimuli inducing perceptual rivalry.

2.2.3.1 Generative model

Our model postulates that bistable perception is triggered by the same mechanisms and com-
putations that underlie normal perception. There is accumulating evidence that the brain uses
its cortical hierarchy to represent the causal structure of the world (Friston, 2008; Clark, 2013).
Brain circuits invert this “generative model” to find the most likely interpretation of the noisy
sensory information. In other words, perception can be viewed as an instance of hierarchical
Bayesian inference (Friston, 2008; Mathys et al., 2014) (Fig 2.1A). A particularly striking ex-
ample of this inferential process is 3D vision (such as the perception of the Necker cube). The
brain has no direct access to the 3D structure of the perceived object. In contrast, it receives
low-level 2D sensory information from the retina. In such a context, the task of the perceptual
system is to extract valuable depth cues and combine them with high-level prior knowledge, to
make “educated guesses” about the 3D object. Evidence suggests that this is a gradual process
(Finlayson et al., 2017), with different brain regions representing features of different complexity;
the lower levels of the visual cortex represent the basic features of the stimulus such as contours
and orientations while higher levels are responsible for more abstract information such as the 3D
organization of the stimulus (Felleman and Van Essen, 1991; Lee and Mumford, 2003).

In the case of the Necker cube, a veridical percept would correspond to a 2D drawing of
crossing lines. The presence of illusory depth cues forces the brain to consider a 3D structure.
Nonetheless, since the cues are ambiguous and contradictory, the 2D projection of the hypothet-
ical 3D stimulus is compatible with different objects, including the SFA and SFB interpretations
mentioned previously. The two interpretations are considered mutually exclusive, an assumption
that corresponds with the epistemological truth that two different 3D objects cannot occupy the
same space (Hohwy et al., 2008). It is interesting to note that in a more general sense, the Necker
cube is compatible with an infinity of3D objects, among which the brain represents only the two
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symmetrical cubes. This reduction of possible causes could be the result of hyperpriors used by
the brain and is not considered in the current model.

We formalize this inference problem with a simple graphical model, a chain with 2 latent vari-
ables and one sensory observation (Fig 2.1A). This “generative model” summarizes assumptions
made by our sensory system on the underlying causes of natural inputs, which may significantly
differ from the artificial data presented in a laboratory setting.

The sensory observation (S) represents the basic features extracted by visual receptors (edges,
contrast, etc.). For simplicity, S is assumed to be a scalar drawn from two probability distribu-
tions, one for each configuration of the cube, as illustrated in Fig 2.1A and 2.1B (red and blue
dotted distributions; P (S|X2D = 1) ̸= P (S|X2D = 0)). These distributions have different means
±µint and the same variance σ2

int. The difference in these two distributions considers the fact
that natural 3D objects have true depth cues (disparities, shadows, occlusion, etc.), predicting
different likelihoods for the two interpretations. Note that completely ambiguous stimuli (i.e.,
falling in the perfect overlap between the two distributions) are, in fact, rarely encountered in
nature.

The next variable X2D is binary and represents an intermediate level of complexity in the
perceptual hierarchy (e.g., the 2D surfaces and their orientation). Finally, the binary variable
X3D represents the final 3D cube configuration, with values 0 and 1 corresponding to SFB and
SFA respectively. wS corresponds to how reliably X3D predicts X2D.

ws = P (X3D = 1|X2D = 1) = P (X3D = 0|X2D = 0) (2.1)

We also assume that the environment has some volatility, e.g., objects are not permanently
present, but occasionally appear or disappear. Thus, X3D can randomly switch at any time, as
represented by two rates of change, from 0 to 1 (ron), and from 1 to 0 (roff). For the sake of
simplicity in the notation, we will replace X3D at time t by Xt, representing the 3D configuration
of the cube (SFA or SFB) at time t.

rondt = P (Xt = 1|Xt−dt = 0) (2.2)

roffdt = P (Xt = 0|Xt−dt = 1) (2.3)

Note that if we use ron ̸= roff, one of the two interpretations becomes more probable that the
other. This is very useful in the case of the Necker cube, where people usually prefer the SFA
interpretation, according to a general prior to view things from above (ron > roff) (Mamassian
and Landy, 1998).

Now that we have described the generative model, i.e., the internal model used by the brain
to perceive objects in the real world, we have to consider the artificial stimulus provided during a
bistable perception experiment. The Necker cube is very unnatural in the sense that it contains
no real depth cue. Thus, the sensory information it provides is assumed to be sampled (indepen-
dently at each time step) from a Gaussian distribution with mean µnoise (µnoise = 0 (Gaussian
process without drift) if the cube is completely unbiased and µnoise ̸= 0 (Gaussian process with
drift), if there are visual cues supporting one of the two configurations, e.g., different contrast
for the edges) and variance σ2

noise (Fig 2.1B; black and gray distributions).
The ultimate goal of the perceptual system is to infer X3D using the noisy measurements and

any available prior knowledge (for more information about the generative model, see Appendix
1).
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Figure 2.1: Normative model for how 3D objects result in particular sensory inputs,
and putative neural implementation of the corresponding perceptual inference. (A)
The internal model is a simple Bayesian generative model, where 3D objects predict the 2D
image, and the 2D image predicts low-level sensory inputs. The brain interprets the depth cues
(basic features) as indicative of real depth. Consequently, it first reconstructs the 2D figure and
from that, it infers the 3D object. Note that in reality there is one single 2D stimulus (the
Necker cube drawing) containing contradictory depth cues. (B) Close-up on the assumed “basic
feature” distributions (likelihood) compared to the real input distributions. The brain interprets
the depth cues as meaningful, predicting separate input distributions for the two cubes (SFA,
SFB; two objects cannot occupy the same space), which corresponds to two non-overlapping
likelihood distributions in the internal model (dotted red and blue distributions). In the totally
ambiguous case (cube with no extra cues), the real input is sampled from a distribution with
mean 0 (black). Visual cues shift this input distribution toward mostly positive or negative
values. Crucially, there is a discrepancy between the real input and the input assumed by the
internal model. This, together with the loops, predicts the suboptimal inference at the heart of
bistable perception. (C) A simplified neural implementation of hierarchical perceptual inference.
Reciprocal connections can combine bottom-up sensory evidence with top-down priors at all
levels of the hierarchical representation. Unfortunately, this also creates redundant information
loops, ascending (magenta arrow) and descending (blue arrow). (D) The brain can cancel these
loops by using inhibitory interneurons and maintaining a tight E/I balance. If this balance is
impaired, however, there will be some residual loops, parameterized by aP (descending loops,
amplifying prior beliefs) and aS (ascending loops, amplifying the sensory evidence). L is the
log-ratio of the belief. (E) From the Bayesian model of panel (A), we derived an attractor model
that performs inference in the presence of loops. The model accumulates noisy evidence while
descending loops add positive feedback and ascending loops increase the sensory gain.
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Temporal dynamics of inference

We show in Appendix 1 that exact inference implements a leaky integration of the noisy sensory
input (Fig 2.1E), i.e.

dL

dt
= −Φ(L) + wintS (2.4)

where wint = 2µint
σ2

int
(2ws− 1) represents the overall reliability of the sensory input (as assumed by

the generative model). L is the log-odds (L = log
(
P (Xt=1|S0→t)
P (Xt=0|S0→t) ). The nonlinear leak term Φ(L)

depends on the transition rates, i.e.,

− Φ(L) = (rone
−L − roffe

L) + (ron − roff) (2.5)

As a result of this leak, in the absence of sensory evidence, the log-odds go back to the constant
prior value log(ron/roff). This relaxation is faster for larger volatility in the environment (higher
transition rates). In the presence of reliable and unambiguous sensory input (e.g., when adding
visual cues, i.e., µnoise ̸= 0), L integrates out the noise and eventually reaches high (positive)
or low (negative) values, corresponding to high levels of confidence in favor of the SFA or SFB
configurations. However, in the presence o fa completely ambiguous sensory input, L integrates
unbiased noise (µnoise ≠ 0) and constantly hovers around the prior value, rarely reaching a
sustained high level of confidence in either of the two configurations.

Dynamics notably change in the presence of CI. CI is defined in the context of hierarchical
probabilistic inference but can also be understood intuitively as a consequence of feedforward/
feedback loops in brain circuits (Fig 2.1C). Bottom-up sensory evidence (from S to X2D) and
top-down prior information (from X3D to X2D) have to be combined to compute the probability
of intermediate representations (X2D), a task presumably performed by feedforward (bottom-
up) and feedback (top-down) connections converging on the same intermediate “2D” sensory
area (Douglas et al., 1995). This hypothesis is supported by the experimentally observed top-
down modulation of sensory neuron responses by higher-level interpretation of the image (Hupé
et al., 1998; Bullier et al., 2001; Manita et al., 2015). However, feedforward connections between
the “2D” and “3D” areas also communicate this modulated sensory response back to the “3D”
areas. While this modulation does not bring any “new” information, it could nevertheless be
mistaken for additional sensory evidence supporting the current interpretation. In fact, without
dedicated control mechanisms, feedforward/ feedback loops would systematically result in CI in
the underlying perceptual process. We found previously that while this can, in theory, be avoided
by maintaining a tight excitatory/ inhibitory balance in brain circuits (Fig 2.1D), human subjects
show some level of circularity in their probabilistic reasoning, which is aggravated in individuals
suffering from schizophrenia (Jardri et al., 2017; Leptourgos et al., 2020b).

Here, we quantify the strength of CI by two variables representing the level of“ascending”
(also called “climbing” (Jardri and Denève, 2013a); aS) and “descending” loops (aP ). Descending
loops represent to what extent top-down modulation of sensory responses is misinterpreted by
upstream (higher-level) neurons as new sensory information, forcing the perceptual system to
“see what it expects”. Vice-versa, ascending loops represent to what extent intermediate sensory
responses are misinterpreted by downstream (lower-level) neurons as prior knowledge, even when
they do not provide them with any new information (Fig 2.1C). This forces the perceptual system
to “expect what it sees” and over-interpret weak sensory inputs.

If CI is introduced in the model, the dynamics of perceptual integration changes as follows
(Fig 2.1E):

dL

dt
= −Φ(L) + aL+ w∗

intS (2.6)
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Variable Description Link to other variables
µnoise Drift of sensory evidence -
σnoise Standard deviation of sensory evidence -
µint Mean of likelihood function -
σint Standard deviation of likelihood function -
wS Feed-forward weight -
aP Descending loops -
aS Ascending Loops -
ron Transition rate (0→ 1) -
roff Transition rate (1→ 0) -
wint Sensory gain without ascending loops wint =

2µint

σ2
int

(2wS − 1)

w∗
int Sensory gain with ascending loops w∗

int = wint(1 + 2wsas)
b Bias -

Table 2.1: Parameters of the model

Note that the new auto-amplification term aL = 2aPwSL (due to the corruption of the
sensory evidence by the prior belief) is proportional to the strength of descending loops aP and
the assumed reliability of the sensory information, wS . If a is large enough, this amplification
term may exceed the leak term, at least in a certain range of confidence near L = 0. This leads,
as we will see, to bistable dynamics. Importantly, this term not only depends on the strength of
the descending loops but also on the reliability of the sensory input (assumed by the generative
model). Bistable dynamics occur only for large wS , which we may interpret as a typically highly
reliable input (such as 2D drawings of 3D objects) as opposed to typically unreliable inputs
(e.g., low contrast or degraded stimuli). This may explain in part why bistable perception is a
relatively rare phenomenon in natural (non-laboratory) settings.

In contrast, ascending loops amplify the weight of the sensory evidence according to their
strength, i.e., w∗

int = wint(1 + 2wSaS). In particular, ascending loops affect the dynamics only
if a sensory stimulus is present and tend to destabilize the percept by increasing the gain of the
noise injected into the dynamical system.

Note that without loss of generality, this model of perceptual dynamics can be reduced to 4
free parameters: the two transition rates ron and roff, the auto-amplification a and the overall
gain of the sensory inputs wint.

Perceptual decision Finally, we require a model of perceptual decision, which can predict the
current percept from the confidence. For simplicity, we assume a maximum-a-posteriori (MAP)
decision criterion, which means that decisions are made according to the sign of L (SFA if L > 0;
SFB if L < 0). The MAP decision criterion results in optimal behavior when the goal of the
system is to maximize accuracy, as in the case of perception.

Simulations For all the simulations, we used the Euler–Maruyama algorithm. The time step
was fixed at dt = 0.01s. Both the standard deviation of the noise σnoise (real model) and of the
likelihood function σint (internal model) were equal to 1. The mean of the likelihood function
±µint was also fixed at ±1. µnoise = 0 for the completely ambiguous case and µnoise ̸= 0 when
sensory evidence was biased. The initial belief in all simulations was L0 = 0. A summary of the
parameters can be found in Table 2.1.
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2.2.4 Results
As a first step, we highlight the importance of the descending loops in the generation of bistable
perception from a phenomenological and mechanistic point of view. Subsequently, we illustrate
how CI replicates some of the most seminal features of bistable perception, such as Levelt’s
laws but also some counterintuitive findings, including stabilization of perception after a brief
disappearance of the stimulus. Finally, we present further consequences of the model, notable
predictions about the performance of schizophrenia patients exposed to bistable stimuli.

Strong descending loops induce bistable perception An example of model dynamics in
response to a continuous presentation of a Necker cube, in the presence of strong descending
loops is shown in Fig 2.2A and 2.2C. With descending loops, the percept switches between two
highly trusted interpretations (for example, L = 4 corresponds to probability 0.98 in favor of SFA;
see also Appendix 3). Periods with low confidence are short and limited to sudden perceptual
switches, induced by the noisy input. These switches occur at apparently random times, resulting
in an exponential decay observed in the distribution of dominance durations (Fig 2.2E). When
there is a bias (e.g., ron > roff), one of the two configurations (e.g., SFA) becomes more likely
and is perceived more often (Fig 2.2C). However, the shape of the dominance durations remains
similar for the two configurations, even if the durations of the preferred configurations are longer
overall. It’s worth-highlighting that the stronger interpretation is also perceived with higher
confidence, a prediction that could be tested in future studies. For comparison, we also show the
dynamics of the model without descending loops (aP = 0) (Fig 2.2B and 2.2D). The resulting
system is equivalent to a hidden Markov model (HMM), with transition rates ron and roff (Denève,
2008), and has only one stable state corresponding to the prior. As a result, the confidence
behaves similarly to a leaky random walk. Since the leak maintains L close to zero, the system
rarely attains high levels of trust in either configuration, which may preclude the emergence of
strong and stable percepts in the absence of descending loops (instead, low confidence might give
rise to mixed percepts (Knapen et al., 2011)).

Dependency of bistability on the parameters Due to its simplicity, the model dynamics
can be analyzed more formally. This has the advantage of generalizing the model and providing
a general view on the dependency of bistable perception on prior assumptions about the external
world and on the strength of ascending and descending loops.

These dynamics can be represented by an energy landscape plotting the “potential” (the
temporal integral of the dynamic Equations (2.1-2.6) ) as a function of the current state L. The
relationship between the energy landscape and stability of a dynamical system is shown in Fig
2.3A and 2.3B, while the actual energy landscape of the model for different parameter settings
is shown on Fig 2.3C and 2.3D. In the absence of inputs, L always decreases toward the lower
potentials in these energy landscapes, until it reaches a stable fixed point corresponding to a
local minimum in the potential, also called an “energy well” (Fig 2.3A). The presence of a noisy
input introduces random perturbations which might allow L to temporarily climb the barrier
between two wells, thus switching to a different stable state (Fig 2.3B).

Without the descending loops, the model is equivalent to an HMM. Importantly, an HMM
acts as a leaky integrator with only one stable fixed point (the prior) determined by the 2 rates
(volatility):

LSt,a=0 = log
( ron
roff

)
(2.7)

This can be visualized by observing that the corresponding energy landscape contains a single
energy well (Fig 2.3C, dashed line). As long as the descending loops are weak compared to the
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Figure 2.2: Examples of model dynamics. (A) Model with descending loops (aP = 1.5),
unbiased (ron = roff = 0.5), with sensory gain wint = 0.8. The model received an ongoing,
ambiguous, white noise input with standard deviation σnoise = 1. Blue line: L (log-ratio of the
belief / confidence), red line = percept, dashed line = decision threshold). (B) Model with no
descending loops (same parameters as in (A.) except aP = 0). (C) The same model as (A), but
with a preference for the “SFA” configuration (transition rates changed to ron = 0.52, roff = 0.48).
(D) The same model as (B), with ron = 0.6, roff = 0.4. (E.) Phase-duration histogram (No loops;
unbiased). The dynamical circular inference model (with/without loops; with/without bias)
predicts exponential distribution of phase-durations. Gamma-like distributions, often observed
in bistable perception experiments, can be obtained by adding filtered noise, adaptation-like
mechanisms or more complex decision criteria to the model (see Discussion).
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Figure 2.3: Energy landscapes of the model with and without descending loops. (A)
Schema illustrating the relationship between wells in the energy landscape (potential = integral
of the dynamic equation, in blue) and stable states. Gray and black dots represent the initial
and final state from two different initial states. In the absence of external input, dots can only
decrease. (B) Schema illustrating how noise can force the state to climb an energy barrier (a
hill in the energy landscape) and switch to a different stable state. (C) Energy landscape of the
model with no descending loops (dashed, aP = 0), and two increasing levels of descending loops
(red: aP = 1, blue: aP = 1.3). Descending loops generate a bistable attractor, whose stable
fixed points correspond to (strong beliefs about) the two interpretations (blue). In contrast, a
system with no loops has only one attractor, the prior, (equal to 0 in this unbiased scenario).
(D) Energy landscape for different biases, no bias (red: ron = roff = 0.5), weak bias (magenta:
ron = 0.55, roff = 0.45) and strong bias (light green: ron = 0.6, roff = 0.4). Note that for stronger
biases, the non-preferred configuration becomes unstable.

leak, the prior remains the only fixed point of the system and is stable. For example, with
ron = roff = r, this remains true up to the value:

aPfp = r

ws
(2.8)

At this value, the system undergoes a pitchfork bifurcation (Fig 2.4A; see also Appendix 2).
The preexisting fixed point becomes unstable and 2 additional attractors are generated, given
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Figure 2.4: Phase diagrams of the model dynamics. (A) Stable fixed point (plain),
unstable fixed point (dashed) and bifurcation point (red dot) as a function of aP for an unbiased
system (ron = roff = r). (B) Stable fixed point, unstable fixed point and bifurcation points as
a function of r. (C) The same as (A) for a biased system (ron > roff). (D) The same as (B)
but as a function of ron, roff being fixed at 0.5. Note that bistability can exist in a narrow range
around symmetry. (A,B) Pitchfork bifurcation for symmetrical systems. (C,D) Saddle-node
bifurcation for asymmetrical systems.

by the 2 symmetrical, nonzero solutions of the equation −Φ(L) + aL = 0 (Figs. 2.3C and 2.4A).
The stronger the descending loops (or the weaker the leak), the further apart the 2 symmetrical
attractors are, resulting in more highly trusted configurations, which are also more stable since
the energy barrier is harder to cross.

Adding bias to the system (ron ̸= roff; e.g., SFA bias in Necker cube) creates an asymmetry
in the energy landscape (Fig 2.3D). A saddle-node (SN) bifurcation occurs when the loops be-
come strong enough to overcome the leak (Fig 2.4C; for a mathematical description of the SN
bifurcation, see Appendix 2). However, bistability can only exist in a narrow range of biases
(i.e., the difference between the two transition rates ron and roff), more particularly in the range
constrained by the 2 SN bifurcation points (one for ron > roff and one for ron < roff; Fig 2.4D).
These two bifurcations represent points at which the bias becomes strong enough to ensure that
only one of the two configurations (the most likely one a-priori) can be stably perceived.

Our analysis suggests that descending loops can constitute a crucial part of the machinery of
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a system exhibiting bistable perception. When they are strong enough to overcome the effect of
the leak, they generate a bistable attractor, implementing a memory-like mechanism that pushes
the belief toward more extreme values based on the previous observations. This helps the system
make decisions and act upon them in the absence of fully convincing evidence.

Until now, our analysis focused mainly on the effects of the descending loops. However,
ascending loops play an important role as well. According to (6), ascending loops increase
the gain of the sensory evidence (noise) (Fig 2.3B), which consequently acts by destabilizing
perception and reducing the effect of the bias on predominance.

In conclusion, this analysis demonstrates that robust bistable perception requires a very
specific set of conditions. It can only exist if there is a combination of (1.) reliable sensory
inputs (large wS), (2.) stimuli that are assumed to be stable (i.e., small transition rates ron and
roff, that are dominated by descending loops), (3.) at least two probable interpretations, even
if one can dominate the other (i.e., ron and roff relatively close to each other, leading to a weak
bias). Given these stringent conditions, it is not surprising that bistability is rather uncommon
in everyday life and occurs mainly for artificial stimuli chosen to obey these requirements.

In the next sections, we explore the predictions of the model regarding well-known psychophys-
ical features of bistable perception.

Levelt’s laws An important qualitative aspect of bistable perception is Levelt’s laws. These
laws constitute a set of 4 psychophysical propositions relating the strength of the bistable stimulus
to the phenomenology of binocular rivalry (Levelt, 1966), and more generally of bistable percep-
tion (Klink et al., 2008). Despite some recent modifications in their formulation (to account
for new experimental data (Shpiro et al., 2007; Brascamp et al., 2015b)), Levelt’s laws remain
fundamental to our understanding of the machinery of bistability and an important crash-test
for any potential model. We will present one by one the four revised propositions (as described
in (Klink et al., 2008) and not in Levelt’s original monograph (Levelt, 1966)) and will critically
discuss them through the prism of the dynamical circular inference (dCI) model.

1st Levelt’s law. The first proposition links the stimulus strength with the predominance of
each interpretation. It postulates that increasing the stimulus strength of one perceptual inter-
pretation increases the predominance of this perceptual interpretation (Klink et al., 2008). For
example, adding a cue to the Necker cube helps the relevant interpretation gain more perceptual
dominance compared to its rival. Although in modern terminology, proposition 1 sounds more
like a tautology, it is still useful for detecting stimulus features (or parameters of the model)
that affect the strength of an interpretation (Brascamp et al., 2015b). Within our model, we can
parameterize the strength of the sensory evidence by adjusting the drift µnoise of the Gaussian
noise, which biases the sampling of evidence (Fig 2.1B). As expected, the more positive the drift
the closer the relative predominance goes to 1 (the opposite for negative drift) (Fig 2.5A), in
agreement with the first proposition.

2nd Levelt’s law. The second proposition is less intuitive than the first and posits that
manipulating the stimulus strength of one perceptual interpretation of a bistable stimulus does
not influence equally the average dominance duration of both interpretations, but mainly affects
the persistence of the stronger interpretation (Klink et al., 2008; Moreno-Bote et al., 2010). For
example, increasing the strength of a visual cue in the Necker cube example mainly affects the
mean dominance duration of the corresponding interpretation. The dCI model is fully compatible
with Levelt’s second law, as presented in Fig 2.5B; making the drift more positive (bias for SFA)
predominantly affects the mean phase duration of the SFA interpretation (the opposite happens
for a negative drift and the SFB interpretation). Indeed, the drift acts as an additional bias
term in (4)/(6), which deepens the well of the strong interpretation, while making the other
well shallower. This dual effect of the drift (not obvious in other models in which different
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2. Circular Belief Propagation as model of suboptimal behavior

Figure 2.5: Levelt’s laws. The circular inference model qualitatively reproduces the 4 Levelt’s
propositions (here: wS = 0.9; aP = 1; ron = roff = 0.5). (A) 1st proposition — Increasing the
stimulus strength of one perceptual interpretation increases the predominance of this perceptual
interpretation. (B) 2nd proposition — Manipulating the stimulus strength of one perceptual
interpretation of a bistable stimulus does not equally influence the average dominance duration
of both interpretations, but mainly affects the persistence of the stronger interpretation. (C)
3rd proposition — Increasing the difference in the stimulus strength between the 2 perceptual
interpretations should result in a decrease in the perceptual alternation rate (i.e., maximum
number of switches at equi-dominance). (D) 4th proposition — When we increase the strength
of both interpretations, the number of switches increases.
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variables represent the different interpretations, see also (Moreno-Bote et al., 2007)), along with
the model’s inherent non-linearity can explain Levelt’s second law (Moreno-Bote et al., 2010).

3rd Levelt’s law. Levelt’s third proposition is closely related to the second proposition
(Brascamp et al., 2015b) and suggests that increasing the difference in the stimulus strength
between the 2 perceptual interpretations should result in a decrease in the perceptual alternation
rate (Klink et al., 2008). In the Necker cube example, this proposition implies that adding a
visual cue results in fewer switches. Importantly, the dCI model behaves exactly as the third
proposition dictates. As shown in Fig 2.5C, the alternation rate achieves its maximum value
for drift = 0 (completely ambiguous stimulus) and decreases symmetrically as the drift becomes
more positive or negative, a direct con-sequence of the third law (Moreno-Bote et al., 2010).

4th Levelt’s law. Finally, the fourth proposition goes one step further and discusses what
happens to the alternation rate if we equally increase the strength of both interpretations. In
this case, the number of switches increases, resulting in a higher alternation rate. Contrary to
the 3 first propositions, the fourth proposition illustrates the effect of a simultaneous and equal
manipulation of both interpretations (global stimulus strength). In the model, this should result
in an increase in the mean of the absolute value of the sensory evidence, while it should have
no effect on the mean of the sensory evidence per se. In other words, this global manipulation
can be captured by a change in the variance in the noise distribution σnoise. A higher variance
results in more exploration of the energy landscape due to the noise. Consequently, as illustrated
in Fig 2.5D, increasing σnoise results in more switches, in agreement with Levelt’s fourth law. In
conclusion, the model obeys Levelt’s laws regardless of the chosen parameters as long as

1. The sensory gain is high enough to induce transitions.

2. The bias is not strong enough to render one of the two configurations unstable.

Note that the respect of Levelt’s laws is not sufficient to prove the presence of descending
loops since the model without loops can also reproduce them (as long as the decision threshold
is set appropriately). However, definite support for the existence of descending loops is provided
by the stabilization of the percept by intermittent presentations of the stimulus, as described in
the next section.

Intermittent presentation When an ambiguous stimulus is presented continuously, switches
between competing interpretations occur randomly every few seconds, with consecutive phase
durations being largely independent (Walker, 1975). Based on this observation, many researchers
concluded that bistable perception is principally a memoryless process ((Lehky, 1995), see also
Nawrot and Blake (1989); Pastukhov and Braun (2011)). Nevertheless, this conclusion contra-
venes another observation: the fact that people tend to perceive the same interpretation repeat-
edly when ambiguous stimuli are presented intermittently for a wide range of OFF-durations
(intervals during which stimulus is absent) (Orbach et al., 1963; Leopold et al., 2002). This sec-
ond observation forced researchers to assume the presence of some perceptual memory (Pearson
and Brascamp, 2008), which manifests when the stimulus disappears from the screen. A variety
of mechanisms implementing this memory have been proposed, including low-level mechanisms
such as adaptation (combined with subthreshold effects; (Noest et al., 2007)), or high-level mem-
ory mechanisms located outside the extrastriate cortex (Leopold et al., 2002; Maier et al., 2003;
Sterzer and Rees, 2008). The dCI model offers a different explanation for this stabilization effect,
based on the descending loops.

In agreement with previously published experimental observations, our model predicts no sig-
nificant correlation in the duration of successive phases (Walker, 1975; Lehky, 1995), as expected
from a model that does not contain adaptation (or adaptation-like) mechanisms (Pastukhov and
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Figure 2.6: Continuous vs intermittent presentation. (A) An interpretation of the phe-
nomenon, based on the circular inference framework. When the stimulus disappears, the belief
converges to an attractor. The behavior of the system depends on the number and the value of
the fixed points (here: wS = 1; aP = 1.2; ron = roff = 1 (symmetrical case) or ron = 1; roff = 0.9
(asymmetrical case)). (B,C,F,G) No loops — If there are no (descending) loops, when the
stimulus disappears the beliefs converge to the prior ((B) No implicit preference; (F) Im-
plicit preference). Consequently, for longer OFF-durations, the 2 survival probabilities (blue
and red solid lines) either converge to 0.5 ((C) No implicit preference) or to symmetrical val-
ues ((G) Implicit preference). In both cases, the stimulus is not stabilized for longer intervals.
Interestingly, it is more stable compared to a continuous presentation (dashed lines). (D,E,H,I)
Descending loops–Descending loops generate a bistable attractor ((D) No implicit preference
(H) Implicit preference). Crucially, when they are strong enough, they cause stabilization
for longer intervals ((E) No implicit preference (I) Implicit preference). Furthermore, in
the biased case, survival probabilities converge to asymmetrical values.

Braun, 2011). However, the model should be able to predict a stabilization effect, when the
stimulus disappears for brief durations. To quantify stabilization, many studies referred to the
alternation rate, which is the number of switches in a time interval (Orbach et al., 1963; Leopold
et al., 2002; Kornmeier et al., 2007). However, this measure is not ideal as it can be affected
by various confounding factors including different presentation durations and switches occurring
during ON-durations (interval during which stimulus is present). Moreover, the alternation rate
considers both interpretations together and obscures any possible asymmetries. Instead, we used
the survival probability (SP) of each interpretation, which is the probability that the dominant
percept at the end of an ON-duration will be dominant again when the stimulus reappears after
the OFF-duration. Fig 2.6A illustrates our interpretation of the phenomenon (5 ON-OFF cycles,
aP > 0).

Without descending loops (aP = 0), and in the absence of input (i.e., when the stimulus is
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“OFF”), the belief progressively goes back to its prior value (log(ron/roff)) due to the leak (Fig
2.6B and 2.6F). For the unbiased system, the model predicts that both survival probabilities
(SP) will decrease toward 0.5 (chance) with a time constant that depends on the transition
rates (Fig 2.6C). An SP in a biased system would reach symmetrical points above and below
chance, with the values depending on the strength of the bias (Fig 2.6G). The longer the OFF-
duration, the less temporal dependency there would be between subsequent percepts. Thus,
without descending loops, there could not be any stabilization of the percept by an intermittent
presentation for long “OFF” durations. For comparison, SP is shown for the continuous case
(stimulation is not interrupted; in which case, we measure the survival probability in constant
intervals; dashed lines).

The descending loops (aP > 0) change the behavior of the system. The phase portrait of this
system is presented in Fig 2.6D and 2.6H. Instead of one single point where all the trajectories
meet, now we observe 2 clearly distinct basins of attraction, symmetrical for an unbiased system
and asymmetrical for a biased system. As a result, the temporal stability of the percept is
drastically increased, especially for long “OFF” durations (Fig 2.6E). In biased systems, the
level of stabilization depends on whether we consider the dominant or nondominant percept.
The probability of persistence of the dominant percept (if biased) always converges to a higher
probability than the nondominant percept. In the example shown in Fig 2.6I, only the dominant
stimulus is stabilized by intermittent presentation, while the nondominant percept SP converges
to a chance level. In other cases, both the dominant and nondominant percept can be stabilized.
The stabilization of both percepts increases with the level of descending loops and decreases with
sensory gain, as shown in the next section.

An important comment needs to be made. The current version of the model does not predict
a destabilization occurring for small OFF-durations, usually for values below 500 ms, as reported
in some studies (Kornmeier et al., 2007). Other models have attributed this observation to short-
term sensory adaptation (Noest et al., 2007). To keep the model as simple as possible, we did
not introduce sensory adaptation. However, such a short-term effect, occurring only at the time
of stimulus presentation, would not affect the stabilization for long OFF-durations as predicted
by the model with descending loops.

To summarize, dCI predicts the stabilization of bistable perception for longer OFF-periods.
In addition, it makes specific predictions about the persistence of each interpretation separately,
which could help to experimentally validate (or invalidate) this model.

Bistable perception as a tool for investigating mental illness So far, we have described
a functional model of bistable perception, based on the notion of CI. Accumulating evidence sup-
ports the idea that circularity (and especially a small amount of descending loops) is a common
property of the human brain, reflecting some inherent limitations of neural circuits (Jardri et al.,
2017; Leptourgos et al., 2020b). However, it has also been suggested that CI could be the cause of
several cognitive and/or perceptual disorders, including schizophrenia (Jardri and Denève, 2013a;
Leptourgos et al., 2017). In a previous study, Jardri et al found that on average, patients with
schizophrenia have stronger ascending loops compared to a group of matched healthy controls
(Jardri et al., 2017). Additionally, it was evidenced that “positive” (i.e., psychotic) symptoms,
including hallucinations and delusions, correlate with the amount of ascending loops (i.e., sen-
sory evidence amplification), “negative” symptoms, including lack of motivation and anhedonia,
correlate with the amount of descending loops (i.e., prior amplification), and finally, cognitive
disorganization correlates with the total amount of loops (aS + aP ). Considering these previous
findings, an interesting question is what does the current dCI model predict the behavior of
schizophrenia patients exposed to bistable stimuli?
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Fig 2.7A and 2.7B illustrates the effect of ascending loops on the bias (relative predominance)
and stability (mean phase duration). As previously shown, ascending loops increase the gain of
the noise, facilitating the jumps between the 2 attractors. Consequently, our model predicts that
patients with more severe hallucinations and delusions should be less biased in their responses
(both due to inherent priors and visual cues) but also less stable (especially the interpretation
that is supported by the visual cue). Specifically, the effect of ascending loops on relative pre-
dominance, although it might seem counterintuitive (over-counting of sensory evidence leads to
a smaller effect of that evidence), illustrates the detrimental effect of the higher gain of noise on
the accumulation of evidence.

In contrast, descending loops deepen the wells of the energy landscape and consequently, they
produce the exact opposite effects. As shown in Fig 2.7C and 2.7D, the prediction would be that
they increase both the bias and the stability of schizophrenia patients with more severe negative
symptoms.

Similar stabilization and destabilization effects as a function of the level of ascending and
descending loops are predicted for intermittent presentation (Fig 2.7E and 2.7F). In particular,
increasing ascending loops (and thus, the sensory gain), leads to destabilization of both the
dominant and nondominant percept (more precisely, both SP get closer to 0.5; Fig 2.7E). This
effect is in agreement with recent experimental results on schizophrenia patients (Schmack et al.,
2013, 2015). In contrast, increasing descending loops stabilizes first the dominant percept, and
then both the dominant and nondominant percepts (Fig 2.7F).

Finally, note that these predictions are not only qualitative but also quantitative. The results
in Fig 2.7, as well as the shape of the stabilization curves in Fig 2.6, depend on 4 free parameters,
the transition rates, overall descending loop strength a and sensory gain wint, all specifically
related to generic parameters of perceptions applicable to many behavioral tasks. This could
provide a foundation for parametric study of natural variation in the general population and
psychiatric disorders, generalization over the results of different experiments (e.g., probabilistic
decision tasks versus bistable perception), and raise the possibility of finding specific neural
correlates of these variations (e.g., levels of E/I balance, effective connectivity between highlevel
and low-level areas, etc.) (see Appendix 4).

2.2.5 Discussion
In the present paper, we demonstrated that bistable perception could arise in a perceptual
system where feedback based on the current beliefs corrupts the sensory inputs. In this sce-
nario, expectations are reverberated back up and considered several times (forming descending
information-loops), suboptimally amplifying prior beliefs and causing the system to «see what
it expects» (Leptourgos et al., 2017). The emerging dynamical system can explain various in-
triguing features of bistable perception, including its mere existence. It artificially inflates the
accumulated noisy information, leading to a system that perceives clearly, persistently and in
alternation the two potential interpretations, with high levels of conviction. Such a dCI model
is compatible with Levelt’s laws and accounts for the stabilization of the percepts when the
stimulus is presented intermittently.

Importantly, this model allowed us to make new predictions regarding bistable perception in
physiological and pathological conditions. Each free parameter has a clear interpretation in terms
of perceptual inference, can be directly estimated from behavioral data (see Appendix 4), and
can be generalized to predict behavior in other tasks (e.g., probabilistic decisions). Crucially,
although descending loops could be necessary for bistability, they are not sufficient. Bistable
stimuli need to lack crucial information that would clearly disambiguate them in a natural
setting (such as depth cues). The perceptual system should expect the input distribution to
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Figure 2.7: Predicted effects of CI strength on bistable perception. (A) Relative
predominance (RP) as a function of the strength of sensory evidence in favor (positive drift)
or against (negative drift) the preferred configuration (i.e., µnoise) for increasing sensory gain
(including ascending loops), from light to dark gray. (B) Mean phase duration of the preferred
and non-preferred configuration. (C) The same as (A) but with no ascending loops and increasing
descending loops, from light to dark blue. (D) The same as (B), with no ascending loops and
increasing descending loops. (E) The probability of persistence of the preferred (blue) and
non-preferred (red) configuration during the intermittent presentation of an ambiguous stimulus
(stimulus duration 200 ms, OFF-duration 5 s) as a function of the ascending loops aS (aP = 0.5).
(F) The same as (E), but as a function of the descending loops aP (aP = 0). All the other
parameters were kept constant across simulations: wS = 1; ron = 0.5; roff = 0.48.
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differ between the two interpretations (otherwise they would be uninformative and disregarded)
even if this is not the case for artificial stimuli used in bistable experiments (Fig 2.1B). Of note,
completely ambiguous stimuli are, in fact, very rare (Arnold, 2011; Kersten et al., 2004) and
unlikely to be learned from experience.

From the point of view of the underlying dynamics of perception, descending loops have
important consequences beyond bistability. Due to their inherently stabilizing effect, a perceptual
system can switch from a pure Bayesian integrator to a bistable attractor. By changing just the
strength of descending loops, the perceptual system can transit between two decision-making
strategies: Integration to bound (Ratcliff et al., 2016; Palmer et al., 2005) and attractor dynamics
(Bitzer et al., 2015; Wang, 2002).

Beyond our model, various other implementations have been proposed to account for the
unique characteristics of bistable perception. Mechanistic models have either focused on neural
mechanisms (Laing and Chow, 2002; Wilson, 2003, 2007) and/or on more abstract dynamical
systems (Lago-Fernández and Deco, 2002; Noest et al., 2007; Moreno-Bote et al., 2007). Nev-
ertheless, those models are usually designed on an ad hoc basis and remain largely descriptive.
With few exceptions (e.g., (Moreno-Bote et al., 2010)), they are agnostic regarding the functional
implication of bistability for perception and decision in general. In other words, although they
may address the «what» questions (mechanisms and implementations), they are not addressing
the «why» questions (epistemological questions).

To answer the second type of question, other groups have proposed functional models of
bistable perception that approach the problem in a top-down fashion (Hohwy et al., 2008;
Weilnhammer et al., 2017; Sundareswara and Schrater, 2008; Reichert et al., 2011; Gershman
et al., 2012; Dayan, 1998; Albert et al., 2017). Like ours, those approaches focus on the type
of problems that perceptual systems usually encounter (e.g., deal with uncertainty) and im-
pose functional limitations (e.g., Markovian statistics, approximate Bayesian inference (Bishop,
2006)). However, some of these models are abstract and do not specify neural mechanisms. Oth-
ers are more complex and contain large numbers of free parameters, rendering them difficult to
(in)validate experimentally.

In particular, an interesting model that bears some similarity with the dCI model was de-
scribed by Hohwy and Friston (Hohwy et al., 2008) and formalized by Weilnhammer and col-
leagues (Weilnhammer et al., 2017). Like dCI, it relies on a message passing algorithm, but
instead of Belief Propagation, it is largely based on a simplified version of predictive coding
(Friston, 2008; Rao and Ballard, 1999; Spratling, 2017) — predictive coding postulates that pri-
ors explain away sensory inputs while residual prediction error signals are fed-forward to higher
regions to update beliefs. Importantly, top-down effects play a crucial role in both explanations
of bistability. Instead of adding (descending) loops, the predictive coding model suggests that
perception is biased by a stabilization prior, which depends on the current interpretation. This
prior is constantly weakened by prediction errors emerging from evidence for the suppressed per-
cept, via an exponential decay mechanism. A switch occurs when the evidence for the suppressed
percept surpasses that for the dominant percept. Despite their similarities, the two models are
not identical. While dCI is derived from first principles (inference in a Hidden Markov Model,
corrupted by loops), the predictive coding model relies on a number of ad-hoc assumptions, that
nuance its normative character. For example, the precision of the stabilization prior is renormal-
ized after each switch, resulting in strong and stable percepts; this is an important assumption,
yet it’s difficult to interpret it from a normative perspective.

Furthermore, several models were based on the idea that inference is approximated by a
sampling process, without explicit calculation and knowledge of the exact posterior distribution
(Sundareswara and Schrater, 2008; Reichert et al., 2011; Gershman et al., 2012). In that case,
bistable perception occurs because the perceptual system is assumed to take only one sample
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at each time step, resulting in high temporal correlations between samples. This is, in fact, a
nuisance in this kind of algorithm, predicting a highly suboptimal form of perceptual inference
(e.g., it takes a very long time to infer the exact probability distribution, and the correspond-
ing estimates are much more variable than a maximum-a-posteriori estimate). Because of this
limitation, perceptual inference by sampling might be far less performant than belief propaga-
tion (even with loops), raising the question of why our perceptual system would choose such a
strategy. Additionally, it remains unclear whether those models could account for less trivial
experimental results, including stabilization under an intermittent presentation.

Note that in our case, bistable perception could also be seen as a suboptimality resulting from
descending loops (i.e., the estimated probability are not the correct ones given the real sensory
evidence and prior knowledge). However, we predict that it mostly affects perception in rather
unusual cases, e.g., for a fixed level of descending loops, stimuli that are both expected to be very
reliable (high wS) and in reality are highly ambiguous (µnoise close to zero). Consequently, this
unusual stimulus does not fit our generative model (Beck et al., 2012). The effects could be far
more subtle otherwise. In agreement with this hypothesis, we found that CI only rarely affects
choices in randomly selected probabilistic inference problems (i.e., random graphs, see (Jardri
and Denève, 2013a)). The dCI model presented in this paper is normative (i.e. derived from first
principles; strictly speaking, normativity is violated due to the loops) but can also be seen as
descriptive due to its closed-form solution. Switches in perceptual bistability are driven by noise
in agreement with existing evidence (Shpiro et al., 2009; Panagiotaropoulos et al., 2013; Huguet
et al., 2014). In contrast to models based on lateral inhibition between local populations, bistable
perception is interpreted as a brain-wide phenomenon linked to inhibitory control of feedforward
and feedback processes (as is generally required for hierarchical perceptual inference (Jardri and
Denève, 2013a)). Its dynamical behavior has important similarities with that of other attractor
models (Moreno-Bote et al., 2007), but the bistable attractor is hereby not imposed to explain
certain features of bistability, but instead a direct consequence of the descending loops. In the
same vein, our model makes a clear distinction between a bias induced by sensory evidence
and bias resulting from the system’s implicit preference (prior knowledge), thus enabling the
generation of asymmetries in the absence of stimulation (intermittent presentation).

Another important feature of bistable perception, shared by human and nonhuman observers,
is the distribution of dominance durations. Although there is considerable variability in the
mean phase duration between participants (but also within participants and between conditions
or stimuli), there is an impressive similarity in the shape of the distribution of phase durations,
relatively well approximated by a gamma or log-normal distribution (Levelt, 1967; Zhou et al.,
2004; Gigante et al., 2009) (but see also (Brascamp et al., 2005)). The dCI model, like all the
noise-driven attractor models, generates exponential distributions of phase durations (Moreno-
Bote et al., 2007). Several extensions of the model can engender gamma-like distributions, in
which simple mechanisms are added on an ad-hoc basis. For example, one could assume that
inference is preceded by filtering, which takes place at the very first levels of the sensory hierarchy
(e.g. retina, LGN in case of visual inputs); filtered noise is smoother than Gaussian noise and
precludes the occurrence of fast switches. Alternatively, one could introduce an adaptation-like
mechanism (see also (Moreno-Bote et al., 2007)); in the dCI context, this could be implemented
as time-dependent transition rates, e.g. as a form of learning. Finally, a third option is to replace
MAP with a more complex decision criterion, e.g. a more conservative criterion, implemented
as a moving threshold, where switches occur only when there is substantial evidence in favour of
the opposite interpretation.

It has been argued that CI are linked at the neurophysiological level to an imbalance between
neural excitation and inhibition in favor of excitation (Leptourgos et al., 2017; Jardri et al.,
2016). This imbalance might concern only local microcircuits, encompassing pyramidal cells and
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local interneurons (Fig 2.1D), or more global networks, potentially involving thalamocortical or
corticostriatal long-range connections (Leptourgos et al., 2017). Although both are plausible
implementations of loops, local interneurons make a better candidate in the particular case of
bistable perception. Indeed, it has been argued that bistability is a rather low-level process
mainly occurring within the visual cortex ((Blake and Logothetis, 2002; Brascamp et al., 2013,
2015a); but see (Lumer et al., 1998; Sterzer and Kleinschmidt, 2007), arguing for the involvement
of high-level areas) while the involvement of local inhibition is also supported by pharmacologi-
cal evidence (van Loon et al., 2013). Apart from normal brain functioning, CI has been used to
account for clinical dimensions in schizophrenia (Jardri and Denève, 2013a; Jardri et al., 2017).
Our model implies that generic mechanisms involved in hallucinations and delusions could also
explain common perceptual phenomena, such as bistable perception, in agreement with the
idea that psychosis may exist along a continuum with normal experience (Waters et al., 2016;
Alderson-Day et al., 2017; Baumeister et al., 2017; Powers et al., 2017). Nevertheless, when
and how exactly those mechanisms go awry and generate pathological symptoms remains an
open question. In addition, the present model provides a dynamical system interpretation of CI
models, relating them to other influential frameworks (Loh et al., 2007; Rolls and Deco, 2011;
Adams et al., 2018). Could circularity offer a relative advantage to perceptual systems or is it
simply a manifestation of the inherent limitations of neural systems? Our present results suggest
that a system performing exact inference with ambiguous information could be more vulnera-
ble to noise and have difficulties in forming stable percepts. Moderate descending loops could
improve the system, allowing rapid and robust decisions even when evidence is not conclusive
(after all, both “fighting” and “fleeing” are better than standing still; a similar explanation was
suggested by Moreno-Bote and colleagues, who interpreted bistability as exploratory behavior
under uncertainty (Moreno-Bote et al., 2010)). Moving a step further, a system with flexible
descending loops (e.g., a system that can regulate its E/I balance through neuromodulators,
such as dopamine, serotonin or acetylcholine (Lucas-Meunier et al., 2009; William Moreau et al.,
2010)) could vary the perceptual strategy from impulsive to deliberative in accordance with
task requirements. This suggestion, although speculative, could reconcile the present results
with evidence showing a balance between excitation and inhibition at different scales (Wehr and
Zador, 2003; Okun and Lampl, 2008; Xue et al., 2014) and is furthermore easily testable (e.g.,
by measuring E/I balance during bistability and during stimulation with unambiguous stimuli).
In conclusion, we described bistable perception as a probabilistic inference process, under the
influence of amplified priors due to the presence of descending loops in the cortical hierarchy.
The model explains why bistable perception occurs in the first place and qualitatively predicts
several of its properties. Additionally, it has important implications for the neural correlates of
bistability and the relation between normal brain functioning and pathology, ultimately linking
computation, behavior and neural implementation.

2.2.6 Supplementary material
The supplementary material of the article, which includes mathematical derivations, bifurcation
analyses and investigates the parameter recovery of the model, can be found online at https:
//doi.org/10.1371/journal.pcbi.1008480.

2.3 Circular BP as model of schizophrenia

This section corresponds to the following published article: Circular inference predicts nonuni-
form overactivation and dysconnectivity in brain-wide connectomes, by V. Bouttier, S. Dut-
tagupta, S. Denève and R. Jardri (2021), Schizophrenia Research.
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2.3. Circular BP as model of schizophrenia

The work characterizes the differences between psychosis/schizophrenia (modeled by the Cir-
cular BP algorithm) and normal functioning (modeled by BP). We point here at the underlying
assumption that the Belief Propagation algorithm is a good model for “normal” functioning of
the human brain. This assumption will be revised in chapter 3, where we propose that Circu-
lar BP with “inverted circular inference” is a better model than BP for the healthy brain: see
discussion in section 3.7. However, this by no means implies that the work presented here is
wrong: indeed, in the specific graphs considered, BP performs approximate inference with rela-
tively high quality. More precisely, Mooij and Kappen (2004) shows that for scale-free networks,
the validity of the BP approximation scales very well with network size (the intuition is that
such networks resemble a forest of sparsely-interconnected hubs and that BP is exact on acyclic
graphs). Additionally, as explained in section 2.3.8.2, probabilistic graphs were weighted in order
for BP to be rather of good quality (for instance, sets of weights which involved frustration or
bistable dynamics were not considered).

An idea naturally arising from the work is that if Circular BP was implemented in the brain,
for instance through a rate model, then it would be possible to catch its signature through brain
imaging. An interesting lead would be to fit the proposed neural model to data, therefore esti-
mating the parameter α from Circular BP without behavioral studies but instead with neural
data purely. As a reminder, this parameter relates to the level of “circularity” in the inference,
defined by the distance between the parameter α used or fitted and the one achieving the best
possible quality of inference; see chapter 3. Eventually, such fitted α could be related to experi-
mental measures of the E-I imbalance (through the concentration of GABA and glutamate in the
cortex), which was the initial intuition behind this parameter and more generally the Circular
BP algorithm.

2.3.1 Abstract
Schizophrenia is a severe mental disorder whose neural basis remains difficult to ascertain.
Among the available pathophysiological theories, recent work has pointed towards subtle pertur-
bations in the excitation-inhibition (E/I) balance within different neural circuits. Computational
approaches have suggested interesting mechanisms that can account for both E/I imbalances and
psychotic symptoms. Based on hierarchical neural networks propagating information through
a message-passing algorithm, it was hypothesized that changes in the E/I ratio could cause a
“circular belief propagation” in which bottom-up and top-down information reverberate. This
circular inference (CI) was proposed to account for the clinical features of schizophrenia. Un-
der this assumption, this paper examined the impact of CI on network dynamics in light of
brain imaging findings related to psychosis. Using brain-inspired graphical models, we show
that CI causes overconfidence and overactivation most specifically at the level of connector hubs
(e.g., nodes with many connections allowing integration across networks). By also measuring
functional connectivity in these graphs, we provide evidence that CI is able to predict specific
changes in modularity known to be associated with schizophrenia. Altogether, these findings
suggest that the CI framework may facilitate behavioral and neural research on the multifaceted
nature of psychosis.

2.3.2 Introduction
Cognitive dysfunctions (e.g., impaired attention, working memory, or abstract thinking) and
aberrant beliefs and perceptions (e.g., delusions and hallucinations) are prevalent features of
schizophrenia. Numerous studies have attempted to decipher the neurobiological bases of these
symptoms mostly using brain imaging or pharmacological methods. However, given the com-
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plexity of the results, psychosis retains much of its mystery. An essential difficulty is due to the
absence of a dominant framework able to relate the widely different levels of analysis available.
Computational approaches represent a nascent attempt at bridging these gaps (Adams et al.,
2013; Anticevic et al., 2015; Fletcher and Frith, 2009; Krystal et al., 2017; Sterzer et al., 2018).
In this paper, we propose a new computational method to relate psychosis with impaired global
brain dynamics based on two simple hypotheses. First, the brain is an inference machine (Knill
and Pouget, 2004; Lochmann and Denève, 2011). Second, psychosis is associated with imbalances
between excitation (E) and inhibition (I) in local neural circuits (Foss-Feig et al., 2017; Jardri
et al., 2016; Lisman, 2012; Sohal and Rubenstein, 2019).

We know that structural and functional brain networks exhibit massive changes in patients
with schizophrenia (Brandl et al., 2019). This finding is compatible with the common the-
ory assuming that psychotic disorders result directly from anatomical-functional dysconnections
(Friston et al., 2016; Friston, 2020; Murray and Anticevic, 2017; Stephan et al., 2009; Yang et al.,
2016) and that small functional dysfunctions can easily spread between linked elements within
unimpaired complex networks (Carrera and Tononi, 2014; Fornito et al., 2015; Pantano et al.,
1986; Price et al., 2001).

However, the exact mechanisms underlying this breakdown of integration between widely
distributed brain areas are poorly understood. These impairments do not seem related to macro-
scopic lesions and are more likely related to subtle and diffuse deficits at the microscale (e.g.,
impaired neuromodulation or synaptic plasticity and E/I imbalances). Unfortunately, consensus
regarding this topic is lacking.

How should the field of computational psychiatry proceed in the face of such uncertainty? One
possible strategy is to directly explore the influence of different candidate mechanisms on brain
circuits (e.g., using large-scale modeling of intact and impaired neural networks) to attempt to
predict (nontrivial) neural and behavioral effects. Another strategy is to set aside the complexity
of the real brain in favor of normative models of belief/behavior formation in humans before
searching for signatures of these processes in neural signals. Finally, some recent approaches
initially proposed normative models but further proposed (highly simplified) neural mechanistic
models that may account for aberrant belief formation (Adams et al., 2013; Jardri and Denève,
2013a). Notably, these strategies are unlikely to succeed on their own. A successful model
should quantitatively (and qualitatively) account for behavioral and neural data, even when
tested outside of its “area of comfort” (e.g., the task it was specifically designed for).

A promising framework to achieve such a goal considers the fact that a major brain function
is to build internal predictive representations of its uncertain sensory-motor environment (Doya
et al., 2007). Roughly speaking, brain circuits would mirror an underlying hierarchy of causes
with sensory inputs at the bottom and more abstract knowledge/ context at the top (Fig. 2.8a).
Inference in such a system occurs by integrating information propagated in opposite directions
within neural circuits with sensory information “climbing” the hierarchy through feedforward
connections, while prior knowledge descends the hierarchy using feedback connections (Fig. 2.8b,
see also “Summary of methods”). In their simplest expression, these models apply the Bayes
theorem in which priors (top-down predictions) and likelihoods (bottom-up sensory information)
are combined with weights corresponding to their reliability. This approach is equivalent to
correcting the prior with a prediction error (see also Aitchison and Lengyel (2017) for a critical
discussion regarding Bayesian inference and predictive coding).

While the specific neural mechanisms underlying inference are still highly controversial, the
different corresponding computational models have much in common. The brain structure is
assumed to represent an underlying probabilistic structure (Parr and Friston, 2018). Neural ac-
tivity represents probabilities or probabilistic updates (Pouget et al., 2013). Connection strength
represents how reliably variables are able to predict each other’s state, and inference is performed
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Figure 2.8: Principles of Belief Propagation and Circular Inference. (A) Toy example
of a hierarchical causal model of three nodes representing hidden variables. The sensory input
for the color green is given at the bottom of the hierarchy, while the prior expectation of a tree
is given at the top. The beliefs in each node are shown in green. (B) A possible implementation
of the belief propagation algorithm by a neural network. The information shared between the
different nodes of the network is under the control of inhibitory interneurons (shown in red),
which remove redundant information from messages. (C) In the case of circular inference, an
impairment in the interneurons (dotted lines) causes an uncontrolled reverberation of messages
in the network, leading to aberrant beliefs (depicted here with green halos).

by propagating local messages (beliefs, predictions, prediction errors, etc.) through these con-
nections. For example, given some sensory evidence for the color green and a prior belief of
walking under trees, the up and down propagation of messages allows computing the probability
of perceiving leaves in the environment (Fig. 2.8a and b).

However, these computational models also differ in the assumed impairments at the roots of
aberrant beliefs, such as those that may occur during psychosis. For instance, certain connection
types could be disproportionately strong (e.g., an overweighting of top-down messages would
result in priors dominating the percept (see Corlett et al. (2019) for a review), which corresponds
to changes in the generative model (Parr et al., 2019). Alternatively, we hypothesize that the
generative model is unchanged and that the inference mechanism (message-passing scheme) is
dysfunctional as follows: messages could be uncontrollably reverberated and amplified through
feedforward/ feedback loops (Fig. 2.8c) and, in turn, drive the perceptual content. Indeed, we
previously showed that such a form of circular inference (CI) could be a direct consequence of
impaired inhibitory control in hierarchical brain circuits (Denève and Jardri, 2016; Jardri and
Denève, 2013a; Leptourgos et al., 2017).

If valid, such theoretical models should be able to capture individual behavior using a
minimal set of parameters. For instance, we found that different levels of CI could account
for non-pathological (e.g., illusions (Notredame et al., 2014), bistable perceptions (Leptourgos
et al., 2020a,b)) and pathological behaviors, such as the heterogeneous features/dimensions of
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schizophrenia (Jardri et al., 2017). Fewer studies validating probabilistic models at the neural
level have been performed e.g. Powers et al. (2017). A major difficulty is that large-scale brain
networks are far more complex than the simple hierarchical chains used in toy examples or to
describe experimentally designed tasks.

The goal of this paper is to provide a proof of concept for extending the CI model to brain-
wide neural activity with possible applications in the context of psychosis. More precisely, we
show that it is possible to apply CI to simplified brain-like (abstract) graphs or brain-based
connectomes (Bullmore and Bassett, 2011). We predicted the basic impairments due to CI in
these graphs at both the activity level and the functional connectivity level. Finally, we compared
these predictions with common fMRI findings of dysconnectivity, as observed in schizophrenia.

2.3.3 Summary of methods
This section succinctly describes how the graphs were generated and how their activity was
stimulated. For more details, see Supplementary Material. The code (in Python) is available
online at github.com/VincentBt/. We randomly generated modular small-world graphs (two
common properties of brain-like networks - Fig. 2.9a, b, d), which we call “abstract graphs”.
Nodes within the graphs were assumed to receive randomly fluctuating, temporally smooth
inputs (insets in Fig. 2.9c). The goal of using randomly generated graphs was to predict dynamic
properties independent of the specific structure of the network. We used random input patterns
to mimic resting-state brain activity as opposed to task-based functional patterns.

Inference was performed in these graphs by continuously propagating messages in multiple
directions along the links using a local message-passing algorithm called belief propagation (BP)
(Bishop, 2006; Friston et al., 2017). The confluence of messages in a given node was used
to compute its belief, to be understood as a local estimate of the probability that the binary
variable encoded by the node is 1 (b = p(X = 1)), given the currently available evidence. Thus,
the nodes in the generated graph constantly attempt to reach an agreement by exchanging
predictions regarding each other’s states. The “sensory” evidence provided to the network (the
random inputs) smoothly changed over time, as did the beliefs, as exemplified in Fig. 2.9c.
Importantly, the reverberation of messages is avoided in BP by removing the message previously
sent in the opposite direction from each message, which is carried out by inhibition in our
proposed neural implementation (Fig. 2.8b). For example, when a tree predicts leaves, leaves
should not subsequently predict a tree by total circular reasoning (this circularity is illustrated in
Fig. 2.8c). To implement CI with increasing severity, we progressively decreased this correction
using parameter α representing the level of inhibitory control and using values from 60% (strong
circular reasoning - impaired inhibitory control) to 100% (BP - perfect inhibitory control).

We analyzed the statistics of the beliefs generated in these graphs for normal inference (BP)
and increasing amounts of pathological inference (CI). As a sanity check, the predictions obtained
by investigating the abstract graphs were reproduced using a specific but more realistic brain-
based graph or “realistic connectome” by utilizing the set of reconstructed group-averaged fiber
tracts from the open-access HCP-842 MRI atlas (Yeh et al., 2018) combined with a collection of
86 anatomical parcels (see Supplementary Table) taken from the AAL2 atlas (Rolls et al., 2015).
We referred to a canonical division of nodes in a priori communities to define structural modules
(also called clusters, communities, or groups) as proposed by Bertolero et al. (2018) (see Fig.
2.13).

Nodes are divided into the following three categories: connector hubs, local hubs, and other
nodes. Connector hubs are nodes with connections that are diversely distributed across modules.
Local hubs are nodes that are highly connected within their own module (and are not connector
hubs). Other nodes are all nodes that are not connector hubs or local hubs. Connector hubs
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Figure 2.9: Running belief propagation in abstract small-world networks. Graphical
networks are randomly generated with small-world properties and a modular structure consisting
of 4 modules with 8 nodes per module. (A) Adjacency matrix of one of the networks generated.
(B) Graphical representation of the network. Each of the 4 modules gathers nodes of a given color.
All nodes receive a randomly fluctuating, temporally smooth input (insets). (C) Illustration of
the temporal evolution of beliefs (probability estimates) in the network using proper inference
(i.e., belief propagation). We present the beliefs in 3 nodes randomly selected from the graph.
(D) Graphical representation of the same network presented in (B) but using a yellow-to-red
color code to reflect the participation coefficient and node size for the degree.

are defined based on the participation coefficient (a measure of the diversity of intermodular
connections of the node), and local hubs are defined based on the within-community strength (a
measure of the locality of the node through its intramodular connections). See Supplementary
Material for a formal definition of the node types and graph metrics.

2.3.4 Neural interpretation
To interpret the graph dynamics in neural terms, we need to decide how beliefs translate into
neural activity, which is a topic that is still controversial. For simplicity, it was assumed that
activity in a brain parcel covaried with the confidence level of the corresponding node (i.e., the
absolute value of log(b/(1− b)) where belief b is the probability that the binary node is in state
1 - see Supplementary Material for more detail). Thus, the more certain a node was of its
variable state at a given time (in the case of binary variables, the closer its belief was to 0 or 1),
the more active the node was. Note that some studies identified a link between neural activity
and surprise (Schwartenbeck et al., 2016), which approximately corresponds to large temporal
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fluctuations in beliefs. In our simulations, the two quantities were strongly correlated, and
both predicted essentially the same effects on functional connectivity (see also Supplementary
Material). Assuming a neural representation of surprise instead of beliefs would not change any
of the conclusions presented here.

As previously mentioned, one cannot make a direct and naive parallel between BP (or CI)
and the dynamics of a brain-like network with a matching connectivity structure. If the graph
links are indeed analogous to recurrent connections between corresponding neural populations,
reciprocal anatomical connections cause positive feedback, i.e., reverberation of messages. The
cancellation of the reverberated part of the messages in BP is proposed to be carried out by
inhibitory control, which can occur locally as shown in Fig. 2.8b or through long-range connec-
tions (Leptourgos et al., 2017). This would imply that BP corresponds to the dynamics of a
superbalanced brain in which recurrent loops are constantly controlled by tight local inhibition
(Denève and Machens, 2016). Presumably, relaxing this inhibitory control results in an increased
CI, which is measurable at the behavioral level, even if signatures of this process at the neural
level remain to be found.

2.3.5 Circular inference in abstract graphs

We first report the effects observed on randomly generated graphs. We observed that CI induces
overconfidence and, thus, generates an excess of neural activity. On average, the CI-generated
confidence levels are indeed higher as reflected by a sigmoidal relationship between the CI and
BP-computed posterior probabilities (Fig. 2.10a, upper panel). Similarly, the distribution of
beliefs among all nodes extends further towards extreme values at higher levels of CI (Fig. 2.10b,
upper panel), and this result persists when bounding the belief under belief propagation between
0.4 and 0.6 (Fig. 2.15). Thus, while BP generates graded beliefs in proportion with the weak
and/or contradictory evidence provided to the network (i.e., fluctuating inputs), CI causes more
extreme levels of certainty.

In reality, this average relationship at the network scale hides a large amount of heterogeneity
(one-way ANOVA, F(2, 894) = 215, p < 0.001). The effect in some nodes is much stronger than
that in other nodes (dependent on the local structure of the network as described later in Fig.
2.11b). In the most affected nodes, CI causes beliefs to saturate to extreme values in a large
portion of what should normally be their response range (Fig. 2.10c, upper panel). Thus, these
nodes not only are aberrantly confident but also become insensitive to small fluctuations in their
input messages and, thus, are presumably unable to transfer information to nodes downstream
in the network. This finding suggests that CI not only causes overconfidence but also, somewhat
counterintuitively, weakens the communication between nodes.

Upon closer examination, one finds that the variations in overconfidence induced by CI are
explained by only a few properties characterizing the centrality of a node within the graph
(Fig. 2.14). The nodes most affected by CIs are connector hubs whose connections are diversely
distributed across modules (post hoc comparisons using t-tests for independent samples revealed
that connector hubs exhibited significantly higher confidence than local hubs, p = 2.58 e-22, or
other nodes, p = 1.69 e-88; it should be noted that local hubs, which are nodes that are highly
connected within their own module, also significantly differ from the other nodes, p = 8.6 e-20;
see also Fig. 2.11). For a formal definition of connector hubs, local hubs, and other nodes, see
Supplementary Material. These results concerning overconfidence also apply to overactivation
(excess of neural activity). Indeed, overconfidence and overactivation have the same definition
in the model (see Supplementary Material). Consequently, there is an overall overactivation of
the network, especially in the network hubs.
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Figure 2.10: Effect of circularity on beliefs in the abstract small-world networks and
the real connectome. The results based on belief propagation in randomly generated small-
world modular graphs are presented in the upper panels, and those for the realistic connectome
network are presented in the lower panels. (A) Plot of the posterior probabilities as measured
by circular inference (CI) against the same probabilities from belief propagation (BP), averaged.
Decreasing the level of inhibitory control α (i.e., increasing the level of CI) causes the nodes to
have greater confidence compared to BP (where α = 100% represents BP). (B) Distribution of
beliefs in a single node while varying the degree of circularity. Lower inhibitory control causes
more extreme beliefs. (C) A comparison of the beliefs under CI in one node against the same
beliefs under BP. CI causes the nodes to saturate towards more extreme beliefs.

Since connector hubs exert maximal control over long-range communication within and be-
tween modules, one could expect that as the severity of CI increases, the network becomes more
strongly modular with weaker functional interactions at long-range relative to short-range. These
expected consequences of CI are confirmed when directly measuring functional connectivity based
on the graph responses (Fig. 2.12a). Here, functional connectivity is defined as the amount of
correlation between all pairs of nodes (see Supplementary Material). Measuring such functional
connectivity provides an approximate idea of the underlying structure (anatomical connectivity)
of the network. As expected, truly connected nodes exhibit strong correlations (increased by CI,
see Fig. 2.16), while nodes separated by longer paths exhibit lower levels of correlation.

Finally, as predicted from the effects of CI on hubs, the degree of modularity of the network
(defined as the intra-inter modular ratio of the functional connectome, see Supplementary Mate-
rial) significantly increases with CI as functional connectivity increases within a given module but
comparatively decreases between different modules (Fig. 2.12b). Thus, the network becomes less
able to process information at the global scale while comparatively sparing intramodular (local)
communication.

These predictions might appear counterintuitive given that reverberation could appear to in-
crease rather than decrease the amount of global communication between nodes. However, these
simulation results show that the crucial element in transferring information between different
parts of the graphs is to keep beliefs graded and driven by external inputs and afferent messages
rather than saturated by internal recurrent dynamics. Thus, CI paradoxically predicts both
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Figure 2.11: Factors causing overconfidence due to circular inference. (A) The follow-
ing three types of nodes were considered in the graphs: connector hubs (nodes with connections
that are diversely distributed across modules – shown in green); local hubs (nodes that are highly
connected within their own module – shown in orange) and other nodes (shown in blue). (B)
Overconfidence measured in the random graphs and realistic connectome according to the type
of nodes (rain-cloud plots), for α = 60%. Connector hubs are significantly more overconfident
than local hubs, which are significantly more overconfident than the other nodes in the network.
The results are the same when examining overactivation.

overconfidence (especially in variables represented in associative or multimodal brain areas) and
a deficit in global processing of information with a marked decrease in long-range (functional)
connectivity relative to local connectivity.

2.3.6 Circular inference in a more realistic brain connectome
As observed in the randomly generated graphs, the implementation of CI in a more realistic
connectome resulted in overconfidence, especially in the connector hubs (Figs. 2.10 and 2.11
lower panels, F(2, 930) = 903, p < 0.001; post hoc comparisons: connector hubs > local hubs:
p = 4.0 e-12; connector hubs > other nodes: p = 6.0 e-323: local hubs > other nodes: p =
3.5 e-186). A linear model was trained to predict overactivation induced by circular inference
(see Supplementary Material for a formal definition of overactivation) based on various graph
measures characterizing the centrality of each node (which is a proxy for the amount of control a
node has over communication in the network). This linear model trained on randomly generated
graphs or “abstract graphs” accurately predicted the level of overactivation in each node in the
connectome (up to a constant of proportionality, Pearson’s r correlation = 0.97, p = 1.8 e-52;
see also Fig. 2.17).

We ranked the 86 parcels of this connectome according to the level of overactivation caused
by CI. Represented on the same scale, we can observe how strongly the degree centrality and,
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Figure 2.12: Functional connectivity under circular inference. The results for randomly
generated small-world graphs are presented in the left panels, and those for the realistic connec-
tome network are presented in the right panels. (A) Functional connectivity matrix network
as measured by the activation function applied over the beliefs in the network. Regarding the
real connectome, the modules are presented in the following order: auditory, sensorimotor, vi-
sual, dorsal attention, salience, frontoparietal, default-mode, subcortical, and finally, nodes not
attributed to a specific module. (B) We explored the ratio between the number of intramodular
connections and the number of intermodular connections in the functional network. BP was
chosen as the reference to explore the impact of varying the degree of circularity. The ratio sig-
nificantly increases when we decrease inhibitory control, rendering the network more modular. B
left corresponds to A left (abstract graph), and B right corresponds to A right (real connectome).
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to a lesser extent, the participation coefficient and the within-community strength correlated
with overactivation (Fig. 2.18 - see Supplementary Material for a formal definition of these three
graph metrics).

Finally, the results showing functional connectivity impairments in the abstract graphs were
also observed in the real connectome as circular inference increases the modularity in the func-
tional network (Fig. 2.12 lower panels), i.e., the long-range connections between modules were
more strongly affected than the short-range connections within a module.

2.3.7 Discussion and perspectives
In this paper, we explored how disruptions of E/I homeostasis in a graph model of the brain can
change the dynamics of the network and modify information propagation, eventually leading to
psychotic-like symptoms. We developed a whole-brain computational model relating the proba-
bilities encoded by a population to their neural activity using efficient coding principles. This
normative approach allowed us to simulate the network dynamics and reproduce some results
from the connectomics literature concerning psychosis, specifically the generation of overconfi-
dence and overactivations (centered on hubs) and the inability to maintain an efficient modular
small-world architecture (i.e., the increase in modularity in the functional connectome).

Breakdowns in the E/I balance at the microcircuit level are considered major alterations in
neurodevelopmental disorders (Foss-Feig et al., 2017; Sohal and Rubenstein, 2019). Notably, an
increased E/I ratio was not only proposed to drive psychotic features in schizophrenia but could
also be involved in more acute disorders such as anti-NMDAR encephalitis (Parenti et al., 2016).
The CI framework, which is based on impaired inhibitory control, appears particularly useful
for modeling psychosis across diagnosis categories and has already received some behavioral
support. For instance, the overconfidence due to CI is compatible with prior theoretical results
(Jardri and Denève, 2013a) and the model fitting of the Jumping-to-conclusions reasoning bias
in schizophrenia patients (Jardri et al., 2017), which is usually also correlated with delusional
severity (Dudley et al., 2016; Glöckner and Moritz, 2008; Moritz and Woodward, 2005).

The present study extends this literature by showing that CI applied in a brain-like network
can generate a nonuniform distribution of aberrantly strong beliefs. More specifically, we showed
that belief saturation (excessively high levels of confidence) observed under CI in network hubs
prevents the hubs from properly transferring information, which is expressed as intense overactiva-
tion. Previous reports have suggested that these hubs play a pivotal role in psychiatric disorders
in general (Crossley et al., 2014; Fornito et al., 2015) and schizophrenia in particular (Crossley
et al., 2016; Van Den Heuvel et al., 2013). For instance, based on fMRI symptom-capture studies,
it is known that patients with psychosis exhibit specific patterns of hyperactivation during hallu-
cinatory experiences (Ćurčić-Blake et al., 2017; Jardri et al., 2011; Sommer et al., 2008). These
signal changes are localized in not only essential hubs that constitute a part of the speech-related
network when hallucinations occur in the verbal domain (mainly in the inferior frontal gyrus and
the temporoparietal junction) but also amodal epicenters involved in contextual memory, such
as the hippocampal complex.

Thus, specific dysfunctions in connector hubs appear compatible with the clinical richness
and cross-domain impairments of schizophrenia. This nonuniform distribution of beliefs / acti-
vations may account for the apparently unrelated observations that psychosis, on the one hand,
can generate unshakable beliefs but, on the other hand, may result in impaired information
processing.

As a consequence of such localized impairments in hubs, we observe a shift from global to
local connectivity (increased short- relative to long-range functional connectivity) and widely
distributed miscommunication in the network, which also appears compatible with previous
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reports investigating schizophrenia (Li et al., 2017; Xiang et al., 2019; Zalesky et al., 2011).
These changes in the brain network topology were previously found to be linked with psychotic
symptoms. For instance, functional hyperconnectivity was observed between different parts of
the language network (module AUD in Fig. 2.13) in patients suffering from auditory-verbal
hallucinations, while hypoconnectivity was found with other distant brain areas (Shinn et al.,
2013). Interestingly, these functional dysconnectivity patterns were found to be state-dependent
and modulated by antipsychotic medication (Hadley et al., 2016).

The modular topology is known to physiologically vary across an individual’s lifespan and
notably optimize and correlate with cognitive efficiency during adolescence (Baum et al., 2017).
Proper functioning of the brain (i.e., effective segregation and integration of information process-
ing) depends on these short- and long-range connections. Interestingly, synaptic elimination and
late E/I balance adjustments contribute to adolescent brain maturation (Selemon, 2013), which
is considered to be a critical developmental period for schizophrenia onset (Paus et al., 2008;
Rolls and Deco, 2011). Precisely, the transition to psychosis has been shown to be associated
with a preferential reduction in long-range connections in patients compared with nonclinical
relatives, who shared a genetic vulnerability to schizophrenia but did not develop the disorder
(Guo et al., 2014).

It is usually well accepted that global changes in the structural connectivity of the brain
represent a pathological hallmark of several neuropsychiatric disorders (Lord et al., 2017). How-
ever, our results also suggest that the inability to properly integrate information in different
brain areas could be partially due to pure impaired dynamics (i.e., even without modifications of
the structural connections), representing a particularly interesting process accounting for acute
psychotic manifestations as such manifestations can be observed beyond the schizophrenia spec-
trum. These predictions of the CI model (in which we alter the inference mechanism but not
the anatomical graph) are notably compatible with data from animals exposed to ketamine (an
NMDA antagonist - (Voss et al., 2012)) or E/I changes following chemogenetic manipulation
(Markicevic et al., 2020) in which a reduction in long-range connectivity was observed. These
predictions are also consistent with recent brain imaging findings in patients suffering from anti-
NMDAR encephalitis who exhibit multiple focal increases in neural activity (Miao et al., 2020)
and a significant decrease in the strength of long-range connections (Peer et al., 2017), even
though the structure of the anatomical graph is preserved. Of course, we cannot exclude the
possibility that persistent functional changes may lead to plastic structural impairments in the
long run if not properly fixed, which could be a nice development of the model.

We would like to acknowledge the preliminary nature of the present work. We intended to
provide a proof of concept rather than a detailed framework of spontaneous brain dynamics based
on the connectome as we use random connections, random inputs, etc. For instance, spontaneous
activity is triggered in the graphs by using random inputs injected in all nodes. In reality, even
spontaneous activity is likely to have anatomically and spatially more limited sources (Uddin,
2020). Better identification of these sources in the future might explain more specific patterns
in brain activity, such as those in the default-mode network (Fox et al., 2005), and improve the
performance of the model in predicting which brain areas should be overactivated. Furthermore,
more detailed information could be obtained by using the weights of the connectome. Finally,
the current model is restricted to binary variables; subsequent work could adapt the circular
inference framework to continuous variables (see Supplementary Material).

In addition, several issues remain unanswered and may benefit from further clarification.
Among these possible tracks, we should mention the effect of implementing different types of
inference loops in the graph (e.g., ascending/descending), more precise exploration of the neural
hierarchy, the trigger of specific subnetworks (e.g., thalamocortical loops or the hippocampal-
prefrontal pathway) or even fitting fMRI data from patients with various psychotic symptoms,
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e.g., suffering from schizophrenia or anti-NMDAR encephalitis.
Nevertheless, the current findings suggest that the same parametric model (CI) could fit

behavioral (Jardri et al., 2017) and neural (this study) data and, thus, pave the way for transdi-
agnostically linking neural signals with psychosis.

2.3.8 Supplementary material
2.3.8.1 Belief Propagation and Circular Belief Propagation

The Belief Propagation algorithm Belief Propagation, also known as sum-product message
passing, is a local message-passing algorithm that performs inference in graphical models (Bishop,
2006), meaning it computes the marginal probabilities of all nodes in the network based on
external messages (sensory inputs, prior knowledge). It does so by sending messages across the
network. In a factor graph, we distinguish messages sent from variable node (i, j, etc.) to factor
node (I, J , etc.) from messages sent from factor node to variable node, whose equations updates
are respectively (see for instance Jardri and Denève (2013a)):

µj→I(xj) =
∏

J∈N (xj)\I

µJ→j(xj) (2.9)

µI→i(xi) =
∑

xN (I)\i

fI(xN(I))
∏

j∈N (I)\i

µj→I(xj) (2.10)

After convergence of the algorithm, beliefs (marginal probability estimates) are computed as
follows:

bi(xi) = 1
Z

∏
I∈N (xi)

µI→i(xi) (2.11)

It has been shown that in the case of binary variables, pairwise factors and with specific
factors on edges on the graph fij(xi, xj) if xi = xj (= 0 or 1) and 1 − wij otherwise, then BP
takes a simple form in the log-domain which consists of the following updates equations for the
messages and the log-odds (Jardri and Denève, 2013a; Mooij and Kappen, 2005):

M t+1
i→j = Fij(Lti −M t

j→i)

Lt+1
i =

∑
j

M t+1
j→i +M t+1

ext→i

where
M t
i→j is the message from node i to node j at iteration t (transmits probabilistic information

from i to j - here we consider identical transmission delays for all connections, corresponding to
one iteration in the simulation).
M t

ext→i is the external input to node i (Gaussian process, see paragraph A).
Lni is the log-odds of node i (log-odds of the probability that xi is equal to 1 - also called log-
likelihood ratio) at iteration n:

Li = log(bi/(1− bi))

where bi is the belief of node i, i.e. the probability that the binary variable xi (represented by
node i) is 1:

bi = p(Xi = 1) = σ(Li)
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2.3. Circular BP as model of schizophrenia

Finally, Fij is a sigmoidal function with parameter wij :

Fij(x) = log
( wijex + (1− wij

(1− wij)ex + wij

)
= 2ϕ−1

(
(2wij − 1)ϕ(x

2
)
)

where ϕ is the hyperbolic tanget function (tanh), wij = wji is the “synaptic weight” between
nodes i and j. It can be seen as a conditional probability and takes values between 0 and 1.
For unrelated variables xi and xj , the edge between nodes i and j will be absent and wij = 0.5.
wij > 0.5 corresponds to positive interaction and wij < 0.5 to a negative interaction between
variables xi and xj . In its linear region (x small), fij has slope 2wij − 1 = 2(wij − 0.5), which
supports the positive interaction / negative interaction view depending on the position of wij
compared to 0.5.

The Circular Inference model Circular Inference (CI) is a model of psychosis based on the
so-called Circular Belief Propagation algorithm. Circular BP is defined as a specific modification
of the update equation of the Belief Propagation algorithm as a result of impaired inhibitory
control (E-I imbalance). More specifically, messages from variable nodes to factor nodes are
modified under CI (this is true for any graph, pairwise or not, and any type of variable, binary
or not) as follows:

µj→I(xj) = (µI→j(xj))1−α
∏

J∈N (xj)\I

µJ→j(xj) (2.12)

which, in the case of binary variables and pairwise factors, leads to the following expression of
message Mi→j from factor node fij to variable node xj :

M t+1
i→j = Fij(Lti − αM t

j→i) (2.13)

where parameter α (which takes values in [0, 1]) represents the level of inhibitory control in the
network. α = 1 indicates normality (belief propagation) and lowering α increases the amount of
circularity/reverberation in the network.

The original model distinguishes between the impaired feedforward inhibitory control and
impaired feedback inhibitory control, so that if the feedforward direction of the edge (i, j) is
defined as the direction from i to j, then: a) Feedforward messages (i → j) are controlled by
parameter αd (level of inhibition for the descending loops in the network). b) Feedback messages
(j → i) are controlled by parameter αc (level of inhibition for the climbing loops in the network).
In our simulations, we took αc = αd ≡ α, meaning that feedforward and feedback connections
were identical. Values of α were taken ranging from 0.6 to 1, where α = 1 indicates normal belief
propagation.

Note that in the special case where α = 0, circular inference takes a simple form:

µj→I(xj) =
∏

J∈N (xj)

µJ→j(xj)

and in the pairwise case:
M t+1
i→j = Fij(Lti)

Several message-passing algorithms on factor graphs such as variational message passing take
the form as above (full product, α = 0), which could lead to build CI-like message-passing schemes
with parameter α by using the partial product from above (CI). (or even BP-like message-passing
schemes by taking α = 1).
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2. Circular Belief Propagation as model of suboptimal behavior

Extension to continuous variables In the article, we only consider probability distributions
of binary variables. However, the theory could be extended to continuous variables. Indeed, one
can write the circular inference model in the general case (see first equation in paragraph “The
circular inference model” above) for any graph (pairwise or not) and any type of variables. Taking
pairwise graphs as above, BP (and CI by introducing α) can be written in the case of continuous
variables very similarly to BP in the binary case (see also Equations 10-12 of the supplementary
material of Jardri and Denève (2013a)), where the update equations for the messages and the
log-odds become:

M t+1
i→j = Fij(Lti(Xi)−M t

j→i(Xi))

Lt+1
i (Xi) =

∑
j

M t+1
j→i(Xi) +M t+1

ext→i(Xi)

and
Li(Xi) = log(p(Xi)) + log(Z)

where Z is the normalization constant of BP. Finally, Fij is a function of function (it applies to
g(Xi)) which, among other things, performs an integration over Xi and returns a function of
Xj):

Fij(g(xi)) = log
(∫

xi

fij(xi, xj) exp(g(xi))dxi
)

An extension of the present paper to continuous variables would be that the neuronal popula-
tions encode log(p(X)) (the log of the whole probability distribution of variable X), as opposed to
log(p(X = 1)/p(X = 0)) in the binary case. In this case, the external input to the network would
no longer be a scalar (Mext→i(Xi = 1)−Mext→i(Xi = 0)) but a function (that is, Mext→i(Xi)).

2.3.8.2 Simulating network activity

The belief propagation (BP) algorithm was executed over 1000 iterations, as well as its impaired
version circular belief propagation, also called circular inference (CI). To do so, we first design
the weighted graph and the external stimulus, run the algorithm, and keep for the analysis the
non-pathological simulations.

Building the graph structure We used two types of graphs: “abstract graphs” (modular
small-world graphs of small size) and “realistic connectomes” (brain-based graphs of bigger size)
for sanity check. To randomly generate modular small-world networks, we used the function
makeevenCIJ from Python’s Brain Connectivity Toolbox (Muldoon et al., 2016). Each generated
graph had 32 nodes with 4 modules of size 8 and 425 oriented edges. The networks were modified
to remove unidirectional connections, after which additional 20 edges were removed at random
to create some sparsity within the modules. The final graphs had between 220 and 250 oriented
edges (to be divided by two for unoriented edges) and a density between 0.21 and 0.25.

In addition to the small-world graphs (“abstract graphs”), we also implemented a more real-
istic brain-like graph based on a preprocessed population template derived from data acquired
by the Human Connectome Project (Yeh et al., 2018). Nodes were defined using 86 parcels (see
Supplementary Table) taken from the AAL2 atlas (Rolls et al., 2015). Notably, we removed from
the 120 original nodes, the cerebellum (18), vermis (8), and the orbitofrontal cortex (8 regions):
indeed, these regions were significantly different from the rest of the graph, with very few connec-
tions between its containing nodes (orbitofrontal cortex) or on the contrary with nodes outside
the anatomical area (cerebellum and vermis). We then estimated connection (edge) strengths be-
tween nodes of the connectome by using the magnitude of the along-track diffusion properties (re-
constructed group-averaged fiber tracts from the HCP-842 tractography atlas - Yeh et al. (2018);
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2.3. Circular BP as model of schizophrenia

Figure 2.13: Modules in realistic brain-based graphs. AUD: auditory; SSM: sensorimotor;
VIS: visual; DAN: dorsal attention; SN: salience; FPN: frontoparietal; DMN: default-mode; SubC:
subcortical. A full list of the parcels’ names (1 - 86) is available in the Supplementary Table.

accessible at http://brain.labsolver.org/diffusion-mri-templates/tractography). We
applied a threshold to the probability of having a track of p<0.0007 to obtain a small-world
graph and finally, removed unconnected nodes (here 1 node: Rolandic_Operc_R). The result-
ing graph has a density of 0.23. See the resulting connectivity matrix in Fig 2.13.

Graph weighting In both cases (abstract graphs and realistic connectome), each edge was
given a symmetrical synaptic weight w, where w was selected randomly between two possible
values which were symmetrical w.r.t. 0.5 in order to have balanced weights in the graph and thus
avoid frustration or bistability (see section “Dynamical regime” below). Connection strengths
can be seen as conditional dependencies between these variables. Please note that the graph
weighting procedure is random. For this reason, results presented Figs 2.10, 2.11, and 2.12b were
obtained by averaging the observations from approximately 50 graphs for each level of inhibitory
control α.
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2. Circular Belief Propagation as model of suboptimal behavior

Stimulation of the network The network was stimulated by external inputs Mext→i(t).
Nodes were stimulated using continuous but rapidly varying signals (Gaussian process with
a RBF kernel) with mean µ = 0 and variance σ2 = 30 (Fig 2.9b). Interestingly, having non-zero
means does not change the results presented in the article. Stimulating all nodes is crucial here
- stimulating only some portion of nodes would introduce distortions in the activation pattern
that have not much to do with the structure of the network but instead have to do with the
choice of activated area(s).

Dynamical regime We wanted to avoid frustration (pathological oscillation of the beliefs)
in the network, as well as bistable dynamics (where switches between the two stable states are
triggered by the noisy external input). Both frustration and bistability are more probable to
occur for strong interactions. For this reason, interactions between 2 connected nodes were
chosen half positive (w>0.5) and half negative (w<0.5), and low enough (w close enough to 0.5).
This, in addition to control for bistability and frustration, allowed to generate different graphs
even in the case of the realistic connectome where unoriented edges were determined once for all.
In practice, for the randomly generated modular small-world graphs with 32 nodes, connection
strengths were selected at random for each edge with value w = 0.65 or 0.35. In the realistic
graph, the higher number of nodes and connections by node was compensated by using lower
interactions, and w was chosen randomly between 0.57 and 0.43. We excluded the graphs which
(still) caused frustration or bistability with these parameters.

Interestingly, the presence of frustration depends on the technical details of BP. More precisely,
these pathological oscillations can be fixed by considering belief propagation with momentum
instead of normal belief propagation (Murphy et al., 1999), i.e. by replacing the messages sent
at time t with a weighted average of messages at time t and t-1. This is the reason why we
do not consider frustrated networks for the analysis. Besides, we are modeling psychosis, for
which overactivations are relatively mild and not synchronized over areas. For example, per-
hallucinatory signal changes correspond to sustained overactivations (clearly different from spikes
of activity). Whether these frustrated states could be considered as an epileptic state (large-scale
synchronous neuronal discharges) is not the subject of the present article.

2.3.8.3 Activity, overactivity, overconfidence

Neural activity a function of belief Each node in the network encodes a binary variable
and tries to represent the belief bi = p(Xi = 1). To simulate neural activity based on the
nodes’ beliefs, we assumed that each (belief bi) as follows: activity was high when the belief was
close to 1 or 0, corresponding to a node i corresponded to a brain parcel, and activity in that
parcel (ai) was related to probability high level of certainty for the state of the corresponding
variable. Reversely, activity was low when the belief was close to 0.5, corresponding to complete
uncertainty.

ai = |Li| =
∣∣∣∣log

( bi
1− bi

)∣∣∣∣ (2.14)

This choice was motivated by previous work on the correspondence between population ac-
tivity and probability, efficient coding principles and probabilistic population coding (Boerlin
et al. (2013); Denève and Machens (2016); Pouget et al. (2013) - see a full demonstration below
in paragraph 4C “Demonstration: neural activity as function of belief”):

ai =
∣∣∣L̇i + kLi

∣∣∣ (2.15)

where we took k = + inf for simplicity, ignoring the derivative term. Thus, the activity is a
weighted sum between the surprise (the derivative of the log-odds of the belief) and the belief itself.
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2.3. Circular BP as model of schizophrenia

However, as stated in the main text, the two quantities strongly correlated in our simulations and
both predicted essentially the same effects on functional connectivity. In other words, changes
in k do not modify qualitatively the results of the article.

Finally, the activation was averaged over 10 iterations for it to be similar to the real fMRI
BOLD signal.

Overactivation and overconfidence The overactivation due to circular inference is a mea-
sure defined for each node and over the entire simulation. It is computed by comparing the
temporal sum of the node activation ai under CI (α < 1) with the same under BP (α = 1); the
overactivation of node i is defined as follows:

overactivationi(%) =
∑T
t=1 a

t
i(CI)−

∑T
t=1 a

t
i(BP )∑T

t=1 a
t
i(BP )

× 100 (2.16)

Similarly, the overconfidence of a node i is defined as follows:

overconfidencei(%) =
∑T
t=1
∣∣Lti(CI)

∣∣−∑T
t=1
∣∣Lti(BP )

∣∣∑T
t=1
∣∣Lti(BP )

∣∣ × 100 (2.17)

Please note that with our choice to take k = + inf in the simulations (see Paragraph “Neural
activity as function of belief”), overactivation and overconfidence are the same.

Demonstration: neural activity as function of belief Here we demonstrate that the
activation of a node (population of neurons) is linked to the log-odds L of the variable associated
with the node, according to:

a =
∣∣∣L̇+ kL

∣∣∣ (2.18)

(see also Boerlin et al. (2013)).
We insist on the underlying hypotheses. First, the encoded variables are binary. Second, the

neural activity observed comes from the neurons encoding the log-odds of the estimated belief:
L = log

(
p(X=1)

1−p(X=1)

)
(scalar value).

Assumption 1: Population coding. The estimate of the log-odds, L̂, is a weighted, leaky
integration of the spike trains of the neurons which belong to the population (o(t) is a vector):

˙̂
L = −kL̂+ ΓTo(t) (2.19)

Importantly, some of the decoding weights Γi are negative, which allows the population to
encode negative log-odds. Absence of spiking means that p(X = 1) = 0.5.

Assumption 2: Efficiency principle. The network minimizes the distance between L and L̂
by minimizing the cost function (note we take ν from Boerlin et al. (2013), to be zero):

E = (L− L̂)2 + µ∥r∥2 (2.20)

(trade-off between minimizing the distance between L and L̂ and minimizing the firing rate of
the network)

It comes from assumption 1 that if we define the firing rate r(t) (vector) as ṙ = −kr+ko(t)),
then:

L̂ = Γ
k
r ≡ DT r (2.21)
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2. Circular Belief Propagation as model of suboptimal behavior

Using now assumption 2, we obtain: E = (L−DT r)2 + µ∥r∥2. The minimization of the energy
gives:

dE

dr
= 0 = 2[D(L−DT r) + µr (2.22)

which implies
r = (DDT + µI)−1DL ≡ FL (2.23)

Defining the ”instantaneous fMRI activation” as a = MT o(t) (where M is a vector with
positive coefficients though not necessarily identical, e.g., some neurons are located in different
columns thus don’t have the same weight on the fMRI activation),

y = MT

k
(ṙ + kr) = MTF

k
(L̇+ kL) (2.24)

It comes: a ∝
∣∣∣L̇+ kL

∣∣∣ (as by construction, o(t) ≤ 0, implying ṙ + kr ≤ 0). Finally, to be closer
to the real measured fMRI activation, a should be averaged/smoothed over time.

2.3.8.4 Definition of graph modules

The structural modules represented in Fig 2.9b, 2.12a, 2.12b, 2.13 were determined using the
function community_louvain from Python’s Brain Connectivity Toolbox in the case of abstract
graphs. The 4 modules of size 8 each were recovered. In the case of realistic graphs (AAL2 atlas),
we used a canonical division of nodes in a priori communities (or modules, see Fig 2.13) taken
from Bertolero et al. (2018), obtaining 9 modules for the 86 nodes of the network. Modules are
used to compute the participation coefficient, the within-community strength, and the intra-inter
modular ratio (see below for the definition of these 3 node metrics).

2.3.8.5 Functional connectivity analysis

Computing the correlations The functional correlations (Pearson r correlation) were com-
puted from the activation function. To correct for multiple comparisons, we performed an FDR
correction and discarded the connections without a significant correlation.

To select significant connections for the functional graph, we selected all edges whose absolute
correlation greater than a given threshold, which corresponded to a p-value higher than 10-9. This
threshold was chosen to have a density close to 0.2 as in the structural graph.

Intra-inter modular ratio The intra-inter modular ratio of the functional connectome is
defined as the ratio between the number of significant functional connections within a structural
module (intramodular) and the number of significant functional connections between nodes from
different structural modules (intermodular):

#intramodular connections
#intermodular connections (2.25)

We explored the intra-inter modular ratio (Fig 2.12b) for the abstract and brain-based graphs
and compared them to BP (α = 100% = 1) using paired t-test with Bonferroni corrections.
Decreasing inhibitory control significantly increased the intra-inter modular ratio and thus the
graph modularity. This was true for the randomly-generated graphs (t(0.9 vs 1) = 6.04 , p =
4.24 e-07 ; t(0.8 vs 1) = 8.54 , p = 2.39 e-11 ; t(0.7 vs 1) = 1.04 e+01 , p = 1.91 e-14; t(0.6 vs
1) = 1.17 e+01, p = 1.81 e-16) as well as for the real connectome ((0.9 vs 1) = 2.38 , p = 8.97
e-02 ; t(0.8 vs 1) = 4.68 , p= 1.50 e-04 ; t(0.7 vs 1) = 4.58 , p = 2.03 e-04 ; t(0.6 vs 1) = 4.39 ,
p = 3.61 e-04).
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2.3. Circular BP as model of schizophrenia

2.3.8.6 Graph metrics

We used 3 different node metrics: degree centrality, participation coefficient, and within-community
strength.

Degree centrality The degree centrality of a node i is the fraction of nodes it is connected to.
It is equal to the degree (the number of neighbors of the node) divided by the number of nodes
of the graph.

Participation coefficient The participation coefficient of a node measures the diversity of
intermodular connections (connections with nodes belonging to other modules) of the node in
the graph.

PCi = 1−
N∑
m=1

(dim
di

)2
(2.26)

where di is the degree of node i (total number of connections) and dim is the degree of node i
inside module m (number of connections between i and nodes of module m). N is the number
of modules inside the graph. The participation coefficient (PCi) is thus a measure of how evenly
distributed a node’s edges are across modules. The participation coefficient of a node is maximal
if the node has the same number of neighbors in each module in the network. On the contrary,
the participation coefficient of a node is minimal (equal to zero) if all neighbors of the node
belong to the same module.

Within-community strength The within-community strength of a node is a measure of the
locality of the node in the graph. It is computed by considering the subgraph corresponding to
the module (community) of the node.

zi = ki −mean({kj ; j ∈ mi})
std({kj ; j ∈ mi})

(2.27)

where ki is the number of connections node i has with nodes inside its module mi. ki is centered
and normalized with respect to thekjof all nodes j belonging to the module mi (including node
i). Within-community strength (zi) is thus a measure of how much node i is connected to other
nodes inside its module compared to other nodes of this module.

2.3.8.7 Definition of hubs

Our networks contain different types of nodes, which we divide into 3 categories: connector
hubs, local hubs, and other nodes. Connector hubs are nodes whose connections are diversely
distributed across modules (nodes with a participation coefficient in the top 20%). Local hubs
are nodes that are highly connected within their own module (nodes with a within-community
strength in the top 20% among the remaining nodes). Other nodes are all the nodes that are
not connector hubs nor local hubs. This definition is the same as the one in Bertolero et al.
(2018), except that we divide the nodes into 3 categories whereas Bertolero and colleagues have
4 (connector hub or not; local hub or not). Nodes that had both high participation coefficient
and high within-community strength were considered, as stated above, as connector hubs. The
participation coefficient and the degree centrality strongly correlate in our graphs as it often
does.
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2. Circular Belief Propagation as model of suboptimal behavior

2.3.8.8 Linear regression analysis

We regressed the amount of overactivation induced by CI versus three graph metrics: the degree
centrality, the participation coefficient, and the within-community strength of a node (metrics
are defined in the paragraph “Graph Metrics”). Because of the collinearity between the three
regressors, we referred to Partial Least Squares Regression. The results of this analysis are
presented in Fig 2.14. We can see that overactivations mainly relate to degree centrality and
that the value of coefficients increases with the amount of circularity (i.e. while α decreases from
100% to 60%) as overactivation increases with the amount of circularity.

Figure 2.14: Linear regression analysis was performed to explain the variation in overcon-
fidence due to circular inference (CI). The normalized regression coefficients of three variables
are displayed. The degree centrality of a node explains most of the variation compared to its
participation coefficient or within community strength (abstract graphs are on the left; real con-
nectome on the right). Decreasing the level of α (i.e., increasing the level of CI) increases the
magnitude of regression coefficients.

2.3.8.9 Supplementary figures
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2.3. Circular BP as model of schizophrenia

Figure 2.15: Distribution of beliefs in a single node when varying inhibitory control (α) and
bounding the belief (probability estimate) for BP between 0.4 and 0.6, corresponding to relative
uncertainty. Increasing the level of CI still causes more extreme beliefs.

Figure 2.16: Average correlation between nodes as a function of the structural path-
length. Decreasing the level of α (i.e., increasing the level of CI) increases short-range connec-
tions relative to long-range connections, compared to belief-propagation (α = 100%).
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2. Circular Belief Propagation as model of suboptimal behavior

Figure 2.17: Correlation between predicted and true overactivation. The predicted
overactivation induced by circular inference (α = 60%) in the realistic connectome based on a lin-
ear model applied to the randomly generated graphs is strongly correlated with the overactivation
observed in the same realistic connectome.

Figure 2.18: Overactivation relates to nodal properties in the real connectome.
Parcels from the realistic connectome are ranked according to the level of overactivation in-
duced by circular inference (α = 60%). The level of overactivation nicely follows the degree
centrality of the presented nodes, but only slightly relates to the within-community strength or
the participation coefficient.
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2.4 Conclusion

In this chapter, we provided further evidence for Circular BP as a model of suboptimal behavior.
We showed that some amounts of circularity were required to account for the phenomenon of
bistable perception, by stabilizing percepts thanks to the so-called “descending loops” of the
system (reverberation of the prior which corrupts the sensory evidence). Additionally, we showed
that the effect of circularity in cyclic graphs is consistent with the specific overactivation patterns
and functional connectivity changes observed in schizophrenia.

The Circular Inference model was designed to specifically account for the positive symptoms
of schizophrenia. Jardri et al. (2017) later showed that negative symptoms (surprisingly) tighly
relate to the model as well. However, the scope of the Circular Inference model goes beyond
schizophrenia. As stated previously, the model could be applied to autism, subclinical popula-
tions (e.g., conspirationnists), pharcologically-induced psychosis (for instance with the ketamine
drug), the NMDA-R encephalitis auto-immune disease, and even the general population, as sug-
gested in the first part of this chapter, as bistable perception does occur for all populations.
Let alone this example of bistable perception, which is uncommon in real life and a laboratory-
designed task producing high uncertainty, it will be important to understand in future work what
the scope of the Circular Inference model is, and more particularly, whether it can also account
for other mental disorders than schizophrenia (see a discussion about autism in Chrysaitis et al.
(2021)).
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Chapter 3

Circular Belief Propagation as model of
optimal behavior

Summary of Chapter 3

For the human brain, everyday life requires performing complex probabilistic inference tasks,
many of which are mathematically intractable. A crucial question is how the brain can carry out
such approximate inference in an efficient manner. A possibility is that the structure of neural
networks mirrors probabilistic graphs and that the network activity corresponds to the Belief
Propagation algorithm in the underlying graph. However, the poor performance of BP in cyclic
graphs casts doubt on this proposition, given the recurrent nature of the brain. In this chapter,
we propose Circular BP as model of (nearly) optimal behavior.
First, the Circular BP algorithm is compared to other approximate inference based on BP, in
particular Fractional BP and Tree-Reweighted BP, whose update equations resemble the one
of Circular BP. This provides a mathematical foundation for Circular BP, and allows for an
extension of Circular BP. This extended Circular BP is based on an extension of Fractional BP
(Generalized BP) which is linked to a generalization of BP’s Bethe Free Energy on factor graphs.
Second, we show that Circular Belief Propagation algorithm with particular parameters performs
approximate inference with higher quality than BP, and that these parameters can be learnt using
an unsupervised learning rule. This method enables the network to (partly) compensate for the
loops of information arising from recurrence. We show that the proposed approach not only
improves the quality of probabilistic inferences but also brings better convergence properties to
the network.
Finally, we propose a variant of the Circular BP algorithm called “Circular BP with memory”,
with the idea that the information travelling through cycles should be cancelled at the moment
when it gets back to its initial sender. This algorithm extends Circular BP and is hypothesized
to perform better approximate inference than Circular BP.
The work included in this Chapter was supervised by S. Denève and R. Jardri. The corresponding
manuscript is in preparation.
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3.1 Introduction: countering the effect of cycles with Circular BP

Chapter 2 examined how Circular BP could be used to model suboptimal behavior such as
the bistable perception phenomenon, and how Circular BP looks compatible with particular
disturbances of the functional connectivity in schizophrenia.

All this work relies on the hypothesis that the Belief Propagation algorithm is an accurate
model of how the healthy brain performs probabilistic inference. Circular BP would then simply
account for the pathology, and Belief Propagation for normal functioning. Indeed, increased
circularity in the Circular Belief Propagation algorithm (that is, α < 1) brings overconfidence to
the network compared to BP, as previously shown in Figure 1.4 for an acyclic network and in
Figure 2.10 for a cyclic network.

A crucial note, which motivates this chapter, is that Belief Propagation itself is suboptimal
in cyclic graphs, and can even sometimes perform quite poorly. This makes Belief Propagation a
questionable candidate for how probabilistic inference is implemented in the healthy brain, given
that humans are usually pretty good at inference tasks as seen in introduction chapter of this
thesis (Chapter 1).

Double-counting with BP in cyclic graphs The Belief Propagation algorithm is exact in
acyclic graphs and used in practice in sparse graphs where it performs very well (see the Intro-
duction chapter). A particular feature of BP in acyclic graphs is that messages going in opposite
directions are decorrelated thanks to the removal of redundant information, thus avoiding posi-
tive feedback and incorrect computations. In other words, the probabilistic message mi→j from
node i to node j carries different information from mj→i; see Figure 1.1. However, one drawback
of Belief Propagation is that it often performs poorly in highly cyclic graphs (Murphy et al., 1999;
Weiss, 2000). Cycles are indeed responsible for reverberations of information: messages can pass
from node to node and return to the original node, causing the same piece of information to be
counted several times. This is known as the “double-counting” problem and is incompatible with
highly recurrent brains solving accurately probabilistic tasks. This reverberation of information
in BP due to cycles is explained in Figure 3.1. Information sent by node j to i will come back to
j and thus i, leading to information being counted multiple times. The correction in Belief Prop-
agation consists of removing the potential reverberation of information on single edges (sender
→ target → sender, that is, i → j → i), which is enough for acyclic graphs and explains why
BP performs exact inference in this case. However, for cyclic graphs, correcting for these loops
of length 2 is no longer sufficient.

Interestingly, cycles create what seems to be systematic overconfidence in BP (respectively
systematic underconfidence, depending on the node considered); see Figure 3.2. The sign of
the bias (overconfidence or underconfidence) can partly be guessed. As a matter of fact, the
quantity that determines whether information is amplified or attenuated in a cycle is the product
of edge weights over the cycle

∏
cycle Jedge. The propagation of messages is indeed determined

by function fij(x) = ϕ−1(ϕ(Jij)ϕ(x)) which has the same sign as Jij × x. Therefore, a message
entering node i travels in the cycle before coming back to the same node i, with a weight whose
sign is sgn(

∏
cycle Jedge). Therefore, the belief at node i is overconfident if

∏
cycle Jedge > 0, and

underconfident otherwise. In fact, function fij can be linearized with fij(x) ≈ Jij × x. As a
consequence,

∏
cycle Jedge not only gives the sign of the amplification, but it also represents the

level of amplification of the message by the cycle. Note that this way of predicting the sign of
the bias (overconfidence or underconfidence) only works for graphs with a single cycle. With
multiple cycles possibly including identical edges, a first approximation would be to sum each
contribution of all cycles passing through node i with

∑
cycles

∏
cycle Jedge and consider its sign,

but this is sometimes not right because of the non-linearities in the system.
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3.1. Introduction: countering the effect of cycles with Circular BP

A B

Figure 3.1: Belief Propagation (and Circular Belief Propagation) applied to
a cyclic graph. (A) The probability distribution p(x) is represented by a fac-
tor graph with pairwise potentials ψij and unitary potentials ψi. Here p(x) =
ψ12(x1, x2)ψ14(x1, x4)ψ23(x2, x3)ψ24(x2, x4)ψ1(x1)ψ3(x3)ψ4(x4). (B) Belief Propagation in a
cyclic probabilistic graph. The message m1→2 sent by node x1 to node x2 (dotted black line)
depends, as for acyclic graphs, on three components (see full black lines): the messages received
by node x1 from its neighbors except x2, the unitary potential ψ1 at node x1, and the interac-
tion ψ12 between nodes x1 and x2. The Belief Propagation is not exact in this case, because
messages travel through cycles (for instance, the message sent by node x1 to node x2 naturally
travels back to node x1 because of the cycle x1 − x2 − x4) and therefore get counted multiple
times. Furthermore, m1→2 is correlated to m2→1 as both depend for instance on m3→2 (m1→2
depends on m4→1 which depends on m2→4 which depends on m3→2, and m2→1 depends directly
on m3→2). Contrary to BP, Circular BP takes into account a fourth component (full red line)
to compute m1→2: the message m2→1, taken with weight 1− α12.

As shown previously in Figure 1.4 for acyclic graphs, Circular Belief Propagation also creates
overconfidence in all nodes of the graph. More specifically, the choice of the circularity level in
Circular BP leads to whether overconfidence (for α < 1 in acyclic graphs, which was the initial
idea behind explaining circular inferences) or underconfidence (for α > 1 in acyclic graphs). What
comes from these observations is the idea that in cyclic graphs, the right level of circularity in
Circular BP could improve the inference compared to standard BP, by counteracting the effect
of cycles.

Improving the quality of inference with Circular BP For instance, if all graph weights
are positive, BP is overconfident on all nodes, and “anti-Circular BP” (i.e., Circular BP with
α > 1) causes some underconfidence, (partly) compensating for the overconfidence created by
cycles; see Figure 3.3. Figure 3.4B shows that the estimation of the marginal probability by
Circular BP is best around α = 1.2 (a second example is also shown in the same plot for a
different random graph). In graphs with only positive weights, the optimal uniform α is always
> 1, because all cycles contribute to overcounting the same information several times.

In graphs with only negative weights, cycles with length 3 (which are the smallest possible
cycles and have more impact in general compared to cycles of higher length) contribute to
undercounting information as the product of the weights Jij over such cycles is negative. For
this reason, the optimal α is (nearly) always < 1 for such graphs, as shown in Figure 3.4C.

Finally, and most interestingly, for graphs with both positive and negative weights chosen
randomly, the optimal level of circularity α in the graph is often close to 1 (where α is as before
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Figure 3.2: Systematic bias (overconfidence or underconfidence, depending on the
node) is observed when applying the Belief Propagation algorithm to a cyclic graph.
The direction of the bias is determined by the local structure around the node. For instance,
the blue node belongs to a positive cycle (that is, a cycle for which the product of the weights
Jij > 0) and therefore produces overconfident beliefs due to double counting, and the green node
belongs to a negative cycle and therefore produces underconfident beliefs.

Figure 3.3: How Circular BP could fight the effect of loops. In this example, weights
of the (cyclic) graph Jij are taken all positive, and Circular BP is applied to the graph with α
taken uniformly over the edges. Because of the positive weights, the marginals approximated
by BP (case α = 1) are overconfident. However, underconfidence brought by (anti-)Circular BP
partly compensates for the overconfidence naturally originating from the graph cycles. There is
an “optimal” value for α (here αopt ≈ 1.2, for which beliefs are not overconfident (α < αopt) nor
underconfident (α > αopt). The graph was randomly generated and randomly weighted. 300
examples Mext were randomly generated. One point represents the approximate marginal under
Circular BP versus exact marginal, for each node and each example. The full line represents the
average of all points. See Figure 1.4 for acyclic graphs instead.

taken uniformly); see Figure 3.4D. This comes from having both negative cycles and positive
cycles, where the sign of a cycle is by definition the sign of the product of the weights Jij
over this cycle. Positive and negative cycles have different effects. Negative cycles may lead to
oscillations while running the BP algorithm. Positive cycles may amplify noisy or random initial
messages and therefore have incorrect convergence values of the beliefs, which depend on the
sign of the initial conditions, and on the network structure rather than on the external input
value itself.
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Figure 3.4: How to choose α in Circular BP to fight the effect of loops. The log-error
between the exact probability and the belief obtained from Circular BP are computed depending
on parameter α used in Circular BP (here α is taken uniformly over the edges, equal to α).
Two random graphs are considered, except for panel A (one random graph). (A) In random
trees, BP is an exact algorithm, thus the optimal value for α is 1. (B) In random graphs with
positive weights, BP is overconfident as all cycles are positive, thus the optimal value for α is
> 1. The curve peaking around α = 1.2 represents the graph of Figure 3.3. (C) In random
graphs with negative weights and high enough density, BP is underconfident as the smallest
cycles (length 3) are always negative, thus the optimal value for α is < 1. (D) In random graphs
with both positive and negative weights, the existence of both positive and negative cycles makes
the optimal α be < 1 or > 1, depending on the random graph.

Non-uniform α can even improve the quality of inference more than for uniform α. The opti-
mal amount of local circularity αij in Circular BP (associated to edge (xi, xj) in the probabilistic
graph) depends on the local structure around the edge. If the edge (xi, xj) belongs to a positive
cycle then marginals estimated by BP for nodes xi and xj are overconfident and αij should be
> 1 to compensate for it. Conversely, if the edge belongs to a negative cycle then marginals
estimated by BP for xi and xj are underconfident and αij should be < 1. Of course, in practice
edges belong to several cycles of different signs and strengths (product of weights) thus it can
be complicated to predict on which side of 1 parameter αij should be.

Goal of this chapter In this chapter, we use Circular BP in order to counterbalance the
amount of “natural” overcounting in cyclic graphs. More specifically, we show that appropriate
amounts of local circularity αij in Circular BP (where αij is associated to edge (xi, xj) in the
probabilistic graph) can improve the quality of inference. In this case, we talk about Balanced
Circular BP to describe a state in which overall, information is transmitted accurately, with-
out “explosion” of the system (overamplification, seen as a lack of inhibition with respect to
excitation) nor “shutting down” of the system (overdampening, seen as an excess of inhibition).
Consequently, the Circular BP algorithm can not only describe disturbed inference and the mod-
elling of psychosis (in acyclic graphs or cyclic ones), but can also model near-optimal inference
(in cyclic graphs) and constitutes a particularly interesting approach to account for a large range
of normal behavior in non-pathological brains.

Organization of this chapter This chapter is organized as follows. In section 3.2, we provide
a theoretical justification to Circular BP (which was initially defined through intuition rather
than from normative principles): Circular BP is an approximation to Fractional BP, which was
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3. Circular Belief Propagation as model of optimal behavior

proposed in Wiegerinck and Heskes (2002) as an approximate inference method extending BP. In
section 3.3, we propose a generalization of Circular BP (the “extended Circular BP” algorithm)
based on an extension of Fractional BP. After showing that it is possible to guarantee the
convergence of the new algorithm in section 3.4, we show through simulations in section 3.5 that
it is possible to learn the parameters of extended Circular BP in a supervised manner, so that
it performs approximate inference accurately. Finally, in section 3.6, we propose an algorithm,
“Circular BP with memory”, similar to Circular BP, but which more closely relates to the initial
idea of cancelling messages being reverberated through the network cycles.

3.2 Theoretical foundation for Circular BP

The modification of BP defining Circular BP was initially motivated at intuitive point of view
only (Denève, 2005, 2008; Jardri and Denève, 2013a); see also section 3.6. Here we provide
a theoretical justification to the Circular BP algorithm. We do so by relating Circular BP
to Fractional BP, a very similar approximate inference algorithm derived from a parametric
approximation of the entropy of the approximating distribution b(x).

3.2.1 Fractional Belief Propagation
3.2.1.1 Definition

Fractional Belief Propagation, originally proposed in Wiegerinck and Heskes (2002), is an ap-
proximative inference algorithm which extends the standard Belief Propagation algorithm. We
provide here a brief introduction to Fractional BP.

Fractional BP extends Belief Propagation based on a parametric approximation of the entropy
of the approximating distribution b(x). This parametric approximation consists of introducing
parameter α, where αij is assigned to the undirected edge (i, j):

b(x) ≈
∏
i,j

( bij(xi, xj)
bi(xi)bj(xj)

)1/αij∏
i

bi(xi) (3.1)

where parameter α would need to be adapted to the true probability distribution p(x) (see
learning in section 3.5). On the contrary, BP associates with α = 1.

As shown in Appendix A, and similarly to BP as described in section 1.4.2.2, Equation (3.1)
is equivalent to making a parametric approximation of the Gibbs free energy: G ≈ Gapprox where
Gapprox is given below.

Gapprox =
∑
(i,j)

1
αij

∑
(xi,xj)

bij(xi, xj) log
( bij(xi, xj)
bi(xi)bj(xj)

)
−
∑
(i,j)

∑
(xi,xj)

bij(xi, xj) log
(
ψij(xi, xj)

)
+
∑
i

∑
xi

bi(xi) log
(
bi(xi)

)
−
∑
i

∑
xi

bi(xi) log
(
ψi(xi)

)
(3.2)

This parametric approximation generalizes the Bethe approximation using in BP. Gapprox is
indeed a parametric generalization of the Bethe free energy (we recover the Bethe free energy
of BP with α = 1). We obtain the following modified update equation for the messages (see
demonstration in Appendix A):

mnew
i→j(xj) ∝

(∑
xi

ψij(xi, xj)αijψi(xi)
∏

k∈N (i)\j

mk→i(xi)mj→i(xi)1−αij
)1/αij

(3.3)

76



3.2. Theoretical foundation for Circular BP

and beliefs are computed using:

bi(xi) ∝ ψi(xi)
∏

k∈N (i)

mk→i(xi) (3.4)

Note that Equation (3.3) is not identical to the one given in the original Fractional BP paper
(Wiegerinck and Heskes, 2002), but is the same up the amount of damping in the algorithm; see
section 3.2.1.2.

In the special case of the probability distribution p(x) over binary variables, the resulting
system of equations defining Fractional BP in the log-domain is:

Mnew
i→j = gij

(
Bi − αijMj→i

)
Bi =

∑
j∈N (i)

Mj→i +Mext→i

(3.5a)

(3.5b)

Quantities M and B are given by: Bi ≡ 1
2 log

( bi(xi=+1)
bi(xi=−1)

)
, Mi→j ≡ 1

2 log
(mi→j(xj=+1)
mi→j(xj=−1)

)
, and

Mext→i ≡ 1
2 log

(ψi(xi=+1)
ψi(xi=−1)

)
. Function gij is a sigmoidal function defined by:

gij(x) = 1
2αij

log

((
ψ1,1
ij

)αij
e2x +

(
ψ1,0
ij

)αij(
ψ0,1
ij

)αij
e2x +

(
ψ0,0
ij

)αij
)

(3.6)

in the general case, and
gij(x) = 1

αij
ϕ−1

(
ϕ
(
αijJij

)
ϕ(x)

)
(3.7)

for an Ising model, for which ψij(xi, xj) ∝ exp(Jijxixj). The algorithm eventually computes the
approximate marginals (or beliefs), given by bi(xi = ±1) = σ(±2Bi), i.e., bi(xi) ∝ exp(Bixi).

The fact that αij appears in three places (twice in Equation (3.7), once in Equation (3.5a))
and thus represent three biological quantities with identical values, makes it highly implausible
that such an algorithm is implemented in the brain as such.1

Equation (3.5a) means that node i, encoding for variable xi, sends to j everything it knows
(Bi) except a rescaled version of what j communicated to i (Mj→i). The corrective multiplicative
factor αij helps to compensate, in a linear manner, for the effect of reverberation of information
in cyclic graphs. Information is still being propagated, but redundant information brought by
cycles is eventually being cancelled by the control units once messages return to the sender. This
illustrates the fact that when there are cycles, messages are wrongly estimated and need rescaling.
For instance, if all interaction weights Jij are positive, messages are overcounted in BP, therefore,
to compensate, control units need to remove more evidence than if there were no cycles: αij > 1
is required in this case.

3.2.1.2 Related algorithms

The Fractional Belief Propagation algorithm is not only closely related to BP but also to other
well-known approximate inference algorithms such as Power EP (Minka and Lafferty, 2002;
Minka, 2004), α-BP (Liu et al., 2019, 2020), Tree-reweighted BP (Wainwright. et al., 2002,
2003; Wainwright et al., 2005), and Variational message-passing (Winn and Bishop, 2005).

1This is contrary to Circular BP, for which αij does not appear in the definition of the update function, as
fij(x) = ϕ−1(ϕ(Jij)ϕ(x)).
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3. Circular Belief Propagation as model of optimal behavior

Equivalence between damped Fractional BP, Power EP, and α-BP Fractional BP as
defined by Equations (3.5a) and (3.5b) can be related to several models previously proposed
that themselves extend BP: Power EP from Minka and Lafferty (2002); Minka (2004) and α-BP
from Liu et al. (2019, 2020). These models are conceptually very similar to each other (see
Minka (2005)). In fact, the three algorithms are identical up to the amount of damping, where
damping consists of taking partial message update steps (Murphy et al., 1999). Indeed, damped
Fractional BP, defined similarly to damped BP (see section 4.2.1) from the undamped Fractional
BP message update equation in Equation (3.3), is written:

mnew
i→j(xj) ∝

(∑
xi

ψij(xi, xj)αijψi(xi)
∏

k∈N (i)\j

mk→i(xi)mj→i(xi)1−αij

)(1−ϵi→j)/αij

×mi→j(xj)ϵi→j

(3.8)
becomes for the particular damping value ϵi→j = 1− αij , :

mnew
i→j(xj) ∝

(∑
xi

ψij(xi, xj)αijψi(xi)
∏

k∈N (i)\j

mk→i(xi)mj→i(xi)1−αij
)
mi→j(xj)1−αij (3.9)

which is exactly the message update equation of Fractional BP (see Equation (17) of Wiegerinck
and Heskes (2002)) and α-BP (see Equation (17) of Liu et al. (2020)). When it comes to
Power EP (Minka, 2004), the damping does not appear from the derivations of the algorithm
but Power EP is still presented with the possibility of having (any) damping ϵ (see Equations
(22) and (23) of Minka (2004)). It is stated in the paper that with the particular value of
damping ϵi→j = 1 − αij , the algorithm is “convenient computationally and tends to have good
convergence properties”. Interestingly, with this particular value of damping, it is shown that
the Power EP (and equivalently, α-BP and Fractional BP) proposed implements a minimization
of the α-divergence (see also the work on α-BP (Liu et al., 2020) as well as Minka (2005)).

Again, the damping values only alters the convergence properties of the algorithm but not
the fixed points. A consequence is that if the system has a single fixed point and the undamped
algorithm converges (respectively damped), then the damped (respectively undamped) algorithm
converges and the convergence value is identical between the damped and undamped algorithms.
As previously stated in Chapter 4, we eventually consider a continuous-time system as model
of the brain (which deals with continuous signals) instead of a discrete system. The slight
difference between the three algorithms thus disappears, as all amounts of damping lead to the
same continuous system. In the rest of this chapter, we will therefore consider these algorithms
as one. Note that all algorithm implemented in the simulations, including Fractional BP, do not
have damping in order not to confound the effect of having different algorithms (for instance,
Circular versus Fractional BP) with the effects coming from using different damping values.

Tree-reweighted BP as special case of Fractional BP Tree-reweighted BP (Wainwright.
et al., 2002, 2003; Wainwright et al., 2005) is a particular case of the algorithms mentioned above.
The message update equation of Tree-reweighted BP is identical to Equation (3.3). The only
difference is that in Tree-reweighted BP, αij symbolizes the inverse appearance probability of
edge (i, j) in the set of spanning trees and therefore it imposes the constraint αij ≥ 1 (Minka,
2005). Note that Fractional BP does not impose any constraints on the value of αij , which even
could be negative.

Variational message-passing as special case of Fractional BP Variational message-
passing (Winn and Bishop, 2005), which is the message-passing version of the mean-field method
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(Peterson and Anderson, 1987), is a particular case of Fractional BP as well. Indeed, Variational
message-passing is the same as Fractional BP for α = 0 (Wiegerinck and Heskes, 2002; Minka,
2005). Mean-field is known to be overconfident and perform poorly compared to BP (Weiss,
2001; Mooij and Kappen, 2004). Note that mean-field inference or variational message-passing
is different from BP without subtraction or equivalently, full Circular BP (Circular BP with
α = 0); see also section 4.4.

BP as special case of Fractional BP Finally, BP itself is a special case of Fractional BP,
as it corresponds to α = 1 in Equation (3.3) as its update equation is:

mnew
i→j(xj) ∝

∑
xi

ψij(xi, xj)ψi(xi)
∏

k∈N (i)\j

mk→i(xi) (3.10)

3.2.2 Approximating Fractional BP as Circular BP
Message-update equations for the Fractional BP algorithm (Equation (3.3)) and the Circular BP
algorithm (Equation (1.12)) are very similar. It becomes even more obvious when considering an
Ising model. As a reminder of section 1.4.4, Circular BP (Jardri and Denève, 2013a) is defined
in this case as: 

Mnew
i→j = fij(Bi − αijMj→i)

Bi =
∑

j∈N (i)

Mj→i +Mext→i

(3.11a)

(3.11b)

where fij(x) = ϕ−1(ϕ(Jij)ϕ(x)). This is the same exact system as for standard Fractional BP,
except Fractional BP uses function gij (which depends on αij and Jij , see its formula in Equation
(3.7)) and Circular BP uses fij (which depends solely on Jij). Nevertheless, functions gij and
fij are close to each other:

gij(x) ≡ 1
αij

ϕ−1

(
ϕ
(
αijJij

)
ϕ
(
x
))
≈ ϕ−1

(
ϕ
(
Jij

)
ϕ
(
x
))
≡ fij(x) (3.12)

which can be easily justified mathematically for αij or Jij small enough, and can be seen in
practice for various Jij and αij in Figure 3.5A. This means that the message update equation of
Fractional BP approximates the update equation of Circular BP.

As shown in Figure 3.5B, as consequence of the similarity between their own update equations,
the Circular BP algorithm is a good approximation of Fractional BP.

Note that Circular BP was initially defined in Jardri and Denève (2013a) (see Equation (1.12))
without any constraints on parameter α. In the present thesis (with the exception of section
2.2), the distinction between descending loops and ascending loops is not made as we impose α
to be a symmetric matrix: αi→j = αj→i ≡ αij . The reason for that is purely mathematical as
shown above in this section: αij is associated to the undirected edge (i, j) in Fractional BP and
is therefore adirectional: the same parameter αij is used for the computation of Mi→j and Mj→i.
Circular BP, seen as an approximation to Fractional BP, thus must respect this constraint on α
as well. Relaxation of the constraint (that is, allowing αi→j ̸= αj→i) is considered in paragraph
“Breaking symmetry” of section 3.5.4, but hierarchies in the probabilistic graph are not considered
here, making it impossible to even talk about ascending or descending loops. Indeed, probabilities
are randomly generated, without any notion of hierarchy (see paragraph “Types of graphs used”
in section 3.5.1.
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Figure 3.5: Comparison between Fractional BP and its approximation Circular BP.
(A) Visual comparison between the update functions for Fractional BP (function gij , which
depends on the strength of the relationship Jij and αij) and Circular BP (function fij which
depends only on Jij and corresponds to gij with αij = 1) for various αij and given Jij = 1. All
functions have the identical sigmoidal shape. (B) The update functions for Circular BP (fij)
and for Fractional BP (gij) are approximately identical, for various Jij and αij (C) Example
of marginals produced by the Fractional BP algorithm versus produced by the Circular BP
algorithm for a given random graph with randomly generated weights and random α. (D)
Influence of the interaction strength σ(Jij) on the approximation: a lower Jij leads to a better
fit between Circular BP and Fractional BP. One point represents different randomly generated
generated α for the same graph.
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3.3 Extended Circular BP

In this section, an extension to the Circular BP algorithm, called subsequently extended Circular
BP, is proposed, with additional parameters (κ, γ and β) on top of existing ones (α). This
extension builds up on an extension to Fractional BP known as Generalized Belief Propagation
(Yedidia et al., 2005). This extended Fractional BP algorithm is approximated similarly to section
3.2.2, (where Circular BP is seen as an approximation to Fractional BP) to define extended
Circular BP.

3.3.1 Extended Fractional BP algorithm (Generalized BP)
Definition As seen above, the Fractional BP algorithm is defined as a result of approximating
the entropy of the variational distribution b(x). This is a particular case of approximating the
Gibbs free energy - the difference between the average entropy and the variational entropy - as
follows:

Gapprox =
∑
(i,j)

1
αij

∑
(xi,xj)

bij(xi, xj) log
( bij(xi, xj)
bi(xi)bj(xj)

)
−
∑
(i,j)

βij
∑

(xi,xj)

bij(xi, xj) log
(
ψij(xi, xj)

)
+
∑
i

1
κi

∑
xi

bi(xi) log
(
bi(xi)

)
−
∑
i

γi
∑
xi

bi(xi) log
(
ψi(xi)

)
(3.13)

where (1/α;β;1/κ;γ) are called counting numbers, with entropic counting numbers (1/α;1/κ)
and average energy counting numbers (β;γ). Fractional BP corresponds to (β,κ,γ) = (1,1,1),
and BP is associated with to (α,β,κ,γ) = (1,1,1,1). This approximation of the Gibbs free
energy can be justified by approximating both the variational entropy and the average energy.
This is a special case of Yedidia et al. (2005) which presents a method to build generalized BP
algorithms based on such an approximation. We consider in this section the situation where
the regions on which to make the approximation of the Gibbs free energy are simply the set of
graph edges and individual nodes, as in the Bethe approximation. Another difference is that the
work of Yedidia and colleagues focuses on so-called “valid region-based approximations” which
imposes constraints between the counting numbers. These constraints are not considered in the
present work.

We approximate the entropy of the variational distribution b(x) as if it could be written as
function of its unitary and pairwise marginals bi(xi) and bij(xi, xj) as:

b(x) ≈
∏
i,j

( bij(xi, xj)
bi(xi)bj(xj)

)1/αij∏
i

(bi(xi))1/κi (3.14)

and if b(x) could be written as function of its unitary and pairwise potentials ψi(xi) and ψij(xi, xj)
as:

b(x) ≈
∏
i,j

(
ψij(xi, xj)

)βij∏
i

(
ψij(xi, xj)

)γi (3.15)

Note that parameters (κ,γ) are nodal terms (κi is assigned to variable node xi). On the other
hand, (α and β) are related to edges of the graph (αij is assigned to the undirected edge node
(xi, xj)).

This gives the following parametric approximation of the entropy of b(x):

− Sb ≈
∑
(i,j)

1
αij

∑
(xi,xj)

bij(xi, xj) log
( bij(xi, xj)
bi(xi)bj(xj)

)
+
∑
i

1
κi

∑
xi

bi(xi) log(bi(xi)) (3.16)
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with entropy counting numbers (1/α,1/κ).
The following parametric approximation of the average energy is written:

Ub ≈ −
∑
(i,j)

βij
∑

(xi,xj)

bij(xi, xj) log
(
ψij(xi, xj)

)
−
∑
i

γi
∑
xi

bi(xi) log
(
ψi(xi)

)
(3.17)

with average energy counting numbers (β,γ).
These approximations of the variational entropy (Equation (3.16)) and average energy (Equa-

tion (3.17)) lead to the approximated Gibbs free energy Gapprox ≡ Uapprox − Sapprox given in
Equation (3.13). This parametric approximation of the Gibbs free energy generalizes the Bethe
free energy used in BP.

This eventually leads (see Appendix A) to a generalized BP or extended Fractional BP (eFBP)
defined by the following update equation:

mnew
i→j(xj) ∝

(∑
xi

ψij(xi, xj)αijβij
(
ψi(xi)γi

∏
k∈N (i)\j

mk→i(xi)mj→i(xi)1−αij/κi
)κi)1/αij

(3.18)
and beliefs are computed using:

bi(xi) ∝

(
ψi(xi)γi

∏
k∈N (i)

mk→i(xi)

)κi
(3.19)

eFBP in the binary case This class of generalized BP algorithms still takes a very simply
form in the log-domain when applied to probability distributions over binary variables:

Mi→j = gij

(
Bi − αijMj→i

)
Bi = κi

( ∑
j∈N (i)

Mj→i + γiMext→i

) (3.20a)

(3.20b)

where gij is a sigmoidal function given by:

gij(x) = 1
2αij

log

((
ψ1,1
ij

)αijβij
e2x +

(
ψ1,0
ij

)αijβij(
ψ0,1
ij

)αijβij
e2x +

(
ψ0,0
ij

)αijβij
)

(3.21)

in the general case, and

gij(x) = 1
αij

ϕ−1

(
ϕ
(
αijβijJij

)
ϕ
(
x
))

(3.22)

for an Ising model, where ψij(xi, xj) ∝ exp(Jijxixj). These expressions of gij generalize the ones
used in Fractional BP (see Equations (3.6) and (3.7)).

A neural implementation of eFBP Note the presence of parameter αij at several places in
the algorithm (multiplicative factor to the message in Equation (3.20a), multiplicative factor to
the weights in Equation (3.22), and divisive factor in the non-linearity in Equation (3.22)) does
not prevent eFBP from being potentially implemented in the brain as such, contrary to FBP.
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3.3. Extended Circular BP

Indeed, extended FBP in Ising models can be rewritten:
Bij = ϕ−1

(
ϕ
(
β̃ijJij

)
ϕ
(
Bi −Bji

))

Bi = κi

( ∑
j∈N (i)

1
αij

ϕ−1

(
ϕ
(
β̃ijJij

)
ϕ
(
Bi −Bji

))
+ γiMext→i

) (3.23a)

(3.23b)

with Bji = αijMj→i and β̃ij ≡ αijβij which incorporates the dependence in αij . In this case,
κi represents, as for extended Circular BP, the synaptic scaling factor associated to the unit
encoding for Bi. However, αij is not the synaptic scaling factor associated to the unit encoding
for Bji as for eCBP but instead, (the inverse of) a connection weight between the unit encoding
for Bji and the unit encoding for Bji ; see system of equations (4.13) for comparison with eCBP.

Relation to other algorithms The extended Fractional BP algorithm generalizes Fractional
BP (Wiegerinck and Heskes, 2002), Power EP (Minka, 2004) and α-BP (Liu et al., 2019) which
all correspond to (κ,β,γ) = (1,1,1), and more particularly use the damped message update
equation (A.8) rather than its undamped version (A.9) (see damping in section 4.2.1).

Of course, extended Fractional BP extends particular cases of the Fractional BP algorithm,
including the Belief Propagation algorithm (recovered for (κ,α,γ,β) = (1,1,1,1)).

Lastly, Circular BP (Jardri and Denève, 2013a) is not associated to any choice of (α,κ,β,γ)
in eFBP, thus does not come from any modification of the Bethe Free Energy. However, as
previously explained in section 3.2.2, Circular BP can be seen as an approximation of Fractional
BP. Furthermore, and contrary to the models mentioned above, Circular BP was proposed as a
way of disturbing inference capabilities of the network rather than improving them, in order to
capture the effects of excitation-inhibition imbalance on mental states and belief formation.

3.3.2 Extended Circular BP as approximation of extended Fractional BP
We introduce in this section a generalization of Circular BP called extended Circular BP. This
algorithm has additional parameters κ, γ, and β compared to BP. Extended Circular BP (eCBP)
is defined by the following message update equation (which generalizes the one for Circular BP
in Equation (1.12)):

mnew
i→j(xj) ∝

∑
xi

ψij(xi, xj)βij
(
ψi(xi)γi

∏
k∈N (i)\j

mk→i(xi)mj→i(xi)1−αij/κi
)κi

(3.24)

and the beliefs are computed using:

bi(xi) ∝

(
ψi(xi)γi

∏
k∈N (i)

mk→i(xi)

)κi
(3.25)

This translates, for probability distributions over binary variables, into the following equation
in the log-domain: 

Mnew
i→j = fij

(
Bi − αijMj→i

)
Bi = κi

( ∑
j∈N (i)

Mj→i + γiMext→i

) (3.26a)

(3.26b)
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3. Circular Belief Propagation as model of optimal behavior

Algorithm 3 Extended Circular Belief Propagation algorithm in a pairwise factor graph
1: for all directed edges i→ j do
2: mi→j(xj)← some distribution {Initialize the messages}
3: end for
4: repeat
5: for all directed edges xi → xj do
6: mnew

i→j(xj)←
∑
xi

ψij(xi, xj)βij
(
ψi(xi)γi

∏
k∈N (i)\j

mk→i(xi)mj→i(xi)1−αij/κi
)κi

{Update the messages}
7: end for
8: m← mnew

9: until convergence
10: for all nodes xi do

11: bi(xi)←
(
ψi(xi)γi

∏
k∈N (i)

mk→i(xi)

)κi
{Compute the beliefs}

12: end for

where

fij(x) = 1
2

log

((
ψ1,1
ij

)βij
e2x +

(
ψ1,0
ij

)βij(
ψ0,1
ij

)βij
e2x +

(
ψ0,0
ij

)βij
)

(3.27)

in the general case, and
fij(x) = ϕ−1

(
ϕ(βijJij)ϕ(x)

)
(3.28)

in the specific case of Ising models. Note that the expression of fij in extended Circular BP
generalizes the formula for fij in Circular BP (Equation (1.21)) which corresponds to the case
β = 1.

In the remainder of this thesis, unless explicitly stated otherwise, all algorithms (e.g. Circular
BP) will be considered in the binary case described above.

Algorithm 4 Binary extended Circular BP algorithm in a pairwise factor graph
1: for all directed edges i→ j do
2: Mi→j ← random value {Initialize the messages’ log-odds}
3: end for
4: repeat
5: for all nodes xi do
6: Bi = κi

( ∑
j∈N (i)

Mj→i + γiMext→i

)
{Compute the beliefs’ log-odds}

7: end for
8: for all directed edges xi → xj do
9: Mnew

i→j = fij(Bi − αijMj→i) {Update the messages’ log-odds}
10: end for
11: M ←Mnew

12: until convergence
13: for all nodes xi do
14: bi(xi = ±1)← σ(±2Bi) {Compute the beliefs}
15: end for
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3.4. Convergence of the proposed algorithm

This generalization of Circular BP is connected to the extended Fractional BP algorithm
(or Generalized BP) previously described. More specifically, eCBP is built as an approximation
to eFBP, using the fact that the update functions fij and gij , which are the only thing that
differenciates eFBP from eCBP in Ising models, are approximately equal:

gij(x) ≡ 1
αij

ϕ−1

(
ϕ
(
αijβijJij

)
ϕ
(
x
))
≈ ϕ−1

(
ϕ
(
βijJij

)
ϕ
(
x
))
≡ fij(x) (3.29)

3.4 Convergence of the proposed algorithm

As seen in Figures 3.6 and 3.7, convergence of the algorithm is crucial to carry out approximate
inference: it can be observed a sharp transition between having beliefs very close to the correct
marginals and very far from them. When one of the algorithms does not converge, beliefs have
very little to do with the correct marginals (this observation was already made for BP in Murphy
et al. (1999)). It is therefore important to control the convergence properties, and if possible, to
ensure the convergence of our proposed algorithm.

Importantly, for all the variants of BP cited previously (Fractional BP, Circular BP, Varia-
tional message-passing, …), there is no theoretical result about the existence of parameters that
guarantee convergence. Absence of convergence of an algorithm means that it gets trapped in a
limit cycle (frustration phenomenon) or alternatively wanders around chaotically without being
able to produce approximate marginals. The typical behavior is a strong oscillation of the beliefs
from one extreme (bi(xi = 1) ≈ 100%) to the other (bi(xi = 1) ≈ 0%). This is an serious
obstacle to the use of such algorithms to perform approximate inference, let alone be a candidate
for neural implementation of inference.

On the contrary, we prove here that in the case of Ising models, there exist parameters for
which extended Circular BP is stable. More precisely, for any set of parameters (γ,β), one can
choose parameters (α,κ) such that the algorithm converges (see Theorem 3). Note that a very
similar demonstration applies to extended Fractional BP as well.

Having a stable algorithm is important, for two reasons. First, it helps performing reasonably
good approximate inference with the algorithm for any probability distribution. Indeed, whatever
the probability distribution is (i.e., the weights J and external inputs Mext are), it is possible
to select parameters for which the algorithm will produce approximate marginals. Second, and
most importantly, convergence is important for the biological plausibility of the algorithm. Not
only the brain should remain in a stable regime while performing computations (the contrary
can be seen as epilepsy), estimations of probabilities should also not depend on the past state
of the system (meaning that the system should have only one fixed point for any probability
distribution, and the system should converge to this fixed point).

3.4.1 Convergence results
Here we state sufficient conditions for the convergence of extended Circular BP in an Ising model.

We start by defining matrix A whose coefficients are:

Ai→j,k→l = |κi| tanh
∣∣βijJij∣∣ δil1N (i)(k)

∣∣∣∣1− αij
κi

∣∣∣∣
j=k

(3.30)

where 1N (i)(k) = 1 if k ∈ N (i), otherwise = 0, δil = 1 if i = l, otherwise = 0, and
∣∣∣1− αij

κi

∣∣∣
j=k

=

1− αij
κi

if j = k, otherwise 1.
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3. Circular Belief Propagation as model of optimal behavior

Theorem 1 If for any induced operator norm ∥·∥ (sometimes called natural matrix norm),
∥A∥ < 1, then eCBP converges to a unique fixed point and the rate of convergence is at least
linear.

Proof 3.4.1 The proof of Theorem 1 follows closely the one of Lemma 2 of Mooij and Kappen
(2007b) for Belief Propagation, that is, the special case (α,κ,β,γ) = (1,1,1,1). The message
update equation for extended Circular BP, given by Equations (3.26a) and (3.26b), is:

Mnew
i→j = tanh−1

[
tanh (βijJij) tanh

(
κiγiMext→i + κi

∑
k∈N (i)\j

Mk→i + (κi − αij)Mj→i

)]
(3.31)

Let F be the update function for the messages: Mnew = F (Mold) (in what follows, we drop the
superscript old for clarity). The derivative of F is:

F ′(M)i→j,k→l =
∂Mnew

i→j

Mk→l
(3.32)

= Ãi→j,k→lBi→j(M) (3.33)

where
Ãi→j,k→l = |κi| tanh

∣∣βijJij∣∣ δil1N (i)(k)
(

1− αij
κi

)
j=k

(3.34)

Bi→j(M) = sgn(κiβijJij)

1− tanh2

(
κiγiMext→i + κi

∑
k∈N (i)\j

Mk→i + (κi − αij)Mj→i

)
1− tanh2 (Mnew

i→j

) (3.35)

Note that sup
M

Bi→j(M) = 1, as sup
x

1− tanh2(x)
1− tanh2(K) tanh2(x)

= 1.

It comes that sup
M

F ′(M)i→j,k→l ≤ Ai→j,k→l where we defined A as A =
∣∣∣Ã∣∣∣. A does not depend

on the external messages Mext, nor does it depend on parameter γ.
If for any norm ∥·∥ on matrices, ∥A∥ < 1, sup

M
F ′(M)i→j,k→l < 1, then function F is a ∥·∥

- contraction (see Lemma 2 of Mooij and Kappen (2007b)) and the sequence M,F (M), F ◦
F (M), . . . , that is, the Circular BP algorithm, converges to a unique fixed point with at least a
linear rate. □

Hence choosing in Theorem 1 the spectral norm (induced by the l2-norm), it comes straightfor-
wardly:

Corollary 1.1 If the largest singular value of A, σmax(A) < 1, then Circular BP converges.

Theorem 2 If ∀(i, j), αij/κi ≤ 1 and the spectral radius of A, ρ(A) < 1, then Circular BP
converges to the unique fixed point.

Proof 3.4.2 The proof of Theorem 2 follows closely the one of Corollary 3 of Mooij and Kappen
(2007b). According to Equation (3.33),

F ′(M)i→j,k→l = Ãi→j,k→lBi→j(M) (3.36)
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3.4. Convergence of the proposed algorithm

Note that A ≡
∣∣∣Ã∣∣∣ = Ã as Ã is non-negative (because of the hypothesis αij/κi ≤ 1). We directly

conclude by using Theorem 2 of Mooij and Kappen (2007b): F ′(M) is the product of A, a constant
non-negative matrix, with B(M) whose coefficients are bounded by 1 in absolute value, thus the
sequence M,F (M), F ◦ F (M), . . . , meaning, the Balanced Circular BP algorithm, converges to
a fixed point and this fixed point does not depend on the initial condition M . □

Theorem 2 has the strong constraint that αij/κi ≤ 1 for all (i, j). However, when this constraint
is verified, the spectral radius criterion is sharper than the norm criterion of Theorem 1 because
ρ(A) ≤ ∥A∥ for all induced operator norms.

Finally, a consequence of Theorem 2 is the following fundamental result, which distinguishes
extended Circular BP from related approaches like Power EP, Fractional BP and α-BP (see
section 3.2.1.2):

Theorem 3 For a given weighted graph (defined by its weights Jij), it is always possible to find
parameters α and κ such that extended Circular BP converges for any external input Mext and
any choice of parameters (γ,β).

Proof 3.4.3 Here we show Theorem 3. Let us take αij = κi ≡ p ∈ R+. In this case, Ai→j,k→l =
p tanh

∣∣βijJij∣∣ δil1N (i)\j(k). When p → 0, all coefficients of A go to zero. The spectral radius
is a continuous application, and the null matrix has a spectral radius of zero, thus the spectral
radius of A goes to zero when p→ 0. We conclude by using Theorem 2 as αij/κi = 1 ≤ 1: there
exists p⋆ such that for all p < p⋆, eCBP converges. □

Notably, proof of Theorem 3 shows that choosing α and κ uniformly, equal and large enough
guarantees the convergence of extended CBP.

We use this result to initialize parameters in the supervised fitting procedure (gradient-descent
based). α and κ are first set at the BP value of p = 1, and we decrease p until the spectral radius
of matrix A goes below 1, which ensures that extended Circular BP converges according to the
theory. In practice, we decrease p by incrementing 1/p by steps of 1. Note that we are using a
sufficient condition, thus extended Circular BP could converge for higher values of p than the
one chosen.

3.4.2 Extension of the convergence results to other related algorithms
As shown above, extended Circular BP (with parameters (α,κ,β,γ)) converges to the unique
fixed point, whatever the probability distribution and parameters (β,γ) are, given the right
choice of parameters (α,κ).

In particular, for (β,γ) = (1,1), eCBP with parameters (α,κ) has the same convergence
properties as the general eCBP. In fact, it is the combination of these two parameters that makes
the convergence possible. Without parameter κ (i.e., with κ = 1), it is not possible to guarantee
that there exists α such that the algorithm converges. We go even further by stating the following
conjecture: there exist weighted graphs (typically, with strong enough weights) for which, for any
choice of parameter α, Circular BP (and similarly, Fractional BP, both having κ = 1) does not
converge. As a reminder, in the implementation of eCBP in chapter 4, parameter κi corresponds
to the synaptic scaling factor at the unit encoding the marginal probability of node xi, and αij
is the synaptic scaling factor at the unit encoding for the prediction of node xi by node xj . It is
rather intuitive that controlling the scaling factors of all units through κ and α) is necessary to
ensure the stability of the system.
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3. Circular Belief Propagation as model of optimal behavior

Very similarly, eCBP converges to the unique fixed point, whatever the probability distri-
bution and parameters (α,κ,γ) are, given the right choice of parameter β. This can be seen
easily: in the demonstration of Theorem 3, coefficients of A go to zero as well if β → 0, thus
for β uniform and sufficiently small, the algorithm converges to the unique fixed point. One
way to interpret this is that the weak connections in the forming brain allow him to remain in
a stable regime and perform inference.This convergence condition remains valid for all extended
BP variants (not only eCBP but also eFBP, eBP, and eCBP with α = 0 for instance).

All the convergence results stated for eCBP remain valid for eFBP (the demonstrations are
similar to the ones of eCBP).

As stated above, the convergence result for eCBP (and eFBP) distinguishes extended Circular
BP from related approaches like Circular BP, Power EP, Fractional BP and α-BP (see section
3.2.1.2). Indeed, as seen above, α alone is not enough to ensure convergence of these algorithms:
an additional parameter κ would be needed but is not present in these algorithms. However,
controlling parameter κ alone (i.e., taking fixed α) is not sufficient to guarantee the convergence
of extended CBP, nor extended BP (for which α = 1), but is enough for extended CBP with
fixed α = 0. Note that not being able to guarantee the convergence of an algorithm does not
mean that the algorithm does not converge. Simulations seem to indicate that for strong enough
weights and strong enough α values, κ → 0 is not enough to make eCBP converge. However,
such an approach is successful on all the graphs used for which the weights are moderately strong
(Jij ∼ N (0, 1)).

3.5 Numerical experiments - Learning to outperform BP

The goal is to use the extended Circular BP algorithm in order to perform approximate in-
ference for any given external input Mext = {Mext,i} given the interactions J = {Jij} be-
tween variables of the probability distribution. To achieve this goal, parameters of the model
α = {αij}, κ = {κi}, β = {βij} and γ = {γi} are learnt so that the approximate marginals
or beliefs {bi(xi)} are as close as possible to the true marginals {pi(xi)}, for all possible ex-
ternal inputs Mext (meaning, unitary factors ψi(xi)) given a graph with interactions J (i.e.,
pairwise factors ψij(xi, xj) = exp(Jijxixj)). This would mean that one can learn the appropri-
ate parameters (α,κ,β,γ) so that inference is possible on all probability distributions written
as p(x) ∝

∏
(i,j)

ψij(xi, xj)
∏
i

ψi(xi) where {ψij} are fixed but {ψi} can vary. According to the

implementation of chapter 4, that corresponds to the brain having relations between variables
(J) as well as parameters (α,κ,γ,β) encoded in connections between units such that the activity
of unit i reflects the marginal probability of variable xi, whatever the sensory information are.

3.5.1 Experimental setting
Types of graphs used We consider Ising models for the numerical simulations, meaning that
the probability distribution can be factorized into a product of pairwise potentials ϕij(xi, xj) ∝
exp(Jijxixj), and unitary potentials ϕi(xi), where variable xi is a binary variable. Several graph
topologies are considered: structured graphs and Erdős-Rényi random graphs. Erdős-Renyi
graphs are generated with various connection probabilities p (ranging from 0.2 to 1); see Figure
3.6. Structured graphs are generated according to predefined structures (grid, ladder, bipartite
graph, …) identical to Yoon et al. (2018); see Figure 3.7. All graphs have 9 nodes.

Artificial data generated For each graph topology, 30 graphs are generated: an absence
of edge means Jij = 0 while existing edges had their weights sampled randomly according
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to Jij ∼ N (0, 1) (spin-glass). As a reminder, Jij is associated to the unoriented edge (i, j):
Ji→j = Jj→i ≡ Jij . For each weighted graph, 200 training examples, 100 validation examples
and 100 test examples are generated, where an example is a vector of external evidences Mext
generated according to Mext,i ∼ N (0, 1).

3.5.2 Learning procedure
3.5.2.1 Description of the learning procedure

We use supervised learning to fit the 2nnodes +2nedges parameters of eCBP (α,κ,β,γ): matrices
α and β have nedges degrees of freedom and vectors κ and γ have nnodes degrees of freedom.
To do so, we want to minimize the difference between beliefs obtained with eCBP, and the true
marginals. More specifically, the loss being minimized is the MSE loss or squared L2 norm:

L(b, p) = 1
nnodes

nnodes∑
i=1

(
bi(xi = +1)− pi(xi = +1)

)2 (3.37)

between the true marginals pi(xi) and the approximate ones bi(xi), obtained by propagating
messages for T = 100 time steps. True marginals pi(xi) are computed using an exact inference
algorithm, the Junction Tree algorithm, via the pgmpy library (Ankan and Panda, 2015). The
model is trained on PyTorch (Paszke et al., 2019) using backpropagation through time with a
gradient-descent based method, RPROP (Riedmiller and Braun, 1993). We use a learning rate
of 0.001 and stop the learning once the validation loss saturates, which usually takes around 50
epochs. Parameters (α,κ,β,γ) of the model are initialized such that eCBP converges with this
choice of parameters (see section 3.4). One initialization tested, among others, is to initialize β
and γ at the value 1, while α and κ are initialized at the same small enough value; see Theorem
3 and its proof. The model is also trained using function least squares of SciPy (Virtanen et al.,
2020). We take the best fitting parameters between PyTorch and SciPy depending on their
performance on the validation set. The source code is publicly available on GitHub.

Marginals obtained after fitting the eCBP algorithm can be seen in Figure 3.6 for Erdos-Renyi
graphs, and Figure 3.7 for structured graphs.

Many other models than eCBP are fitted, using the same learning procedure. This includes
special cases of eCBP (with one or more of the parameters being fixed) but different classes of
algorithms as well, like eFBP, the classical rate network, etc. Each model is initialized when
possible with parameters which guarantee convergence of the algorithm (otherwise the learning
procedure sometimes does not find a region of convergence). This can be done through the
combination of low and positive α and κ as for eCBP, but also with low enough β (see section
3.4.2) and lastly, with low enough κ (even if there is no theoretical result about the spectral
radius of A being lower than one if κ is sufficiently low, it is the case in practice with the
generated graphs and thus guarantees convergence).

3.5.2.2 Generalization ability

Here we show that the extended Circular BP algorithm, using the learning procedure described
above, is able to generalize to new data. This shows the goodness of the learning procedure.

Within-set and out-of-set generalization A first necessary check for the supervised learn-
ing procedure is to make sure that the proposed model is able to learn properly the training data
and to generalize to new inputs.
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3. Circular Belief Propagation as model of optimal behavior

The training indeed learns to represent the training data and allows the model to generalize
well to unseen inputs with identical statistics as in the training set; see Figure 3.8A. In other
words, the extended Circular BP algorithm is able to generalize to unseen situations, where a
“situation” is a vector Mext of size nnodes. Unseen refers to data not included in the training
examples. Note that only the external inputs Mext change in the test set: the graph weights J
are fixed. In other words, parameters α,κ,β, and γ are learnt given the weights J , although for
any external inputs Mext.

The model also generalizes well to out-of-set inputs, that is, to external inputs Mext with
different statistics from the ones used for training; see Figure 3.8B.

Extended Circular BP outperforms its special cases The extended Circular BP algo-
rithm is expected to outperform all its special cases, including Circular BP (i.e., (κ,β,γ) =
(1,1,1)), extended BP (i.e., α = 1) and BP (i.e., (α,κ,β,γ) = (1,1,1,1)). This is indeed the
case, as shown in Figure 3.9 where models are ordered according to the following score (aver-
age over graphs of the log of the MSE averaged over examples) written “− log10(avg MSE)” in
figures:

score = − 1
Ngraphs

∑
graphs

log10

(
1

nexamples

∑
examples

MSEgraph, example

)
(3.38)

where the MSE loss is defined in Equation (3.37). The performance of all models decreases
with the complexity of graphs. Several models like BP perform very poorly for dense graphs
because the network becomes frustrated (see Figure 3.6). It is the true for Circular BP as well,
which shows that parameter α alone is not enough to make the algorithm converge. On the
contrary, other models (all models outperforming or equal to “CBP nodal”) show no sign of
frustration thanks to additional parameters, as expected by Theorem 3. This allows all these
models, including extended CBP, to keep a rather good level of performance in the approximate
inference task even for complete graphs.

The only exception to the statement that more complex models perform better on the test set
is the fact that the model “CBP + weights” (i.e., eCBP with (κ,γ) = (1,1)) perfoms worse than
the model “BP + weights” (i.e., eCBP with (α,κ,γ) = (1,1,1)) for highly dense graphs. The
reason for that is not overfitting as “CBP + weights” also performs worse than “BP + weights”
on the training set. Instead, the supervised learning algorithm does not manage in this case,
because it has to explore over a larger parameter space, to find a better solution than if it has
less parameters to fit.

More generally, and quite logically, models which were special cases of others performed
comparatively worse on the test set. For instance, as shown in Figure 3.10, extended Fractional
BP outperforms, among others, Fractional BP, Generalized BP (Yedidia et al., 2001), Tree-
Reweighted BP (Wainwright. et al., 2002) and Variational message-passing (Winn and Bishop,
2005), that is, mean-field, as all these algorithms are special cases of extended Fractional BP: see
section 3.2.1.2 for more details. We used the libDAI (Mooij, 2010) implementation of Generalized
BP (“GBP_MIN” algorithm, i.e., using minimal clusters: one outer region for each maximal
factor), Tree-Reweighted BP (with 10000 sampled trees) and Variational message-passing, to
compute the associated approximate marginals.

Among all tested algorithms, it is noteworthy that neither Circular BP nor Fractional BP,
for which the only only parameter fitted is α, provides good results for moderately dense or
highly dense graphs. By looking at the marginals produced by these algorithms for Erdos-Renyi
graphs (see Figure 3.6), the reason why they do not perform well is the frustration of the network
caused by cycles (strong oscillations between the two extremes bi(xi) ≈ 0 and bi(xi) ≈ 1 without
convergence of the algorithm). As observed by Murphy et al. (1999), convergence of BP implies
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a good approximation of the correct marginals by the beliefs, and convergence can be forced by
using a damped algorithm. Similarly, here, when Circular and Fractional BP converge (for graph
with low density), they produce beliefs close to the correct marginals. However, for denser graphs,
the algorithms do not converge and in this case beliefs have very little to do with the correct
marginals, which Murphy pointed as well. As in Murphy et al. (1999), introducing damping to
CBP and FBP would help the algorithms to converge. However, the damped algorithm would
become slower to converge in cases where the undamped algorithm converged. This does not
seem like an optimal solution to the frustration problem, as the inference performed by the brain
should be as fast as possible in particular to react quickly in situations of danger. The question
whether the algorithms can converge only by choosing the right α, without damping, has not
been answered yet. It is probable that the α parameter is not enough to prevent the frustration
behavior from occurring. Alternately, it is possible that the learning procedure does not find the
optimal α. This second possibility as yet not been ruled out.

Influence of the interaction strength Figure 3.11 shows the effect of increasing the inter-
actions weights J = {Jij}. Both BP and eCBP show a performance decrease with increased
interaction strength, but at a much higher rate for BP than for eCBP.

Overconfidence Overconfidence is defined as having a stronger certainty about one’s belief
compared to the evidence at hand. Overconfidence can be explained by the effect of cycles:
each piece of evidence is being counted multiple times as it is reverberated in the cyclic graph.
This situation can be observed for BP in Figure 3.11. More generally, we observed systematic
overconfidence in BP (or alternatively, systematic underconfidence, depending on the weights
of the graph); see also Weiss (2000). With extended Circular BP, this systematic disturbance
disappeared thanks to training, as shown in Figure 3.11. In other words, the eCBP algorithm
manages to cancel the effects of information amplification (respectively, dampening) by successive
passes in the cycles.

3.5.3 Comparison between Fractional and Circular BP
Not only (extended) Circular BP algorithms outperform their (extended) BP equivalents as
previously shown in Figure 3.9, they also are close - but inferior - to (extended) Fractional BP
algorithms in terms of performance as shown in Figure 3.12. Logically, all approximate inference
algorithms show a decreased performance for increased network density, both for structured and
Erdos-Renyi graphs, but at a higher rate for BP models than for Circular or Fractional BP
models.

3.5.4 Additional analyses
Breaking symmetry In the algorithms, parameters α = {αij} and β = {βij} are symmetric
matrices as elements of the matrix depend on the unoriented edge (for instance, for α, αi→j =
αj→i). We tested whether removing this symmetry constraint would improve the inference
algorithm. In addition, αi→j , αj→i, βi→j and βj→i do not represent inverse overcounting numbers
anymore, as these parameters weigh quantities which depends only on the pair (i, j) but not the
direction.

As Figure 3.13 shows, removing the symmetry constraint indeed generally allows for better
approximate inference, quite logically as the newly created algorithms are generalizations of the
previous ones. However, the improvement is only marginal, and requires to learn nedges additional
parameters for α and nedges additional parameters for β. This can lead to a slight overfitting,
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visible for eFBP, which usually performs better on the test set than its generalization (model
“eFBP + non-symmetric”, see Figure) but not the training set (not shown). In addition to a slight
overfitting with these additional parameters, the non-symmetric model does not systematically
outperform its symmetric counterpart on the training set, meaning that the supervised learning
algorithm has difficulties dealing with such a huge amount parameters (an explanation among
others could be the low amount of training data).

Comparing extended CBP to other more complex algorithms BP, or sum-product
algorithm, is the most elementary one in a family consisting not only of Generalized BP (Yedidia
et al., 2001, 2005), Expectation Propagation (Minka, 2001b), Fractional BP (Wiegerinck and
Heskes, 2002), which were cited previously in this thesis, but also algorithms such as Survey
Propagation (Braunstein and Zecchina, 2004), Expectation Consistence (Opper and Winther,
2005) and double-loop algorithms (Heskes et al., 2002). We compared extended Circular BP to
some of these complex approximate inference algorithms. More precisely, we considered two algo-
rithms: Loop-corrected BP (Mooij and Kappen, 2007a) and Double-Loop Generalized BP (Hes-
kes et al., 2002) thanks to the libDAI implementation of these algorithms (Mooij, 2010) (respec-
tively “LCBP_FULLCAVin_SEQRND” and “HAK_MIN” options in libDAI). Loop-corrected
BP approximates the cavity distributions for each variable in a two-step way, and Double-Loop
Generalized BP uses a double-loop procedure to guarantee the convergence of the Kikuchi free
energy (whose extrema correspond to the fixed points of Generalized BP).

Figure 3.14 shows that eCBP and eFBP beat the Double-Loop GBP algorithm (similar to BP
in performance), but gets significantly outperformed by the Loop-corrected BP algorithm, espe-
cially for structured graphs. However, Figure 3.6 complements the score ranking with an inter-
esting visual perspective. Although extended Circular BP gets outperformed by Loop-corrected
BP with the score of Equation (3.37), it looks like Loop-corrected BP makes stronger errors than
extended Circular BP (although much more rarely). Humans, on the contrary, would intuitively
benefit from never making strong mistakes, for instance in order to survive, and instead making
tiny mistakes (possibly rather often). Furthermore, the complexity of Loop-corrected BP (Mooij
and Kappen, 2007a) makes it quite implausible for the algorithm to be implemented in the brain
as such, contrary to extended Circular BP as seen in chapter 4.

Comparison with the classical rate network A growing field of theoretical neuroscience
research consists of training a particular type of recurrent neural network to solve behavioral
tasks mastered by animals and humans. This recurrent neural network is described by the
following equation:

Bi =
∑

j∈N (i)

W rec
ij ϕ(Bj) +W in

i Mext→i (3.39)

(note that the input connectivity matrix is taken diagonal here). This model differs from eCBP
by the absence of additional ϕ−1 = artanh non-linearity and the absence of subtraction inside
function ϕ (scaled in eCBP with parameter α); see also Equation (4.14) and section 4.4. On top of
these differences, eCBP also has constraints on the recurrent connectivity as W rec

ij = κiϕ(βijJij),
and on the input connectivity as W in

i = κiγi.
Figure 3.15 shows that learning parameters W rec and W in of the rate network (overall

2nedges + nnodes weights without imposing symmetry on W rec) produces beliefs of worse quality
than the simple model “BP + weights” which consists of fitting parameter β (with the artanh
non-linearity and the subtraction with scaling α = 1). This model has only nedges parameters.

Overall, Figure 3.15 shows that two features are important to carry out approximate inference
with good enough quality. First, the artanh non-linearity in function fij (see Equation (3.28)) is
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crucial: none of the approximate models ignoring the artanh function (“rate network” models and
“eCBP tanh” models) significantly outperforms its counterparts with the artanh non-linearity.
Second, and most importantly, Figure 3.15 shows the importance of the subtraction by the
message going in the opposite direction (the “−αijMj→i” in message update equations) to avoid
overcounting information. Indeed, the approach consisting in removing the opposite message as
if there were no cycles (eBP, that is, eCBP with α = 1) is significantly better than not removing
anything (full eCBP, i.e., eCBP with α = 0). Furthermore, taking into account cycles to remove
the appropriate amount of the opposite message (eCBP) is significantly better than ignoring
cycles (eBP). Related to these observations is the fact that full Circular BP (Circular BP with
α = 0) often performs worse than more naive algorithms like mean-field inference (Raju and
Pitkow, 2016), confirming that the subtraction of BP/CBP is important for accurate inferences.
Some neural implementations of BP (Ott and Stoop, 2006; Litvak and Ullman, 2009) actually
ignore the message exclusion of BP and therefore correspond to full Circular BP; but the poor
performance of this algorithm makes it unrealistic that such implementations are used by the
brain.

3.5.5 Comparison between all algorithms
To complete the figures, which only illustrate specific points from the text by showing algorithms
of the same class, we provide in Table 3.1 a ranked list containing algorithms of all types. The
rank is defined by the performance of each algorithm for Erdos-Renyi graphs with connection
probability p = 0.6. For each connection probability, 30 randomly weighted graphs of 9 nodes
were generated, each with 100 examples (vectors Mext) in the test set. More precisely, the
performance is measured identically to previously, i.e., by computing the average over graphs of
− log10(avg MSE) between the true marginals and the estimated marginals where “avg” of “avg
MSE” is taken over examples.

Overall, among fitted models, the best algorithm was extended Fractional BP, followed by
extended Circular BP. Both significantly outperformed BP. Loop-Corrected BP is the best algo-
rithm overall, although much more complex than extended Fractional or Circular BP.

Figure 3.6 provides visual comparison for Erdos-Renyi graphs (including the case p = 0.6
considered in the above table) for most models listed in Table 3.1.
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Name Score # parameters Reference
Loop-corrected BP 6.38 - Mooij and Kappen (2007a)

Extended Fractional BP 5.05 2nedges + 2nnodes here, Yedidia et al. (2001)
Extended Circular BP 4.83 2nedges + 2nnodes here

BP + weights 3.96 nedges -
Full eCBP 3.26 nedges + 2nnodes -

Classical rate network 2.21 2nedges + nnodes Wilson and Cowan (1972)
Fractional BP 2.07 nedges Wiegerinck and Heskes (2002)

Double-loop GBP 1.92 - Heskes et al. (2002)
Circular BP 1.88 nedges Jardri and Denève (2013a)

Generalized BP 1.53 - Yedidia et al. (2001)
BP 1.49 - Pearl (1988)

Tree-Reweighted BP 1.22 - Wainwright. et al. (2003)
Mean Field / Variational MP 0.97 - Winn and Bishop (2005)

Table 3.1: Comparison between various classes of algorithms. Graphs considered here
are Erdos-Renyi graphs with connection probability p = 0.6. full versions of algorithms means
that α = 0.
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Figure 3.6: Estimated marginals on the test set, for various trained algorithms. Prob-
ability distributions are represented by randomly generated Erdos-Renyi graphs with connection
probabilities ranging from 0.2 to 1. For each connection probability, 30 randomly weighted
graphs are considered (one example is shown on the first line of the figure), each with 200 exter-
nal input examples in the training set and 100 in the test set. Each point represents one node.
For clarity, only one random node per graph is shown. In the list of such trained models, CBP
or FBP refers to fitting α, extended (“e”) refers to fitting (κ,β,γ), nodal refers to fitting κ, and
weights refers to fitting β. BP is the most basic model, seen as a baseline. These models were
also compared to more complex algorithms: Loop-Corrected BP and Double-Loop Generalized
BP; see section 3.5.4. For CBP model, there is a sharp transition from carrying out excellent
approximate inference for p = 0.2 to performing really poorly for p = 0.4 (at least on one of
the 30 graphs) because the network becomes frustrated. eCBP and eFBP are visually the best
fitting model, but are in fact outperformed by Loop-Corrected BP (LC BP) as shown below.
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Figure 3.7: Estimated marginals of extended Circular BP and BP for graphs of
various topologies, on the test set. For each graph topology, 30 randomly weighted graphs
are considered, each with 200 external input examples in the training set and 100 in the test set.
Results are qualitatively the same as in Figure 3.6 (Erdos-Renyi graphs) including for algorithms
not shown here. Graph structures are the same as in Yoon et al. (2018).
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Figure 3.8: Extended Circular BP generalizes to new data after training. The topology
considered here is the Erdos-Renyi model with p = 0.6 and 9 nodes, with 30 random weighted
graphs generated, each with 100 test examples. (A) The model learns and generalizes well to
the test set (within-set generalization). (B) Generalization to examples with different statistics
(out-of-set generalization). While σ(Mext) = 1 on the training set, the model still performs well
for lower and higher standard deviations of the input. The performance goes down for increased
σ(Mext) as expected (the system becomes highly non-linear, and the correction brought by eCBP
is linear) but only slightly. Inferences remain relatively good on such examples for instance
compared to BP. (C, D) Same as above but for BP, which shows frustration in (at least) some
of the randomly weighted graphs, that is, absence of convergence of the algorithm, in which case
the beliefs have very little to do with the correct marginals.

96



3.5. Numerical experiments - Learning to outperform BP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
connection probability (Erdos-Renyi graph)
0

1

2

3

4

5

6

7

8

lo
g 1

0(
av

g 
M

SE
)

be
tte

r
wo

rs
e

cy
cle

la
dd

er

gr
id

cir
cu

la
r

la
dd

er
ba

rb
el

l

lo
llip

op

wh
ee

l

bi
pa

rti
te

tri
pa

rti
te

co
m

pl
et

e

graph structure

0

1

2

3

4

5

6

7

8

lo
g 1

0(
av

g 
M

SE
)

be
tte

r
wo

rs
e

eCBP
CBP nodal + weights
eBP
CBP + weights
BP nodal + weights
BP + weights
CBP nodal
BP nodal
CBP
BP

Figure 3.9: From BP to extended Circular BP: additional parameters help generalize
better. Adding parameters to the algorithms from BP (no parameter) to extended Circular BP
(parameters α,κ,β,γ) increasingly helps generalize better to the test set. More generally, all
models which are special cases of others perform worse comparatively on the test set (with the
exception that “BP weights” > “CBP + weights” for highly dense graphs, see main text). This
indicates an absence of overfitting: parameters of eCBP can be learnt despite their consequent
number w.r.t. the amount of training data. In the list of models, CBP or FBP refers to fitting
α, extended (“e”) refers to fitting (κ,β,γ), nodal refers to fitting κ, and weights refers to fitting
β. Models are ordered w.r.t. their performance on Erdos-Renyi graphs with p = 0.6. Each point
represents the log-MSE score on the test set, averaged over 30 weighted graphs (where the MSE
is averaged over examples). Weighted graphs are randomly generated from a graph topology,
with normally generated weights Jij ∼ N (0, 1). Each weighted graph has 100 test examples.
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Figure 3.10: From BP to eFBP: adding parameters helps generalize better. Simi-
larly to Figure 3.9, adding parameters to the algorithms from BP (no parameter) to extended
Fractional BP (parameters α,κ,β,γ) helps generalize better to the test set.
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Figure 3.11: Approximate marginals versus true marginals on the test set, for Belief
Propagation and eCBP. We consider a given graph randomly generated (shown on the left)
with normally distributed weights J = {Jij}. By increasing the strength of the graph weights,
BP gets worse, so as trained eCBP but at a lower rate (the decrease in performance of eCBP
cannot be seen visually here but instead from the score measure defined in Equation (3.38)). In
all cases, eCBP outperforms BP. BP shows here overconfidence over the graph, while eCBP is
on average not overconfident nor underconfident.
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Figure 3.12: (Extended) Circular BP is outperformed by (extended) Fractional BP
but relatively close in performance. Extended Circular and Fractional BP have the same
number of parameters. Both (extended) Circular BP and (extended) Fractional BP outperform
(extended) BP.
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Figure 3.13: Breaking the symmetry constraint in the parameter matrices α and β
does not provide significant improvement to the model, although it brings 2nedges new
parameters to fit (it even performs worse in the case of eFBP because of the high number of
parameters to fit). However, it frees some constraints on the weights and synaptic scaling factors
of the network, which provides stronger biological plausibility. For clarity, several points are not
shown, as all models perform extremely well for trees and graphs close to trees.
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Figure 3.14: Comparison between extended Circular and Fractional BP, and the
more complex models Loop-corrected BP and Double-Loop Generalized BP. Loop-
corrected BP significantly outperforms eFBP and eCBP, especially for structured graphs and
more generally for graphs with low density. For clarity, several points are not shown, in particular
for the Loop-corrected BP algorithm.
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Figure 3.15: Importance of the artanh non-linearity and of the subtraction
−αijMj→i. Extended Circular BP outperforms the classical rate network used in the theo-
retical neuroscience literature (which does not use the artanh non-linearity nor the subtraction
as α = 0). More generally, none of the models ignoring the artanh non-linearity (“rate network”
models and “eCBP tanh” models) perform well compared to their counterparts with artanh non-
linearity - eCBP models - and even eCBP without subtraction, i.e., full eCBP. Besides, models
with non-linearity artanh but non optimal level of information removal αij (eBP and full eCBP)
get outperformed by eCBP which tweaks the level of subtraction αij to counter the influence of
cycles. eBP (i.e., eCBP with α = 1) removes the information in the opposite direction without
taking cycles into consideration, and full eCBP (i.e., eCBP with α = 0) ignores completely the
removal as for mean-fied methods.
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3.6 Circular BP with memory

Circular BP was not initially developed as a way of improving inference in cyclic graphs, but
instead of impairing the quality of inference in acyclic graphs in which BP performs exactly. In
this section, we propose an algorithm, “Circular BP with memory”, similar to Circular BP, and
which more closely relates to the initial idea of cancelling messages being reverberated through
the network cycles.

Motivation When applying a message-passing algorithm to a graphical model containing cy-
cles, messages will undoubtedly travel through loops, but this self-contribution should be sub-
tracted at the moment when the message comes back. This idea was initially developed in
Denève (2005) (and the related article Denève (2008)) which proposes a spiking network imple-
mentation of the Belief Propagation algorithm. This paper, in addition to considering HMMs
(as discussed later in section 4.1), which is a quite restricted class of generative models, also
considers a Bayesian causal network in time (coupled hidden Markov chain). In this network,
BP performs only suboptimally because of the presence of cycles once unwrapping the graph
through time, which causes information loops. The corresponding spiking network implement-
ing BP therefore performs inference suboptimally as well, and the information loops sometimes
lead to an explosion of the network activity (case when BP does not converge). This raises
the need for appropriate amounts of inhibitory control to control the exchange of information
and avoid positive feedback caused by cycles of the graphical model. More precisely, in the
article, inhibitory control is hypothesized to take place through local inhibitory loops cancelling
potentially reverberated spikes. This translates in the equation defining the evolution of the
membrane potential into a self-inhibitory term, taken into account 2dt after a spike of the unit.
This additional term is rather arbitrary, as it is not derived from normative principles, but is
formulated based on the precisely defined intuition that a spike emitted at time t increases of
spiking probability of receiver neurons at time t+dt by a certain amount (defined by the synaptic
weights), and therefore, the spiking probability of the initial neuron at time t+ 2dt. The article
by Denève shows that the newly introduced inhibitory term stabilizes the spiking network and
improves the quality of inference compared to BP (yet does not perform exact inference). This
idea developed in Denève (2005) of having natural reverberation of information in a cyclic net-
work was the basis for the Circular BP algorithm (Jardri and Denève, 2013a) which was designed
to arbitrarily introduce such reverberations even in acyclic networks (see section 1.4.3). Circular
BP artificially correlates messages going in opposite directions arbitrarily by defining one as func-
tion of the other: Mi→j = fij(Bi − αijMj→i) = fij

(∑
k∈N (i) Mk→i + (1− αij)Mj→i +Mext→i

)
where 1 − αij ̸= 0 and represents the amount of circularity. Likewise, the precise modification
of BP with the introduction of parameter α does not come from normative principles but is
strongly motivated at the intuition level by ideas of information being reverberated.

Going forward with the initial idea of Denève (2005), inference could be largely improved
compared to BP if specific additional terms allowed to counter the influence of cycles of length
3, 4, 5, etc. at the appropriate time (in static graphs which are the only ones considered in this
thesis, cycles of length 2 are already being exactly cancelled thanks to the subtraction in BP,
see Figure 1.2). Similar ideas are developed in Raju and Pitkow (2016) and Yoon et al. (2018).
Raju and Pitkow (2016) notes that “a longer memory could be used to discount past information
sent at more distant times, thus avoiding the overcounting of evidence that arises from loops of
length three and greater”. Yoon et al. (2018) uses a multidimensional hidden state in their Graph
Neural Network implementation of Bayesian inference (but not BP). This multidimensionality
allows the information to be potentially retained over many timesteps (that is, not only the last
timestep) and therefore acts against cycles of higher length than simply two.
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3. Circular Belief Propagation as model of optimal behavior

Inspired by Pitkow’s work on Bayesian inference Raju and Pitkow (2016); Yoon et al. (2018)
and the initial idea of Denève from Denève (2005), we propose a model attempting to cancel
the loops at the moment they come back. This cancellation obviously cannot be exact, but
we hypothesize that the resulting model outperforms largely the initial (extended) Circular BP
described in this thesis. We call this model “Circular BP with memory”.

Formulation of Circular BP with memory The update equation on messages for the new
algorithm is proposed as follows:

M t+1
i→j = fij

(
Bti −M t

j→i −
∑
ℓ

wi→j,ℓM
t−ℓ
j→i

)
(3.40)

where fij is defined in Equation (1.20), and the sum is taken over all cycles passing through
node i. Each cycle has some length ℓ and contributes to overcounting information. Note that
there might be several cycles of given length ℓ, but their contributions show up as a single term
in the sum. For a comparison with Circular BP, see next paragraph. The algorithm is defined
here in the log-domain, but the corresponding formulation in the original domain (for any type
of variable) is easy to infer , based upon the demonstration for Circular BP.

As a first approximation, we can determine the amount of subtraction needed given the graph
weights:

wi→j,ℓ =
∑

cycles

∏
edge∈cycle

Jedge (3.41)

where the sum is taken over minimal cycles of length ℓ passing through node i but not through
the edge (i, j): see Figure 3.16 for an example. The reason for the subtracting factors in Equation
(3.41) is that the message function can be linearized into fij(x) ≈ Jij × x.

5

1

4 3

2

Figure 3.16: Circular Belief Propagation with memory. Removal of the opposite message
in Circular BP Mj→i has to be carried out at the moment the message comes back to node i
after travelling in a cycle. In this graph, there is only cycle passing through node i = 1 and
not passing through the edge (i, j) = (1, 2): it is composed of nodes 1 − 5 − 4 and has length
3. Because of this cycle, message M2→1 corrupts messages M5→1 and M4→1 3 timesteps later
(see the propagation of M2→1 in colored dotted lines). Therefore, to update M1→2 (full black
line), terms in M2→1 need to be removed from M5→1 and M4→1 with a delay of 3 timesteps.
We propose a linear removal: M t+1

1→2 = f12(Bt1 − M t
2→1 − w1→2,3M

t−3
2→1) where by definition

Bt1 − M t
2→1 = M t

5→1 + M t
4→1. We believe that removing the redundant information at the

appropriate time (contrary to Circular BP) improves further the quality of inference.
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3.6. Circular BP with memory

Relation with Circular BP As a reminder, the Circular BP algorithm is defined by the
following equations: 

M t+1
i→j = fij(Bti − αijM t

j→i)

Bti =
∑

j∈N (i)

M t
j→i +M t

ext→i

(3.42a)

(3.42b)

The update equation on messages for Circular BP is exactly the same as for Circular BP
with memory, provided we neglect the propagation time inside cycles of the graph. The update
equation for CBP with memory (3.40) indeed becomes in this case:

M t+1
i→j = fij

(
Bti −M t

j→i −
∑
ℓ

wi→j,ℓM
t
j→i

)

which also provides a first approximation to loop correction factors {αij} in Circular BP, as
αij = 1 +

∑
ℓ wi→j,ℓ:

αij = 1 +
∑
ℓ

∑
cycles

∏
edge∈cycle

Jedge (3.43)

where cycles have length ℓ and should contain node i but not edge (i, j). This can be used as a
starting point for a more subtle learning method (unsupervised learning or supervised learning,
described previously in this thesis for Circular BP). See also section 3.1 for similar ideas.

Overall, we reconciliated the vision of Denève (2005) with the Circular BP algorithm as
formulated in Jardri and Denève (2013a). It turns out that Circular BP, where the loop-correction
parameter α intervenes at time t−1, makes sense provided we neglect the propagation time inside
cycles. However, the newly formulated algorithm (Circular BP with memory) corresponds more
to the idea of cancelling reverberating terms arising from loops of the network, even though
Circular BP has the same flavor.

Parameters {wi→j,l} of the new algorithm might be hard to fit because there are many more
than in Circular BP (which only has one parameter αij per edge, contrary to the potentially
linear number of terms in the number of nodes for Circular BP with memory), and because
these parameters are very much interrelated: for a given oriented edge i→ j, the {wi→j,l} have
similar effects on the overcounting or undercounting by the graph. However, a good starting
point would be to define these parameters using Equation (3.41), which most surely performs
inference relatively well.

The new algorithm does not perform exact inference, because it does not cancel loops exactly
but only in a linear manner. For a graph correponding to a single cycle composed of all its
nodes, Circular BP with memory does not differ from BP and is thus suboptimal (although BP
for single-cycle graphs is known to give the MAP solution and performs relatively well (Weiss,
2000)). Moreover, the new algorithm does not relate simply to Fractional BP like Circular BP
did. It would be interesting to try and relate Circular BP with memory to Fractional BP and/or
the Tree-Reweighted BP algorithm.

There are potentially other BP-inspired models which could come from the same idea of
memory, and the update formula provided in Equation (3.40) is simply one of them. Future
work will need to test these different propositions and propose plausible neural implementations,
as chapter 3 did for Circular BP. More precisely, “testing” means fitting the model and compare
its performance to Circular BP (which is different, that is, is not a generalization of Circular BP
with memory nor a special case of it, but has less parameters) or extended Circular BP (which
is different and has more parameters), among others.
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3. Circular Belief Propagation as model of optimal behavior

A final note is that the idea of adding memory does not translate to Fractional BP, as
Fractional BP resembles Equation (3.42a) for Circular BP, but the update function gij (defined
in Equation 3.6) depends on αij , contrary to fij .

3.7 Conclusion: Circular BP can improve the quality of inference

The Belief Propagation algorithm, which approximates marginals of a given probability distri-
bution, often struggles with probability distributions containing cyclic conditional dependencies,
that is, whose associated probabilistic graphical model has cycles. In order to tackle this problem,
several variants or generalization of BP have been proposed, ever since the interest in BP started
to grow (Minka, 2001b; Sudderth et al., 2003; Ihler and McAllester, 2009).

In this chapter, we proposed an approximate inference method, the extended Circular Belief
Propagation algorithm, defined for general factor graphs. This method is a very light modification
of the Fractional Belief Propagation algorithm, which is a particular Generalized Belief Propa-
gation algorithm (Yedidia et al., 2001). This provides a theoretical foundation to (extended)
Circular BP, which is not a normative model per se but relates very closely to (extended) Frac-
tional BP, which is normatively motivated.

We show in simulations, by considering particular probability distributions (Ising models) that
this extended CBP algorithm outperforms previously proposed approaches improving BP such
as Fractional BP, Power EP, α-BP as well as BP itself. The extended Circular BP algorithm is
slightly outperformed by the extended Fractional BP algorithm, but the latter cannot be as easily
implemented with rate units (see chapter 4) and as a consequence, lacks biological plausibility.

While the level of complexity of extended CBP stays comparable to the one of BP and
its variants, we gain two useful features. First, the guarantee of stability (or rather, of being
able to find parameters for which the system is stable), which has not been shown in these
other models and according to simulations might not be true. Second, the higher accuracy in
inference when all algorithms converge, that is, produced approximate marginals. Many more
approximate inference methods exist that have a much higher complexity than our proposed
approach and probably are better performing, in particular deep-learning based methods such as
Graph Neural Networks (Yoon et al., 2018) or Belief Propagation Neural Networks (Kuck et al.,
2020). It remains to be seen how extended Circular BP compares to these methods in terms of
performance.

This work paves the way for future research on approximate inference. Equation (3.24) (or
Equation (3.26a) in the log-domain) gives a general recipe to use rescaled correction in many
algorithms. This “corrective multiplicative factor trick” can be used on top of algorithms which
already improve BP while conserving the same form, like Kuck et al. (2020) or the message-GNN
from Yoon et al. (2018), potentially leading to further improvement of these methods.

One limitation of the supervised learning procedure is the need to generate exact marginals
which prevents from learning the model on large graphs. An unsupervised learning method to
learn the corrective multiplicative factors, presented in section 4.5, brings a solution to this issue.

Another limitation of the approach is that, contrary to some deep-learning based methods as
Graph Neural Networks (Yoon et al., 2018), extended CBP is trained to carry out approximate
inference on any external inputs for each graph independently. Learning a mapping to be able
to predict the corrective factors from the graph structure and weights could be an interesting
future piece of work.

Overall, we showed, using numerical experiments, that it is possible to improve substantially
the quality of inference carried out by BP by using (anti-)Circular Inference. This resolves the
initial following conundrum: Circular BP models psychosis through disturbances of inference in
humans, but its baseline (standard BP), which is supposed to model normal behavior, is not
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3.7. Conclusion: Circular BP can improve the quality of inference

carrying out inference with a high quality. This chapter shows that Circular BP is not only a
good model of psychosis, but of normal behavior as well. Interestingly, Circular BP was initially
thought to introduce suboptimality (to BP) in graphs without cycles. We use it instead to correct
for (BP) suboptimalities naturally existing in cyclic graphs. Finally, we introduce the Circular
BP with memory algorithm in the spirit of Denève (2005) that reverberated messages should be
considered (here, removed from the signal they corrupt) only once they have travelled through
cycles of the graph.
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Chapter 4

Circular Belief Propagation and its
neural implementation

Summary of Chapter 4

We showed in previous chapters that (extended) Circular Belief Propagation, an algorithm per-
forming approximate inference on probabilistic graphs, is potentially a good model of suboptimal
and optimal behavior. However, all models proposed remained at the algorithmic level, without
providing a proposition of how the brain could implement this algorithm. In this chapter, we
address this issue by presenting a possible neural implementation of the algorithm in the case of
probability distributions over binary variables.
More precisely, we propose a rate network implementation as well as a more biologically-plausible
spiking network implementation of the Circular BP algorithm. In both proposed implementa-
tions, “message” populations and “marginal” populations encode for the parameters of the prob-
ability distribution (in the binary case presented here, the log-odds, which is a transform of the
mean), while “prediction error” populations encode for the information that a message population
does not provide about the corresponding marginal population (not to be confused with predic-
tion error units from Predictive Coding theories of Karl Friston and colleagues). Relationships
between variables of the probability distribution are encoded in the synaptic weights. Lastly,
parameters of extended Circular BP have a very clear meaning in the proposed implementation.
α and κ represent the synaptic gains of the network units (respectively of the message population
and of the marginal population), β scales the synaptic weights of the network, and γ scales its
input weights. In the rate network implementation, parameters of the probability distribution
(log-odds) are directly encoded in firing rates. On the contrary, in the spiking network imple-
mentation, the same parameters are encoded only implicitly, as they are obtained by integrating
the output spike trains of neurons from the corresponding population. The instantaneous firing
rate of a spiking neuron is proportional to the current new piece of sensory evidence (see also
Denève (2008)).
Finally, we present a biologically plausible unsupervised learning rule to learn parameters of
extended Circular BP, therefore providing an alternative to the supervised learning rule of chapter
3 which could take place in the brain.
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4. Circular Belief Propagation and its neural implementation

4.1 Introduction

Chapter 2 examined how Circular BP could be used to model suboptimal behavior such as
the bistable perception phenomenon, and how Circular BP looks compatible with particular
disturbances of the functional connectivity in schizophrenia. Chapter 4 of this thesis explored
the possible neural implementations of the Circular Belief Propagation algorithm, considering
various possibilities such as rate networks or spiking networks in the binary case, and rate
networks in the Gaussian case.

In this chapter, we focus on possible neural implementations of the extended Circular Belief
Propagation algorithm, an approximate Bayesian inference algorithm. This is a question of the
highest importance, because it could ultimately lead to testable predictions relative to neuro-
biological data. The confrontation between such predictions and experimental data could help
understand whether Circular BP is the way the brain performs probabilistic inference, or instead
whether the model should be modified or abandoned.

We start by reviewing existing work on this issue. While section 1.3 discussed different general
theories of how Bayesian inference could be carried out in the brain, we focus here exclusively
on implementations of the Belief Propagation algorithm (or sum-product algorithm) as well as
existing work on implementations of the Circular Belief Propagation algorithm itself.

The reason why the implementations of BP are of interest for the potential ones of Circular
BP is obvious: Circular BP equations highly resemble and extend the ones of BP, as seen in the
Introduction chapter. A specificity of the BP algorithm is that it does not have a particularly
simple form in its initial formulation. Indeed, its update equation (Equation (1.3)) involves
summation and most importantly, multiplication and division. This latest operation cannot
reasonably be implemented as such in the brain. A usual bypass to this problem, which is
the one considered in this thesis, is to consider BP in the log domain (or log-odds domain), in
which the multiplication operation becomes a summation operation and the division becomes a
subtraction, as shown in section 1.4.4. Interestingly, (extended) Circular Belief Propagation also
takes a very simple form in the log-odds domain: the additional parameters α,κ,γ and β, which
are initially involved in multiplications as exponents, logically end up as multiplicative factors
in the log-domain. This thus does not bring more complexity to the initial BP algorithm, which
allows for propositions of neural implementations of Circular BP based on the existing ones for
BP in the log-domain.

BP on Hidden Markov Models The Belief Propagation algorithm can be applied to graph-
ical models evolving over time. This was historically the problem considered in the first proposi-
tions of neural implementations of BP (Rao, 2004; Denève, 2005, 2008; Beck and Pouget, 2007).
More precisely, these papers consider a particular model: the hidden Markov model (HMM), in
which a latent variable or hidden state evolves randomly at each time step with a given tran-
sition probability, and a noisy observation of the hidden state gets generated at each point in
time. HMMs are a model for cue integration, decision-making, and motor control, for instance.
Rao (2004) proposes a rate model in which the firing rate of a neuron is proportional to the
log-probability of the event that it encodes. However, this model requires approximations, for in-
stance of a log-of-sums with a sum-of-logs or alternatively use non-linear dendrites, and therefore
performs BP only approximately. The rate model can be replaced with a stochastic spiking net-
work, in which the membrane potential of the neuron is the log-probability and a neuron spikes
stochastically with a probability (or instantaneous firing rate) scaling with the encoded probabil-
ity itself. However, this spiking network has the same inconvenient: it carries out approximate
BP. Very similarly, Denève (2005, 2008) propose a spiking model implementing BP exactly - up
to the decoding weights of the neurons’ spikes - on a HMM (similarly, Boerlin and Denève (2011)
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models the integration of a dynamic stimulus over time in a drift-diffusion process instead of a
HMM). However, contrary to Rao (2004), the network implements the evolution of the log-odds
rather than log-probability. Furthermore, the instantaneous firing rates of neurons are propor-
tional to the strength of the new piece of evidence (to be integrated in time) and only encode
probabilities implicitly. Finally, Beck and Pouget (2007) proposes a quadratic non-linear rate
model generalizing Denève (2005) (in particular, to cases where the encoded variable is discrete
rather than binary), as well as Rao (2004). Beck and Pouget (2007) also defends the idea that
the evolution of the likelihood itself can be mapped directly onto neural circuits rather than the
log-probability or the log-odds. It is to be noted that online inference with BP on HMMs admits
as special case the forward algorithm or Kalman Filter, for which neural implementations have
been proposed as well: Denève et al. (2007) uses recurrent basis function networks and relies on
population codes, while Wilson and Finkel (2009) uses a modification of a line attractor and is
only approximate.

BP on other acyclic graphical models and the need for message exclusion Applying
BP to graphical models like HMMs is very restrictive. In fact, as pointed out by Raju and Pitkow
(2016), in such models, the propagation of BP messages is unidirectional. For instance, in HMMs,
a hidden variable receives messages about its past state and from the current noisy observation
of itself. This therefore ignores the main difficulty of implementing BP in any other graphical
model, in which messages are exchanged bidirectionally. In such a case, BP avoids messages
from being reverberated i → j → i, a positive feedback phenomenon, which is responsible for
overcounting. To do so, BP, when computing a message sent by node i to node j, considers
all the evidence available at node i except the message coming from node j. This message
exclusion shows in BP message update equation with N (i) \ j, which can equivalently be seen
in the subtraction in the log-odd domain Mi→j = fij(Bi −Mj→i). This message exclusion is
simply ignored in some models proposing a neural implementation of BP (Ott and Stoop, 2006;
Litvak and Ullman, 2009; Yu et al., 2017; Zheng et al., 2020) making the inference too poor to
reasonably be implemented by our brain circuits. Indeed, this approximate inference algorithm,
which exactly corresponds to full Circular BP (that is, Circular BP with α = 0), often performs
worse than more naive algorithms like mean-field inference (see Raju and Pitkow (2016)). Finally,
Raju and Pitkow (2016) elegantly avoids the message exclusion problem by using the tree-based
reparametrization of the BP algorithm (Wainwright. et al., 2002), formulated for the exponential
family of distributions, and proposes a neural implementation of the resulting equation using a
rate network with probabilistic population coding.

A mapping between the cortical architecture and graphical models? Approximately
at the same time when neural implementations of BP were proposed on HMM, researchers
considered another generative model: the chain of variables, dependent on each other (static
model). The reason for that is that the hierarchical organization of the cortex which might reflect
a generative model mirroring this hierarchy (vertical chain). An example is the visual system, in
which edges and lines are encoded by neurons of the primary visual cortex or V1, shapes in V2,
objects in V4, up to faces in the inferior temporal cortex or IT Felleman and Van Essen (1991).
In the example of the hierarchical probabilistic graph with 3 nodes encoding for the presence or
absence of “leaf”, “tree”, and “forest”, it means that the hierarchical graphical model directly
translates into the cortical hierarchy and in particular, that the neural unit encoding for the
concept of leaf is lower in the cortical hierarchy than the neural unit encoding for the concept of
tree. Neurons or populations of neurons are nodes of the generative model, and neural connections
are edges of the generative model (conditional dependencies in a Bayesian network, factor in a
factor graph). Shon and Rao (2005) proposes that relationships between variables (encoded in
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edges of the graphical model) are encoded through small groups of synaptic connections in a
log-probability rate model where messages in BP symbolize a time-average of the log current
passed between neurons. Lee and Mumford (2003) suggests BP might model the interactive
feed-forward and feedback cortical computations.

BP in more complex probabilistic graphs In all the examples considered above, the proba-
bility distribution can be described by at most pairwise relationships between variables. However,
George and Hawkins (2009); Steimer et al. (2009); Steimer and Douglas (2013) all propose spike-
based implementations of BP applied in more complicated graphical models than most other
approaches including the present thesis, which consider only pairwise interactions between vari-
ables (see section 1.2.2). Steimer et al. (2009); Steimer and Douglas (2013) even consider general
Forney factor graphs (Forney, 2001), a variant of factor graphs. In this case of complex graphical
models, an extra neuronal pool is required to compute the messages and the neural structure
does not exactly mirror anymore the graphical model.

Previous propositions of Circular BP implementations Initial papers from Jardri and
Denève (Jardri and Denève, 2013a,b; Jardri et al., 2016) describing the Circular Belief Propaga-
tion algorithm, and most importantly its potential to explain hallucinations and the formation
of delusional beliefs, made no precise proposition on how the algorithm was implemented in the
brain. These articles simply suggested that variables xi of the probability distribution were en-
coded in different units and that the brain structure mirrored the (hierarchical) generative model
of the world. It is only later, in Leptourgos et al. (2017), that more detailed neural-like imple-
mentation ideas were provided, yet without a true correspondence between the algorithm and
the circuit hypothesized to implement it. The first proposition of neural circuit uses local connec-
tions between pyramidal cells in a given cortical area and their corresponding pool of inhibitory
interneurons. The alternative implementation uses long-range inhibitory connections, possibly
involving thalamocortical or corticostriatal connections, in the same spirit as the local inhibitory
feedback of Denève (2005). Finally, Leptourgos et al. (2021) proposes an even more detailed way
of implementing Circular BP in a microcircuit where inhibitory control is implemented by layer-
specific inhibition, allowing the information to propagate in the cortical hierarchy. However,
the big downside of this work is that a modification of the Circular BP algorithm is used, not
Circular BP itself, in a form of a proxy which requires fitting the non-linear synaptic functions
(see also Rao (2005b,a)).

Goal of the chapter In this chapter, we provide more biological plausibility to the extended
Circular BP algorithm. We propose an implementation of eCBP in continuous time (and ap-
proximations of it in the last section of the chapter). We tackle specifically the problem of
Bayesian inference on a static graphical model, that is, a given probability distribution p(x) with
constant evidence (which can be seen as prior or sensory evidence) on variables xi.1 We assume
here log-probability coding (which defines the representation of probabilities) together with the
eCBP algorithm (which defines how probabilities are updated) in our proposed implementation
of probabilistic inference (see section 1.3). This hypotheses lead straightforwardly to a rate model
implementing the algorithm. Additionally, we propose an implementation with spiking networks,
whose membrane potential encodes for the difference of the estimate probability and a prediction
based on its own spikes. Overall, we provide more detail about how and where the inhibitory
control (subtraction in eCBP) could be implemented and propose two solutions: using a partic-
ular “prediction error” unit or alternatively carrying out the operation at the dendrite of a unit,

1Although we will see that the model can also be used for time-varying inputs
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a debate which reminds the ones on the neural implementations of predictive coding (Spratling,
2016). Finally, we propose in section 4.5 a biologically-plausible unsupervised learning rule for
parameters of extended Circular BP so that the network learns without supervision (contrary to
section 3.5) how to perform approximate probabilistic inference rather accurately.

4.2 Implementation of Circular BP with rate units

Here we show how the (extended) Circular BP algorithm on binary graphical models can be
directly implemented by a rate network in continuous time, given two hypotheses.

The first hypothesis is that marginal probabilities pi(xi) are encoded by different units in the
network. In other words, distinct concepts are encoded by distinct neurons or populations of
neurons.

The second hypothesis is that units encode the log-odds of the distribution (see also Gold and
Shadlen (2001); Shon and Rao (2005); Denève (2005, 2008)), an hypothesis which is backed by
neurophysiological findings suggesting that neural spike rates perform computations in the log
domain (Carpenter and Williams, 1995; Shadlen and Newsome, 2001). Moreover, this hypothesis
is in line with previous proposals assuming that the neural activity represents the parameters of
the probability distribution (see Ma et al. (2006); Fiser et al. (2010)) and more specifically that
firing rates represent log-probabilities (Pouget et al., 2013), as in probabilistic population codes
(PPC) (Zemel et al., 1998; Denève et al., 2001; Ma et al., 2006). It is also a convenient hypothesis
as Circular BP takes a simple form in the log-domain as shown in section 1.4, with operations
(summation and subtraction) which can take place directly in neural circuits, contrary to the
multiplication operation appearing in the initial formulation of Circular BP.

4.2.1 Circular BP in continuous time
Notion of damping Let a discrete system:

xt+1 = f(xt)

A common technique to improve convergence of the system is to take partial (or damped) update
steps:

xt+1 = (1− ϵ)f(xt) + ϵxt

with ϵ ∈ [0; 1[. This procedure, called damping, does not modify the fixed points of the system:
a fixed point of the original system is a fixed point of the damped system, and reciprocally.

A parallel can be drawn between the damped discrete system and the following continuous
system:

τ ẋ(t) = −x(t) + f(x(t)) (4.1)

Indeed, this continuous system can be discretized (Euler approximation) into:

xt+δt = (1− ϵ)f(xt) + ϵxt (4.2)

with ϵ = 1− δt/τ (i.e., τ = δt/(1− ϵ)). This corresponds to the discrete damped system.

Damped Circular BP We start by rewriting the message update equation for extended
Circular BP (Equation (3.24)) without damping:

mnew
i→j(xj) ∝

∑
xi

ψij(xi, xj)βij
(
ψi(xi)γi

∏
k∈N (i)\j

mk→i(xi)mj→i(xi)1−αij/κi
)κi

(4.3)
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and its equivalent in the log-domain for probability distributions with binary variables (Equation
(3.26a)):

Mnew
i→j = fij(Bi − αijMj→i) (4.4)

where Mi→j ≡ 1
2 log

(mi→j(xj=+1)
mi→j(xj=−1)

)
, Mext→i ≡ 1

2 log
(ψi(xi=+1)
ψi(xi=−1)

)
, Bi ≡ 1

2 log
( bi(xi=+1)
bi(xi=−1)

)
=

κi

( ∑
j∈N (i)

Mj→i + γiMext→i

)
, and function fij is given in Equation (3.27).

Damping is a technique commonly used while running Belief Propagation (special case (α,κ,γ,β) =
(1,1,1,1)), and consists of taking partial message update steps in the log-space: Mnew

i→j =
fij(Bi − Mj→i) becomes Mnew

i→j = (1 − ϵ)fij(Bi − Mj→i) + ϵMi→j . Damping improves the
convergence properties of BP. We talk about damped Belief Propagation in this case (Murphy
et al., 1999).

Similarly to damped BP, a damped extended Circular BP algorithm can be defined, by taking
partial message update steps in the log-space. The message update equation for the damped
algorithm is:

mnew
i→j(xj) ∝

(∑
xi

ψij(xi, xj)βij
(
ψi(xi)γi

∏
k∈N (i)\j

mk→i(xi)mj→i(xi)1−αij/κi
)κi)1−ϵi→j

×mi→j(xj)ϵi→j

(4.5)
where ϵi→j is the damping factor associated to the oriented edge i → j (ϵ = 0 means no
damping, i.e., standard eCBP) and is often taken uniformly over the edges. It is equivalent in
the log-domain to the following equation:

Mnew
i→j = (1− ϵi→j)fij(Bi − αijMj→i) + ϵi→jMi→j (4.6)

where
Bi = κi

( ∑
j∈N (i)

Mj→i + γiMext→i

)
(4.7)

As in the previous section, we draw a parallel with the continuous-time equation:

τi→jṀi→j(t) = −Mi→j(t) + fij
(
Bi(t)− αijMj→i(t)

)
(4.8)

which has identical fixed points to the discrete system. The first contribution on the r.h.s. is a leak
term, which ensures that the log-message Mi→j decays back to the zero baseline (for which beliefs
are uniform: bi(xi = +1) = bi(xi = −1) = 0.5) in absence of external inputs Mext→i. Equations
(4.7) and (4.8) together define a continuous-time Circular BP, more specifically, continuous-time
Circular BP in the binary case and for at most pairwise factors.

4.2.2 A rate network implementing Circular BP
Here we hypothesize that τi→j = τj , i.e., that τi→j does not depend on i. Continuous-time
Circular BP from Equations (4.7) and (4.8) can be rewritten into the following system:

τjṀi→j = −Mi→j + fij(Bi − αijMj→i)

τiḂi = −Bi + κi
∑

j∈N (i)

fji(Bj − αijMi→j) + κiγiIext→i

(4.9a)

(4.9b)

where Iext→i ≡ τiṀext→i+Mext→i: external messages are allowed to vary with time (even though
the generative model is static).
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4.2. Implementation of Circular BP with rate units

Interestingly, by defining
Bij = αijMi→j (4.10)

the prediction of variable xj by variable xi (with correction factor αij), we obtain:
τjḂ

i
j = −Bij + αijfij(Bi −Bji )

τiḂi = −Bi + κi
∑

j∈N (i)

fji(Bj −Bij) + κiγiIext→i

(4.11a)

(4.11b)

We map directly the above system of equations, which defines extended Circular BP in
continuous time, into a rate network with two types of nodes shown in Figure 4.1B, which
implements extended Circular BP exactly. The first unit type is the projection units, encoding
for Bi = 1

2 log
( bi(xi=+1)
bi(xi=−1)

)
(transformation of the approximate marginal probability). The second

unit type is the control units, encoding for Bij , the rescaled prediction of Bj (i.e., of variable xj) by
the local information at variable xi. Units are connected through non-linear saturating synapses
(transfer function fij) due to receptor saturation or finite reversal potentials (Dayan and Abbott,
2001). Common transfer functions used in modeling work are often the sigmoid function or the
closely related hyperbolic tangent function (tanh); fij is also sigmoidal, as reminded below.

The external input Iext→i = τiṀext→i +Mext→i is only received by the projection units, and
can vary with time. Mext→i ≡ 1

2 log
(ψi(xi=+1)
ψi(xi=−1)

)
is constant in a static environment, as when the

goal is to compute marginals of a given probability distribution (which defines constant factors
{ψij} and {ψi}). But Mext→i is not constant in a dynamic environment as it is the case in the
brain receiving time-varying external (sensory) inputs.

Parameters α,κ, and γ represent very concrete quantities in the network. Parameter κ
represents the synaptic scaling factor of the projection units: κi is associated to the projection
unit encoding for Bi. Similarly, α represent the synaptic scaling factors of the control unit:
αij is associated to the control unit encoding for Bji (or Bji , as αi→j = αj→i ≡ αij). Finally,
γi is the weight of the external input (before the scaling by κi). The symmetry constraint
on α is equivalent to having different units (encoding for Bji and Bij) with exactly identical
synaptic scaling factors. Similarly, the symmetry constraint on β is equivalent to having different
anatomical connections with identical weights (as βi→jJij represents the weight of the non-
linear synapse through fij). Undeniably, these symmetry constraints hinder the hypothesis
that extended Circular BP is implemented as such in the brain, which cannot force biological
components to be exactly identical. In particular, it is implausible that a change in the synaptic
scaling factor of a neuron (for instance, of the unit encoding for Bji ) reflects directly the same
exact change on the one of another neuron (unit encoding for Bij). Therefore, we relax the
symmetry constraint, motivated by biological arguments, in addition to the fact that symmetry
breaking did not hinder the supervised learning method as described in cite section 3.5.4.

Equation (4.11b) means that projection unit i receives from projection unit j everything that j
knows (Bj) minus what i already knows about j (Bji ). The subtraction can be seen as (inhibitory)
control in neural terms. Note that the exact same subtraction appears in Equation (4.11b), and
initially comes from ignoring the message in the opposite direction in the Belief Propagation
algorithm: for instance, in the message update equation (Equation (4.3)), the product appearing
in the expression of the updated message is incomplete: “k ∈ N (i)\j” means that the message
from node i to node j is a function of all messages coming to i (from neighbors of i in the graph),
except from the one coming from j.

Importantly, we do not talk about excitatory units and inhibitory units, but instead about
projection units and control units. Projection units represent the true signal that we want to
encode (beliefs), sending signal from other areas, whereas control units regulate the exchange of
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4. Circular Belief Propagation and its neural implementation

A B

Figure 4.1: From a probability distribution to a rate network implementing Circu-
lar BP. (A) The probability distribution p(x) is represented by a factor graph, with pair-
wise potentials ψij and unitary potentials ψi. (B) Rate network with two types of units,
implementing Circular Belief Propagation (see System (4.11)). Connection weights depend
on ψij , while external input depend on ψi. Projection units in red encode the approximate
marginal probability bi(xi) ≈ pi(xi) (or rather, the half log-likelihood ratio or half log-odds
B = log(pi(xi = +1)/pi(xi = −1))) and receive external inputs, while control units in blue
remove the information being reverberated between projection units. Colors of connections (or
equivalently, shape of arrows) determines the influence of the sending unit onto the receiving
unit: red indicates a positive effect and blue indicates a negative effect; see Equations (4.11a)
and (4.11b).

information between projection units. Indeed, fij is not necessarily an increasing function of its
argument Bi−Bji . For instance, in the case of the Ising model where fij(x) = ϕ−1(ϕ(βijJij)ϕ(x)),
fij(x) has the same sign and evolves as Jij × x where weights Jij can be positive or negative.
However, the minus sign in Equations (4.11a) and (4.11b) means that the effect of projection
units goes against the effect of control units. For very restricted probability distributions for
which all Jij > 0 then we could say that projection units are excitatory and control units are
inhibitory; however, it is not the case in general.

The detailed implementation of extended Circular BP (and its special case BP for (α,κ,β,γ) =
(1,1,1,1)) is similar to neural implementations of predictive coding (Rao and Ballard, 1999; Fris-
ton and Kiebel, 2009; Spratling, 2017), and contains three types of units, which are estimate units
whose rate is proportional to the log-odds {Bi}, to the predictions {Bji }, and to their difference
{Bi − Bji },; see Figure 4.2. We hypothesize here, as in Spratling (2016), that neural popula-
tion represents separately the “prediction errors” Bi −Bji . This quantity indeed symbolizes the
difference between the true belief of node i and its prediction by node j, and can be seen as
a prediction error from predictive coding theories if node j is above node i in the equivalent
hierarchical Bayesian network (i.e., concept xj causes concept xi). We insist here on the fact
that the error units, encoding for {Bi − Bji }, are not the same as prediction error units from
predictive coding (encoding for the difference between the prediction and the sensory signal).
Here, the error Bi − Bji is the difference between the estimated probability and partial informa-
tion (estimate of the probability of a variable by another variable). The difference can be made
clear on an example: when the network converged, the error Bi − Bji ̸= 0, while the prediction
error from predictive coding must be = 0 as inputs to neurons are all being perfectly predicted.
Instead of using a third type of neural population to represent separately the “prediction errors”,
we could alternatively have proposed, as in Spratling and Johnson (2003), that the correction
or error-detection (of the belief by its rescaled prediction) takes place directly at the non-linear
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4.2. Implementation of Circular BP with rate units

dendrites of the network units; see also Poirazi et al. (2003); Thalmeier et al. (2016).

Figure 4.2: Detailed implementation of Circular BP with a rate network, focusing
on the connection between B1 and B2 from Figure 4.1. Error neurons in green explicitly
encode the “error” Bi − Bji (difference between the estimate of xi and the estimate of xi from
xj), and fij(Bi −Bji ) is sent to estimate neurons in red or blue.

General case As a reminder, in the general case (for probability distributions on binary vari-
able and with at most pairwise factors), function fij is given by:

fij(x) = 1
2

log

((
ψ1,1
ij

)βij
e2x +

(
ψ1,0
ij

)βij(
ψ0,1
ij

)βij
e2x +

(
ψ0,0
ij

)βij
)

(4.12)

which means that synapses would depend on 4 parameters as the pairwise potential ψij is a 2x2
matrix.2 Note that the introduction of parameter β simply amounts to replacing the pairwise
potentials ψij from the probability distribution with ψ

βij
ij .

Ising model case The complexity of function fij in the general case contrasts with the much
simpler function fij(x) = ϕ−1(ϕ(Jij)ϕ(x)) for an Ising model. It comes:

τjḂ
i
j = −Bij + αijϕ

−1

[
ϕ
(
βijJij

)
ϕ
(
Bi −Bji

)]

τiḂi = −Bi + κi
∑

j∈N (i)
ϕ−1

[
ϕ
(
βijJji

)
ϕ
(
Bj −Bij

)]
+ κiγiIext→i

(4.13a)

(4.13b)

which means that synapses only depend on one value ϕ(βijJij), the weight of the connection
between projection unit i and projection unit j.

Differences with the classical rate model Note that there are several differences between
the equations above and the classical rate model equation (see for instance Mastrogiuseppe
(2017)) given by:

τiẋi(t) = −xi(t) +
∑

j∈N (i)

W rec
ij ϕ(xj(t)) +W inp

i Iext→i(t) (4.14)

2In fact fij depends only on 3 parameters as Kψij and ψij lead to the same function.
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The first difference is the type of non-linearity used. In the classical rate model, the variable
xi (interpreted as the net input current entering the cell) is transformed into an output firing
rate through ϕ = tanh and weighted by the recurrent weight W rec

ij (strength of the synapse).
On the contrary, in the rate network implementing extended Circular BP (see system (4.13)),
the output firing rate is multiplied by ϕ(βijJij) (bounded in absolute value by 1), then passed
through a non-linearity ϕ−1 = artanh, and eventually weighted by a scaling factor associated to
the postsynaptic neuron (αij or κi).

The second difference, and most important one, is the presence or absence of subtraction
inside the non-linearity ϕ = tanh in the classical rate model. An absence of subtraction means
that Bji ≡ αijMj→i = 0, i.e., α = 0 (not to be mistaken with α = 1 which corresponds to
BP). α = 0 meaning that the message mi→j sent from node i to node j depends on all the
information collected by i. In other words, node i communicates to j information without taking
into account that j already knows some of the communicated information. At present time, it
is not clear whether the subtraction in system (4.13) could be implemented at the postsynaptic
dendrite (see Figure 4.2A), or instead whether an additional unit type encoding for the errors
would be needed (see Figure 4.2B).

4.3 Implementation of Circular BP with spiking neurons

Most neuroscience models are based on firing rates, that is, the average number of spikes per time
unit of a neuron. However, real neurons communicate through spikes, which are discontinuous
quantities. Recently, theoretical neuroscientists have been considering how to perform complex
computations accurately and represent continuous quantities using spiking networks (for a review,
see Abbott et al. (2016)). In this section, we build upon Denève and Machens’ theory of so-
called spike-coding networks (Denève, 2005, 2008; Boerlin et al., 2013; Denève and Machens,
2016). According to this theory, membrane potentials of neurons implement predictive coding,
and more specifically, spikes are generated when a mismatch occurs between the prediction of the
variable encoded by the neuron (based upon its own previous spikes, and therefore not encoded
explicitly) and the signal arriving to the neuron. In other words, a spike is emitted when the
prediction error of the neuron, encoded directly in its membrane potential, exceeds a threshold.
Denève (2005) and Denève (2008) discuss the problem of Bayesian inference but in a very specific
case (Hidden Markov Models) and these papers do not directly relate to the work presented here
(inference in a static factor graph).

The theory by Denève and Machens leads us to propose an implementation of extended Circu-
lar BP by a network of spiking neurons, and more specifically, of leaky integrate-and-fire neurons.
More precisely, we extend the framework, which uses a single population to encode a (possibly
multidimensional) variable following a given differential equation in time. We use instead several
populations, connected with specific sparsity and weights, to carry out approximate inference and
more specifically, extended Circular BP, with the constraint that each population should encode
for a given variable xi from the probability distribution p(x) on which to perform inference.

4.3.1 Spiking model
In section 4.2, a network composed of rate neurons is proposed to implement (extended) Circular
BP. However, the model lacks biological realism, mostly for two reasons. First, neurons cannot
have negative rates in reality, while in the model it simply means that the half log-odds Bi =
1
2 log

( bi(xi=+1)
bi(xi=−1)

)
< 0, that is, to beliefs bi(xi = +1) < 0.5 which is as probable as the contrary

bi(xi = +1) > 0.5. The second reason, and most important one, is that in reality, a neuron does
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not transmit an analogous signal (rate) to other neurons but instead discontinuous spikes, which
are closer to a digital signal (presence or absence of spike).

Therefore, to increase the biological plausibility of the model, we propose a neural implemen-
tation of extended Circular BP using spiking neurons, which have proven capable of encoding
continuous variables (see Abbott et al. (2016)).

The proposition of implementation with spiking neurons of extended Circular BP goes one
step further than the rate model: instead of encoding variables (log-odds Bi of variable xi in the
probability distribution, or Bji ) through a single rate unit as in the rate network, the spiking
network instead encodes them in populations of spiking neurons. These populations of neurons
can naturally encode positive as well as negative log-odds B, thanks to having diverse neurons in
each population. Note that in the simple case considered here, the variables encoded ({Bi} and
{Bji }) are one-dimensional, therefore the population consists of only two neurons: one encoding
for positive values and one encoding for negative values. However, the multidimensional case
can be dealt with as well, very similarly to what is explained below. In fact, the extension from
binary to discrete (or equivalently, multidimensional binary) is possible: probabilities of each
outcome of the discrete variable x can be encoded by several units using a log-odds code where
the activity of neurons is proportional to log(x = θi)− log(x = θj) (to be compared to the only
neuron needed in the binary case to encode the log-odds log(x = 1) − log(x = −1)); see Beck
and Pouget (2007).

We start by rewriting the equations defining extended Circular BP in continuous time:
τiḂ

j
i = −Bji + αijfij(Bj −Bij)

τiḂi = −Bi + κi
∑

j∈N (i)

fji(Bj −Bij) + κiγiIext→i

(4.15a)

(4.15b)

Predictions {Bji } and beliefs {Bi} are assumed to be encoded by populations {P ji } and {Pi}
of spiking neurons. A spike is a digital quantity (taking discrete values: 0 or 1), contrary to
rates which are analog quantities taking any value. Therefore, a spiking network cannot encode
analog quantities such as predictions {Bji } and beliefs {Bi} in an exact manner but can encode
them approximately through estimates {B̂ji } and {B̂i} (the hat notation indicates estimated
quantities by the spiking network). The natural hypothesis is to assume that the continuous
value is encoded through the sum of many discrete contributions. Here we assume, as in Boerlin
et al. (2013), that estimates {B̂i} are obtained by a weighted, leaky integration of the spike trains
Oik(t) =

∑
s δ(t − tkis ) where tkis is the time of the sth spike of neuron k of population Pi, and

similarly for {B̂ji } (see Figure 4.3):
˙̂
Bji = −λji B̂

j
i +

∑
k∈P j

i

Dij
k O

ij
k (t)

˙̂
Bi = −λiB̂i +

∑
l∈Pi

Di
lO

i
l(t)

(4.16a)

(4.16b)

where Di (respectively Dij) represents the decoding weights of population Pi (respectively P ji ),
and parameters {λ} are the decay rates for estimated variable {B̂} or read-out variable. Equa-
tion (4.16a) means that the quantity Bji (prediction of variable xi by variable xj) or rather its
estimated value B̂ji , is encoded implicitly by population P ji through spikes of the neurons belong-
ing to this population (k is the neuron index inside population P ji ). A spike of neuron k occurs
for Oijk = 1. Similarly, Equation (4.16b) means that the quantity Bi (half log-odds of variable
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xi) or rather its estimated value B̂i, is encoded implicitly by population Pi through spikes of the
neurons belonging to this population (l is the neuron index inside population Pi).

0 2 4 6 8 10
time
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x

Figure 4.3: A population of spiking neurons can encode approximately an analog
signal thanks to synapses with exponential decrease. See Boerlin et al. (2013). Here the
population has two neurons: the ON neuron encoding for positive values and the OFF neuron
encoding for negative values. Spikes of the ON neuron (resp. OFF neuron) are represented at
the top (resp. bottom) of the figure in purple. x̂(t) is a reconstruction of the true signal x(t)
formed based on spikes of the population. More precisely, x̂(t) is the leaky integration of the
spike trains by the population, with weights associated to each neuron. A spike is emitted when
the difference x− x̂ (difference between the true signal and the prediction of it based on spikes
emitted so far) reaches a certain threshold.

We further define, as in Boerlin et al. (2013), the membrane potential of a neuron as a
difference between the true variable and its estimate:{

V ijk = Dij
k (Bji − B̂

j
i )

V il = Di
l(Bi − B̂i)

(4.17a)
(4.17b)

where the weights Dij (resp. Di) are the decoding weights of population P ji (resp. Pi) defined
previously.

It comes, by writing (4.15a) - τi×(4.16a) and (4.15b) - τi×(4.16b) and assuming that λji = 1/τi
and λi = 1/τi:

τj V̇
ij
k = −V ijk + αijD

ij
k fij(Bj −B

i
j)− τjD

ij
k

∑
m∈P j

i

Dij
mO

ij
m

τiV̇
i
l = −V il + κiD

i
l

∑
j∈N (i)

fji(Bj −Bij)− τiDi
l

∑
n∈Pi

Di
nO

i
n +Di

lκiγiIext→i

(4.18a)

(4.18b)

We need to go a step further in the approximation as Bi and Bji are not encoded directly
in the network, contrary to B̂i and B̂ji . We hypothesize that the spiking network manages to
approximate Bij ≈ B̂ij and Bi ≈ B̂i (which is the goal of the network, as stated above). We obtain
the following equation, which defines the spiking model implementation of extended Circular BP:
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τj V̇

ij
k = −V ijk + αijD

ij
k fij(B̂j − B̂

i
j)− τjD

ij
k

∑
m∈P j

i

Dij
mO

ij
m

τiV̇
i
l = −V il + κiD

i
l

∑
j∈N (i)

fji(B̂j − B̂ij)− τiDi
l

∑
n∈Pi

Di
nO

i
n +Di

lκiγiIext→i

(4.19a)

(4.19b)

It is simply the equation of a leaky integrate-and-fire neuron model (Lapicque, 1907). Overall, the
evolution of membrane potentials is lead by a mix between functions which are the integrated
spikes, and the spikes themselves (see Equation (4.19b)). Indeed, O are spike trains and is
therefore not a continuous variables (delta functions). On the contrary, B̂ represents a current as
it is a convolution of spike trains (similarly, Rao (2004) considers synaptic currents corresponding
to the instantaneous firing rate).

We explicit here the different terms in the differential equation (4.19b) defining the evolution
of the membrane potential of neuron l of population i: a leak term, a slow current, a spike
term, and an input term (see also Boerlin and Denève (2011); Boerlin et al. (2013); Thalmeier
et al. (2016), among others). The leak term “−V ” ensures that the membrane potential decays
back to the neutral value of zero in the absence of inputs to the neuron. The spike term
“−τiDi

l

∑
n∈Pi D

i
nO

i
n” represents lateral connections, i.e., within population i. It includes the

reset process after a spike (instantaneous self-inhibition of a neuron at the time of a spike - n = l
- which resets its membrane potential) and the instantaneous influence of this spike on other
neurons (with weight −Di

l × Di
n). The input term “+Di

lκiγiIext→i” represents the influence
of the external input on neurons of population Pi (but not on neurons of populations P ji , see
Equation (4.19a)). Last, the slow current term “+κiDi

l

∑
j∈N (i) fji(B̂j − B̂ij)” is a different

type of contribution called slow current in opposition to the infinitely fast connections (term in
O which represent spikes propagating instantaneously); the non-linearity allows the network to
perform non-linear computations (Poirazi et al., 2003; Abbott et al., 2016) as needed with the
(Circular) Belief Propagation algorithm and more generally probabilistic inference. Importantly,
all terms are eventually weighted by the decoding weight Di

l of the neuron. Last, note that if λ
and τ are not assumed to be related, a last term “+D(τλ−1)B̂” appears, which is an additional
slow current (postsynaptic potential).

As stated above, in the simple example (which is the case considered here) where the encoded
variable is a scalar, a population consists of two neurons: one encoding for positive values and
one encoding for negative values. In other words, the decoding weight is positive for ON neurons
and negative for OFF neurons: Di = (Di

+;Di
−) and Dij = (Dij

+ ;Dij
−) where Di

+ and Dij
+ > 0,

Di
− and Dij

− < 0. The influence of an ON neuron l of population i to the OFF neuron of
the same population is positive as −Di

+ ×Di
− > 0; see the different types of arrows indicating

the connections within a population in Figure 4.4. More generally, for encoded variables with
a higher dimension, neurons with similar kernels within the same population ((Di

l)TDi
n > 0),

that is, encoding for similar features, inhibit each other, while neurons with opposite kernels
((Di

l)TDi
n < 0) excite each other. This interpretation, although contrary to the main belief

in the area of theoretical neuroscience is supported by experimental evidence. For instance,
Chettih and Harvey (2019) shows competition between neurons encoding for similar features,
thus supporting the whole theory of spike-coding networks (Denève and Machens, 2016) whose
principles have been used to design the spiking network.

4.3.2 Spiking condition
Now the most important question remains: when should neurons spike? The predictive coding
hypothesis of Boerlin et al. (2013) states that the network should minimize the distance between
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+ - + -

+ -+ -
A B

Figure 4.4: Neural implementation of the (extended) Circular BP algorithm with
a spiking network. (A) Example of probabilistic graph, representing the probability distribu-
tion p(x1, x2) = ψ12(x1, x2)ψ1(x1)ψ2(x2). (B) The corresponding spiking network is composed
of several populations ({Pi} in red and {P ji } in blue) encoding respectively for the estimates
{B̂i} and {B̂ji } of the half log-odds {Bi} and {Bji }. Each population is composed of an ON
neuron (“+”, encoding for positive values of B̂) and an OFF neuron (“-”, encoding for negative
values). Neurons spike when a correction of the estimation B̂ needs to be made. For clarity, the
only connections shown are the ones within each population and the ones going to population P1
encoding for B̂1. Arrows indicate positive connections, while full circles indicate negative con-
nections (see system (4.19)). The true signal B is not known by the network, but it is implicitly
encoded in the membrane potentials as V ∝ B − B̂.

the true variables and their estimates. In other words, a neuron should spike when the estimate
x̂ (here B̂ji or B̂i) of x (here Bji or Bi) has to be corrected. The basic idea is that if the estimate
x̂ is too far (for instance too low) compared to the true value x, then a spike should be emitted
for the estimate to get closer to the truth (here increase); see Equations (4.16a) and (4.16b). The
more practical rule is that a spike is emitted if the approximation x̂ ≈ x, as measured by some
distance E(t), becomes better thanks to this additional new spike.

The minimization of the distance between the true variables and their estimates leads to the
following spiking condition or firing rule (see below for a demonstration):

Oil(t) = 1 (neuron l of population i spikes) if V il (t) > T il where T il ≡
(Di

l)2

2
(4.20)

Justification of the firing rule Here we demonstrate why the minimization by the network
of the distance between the true variables and their estimates naturally leads to the spiking
condition stated in Equation (4.20). The demonstration follows closely the one of Boerlin et al.
(2013).
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We start by defining the distance which we want the network to minimize:

E(t) =
∑
pop

t∫
0

(Bpop(u)− B̂pop(u))2du (4.21)

=
∑
i

t∫
0

(Bi(u)− B̂i(u))2du+
∑
(i,j)

t∫
0

(Bji (u)− B̂ji (u))2du (4.22)

Note that for simplicity and contrary to Boerlin et al. (2013), we do not include here any ad-
ditional term symbolizing the metabolic cost of spiking: linear regularization “+ν∥ri(u)∥1” or
quadratic regularization “+µ∥ri(u)∥2

2”, where ri is the firing rate of neurons from population Pi
(ri(u) = {ril(u)} where ṙil(t) = −λril(t) + λOil(t)).

The distance E(t) is the sum of errors in each population. However, populations of neuron
only have access to part of this information. That is why the only way of minimizing E(t) is to
minimize each of its parts locally. For instance, population Pi aims at minimizing

Ei(t) =
t∫

0

(Bi(u)− B̂i(u))2du (4.23)

At each time, neuron l of population Pi should “decide” whether to spike or not. Because the
neuron cannot predict future spikes (which also depend on the neuron spiking or not at present
time), it necessarily operates greedy minimization on the distance Ei(t): neuron l spikes at time
t if and only if spiking reduces Ei(t) in the immediate future after t:

Ei(t+ ϵ|neuron l spikes) < Ei(t+ ϵ|neuron l does not spike) (4.24)

⇔
t+ϵ∫
0

(Bi(u)− B̂i(u)−Di
lh(u− t))2du <

t+ϵ∫
0

(Bi(u)− B̂i(u))2du (4.25)

Indeed, a spike of neuron l from population i at time t leads to adding function δ(u− t) to the
spike train Oil(u) of neuron l, and therefore h(u − t) (weighted by Di

l) to the read-out variable
B̂i(u), where h(u− t) = exp(−λ(u− t)) for u ≥ t and 0 otherwise.

It comes, by cancelling terms and using the fact that h(u− t) = 0 for u < t:

t+ϵ∫
t

2Di
lh(u− t)(Bi(u)− B̂i(u)du >

t+ϵ∫
t

(Di
l)2h(u− t)2du (4.26)

As seen previously, the network cannot predict the future, therefore it can only consider the
immediate future (greedy optimization): ϵ ≈ 0 or stated otherwise, ϵ << λ. Therefore, all terms
under the integrals are approximately constant (and h(u − t) ≈ 1, its value for u = t). We
eventually obtain:

2Di
l(Bi(t)− B̂i(t)) > (Di

l)2 (4.27)

By defining the membrane potential of neuron i as V il ≡ Di
l(Bi − B̂i) and the threshold T il ≡

(Di
l)2/2, we eventually obtain the spiking condition provided in Equation (4.20). □
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4. Circular Belief Propagation and its neural implementation

4.3.3 Quality of the approximation
Choosing the decoding weights The quality of the approximation by the spiking network
highly depends on the values of the decoding weights D. As a matter of fact, when a spike
occurs, the estimate B̂ of B instantaneously changes by D. Because the network is designed to
minimize the distance between the eCBP value B and its estimate B̂ by the spiking network,
then a spike occurs when B − B̂ = ±D/2, after which still B − B̂ = ∓D/2: the distance E(t) is
still roughly the same after the spike but B̂ jumped to the other side of B (see spiking condition
from Equation (4.27)). The precision of the approximation therefore highly depends on the value
of decoding weights D: the lower the decoding weights, the better the approximation.

Results of the numerical simulations We simulate the spiking network defined by the
system of Equations (4.19) (taken in discrete time) and the spiking condition of Equation (4.20).

For technical reasons, we do not take D+ = −D− but instead D+ = 0.95D− in order to
avoid the so-called ping-pong effect. This effect corresponds to a spike from the neuron encoding
for positive values (resp. negative) automatically triggering a spike at the neuron encoding for
negative values (resp. positive) at the next time step and then back to the initial neuron, etc.;
see also the Supplementary Material of Boerlin et al. (2013).

We take τ = 1/λ = 20 (τ is the time constant of the leak of B̂, while λ is the damping (leak)
parameter in the damped eCBP algorithm).

Parameters of eCBP are taken randomly: κij ∼ Γ(20, 0.05), γij ∼ Γ(20, 0.05), αij ∼ N (1, 0.5),
and βij ∼ U(0.8, 1.2).

The probability distribution was picked randomly: the graph is generated using the Erdos-
Renyi model with 10 nodes and connection probability 0.4. Existing connections are weighted
with Jij ∼ N (0, 1).

Figure 4.5 shows that the spiking network approximates well the eCBP algorithm. Intrigu-
ingly, as Figure 4.5A shows, not only both system converge to the same value of the belief, but
the dynamics are also the same.

4.3.4 Comparison with the rate network and biological plausibility
Comparison with the rate network We saw previously that the spiking network implements
extended Circular BP only approximately, as it uses spikes and therefore cannot encode beliefs
with infinite precision. This is contrary to the rate network proposed in section 4.2, which
implements eCBP exactly. Indeed, the rate network can encode directly for the continuous
variables {Bi} and {Bij} in the rate of its units.

However, there are some similarities between this proposed implementation of eCBP with a
spiking network and the rate network. In fact, in the case considered here where the encoded
variable is one-dimensional (Bi is half the log-odds the binary variable xi, therefore its dimension
is equal to one), the spiking network behaves similarly to a rate network at convergence. As shown
in see Figure 4.5A, neurons spike regularly once the system converges with a rate proportional
to the encoded variable (B̂ ≈ B).

However, this regularity in the spiking only comes from the hypothesis that the estimated
variable B̂ is the result of a leaky integration of spikes. For a leak term λ = 0 in Equations
(4.16a) and (4.16b), spiking only takes place when the encoded quantities change.

As shown in section 2.3.8.3, the rate of the spiking neurons is proportional to
∣∣∣B + λḂ

∣∣∣: both
the encoded variable (through B) and the temporal variation of this variable (through Ḃ) play a
role in the neural activity (see also Figure 4.3). Therefore, it is only after convergence that the
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Figure 4.5: The spiking network of Figure 4.4 implements extended Circular BP,
approximately because it uses spikes, but very closely, using the spiking rule of Equation
(4.20). (A) Reconstructed signal (estimated beliefs B̂) versus true signal (beliefs B, obtained
by running the eCBP algorithm), for one example population Pi. Spikes of the ON neuron
(resp. OFF neuron) are represented in purple of the figure at the top (resp. bottom). (B)
Reconstructed signal versus true signal on many random graphs and for many random external
input examples, after 800 iterations. Overall, the spiking network approximates well the eCBP
algorithm, given that it only uses spikes (zeros and ones) to encode for continuous variables and
therefore cannot possibly implement eCBP exactly.

spiking network strongly resembles a rate network, as Ḃ = 0 and therefore rate ∝|B|. It is even
possible to have zero spiking at a point in time when B is strong if Ḃ = −1/λB.

Interestingly, the spiking network could implement approximate inference for more compli-
cated problems, e.g., if variable xi is not binary but discrete with k > 2 states, in an efficient man-
ner, i.e., with the population of neurons collectively encoding for all encoded variables (Denève
and Machens, 2016). The spiking network and the rate network become less and less similar as
the dimension of the encoded variable increases.

Biological plausibility The spiking network model is more biologically realistic than the rate
network previously proposed. Dynamics of the leaky integrate-and-fire neurons’ membrane po-
tentials are biophysically plausible and result in Poisson-like spiking as observed in the cortex
(Denève and Machens, 2016). However, it is still not a completely realistic model of neuronal
activity. Recent work has been carried out towards this goal. Schwemmer et al. (2015) extends
the spike-based approach of Boerlin and Denève (2011); Boerlin et al. (2013) known as “spike
coding network” and which serves as a starting point here, into a biophysically plausible networks
with conductance-based neurons and slower synapses than the instantaneous lateral connections
(“spike term” from above). Maraš (2019) investigates the effects on the quality of the approx-
imation by the network introduction and its robustness to noise due to synaptic delays, which
goes against the instantaneous “fast connections” from the model. The work by Maras also con-
siders experimentally observed sparse connectivity within a population, which could potentially
be extended in the present network (which contains several populations) to sparse connectivity
between populations. Additionally, real neural networks abide by Dale’s law, according to which
connections leaving a given neuron should all have an identical sign. The current spiking model
violates Dale’s law, as the connectivity within a population i is (Di

l)TDi
n. Dale’s law can be
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4. Circular Belief Propagation and its neural implementation

respected by separating cost functions for excitatory and inhibitory neurons, as shown in the
Supplementary Material of Boerlin et al. (2013). Finally, many features of the model do not
correspond to biology, like the simplicity of the leafy integrate-and-fire model, the absence of
adaptation meaning that the same sequence of stimuli will trigger exactly the same response
from the network, etc.

4.4 Approximations of Circular BP and their neural implementation

In this section, we discuss the limitations of the rate model presented implementing extended
Circular BP in the binary case. This rate model is defined by Equations (4.11a) and (4.11b))
and is represented in Figure 4.1 and 4.2. There are two limitations to this rate model.

The first limitation is that the same computation takes place twice: the operation Bi−Bji is
required for the computation of Bj (Bi −Bji is encoded at the error interneuron or equivalently
at the dendrite of node j) but also for the computation of Bij (Bi − Bji is encoded by the
interneuron).

The second one is that one neuron (or population of neurons) is required to encode Mi→j ,
assigned to the oriented edge i→ j. The necessary number of coding units is thus proportional
to n2 for graphs like random graphs, where n is the number of variables in the probability
distribution. This is far from being optimal, given that the goal is to find the n marginals of the
distribution. In this section, we propose approximations of Circular BP, and the corresponding
neural implementation, which use n coding units.

Here we consider several approximations of extended Circular BP in the binary case, and
their associated neural implementation.

Transfer function approximation
In the field of neuroscience, a traditional transfer function is ϕ = tanh is used. This contrasts
with function fij , the update function associated to BP or Circular BP, defined by fij(x) =
ϕ−1(ϕ(Jij)ϕ(x)).

Using the approximation ϕ−1(ϕ(x)ϕ(y)) ≈ ϕ(x)ϕ(y), we get the following approximate system:
τjḂ

i
j = −Bij +W c

ijϕ
(
Bi −Bji

)
τiḂi = −Bi +

∑
j∈N (i)

W p
ijϕ
(
Bj −Bij

)
+W in

ii Iext→i

(4.28a)

(4.28b)

where the effective recurrent weights are W c
ij = αijϕ(Jij) to a control unit, and W p

ij = κiϕ(Jij)
to a projection unit. The input matrix is W in = diag

(
{κiγi}

)
.

Circular BP in continuous time (more general case) For more general probability dis-
tributions, the connectivity W does not need to be symmetric and the transfer function of the
rate neurons becomes ϕ(·+ dij) + cij instead of ϕ.

While still taking into account probability distribution over binary variables, we consider the
case where the pairwise factor is any 2x2 matrix.

In this more general case, fij(x) ≈Wijϕ(x+ cij) + dij where parameters Wij , cij , dij depend
on the coefficients of the 2x2 matrix ψij . The transfer function of the rate neuron is then not
ϕ(x) as in the Ising model case but instead a shifted version: ϕ(x + cij) + dij (also used in
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4.4. Approximations of Circular BP and their neural implementation

neuroscience). 
τjḂ

i
j = −Bij +W c

ijϕ
(
Bi −Bji + cij

)
+ dij

τiḂi = −Bi +
∑

j∈N (i)
W p
ijϕ
(
Bj −Bij + cij

)
+W in

ii Iext→i + fi

(4.29a)

(4.29b)

with fi ≡
∑

j∈N (i)
dij .

This allows the connectivity W to be non-symmetric (although constrained: it does not seem
possible to propose a 2x2 factor corresponding to any couple (Wij , Wji)).

However, the parallel with rate networks can be not only drawn for Ising models, for which
Jij = Jji, but for any probability distribution over binary variables with pairwise interactions. In
this more general case, the connectivity can be non-symmetric, and the transfer function of the
rate neurons is not the hyperbolic tangent ϕ as above but a shifted version of it: ϕ(·+ dij) + cij

Circular BP without subtraction
We propose in this section a simple implementation of a mean-field Circular BP algorithm. As
stated above, the Belief Propagation algorithm has a particular feature which makes it hard to
implement neural circuits (Raju and Pitkow, 2016): the subtraction “−Mj→i” in the message
update equation Mnew

i→j = fij(
∑
k∈N (i)\jMk→i+Mext→i) = fij(Bi−Mj→i) in the log-domain, or

equivalently, the partial product over k ∈ N (i)\j in the original formulation. Some papers ignore
this subtraction completely while proposing a neural implementation of probabilistic inference
(Ott and Stoop, 2006; Litvak and Ullman, 2009) . The Belief Propagation algorithm without
subtraction actually corresponds to the Circular BP algorithm with α = 0. Note that this
particular algorithm is different from mean-field inference (see section 3.2.1.2); in fact, it often
performs worse than mean-field inference. Having α = 0 in Circular BP represents a situation
where inferences are fully circular in the sense of Jardri and Denève (2013a). We name this
special case of Circular BP algorithm the “full” Circular BP algorithm.

We consider here the full extended Circular BP algorithm, i.e., extended Circular BP in the
particular case α = 0. This leads to the following update equations:

Mnew
i→j = fij(Bi)

Bi =
∑

j∈N (i)

Mj→i +Mext→i

(4.30a)

(4.30b)

where
fij(x) = ϕ−1(ϕ(Jij)ϕ(x)

)
(4.31)

This particular case of extended Circular BP, which can be seen as an approximation to it
(approximation at order 0 in α), can be implemented by a rate network with only one unit type.
Indeed, the system above can be rewritten as a single equation with the log-odds B (but without
the messages M):

Bi =
∑

j∈N (i)

fji(Bj) +Mext→i (4.32)

which is similar to the classical rate network described in section 4.4, although with a more
complicated transfer function.

Note that in this network, connection weights are symmetrical as Jij = Jji, and
∣∣Wij

∣∣ =∣∣ϕ(Jij)
∣∣ < 1.
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4. Circular Belief Propagation and its neural implementation

In this case, messages are encoded at the neurons’ dendrites, and all messages are summed
as the belief, encoded in the soma.

Approximating into a classical rate network
The network implementing (extended) Circular BP is similar to the classical rate network equa-
tion:

τ ẋi = −xi +
∑

j∈N (i)

W rec
ij ϕ(xj) +W in

i Iext (4.33)

The major difference between equations (4.11a) and (4.33) lies in the presence or absence of
correction inside the non-linearity ϕ. Without this correction (i.e., for α = 0), the quality of
inference becomes catastrophic: the model without correction obtained by fitting the recurrent
weights J is even outperformed by BP (see section 3.5.5).

Going a step further, one can approximate fij with:

fij(x) = ϕ−1(ϕ(Jij)ϕ(x)
)

(4.34)
≈ ϕ(Jij)ϕ(x) (4.35)

This leads to the following update equation:

Bi =
∑

j∈N (i)

Wijϕ(Bj) +Mext→i (4.36)

which exactly corresponds to the classical rate network described in section 4.4.
In this network, the connectivity Wij = ϕ(Jij) is symmetrical (Wij = Wji) and bounded

(
∣∣Wij

∣∣ < 1). Furthermore, the input weight matrix is diagonal. Finally, the output weight matrix
is equal to the identity matrix: each unit encodes a particular variable xi of the probability
distribution p(x). The alternative would have been to decode the marginals based on the activity
in the units composing the network.

4.5 Unsupervised learning of Circular BP parameters: how the brain
might balance the probabilistic reasoning network

We start by recalling the extended Circular BP equations (3.26a) and (3.26b):
Mi→j = fij(Bi − αijMj→i)

Bi = κi

( ∑
j∈N (i)

Mj→i + γiMext→i

) (4.37a)

(4.37b)

which can be implemented by following rate network in continuous time (see Equations (4.11a)
and (4.11b)): 

τjḂ
i
j = −Bij + αijfij(Bi −Bji )

τiḂi = −Bi + κi
∑

j∈N (i)

fji(Bj −Bij) + γiκiIext→i

(4.38a)

(4.38b)

where Bij = αijMi→j . κi is simply a scaling factor for the log-odds {Bi} , and αij is a scaling
factor for the corrected predictions {Bji }.
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4.5. Unsupervised learning of Circular BP parameters: how the brain might balance the probabilistic
reasoning network

4.5.1 Motivation for an unsupervised learning method
In section 3.5.5, I considered supervised learning, and more specifically, learnt the parameters
minimizing the mean square error between the marginals predicted by (extended) Circular BP
and the exact marginals. Alternatively, another supervised learning method is proposed in
Wiegerinck and Heskes (2002), which consists of minimizing the KL divergence between the
predicted pairwise marginals and the true pairwise marginals. Another example of supervised
learning is Yoon et al. (2018) which minimizes the KL divergence between the unitary marginals
to learn the parameters of the model.

The inconvenient of all these methods is the need to generate training examples (true marginals,
unitary or pairwise), which has an exponential complexity in the number of graph nodes. As
a consequence, these fitting procedures are not scalable to bigger complex graphs (e.g., highly
connected Erdos-Renyi graphs with a high number of nodes).

A second inconvenient of supervised learning is its lack of biologically plausibility as a po-
tential learning algorithm used by the brain. Therefore, it would be interesting to propose an
unsupervised learning method to learn the corrective multiplicative factors. Inspired by the
literature of balanced networks (Renart et al., 2010; Tetzlaff et al., 2012), we describe in this
section a preliminary unsupervised learning method derived from decorrelating messages going
in opposite directions.

4.5.2 Formulation of the unsupervised learning rule
We propose here a way of learning online the parameters of extended Circular BP for (β,γ) =
(1,1) fixed. For discussion on the way that one might learn (β and γ), see section 4.5.5.

The proposed learning rule on parameters α and κ is:∆αij = η1Mj→i

(
Bi − αijMj→i

)
+ η1Mi→j

(
Bj − αijMi→j

)
∆κi = η2Mext→i(Bi −Mext→i)

(4.39a)

(4.39b)

where messages and beliefs are taken after T = 100 iterations of Circular BP, and η1 and η2 are
learning rates. The second term in the right-hand side of Equation (4.39a) ensures that matrix
α is symmetric, i.e., that αij is associated to the unoriented edge (i, j) in the approximation of
the Gibbs Free Energy (see Equation (3.14)). If there is not symmetry constraint on α (in this
case, Circular BP is written Mi→j = fij(Bi − αi→jMj→i) in an Ising model; see also Equation
(1.12) for the general case), the learning rule on α becomes instead:

∆αi→j = η1Mj→i

(
Bi − αi→jMj→i

)
(4.40)

where αi→j is used in the computation of Mi→j as a weight to the message going in the opposite
direction Mj→i; in this case, αi→j is the scaling factor associated Bij as the corrected prediction
of xj by xi is Bij = αi→jMi→j .

4.5.3 Results of the unsupervised learning
The unsupervised learning rule manages to learn parameters of Circular BP and achieve with
good performance in all tested cases ; see Figure 4.6. We used 5000 training examples, and
learning rates starting from η1 = 0.03 and η2 = 0.0003 (which were both decreased by half after
one third of the optimization, and after two thirds of the optimization). Note that we add some
amount of damping to the algorithm, ϵ = 0.7 (see section 4.2.1 about damping), contrary to the
supervised learning case.

127



4. Circular Belief Propagation and its neural implementation

p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9 p = 1

0

1

CB
P 

no
da

l

0 1
exact marginal
0

1

BP

es
tim

at
ed

 m
ar

gi
na

ls 
fo

r:

Figure 4.6: Results of the unsupervised learning rule on Erdos-Renyi graphs. Nodal
Circular BP (i.e., eCBP with (β,γ = (1,1)) outperforms BP for all connection probabilities. The
performance of the unsupervised learning rule is comparable in highly connected graphs to the
one of the supervised learning procedure (see “CBP nodal” line in Figure 3.6). Both algorithms
are taken with damping, which helps for convergence (especially for BP).

A B

Figure 4.7: Balancing the network to carry out near-optimal probabilistic inference.
(A) The probability distribution p(x) is represented by a factor graph, with pairwise potentials
ψij and unitary potentials ψi. (B) Rate network with two types of units, implementing (ex-
tended) Circular Belief Propagation; see Equation (4.38). Connection weights depend on ψij ,
while external input depend on ψi. Projection units in red encode the approximate marginal
probability bi(xi) ≈ pi(xi), while control units in blue remove information being reverberated
between projection units. For example, B1

2 removes from B1 the message which went through
B1 → B2 → B1 (reciprocal connection), but also for instance B1 → B4 → B2 → B1 (cycle). In
contrast, BP only removes redundant information caused by reciprocal connections.

4.5.4 Understanding the learning rule

Here we motivate the learning rule proposed above, and more specifically, why the learning rule
on κ is a homeostasic rule, and the learning rule on α is anti-Hebbian (or inhibitory Hebbian).
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reasoning network

Learning rule on α The unsupervised learning rule for α minimizes the total amount of
information sent in the network

∑
(i,j)

M2
i→j , or equivalently, minimizes the quantity of so-called

prediction errors
∑

(i,j)
(Bi −Bji )2:

L =
∑
(i,j)

M2
i→j (4.41)

≈
∑
(i,j)

(
ϕ−1

[
ϕ(Jij)ϕ(Bi − αijMj→i)

])2
(4.42)

We compute the derivative of the loss function L w.r.t. α by considering that ∂(Bi−αijMj→i)
∂αkl

≈
−Mj→iδjkδil, i.e., by neglecting higher-order dependencies. Consequently,

∂L

∂αij
≈
∂M2

i→j

∂αij
+
∂M2

j→i

∂αij
(4.43)

where

∂M2
i→j

∂αij
≈ −2Mi→j(ϕ−1)′

(
ϕ(Jij)ϕ(Bi − αijMj→i)

)
ϕ(Jij)ϕ′(Bi − αijMj→i)Mj→i (4.44)

which has the same sign as −2Mi→jϕ(Jij)Mj→i (symmetrical in (i, j)). We thus propose the
following learning rule:

∆αij ∝ −
∂L

∂αij
∝Mi→jϕ(Jij)Mj→i (4.45)

This learning rule tends to make the correlations between opposite messages disappear, i.e., <
Mi→jMj→i >examples≈ 0. In the simulations, we used an alternative learning rule (see Equation
(4.39a)):

∆αij ∝ (Bi − αijMj→i)Mj→i + (Bj − αijMi→j)Mi→j (4.46)

(the right-hand terms of Equations (4.45) and (4.46) have identical signs). This can be seen as
a inhibitory Hebbian learning rule (or anti-Hebbian learning rule) “∆w ∝ rI(rE − wrI)”, which
tends to balance the network.

Learning rule on κ The learning rule on κ aims at avoiding reverberation of external in-
formation by cycles. κi acts as a scaling factor on the log-odds (see Equation (3.26b)). The
proposed learning rule does synaptic scaling (or homeostatic scaling). It aims at decorrelating
the information truly received by node i from the outside world (Mext→i), and all the information
received by node i except this true external information (Bi −Mext→i):

∆κi ∝Mext→i(Bi −Mext→i) (4.47)

Note that a learning rule consisting in from minimizing, as for α, the quantity of messages sent
throughout the graph, would not work here as κ→ 0 would be enough to have all messages go
to zero. Finally, the learning rule ∆κi ∝ Mext→i(Bi − κiMext→i) would not work either as the
sign of the correlation between Mext→i and Bi − κiMext→i ∝ Mj→i does not depend on κi but
instead on the graph topology and weights J .
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4. Circular Belief Propagation and its neural implementation

Neural interpretation and balanced network In the special case of probability distribution
over binary variables, we can draw a parallel with a rate network composed of two types of units.
While projection units encode the marginal probability of the associated variable, control units
attempt to remove redundancies by predicting the information received by the projection units
(see also Li and Pehlevan (2020)), thus balancing the system and decorrelating information sent
between regions, allowing for efficient probabilistic inference.

The right amount of control prevents the network from overamplifying the messages. More
specifically, it allows the network to control the flow of information by avoiding to double count
messages and therefore by only spreading meaningful information. We call this state Balanced
Circular Belief Propagation: indeed, this mechanism is analogous to balancing recurrent excita-
tion by local inhibition in a neural network (Vogels et al., 2011; Brendel et al., 2020). Here we
talk about tight balance, as each input sent by a projection neuron is individually balanced by
a prediction from a control unit and encoded at the error neuron (or equivalently without error
neuron, at every dendrite of the projection neuron receiving the signal).

The proposed approach not only improves the quality of probabilistic inferences but also
brings better higher stability to the network, which is a known feature of balanced excitatory-
inhibitory networks.

4.5.5 Learning the remaining parameters of eCBP
In all section 4.5 until now, we considered the case where (β,γ) = (1,1) and proposed a way of
learning these parameters in an unsupervised fashion. Here we ask the question of the learning
of these additional parameters β and γ.

As a reminder, parameter β simply appears in the formulation of eCBP as a multiplicative
factor to the true weights J (defined by ψij(xi, xj) = exp(Jijxixj)). Similarly, parameter γ
simply appears as a multiplicative factor to the true external inputs Mext (defined by ψi(xi) =
exp(Mext→ixi)). Therefore, fitting β and γ is equivalent to fitting J and Mext, respectively the
network weights and the input to the network (where J and Mext are not related anymore to
the factors of the probability distribution).

Parameter β can be learnt similarly to Mongillo and Deneve (2008); Jardri and Denève
(2013a) which proposes a expectation maximization (EM) algorithm (Dempster et al., 1977) and
alternatively a Hebbian-like learning rule using stochastic gradient descent, to learn the factors
{ψij}. This approach is based on the fact that messages from BP and its variants allow not
only to compute unitary marginal probabilities {pi(xi)} but also pairwise marginal probabilities
{pij(xi, xj)}. For instance, for eCBP, one can assume that:

bij(xi, xj) ∝ ψij(xi, xj)αijβijψi(xi)κiγiψj(xj)κjγj
∏

k∈N (i)\j

mk→i(xi)κi

×
∏

k∈N (j)\i

mk→j(xj)κjmj→i(xi)κi−αijmi→j(xj)κi−αji (4.48)

=⇒ bij(xi, xj) ∝ ψij(xi, xj)αijβij ×
bi(xi)

mj→i(xi)αij
× bj(xj)
mi→j(xj)αij

(4.49)

which has the same form as the expression of the message update equation for eCBP: mi→j(xj)
depends on bi(xi)/mj→i(xi)αij in Equation (3.24). In particular, for an Ising model, Equation
(4.49) gives:

log
(bij(1, 1)
bij(1, 0)

)
= 2αijβijJij + (Bj − αijMi→j) (4.50)
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which shows the importance of the quantity Bj − αijMi→j , together with the message update
equation of eCBP Mj→i = fij(Bj − αijMi→j). Note, however, that Equations (4.48), (4.49)
and (4.50) are only approximations for eCBP. Indeed, Equation (4.48) is the expression of the
pairwise beliefs for extended Fractional BP and not extended Circular BP (see Equation (A.7)).
Such an equation does not exist for extended Circular BP, as eCBP does not come from any
approximation of the Gibbs free energy (which is the starting point to yield such an expression).
However, as seen previously, eCBP can be defined as an approximation to eFBP with a slightly
simpler message update equation. By making the hypothesis that even though eCBP has a
different update equation for the messages, it eventually computes the (approximate) solution
to eFBP, then Equation (4.48) is (approximately) valid.

Jardri and Denève (2013a) proposes, in the particular situation where (κ,β,γ) = (1,1,1)
(i.e., for the original Circular BP), an online update of the factor parameters (here, simply Jij
or equivalently, βij) based on the pairwise beliefs {bij(xi, xj)}, with a Hebbian-like learning rule.
Learning the external message Mext→i (or equivalently, its weight γi) could be done similarly by
defining an abstract “external neuron” connected to xi through weight γi.

Overall, it might be possible (this still needs to be demonstrated numerically) to learn all
parameters of eCBP in an unsupervised way: (α,κ,β,γ). The learning on α and κ is anti-
Hebbian (or inhibitory Hebbian) and the learning on β and γ is Hebbian.

4.6 Conclusion

We showed that for Ising models, the proposed algorithm can be implemented by a rate network.
In this network, removal of redundant probabilistic information created by cycles is carried out
by control units while projection units try to perform inference over variables. This offers an
analogy with excitatory-inhibitory balanced networks, hence the term Balanced Circular Belief
Propagation. The corresponding spiking neural network would need to be micro-balanced, with
each recurrent excitatory input controlled by an inhibitory input of similar strength (Denève and
Machens, 2016; Li and Pehlevan, 2020; Ahmadian and Miller, 2021) , which results in very efficient
and fast inference systems (Hennequin et al., 2014; Aitchison and Lengyel, 2016; Echeveste et al.,
2020).

However, such tight balance is unlikely to be perfectly achieved in brain networks. Excitation-
inhibition imbalance in the brain has also been associated to hallucinatory experiences and
more generally is a biological marker of autism and schizophrenia (Sohal and Rubenstein, 2019;
Jardri et al., 2016). Small deviations from tight balance are frequent and could drive some
normal perceptual features like bistability (Leptourgos et al., 2020a). A lack of precise control
would introduce deviations from exact inference in human observers. This could lead to general
overconfidence or even aberrant beliefs and eventually modified behavior (Jardri and Denève,
2013a; Bouttier et al., 2021); see also section 2.3.

One limitation of the supervised learning procedure (presented in section 3.5), despite the
need to generate exact marginals which is infeasible in large graphs, is its lack of plausibility. The
unsupervised learning method to learn the corrective multiplicative factors bring a solution to this
issue. Inspired by the literature of balanced networks (Renart et al., 2010; Tetzlaff et al., 2012),
we describe in section 4.5 a preliminary unsupervised learning method based on decorrelating
messages going in opposite directions.

Crucially, we showed in section 4.5 that parameters of Circular BP can be learned through
anti-Hebbian learning and homeostatic plasticity, leading to a decorrelation of the network.
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Chapter 5

Circular Belief Propagation in more
general cases

Summary of Chapter 5

In this chapter, we expand the range of distributions which can be dealt with by the Circular
Belief Propagation algorithm. We present the extended Circular Belief Propagation in the general
case, that is, in a general factor graph. Additionally, we particularly investigate the case where
variables are Gaussian, which leads to a very simple formulation of (Gaussian) Circular BP, very
similar to the one in the binary case. This allows us to expand the neural model presented in
chapter 4, which applied exclusively to pairwise Markov Random Fields with binary variables,
by addressing the Gaussian case. Similarly to the binary case, populations of the neural model
encode for the parameters of the probability distribution (mean and inverse variance), which
requires twice as many units as in the binary case. Three types of populations are involves:
message populations, marginal populations, and prediction error population. In each population,
the firing rate of units is proportional to the value they encode: one unit encodes for the inverse
variance, and the other one encodes for the product between the mean and the inverse variance.
As in the binary case, the rate model implements exactly eCBP, and could be translated into a
spiking network as in the binary case.
Next, we describe the effects of circularity in the Gaussian case by simulating Gaussian Circular
BP. Similarly to the binary case where circularity lead to overconfidence, estimates of probabilities
are overconfident (as measured by the inverse variance or precision). Additionally, the MAP
estimation (mean of the distribution) also gets strongly modified by circularity, contrary to the
binary case; simulations show that the means are in general overestimated.
Last, we include preliminary discussions on the comparison between Gaussian Circular BP and
impaired predictive coding, which both model brain processes underlying the emergence of sub-
optimal behavior and psychosis, and are currently the two main types of Bayesian models in
computational psychiatry.
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5. Circular Belief Propagation in more general cases

5.1 Introduction

In this chapter, we expand the range of distributions which can be dealt with by the Circular
Belief Propagation algorithm. We present the extended Circular Belief Propagation in the general
case, that is, in a general factor graph. Additionally, we particularly investigate the case where
variables are Gaussian, which leads to a very simple formulation of (Gaussian) Circular BP, very
similar to the one in the binary case. This allows us to expand the neural model presented in
chapter 4, which applied exclusively to pairwise Markov Random Fields with binary variables
by addressing the Gaussian case, therefore expanding the restrictive binary case. In this neural
model, a population encodes for the parameters of the distribution (mean and inverse variance),
which requires twice as many units as in the binary case. The firing rate of units is proportional
to the value they encode; one unit encodes for the inverse variance, and the other one encodes for
the product between the mean and the inverse variance. As in the binary case, the rate model
implements exactly eCBP, and could be translated into a spiking network as in the binary case.

Next, we describe the effects of circularity by simulating Gaussian Circular BP. Similarly to
the binary case where circularity lead to overconfidence, estimates of probabilities are overcon-
fident (as measured by the inverse variance or precision). However, and contrary to the binary
case, the MAP estimation (as measured by the mean of the distribution) also gets strongly mod-
ified by circularity (it is also the case in the binary case, but only rarely). Simulations show that
the means are in general overestimated.

Last, we include preliminary discussions on the comparison between Gaussian Circular BP
and impaired predictive coding, which both model brain processes underlying the emergence of
suboptimal behavior and psychosis, and are currently the two main types of Bayesian models in
computational psychiatry.

5.2 Circular BP in general factor graphs

In previous chapters, we only considered pairwise factors graphs, that is, probability distribu-
tions p(x) which could be written as the product of unitary and pairwise potentials: p(x) ∝∏
(i,j)

ψij(xi, xj)
∏
i

ψi(xi). In this section, we present the general case.

Similarly to the pairwise factors case, Circular BP is defined as an approximation of Fractional
BP, and extended Circular BP is defined based on extended Fractional BP (a generalized BP
algorithm using the Kikuchi approximation; see Yedidia et al. (2001)).

Inference in graphical models A general Markov random field p(x) can be written:

p(x) ∝
∏
c

ψc(xc) (5.1)

Potentials ψc are called ”factors” and are associated to a clique xc (xc is a group of variables {xi}
or simply one variable xi). As Figure 5.1 shows, the probability distribution can be represented
graphically as a factor graph composed of variable nodes xi and factor nodes ψc, with links
between ψc and all the variable nodes in xc.

Belief Propagation Belief Propagation can be defined on a factor graph (Kschischang et al.,
2001). At every iteration, the algorithm updates messages from factor nodes to variable nodes
and from variable nodes to factor nodes:

mnew
ψc→xi(xi) ∝

∑
xc\xi

ψc(xc)
∏

xj∈N (ψc)\xi

mxj→ψc(xj) (5.2)
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5.2. Circular BP in general factor graphs

A B

C

Figure 5.1: Belief Propagation and Circular Belief Propagation on a general fac-
tor graph. (A) Example of a factor graph with higher-order interactions (i.e., not
only unitary and pairwise factors), here representing the probability distribution p(x) =
ψ125(x1, x2, x5)ψ23(x2, x3)ψ14(x1, x4)ψ24(x2, x4)ψ1(x1)ψ3(x3)ψ4(x4)ψ5(x5). (B) Belief Propaga-
tion updates a given variable-to-factor message (from x to ψ, dotted black line) according to
the messages received by node x from other factor nodes than ψ (full black lines). For Circular
BP, the opposite message (coming from ψ to x, full red line) is also taken into account. (C)
Both BP and Circular BP update factor-to-variable messages (from ψ to x, dotted black line)
according to the messages collected by ψ from other variable nodes than x (full black lines), and
the interaction function ψ.

mnew
xj→ψd

(xj) ∝ ψj(xj)
∏

ψc∈N (xj)\ψd

mψc→xj (xj) (5.3)

where N (x) are the neighbors of node x in the factor graph. Neighbors of variable nodes are
factor nodes, and reciprocally.

Once messages have converged (or at some given maximum iteration), approximate marginal
probabilities or beliefs are computed as:

bi(xi) ∝ ψi(xi)
∏

ψc∈N (xi)

mψc→xi(xi) (5.4)

A message mψc→xi(xi) from factor node to variable node correspond to probabilistic informa-
tion about variable xi collected by the factor node ψc. The message is based on the information
available elsewhere in the network (observed variables, prior distribution over variables) received
by ψc, and takes into account the probabilistic interactions between xi and its neighbors (i.e.,
the interaction factor ψc).

A message mxj→ψd(xj) from variable node to factor node is simply the sum (in the log-
domain) of the local information at xj (e.g., noisy observation or prior) with the messages
received by xj from all factors neighboring xj except ψd.

Note that if factors are all pairwise (case considered in the main text: ψc = ψij) then BP
equations (5.2) and (5.3) can be written with messages going from factor to variable node only.
We recover Equations (1.3) and (1.4) from the main text by defining mi→j(xj) ≡ mψc→xj (xj).
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5. Circular Belief Propagation in more general cases

Extended Fractional BP We consider here a modification of Belief Propagation based on
a parametric approximation of the entropy of the approximating distribution b(x), with the
parameters (κ,α,β,γ). κi and γi are assigned to the variable node xi, while αc and βc are
assigned to the factor ψc. We obtain the following modified update equations (see following
paragraph for the demonstration):

mnew
ψc→xi(xi) ∝

( ∑
xc\xi

ψc(xc)βcαc
∏

xj∈N (ψc)\xi

mxj→ψc(xj)
)κi/αc

(5.5)

mnew
xj→ψd

(xj) ∝ ψj(xj)γjκj
( ∏
ψc∈N (xj)\ψd

mψc→xj (xj)

)
mψd→xj (xj)1−αc/κi (5.6)

and beliefs (approximate marginal probabilities) are computed using:

bi(xi) ∝ ψi(xi)κi
∏

ψc∈N (xi)

mψc→xi(xi) (5.7)

The special case where (κ,α,β,γ) = (1,1,1,1) corresponds to BP.
Similarly to above, if factors are all pairwise (case considered in the main text) then extended

Fractional BP equations (5.5) and (5.6) can be written with messages going from factor to
variable node only. We recover Equations (A.10) and (3.19) from the main text by defining
mi→j(xj) ≡ mψc→xj (xj).

Theoretical background for eFBP Here we provide the theoretical foundations underlying
the modification of BP given in Equations (5.5), (5.6), and (5.7).

Note that in the demonstration, we cover all the special cases of eFBP, including BP (for which
(α,κ,β,γ) = (1,1,1,1)), as well as Fractional BP, Power EP and α-BP (which all correspond
to (κ,β,γ) = (1,1,1)).

As stated in section A of the Appendix, the approach taken by BP to compute marginals
p(x), whose formula is known but whose marginals are hard to compute, is to approximate p(x)
with distribution b(x) (called the variational distribution) whose marginals are easier to compute.
The Gibbs free energy (that we would like to minimize) is given by:

G = Ub − Sb (5.8)

where the variational average energy Ub can be computed easily:

Ub =
∑

x
b(x)E(x)

= −
∑

x
b(x)

∑
cliques c

ψc(xc)−
∑
x

b(x)
∑
i

ψi(xi)

= −
∑

cliques c

∑
xc

bc(xc)ψc(xc)−
∑
i

∑
xi

bi(xi)ψi(xi) (5.9)

, contrary to the variational entropy Sb.
As it is not possible to easily compute Sb, Belief Propagation estimates it as if the factor

graph representing b(x) was a tree (i.e., was acyclic). This means that:

b(x) ≈
∏

cliques c

(
bc(xc)∏

i∈N (c)
bi(xi)

) ∏
nodes i

bi(xi) (5.10)
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5.2. Circular BP in general factor graphs

where bc(xc) ≡
∑
x\xc

b(x) (where for instance xc = (x1, x2)) and bi(xi) ≡
∑
x\xi

b(x).

The equation above can also be written:

b(x) ≈
∏

cliques c
bc(xc)

∏
nodes i

bi(xi)1−|N (i)|

where |N (i)| is the number of neighbors of node i in the graph representation of the distribution.
The approximation of b(x) given in Equation (5.10) is equivalent to approximating the entropy

Sb of b(x) as follows:

−Sb =
∑

x
b(x) log(b(x))

≈
∑

x
b(x)

∑
cliques c

log(bc(xc)) +
∑

x
b(x)

∑
nodes i

(1− |N (i)|) log(bi(xi))

≈
∑
c

∑
xc

bc(xc) log(bc(xc)) +
∑
i

(1− |N (i)|)
∑
xi

bi(xi) log(bi(xi)) (5.11)

In contrast, the extended Fractional BP algorithm consists of approximating the variational
distribution b(x) as:

b(x) ≈
∏

cliques c

(
bc(xc)∏

i∈N (c)
bi(xi)

)1/αc ∏
nodes i

bi(xi)1/κi (5.12)

which can also be written:

b(x) ≈
∏

cliques c
bc(xc)1/αc

∏
nodes i

bi(xi)1/κi−|N (i)|/αi where 1
αi
≡ 1
|N (i)|

∑
i∈N (c)

1
αc

(5.13)

This leads to the following parametric approximation of the variational entropy:

−Sb =
∑

x
b(x) log(b(x))

≈
∑

x
b(x)

∑
cliques c

1
αc

log(bc(xc)) +
∑

x
b(x)

∑
nodes i

( 1
κi
−
∣∣N (i)

∣∣
αi

)
log(bi(xi))

≈
∑

cliques c

1
αc

∑
xc

bc(xc) log(bc(xc)) +
∑
i

( 1
κi
−
∣∣N (i)

∣∣
αi

)∑
xi

bi(xi) log(bi(xi)) (5.14)

Hence the following approximation of the Gibbs free energy G ≈ Gapprox (we recover the Bethe
free energy of BP with (α,κ,β,γ) = (1,1,1,1)):

Gapprox =
∑

cliques c

1
αc

∑
xc

bc(xc) log

(
bc(xc)∏

i∈N (c)
bi(xi)

)
−

∑
cliques c

βc
∑
xc

bc(xc) log
(
ψc(xc)

)

+
∑
i

1
κi

∑
xi

bi(xi) log
(
bi(xi)

)
−
∑
i

γi
∑
xi

bi(xi) log
(
ψi(xi)

)
(5.15)
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5. Circular Belief Propagation in more general cases

From Gibbs free energy to messages In what follows, we derive the message-passing update
equations of extended Fractional BP (5.5), (5.6), and (5.7) (and its special cases BP, Fractional
BP, Power EP and α-BP, among others) based on the approximation of the Gibbs Free Energy
Gapprox given in Equation (5.15). The message update equations are simply fixed-point equations
of Gapprox, meaning that the beliefs computed by Balanced BP are stationary points of the
approximate Gibbs free energy Gapprox. This demonstration is similar to the one for BP (Yedidia
et al., 2001, 2003) and Fractional BP (Wiegerinck and Heskes, 2002), with additional parameters
α and κ.

We form the Lagrangian by adding Lagrange multipliers to Gapprox. Lagrange multiplier µi
(resp. µc) corresponds to the normalization constraint

∑
xi

bi(xi) = 1 (resp.
∑
xc
bc(xc) = 1), while

λc(xj) corresponds to the marginalization constraint
∑

xc\xj
bc(xc) = bj(xj). We obtain:

L = Gapprox +
∑
i

µi

(∑
xi

bi(xi)− 1
)

+
∑

cliquesc
µc

(∑
xc

bc(xc)− 1
)

+
∑

cliques c

∑
xj

λc(xj)
( ∑

xc\xj

bc(xc)− bj(xj)
)

(5.16)

The partial derivatives of the Lagrangian are:

∂L
∂bi(xi)

= −
∑

c∈N (i)

1
αc

+ 1
κi

+ 1
κi

log(bi(xi))− log(ψi(xi)) + µi −
∑

c∈N (i)

λc(xi) (5.17)

∂L
∂bc(xc)

= 1
αc

+ 1
αc

log

(
bc(xc)∏

i∈N (c)
bi(xi)

)
− log(ψc(xc)) +

∑
i∈N (c)

λc(xi) + µc (5.18)

It comes, by cancelling the partial derivatives of the Lagrangian:

bi(xi) ∝ ψi(xi)κi
∏

c∈N (i)

exp
(
κiλc(xi)

)
(5.19)

and

bc(xc) ∝
( ∏
i∈N (c)

bi(xi)

)
ψc(xc)αc

∏
i∈N (c)

exp
(
− αcλc(xi)

)
(5.20)

=⇒ bc(xc) ∝ ψc(xc)αc
( ∏
i∈N (c)

ψi(xi)κi
)( ∏

i∈N

∏
c̃∈N (i)\c

exp
(
κiλc̃(xi)

))

×

( ∏
i∈N (c)

exp
(
λc(xi)

(
κi − αc

)))
(5.21)

We obtain, formc→i(xi) ≡ exp
(
κiλc(xi)

)
, the following expression of the (approximate) marginal

and pairwise beliefs:
bi(xi) ∝ ψi(xi)κi

∏
c∈N (i)

mc→i(xi) (5.22)
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5.2. Circular BP in general factor graphs

bc(xc) ∝ ψc(xc)αc
( ∏
i∈N (c)

ψi(xi)κi
)( ∏

i∈N

∏
c̃∈N (i)\c

mc̃→i(xi)

)( ∏
i∈N (c)

mc→i(xi)1−αc/κi

)
(5.23)

Eventually, thanks to the constraint
∑

xc\xj
bc(xc) = bj(xj), we obtain the fixed point equations

for the messages:

mc→j(xj) ∝

( ∑
xc\xj

ψc(xc)αc
∏

i∈N (c)\j

ψi(xi)κi
∏

i∈N (c)\j

∏
c̃∈N (i)\c

mc̃→i(xi)

∏
i∈N (c)\j

mc→i(xi)1−αc/κi

)
mc→j(xj)1−αc/κj (5.24)

⇔ mc→j(xj) ∝

( ∑
xc\xj

ψc(xc)αc
∏

i∈N (c)\j

ψi(xi)κi
∏

i∈N (c)\j

∏
c̃∈N (i)\c

mc̃→i(xi)

∏
i∈N (c)\j

mc→i(xi)1−αc/κi

)κj/αc
(5.25)

The extended Fractional BP algorithm consists of running iteratively the fixed-point equation
(5.25). This single equation, which involves only messages from factor node to variable node,
can be rewritten into the two following equations by introducing messages from variable node to
factor node:

mnew
ψc→xi(xi) ∝

( ∑
xc\xi

ψc(xc)αc
∏

xj∈N (ψc)\xi

mxj→ψc(xj)
)κi/αc

(5.26)

mnew
xj→ψd

(xj) ∝ ψj(xj)κj
( ∏
ψc∈N (xj)\ψd

mψc→xj (xj)

)
mψd→xj (xj)1−αc/κi (5.27)

The expression of the unitary beliefs is given by Equation (5.22).
Note that one could also use directly Equation (5.24) instead of (5.25) to define the extended

Fractional BP algorithm. In fact, Equations (5.24) and (5.25) correspond to the damped versus
undamped update equation; see section 4.2.1 about damping. There is no absolute better choice:
fixed points obtained are identical in both cases, and damping provides better convergence prop-
erties but slows down the system (see section 4.2.1).

Comparison with related models: BP, Fractional BP, Power EP, alpha BP, and
Circular BP The special case of Belief Propagation is recovered for (α,κ) = (1,1).

Fractional BP (Wiegerinck and Heskes, 2002), Power EP (Minka, 2004) and α-BP (Liu et al.,
2019) use the damped message update equation (A.8) (with κ = 1) rather than its undamped
version (A.9) (see section 4.2.1). .

Circular BP (Jardri and Denève, 2013a) also considers κ = 1, and modifies the message
update equation from variable to factor (Equation (5.3) for BP) into:

mxj→ψd(xj) ∝ ψj(xj)

( ∏
ψc∈N (xj)\ψd

mψc→xj (xj)

)
mψd→xj (xj)

1−αxj→ψd (5.28)
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5. Circular Belief Propagation in more general cases

Note that Circular BP was only defined on pairwise factor graphs, meaning that all cliques c
have at most 2 elements: the product of Equation (5.27) does not appear in this case.

Notably, extended Fractional BP, BP, Fractional BP and Circular BP (respectively Equations
(3.20a), (1.17a), (3.5a) and (1.19a)) are similar but differ in the number of degrees of liberty. BP
has no degree of liberty. Fractional BP (as well as Power EP and α-BP) has nfactors degrees
of liberty. Balanced BP has nfactors + nvariables degrees of liberty. Circular BP has as as many
degrees of liberty as the number of edges in the factor graph.

Extended Circular BP on general factor graphs Similarly to the pairwise factor case,
we can define an extended Circular BP on general factor graphs, based on the modification of
Equation (5.25) into:

mc→j(xj) ∝

( ∑
xc\xj

ψc(xc)
∏

i∈N (c)\j

ψi(xi)κi
∏

i∈N (c)\j

∏
c̃∈N (i)\c

mc̃→i(xi)

∏
i∈N (c)\j

mc→i(xi)1−αc/κi

)κj
(5.29)

In this case of general factor graphs, contrary to the pairwise case, there is no simple way of
writing the message update in the log domain, making it unclear how this algorithm could be
implemented in the brain.

5.3 Gaussian Circular BP

In all this thesis with the exception of the present section, variables xi of the probability dis-
tribution p(x1, . . . , xn) are assumed to be binary variables: xi ∈ {−1; +1}. Equations (3.26a)
and (3.26b) relate (the log-transforms of) the means of the belief distribution to the ones of the
message distribution. These relations were used to propose a neural implementation of extended
Circular BP in the log-domain (see sections 4.2 and 4.3).

However, in our day-to-day lives, humans often deal with continuous variables. For instance,
before taking the bus, one might want to estimate the time to reach a certain destination, in
order to make sure to arrive there on time. This estimate is based on external information. In
this example, the external information is for instance the level of congestion on the road this day,
the probability of having to wait for several buses in case they are full, and the average time
between two bus arrivals.

In this section, we consider instead the Gaussian case, which is an example of continuous
distribution commonly considered. We show that the extended Circular BP algorithm translates
into relations between the parameters (mean and variance) of the beliefs and the parameters
(mean and variance) of the messages, very similarly to the binary case. This allows us to propose
a neural implementation of extended Circular BP in the Gaussian case, where each population
encodes for the parameters of the distribution (here, the mean of the gaussian distribution, and
the product of the precision and the mean, by using one neuron for each) as in the binary
case. This goes along the hypothesis according to which neural responses might represent the
parameters of the posterior probability distribution as in probabilistic population codes (PPCs)
and their predecessors, kernel density estimator codes and distributional population codes; see
Fiser et al. (2010). We describe the corresponding rate network, which highly resembles the one
proposed in the binary case. A spiking neuron could be constructed as well, following the same
technique for the binary case described in section 4.3.
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5.3.1 Circular BP in Gaussian Markov Random Fields
5.3.1.1 Gaussian Markov Random Fields

We consider in this section a Gaussian Markov Random Field, which is by definition a Markov
Random Field (MRF) in which the joint distribution is Gaussian:

p(x) =

√
|P |

(2π)n
exp

(
− 1

2
(x− µ)TP (x− µ)

)
(5.30)

and is commonly used in the fields of computer vision and sensor networks, for instance. The
distribution is parametrized by its mean µ = E[x] and its precision matrix P . P is the inverse
covariance matrix: P = Σ−1 where the covariance matrix is Σ = E[(x − µ)(x − µ)T ]. Matrix
P is also known as the information matrix, as its sparsity exactly matches the corresponding
graphical model: Pij = 0 indicates an absence of edge between nodes i and j in the graph.

We use a slightly different parametrization of the Gaussian distribution with its natural
parameters (P, v) where v ≡ Pµ is often called the potential vector (Raju and Pitkow, 2016),
instead of using parameters P and µ:

p(x) ∝ exp
(
− 1

2
xTPx+ vTx

)
(5.31)

We assume, as for the binary case, that the probability distribution can be written as a factor
of pairwise interactions and unitary interactions:

p(x) = 1
Z

∏
(i,j)

ψij(xi, xj)
∏
i

ψi(xi) (5.32)

where potentials have the following Gaussian expression (see section 5.3.1.4):
ψij(xi, xj) = exp

(
− 1

2

(
xi
xj

)T
Pxi,xj

(
xi
xj

))
ψi(xi) = exp

(
− 1

2
Pext→ixi + vixi

) (5.33)

(5.34)

where Pxi,xj ≡
(
P xi,xixi,xj P

xi,xj
xi,xj

P
xj ,xi
xi,xj P

xj ,xj
xi,xj

)
is a 2× 2 matrix.

Note that Equation 5.33 is equivalent to writing xi = Cxj + N where N is Gaussian noise
with zero mean (with C = −P xi,xjxi,xj /P

xi,xi
xi,xj and precision P xi,xixi,xj for N).

5.3.1.2 BP in Gaussian graphical models

The Belief Propagation algorithm has been studied empirically and theoretically in the Gaussian
case specifically; see for instance Malioutov (2008). It is also the case for extensions of BP like
Expectation Propagation (Minka, 2001b,a) or Fractional Belief Propagation (Cseke and Heskes,
2011; Liu et al., 2020). When applied on probabilistic graphs with cycles, Belief Propagation
often performs reasonably well. As shown in Weiss and Freeman (1999), when the algorithm
converges it produces the correct means, but generally not the correct variances. A nice example
of application of Belief Propagation in Gaussian Markov Random Fields is provided in Weiss
(1997), where BP is used to estimate the direction of motion automatically given a video of a
hand moving.
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5. Circular Belief Propagation in more general cases

5.3.1.3 Formulation of Circular BP in Gaussian MRF

In the case described in the above section 5.3.1.1, marginals {pi(xi)} of the distribution can
be approximated using BP and its extension, the extended Circular BP algorithm. Extended
Circular BP consists of very simple update equations on the parameters of the distribution, by
sending (as in the binary case) messages between nodes of the graph to spread information to all
nodes. The relations between the mean µi (or rather the potential vector vi ≡ Piµi) and precision
Pi of the beliefs and the mean µi→j and precision Pi→j of the messages are the following (see
the following section for a demonstration):1P

new
i→j = gij(Pi − αijPj→i)

vnew
i→j = hij

(
vi − αijvj→i, Pi − αijPj→i

) (5.35)

(5.36)

where 
Pi = κi

( ∑
j∈N(i)

Pj→i + γiPext→i

)
vi = κi

( ∑
j∈N(i)

vj→i + γivext→i

)
(5.37)

(5.38)

and where functions gij and hij are given by

gij(y) = βijP
xj ,xj
xi,xj −

(βijP
xi,xj
xi,xj )2

βijP
xi,xi
xi,xj + y

(5.39)

and
hij(x, y) = −

βijP
xi,xj
xi,xj x

βijP
xi,xi
xi,xj + y

(5.40)

These equations logically extend the ones obtained for BP (see for instance Weiss and Freeman
(1999); Plarre and Kumar (2004)) for which parameters (α,κ,β,γ) take value 1.

Equations (5.35) and (5.36), which relate the parameters (Pi→j , vi→j) of the message distri-
bution to the parameters (Pi, vi) of the marginal distribution and the parameters (Pj→i, vj→i)
of the opposite message distribution, have exactly the same form as in the binary case, with the
subtraction of the “belief variable” by the “opposite message variable” with weight αij . Indeed,
in the binary case, the evolution of the only parameter of the message distribution (its expected
value mi→j(xj = +1), or rather, the transform Mi→j ≡ 1

2 log
(mi→j(xj=+1)
mi→j(xj=−1)

)
) is expressed as a

function of a quantity associated to the marginal distribution Bi ≡ 1
2 log

( bi(xi=+1)
bi(xi=−1)

)
and the pa-

rameter of the opposite message distribution Mj→i weighted by αij as Mi→j = fij(Bi−αijMj→i).
In both the Gaussian and the binary case, the quantity associated to the marginal distribution
gets subtracted by αij times the quantity associated to the message distribution (for the mes-
sage going in the opposite direction). As a reminder, the sign of function fij is determined by
the interaction between xi and xj (Jij > 0 indicates a positive interaction) and the sign of its
argument. Similarly, the sign of hij depends on the sign of its first argument, as well as the sign
of the interaction between variables xi and xj (a positive interaction means that to P xi,xjxi,xj < 0 as
the precision is the inverse covariance). Function gij is positive as precision matrices are positive
definite and symmetrical matrices by definition. gij is an increasing function of its argument
Pi−αijPj→i. The absolute value of function hij ,

∣∣hij∣∣, increases as function of its first argument
vi − αijvj→i and decreases as function its second argument Pi − αijPj→i.

1Note that all the parameters in Equations (5.35)-(5.40) are scalars.
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5.3. Gaussian Circular BP

Likewise, Equations (5.37) and (5.38) giving the expression of the (transform of the) marginal
distribution parameter are similar to the expression in the binary case Bi = κi

(∑
j∈N (i) Mj→i+

γiMext→i

)
. The variable of interest associated to node i (function of the parameter(s) of the

bi(xi)) is the sum of all the contributions from its neighbors and from the external world.
Running these equations iteratively (see Algorithm 5) allows one, as in the binary case, to

marginalize the distribution. In the Gaussian case, this means obtaining estimates of the mean
and variance of the variables {xi}, given the external information {ψi(xi)} (through {Pext→i} and
{µext→i}) and the conditional dependencies between variables {ψij(xi, xj)} (through {Pxi,xj}).

We also write an equivalent formulation of the algorithm, which first consists of running the
updates on precisions and only then on potential vectors (or equivalently, on means). Indeed, in
the equations above, precisions {Pi} and {Pi→j} do not depend on the potentials {vi} and {vi→j}.
Thefore, precisions can be computed at first and fixed once for all, and the “real” algorithm would
consist in running the updates on the means with potentially time-varying inputs {µext→i}. By
writing µ = (Pµ)/P = v/P , we obtain after some mathematical manipulations the following
update equations on the means:

µi =
∑

j∈N(i)

kj→iµj→i + kext→iµext→i

µnew
i→j = hiµi − hj→iµj→i

(5.41)

(5.42)

with coefficients kj→i ≡
Pj→i∑

j∈N(i)
Pj→i + γiPext→i

, kext→i ≡
γiPext→i∑

j∈N(i)
Pj→i + γiPext→i

,

hi ≡
− P xi,xjxi,xj Pi

βij |Pxi,xj |+ P
xj ,xj
xi,xj (Pi − αijPj→i)

, and hj→i ≡
− P xi,xjxi,xj αijPj→i

βij |Pxi,xj |+ P
xj ,xj
xi,xj (Pi − αijPj→i)

. Coeffi-

cients {kj→i} and kext→i are positive and sum to 1. Coefficients hi and hj→i can be positive or
negative, and their difference or sum is not equal to 1 in general (however, they have identical
signs for αij > 0 which is a reasonable hypothesis, and they are positive if xi and xj positively
interact, that is, P xi,xjxi,xj < 0, and for a “reasonable” choice of parameters). Equations (5.41) and
(5.42) would be easy to implement in a network in which the firing rate of neurons is proportional
to the mean of the encoded variable, if precisions were implicitly encoded in the recurrent con-
nections and input weights. However, the way connection strengths (kj→i, kext→i, hi and hj→i)
are set up is not clear given the complexity of formulas providing the expression of coefficients
kj→i, kext→i, hi and hj→i. Additionally, precisions ({Pj→i} and most importantly Pi) would
not be encoded anywhere in the network, which seems necessary for the brain to have access
to the estimation of marginal probabilities (defined by the mean and the precision) and take
decisions based on that. Therefore, a direct implementation of Equations (5.41) and (5.42) is
not considered here.

5.3.1.4 Demonstration

Mean and precision of messages We start by writing the message update equation for
extended Circular Belief Propagation (the integral replaces the sum as x takes continuous values):

mi→j(xj) ∝
∫
xi

ψi,j(xi, xj)βij
[ ∏
k∈N(i)\j

mk→i(xi)myi→xi(xi)γi
(
mj→i(xi)

)1−αij/κi
]κi

dxi (5.43)

Here we hypothesize that messages have a normal distribution. We use, by slight abuse of
notation, N to denote the density of the normal distribution (and not the law): Nx(µ, P ) ≡
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5. Circular Belief Propagation in more general cases

Algorithm 5 Gaussian extended Circular BP algorithm in a pairwise factor graph
1: for all directed edges i→ j do
2: Pi→j ← random positive value {Initialize the messages’ precisions}
3: vi→j ← random value {Initialize the messages’ potentials}
4: end for
5: repeat
6: for all nodes xi do
7: Pi = κi

( ∑
j∈N(i)

Pj→i + γiPext→i

)
{Compute the beliefs’ precisions}

8: vi = κi

( ∑
j∈N(i)

vj→i + γivext→i

)
{Compute the beliefs’ potentials}

9: end for
10: for all directed edges xi → xj do
11: P new

i→j = gij(Pi − αijPj→i) {Update the messages’ precisions}
12: vnew

i→j = hij

(
vi − αijvj→i, Pi − αijPj→i

)
{Update the messages’ potentials}

13: end for
14: P ← P new

15: µ← µnew

16: until convergence
17: for all nodes xi do

18: bi(xi)←
√
Pi

2π
exp

(
−

1
2
Pix

2
i + vixi

)
{Compute the beliefs}

19: end for

√
|P | /(2π)× exp

(
− 1

2 (x− µ)TP (x− µ)
)

where µ is the mean of the distribution and P = Σ−1

is the precision matrix or inverse covariance matrix (note that here we consider for simplicity
that all variables xi have dimension 1, thus µi→j , µi, Pi→j and Pi are scalars). The message
distribution is thus written:

mi→j(xj) = Nxj (µi→j , Pi→j) (5.44)

We also hypothesize that the potentials have a normal distribution. As in Weiss and Freeman
(1999), we assume, without loss of generality, that the joint means are zero:

{
ψij(xi, xj) = N(xi,xj)(0, Pxi,xj )
ψi(xi) = myi→xi(xi) = N(xi,yi)(0, Pxi,yi) ∝ Nxi(µxi|yi , Pxi|yi)

(5.45)
(5.46)

where yi is a noisy observation related to xi only, Pxi,xj and Pxi,yi are 2x2 matrices, and the pa-
rameters of the Gaussian distribution in Equation (5.46) are given by P xi,xixi,yi ×µxi|yi = −P xi,yixi,yi ×yi
and Pxi|yi = P xi,xixi,yi (conditional distribution). In the following, Pxi|yi is written Pext→i and µxi|yi
is written µext→i.

=⇒ mi→j(xj) ∝
∫
xi

N(xi,xj)(0, Pxi,xj )βij
[ ∏
k∈N(i)\j

Nxi(µk→i, Pk→i)Nxi(µext→i, Pext→i)γi

×Nxi(µj→i, Pj→i)1−αij/κi

]κi
dxi (5.47)
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5.3. Gaussian Circular BP

Using the fact that
(
Nx(µ, P )

)k ∝ Nx(µ, P × k), it comes:

mi→j(xj) ∝
∫
xi

N(xi,xj)(0, P̃xi,xj )

[ ∏
k∈N(i)\j

Nxi(µk→i, Pk→i)Nxi(µext→i, P̃ext→i)

P̃xi,xj

(
xi
xj

))
×Nxi(µj→i, (1− αij/κi)Pj→i)

]κi
dxi (5.48)

where by definition, {
P̃ext→i = γiPext→i

P̃xi,xj = βijPxi,xj

(5.49a)
(5.49b)

It comes:

mi→j(xj) ∝
∫
xi

exp
(
− 1

2

(
xi
xj

)T
P̃xi,xj

(
xi
xj

))
Nxi(µ̃i, P̃i)dxi (5.50)

where 
P̃iµ̃i = κi

( ∑
k∈N(i)\j

Pk→iµk→i + P̃ext→iµext→i +
(

1− αij
κi

)
Pj→iµj→i

)
P̃i = κi

( ∑
k∈N(i)\j

Pki + P̃ext→i +
(

1− αij
κi

)
Pj→i

)
(5.51a)

(5.51b)

(as a product of Gaussian densities: precisions P add up, and precisions multiplied by means
Pµ add up as well).

We now define 
P i,j0 = P̃ xi,xixi,yi +

∑
k∈N(i)\j

Pk→i

P i,j0 µi,j0 = P̃ext→iµext→i +
∑

k∈N(i)\j

Pk→iµk→i

(5.52a)

(5.52b)

It then comes: 
P̃iµ̃i = κi

(
P i,j0 µi,j0 +

(
1− αij

κi

)
Pj→iµj→i

)
P̃i = κi

(
P i,j0 +

(
1− αij

κi

)
Pj→i

) (5.53a)

(5.53b)

Finally, we write the result of Equation (5.50): mi→j(xj) is the integral over xi of the prod-
uct between a bivariate Gaussian density N(xi,xj)(0, P̃xi,xj ) and a univariate Gaussian density
Nxi(µ̃i, P̃i), thus the message mi→j(xj) has a normal distribution Nxj (µi→j , Pi→j) with the
following mean and precision: 

Pi→j =
Σ̃xi,xj ,11 + 1

P̃i

|Σ̃xi,xi |+ Σ̃xi,xj ,22
1
P̃i

µi→j = µ̃i
Σ̃xi,xj ,12

1
P̃i

+ Σxi,xj ,11

(5.54)

(5.55)
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5. Circular Belief Propagation in more general cases

It comes:

Pi→j =

P̃xi,xj,22

|P̃xi,xj | + 1
P̃i

1
|P̃xi,xj | + P̃xi,xj,11

|P̃xi,xj |
1
P̃i

=
P̃xi,xj ,22P̃i + |P̃xi,xj |

P̃i + P̃xi,xj ,11
= P̃xi,xj ,22 −

(P̃xi,xj ,12)2

P̃i + P̃xi,xj ,11

µi→j = P̃iµ̃i

− P̃xi,xj,21

|P̃xi,xj |

1 + P̃i
P̃xi,xj,22

|P̃xi,xj |

= −P̃iµ̃i
P̃xi,xj ,21

|P̃xi,xj |+ P̃iP̃xi,xj ,22
= −P̃iµ̃i

P̃xi,xj ,21

Pi→j(P̃i + P̃xi,xj ,11)

We thus obtain the following formulas for Pi→j and µi→j :
Pi→j = βijP

xj ,xj
xi,xj −

(βijP
xi,xj
xi,xj )2

βijP
xi,xi
xi,xj + κi

(
P i,j0 + (1− αij/κi)Pj→i

)
µi→j = −

βijP
xi,xj
xi,xj κi[P

i,j
0 µi,j0 + (1− αij/κi)Pj→iµj→i]

Pi→j [βijP xi,xixi,xj + P i,j0 + (1− αij/κi)Pj→i]

(5.56)

(5.57)

Mean and precision of the beliefs We now write the expression of the beliefs:

bi(xi) ∝

( ∏
j∈N(i)

mj→i(xi)ψi(xi)γi
)κi

(5.58)

where {
mj→i(xi) ∝ Nxi(µj→i, Pj→i)
ψi(xi) ∝ Nxi(µext→i, Σext→i)

(5.59)
(5.60)

It comes from Equation (5.58) that the beliefs follows a Gaussian distribution (log(bi(xi)) =
C − 1

2 (x− µi)TPi(x− µi)) with precision Pi and mean µi such that:
Pi = κi

( ∑
j∈N(i)

Pj→i + γiPext→i

)
Piµi = κi

( ∑
j∈N(i)

Pj→iµj→i + γiPext→iµext→i

)
(5.61)

(5.62)

Relations between means and precisions of the messages and the beliefs Here we
combine Equations (5.56) and (5.57) giving the expression of the mean and precision of the
messages, with Equations (5.61) and (5.62) giving the expression of the mean and precision of
the beliefs. {

κiP
i,j
0 = Pi − κiPj→i

κiP
i,j
0 µi,j0 = µiPi − κiµj→iPj→i

(5.63a)
(5.63b)

So P i,j0 + (1− αij
κi

)Pj→i = 1
κi

(
Pi − αijPj→i

)
and P i,j0 µi,j0 + (1− αij

κi
)Pj→iµj→i = 1

κi

(
µiPi − αijµj→iPj→i

)
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We thus obtain from Equation (5.56):

Pi→j = βijP
xj ,xj
xi,xj −

(βijP
xi,xj
xi,xj )2

βijP
xi,xi
xi,xj + Pi − αijPj→i

(5.64)

= gij(Pi − αijPj→i) (5.65)

where gij(y) = βijP
xj ,xj
xi,xj −

(βijP
xi,xj
xi,xj )2

βijP
xi,xi
xi,xj + y

.

Similarly, Equation (5.57) gives:

Pi→jµi→j = −
βijP

xi,xj
xi,xj [Piµi − αijµj→iPj→i]

βijP
xi,xi
xi,xj + Pi − αijPj→i

(5.66)

= hij

(
Piµi − αijPj→iµj→i, Pi − αijPj→i

)
(5.67)

where hij(x, y) = −
βijP

xi,xj
xi,xj x

βijP
xi,xi
xi,xj + y

. □

5.3.2 Implementation of Gaussian Circular BP with rate units
As in the binary case, we map directly equations defining eCBP (Equations (5.35), (5.36), (5.37),
and (5.38)) onto a rate model implementing exactly the extended Circular BP algorithm in the
Gaussian case. In this rate model, shown in Figure 5.2, populations are associated to oriented
edges xi → xj (messages) or to unitary variables xi (beliefs) and each population is composed
of two rate units. In the “belief populations”, one unit encodes for the product between the
precision (or inverse variance) and the mean vi = Pi × µi and another unit encodes for the
precision Pi. Similarly, in the “message populations”, one unit encodes for vi→j = Pi→j × µi→j

and another unit encodes for Pi→j . This makes this implementation part of other parametric
representational schemes like PPCs in which the activities of neurons determine the parameters
of the distribution (Fiser et al., 2010).

The “message synapses” are, as in the binary case, non-linear (see functions hij and gij),
collecting the (weighted) difference between the quantity associated to the marginal and the
one associated to the opposite message. Function gij , acting on a difference of precisions, is
a positive and increasing function, with a slope, minimum and maximum depending on the
statistical dependencies Pxi,xj between variables xi and xj . Function hij has a very similar
shape to gij with an additional multiplication by a difference of potentials (i.e., precision ×
mean): hij(x, y) = A+Bgij(y)x. Therefore gij(y) can be seen as a modulating factor to the linear
dependency of function hij on x. Similarly, in the binary case, the interaction function fij(x) =
ϕ−1(ϕ(βijJij)ϕ(x)) depends almost linearly (except at its bounds) on x, with a scaling factor Jij
depending on the statistical dependency between xi and xj , and represents the strength of the
connection in the neural implementation. Overall, as the algorithm does not differ much between
the binary and the Gaussian case, it indeed reflects in the proposed neural implementations,
which strongly look alike as well.

5.3.3 Effects of circularity
In this paragraph, we consider the Circular BP algorithm (i.e., extended Circular BP in the
particular case (κ,γ,β) = (1,1,1)) and look at the effects of circularity on the means and the
precisions µi and Pi of the belief or marginal distribution. The term “circularity” is defined by
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5. Circular Belief Propagation in more general cases

A B

Figure 5.2: Detailed neural implementation of Gaussian Circular BP with a rate net-
work, focusing on the connection between B1 and B2 from Figure 4.1B. (A) Example of proba-
bilistic graph, representing the probability distribution p(x1, x2) = ψ12(x1, x2)ψ1(x1)ψ2(x2). (B)
Each population is composed of a unit encoding for the precision P and a unit encoding for the
potential v (product between the precision and the mean: v = P × µ). Error neurons in green
explicitly encode the errors Pi − αijPj→i and most importantly vi − αijvj→i, which represents
the information on node i unknown to node j, that is, not brought by j.

1 − α, i.e., the distance to the value of 1 which corresponds to BP (and is optimal for acyclic
graphs, in which BP carries out exact inference).

First, increased amounts of circularity (that is, decreased αij) leads to increased precisions
(or equivalently, smaller variance). This indicates an increased confidence in the beliefs. A
mathematical justification is that Pi→j is an increasing function of all precisions of the incoming
messages and of the circularity level (1 − α) as gij is positive and increases as function of its
argument

∑
k∈N (i)\j Pk→i + (1 − αij)Pj→i. The increase in overconfidence due to circularity

in the Gaussian case reminds the binary case, which had the same exact conclusions (see for
instance Figure 1.4). This overconfidence effect is even increased in graphs with cycles, in which
information not only reverberates within an edge (i→ j → i→ . . . because of αij ̸= 1, but also
naturally through the cycles. Because all precisions are positive, it increases the already existing
overconfidence brought by the circularity 1 − α. For a demonstration that BP overestimates
precisions (or equivalently underestimates variances) in graphs with loops, see Weiss and Freeman
(1999).

As in the binary case, the effect of circularity seen in Gaussian Circular BP is not restricted
to overconfidence but also to wrongness of the estimation (and potentially, of the subsequent
decision). In the binary case, estimated beliefs (between 0 and 1) are not on the same side of
the neutral value of 0.5, as shown in Figures 1.3 and 1.4. In the Gaussian case, the estimation
of the means {µi} depends on the value of α and is only approximate. Interestingly, Weiss and
Freeman (1999) shows that means obtained by BP (α = 1) are exact if BP converges, even in
graphs with cycles. Because function hij determining

∣∣vi→j

∣∣ ≡ Pi→j

∣∣µi→j

∣∣ increases as function
of its first argument and decreases as function of its second argument, and because µ can be
negative, it is impossible to predict the evolution of vi = Pi × µi (nor the means µi themselves)
with circularity. Nevertheless, simulations show that increased circularity (that is, decreased
levels of α) generally leads to more extreme estimations (i.e., increased absolute means |µi|) in
addition to overestimated precisions, as shown in Figure 5.3.
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Figure 5.3: Effects of Circular BP on the estimation of means and variances. We
consider an acyclic probabilistic graph and generate its weights (interactions between variables)
and its inputs (unitary potentials) randomly. Full lines represent the best fitting polynomial
function of degree 3. (A) Estimated means increase in absolute value due to circularity (that
is, when α decreases from its value of 1 (which corresponds to BP). (B) Circularity increases
confidence, as Circular BP overestimates precisions for α < 1 and underestimates them for α > 1.

5.3.4 Circular BP and predictive coding
Circular BP and impaired predictive coding are currently the two main types of Bayesian models
in computational psychiatry. Both model brain processes underlying the emergence of suboptimal
behavior and psychosis.

Predictive coding The predictive coding theory (Rao and Ballard, 1999; Friston and Kiebel,
2009; Spratling, 2016, 2017), briefly mentioned in section 1.3, is currently the most advanced
theory of how the brain performs probabilistic inference. According to this theory, predictions
are implemented across the cortical hierarchy and prediction errors represent the mismatch be-
tween the top-down prediction (feedback) and the signal (feedforward), with the overall goal of
minimizing the prediction errors or surprise caused by a new stimulus, which is equivalent to
minimizing the free energy (Friston, 2005). This explains for instance the dampening of neural
responses when the sensory input can be predicted, as for the mismatch-negativity signal (MMN)
(Wacongne et al., 2012; Lieder et al., 2013).

Predictive coding and BP It remains to be seen how BP (or extended Circular BP) re-
lates to predictive coding, and more specifically, how Equations (5.41) and (5.42) relate to the
predictive coding equations, which have a very similar form. However, if we consider BP on
a hierarchical probabilistic graph (chain or tree) representing a hierarchy of concepts, node i
located at the bottom of the hierarchy receives information from the top (“prior”) and from the
bottom (“likelihood”) and µi = µj→i + W (µext→i − µj→i) where W = Pext→i

Pj→i+Pext→i
(for eCBP,

Pext→i gets replaced with γiPext→i). This corresponds to the idea of predictive coding that

µposterior = µprior + Plikelihood
Pposterior

(µlikelihood − µprior)

where (µlikelihood − µprior) represents the prediction error (see for example Figure 1 of Sterzer
et al. (2018)). A more detailed parallel between predictive coding and (Circular) BP still needs
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to be proposed, particularly in the more general case where node i is not at the bottom of the
hierarchy.

We insist here on the fact that the notions of “prediction error” from Predictive Coding
theories and from the current work are different. In Predictive Coding theories, prediction errors
represent the mismatch between the prediction arising from the top of the hierarchy (prior) and
the information from the bottom of the hierarchy (likelihood). In cases where likelihoods are
predicted (for instance, if sensory evidence does not change over time), then prediction errors
from Predictive Coding become zero. On the contrary, in the proposed neural implementation
of Circular BP, prediction errors are the difference between a knowledge of the marginal (that is,
of all the messages arriving to a node) and the knowledge brought by a single message. For this
reason, prediction errors do not become zero, even when sensory inputs do not vary in time.

Impaired predictive coding and Circular BP Alterations of predictive coding have been
widely considered as a model of psychosis and schizophrenia (Fletcher and Frith, 2009; Corlett
et al., 2009, 2011; Adams et al., 2013; Wacongne, 2016; Sterzer et al., 2018), including the
specific phenomenon of bistable perception (Schmack et al., 2013, 2015; Weilnhammer et al.,
2017; Schmack et al., 2017) (see also section 2.2) and even non-clinical hallucinations or tendencies
towards delusional ideation (Powers et al., 2017; Stuke et al., 2017, 2019) and the effects of the
ketamine drug (Corlett et al., 2007, 2016). More specifically, schizophrenia and/or psychosis
have been linked to aberrant weighting of prior beliefs and sensory information. Depending
on the specific task, conclusions are different: some studies conclude on the weakening of prior
beliefs in psychosis, while other studies present the exact opposite conclusions (see Sterzer et al.
(2018) and (Corlett et al., 2019) for reviews). However, as explained by Sterzer and colleagues,
these seemingly contradictory conclusions can be reconciled by assuming that priors are not
impacted the same way in all sensory modalities and at all levels of the hierarchy. Interestingly,
the predictive coding theory can be used to model behavior but also neural activity; for instance,
Weilnhammer et al. (2017, 2018) used model-based fMRI to find neural correlates of quantities
used in the behavioral model like (low-level or high-level) predictions or prediction errors.

It has been stated several times that because of their similarity, predictive coding theories
could be reconciled with BP and its variants (Jardri and Denève, 2013a; Notredame et al., 2014;
Denève and Machens, 2016; Jardri et al., 2017). The current work brings a contribution towards
that goal, by formulating (extended) Circular BP in the Gaussian case, and most importantly, by
showing through Equations (5.41) and (5.42), that the mean associated to the marginal distribu-
tion can be written as a linear combination of means associated to the messages and the mean of
the external input. Although the idea remains to be backed by simulations, impaired predictive
coding models could be related to Gaussian Circular BP by hypothesizing an asymmetry in the
loop correction factor (matrix α). This relates to the idea of ascending and descending loops
with different strengths, an idea which was only used sparingly in this thesis (see section 2.2 on
the modeling of bistable perception) but might turn out crucial in this case. This could be a first
step towards a deeper comprehension of the link between predictive coding theories of psychosis
and the Circular Belief Propagation algorithm.

5.4 Conclusion

Learning to carry out approximate inference in the general case The experiments
reported in chapter 3 demonstrated successes of supervised learning on rather small and binary
graphical models with pairwise interactions. However, many situations where humans perform
inference nearly optimally involve much more generative models. A follow-up of this work using
the theory developed in the current chapter could focus on more general graphical models, with
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5.4. Conclusion

higher-order interactions and/or with continuous variables, and investigate whether parameters
can be learnt (in a supervised but also unsupervised manner) in these cases.

More specifically, one might wonder what Circular BP could bring in the Gaussian case.
Indeed, Weiss and Freeman (1999) shows that in Gaussian factor graphs, when BP converges then
it produces the right means. Therefore, any change in the loop correction factor from Circular
BP would then alter the estimate of the mean. Nevertheless, what Circular BP can possibly do
is to approximate the precisions a lot better than BP, while controlling the error made while
estimating the means. Moreover, Circular BP could improve the convergence properties of BP
and thus help, as in the binary case, carrying out its role as an approximate inference algorithm.
Indeed, BP produces the correct means whenever it converges, but the beliefs produced in absence
of convergence have in general little to do with the true marginals (Murphy et al., 1999); see also
Figure 3.8 for the binary case. Another option would be to rely on BP to estimate the means,
and estimate the precisions using Circular BP (see Equations (5.35) and (5.37)) separately, with
appropriate amounts of loop correction (matrix α).

Proposing a neural implementation in the general case We proposed a neural model
of Circular BP for very specific probability distributions: Markov Random Fields with pairwise
interactions, composed of binary (in chapter 4) or Gaussian variables (in the current chapter).
This is already more general than most articles on the topic; for instance, most previous propo-
sitions of neural implementations of BP considered binary variables only Ott and Stoop (2006);
Steimer et al. (2009); Litvak and Ullman (2009). Because humans are nearly optimal at carrying
out probabilistic problems involving more various distributions than simply binary of Gaussian,
future work should investigate potential implementations for (more) general probability distri-
butions, such as the so-called exponential family of probability distributions. This will allow for
even more plausibility of (extended) Circular BP as a possible model of how the brain performs
probabilistic inference.

One problem of particular interest is the explaining-away problem, which is not covered by
the current work because explaining-away involves probabilistic interactions which are more than
pairwise. Note that the neural network implementing the explaining away problem would require
additional connections and complexity than simply mirroring the probabilistic graph, which was
enough for probability distributions with at most pairwise interactions.
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Chapter 6

Discussion

Thesis summary

Circular Inference (Jardri and Denève, 2013a) is a Bayesian model of psychiatric disorders, pre-
viously designed to account for clinical manifestations of schizophrenia and psychosis. Circular
Inference relies on the Circular Belief Propagation algorithm, an approximate probabilistic infer-
ence algorithm that proposes an additional parameter compared to Belief Propagation, called the
loop correction factor. This loop correction factor sets the amount of circularity in the inference
and is seen as a proxy to the (local) level of excitation-inhibition balance in the brain network
assumed to perform probabilistic inferences. According to this framework, circular reasoning and
psychotic symptoms arise for lowered loop correction factor, which would mean, for low levels of
inhibition compared to excitation.

The work presented in this thesis provides further evidence for Circular Inference as a model
of pathological inferences (e.g., hallucinations and delusions), near-optimal inferences, and in be-
tween non-clinical suboptimal inferences, ranging from usual inference biases (exemplified by the
bistable perception and the jumping to conclusions phenomena, and the general overconfidence)
to sub-clinical behavior like believing in conspiracy theories despite contradicting evidence; see
chapters 2 and 3.

Additionally, this thesis develops the Circular Inference model in different ways. First, con-
ceptually, by providing the Circular BP algorithm with a theoretical foundation, which is done
by relating it to existing algorithms such as Fractional BP (see chapter 3). Second, more practi-
cally, by proposing neural implementations (rate networks and spiking networks, for binary or
Gaussian variables) and biologically-plausible learning mechanisms overall describing how prob-
abilistic inferences could be carried out in the brain using this algorithm (see chapters 4 and 5).
Finally, the model is expanded theoretically, by investigating the convergence properties of the
algorithm, by writing Circular BP for more complex probability distributions than previously,
and by generalizing the initial Circular BP into extended Circular BP (see chapters 3 and 5).

In what follows, we first provide some general perspectives to the work, which can be considered as
“food for thought” and are not directly connected to each other. Next, we tackle open discussion
points. Last, we open up on potential follow-ups to the work as well as future applications.
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6. Discussion

General perspectives of the work

Marr’s levels of analysis and the Circular Inference model Marr (Marr, 1982) proposes
that computational models might be used to investigate three levels of analysis: the computa-
tional level (what dose the brain compute and why?), the algorithmic level (which representations
and algorithms can describe these computations?), and the physical level (how are these algo-
rithms implemented in neural circuits?). We develop in this thesis a normative model of how the
brain performs probabilistic inferences (the “what” question). We propose that neurons encode
for (log-)parameters of the probability distribution, and carry out the Circular Belief Propaga-
tion algorithm (the “which” question: representation and algorithm). This naturally leads to a
rate network implementation of inference where neurons fire proportionally to the variable they
encode, or equivalently, to a spiking network composed of neurons whose membrane potential
represent errors of prediction and spikes are emitted to reduce this error (the “how” question).
Note that the Circular Inference model is one of the few computational psychiatry models to
propose both a quantitative and mechanistic account of psychiatric symptoms (see Valton et al.
(2017)).

But what is even more interesting in Circular Inference is its simplicity. More precisely,
the parameter α both means something at the implementation level (loop correction factor,
controlling for the reverberation of information) and the physical level (excitation-inhibition
balance, or specifically in the implementations proposed, synaptic gain of the control unit).
This allows for simple predictions. For instance from the computational level to the physical
level: if people are suboptimal at carrying out a particular task, it implies that there is an
imbalance between excitation and inhibition during or for this task. But also from physical level
to computational level: a population which does not differ from another one in terms of the
excitation-inhibition balance (measurable with brain data) is not expected to show more circular
reasoning at the task (measurable with behavioral data).

Cyclic generative models and the structure of the recurrent brain In this work, we
expanded the scope of the Circular Inference model by using cyclic graphs. Considering cyclic
probabilistic graphs is an important step to model pathology using Circular Inference. First,
because tasks that we perform on a daily basis are often associated with generative models
having cyclic relationships. For instance, in the case of perception, fruits is a higher concept,
“causing” the concepts of apple and strawberry, both of which “causing” the concept of color red,
which is also caused by the concept of red peppers. Inferring whether there are red apples in
what seems to be (because it’s far) a fruit stand at the market given that you see a redish color
from a distance and that the harvest season for strawberries is about to end, is a task involving
cyclic dependencies. Obviously, hierarchical generative models (typically a chain of concepts)
are appealing because of their simplicity and because the brain looks hierarchical at first glance.
However, even though it is well accepted that the visual cortex has a hierarchical structure overall,
it might not be the case in all cortices and at all scales. We believe that other Bayesian models
which relate to BP would highly benefit from considering (tasks involving) cyclic generative
models. The second reason why considering cyclic graphs is important is that such graphs can
explain more strange types of inferences numerically. This allows for the modeling of specific
symptoms without the need for additional complexity. For instance, we believe that the inability
in Jardri and Denève (2013a) (and all the remaining work studying the Circular Inference) to
account for hallucinations while using a symmetric loop correction factor (matrix α) - that is,
without considering different treatments for the reverberation of sensory evidence versus prior -
relies on the fact that the probabilistic graphs considered are acyclic. The solution to this issue
was to selectively impair the so-called ascending loops (controlling for the reverberation of sensory
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evidence exclusively) or descending loops (controlling for the reverberation of prior knowledge
exclusively). We hypothesize that in the case where graphs are cyclic, the effects of ascending
loops or descending loops could at least partly be explained using a global loop correction factor
(that is, no differentiation between ascending and descending loops) with particular cyclic graph
structures.

This raises the need to know (or at least make hypotheses on) the type of generative model
associated to a task. For instance, in section 2.2, the bistable perception phenomenon was
modeled using an acyclic probabilistic graph composed of three nodes. According to the proposed
neural implementation of eCBP, if the generative model is known then it directly predicts the
associated structure of the network performing the inference. Interestingly, the hypothesized
difficulty (discussed in the following paragraph) of learning excitation-inhibition imbalance in
dense recurrent networks could potentially mean that brain networks are not hierarchical by
mistake. If the brain uses Circular BP to perform inference but cannot accurately learn a
good-enough excitation-inhibition balance (that is, how to cancel properly the effects of cycles),
then the brain must rather be reasoning over concepts organized hierarchically (acyclic generative
models which take the form of trees) or nearly hierarchically (few cycles in a globally hierarchical
generative model). More generally, an intriguing observation is that BP performs well on graph
structures usually found in the brain (e.g. on small-world structures (Litvak et al., 2009) and on
hierarchical structures) compared to random graphs. This might be linked to the need to make
probabilistic inferences (and potentially other tasks) with high performance; see also Litvak et al.
(2009) which develops the idea that many features of cortical networks foster good inferences,
probably as a result of evolution.

Optimality and suboptimality of BP, Circular BP, and of our inferences Related
to the previous paragraph, we point here at a logical interrogation arising from the results
of chapters 2 and 3. In chapter 2, we explain that Circular BP is a good model of suboptimal
inference. However, in chapter 3, we provide evidence that (extended) Circular BP performs near-
optimal inferences given appropriate loop correction factors. This raises the following question:
if the brain is able to perform approximate inference of high enough quality by using eCBP,
then why are our decisions suboptimal? Note that this piece of criticism can also be made to
other models and does not mean that eCBP is not carried out by the brain. A first option is
that the brain does not manage to find the perfect local excitation/inhibition ratios (that is,
the loop correction factors) ensuring a good quality of inference. More work needs to be done
to investigate the unsupervised learning rule provided in section 4.5, which might not find a
solution as good as with supervised learning and lead to suboptimal inferences. Another remark
is that we proposed a neural implementation of inference and learning in the binary case only,
and even if the inference and learning were shown to be good in this case, it is highly possible
that the results do not transpose to more general cases, for example to graphs with higher order
potentials. A second option of the reason why our inferences are not optimal is that the brain
does not only seek for optimality while doing inference but instead needs to trade-off between the
quality of inference and other factors. These factors include the need for fast inferences (e.g. the
necessary to react quickly while detecting dangerous predators), which is fostered by circularity
(by considering for instance that one should run away as soon as there the chances of having a
predator are at least 10%). A plausible intuition is that these other components (such as the
need for quick inferences) bias the quality of inference by purposefully adding circularity at the
expense of the sole quality of inference.

The suboptimality of BP in cyclic graphs (see chapter 3) interrogates the fact that Circular
BP is implemented in the brain. We discuss here briefly an alternative to the view presented in
the thesis, namely, that BP, not Circular BP, is carried out in the brain. According to this view,
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6. Discussion

the difference between performing exact and suboptimal/pathological inferences can be explained
by the structure of the generative problem, not by the inference algorithm which is fixed (BP). In
acyclic graphs, BP is exact and therefore explains optimal inferences. In contrast, in very cyclic
graphs, BP can be extremely inaccurate (extremely fallacious inferences, potential absence of
convergence) and thus could be a model of psychosis, as pointed out by Valton et al. (2017).
In other words, differences between a person with and without schizophrenia and would not be
based on the inference mechanism, but instead on the structure and weights of the generative
network. However, this hypothesis seems highly unlikely. Indeed, BP performs extremely poorly
in many cases, which is at odds with the substantial amount of evidence showing that inferences
made by humans are usually close to optimality (see Introduction chapter). In the simple case
of section 2.3 where BP was indeed considered as a model of normal brain functioning, but we
had to select carefully the parameters of the cyclic generative model in order for BP to indeed
perform well (e.g., by restricting the amplitude of the graphs weights, that is, of the interaction
strength between variables). If BP can already perform pathologically for such tiny small-world
graphs, humans would have never been able to develop as a species if their brains indeed carried
out BP, because we would not be able to treat more than a very limited range of probabilistic
problems yet arising on a daily basis.

If our brains implement (extended) Circular BP to carry out near-optimal inferences, then
finding the right amount of correction to be applied to counter the effects of cycles is equivalent
to balancing excitation and inhibition in the network, as stated in section 4.5. That means that
moving away from BP - that is, perform “circular reasoning” (α ̸= 1) in the initial sense of Jardri
et al. (2017) - is necessary for the quality of our inferences, as long as we move away from BP in
a direction opposite to the effects of the loops (anti circular reasoning).

Decision-making and overconfidence Until now, the only tasks considered to differentiate
people with more circular reasoning from people with less circular reasoning were the Necker
cube task (bistable perception), and (variants of) the beads task. Note that in all these tasks,
we suppose that participants report their true value of belief, meaning that we do not have
a particular decision model. Decision-making, similarly, is affected by the presence of circular
reasoning. However, decision-making also depends on possible additional biases at the moment of
making the decision. Vinckier et al. (2016) reports for instance an altered decision stochasticity
in controls under the influence of ketamine, which was proposed as a pharmacological model
of schizophrenia and/or the transition to psychosis. However, even by hypothesizing that there
is no decision noise, i.e., that the decision truly depends on the belief (marginal probability),
the picture is not so clear about the consequences of circular reasoning on decision-making as it
highly depends on the type of the task.

If we consider the MAP problem, that is, if the task requires to report the most probable
possibility, then circular reasoning has a small effect for binary variables, and a potentially strong
effect for Gaussian variables. For instance, in the example of Figure 1.3, most beliefs remain
on the same side of 0.5 except from one node. In the Gaussian case, however, means vary with
α, meaning that the MAP answer is different as soon as α is changed (more analyses would be
needed to estimate the strength of the variation with α).

On the contrary, for any other decision criterion than the MAP problem, the presence of
circular reasoning highly modifies the decision, depending on the specific task. An example of
other decision criterion is to answer A if the belief is above 80%, and no otherwise.
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Future directions and applications

Although the work presented in this thesis is mostly conceptual and theoretical, it has several
potential practical applications.

Fitting brain imaging data A very interesting direction would be to fit resting-state brain
imaging data (EEG) to our rate implementation of Circular BP, where the generative model asso-
ciated to the rate network (and defines, among others, its structure) is determined by anatomical-
functional connections measured in brain networks. Whole-brain atlases of the brain or connec-
tomes are typically composed of around 100 nodes (Yeh et al., 2018) , which makes it possible
to run Circular BP on. There are a number of potential technical issues which would make
impractical the fitting, but finding a correlation between the amount of circularity from brain
imagining data only and the severity of symptoms (or with the amount of circularity fitted from
behavioural data only) would be a giant leap. An collaboration on this topic is starting with
Pierre Yger, Sophie Denève and Renaud Jardri.

Fitting several probabilistic tasks to the same subject The field of computational psy-
chiatry is nowhere near explaining all symptoms associated to mental disorders. Eventually,
models must aim at understanding the heterogeneity of symptoms, of their time evolution, and
of responses to treatment among individuals. Until now (Jardri et al., 2017; Simonsen et al.,
2021; Chrysaitis et al., 2021), each participant to the study took one task only. Instead, we
suggest that having the same participants go through several tasks is a step in that direction.
Indeed, the amount of circularity as measured by α depends on the task (intuitively, because
it represents a local measure of the E/I ratio in the brain circuit performing the task). There-
fore, we believe that different tasks reflect potentially different components of the disorder. For
instance, a person with hallucinations might not be different from a person with delusions on
a given probabilistic task, but behave differently on another task. If this is indeed the case,
then probabilistic tasks as different as possible need to be imagined, in order to capture several
components of the disorder and possibly differenciate the subpopulations thanks to the fitted
amounts of circularity.

Fitting more complex probabilistic tasks Currently, the data fitted using the Circular
Inference model come from very simple probabilistic tasks composed of a “prior” and a “sensory
evidence” (Jardri et al., 2017; Simonsen et al., 2021); Seriès (2021), however, points out that it
is not clear how the high-level social cue from Simonsen et al. (2021) compares to the prior cue
from Jardri et al. (2017). Designing tasks where subjects need to reason on variables with cyclic
dependencies seems crucial. There are several reasons for that. First, it will ensure that subjects
are indeed performing inference, and instead do not have another simple strategy: intuitively,
the more complex the task is, the more intuitive the behavior is and therefore beliefs will truly be
the ones computed by the brain. The second reason is that an interesting prediction comes from
Circular BP in cyclic graphs: the fact that for certain tasks (that is, certain cyclic generative
models), the schizophrenia population will perform better than the control population. Indeed,
there are possible compensatory effects between the natural circularity arising from the graph
(which can be positive or negative) and the circular reasoning on this graph (see chapter 3).
Showing such an effect would undoubtedly be a big step for the Circular Inference model.

Social cognition and Circular Inference In terms of potential broader impact, this work
could help to understand the impact of the propagation of false information in terms of the
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creation of potentially wrong beliefs in the general population. An example of this is social net-
works, online or offline: exchange of information between people can be seen as a message-passing
procedure. The self-amplification of beliefs in local communities/societies (local networks) could
be seen as a consequence of information not being properly removed, as explained throughout
this text. The experiment described in Simonsen et al. (2021), in which the subject reports his
confidence level based on the sensory evidence and the information given by 4 other people paves
the way for such work. A related point is that Circular Inference could be used to understand
the impairments in social cognition in schizophrenia and in other mental disorders (Seriès, 2021).

Considering social cognition leads to the following broader questions: which evidence should
be shown to us (for instance on a web page) to create the least biased beliefs possible? In fact, the
formation and maintenance of false beliefs is probably at least equally impacted by the context
of clustered social groups (including online social networks) which tend to reinforce their beliefs,
than by the false reasoning of an individual of this group provided with contradictory sources of
information. Indeed, not only corrective factors can be chosen to minimize the reverberation of
given external evidence, but external evidence could also be chosen to minimize reverberation for
a given amount of corrective factors. In other words, whereas we propose in chapter 3 that loop
corrective factors could act to cancel the effects of cycles in probabilistic graphs, carefully chosen
evidence presented to the network could limit the effects of circularity in probabilistic graphs.
An example of experiment testing circular reasoning in a group would be the following: some
evidence about a particular statement (e.g., it will rain tomorrow), more or less reliable (e.g., is
provided to certain random people of the group. Each person can only interact with his given
“neighbors”, in the form of a single number. We let communication take place in a synchronized
manner (similarly to message-passing algorithms, including BP) until convergence, and people
are asked to report their beliefs after each new time they talk to all of their neighbors.

Using Circular Belief Propagation in real life: future leads for machine learning
research We have proposed with the Circular BP algorithm an alternative to Fractional BP
to perform approximate probabilistic inference. We also proposed a way of improving further
the power of Circular BP with the “Circular BP with memory” model (see section 3.6), which
could not have been possible with Fractional BP. Such algorithms could be applied to inference
problems in real life, replacing BP or algorithms based on BP. Note that eCBP has a similar
complexity to BP, and thus it could be implemented as efficiently, but with increased performance.
Of course, that requires to learn (in a supervised or unsupervised way) the parameters of the
algorithm adapted to the task to be performed, and fix these parameters once for all. note that
this is already the case for other algorithms, for instance artificial neural networks encoded in
our phones to process images from the camera. A reliable unsupervised learning rule for eCBP
would even allow an inference system to learn on-line a new task without being reprogrammed
(as supervised learning is in general a lot more time- and resource-consuming).

It is crucial for the prediction of an inference system to be (nearly) exact: such systems
are used in many key domains including medical diagnosis, and having biased or overconfident
predictions could cause death (for instance, if an algorithm decides to not accept a person to the
hospital based on its mild symptoms although the person needed treatment). However, better
methods like extended Circular BP could help reducing such systematic biases. Future work will
need to determine whether the error made by eCBP can always be reduced to an “acceptable”
threshold value, whatever the probabilitiy distribution is. More generally, the type and amplitude
of the error made by eCBP needs to be further investigated.

158



Appendix A

Theoretical background: From Gibbs
free energy approximation to BP and its
variants

Here we provide the theoretical background underlying Belief Propagation and its variants (Frac-
tional BP, Circular BP, extended Fractional BP, extended Circular BP, and all their special
cases). Starting from an approximation of the Gibbs free energy, we derive the expression of
extended Fractional BP , before considering the special case of binary variables and pairwise
factors.

From Gibbs free energy approximation to messages

In what follows, we derive the message-passing update equations of the extended Fractional BP
algorithm (and its special cases BP, Fractional BP, Power EP and α-BP, among others) based
on the following approximation of the Gibbs Free Energy Gapprox:

Gapprox =
∑
(i,j)

β̂ij
∑

(xi,xj)

bij(xi, xj) log
( bij(xi, xj)
bi(xi)bj(xj)

)
−
∑
(i,j)

βij
∑

(xi,xj)

bij(xi, xj) log
(
ψij(xi, xj)

)
+
∑
i

γ̂i
∑
xi

bi(xi) log
(
bi(xi)

)
−
∑
i

γi
∑
xi

bi(xi) log
(
ψi(xi)

)
(A.1)

where (β, β̂,γ, γ̂) are called counting numbers (see Yedidia et al. (2005)), with entropic counting
numbers (β, β̂,γ, γ̂) and average energy counting numbers (β, β̂,γ, γ̂). In the following, we de-
fine κ = 1/γ̂ and α = 1/β̂, for consistency with the main text.

Special cases of this approximation lead to different algorithms. BP corresponds to (α,κ,β,γ) =
(1,1,1,1), Fractional BP, Power EP, and α-BP to (κ,β,γ) = (1,1,1), nodal Fractional BP to
(β,γ) = (1,1) and extended BP for β = 1, among others. Circular BP and extended Circular
BP do not correspond to a special case of (α,κ,β,γ). Instead, as explained below in the text,
(extended) CBP is defined as a approximation of the message update equation of (extended)
FBP, not of the Gibbs Free Energy.

The message update equations are simply fixed-point equations of Gapprox, meaning that the
beliefs computed by eFBP are stationary points of the approximate Gibbs free energy Gapprox.
This demonstration is similar to the one for BP (Yedidia et al., 2001, 2003), with the additional
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A. Theoretical background: From Gibbs free energy approximation to BP and its
variants

parameters (κ, α,γ, β). BP is closely linked to the Bethe free energy GBethe: fixed points of
Loopy BP are stationary points of the Bethe free energy (Yedidia et al., 2001), and stable fixed
points of Loopy BP correspond to minima of the Bethe free energy (Heskes, 2002). eFBP is
similarly linked to Gapprox (which generalizes the Bethe free energy GBethe).

The goal is to minimize the Gibbs Free Energy, so we form a Lagrangian to take the con-
straints into account. The Lagrangian is formed by adding Lagrange multipliers (µ, λ) to Gapprox.
Lagrange multipliers µi corresponds to the normalization constraint

∑
xi

bi(xi) = 1 , while λi→j(xj)

corresponds to the marginalization constraint
∑
xi

bij(xi, xj) = bj(xj). The Lagrangian is equal
to:

L = Gapprox +
∑
i

µi

(∑
xi

bi(xi)− 1
)

+
∑
(i,j)

∑
xj

λi→j(xj)
(∑

xi

bij(xi, xj)− bj(xj)
)

+
∑
(i,j)

∑
xi

λj→i(xi)
(∑

xj

bij(xi, xj)− bi(xi)
)

(A.2)

The partial derivatives of the Lagrangian are:
∂L

∂bi(xi)
= −

∑
j∈N (i)

1
αij

+ 1
κi

+ 1
κi

log(bi(xi))− γi log(ψi(xi)) + µi −
∑

j∈N (i)

λj→i(xi)

∂L
∂bij(xi, xj)

= 1
αij

+ 1
αij

log
( bij(xi, xj)
bi(xi)bj(xj)

)
− βij log(ψij(xi, xj)) + λj→i(xi) + λi→j(xj)

It comes, by cancelling the partial derivatives of the Lagrangian, the following expression for the
unitary beliefs:

bi(xi) ∝ ψi(xi)κiγi
∏

k∈N (i)

exp
(
κiλk→i(xi)

)
(A.4)

and the pairwise beliefs:

bij(xi, xj) ∝ψij(xi, xj)αijβijψi(xi)κiγiψj(xj)κjγj
∏

k∈N (i)\j

exp
(
κiλk→i(xi)

) ∏
k∈N (j)\i

exp
(
κjλk→j(xj)

)
× exp

(
λj→i(xi)

(
κi − αij

))
exp

(
λi→j(xj)

(
κj − αij

))
(A.5)

Now defining the messages as a function of the Lagrange multipliers mj→i(xi) ≡ exp(λj→i(xi)),
the approximate marginals bi(xi) and approximate pairwise marginals bij(xi, xj) can be written
simply as:

bi(xi) ∝

(
ψi(xi)γi

∏
k∈N (i)

mk→i(xi)

)κi
(A.6)

bij(xi, xj) ∝ ψij(xi, xj)αijβijψi(xi)κiγiψj(xj)κjγj
∏

k∈N (i)\j

mk→i(xi)κi

×
∏

k∈N (j)\i

mk→j(xj)κjmj→i(xi)κi−αijmi→j(xj)κi−αji (A.7)
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Eventually, thanks to the constraint
∑
xi

bij(xi, xj) = bj(xj), we obtain the relation between the
messages m:

mi→j(xj)κj ∝

(∑
xi

ψij(xi, xj)αijβij
(
ψi(xi)γi

∏
k∈N (i)\j

mk→i(xi)mj→i(xi)1−αij/κi
)κi)(

mi→j(xj)
)κj−αij

(A.8)

⇔ mi→j(xj) ∝

(∑
xi

ψij(xi, xj)αijβij
(
ψi(xi)γi

∏
k∈N (i)\j

mk→i(xi)mj→i(xi)1−αij/κi
)κi)1/αij

(A.9)
The eFBP algorithm consists of running iteratively the fixed-point equation (A.9):

mnew
i→j(xj) ∝

(∑
xi

ψij(xi, xj)αijβij
(
ψi(xi)γi

∏
k∈N (i)\j

mold
k→i(xi)mold

j→i(xi)1−αij/κi
)κi)1/αij

(A.10)
Note that one could also use directly Equation (A.8) instead of (A.9) to define the eFBP algo-
rithm:

mnew
i→j(xj) ∝

(∑
xi

ψij(xi, xj)αijβij
(
ψi(xi)γi

∏
k∈N (i)\j

mold
k→i(xi)mold

j→i(xi)1−αij/κi
)κi)1/κj(

mold
i→j(xj)

)1−αij/κj

(A.11)
In fact, Equations (A.11) and (A.10) correspond respectively to the damped (with a particular
damping value) versus undamped update equation; see section 4.2.1. Fractional BP (Wiegerinck
and Heskes, 2002), which is derived similarly to extended Fractional BP, uses Equation (A.11)
(with (κ,γ,β) = (1,1,1)) rather than Equation (A.10). There is no absolute better choice:
fixed points obtained are identical in both cases, and damping might provide better convergence
properties but might slow down the system in cases where the algorithm would have converged
without damping (see section 4.2.1).

Special case of extended FBP: Binary case, pairwise factors

Until now we simply hypothesized that factors were at most pairwise. In this paragraph we
also consider variables xi to be binary. We place ourselves in the log domain and we define
Mi→j ≡ 1

2 (log(mi→j(+1)) − log(mi→j(−1))) and Bi ≡ 1
2 (log(bi(+1)) − log(bi(−1)))). We also

write the factor ψij as the following the 2x2 non-negative matrix:

ψij(xi, xj) ≡

(
ψ0,0
ij ψ0,1

ij

ψ1,0
ij ψ1,1

ij

)
(A.12)

We obtain from Equations (A.6) and (A.10):
Mi→j = gij

(
Bi − αijMj→i

)
Bi = κi

( ∑
j∈N (i)

Mj→i + γiMext→i

) (A.13a)

(A.13b)
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A. Theoretical background: From Gibbs free energy approximation to BP and its
variants

where

gij(x) = 1
2αij

log

((
ψ1,1
ij

)αijβij
e2x +

(
ψ1,0
ij

)αijβij(
ψ0,1
ij

)αijβij
e2x +

(
ψ0,0
ij

)αijβij
)

(A.14)

Equations (A.13a) and (A.13b) correspond respectively to Equations (3.20a) and (3.20b) from
the main text. However, the expression of function gij is different from the main text, which
only considers the Ising model case: see below. Equation (A.14) described a sigmoidal function
with parameters 4 parameters ψ0,0

ij , ψ
0,1
ij , ψ

1,0
ij , ψ

1,1
ij .

Even more special case of extended FBP: Ising model

The Ising model, which we consider in the main text, is itself a particular case of the case
considered just above. In the general case described above, pairwise interactions can be described
by a non-negative 2x2 matrix with independent coefficients. In an Ising model, pairwise factors
take a specific form: ψij(xi, (xj) ∝ exp(Jijxixj).

ψij(xi, xj) ≡

(
eJij e−Jij

e−Jij eJij

)
(A.15)

=⇒ gij(x) = 1
2αij

log

(
eαijβijJij+2x + e−αijβijJij

e−αijβijJij+2x + eαijβijJij

)
It comes after a few manipulations, using log(x) = 2ϕ−1(x−1

x+1
)

(where ϕ = tanh) and ϕ(x) =
2σ(2x)− 1:

gij(x) = 1
αij

ϕ−1

(
ϕ
(
αijβijJij

)
ϕ
(
x
))

(A.16)

We thus recover the expression of gij given in the main text. gij is a sigmoidal function
depending on Jij (strength of the interaction between variables xi and xj) and αij (inverse
entropic counting number associated to the edge (i, j)).

Eventually, we recover the expression of the eFBP algorithm given in the main text:
Mi→j = gij

(
Bi − αijMj→i

)
Bi = κi

( ∑
j∈N (i)

Mj→i + γiMext→i

) (A.17a)

(A.17b)

with

gij(x) = 1
αij

ϕ−1

(
ϕ
(
αijβijJij

)
ϕ
(
x
))

(A.18)

Relation to other generalized BP algorithms (including Fractional BP,
Power EP, alpha BP) and to Circular BP

Here we show the equivalence between nodal Fractional BP with γ = 1, Fractional BP, Power
EP, and α-BP, if we consider a damped version of the algorithms.

In this work (see Equation (3.2)) we tackle the particular case where the counting numbers
associated to the average energy are equal to 1: (β,γ) = (1,1). We use the same regions as in
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the Bethe approximation, with modified entropic counting numbers (1/α, 1/κ) but with average
energy counting numbers equal to 1.

The special case of Belief Propagation is recovered for (κ,α,β,γ) = (1,1,1,1).
Fractional BP (Wiegerinck and Heskes, 2002), Power EP (Minka, 2004) and α-BP (Liu et al.,

2019) correspond to (κ,β,γ) = (1,1,1), and more particularly use the damped message update
equation (A.8) rather than its undamped version (A.9) (see damping in section 4.2.1).

Circular BP (Jardri and Denève, 2013a) does not correspond to any choice of (α,κ,β, or γ),
but can be seen as an approximation of the case (κ,β,γ) = (1,1,1) as explained below. Its
message update equation is:

mi→j(xj) ∝
∑
xi

ψij(xi, xj)ψi(xi)
∏

k∈N (i)\j

mk→i(xi)mj→i(xi)1−αi→j (A.19)

(see Equation (1.3) for the BP equivalent). This leads in the binary case to Mi→j = fij(Bi −
αi→jMj→i) where function fij is:

fij(x) = 1
2

log

(
ψ1,1
ij e

2x + ψ1,0
ij

ψ0,1
ij e

2x + ψ0,0
ij

)
(A.20)

in the general case, and
fij(x) = ϕ−1(ϕ(Jij)ϕ(x)

)
(A.21)

for an Ising model. Because functions gij and fij are similar:

gij(x) ≡ 1
αij

ϕ−1

(
ϕ
(
αijβijJij

)
ϕ
(
x
))
≈ ϕ−1

(
ϕ
(
βijJij

)
ϕ
(
x
))
≡ fij(x) (A.22)

, then the message update equation of Circular BP approximates the update equation corre-
sponding to (κ,β,γ) = (1,1,1).

Likewise, we can propose an extended Circular BP algorithm, defined by an approximation
of eFBP given in Equation (A.17):

Mi→j = fij

(
Bi − αijMj→i

)
Bi = κi

( ∑
j∈N (i)

Mj→i + γiMext→i

) (A.23a)

(A.23b)

as

gij(x) = 1
αij

ϕ−1

(
ϕ
(
αijβijJij

)
ϕ
(
x
))
≈ ϕ−1

(
ϕ
(
βijJij

)
ϕ
(
x
))

= fij(x) (A.24)

This can be rewritten: 
Mi→j = ϕ−1(ϕ(βijJij)ϕ(Bi − αijMj→i)

)
Bi = κi

( ∑
j∈N (i)

Mj→i + γiMext→i

) (A.25a)

(A.25b)

instead of the initial system (extended Fractional BP):
Mi→j = 1

αij
ϕ−1(ϕ(αijβijJij)ϕ(Bi − αijMj→i)

)
Bi = κi

( ∑
j∈N (i)

Mj→i + γiMext→i

) (A.26a)

(A.26b)
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MOTS CLÉS
psychiatrie computationnelle, neurosciences théoriques, inférence probabiliste, propagation des convictions, inférence
circulaire, propagation circulaire des convictions, déséquilibre excitationinhibition, schizophrénie, psychose

RÉSUMÉ
Lemodèle d'inférence circulaire est unmodèle bayésien de troubles psychiatriques, initialement conçu pour rendre compte
des manifestations cliniques de la schizophrénie et de la psychose. L'inférence circulaire repose sur l'algorithme de propa
gation circulaire de croyances, un algorithme d'inférence probabiliste approximative qui propose un paramètre additionnel
comparé à l'algorithme de propagation de croyances ou Belief Propagation. Ce paramètre est appelé le facteur de correc
tion des boucles. Il fixe la quantité de circularité dans l'inférence et est considéré comme représentant le niveau d'équilibre
(local) entre les processus d'excitation et d'inhibition dans le réseau cérébral supposé réaliser les opérations d'inférence
probabiliste. Dans ce cadre, les raisonnements circulaires et les symptômes psychotiques émaneraient d'une diminution
du facteur de correction de boucles, c'estàdire d'un faible niveau d'inhibition comparé au niveau d'excitation.
Le travail présenté dans cette thèse permet d'appuyer le modèle d'inférence circulaire comme modèle d'inférences
pathologiques (par exemple les hallucinations et les idées délirantes), d'inférences presqueoptimales, et entre les deux
d'inférences sousoptimales non cliniques, allant des biais usuels d'inférence (comme l'illustrent les phénomènes de per
ception bistable et de prise de décision hâtive, et la confiance excessive généralisée) aux comportements infracliniques
comme le fait de croire en des théories du complot malgré des éléments contredisant ces théories.
De plus, cette thèse développe le modèle d'inférence circulaire de façons diverses. Premièrement, conceptuellement, en
procurant à l'algorithme de propagation circulaire de croyances une fondation théorique, ce qui est réalisé en le reliant à
des algorithmes existants comme la propagation fractionnaire de croyances. Deuxièmement, de façon plus pratique, en
proposant des implémentations neurales (réseaux de neurones à rate ou à spikes, pour des variables binaires ou gaussi
ennes) et des mécanismes d'apprentissage biologiquement plausibles décrivant tous les deux comment les inférences
probabilistes pourraient être réalisées dans le cerveau en utilisant cet algorithme. Enfin, le modèle est développé sur
le plan théorique, en examinant les propriétés de convergence de l'algorithme de propagation circulaire, en formulant
l'algorithme pour des distributions de probabilité plus complexes que précédemment, et en proposant une généralisation
avec l'algorithme de propagation circulaire étendu.

TITRE
La propagation circulaire de croyances comme modèle d'inférences optimales et sousoptimales dans le cerveau : exten
sion de l'algorithme et proposition d'implémentation neurale

TITLE
Circular Belief Propagation as a model for optimal and suboptimal inference in the brain: extending the algorithm and
proposing a neural implementation

ABSTRACT
Circular Inference is a Bayesian model of psychiatric disorders, previously designed to account for clinical manifestations
of schizophrenia and psychosis. Circular Inference relies on the Circular Belief Propagation algorithm, an approximate
probabilistic inference algorithm that proposes an additional parameter compared to Belief Propagation, called the loop
correction factor. This loop correction factor sets the amount of circularity in the inference and is seen as a proxy to the
(local) level of excitationinhibition balance in the brain network assumed to perform probabilistic inferences. According
to this framework, circular reasoning and psychotic symptoms arise for lowered loop correction factor, which would mean,
for low levels of inhibition compared to excitation.
The work presented in this thesis provides further evidence for Circular Inference as a model of pathological inferences
(e.g., hallucinations and delusions), nearoptimal inferences, and in between nonclinical suboptimal inferences, ranging
from usual inference biases (exemplified by the bistable perception and the jumping to conclusions phenomena, and the
general overconfidence) to subclinical behavior like believing in conspiracy theories despite contradicting evidence.
Additionally, this thesis develops the Circular Inference model in different ways. First, conceptually, by providing the Cir
cular BP algorithm with a theoretical foundation, which is done by relating it to existing algorithms such as Fractional
BP. Second, more practically, by proposing neural implementations (rate networks and spiking networks, for binary or
Gaussian variables) and biologicallyplausible learning mechanisms overall describing how probabilistic inferences could
be carried out in the brain using this algorithm. Finally, the model is expanded theoretically, by investigating the conver
gence properties of the algorithm, by writing Circular BP for more complex probability distributions than previously, and
by generalizing the initial Circular BP into extended Circular BP.

KEYWORDS
computational psychiatry, theoretical neuroscience, probabilistic inference, belief propagation, circular inference, circular
belief propagation, excitationinhibition imbalance, schizophrenia, psychosis
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