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Résumé

Introduction
La fusion nucléaire est le processus qui anime le plasma de cœur des étoiles et
consiste à fusionner des noyaux légers, typiquement des isotopes de l’hydrogène,
en un noyau plus lourd comme l’hélium. Le déficit de masse engendré via ce type
réaction donne en sortie une quantité d’énergie importante, le tout sans émettre de
gaz à effet de serre. Cette réaction de fusion via un confinement gravitationnel est
impossible à effectuer sur Terre et il est donc nécessaire de trouver un autre moyen
de confiner un plasma à plusieurs millions de Kelvin si l’on souhaite exploiter cette
source d’énergie.

Context
Fusion plasmas and tokamaks
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Figure 1: Equilibre entre pression gravitationnelle et pression radiative due aux
réactions de fusion nucléaire dans une étoile. La zone encerclée en rouge correspond
à la région où les conditions permettant la fusion nucléaire sont réunies.

Le moyen le plus étudié pour atteindre cet objectif aujourd’hui est la fusion
par confinement magnétique. En effet, les particules chargées suivent une trajec-
toire hélicoïdale autour des lignes de champ magnétique. Il est donc possible de
construire un réacteur, usuellement de forme toroïdale, permettant de confiner un
plasma moins dense que dans le cœur des étoiles, mais à des températures 10 fois
plus élevées. Un champ magnétique dans l’axe principal du tore est généré par des
bobines externes transverses (i.e. poloïdales). Une série de bobines complémen-
taires permet par induction d’injecter un courant dans ce même axe toroïdal qui
génère à la fois un chauffage ohmique du plasma et un champ magnétique trans-
verse qui, une fois combiné avec le premier champ, créent un champ total hélicoïdal
reposant sur des surfaces toroïdales imbriquées. Les particules qui évoluent sur ces
surfaces fermées sont alors dites confinées. Cependant, le confinement du plasma



dans un tokamak n’est pas parfait; les collisions Coulombiennes permettent aux ions
de dériver vers les parois en traversant la dernière surface de flux fermée du tokamak
(i.e. la séparatrice). Ce phénomène de transport est appelé transport « néoclas-
sique ». Cependant, les coefficients de transports calculés à partir de la théorie
néoclassique sont 1 à 2 ordres de grandeurs en dessous des valeurs expérimentales.

Figure 2: Représentation d’un tokamak moderne en 3D. Image tirée de [1].

Le transport observé dans les tokamaks est dû principalement à des instabil-
ités se développant en turbulence en puisant dans l’énergie libre stockée dans les
gradients de température notamment, augmentant ainsi grandement le transport
de chaleur et de particules vers les parois du tokamak. Ce transport peut toute-
fois être limité en déclenchant une bifurcation de l’état du système qui s’opère en
injectant suffisament d’énergie dans le tokamak via divers méthodes de chauffage.
Une réduction très importante du transport et un raidissement des profils de pres-
sion au bord est alors observé ; une « barrière de transport » s’est mise en place.
Cette transition L-H (i.e. « Low - High ») est reproductible expérimentalement
dans de nombreux tokamaks et est le mode de fonctionnement standard envisagé
pour ITER. Cependant, même en mode H, des flux importants de particules et de
chaleur peuvent atteindre la paroi et l’endommager. Des impuretés peuvent alors
contaminer le cœur du plasma et entraîner une disruption. C’est notamment le
cas du tungstène qui n’est pas complètement ionisé dans les conditions des plasmas
de cœur et réémet alors une grande partie de l’énergie qu’il absorbe sous forme de
rayonnement. Dans cette thèse, nous avons étudié via GYSELA, un code gyrociné-
tique 5D massivement parallélisé développé par le CEA Cadarache, les différents
mécanismes permettant de générer les barrières de transport. Pour cela, une source
de cisaillement poloïdal a été utilisée afin de réduire localement l’intensité turbu-
lente. La réduction importante de la taille moyenne des structures turbulentes a
engendré une réduction équivalente du flux de chaleur et du coefficient de diffusivité
associé, permettant d’établir clairement la formation d’une barrière de transport.
Enfin, des simulations en présence d’impuretés (He, Ar, W) en présence de cette
barrière de transport ont montré que la barrière de transport ainsi générée empêche



les impuretés lourdes venant de l’extérieur de contaminer le plasma de cœur en
augmentant notamment l’effet d’écrantage thermique, améliorant ainsi la qualité
du confinement.

Transport néoclassique et turbulent

Pour comprendre le transport néoclassique, il est nécessaire de comprendre le trans-
port dit classique. Ce dernier, schématiquement représenté sur la figure 3, consiste
simplement à traiter le transport collisionnel en présence d’un champ magnétique.
Les particules auront alors tendance à être transportées perpendiculairement au
champ magnétique après chaque collision. En prenant alors en compte la géométrie
torique du tokamak (i.e. sa courbure), et donc le gradient de champ magnétique
qui en découle naturellement, on entre alors dans la théorie dite néoclassique. Cette
dernière montre alors qu’une partie du transport observé dans les tokamaks est dû
en partie à ce canal de transport.

𝐵 𝐵

Figure 3: Représentation schématique d’une collision entre deux particules chargées
dans un plan perpendiculaire au champ magnétique. Cette représentation est sché-
matique; En effet, les collisions sont à faible déflexion et la situation schématisée ici
représente l’effet cumulatif d’un grand nombre de collisions.

Le transport turbulent est, de manière analogue à ce qui est observé en hy-
drodynamique, dû à des structures de type "tourbillon" qui engendrent, dans les
tokamaks, un flux d’énergie, de moment et de particules orienté vers les parois.
La turbulence sous-jacente peut avoir de multiples origines, comme des instabilités
macroscopiques liées à la magnétohydrodynamique (MHD) et à l’équilibre global
du plasma qui peuvent entraîner des disruptions du plasma. Aussi, des micro-
instabilités, d’une échelle allant de la longueur de Debye au rayon de Larmor, peu-
vent croître exponentiellement dans le plasma et engendrer ces structures favorisant
le transport de chaleur et de particules.

Il est important de noter que ces micro-instabilités sont, le plus souvent, dues à
des écarts à la neutralité électrique, d’où la nécessité de modéliser les plasmas avec
une approche multi-espèces en prenant en compte les électrons et les ions séparem-
ment. Ces écarts à la quasi-neutralité entraînent donc des petites fluctuations de
charge d’espace qui augmenteront en retour l’intensité des fluctuations initiales. La
phase de croissance linéaire (i.e. exponentielle) de ces instabilités prendra alors fin



lorsque des interactions non-linéaires entreront en jeu et permettront la saturation
en intensité de la turbulence.

Dans les tokamaks, il existe de nombreuses instabilités dont certaines sont com-
munes à l’hydrodynamique. C’est le cas notamment des instabilités de type Kelvin-
Helmholtz (cisaillement de vitesse entre deux couches de fluides/plasma dont les
vitesses moyennes sont différentes) ou encore de type Rayleigh-Taylor (deux couches
de fluides de densité différentes).

Cependant, dans cette étude, nous nous concentrerons sur les micro-instabilités
de type ITG (Ion Temperature Gradient), qui puisent leur énergie dans l’énergie
libre stockée dans le gradient de température des ions. Cette instabilité engendre
des structures radiales le long desquelles le transport de chaleur et de particules
s’opère. Elle est responsable d’une grande partie du transport de chaleur turbulent
observé dans les tokamaks et explique notamment les coefficients de transport élevés
mesurés.

Barrière de transport et transport d’impuretés
Bien que le confinement soit mis à mal par le transport turbulent, le mécanisme
de transition L-H permet, au moins localement, de réduire ce transport. Dans
ces conditions, le transport néoclassique domine dans la région où la barrière de
transport est présente. Il est donc nécessaire, si l’on souhaite étudier le transport
d’impuretés dans les tokamaks, d’utiliser un modèle prenant en compte ces deux
canaux de transport.

C’est pour cette raison que cette étude s’appuie sur GYSELA, un code gy-
rocinétique 5D massivement parallélisé, qui a pour avantage de traiter de manière
cinétique plusieurs espèces ioniques dans un plasma de coeur. La théorie gyrociné-
tique permet de réduire la dimensionnalité du système, et donc son accessibilité
aux supercalculateurs, en faisant la moyenne sur le mouvement cyclotronique des
particules chargées et en changeant habilement de coordonnées via la définition
d’invariants (i.e. le moment magnétique µ).

En utilisant une source qui simule les effets d’un chauffage externe, un cisaille-
ment de vitesse poloïdale (i.e. transverse à l’axe principal du tore) a pu être généré
pour l’espèce principale, ici du deuterium. Ce cisaillement, généralement observé au
niveau des barrières de transport durant les transitions L-H, a généré par conséquent
une barrière de transport radialement localisée. Cette barrière a eu plusieurs effets
notables;

• Une réduction locale très importante du flux de chaleur turbulent et du coef-
ficient de transport associé.

• Une réduction de la taille moyenne des structures turbulentes au voisinage de
la barrière.

• Une augmentation légère de la température au coeur ainsi qu’un raidissement
du gradient de température au niveau de la barrière.

Une fois les caractéristiques de la barrière comprises, des simulations similaires
ont pu être conduites, cette fois-ci en présence d’impuretés. En fonction du choix
des impuretés, différents régimes de collisionalité sont pris en compte :



• L’hélium, qui de par sa faible masse sera plus sujet à la turbulence et moins
au transport néoclassique (i.e. collisionnel), subira un régime de collisional-
ité faible appelé régime "Banane" et sera principalement transporté vers les
parois.

• L’argon, injecté au niveau des parois et du diverteur pour réduire le flux de
chaleur reçus par ces composants, et qui subira un régime de collisionalité
intermédiaire nommé "Plateau" et aura tendance à être transporté vers le
coeur.

• Le tungstène, qui provient de la pulvérisation des parois du diverteur, et qui
ne doit pas s’accumuler dans le coeur du plasma. Par sa masse élevée, cette
espèce est dans un régime de collisionalité élevé appelé "Pfirsch-Schlutter" et
aura tendance à être transporté vers le coeur du plasma à cause du transport
néoclassique. Cette espèce, de par son numéro atomique élevé, absorbera
une grande partie de l’énergie du plasma pour s’ioniser jusqu’à disruption du
plasma.

En injectant des impuretés en présence de la barrière de transport, une réduction
très importante du transport turbulent de particules est observé pour les impuretés,
de manière analogue aux observations faites pour le flux de chaleur du deuterium.
Concernant le transport néoclassique, ce dernier est affecté par l’asymétrie poloïdale
de la source elle-même, en plus de l’effet de la barrière de transport. En revanche, le
raidissement du profil de température de l’espèce principale entraîne, pour les im-
puretés les plus lourdes, un effet "d’écrantage thermique" permettant de repousser
ces impuretés vers l’extérieur et donc d’améliorer le confinement et l’efficacité du
tokamak.

Cette étude pourrait être poursuivie en utilisant notamment des électrons ciné-
tiques et non adiabatiques. La synergie entre les instabilités ITG et TEMs (Trapped
Electron Modes) pourrait donner des résultats plus réalistes, la turbulence TEM
pouvant avoir un rôle très important sur le transport. Il serait aussi souhaitable
d’utiliser une version électromagnétique du code prenant en compte les effets des
variations du champ magnétique de manière auto-cohérente. Des conditions au bord
et une configuration magnétique plus réalistes, comme une configuration diverteur
par exemple, seraient aussi souhaitables. Coupler GYSELA avec un code de bord
plus adéquat afin de créer un modèle intégré permettrait de répondre à ce besoin.





Abstract

Nuclear fusion is the process that powers stars and consists in fusing light nuclei,
typically hydrogen isotopes, into a heavier nucleus such as helium. The mass deficit
obtained through this type of reaction yields significant amount of energy without
emitting greenhouse gases. Fusion through gravitational confinement is impossible
to do on Earth. Another way of confining fusion plasma, which are at several
millions Kelvin, is required if we want to operate this source of energy.

Nowadays, the most widely studied way of achieving fusion is by magnetically
confining the plasma. Since charged particles follow an helical trajectory around
magnetic field lines, it is therefore possible to build a reactor, usually toroidal in
shape, to confine a plasma that is less dense than in the cores of stars, but at
temperatures 10 times higher. A magnetic field along the main axis of the torus is
generated by external transverse (i.e. poloidal) coils. A plasma current along the
same toroidal axis is induced by auxiliary coils. This current generates a transverse
magnetic field which, when combined with the first field, creates a total helical field
relying on closed nested toroidal surfaces. The particles evolving in these closed
surfaces are then said to be confined.

However, plasma confinement in a tokamak is not perfect; Coulomb collisions
allow ions to drift towards the walls by crossing the last closed flux surface of the
tokamak (i.e. the separatrix). This transport phenomenon is known as "neoclas-
sical" transport. However, the transport coefficients calculated using neoclassical
theory are 2 to 3 orders of magnitude lower than the experimental values.

The transport observed in tokamaks is mainly due to instabilities evolving in
turbulence using the free energy stored in the temperature and density gradients,
thus greatly increasing the transport of heat and particles towards the walls of the
tokamak.

Nonetheless, this transport can be limited by a state transition triggered by
injecting energy into the tokamak via fast neutrals. A very significant reduction
in transport and a stiffening of the pressure profiles at the edge is then observed;
a "transport barrier" has been set up. This L-H (i.e. "Low - High") transition is
experimentally reproducible in many tokamaks and is the standard operating mode
considered for ITER.

However, even in H mode, large flows of particles and heat can reach and damage
the wall. Impurities (i.e. species not involved in the fusion reaction) can then
contaminate the plasma core and dilute or even extinguish it. This is particularly
the case with tungsten, which is not completely ionized under core plasma conditions
and therefore radiates much of the energy it absorbs.

In this thesis, we used GYSELA, a 5D gyrokinetic massively parallelized code
developed by CEA Cadarache, in order to investigate the various mechanisms that



generate transport barriers. To this end, a sheared poloidal momentum source
was used to reduce turbulent intensity locally. The resulting quench of turbulent
structures’ size led to an equivalent reduction in heat flux and associated diffusivity
coefficients. Those elements led us to conclude that a transport barrier was success-
fully triggered in our simulations. Finally, simulations with impurities (He, Ar, W)
with and without a transport barrier showed that the transport barrier successfully
prevented heavy impurities from outside the barrier to penetrate and contaminate
the core plasma. Thermal screening effect is mainly responsible for the resulting
confinement enhancement we observed.



Chapter 1

Introduction

1.1 Plasma and energy
Plasmas can be defined as a collection of charged particles with a collective behaviour
which is, from an external point of view, electrically quasi-neutral. This definition
describes more than 99% of matter in the Universe. This plasma state is often
described as the fourth state of matter which can take various forms, going from
cold and sparse interstellar clouds which evolve on time scales of millions of years,
to stars like our Sun which temperature and density are both extremely high, or
even electric arcs and polar lights observed on our planet. Many criteria can be
used to characterize a plasma:

• Its ionization rate τi = ne

ne+nn
with ne and nn the electronic and neutral

densities in m−3. This value measures the ion proportion in the considered
plasma cloud.

• The grain factor g = 1/ND, which evaluates the effectiveness of the Debye
shielding of the particles composing the plasma on a test charge plunged in
the plasma. g depends on macroscopic parameters such as density n and tem-
perature T through the equation ND = ne

4π
3
λ3D with λD =

√
ϵ0kBTe
e2ne

the Debye
length. A small grain factor corresponds to a plasma for which screening effect
and collective behaviour are strong.

• Whether there is a magnetic field B and/or a particular geometry in which
the plasma is contained and evolves.

Weakly ionized plasmas (τi ≪ 1) with a strong grain factor (g < 1) correspond
to laboratory plasmas often nicknamed "cold plasmas" where neutrals play a signifi-
cant role through collisions. Also, electrons are usually hotter than ions and neutrals
(Te ≫ Ti, Tn) in such plasmas. They are also called reactive plasma because ions
and neutrals undergo a lot of chemical reactions through electron exchanges. It can
refer to industry plasma used for coating (i.e. nitriding, Plasma Vapor Deposition
- PVD for example), describe electric arcs in the atmosphere, the magnetosphere of
planets or even hall-effect thrusters for space probes.

In this thesis, we will focus on "hot plasmas" where ions and electrons both
reach same temperature levels of Te ≈ Ti ⩾ 0.1 keV ↔ 106 K. Thus, such plasmas

15
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are usually strongly ionized (τi ≈ 1) with a prominent collective behaviour (g ≪ 1).
This is the type of plasmas where fusion reactions can be obtained.

Nuclear fusion reactions require huge amounts of energy; in fact, to make two
nuclei fuse together, it is mandatory to overcome the electrostatic repulsion between
the two light nuclei. Our Sun is the best and closest example; the ionized hydrogen
composing 75% of the Sun’s core is pushed to temperatures of around 1.5 · 107K
and densities of 1032 m−3 thanks to its own gravitationnal pull. Then, the following
series of fusion reactions happen:

1
1H

+ + 1
1H

+ + 0
−1e

− → 2
1D

+ + 0
0νe + 1.442MeV, (1.1)

2
1D

+ + 1
1H

+ → 3
2He

2+ + 0
0γ + 5.493MeV, (1.2)

3
2He

2+ + 3
2He

2+ → 211H
+ + 4

2He
2+ + 17.35MeV. (1.3)

This series of reactions only uses 4 hydrogen atoms and 2 electrons to produce
a helium nucleus (or α particle) as well as 26.73 MeV. With 1g of hydrogen, it
is possible to produce the equivalent of 711 MWh of energy, meaning 61 TOE
(Tonnes of Oil Equivalent, see table 1.1). In other terms, 1g of hydrogene could
produce through nuclear fusion as much energy as 61 tonnes of oil while producing
few nuclear wastes (when compared to nuclear fission) or greenhouse gases (when
compared to fossil fuels). This is the main reason why so many efforts are put into
nuclear fusion reasearch.

Fuel / reactant Mass
kg Mechanism Produced energy

MWh
Produced energy

TOE

Coal (anthracite) 1000 Chemical
combustion 9.17 0.79

Coal (lignite) 1000 Chemical
combustion 5 0.43

Oil 1000 Chemical
combustion 11.63 1

Natural gas 1000 Chemical
combustion 14.44 1.24

Uranium 0.001 Nuclear
fission 20.17 1.73

Hydrogen 0.001 Nuclear
fusion 711 61

Table 1.1: Summary of the energetic equivalences between different energy sources.
Fission and fusion reactions are much more effective than fossile fuels.

1.2 Nuclear fusion devices
To produce energy through nuclear fusion on Earth, the plasma and its charged
particles must be heated and confined efficiently. A useful metric to know if a
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reactor is suitable for energy production through fusion is the Lawson criterion
which leads to the famous triple product

nTτE ⩾ 1021keV m−3s, (1.4)

with τE the confinement time of energy. It represents the time for the confined
plasma to cool down without any heating source. One way to make fusion on Earth
is to use lasers to heat D-T (deuterium-tritium) pellets as presented in Figure 1.1.
A recent breakthrough at NIF (National Ignition Facility) [2] managed to get 3.15
MJ output from fusion energy while injecting 2.05 MJ to the pellet. This method
leads to both extremely high temperature (T ⩾ 20keV) and density (n ∼ 1031m−3)
but low confinement times (τE ∼ 10−11s).

Figure 1.1: Step for inertial confinement fusion process inspired from [3]. 1: Lasers
heat the inner layer of the Hohlraum containing a D-T pellet which reemits energy
as X-rays. The X-rays emitted by the Hohlraum generates a thin plasma coat on
the fuel pellet. 2: Rapid expansion of the plasma layer compresses the unburnt
fuel. 3: The pellet imploses, leading the fuel to get extremely dense until ignition
at around 100 MK (i.e ∼ 10 − 20keV ). 4: The entire pellet burns, giving more
output energy than the input.

Another way to confine and heat the plasma is by using magnetic field lines.
The idea is to use the fact that charged particles, when plunged in a magnetic field,
will follow an helical path along the magnetic field line as shown in Figure 1.2a.
This can be used to create a specific geometry in which magnetic field lines are
closing on themselves, effectively forcing particles to circulate in a closed volume
indefinitely. Such a magnetic field can be written as

B = Bφeφ +Bθeθ (1.5)

in the simplified toroidal coordinate system presented in Figure 1.2b. Its magnitude
can be written Bφ = B0/

(
1 + r

R0
cos θ

)
, meaning its amplitude decays with R, the

major radius. Such field creates nested magnetic flux surfaces, i.e. concentric
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Figure 1.2: Left: Charged particle trajectory when a magnetic field line is present.
The direction of rotation will depend on the sign of the charged particle. ρc =√
kBT
MqB

is the Larmor radius. Right: Tokamak with a circular shaped cross-section.
Toroidal coordinate system unit vectors are shown here for clarity.

surfaces on which helical magnetic field lines lie on. This leads, on paper, to an
ideal confinement provided the magnetic field is both strong and stable enough.
A complex system of coils is mandatory to create such a complex arrangement of
magnetic field lines; the main coils are around the poloidal surfaces and generate
the toroidal magnetic field coils. A toroidal plasma current generates the poloidal
field and a central solenoid is placed at the center of the tokamak to drive current
as well as stabilization purposes. Modern tokamaks use a more complex geometry
with a D-shaped cross-section and an X-point divertor configuration as presented
in Figure 1.3. This method leads to lower densities (n ∼ 1020m−3) but much higher
confinement times (τE ∼ 1− 10s) when compared to inertial confinement devices.

This magnetic configuration leads to different phenomena and trajectories that
will be described in the next subsection.

1.3 Particle and guiding-center trajectories in toka-
maks

Due to the magnetic configuration, particles will follow a trajectory that will be
the sum of multiple motions with various origins. The first one is the cyclotron
motion as presented before; since particles are plunged in a magnetic field with an
initial velocity v = v∥+v⊥ (i.e. ∥ and ⊥ directions refers to the magnetic field line
considered), they will follow a helical trajectory along magnetic field lines. This
movement can be easily derived from the equation of motion. One can then look
at the motion of the average position of the particle on its trajectory called the
guiding-center to study its average movement.
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Figure 1.3: Modern tokamak geometry configuration [4]. The scrape-off layer (SOL)
is the region where magnetic field lines are opened and intercept the walls in the
divertor region, which is usually made of tungsten. The separatrix between the
plasma core and SOL is defined by the LCFS (Last Closed Flux Surface) which
forms an X-point in the divertor region.

When an electric field is added,

ms
dvs
dt

= qs (E+ vs×B) , (1.6)

the motion of the guiding-center of a species s is modified. It undergoes a drift
motion perpendicular to both the magnetic B and electric E fields with the familiar
expression

vE×B =
E×B

B2
. (1.7)

Interestingly, this drift velocity does not depend on particle charge nor mass,
thus all guiding-centers (or particles) will drift with the exact same velocities. Equa-
tion (1.7) can then be generalized for any force perpendicular to B:

vF×B,s =
1

qs

Fs×B

B2
. (1.8)
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A typical example is gravity, which gives a dependance on both the mass (i.e.
Fs = msg) and the charge. This creates what is called a polarization drift, meaning
particles of opposite charges will go to opposite directions, thus generating charge
separation and a resulting current.

However, two important effects are heavily modifying guiding-center trajectories;
the curvature and the gradient drifts. Both effects are linked because if a magnetic
field is curved, then a gradient of |B| must exist as well. This leads to two drifts,

vc,s =
msv

2
∥,s

qs

Rc ×B

R2
cB

2
, (1.9)

v∇,s =
msv

2
⊥,s

2qs

b×∇B

B2
, (1.10)

with Rc the curvature radius. This drift leads to guiding-centers (and thus particles)
to drift vertically out of the tokamak; towards the top and bottom respectively for
positive and negative particles. This is the main reason why the poloidal field exist;
since particle will rotate poloidally, it will compensate this vertical drift phenomenon
by keeping the orbits within the device. The sum of both contributions can then
be written

vD,s =
ms

qsB2

(
v2∥,s

Rc ×B

R2
c

+
v2⊥,s
2

b×∇B

)
. (1.11)

Other drifts can be taken into account if, for example, E varies with time or de-
pends on space (i.e. polarization drift vpol,s and Larmor radius effects respectively).
All those contributions can be combined with the motion of the guiding-centers
along the magnetic field line v∥ to get

vGC,s = v∥,s +

vE×B︷ ︸︸ ︷
E×B

B2
+

vD,s︷ ︸︸ ︷
ms

qsB2

(
v2∥,s

Rc ×B

R2
c

+
v2⊥,s
2

b×∇B

)
+

vpol,s︷ ︸︸ ︷
1

ωc,sB

dE⊥

dt︸ ︷︷ ︸
v⊥,s

. (1.12)

However, even with those drifts taken into account, one cannot explain the
confinement times observed in tokamaks. This is due to radial transport which can
be generated by collisions and, as we will see later, turbulence.

1.4 Diffusion processes in magnetized plasmas

1.4.1 Classical diffusion and magnetic field influence

Fusion plasmas in tokamaks have ion and electron densities of the order of ∼
1019 m−3 and thus collisions, which are primarly coulombian, play an important
role in particle transport. Those elastic collisions can be intra-species (ion-ion and
electron-electron) or inter-species (ion-electron), but the latter prominently leads to
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particle diffusion in the presence of a magnetic field. As a first approach to evaluate
diffusion transport due to ion-electron collisions, one can take the fluid momentum
conservation equation in the steady-state, isothermal and isotropic limit:

vs = −Dclassic,s
∇ns
ns

, (1.13)

where Dclassic,s = kBTs
msνe,s

is the classic diffusion coefficient without magnetic field.
Here, collisions tend to lower radial diffusion as density gradient is expected to be
along r. However, we can look at the effect of a magnetic field perpendicular to the
density gradient, similarly as in tokamaks. This modifies equation (1.13) such that
we get

vs = − Dclassic,s

1 + ω2
c,s/ν

2
e,s

∇ns
ns

−
ω2
c,s

ν2e,s + ω2
c,s

v∧,s, (1.14)

with v∧,s = −∇Ps×B
qsnsB2 the diamagnetic drift. This time diffusion is modified such

that D⊥,s ≡ Dclassic,s

1+ω2
c,s/ν

2
e,s

. When collisions are dominant (i.e. weakly magnetized
plasma, νe,s ≫ ωc,s), we retrieve D⊥,s ≈ Dclassic,s where transport decreases with
the collision rate. However, when the plasma is strongly magnetized (i.e. νe,s ≪
ωc,s), we get D⊥,s ≈ Dclassic,sν

2
e,s/ω

2
c,s = kBTsνe,s/msω

2
c,s where this time transport

increases with the collision rate, showing that collisions enhance particle transport
perpendicular to the magnetic field (i.e. towards the walls of the tokamak’s vessel).

A more accurate and historical computation has been done by Braginskii [5],

DBrag = 2× 10−3 n20

B2
0T

1/2
k

m2/s, (1.15)

using a kinetic approach to the said problem. However for typical tokamak values,
DBrag ≈ 10−5 m2/s, which is extremely undervalued compared to what is usually
measured experimentally: Dexp ≈ 1 m2/s, 5 orders of magnitude higher. As we will
see later in this manuscript, a huge part of this transport is due to turbulence born
from micro-instabilities, but a more accurate and complete approach can still be
done regarding collisional transport through neoclassical theory.

1.4.2 Magnetic trapping and neoclassical diffusion

This theory takes into account the toroidal geometry effect on collisional transport
and can become more challenging to derive. Due to the complex magnetic field
geometry, charged particles can be trapped because of the B gradient along the
major radius creating a low field side (θ = 0, outer side) and a high field side
(θ = π). Since particles undergo a poloidal orbit in addition to their toroidal
movement, they will experience a variation in the magnetic field amplitude. To
understand this trapping effect, we can write the total energy of particles

Ek,s =
1

2
msv

2
∥,s + µsB (1.16)
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where µs = msv
2
⊥,s/2B the magnetic moment. Note that the latter is an invariant

of motion like Ek,s. The parallel velocity can then be written

v∥,s = ±
√

2

ms

(Ek,s − µsB). (1.17)

If µsBθ=π < Ek,s, the particle will be orbiting poloidally without any distur-
bance on its orbit. However, if at a certain point during its orbit µsB > Ek,s, the
particle will be trapped. This can be expressed through the inequality µsBθ=π =
1
2
msv

2
∥,s,θ=0 + µsBθ=0, which gives

f 2
t,s =

v2∥,s,θ=0

v2⊥,s,θ=0

< 2
r

R0

(
1− r

R0

)−1

,

ft,s =

∣∣∣∣ v∥,s,θ=0

v⊥,s,θ=0

∣∣∣∣ ≲ √
2ϵ, (1.18)

with ϵ = r/R0 the inverse aspect ratio of the tokamak. ft,s represents the limit
between the fraction of trapped and passing particles, the former being trapped in
the low field side with banana orbits and toroidal precession (i.e. v∥,s changes sign)
while the latter follow the magnetic field line with full poloidal orbits.

However, particles can also be detrapped due to collisions. A random walk model
can be used to deduce an effective collision rate νeff = νcoll/2ϵ, which represents
the detrapping rate of particles. It takes into account the fact that since ϵ is
small, it is easier to detrap particles by changing their parallel velocity through
collisions, hence the 2ϵ factor. Invariants of motion can be used to derive a bouncing
frequency νb,s = vT,s

√
ϵ/2πqR

√
2 with vT,s =

√
kBTs/ms the thermal velocity and

q = Bθr/BφR the safety factor. The latter will be further detailed in chapter 2.
Collisionality can then be defined as

ν⋆s ≡
νeff
νb,s

=
qR

vT,s
ϵ−3/2νcoll. (1.19)

This dimensionless ratio represents the rate at which particles undergo collisions
over a banana orbit. Particles can then get into different regimes:

Banana regime: For low collisionality (ν⋆s ≪ 1), particles keep their trajec-
tories and disturbances due to collisions are very low. The neoclassical diffusion
coefficient can then be written [6]

DNC−B,s ≈ q2ϵ−3/2D⊥,s, (1.20)

with D⊥,s ≈ kBTsνe,s
msω2

c,s
. Usually we get DNC−B,s ∼ 50D⊥,s ∼ 2 · 10−3 m2 s−1, which is

better than previous estimates but is still insufficient to explain the values measured
experimentally.
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Plateau regime: This regime corresponds to intermediate collisionality (ν⋆s ∼
1), which does not affect greatly passing particles but is more proeminent on trapped
particles. The corresponding neoclassical diffusion coefficient is given by [6]

DNC−P,s ≈ DNC−B,s/ν
⋆
s = q2ν⋆s

−1ϵ−3/2D⊥,s. (1.21)

Pfirsch-Schlüter regime: This regime is of high collisionality where particles
are detrapped before completing their orbits. The diffusion coefficient is usually
given by [6]

DNC−PS,s ≈ q2D⊥,s. (1.22)

Those regimes and effects on trajectories are shown in Figure 1.4. As mentionned
earlier, trapped trajectories are subject to collisional diffusion. Those results can
be found and summarized in the work of Galeev and Sagdeev [6] and later Hin-
ton and Hazeltine [7]. Unfortunately, the diffusion coefficients estimated through
neoclassical physics do not yield realistic confinement times either and are still too
optimistic. An additionnal anomalous transport is measured and finds its origin in
micro-instabilities and gradients present in the system. This transport, commonly
labeled as turbulent transport, will be introduced in the next subsection.

For neoclassical transport however, the heavier the particles, the more likely
they will undergo a higher collisionality regime since D⊥,s ∝ ms. This means the
main ion species, deuterium, tritium and helium, are usually in the banana regime
while medium and high-Z species like tungsten will be in the plateau or Pfirsch-
Schlüter regime. This effect can lead to unwanted species in the core, reducing its
efficiency up to a possible disruption and complete shutdown.

1.4.3 Turbulent diffusion

In tokamaks, there is an additionnal turbulent transport channel due to fluctuations
and instabilities in the plasma that can grow exponentially into eddies and thus lead
to more mixing in the plasma itself. It is defined as a state of the plasma where
radial transport process is mainly due to micro-instabilities rising from the free
energy available in the system, mainly in the form of gradients similarly as in fluid
dynamics (i.e. Rayleigh-Taylor or Kelvin-Helmoltz instabilities).

Even though turbulence is a non-linear phenomenon, it is possible to do a linear
analysis of its formation by taking the variables characterizing the problem and
expressing them under the following form

A = A0 + A1 = A0 + Ã exp [i (k · r− ωt)] (1.23)

where A0 is the considered value at equilibrium, usually depending on space only
and Ã the amplitude of the perturbation A1 which usually depends on space only as
well. The exponential part represents the space variation and scaling through the
wave vector k and time evolution through ω. Usually ω (k) = ωr (k)+iγ (k) is com-
plex, and if γ > 0, the perturbation will grow exponentially with time; this is the
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Figure 1.4: Top: Neoclassical diffusion coefficient as a function of collisionality,
reproduced from [6] and [8] Bottom: Particle trajectories depending on collision-
ality regimes. Trapped particles are more easily affected by collisions, hence their
proeminence in neoclassical transport physics. Taken from [9].



25 1.5. Impurity in tokamaks and scope of this thesis

linear growth part of the instability. Note that if γ < 0, the considered perturbation
mode is damped and decays to 0. Linearizing and combining all the equations of
the considered system usually gives a dispersion relation D (k, w) = 0 that helps
understand how the instability behaves as a function of the plasma parameters.

In tokamaks, some instabilities are of the same nature as the two mentionned
earlier but are deeply altered due to the tokamak geometry. The gradient and
curvature drifts lead to a mechanism that stabilizes the inner side of the tokamak
(strong field side) and destabilizes the outer side (weak field side). This means the
instabilities will grow faster and stronger on the outer side.

Turbulent diffusion can then be partially modelled through a mixing length
model. It aims at evaluating the level of fluctuations for a specific field by know-
ing the typical length over which the said field varies. For example, let us look at
pressure fluctuations which can be written

|δP | ∼ P0

krLP
, (1.24)

where P0 is the average profile density, LP is the pressure gradient length and kr is
the radial wavelength of the perturbation. It can be shown that turbulent diffusion
is the same order of magnitude of

D ∼
∑
k,γk

γk
k2r
, (1.25)

where the sum is over all the wavelengths with positive growth rates. It can be
viewed as a sum over all the individual diffusion coefficient Dk = γk/k

2
r following

a random walk model of radial step k−1
r and time step γ−1

k . This crude approach
helps estimate the order of magnitude for turbulent diffusion, which happens to
be much higher than neoclassical diffusion in tokamaks. This transport channel
explains the confinement times observed in tokamaks. A more in-depth analysis
will be conducted in the next chapter.

1.5 Impurity in tokamaks and scope of this thesis

In tokamaks, all species that do not contribute to fusion reactions are considered
to be impurities. That means apart from deuterium and tritium ions (i.e. the fuel)
as well as electrons, other species must be avoided in the plasma. Those impurities
can be byproducts of the fusion reaction itself (helium), the walls (tungsten and/or
beryllium) or from injected noble gas (argon and/or neon) near plasma-facing com-
ponents to mitigate the heat flux received.

The main problem due to impurities is the diluting effect on the fuel; this means
the fuel density will decrease just like the rate at which fusion reactions occur and
render the tokamak less efficient as an energy production device. Moreover, heavy
impurities like tungsten may not be fully ionized when reaching the core and thus
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Figure 1.5: Left: Time evolution of the injected power in the plasma, electron
temperature and density. Right: Radiative emission in a transverse plan of the
tokamak. Two bright spots are visible, one in the X-point vicinity, mainly due
to tungsten sputtering of the divertor. A second bright spot in the core shows a
contamination mainly due to tungsten transported from the edge. This particular
experiment underwent a radiative collapse. [10]
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radiating a lot of the absorbed energy through radiation. An example of a radiative
collapse in JET (Joint European Torus) is shown in Figure 1.5 with a prominent
core plasma contamination by tungsten.

Unfortunately, impurities are impacted by transport just like the main species,
being neoclassical (i.e. collisional) or turbulent. As discussed earlier, heavy impu-
rities will be more subject to inward neoclassical transport due to the main species
gradient and to an outward turbulent flux due to the temperature gradient, hence
the possible accumulation of heavy particles in the core and radiation collapse.

Avoiding this impurity accumulation is then of upmost importance for controlled
fusion devices and a clear understanding of their transport processes is required.
The aim of this thesis is to study transport of impurity both numerically and the-
oretically and try to control it using different methods. Chapter 2 is dedicated to
the introduction of neoclassical transport in a more refined way as well as turbulent
transport and the instabilities present in tokamaks. A way of reducing turbulent
transport experimentally, namely transport barriers, is also described as well as
theoretical elements which explain part of the physics involved. In chapter 3, the
gyrokinetic framework is introduced as well as GYSELA, a heavily parallelized nu-
merical code able to simulate a 5D (3D in space, 2 in velocity) tokamak. The control
of turbulent transport using poloidal shearing in GYSELA is discussed. Chapter
4 is dedicated to the study of impurity transport in a reduced turbulence regime.
The last chapter draws conclusions on the work presented here.





Chapter 2

Transport and confinement

2.1 Introduction

The aim of this chapter is to provide a broad overview of the transport processes
that impurities undergo in tokamaks. Since transport of particles can usually be
separated between two channels such that

Γtots = Γneos + Γturbs , (2.1)

respectively the neoclassical and turbulent channels, both will be explored and re-
viewed. Their expression as a function of the geometrical configuration of tokamaks
as well as thermodynamical forces due to temperature, density, pressure and elec-
trostatic potential will be derived through two main different approaches; fluid and
kinetic.

2.2 Neoclassical transport

2.2.1 Flux surface and safety factor

While classical transport treats the effect of Coulomb collisions, neoclassical trans-
port takes into account the complex geometrical effects taking place in tokamaks
due to its toroidal shape and resulting curvature. Trapped particles, in particular,
play an important role as mentionned in the introduction. The main goal here is
to provide a coherent theoretical review of particle fluxes along the radial direction
due to neoclassical effects. For this purpose, another representation in cylindrical
coordinates can be used to describe axisymmetric magnetic fields in tokamaks [11]:

B =

Bφ︷ ︸︸ ︷
eφBφ+

Bθ︷ ︸︸ ︷
eRBR + ezBz = ∇×A. (2.2)

By using eφ = R∇φ and introducing a poloidal flux function ψ (R, z) ≡ −RAφ (R, z)1,
the magnetic field can be recasted as

1This comes from the curl of the potential vector A: BR =
∂Aφ

∂z and Bz = − 1
R

∂(RAφ)
∂R .

29
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B =

Bφ︷ ︸︸ ︷
I (ψ)∇φ+

Bθ︷ ︸︸ ︷
∇φ×∇ψ . (2.3)

Figure 2.1 helps vizualize and understand this notation for the magnetic field as
the poloidal flux passes through the red surface (i.e. in a poloidal plane) while the
toroidal flux is conversely passing through the blue surface (i.e. through a poloidal
plane). The total magnetic flux through the total flux surface is then 0. One may
note that field lines can close on themselves like the green line in Figure 2.1. In
that case, they will be referred as rational surfaces whereas field lines not closing
on themselves will be referred as irrational. This will be of importance regarding
perturbations and turbulent transport.

Figure 2.1: Solid black line represents the magnetic axis. The poloidal magnetic flux
goes through the red surface while the toroidal one goes through the blue surface.
Green line represents a magnetic field line which, in that particular case, is rational.
Figure downloaded from [12].

From these equations, it readily appears that the poloidal flux function ψ re-
mains constant along magnetic field lines (B ·∇ψ = 0), which means the magnetic
field B lies on nested torus of constant ψ. One can note that flux surfaces are, in
the case of tokamaks with circular cross sections (i.e. as the one showed in Fig-
ure 1.2), colinear to radial coordinates in the simplified toroidal coordinate system.
The poloidal coordinate can then be built from ∇θ · ∇φ = 0 (i.e. the poloidal
plane is orthogonal to the toroidal axis). This is helpful to introduce the concept
of flux-surface average, which for a given quantity G (ψ, θ, φ) is written as

⟨G⟩FS (ψ) ≡
∫ θ=2π

θ=0

∫ φ=2π

φ=0

G (ψ, θ, φ) Jχdθdφ
/∫ θ=2π

θ=0

∫ φ=2π

φ=0

Jχdθdφ, (2.4)

with Jχ = (B ·∇θ)−1 the flux-surface Jacobian. This is analogous, but not the
same, as an angle-average of a function and thus a radial profile for a given quantity.
This allows us to define a safety factor profile
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q (ψ) =
⟨B ·∇φ⟩FS
⟨B ·∇θ⟩FS

=
dφ

dθ
, (2.5)

which counts the number of toroidal rotation for each poloidal rotation (i.e. also
referred to as the pitch of the magnetic field). For example, rational surfaces can
be expressed as q ≡ n/m with n and m being integers.

2.2.2 Main ion particle flux

Helander and Sigmar [11] derived a simple relation regarding particle flux across
magnetic flux surfaces (i.e. radial flux) using both the continuity and momentum
balance equations for ions:

∂Ni

∂t
+∇ · Γi = 0, (2.6)

Mi
∂Γi
∂t

+∇ · Π̄i = Niqi (E+Vi×B) + F , (2.7)

with Vi the average fluid velocity, Ni the ion density, Mi the ion mass, Γi the ion
particle flux, Π̄i the pressure tensor and F 2 the friction force. Gauss’s law3 can be
applied to the continuity equation (2.6)

−
∫
V

dV
∂Ni

∂t
=

∫
V

dV∇ · Γi =
∮
S

(Γi·∇ψ) dθdφ

B ·∇θ
= ⟨Γi·∇ψ⟩FS

∫
(B ·∇θ)−1 dθdφ,

where the term ⟨Γi·∇ψ⟩FS represents the flux-surface averaged particle flux along
across flux-surface. In other terms, this is the quantity we want to derive since it is
equivalent to a radial flux of particles. By using some of the useful relations given
in appendix A.1, we can rewrite the particle flux as

⟨Γi·∇ψ⟩FS =
〈
R2∇φ · (Γi×B)

〉
FS
.

Interestingly, one can get this term out of equation (2.7) by projecting it along
the toroidal axis before averaging the result over a flux surface:

∂ ⟨MiΓi ·∇φ⟩FS
∂t

+
〈(
∇ · Π̄i

)
·∇φ

〉
FS

=

〈qiNiE+ qi

Γi︷ ︸︸ ︷
NiVi×B

 ·∇φ

〉
FS

+ ⟨F ·∇φ⟩FS

2F =
∫
d3vimviC (fi), where vi is the ion velocity , fi the distribution function of the con-

sidered species and C (f) is the collision operator. It conserves the number of particles as well as
energy, but generates an internal friction term (i.e. intra-species collisions). This operator could
encompass collisions with other species (i.e. inter-species collisions), but the considered problem
only posesses one species for now.

3
∫
V
dV∇ ·G =

∮
S
G·dS. In our case, we recall that dV = Jχdψdθdφ and the surface vector

element is dS = ∇ψJχdθdφ.
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By neglecting viscosity in Π̄i and assuming both stationary state (∂t = 0) and
an axisymmetric torus (∂φ = 0), one can get (see appendix A.2.1)

⟨Γi·∇ψ⟩FS =

Neoclassic︷ ︸︸ ︷
−
〈
I

B

(
NiE∥ +

F∥

qi

)〉
FS

+

Classic︷ ︸︸ ︷〈
∇ψ · (F ×B)

qiB2

〉
FS

+

Turbulent︷ ︸︸ ︷〈
Ni∇ψ · E×B

B2

〉
FS

,(2.8)

where three different components of the particle flux can be recognized. The neo-
classical term is linked to parallel friction of guiding centres, while the classical
term can be seen as a perpendicular friction drift, analogous to equation (1.8) with
F → F . The last term is the radial component of the E×B flux usually associated
to turbulent transport. This component will be tackled in the next section.

The neoclassical part of equation (2.8) can be further developped by separating it
into two terms corresponding to different collisionality regimes as shown in appendix
A.2.1

⟨Γi·∇ψ⟩neoFS = −I
〈

1

qiB

(
qiNiE∥ + F∥

)(
1− B2

⟨B2⟩FS

)〉
FS︸ ︷︷ ︸

⟨Γi·∇ψ⟩PS
FS

−I
〈
B
(
qiNiE∥ + F∥

)〉
FS

qi ⟨B2⟩FS︸ ︷︷ ︸
⟨Γi·∇ψ⟩BP

FS

,

(2.9)

where it readily appears that the Pfirsch-Schlüter component is entirely due to the
toroidal geometry of the magnetic field and the dependency of B with the major
radius R of the tokamak. In a cylindrical geometry and with an axisymmetric B
field, the term B2/ ⟨B2⟩FS would vanish since the flux-surface averaging would give
B2, leading to ⟨Γi·∇ψ⟩PSFS = 0. The banana-plateau flux is linked to the parallel
components of the friction and electric field. This can be further expanded to make
a link with pressure anisotropy by using the fluid momentum equation (2.7) and
the CGL tensor [13] as detailed in appendix A.2.2.

2.2.3 Impurity particle flux

While previous developments are useful for the main species neoclassical particle
flux, we want to express impurities’ neoclassical flux in a trace regime (i.e. Ns/Ni ≪
1). For this purpose, we start from the continuity equation (2.6) for impurities in a
steady-state to get ∇·Γs = 0. This guiding center flux can be separated in parallel
and perpendicular components to the magnetic field Γs = Γ∥,sb + Γ⊥,s, the latter
being written as

Γ⊥,s = NsvE︸ ︷︷ ︸
ΓE,s

+Ns ⟨vD,s⟩v︸ ︷︷ ︸
ΓD,s

−∇×

Ms/qs︷ ︸︸ ︷[
Ns

〈
µs
qs
b

〉
v

]
︸ ︷︷ ︸

Γmag,s

(2.10)

with
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vE =
B×∇ϕ̄

B2
, (2.11)

vD,s = v∇,s + vc,s =
µs
qs

B×∇B

B2
+
Msv

2
∥,GC,s

qsB2

Rc ×B

R2
c

, (2.12)

v∥,GC,s = v∥,GC,sb, (2.13)
Γmag,s = jmag,s/qs = ∇×Ms/qs, (2.14)

which are respectively the E × B, gradient plus curvature drifts as well as the
parallel motion to the magnetic field. The magnetization flux Γmag,s

4 is a mandatory
correction to have the full particle flux5. Developping equation (2.10) using the
appropriate definitions developped in appendix A.3 combined with the CGL tensor
notation gives the total flux of impurities

Γs =

[
Nsv∥,GC,s −

P⊥,s

qsB
b · (∇× b)

]
b︸ ︷︷ ︸

Γ∥,s

+Ns
b×∇ϕ

B︸ ︷︷ ︸
ΓE,⊥,s

+
b×∇ ·Πs

qsB︸ ︷︷ ︸
ΓD,⊥,s

, (2.15)

where we recognize the parallel and perpendicular components of the flux. The
former is composed of the classical parallel velocity term. The perpendicular flux
is the sum of the E × B drift term with the diamagnetic term. The former will
be mainly treated in the next section while the latter is the one of interest for this
section. In fact, this term is directly related to neoclassical effects (i.e. collisions and
geometrical factors) and can be further expanded by averaging it over flux-surfaces
and splitting it in BP and PS terms. The flux-surface average gives

⟨Γ⊥,s ·∇ψ⟩ψ = − I

qs

〈(
1

B
− B

⟨B2⟩ψ

)
b · (∇ϕNsqs +∇ ·Πs)

〉
ψ︸ ︷︷ ︸

ΓBP,s

−
I ⟨B ·∇ ·Πs⟩ψ

qs ⟨B2⟩ψ︸ ︷︷ ︸
ΓPS,s

, (2.16)

in which we retrieve the main effects dominating in each regime. In the BP regime,
anistropy is the dominating phenomenon while collisions dominate through parallel
friction in the PS regime [14]. However, as computed by C. Angioni and P. Helander
[15] and used by both P.Donnel [16] and K. Lim [17], this expression can be further
refined to take into account poloidal asymmetries by starting from equation (2.15),
the full impurity flux expression, and write the gradient terms as

∇P⊥,s =
∂P⊥,s

∂θ
∇θ +

∂P⊥,s

∂ψ
∇ψ, (2.17)

∇ϕ =
∂ϕ

∂θ
∇θ +

∂ϕ

∂ψ
∇ψ. (2.18)

4The bracket ⟨. . .⟩v =
∫
dv . . . F̄s/

∫
dvF̄s represents an average over the velocity space with

F̄s the distribution function of the considered impurities species and
∫
dvF̄s = Ns, the density of

impurities.
5This term does not impact the continuity equation; it is divergenceless by nature since ∇ ·

(∇×A) = 0.
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Injecting those expressions in equation (2.15) gives

Γs = KsB−NsΩsR
2∇φ+Π∥,s

b× k

qsB
+

b×∇θ

B

(
Ns
∂ϕ

∂θ
+

1

qs

∂P⊥,s

∂θ

)
︸ ︷︷ ︸

Γ̃s

, (2.19)

with Ks =
Γ∥,s
B

+ INsΩs

B
, which is a function that varies poloidally, Ωs = ∂ϕ

∂ψ
+

1
Nsqs

∂P⊥,s

∂ψ
and Π∥,s = P∥,s − P⊥,s the pressure anisotropy. An equation for particles

crossing flux-surfaces for the BP and PS channels, similarly as equation (2.16),
can be obtained by combining equations (2.19) and (A.35), this time taking into
account poloidal asymmetries. Details about computations can be found in the work
of Hirshman and Sigmar [14] as well as P. Donnel [16] and succinctly summarized
in appendix A.4. It finally writes

⟨Γ ·∇ψ⟩neoFS,s = ⟨Γ ·∇ψ⟩BPFS,s + ⟨Γ ·∇ψ⟩PSFS,s (2.20)

with each channels detailed as

⟨Γ ·∇ψ⟩BPFS,s = − I

qs

〈
B2

Ns

〉−1

ψ

〈
B ·∇θ

Ns

[
∂P⊥,s

∂θ

]〉
ψ

−→ ΓP⊥,s (2.21)

− I

qs

〈
B2

Ns

〉−1

ψ

〈
B ·∇θ

Ns

[
B
∂

∂θ

(
Π∥,s

B

)]〉
ψ

−→ ΓΠ∥,s (2.22)

⟨Γ ·∇ψ⟩PSFS,s =
I

qs
Msνsi

{
Ti
e

I

Lψ,i

(〈
Ns

B2

〉
ψ

−
〈
B2

Ns

〉−1

ψ

)}
−→ Γ∇Ni (2.23)

− I

qs
Msνsi

{
u

(
⟨Ns⟩ψ −

⟨B2⟩ψ
⟨B2/Ns⟩ψ

)}
−→ Γus (2.24)

+
I

qs
Msνsi

{
TiI

e

(〈
Ns

B2Lψ,s

〉
ψ

−
〈

1

Lψ,s

〉
ψ

〈
B2

Ns

〉−1

ψ

)}
−→ Γ∇Ns

(2.25)

+
I

qs
Msνsi


〈
B
Ns

∂
∂ψ

(
IΠ∥,s
qsB

)〉
FS

⟨B2/Ns⟩FS
− 1

B

∂

∂ψ

(
IΠ∥,s

qsB

) −→ ΓKs (2.26)

with L−1
ψ,s = −∂ψP⊥,s/TiZsNs and L−1

ψ,i = ∂ψ lnPi − HTS∂ψ lnTi. HTS is called the
thermal screening factor and is taken as 3/2 later on.

As shown on equations (2.21) to (2.26), the BP and PS components of the
neoclassical flux can be detailed even further in different terms to highlight some
behaviours depending on the species or local plasma conditions.

For the BP component of the flux, the term ΓP⊥,s is linked to the poloidal
asymmetries of the perpendicular pressure. This term is usually lower in ordering
than the term ΓΠ∥,s , the poloidal asymmetry of pressure anisotropy term. In contrast
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to the PS component, the BP one does not explicitly depend on the collosion rate
νsi, hence its dominance when impurities are light.

The PS flux will however be mainly driven by the pressure gradients of both the
impurity and main ion species, the latter being the dominant term we expect for
heavy impurities such as tungsten. One can expand the L−1

ψ,i = ∂ψ lnNi−0.5∂ψ lnTi
term to evidence the thermal screening effect; if the temperature gradient (∂ lnTi <
0 in tokamaks usually) is strong enough to overcome the density gradient (∂ lnNi <
0 in tokamaks also), then the term L−1

ψ,i will be positive; in other terms, with a
sufficiently strong temperature gradient of the main species, heavy impurities in
the PS regime will be repelled and not penetrate the core plasma. One must note
that this value of HTS can vary with collisionality [18, 19], but the value was set
to the same as K. Lim’s study to make the comparisons easier. This is the ideal
scenario envisioned for ITER to avoid core plasma contamination by tungsten for
instance [20]. This phenomenon has already been observed in JET [21] where an
efflux (i.e. outward flux / loss) has been measured during H-mode experiments.
A good agreement is found between this analytical derivation and simulation as
already shown [16, 17, 22, 23] and also in this thesis in chapter 4.

2.3 Turbulent transport

2.3.1 ITG

Slab kinetic approach

One of the first micro-instability encountered in fusion plasma is called the ITG
(i.e. Ion Temperature Gradient) instability. Micro-instabilities originate at smaller
scales than MHD macro-instabilities, namely the Larmor radius ρc or Debye length
λd scale, and can rise from small charge separations leading to perturbations of the
electrostatic potential. As a result, a perturbed electric field will enhance the exist-
ing fluctuations and lead to turbulence growth. ITG modes more specifically draw
their energy from the ion temperature gradient and lead to large radial transport
coefficients, especially ion heat diffusivity. This instability is of the "interchange"
type as shown in Figure 2.2 and is due, in tokamaks, to the magnetic drift velocity
vD. If a perturbation in the pressure profile appears on a magnetic surface, a small
difference in vD shall appear and be amplified by the vE×B drift velocity in the
weak B region, also called the "bad curvature" or "unstable" region for this kind of
instability. This leads to extended radial structures in potential along which par-
ticles are able to be transported, hence the augmentation in radial transport and
loss of confinement.

One of the first mention of temperature gradient-driven instability is by Rudakov
and Sagdeev [25]. Their main motivation was to explain instabilities observed dur-
ing ohmic heating discharges through which the current was directed along a strong
magnetic field. Those instabilities could not be explained within an ideal MHD
framework and required a two-fluid model approach or a kinetic model. The pres-
ence of small charge separation and therefore potential fluctuations are required
to get ITG modes as shown in Figure 2.2. This analysis uses a slab geometry in
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Figure 2.2: Left: Poloidal section of a tokamak with temperature (yellow dotted
arrows) and magnetic field gradients (white dashed arrows) direction shown for
clarity. Right: Basic mechanisms for drift-kinetic instabilities with v∇B,s ≡ v∇,s =
Ms

qs
Rc×B
R2

cB
2

1
2
v2⊥,s, which is proportionnal to the temperature through v2⊥, similarly as

in equation (1.10). The B gradient is equivalent to gravity in Rayleigh-Taylor
instabilities. Figure taken from [24].

presence of an electric field E,

∂fs
∂t

+ vs ·∇fs +
qsE

Ms

·∇vsfs = 0, (2.27)

where fs and vs =
E×B
B2 +vs,∥ are respectively the distribution function and velocity

of the gyro-center of the species considered (e = electrons, i = ions), where only
the E×B and parallel components are not zero. The magnetic field B is constant
and directed along the z direction, meaning that B = B0b = B0ez. Equation (2.27)
is called the Vlasov drift-kinetic equation and is valid for guiding-centers without
larmor radius effects taken into account.

The system was considered isothermal (Te = Ti ≡ T0) with a non-zero temper-
ature gradient (T0 = T0 (x)) but with a flat density profile (n0 = cst). This set of
assumptions ultimately led to the following dispersion relation

∫ +∞

−∞

vzdvz
ω − kzvz


[
Mi

Me

∂f0e
∂vz

+
∂f0i
∂vz

]
︸ ︷︷ ︸

Velocity gradient

+
ky
kz

1

ωc

∂

∂x
(f0i − f0e)︸ ︷︷ ︸

Space gradient

 = 0, (2.28)

where f0s is the unperturbed (Maxwellian) distribution function of the considered
species, vz is the velocity along the magnetic field, ω and ky,z are respectively the
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pulsation and wave vectors of the perturbation, ωc = qiB/Mi is the ion Larmor
pulsation and Ms is either the ion or electron mass. Since the analysis was done
locally, kx ≡ 0. Equation (2.28) posesses a velocity gradient part, reminiscent of the
ion acoustic oscillations, while the space gradient part is related to inhomogeneity
in the plasma (i.e. temperature gradient in the present case). In the hydrodynamic
limit vT,i =

√
T0
Mi

≪ ω
kz

≪
√

T0
Me

= cs and without density gradient, the solution to
the dispersion relation writes

ω =
1√
3
(1 + 2i)

(
ky
kz

d log T

dx
k3z

2T 2

M2ωc

)1/3

(2.29)

where the only possible way to have a non-zero imaginary part, thus a growth rate
for the instability, is to have a non-zero temperature and temperature gradient. This
can be easily understood since larger temperature gradients increase the amount of
free energy available for the unstable modes to grow. However, heavier particles as
well as larger magnetic field are, in this framework, more likely to linearly stabilize
- or at least reduce the growth rate - of ITG modes.

This simple approach shows the importance of gradients in tokamak plasmas
and their impact on the stability of the system. However, this approach is not a
fully kinetic one as the resonnance is discarded through the hydrodynamic limit
approach. Also, the effect of a density gradient is not taken into account here.
Nonetheless, Rudakov and Sagdeev have shown in their work that in a slab geom-
etry, this temperature drift instability is dominant in terms of scale as well as in
transport coefficient magnitude.

Kadomtsev and Pogutse [26] derived a more refined fluid criterion which takes
into account the stabilizing effects of density gradient on ITG modes. More pre-
cisely, they found that higher η ≡ κT/κn = ∂r log Ti/∂r logNi factors further ex-
cites the said instability. They further investigated plasma drift instabilities [27]
by adding sheared lines of force in their model to better describe toroidal geometry
for both electrons and ions in a localized radial region. Further investigations done
by Coppi, Rosenbluth and Sagdeev [28] were able to establish an integral equation
describing and governing the structure of the instability for a complex magnetic
configuration in a slab geometry. In that case, strong magnetic shear is found to
stabilize ITG modes.

Guzdar et al. [29] explored the stability of ITG modes in a similar toroidal
configuration using a ballooning mode formalism. This allowed them to treat the
full kinetic problem and derive an equation which governs ITG modes and different
limits were explored, both analytically and numerically. The main output from
their work is the destabilizing effect of toroidal geometry on ITG modes for η > 1.

Expansion with density gradient

The previous analysis is unfortunately not taking into account the effect of the
density gradient. We therefore propose to extend this analysis by adding the afore-
mentionned density gradient and explore both the kinetic framework and the hy-
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drodynamic limit. For this purpose, we start from equation (2.27) and explore the
two following paths:

1. Linearize equation (2.27) and the quasi-neutrality equation to extract a kinetic
dispersion relation D (k, ω). This should give us more information on the
instability, but may not be analytically solvable.

2. Derive fluid equations by integrating over the velocity space and linearize the
resulting set of equations as well as the quasi-neutrality equation.

First, let’s investigate the kinetic case by linearizing equation (2.27). The main
assumptions are as follows:

• f = fM +f1 with the unperturbed term being an equilibrium Maxwellian dis-

tribution function fM
(
r, v∥

)
= n0√

2πvT,i
exp

(
−

v2∥
2v2T,i

)
with vT,i =

√
T
M

the ther-

mal velocity while the perturbed one is taken as f1 =
∑
k∥,m,ω

f̂k∥,m,ω exp
[
i
(
k∥z +mθ − ωt

)]
.

We recall that in our analysis, the space variables are such that x↔ r, rθ ↔ y
and ∥↔ z, making this study similar to the slab approach.

• The electrostatic potential is also written ϕ = ϕ0 + ϕ1 with the perturbed
term written as ϕ1 = ϕ0 (r) +

∑
k∥,m,ω

ϕ̂k∥,m,ω exp
[
i
(
k∥z +mθ − ωt

)]
• The analysis is done locally such that kr ≡ 0, similarly as the study presented

previously.

• Velocity is such that v = vE×B + v∥b. Here, the E×B velocity is only
dependant on space through the electrostatic potential and is written vE×B =
(E0+E1)×B

B2 with E0 = −∇ϕ0 and E1 = −∇ϕ1.

• Since we also consider a thermal equilibrium between electrons and ions, the
former are faster than the latter, leading to the ordering

√
T0
Mi

≪ ω
k∥

≪
√

T0
Me

and to a Boltzmann distribution for the electrons such that ne/n0 ≈ 1 + eϕ
T0

.

Linearizing equation (2.27) with this set of assumptions and discarding non-
linear terms (i.e. quadratic terms and above), we get a relationship between f1 and
the perturbed electrostatic potential ϕ1

f̂k∥,mθ,ω = −
qϕ̂k∥,m,ω

Miv2T,i
f0

kθρcvT,i

[
∂rn0

n0
+ ∂rT0

2T0

(
v2∥
v2T,i

− 1

)]
− k∥v∥

ω − kθ
B
∂rϕ0 − k∥v∥

. (2.30)

To get a dispersion relation, we need to close the system of equation with the
quasi-neutrality equation

ne ≈ ni −→ 1 +
eϕ

T0
≈ 1

n0

∫ +∞

−∞
fidv∥ +

npol
n0

, (2.31)
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with npol the polarization density of the ions. This correction is due to the change
of electric field amplitude on the Larmor radius trajectory of the considered particle
and can be written as

npol = ∇⊥ ·
[
n0

ωcB0

∇⊥ϕ

]
, (2.32)

and is equivalent to adding the polarization density vpol to the total guiding-center
velocity in equation (1.12). We combine equation (2.30) with equations (2.31) and
(2.32) to get the dispersion relation

D (k, ω) = 2 + k2⊥ρ
2
c −

∫ +∞

−∞
fMdv∥

ω⋆ − k∥v∥

ω − kθ
B
∂rϕ0 − k∥v∥

, (2.33)

with

ω⋆n,T =
kθρcvT,i
{n0, T0}

∂ {n0, T0}
∂r

(2.34)

the gradient length frequency. Other terms are k2⊥ ≡ k2θ the perpendicular wavevec-

tor, ρ2c = T0M
q2iB

2
0

the squared ion Larmor radius and ω⋆ = ω⋆n + ω⋆T

(
v2∥

2v2T,i
+ 1

2

)
the

diamagnetic frequency.

Equation (2.33) shows a resonnance (i.e. a singularity) at v∥ = ω/k∥ +
kθ
k∥B

∂rϕ0

which indicates an energy transfer between the instability wave and particles when
this criterion is fullfilled. The ϕ0 component only modifies the equation by applying
a Doppler shift on the resonnance. One can try to solve this integral for 3 different
cases for ω. When ω is such that its imaginary part is negative, this integral can
be solved and the instability is damped. The pole at v∥ = ω/k∥ +

kθ
k∥B

∂rϕ0 can be
avoided and we are in a stable case. If its imaginary part is zero, then the pole
must be taken into account when integrating by using the Residue theorem. This
corresponds to the threshold for which the instability can grow and will depend on
the plasma parameters, mainly ω⋆n and ω⋆T . In this particular case, equation (2.33)
can be separated into two distinct equations; one for the imaginary part, another
one for the real part, which gives

ℜ [D (k, ω)] = 0 = 2 + k2⊥ρ
2
c + P

∫ +∞

−∞
fMdv∥

ω⋆ − v∥k∥

ω − kθ
B
∂rϕ0 − k∥v∥

, (2.35)

ℑ [D (k, ω)] = 0 = πδ

(
ω − kθ

B
∂rϕ0 − k∥v∥

)
fM

[
ω⋆n −

kθ
B
∂rϕ0 − v∥k∥

]
(2.36)

by using Cauchy’s integral formula where P refers to the main part of the integral
(i.e. without the pole). This equation does not admit any "obvious" solution but
can be solved numerically for different sets of density and temperature gradient.
This gives us the local linear threshold of the ITG instability in a slab geometry.
An alternative approach, called multi water-bag [30], can also be used to solve this
problem numerically in an elegant way.
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Fluid approach

To study the fluid case, one can average over the velocity space the different mo-
ments of equation (2.27) for ions by computing

∫ +∞

−∞
Adv∥

∂fi
∂t

+

∫ +∞

−∞
Adv∥vi ·∇fi +

∫ +∞

−∞
Adv∥

qiE

Mi

·∇vi
fi = 0, (2.37)

where A is replaced by 1 to get the continuity equation, Mivi,∥ to get the momen-
tum conservation equation and Miv

2
i,∥ to get the pressure conservation equation.

Hereafter, we drop the i subscript since we will only tackle ions while electrons will
be considered adiabatic. When required, an e subscript will be used for electrons.
Computation details are available on appendix B.2. Ultimately, one can get the
following set of fluid equations:

∂n

∂t
+

E×B

B2
·∇n+

∂

∂z

(
nu∥
)
= 0, (2.38)

Mn

[
∂

∂t
+

E×B

B2
·∇+ u∥

∂

∂z

]
u∥ = qiEzn−

∂P∥

∂z
, (2.39)[

∂

∂t
+

E×B

B2
·∇
]
P +

∂Q∥

∂z
+
∂u∥P∥

∂z
+ 2P∥

∂u∥
∂z

= 0, (2.40)

where n =
∫ +∞
−∞ fdv∥ is the guiding-center density of ions, Mnu∥ =

∫ +∞
−∞ v∥fMdv∥

is the parallel momentum of the guiding-center with u∥ the parallel fluid veloc-
ity of the guiding-center, P =

∫ +∞
−∞

(
v∥ − u∥

)2
Mfdv∥ is the pressure and Q =∫ +∞

−∞

(
v∥ − u∥

)3
Mfdv∥ is the heat flux.

This set of equations needs to be completed by a closure equation as well as an
evolution equation for the electrostatic potential (i.e. the electric field / force). The
latter is the quasi-neutrality equation (2.31) just as the kinetic approach while the
former is imposing a null heat flux.

The linearization step is then similar to the kinetic one, except this time averaged
quantities are linearized as follows;

• n = n0 (r) + n1 and T = T0 (r) + T1, where n0 and T0 are the initial, unper-
turbed radial density and temperature profiles of guiding-centers respectively.

• u∥ = u0 + u1 ≡ u1 is the parallel fluid velocity of the guiding-center. We
consider the equilibrium parallel flow to be zero.

• ϕ = ϕ0 + ϕ1 ≡ ϕ1 is the electrostatic potential. As opposite to the kinetic
case, we consider the equilibrium electrostatic potential to be ϕ0 ≡ 0.

• P = n0T0︸︷︷︸
1

+n0T1 + n1T0︸ ︷︷ ︸
ϵ

is the guiding-center pressure. We used P = nT as

a state equation and discarded the n1T1 ∼ ϵ2 part.
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After some algebra (see appendix B.3), we can extract the local fluid dispersion
relation of ITG in a cylindrical configuration:

ω̂3

[
τi
Z2
i

+ ρ2ck
2
⊥

]
− ω̂2ω̂⋆n − ω̂

[
3

(
τi
Z2
i

+ ρ2ck
2
⊥

)
+ 1

]
+ (2ω̂⋆n − ω̂⋆T ) = 0 (2.41)

where τi = T0/Te, ω̂ = ω/Ω∥ and ω̂⋆n,T = ω⋆n,T/Ω∥ with Ω∥ = k∥vT . This equation
admits three solutions; one real and two conjugated. The threshold for the fluid
instability is the (ω̂⋆n, ω̂

⋆
T ) couple for which we switch from one real solution to three

as shown in Figure 2.3.1, left plot. One can see that when gradient lengths tend to
infinity, we retrieve the instability threshold η = 2 (green dashed line, Figure 2.3.1).
One important thing to note is the effect of the Larmor radius in this dispersion
relation; if those corrections are discarded (i.e. ρc → 0 in equation (2.41)), the
growth rate γ becomes positive on the whole spectrum as shown in Figure 2.3.1,
right plot, which is not physical regarding the available energy as it would mean
all scales gain energy indefinitely. Larmor radius corrections allows to have a finite
spectrum and are therefore key to ITG modes stabilization.
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Figure 2.3: Left: ITG threshold map using equation (2.41) with both positive
(blue) and negative (red) solutions for poloidal mode number m = 50, r/a = 0.5,
τi = 1, B0 = 5T and T0 = 10keV . The limit ω̂n,T → ±∞ is the dashed green line.
The region of stability is colored in green while the unstable ones are in blue and
red depending on the sign of the temperature gradient. Right: poloidal spectrum
for r/a = 0.5, τi = 1, B0 = 5T , T0 = 10keV , κT = 3 and κn = 1 with Larmor radius
effects (solid blue line for the real part of ω, dashed red line for the imaginary one,
computed using (2.41)) and without (dashed-dotted cyan line for the real part of
ω, dotted purple line for the imaginary one, computed using (2.41) with ρc → 0.

Since in tokamaks, temperature and density decrease with respect to the radius,
the section of interest is in the bottom left of Figure 2.3.1 (i.e. ∂r {n, T} < 0). This
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means in tokamaks, steeper density gradients will tend to stabilize ITG modes for
a given temperature gradient. A more precise criterion [31] can be determined for
toroidal geometry and is written

κcritT,i = max

{
(1 + τ)

(
1.33 + 1.91 s

q

)
(1− 1.5ϵ)

(
1 + 0.3ϵdκ

dϵ

)
0.8κn,i,

}
(2.42)

which depends on τ = Zi
Te
Ti

as well as the safety factor q, magnetic shearing s,
elongation κ and inverse aspect ratio ϵ.

2.3.2 Quasi-linear approach and transport

One can extend the previous linear kinetic approach with a quasi-linear approach.
The idea is to keep the linear solution obtained for the perturbed distribution
function f1 and derive a slow time evolution equation for f0, meaning

∣∣∂f0
∂t

∣∣≪ ω |f1|.
For this, we start again from equation (2.27) which we developped using f = f0+f1
and ϕ = ϕ0 + ϕ1 before removing the linear terms (See appendix B.1.2). This leads
to a phase-space flux that can be written

ΛrQL = ⟨−f1∂θϕ1/Br⟩θ . (2.43)

This term can be further refined by writing the full perturbed terms as Fourier
series and averaging over θ

ΛrQL =
∑
k∥,kθ,ω

−ikθ
B

∣∣∣ϕ̂k∥,kθ,ω∣∣∣2 fM qi
T0

kθρcvT

[
∂rn0

n0
+ ∂rT0

2T0

(
v2∥
v2T

− 1

)]
− kθ

B
∂rϕ0 − k∥v∥

ω − kθ
B
∂rϕ0 − k∥v∥

(2.44)

before integrating over the velocity space to get a particle flux (see appendix
B.1.3)

ΓrQL =

∫
dv∥

∑
k∥,kθ,ω

−γkθ
B

∣∣∣ϕ̂k∥,kθ,ω∣∣∣2 fM qi
T0

kθρcvT

[
∂rn0

n0
+ ∂rT0

2T0

(
v2∥
v2T

− 1

)]
− kθ

B
∂rϕ0 − k∥v∥(

ΩR − k∥v∥
)2

+ γ2
,

(2.45)

with ΩR = ωr − kθ
B
∂rϕ0 and γ the linear growth rate of the considered instabil-

ity. This expression gives very important information about turbulence behaviour.
First, one can see it is proportionnal to the linear growth rate of the instability γ as

well as the potential fluctuations
∣∣∣ϕk∥,kθ,ω∣∣∣2; this means the particle flux only exists

if the instability can grow and more specifically if it has already developped (i.e. the
linear growth of the instability has already taken place).
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Second, the flux here is outward since the gradient of density and temperature
are negative (i.e. it decreases going outward). To make this more obvious, we can
rewrite equation (2.45) with κn = −∂r lnn0 and κT = −∂r lnT0

ΓrQL =

∫
dv∥

∑
k∥,kθ,ω

γkθ
B

∣∣∣ϕ̂k∥,kθ,ω∣∣∣2 fM qi
T0

kθρcvT

[
κn +

κT
2

(
v2∥
v2T

− 1

)]
+ kθ

B
∂rϕ0 + k∥v∥(

ΩR − k∥v∥
)2

+ γ2
.

(2.46)

This form also allows us to see two terms often discussed in litterature; namely
the turbulent diffusion Γturbdiff = Dturb

QL n0κn and thermo-diffusion Γturbthermo = −Cturb
QL T0κT .

By identification, those coefficients write

Dturb
QL =

∫
dv∥

∑
k∥,kθ,ω

γkθ
B

∣∣∣ϕ̂k∥,kθ,ω∣∣∣2 fM qi
n0T0

kθρcvT(
ΩR − k∥v∥

)2
+ γ2

, (2.47)

Cturb
QL = −

∫
dv∥

∑
k∥,kθ,ω

γkθ
B

∣∣∣ϕ̂k∥,kθ,ω∣∣∣2 fM qi
2T 2

0

kθρcvT

(
v2∥
v2T

− 1

)
(
ΩR − k∥v∥

)2
+ γ2

, (2.48)

where it readily appears thatDturb
QL will always be positive and is reduced with higher

values of the magnetic field thanks to its dependance in B−2. However, Cturb
QL can

change sign depending on the parallel velocity value. If the distribution function is
not Maxwellian or at least with non-negligeable fast particles populations, thermo-
diffusion can increase outward particle flux.

The last term, written

ΓrQL,∥ =

∫
dv∥

∑
k∥,kθ,ω

γkθ
B

∣∣∣ϕ̂k∥,kθ,ω∣∣∣2 fM qi
T0

kθ
B
∂rϕ0 + k∥v∥(

ΩR − k∥v∥
)2

+ γ2
, (2.49)

is an exchange/pumping term between parallel and perpendicular fluxes.
It is interesting to note that the resonnance with this model appears on the

parallel velocity as opposed to the gyro-bounce model [32], which captures the
perpendicular dynamics with a resonnance depending on the precession frequency.
This leads to another interesting effect; It seems that there is no obvious scaling
with the charge in the presented work, which only treats passing particles since
there is no B gradient and thus no magnetic trapping effect. Conversely, the gyro-
bounce model only treats the trapped particles and shows a dependance on the ion
charge number.

2.3.3 Other instabilities

Generic instabilities

Streaming instabilities can arise in tokamaks because of the difference in plasma
frequency between electrons ωp,e =

√
ne2/meϵ0 and ions ωp,i =

√
me/Miωp,e; if
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the perturbations have a wavelength such that ωp,e + kVe ≈ ωp,i, then the density
fluctuations can be in phase for both species and waves in both fluides (i.e. ions
and electrons) can grow simultaneously.

Equivalently to neutral fluids, Rayleigh-Taylor (see Figure 2.4 for the classical
fluid Rayleigh-Taylor instability) instabilities can grow in tokamak’s plasmas due
to the centrifugal force pushing particles from the core (denser and thus heavier
fluid) to the outside (sparse and therefore lighter fluid). It appears clearly that
this problem only occurs on the outer part of the tokamak since density gradient
and centrifugal force are directed the same way. This instability starts from small
oscillations on pressure isocontours which are enhanced by the difference in cen-
trifugal force felt by the perturbed regions. It results in waves propagating in the
poloidal direction and leads to flute-shaped structures (See Figure 2.5, left). They
are similar to drift-wave instabilities discussed in the previous section (i.e. ITG
modes) but do not propagate along the magnetic field.

𝑛1
𝑛2

𝑛1 > 𝑛2

𝑟

𝜃
𝑡0

𝑡1 > 𝑡0

𝑡2 > 𝑡1

𝑡3 > 𝑡2

Ԧ𝑔 = −𝑔 Ԧ𝑒𝑟

Figure 2.4: Schematic representation of Rayleigh-Taylor instability structures with
two fluid layers of different densities, the heavier being on top of the lighter. If
small fluctuations appear at the boundary between the two layers, the heavier fluid
will drop in the lighter one and vice-versa, resulting in this type of structure. Note
that gravity can in fact impact tokamaks by adding a drift velocity vg = Ms

qs

g×B
B

by using equation (1.8) and replacing F by Msg. This will lead to similar effects as
the one shown in Figure 2.2.

TEM

Though ITG modes and ion heat transport are intensely studied, electron particle
and heat transport is slightly less documented. However, it has been shown that
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Flute modes Drift modes

Figure 2.5: Flute (left) and drift (right) instability modes in a cylinder. Here,
modes of m = 6 are represented with no parallel component to the magnetic field
(i.e. n = 0, flute modes) and with an arbitrary parallel mode (i.e. n ̸= 0, drift
modes). Red lines are isocontours of the considered quantity, like pressure for
example, and are twisted if n ̸= 0.
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Figure 2.6: Schematic representation of Kelvin-Helmholtz instability structures
with two fluid layers going opposite directions. If a slight disturbance appears
at the boundary between the layers, it will result in eddy formation. This type of
instability is common in our atmosphere.
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TEM (i.e. Trapped Electron Modes) instability is a suitable candidate to explain
the electron fluxes observed in experiments, especially when the primary source
of heating is electron heating (i.e. through ECRH - Electron Resonance Cyclotron
Heating -). This instability is similar to ITG modes with a drift-mode like structure
as in Figure 2.5 and takes its source in electron temperature and/or density gradients
depending on the experiment itself. However usual TEM turbulence scale (0.01 <
k⊥ρi < 1) overlaps that of ITG (0.1 < k⊥ρi < 1) [33], which makes it more difficult
to distinguish them apart in real experiments. Some indicators were found to be
suitable to discriminate TEMs signature from ITG [34]. Also, numerical simulations
of TEM turbulence were able to reproduce the wavelength spectrum measured in
an Alcator C-Mod experiment [35]. In this experiment, TEMs were expected to
be dominant relative to other instabilities. A number of models and simulations
investigating this instability [36, 37] showed how it differenciates from ITG modes
by reaching saturation based on different mechanisms.

TEMs are expected to play a major role especially in bigger tokamaks, like ITER
[38], where electron heating systems are more powerful than in existing experiments.

Note that the counterpart of TEMs and ITG exist, namely TIMs (Trapped
Ion Modes) and ETG (Electron Temperature Gradient), but are far less impacting
tokamak turbulence.

However, since electrons are taken adiabatic in the model we use for the study
presented here, TEMs will not be part of the instabilities we may encounter.

PVG and TVG

Parallel Velocity Gradient (PVG in short) instability was first introduced by D’Angelo
[39] and is, in fact, analogous to the Kelvin-Helmholtz instability (flute modes,
see Figure 2.5). It originates from radial layers of fluid with different parallel
velocity. In other terms, it comes from strong radial gradients of parallel ve-
locity as shown in its relatively simple instability criterion [40]

∣∣∣MLn

LΓ

∣∣∣ > 1, with

LΓ =

[
1

neqV∥,eq

d(neqV∥,eq)
dr

]−1

and Ln =
[

1
neq

dneq

dr

]−1

, respectively the parallel flux and

density gradient lengths. More in-depth studies on this instability, which may be
relevant for linear machines, are conducted by T. Rouyer whose PhD started at IJL
in december 2022.

Transverse Velocity Gradient (i.e. TVG) instability is not discussed as much as
PVG and was first introduced by Kent [41] and further studies [42]. This instability
is theoretically possible in tokamaks provided the radial gradient of poloidal velocity
(i.e. ∂rvθ) is strong enough to trigger a Kelvin-Helmoltz-like instability as illustrated
in Figure 2.6. However, poloidal shearing can be beneficial for plasma confinement
and help creating transport barriers.

2.4 Transport barrier

Turbulent transport significantly reduces confinement time in tokamaks due to the
increased particle and heat fluxes. The normal state of a tokamak is therefore
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considered as a "Low-confinement" mode, commonly referred to as L-mode, which
is highly turbulent. However, overall transport can be reduced (i.e. increasing
confinement time) by triggering a plasma transition to an improved confinement
state. Such a transition involves the creation of a transport barrier which can be
localized in the plasma core (ITB for Internal Transport Barrier) or at the edge
(ETB for Edge Transport Barrier) and may involve strong poloidal E ×B shear in
some cases.

2.4.1 Edge Transport Barriers (ETBs) and L-H transition

The first case of such a transition was reported by Wagner et Al. in 1982 [43] in
ASDEX, a tokamak formerly based in Garching, Germany and continued as HL-2A
by the China National Nuclear Corporation at Chengdu, China. This transition
was triggered by neutral beam injection (i.e. NBI). Neutrals are injected into the
plasma in a straight line at high energy levels, usually tangentially to the plasma
current present in the plasma to further enhance the said current as well as toroidal
momentum. Through hard collisions with ions, the light neutrals injected deposit
their energy in the plasma and increase the ions kinetic energy (i.e. their temper-
ature). Also, this method is useful to partially fuel the said plasma with specific
species since neutrals that collide in the plasma will get ionized and be part of the
plasma as a result. In the case of the presented ASDEX discharge, the confinement
enhancement was characterized by a sudden increase in both electron density and
temperature in the core plasma shortly after NBI activation. Example of pressure
and density profiles in presence of an ETB is presentend in Figure 2.7. This indi-
cates the formation of an ETB, meaning transport coefficients are severely reduced
at the plasma edge hence the influx reduction observed at the divertor plate.

However, the higher confinement regime (called H mode hereafter) reached in
ASDEX presented some problems in the outer region of the plasma near the sepa-
ratrix. Short bursts of density and temperature reduction were observed indicating
losses due to quasi-periodic ETB collapses which later got called Edge Localized
Modes (ELMs).

Similar results were soon observed in DIII-D [44] in a similar divertor magnetic
configuration by also using NBI.

First hints of the ingredients needed to trigger L-H transitions were later found
by the DIII-D team [45] who was able to measure the radial electric field at the
separatrix position during the whole shot. As it turns out, a huge increase in the
electric field amplitude is observed during the L-H transition and stays at around
4 times the L mode value during the whole H mode time interval before dropping
back to its L mode value at the end. Even more interesting was that during ELMs
events, the radial electric field dropped back to its L mode values. In other terms,
strong E×B poloidal velocity (i.e. radial electric field) is correlated with the pres-
ence of an active transport barrier.

The JFT-2M [46] team was able to measure the radial electric field radial profile
at the edge and showed that not only the Er well amplitude was larger, but also
its radial derivative ∂rEr. The position of this strongly sheared radial electric field
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also coincides with strong electron and ion pressure gradients. Similar results were
obtained afterwards for DIII-D [47] with Er width of a few centimeters, which is
around 10 Larmor radius for both DIII-D and JFT-2M.

Results from ASDEX Upgrade [48, 49], Alcator C-mod [50], COMPASS [51],
JET [52] and MAST [53] all converge with similar radial electric field and pressure
profiles (See appendix C.1 for data about the electric field characteristics), meaning
the ETBs created during those experiments are probably related to the same physics
phenomena.
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Figure 2.7: Examples of pressure (left) and density (right) profiles expected during
ITB (purple) and ETB (blue) events. Black line represent the standard L-mode.
Vertical lines correspond to the position of the corresponding transport barriers.

2.4.2 Internal transport barriers

In addition to ETBs, barriers localized in the core plasma can also be triggered
through different means. As opposite to ETBs, it is more complicated to define
exactly what ingredients generate ITBs. However, it is generally admitted that
when the temperature gradient increases significantly in a thin radial region in the
core (i.e. r/a ≲ 0.6) combined with a strongly reduced turbulent activity indicate
that an ITB event has been triggered. Typical profiles are shown in Figure 2.7.

The TFTR (Tokamak Fusion Test Reactor) team reported a first successful ITB
event [54] by using a reversed magnetic shear profile (i.e. s (r) = rq−1∂rq) in the
core and by using a NBI heating system. Ion thermal diffusivity dropped by a factor
of 40 (i.e. even lower than predicted neoclassical values) in the reversed shear radial
region leading to peaked density and temperature profiles in the core.
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Similar results were found almost at the same time by the DIII-D team [55, 56]
with a strong confinement enhancement in the radial region of reversed magnetic
shear. However, they found that reversed magnetic shear alone is not sufficient
to trigger this ITB. In fact, shear reversal is present before the ITB is observed,
indicating other phenomena play a role here.

Other tokamaks were able to reach such enhanced confinement states with re-
versed magnetic shear configuration like JT-60U [57, 58], JET [59, 60], EAST [61]
or KSTAR [62]. Some tokamaks were also able to produce both kinds of transport
barriers at the same time like in JET [63] or more recently HL-2A [64].

2.4.3 Mechanisms involved

One of the shared characteristics of ITBs and ETBs is the presence of poloidally
sheared E × B flows either generated by the mean electric field at the separatrix
(i.e. for ETBs) or the reversed magnetic shear profile.

Part of this E × B shearing (i.e. zonal flows [65, 66, 67]) is generated by tur-
bulence and leads to a self-regulated state through a prey-predator mechanism
[68]. Those flows are radial layers of plasma which are toroidally axisymmetric (i.e.
n = 0) and rotating in a similar fashion as Jupiter’s cloud or our own atmosphere
on Earth which originate from turbulence itself. Non-linear interactions and en-
ergy transfer from drift-waves modes (i.e. (m,n) ̸= (0, 0)) and n = 0 modes are
responsible for zonal flow triggering. This means that if the zonal flow is strong
enough to reduce turbulence and thus the drift-wave modes energy by pumping it,
less energy can be transferred to the zonal flows. As a result, zonal flows decay
and turbulence can rise again for energy to be transferred back to n = 0 modes to
trigger zonal flows back again, thus the prey-predator mechanism evoked earlier.
Those modes cannot be sustained in the absence of turbulence and thus cannot
explain transport barrier mechanisms by themselves. However, they are part of the
saturation mechanism of turbulence and its regulation.

Mean E ×B shear flows are the best candidates to explain L-H transitions and
turbulence quench mechanisms at ETBs and ITBs events. As discussed earlier,
an important increase of these flows is measured during L-H transition on every
tokamak. This explains why their effects on a turbulent plasma have been widely
studied [69, 70, 71, 72, 73] using different theoretical explanations for the underlying
mechanisms leading to a transport quench.

First, it is very different from zonal flow since its origin is not found in turbulence
itself but is generally caused by externally injected momentum. This is done by
injecting heat through NBI or I/ECRH for example, and thus is not converting
turbulent energy in momentum. This means that for example, even if temperature
gradient can drive ITG modes and lead to a self-regulated state with zonal flow,
a transport barrier triggered by E × B sheared flows will not pump energy from
turbulence. It will rather reduce turbulence intensity and make the system converge
towards a new equilibrium.

The effect of shear flow in general is tackled with great pedagogy by Terry
[71] from which a simple phenomenological approach is proposed to understand
how shear flows can suppress turbulence. A visual representation of the process is
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shown in Figure 2.8 in a poloidal plane. Turbulent structures - eddies for example
- can loose their coherence after some time even without background sheared flows;
this defines the eddy turnover time or turbulence coherent time. However, when the
velocity difference at the eddy edges is sufficiently strong, structures are elongated in
the flow direction way above its "natural" (i.e. without flow shear) coherence length,
hence the lifetime reduction. Also, structures elongated parallelly to the flow also
undergo a reduction in perpendicular length (i.e. radial length in the case presented
in Figure 2.8). Since transport occurs along those turbulent structures, a local
reduction in their radial length means transport will occur on shorter radial length
and time scales. Ultimately, if we consider a random walk process for transport as
a first approximation (i.e. like in section 1.4.3 and equation (1.25)), the diffusion
process will be severely diminished by the effects of sheared flows. An empiric
criterion gives an estimate of the needed ωE×B, the E×B shear rate, which should
be within the same order of magnitude as γmaxlin , the maximum linear growth rate
of the instability [74], to suppress turbulence. This time scale (i.e. γ−1

lin) is the
time scale for which a particle trapped in such turbulent eddy will be transported
along its contour, therefore a shear flow with a similar time scale (i.e. ω−1

E×B) should
efficiently decorrelate the structure and reduce transport.

1
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Figure 2.8: Visual representation of sheared flows in a poloidal plane. Left: density
map in a poloidal plane in a saturated turbulence regime. Shear flow layers and
a turbulent structure (i.e. a turbulent eddy) along which transport occurs is also
represented. Right: The same structure is represented at different time intervals
in such a r, θ plane in presence of two layers of flow shear. The structure elongation
and decorrelation process is pictured.



Chapter 3

Transport barrier using a vorticity
source

The results presented in this chapter are published in [75]. The chapter is there-
fore very similar in this manuscript with only minor modifications and additional
informations when judged relevant.

3.1 Gyrokinetic modelling and GYSELA

3.1.1 Basis of gyrokinetic framework

As described in previous sections, kinetic models are among the most precise and
fundamental models to describe plasmas. However, the computing accessibility of
full 6D kinetic models (r, θ, φ, vr, vθ, vφ) would require computation times many or-
ders of magnitude larger than what is currently available. A possible way to tackle
this limitation is to reduce this model to a 5D gyrokinetic one by averaging on the
Larmor trajectory of particles (Figure 3.1). This allows us to stay in the power-
ful kinetic framework by keeping crucial effects linked to micro-turbulence of time
scales larger than ω−1

c and discarding smaller ones.

To understand the gyrokinetic theory, the first step is to understand that the
smallest scale it is able to describe will be linked to the ratio ϵB = ρc/LB ≪ 1, with
LB = ∇B/B the typical gradient length scale of the magnetic field. This means
the magnetic field must vary on much larger space and time scales than the Larmor
radius of the considered particles. Alternatively, variations of the microscopic po-
tential energy is small compared to the thermal energy qsδϕ/kBTs ≪ 1. Also, time
variations of both the electric E and magnetic B fields must be negligeable during
a cyclotron period, meaning ωE,B/ωc ≪ 1, where ωE,B is the typical pulsation for
the considered fields and ωc is the cyclotron frequency. More generally, the crucial
parameter is the thermal Larmor radius of the species considered ρc,s normalized
to the minor radius of the tokamak a

ϵB ∼ ωE,B
ωc

∼ qsδϕ

kBTs
∼ O

(
ρ⋆s =

ρc,s
a

)
, (3.1)
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where usually for tokamaks ρc,e− ≈ 10−5 m and ρc,i ≈ 10−3 m.

Gyro-centre transform

Gyro-centre coordinates
5D phase space

Real coordinates
6D phase space

𝐁⋆ = 𝐁 +
mvG,∥

2

q
𝛁 × 𝐛

Guiding-centre

Gyro-centre

Particle trajectory 
(with gyro-motion)

Figure 3.1: Effect of the gryro-averaging operation on the guiding-centre trajectory
(6D to 5D). Figure reproduced from [76].

By keeping those limitations in mind, the gyrokinetic Vlasov equation is ob-
tained by gyro-averaging the classic Vlasov equation using the Hamiltonian rep-
resentation to conserve both symmetry and conservation properties of the used
equations, namely the Vlasov and Poisson equations. This procedure is detailed
with rigor in the work of A. Brizard [77] and forms the basis of the GYSELA code.
In this thesis, derivation of the model will not be detailed.

3.1.2 GYrokinetic SEmi-LAgrangian

GYSELA [78] is a 5D full-f gyrokinetic electrostatic code coupling the Vlasov equa-
tion and the quasi-electroneutrality equation codevelopped by CEA/IRFM and IJL.
One of the main advantage of GYSELA comes from the treatment of the entire dis-
tribution function, hence the full-f notation, meaning F̄s will evolve for each species
regardless of the scale studied, plasma being at equilibrium or subject to small
fluctuations. The treatment of electrons is however less robust and is mainly lim-
ited to an adiabatic response so far. Partially kinetic electrons, more specifically the
trapped ones, are under development. In this thesis, we use only adiabatic electrons,
which means that up to compressional effects, the time-averaged particle transport
across circular magnetic surfaces vanishes if there is only one kinetic ion species in
the system. Nevertheless, main ions heat flux can still be studied with this set of
assumptions. The following Vlasov equation, where the s subscript stands for the
considered ion species, is solved in GYSELA for each species:

B⋆
∥,s∂tF̄s +∇ ·

(
ẋGC,sB

⋆
∥,sF̄s

)
+ ∂vG∥,s

(
v̇G∥,sB

⋆
∥,sF̄s

)
= C

(
F̄s
)
+ S

(
F̄s
)
, (3.2)
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with F̄s the ion gyrocentre distribution function, xGC,s and vG∥,s the gyro-center
position and parallel velocity respectively. They are defined through

B⋆
∥,sẋGC,s = vG∥,sB

⋆
s +

1

Zs
b×∇Λs, (3.3)

B⋆
∥,sMsv̇G∥,s = −B⋆

s ·∇Λs, (3.4)

where Λs = eZsJ [ϕ] + µsB is the gyrocenter energy with µs = Msv
2
⊥,s/2B the

magnetic moment and J is the gyro-average operator. The latter is important to
switch from the gyro-averaged quantity (i.e. F̄s or ϕ̄) to the real quantities (Fs or ϕ).
When developped, equation (3.3) gives us the usual drifts mentionned in previous
sections. B⋆

∥,s is part of the velocity space Jacobian defined through b = B/ ∥B∥
and B⋆

∥,s = B⋆
s · b = B + Ms

qs
vG∥,sb · (∇× b), with

B⋆
s = B+

Ms

qs
vG∥,s∇× b. (3.5)

Equation (3.2) is coupled to the quasi-electroneutrality equation,

ene0

(
ϕ− ⟨ϕ⟩FS

Te

)
︸ ︷︷ ︸
Adiabatic e− response

−
∑
s

Zs∇⊥ ·
(

n0,s

B0ωc,s
∇⊥ϕ

)
︸ ︷︷ ︸

Polarization density

=
∑
s

Zs

∫
dvsJ

[
F̄s − F̄eq,s

]
︸ ︷︷ ︸

Particle density fluctuations

,

(3.6)

to make the GYSELA model self-consistent. A way of computing the exact or
approximate polarization density in GYSELA is proposed in appendix C.2. In
equation (3.6), ϕ is the real electrostatic potential, Zs and Ms the charge num-
ber and particle mass of the considered ion species, B0 the magnetic field ampli-
tude and ωc,s = ZseB0/Ms the ion cyclotron pulsation. Here, dvs is defined by
dvs = Jvsdµsdv∥,s with Jvs = 2πB⋆

∥,s/Ms the velocity space Jacobian. F̄eq,s refers
to the equilibrium distribution function of the species considered and is usually de-
fined as a Maxwellian distribution. The polarization density is a correction due to
the polarization drift velocity evoked in the introduction. However, the derivation
made by T.S. Hahm and A.J. Brizard makes this polarization appear as a density
correction of the order of the Larmor radius of the considered species. The electron
polarization density is discarded since polarization is proportionnal to the particle
mass (Me ≪Ms).

Collisions are taken into account in the GYSELA model through the operator
C
(
F̄
)

which conserves both energy and particles [79]. Also, both intra and inter
species collisions are modelled.

3.1.3 Kinetic external sources

In equation (3.2) S represents the source terms. This gives GYSELA the ability
to run in a flux-driven regime where a heat source continuously heat up a select
region of the plasma. This allows the pressure profile to be maintained even when
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turbulence is present, the latter leading to a flattening of the pressure profile in the
absence of any source. Sources have been built by projecting the parallel velocity
vG∥,s and magnetic moment µs onto the orthogonal basis of Hermite and Laguerre
polynomials respectively [80, 81].

ŜE

(
r̂, θ̂, v̂∥, µ̂

)
=

+∞∑
l=0

+∞∑
h=0

chlHh

(
v̄G,∥

)
Ll (µ̄) exp

(
−v̄2G∥

− µ̄
)
, (3.7)

where Hh and Ll are the Hermite and Laguerre polynomials detailed in appendix
C.3, v̄G∥,s/

√
2TS/Ms and µ̄s = µsB/TS are the normalized parallel velocity and

magnetic moment. One can choose to inject particles, parallel momentum, poloidal
momentum and/or energy by choosing the right chl coefficients. In the following
sections, only the heat source and the poloidal momentum (equivalent to a vorticity)
source are used.

The kinetic sources of heat and poloidal momentum (i.e. vorticity) are defined
respectively as

Sϵ,s =
Sϵ0S

ϵ
r (r)√

2π3/2T
5/2
S,ϵ

[
v̄2G∥,s

− 1

2
+

2− µ̄s
2− J2

∥,B,s
J∥,B,s

(
J∥,B,s − 2v̄G∥,s

)]
exp

(
−v̄2G∥,s

− µ̄s

)
,

(3.8)

SΩ =
SΩ
0 S

Ω
r (r)B2

√
2π3/2T

5/2
S,Ω

[
2v̄2G∥,s

− µ̄s

]
exp

(
−v̄2G∥,s

− µ̄s

)
, (3.9)

where J∥,B,s =
√
2TSJ∥,s/B

2 is defined with the parallel current J∥,s and the source
temperature TS, the latter being fixed at TS,ϵ/T0 = 1.5 and TS,Ω/T0 = 1 where T0
is a reference temperature. Sϵ,Ω0 is the source amplitude and Sϵ,Ωr (r) is the radial
profile; both of them are GYSELA input parameters. The radial width of the source
is chosen so that normalized values match with experimental data as presented
in appendix C.1. The poloidal momentum source is built such that no heat nor
particles are injected in the system. A marginal quantity of parallel momentum is
injected along with the poloidal momentum as well as pressure anisotropy. This
can be seen in equation (3.9) in the terms 2v̄2G∥,s

− µ̄s which, when integrated, will
respectively inject parallel pressure and pump perpendicular pressure1 and therefore
enhance the local pressure anisotropy Π∥,s = P∥,s − P⊥,s.

Once integrated over the velocity space, one can get the fluid source of energy
and vorticity for their associated fluid moment equations,

Sϵ = Sϵ0S
ϵ
r

[
2−

4J2
∥,B,s

2− J2
∥,B,s

]
, (3.10)

SΩ = SΩ
0 ∇2

⊥S
Ω
r . (3.11)

1We recall that P∥,s =
∫
dvs

1
2U

2F̄s with U2 =
(
vG∥,s − V∥,s

)2, P⊥,s =
∫
dvsµsBF̄s and Ptot,s =

1
3P∥,s +

2
3P⊥,s.
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To understand how the vorticity source works to inject poloidal momentum, we
can look at the vorticity conservation equation,

∂tW + ∂rK = S0∇2
⊥S

Ω
r , (3.12)

with W = −
〈
∇ ·

(
neq,sMs

B2 ∇⊥ϕ
)〉

FS
= qs

〈∫
dvsJ

[
F̄s
]〉
FS

the fluid vorticity, K =

qs
〈∫

dvsJ
[
(dtxG,s ·∇r) F̄ − s

]〉
FS

the fluid vorticity flux and S0∇2
⊥S

Ω
r the fluid

vorticity source. Equation (3.12) is obtained by taking the gyro average of the
Vlasov equation (3.2) and integrating over the velocity space. A flux-surface av-
erage is then performed to obtain a 1D (i.e. radial) equation for vorticity. Figure
3.2a (orange dashed line) represents the normalized fluid vorticity source profile as a
function of the normalized radius. One can note the main central lobe at r/a = 0.75
which is later referred as the source location. However, due to the nature of the
gyro-average operator in GYSELA, the computed source is not purely axisymmet-
ric. This is illustrated in Figure 3.2b where radial profiles of the fluid vorticity
source at θ = 0 (i.e. mid-plane, weak field side, dashed-dotted blue line) and θ = π
(mid-plane, strong field side, dashed red line) are compared to the flux-surface av-
eraged value (solid black line). A strong poloidal asymmetry arises in the source
amplitude, varying by around ±20% with a clear in-out (i.e. cos θ) dependency
similarly as B, the magnetic field amplitude. This information, combined with the
injected anisotropy discussed before, leads to an injection of a poloidal asymmetry
of pressure anisotropy for the main ion species (i.e. deuterium here). Said differ-
ently, the term ∂θΠ∥ may be strongly affected by the vorticity source. Therefore, we
expect the neoclassical terms of heat flux and later impurity flux to be determined
mainly by this term in the vicinity of the applied vorticity source. This will be
further studied in the next chapter.
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Figure 3.2: (a): Normalized radial profiles of the buffer diffusion (solid blue line),
fluid energy source (dashed-dotted green line) and fluid vorticity source (dashed
orange line). (b): Normalized vorticity source radial profile for θ = 0 (dashed-
dotted blue line), θ = π (dotted red line) and surface-averaged (solid black line).
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It is difficult to impose a sheared radial electric field Er in a full-f code; trying to
inject such a field directly in the quasi-neutrality equation proved to be uneffective
[82] due to immediate screening effect of the plasma. Two different approaches can
then be considered to generate an E × B flow shear in a flux-driven gyrokinetic
simulation with adiabatic electrons:

1. Use the poloidal momentum source (also referred as vorticity source hereafter)
previously described. The idea is to add a term in the right-hand-side of the
Vlasov equation (3.2) to polarize the plasma. It adds a small term equivalent
to a polarization density, effectively biasing locally the plasma and creating
a local Er field. Ion cyclotron frequency range can be used to inject poloidal
momentum in a plasma [83], like IBW (Ion Berstein Waves) [84] or MCFD
(Mode Conversion Flow Drive) [85] for example. The poloidal momentum
source used in this study can be viewed as the resulting effect of such exper-
imental methods on the sole mean radial electric field. This source aims at
emulating the effects of such heating systems and demonstrating the effect of
a strong E ×B shear flow on a turbulent plasma.

2. Locally enforce a sheared radial electric field via the radial force balance by
"imposing" a large pressure gradient:

Er = − 1

qsns

∂P⊥,s

∂r
+ vθBφ − vφBθ (3.13)

Notice that, when the pressure is anisotropic, the perpendicular pressure P⊥
2

enters the radial force balance instead of the total pressure Ptot. Details on
its derivation are given in appendix E of [80]. Since radial particle transport
is negligible with adiabatic electrons, we expect the imposed density gradient
to remain unchanged and a sheared Er to be generated to balance out the
pressure gradient throughout the simulation. This case is referred as the
steep gradient case hereafter. We expect the steep density gradient to be the
dominant stabilizing mechanism of turbulence since density gradient is long
known to stabilize the ITG instabilities [29].

3.2 Parameters and saturation level

3.2.1 Simulation parameters

Three simulations with similar parameters are studied and summarized in appendix
C.2; the vorticity and reference cases are two branches of the same initial simulation
where in the former the source is activated from tωc,0 = 126400 while the source
remains off in the latter. The third one is the so-called steep-gradient case. All
of them use a normalized gyro radius ρ⋆ = ρ0/a ≡ 1/200 with ρ0 the hydrogen

2More precisely, there should be an additional term to ∂rP⊥, namely (P∥ − P⊥)κκκ, with κκκ =
[∇∇∇⊥B−b× (∇∇∇×B)]/B the magnetic curvature (see for instance [86], eq.6.42]). This contribution
is usually small and has been neglected here.
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Larmor radius at mid-radius and a the minor radius. Due to the increasing cost
of simulations with smaller ρ⋆ values, we chose one comparable to the COMPASS
tokamak. The domain goes from r/a = 0 to r/a = 1 with the last 10% of the radial
domain subject to a buffer diffusion region to damp out fluctuations at the edge
and avoid possible numerical oscillations. Dirichlet boundary conditions are used
at the outer radial position r/a = 1 such that ϕ (r/a = 1) = 0. There, a buffer
region located at r/a > 0.9 and characterized by additional diffusion and Krook
terms forces the distribution function to relax towards an axisymmetric centered
Maxwellian. There is no inner boundary condition since the simulated domain
encompasses the magnetic axis r/a = 0. Note however that, because of symmetry
reasons, the axisymmetric (m,n) = (0, 0) component of the radial electric field is
necessarily vanishing at r/a = 0. The buffer radial profile is shown in Figure 3.2
(solid blue line). The safety factor radial profile writes

q (r) = 1.5 + 2.3 exp [2.5 ln (r/a)] . (3.14)

The resulting magnetic shear s = r
q
dq
dr

stabilizes the transverse Kelvin-Helmholtz
instability that could be driven by the imposed strong E×B shear [87, 88]. However
we do not expect the magnetic shear to play a major role in creating the transport
barrier since it is monotonic unlike in ITBs scenarios. The isotropic heat source
used in those simulations, localized in the interval r/a = 0 to r/a ≈ 0.4 (See Figure
3.2, dashed-dotted green line), evolves in time: for the vorticity and reference cases,
the amplitude of the heat source is fixed at a "high" value until turbulent intensity
saturates. The heat source amplitude is then lowered so that the pressure profile
stays roughly constant (i.e., its evolution becomes very slow in time). For the steep
gradient case, the source amplitude is fixed at the same "high" value throughout
the whole duration of the simulation. The deuterium ions are in the banana regime
with a collisionality such that ν⋆D+ < 1. Parameters are summarized in table 3.1.

3.2.2 Initial conditions

The initial temperature and density profiles are chosen such that ITG instabilities
arise, meaning the ratio η ≡ T−1∂rT

n−1∂rn
= κT/κn = 3 is constant on most of the domain

except in the steep gradient case that peaks at κn ≈ 28 at r/a = 0.75 (see section 5)
leading to η ≈ 0.13 locally. The vorticity and reference cases density profile (Figure
3.3a, dashed blue line) are close to a L-mode profile whereas the steep gradient
one (Figure 3.3a, dotted orange line) is similar (i.e. in general shape and not in
radial position) to what can be observed in H-mode discharges with a steep density
gradient at the edge (See [51] for example). Their respective η profiles are shown
in Figure 3.3b; the vorticity and reference cases are identical to the steep gradient
case except at r/a = 0.75, where the steep gradient is located.

3.2.3 Saturation level

We denote each mode as (m,n), where m and n are the poloidal and toroidal Fourier
mode numbers respectively. Figure 3.4 shows the time evolution of the (0, 0) and
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Figure 3.3: Radial profiles of the flux surface averaged guiding-center density (a)
and η profile κT0/κn0 (b) at tωc,0 = 0 for the vorticity case (similar to the reference
case, blue dotted line) and for the steep gradient case (orange dashed line).

(0, 1) as well as some resonant n+m/q (r) = 0 modes of the electrostatic potential,
with q (r) the safety factor profile, at r/a = 0.5 in the reference simulation. All
three simulations exhibit very similar behaviours until saturation since the param-
eters are almost identical (except near the density gradient at r/a = 0.75). The
oscillating phase of the (0, 0) and (0, 1) modes from tωc,0 = 0 to tωc,0 ≈ 3 · 104
corresponds to the relaxation of the low frequency GAMs [89] (Geodesic Acoustic
Modes). These oscillations are negligible after the main plasma instability starts its
linear growth, namely ITG. This linear growth phase starts at around tωc,0 ≈ 3 ·104
until turbulence saturation is reached at approximately tωc,0 ≈ 6 · 104. For each
simulation, the global mean linear growth rate γlin ≈ 5 · 10−4ωc,0 is computed by
fitting the linear part on

⟨ϕ⟩RMS =

√∑
m,n ̸=0

|ϕm,n|2. (3.15)

Values for the different simulations are reported in table 3.1.

3.3 Poloidal momentum (vorticity) source

3.3.1 Onset of a transport barrier

The source described in equation (3.9) is used to produce a sheared poloidal mo-
mentum profile to the system once turbulent intensity saturates. Although already
using about 4 million CPU hours, the simulation has not reached steady state yet,
which would have required several confinement times. However, the adiabatic evo-
lution of the flux-surface averaged profiles and the fast response of turbulence is
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Parameters Reference Vorticity Steep gradient
Collisionality ν⋆D+ (r/a = 0.5) = 0.1
Charge / atomic numbers Zi = 1, Ai = 2
Time step ∆tωc,0 = 16
Nr ×Nθ ×Nφ ×Nv∥ ×Nµ 511× 512× 64× 127× 31

Normalized gyroradius ρ⋆ = ρc,0/a = 1/200
Inverse aspect ratio 1/ϵ = R0/a = 4.4
Maximum density gradient κn = R0/Ln = 2.2 κn ≈ 28
Maximum temperature gradient κT = R/LT = 6.6
Amplitude of vorticity source SΩ

0 = 0* SΩ
0 = 0.08* SΩ

0 = 0
Average ITG linear growth rate γlin/ωc,0 ≈ 5 · 10−4

Table 3.1: Simulation parameters used in this study. *The poloidal momentum
source is activated from tωc,0 = 126400 for the vorticity case and disabled in the
reference case.
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Figure 3.4: |ϕm,n| at r = 0.5 plotted against time (up to tvorωc,0 = 126400, the
vorticity activation time). The solid black line represents ⟨ϕ⟩RMS (equation (3.15))
and is used to compute the average linear growth rate of ITG instability. This plot
is also representative of the steep gradient case since we look at the mode evolution
at r/a = 0.5, away from the steep gradient region at r/a = 0.75.
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enough to reach critical conclusions regarding the impact of an external source of
E ×B shearing on turbulent transport. Figure 3.5a shows the E ×B poloidal flow
at the same simulation time for both the reference (green dotted line) and vorticity
(blue dashed line) cases. The vorticity source effectively produces the desired E×B
flow shear compared to the reference case with a significant amplitude difference at
r/a = 0.7 and r/a = 0.8. As stated in [90], it is empirically found in numerical sim-
ulations that the ωE×B shearing rate should be within the same order of magnitude
as γMAX

lin , the maximum linear growth rate of the relevant instability (i.e. ITG in
this case) for turbulence stabilization. This simple rule of thumb is useful to have
an idea of the amount of shear we should impose on the plasma a priori. Here we
choose to normalize the shearing rate to γlin ⩽ γMAX

lin the average linear growth rate
computed with ⟨ϕ⟩RMS (equation (3.15)) which is more representative of the actual
"growth rate of ITG" instability. The chosen source amplitude should establish a
shear flow around one order of magnitude higher than γlin (i.e. ωE×B ≈ 10γ̄lin)
to fullfil the previously discussed stabilizing conditions, consistently with previous
studies [91].
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Figure 3.5: E × B velocity (a) and pressure (b) radial profiles of the vorticity
(dashed blue line) and reference (dotted green line) cases at tωc,0 = 377920. The
red vertical line represents the vorticity source position if activated.

Figure 3.5b shows the radial pressure profiles of the reference (dotted green
line) and vorticity (dashed blue line) cases at the same simulation time. Three main
features appear when the source is turned on: a "plateau" appears at r/a = [0.6, 0.7]
and the core pressure slightly increases compared to the reference case. Also, a
steepening of the pressure gradient is observed on the inner side of the plateau
(r/a = 0.6) and on the outer side of the source (r/a = 0.8). One must note that
in the plateau region, the ∂tP term is not negligible in the heat flux balance. This
means the radial pressure profile is still evolving and may be transient. The vorticity
source used here does not inject energy in the system, and the core heat source is
the same as the reference case which means that the increase seen on the radial
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profile should result from the presence of some transport barrier.
As attested by [91], it should be noted that the vorticity source activation leads

to a pressure (and therefore temperature) anisotropy that tends to destabilize the
plasma and any transport barrier that could be generated by the vorticity source
through quasi-periodic relaxations. This reduces locally the ITG linear threshold
[92] and triggers ITG modes excitation. In previous study, this ITG modes ex-
citation by temperature anisotropy led to periodic transport barrier crashes and
consequently anisotropy collapses. However, those crashes are not observed here
while a much higher temperature anistropy than previous studies is observed. A
scan in collisionality at lower resolution (not shown) shows that both temperature
anisotropy and shear rate saturate at a value that is independent of ν⋆. The sat-
uration value only depends on the vorticity source amplitude. Conversely, in the
absence of collisions, there is no sign of saturation in the time interval that is con-
sidered, so that both temperature anisotropy and shearing rate increase to very
large values. However, we did not observe the relaxation events reported by [93]
possibly because of a too short simulation. The main hypothesis for the absence of
relaxations is then linked to the recently upgraded collision operator used in this
study [79]. Previously, only the parallel direction v∥ was taken into account for
the collisions as presented in [94], whereas the latest version takes into account the
perpendicular direction µ. The derivatives in µ are then acting as an isotropizing
mechanism counterbalancing the anisotropizing effect of the source, hence no relax-
ation mechanisms are observed in our simulations.

To quantify the effect of velocity shearing on turbulent heat transport of the
main species and confinement, we choose to diagnose first the evolution of the effec-
tive heat diffusivity coefficient χT as a function of time in different radial regions.
For this purpose, heat transport is assumed to be mainly diffusive, with the heat
flux expressed as Q = −nχT∇T . The radial fluxes of energy then writes:

Qneo =

〈∫
E
(
vrD + vrEn=0

)
F̄sdv

〉
FS

, (3.16)

Qturb =

〈∫
E
(
vrEn̸=0

)
F̄sdv

〉
FS

, (3.17)

where E = µB + 1
2
v2G∥, v

r
D = v̄D · ∇r, vrEn=0

= ⟨v̄E×B · ∇r⟩φ and vrEn ̸=0
= v̄E×B ·

∇r−vrEn=0
. Qneo is the neoclassical heat flux, which is the sum of the curvature and

gradient drift contributions as well as the toroidally axisymmetric E ×B drift con-
tribution. The turbulent heat flux Qturb consists of the non toroidally axisymmetric
E ×B drift contribution.

The total radial heat flux is then the sum of the turbulent and neoclassical
contributions:

Qtot = Qturb +Qneo. (3.18)

Figure 3.6 represents the total radial heat flux (equation (3.18)) as a function
of radius and time normalized to the average gyro-Bohm heat flux ⟨QGB⟩r,θ,φ =
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Figure 3.6: Total radial heat flux Qtot (equation (3.18)) as a function of radius and
time for the reference (a) and vorticity (b) cases. The vertical dashed red line
represents the vorticity source position while the horizontal dotted red line is the
vorticity activation time.
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⟨−ne,0χGB∇Te,0⟩r,θ,φ with χGB = ρ⋆χB = ρ⋆ Te,0
qiB

, the gyro-Bohm diffusivity [95]
and Te,0 (r) and ne,0 (r) the initial electron temperature and density profiles. After
the vorticity source is activated (i.e. 150000ω−1

c,i as shown in Figure 3.6b), a clear
reduction in total heat flux is observed compared to the reference (Figure 3.6a)
case. The core region (r/a = [0.25, 0.45]) shows lower levels of heat flux than the
reference case, which explains the higher core pressure, whereas a region of Qtot ≈ 0
arises on the inner side of the source (r/a ∈ [0.6, 0.7]) hence the plateau in the
pressure profile. One can note higher heat flux levels on the outer side of the source
(r/a ∈ [0.75, 0.85]) due to both the previously discussed excitation of ITG modes
driven by the source-induced pressure anisotropy and the increased temperature
gradient. This leads to the steepening of the pressure profile observed previously.
To complete those observations, a radial average is performed on equation (3.18) to
get:

⟨Qtot⟩∆r =
〈
Qturb

〉
∆r

+ ⟨Qneo⟩∆r . (3.19)

Assuming diffusive heat fluxes, one can define the different heat diffusivity com-
ponents as follows:

χneoT = − ⟨Qneo⟩∆r
⟨n∇T ⟩∆r

, (3.20)

χturbT = −
〈
Qturb

〉
∆r

⟨n∇T ⟩∆r
, (3.21)

χtotT = χturbT + χneoT . (3.22)

The heat diffusivity coefficients are normalized to the local ⟨χGB⟩∆r,θ,φ gyro-
Bohm diffusivity coefficients. For this analysis, we select two radial regions:

• ∆r = [0.7, 0.8], the region where the flow shear is injected.

• ∆r = [0.15, 0.6], the region where the turbulence amplitude is found maxi-
mum.

Figures 3.7a and 3.7b show the time evolution of the turbulent spatial-averaged
diffusivity coefficients in the core (Figure 3.7a) and source (Figure 3.7b) regions
respectively. The turbulent diffusivity χturbT / ⟨χGB⟩∆r,θ,φ quickly drops by a factor
of about 10 in the vorticity source region (Figure 3.7b, dashed blue line) when
the poloidal momentum source is activated, compared to the reference simulation
(Figure 3.7b, dotted green line). In the source region, the turbulent diffusivity is
the dominant factor until the vorticity source is activated. Then, the neoclassical
diffusivity χneoT becomes the dominant contribution and stays constant in both the
source and core regions at approximately χneoT / ⟨χGB⟩∆r,θ,φ ≈ 0.5 for both cases.
Interestingly, the turbulent diffusivity in the core is affected by the activation of
the source (Figure 3.7a, dashed blue line) even if it is not as impactful as near the
source itself. An overall decaying trend seems to take place especially after the
source activation. This decrease in diffusivity at the source position explains the
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observed pressure increase in the core as less energy is lost to the edge; this attests
that a transport barrier has developed at the source location.

One can estimate the shear rate threshold above which turbulence is suppressed
by checking the evolution of the turbulent diffusivity χturbT relative to the shear rate
ωE×B (Figure 3.8). This threshold, defined as the shear rate for which χturbT / ⟨χGB⟩θ,φ,∆r
is inferior or equal to half of its average value before the source activation, is
⟨ωE×B⟩thresholdθ,φ,∆r ≈ γlin, consistently with the rule of thumb discussed previously.
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Figure 3.7: Time evolution of the turbulent heat diffusivity in the r/a = [0.15, 0.6]
(a) and r/a = [0.7, 0.8] (b) regions for the vorticity (blue dashed line) and reference
(dotted green line). The red vertical line represents the vorticity activation time
for the vorticity case. The neoclassical diffusivity being almost constant in time, it
is not presented here.

The observed reduction in
〈
Qturb

〉
∆r

(see equation (3.19)) can be explained
through non-linear arguments. Let us consider a simple expression for the radial
turbulent heat flux with Qturb =

〈
PurE×B

〉
FS

with P = (n+ δn) (T + δT ) and
δurE×B ≈ 1

B0r
∂θδϕ, the δ referring to fluctuating quantities and δurE×B the perturbed

E ×B drift velocity. Up to the second order, this leads to:

Qturb ≈ 1

B0r

⟨n⟩FS ⟨δT∂θδϕ⟩FS︸ ︷︷ ︸
conduction

+ ⟨T ⟩FS ⟨δn∂θδϕ⟩FS︸ ︷︷ ︸
convection

 . (3.23)

The convection term is negligeable in our simulations where electrons are adi-
abatic, hence we won’t consider this term hereafter. One can write for a given
fluctuating quantity the following expression:

δA =
∑
m,n

Ãm,n (r) exp [i (mθ + nφ− ωt+ ΩA)] . (3.24)
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Figure 3.8: Turbulent heat diffusivity χturbT plotted against the shear rate ωE×B
in the source region r/a = [0.7, 0.8] for tωc,0 = [110400, 243200]. The red dot
represents the vorticity activation time for the vorticity case tvorωc,0 = 126400. The
arrows indicate the time evolution. The dotted horizontal line represents half of the
average value of χturbT / ⟨χGB⟩∆r,θ,φ, the threshold for turbulence suppression.

where Ãm,n (r) is the amplitude profile (real), m and n the poloidal and toroidal
wavenumber respectively and ΩA the phase of the quantity considered. When ap-
plied to equation (3.23), one can write

Qturb ≈ ⟨n⟩FS
B0

∑
m,n

kθϕ̃m,nT̃m,n sin (Ωϕ − ΩT ) (3.25)

with kθ = m/r the poloidal wavenumber. Ultimately, we consider fluctuations with
similar amplitudes such as ϕ̃m,n ∼ ñm,n ∼ T̃m,n, leading to:

Qturb ≈ ⟨n⟩FS
B0

∑
m,n

kθϕ̃
2
m,n sin (Ωϕ − ΩT ) . (3.26)

Equation (3.26) implies that Qturb is proportionnal to ϕ̃2
m,n, kθ and to the phase

difference between the potential and the temperature. If the analysis presented here
holds, both turbulent intensity and radial turbulent heat flux must be in phase. To
verify this hypothesis, the following definition of electrostatic potential fluctuations
is used:

δϕ (r, θ, φ = 0, t) = ϕ (r, θ, φ = 0, t)− ⟨ϕ (r, θ, φ)⟩φ , (3.27)

where ⟨ϕ (r, θ, φ)⟩φ represents the toroidally axisymmetric modes of the potential
and are substracted specifically to remove the contribution coming from :
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• The mean potential, or the so-called ϕ0,0 Fourier mode, which is related to
zonal flows [96].

• The convection cells [96], which are toroidally axisymmetric but exhibit poloidal
asymmetries. They are associated with the ϕm̸=0,0 Fourier components.

The focus here is on a single poloidal plane (r, θ, φ = 0) representative of the
whole simulation box. Information of interest being the local turbulent intensity
and later the radial and poloidal geometric structures, this will provide sufficient
information on those variables as discussed in [97, 98]. The local radial turbulent
intensity is then computed by averaging the square of equation (3.27) over θ and
∆r:

Iturb =
〈
[δϕ (r, θ, φ = 0, t)]2

〉
θ,∆r

. (3.28)
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Figure 3.9: Time evolution of the turbulence heat flux (a) and turbulent intensity
(b) in the r/a = [0.7, 0.8] region for the vorticity (blue dashed line) and reference
(dotted green line). The red vertical line represents the vorticity activation time for
the vorticity case. (a) and (b) signals are in phase.

Iturb is normalized to Imaxturb , the maximum value reported before the source acti-
vation which is the same for both the reference and vorticity cases. Figures 3.9 and
3.10 represent the time evolution of the turbulent heat flux and turbulent intensity
in the source (Figure 3.9) and core (Figure 3.10) regions respectively. As expected,
Iturb and

〈
Qturb

〉
∆r

are in phase in both regions, implying the previous relationship
found between Qturb and Iturb ↔ ϕ̃2 holds in the case of adiabatic electrons. When
the vorticity source is activated, the turbulent intensity largely decreases in the
source region by a factor 3 while the heat flux decreases by a factor 10. Note that
there is still a small turbulence level present locally. Moreover, the turbulent inten-
sity also decreases in the core (Figure 3.10) when the vorticity source is on. The
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Figure 3.10: This figure shows the time evolution of the turbulent heat flux (a) and
turbulent intensity (b) in the r/a = [0.15, 0.6] region for the vorticity (blue dashed
line) and reference (dotted green line) cases. The red vertical line represents the
vorticity activation time for the vorticity case. (a) and (b) signals are in phase.

reduction in turbulent heat flux is then directly linked to the reduction of turbulent
intensity.

Another way to verify the validity of the relation described in equation (3.26)
is to plot

〈
Qturb
tot

〉
∆r

as a function of Iturb in the core (Figure 3.11a) and source
regions (Figure 3.11b). A linear fit Qturb/ ⟨QGB⟩r,θ,φ = aIturb/I

max
turb is then applied

to the data to check the validity of equation (3.26). In the source region, both
the turbulent intensity and turbulent heat flux in the vorticity case are at very low
levels compared to the reference case. However, the fit for the reference case is more
robust (R2 = 0.57) with a slope of arefsource ∼ 11.2 while it’s only avorsource ∼ 4.8 in
the vorticity case (R2 = 0.09). Not withstanding the small value of the R2 value
in the vorticity case, it is obvious that the plasma behaviour is different than in
the reference case. This indicates large variations in kθ and/or phase differences.
In the core region, both the reference and vorticity cases show similar slopes of
avorcore ≈ arefcore ∼ 12.5 with a convincing determination coefficient R2 > 0.8. This
means the turbulence has similar features but with a lower amplitude when the
vorticity is on and verifies equation (3.26).

The neoclassical heat flux profile is slightly altered in the vorticity case as pre-
sented in Figure 3.12. When looking at the core (i.e. r/a ⩽ 0.6), the reference and
vorticity cases are similar both in amplitude and shape. However, near the source
localized at r/a = 0.75, the neoclassical heat flux presents a sheared profile when
the transport barrier is present with part of the flux outside the source becoming
negative. This behaviour is not due to the transport barrier and more to the asym-
metry of pressure anisotropy injected by the vorticity source itself as discussed in
section 3.1.3 . Its effect is however minor on the neoclassical heat flux as observed
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Figure 3.11: Heat flux as a function of turbulent intensity for the vorticity (blue
cross) and reference (orange dots) cases in the core (a) and source (b) regions.

here.

3.3.2 Involved mechanisms: auto-correlation length and per-
pendicular wavenumber

As already discussed in the introduction, one of the main hypothesis is that an
E × B flow shear is able to tear the turbulent structures locally to reduce their
mean size and therefore stabilize the plasma. We propose two different approaches
to verify this prediction in our simulations:

1. Compute and compare the local auto-correlation radial length of the per-
turbed electrostatic potential for both the reference and vorticity cases. The
aim is to check any change in typical radial structure size.

2. Compute the poloidal wavenumber spectrum of the perturbed electrostatic
potential to monitor what poloidal scales are specifically affected by this tur-
bulent intensity quench.

Auto-correlation radial length

The aim in this paragraph is to quantify effect on the "mean" size of turbulent
structures of the E ×B shear flow. For this purpose, we calculate the fluctuations
as written in equation (3.27) and then compute a correlation length Probability
Density Function (PDF), following reference [97]:
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Figure 3.12: Radial profile of the neoclassical heat flux normalized to the average
gyro-Bohm heat flux and averaged over the last 16000ω−1

c,i for the reference (dotted
green line) and vorticity (dashed blue line) cases. The red vertical line indicates
the vorticity source position.

Cδϕ,δϕ (r, θ, φ = 0, t, δr) =
δϕ (r + δr, θ, φ = 0, t) δϕ (r, θ, φ = 0, t)

[δϕ (r, θ, φ = 0, t)]2
(3.29)

This autocorrelation function is computed for each θ angle and radial location
r on a radial window [r − δrmax, r + δrmax]. Here we adjust the radial extent to
δrmax = 20ρc,0, which is found to be sufficient to capture most of the turbulent
radial structures. Thus we obtain a PDF for each time step, θ angle and radius
r/a ∈ [0.1, 0.9]. The Half Width at Half Maximum (HWHM) of this PDF is taken
along δr to obtain a time dependent poloidal map of the radial correlation length:

Cδϕ,δϕ

(
r, θ, φ = 0, t, LδϕAC

)
= 0.5. (3.30)

Finally, the flux-surface average of the poloidal map obtained is computed before
doing a time average over the last 48000tωc,0 of both the simulation and reference
cases

⟨LAC⟩FS (r) =
〈
LδϕAC (r, θ, t)

〉
FS
, (3.31)

with the overline representing the time average.

Figure 3.13a shows the flux-surface and time averaged auto-correlation length
as a function of the normalized radius while Figure 3.13b shows the radial profile of
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Figure 3.13: Flux surface and time average of the correlation length normalized to
the local ion gyro-radius (a) and E × B shearing rate (b) as a function of radius
for the reference (green dotted line) and vorticity (blue dashed line) cases. The red
vertical line indicates the source location for the vorticity case.

the shear rate ωE×B at the last simulation time. The reference case (Figure 3.13a,
dotted green line) represents the correlation length without the vorticity source.
LAC stays close to 3.5ρc,i with a small E×B shear rate (Figure 3.13b, dotted green
line), but if the source is turned on (Figure 3.13a, dashed blue line), the radial
correlation length decreases where the flow shear rate is maximum (Figure 3.13b,
dashed blue line), at r/a = 0.75. This is consistent with the turbulent structure
shearing hypothesis: the E × B shear flow reduces locally the radial extension of
the turbulent structures. This ultimately leads to a spatial decorrelation of those
structures and a quench in turbulent intensity as previously observed. Conversely,
the correlation length increases in the range r/a ∈ [0.2; 0.4] and decreases near
r/a = 0.5 where shearing is not strong. Hence, the decrease of χT and of the
turbulent intensity in those regions cannot be attributed to the auto-correlation
length.

Poloidal wavenumber spectra

To complete this analysis, we compute the kθ spectrum of the perturbed electrostatic
potential to monitor the intensity evolution of the different poloidal structure scales
at different radii. The kθ spectrum is computed through

|δϕkθ |
2 (r, kθ) = |δϕ (r, kθ, φ = 0, t)|2. (3.32)

For each time step, a 1D FFT is performed along the poloidal axis before av-
eraging it over the last 48000tωc,0 to get a cleaner signal. This is comparable to∣∣δϕ3D

kθ

∣∣2 (r, kθ) =∑kφ
|δϕ (r, kθ, kφ)|2 because the dominant modes are the resonant

ones.
Figure 3.14a shows the core region (i.e. r/a = 0.43) poloidal wavenumber spectra
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for the reference case (dotted green line) and vorticity case (dashed blue line). The
vorticity case spectrum keeps the same features as the reference one with a slightly
lower amplitude. Figure 3.14b shows the poloidal wavenumber spectrum for the
source region (i.e. r/a = 0.75). A clear difference can be seen between the reference
(dotted green line) and vorticity case (dashed blue line). The smallest poloidal
scales (kθρc,i > 0.1) undergo a much more important decrease in intensity than the
bigger scales (kθρc,i < 0.1). This shows a reorganisation of the turbulent structures
at that location with a mean scale shifting from kθρc,i ≈ 0.28 to kθρc,i ≈ 0.16, mean-
ing the poloidal structures got bigger but also less intense. One explanation for this
local shift is that turbulent structures may get tilted along the poloidal direction
due to shearing as shown in Figure 1 of [90]. As a result turbulent structures are
radially smaller and poloidally bigger with an overall lower intensity.
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Figure 3.14: Poloidal wavenumber spectra using a 1D FFT averaged over the last
100 time steps for the reference (green dotted line) and vorticity (blue dashed line)
cases for r/a = 0.43 (a) and r/a = 0.75 (b).

3.4 Steep gradient case
Another way to generate a localized E × B poloidal shear flow is to produce a
radially strong pressure gradient (Figure 3.15a) as shown with the radial density
profile in Figure 3.3a. Since the temperature profile is allowed to evolve (flux-driven
condition) but not the ion density profile (adiabatic electrons), we can enforce an
initial density profile with a steep gradient at the desired location, the pressure
gradient intensity defining the poloidal shear flow amplitude. The main interest of
this approach is to determine how the heat transport coefficients behave when an
H-mode pressure profile is enforced from the start.
A simulation with such gradient and characteristics detailed in table 3.1 shows that
this method creates indeed the desired radial profile of poloidal E × B shear flow
as shown in Figure 3.15b. Notice that, in this case, the velocity profile is different
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from the vorticity-induced one (Figure 3.5b, dashed blue line) with a single lobe
instead of two at r/a = 0.75. Outside of the steep gradient region, the E × B
velocity profile is similar to what is observed in the reference case.
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Figure 3.15: Radial profile of the total pressure (a) and E×B poloidal velocity (b)
at the simulation end for the steep gradient case. The red vertical line indicates the
steep gradient position.

Figure 3.16 shows the time evolution of the total heat diffusivity (Figure 3.16a),
the turbulent heat flux (Figure 3.16b) and the turbulent intensity (Figure 3.16c) in
the steep gradient region. The turbulent diffusivity is vanishing in that region and
only marginally contributes to the total diffusivity now dominated by the neoclas-
sical coefficient, roughly constant at χneoT / ⟨χGB⟩∆r,θ,φ ≈ 0.5. The radial turbulent
heat flux (Figure 3.16b) shows the same trend as the turbulent intensity (Figure
3.16c) and drops to very low levels even smaller than the level observed in the
vorticity case (Figure 3.9a).

In the core, the diffusivity is dominated by tubulence and does not show the
decaying trend (Figure 3.17a). Figure 3.17b shows the time evolution of the radial
turbulent heat flux which again correlates strongly with the turbulent intensity in
the same region (Figure 3.17c). This approach seems effective to reduce the heat
turbulent transport coefficient and turbulent intensity both near the steep gradient
and in the core.

The origin of the barrier is however more ambiguous than in the vorticity case.
Two main factors need to be taken into account here. The first one is the linear
stabilization of ITG by the density gradient. The criteria to enable ITG to grow
linearly in a tokamak geometry is given in [31]. With our parameters, we get
κcritT = 22.4, which is higher than the prescribed value of κT = 6.6. Therefore, the
linear stabilization of ITG modes by the density gradient is primarly responsible
for the transport barrier creation and the low turbulent heat flux observed in the
region r/a = [0.7, 0.8].
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Figure 3.16: Diffusivity, turbulent heat flux and turbulent intensity time evolution
averaged in the r/a = [0.7, 0.8] region for the steep gradient case. (a) Time evolu-
tion of the total (dashed orange line) and turbulent (solid black line) heat diffusivity
coefficient. (b) Turbulent heat flux as a function of time. (c) Turbulent intensity
plotted against time. (b) and (c) signals are in phase.
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Figure 3.17: This figure is similar to Figure 3.16 except that the radial average
is in the r/a = [0.15, 0.6] region for the steep gradient case. (a) Time evolution
of the total (dashed orange line) and turbulent (solid black line) heat diffusivity
coefficient. (b) Turbulent heat flux as a function of time. (c) Turbulent intensity
plotted against time. (b) and (c) signals are in phase.



75 3.5. Discussion and conclusion

Moreover, one cannot neglect the impact of the E × B shear flow generated
by the pressure gradient. As shown in Figure 3.13b and 3.18b, the shearing levels
generated by the source and the steep gradient present different shapes (i.e. two vs
one lobe) but are within the same order of magnitude of ∼ 8γ̄lin, the average linear
growth rate of ITG modes at r/a = 0.5. The E × B flow shear is likely to prevent
ITG turbulence to propagate across this region by tearing appart convective cells
that could develop e.g. through turbulence spreading. This results in an even more
"effective" transport barrier with two different stabilizing mechanisms taking place
simultaneously.
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Figure 3.18: Flux surface and time average of the correlation length (a) and E×B
shearing rate (b) as a function of radius for the steep gradient case. The red vertical
line indicates the steep gradient location.

Figure 3.18a confirms the previous analysis by showing that the auto-correlation
radial length of the perturbed potential is significantly lower near the steep gradient
position at r/a = 0.75. This shows that almost no turbulence structures are present
here while the rest of the plasma manifests a similar behaviour as evidenced in the
reference case (Figure 3.13b, dotted green line).

3.5 Discussion and conclusion

We have analyzed here, by means of flux driven gyrokinetic simulations of ITG
turbulence, two different ways to reduce turbulence and make the plasma bifurcate
to what can be described as an improved confinement mode with the development
of a transport barrier.

The first way is based on a method proposed by A. Strugarek [91, 93] that uses
a vorticity source to locally polarize the plasma and generate a strong E ×B shear
flow comparable to what is observed experimentally for such plasmas. This method
leads to the effective reduction of the turbulent heat diffusivity χturbT in the source
region when the shear rate ωE×B reaches a threshold of ωE×B ≈ γlin, meaning no
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fluctuation persists in the vicinity of the strongly sheared region. A minor reduc-
tion in χturbT is observed as well in the core region compared to a reference case,
showing that the edge-localized source has an impact on the core. This reduction
in turbulent transport can be explained by the turbulent intensity quench observed
when vorticity is turned on. Moreover, a shearing of the larger turbulent structures
into smaller ones is observed as attested by the change of correlation length in the
strong flow shear region. The kθ spectrum analysis shows the impact of the source
with lower turbulent intensity, shifting the maximum of the spectrum to the lower
wavenumbers. This effect is due to the structures being tilted in the poloidal di-
rection. This reduction in heat transport led to slightly higher pressure in the core
than the reference scenario without the vorticity source.

The second way consists in enforcing an H-mode-like density profile to generate
through the radial force balance a localized strong E × B shear flow. This alter-
native method managed to stabilize the plasma locally by linearly stabilizing ITG
modes through the steep gradient profile enforced. In addition to this linear stabi-
lization effect, the E × B flow shear generated by the steep pressure gradient also
helps stabilizing the plasma by tearing apart any turbulent structures that could
grow in the steep gradient region. The edge reduction in heat transport leads to
higher core temperatures, meaning the created transport barrier is efficient enough
to increase energy confinement.

Accounting for kinetic electrons would allow particle transport in the simulation
presented here in both the vorticity and steep gradient cases. The latter case would
therefore be difficult to study as we expect the enforced steep density gradient to
collapse rapidly and it is not expected to generate and maintain a transport barrier.
In addition, TEMs would arise in the system and combine with ITGs and probably
lead to higher turbulence level since steep density gradients are destabilizing for
TEMs [99]. We still expect the vorticity source to be relevant in the presence
of kinetic electrons and we expect a transport barrier could still arise in those
conditions, even with TEMs.

However, one may expect a different threshold in the magnitude of the vorticity
source to trigger a transport barrier. Indeed, the saturation of TEM turbulence
exhibits a different sensitivity to Zonal Flows as compared to ITG. In particular,
their contribution to TEM saturation has been found to depend on local plasma
parameters, most critically the temperature ratio Te/Ti and η = Ln/LTe, the ratio
of density over temperature gradient lengths [37, 100, 101, 102].

The next chapter tackles impurity transport in presence of such transport barri-
ers. Both helium and tungsten impurities transport in trace limit are investigated.



Chapter 4

Impurity transport with a transport
barrier

4.1 Introduction

The formation of a transport barrier in nonlinear GYSELA simulations has been
demonstrated to efficiently reduce ion heat flux generated by ITG turbulence (see
chapter 3). In this chapter, we explore both turbulent and neoclassical impurity
transport in the presence of a transport barrier, by extending the previous work of
K. Lim [17]. Light impurities, such as helium (He), are known to be mainly trans-
ported by turbulent transport due to its low collisionality, while heavy impurities,
argon (Ar) and tungsten (W), are mainly transported by neoclassical transport.
Experiments [103, 104, 105] have demonstrated detrimental core accumulation of
heavy impurities due to inward neoclassical convection [14]. These results are qual-
itatively consistent with the results obtained from nonlinear GYSELA simulations,
highlighting the importance of controlling neoclassical transport in fusion devices.
Furthermore, recent studies [21, 22, 23] have also confirmed that the need of com-
prehensive modelling of neoclassical channel in properly describing heavy impurities
transport. For this reason, a series of nonlinear GYSELA simulations have been car-
ried out to investigate the effects of transport barrier on turbulent and neoclassical
impurity transport.

4.2 Plasma parameters

4.2.1 Parameters and initial conditions

In recent years, a scrape-off layer-like (SOL-like) operator has been implemented
in GYSELA to relax the electrostatic potential ϕ towards the pre-sheath condi-
tions expected in that region of the plasma in a poloidally axisymmetric way with
ϕbias = ϕ (r = rwall) ≡ 0. Additionally, GYSELA has received several critical up-
dates regarding computational optimizations to the collision operator. By leverag-
ing these features, a set of GYSELA simulations have been carried out with more
appropriate initial conditions and input parameters compared to the previous work
[17]. This modification requires the choice of a modified initial radial density profile
with a steeper gradient at the separatrix (r/a = 1) as described in Figure 4.1a.

77
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Other plasma parameters, as discussed in section 3.2, are applied and summarized
in table 4.1.

The radial profiles of heat and vorticity source terms are shown in Figure 4.1b.
The amplitude of SE0 = 0.0085 is set to ensure that the temperature profile is nearly
in equilibrium with the prescribed heat source. The radial domain is extended to
r/a = 1.15 to take into account the SOL region. The values of ρ⋆ = ρ0/a ≡ 1/200
and the safety factor, q (r), are kept unchanged compared to the section 3.2. With
given density and temperature gradients, the value of η = 3 is applied over the most
of the domain to trigger ITG instabilities. The collisionality of the main species is
set to ν⋆D+ = 0.1 at r/a = 0.575 in the Banana regime.

In Figure 4.2, the time evolution of the electric potential is described for different
(m,n) modes. Once the simulations reach the steady state, two different cases, one
with the vorticity source ("barrier" case) and one without ("reference" case), are
carried out separately. The radial profile of the vorticity source activated at r/a =
0.7, where turbulence is found to be sufficient to observe the effect of a transport
barrier, is shown in Figure 4.1b with an amplitude of SΩ

0 = 0.005. It is important
to note that, in this work, the value of SΩ

0 is reduced from 0.08 to 0.05 compared to
the case in chapter 3 to minimize non-physical effect of the vorticity source while
maintaining sufficient levels of poloidal ωE×B shear to trigger the formation of a
transport barrier.
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Figure 4.1: (a): Radial profile of the initial flux surface averaged guiding-center
density. (b): Normalized radial profiles of the axisymmetrical SOL mask (solid
blue line), fluid energy source (dotted green line) and fluid vorticity source (dashed
orange line). The purple vertical line indicates the separatrix position while the red
one indicates the vorticity source location if activated.

4.2.2 Triggering of the transport barrier

First, we need to assess whether the vorticity source is effective and the transport
barrier is active. To this end, we measure the evolution of the heat diffusivity χturb
as a function of ωE×B, the poloidal shear rate. Figure 4.3a shows that when ωE×B



79 4.2. Plasma parameters

Parameters Reference Vorticity
Collision rate ν⋆D+ (r/a = 0.575) = 0.1
Main species charge / atomic numbers Zi = 1, Ai = 2
Time step ∆tωc,0 = 20
Nr ×Nθ ×Nφ ×Nv∥ ×Nµ 511× 1024× 64× 127× 51

Normalized gyroradius ρ⋆ = ρc,0/a = 1/200
Inverse aspect ratio 1/ϵ = R0/a = 4.4
Maximum density gradient
for the main species κn = R0/Ln = 2.2

Maximum Temperature gradient
for the main species κT = R0/LT = 6.6

Amplitude of the vorticity source SΩ
0 = 0 SΩ

0 = 0.005*
Amplitude of the heat source SE0 = 0.0085
Average ITG linear growth rate γlin/ωc,0 ≈ 3.88 · 10−4

Table 4.1: Simulation parameters used for the main simulations studied in this
chapter. *The poloidal momentum (vorticity) source is activated from tωc,0 =
100000 for the vorticity case and disabled in the reference case.
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the time interval in between the red vertical dotted lines.



Chapter 4. Impurity transport with a transport barrier 80

reaches a value close to γ̄lin, the turbulent heat diffusivity is quenched similarly
as shown in Figure 3.8. An interesting feature is that χturb follows a much more
chaotic path before dropping to its final value of χturb ≈ 0.25. The main reason
for this behaviour is the reduced amplitude of the vorticity source which leads to a
longer ωE×B shear rate saturation time as less vorticity is injected.

Different from the previous case, temperature profile at the last simulation time
shows a steeper gradient and higher core temperature in the vorticity case. Un-
like the vorticity case, the temperature gradient remains almost constant in the
reference case from r/a = 0 to r/a = 0.95. The latter shows little change in the
temperature gradient within the radial interval r/a = 0.8 to r/a = 0.95. This
means that the energy confinement is enhanced up to the vorticity source location,
where the shearing is at its maximum; these observations confirm that the transport
barrier was well triggered. We then let both the reference and vorticity simulations
reach a time of t = 220000ω−1

c,i where they converge to a quasi steady-state with
almost constant pressure radial profiles.
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Figure 4.3: (a): Turbulent heat diffusivity χturbT plotted against the shear rate
ωE×B in the source region r/a = [0.65, 0.75] for tωc,0 = [90000, 220000]. The red
dot represents the vorticity activation time for the vorticity case tvorωc,0 = 100000.
Arrows indicate the time evolution. The dotted horizontal line represents half of
the average value of χturbT / ⟨χGB⟩∆r,θ,φ prior to the source activation, the threshold
for turbulence suppression. (b): Temperature profile at the source activation time
(tvor = 100000ω−1

c,i , solid black line) and the last simulation time of the reference
(treff = 220000ω−1

c,i , dotted green line) and vorticity (tvorf = 220000ω−1
c,i , dashed blue

line) cases.

4.2.3 Impurity injection

Different type of impurities coexist in fusion devices affecting the performance of
fusion reactors. The main physical mechanism that control impurity transport de-
pends on the atomic mass and impurity charge (i.e. their collisional regime). It
is therefore important to investigate different types of impurities to obtain a more
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comprehensive understanding of impurity transport. For the considered simula-
tions, we choose the following three species:

• Helium 4
2He

2+ ions, the ashes of the D-T fusion reaction, are light impurities
which are usually in the same collisionality regime as hydrogen isotopes (11H

1+,
2
1D

1+, 3
1T

1+, Banana-Plateau regime). This species is mainly transported by
turbulence due to its smaller mass and low charge.

• Argon 40
18Ar

18+ ions are usually injected around Plasma-Facing Components
(PFC) to mitigate the power exhaust loaded on them, especially on the di-
vertor. These species are classified as intermediate-Z species and are mainly
governed by neoclassical transport. Their collisional regime is intermediate
between Plateau and Pfirsch-Schlüter regimes.

• Tungsten 184
74W

40+ ions, which composes most of modern tokamaks’ divertor
plates, can be sputtered after extremely high intensity burst of heat flux. They
are not fully ionized even at core temperatures and are in a high collisionality
regime, namely Pfirsch-Schlüter regime. The neoclassical channel is usually
the dominant one for this species.

Simulation branches are summarized in appendix C.3 for clarity.
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Figure 4.4: Collisionality profiles for the different species considered with the
Banana-Plateau (BP) and Pfirsch-Schlüter (PS) limits plotted in dash and dot-
ted black lines. The higher the atomic number or charge number, the higher the
collisionality as computed through equation (4.1).

The density profiles of each impurity are similar to those of the main ions, as
described in Figure 4.1a, while the concentrations differ, with fHe = 8 · 10−10,
fAr = 8.8 · 10−11 and fW = 4 · 10−11. This indicates that impurities are in the trace
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limit, thereby having no impact on the background ITG turbulence [106]. The
radial profiles of the collisionalities are shown in Figure 4.4 based on the following
expression [14]:

ν⋆s =
qR0
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T 2
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2
TD+

)3/2
 , (4.1)

where the s index represents the considered impurity species and D+ the main
species (i.e. fully ionized deuterium). Tungsten is near the Pfirsch-Schlüter limit
while argon and helium are respectively in the Plateau and Banana regimes, which
translates to

ν⋆D+ < ν⋆
He2+

≪ 1 ≪ ν⋆
Ar18+

< ϵ−3/2 ≈ ν⋆
W 40+ . (4.2)

Unlike the main ions, no sources are applied for impurities. This means that the
transfer of energy and poloidal momentum from main ions to impurities will be only
done through collisional effects and turbulent heating. Impurities are injected as a
secondary species in the Vlasov equation after both the reference and vorticity cases
have reached almost constant temperature and shearing profiles at t = 220000ω−1

c,i .

4.3 Numerical results
The numerical computation time required to evolve two species in nonlinear gy-
rokinetic simulations is challenging. To this end, we run a first simulation with the
main ion species only (i.e. with D+ and without impurities) for a sufficiently long
time to reach the steady state. Once this state is achieved, we inject impurities at
timp = 220000ω−1

c,i for another run for 50000ω−1
c,i . Impurity particle fluxes are then

computed in the same way as the heat fluxes in equation (3.17) and can also be
separated into two distinct channels

Γneo =

〈∫ (
vrD + vrEn=0

)
F̄sdv

〉
FS

, (4.3)

Γturb =

〈∫
vrEn ̸=0

F̄sdv

〉
FS

, (4.4)

where Γneo and Γturb are the flux-surfaced averaged neoclassical and turbulent par-
ticle fluxes respectively. Similarly as before, the neoclassical channel is the sum
of the curvature and gradient drift contributions as well as the toroidally axisym-
metric E × B drift contribution while the turbulent channel is the non toroidally
axisymmetric E × B drift contribution. The total flux-surfaced averaged particle
flux can then be written

Γtot = Γturb + Γneo. (4.5)
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Since we are interested in the dynamics near the source (i.e. r/a = 0.7±0.05) and
the core (r/a ⩽ 0.65), we choose to focus on a radial region going from r/a = 0 to
r/a = 0.9 since particle flux is affected by the boundary conditions after r/a = 0.9.

4.3.1 Density, temperature and total impurity flux profiles

Density

In the absence of the transport barrier, helium is mainly directed outward due to
turbulent transport leading to a hollow density profile [17]. Whereas, with the onset
of a transport barrier, the helium density profile near the source region is greatly
affected as described in Figure 4.5. On the inner side of the barrier, particles
accumulate, leading to the formation of a density shoulder, while at the source
position the formation of a density well is observed.

Argon and tungsten show similar behaviours, an increased accumulation rate at
the core, when the transport barrier is present. This is supported by Figure 4.6;
in the reference case, helium is slowly flushed out from the core while argon and
tungsten accumulate in the core (see top left of Figure 4.6). However, when the
transport barrier is present, all species accumulate in the core, although the accu-
mulation is very slow for helium (see bottom left of Figure 4.6). Argon and tungsten
are accumulating approximately twice as fast when compared to the reference case,
which unfortunately increases contamination.

Looking at the edge region gives us a better understanding of what happens. In
the reference case (top right of Figure 4.6), helium levels are increasing while argon
and tungsten remain approximately constant. This indicates that helium tends to
be flushed out from the core towards the edge. When the transport barrier is turned
on, density levels for all impurities decrease at the edge, especially for argon.

0.25 0.50 0.753.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

⟨n
⟩ FS

⟩t

1e−10

He2⟨

0.25 0.50 0.75
r/a

4

5

6

7
1e−12

Ar18⟨

t= t imp
i

Barrier
Reference

0.25 0.50 0.75

0.8

1.0

1.2

1.4

1e−12

W40⟨

Figure 4.5: Flux-surface averaged densities of helium (left), argon (center) and
tungsten (right) in the reference (dotted green lines) and vorticity (dotted-dashed
blue lines) cases. Solid black lines represent the initial profile of the corresponding
impurities. All profiles are time averaged over the last 5000ω−1
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lines), argon (purple dashed lines) and tungsten (gray dotted lines) in the reference
(top row) and vorticity (bottom row) cases. Left column corresponds to an average
over r/a ⩽ 0.65, representing the core particle density evolution, while the right
column is averaged over 0.65 < r/a < 0.9, representing the edge density evolution.
Values are normalized with the average density over 0 < r/a < 0.9 at t = timpi , the
time of impurity injection (i.e. the integral of the initial impurity density profile).
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This indicates that the transport barrier separates the plasma in two regions; the
inside and the outside of the barrier. Within the barrier, a strong core accumulation
of impurities is observed due to an inward radial particle flux, as these impurities
cannot cross the transport barrier. On the outside of the barrier, an outward
particle flux flushes impurities out of the plasma, preventing these impurities from
penetrating into the core region (see Figure 4.6, bottom right).

Poloidal asymmetry of density, defined as

δNs =
〈
N f
s −N0

s

〉
φ
/
〈
N0
s

〉
φ

(4.6)

with N f
s and N0

s the density of the species s at the final and initial time of the
simulation respectively, are plotted in Figure 4.7. Poloidal asymmetries are found
to be more prominent for heavy impurities due to their high charge numbers. For
instance, argon and tungsten exhibit ∼ 20% and ∼ 30% of asymmetries respectively,
while the degree of asymmetry for helium remains below 3%.

However, when the transport barrier is turned on, the distribution of impurity
density is strongly affected in the vicinity of the barrier. The use of the vorticity
source results in the formation of strong convection cells near the transport barrier,
thereby increasing the poloidal asymmetry in this region. Non-homogenous distri-
bution of impurity density are known to significantly modify neoclassical transport,
typically accelerating the core accumulation [15].

Figure 4.7: Density fluctuations δN =
〈
N f
s −N0

s

〉
φ
/⟨N0

s ⟩φ for helium (left column),
argon (center column) and tungsten (right column) with (bottom row) and without
(top row) the transport barrier. The dotted red circle represents the vorticity source
position at r = 0.7.

Temperature

The temperature profile of helium (Figure 4.8, left plot) remains very similar, re-
gardless of whether the vorticity source is activated with only a slight increase in
core temperature and its gradient in the case of the transport barrier. The effect of
the transport barrier is more pronounced for high-Z impurities (Figure 4.8, center
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and right plots) as their response to the polarized electric potential is proportionnal
to ∝ Zsϕ. This might indicate that the effect of the transport barrier on heat flux is
more efficient for heavy impurities, while the temperature profile of helium remains
similar to that of the main ions.
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Figure 4.8: Flux-surface averaged temperatures of helium (left), argon (center) and
tungsten (right) in the reference (dotted green lines) and vorticity (dotted-dashed
blue lines) cases. Solid black lines represent the initial profile of the corresponding
impurities. All profiles are time averaged over the last 5000ω−1

c,i of the simulations
except for the initial profiles.

Total impurity flux

In this subsection, we focus on the total particle fluxes described in equation (4.5).
Hereafter, the impurity flux is normalized to the integrated flux

∣∣∣∫ dr 〈Γtot,sref

〉
t,∆r

∣∣∣
of the reference case where no transport barrier is present. The radial range ∆r ∈
[0, 0.9] and the time window ∆t = 5000ω−1

c,i are set for the analysis of numerical
results. For helium (Figure 4.9, left), the total particle flux switches from outward
to inward. Helium on the inner side of the transport barrier (i.e. r/a ⩽ 0.7) is then
accumulated toward the core while a thin layer of outward radial flux is present on
the outer side of the source (i.e. r/a ⩾ 0.75) shows that particles cannot penetrate
the plasma core when they come from the outside of the transport barrier.

Both argon and tungsten (Figure 4.9, center and right respectively) simulations
show similar behaviour as they both had radially inward directed particle fluxes
in the reference case. The transport barrier creates an enhanced layer of inward
radial particle flux on the inner side of the transport barrier (i.e. r/a ∈ [0.5, 0.7]),
increasing the accumulation rate of those heavy impurities in the core. However,
an outward radial particle flux is created on the outer side of the transport barrier
(i.e. r/a ⩾ 0.7) which requires more analysis by looking at the neoclassical and
turbulent channels separately.

The results presented here provide evidence that the transport barrier generated
by E × B shearing through the vorticity source acts as a barrier not only for the
heat flux of the main ions, but also for the impurity flux. This observation is
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Figure 4.9: Total particle flux-surface averaged fluxes for helium (left), argon (cen-
ter) and tungsten (right) in the reference (dotted green lines) and vorticity (dotted-
dashed blue lines) cases. All profiles are time averaged over the last 5000ω−1

c,i of the
simulations.

especially true for heavy and highly collisional impurities (i.e. argon and tungsten).
The presence of the transport barrier allows particles already on the inside of the
transport barrier to accumulate in the core, while particles coming from the outside
are repelled.

Considering that both tungsten and argon are coming from the walls or diver-
tor, this may show that if an intense enough E×B poloidal shearing is maintained
throughout the experiment, heavy impurities will not contaminate the core. How-
ever, concerns may be expressed regarding helium since it usually needs to be flushed
towards the separatrix and divertor region. Those results suggest that strong E×B
poloidal shearing may contradict this specific requirement.

In the next subsections, we propose to look at the different components of the
radial impurity fluxes using equations (4.3) and (4.4) to study the neoclassical and
turbulent impurity flux channels separately.

4.3.2 Neoclassical impurity flux

The neoclassical channel, defined in equation (4.5), is usually dominant for heavy
impurities and is strongly affected by poloidal asymmetries as shown by previous
calculations on section 2.2.3. Since the vorticity source injects both poloidal asym-
metry of perpendicular and parallel pressure in addition to a pressure anisotropy,
poloidal asymmetry is expected to play an important role in the neoclassical particle
flux profiles, especially for the banana-plateau component.

As expected, we retrieve known results [17] in the reference cases (green dotted
lines) as Figure 4.10 shows that helium (left) presents very low level of neoclassi-
cal transport while the opposite is observed for both argon (center) and tungsten
(right). When the transport barrier is activated, a similar trend is observed for
all species - a strongly sheared particle flux profile at the source location (i.e.,
r/a = 0.7). On both inner and outer sides of the transport barrier, particle fluxes
show similar magnitudes but opposite signs, with the inner side driving inward flux
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(negative) and the outer side an outward flux (positive). This demonstrates that
neoclassical flux predominates over turbulent flux within the transport barrier re-
gion.
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Figure 4.10: Neoclassical particle flux-surface averaged fluxes for helium (left), ar-
gon (center) and tungsten (right) in the reference (dotted green lines) and vortic-
ity (dotted-dashed blue lines) cases. Theoretical neoclassical fluxes are computed
through equations (2.21) to (2.26) for the barrier (dashed cyan lines) and reference
(solid olive lines) cases. All profiles are time averaged over the last 5000ω−1

c,i of the
simulations.

As shown in Figure 4.10, theoretical predictions, computed using GYSELA pro-
files (n, P , T etc...) with equations (2.21) to (2.26), are found to be accurate in
the reference cases. Additionaly, it captures the correct features of the transport
barrier characteristics in our case with a relatively good agreement of profiles in the
source region, namely the sheared aspect and extrema amplitude on both sides of
the barrier. A more in-depth analysis of the different components of the neoclassical
flux (Figure 4.11) shows different behaviours depending on the species examined.

For all species in the reference case, we retrieve similar results to those of K.
Lim [17] with BP fluxes dominating in the case of helium. Furthermore, the highest
levels of PS fluxes are observed for the tungsten, as expected since this component
highly depends on collisionality levels which tend to increase with atomic mass
number. A strong BP flux is still observed for heavy impurities inside the barrier.

For helium, the PS flux remains extremely low whether the barrier is in place
or not; the BP flux mainly determines the radial profile of the neoclassical flux
and hence the total flux when the transport barrier is present. The sheared aspect
of the radial profile is retrieved solely in this channel. Argon shows the same
trend regarding the BP flux, which becomes 5 times larger in the source region
when activated. A substantial increase in the PS flux in the source region is also
observed, especially on the outer side of the transport barrier where both PS and
BP flux reach the same amplitude levels while also presenting the sheared profile.
This behaviour is amplified for the tungsten; this time, the PS flux amplitude is
almost twice as big as the BP flux on the outside of the source when activated.
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Figure 4.11: Theoretical neoclassical particle flux-surface averaged fluxes for helium
(left), argon (center) and tungsten (right). Banana-plateau and Pfirsch-Schlüter
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c,i of the simulations.

To better understand what is responsible for the behaviour observed, we plot
the major components of the neoclassical flux separately in Figure 4.12 with the
BP components on the top row and the PS components on the bottom row. For
helium, the increase in BP flux (Figure 4.12, top left) is exclusively due to the term

ΓΠ∥ = − I

Ze

〈
B2

Nz

〉−1

ψ

〈
B · ∇θ
Nz

B
∂

∂θ

(
Π∥,z

B

)〉
ψ

, (4.7)

which is directly linked to the poloidal asymmetry of pressure anisotropy ∂θ
(
Π∥,z/B

)
=

∂θ
[(
P∥,z − P⊥,z

)
/B
]
. As expected, this is a direct result of the vorticity source. The

same effect can still be seen on both argon and tungsten (Figure 4.12, top center
and top right) but with a smaller impact on the outer side of the transport barrier
as atomic mass and charge number increases.

However, argon and tungsten also undergo major modification in PS fluxes. This
change is mainly due to the main ion species pressure gradient term

Γ∇Ni =
I2Timzνz,i

Ze2
1

Lψ,i

(〈
Nz

B2

〉
ψ

−
〈
B2

Nz

〉−1

ψ

)
, (4.8)

with 1/Lψ,i = ∂ψ lnPi − 3
2
∂ψ lnTi. This behaviour can be explained by the tem-

perature profile steepening as a result of the transport barrier at the source location.

Drawing conclusion about neoclassical transport is therefore challenging due to
the impact of the vorticity source on the asymmetry of pressure anisotropy (i.e. the
ΓΠ∥ term), especially for helium which is the most affected because of its light mass.
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Figure 4.12: Components of the theoretical neoclassical fluxes in the vorticity case.
Top row represents the total banana-plateau flux (solid black lines) and its compo-
nents while the bottom row shows the Pfirsch-Schlüter flux (solid black line) and
the dominant terms composing it, Γu and ΓK being discarded since they are small
compared to Γ∇Ni and Γ∇Nz . Detailed terms are given in equations (2.21), (2.22),
(2.23) and (2.25). All profiles are time averaged over the last 5000ω−1

c,i of the simu-
lations.
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In real tokamak experiments with ETBs, such a high level of asymmetry in pressure
anisotropy is unlikely. Therefore, the neoclassical impurity flux observed here, par-
ticularly for helium, might not be realistic. However, for argon and tungsten, the
fact that the pressure terms become more important is more encouraging as these
terms are expected to be important in experiments. Poloidal maps of the pressure
anisotropy of impurities Πs,∥ = Ps,∥−Ps,⊥ are given in Figure 4.13 for the reference
and barrier cases. As expected, poloidal asymmetries are strongly enhanced in the
transport barrier region when the poloidal momentum source is activated, hence
the increase observed in ΓΠ∥ .

Figure 4.13: Pressure anisotropy Πs,∥ = Ps,∥ − Ps,⊥ poloidal maps for helium (left
column), argon (center column) and tungsten (right column) with (bottom row)
and without (top row) the transport barrier. The dotted red circle represents the
vorticity source position at r = 0.7. Maps are normalized to the maximum absolute
value of the reference poloidal map of the impurity considered at the last simulation
time (i.e. top row).

The choice of impurity profile can also be discussed. For helium, the choice of
a negative density gradient (i.e. decreasing with respect to r/a, similarly as for
the main species) is supported by the fact that helium should be generated in the
core plasma. However, argon and tungsten are not coming from the core but rather
from the edge and should therefore have a reversed density profile, larger at the
edge and smaller in the core. Simulations with reversed density profiles are under
investigation.

Turbulent channel

The turbulent impurity flux, defined in equation (4.4), can be significantly affected
by the transport barrier, as highlighted in section 3. Light and low-Z impurities are
mainly transported by turbulence. Given that the transport barrier can efficiently
reduce turbulence levels, helium is expected to be strongly affected among the
different impurities explored in this study.

A first way to look at the turbulent impurity flux is to monitor its radial profile
evolution. For this purpose, we plot a 2D colour map of Γturb as a function of time
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(y-axis) and space (x-axis, radius) as shown in Figures 4.14 (helium), 4.15 (argon)
and 4.16 (tungsten).

In the reference case, the particle flux of helium is directed outward (positive)
from r/a = 0.2 to the edge, indicating that helium is mainly transported outward by
turbulence. This trend changes completely in the presence of the transport barrier,
similarly to the heat flux shown in Figure 3.6. The flux amplitude on the inside of
the vorticity source, from r/a = 0.38 to r/a = 0.65, is greatly lowered while the
outside, r/a ⩾ 0.7, reverses its sign. The core plasma, from r/a = 0.2 to r/a = 0.38,
remains unaffected by the transport barrier with a constant band of turbulent flux
stabilizing at values close to the reference one.

Argon and tungsten exhibit similar behaviours in both the reference and vor-
ticity cases. In the reference case, the sign of particle transport is changed after
2000ω−1

c,i (i.e. the time required for additionnal species to be affected by turbulence).
With the vorticity source, the turbulent flux in the core region, from r/a = 0.2 to
r/a = 0.5, remains negative during the entire simulation time, while a small radial
band (i.e. from r/a = 0.5 to r/a = 0.6) shows very little turbulent transport. In-
terestingly, the vicinity of the transport barrier is similar across all three impurity
species tested, with a thin layer of outward flux inside the barrier, and inward flux
outside the barrier, similarly to Figure 3.6.
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Figure 4.14: Turbulent flux as a function of time (y-axis) and space (x-axis) for
helium impurities. Left plot is for the reference case while the right one is when the
vorticity source is turned on. The dotted black vertical line indicates the vorticity
source position.
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Figure 4.15: Turbulent flux as a function of time (y-axis) and space (x-axis) for
helium impurities. Left plot is for the reference case while the right one is when the
vorticity source is turned on. The dotted black vertical line indicates the vorticity
source position.
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Figure 4.16: Turbulent flux as a function of time (y-axis) and space (x-axis) for
helium impurities. Left plot is for the reference case while the right one is when the
vorticity source is turned on. The dotted black vertical line indicates the vorticity
source position.
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In the reference case, the time-averaged turbulent impurity flux for helium over
the last 5000ω−1

c,i (Figure 4.17, left) peaks at r/a ≈ 0.5. As observed in chapter
3 for turbulent heat flux, the transport barrier affects not only the source region
(i.e. from r/a = 0.65 to r/a = 0.75), but also in the core from r/a = 0.37 to
r/a ∼ 0.65. When the transport barrier is turned on, the turbulent particle flux
remains unaffected from r/a = 0 to r/a = 0.37. Beyond this point, it significantly
diminishes, nearing zero where it was previously at its maximum. An interesting
characteristics observed here is the presence of a positive turbulent particle flux
region with intermediate levels (i.e. ∼ half the maximum value) on the inside of the
transport barrier while the outside presents an intense negative particle flux (i.e.
approximately same levels of the maximum value, but radially inward).

For argon and tungsten, the turbulent particle flux levels were already low in
the reference case and further decrease in the transport barrier case. However, a
region of slightly increased turbulent flux on the inside of the transport barrier is
still observed, especially for tungsten, while the intense negative flux on the outside
is kept for both argon and tungsten.
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Figure 4.17: Turbulent particle flux-surface averaged fluxes for helium (left), argon
(center) and tungsten (right) in the reference (dotted green lines) and vorticity
(dotted-dashed blue lines) cases. All profiles are time averaged over the last 5000ω−1

c,i

of the simulations.

By considering how the transport barrier affects turbulence in the system, par-
ticularly the turbulent intensity, it is possible to understand the phenomena occur-
ring in the core region. Reduced turbulent intensity leads to diminished impurity
and heat fluxes, as both are directly proportionnal to turbulence intensity. With
the reduction of the latter in the presence of the transport barrier, as previously
evidenced in chapter 3, the consequent effect can be easily evaluated.

The variations near the transport barrier still need to be addressed. The main
hypothesis to explain the observed behaviour when the transport barrier is active is
linked to the density gradient κn. As presented in Figure 4.18, the peaks of turbulent
particle flux near the transport barrier, both negative and positive, coincide with
the κn peaks observed. This indicates that the observed reversal in turbulent flux
may be linked to turbulent diffusion. The fact that both the density gradient and
turbulent flux reverse their signs when the transport barrier is activated provides
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evidence for this hypothesis. A similar observation can be made for the slight
increase in turbulent flux on the inner side as it aligns with enhanced turbulent
diffusion via steep density gradient. However, the reversal of the gradient sign in
this region should be approached with caution. This is due to the influence of
neoclassical transport, which, being heavily influenced by ΓΠ∥ , modifies the density
profile near the source. The inward turbulent diffusion is likely an artefact caused
by the vorticity source rather than an effect of the transport barrier.
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Figure 4.18: Inverse density gradient length κn = −∂r ln ⟨nGC⟩FS for helium (left),
argon (center) and tungsten (right) in the reference (dotted green lines) and vorticity
(dotted-dashed blue lines) cases. Solid black lines represent the initial profile at timp0 .
Profiles are time averaged over the last 5000ω−1

c,i of the simulations.

Radial averages of turbulent impurity fluxes are then performed
〈
Γturb

〉
∆r

in two
distinct radial regions:

• ∆r = [0.65, 0.75], the region where the transport barrier is located.

• ∆r = [0.2, 0.65], the region where the turbulent particle flux amplitude usually
reaches a maximum.

This analysis provides a more comprehensive understanding of the overall be-
haviour of turbulent impurity fluxes, as it smoothes out small variations in space,
particularly for argon and tungsten.

In the core region (Figure 4.19),
〈
Γturb

〉
∆r

stabilizes itself at approximately a
third of the reference case for helium. This confirms the previous statement that
despite being localized near the edge, the vorticity source still reduces turbulent
impurity flux in the core region. This result is similar to that of heat diffusivity χT
in chapter 3.

However, argon behaves differently and stabilizes at negative values when the
source is present while remaining at zero on average in the reference case. This
indicates that when the transport barrier is turned on, argon undergoes an inward
turbulent transport in addition to the previously observed enhanced inward neo-
classical convection.
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This behaviour is not as obvious with tungtsen which, in the reference case, be-
haves similarly to argon, but fluctuates more significantly in time when the transport
barrier is present. Nevertheless, it seems that

〈
Γturb

〉
∆r

stabilizes at lower negative
values in the presence of the vorticity source, similar to argon.
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Figure 4.19: Turbulent impurity flux in the core as a function of time, radially
averaged over 0.2 ⩽ r/a ⩽ 0.65 for helium (left), argon (center) and tungsten (right)
for the reference (dotted green lines) and vorticity (dotted-dashed blue lines).

In the source region (Figure 4.20), the results for helium are straightforward .〈
Γturb

〉
∆r

drops to zero on average with the transport barrier activated. This is
similar to the diffusivity results shown in Figure 3.7. This behaviour was expected
since helium behaves similarly as deuterium and is mainly subject to the same type
of turbulent transport.

Argon undergoes small levels of particle flux, dropping to zero on average with
some inward transport taking place during short time intervals. This transport is
entirely stabilized when the vorticity source is turned on with values dropping to
zero on average in the same manner as helium.

Tungsten behaves similarly but shows values staying below zero in the reference
case, indicating inward turbulent transport in that region. Again, this diffusion co-
efficient is stabilized to zero in presence of the vorticity source, effectively stopping
turbulent transport in this region.

To conclude on turbulent transport, the effect of the vorticity source is not
limited to its vicinity, it also reduces the core turbulent transport. More specif-
ically, helium turbulent transport is stabilized to substantially lower values when
the transport barrier is present as opposed to the reference case. Since heavier im-
purities are less subject to turbulent transport, the transport barrier has less effect
on them. However, turbulent transport is still affected with values stablizing at
negative values, increasing the inward transport for heavy impurities.

The nature of turbulent transport is also a topic of interest. Although tur-
bulent diffusion seems to be a predominant factor in turbulent particle flux, the
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Figure 4.20: Turbulent impurity flux in the vorticity source region as a function of
time, radially averaged over 0.65 ⩽ r/a ⩽ 0.75 for helium (left), argon (center) and
tungsten (right) for the reference (dotted green lines) and vorticity (dotted-dashed
blue lines).

contributions from other turbulent convection terms such as thermo-diffusion, roto-
diffusion or curvature pinch, cannot be overlooked. In this regard, we are adopting
an approach similar to that employed by K. Lim [107] to separately evaluate each
component during the nonlinear simulations with the transport barrier. The main
idea involves treating the curvature pinch as constant for all simulations, and also
neglecting the roto-diffusion term as the toroidal rotation of impurities remains in
the subsonic regime. This work requires numerous simulations with different den-
sity and temperature gradients, demanding a significant amount of computing time.
Recent optimizations in GYSELA have resulted in a reduction of simulation costs
by approximately 70% in comparison to the version used for chapter 3, thus making
this investigation feasible with the computing power provided by our current HPC
facilities. It should be noted, however, that this study falls outside the scope of this
thesis.

4.4 Tests with a steep gradient

Another way of generating poloidal shear and a transport barrier is, as already
discussed in chapter 3, to use an initial density profile for the main ion species
presenting a strong gradient on a thin radial layer. This method is effective as the
local strong density gradient stabilizes ITG modes by lowering the η factor locally
while poloidal shear prevents any turbulent structure to develop in the considered
region. We propose here to use this approach with the updated version of GYSELA
in presence of helium impurities as a preliminary test to see how particle flux is
impacted by the steep gradient of the main ion species and the resulting poloidal
shear. Another interesting scope of this study is to investigate how a transport
barrier less affected by the injected asymmetry of pressure anisotropy ΓΠ∥ term in
neoclassical transport behaves.
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4.4.1 Parameters and initialization

Initial parameters are similar to the ones presented in section 4.2.1 to the exception
of the radial density profile and outer boundary region. Both are presented in
Figure 4.21; The density steep gradient is located either at r/a = 0.9375 (hereafter
referred as case a) or at r/a = 0.75 (case b) with the same amplitude as the tests
conducted in section 3.4. A simpler boundary condition is chosen like in chapter 3,
which consists in a buffer diffusion on the last 13% of the radial domain, modified
as r/a ∈ [0; 1.25], to stabilize any numerical instabilities arising at the edge.

As you can see in Figure 4.21, the buffer mask is close to the steep gradient in
case a; this proximity raised concerns about the turbulence that could arise outside
the steep gradient without the buffer. This led us to perform the same tests with a
steep gradient located further away from the buffer mask, hence the b case presented
here.

0.25 0.50 0.75 1.00 1.25
r/a

0.9

1.0

1.1

1.2

1.3 (a)

⟨na⟩FS/n0
⟨nb⟩FS/n0

0.25 0.50 0.75 1.00 1.25
r/a

0.0

0.2

0.⟨

0.⟩

0.8

1.0

(b)
⟨SE⟩FS
Buffer

Figure 4.21: (a): radial profile of the inital flux surface averaged guiding-center
density for the a (dashed blue line) and b (dashed orange line) cases. (b): Nor-
malized radial profiles of the axisymmetric buffer mask (blue line) and fluid energy
source (dotted green line). The red vertical lines indicate the steep gradient posi-
tions; the solid one corresponds to the a case (r/a = 0.9375) while the dotted one
corresponds to the b case (r/a = 0.75).

All the other parameters are kept the same as shown in table 3.1 except for the
vorticity source which is kept deactivated throughout all the following results.

A first simulation is run so that ITG modes are triggered on most of the radial
domain except for the steep gradient region (i.e. r/a = 0.9375 for case a, r/a = 0.75
for case b) which is, as presented in chapter 3, linearly stabilized by the density
gradient. However, we noted that almost no turbulence was able to grow outside
the steep gradient location in case b (r/a > 0.75) even if η > 2. This indicates
that the temperature gradient chosen here may not be large enough to trigger ITG
modes [108] since the buffer does not apply in this region. Further tests are being
performed with a constant radial temperature gradient with κT = 6.6 fixed at all
radial positions.

Once saturation of the modes are reached for at least inside the strong density
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gradient location, we let the system evolve until the temperature gradient remains
relatively constant. After this quasi steady-state is reached, we inject impurities
(helium, fHe = 2 · 10−5) with standard density and temperature profiles with κn =
2.2 and κT = 6.6 at r/a = 0.575 without any steep gradient, the goal being to
observe how does helium would pass - or not - this kind of transport barrier.

4.4.2 Numerical results

A first look at the radial density profile of helium (Figure 4.22a) shows an accumu-
lation of helium immediately inside the barrier while a depletion is observed on the
outer side (i.e. 0.94 ⩽ r/a). Both a and b cases behave similarly with a sheared
density profile at the steep gradient positions. The steep gradient has a greater
effect on helium density than the vorticity source and seems to affect transport
differently. However, temperature profile (Figure 4.22b) is altered in a similar fash-
ion as the vorticity case by aligning with the main ion temperature profile and a
steepening inside the barrier, indicating energy is more efficiently confined in the
core region (i.e. inside the transport barrier location) for both cases explored here.
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Figure 4.22: Initial (ti, solid black lines) and final radial profiles of helium density
(a) and temperature (b). Dashed-dotted blue lines are for the a case (taf ) where the
steep gradient is located at r/a = 0.9375 while the dotted orange lines correspond
to the b case (tbf ) with the steep gradient located at r/a = 0.75. All the final
profiles are averaged over the last 5000ω−1

c,i . The red vertical lines indicate the steep
gradient position; the solid one corresponds to the a case (r/a = 0.9375) while the
dotted one corresponds to the b case (r/a = 0.75).

All helium fluxes presented afterward are normalized to the integrated flux∣∣∣∫ dr ⟨Γtot,sa ⟩t,∆r
∣∣∣ of the a case (i.e. steep gradient located at r/a = 0.9375) over

a radial range ∆r ∈ [0, 1.125] and last time steps ∆t = 5000ω−1
c,i .
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The radial profile of helium flux (Figure 4.23) shows that both a and b cases
are very similar inside the barrier location with flux mainly outward and dominated
by turbulence. A slightly negative radial region of turbulent flux is observed im-
mediately inside the barrier and can be attributed to a local reversal of the density
gradient. Outside the transport barrier, both cases show no turbulent transport; For
the a case, this can be attributed to the presence of the diffusion buffer. However,
for the b case, we can explain the absence of turbulent transport to an insufficient
temperature gradient to trigger ITG modes.

Neoclassical transport is negative on most of the domain except immediately
inside the transport barrier with a positive region. Curiously, the neoclassical flux
is of lower amplitude in the b case in the core region.
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Figure 4.23: Total (solid black line), turbulent (dashed-dotted violet-red line) and
neoclassic (dotted blue line) radial particle flux time averaged over the last 5000ω−1

c,i

for the a (left) and b (right) cases. The red vertical lines indicate the steep gradient
position for each corresponding case.

Similarly as in the vorticity case, the negative turbulent particle flux observed
on the inside of the transport barrier can be attributed - at least partly - to a
density gradient reversal as shown in Figure 4.24a. Diffusion then happens to be
directed inward in that region. However, the amplitude of the density gradient of the
main ions at the transport barrier position is stabilizing enough so that almost no
turbulence can develop here, hence the absence of turbulent particle flux. Similarly,
the negative gradient part on the outside of the source leads to almost no diffusion
since no turbulence could develop in the first place.

Theoretical impurity flux for the a case gives again a good match with the GY-
SELA results (Figure 4.25a) with a correct description of the "sheared" region on
the inside of the transport barrier. As shown in Figure 4.25b, this is almost entirely
due to the BP component and more specifically the pressure anisotropy term ΓΠ∥

(Figure 4.25c). This anisotropy is however relatively small compared to what can
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Figure 4.24: Initial (ti, solid black lines) and final density ((a), left) and temperature
((b), right) gradient length profiles for the a case (dashed-dotted blue lines, taf )
where the steep gradient is located at r/a = 0.9375 and for the b case (dotted
orange lines, tbf ) with the steep gradient located at r/a = 0.75. Final profiles are
averaged over the last 5000ω−1

c,i . The red vertical lines indicate the steep gradient
position; The solid one corresponds to the a case (r/a = 0.9375) while the dotted
one corresponds to the b case (r/a = 0.75).

be observed in the vorticity case.

4.5 Discussion and conclusions

In this chapter, we studied the effects of the vorticity source, as well as the trans-
port barrier, on impurity transport in a trace regime. In addition, a brief test was
conducted, using helium and a transport barrier generated by the steep gradient
method.

Compared to the reference simulation without the vorticity source, helium un-
dergoes a global sign change across the entire radial domain, due to the reduced
turbulent particle flux. This flux is significantly diminished by the transport barrier,
making neoclassical transport, mainly driven by the poloidal asymmetry of pressure
anisotropy ΓΠ∥ , the dominant component for helium particle flux. This leads to an
accumulation of helium in the core due to inward neoclassical convection and local
inward turbulent diffusion on the inside of the transport barrier, the latter origi-
nating from a density gradient sign reversal. This local negative turbulent particle
flux can also be observed for argon and tungsten.

In the presence of the vorticity source, neoclassical inward convection, which is
dominant over the turbulent particle flux for heavy impurities, also increases for
argon and tungsten compared to their reference cases respectively (i.e., without
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Figure 4.25: Radial profile of radial particle flux time averaged over the last
5000ω−1

c,i . (a): GYSELA (solid black line), theoretical (dashed blue line) radial
particle flux. (b): theoretical (solid black line), Banana-Plateau (dotted blue line)
and Pfirsch-Schlüter (dashed orange line) particle flux. (c): Theoretical banana-
plateau particle flux (solid black line) and its pressure anisotropy component (dotted
cyan line).

the source). The anisotropy term ΓΠ∥ in the banana-plateau component still plays
a major role for heavy impurities, but with greater mass number the main ion
pressure term Γ∇Ni in the Pfirsch-Schlüter component of the neoclassical particle
flux becomes dominant. This can be explained by the fact that this component is
directly proportionnal to the ratio Msνzs,i/qs, which increases by many orders of
magnitude for tungsten when compared to helium for example.

The additional test for helium with a steep gradient for the main ion species den-
sity profile gives similar results. However, core turbulence is still present, leading to
an outward turbulent particle flux. The transport barrier then effectively stops par-
ticles on the inner side, leading to accumulation of impurities at this radial position.

The transport barrier created through the vorticity source leads to increased
neoclassical convection of particles which are already on the inner side of the barrier
independantly of the species considered. However we can still consider this barrier
as effective since it creates the desired effect; Particles cannot pass the transport
barrier in one way or another, meaning that we increased confinement in the core
(i.e. inner side of the barrier) by isolating it from the edge (i.e. outer side of the
barrier). Caution is however advised regarding the neoclassical fluxes obsreved in
presence of the transport barrier as well as the inward turbulent diffusion observed
on the outside of the transport barrier, the latter being the consequence of the
former. The barrier created through the vorticity source may be efficient in our
simulations but may be unrealistic regarding those two elements (i.e. asymmetries
of pressure anistropy and inward turbulent diffusion on the outside of the source).

However, the barrier created through the main species density gradient is imper-
fect since impurity fluxes become inward at the steep gradient position; this means
particles are more confined in the core plasma (i.e. inner side of the steep gradient)
but particles from the edge (i.e. outer side of the steep gradient) can enter even
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more efficiently in the core and contaminate it.



Chapter 5

Conclusion, limits and future work

In tokamaks, the presence of impurities results in a significant challenge, as they
have the potential to disrupt the plasma and stop fusion reaction, leading to a
decrease in reactor efficiency. These impurities can arise directly from the fusion
reactions (helium), be seeded at the walls to mitigate heat fluxes received by PFC
(argon, neon) or be sputtered from the divertor (tungsten). Tungsten is especially
problematic in tokamaks due to its high charge number (Z = 74). It does not
fully ionize even at the core temperature and therefore radiates the majority of the
absorbed energy as light, reducing the energy available for fusion reactions. As a
result, even a small concentration of tungsten in the core can completely extinguish
the burning plasma. Therefore, understanding and controlling impurity transport
is crucial.

To avoid contamination and enhance plasma confinement, L-H transitions and
transport barrier in general are useful mechanisms to tackle this confinement and
contamination problem. More precisely, E × B flow shear is the best candidate to
explain how the transport barriers can reduce turbulence level and increase confine-
ment time.

GYSELA, a 5D gyrokinetic code, has been used throughout this thesis to study
transport mechanisms in tokamak plasmas. Its main advantage is to be a full-
f code massively parallelized, mandatory to tackle kinetic problems of this scale.
Another advantage of GYSELA is its ability to access precise transport coefficients
determined self-consistently, taking into account possible synergies between the
neoclassical and turbulent channels as already investigated [109]. A synthetic source
of poloidal momentum is used to mimic the conditions of a transport barrier by
imposing a sheared radial electric field on a small radial region. This source reduces
locally the turbulent diffusivity χturbT thus creating a transport barrier mechanism on
the radial heat flux of deuterium ions resulting in higher confinement times. The
turbulence amplitude both locally and at the core plasma is efficiently quenched
and the auto-correlation length of electrostatic potential fluctuations is also notably
reduced. A shift in kθ towards larger scale is observed in the vicinity of the source,
implying that turbulent eddies are stretched in the poloidal direction and become
radially smaller. These observations fit well with the presented mechanism in Figure
2.8.

In chapter 3, an alternative way of generating a transport barrier has also been
explored by locally imposing a strong density gradient. Through the force equilib-
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rium, this strong density gradient creates a sheared radial electric field and shear
flow in the poloidal direction. This method is efficient since it means the strong
density gradient linearly stabilizes ITG modes while the E ×B flow shear prevents
any structure from growing. This method is proved to be efficient by maintaining
very low turbulence intensity levels in the vicinity of the strong density gradient.

After successfully creating a transport barrier in GYSELA, the investigation
of impurity transport through the barrier was carried out. For this purpose, an
updated version of GYSELA with better edge physics and significant numerical
optimizations have been used for this study. In chapter 4, transport of helium,
argon and tungsten, which all experience a different collisionality regime while be-
ing encountered in real experiments, are studied in a trace regime with density
profiles similar to the main ion species. The transport barrier has a significant im-
pact on impurity transport, especially the neoclassical channel. This is mainly due
to two distinct effects; First, the vorticity source injects pressure anisotropy in a
non-axisymmetric way, artificially enhancing the banana-plateau flux for all species.
Second, in the case of argon and tungsten, the Pfirsch-Schluter flux prevents impu-
rities inside the barrier from leaving the core plasma, while impurities from outside
the barrier are repelled. This was due to the temperature screening effect, which ef-
fectively prevents impurities from contaminating the core plasma [21]. Additionaly,
the reduced turbulence intensity leads to lower turbulent impurity fluxes, especially
for helium. As a result, the transport barrier created through the vorticity source
is able to both keep the core particles within the barrier and repel particles coming
from the edge to the outside of the barrier.

The transport of trace helium through a steep gradient of the main ion species
(i.e. deuterium) was also studied since this method was proven to be efficient in
creating a transport barrier. The resulting transport of helium was similar to the
reference cases up to the steep gradient position with turbulent flux being dominant.
However, the steep gradient of density increased neoclassical convection, leading to
a semipermeable barrier. This barrier allowed impurities from the edge to penetrate
and reach the inner region of the transport barrier, while prohibiting the outward
escape of particles already inside. Simulations with other species, i.e. argon and
tungsten, are currently in progress.

Several improvements of the presented study could enhance its quality. The use
of kinetic - or at least partially - electrons (i.e. trapped kinetic electrons) would
allow the study of TEM/ITG synergies for transport as well as the transport of
both electrons and ions. However, this indicates that the transport barrier created
through the density gradient of the main ion species would collapse in the absence
of an external source to maintain this gradient.

Additionaly, the study of impurity transport in more realistic boundary condi-
tions, including both the SOL and limiter configuration, would be an interesting
topic for future research. Indeed, a more realistic magnetic configuration with a
divertor and D-shape plasma is desirable but is beyond the scope of this thesis.

The use of more appropriate source terms might be required for more compre-
hensive modelling. The poloidal momentum source used in this thesis exhibits an
asymmetric injection of pressure anisotropy, thus modifying both turbulent and
neoclassical flux of impurities. Numerical development of this source could improve
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the reliability of this kind of study.
The use of more realistic density profiles for impurities is also a topic of im-

provement. For example, the initial density gradient of tungsten should be positive,
indicating more tungsten at the edge than at the core. To this end, an additional
source term for impurity seeding could be useful.

Transport coefficient - like CT and D (i.e. thermo-diffusion and turbulent diffu-
sion respectively) - can be derived by scanning a different range of impurity gradi-
ents of both temperature and density for each impurity species. This work has been
partially done by D. Esteve et al. [110] and could be further explored. Although
this work requires substantial computational time, the recent upgrades of GYSELA
allow us to compute these transport coefficients.

Recently, a study on the effect of toroidal rotation on both turbulent and neo-
classical transport of tungsten was carried out using nonlinear GYSELA simula-
tions. The injection of toroidal momentum accelerates tungsten to the supersonic
regime, significantly affecting impurity transport via enhanced poloidal asymmetry
and steep toroidal velocity gradient [111]. Building upon this work, the study of
parallel velocity gradient (PVG) instabilities, which are triggered above a certain
parallel velocity gradient, is currently being investigated within the framework of T.
Rouyer’s PhD thesis. The purpose of this study is to clarify the interaction between
PVG and ITG instabilities, as well as their potential impact on impurity transport.

To study impurity transport, one can also look at the integrated models com-
bining multiple codes like EDGE2D-EIRENE-DIVIMP [112] or JINTRAC [113]
which combine both core and edge physics codes to simulate a full discharge sce-
nario with multiple physics modules, ranging from target sputtering to turbulent
transport coefficient or even impurity transport. For now, the most advanced codes
are combining gyrokinetic flux-tube simulations at specific radii inside the core and
use fluid transport equations to get transport profiles [114] with very promising
results. One can think of integrating edge-divertor codes in a suite with GYSELA
for core physics modelling. This would lead to better determination of transport
coefficient and scenario development since the core code would be self-consistent
and full-f while the edge boundary conditions would be more realistic. A first test
between two major codes, GENE (full-f gyrokinetic, core physics) and XGC (PIC
gyrokinetic, edge and x point physics) has already been conducted and proved to
be a feasible objective [115].
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Appendix A

Neoclassical fluxes

A.1 Useful relations for the magnetic field

By starting from [11]

B = I (ψ)∇φ+∇φ×∇ψ, (A.1)

one can deduce two very useful equations. By taking its norm, we can write |B|2 =
I (ψ)2 |∇φ|2 + |∇φ×∇ψ|2. This equation can be further reduced by using ∇φ =
1
R
eφ, giving

|B|2 = I (ψ)2

R2
+

|∇ψ|2

R2
. (A.2)

Another useful relation comes from the operation B×∇ψ, which gives

B×∇ψ = I (ψ)∇φ×∇ψ + (∇φ×∇ψ)×∇ψ. (A.3)

The term ∇φ×∇ψ = B−I (ψ)∇φ is given by equation (A.1) while (∇φ×∇ψ)×
∇ψ = − |∇ψ|2∇φ is given by vector properties. Using those relations, we can write

B×∇ψ = I (ψ)B−∇φ

|B|2R2︷ ︸︸ ︷[
I2 (ψ) + |∇ψ|2

]
,

b×∇ψ = I (ψ)b− |B|R2∇φ. (A.4)

One can also compute

B×∇φ = (∇φ×∇ψ)×∇φ =
1

R2
∇ψ (A.5)

by using vector properties as well as |∇φ|2 = 1
R2 .
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A.2 Main ion particle flux

A.2.1 Flux channels

By starting from equation (2.8) and assuming both stationary state (∂t = 0) and
an axisymmetric torus (∂φ = 0), we get

⟨qiΓi·∇ψ⟩FS = −
〈
NiqiR

2E ·∇φ
〉
FS

−
〈
R2F ·∇φ

〉
FS
. (A.6)

By using equation (A.4) to extract − (b×∇ψ + I (ψ)b) /B = R2∇φ and di-
viding everything by qi, we can rewrite equation (A.6) as

⟨Γi·∇ψ⟩FS =

Neoclassic︷ ︸︸ ︷
−
〈
I

B

(
NiE∥ +

F∥

qi

)〉
FS

+

Classic︷ ︸︸ ︷
∇ψ · (F ×B)

qiB2
+

Turbulent︷ ︸︸ ︷
Ni∇ψ · E×B

B2
, (A.7)

where we recognize three terms respectively linked to the neoclassical parallel fric-
tion, the classic perpendicular friction and the turbulent E×B drift flux. The neo-
classical part of this flux can be rewritten using the identity 1 = 1− B2

⟨B2⟩FS
+ B2

⟨B2⟩FS
:

⟨Γi·∇ψ⟩neoFS = −
〈
I

B

(
NiE∥ +

F∥

qi

)[
1− B2

⟨B2⟩FS
+

B2

⟨B2⟩FS

]〉
FS

(A.8)

= −I
〈

1

qiB

(
qiNiE∥ + F∥

)(
1− B2

⟨B2⟩FS

)〉
FS︸ ︷︷ ︸

⟨Γi·∇ψ⟩PS
FS

−I
〈
B
(
qiNiE∥ + F∥

)〉
FS

qi ⟨B2⟩FS︸ ︷︷ ︸
⟨Γi·∇ψ⟩BP

FS

,

(A.9)

to make the two main components of the neoclassical appear, namely the banana-
plateau and Pfirsch-Schlüter components.

A.2.2 Link between BP flux and anisotropy

Starting from the fluid momentum conservation equation

∂MiNiVi

∂t
+∇ · Π̄i = Niqi (E+V ×B) + F , (A.10)

with Π̄i the pressure tensor written with the CGL notation[13]. This is helpful to
describe the anisotropy by separating the perpendicular and parallel components
such that Π̄i = P∥blbj+P⊥ (δlj + blbj). By projecting this equation along B, we get

B ·
[
∂MiNiVi

∂t
+∇ · Π̄i

]
= NiqiB · E+B · F . (A.11)

After we consider a steady-state, simplify notations and take the flux-surface
average of this equation, we can write
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〈
B ·∇ · Π̄i

〉
FS

=
〈
B
(
NiqiE∥ + F∥

)〉
FS
. (A.12)

This enables us to rewrite the BP flux as

⟨Γi·∇ψ⟩BPFS = −I
〈
B ·∇ · Π̄i

〉
FS

qi ⟨B2⟩FS
, (A.13)

making the link between the BP component of the flux with anisotropy appear
directly.

A.3 Impurity particle flux
We start from

Γ⊥,s = NsvE︸ ︷︷ ︸
ΓE,s

+Ns ⟨vD,s⟩v︸ ︷︷ ︸
ΓD,s

−∇×
[
Ns

〈
µs
qs
b

〉
v

]
︸ ︷︷ ︸

Γmag,s

(A.14)

with

vE =
B×∇ϕ̄

B2
, (A.15)

vD,s = v∇,s + vc,s =
µs
qs

B×∇B

B2
+
Msv

2
∥,GC,s

qB2

Rc ×B

R2
c

, (A.16)

v∥,GC,s = v∥,GC,sb. (A.17)

We can rewrite Rc×B
R2

c
= B × (b ·∇)b = −κ×B before integrating both v∇,s

and vc,s over the velocity space. First, for the gradient drift we get

⟨v∇,s⟩v =
1

Ns

∫
d3vGC,df̄s

µs
qs

B×∇B

B2
=

B×∇B

NsqsB3

∫
d3vGC,sf̄sµsB,

⟨v∇,s⟩v =
P⊥,s

Ns

B×∇B

qsB3
. (A.18)

For the curvature drift we write

⟨vc,s⟩v = − 1

Ns

∫
d3vGC,sf̄s

Msv
2
∥,GC,s

qsB

κ×B

B2
= − κ×B

NsqsB2

∫
d3vGC,sf̄sMsv

2
∥,GC,s,

⟨vc,s⟩v = −
P∥,s

Ns

κ×B

qsB2
. (A.19)

For the magnetization, it is straightforward
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〈
µs
qs
b

〉
v

=
1

Ns

∫
d3vGC,s

µsB

qs

b

B
f̄s =

P⊥,s

Ns

b

qsB
. (A.20)

Equation (A.14) becomes, by combining equations (A.18),(A.19) and (A.20):

ΓD,s = Γ∇,s + Γc,s + Γmag,s = P⊥,s
B×∇B

qsB3
− P∥,s

κ×B

qsB2
−∇×

[
P⊥,s

b

qsB

]
.(A.21)

The magnetization term can be further developped as

∇×
[
P⊥,s

b

qsB

]
= ∇

(
P⊥,s

qsB

)
× b+ (∇× b)

P⊥,s

qsB
. (A.22)

We remind that ∇× b can be recast as

∇× b = b× (∇× b) + b [b · (∇× b)] = −κ+ b [b · (∇× b)]. (A.23)

Moreover, we can compute

b× κ = b× [b× (∇× b)] = −b [b · (∇× b)] +∇× b, (A.24)

which leads to

∇× b = b× κ+ b [b · (∇× b)]. (A.25)

Also, we have

∇
(
P⊥,s

qsB

)
=

1

qsB
∇P⊥,s +

P⊥,s

qs
∇
(
1

B

)
=

1

qsB
∇P⊥,s −

P⊥,s

qs

∇B

B2
, (A.26)

which ultimately leads to

ΓD,s =
1

qsB

[
P⊥,s

B×∇B

B2
− P∥,s

κ×B

B
− ∇P⊥,s ×B

B
+ P⊥,s

∇B ×B

B2
− (∇× b)P⊥,s

]
,

ΓD,s =
1

qsB

[
P∥,sb× κ+ b×∇P⊥,s − (∇× b)P⊥,s

]
. (A.27)

We can transform the last term by using equations (A.24) and (A.25) to get

− (∇× b)P⊥,s = − (b× κ+ b [b · (∇× b)])P⊥,s, (A.28)

which we can further decompose in perpendicular and parallel components

ΓD,⊥,s =
b

qsB
×

(P∥,s − P⊥,s
)︸ ︷︷ ︸

Π∥,s

κ+∇P⊥,s

 , (A.29)

ΓD,∥,s = −b [b · (∇× b)]

qsB
P⊥,s. (A.30)
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A.4 Poloidal asymmetries
In equation (2.19), the Ks term can be developped[8] as Ks = Ks0 (ψ) +Ks1 (ψ, θ)
with

Ks0 (ψ) = ⟨Ks⟩ψ , (A.31)

Ks (ψ, θ) = − 1

B

∂

∂ψ

(
IΠ∥,s

qsB

)
+

〈
1

B

∂

∂ψ

(
IΠ∥,s

qsB

)〉
FS

. (A.32)

One can also project equation (2.7) along the toroidal direction and average it
over flux surfaces to extract the link between the particle flux and parallel friction
force

〈
Reφ ·

∂ (MsΓs)

∂t

〉
FS

+ ⟨Reφ ·∇ ·Πs⟩FS − ⟨qsReφ · (NsE+ Γs ×B)⟩FS +
〈
RF∥,si

〉
FS
.

(A.33)

By assuming a steady state, toroidal axisymmetry and neglecting the stress
tensor term Πs, we can write[11]

⟨Γs ·∇ψ⟩neoFS = −
〈
IF∥,si

qsB

〉
FS

, (A.34)

where the parallel friction term is detailed by Hirshman and Sigmar[14] and P.
Donnel[8]

F∥,si =Msνsi

[
−Ns

Ti
qs

I

Lψ
+B (Nsu−Ks)

]
. (A.35)

We note that L−1
ψ = L−1

ψ,i + L−1
ψ,s with L−1

ψ,s = −∂ψP⊥,s/TiZsNs and L−1
ψ,i =

∂ψ lnPi −HTS∂ψ lnTi. u is linked to the poloidal velocity of ions.
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Appendix B

Turbulent flux

B.1 Linear and quasi-linear theory

B.1.1 Link between ϕ1 and f1

We start by using a developpement like equation (1.23) for both the electrostatic
potential ϕ and the distribution function f in equation 2.27

∂ (f0 + f1)

∂t
+
b

B
×∇ (ϕ0 + ϕ1) ·∇ (f0 + f1) + bv∥ ·∇ (f0 + f1)

− q

M
∇ (ϕ0 + ϕ1) ·

∂

∂v
(f0 + f1) = 0. (B.1)

By keeping the first order in perturbations, we get the linear relationship

∂f1
∂t

+
b×∇ϕ0

B
·∇f1 +

b×∇ϕ1

B
·∇f0 + bv∥ ·∇f1

− q

M
∇ϕ0 ·

∂

∂v
f1 −

q

M
∇ϕ1 ·

∂

∂v
f0 = 0, (B.2)

in which we can inject the usual expression for perturbations (equation (1.23)).
This ultimately leads to the following relationship

fk∥,m,ω = −
qϕk∥,m,ω

Mv2T,i
f0

kθρcvT,i

[
∂rn0

n0
+ ∂rT0

2T0

(
v2∥
v2T,i

− 1

)]
− k∥v∥

ω − kθ
B
∂rϕ0 − k∥v∥

. (B.3)

Here, the only effect of the axisymmetrical part of the potential (i.e. ϕ0) is to
shift the resonnance (i.e. Doppler effect).

B.1.2 Quasi-linear fluxes

To estimate the quasi-linear fluxes, the linear relationship derived just before is
considered to be true. Starting from equation (B.1) from which we remove the
linear part,
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∂f0
∂t

+
b

B
×∇ (ϕ1) ·∇ (f1) + bv∥ ·∇f0 −

q

M
∇ (ϕ0) ·

∂f0
∂v

− q

M
∇ (ϕ1) ·

∂f1
∂v

= 0,

(B.4)

before averaging over θ. All the equilibrium quantities won’t be affected (i.e. ⟨f0⟩θ =
f0 for example) while ⟨f1⟩θ = 0 since perturbed quantities are periodic over θ. This
gives

∂f0
∂t

+
1

r

∂

∂r

(
rΛrQL

)
− q

M

〈
∂zϕ1∂v∥f1

〉
θ
= 0, (B.5)

with ΛrQL = ⟨−f1∂θϕ1/Br⟩θ a radial phase-space flux which writes

ΛrQL =

〈 ∑
k∥,kθ,ω

∑
k′∥,k

′
θ,ω

′

−ikθ
B
ϕ̂k∥,kθ,ωf̂k′∥,k′θ,ω′ (r) exp

[
i
(
k∥z +mθ − ω

)]
exp

[
i
(
k′∥z +m′θ − ω′)]〉

θ

.

(B.6)

The average operator will select all the
(
k′∥, k

′
θ, ω

′
)

terms that are identical but
with opposite signs, thus selecting the complex conjugate

ΛrQL =
∑
k∥,kθ,ω

(
−ikθ
B
ϕ̂k∥,kθ,ω

)⋆
f̂k∥,kθ,ω (r) , (B.7)

which is written

ΛrQL =
∑
k∥,kθ,ω

−ikθ
B

∣∣∣ϕ̂k∥,kθ,ω∣∣∣2 fM qi
T0

kθρcvT,i

[
∂rn0

n0
+ ∂rT0

2T0

(
v2∥
v2T,i

− 1

)]
− kθ

B
∂rϕ0 − k∥v∥

ω − kθ
B
∂rϕ0 − k∥v∥

.

(B.8)

Once integrated over the velocity space, equation (B.5) gives the usual writing

∂n0

∂t
+

1

r

∂

∂r

(
rΓrQL

)
= 0 (B.9)

with ΓrQL =
∫
dv∥Λ

r
QL. We recall that in cylindrical coordinates, the divergence

writes

∇×A =
1

r

∂ (rAr)

∂r
+

1

r

∂Aθ
∂θ

+
∂Az
∂z

, (B.10)

hence the identification performed in equation B.9.
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B.1.3 Turbulent flux

By using equation (B.8), the particle flux ΓrQL can be expressed as

ΓrQL = ℜ

∫ dv∥
∑
k∥,kθ,ω

−ikθ
B

∣∣∣ϕ̂k∥,kθ,ω∣∣∣2 fM q

T0

kθρcvT,i

[
∂rn0

n0
+ ∂rT0

2T0

(
v2∥
v2T,i

− 1

)]
− kθ

B
∂rϕ0 − k∥v∥

ω − kθ
B
∂rϕ0 − k∥v∥

 .
(B.11)

The actual flux of particle is then the real part of this expression, which can
be simplified by separating ω = ωr + iγ and noting for the denominator ΩR =
ωr − kθ

B
∂rϕ0

ΓrQL = ℜ

∫ dv∥
∑
k∥,kθ,ω

−ikθ
B

∣∣∣ϕ̂k∥,kθ,ω∣∣∣2 fM q

T0

kθρcvT,i

[
∂rn0

n0
+ ∂rT0

2T0

(
v2∥
v2T,i

− 1

)]
− kθ

B
∂rϕ0 − k∥v∥

ΩR − k∥v∥ + iγ

 .
(B.12)

This expression can be simplified by multiplying it by
(
ΩR − k∥v∥ − iγ

)
/
(
ΩR − k∥v∥ − iγ

)
,

which is the complex conjugate of the denominator. This leads to to the final ex-
pression of the turbulent particle flux

ΓrQL =

∫
dv∥

∑
k∥,kθ,ω

−γkθ
B

∣∣∣ϕ̂k∥,kθ,ω∣∣∣2 fM q

T0

kθρcvT,i

[
∂rn0

n0
+ ∂rT0

2T0

(
v2∥
v2T,i

− 1

)]
− kθ

B
∂rϕ0 − k∥v∥(

ΩR − k∥v∥
)2

+ γ2
.

(B.13)

B.2 Fluid moments from Vlasov equation

From

∫ +∞

−∞
Adv∥

∂fs
∂t︸ ︷︷ ︸

1

+

∫ +∞

−∞
Adv∥vs ·∇fs︸ ︷︷ ︸

2

+

∫ +∞

−∞
Adv∥

qsE

ms

· ∇vsfs︸ ︷︷ ︸
3

= 0, (B.14)
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one can compute the fluid moments for ions (s = i) with the following definition:

n =

∫ +∞

−∞
fidv∥ (B.15)

Mnu∥ =

∫ +∞

−∞
Mv∥fidv∥, (B.16)

P∥ =

∫ +∞

−∞
M
(
v∥ − u∥

)2
fdv∥ ↔

∫ +∞

−∞
Mv2∥fidv∥ = P∥ +Mnu2∥, (B.17)

Q∥ =

∫ +∞

−∞
M
(
v∥ − u∥

)3
fidv∥ ↔

∫ +∞

−∞
Mv3∥fdv∥ = P∥ + 3u∥P∥ +Mnu3∥

(B.18)
vα = vE×B + v∥b (B.19)

First moment, A = 1

By taking A = 1, the first term of equation (B.14) is straightforward as the time
derivative and velocity integral can be swapped since variables are independant
from each other. This leads to

∫ +∞

−∞
dv∥

∂fi
∂t

=
∂

∂t

∫ +∞

−∞
fidv∥ =

∂n

∂t
. (B.20)

The second term of equation (B.14) can be separated in two terms; the E×B
drift, which only depends on space, and the parallel velocity which does not depend
on space and therefore can be swapped with the space gradient. This gives

∫ +∞

−∞
dv∥v ·∇fi =

∫ +∞

−∞
dv∥
(
vE×B + v∥b

)
·∇fi,

vE×B ·∇
∫ +∞

−∞
dv∥fi +∇ ·

∫ +∞

−∞
dv∥v∥bfi =

E×B

B2
·∇n+

∂

∂z

(
nu∥
)
. (B.21)

The last term of equation (B.14) is also straightfroward as E does not depend
on velocity and the parallel velocity is the only one of interest:

∫ +∞

−∞
dv∥

E

M
·∇vfi =

qiEz
M

∫ +∞

−∞
dv∥

∂fi
∂v∥

=
qiEz
M

[fi]
+∞
−∞ = 0 (B.22)

since limv∥→±∞ (fi) = 0 by definition. Combining equations (B.20), (B.21) and
(B.22) gives the continuity equation

∂n

∂t
+

E×B

B2
·∇n+

∂

∂z

(
nu∥
)

= 0 (B.23)
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Second moment, A =Mv∥

Similarly as for A = 1, the first term of equation (B.14) simple to compute since
the time derivative and velocity terms can be swapped. This gives

∫ +∞

−∞
dv∥Mv∥

∂fi
∂t

=
∂

∂t

∫ +∞

−∞
Mv∥fidv∥ =

∂Mnu∥
∂t

. (B.24)

The second term also requires to separate the E ×B drift term to the parallel
velocity term to get

∫ +∞

−∞
dv∥Mv∥v ·∇fi =

∫ +∞

−∞
dv∥Mv∥

(
vE×B + v∥b

)
·∇fi,

vE×B ·∇
∫ +∞

−∞
dv∥Mv∥fi +∇ ·

∫ +∞

−∞
dv∥Mv2∥bfi =

E×B

B2
·∇

(
Mnu∥

)
+

∂

∂z

(
Mnu2∥

)
+
∂P∥

∂z
,

(B.25)

where
∫ +∞
−∞ dv∥Mv2∥fi is replaced by equation (B.17).

The third term is computed requires an integral by part to get

∫ +∞

−∞
dv∥Mv∥

qiE

M
·∇vfi = qiEz

∫ +∞

−∞
v∥dv∥

∂fi
∂v∥

,

qiEz

([
v∥fi

]+∞
−∞ −

∫ +∞

−∞
dv∥fi

)
= −qiEzn. (B.26)

One can get a first momentum conservation equation by combining equations
(B.24), (B.25) and (B.26)

∂Mnu∥
∂t

+
E×B

B2
·∇

(
Mnu∥

)
+
∂Mnu2∥
∂z

= qiEzn−
∂P∥

∂z
, (B.27)

which can be further developped by combining it with equation (B.23) to get

Mn

[
∂

∂t
+

E×B

B2
·∇+ u∥

∂

∂z

]
u∥ = qiEzn−

∂P∥

∂z
. (B.28)

Third moment, A =Mv2∥

To compute the first term, we swap the time derivative and velocity terms again in
equation (B.17), which gives

∫ +∞

−∞
dv∥Mv2∥

∂fi
∂t

=
∂

∂t

∫ +∞

−∞
Mv2∥fidv∥ =

∂
(
Mnu2∥ + P∥

)
∂t

. (B.29)

Similarly as before, the second term can be computed using equation (B.18)
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∫ +∞

−∞
dv∥Mv2∥v ·∇fi =

∫ +∞

−∞
dv∥Mv2∥

(
vE×B + v∥b

)
·∇fi,

E×B

B2
·∇

(
Mnu2∥ + P∥

)
+

∂

∂z

(
Mnu3∥ + 3u∥P∥ +Q∥

)
, (B.30)

The last term is computed similarly as equation (B.26) and requires to integrate
by part:

∫ +∞

−∞
dv∥Mv2∥

qiE

M
·∇vfi = qiEz

∫ +∞

−∞
v2∥dv∥

∂fi
∂v∥

,

qiEz

([
v2∥fi

]+∞
−∞

− 2

∫ +∞

−∞
dv∥v∥fi

)
= −2qiEznu∥. (B.31)

By combining equations (B.29), (B.30), (B.31) and (B.28), the energy conser-
vation equation can then be written

[
∂

∂t
+

E×B

B2
·∇
]
P +

∂Q∥

∂z
+
∂u∥P∥

∂z
+ 2P∥

∂u∥
∂z

= 0. (B.32)

B.3 Linearisation of gyrofluid moments
Using equation (1.23) and

vE×B = − 1

B

 ∂ϕ
∂r
1
r
∂ϕ
∂θ
∂ϕ
∂z

×

0
0
1

 =
1

B

−1
r
∂ϕ
∂θ

∂ϕ
∂r

0


, one can develop the coninuity equation (2.38) as

−iωn1 + ikθϕ1
∂n0

∂r
+ n0ik∥u1 = 0.

By dividing this equation by n0 and using ω⋆n,T = kθρcvT
{n0,T0}

∂{n0,T0}
∂r

, Ω∥ = k∥vT and

vT =
√

T0
M

, this can be reduced to

ω
n1

n0

=
qiϕ1

T0
ω⋆n +

Ω∥u1
vT

= 0. (B.33)

Linearizing the momentum conservation equation (2.39) gives

−iωMn0u1 = −qin0ik∥ϕ1 − ik∥ (n0T1 + n1T0) .

This equation can be simplified by dividing it by n0

√
T0M :
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ω
u1
vT

= Ω∥
qiϕ1

T0
+ Ω∥

(
T1
T0

+
n1

n0

)
. (B.34)

The linearization of the energy conservation equation (2.40) gives

−iω (n0T1 + n1T0) + i
kθϕ1

B

∂ (n0T0)

∂r
+ 3ik∥n0T0u1 = 0,

which can be rewritten as

ω

(
T1
T0

− n1

n0

)
+ i

qiϕ1

T0
[ω⋆n + ω⋆T ]− 3Ω∥

u1
vT

= 0. (B.35)

Poisson equation (2.31) is also linearized using the same method and gives

n1

n0

=
qiϕ1

T0

[
τi
Z2
i

+ ρ2Lk
2
⊥

]
. (B.36)

Combining equations (B.33), (B.34), (B.35 and (B.36) as well as normalizing
frequencies to Ω∥, one get the linear dispersion relation for ITG in a cylindrical
geometry :

ω̂3

[
τi
Z2
i

+ ρ2ck
2
⊥

]
− ω̂2ω̂⋆n − ω̂

[
3

(
τi
Z2
i

+ ρ2ck
2
⊥

)
+ 1

]
+ (2ω̂⋆n − ω̂⋆T ) = 0. (B.37)
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Appendix C

GYSELA and source computation

C.1 Electric field well scaling in H mode operations

The electric field well width of different tokamaks in H mode are compared to
their gyroradii in table C.1. This gives us a simple - and optimistic - link between
a given normalized gyroradius we choose in GYSELA and the expected vorticity
source width necessary to match experiments in normalized units.

Tokamak WEST
[116]

COMPASS
[51]

D3D
[47]

ALCATOR
C-mod[50]

ASDEX-U
[49]

JET
[52]

JFT-2M
[46]

MAST
[53] ITER

a (m) 0.5 0.23 0.62 0.22 0.65 1.25 0.35 0.65 2
B (T) 3.7 1.2 2.1 8 3.1 3.45 2.2 0.51 5.3
T corei (eV) 800 720 300 3000 1600 1850 450 300 10000
Ai, Zi 2,1 2,1 2,1 2,1 2,1 2,1 2,1 4,2 2,1
ρc,i (mm) 1.105 3.232 1.192 0.989 1.865 1.802 1.394 3.471 2.727
LE (cm) 1.5 1.15 1 0.75 3.25 1.5 1 1.625 2.67
1/ρ⋆

a/ρc,i
453 71 520 222 349 694 251 187 733

1/L⋆E
LE/ρc,i

33.33 20 62 29.33 20 83.33 35 40 75

Table C.1: Characteristics of different tokamaks, including their normalized gyro-
radii and width of electric field well at the edge transport barrier position during
H-mode operations. 1/L⋆E for ITER are estimated based on a linear fit of all the
measurements and is therefore a rough estimate.

C.2 Polarization density

In GYSELA normalized units, polarization density for a species s is defined as

npol = ∇⊥ ·
(
Asn0,s

B2
0

∇⊥ϕ

)
, (C.1)

133
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with As and n0,s the mass number and initial density profile of the considered
species respectively and ϕ the electrostatic potential. B0 is always taken equal to 1
in GYSELA and can be ignored hereafter.

C.2.1 Nabla operators

The exact computation consists in taking the full gradient and divergence terms in
toroidal coordinates. First, we need to define the said operators in order to proceed
with the computations. In simplified toroidal coordinates, we get

∇ =

 ∂r
1
r
∂θ

1
R
∂φ

 . (C.2)

By writing ζ = r
qR0

, B can be written as

B =
B0R0

R

0
ζ
1

 . (C.3)

By rewriting b = B/B the unit vector along B where B =
√

1 + ζ2B0R0/R is
the magnetic field norm, the parallel gradient can be written as

∇∥ = b (b ·∇) = b

[
ζeθ + eφ√

1 + ζ2
·
(
er ∂r + eθ

1

r
∂θ + eφ

1

R
∂φ

)]

=
b√
1 + ζ2

(
ζ

r
∂θ +

1

R
∂φ

)
. (C.4)

Consequently, the perpendicular gradient will be written

∇⊥ = ∇−∇∥

=


∂r

1
r

[
1− ζ2

1+ζ2

]
∂θ − 1

R
ζ

1+ζ2
∂φ

1
R

[
1− 1

1+ζ2

]
∂φ − 1

r
ζ

1+ζ2
∂θ

 (C.5)

C.2.2 Exact computation

To compute accurately the polarization density, we use equation (C.5) in equation
(C.1) and using the full 3D electrostatic potential map ϕ(r, θ, φ, t)
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npol(r, θ, φ, t) = As∇⊥ · [n0,s∇⊥ϕ(r, θ, φ, t)]

= As∂r [n0,s∂rϕ(r, θ, φ, t)]

+ Frn0,s∂θ [Fr∂θϕ(r, θ, φ, t)−GR∂φϕ(r, θ, φ, t)]

− GRn0,s∂φ [Fr∂θϕ(r, θ, φ, t)−GR∂φϕ(r, θ, φ, t)]

+ FRn0,s∂φ [FR∂φϕ(r, θ, φ, t)−Gr∂θϕ(r, θ, φ, t)]

− Grn0,s∂θ [FR∂φϕ(r, θ, φ, t)−Gr∂θϕ(r, θ, φ, t)]

+ Frn0,s∂rϕ(r, θ, φ, t)

− GR sin θn0,s [FR∂φϕ(r, θ, φ, t)−Gr∂θϕ(r, θ, φ, t)]

+ FR cos θn0,s∂rϕ(r, θ, φ, t)

+ FR sin θn0,s∂φ [Fr∂θϕ(r, θ, φ, t)−GR∂φϕ(r, θ, φ, t)] (C.6)

with Fr = 1
r

[
1− ζ2

1+ζ2

]
, FR = 1

R

[
1− 1

1+ζ2

]
, Gr = 1

r
ζ

1+ζ2
and GR = 1

R
ζ

1+ζ2
. We

finally take the surface average of the above expression to compute the polarization
density of the considered species

⟨npol(r)⟩FS =

∫∫
(B ·∇θ)−1npol(r, θ, φ)dθdφ∫∫

(B ·∇θ)−1dθdφ
. (C.7)

C.2.3 Approximation used in GYSELA

In GYSELA, the quasi-neutrality equation (3.6) is solved in a 2D Fourier space by
using

∇approx
⊥ ≈

 ∂r
1
r
∂θ
0

 , (C.8)

and the full 3D potential array. This operator is equivalent to neglecting the poloidal
component of the magnetic field. More details are available in V. Grandgirard’s
work[78].

We propose to apply this operator to the 2D map of potential written simul-
taneously with radial density profile ϕ (r, θ, φ = 0) by making the assumption than
⟨ϕ (r, θ, φ)⟩FS ≈ ⟨ϕ (r, θ, φ = 0)⟩FS. The following expression can be obtained

⟨npol⟩FS (r, t) ≃ As ⟨∇approx
⊥ · (n0,s∇approx

⊥ ϕ(r, θ, φ = 0, t))⟩FS
= As

〈
∂r (n0,s ∂rϕ) +

n0,s

r
∂r ⟨ϕ⟩φ +

n0,s

r2
∂2θ ⟨ϕ⟩φ

〉
FS

(C.9)

C.2.4 Comparison

We select two time steps for which we posess all data, especially the 3D potential,
to compare equations (C.6) and (C.9) and see if the proposed approximations hold
depending if we are injecting vorticity (i.e. polarization) or a steep gradient. We
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select two times, t = 100800ω−
c,01 and t = 416000ω−

c,01 for the steep gradient and
vorticity cases respectively. Details about those simulation are described in section
3.2.

0.25 0.50 0.75 1.00

−5

0

5

⟨n
po

l⟩ F
S

1e−3 grad

0.25 0.50 0.75 1.00

−5

0

1e−3 vor
3D,⟨exact
2D,⟨approx

0.25 0.50 0.75 1.00
r/a

0.9

1.0

1.1

1.2

⟨n
⟩ FS

0.25 0.50 0.75 1.00
r/a

1.0

1.1

1.2

⟨∫dvf⟩FS
⟨∫dvf⟩FS⟩ n3D, exact

pol

Figure C.1: Top row: radial profile of polarization density computed with equation
(C.6) (green solid lines) and equation (C.6) for the steep gradient (top left) and
vorticity cases (top right). Bottom row: Particle density profile computed with
the gyroaverage applied on the gyrocenter distribution function only (green solid
lines) and with the exact polarization density computation through equation (C.6)
for the steep gradient (bottom left) and vorticity (bottom right) cases.

As shown on Figure C.1, the agreement between the full 3D exact computation
and 2D approximation used in GYSELA is satisfying in both the steep gradient
(top left) and vorticity cases (top right). This is confirmed when we look at the
gyroaveraged density of gyrocenters (i.e. the real particle density); the polarization
correction flattens all the density fluctuations observed. This is due to the fact
that only one species is present in those simulations and therefore, all the density
flucuations are potential fluctuations arising from the polarization term in equation
(3.6). Thus, the corrected particle density profile is, at all times, the same as the
initial profile provided only one kinetic species is present in the system.
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C.3 Lorraine’s polynomials
Integrals of Hermite and Laguerre, both born in Lorraine, whom polynomials re-
spectively give

Ll(x) −→
∫ +∞

0

LlLl′ exp (−x) dx = δll′|Ll|2, (C.10)

Hh(x) −→
∫ +∞

−∞
HhHh′ exp

(
−x2

)
dx = δhh′ |Hh|2, (C.11)

and form a range of orthogonal basis normalized such that |Ll|2 = 1 and |Hh|2 =∫ +∞
−∞ H2

h exp (−x2) dx =
√
π2hh!. The first polynomials are

L0(x) = 1,

L1(x) = 1− x,

L2(x) =
1

2

(
2− 4x+ x2

)
,

L3(x) =
1

6

(
6− 18x+ 9x2 − x3

)
for the Laguerre ones, and

H0(x) = 1 −→ |H0|2 =
√
π,

H1(x) = 2x −→ |H1|2 = 2
√
π,

H2(x) = −2 + 4x2 −→ |H2|2 = 8
√
π,

H3(x) = −12x+ 8x3 −→ |H3|2 = 48
√
π

for the Hermite ones.
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C.4 Simulation branches

Base (only D+)

Δ𝑡 = 160 000𝜔𝑐,𝑖
−1

w/ source

Δ𝑡 = 200 000𝜔𝑐,𝑖
−1

w/o source

Δ𝑡 = 200 000𝜔𝑐,𝑖
−1

Base (only D+, 
steep gradient)

Δ𝑡 = 200 000𝜔𝑐,𝑖
−1

Figure C.2: Visual representation of the simulation branches ran for chapter 3.
The total represents around 7 million CPU hours. Since the transport barrier is
present from the begining in the steep gradient case, there was no need for multiple
branches.

Base (only D+)

Δ𝑡 = 100 000𝜔𝑐,𝑖
−1

w/ source

Δ𝑡 = 120 000𝜔𝑐,𝑖
−1

He2+

50 000𝜔𝑐,𝑖
−1

Ar18+

50 000𝜔𝑐,𝑖
−1

W40+

50 000𝜔𝑐,𝑖
−1

w/o source

Δ𝑡 = 120 000𝜔𝑐,𝑖
−1

He2+

50 000𝜔𝑐,𝑖
−1

Ar18+

50 000𝜔𝑐,𝑖
−1

W40+

50 000𝜔𝑐,𝑖
−1

Base (only D+, steep 
gradient)

Δ𝑡 = 120 000𝜔𝑐,𝑖
−1

He2+

50 000𝜔𝑐,𝑖
−1

Figure C.3: Visiual representation of the simulation branches ran for chapter 4.
The total represents around 5.5 million CPU hours. The reduced amount of CPU
hours is due to GYSELA optimizations. For now, only one branch with helium is
completed for the steep gradient case.
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