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Introduction

Context and motivation
In recent years, a strong push towards increasing the share of renewables in the total en-
ergy mix has been observed [89], [65]. This quest towards increased renewables-based
energy generation is an effect of a number of causes, such as environmental concerns
and economic benefits [10]. The most prominent driving factor toward sustainable
smart grids has been the expected environmental benefits [78]. Increased atmospheric
carbon levels can result in extreme heatwaves, floods, and air pollution which can lead
to agricultural losses and biodiversity losses [43]. Economic impacts can also be ex-
pected due to increased carbon levels [174]. It has been estimated by the International
Monetary Fund (IMF) agency that the impact of climate change on the world’s econ-
omy is expected to reach $1.5 trillion by 2030 [91]. Thus, the EU has put forward the
goal of achieving climate neutrality (net zero greenhouse gas emissions) by 2050. The
EU has also set an intermediate goal of reducing its emissions by at least 55% by 2030,
compared to 1990 levels [60].

The energy sector is the leading contributor toward global greenhouse gas emis-
sions. In 2019, the energy sector was responsible for approximately 73% of global
greenhouse gas emissions estimated by the IEA [86]. Fossil fuels (coal, oil, and nat-
ural gas) were responsible for about 80% of total energy-related emissions [87]. Re-
newable energy sources (RES) are recognized as a pivotal means to attain the targeted
reduction in greenhouse gas emissions. These energy sources are also termed as sus-
tainable energy sources. A sustainable energy source can be defined as a source that
would produce energy without any harmful direct emissions, such as solar energy,
wind energy, hydro-power etc. The European Union (EU) has set a specific objective
to increase the proportion of renewable energy in its energy portfolio to a minimum
of 32% by the year 2030 [64]. Consequently, there has been a significant rise in the
integration of renewable energy sources with the existing power grid. This increased
integration has also been facilitated by significant cost reductions in the manufactur-
ing of renewable sources and storage. According to the IEA, the cost of solar panels
was reduced by almost 82% in the last decade which resulted in an annual solar power
capacity increase of 35% during that period [89]. This trend of increasing solar panels
is expected to continue in the future as well. The total solar capacity is expected to
grow from 600 GW in 2020 to 3,000 GW in 2030 as predicted by the International
Renewable Energy Agency (IRENA) [93].

The progressive electrification of the transportation sector is also facilitating the
replacement of conventional fossil fuel-powered vehicles with electric vehicles, thus
contributing to zero direct emissions. A significant decrease in the cost of lithium-
ion batteries used in electric vehicles has been helping this transition. This cost has
decreased by almost 87.45% in the last decade, according to Bloomberg [27]. Envi-
ronmental concerns combined with this reduction in the battery cost were among the
major driving factors that increased the number of electric vehicles from 17,000 in
2010 to 10 million in 2020, according to the IEA [88]. Furthermore, these numbers
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are only expected to increase. The total number of electric vehicles on the road is
expected to be 145 million in 2030 by the IEA [88].

These above-discussed new grid elements are surely expected to increase its sus-
tainability. However, they can have several undesirable impacts on the existing elec-
trical infrastructure as well due to their uncertain and distributed nature. The existing
electrical infrastructure was initially designed for uni-directional power flows (i.e.,
from power plants to consumers). However, the integration of a large-amount of pho-
tovoltaic (PV) panels and electric vehicles (EVs) connected to the existing electrical
networks result in bi-directional power flows. Furthermore, these new grid-connected
elements are uncertain and intermittent in nature [73]. Thus, they may result in unex-
pected voltage fluctuations beyond an allowed manageable range, thus impacting the
quality of electricity supply to consumers [146]. Similarly, if a large number of EVs
are charging simultaneously, it can create a significant demand for electricity. This
demand could cause congestion in electrical lines, especially if the demand coincides
with peak hours [99]. These congestions can also interrupt the supply of electricity to
the consumers as well as can cause rapid degradation of electrical network’s infrastruc-
ture [74]. Thus, the evolution of existing electrical networks becomes a necessity to
tackle the mentioned challenges. Grid reinforcement (i.e., upgrading grid infrastruc-
ture) can be one of the solutions. However, downsides of grid reinforcement solutions
include high cost and long lead times [80].

On the other hand, smart grid solutions have sparked a good amount of interest in
the past two decades. Smart grid solutions involve the utilization of existing flexible
grid elements combinedwith advancements in digital and communication technologies
to adjust the grid operation in a context of increasing uncertainty. These smart grid so-
lutions can be considered efficient alternatives to earlier-discussed grid reinforcement
solutions [53], [18], [111]. That is why researchers from all around theworld have been
investigating different ways to optimally manage smart grids. Furthermore, smart grid
technologies have received favorability both in monetary terms (more than $4 billion
in funding for smart grid projects through the American Recovery and Reinvestment
Act (ARRA) [9]) as well as in regulatory terms (Smart Grid Policy Statement [177],
Order 1000 [178], and European Commission’s Smart Grid Mandate [59]). The topic
of this dissertation falls also in this category. In particular, it deals with the design of
an optimized real-time control system applicable to a practical (large-scale) smart grid
operated under uncertainty.

Work and contributions
This thesis aims to design a decentralized optimal energy management system to man-
age a large-scale network in real-time under uncertainties. Initially, Chapter 1 presents
a detailed literature review of existing smart grid control algorithms. The first main
technical part of the thesis, detailed in Chapter 2, focuses on the design of an adaptive
multi-agent system for real-time grid balancing in smart grids. This system is com-
posed of reactive agents that react to instantaneous changes in their environment to
optimize energy flows in a smart grid. These agents undergo cooperative interactions
with their neighboring agents to achieve the desired goal(s) of the system. The perfor-
mance of this system is evaluated through simulation-based experiments in Chapter
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3, by comparing it with other baseline control strategies. These baseline strategies in-
clude uncontrolled strategy and mixed-integer linear programming optimization strat-
egy. The comparison is made in terms of optimality as well as in terms of computa-
tional requirements. The impact of smart grid size and uncertainties on the system’s
performance is also investigated. A detailed evaluation shows that the modeled system
succeeds in controlling a large-scale smart grid in a near-optimal way.

However, the system’s performance can still be improved by integrating anticipa-
tion capabilities into the agents. The second technical part of the thesis, presented in
Chapters 4 and 5, implements learning capabilities to help agents make better deci-
sions under uncertainty in their environment. Reinforcement learning algorithms, in
particular multi-armed bandit algorithms, are used to enable agents to acquire learn-
ing functions. The main contribution of these chapters is the use of the multi-armed
bandit theory in conjunction with an adaptive multi-agent system framework to de-
velop a decentralized system that optimises a large-scale smart grid under uncertainty.
Optimization performance is assessed by comparison with benchmark algorithms for
optimizing the smart charging of electric vehicles. The comparison shows that the
developed system is capable of achieving the desired objective of optimal, decentral-
ized real-time management of a large-scale smart grid in the presence of uncertainties.
Afterwards, the conclusion of this thesis and possible perspectives are discussed.

The main contributions of this thesis are as follows:

• A decentralized system using the framework of adaptive multi-agent systems is
presented to optimize energy management in smart grids. The energy manage-
ment system designed is fully decentralized, scalable, real-time, near-optimal
and model-free (i.e., it does not require a specific distribution network model
to operate). The problem of providing ancillary services to balance responsible
parties by controlling flexible electric vehicles is studied to evaluate the perfor-
mance of this developed system. The performance of this system is also tested in
the case of pseudo-stochasticity of solar photovoltaic energy production. Work
regarding this contribution is presented in Chapters 2 and 3.

• The framework of combinatorial multi-armed bandit learning is combined with
the philosophy of adaptive multi-agent systems to propose a decentralized en-
ergy management system in large-scale smart grids that would reduce the impact
of stochasticity on system optimality. The problem of large-scale intelligent
charging of electric vehicles (>10,000 electric vehicle agents) in the presence
of uncertainties is studied in order to evaluate the performance of the proposed
system. Uncertainties linked to photovoltaic energy production and to agents’
actions in a multi-agent environment are taken into account in this study. The
impact of choosing different multi-armed bandit learning strategies on system
performance is also presented in this thesis. The decentralized system based on
reinforcement learning presented is near-optimal, scalable, can operate in real
time, can cope with real-life uncertainties, is fair and does not require an en-
vironment model. It can be applied to control a variety of network elements
(e.g. electric vehicles, electric heating/cooling equipment, distributed energy
resources, etc.) at different levels (residential distribution, commercial distribu-
tion, transmission, etc.). In addition, thanks to the potential faster convergence
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of multi-arm bandit algorithms compared to other commonly used algorithms
such as DQN learning, the proposed system can also bring significant techno-
economic benefits in online smart grid applications. The work pertaining to this
contribution is elaborated in Chapters 4 and 5.

To summarize a smart grid control system combining the theories of adaptive
multi-agent systems and multi-armed bandit is presented in this thesis. The final pro-
posed system is fully decentralized, real-time, scalable, near-optimal, and adaptable.
It operates without the need for a central decision-making entity, allowing each agent
in the system to make its own decisions in real-time. This system is designed to han-
dle large-scale smart grids, providing near-optimal solutions even in the presence of
stochastic conditions and various uncertainties. It takes into account different types of
stochasticities that may exist in practical smart grid control, ensuring fairness among
decision-making agents and satisfying both global and local constraints. Importantly,
it does not rely on a specific model of the electrical grid, making it versatile and adapt-
able for controlling various flexible grid components in a smart grid environment. A
number of novel research avenues can be explored as a result of the decentralized sys-
tem proposed in this thesis.
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Introduction en français

Contexte et motivation
Ces dernières décennies, on a observé un fort engagement en faveur de l’augmentation
de la part des énergies renouvelables dans le mix énergétique [89], [65]. Cette quête
d’une production d’énergie plus renouvelable est le résultat de plusieurs facteurs, tels
que les préoccupations environnementales et un coût de production devenant com-
pétitif par rapport aux sources d’énergie non-renouvelables [10]. Les préoccupations
environnementales ont représenté l’élément moteur qui a déclenché l’établissement
d’objectifs environnementaux quantitatifs, entrainant dans leur sillage une réduction
des coûts via des efforts collectifs au niveau du monde académique, industriel, etc.
[78]. Introduire plus d’énergies renouvelables dans le mix énergétique vise à réduire
les émissions de gaz à effet de serre causant un changement climatique sur notre
planète. L’augmentation des niveaux de gaz à effet de serre dans l’atmosphère en-
traîne en effet divers phénomènes, notamment des vagues de chaleur extrêmes, des
inondations ce qui entraîne des pertes humaines, des pertes agricoles et des pertes
de biodiversité [43]. Des impacts économiques sont également attendus en raison
de l’augmentation des niveaux de carbone [174]. Le Fonds monétaire international
(FMI) estime en effet que l’impact du changement climatique sur l’économie mondi-
ale devrait atteindre 1,5 milliards de dollars d’ici 2030 [91]. Afin de lutter contre le
changement climatique, l’Union Européenne (UE) s’est fixée l’objectif d’atteindre la
neutralité climatique (émission nette de gaz à effet de serre nulle) d’ici 2050. L’UE
s’est également fixée un objectif intermédiaire de réduire ses émissions d’au moins
55% d’ici 2030 par rapport aux niveaux de 1990 [60].

Le secteur de l’énergie est le principal contributeur aux émissionsmondiales de gaz
à effet de serre. En 2019, le secteur de l’énergie était responsable d’environ 73% des
émissions mondiales de gaz à effet de serre, selon l’Agence Internationale de l’Energie
(AIE) [86]. Les combustibles fossiles (charbon, pétrole et gaz naturel) étaient respons-
ables d’environ 80% des émissions totales liées à l’énergie [87]. Les sources d’énergie
renouvelable (SER) sont reconnues comme unmoyen essentiel d’atteindre la réduction
ciblée des émissions de gaz à effet de serre. On les appelle également sources d’énergie
durables. Une source d’énergie durable peut être définie comme une source qui pro-
duit de l’énergie sans émissions directes nuisibles, telles que l’énergie solaire, l’énergie
éolienne, l’hydroélectricité, etc. L’Union Européenne (UE) s’est fixé un objectif spé-
cifique d’augmenter la proportion d’énergie renouvelable dans son portefeuille én-
ergétique à un minimum de 32% d’ici 2030 [64]. Cela a eu pour effet d’augmenter
significativement la part des sources d’énergie renouvelable dans le mix énergétique.
Cette intégration accrue a également été facilitée par des réductions significatives des
coûts de fabrication des sources d’énergie renouvelable et du stockage. Selon l’AIE, le
coût des panneaux solaires a été réduit de près de 82% au cours de la dernière décennie,
ce qui a entraîné une augmentation annuelle de la capacité de production d’énergie so-
laire de 35% au cours de cette période [89]. Cette tendance à la hausse de l’installation
de panneaux solaires devrait se poursuivre à l’avenir. La capacité solaire totale devrait
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passer de 600 GW en 2020 à 3 000 GW en 2030, selon les prévisions de l’Agence
Internationale pour les Energies Renouvelables (IRENA) [93].

L’électrification progressive du secteur des transports facilite également le rem-
placement des véhicules conventionnels à moteur à combustion par des véhicules élec-
triques, contribuant ainsi à la suppression d’émissions directes de gaz à effet de serre.
Une diminution significative du coût des batteries lithium-ion utilisées dans les véhicules
électriques contribue fortement à cette transition. Ce coût a diminué de près de 87,45%
au cours de la dernière décennie, selon Bloomberg [27]. Les préoccupations environ-
nementales combinées à cette réduction du coût des batteries ont été parmi les princi-
paux facteurs qui ont fait passer le nombre de véhicules électriques de 17 000 en 2010
à 10 millions en 2020, selon l’AIE [88]. De plus, on s’attend à ce que ces chiffres con-
tinuent d’augmenter à l’avenir. Le nombre total de véhicules électriques sur la route
devrait atteindre 145 millions en 2030 selon l’AIE [88].

Ces nouveaux éléments de réseau (sources d’énergie renouvelables, véhicules élec-
triques) devraient certainement augmenter sa durabilité. Cependant, ils peuvent égale-
ment avoir plusieurs impacts indésirables sur l’infrastructure électrique existante en
raison de leur nature incertaine et distribuée. L’infrastructure électrique existante a
été initialement conçue pour des flux de puissance unidirectionnels (c’est-à-dire des
centrales électriques vers les consommateurs). Cependant, l’intégration d’un grand
nombre de panneaux photovoltaïques (PV) et de véhicules électriques (VE) connec-
tés aux réseaux électriques existants entraîne des flux de puissance bidirectionnels.
De plus, ces nouveaux éléments connectés au réseau sont incertains et intermittents
par nature [73]. Ainsi, ils peuvent entraîner des fluctuations de tension inattendues
dépassant une plage autorisée, ce qui impacte la qualité de la fourniture d’électricité
aux consommateurs [146]. De même, des congestions peuvent être créés, par exem-
ple si un grand nombre de véhicules électriques sont en charge simultanément, cela
peut créer une demande significative d’électricité, en particulier si la demande coïn-
cide avec les heures de pointe [99]. Ces congestions pourraient également interrompre
la fourniture d’électricité aux consommateurs et entraîner une dégradation rapide de
l’infrastructure du réseau électrique [74]. Ainsi, l’évolution des réseaux électriques
existants devient une nécessité pour faire face aux défis mentionnés. Le renforcement
du réseau (c’est-à-dire la mise à niveau de l’infrastructure du réseau) peut être l’une des
solutions. Cependant, cette solution requiert un coût élevé et des délais de réalisation
importants [80].

A l’inverse, les solutions de réseaux intelligents ont suscité un grand intérêt au
cours des deux dernières décennies. Les solutions de réseaux intelligents consistent à
utiliser des éléments de réseau flexibles existants combinés aux avancées en matière de
technologies digitales et de communication pour ajuster l’exploitation du réseau dans
un contexte d’incertitude croissante. Ces solutions de réseaux intelligents peuvent être
considérées comme des alternatives efficaces aux solutions de renforcement du réseau
précédemment mentionnées [53], [18], and [111]. C’est pourquoi des chercheurs du
monde entier ont étudié différentes façons de gérer de manière optimale les réseaux
intelligents. De plus, les technologies des réseaux intelligents ont bénéficié de faveurs
à la fois en termes monétaires (plus de 4 milliards de dollars de financement pour des
projets de réseaux intelligents dans le cadre de la loi américaine de relance et de réin-
vestissement [9]) et en termes réglementaires (déclaration de politique sur les réseaux
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intelligents [177], Ordre 1000 [178], et Mandat sur les réseaux intelligents de la Com-
mission Européenne [59]). Le sujet de cette thèse s’intéresse également aux réseaux
intelligents. En particulier, il traite de la conception d’un système de contrôle au temps-
réel optimisé applicable à un réseau intelligent de grande taille fonctionnant dans un
contexte d’incertitude.

Travaux et contributions
Cette thèse vise à concevoir un système de gestion énergétique optimal décentralisé
pour gérer au temps-réel un réseau de grande taille en présence d’incertitudes. Dans
un premier temps, le chapitre 1 présente une revue détaillée de la littérature sur les
algorithmes existants de contrôle des réseaux intelligents. La première partie tech-
nique principale de la thèse, détaillée au chapitre 2, se concentre sur la conception
d’un système multi-agent adaptatif pour l’équilibrage au temps réel dans les réseaux
intelligents. Ce système est composé d’agents réactifs qui réagissent aux changements
instantanés de leur environnement pour optimiser les flux d’énergie dans un réseau
intelligent. Ces agents interagissent de manière coopérative avec leurs agents voisins
pour atteindre le(s) objectif(s) souhaité(s) du système. Les performances de ce système
sont évaluées par le biais de simulations numériques au chapitre 3, en les comparant
avec d’autres stratégies de contrôle de référence. Ces stratégies de référence compren-
nent une stratégie non contrôlée et une stratégie optimisée déterministe basée sur de
la programmation linéaire en nombres mixtes (MILP). La comparaison est effectuée
en termes d’optimalité ainsi qu’en termes d’effort calculatoire (temps de calcul et mé-
moire demandés). L’impact de la taille du réseau intelligent et des incertitudes sur
les performances du système est également étudié. Une évaluation détaillée montre
que le système développé parvient à contrôler un réseau intelligent à grande échelle de
manière quasi-optimale.

Cependant, les performances du système peuvent encore être améliorées en inté-
grant des capacités d’anticipation dans les agents. La deuxième partie technique de la
thèse, présentée aux chapitres 4 et 5, met en œuvre des capacités d’apprentissage pour
aider les agents à prendre de meilleures décisions en présence d’incertitudes dans leur
environnement. Des algorithmes d’apprentissage par renforcement, en particulier des
algorithmes de bandits manchots, sont utilisés pour permettre aux agents d’acquérir
des fonctions d’apprentissage. La principale contribution de ces chapitres réside dans
l’utilisation de la théorie du bandits manchots conjointement avec le cadre des sys-
tèmes multi-agent adaptatifs pour développer un système décentralisé qui optimise un
réseau intelligent à grande échelle en présence d’incertitudes. Les performances de
l’optimisation sont évaluées par comparaison avec des algorithmes de référence pour
l’optimisation de la recharge intelligente des véhicules électriques. La comparaison
montre que le système développé est capable d’atteindre l’objectif souhaité de gestion
au temps-réel quasi-optimale et décentralisée d’un réseau intelligent à grande échelle
en présence d’incertitudes. Ensuite, la conclusion de cette thèse et les perspectives
possibles sont discutées.

Les principales contributions de cette thèse sont les suivantes :

• Développement d’un système décentralisé utilisant le cadre des systèmes multi-
agents adaptatifs combiné à un algorithme métaheuristique réactif. Le système
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de gestion de l’énergie conçu est entièrement décentralisé, évolutif, destiné à la
conduite du réseau au temps-réel, quasi-optimal et sans modèle (il ne nécessite
pas de modèle de réseau de distribution spécifique pour fonctionner). Le prob-
lème de la fourniture de services systèmes pour équilibrer le réseau électrique est
étudié afin d’évaluer la performance du système développé. La performance de
ce système est également testée dans des cas pseudo-stochastiques de la produc-
tion d’énergie solaire photovoltaïque. Les travaux relatifs à cette contribution
sont présentés dans les chapitres 2 et 3.

• La viabilité de l’apprentissage par renforcement multi-agents pour optimiser
les flux d’énergie dans les réseaux intelligents est également étudiée dans cette
thèse. Combinaison du cadre de l’apprentissage combinatoire de bandits man-
chots avec la philosophie des systèmes multi-agents adaptatifs afin de proposer
un système décentralisé de gestion de l’énergie dans les réseaux intelligents
visant à réduire l’impact des incertitudes sur l’optimalité du système. Le prob-
lème de la recharge intelligente à grande échelle de véhicules électriques (plus
de 10 000 agents véhicules électriques) en présence d’incertitudes est égale-
ment étudié pour évaluer la performance du système proposé. Les incertitudes
liées à la production d’énergie photovoltaïque et aux actions des agents dans un
environnement multi-agents sont prises en compte dans cette étude. L’impact
du choix de différentes stratégies d’apprentissage par des algorithmes de ban-
dits manchots sur la performance du système est également présenté. Le sys-
tème décentralisé basé sur l’apprentissage par renforcement développé est quasi-
optimal, évolutif, peut fonctionner au temps-réel, peut faire face aux incertitudes
de la vie réelle, est équitable et ne nécessite pas de modèle. Il peut être appliqué
pour contrôler une variété d’éléments du réseau (par exemple, les véhicules élec-
triques, les équipements de chauffage/refroidissement électriques, les ressources
énergétiques distribuées, etc.) à différents niveaux (distribution résidentielle,
distribution commerciale, transmission, etc.). De plus, grâce à la convergence
potentielle plus rapide des algorithmes de banditsmanchots par rapport à d’autres
algorithmes couramment utilisés tels que leDQN, le système proposé peut égale-
ment apporter d’importants avantages techno-économiques dans les applications
en ligne (au temps-réel) des réseaux intelligents. Les travaux relatifs à cette con-
tribution sont développés dans les chapitres 4 et 5.

Pour résumer, ce mémoire présente un système de contrôle de réseau intelligent
combinant les théories des systèmes multi-agents adaptatifs et des bandits manchots.
Le système final proposé est entièrement décentralisé, peut fonctionner au temps-réel,
évolutif, quasi-optimal et adaptable. Il fonctionne sans avoir besoin d’une entité de
prise de décision centralisée, permettant à chaque agent du système de prendre ses
propres décisions au temps-réel. Ce système est conçu pour gérer des réseaux intel-
ligents à grande échelle, offrant des solutions quasi-optimales même en présence de
conditions d’incertitudes diverses. Il prend en compte différents types de stochasticités
qui peuvent exister dans le contrôle des réseaux intelligents, garantissant l’équité entre
les agents de prise de décision et satisfaisant à la fois les contraintes globales et locales.
De manière cruciale, il ne dépend pas d’un modèle spécifique du réseau électrique, ce
qui le rend polyvalent et adaptable pour le contrôle de divers composants flexibles dans
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un environnement de réseau intelligent. Un certain nombre de nouvelles perspectives
de recherche peuvent être explorées grâce au système décentralisé proposé dans ce
manuscrit de thèse.
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Chapter 1

State-of-the-art and scientific
positioning

To understand the things that are at our door is the best preparation for understanding
those that lie beyond.

Hypatia

Summary
This chapter starts by presenting the evolution of existing power systems. This evolution would
result in a greater number of variable distributed energy resources in future power systems.
Thus, smart grid optimal control systems will be an integral part of future smart grids to tackle
the increase in variability due to a higher share of distributed energy resources in the overall
energy mix. A number of existing smart grid optimal control solutions are presented in this
chapter. These solutions are categorized based on their architecture, i.e., centralized, hierarchi-
cal, or decentralized. The rationale behind the selection of a decentralized architecture in this
thesis is also explained in this chapter. Finally, the contribution of the proposed decentralized
control solution compared to existing solutions is highlighted.
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1.1 Power systems
One of the most complex man-made structures is often thought to be modern power
systems. This can be attributed to the fact that managing power systems effectively is
difficult due to the complex interactions between a variety of elements and the vast geo-
graphic areas they cover. Initially designed for lighting purposes, power systems have
been one of the core drivers of progress in the late-modern age. Their applications
span a broad category of sectors, such as transportation, industry, agriculture, com-
munication, healthcare, residential real estate, etc. Electrical networks have proven
themselves to be one of the fundamental pillars for the functioning of our modern so-
ciety. However, power systems have not always looked the way they do now. In fact,
like a living being, power systems have also been continuously evolving since their
inception. A brief timeline of the history of power systems is presented in Figure 1.1.
Its evolution so far can be roughly categorized into four different phases:

• Early power systems: During the first phase (−1890s), the foundation of power
systems wasmade. Initially, the focus was on the design of basic building blocks
of power systems which would lead to their practical adoption. Power systems
in the early days of electricity were primarily used for lighting and ran on a direct
current (DC) system [148]. Steam or water turbines produced electricity, which
was then transmitted to consumers. These early networks were localized, with
a power plant and distribution system unique to each city or town.

• Growth of power systems: During the second phase (1890s−1990s), expan-
sion of the power networks based on alternating currents was observed world-
wide, which resulted in one of the most complex man-made structures i.e., the
modern electrical grid [148]. The alternating current (AC) technology made it
possible to transmit electricity over long distances. The electrical grid became
a complex system of generators, transmission lines, and distribution networks
that enabled electricity to be transmitted over long distances and shared between
regions. Significant electronics and digital advancements during this phase also
led to increased efficiency of power systems through control and automation.

• Development of DERs: During this phase (1990s−2010s), a push towards dis-
tributed energy sources (DERs) was observed. These DERs included technolo-

Figure 1.1: A brief timeline of power systems’ evolution.
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gies like solar, wind, and cogeneration [2]. The development of distributed gen-
eration, where electricity is produced at the point of use, such as rooftop solar
panels, is a result of these energy sources. As a result, the conventional model
of centralized power generation has been put to the test, and smart grids and
microgrids, which can control the flow of electricity from various sources and
loads, have been proposed.

• Digitalization of the grid: The most recent phase (2010s−) of the power sys-
tems’ evolution is more focused on the digitalization of the existing electrical
grid [50]. Today’s advanced metering infrastructure, intelligent sensors, and
other novel digital technologies have made it possible to monitor and control
the electrical grid in real-time, resulting in a growing degree of digitalization
of the grid. This push towards digitalization is made to increase its efficiency,
reliability, resilience, and safety.

By contrasting the architectures of past power systems with those of anticipated fu-
ture power systems, one can better comprehend the ongoing metamorphosis of power
systems. This would not only help to better understand the historical context of con-
temporary power systems, but it would also highlight potential difficulties that new
power systems might run into in the future and how they might overcome those diffi-
culties by utilizing novel technologies. The following section presents this compari-
son.

Power systems of the past
The simplified architecture of the past power systems is shown in Figure 1.2 [85]. His-
torically, power systems operated with a unidirectional flow of electricity adhered to
a centralized generation model. The United States Environmental Protection Agency
(USEPA) defines the centralized power generation model as follows [176]:

“Centralized generation” refers to the large-scale generation of electric-
ity at centralized facilities. These facilities are usually located away from
end-users and connected to a network of high-voltage transmission lines.

In the centralized generation model production of electricity was concentrated in a
small number of sizable power plants. These power plants generated large amounts of
electricity to satisfy the rising electricity demand. Notable examples of such central-
ized generation facilities include fossil-fuel-fired power plants, nuclear power plants,
and hydroelectric dams. A system of high-voltage transmission lines is used to trans-
port the power produced at these plants over great distances. For further distribution
to individual consumers (industrial, commercial, or residential) via distribution lines,
the voltage is stepped down at distribution substations.

In the past, power systems were typically operated by a single operator. This op-
erator held the responsibility for ensuring the seamless and efficient functioning of the
power system. The operator used Supervisory Control andData Acquisition (SCADA)
systems to control the power grid [15]. The utilization of SCADA systems persists
in current power systems and is anticipated to remain an integral component in future
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Figure 1.2: Architecture of the past power systems. Dotted lines indicate communication links
and solid lines indicate electrical connections [85].

power systems. These systems are envisioned to operate in conjunction with emerging
communication and control technologies, synergistically enhancing the overall func-
tionality and efficiency of power grids. These SCADA systems are crucial in central-
izing control and giving the operator real-time information. They are composed of
hardware and computer software that allows for remote monitoring and management
of various power grid functions. The operator can access vital data, including voltage
levels, current flows, and equipment statuses, through a graphical interface, giving
them a complete picture of the system. Although SCADA systems offer effective con-
trol and monitoring capabilities, the level of automation in previous power grids was
primarily restricted to the transmission level [85]. In order to monitor and maintain
distribution systems, which are in charge of supplying electricity to final users, there
was little or no automation. Furthermore, in the centralized generation model, cus-
tomers were passive recipients of electricity, lacking the ability to inject electricity
back into the grid. They were billed according to their energy consumption and had
limited automation capabilities for efficient control over their electricity usage.

Historically, electricity flow operated exclusively in a unidirectional manner, orig-
inating from centralized power plants and progressing toward consumers. However,
this will no longer be the case in future power systems. The advent of novel grid tech-
nologies and automation will introduce prominent bidirectional power flows in future
power networks. Moreover, the uncertainties linked to these novel technologies can
potentially impede the intended functionality of future power systems, as elaborated
in the subsequent subsections. Additionally, future power networks will be managed
by a number of different operators operating in synergy, rather than being solely man-
aged by a single entity. Consequently, future power systems will need to be smarter
to effectively adapt to these substantial changes. The subsequent subsection provides
a comprehensive analysis of these transformations within future power systems.

14



Power systems of the future: towards smarter grids
It is crucial to understand the recent and ongoing changes in power systems to envi-
sion the power grids of the future. Technical breakthroughs combined with favorable
regulatory frameworks have been the key drivers for the evolution of power systems.

One of the most notable ongoing transformations in power systems pertains to a
substantial increase in the proportion of renewable energy sources within the over-
all energy generation portfolio. This augmented share stems from the implementa-
tion of renewable technologies, including solar photovoltaic panels, wind turbines,
and others, into the power systems. It is noteworthy that several of these renewable
technologies had already been in existence prior to the conclusion of the 19th century
(for instance, the first photovoltaic cell was invented in 1839 by a 19-year-old French
physicist named Edmond Becquerel) [19]. However, it was only in the latter half of
the 20th century that the collective share of renewable energy sources started its signif-
icant ascent. Two of the main catalysts behind this surge were environmental concerns
and the energy crisis of the 1970s. The 1970s energy crisis had a significant impact
on the adoption of renewable energy, driving governments all over the world to look
for alternate and sustainable energy sources. Countries started developing laws and
incentives to encourage the development and deployment of renewable energy tech-
nology as they became aware of the vulnerability of relying solely on limited fossil
fuel resources [56].

The environmental concerns included both air pollution andmore importantly rapid
warming of the earth’s temperature due to different greenhouse gas (GHG) emissions.
Greenhouse gas emissions signify the release of numerous gases (such as carbon diox-
ide, methane, nitrous oxide, and others) through human activities, which contribute
to climate change by raising the average global temperature. Since the conclusion of
the Little Ice Age in the 19th century, the average global temperature has exhibited
a sharp increase primarily due to the industrial revolution. Although some articles
predicting the effects of global warming had emerged as early as the 20th century,
genuine concerns on this subject only arose in the late 1950s when systematic mea-
surements of rising background carbon dioxide concentrations were first initiated in
1958 [128], [162]. These environmental concerns only became stronger in the follow-
ing decades, fueling research efforts in renewable energy technologies. The research
and development of renewables have occupied a prominent position within the Frame-
work Programmes (now Horizon), instigated by the European Union during the 1980s
[139]. These driving factors have consequently led to a relative upswing in the techno-
economic viability of many renewable energy technologies that one observes today as
integral components of modern power systems.

The number of renewable energy sources connected to modern power systems
is growing day by day. Nations worldwide consistently revise their greenhouse gas
(GHG) emissions targets in conjunction with establishing objectives to increase the
proportion of renewable energy sources within their energy portfolio. For example,
the increment in the solar PV capacity of the EU since 2015 and the target set by the
EU in the REPowerEU plan is shown in Figure 1.3 [62]. It can be observed that the
solar PV capacity has steadily been increasing [92]. Also, the set goal according to the
REPowerEU plan is to reach a solar PV capacity of 600 GW by 2030 [62]. This goal is
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Figure 1.3: Solar PV capacity increase and the REPowerEU target [62], [92].

set by the European Union (EU) to achieve its objective of reducing its total emissions
by at least 55% by 2030, compared to 1990 levels [60]. It is imperative to note that the
deployment of renewable energy sources is characterized by their dispersion across
the electrical grid, rather than being confined to a single location. These technologies
are integrated within the grid’s generation infrastructure from the high-voltage or to
the low-voltage side. This enables different electricity consumers to become a more
active part of the grid (i.e., prosumers). Such prosumers possess the capacity not only
to buy (import) energy from the grid but also to sell (export) surplus energy back to
the grid.

The electric vehicle is another technology that is becoming an increasingly integral
part of the power systems as a result of the electrification of the transportation sector.
Electric vehicles use electricity as their main source of propulsion, in contrast to con-
ventional vehicles, which depend on internal combustion engines that are powered
by gasoline or diesel. Although electric vehicles had early success in the late 19th and
early 20th centuries, they were overshadowed by gas-powered vehicles, which offered
longer trips at a lower cost due to the discovery of large petroleum sources [168]. How-
ever, electric vehicles regained attention in the late 20th and early 21st centuries due to
growing environmental concerns and the energy crisis of the 1970s. Electric vehicles
have several environmental advantages as they produce zero direct emissions, help-
ing to reduce greenhouse gas emissions. They are considered eco-friendly, especially
when powered by renewable energy sources. The increased focus on electric vehicles
has led to significant advancements in related technologies. Additionally, the cost of
lithium-ion batteries, which are crucial components of electric vehicles, has signifi-
cantly decreased by around 87.45% over the past decade (as reported by Bloomberg
[27]). These factors have contributed to the rapid adoption of electric vehicles since
the beginning of the current century as shown in Figure 1.4. Their adoption rate is only
expected to increase as electric vehicles have also been included in the REPowerEU
plan by the EU. The goal is to have at least 30 million zero-emission vehicles (ZEVs)
on European roads by 2030 [63].

It is also anticipated that future power systems will incorporate a variety of stor-
age technologies to improve grid dependability, allow for the increased integration of
renewable energy sources, and facilitate effective energy management [154]. Some of
the most prominent energy storage technologies include lithium-ion batteries, pumped
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Figure 1.4: Total number of electric vehicles increase and the REPowerEU target [63].

hydro storage, hydrogen energy storage, compressed air energy storage, flywheel en-
ergy storage, thermal energy storage, and high-power super-capacitors [76]. These
energy storage systems can improve grid stability and reliability by storing excess
electricity during times of low demand and releasing it during times of peak demand.
Energy storage can also facilitate the integration of renewable energy sources by acting
as a buffer to maintain a balance between supply and demand. In future power sys-
tems, energy storage connections are expected to be spread out across the grid, much
like the distribution of renewable energy sources.

The aforementioned changes relate to significant developments observed in the
technological aspects of power networks. Nonetheless, these transformations extend
beyond technological aspects alone, as recent regulatory and policy shifts have also had
a considerable impact on power systems, influencing the reconfiguration of their con-
trol mechanisms. The liberalization of energy markets and the digitalization of power
systems are leading to significant changes in the control and operation of power sys-
tems. In the past, a single utility company owned and managed all aspects of power
generation, transmission, distribution, and retail services. However, with the introduc-
tion of liberalization, energymarkets have been “unbundled” or separated into different
entities that compete with each other, especially in wholesale and retail markets. This
means that in the future, power systems will be operated by multiple operators and
service providers working together to control various aspects of the grid.

The digitalization of power systems plays a crucial role in enabling efficient control
of these unbundled power systems, fostering collaboration and coordination among
different market participants. One key advancement in the digitalization process is the
deployment of advanced metering infrastructure (AMI) including smart meters. These
smart meters can provide real-time information, e.g. energy usage to both utilities
and consumers, allowing for better monitoring and management of energy consump-
tion. They also facilitate two-way communication between utilities and consumers,
enabling programs like demand response and time-of-use pricing. These initiatives
incentivize consumers to shift their electricity usage to off-peak hours. With the sup-
port of energy service providers, such as aggregators, customers can actively partici-
pate in programs like demand response for instance through smart and flexible devices
connected to the power grid, such as electric vehicles. These advancements suggest
that automation and control are expected at the distribution level (and not only the
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transmission level) in future power grids.
Considering the anticipated advancements and transformations discussed earlier,

one can envision a broad conceptualization of future power grids as depicted in Figure
1.5 [85]. Future power systems will undergo significant changes with the introduc-
tion of new grid elements such as renewable energy sources, electric vehicles, and en-
ergy storage systems. These elements will be dispersed throughout the power systems,
transforming the way electricity is generated, consumed, and stored. Furthermore, the
control and operation of future power systems will involve multiple operators working
together. Aggregators managing new grid elements may communicate and collaborate
with transmission and distribution system operators to ensure the reliable and efficient
functioning of the power grid. This cooperative approach among operators is crucial
to maintain the stability and effectiveness of the power system as it adapts to the inte-
gration of diverse technologies and distributed energy resources. The term smart grid
is another name for this imagined power system in Figure 1.5.

Smart grid

The conceptualization of smart grids can be traced back to the latter part of the 20th
century, when advancements in technology and concerns regarding the limitations of
existing power systems prompted exploration into more intelligent and efficient grid
solutions. However, it was in the early 2000s that the term “smart grid” gained popular-
ity, coinciding with advancements in digital technology and communication networks
that started to play a significant role in transforming power grids. Additionally, the

Figure 1.5: Architecture of the future power systems compared to the past power system shown
in Figure 1.2. Dotted lines indicate communication links and solid lines indicate electrical
connections. New grid elements are highlighted in blue.
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notable blackout incident in the United States in 2003, which incurred an estimated
loss ranging between $7 and $10 billion, served as a catalyst for the acceleration of
smarter power system initiatives [58]. Consequently, the initial reference to “Smart
Grids” within the technical literature emerged in the 2005 issue of IEEE PES Power
and Energy magazine [124]. In order to gain a comprehensive understanding of the
underlying principles and philosophy driving smart grids, it is crucial to establish a
precise definition of the concept. There exists a number of smart grid definitions de-
pending on the focused technologies and set objectives. However, the majority of
smart grid definitions stress the significance of integrating advanced technologies and
encouraging active consumer participation for a more sustainable and reliable electric-
ity system. The International Energy Agency (IEA) defines a smart grid as [90]:

An electricity network that uses digital and other advanced technologies
to monitor and manage the transport of electricity from all generation
sources to meet the varying electricity demands of end users.

On the other hand, the European Union (EU) has defined a smart grid in one of
their communications as [61]:

An upgraded electricity network to which two-way digital communica-
tion between supplier and consumer, intelligent metering and monitoring
systems have been added.

It can be seen that the key to both of these definitions is to make use of contempo-
rary technologies, like intelligent metering, to make it easier for consumers and system
operators to communicate and automate the control. This would allow for efficient and
reliable control of the power grid. There are several major factors behind the push for
smart grids, including (but not limited to):

• Environmental factors: One of the main drivers behind the switch to smart
grids has been a reduction in global emissions. Utilizing smart grids can make
it possible to use environmentally friendly technologies like renewable energy
sources, and electric vehicles. Lower reliance on fossil fuels and coal-fired
power plants would result from increased adoption of these technologies, which
would reduce emissions globally. Consequently, smart grids can aid in achiev-
ing the established carbon emission targets.

• Increased efficiency: Countries around the world have also established objec-
tives to enhance their energy efficiency. For example, the European Union (EU)
has set the goals of increasing electrical energy efficiency (by 32.5% by 2030,
compared to 2007 levels [64]). Smart grids combined with other novel tech-
nologies such as electric vehicles are going to play a crucial role in achieving
the set efficiency targets.

• Grid stability and resilience: Grid operators can better manage peak demand
periods and maintain grid stability by adjusting consumer electricity consump-
tion, to some extent, in a smart grid by combining advanced monitoring and
control with modern technologies like demand response programs. Smart grids
are expected to automatically reroute power flows in order to restore service in
the event of localized outages or faults, enhancing grid resilience.
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• Economic benefits: Smart grids are meant to facilitate the integration of re-
newable energy sources, such as solar and wind, which over time may lead to a
reduced reliance on fossil fuels and lower energy costs. For a number of stake-
holders, including energy service providers and consumers, smart grids may also
present new opportunities in relation to the development of energy services and
business models. Lastly, it is worth noting that smart grid technologies have the
potential to mitigate the occurrence and impact of grid failures at different lev-
els (from local failures to blackouts) and thereby reduce the associated economic
losses.

Over the past two decades, there has been a lot of interest in smart grid solutions.
Smart grids have received encouragement both inmonetary terms (more than $4 billion
in funding for smart grid projects through the American Recovery and Reinvestment
Act (ARRA) [9]), and in regulatory terms (Smart Grid Policy Statement [177], Order
1000 [178], and European Commission’s Smart Grid Mandate [59]). However, just
like any other disruptive technology, smart grid technology has its own set of chal-
lenges as well as opportunities that can be taken advantage of to solve those problems.

Challenges and opportunities

The transition towards smart grids can pose notable challenges to the operations of
electrical grids across various timescales. A brief overview of different power systems
operations at different timescales along with the influence exerted by the transition
to smart grids on these operations is presented in Figure 1.6 [47]. These operations
encompass:

• Capacity and operations planning: The objective of capacity and operations
planning is to make informed decisions regarding the economic viability and
technological aspects related to investments aimed at enhancing and expanding
generation or transmission capacity. This planning process also encompasses
the strategic management of these assets over extended periods. However, in-
frastructure upgrades of this nature can be complex to plan and financially de-
manding, necessitating collaboration among multiple stakeholders. The expan-
sion of renewable energy sources and the growing integration of distributed en-
ergy resources, such as electric vehicles and energy storage systems, has only

Figure 1.6: Timescales for different power system operations [47].
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increased the complexity of this power system operation. It has become cru-
cial to take these factors into account when making decisions regarding future
infrastructure investments.

• Operations scheduling: Day-ahead economic scheduling and economic dis-
patch are two essential components of operations scheduling. Using demand
forecasts, day-ahead scheduling determines which generators should be used for
the next day up to 24 hours before delivery. Economic dispatch determines the
most efficient power output of each generator that is turned on to satisfy demand
using the outcomes of the scheduling process. Power system operators must in-
corporate forecasting information related to new renewable energy sources and
distributed energy resources into their dispatching and scheduling procedures.
This makes sure that the overall system operation properly takes into account
and manages the variability of new grid elements. However, uncertainties as-
sociated with these new grid elements make this forecasting a challenging task.
For example, the forecast for the Bonneville Power Administration (BPA) re-
gion’s total solar PV production is shown in Figure 1.7 along with real-time
data [29]. It can be observed that there is an error present in the forecasted day-
ahead solar PV production in the BPA region compared to its actual total solar
PV production.

• System balancing: System balancing occurs just before delivery and depends
either on ancillary markets or on operational reserve. Real-time imbalances be-
tween electricity supply and demand may arise due to the uncertain nature of in-
creasing renewable energy generation. These fluctuations in renewable energy
sources can strain the grid infrastructure by causing sudden shifts in energy sup-
ply, leading to voltage fluctuations, electrical congestion, poor power quality,
and a threat to the grid’s stability. Additionally, the rising demand for electric
vehicles can contribute to these adverse grid conditions through peak load de-
mands [169]. A peak load demand occurs when a large amount of load power
is drawn from the grid during certain time periods of the day.

This thesis manuscript has a specific focus on addressing challenges encountered

Figure 1.7: Real-time total solar PV production (on 2023-01-01) and its day-ahead forecast in
the BPA area [29].
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within the timescale of real-time operations in power systems, distinct from system
planning or day-ahead operations scheduling. More specifically, this thesis focuses on
the challenges that may arise on the distribution side as a result of the aforementioned
changes in power systems. The high penetration of distributed energy resources on the
distribution grid sidemay cause electrical current congestion, violations of voltage lim-
its, and system imbalances. Control solutions tackling these challenges have emerged
as a viable alternative to mitigate the drawbacks associated with grid reinforcement
measures [80]. By integrating control solutions with energy storage systems, oper-
ators and service providers gain the ability to effectively regulate and maintain the
desired operation of the electrical grid. Battery energy storage systems, in particu-
lar, offer a promising means to alleviate the impact of renewable energy variability
on power system operations. These systems can store excess energy during periods of
high generation and subsequently release it as needed.

Additionally, modern electric vehicles, equipped with lithium-ion batteries, are
going to play a pivotal role in future power grids. Leveraging the higher discharge
rates of lithium-ion batteries, which outperform other energy storage methods such as
compressed air or pumped hydro with slower ramping rates (on the order of hours),
electric vehicle batteries can also be utilized for grid support operations. The control of
electric vehicles can aid in mitigating peak load demands, thereby contributing to grid
stability. Given these inherent control capabilities, electric vehicles are often referred
to as flexible entities within future power systems. It is crucial to emphasize that the
smart grid control system’s design must adhere to the constraints imposed by diverse
market actors operating at different levels (such as distribution system operators, pro-
sumers, etc.). Consequently, the system must not compromise the performance of one
market actor while striving to attain the objectives of another. A careful balance is
necessary to ensure harmonious functionality across an entire smart grid. This com-
plexity enhances the interest and significance of optimizing control algorithms in this
domain, making it a compelling research topic for scholars worldwide. The following
section provides a comprehensive comparison of various smart grid control algorithms
proposed in the existing literature.

1.2 Smart grid control
This section presents a compilation of literature studies centered around smart grid con-
trol. Depending on the particular operation being studied, smart grid control strategies
may employ different decision timescales, such as day ahead, intra-day, and real-time.
However, the primary focus of this thesis lies in the timescale related to real-time op-
erations, as mentioned earlier. As a result, only literature studies within this specific
timescale category are included in this section. Nonetheless, it is worth mentioning
that the literature also encompasses numerous scientific studies that address other cat-
egories of power system operations, such as operations scheduling performed in [192],
[106], [66], and [193]. Moreover, since this thesis concentrates on the control of elec-
tric vehicle battery charging to enhance grid flexibility, this section exclusively show-
cases smart grid control solutions that specifically address the management of elec-
tric vehicle charging or battery storage systems to facilitate grid services. However, it
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should be noted that although thismanuscript focuses on the design and testing of a sys-
tem tailored to control electric vehicle charging, it is important to note that the system
possesses adaptability. Consequently, it can be customized to manage other flexible
components within future smart grids. The literature studies presented in this section
can be classified into different categories, including system architecture, methodol-
ogy, application under study, experimentation, and more. Given the main objective of
this thesis to develop a practical smart grid control system based on decentralization
(for reasons explained later in this chapter), the proposed system’s architecture has
been used to categorize the literature studies. These studies can be grouped into three
designated categories as listed below:

• Centralized

• Hierarchical

• Decentralized

Centralized systems
A centralized system can be defined as a type of control system in which the decision-
making process is done by only a single central authority. An illustration of this type
of control is shown in Figure 1.8. It can be seen in Figure 1.8 that only a single entity
(highlighted in blue) is responsible for making decisions on behalf of entities present in
the system when the control is centralized. This central node (entity) will gather infor-
mation from all nodes (entities) of the system, perform its centralized decision-making
process, and then communicate the results to all other nodes in the system. Decisions
may be made more efficiently (in terms of optimality) when decision-making authority
is centralized compared to non-centralized methods. It removes the need for exhaus-
tive coordination among different system entities, which may lead to control solutions
with better optimality. This particular control approach has been extensively investi-
gated and analyzed for its applicability in power system control applications.

Numerous smart grid optimal control solutions based on centralized architecture
have been proposed in past years. This thesis manuscript will discuss some of them
here. In [179], two rule-based real-time algorithms and one linear programming-
based algorithm have been proposed to increase the self-consumption of PV generation
through controlling EV charging. The correlation of transport systems and electrical
networks to optimize the charging of EVs is explored in [204]. A novel binary swarm
optimization algorithm to solve the unit commitment problem and competitive swarm
optimization for demand sidemanagement in the presence of EVs is presented in [190].
A smart grid control system to perform system balancing utilizing electric vehicles
has been proposed in [83]. In [196], another energy management system to maintain
the grid balance by controlling electric vehicles’ charging/discharging has been pre-
sented. Centralized control strategies to minimize the total charging costs of electric
vehicles are also proposed in [194] and [127]. Charging cost minimization of EVs
has also been achieved using stochastic mixed integer linear programming. In [149],
a stochastic mixed integer linear programming-based algorithm has been suggested to
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Figure 1.8: Centralized architecture (left), hierarchical architecture (middle), and the decen-
tralized architecture (right) illustrations. Solid lines indicate the exchange of information.

optimize energy flows in smart buildings with a battery energy storage system. A con-
trol algorithm to minimize energy losses in smart grids by controlling the charging of
electric vehicles has been given in [14]. The impact of real-life stochasticities on grid
balancing has been studied in [197], and a control algorithm to minimize real-time
mismatches using electric vehicles has been proposed. In [156], a system utilizing
dynamic programming is presented to optimize the energy flows by minimizing grid
imports in smart grids while considering the constraints of prosumers. A MILP-based
control system is presented in [32] to minimize the carbon emissions of a microgrid
as well as its total operating cost. The constraints related to the electrical batteries of
prosumers are also taken into account in the mentioned system. A centralized system
to optimize the charging of electrical vehicles while considering prosumers and grid
constraints is discussed in [144]. This system has been evaluated through both simu-
lation and real-life case studies. A reinforcement learning methodology using the twin
delayed deep deterministic policy gradient (TD3PG) and proximal policy optimization
(PPO) has been applied in [145] for robust voltage control in distribution grids under
stochasticity. A control system utilizing second-order cone programming to solve the
short-term problem of providing flexibility to the electrical grid has been proposed in
[167]. Centralized systems based onmulti-armed bandit have been proposed to control
the charging of electric vehicles in [117] and [199].

Although these systems are capable of fulfilling their intended functionality and
achieving optimal solutions through their centralized control architectures, there are
significant drawbacks associated with centralization. In a centralized control system,
the central controller must gather information from all system entities before initiating
the decision-making process. This can pose challenges in practical smart grids of large-
scale, as it may be impacted by communication delays. Moreover, the scalability of
centralized control is limited, as the time required to obtain desired control solutions
can increase dramatically with a higher number of entities in a centralized system.
Additionally, a single point of failure issue can arise within a centralized system. Fur-
thermore, centralized systems raise concerns regarding data privacy, as the centralized
controller requires access to private data from all entities. Consequently, such systems
may not be the best option for real-world applications, particularly for the real-time
control of large-scale smart grids. These aforementioned drawbacks highlighted the
importance of distributing control tasks among multiple entities, prompting a shift
from centralized architectures to a hierarchical approach.

24



Hierarchical systems
In response to the drawbacks of centralization and the desire to maximize its benefits,
researchers have also explored hierarchical smart grid control solutions. Hierarchical
control systems organize decision-making tasks into multiple levels within a structured
hierarchy, with varying levels and functionalities based on the specific application.
Each level in the hierarchy is guided by its own objectives and constraints, contribut-
ing to the overall management of the system. Figure 1.8 also provides the illustration of
a hierarchical problem-solving architecture. In hierarchical systems, decision-making
is distributed across multiple levels (represented by blue nodes), unlike the centralized
architecture. This hierarchical problem-solving approach holds the potential to over-
come the challenges of centralization. Consequently, the advantages of hierarchical
architectures have piqued the interest of researchers, leading to the proposal of smart
grid control solutions based on hierarchical designs.

Numerous research works have been published on hierarchical control solutions.
Some of them will be detailed here. In [81], the charging behavior of electric vehi-
cles is managed by a hierarchical control system utilizing particle swarm optimization
(PSO). The studied system optimizes the total charging cost of EVs while preventing
electrical congestion. Swarm intelligence involves non-centralized agents working to-
gether to achieve a common goal. Its functionality is based on interactions between
many social animals such as bees, wasps, ants, bats, birds and whales. The rules de-
fined for social interactions can be different in these methodologies but the end goal
is the same i.e. convergence to an optimum [123]. Non-cooperative game theory
has also been used in [203] to integrate the best allocation of battery energy storage
systems on the distribution side. Non-cooperative game theory involves designing a
system with multiple entities competing against each other to achieve their respective
goal(s). In [187], a hierarchical system based on graph theory has been used to mini-
mize the charging losses of the system and to support the grid using electric vehicles.
In general, graph theory involves modeling a system to study the pairwise relation-
ship among different objects. A hierarchical control system based on a combination of
fuzzy decision-making using neural networks and genetic algorithm-based optimiza-
tion has been proposed in [150] to maintain the desired functioning of a smart grid.
Hierarchical control systems to maintain grid balance has been studied in [125] and
[186]. In [75], a hierarchical system based on heuristic control has been developed
to minimize the cost of supporting a microgrid using electric vehicles. To find opti-
mal charging strategies for electric vehicles, hierarchical systems have been proposed
in [100] and [142] utilizing game theory and neural networks-based decision-making,
respectively. In [126], a hierarchical multi-agent system based on quadratic optimiza-
tion has been presented to incorporate demand response and coordinated charging of
electric vehicles in distribution networks.

While hierarchical systems have the capability to tackle the drawbacks of central-
ized systems up to an extent, they may not completely address all of the drawbacks
of centralization. This is because hierarchical systems can still be strongly impacted
by communication delays, particularly in large-scale systems. Additionally, hierar-
chical systems may still be susceptible to single points of failure (e.g., white nodes in
Figure 1.8 are still dependent on blue nodes for their decision-making). Data privacy
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concerns may persist even in a hierarchical control system. Moreover, hierarchical
systems may face challenges in scaling effectively to handle complex control prob-
lems in large-scale smart grids. Considering these potential drawbacks of hierarchical
systems, there has been a growing interest in fully decentralized control systems as an
alternative solution.

Decentralized systems
In contrast to centralized and hierarchical systems, a decentralized control system is
a system where decision-making tasks are distributed among multiple entities of the
system, rather than being leveled or centralized in a single authority. The difference
between decentralized architecture against centralized and hierarchical architecture is
given in Figure 1.8. It can be confirmed in Figure 1.8 that all entities (nodes) of a
decentralized system are participating in the decision-making process (highlighted in
blue). These entities may interact with each other to facilitate their decision-making
processes. In comparison to centralized or hierarchical systems, a decentralized ar-
chitecture system is more likely to have a more complex set of communication needs.
Therefore, the goal is often to keep these interactions to a minimum while maintain-
ing decentralization and system performance. On the other hand, decentralization
helps in tackling the drawbacks of centralization much better than hierarchy. Such
systems may not suffer from scalability issues, data privacy concerns, and a single
point of failure. Due to these reasons, the design of a decentralized control system
is an active area of research. Decentralization in software-based smart grid control
solutions can be achieved through a number of modeling paradigms. Most prominent
among these modeling paradigms are peer-to-peer (P2P), blockchain, and multi-agent
systems (MASs). These modeling paradigms can be combined with different opti-
mization techniques such as dynamic programming, stochastic dynamic programming
(SDP), machine learning, alternating direction method of multipliers (ADMM), and
other heuristics to optimize energy flows in a smart grid.

In a classical P2P framework, a number of interconnected nodes (also known as
peers) communicate directly with each other. There is no central authority in such a
system. Thus, a number of researchers have utilized the P2P paradigm to solve smart
grid optimal power flows in a decentralized manner. In [189] and [135], decentralized
systems based on the peer-to-peer (P2P) architecture to maintain the grid balance and
minimize total energy losses are presented. These systems utilize the ADMMmethod-
ology to perform decentralized optimization. Generally, ADMM is used to solve a
convex optimization problem by breaking it into smaller parts. It can also be used as a
heuristic to solve non-convex optimization problems. In [18], optimal power flow has
been performed using the ADMM technique in a P2P market. The feasibility of the
P2P market under both exogenous network charges (provided by the system operator a
priori) and endogenous network charges (updated by the system operator at each itera-
tion) has been studied in this system. The resilience of the proposed P2P system under
stochastic conditions has also been discussed. The impact of asynchronous communi-
cation in a P2P market designed to minimize the total grid operational cost using the
ADMM technique has been studied in [53]. In [40], the ADMM technique has also
been used to control electrical congestion in a P2P market. The algorithm reduces the
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number of overloaded lines as well as the amplitude of the overload while maintaining
its scalability. The philosophy of P2P has also been applied in combination with dy-
namic programming to design an energy trading marketplace that would maximize the
benefit of each agent while respecting the constraints of the electrical network [35]. A
key difference between ADMM and dynamic programming optimization techniques is
that the ADMM is used for problems with separable components (separable variables
or constraints) while dynamic programming is used for problems that exhibit over-
lapping sub-problems. A combination of both of these optimization methodologies is
also possible to solve smart grid optimization problems in a P2P framework. This is
explained in [111] and [112] to optimize the charging of electrical vehicles.

The blockchain is another promising modeling paradigm that helps in achieving
decentralization. A blockchain is decentralized and distributed ledger technology. It
consists of a growing list of blocks (records) [129]. It must be noted that there exists
a close relationship between P2P and blockchain technologies as a blockchain is gen-
erally managed by a P2P computer network. Thus, similar to P2P, a blockchain can
also be used to perform resource sharing in a decentralized manner. However, a key
difference is in the general security standards of both approaches. In a blockchain,
each block is linked to its subsequent block via complex cryptographic hashes. Thus,
it provides a higher level of security and trust (which generally comes at the cost of
increased complexity of using cryptographic algorithms and consensus mechanisms).
This increased security is particularly useful in the presence of an adversary in the
system. Blockchain technology-based systems have also been proposed in the liter-
ature to perform smart grid optimal control. A blockchain-based system combined
with the ADMM technique to perform decentralized optimized control of DERs is
presented in [131]. In this system, the blockchain makes the system decentralized by
ensuring fair energy trading without relying on a single entity. In [116], an adaptive
blockchain-based electric vehicle charge control system is proposed to minimize the
overall charging cost for EV users and power fluctuations in the grid. A comparison
to confirm the superior performance of this developed system with a genetic optimiza-
tion algorithm has also been presented. In [198], a blockchain-empowered system to
optimize energy trading is presented. This decentralized system managed to reduce
the user’s individual cost by up to 77% and lower the overall cost by 24%. Another
smart grid control system utilizing blockchain technology to maintain voltage stability
in the presence of DERs is proposed in [46]. The control performed in this system is
based on the proportional-fair rule.

The multi-agent system (MAS) is a prominent modeling paradigm to achieve de-
centralization of the system’s architecture. The entities of such a decentralized system
are often referred to as agents, and that decentralized control system is thus referred
to as a multi-agent system. In a multi-agent system, agents interact with each other
(cooperating or competing) and with their environment to achieve a desired set of
goals. A key difference between a conventional P2P system and a MAS may be that
in P2P the entities (peers) may be lesser autonomous compared to entities (agents) of
a MAS. Furthermore, P2P systems may have limited coordination mechanisms (rely-
ing on peer-to-peer interactions for resource sharing) in contrast to MASs (in which
agents can coordinate their actions to achieve desired goals). However, the boundaries
of these two modeling paradigms have started to overlap significantly in recent years.
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This is because the entities (peers) in the next generation of P2P networks are desired to
have general properties (i.e., autonomy, reactivity, pro-activeness, self-organization,
etc.) of entities (agents) in a MAS. Thus, although traditional P2P networks were pri-
marily created for resource sharing, these systems can be designed to address complex
optimal control problems for the smart grid by incorporating the characteristics of the
agents in a MAS. The development of MASs to optimize energy flows in smart grids
is an active area of research. Researchers have proposed a number of MASs perform-
ing the desired optimization through various techniques such as rule-based strategies,
heuristics, reinforcement learning, etc.

A MAS smart grid control system to maintain power balance has been developed
in [57] by defining simplistic actions for each agent type in the system. However, the
constraints of the network operator have not been considered in this study. Another
multi-agent system to minimize the cost of grid imbalance while avoiding electrical
congestion using electric vehicles has been proposed in [182]. The same task has been
achieved along with consideration of voltage stability in [137]. Although, agents in
MASs of [57], [182], and [137] are highly reactive to changes in their environments
but still such systems may not be able to tackle the impact of stochasticity comprehen-
sively due to lack anticipative abilities. Hence, a good number of multi-agent systems
exploiting reinforcement learning to incorporate anticipative abilities in their agents
have also been proposed. A reinforcement learning-based decentralized control sys-
tem for optimal charging of electric vehicles to maintain the grid’s stability has been
presented in [207]. However, no voltage constraints of the distribution system opera-
tor were considered in this system. In [110], a MAS using reinforcement learning has
been developed to manage a DC microgrid with battery and super-capacitor storage.
The goal of the systemwas to minimize the energy imports from the grid and utilize the
storage facilities with DERs in an efficient manner. Constraints of system operators
were considered in this study but the penetration of EVs in the electrical network was
not included. A similar objective has been achieved using reinforcement learning as
well in [113]. In this study also power grids without electric vehicle penetration were
studied. Reinforcement learning has also been combined with the theory of MAS in
[160] to minimize energy mismatches in a smart grid. A minority games-based MAS
has been studied in [82] to optimize a smart building with battery energy storage by
minimizing the power flow from the grid during peak hours and efficiently utilizing the
energy generated from DERs installed in the building. However, the minority game
is a highly simplified model that may not capture all the complexities of real-world
decision-making scenarios.

There exists a specific class of multi-agent systems that argues to bring strong self-
organization in a decentralized system in contrast to potential weak self-organization in
conventional multi-agent systems. This sub-class of MASs is known as the adaptive
multi-agent system (AMAS). This theory of adaptive multi-agent systems has been
exploited to design a decentralized system for grid balancing in real-time while sat-
isfying the constraints of different electricity market stakeholders [26]. Strong self-
organization in adaptive multi-agent systems is a significant advantage over conven-
tional MAS or P2P systems with weak self-organizations. This is due to the fact that
strong self-organization can allow one to model and solve large-scale and complex
smart grid optimization problems in a better manner. That is why the theory of AMAS
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is utilized in this thesis to develop a decentralized smart grid control algorithm. This
theory of AMAS is eventually combined with reinforcement learning to perform the
desired stochastic optimization. Thus, the proposed system is enabled to tackle large-
scale smart grid optimization problems under stochasticity. This proposed system does
not require any model of its environment (i.e., electrical distribution network) which
may be essential in other ADMM-based or SDP-based decentralized control systems.
Furthermore, this AMAS-based system does not demand the studied smart grid opti-
mization problem to have any specific structure (e.g., separable variables in ADMM
or overlapping sub-problems in SDP) as it achieves convergence purely based on co-
operation among its agents.

Table 1.1 provides a comprehensive comparison of the discussed smart grid opti-
mal control systems. The comparison is based on the system’s architecture, objective,
the inclusion of renewable energy sources (RESs), consideration of electrical conges-
tion and voltage congestion (i.e., voltage limits violation), and the total number of
agents in hierarchical and decentralized systems. The table also highlights the specifi-
cations of the smart grid control systems proposed in this thesis. Detailed analysis and
discussion on the comparison between the proposed systems and existing smart grid
control systems, along with their novelty, are presented in the subsequent section.
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1.3 Scientific positioning
The scientific positioning of this thesis will facilitate the demonstration of its novelty
within the context of existing knowledge. This thesis’ contributions fall under the
more general category of decentralized control in smart grids. If the term “decentral-
ized control in smart grids” is entered as an input on Google Scholar, one should expect
to see a clear upward trend in the total number of search results for each year. This
trend is presented in Figure 1.9. This upward trend is evidence that decentralized con-
trol of smart grids is a growing area of research. This attests to the topic of this thesis’
relevance, which has been garnering steadily rising attention from the international re-
search community. A comparative analysis among existing smart grid control systems
has been presented in Table 1.1. Decentralized smart grid control systems have already
been proposed in the literature to satisfy the constraints of various market actors while
ensuring the desired operation of a smart grid in the presence of uncertainties associ-
ated with renewable energy sources. However, the majority of these systems consider
a relatively small number of electric vehicles, typically ranging from a few hundred
to a few thousand. In contrast, real-life EV fleets may involve thousands or even mil-
lions of electric vehicles. The primary novelty of this thesis lies in its exploration of
large-scale decentralized smart grid control systems operating in real-time and under
uncertainties. Thus, the underlying question being tackled in this thesis is:

• Can a real-time decentralized energy management control system be designed
for large-scale active electrical distribution networks, capable of effectivelyman-
aging challenges caused by uncertainties in distributed energy resources by pro-
viding flexibility services to the smart grid?

To tackle the above-mentioned research question, the following hypotheses have
been made:

• The theory of adaptive multi-agent systems can serve as a valuable framework
for developing an effective real-time decentralized energy management control
system for large-scale active electrical distribution networks.

Figure 1.9: Number of search results of “smart grid decentralized control” on Google scholar.
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• The incorporation of the multi-armed bandit class of reinforcement learning al-
gorithms into the aforementioned adaptive multi-agent system can enhance the
system’s performance under real-life uncertainties, while simultaneously pre-
serving its scalability and real-time operations capabilities.

The first hypothesis is grounded in the principles and practical applications of
adaptive multi-agent systems. Such systems achieve the desired objective(s) through
cooperative actions among agents, rather than relying solely on functional division
[21]. In adaptive multi-agent systems, agents can adapt their goals based on their local
environments, resulting in a more adaptable system compared to fixed-functionality
multi-agent systems. Moreover, adaptive multi-agent systems typically operate in a
decentralized manner with minimal time-consuming interactions limited to their lo-
cal neighborhoods, ensuring the scalability and real-time capabilities of the designed
system. The adaptive multi-agent system represents a particular type of multi-agent
framework suitable for designing an adaptive decentralized system. While this sys-
tem has the potential for scalability and real-time functionality, its overall efficiency
under uncertain conditions relies heavily on the careful design and capabilities of its
individual agents. Thus, the second hypothesis is made by looking at the prediction
capabilities of different reinforcement learning algorithms [151]. The selection of
multi-armed bandit algorithms is based on their potential advantages over standard
reinforcement learning algorithms like deep Q-learning. Notably, multi-armed ban-
dit algorithms demonstrate faster convergence, making them promising candidates for
optimizing the system. Additionally, they have shown practical success in optimizing
communication within the Internet of Things (IoT) devices [28], [24]. The hypothesis
postulates that a well-designed multi-armed bandit algorithm can efficiently address
the stochastic smart grid control optimization problem, while preserving the system’s
scalability and real-time operation capabilities. This thesis focuses on the validation
of the made hypotheses. To do so, the following two decentralized smart grid control
systems are designed and evaluated:

• A decentralized system based on adaptive multi-agent system theory to perform
grid balancing in real-time while satisfying the constraints of grid operators and
prosumers (Chapter 2). To evaluate the system’s performance, simulation case
studies with 55 and 495 electric vehicle agents have been conducted.

• A decentralized system combining adaptivemulti-agent system theorywithmulti-
armed bandit learning to perform smart charging under stochasticities while also
satisfying the constraints of grid operators and prosumers (Chapter 4). To evalu-
ate the system’s performance, simulation case studies with 55 and 10,175 electric
vehicle agents have been conducted.

The studied large-scale distribution network in this thesis encompasses over 10,000
electric vehicles. It should be noted that the system considers constraints from various
energy market actors and addresses uncertainties related to renewable energy sources
(RESs) while ensuring scalability. To achieve real-time control operations with scala-
bility, adaptive multi-agent system concepts have been utilized. Additionally, the de-
signed adaptive multi-agent system is combined with the combinatorial multi-armed
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theory to reduce the impact of uncertainties while maintaining scalability. Combina-
torial multi-armed bandit learning belongs to a simpler class of reinforcement learn-
ing, providing faster convergence compared to more complex algorithms like deep Q-
learning. This faster convergence is significantly advantageous in smart grid control
applications where online learning is used. As far as the author is aware, the com-
bination of adaptive multi-agent system theory and combinatorial multi-armed bandit
concepts for optimal smart grid control is a novel approach and has not been explored
before.

1.4 Manuscript contributions and organization

Contributions
In this thesis, the problem of real-time energy management of large-scale future smart
grids under uncertainties is studied. The major contributions of this thesis include:

• Decentralized energy management: A decentralized system is presented to
optimize energymanagement in smart grids. The proposed decentralized system
utilizes the framework of adaptivemulti-agent systems combined with a reactive
heuristic algorithm to ideally search for optimal energy management policies.
The designed energymanagement system is fully decentralized, model-free (i.e.,
it does not require an accurate distribution network model for its functioning),
and scalable. It can be applied to control a variety of grid elements (e.g., elec-
tric vehicles, electric heating/cooling equipment, distributed energy resources,
etc.) at different levels (residential distribution, commercial distribution, trans-
mission etc.) in real-time. However, for the sake of simplicity, only electric
vehicles are considered here. This load represents the most complex ones, as it
is bidirectional and has a dynamic point of connection.

• Multi-agent reinforcement learning: The viability of multi-agent reinforce-
ment learning to optimize energy flows in smart grids is also studied in this
thesis. The framework of combinatorial multi-armed bandit learning is com-
bined with the philosophy of adaptive multi-agent systems to propose a decen-
tralized smart grid energy management system that would reduce the impact of
uncertainties on the optimality of the system. The impact of choosing different
multi-armed bandit learning strategies on system performance is also discussed
in this thesis. The presented reinforcement learning-based decentralized sys-
tem is scalable, model-free, operates in real-time, and can tackle real-life un-
certainties. Furthermore, combinatorial multi-armed bandit algorithms can pro-
vide faster convergence compared to more complex reinforcement learning al-
gorithms, such as deep Q-learning. This faster convergence brings a significant
economic advantage in smart grid applications where an agent is continuously
learning mainly through online interactions.

The mind map of this thesis’ main contributions is presented in Figure 1.10. As
shown in Figure 1.10, contributions of this thesis can be divided into two notable cat-
egories along with a state-of-the-art review. The first contribution category covers
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Figure 1.10: Mind map of the thesis contribution.

the design and detailed evaluation of an adaptive multi-agent system to optimize grid
balancing in smart grids. The numerical evaluation of this system is made through
a deterministic smart grid simulation case study as well as through pseudo-stochastic
case studies. The other major contribution of this thesis consists of designing a novel
multi-armed bandit learning-based adaptive multi-agent system to tackle the effects of
real-life uncertainties on the system. The evaluation of this proposed system is carried
out through stochastic smart charging case studies.

To facilitate the reproducibility of the results reported in this thesis manuscript,
the source code of the developed decentralized control algorithms is available here:
https://gitlab.com/satie.sete/combinatorial-bandits-for-smart-grid.

Organization
The organization of this thesis manuscript is illustrated in Figure 1.11. Chapter 1 cov-
ers the three main aspects of this thesis i.e., the motivation, the contributions, and
the organization. In Chapter 1, a detailed literature review of the studied smart grid
problem has been presented. This chapter highlighted the advantages of applying op-
timization techniques to control smart grids in real-time. A discussion on different
smart grid optimization strategies, categorized based on the system’s architecture, uti-
lized optimization technique(s), and application(s), was also made in Chapter 1. The
novelty of this thesis along with its main contributions was also discussed in Chapter
1. The contributions of this thesis are described in Chapters 2, 3, 4, and 5. These tech-
nical chapters are based on either the adaptive multi-agent system (AMAS) theory,
multi-armed bandit (MAB) theory or both. The content of these chapters is described
as follows:

Chapters based on the AMAS theory

In Chapter 2, the principles of adaptive multi-agent system theory are applied to de-
velop a decentralized smart grid energy management system. This system comprises
reactive agents that respond to instantaneous environmental changes, aiming to opti-

36

https://gitlab.com/satie.sete/combinatorial-bandits-for-smart-grid


Figure 1.11: Manuscript organization.

mize energy flows within the smart grid. In Chapter 3, the designed AMAS system
is thoroughly evaluated through simulation-based experiments. The performance is
compared with other baseline control strategies, such as uncontrolled charging strat-
egy and mixed-integer linear programming optimization, while considering different
smart grid sizes. The evaluation includes both the quality of the solutions and the com-
putational resources required (time and memory to obtain the desired solution) based
on the number of electrical vehicles in the system. Additionally, a pseudo-stochastic
smart grid study is designed to assess the system’s performance under real-life uncer-
tainties. In Chapter 5, the AMAS theory is once again employed, this time in combi-
nation with the MAB theory, to model a decentralized smart grid energy management
system that effectively addresses real-life uncertainties.

Chapters based on the MAB theory

Chapter 4 introduces a decentralized energy management system designed using the
principles of combinatorial multi-armed bandit theory. This chapter focuses on im-
plementing learning capabilities to aid agents in making decisions under uncertainties.
Building upon this, Chapter 5 combines the concepts of a combinatorial multi-armed
bandit with adaptive multi-agent system design, leveraging the strengths of both ap-
proaches. A comprehensive evaluation of the final learning-based decentralized en-
ergy management system is also provided in Chapter 5. The optimization performance
is assessed by comparing it with earlier described baseline algorithms to address the
smart charging optimization problem.

The thesis culminates with a comprehensive conclusion that assesses the validity
of the hypothesis proposed in this work. Additionally, the chapter explores potential
short-term and long-term research directions in this area of study.

1.5 Publications
Based on the research presented in this thesis, the following publications have been
made:
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Peer-reviewed journal
• Zafar, S., Blavette, A., Camilleri, G., Ben Ahmed, H., and Agbodjan, J. J. P.
Decentralized optimal management of a large-scale EV fleet: Optimality and
computational complexity comparison between an adaptiveMAS andMILP. In-
ternational Journal of Electrical Power & Energy Systems, 147 (2023), 108861.

Peer-reviewed international conference with proceedings
• Zafar, S., Maurya, V., Blavette, A., Camilleri, G., Ben Ahmed, H., and Gleizes,
M. P. Adaptive multi-agent system and mixed integer linear programming opti-
mization comparison for grid stability and commitment mismatch in smart grids.
In 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)
(2021), pp. 01–05. Espoo, Finland (virtual). [Best paper award]

• Zafar, S., Féraud, R., Blavette, A., Camilleri, G., and Ben Ahmed, H. Decen-
tralized Smart Charging of Large-Scale EVs using Adaptive Multi-Agent Multi-
Armed Bandits. In 2023 International Conference & Exhibition on Electricity
Distribution (CIRED) (2023). Rome, Italy.

• Zafar, S., Féraud, R., Blavette, A., Camilleri, G., and Ben Ahmed, H. Multi-
Armed Bandits Learning For Optimal Decentralized Control of Electric Vehicle
Charging. In 2023 IEEE PowerTech (2023). Belgrade, Serbia.

1.6 Conclusion
This chapter highlighted the importance of smart grid optimal control and provided the
positioning of this thesis through a comparison with existing literature studies. At the
beginning of this chapter, a brief discussion was made on the topic of power systems
evolution. General trends, such as an increasing share of distributed energy resources
and an increased focus on decentralization, were highlighted. It explained how dis-
tributed energy resources can help us in achieving our efficiency, environmental, and
economic targets. However, these resources would increase the degree of stochas-
ticity in power systems due to their variable and uncertain nature. Thus, smart grid
control strategies will be an integral part of future power systems. One efficient way
to tackle this variability can be through optimal control of flexible grid entities to pro-
vide flexibility to the grid. A comparison of different literature studies focusing on
this topic was presented. These studies were classified into different groups based on
their proposed architectures, i.e., centralized, hierarchical, or decentralized. Finally, it
was stated that decentralized smart grid control is a prominent topic of research and
the novelty of the proposed decentralized control system in this thesis was discussed.
This chapter concluded with a detailed presentation of the contributions made by this
thesis and the organization of the manuscript. In the next chapter, an in-depth design
of the proposed adaptive multi-agent system for real-time energy flow optimization in
large-scale smart grids is presented.
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Chapter 2

Adaptive multi-agent system for grid
balancing

A whole is greater than the sum of its parts.

Unknown

Summary
This chapter focuses on the design of a multi-agent system to optimize energy flows in smart
grids. Specifically, the concepts of adaptive multi-agent systems are used to design the pro-
posedmulti-agent system. The developed decentralized system is intended to work in real-time
and utilizes a feedback control algorithm for its decision-making. The decentralization aspect
of the proposed multi-agent system makes it an excellent candidate to handle the optimization
of large-scale smart grids.

Contents
2.1 Studied smart grid problem . . . . . . . . . . . . . . . . . . . . 40
2.2 Relevant research and scope . . . . . . . . . . . . . . . . . . . 46
2.3 Introduction to adaptive multi-agent systems . . . . . . . . . . 49
2.4 Proposed adaptive multi-agent system . . . . . . . . . . . . . . 54
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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The forthcoming two chapters in this thesis are dedicated to the design and evalu-
ation of a fully decentralized smart grid control system, utilizing the concepts of adap-
tive multi-agent systems. The present chapter provides a comprehensive explanation
of the fundamental concepts essential for understanding the proposed system, along
with a detailed exposition of its design. In the subsequent chapter, Chapter 5, a com-
prehensive evaluation of the system will be conducted through simulation-based ex-
periments. The primary focus of the developed adaptive multi-agent system in this
chapter is to address the real-time grid balancing problem, particularly from the stand-
point of a balance responsible party. The studied smart grid optimization problem is
presented first in Section 2.1. Relevant work and scope of this thesis are defined in
Section 2.2. Moving forward, the philosophy behind an adaptive multi-agent system
(AMAS) and its underlying theory is explained in Section 2.3. Afterward, the pro-
posed AMAS system to maintain real-time energy balance in smart grids is detailed in
Section 2.4. Finally, the conclusion of this chapter is presented in Section 2.5.

2.1 Studied smart grid problem
A variety of smart grid optimization problems can be studied based on the modeled ob-
jective function. The optimization problem of controlling the instantaneous charging
powers of EVs to provide energy imbalance ancillary services is studied here [200]. In
this section, the required background to understand the studied problem is described
first. Subsequently, the mathematical formulation of our smart grid optimization prob-
lem is presented.

Description
Existing electrical distribution networks may suffer from a variety of challenges aris-
ing due to the inclusion of new elements in the system, such as photovoltaics (PVs)
and electric vehicles (EVs) [169]. These new elements would result in bi-directional
power flows in an electrical system that may have been previously designed only to
manage uni-directional power flows (i.e., from power stations to the consumers). More
specifically, the instantaneous imbalance between the generation and consumption of
electricity may arise due to the uncertain nature of PV energy production and the prob-
abilistic nature of EV’s arrival and departure times [101].

In energy markets, each transmission system operator (TSO) is obliged to maintain
the balance between instantaneous production and consumption in real-time [71]. This
control operation is outsourced by the TSO to the so-called balance responsible par-
ties (BRPs) [105]. Each BRP has a set of loads and power sources (including exports
and imports) in its perimeter, called the balance perimeter (BP). This model is shown
in Figure 2.1. The objective of each BRP is to maintain the balance between instanta-
neous production and consumption in its balance perimeter. Each BRP submits a day-
ahead power consumption/production schedule to the transmission system operator
(TSO). This BRP schedule is defined on a sub-hourly basis (soon to be harmonized to
a quarter-hourly basis in Europe), known as the imbalance settlement period [108]. A
BRPmay utilize different existing techniques to forecast the day-ahead PV energy pro-
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Figure 2.1: Diagram depicting a BRP and its balance perimeter.

duction and load consumption). The forecasted energy production/consumption could
be used to formulate the day-ahead power consumption/production schedule submitted
to the TSO. However, this day-ahead energy production/consumption forecast is prone
to forecasting errors. Popular PV energy production forecasting techniques include
persistence model, statistics-based models such as seasonal autoregressive integrated
moving average (SARIMA), machine learning models based on artificial neural net-
works (ANNs), binarized neural networks (BNNs), long short-term memory (LSTM)
neural networks, etc [163]. The amount of error in the forecast depends on the utilized
techniques. The box plot of mean error against the studied forecasting technique is
shown in Figure 2.2. This plot is obtained through the database consisting of 180 case
studies from the literature on PV output forecasting [136].

Thus, due to these inherent errors in the BRP day-ahead schedule, balancing the
grid in real-time becomes a complex task. An instantaneous imbalance can compro-
mise the stability of the distribution grid [99]. Such potential problems may result in

Figure 2.2: Reported mean error against day-ahead PV production forecasting techniques
[136].
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Figure 2.3: Interactions of a BRPwith flexible entities in its perimeter to perform optimization.

diminishing the quality of electricity supply to consumers and may also increase the
degradation of electrical equipment in the network [74]. Grid reinforcement may help
in tackling the mentioned challenges. However, it may be costly and time-consuming
[80]. Hence, flexible solutions may be preferred over grid reinforcement solutions.

A BRP could utilize the flexible entities (such as EVs) present in its perimeter
to balance the instantaneous production/consumption in its perimeter, shown in Fig-
ure 2.3. The control can be centralized (i.e., BRP determining instantaneous charging
power of all EVs), decentralized (i.e., each EV optimizing its instantaneous charg-
ing power while also communicating with its BRP), or a hybrid of both strategies.
However, such control must not result in the constraint violation of other market ac-
tors (e.g., provoking congestion in the DSO network). These interactions of different
market actors at different levels make this optimization problem even more complex.
Centralized optimization can be deployed to tackle this optimization problem on a
small-scale. However, centralized optimization methodologies suffer from inherent
shortcomings (such as lack of scalability, single point of failure, data privacy concerns
etc.) [3]. Thus, they may not be well suited to control a large-scale smart grid in real-
time. Decentralization of the system through the philosophy of multi-agent systems
(MASs) could be the way forward. It must be noted that in the current energy markets,
BRPs are compensated based solely on their consumption or production, without the
incorporation of any flexibility mechanisms. The solution proposed here represents a
potential future avenue.

In the next subsection, the mathematical formulation of the studied smart grid opti-
mization problem is described. Subsequently, an adaptive multi-agent system to solve
the described optimization problem is presented in Section 2.4.

Mathematical Formulation
The studied optimization consists of an objective function and a set of constraints.
The objective is to minimize the studied objective function while also satisfying all
constraints. Descriptively, the optimization problem is summarized as follows:
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• Objective: The objective is to minimize the instantaneous mismatch between
production and consumption, whichmay arise due to inherent errors in a time se-
ries forecasting technique. A BRP can perform this minimization by controlling
the instantaneous charging/discharging powers of each electric vehicle present
in its balance perimeter.

• Constraints: A BRP may utilize the instantaneous charging behavior of each
EV in its perimeter. However, it has to satisfy a set of constraints while doing
so. The network should remain stable at all instants (i.e., distribution system
operator (DSO) constraints). Furthermore, the battery of each EV should be
adequately charged at its departure time. This constraint guarantees that each
EV would have an adequate charge in its battery for its owner to have a smooth
journey.

Objective function modeling

Let P̃(N) denotes the scheduled day-ahead average production/consumption in a BRP’s
perimeter during the N-th imbalance settlement period. Let there be a total of Nend
imbalance settlement periods during each day. The goal of a BRP is to control instan-
taneous production/consumption in its perimeter PBRP(t) to minimize the difference
between P̃(N) and PBRP(t) during each imbalance settlement period. Let n be the total
duration of each imbalance settlement period and let Δt be the resolution (duration of
each decision interval i.e., second, minute, hour, etc.) of the optimization problem.
The objective function of the problem under study is defined as per Equation (2.1) 1.

min
Pe,a(t)

Emis(P̃(N),PBRP(t)) = min
Pe,a(t)

Nend∑
N=1

∣∣∣∣(P̃(N)− ∑n
t=1 PBRP(t)

n

)
Δt
∣∣∣∣ (2.1)

Grid balancing problem’s objective function

An illustration depicting the relationship between the imbalance settlement period
variable N and the time-related variables t, and Δt in the studied optimization problem
is given in Figure 2.4. The scheduled average production/consumption P̃(N) is calcu-
lated using the forecasted time series data of PVs, EVs, and household loads present
in a balance perimeter, given in Equation 2.2. Term P̃p,a(t) is the forecasted instanta-
neous PV output at bus a, P̃e,a(t) is the forecasted instantaneous EV load at bus a, and
P̃l,a(t) is the forecasted instantaneous household load at bus a. Also, let ep,a(t) be the
instantaneous error in the forecasted PV output at bus a, el,a(t) be the instantaneous
error in the forecasted household load profile at bus a, and ee,a(t) be the instantaneous
error in the forecasted EV load at bus a2. Then, the average instantaneous produc-

1It should be noted that this objective function can be considered stringent from a BRP’s perspective
as it is assumed that any deviation from the submitted day-ahead schedule is penalized (which is not
always the case).

2These error values of time series forecasting are also known as residual errors of the prediction.
Residual errors of a prediction can be obtained by subtracting the predicted value from the real observed
value.
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Figure 2.4: Illustration of the relationship between variables N, t, and Δt.

tion/consumption in a balance perimeter consisting of A electrical buses, during N-th
imbalance settlement period is calculated using Equation (2.2).

P̃(N) =
1
n

A∑
a=1

n∑
t=1

(
P̃p,a(t)(1+ ep,a(t))− P̃l,a(t)(1+ el,a(t))− P̃e,a(t)(1+ ee,a(t))

)
(2.2)

The instantaneous BRP production/consumption PBRP(t) is defined as the sum of
instantaneous PV output Pp,a(t) on bus a, instantaneous household load Pl,a(t) on bus
a, and instantaneous EV load Pe,a(t) on bus a for all A electrical buses in the network.
It is described mathematically in Equation (2.3).

PBRP(t) =
A∑

a=1

(Pp,a(t)− Pe,a(t)− Pl,a(t)) (2.3)

TermsPp,a(t) andPl,a(t) in the studied optimization problem are always non-negative
real numbers and represent instantaneous production through photovoltaics and instan-
taneous consumption by the household load respectively. The instantaneous EV load
Pe,a(t) can either be positive, negative, or zero. This is summarized as follows:

Pe,a(t)


> 0 if the EV is charging
< 0 if the EV is discharging
= 0 if the EV is neither charging nor discharging

(2.4)

Constraints’ modeling

As stated earlier, each BRP must satisfy a set of constraints while minimizing its ob-
jective function. This set of constraints includes the constraints of distribution system
operators (DSOs) and the constraints of prosumers. The physical power flow con-
straints of the distribution network must also be satisfied. Power flows in a distri-
bution network must abide the Ohm’s law [67]. Let Pa(t) be the instantaneous active
power at bus a. This instantaneous active power is equal to the difference between total
generated Pa,gen(t) and total demanded active power Pa,dem(t) at bus a. Similarly, the
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instantaneous reactive power at bus a is equal to the difference between total generated
Qa,gen(t) and total demanded reactive power Qa,dem(t) at bus a. The set of distribution
network’s physical constraints is given in Equations (2.5)-(2.9).

Pa(t) = Pa,gen(t)− Pa,dem(t) (2.5)

Qa(t) = Qa,gen(t)− Qa,dem(t) (2.6)∑
b

Pab(t) = Pa(t) (2.7)∑
b

Qab(t) = Qa(t) (2.8)

Pab(t) + iQab(t) = Va(t) (V∗
a(t)− V∗

b(t)) Y∗
ab (2.9)

Distribution network’s physical constraints

Equations (2.7) and (2.9) state that the inflow of powers to the bus is equal to the
outflow of powers at each bus a. Equation (2.9) relates root-mean-square voltages
at bus a and bus b ( i.e., Va(t) and Vb(t) respectively) with admittance matrix Y∗

ab of
electrical line between bus a and bus b. The constraints of a distribution system op-
erator (DSO) must be satisfied as well. Each DSO must keep its distribution network
stable i.e., there should not be any electrical current congestion or voltage limits viola-
tion in its distribution network [107], [153]. These constraints are stated in Equations
(2.10)-(2.13).

Iab(t) < Iab,max (2.10)

Va,min < |Va(t)| < Va,max (2.11)

Pa(t) < Pa,max(t) (2.12)

Qa(t) < Qa,max(t) (2.13)

Distribution network operator’s constraints

Equation (2.10) states that the root-mean-square electrical current flowing through
the electrical line connecting bus a and bus b should be lower than its rated value Iab,max.
The magnitude of the instantaneous root-mean-square voltage at each bus Va(t) must
also remain between a maximum value Va,max, and a minimum value Va,min, as shown
in Equation (2.11). Distribution system operators (DSOs) may also put a limit on the
instantaneous power drawn at each bus a, given in Equations (2.12) & (2.13).

The instantaneous charging power of an EV Pe,a(t) ∈ [Pe,a,min,Pe,a,max], at bus a
is defined as the sum of the forecasted instantaneous EV charging power P̃e,a(t) and
the term ΔPe,a(t), which is the decision variable of the studied real-time optimization
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problem. This relationship is given in Equation (2.14). At its departure time te,a,depart,
electric vehicle (EV) e, connected to electrical bus a, should have a desired minimum
state of charge SoCe,a,depart. This constraint would allow each EV owner to have a
smooth journey. The state of charge (SoC) of a battery is the level of charge of an
electric battery relative to its capacity. It is generally given as a percentage value.
The instantaneous SoC value of a battery is related to its past instant’s SoC value, its
capacity Ee,a,bat, its charging/discharging efficiency ηe,a, and its instantaneous charg-
ing/discharging power Pe,a(t). To limit the rate of battery degradation, the instanta-
neous state of charge (SoC) of each EV must remain within certain bounds[55]. The
SoC of each EV SoCe,a(t) should be between a set maximum SoC value SoCe,a,max, and
a set minimum SoC value SoCe,a,min. An electric vehicle’s state of health (SoH) must
also be greater than zero. The battery’s SoH variable makes it possible to estimate
how much it has deteriorated over time. Its values range from 0 to 1. According to
the Equation (2.16), a battery’s end of life is indicated by a 20% capacity fade. When
an EV battery reaches the end of its useful life, it must be replaced. The term Ee,a,tp
refers to an EV battery’s energy throughput. It is the total amount of energy a battery
can store and release over the course of its lifetime. A battery’s capacity, efficiency,
cycle life, and depth of discharge all affect its throughput. These constraints are given
as follows:

Pe,a(t) = P̃e,a(t) + ΔPe,a(t) s.t. Pe,a(t) ∈ [Pe,a,min,Pe,a,max] (2.14)

SoCe,a,min < SoCe,a(t) = SoCe,a(t− 1) +
Pe,a(t)ηe,aΔt

Ee,a,bat
< SoCe,a,max (2.15)

SoHe,a(t) = SoHe,a(t− 1)− Pe,a(t)Δt
0.2Ee,a,tp

> 0 (2.16)

SoCe,a(te,a,depart) > SoCe,a,depart (2.17)

Prosumer’s constraints

2.2 Relevant research and scope
Related work

An EV energy management system to maintain demand/supply balance has been pro-
posed in [83]. However, DSO constraints have not been included in the problem for-
mulation of [83]. In [196], another energy management system to minimize power
imbalances by controlling electric vehicles’ charging/discharging has been presented.
In this system, no DSO constraints have been modeled as well. There exist EV energy
management solutions that take both prosumers and DSO constraints into considera-
tion, such as [197] and [14]. A coordinated charging methodology to minimize the
impact of mismatches due to uncertainties by controlling the charging power of each
EV is proposed in [197]. Both prosumers and DSO constraints have been considered in
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this designed system. In [14], an EV charging management algorithm to minimize en-
ergy losses has been proposed. Constraints of both DSO and prosumers have also been
modeled in this system. However, the architecture of these systems (i.e., [83], [196],
[197] and [14]) are centralized in nature. Thus, these systems may not be scalable and
may not be able to manage large-scale smart grids in real-time.

The use of electric vehicles to provide support to balance responsible parties has
also been studied in [125] and [186]. In [125], the aim was to tackle the uncertainty in
wind energy production by balancing the grid in real-time utilizing electric vehicles.
Charging constraints of electric vehicles have been considered. However, the DSO
constraints were not included in the optimization formulation. On the other hand,
the objective was to maintain the balance between energy suppliers and consumers
through the utilization of electric vehicles in [186]. The proposed control architectures
of both systems ([125] and [186]) are not fully decentralized and thus may suffer from
drawbacks of centralization due to their hierarchical system architectures.

To mitigate the drawbacks of centralization, a decentralized energy management
system has been proposed in [182]. The desired goal of this system is to minimize
the imbalance cost of a balance responsible party. This is achieved by controlling the
instantaneous charging/discharging of electric vehicles. The transformer congestion
constraint has been considered but the voltage stability constraint has not been included
in [182]. Whereas the proposed system in [137] considers voltage stability constraint
as well to achieve the same objective of grid balancing. The simulation case study
performed is not large-scale.

Scope

The scope of the studied energy balancing problem is defined in Figure 2.5. As smart
grid control is a complex subject, thus, defining the scope becomes imperative. By
defining the scope, the area covered by this study, the boundaries, and the limitations
are clearly described. This would help in the system design stage, the evaluation of
the developed system, and highlighting the most important points of this study.

It can be clearly observed in Figure 2.5 that the emphasis is given to the architec-
ture, scale, control’s temporal resolution, considered constraints, EV’s charging tech-
nology, and comparisons made in this study. The architecture of the energy man-
agement system is selected to be decentralized to eliminate the disadvantages of cen-
tralization and hybrid architectures. As the designed system is intended to manage
real-life smart grids, thus, the scale is set to large. It should be noted that in this thesis,
small-scale refers to an electrical grid with less than 100 EVs, while large-scale means
a smart grid with more than 10,000 EVs. An electrical grid with EVs between 100 and
10,000 is considered a medium-scale grid. Control can be day-ahead (scheduling),
near real-time (hours), or real-time (minutes or seconds). In this study, it is intended
that the control of the developed system should be in real-time to maintain the stability
of the system. Both prosumers and DSOs would be among the biggest stakeholders of
the future distribution networks. Thus constraints of both of these market actors are
considered here. In this study, both grid-to-vehicle (G2V) and vehicle-to-grid (V2G)
controlled charging technologies are considered. The V2G technology can especially
be useful to help a BRP in case of an over-consumption challenge. Finally, to evaluate

47



the performance of the developed system a comparison is made with baseline strate-
gies in terms of optimality as well as in terms of the required computation time and
memory.

As evident in Figure 2.5, a relatively lower focus is given to evaluation, DERs,
stochasticity, and forecaster aspects in this study. To carry out an evaluation of the
developed system simulation case studies are performed. In terms of DERs consid-
eration, only penetration of PVs is considered on the distribution side in this study.
Simulation studies are a natural first step before deploying a smart grid control solu-
tion as one can evaluate the performance of the developed control system under a range
of different operating conditions without risking the electrical grid’s infrastructure. In
terms of stochasticity, only pseudo-stochasticity is studied here. It is the first step
towards complete stochasticity. If the proposed system does not function efficiently
under pseudo-stochasticity (hence under stochasticity as well), advanced techniques
such as machine learning can be utilized to minimize the effects of uncertainties on
the system. Finally, a BRP requires a forecaster to calculate its day-ahead schedule.
A simple persistence model is used here to forecast time-series data for the next day.

Figure 2.5: Scope of the studied smart grid problem in this chapter.
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Here, the focus is not on designing a novel time-series forecaster. Instead, the focus
is on minimizing energy imbalances in real-time that may occur due to inherent errors
in any time-series forecaster.

2.3 Introduction to adaptive multi-agent systems
The studied smart grid optimization problem can be solved in a centralized way as
well as in a decentralized manner. A visual representation of both optimization archi-
tectures (centralized and decentralized) is given in Figure 2.6. In contrast to central-
ized optimization algorithms, a decentralized optimization algorithm does not need to
gather information at a single node to perform optimization. Instead, all the entities
present in the system may communicate with each other to optimize the system [118].
According to [54], a multi-agent system (MAS) can naturally be designed to be a de-
centralized system. To fully understand the functioning of a multi-agent system, some
basic definitions are presented as follows:

Definition 2.3.1 (Multi-agent system). A multi-agent system is a physical or
software system consisting of a number of agents interacting to achieve (a)
desired goal(s).

Definition 2.3.2 (Agent). An agent is a physical or software entity in a multi-
agent system that perceives its environment and acts over it.

Definition 2.3.3 (Environment). Everything outside an agent and with which
an agent may interact is termed that agent’s environment.

Multi-agent system definitions

Figure 2.6: Comparison of centralized (left) and decentralized (right) architectures for smart
grid optimization.
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A multi-agent system consists of agents that interact with each other and their en-
vironment to achieve a desired goal(s). These agents may hold several important char-
acteristics such as [49]:

• Autonomy: An agent may be autonomous i.e., it can control its behavior inde-
pendently and it does not rely on any other entity for its operation.

• Sociability: An agent may be social i.e., it can communicate with other agents
to carry out its desired functionality.

• Proactivity: An agent may be proactive i.e., it can take the initiative and oppor-
tunistically adopt new goals.

• Reactivity: An agent may be reactive i.e., it can respond and act in a timely
fashion to the changes in its environment.

• Locality: An agent may be percept only locally i.e., it can observe only a portion
of the whole system as its environment.

• Interactivity: An agent may be interactive i.e., it can interact (cooperatively or
non-cooperatively) with other agents in the system to maximize utility.

• Learning: An agent may be learn i.e., it can learn to maximize its utility by
keeping a history of its past interactions with the environment.

An agent can be modeled to have any of the above-mentioned properties. Multi-
agent systems have found a range of real-life applications such as, robotics [102],
transportation [170], data analytics [20], and power systems [147].

There exists a specific sub-class of multi-agent systems i.e., adaptive multi-agent
systems. The engine of adaptive multi-agent system (AMAS) theory is cooperation.
An AMAS focuses on achieving the desired objective through cooperative actions
among its agents. Cooperation among agents can be defined as the act of working
towards a common objective or some underlying benefit. Agents in an AMAS coop-
erate to achieve a common global goal of the system. A cooperative attitude among
all agents of an AMAS would lead to the satisfaction of the following properties:

• Sincerity: Each agent is sincere with all other agents in the system.

• Prosociality: Each agent is ready to help, when it is possible, another agent
facing a more difficult situation.

• Reciprocity: Each agent satisfying the above-given properties knows that these
properties will also be satisfied by all other agents of its system.

The theorem of functional adequacy has been presented in [21] to demonstrate the
improvements coming from cooperation in an AMAS. This theorem is given below:

Functional adequacy of a system can be defined as its ability to meet the desired
requirements by performing the intended tasks, and delivering the desired outcomes.
Instead of designing a complex system that satisfies the required functionality as a
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Theorem 2.3.1 (Functional adequacy). For any functionally adequate system,
there is at least one cooperative internal medium system that fulfills an equiv-
alent function in the same environment.

Theorem of functional adequacy

whole, one can focus on designing a simpler cooperative internal system utilizing the
AMAS theory. The adequacy of this simpler cooperative internal system is guaranteed
by the theorem of functional adequacy. The definition of a cooperative internal system
along with the situations when a system cannot be classified as a cooperative internal
medium system is given below:

Definition 2.3.4 (Cooperative internal system). A cooperative internal medium
system is a system where no non-cooperative situation (NCS) exists.

Definition 2.3.5 (Non-cooperative situation). An AMAS agent is said to be in
a non-cooperative situation when:

• a perceived signal is not understood by it, or the signal is ambiguous;

• the perceived information does not result in any activity process;

• the action of an agent is not useful for its system.

Cooperative internal system

The requirement for a cooperative internal medium system is to avoid any non-
cooperative situation (NCS). Thus, the AMAS objective is to design a system in which
agents undergo cooperative interactionswith each other to prevent any non-cooperative
situation from arising or to manage it if any non-cooperative situation arises. This can
be through a criticality value for each agent. Criticality can be defined as the local
measure of the dissatisfaction degree of an agent. All agents can interact cooperatively
with each other. Each AMAS agent is cooperative to tackle any non-cooperative sit-
uation in the system. When an agent is cooperating with another agent, it helps the
other agent by working towards its goal. However, the self-objective of this agent
remains unchanged. This behavior of continuous re-organization of goals shown by
an AMAS agent results in self-organization. Self-organization has been defined as,
“the mechanism or the process enabling a system to change its organization without
explicit external command during its execution time” [49]. Based on the existence of
self-organization, one can further divide multi-agent systems into two categories:

• Strong self-organizing system: A systemwith no explicit central control, either
internal or external.

• Weak self-organizing system: A system in which re-organization may be per-
formed under internal (central) control or planning.

51



An AMAS system generally falls under the category of a strong self-organizing
system. It demonstrates the ability of self-organization through the earlier discussed
cooperation mechanism. The main advantage of self-organization in AMAS is that
one does not need to program the global functionality of a complex system within
the agent. Instead, only the local objective of each AMAS agent is defined while
designing a cooperative internal system, and the desired global functionality is ob-
tained through self-organization. Cooperation in an adaptive multi-agent system can
also be combined with other techniques that may lead to self-organization such as,
bio-inspired methodologies (stigmergy, reinforcement learning, etc.), social-based ap-
proaches (trust-based, social functions, auction, etc.), and artificial approaches (au-
thentication chains, tag-based models, and so on) [49]. Agents in a multi-agent sys-
tem can be divided into different categories based on their design and the type of self-
organization mechanism utilized. For example, in Figure 2.7, Nwana has utilized the
existence of autonomy, cooperation (interactivity), and learning in agents to divide
them into four main categories i.e., collaborative agents, interface agents, collabora-
tive learning agents, and intelligent agents [138].

The self-organizing nature of an AMAS results in its adaptability [21]. In multi-
agent systems, adaptability refers to a system’s ability to modify its behavior in re-
sponse to changes in the environment. Adaptability is particularly important to tackle
dynamic nonlinear environments. A dynamic nonlinear environment is a complex
environment that involves unpredictability due to non-linear complex relationships
among different system variables. A classical multi-agent system based on a fixed
set of rules may not be able to fully optimize a complex system due to the unpre-
dictable and dynamic nature of the system’s environment. On the other hand, adaptive
multi-agent systems are designed to be flexible and thus adaptable to changes in their
environments. An electrical network can be classified as a dynamic nonlinear envi-

Figure 2.7: Agent types proposed by Nwana based on autonomy, cooperation, and learning in
agents [138].
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ronment as it is constantly evolving and it involves complex interactions between dif-
ferent system elements. Consequently, adaptive multi-agent systems are better suited
to optimize real-time energy flows in a smart grid because they offer flexibility and
adaptability, which would increase a smart grid’s efficiency, reliability, and resilience.
Furthermore, adaptive multi-agent systems are also known to be robust, and scalable.

A key characteristic of an adaptive multi-agent system is that each agent perceives
only a local view as its environment i.e., it only communicates in its neighborhood
[21].

Definition 2.3.6 (Neighborhood). The neighborhood of an agent, in an adaptive
multi-agent system, is defined as the set of agents withwhich it directly interacts
cooperatively to achieve its goal(s).

Adaptive multi-agent system definition

The difference between potential interactions in a classical fully connected multi-
agent system and an adaptive multi-agent system is shown in Figure 2.8. It can be seen
that in a fully connected MAS, an agent (highlighted in blue) may directly interact
with all other agents (highlighted in green) in the system. However, generally, in an
adaptive multi-agent system, this agent (highlighted in blue) only interacts with agents
present in its defined neighborhood (highlighted in green), and does not interact with
agents outside its neighborhood (not highlighted). Each AMAS agent does not know
about the global objective(s) of the system. Instead, it is only cooperatively interacting
with its neighboring agents. The definition of each agent’s neighborhood depends
on the designer of the adaptive multi-agent system. All agents are autonomous and
cooperative in an adaptive multi-agent system. No single agent has an understanding
of the overall objective of the system. The cooperative interactions of agents with each
other help to satisfy the overall objective(s) of their system. This type of problem-
solving methodology is commonly labeled as emergent problem solving methodology
[21]. A number of adaptive multi-agent systems have been developed to tackle various
real-life challenges such as big data analytics [20], supply chain optimization [68], and
smart grid optimization [200].

Figure 2.8: Comparison of interactions in a classical fully connected MAS (left) against an
AMAS (right).
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In this section, the general concepts of multi-agent systems have been defined,
along with the distinctions between an adaptive multi-agent system and a more gen-
eral multi-agent system. The potential advantages of applying an adaptive multi-agent
system to manage a smart grid over a classical fully connected multi-agent system are
also highlighted in this section. In the next section, the design of an adaptive multi-
agent system designed specifically to optimize energy flows in a smart grid is discussed
in detail.

2.4 Proposed adaptive multi-agent system
The proposed adaptivemulti-agent system (AMAS) to optimize the smart grid problem
described in Section 2.1 is presented here. The desired AMAS is a software system,
while an electrical distribution network is a physical system. Thus, it is natural to map
the desired physical elements present in an electrical distribution network to software
agents. This mapping of physical elements to software agents is termed the agentifi-
cation process. The software model obtained through this agentification process is
called an agentified model, for which an example is shown in Figure 2.9. There are
four types of agents in the proposed adaptive multi-agent system. These agent types
are as follows:

• Line agents: Electrical lines present in a distribution network are modeled as
line agents in the designedAMAS. The goal of each line agent is to ensure that its
instantaneous electrical current does not exceed its rated electrical current value,
while it also helps other agents in the system (explained in the next subsection).
A line agent can ask for cooperation from electric vehicle agents to achieve its
objective.

• Bus agents: Each electrical bus in a distribution network is modeled as a bus
agent. The goal of each of these bus agents is to keep its instantaneous voltage

Figure 2.9: Section of a distribution network (left) and its agentified model (right).
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magnitude within a desired range, while helping other agents. Each bus agent
can cooperate with electric vehicle agents to achieve its desired goal.

• Balance responsible party agents: Balance responsible parties (BRPs) are
modeled as balance responsible party (BRP) agents. The objective of each BRP
agent is to minimize the potential real-time energy mismatches in its balance
perimeter i.e., Equation (2.1). A BRP agent can ask for cooperation from elec-
tric vehicle agents corresponding to electric vehicles in its balance perimeter to
achieve its objective.

• Electric vehicle agents: Electrical vehicles present in a distribution network
are modeled as electric vehicle (EV) agents in the proposed adaptive multi-agent
system. Each EV agent tries to satisfy the constraints of its prosumer, Equations
(2.14)− (2.17), while helping other agents in the system.

The agentified adaptive multi-agent system of a section of an electrical distribu-
tion network is shown in Figure 2.9. The interactions (communications) among these
software agents depend on the definition of each agent’s neighborhood.

Agents modeling
In this subsection, the detailed functionality of each agent type and its neighborhood
are presented. The designed adaptive multi-agent system executes in a loop. During
each iteration, each agent in the system tries to satisfy its objective while helping its
neighboring agents. Thus, each agent faces a potential dilemma (whether to help itself
or any of the neighboring agents) during each iteration of the system. To handle this
dilemma, each agent is designed to hold an instantaneous criticality value (between 0
and 1). A criticality value of an agent is defined as the local measure of the dissatis-
faction degree of an agent. Thus, the dilemma is tackled through the comparison of
criticalities principle.

Definition 2.4.1 (Comparison of criticalities principle). According to this prin-
ciple, an agent compares its instantaneous criticality with the instantaneous crit-
icalities of its neighboring agents. Then, the instantaneous action made by this
agent is to help the agent with the highest instantaneous criticality in its neigh-
borhood including its own.

Comparison of criticalities principle

Each agent goes through three stages during each of its cycle (iteration) [21]:

• Perception: In this stage, an agent gathers data from its defined environment.

• Decision: Based on the observed data, an intelligent decision is made.

• Action: In this stage, the previously selected decision is implemented by taking
the required actions.
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Figure 2.10: Three stages of an AMAS agent every cycle (perception, decision, and action).

The cycle of an AMAS agent during each iteration is shown in 2.10. Each agent
in the designed AMAS belong to the collaborative class of agents according to the
Nwana’s agent typology, shown in Figure 2.7.

Line agent

The objective of each line agent in the system is to restrict the magnitude of electric
current flowing through its corresponding electrical line below a given rated electric
current value. A line agent corresponding to the electrical line connecting bus a and bus
b, calculates its instantaneous criticality Crl,ab(t) according the following line agent’s
criticality model:

Crl,ab(t) =


0 if Iab(t) < Iab,th
Iab(t)−Iab,th
Iab,max−Iab,th

if Imax ≥ Iab(t) ≥ Iab,th
1 if Iab(t) > Iab,max

(2.18)

Line agent’s criticality model

The determination of the current congestion issue is indeed performed based on
a comparison test between the maximum allowed flow (in both directions) and the
measured flow (measured with a directional sensor). In Equation (2.18), Iab(t) is the
instantaneous root-mean-square electrical current flowing from bus a to bus b, Iab,max
is the rated electrical current value through the electrical line connecting bus a and bus
b, and Iab,th is a set threshold value on the electrical current between bus a and bus b.
The line criticality value Crl,ab(t) is zero when the instantaneous line current is below
the set threshold value, and starts increasing linearly otherwise. The line criticality of
an electrical line becomes maximum (i.e., 1) when its instantaneous electrical current
reaches its rated value. The relationship between the line criticality of a line agent and
its instantaneous electrical current is shown in Figure 2.11.
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Figure 2.11: Relationship between line criticality and electrical current’s magnitude.

The main objective of a line agent is to keep its criticality value equal to zero (i.e.,
to keep the electrical line uncongested) at all instants. In case of a non-zero criti-
cality value (i.e., the line is congested or near congestion), it can request EV agents
for assistance. As a result of EVs’ cooperation, the line criticality (and the instanta-
neous line current) would be reduced. However, the system may immediately return
to its previous congested state as soon as the earlier congested line agent stops asking
for cooperation from EVs. This happens because each designed line agent includes a
feedback loop (i.e., criticality dictates the instantaneous action−→ action impacts the
instantaneous line current −→ line current determines the next instant’s line critical-
ity). This is evident in Equation (2.18), as the instantaneous criticality of a line agent
depends only on the instantaneous electrical current. Therefore, instability in the form
of large oscillations may occur due to the agent’s continuous switching between highly
critical (i.e., Crl,ab(t) > 0) and non-critical states (i.e., Crl,ab(t) = 0). These oscilla-
tions are undesirable, especially in a highly reactive system. To tackle this challenge,
once a line becomes congested (i.e., Crl,ab(t) > 0), the congested line agent does not
utilize the earlier stated line agent’s criticality model (Equation (2.18)) to calculate its
instantaneous criticality (which it is going to forward to its neighboring agents). In-
stead, it uses a memory-based model to calculate its criticality. This memory-based
line criticality model is given as follows:

Crm,l,ab(t) = klCrl,ab(t) + (1− kl)Crm,l,ab(t− 1) (2.19)

Memory-based line agent’s criticality model

In the given memory-based criticality model (which a line agent uses to calculate
its instantaneous criticality once it becomes congested), it can be seen that thememory-
based instantaneous criticality Crm,l,ab(t) depends on both the instantaneous value of
the electrical current (Crl,ab(t) ∝ Iab(t)), and the past history of itself Crm,l,ab(t −
1). Term kl is the tuning parameter of the memory-based line criticality model. The
memory-based line criticality Crm,l,ab(t) converges towards the simple line criticality
value Crl,ab(t), if Crl,ab(t) remains stationary. The rate of its convergence depends on
the tuning parameter kl. Larger values of this tuning parameter kl result in quicker
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convergence but might increase the system oscillations. Smaller values of kl ensure
none or minimal oscillations but at the cost of slower convergence.

In case of electrical congestion, a line agent can request EV agents for cooperation.
However, the interactions between a line agent and an EV agent are not direct in the
designed system. In an AMAS, an agent can only communicate with its neighboring
agents. Furthermore, electrical cables are connected to electrical buses in a physical
distribution network. Thus, the neighborhood of a line agent, that connects electrical
bus a and electrical bus b, consists of bus agents corresponding to electrical buses a
and b. The visual representation of a line agent’s neighborhood is shown in Figure
2.12. In Figure 2.12, the neighborhood of line agent a is shown i.e., neighborhood a.
The shown neighborhood includes bus agent a and bus agent b. Thus, line agent a
can only communicate with bus agent a and b in Figure 2.12. If a line agent requires
cooperative action(s) from EVs, it will send its request to its neighboring bus agents.
Bus agents can include EV agents in their neighborhood (elaborated in the following
subsection). Thus, the request of a congested line agent will reach EV agent(s) through
bus agent(s).

The communication happens only locally i.e., in an agent’s neighborhood. For
example, if line agent a in Figure 2.12 wants its request to reach bus agent c,
then it will communicate its request to bus agent b. Afterward, bus agent bwill
pass this request to line agent b, which will eventually communicate the request
generated by line agent a to bus agent c in Figure 2.12.

Note 2.4.1

The information flow (communication direction of the generated request) is in
a single direction only i.e., only upstream or downstream. For example, if line
agent b in Figure 2.12 receives a request from bus agent b, then this request
may only be transferred to bus agent c (and it will not be transferred back to
bus agent b).

Note 2.4.2

Thus, in the proposed AMAS, if a line agent requires cooperative action(s) from
EVs, it will send its request to its neighboring bus agents. Bus agents can include EV
agents in their neighborhoods (elaborated in the following subsection). Thus, the re-
quest of a congested line agent will eventually reach EV agent(s) through bus agent(s).
The two-way communication between bus agents and line agents follows a communi-
cation message format. According to this message format, the sent message (request)
consists of an ordered pair. Both elements of this ordered pair are defined below:

• Criticality: The first term is the calculated criticality value. This value ranges
between 0 and 1.
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• Issue: Electrical current congestion can occur due to excessive power imports
from the grid and large power exports to the grid. The desired response of flexi-
ble grid elements (EVs) depends on the type of electrical current congestion (i.e.,
decrease charging power when power import from the grid is high and increase
charging power if power export to the grid is high). Thus, this second element
of the message dual pair carries information about the critical agent’s challenge.

Along with satisfying its objective, each line agent should also cooperate with its
neighboring agents at any given instant. A critical agent (i.e., Crl,ab(t) > 0) may re-
ceive a request from another critical agent in its neighborhood. For example, a critical
line agent b in Figure 2.12 can receive a request generated by a critical line agent a,
through bus agent b. In that particular scenario, line agent b will have to decide if it
will transfer its own criticality request to bus agent c, or it will forward the received
criticality request of line agent a to bus agent c. This decision is made by the agent
through the earlier-stated comparison of criticalities principle i.e., the line agent will
adapt and thus forward the request with the highest criticality to bus agent c in Figure
2.12. Thus, a line agent cooperates with its neighboring agent by giving a higher pri-
ority in case any of its neighboring agents is more critical. The detailed functionality
of a line agent is described in Algorithm 2.1.

A line agent in Algorithm 2.1 goes through its three AMAS cycle stages (per-
ception, decision, and action). During the perception stage, it observed the instan-
taneous value of electrical current Iab(t) flowing through its corresponding electrical
line. Based on this instantaneous electrical current value, a line agent calculates its
instantaneous criticality Cr(t) using either Equation (2.18), or Equation (2.19). If this
line agent was not previously congested then Equation (2.18) is used to calculate its
instantaneous criticality. Otherwise, Equation (2.19) is used to calculate Cr(t). A line
agent also calculates term I(t). This term holds information regarding the current is-
sue a line agent faces. It can be inflow: electrical line congestion occurring due to
large inflow of power from the grid; outflow: electrical line congestion due to large

Figure 2.12: Section of a distribution network (left) and its agentified model (right) highlight-
ing the neighborhood of line agent a.
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export of power to the grid; or null: no electrical current congestion. A line agent also
receives a set of requestsR(t) from its neighboring agents at instant t.

During the decision stage, a line agent decides if it would forward its own criti-
cality request or a request from the perceived set R(t) to its neighboring agents. If a
line agent has a higher criticality than the criticalities of all the received neighboring
requests, then the criticality to be forwarded Crf is the agent’s own criticality Cr(t),
and issue to be forwarded If is set to agent’s own issue I(t). However, if any of the
received requests have a higher criticality than the line agent’s own criticality (i.e.,
maxCrR(t) > Cr(t)), then criticality of that requestmaxCrR(t) will be set as the crit-
icality to be forwarded Crf, and the issue corresponding to the received request with
highest criticality argmaxCrR(t) will be set as the issue to be forwarded If. Finally,
the selected Crf and If values are forwarded to a line agent’s neighbor in the action
stage, only if Crf is non-zero.

Algorithm 2.1 AMAS line agent’s functionality
Require: Electrical line’s rated current Iab,max
Require: Electrical line’s threshold current Iab,th
Require: Memory-based line criticality tuning parameter kl

▷ Perception stage
1: Iab(t) := Perceived instantaneous line current from the sensor
2: Cr(t) := Line agent’s instantaneous criticality
3: I(t) := Line agent’s instantaneous issue
4: R(t) := Set of requests received by line agent from its neighboring agents
5: if (Line agent has not been congested) then
6: Cr(t) is calculated using Equation (2.18)
7: else
8: Cr(t) is calculated using Equation (2.19)
9: end if
10: I(t) := Line agent’s instantaneous issue

▷ Decision stage
11: Crf := Criticality value to be forwarded
12: If := Issue to be forwarded
13: Crf := 0
14: If := null
15: if (maxCrR(t) <= Cr(t)) then
16: Crf := Cr(t)
17: If := I(t)
18: else
19: Crf := maxCrR(t)
20: If := Issue corresponding to argmaxCrR(t) request
21: end if

▷ Action stage
22: if (Crf ̸= 0 ) then
23: Forward (Crf, If) to neighboring agents
24: end if
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Bus agent

Each bus agent is designed to maintain the voltage at its corresponding bus within a
desired range i.e., Equation (2.11). An electrical bus can suffer from either an under-
voltage issue (i.e., Va,min < Va(t)), or an over-voltage issue (i.e., Va(t) < Va,max). The
objective of a bus agent is to prevent these issues at its electrical bus. A bus agent
can achieve this objective by keeping its criticality equal to zero. Bus criticality of a
bus agent Crb,a(t), associated with electrical bus a, at instant t is calculated using the
following bus agent’s criticality model:

Crb,a(t) =



0 if V−
a,th ≤ Va(t) ≤ V+

a,th
Va(t)−V−

a,th

Va,min−V−
a,th

if Va,min ≤ Va(t) < V−
a,th

Va(t)−V+
a,th

Va,max−V+
a,th

if Va,max ≥ Va(t) > V+
a,th

1 if Va(t) < Va,min < V−
a,th

1 if Va(t) > Va,max > V+
a,th

(2.20)

Bus agent’s criticality model

In Equation (2.20), bus criticality is zero if the instantaneous rms voltage at bus a
is in the range [V−

a,th,V
+
a,th]. If this condition does not hold then either an over-voltage

issue or an under-voltage issue is present at the electrical bus. It should be noted that
here Va,min < V−

a,th < V+
a,th < Va,max. Terms V−

a,th and V+
a,th are negative and positive

voltage thresholds respectively. If the instantaneous bus voltage is below V−
a,th or above

V+
a,th, the bus criticality starts increasing linearly. Bus criticality is maximum (i.e.,= 1)

when either over-voltage (Va,max < Va(t)) or under-voltage (Va(t) < Va,min) occurs.
This is also apparent in Figure 2.13. A critical bus agent (i.e., Crb,a(t) = 1) can request
EVs in its neighborhood for cooperation to reduce its criticality value.

Similar to line agents, the design of each bus agent also includes a feedback loop
(i.e., criticality dictates the instantaneous action −→ action impacts the instantaneous
bus voltage −→ bus voltage determines the next instant’s bus criticality). This feed-
back loop can cause high oscillations in the system, which are highly undesirable.
Thus, similar to line agents, the design of a bus agent also consists of a memory-
based criticality model. A bus agent utilizes this memory-based criticality model to
calculate its instantaneous memory-based criticality Crm,b,a(t), once a bus has faced
an over-voltage or an under-voltage issue. The memory-based bus agent’s criticality
model is given as follows:

Crm,b,a(t) = kbCrb,a(t) + (1− kb)Crm,b,a(t− 1) (2.21)

Memory-based bus agent’s criticality model

In Equation (2.21), the term kb is the tuning parameter of the memory-based bus
criticality model. The memory-based bus criticality Crm,b,a(t) of a bus agent will con-
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Figure 2.13: Relationship between bus criticality and electrical bus voltage’s magnitude.

verge to its simple bus criticality value Crb,a(t), if Crb,a(t) is stationary. The rate of
convergence depends on the selected value of kb. A large value of kb would result in
faster convergence but might give rise to oscillations in the system. A smaller value
of kb would ensure none or minimal oscillations but the rate of convergence will be
slower.

Just like line agents, a bus agent can communicate only in its neighborhood. A bus
agent may include line agents and EV agents (corresponding to electrical lines and EVs
connected to that bus in a physical distribution network). A visual representation of the
neighborhood of a bus agent is shown in Figure 2.14. In Figure 2.14, neighborhood c
is the neighborhood of bus agent c. Thus, bus agent c can only communicate with line
agent b and EV agent c in Figure 2.14. Bus agent c will communicate the request with
higher criticality between its own request and the request received from line agent b
to EV agent c in Figure 2.14. Identical to line agents, the communication is happening
in a single direction (either upstream or downstream). This means that the request
received by bus agent c from line agent b may only be forwarded to EV agent c, and
will never be sent back to line agent b. It should be noted that there is only one-way

Figure 2.14: Section of a distribution network (left) and its agentified model (right) highlight-
ing the neighborhood of bus agent a.
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communication between a bus agent and an EV agent. This is because, in the designed
system, the requests of line and bus agents are transferred to EV agents. Each EV
agent utilizes the received information to make its instantaneous charging/discharging
decision (i.e., the decision variable of the studied optimization problem). Thus, an
EV agent does not require communicating any of its information to a bus agent in the
designed adaptive multi-agent system.

Algorithm 2.2 AMAS bus agent’s functionality
Require: Electrical bus’ allowed minimum and maximum voltages Va,min, Va,max
Require: Electrical bus’ threshold voltages V−

a,th, V
+
a,th

Require: Memory-based bus criticality tuning parameter kb
▷ Perception stage

1: Va(t) := Perceived instantaneous bus voltage from the sensor
2: Cr(t) := Bus agent’s instantaneous criticality
3: I(t) := Bus agent’s instantaneous issue
4: R(t) := Set of requests received by bus agent from its neighboring agents
5: if (Bus agent has not been congested) then
6: Cr(t) is calculated using Equation (2.20)
7: I(t) := Bus agent’s instantaneous issue
8: else
9: Cr(t) is calculated using Equation (2.21)
10: I(t) := Bus agent’s instantaneous issue
11: end if

▷ Decision stage
12: Crf := Criticality value to be forwarded
13: If := Issue to be forwarded
14: Crf := 0
15: If := null
16: if (maxCrR(t) <= Cr(t)) then
17: Crf := Cr(t)
18: If := I(t)
19: else
20: Crf := maxCrR(t)
21: If := Issue corresponding to argmaxCrR(t) request
22: end if

▷ Action stage
23: if (Crf ̸= 0 ) then
24: Forward (Crf, If) to neighboring agents
25: end if

The communication message format followed by a bus agent is the same as a line
agent. It communicates an ordered pair. Elements of this ordered pair are:

• Criticality: The first term of a communicated request (ordered pair) is a criti-
cality value that ranges between 0 and 1.

• Issue: The second term in a communicated request (ordered pair) is an issue
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status. This issue value can be either over-voltage or under-voltage. There are
two possible issue values because the desired action from EVs in case of an
under-voltage issue is to decrease their charging power. Whereas, when an over-
voltage challenge is faced, EVs would be expected to increase their charging
power. Thus, this issue helps determine how an EV agent can cooperate with
the bus agent to reduce the criticality of the latter.

A bus agent, similar to line agents, should also cooperate with its neighboring
system in an adaptive multi-agent system. For example, in Figure 2.14, if bus agent
c is critical and it has also received a request from critical line agent b, then it has
to decide which critical request it should forward to EV agent c. A bus agent can
make this decision using the comparison of criticalities principle i.e., the bus agent
will forward the request with the highest criticality to EV agent c in Figure 2.14. The
algorithmic functionality of a bus agent is explained in Algorithm 2.2.

During the perception stage, a bus agent perceives instantaneous voltage magni-
tude at its bus. Based on this perceived voltage value, instantaneous criticality Cr(t)
is calculated by a bus agent in Algorithm 2.2. Term I(t) in Algorithm 2.2 indicates the
current issue a bus agent may face. This term can be either over-voltage: if the over-
voltage issue is present at the bus; under-voltage: if the under-voltage issue is present
at the bus; or null: if no issue is present at the bus. In Algorithm 2.2, a bus agent may
also receive a set of requests R(t) from its neighboring agents at any given instant t.
In the decision stage, a bus agent compares its criticality with the criticalities present
in the received set of requestsR(t). Functions maxCrR(t) and argmaxCrR(t) return
the maximum criticality and the request holding the maximum criticality present in
the received set of requests R(t). Terms Crf and If stand for the criticality to be for-
warded and the issue to be forwarded by a bus agent to its neighboring agents. In the
action stage, the ordered pair (Crf, If) is forwarded to neighboring agents when Crf is
non-zero.

Balance responsible party agent

The objective of a balance responsible party (BRP) agent is to minimize the energy
mismatch during each of its imbalance settlement periods i.e., to minimize Equation
(2.1). The instantaneous BRP criticality Crbrp,a(t) of BRP a is calculated using the
given as follows BRP agent’s criticality model:

Crbrp,a(t) = max


∣∣∣(P̃(N)− ∑t

j=1 PBRP(j)
t

)
Δt
∣∣∣

n′kbrp
, 1

 (2.22)

BRP agent’s criticality model

In Equation (2.22), term n′ ∈ (0, n] indicates the amount of time left before the
end of the current BRP imbalance settlement period, and kbrp is the tuning parameter
of Crbrp,a(t). Here, the idea is that a BRP will calculate the average consumption in its
balance perimeter

∑t
j=1 PBRP(j)

t , from the start of the present imbalance settlement period
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till the current instant t. The BRP instantaneous criticality will depend on the dif-
ference between P̃(N) (i.e., planned average consumption/production) and

∑t
j=1 PBRP(j)

t
(i.e., average consumption/production till instant t). Evidently, the absolute value of
this difference term (the numerator in Equation (2.22)) is directly proportional to a
BRP agent’s instantaneous criticality. Furthermore, Crbrp,a(t) is inversely proportional
to n′. The relationship of instantaneous BRP criticality with n′ and

∑t
j=1 PBRP(j)

t is shown
in Figure 2.15.

In Figure 2.15, it can be seen that the instantaneous BRP criticality is zero when∑t
j=1 PBRP(j)

t = P̃(N) i.e., when average production/consumption during the BRP imbal-
ance settlement period is equal to the planned average production/consumption value
during the BRP imbalance settlement period P̃(N). The BRP criticality is non-zero
when

∑t
j=1 PBRP(j)

t ̸= P̃(N). Furthermore, when n′ = n (i.e., the imbalance settlement
period has just started) then the BRP agent’s criticality is closer to zero. However, if
n′ −→ 0 and

∑t
j=1 PBRP(j)

t ̸= P̃(N), then the BRP criticality is near its maximum value. In
case of a non-zero instantaneous criticality value, a BRP agent can request EV agents
present in its neighborhood for cooperation.

The neighborhood of a BRP agent is shown in Figure 2.16. It can be seen in Figure
2.16 that the neighborhood of a BRP agent consists of all EV agents present inside the
BRP perimeter. A BRP agent can communicate with these EV agents when required.
There is a two-way communication link between a BRP and an EV agent. The commu-
nication message format (i.e., contents of the sent message) depends on the direction of
the communication. An EV agent does not need to communicate its criticality to a BRP
agent in the designed system (as an EV agent is the decision-making entity). However,
each EV agent needs to communicate its instantaneous charging/discharging power to
its BRP agent. A BRP agent uses the sum of instantaneous EVs’ charging/discharging

Figure 2.15: Relationship of BRP criticality with n′ and
∑t

j=1 PBRP(j)
t .
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Figure 2.16: Section of a distribution network (left) and its agentified model (right) highlight-
ing the neighborhood of BRP agent.

power to calculate instantaneous production/consumption in its perimeter. Therefore,
the message sent by an EV agent to a BRP agent consists of a single value only i.e., the
instantaneous EV charging/discharging power Pe,a(t). On the other hand, the message
(request) a BRP agent sends to an EV agent for cooperation consists of an ordered pair.
The elements of this communication ordered pair are:

• Criticality: The first term is the instantaneous BRP criticality value between 0
and 1.

• Issue: The second term in the current issue faced by a BRP agent. This is-
sue value can be either over-consumption (BRP perimeter consuming more than
the planned average consumption value), or under-consumption (BRP perimeter
consuming lower than the planned average consumption value). In case of over-
consumption, EVs should decrease their charging powers. Whereas, in case of
under-consumption, EVs should increase their charging powers.

A BRP agent also communicates with a number of external entities (i.e., entities
that have not been modeled as agents in the designed AMAS). These external entities
are as follows:

• Households: A BRP agent receives instantaneous consumption from house-
holds present in its balance perimeter. This received data is used to calculate the
total instantaneous production/consumption.

• Photovoltaics: Photovoltaics present in a balance perimeter are producing elec-
trical energy. They communicate their instantaneous energy production values
to their corresponding BRP agent. A BRP agent uses the received information
to calculate the total instantaneous production/consumption.
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Algorithm 2.3 AMAS BRP agent’s functionality
Require: Duration of an imbalance settlement period n
Require: BRP criticality tuning parameter kbrp

▷ Perception stage
1: Cr(t) := BRP agent’s instantaneous criticality
2: I(t) := BRP agent’s instantaneous issue
3: Perceive Pload,a(t) from each household a
4: Perceive PPV,a(t) from each PV a
5: Perceive Pe,a(t) from each EV a
6: Calculate Cr(t) using Equation (2.22)
7: Determine BRP agent’s instantaneous issue I(t)

▷ Decision stage
8: Crf := Criticality value to be forwarded
9: Crf := Cr(t)
10: If := Issue to be forwarded
11: If := I(t)

▷ Action stage
12: if (Crf ̸= 0 ) then
13: Forward (Crf, If) to neighboring agents
14: end if

• Transmission system operator: ABRP agent also communicates with its trans-
mission system operator (TSO) to share its day-ahead planned average produc-
tion/consumption schedule P̃(N). It may also communicate its encountered total
commitment mismatch to TSO.

The functionality of a BRP agent is described in Algorithm 2.3. In Algorithm 2.3,
the BRP agent observes the production/consumption of each household, PV and EV
during the perception stage. Based on the observed data, instantaneous BRP criticality
is calculated using Equation (2.22). The possible values of the instantaneous issue vari-
able I(t) are: over-consumption: when real-time average production/consumption is
greater than the planned value; under-consumption: when real-time average produc-
tion/consumption is lower than the planned value; or null: when real-time average
production/consumption is equal to the planned value. Variables Crf and If are put
equal to Cr(t) and I(t) respectively during the decision stage. Finally, if the criticality
to be forwarded is non-zero, the cooperation request is sent to all neighboring (EVs)
agents during the action stage.

Electric vehicle agent

The main objective of each EV agent is to ensure that the prosumer objective given
in Equation (2.17) is satisfied. This would have been a straightforward objective if an
EV agent would not have to cooperate with its neighborhood agents. In the studied
system, an EV agent must ensure that the objective of its BRP agent along with the
DSO constraints is satisfied. Thus, an EV agent also needs to utilize the comparison of
criticalities principle to decide whether it should help itself or one of its neighboring
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agents. For that, an EV agent is required to calculate its criticality first. An EV agent
e, connected to electrical bus a, calculates its own criticality using the EV agent’s
criticality model given as follows:

Cre,a(t) =

max

(
(SoCe,a,depart−SoCe,a(t))Ee,a,bat

ke|te,a,depart|Pe,a,max
, 1
)

if SoCe,a(t) < SoCe,a,max

0 if SoCe,a,max ≤ SoCe,a(t)
(2.23)

EV agent’s criticality model

Terms SoCe,a,depart, Ee,a,bat, and Pe,a,max represent the desired final state of charge,
the battery capacity, and the maximum instantaneous charging power of EV e, which is
connected to electrical bus a. The tuning parameter of an EV’s criticality is represented
by ke here. The instantaneous criticality Cre,a(t) of EV e, given in Equation (2.23), is
linked to two time-varying variables i.e., SoCe,a(t) and |te,a,depart|. The relationship be-
tween these time-varying variables and EV’s criticality is shown in Figure 2.17. Term
|te,a,depart| indicates the time remaining before the departure of EV e. This term is in-
versely proportional to an EV agent’s instantaneous criticalityCre,a(t) for a given value
of EV’s instantaneous state of charge SoCe,a(t). On the contrary, SoCe,a(t) is directly
proportional to Cre,a(t) for a fixed value of |te,a,depart|. It can be seen in Figure 2.17 that
the criticality value is maximum (i.e., Cre,a(t) −→ 1) when |te,a,depart| −→ 0, and the
criticality value is around minimum (i.e., Cre,a(t) −→ 0) if |te,a,depart| −→ ∞. Addi-
tionally, the criticality value is non-zero when SoCe,a(t) −→ SoCe,a,min, and the criti-
cality value is around its minimum (i.e., Cre,a(t) −→ 0) if SoCe,a(t) −→ SoCe,a,depart.

The neighborhood definition of an EV agent is shown in Figure 2.18. It can be
seen that an EV agent includes a bus agent and a BRP agent in its neighborhood. For

Figure 2.17: Relationship of EV criticality with
∣∣te,a,depart∣∣ and SoCe,a(t).
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Figure 2.18: Section of a distribution network (left) and its agentified model (right) highlight-
ing the neighborhood of EV agent.

example, in Figure 2.18, EV b is present in a BRP’s perimeter, and it is connected to
an electrical bus b. Thus, in the agentified model, EV agent b included BRP agent
and bus agent b as its neighboring agents. There is a one-way communication link be-
tween an EV and its neighboring bus agent. The bus agent is sending (or forwarding)
a cooperation request to the connected EV agent. A BRP agent is also communicating
cooperation requests in case of need to all EV agents in its neighborhood. Each EV
agent is also communicating with its BRP. Each EV communicates its instantaneous
charging/discharging power to its BRP. Each EV agent is designed to cooperate with
its neighboring agents. At any given instant, an EV agent may receive cooperation
request(s) from its neighboring agents. Thus, at each instant, an EV agent must decide
whether to satisfy its objective or help a neighboring agent. This decision is made by
an EV agent using the comparison of criticalities principle. Thus, an EV agent changes
its instantaneous charging/discharging power, with respect to its past instant’s charg-
ing/discharging power, based on the magnitude of the highest instantaneous criticality
and the communicated issue corresponding to this criticality. This EV agent’s power
calculation model is presented below:

Pe,a(t) = Pe,a(t− 1) + λCrmax(t)Pe,a,max (2.24)

EV agent’s power calculation model

In Equation (2.24), Pe,a(t) is the instantaneous charging power of EV e, Pe,a,max
is the maximum instantaneous charging power of EV e, and Crmax(t) is the value of
highest criticality at instant t. It should be noted that the variable Pe,a(t) is bounded
between Pe,a,min and Pe,a,max i.e., Pe,a(t) ∈ [Pe,a,min,Pe,a,max]. As stated earlier, the direc-
tion of change in Pe,a(t− 1) depends on the issue associated with Crmax(t). The value
of λ in Equation (2.24) determines if the EV agent will be increasing its instantaneous
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Issue type
Issue associated

with Crmax(t)
λ

EV Low state of charge 1

BRP
Over-consumption -1

Under-consumption 1

Bus
Under-voltage -1

Over-voltage 1

Line
High current (import) -1

High current (export) 1

Table 2.1: Possible issues associated with the highest criticality and their impact on the EV
agent’s power calculation model.

charging power or decreasing its instantaneous charging power compared to the pre-
vious instant. Here, λ ∈ {−1, 1}. If λ = 1, then the EV agent will be increasing its
instantaneous charging power compared to the previous instant. If λ = −1, then the
EV agent will be decreasing its instantaneous charging power compared to the previ-
ous instant. The possible values of λ in relation to the issue associated with the highest
observed criticality by the EV agent are given in Table 2.1.

It is evident in Table 2.1 that an EV agent can face seven possible issues (divided
into five groups based on the origin of these issues). If an EV agent has the highest
criticality due to a low state of charge then Pe,a(t) should be greater than Pe,a(t − 1).
If a BRP agent is facing an over-consumption issue then Pe,a(t) is desired to be lower
than the Pe,a(t − 1). On the other hand, if there is under-consumption in the BRP
perimeter then Pe,a(t) must be greater than Pe,a(t− 1). The highest criticality can also
be associated with electrical bus issues (i.e., over- or under-voltage) and electrical line
issues (i.e., high import or export current). In case of under-voltage or high import
current issues, an EV should decrease its charging power. On the other hand, an EV
should increase its charging power when an over-voltage or high export current issue
is faced.

In the studied optimization problem, it is possible that an antagonistic situationmay
arise. An antagonistic situation is defined as the situation in which two critical agents
are demanding opposite cooperative actions from an EV agent. For example, it is
possible that a BRP agent is facing an under-consumption issue. Thus, it would request
EVs to charge more. But at the same time, a line agent could also face high import
current issues and it would request EVs to decrease their charging powers. Therefore,
it gives rise to a situation when EV agents are requested two opposite cooperative
actions. To tackle this challenge, instead of using the model in Equation (2.24) for
instantaneous power calculation, an EV agent utilizes the following model:
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Pe,a(t) = Pe,a(t− 1)± (Crmax(t)− hCrant(t))Pe,a,max (2.25)

EV agent’s power calculation model (considering antagonistic scenarios)

In Equation (2.25), Pe,a(t) depends on two new variables in comparison to Equation
(2.24). These variables are the antagonistic request’s instantaneous criticality Crant(t),
and the h-value. Term h-value is modeled as a function of the instantaneous memory-
based line criticality Crm,l,ab(t). This dependency is made to prioritize electrical line
congestion in case an EV agent has received antagonistic requests. Indeed, it is as-
sumed that the distribution network’s stability is more critical than optimizing a BRP’s
cost. Furthermore, it is also assumed that the global stability ensured by a BRP remains
guaranteed even when EVs are giving preference to solving a congestion issue over the
optimization of a BRP’s cost. That is why when a BRP and a line agent request oppo-
site cooperative actions from an EV, priority will be given to the line agent’s request.
The instantaneous h-value can be calculated using the following model:

h(Crm,l,ab(t)) =


1+ (α−1)Crm,l,ab(t)

γl,min
if Crm,l,ab(t) < γl,min < γl,max

e
Crm,l,ab(t)
pa+pb if γl,min ≤ Crm,l,ab(t) ≤ γl,max

1− βCrm,l,ab(t)
1−γl,max

if γl,min < γl,max < Crm,l,ab(t)

(2.26)

h-value model

The values of pa and pb, in Equation (2.26), can be calculated as follows:

pa =
γl,max

ln(β)− ln(α)
(2.27)

pb =
ln(βγl,min)− ln(αγl,max)

γl,max − γl,min
(2.28)

Also, γl,min and γl,max are minimum and maximum thresholds. When Crm,l,ab(t) is
between these two threshold values, h-value behaves exponentially. Whereas, h-value
behaves linearly otherwise i.e., when Crm,l,ab(t) /∈ [γl,min, γl,max]. Terms α and β are
scaling parameters that range between 0 and 1. The h-value also ranges between 0
and 1. The relationship between h-value and Crm,l,ab(t) is also visually represented in
Figure 2.19. This h-value basically decides the level of priority that should be given to
an antagonistic request when an electrical line is congested in the network. For higher
values of Crm,l,ab(t), it can be seen in 2.19 that the h-value is decreasing exponentially.
Thus, an EV agent would be giving more priority to the request of a line agent when
deciding its next instant’s charging/discharging power.

The detailed algorithmic functionality of an EV agent is presented in Algorithm
2.4. During the perception stage, an EV agent observes the instantaneous state of
charge of its EV SoCe,a(t). Based on the observed SoCe,a(t) value, an EV agent cal-
culates its instantaneous criticality. The agent also receives cooperation requests from
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Figure 2.19: Relationship between a line agent’s memory-based criticality and its h-value.

its neighborhood. Moving forward, during the decision stage, the agent finds the crit-
icality of the most critical agent in its neighborhood (including itself). It also finds
the highest criticality of the received antagonistic requests (if any). Finally, the agent
calculates the instantaneous charging/discharging power of its corresponding EV us-
ing Equation (2.25). This power is set as the EV’s instantaneous charging/discharging
power and communicated to the neighboring BRP during the action stage.

This concludes the design of the proposed adaptive multi-agent system to handle
the real-time grid balancing optimization problem in smart grids. The detailed func-

Algorithm 2.4 AMAS EV agent’s functionality
Require: Desired SoC at departure time SoCe,a,depart
Require: Battery capacity Ee,a,bat
Require: Minimum charging power Pe,a,min
Require: Maximum charging power Pe,a,max
Require: h-value scaling parameters α and β

▷ Perception stage
1: SoCe,a(t) := Perceived instantaneous EV’s state of charge
2: Cr(t) := EV agent’s instantaneous criticality
3: I(t) := EV agent’s instantaneous issue
4: R(t) := Set of requests received by EV agent from its neighboring agents
5: Calculate Cr(t) using Equation (2.23)
6: Determine EV agent’s instantaneous issue I(t)

▷ Decision stage
7: Pe,a(t) := EV’s instantaneous charging power
8: Crmax := Find the highest criticality among Cr(t) and criticalities inR(t)
9: I(t) := Issue associated with Crmax
10: Crant := Find the antagonistic criticality among Cr(t) and criticalities inR(t)
11: Calculate the instantaneous h-value using Equation (2.26)
12: Pe,a(t) := Calculate EV’s instantaneous charging power using Equation (2.25)

▷ Action stage
13: Set EV’s instantaneous charging power equal to Pe,a(t)
14: Communicate Pe,a(t) to the neighboring BRP agent
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tionalities of all modeled agent types (i.e., line, bus, BRP, and EV) have been presented
in the section. The proposedAMAS system has been called decentralized because each
network entity that encounters an issue (e.g., a node with under-voltage, an electrical
line with congestion, or a BRP with commitment mismatch) deals with this issue by
sending messages to the flexible entities (EVs here), and each EV adapts its charging
strategy accordingly. This approach differs from the centralized control implemented
by a DSO, where the system identifies grid issues and determines how to respond.
The presented system is also scalable, model-free, real-time, and generic (adaptable
to other smart grid applications). The upcoming chapter presents a thorough evalua-
tion of the proposed system through comparative deterministic and pseudo-stochastic
studies. Performance comparison will be conducted with two baseline EV charging
optimization strategies, which are also discussed in the subsequent chapter.

2.5 Conclusion
This chapter presents a novel adaptive multi-agent system to tackle the studied smart
grid optimization problem. In the studied optimization problem, the objective was
utilizing the flexible entities (i.e., electric vehicles) to provide ancillary services to
the BRP by minimizing its commitment mismatch error during each imbalance set-
tlement period. Along with performing optimization, the aim was also to satisfy the
constraints of different market actors such as DSOs and prosumers. The initial part of
this chapter focused on presenting the detailed mathematical formulation of the prob-
lem under study, along with a review of the related literature and a clear description
of the problem’s scope within this thesis. Subsequently, a comprehensive discussion
on the theory of adaptive multi-agent systems was provided, highlighting their dis-
tinctions from simple multi-agent systems and emphasizing how self-organization in
adaptive multi-agent systems can enhance the system’s flexibility. The philosophy of
adaptive multi-agent systems was then applied to design a fully decentralized control
system for addressing the studied smart grid optimization problem. The developed sys-
tem comprises distinct agent types, each with its own objective within the system, and
their functionalities were elaborated upon. In the next chapter, a detailed evaluation
of the proposed system will be conducted, involving comparisons with other baseline
strategies through simulation-based experiments. This evaluation aims to provide in-
sights into the performance and standing of the proposed system as well as to identify
potential areas for further improvement.
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Chapter 3

Evaluating adaptive multi-agent
system for grid balancing

It is better to change an opinion than to persist in a wrong one.

Socrates

Summary
The primary focus of this chapter is to conduct a comprehensive evaluation of the adaptive

multi-agent system proposed in the preceding chapter, specifically tailored to manage real-time
grid balancing operations. This evaluation is carried out through extensive deterministic and
pseudo-stochastic simulation-based experiments. The performance of the proposed adaptive
multi-agent system is compared with two baseline electric vehicle charging optimization strate-
gies, which are detailed in this chapter. The comparison comprises factors such as optimality,
satisfaction of constraints, and scalability of these approaches. Pseudo-stochastic simulation
case studies are conducted to assess the system’s performance under uncertain conditions. The
objective of this chapter is also to identify potential areas for further improving the system’s
performance, if necessary.

Contents
3.1 Baseline optimization strategies . . . . . . . . . . . . . . . . . 76
3.2 Deterministic simulation-based experimentation . . . . . . . . 80
3.3 Pseudo-stochastic simulation-based experimentation . . . . . . 94
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

75



The objective of this chapter is to assess the performance of the proposed adap-
tive multi-agent system introduced in Chapter 2. To achieve this, two baseline opti-
mization strategies are presented in Section 3.1. These strategies consist of the un-
controlled approach (where electric vehicle charging is not controlled by any entity)
and the centralized mixed-integer linear programming optimization strategy (where a
centralized operator determines the charging strategy for each electric vehicle using
mixed-integer linear programming optimization). At first, deterministic simulation-
based experiments are conducted to compare the proposed system’s performance with
these baseline strategies in Section 3.2. The simulation case study settings and results
are discussed in detail in the mentioned section. Additionally, the impact of real-life
uncertainties on the system is investigated through pseudo-stochastic simulation-based
experiments in Section 3.3. This section analyzes how the system performs under un-
certain conditions. To conclude this chapter, a summary of the observations made is
provided, and potential avenues for further system enhancements are highlighted in
Section 3.4.

3.1 Baseline optimization strategies
In this section, alternative control strategies are presented. It is essential to evaluate
the performance of any newly developed decentralized system. Thus, the suggested
strategies in this section will be used to benchmark the proposed adaptive multi-agent
system. The comparison will help to identify the advantages and drawbacks of the
proposed multi-agent system. It will also help determine how the designed adaptive
multi-agent system can be improved. Two strategies are selected as baselines:

• Uncontrolled strategy

• Centralized MILP optimization strategy

Uncontrolled strategy:
As the name suggests, the instantaneous charging power of each EV Pe,a(t) is not con-
trolled in the uncontrolled strategy [95]. In this charging strategy, each EV e starts
charging at its rated power Pe,a,max as soon as it is connected to the grid. This strat-
egy may lead to instability in the network due to peak load demand. Furthermore,
a BRP cannot exploit the existing EVs in its perimeter for its benefit, as the instan-
taneous charging powers of EVs can not be controlled. There is no vehicle-to-grid
(V2G) present in this scenario as well. Thus, if a BRP faces an under-production issue
(due to lower-than-expected PV production or higher-than-expected loads’ consump-
tion) during one of its imbalance settlement periods, it can never minimize this under-
production mismatch issue by requesting idle EVs to discharge. It means that strategy
would lead to very sub-optimal solutions. These solutions will be considered as up-
per bounds while evaluating the performance of the proposed adaptive multi-agent
system. It should be noted that although this strategy may be the most problematic
strategy grid-wise, it is the simplest one for prosumers (as no controller is required to
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control each EV’s charging/discharging power). This strategy represents a business-
as-usual scenario (a scenario in which future smart grids would be operating without
any control of an increasing number of EVs). Thus, the solutions obtained through
this strategy can represent a good upper bound to evaluate the performance of other
control optimization strategies. The functionality of each EV, when it follows this
uncontrolled strategy, is presented in Algorithm 3.1.

Algorithm 3.1 Uncontrolled strategy (each EV)
Require: Desired SoC at departure time SoCe,a,depart
Require: Rated charging power of EV Pe,a,max
1: SoCe,a(t) := SoC at instant t
2: tarrive := EV’s arrival time
3: tdepart := EV’s departure time
4: for t = 1, 2, 3, ..., T do
5: if (t ≥ tarrive & t ≤ tdepart) & (SoCe,a(t) < SoCe,depart) then
6: Charge at Pe,a,max
7: else
8: Do not charge
9: end if
10: end for

In Algorithm 3.1, each EV starts charging at its rated power Pe,a,max as long as
it is connected to the grid (i.e., t ≥ tarrive & t ≤ tdepart) and it has yet to achieve its
desired state of charge at its departure time (i.e., SoCe,a(t) < SoCe,depart)). As soon as
the EV e either departs (i.e., t ≥ tdepart) or it achieves its desired state of charge (i.e.,
SoCe,a(t) = SoCe,depart), it will stop charging.

Centralized MILP optimization strategy:
Mixed-integer linear programming (MILP) belongs to the class of mathematical op-
timization problems. It has found several practical applications, such as production
planning [184], demand response optimization [39], unit commitment [30] etc. The
use of MILP to optimize power flows in an electrical grid has been suggested in the lit-
erature for several decades. A mixed integer linear programming (MILP) optimization
problem is of the form [23]:

min cTx (3.1)

Ax = b s.t. x ∈ Z+ (3.2)

Standard MILP formulation

In the above-given formulation, if all variables x are required to be integers then it
becomes pure integer linear programming (ILP). On the other hand, if x ∈ {0, 1} then
it becomes 0-1 linear programming. The original smart grid optimization problem,
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presented in Section 2.1, belongs to the quadratic constrained programming (QCP)
class of optimization problems [4]. Equation (2.9) involves a quadratic term (i.e.,
product of voltages). The studied objective function in Equation (2.1) also involves
an absolute term. Furthermore, the decision variable Pe,a(t) ∈ [Pe,a,min,Pe,a,max] can be
negative (when an EV is discharging). Thus, the original problem in 2.1 needs to be
adapted to apply mixed-integer linear optimization.

Objective function linearization

As explained earlier, the original objective function stated in Equation (2.1) is not linear
due to the absolute operator. To applyMILP optimization, this objective function must
be linearized first. The absolute term in Equation (2.1) can be linearized by setting
it equal to variable Q, and then constraining this assumed variable. This is done as
follows:

Objective function:

minEmis = min

Nend∑
N=1

∣∣∣∣(P̃(N)− ∑n
t=1 PBRP(t)

n

)
Δt
∣∣∣∣ (3.3)

is equivalent to:

minEmis = min

Nend∑
N=1

QΔt (3.4)

subject to the constraints:(
P̃(N)−

∑n
t=1 PBRP(t)

n

)
≤ Q (3.5)

(∑n
t=1 PBRP(t)

n
− P̃(N)

)
≤ Q (3.6)

Smart charging problem’s linearized objective function

Decision variable linearization

As vehicle-to-grid (V2G) is considered in the studied optimization problem, the de-
cision variable Pe,a(t) of the studied optimization problem can hold a negative value
in case an EV is discharging. However, this decision variable should be a positive
integer, as specified in Equation (3.2). This problem is solved by dividing our deci-
sion variable Pe,a(t) into two parts: Pe,a,chrg(t), and Pe,a,dischrg(t). The instantaneous
power Pe,a(t) of EV e is the sum of its instantaneous charging power Pe,a,chrg(t) and the
negative of its instantaneous discharging power Pe,a,dischrg(t). The instantaneous charg-
ing power Pe,a,chrg(t) of EV e ranges between 0 and its rated charging power Pe,a,max.
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Whereas, the instantaneous discharging power Pe,a,dischrg(t) of EV e varies between
0 and its rated discharging power Pe,a,min. Both Pe,a,max and Pe,a,dischrg(t) are positive
integers. To make sure that an EV does not charge and discharge simultaneously, a
binary decision variable ρ ∈ {0, 1} is introduced. The mathematical formulation of
this decision variable linearization is given in Equation (3.7) as follows:

Pe,a(t) = ρPe,a,chrg(t)− (1− ρ)Pe,a,dischrg(t) s.t. ρ ∈ {0, 1},
Pe,a,chrg(t) ∈ [0,Pe,a,max],

Pe,a,dischrg(t) ∈ [0,Pe,a,min]

(3.7)

Decision variable linearization

Constraint linearization

Finally, one must also linearize Equation (2.9). The right hand side of Equation (2.9)
can also be written as:

Sab(t) = Pa,b(t) + iQa,b(t) = Va(t)I∗ab(t) = Va(t) (Y∗
abV∗

b(t)) (3.8)

where Sab(t) is the instantaneous real power flowing from bus a to bus b. The voltage
can be represented in polar coordinates as the product of magnitude and complex ex-
ponential i.e. |V| ei(ωt+ψ), where ω represents the voltage angular frequency and ψ is
the voltage angle. Furthermore, Yab = Gab+ iBab, where Gab is the conductance of the
electrical line connecting bus a and bus b, and Bab is the susceptance of the electrical
line between bus a and bus b.

Sab(t) =
(
|Va|ei(ωt+ψa)

)∑
b

(
(Gab + iBab)

∗ (|Vb|ei(ωt+ψb)
)∗)

=
∑
b

(
|Va||Vb|ei(ωt+ψa)e−i(ωt+ψb)

)
(Gab − iBab)

=
∑
b

(
|Va||Vb|ei(ψa−ψb)

)
(Gab − iBab)

=
∑
b

(|Va||Vb| (cos(ψa − ψb) + isin(ψa − ψb))) (Gab − iBab)

(3.9)

Comparing Equation (3.8) with Equation (3.9), active and reactive power flows
can be written as follows:

Pab(t) = Gab|Va|2 − |Va||Vb| (Gab cos(ψa − ψb)− Bab sin(ψa − ψb)) (3.10)

Qab(t) = Bab|Va|2 − |Va||Vb| (Gab sin(ψa − ψb) + Bab cos(ψa − ψb)) (3.11)

Finally, to obtain fully linearized active and reactive power flow equations, the
following assumptions are made:

79



• Small angle approximation: It is assumed that voltage difference values are
small enough to occupy a linear region of the sine function, i.e. (ψa − ψb) ≈
sin(ψa − ψb)

• Unit voltage magnitude: It is also assumed that the voltage magnitude |Va| is
sufficiently close to one per unit value, i.e. |Va| ≈ 1.

After applying these assumptions, the following two separate linear power flow
equations are obtained:

Pab(t) = Gab(t) (Va(t)− Vb(t)) + Bab(t) (ψa(t)− ψb(t)) (3.12)

Qab(t) = Bab(t) (Va(t)− Vb(t)) + Gab(t) (ψb(t)− ψa(t)) (3.13)

Linearized power flow constraints

Based on the earlier described constraints in Section 2.1 combined with linearized
constraints and objective function explained in this section, a feasible set (Feasible
set 3.1) can be obtained. This feasible set can be solved as a mixed integer linear
programming (MILP) optimization problem. As this MILP formulation comes un-
der the category of centralized optimization, the solution obtained through it will be
considered as the lower bound to evaluate the performance of the proposed adaptive
multi-agent system.

Objective function in Equation (3.4)

DSOs constraints in Equations (2.10)−(2.13)

Prosumers constraints in Equations (2.14)−(2.17)

Decision variable constraints in Equation (3.7)

Objective function linearization constraints in Equations (3.5)−(3.6)

Network’s physical constraints in Equations (2.5)−(2.8) & (3.12)-(3.13)

Feasible set 3.1: Linearized smart charging formulation

3.2 Deterministic simulation-based experimentation
In this section, an evaluation of the proposed adaptive multi-agent system to optimize
energy flows in the smart grid under deterministic conditions is done. In the beginning,
simulation-based experimentation settings are discussed. Afterward, a comparison of
the results obtained through the adaptive multi-agent system presented in Section 2.4
is made with the baselines presented in Section 3.1.
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Simulation-based experimentation settings
A careful design of the experiment is required first to draw a comparison among dif-
ferent smart grid optimization strategies. It includes modeling the studied distribution
network, selecting study parameters, preparing datasets, implementing the designed
system(s), and eventually carrying out the desired simulation-based experimentation.
All of these mentioned steps are presented orderly in this subsection.

Electrical distribution network

The existing IEEE low voltage test feeder (LVTF) distribution network is used tomodel
the electrical distribution network [159]. There are 55 household load buses present
in the IEEE LVTF model. To increase the complexity of the simulation-based experi-
mentation in terms of size, the studied distribution network is modeled to include three
districts. Each district is further divided into three sub-districts. Each sub-district is
modeled as the IEEE LVTF [159]. Thus, there are a total of nine sub-districts in the
system. The single-line diagram of the studied distribution network is shown in Figure
3.1.

As it can be seen in Figure 3.1, districts in the modeled distribution network are
connected to the external grid through 132/33 kV grid transformers. Furthermore, each
district is also connected to its sub-districts through a 32/11 kV transformer. The IEEE
LVTF consists of 55 load buses [159]. An electric vehicle (EV) and PV connections
are made on each load bus. There are a total of 9 sub-districts. Thus, 495 household
loads, 495 EV loads, and 495 PV sources exist in the studied distribution network.
The type and model of each electrical line in a sub-district are provided with the IEEE
LVTF model [159]. The voltage magnitude is set to 1 per-unit at the grid bus. The ex-
ternal grid represents the slack bus, therefore the required instantaneous power from
the external grid depends on the production/consumption in the distribution network.
Thus, the power values of the external grid have not been fixed to any specific num-
ber. Also, this study has considered that the complete distribution comes under the

Figure 3.1: Modeled distribution network to perform simulation-based experimentation.
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balance perimeter of a single BRP, although it is not a required constraint for the pro-
posed AMAS to function (the proposed AMAS is fully capable of functioning in an
environment with multiple BRPs).

Parameters

The total length of the performed simulation study is one hour. The length of each
BRP imbalance settlement period is set to 15 minutes. Thus, the performance of each
charging strategy during four BRP imbalance settlement periods of 15 minutes will be
studied. The decision time resolution of the designed AMAS is one second i.e., each
EV decides its instantaneous charging power every second. The decision time resolu-
tion is also one second for the uncontrolled charging strategy. In the case of centralized
MILP optimization, the decision time resolution is set to one minute. The temporal
resolution of MILP is set to one minute (and not one second) because the accuracy of
the obtained solution starts saturating for a temporal resolution lower than 5 minutes
while the computing time explodes. This is evident in Figure 3.2. The relationship
of centralized MILP’s temporal resolution with the optimality gap and the total num-
ber of decision (optimization) variables is plotted in Figure 3.2. The optimality gap is
calculated by taking the obtained solution with a one-hour temporal resolution as the
maximum value and the solution with a one-minute temporal resolution as the mini-
mum value. To obtain the normalized number of decision variables curve, its values at
one-hour and one-minute temporal resolutions are consideredminimum andmaximum
values. It can be seen in Figure 3.2 that the reduction in the optimality gap is minimal
when a temporal resolution of under five minutes is selected. However, the number
of decision variables increases significantly. The increase in the system’s complexity
(number of decision variables) outweighs the improvement in the system’s accuracy.
Thus, MILP’s temporal resolution is set to one minute, and the solution obtained with
this temporal resolution is termed the optimal solution in this study.

The maximum amount of voltage deviation allowed at each bus is set to 5% of
the nominal per-unit value. The rated current of each line is set based on its type,
which comes along with the IEEE LVTF model [159]. The minimum and maximum
allowed SoC are set to 0.3 and 0.8, respectively. This range is selected to helpminimize

Figure 3.2: MILP temporal resolution relationship with optimality gap and total number of
decision variables.
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electrolyte battery degradation [55]. The desired SoC at the departure of an EV is set
to 0.8 for all EVs. The rated charging power of each EV is set to 7 kW, and the battery
capacity of each EV is set to 30 kWh. Each EV’s charging/discharging efficiency is
set to 0.95. These values are set based on the electric vehicles’ specifications currently
available in the market (at the time when this study was performed). In the proposed
AMAS, memory-based tuning parameters kl and kb are both set to 0.01. The α, β,
γl,min, and γl,max to calculate the instantaneous h-value of an EV agent in the proposed
AMAS are set to 0.9, 0.1, 0.1, and 0.9, respectively. A summary of these simulation
parameter values is given in Table 3.1.

Datasets

Various data are required tomodel the functioning of different consumption/production
distribution network elements during the simulation. The required solar irradiance
data is obtained from the National Renewable Energy Laboratory (NREL) dataset
[133]. The time resolution of this data is 1 minute. This data is required in the de-
sired study to model the real-time production of PV panels present in the studied smart
grid. The instantaneous PV production PPV(t) is calculated using the instantaneous
solar irradiance Irr(t) as follows:

PPV(t) = Irr(t)AηPV (3.14)

In Equation (3.14), A indicates the PV panel’s area and ηPV represents its efficiency.

Simulation parameter Parameter value

SoCe,a,min 0.3

SoCe,a,max 0.8

SoCe,a,depart 0.8

Pe,a,max 7

Pe,a,min -7

ηe,a 0.95

kl 0.01

kb 0.01

α 0.9

β 0.1

γl,min 0.1

γl,max 0.9

Table 3.1: Values of different parameters used in the presented simulation case studies.
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A forecasted PV energy production profile is also required by a BRP to calculate its
day-ahead planned consumption/production P̃(N), as given in Equation (2.2). Gener-
ally, forecasts for PV are provided as one-hour average values. Thus, in this study,
the forecasted total PV energy production is also assumed to have a temporal resolu-
tion of one hour. The error in PV forecast is set to 10% here (approximately equal
to the average of reported forecasting errors in Figure 2.2). It should be noted that it
is possible that a better forecasting strategy would result in an error lower than 10%.
However, designing a state-of-the-art PV forecasting strategy lies beyond the scope
of this thesis. As an error-free forecast is highly unlikely irrespective of the technol-
ogy utilized, this thesis focuses on designing a control strategy that would minimize
the effects of forecasting errors on a smart grid in real-time. Moreover, the impact of
PV energy production forecasting error on the system’s performance is also studied in
pseudo-stochastic studies, presented in the next section. During the simulation time,
the total real-time PV production in the studied distribution network and the forecasted
PV production are shown in Figure 3.3. The BRP utilizes the forecasted profile in Fig-
ure 3.3 to calculate its P̃(N) during all four studied imbalance settlement periods. It
is observable in Figure 3.3 that mismatches between real-time and forecasted PV pro-
files exist during all four studied imbalance settlement periods. During periods 1 and
2, there is over-production in the network. During periods 3 and 4, the studied distri-
bution network is under-producing PV energy compared to the forecasted value. The
BRPwill face commitmentmismatches in this study and require real-time optimization
strategies to minimize the mismatches.

The household load data also needs to be modeled for each household. The IEEE
LVTF model is provided with time series load profiles for the modeled households
[159]. The temporal resolution of this data is also one minute. The provided load pro-
files are utilized in this study. To perform the desired case study, a forecasted total
household load profile is also required. This forecasted time series data is used by a
BRP agent to calculate its day-ahead planned consumption/production P̃(N), as given
in Equation (2.2). Generally, smart meters can provide measurements at a time reso-
lution of 10 minutes. Thus, the forecasted load profile is also assumed to have a time
resolution of 10 minutes. Similar to the PV dataset, the household load forecasting
error is set to 10% in this study. Again, the objective here is to minimize the impact of
forecasting errors on the system in real-time. In Figure 3.4, the total real-time house-

Figure 3.3: Total real-time and forecasted PV production in the studied distribution network
during the simulation time.
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Figure 3.4: Total real-time and forecasted households load consumption in the studied distri-
bution network during the simulation time.

hold load consumption and its forecasted value during the studied simulation time are
shown. The forecasted total household load consumption profile is utilized by the BRP
to calculate its day-ahead commitment value.

The presented simulation study is also designed to encounter antagonistic scenar-
ios. This raises the complexity of the optimization problem under consideration. An
antagonistic scenario is a scenario in which two different entities desire instantaneous
outcomes which are opposite in nature. As shown in Figure 3.3, there is an over-
production of PV energy in the balance perimeter. Thus, a BRP would desire EVs
in its perimeter to increase their instantaneous charging powers (or decrease their in-
stantaneous discharging powers). However, this could lead to network instability (due
to high import current or under-voltage issues). Therefore, a critical electrical line
or electrical bus would want EVs to decrease instantaneous their charging powers (or
increase their instantaneous discharging powers). Thus, an antagonistic scenario will
arise in the system. Sub-district SD1 in Figure 3.1 is designed to encounter an antag-
onistic scenario during the studied imbalance settlement period 1. The percentage of
EVs (compared to the total EV connections) in sub-district SD1 is plotted against the
simulation time in Figure 3.5. It can be seen that during period 1 of the simulation
study, a larger percentage of EVs are present in the sub-district. The BRP could re-
quest all EVs for cooperation when PV energy over-production occurs. If many EVs
start cooperating with the BRP by charging more (or discharging less), the network can
become unstable. Thus, real-time optimization strategies would be required to handle
such situations.

Implementation

The proposed adaptive multi-agent system in Section 2.4 is implemented in JAVA and
is called ADEMIS (ADaptive Energy Management in Smart grids) [8]. The imple-
mentation is done using the AMAK framework developed by researchers at the IRIT
laboratory [143]. The designed system involves co-simulation. The functionality of
each agent type is defined in JAVA, and load flows are executed externally. The AMAS
in JAVA utilizes a Python script to communicate with an external load flow simulator
[181]. The communication is required by the AMAS platform in JAVA to set variables
and launch power flow simulations in the external simulator. The described system im-
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Figure 3.5: Percentage of EVs present in the sub-district SD1 against the simulation time.

plementation is shown in Figure 3.6. At the beginning of each iteration, EV agents in
the ADEMIS platform calculate their instantaneous charging/discharging power and
communicate it to the external load flow simulator through the Python script. The
external simulator performs the power flow and communicates the required results
(electrical current, voltage, SoC, and SoH) to the agents in the ADEMIS platform.
The agent cycle (iteration) ends here.

In Figure 3.7., the expanded block diagram of the designed adaptive multi-agent
system is presented. The ADEMIS platform consists of the implementation of each
agent type. DIgSILENT PowerFactory is the new element in the expanded system
block diagram. DIgSILENT PowerFactory is a power system analysis software used
in the designed system to perform power flow during each iteration [52]. DIgSILENT
PowerFactory communicates currents flowing through all electrical lines, voltages at
all electrical buses, state of charge of all EVs, and state of health to the ADEMIS
platform. Agents in the ADEMIS platform utilize the communicated information to
calculate the instantaneous charging/discharging power of each EV for the next agent
cycle.

The centralized MILP optimization system is implemented in Python [181]. A
Python-embedded modeling language for convex optimization, i.e., CVXPY, is used
to solve and obtain the centralized MILP solutions [51]. As stated earlier, the central-
ized MILP solution is considered the lower bound to evaluate the performance of the
designed adaptive multi-agent system. It can be argued that the stated MILP formu-
lation involves approximations and linearizations. These approximations can impact
the accuracy of the obtained solution when applied in real-life. Therefore, to evaluate
the impact of the approximations on the solution’s quality, the optimized EV power
profiles obtained through the centralized MILP strategy are imported and simulated in
DIgSILENT PowerFactory using the studied distribution network. Thus, a compari-
son is made between the results obtained through MILP optimization and the results

Figure 3.6: Block diagram of the implemented AMAS for smart grid energy optimization.
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Figure 3.7: Expanded block diagram of the implemented AMAS for smart grid energy opti-
mization.

obtained through simulating MILP optimization results in DIgSILENT PowerFactory.
The calculated percentage cosine similarity between the active power grid profiles of
MILP optimization results and MILP optimization results simulated in DIgSILENT
PowerFactory comes out to be 99.02%. It confirms a minor impact of MILP approxi-
mations on the quality of the obtained solution and, thus, making MILP optimization
results comparable to the other two studied strategies (i.e., uncontrolled and AMAS).

Computing machine’s specifications

Specifications of the computing machine used to perform the designed simulation case
study are listed in Table 3.2:

Evaluation metrics
It is important to describe the metrics considered to evaluate the performance of the
proposed adaptive multi-agent system. In this simulation case study, the following
metrics are included:

• Constraints satisfaction

• Optimality

Specification

Processor Intel Core i5-10210U (1.6 GHz)

Memory DDR4 (8 GB, 2666 MHz)

Storage SSD (256 GB, 7300 MB/s)

Table 3.2: Specifications of the computing machine used to perform simulation-based experi-
ments.
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• Scalability

Each of the stated metrics is described below in detail.

Constraints satisfaction

Constraints stated in Section 2.1 are expected to be satisfied by the optimization-based
strategies. If an uncontrolled strategy is followed, these constraints are more likely
to be violated. On the other hand, these constraints should be satisfied as the hard
constraints of the centralized MILP formulation. Thus, the designed adaptive multi-
agent system will be compared with uncontrolled and centralized MILP optimization
strategies. The evaluation will be based on whether all desired constraints are satisfied.

Optimality

The objective of the studied optimization problem is to minimize BRP’s commitment
mismatch, as stated in Equation (2.1). The proposed AMAS will be evaluated against
the stated two baseline strategies regarding its optimality. The uncontrolled baseline
strategy is considered the upper bound, while the centralized MILP optimization strat-
egy is considered the lower bound. Ideally, the solution obtained through the pro-
posed adaptive multi-agent system strategy should be near-optimal (close to the lower
bound), if not optimal.

Scalability

The implemented optimization strategy should be able to optimize a larger-scale smart
grid in real-time. An optimization strategy can be optimal, but its real-life imple-
mentation becomes a question if it is not scalable. Therefore, it is crucial to draw a
comparison between the centralized MILP baseline strategy and the proposed adap-
tive multi-agent system optimization strategy. The scalability comparison between
both strategies is made in terms of their practical computational requirements (i.e.,
required computation time and memory) [77].

The computational requirements of an algorithm can be defined as the amount
of computing resources required to execute it. Both time and memory are gen-
erally considered the most prominent resources required to execute an algo-
rithm. Time resource is the time an algorithm takes to complete its execution,
and memory resource is defined as the total memory required to execute an al-
gorithm.

Note 3.2.1

In this study, a smart grid optimization algorithm is termed as scalable if it manages
to optimize a large-scale network in real-time (i.e., it does not require a large amount
of time for its execution) and is not memory-intensive (i.e., it does not require a large
amount of memory for its execution). Ideally, both time and memory computational
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requirements should be independent of the size of the studied smart grid, and they
should not increase with the size of the distribution network.

Results
In this subsection, a comprehensive analysis of the simulation case study results is
provided, highlighting the performance of the proposed adaptive multi-agent system
and the previously discussed baseline strategies.

Constraints satisfaction

As stated earlier, the distribution network in the designed case study faces a variety of
challenges. These challenges also include network instability due to congestion in an
electrical line or voltage limit violations at an electrical bus. In Figure 3.8, a compar-
ison of current flowing through the line connecting sub-district SD1 with district D1
is presented. The presented electrical current curves are obtained using the proposed
adaptive multi-agent system strategy and two baseline strategies, i.e., uncontrolled and
centralized MILP optimization strategies.

An electrical line congestion can be observed in Figure 3.8, during the imbalance
settlement period 1. Electrical line congestion is observed if the uncontrolled charging
strategy is followed. This electrical line congestion occurs due to a large percentage of
EVs present in the sub-district SD1 during the imbalance settlement period 1, as shown
in Figure 3.5. These EVs charge at their maximum power and cause line congestion in
the network when they remain uncontrolled. The observed electrical line congestion
lasts for 30.16% of the total imbalance settlement period. The average value of the
observed line congestion is 110.50%of the rated current value. This significant amount
of electrical line congestion can make the distribution network unstable. Therefore,
a control strategy is desired to prevent electrical line congestion from arising in the
uncontrolled strategy.

In the centralizedMILP optimization strategy, the prevention of electrical line con-
gestion is a hard constraint. Thus, the obtained solution does not result in an electrical
line congestion, as shown in Figure 3.8. In the proposed adaptive multi-agent system,
there is no concept of hard constraints. Rather, agents cooperate with each other to

Figure 3.8: Comparison of electrical currents during the simulation time.
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achieve the global objective(s) of the system. As shown earlier in Figure 3.3, there is
an over-production of PV energy compared to its forecasted value during imbalance
settlement period 1. Thus, the BRP would want EVs to charge more (or discharge
less). On the other hand, the line agent would desire EVs to charge less (or to dis-
charge more) to prevent line congestion. Thus, an antagonistic situation arises, which
makes the decision-making process of an EV more complex. Ideally, EVs should co-
operate with both antagonist agents and thus prevent line congestion from occurring.
In Figure 3.8, it can be observed that no electrical line congestion occurs when the pro-
posed AMAS strategy is followed. It means that the EV agents cooperate with critical
line agents in the system to prevent electrical line congestion from happening.

Another network problem that can make a distribution network unstable (thus vio-
lating the DSO constraints) is the voltage deviation from its nominal value beyond the
allowed limit. The voltage magnitude results obtained at the last bus of the sub-district
SD1 during the simulation study are presented in Figure 3.9. During the imbalance
settlement period 1, voltage constraint violation can be observed if the uncontrolled
charging strategy is followed. The reason is a large number of EVs charging simul-
taneously, which causes an under-voltage issue in the distribution network. The ob-
served voltage constraint violation lasts for 28.37% of the total imbalance settlement
period. The voltage magnitude is, on average, 0.21% lower than its allowed voltage
limit when the voltage constraint is violated. In the centralized MILP optimization,
no voltage constraint violation is observed as it is a hard constraint of the optimiza-
tion problem, Equation (2.11). In the proposed adaptive multi-agent system platform,
EV agents have to cooperate with both the BRP agent and the bus agent during pe-
riod 1. The BRP agent requires EVs to charge more (or to discharge less) to minimize
its energy mismatch occurring due to PV energy over-production during period 1, as
shown in Figure (3.3). Whereas, the bus agent wants EVs to charge less (or discharge
more) to prevent under-voltage issues happening at its electrical bus. In Figure 3.9,
no voltage constraint violation is observed for the proposed AMAS. Therefore, it can
be confirmed that the designed AMAS functions as expected. It manages to minimize
the criticality of a critical bus agent through cooperation, even under an antagonistic
situation. Prosumer constraints, Equation (2.14)−(2.17), are satisfied in the case of
all studied strategies. All electric vehicles manage to acquire the desired SoC at their
respective departure times.

Figure 3.9: Comparison of electrical voltages during the simulation time.
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Optimality

Minimizing the BRP commitment mismatch is the objective of the studied smart grid
optimization problem. There are four imbalance settlement periods in the studied sim-
ulation case study. The obtained BRP commitment mismatch results for each studied
strategy are shown in Table 3.3. The centralized MILP optimization strategy manages
to completely minimize the BRP commitment mismatch. Thus, this solution is used
as the lower bound to evaluate the performance of the uncontrolled strategy and the
designed adaptive multi-agent system optimization strategy.

In the uncontrolled strategy, EVs are allowed to charge at their rated power, with-
out any constraints, at all times. The BRP cannot control EVs to minimize its energy
mismatch in the uncontrolled strategy. Thus, a significant commitment mismatch is
observed when the uncontrolled strategy is followed in Table 3.3. On average, a com-
mitment mismatch of 33.58% is observed per imbalance settlement period in the per-
formed simulation study. This value can be considered as an upper bound. Any pro-
posed smart grid optimization strategy is desired to be below this upper bound and
be close to the MILP lower bound as much as possible. In the proposed AMAS op-
timization strategy, the BRP agent has to request cooperation from all EV agents. It
is seen that EV agents managed to cooperate with line and bus agents and maintained
the stability of the distribution network, Figure 3.8 and Figure 3.9. Through the results
stated in Table 3.3, it is also confirmed that EV agents also managed to cooperate with
the BRP agent as a significant reduction in the commitment mismatch values can be
observed compared to the uncontrolled strategy. The proposed AMAS optimization
strategy managed to reduce the commitment mismatch by 99.5% compared to the un-
controlled strategy (upper bound). The AMAS solution is near-optimal as it is close
to the optimal MILP optimization solution (lower bound).

Both optimization strategies (MILP and AMAS) manage to minimize the BRP
commitment mismatch by controlling the instantaneous charging/discharging power
of each EV in real-time. The sum of instantaneous charging/discharging powers of all
EVs in the studied distribution network during the simulation time is shown in Fig-
ure 3.10. In Figure 3.10, during the initial two imbalance settlement periods, EVs
are consuming more power compared to the forecasted (planned) instantaneous power
consumption. This is due to the fact that PV panels are producing more energy than ex-

Strategy

Uncontrolled AMAS MILP

Period 1 (kWh) 38.06 0.02 0

Period 2 (kWh) 11.13 0.01 0

Period 3 (kWh) 37.20 0 0

Period 4 (kWh) 47.93 0.63 0

Total (kWh) 134.32 0.66 0

Table 3.3: Commitment mismatch comparison between studied strategies.
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Figure 3.10: Comparison of electrical vehicles’ total instantaneous powers during the simula-
tion time.

pected during these two periods, as presented in Figure 3.3. In the third and the fourth
BRP imbalance settlement periods, EVs’ total consumption is lower than planned.
This is due to the under-production of PV energy during these imbalance settlement
periods. Unlike the centralized MILP optimization (which is fully deterministic here),
the proposed AMAS does not require aggregated input data in order to optimize the
system, nor it is assumed to know the future. Instead, the proposed AMAS is purely
reactive in nature. Electric vehicle agents do not make any predictions regarding the
future states and only react to the current state of the distribution network. However,
as it can be observed in Figure 3.3, the solution profile of AMAS still manages to
follow the path obtained by the deterministic MILP optimization solution for the to-
tal consumption of all EVs. It is a significant result as it confirms that the proposed
AMAS can produce near-optimal solutions only through its reactive approach without
knowing any future information. It should be noted that the oscillations through rapid
charging and discharging of an electric vehicle’s battery have not been penalized in the
proposed AMAS system and thus it may lead to faster battery degradation. To tackle
this problem a more sophisticated EV battery charging/discharging model along with
constraints on rapid charging and discharging of an EV battery can be designed. These
improvements will be a part of the future works.

Scalability

Comparisons of constraints’ satisfaction and optimality have put the proposed AMAS
strategy over the uncontrolled strategy in terms of optimizing the studied smart grid.
However, the MILP optimization strategy has performed better than the proposed
AMAS strategy in terms of optimality. But, in a real-life scenario, other dimensions
than just optimality must be considered when selecting an optimization strategy. This
dimension is the scalability of the selected optimization strategy. As in a practical
smart grid, one can expect the total number of EVs to be in the thousands, if not mil-
lions. Thus, the deployed optimization strategy should demonstrate scalability by be-
ing able to optimize a large-scale smart grid.

A comparison of practical computational requirements is made in Figure 3.11. The
comparison is made both in terms of computation time and memory requirements. The
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Figure 3.11: Comparison of computation time (left) and memory requirements (right).

presented curves are obtained by simulating each optimization strategy ten times for
each x-axis data point (i.e., the number of EVs in the network). In Figure 3.11, two
types of practical computational requirements assessments are reported for the AMAS.
Although the simulation study is performed on a single computingmachine, theAMAS
system is designed to be fully decentralized in a real-life (i.e., deployment) scenario.
It means each agent is supposed to have its own computing power, which would lower
the practical computational requirements of the AMAS through decentralization.

In terms of computation time requirements, the centralizedMILP strategy performs
better than the proposed AMAS strategy to carry out simulation studies when the total
number of EV agents is lower than 1000. However, the centralized MILP is combi-
natorial in nature and belongs to the NP (nondeterministic polynomial time) class of
optimization problems. The combinatorial nature of the centralized MILP results in its
inability to scale well. As seen in Figure 3.11, the centralized MILP optimization time
increases quadratically with the number of total EVs in the system. Thus, the stud-
ied centralized MILP optimization strategy may perform well on a small-scale system
with a few hundred EVs. But, it will not be able to produce real-time solutions when
applied to a large-scale smart grid. On the other hand, the optimization time increases
linearly when the proposed AMAS is utilized to perform simulation studies. Thus,
after 1000 EVs, the AMAS is outperforming the studied MILP strategy to carry out
simulations. The advantage of the proposed AMAS is even more apparent when a
real-life situation is assumed. In a real-life scenario, the centralized MILP would still
perform optimization on a single node. Whereas, a practical AMAS will utilize de-
centralized computing. Furthermore, the designed AMAS is reactive, and each agent
only requires milliseconds to complete its one-agent cycle. That is why the proposed
AMAS is always outperforming the centralized MILP, in Figure 3.11. The computa-
tion time of each agent type in AMAS is shown in Table 3.4. This is the expected time
taken by each agent type to complete its one agent cycle. The maximum time taken by
any agent type in Table 3.4 is in milliseconds. Thus, the designed AMAS is expected
to operate in real-time on a large-scale smart grid as the reported computation times
are independent of the size of the total number of agents in the system.

Memory complexities of the studied optimization strategies are also presented in
Figure 3.11. It can be seen that the AMAS is clearly outperforming the MILP strategy
in terms of the required memory. This is because the MILP strategy needs to process a
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Agent type
Computation time

per agent cycle (ms)

Line 0.003

Bus 0.004

BRP 0.064

EV 0.540

Table 3.4: Computation time of each AMAS agent type to complete one agent cycle.

large amount of input data to perform optimization. Whereas, the designed AMAS is
reactive and thus only requires input data corresponding to the current instant. That is
why a significant difference between the memory requirements of both optimization
methods can be seen in Figure 3.11. Based on the comparison of practical computa-
tional requirements, it can be concluded that the centralized MILP strategy can be a
good option for conducting small-scale simulation case studies. But if the intent is
to find a scalable optimization strategy (i.e., suitable for real-life implementation or to
simulate large-scale EV fleets), then the designedAMAS system is clearly outperform-
ing the MILP optimization strategy. It must be noted that a hierarchical system based
on MILP can be designed. However, such systems may still suffer from scalability
challenges as discussed earlier in Section 2.2. Such systems have not been modeled
and studied here as that was not the focus of this thesis.

It is important to mention that it is not a functional requirement for each line/bus
to have its sensor for the developed methodologies to work (i.e., estimations
could be performed as well). In addition, power/voltage measurements col-
lected by currently installed sensors (e.g. smart meters) could be used to limit
the need for additional sensors. Also, the system operator can install sensors at
key interest points in the network where congestion is more probable and thus
it will limit the number of total sensors required in the system (i.e., total cost of
the system).

Note 3.2.2

3.3 Pseudo-stochastic simulation-based experimentation

Introduction to pseudo-stochasticity
In the previous section, it was observed that the proposed AMAS produces a near-
optimal solution. However, in the performed simulation study, no stochasticity was
considered. Whereas in real-life scenarios, conditions are stochastic (e.g., stochasticity
in forecasted PV irradiance, or in load consumption etc.) [73]. Hence, it is crucial to
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study the impact of stochasticity on the proposed AMAS, which would help determine
if the designed AMAS can perform under real-life conditions. This would improve the
performance of AMAS under uncertain conditions. In this section, the impact of un-
certainties (stochasticity) in the forecasted PV energy production is studied. Only one
type of stochasticity (i.e., PV energy production) is studied here because the objective
is to find if there is a significant degradation in the performance of the designed AMAS
under stochasticity, and not to see the impact of each type of stochasticity on the de-
signed AMAS. If a significant degradation in the designed AMAS is observed, then it
should be improved (using novel approaches such as machine learning that would lead
to self-organization). Furthermore, instead of performing a stochastic analysis imme-
diately, a relatively simpler pseudo-stochastic analysis is performed on the designed
AMAS. If a reduction in the system’s quality is observed in the pseudo-stochastic
study, then one can directly work towards improving the system’s performance un-
der uncertainty. Otherwise, one can move towards performing stochastic studies if no
impact of pseudo-stochasticity is observed on the designed system.

Here, the impact of uncertainty in the PV irradiance forecast error is studied. This
error is directly linked to the forecasted PV energy production profile. Stochastic-
ity (or uncertainty) in a variable is associated with randomness. A random variable
is generally described as a variable whose possible outcomes are random (or non-
deterministic) in nature. The value of this variable is non-deterministic, and each pos-
sible outcome of this variable is associated with a probability. As stated above, instead
of stochasticity, the impact of pseudo-stochasticity on the designed AMAS is studied
in this section. In contrast to stochasticity, a variable’s pseudo-stochasticity involves
pseudo-randomness. A pseudo-random variable is a variable that appears to be ran-
dom but, in reality, is not. In fact, it is generated through a deterministic and repeatable
process.

Persistence model for pseudo-stochastic scenarios generation
The PV forecasting error was set to 10% in the simulation study of the previous section.
In this section, the PV irradiance forecasting error has not been set to any specific value.
Instead, it is modeled as a pseudo-random variable here. Thus, this variable can have
different values, and the impact on the designedAMAS can be observed for each value.
The persistence algorithm approach is used to generate values of this pseudo-random
variable (i.e., PV irradiance forecasting error). A persistence algorithm is a naive time
series forecasting algorithm that assumes the system remains unchanged. Thus the
values of the time series persist between the present and the future, i.e., predicted time
series values are equal to present time series values. The persistence model to predict
solar irradiance data can be defined as follows:

Irrp(t+ h) = Irrr(t) (3.15)

Persistence solar irradiance prediction model

In Equation (3.15), h represents the prediction horizon. Thus, this equation states
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that the predicted irradiance value at some future instant Irrp(t+ h) is equal to the real
irradiance value at the present instant Irrr(t). However, the goal is not to generate only
one solar irradiance prediction profile through the persistence model, but to generate a
number of pseudo-random persistence model profiles depending on the error that the
persistence prediction model may encounter. Thus, the following pseudo-stochastic
persistence solar irradiance prediction model is formulated:

Irrp(t+ h)n = Irrr(t) + Irrr(t)ef(t)
= Irrr(t) + Irrr(t) (ϱef(t− 1) + η)

(3.16)

Pseudo-stochastic persistence solar irradiance prediction model

In Equation (3.16), Irrp(t + h)n stands for the predicted irradiance value at time
(t + h) for generated pseudo-stochastic irradiance profile n. Term ef(t) represents the
error in the forecast. Based on different values of ef(t), one can obtain different solar
irradiance prediction profiles. The value of this forecasting error ef(t) is linked to its
value at the previous instant ef(t−1). This dependency is due to the periodicity present
in this time series forecasting error. The relationship between ef(t) and ef(t−1) can be
found through auto-correlation. Auto-correlation is used to calculate the correlation
(similarity) between a time series signal and a delayed copy of itself. Thus, auto-
correlation can help in identifying repeating patterns in a time series. In Equation
(3.16), ϱ represents the auto-correlation coefficient of the forecasting error with a copy
of itself delayed by a unit step. One can calculate ef(t) by using ϱ and ef(t − 1). The
values for ϱ and ef(t− 1) depends on the forecaster. Thus, one can utilize past data to
train and evaluate the performance of the modeled forecaster, which would result in
finding ϱ and ef(t − 1) for the modeled forecaster. Gaussian noise η is added to the
prediction model to emulate errors that may arise due to natural sources.

The persistence model is a naive forecaster, usually considered a baseline while
developing novel forecasters. Thus, it can be argued that a better forecaster
model can be used to generate pseudo-stochastic solar irradiance scenarios.
However, it must be noted here that the purpose of this pseudo-stochastic study
is not to model a state-of-the-art solar irradiance forecaster but to evaluate the
impact of inherent forecasting errors on the designed adaptive multi-agent sys-
tem’s performance. Therefore, a naive persistence prediction strategy will suf-
fice to perform the desired pseudo-stochastic study.

Note 3.3.1

Simulation-based experimentation settings
Simulation-based experimentation settings are kept the same as in Section 3.2 to per-
form pseudo-stochastic studies, i.e., studied optimization problem, distribution net-
work, parameters, implementations, and loads and EVs datasets are the same. The
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only change is in modeling the PV energy generation profile during the simulation
studies. As the forecasting error is a pseudo-random variable, different values of this
variable are used to generate different PV energy production scenarios. Simulation
studies are performed considering each scenario as the real-time PV energy produc-
tion input. The conducted simulation studies will help analyze the impact of forecast-
ing errors in PV energy production on the designed adaptive multi-agent system. The
generated pseudo-stochastic PV energy production profiles are presented as follows.

Pseudo-stochastic scenarios generation

Solar irradiance data from the National Renewable Energy Laboratory (NREL) are
used to generate pseudo-stochastic scenarios [133]. The temporal resolution of the
obtained data is one minute. The time horizon h in the persistence forecaster model is
set to 1440 (one day), i.e., the solar irradiance value at the present instant is the same
as it was yesterday at the same exact instant. Based on this setting, the persistence
solar irradiance prediction model, in Equation (3.15), is trained and evaluated on six
months of NREL solar irradiance data [133]. The obtained forecasting error and the
auto-correlation of this error during the evaluation phase of the forecaster are shown
in Figure 3.12.

Based on the results in Figure 3.12, the pseudo-stochastic persistence solar irradi-
ance prediction model, given in Equation (3.16), is modeled. The forecasting error’s
auto-correlation ϱ is set to 0.7. This value is obtained from the auto-correlation plot
in Figure 3.12 as the auto-correlation of the forecasting error with unit lag (i.e., de-
layed by a unit step) is equal to 0.7. To determine ef(t) in Equation (3.16), the value
of ef(t − 1) is also required. The value of ef(t − 1) is sampled from the probability
density function of the observed forecasting error during the evaluation phase. Based
on the sampled ef(t− 1), a number of pseudo-stochastic solar irradiance scenarios are
generated. These pseudo-stochastic scenarios are presented in Figure 3.13.

Figure 3.13 shows the present-day solar irradiance profile (solid line) during the
simulation time. The BRP uses this irradiance profile to calculate its day-ahead pro-
duction/consumption schedule. However, the real-time solar irradiance can differ
from its expected value the next day due to forecasting errors. A number of pseudo-

Figure 3.12: Auto-correlation of the forecaster error (left) and probability density function of
the observed forecasting error (right).
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Figure 3.13: Current day solar irradiance (solid line) and forecasted pseudo-stochastic solar
irradiance profiles (dotted lines).

stochastic solar irradiance scenarios are generated based on the varying amount of
forecasting errors (sampled from probability density function Figure 3.12). In Fig-
ure 3.13, these pseudo-stochastic scenarios (dotted lines) show how real-time solar
irradiance can vary compared to the expected solar irradiance profile (solid line) due
to forecasting errors. A number of simulations are performed to analyze the impact
of forecasting errors on the designed AMAS. In each simulation, one of the pseudo-
stochastic scenarios (dotted lines) in Figure 3.13 is selected tomodel the real-time solar
irradiance in the simulation. The remaining simulation conditions remain unchanged.

Evaluation metrics
The performance of the proposed adaptive multi-agent system is studied in terms of
optimality and constraints satisfaction here as well. The aim is to quantify the impact
of pseudo-stochasticity in PV forecasting error on the designedAMAS. The centralized
MILP optimization is used to determine the optimality lower bound. It must be kept in
mind that although the centralized MILP approach helps find the lower bound for each
pseudo-stochastic study here, in real-life it is not stochasticity-free. This is because an
error-free solar irradiance forecast is unlikely. Another essential objective is to see if
the pseudo-stochasticity results in constraint violations.

Results
A total of 20 pseudo-stochastic simulations are performed. The total simulation time
is one hour, i.e., four imbalance settlement periods. The obtained results of all pseudo-
stochastic simulations are presented and discussed below.

Optimality

The objective during each pseudo-stochastic simulation is the same, i.e., to minimize
the BRP commitment mismatch error during all four studied imbalance settlement pe-
riods. The obtained commitment mismatch values at the end of each imbalance set-
tlement period are shown in Figure 3.14 for each pseudo-stochastic simulation study.
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% of AMAS pseudo-

stochastic studies with

constraints violation

% of MILP pseudo-

stochastic studies with

constraints violation

Electrical line

congestion
50 0

Voltage limit

violation
35 0

Prosumer

desired SoC
0 0

Table 3.5: AMAS and MILP constraints satisfaction results of pseudo-stochastic simulation
studies.

It can be seen that the lower bound (MILP solution) is equal to zero for all pseudo-
stochastic studies. Thus, an optimal solution of null BRP commitment mismatch exists
for each study. However, the commitment mismatch values obtained through the de-
signed AMAS are not equal to zero (lower bound). Additionally, the commitment
mismatch value obtained by the AMAS for each pseudo-stochastic study differs. The
average total commitment mismatch of all 20 pseudo-stochastic studies is 133.63%
higher than that of the deterministic simulation study. This analysis confirms that the
optimality of the designed system can indeed be further improved under uncertainties.

Constraints satisfaction

While minimizing the BRP commitment mismatch, a set of constraints must be sat-
isfied. This set of constraints includes DSO constraints (no electrical line congestion
and voltage limits violation), and prosumers’ constraints. These constraints are given
in Equations (2.10), (2.11), and (2.17). A comparison of the constraints satisfaction
through the designed AMAS and the MILP is presented in Table 3.5. In the case of
pseudo-stochastic studies conducted using the centralized MILP optimization, there
are no constraint violations. However, when the same pseudo-stochastic studies are
performed using the designed AMAS platform, a significant number of constraint vio-
lations are observed (electrical line congestion in the line connecting sub-district SD1
to its district D1 and electrical voltage limit violation at the last bus of the sub-district
D1 in Figure 3.1). These constraints belong to the DSO’s set of constraints. Thus, the
stability of the network is observed to be compromised here if the designed AMAS
system is utilized. Half of the pseudo-stochastic simulation studies violated the DSO
line constraint. The observed electrical currents during these constraint violations are
4.76% higher than the rated current of the line on average. The voltage constraint vi-
olation is also observed in over one-third of the pseudo-stochastic simulation studies.
The average voltage during the occurrence of the voltage constraint violation is 0.21%
higher than its allowed limit value.

Based on the obtained optimality and the constraints satisfaction results in this sec-
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Figure 3.14: Obtained optimality (commitment mismatch) results for each pseudo-stochastic
study during period 1 (top), period 2 (second from the top), period 3 (third from the top), and
period 4 (bottom).
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tion, it can be confirmed that pseudo-stochasticity (hence stochasticity as well) has a
significant impact on the system of the designed AMAS in which agents lack antici-
pative abilities. This can be attributed to the designed AMAS utilizing only reactivity.
Each agent in the current AMAS is only reacting to the changes in its environment.
However, one can also model an AMAS agent to learn from the history of its interac-
tions. This change will result in an intelligent (and not only reactive) agent in nature
and is expected to perform better under real-life stochastic conditions than the currently
proposed adaptive multi-agent system.

3.4 Conclusion
This chapter presented a detailed evaluation of the proposed adaptive multi-agent sys-
tem in Chapter 2. The designed system was utilized to optimize the studied real-time
grid balancing optimization problem, and the obtained results were compared with
two other baseline strategies. These baseline strategies were the uncontrolled strat-
egy and the centralized MILP optimization strategy. The obtained results are summa-
rized in Figure 3.15. The presented Kiviat diagrams compare the performance of all
three studied strategies regarding their optimality, constraint satisfaction, and practi-
cal computational requirements (solution time and memory). It can be seen in Figure
3.15 that an uncontrolled strategy results in no computational requirements (being a
non-optimization strategy), but the system is not optimal. Furthermore, network insta-
bility is also observed when the uncontrolled strategy is followed, as DSO’s constraints
are not always satisfied. These issues are solved if the centralized MILP optimization
strategy is followed. However, the MILP optimization strategy does not scale well due
to high time and memory complexities. The proposed AMAS can help in achieving
the best of both worlds. It manages to satisfy all the required constraints while being
near-optimal. Additionally, being a decentralized system results in minimal time and
memory complexities. Thus, it puts itself forward as a strong candidate to optimize
practical large-scale smart grids in real-time.

The initial results obtained for the proposed AMAS were optimistic. However, the
simulation study was performed under deterministic conditions, which is not the case
in real-life. Thus, a pseudo-stochastic study was also designed and performed to evalu-
ate the performance of the presented AMAS under pseudo-stochasticity. The obtained
results showed that the designed AMAS does not perform as desirably due to the lack
of anticipative capabilities in its agents. This negative impact could hinder the adop-
tion of the adaptive multi-agent system from optimizing smart grids in real-life. Thus,
the following two chapters focus on one of the techniques (i.e., reinforcement learn-
ing) that can be used to minimize the impact of stochasticity on the designed adaptive
multi-agent system. The next chapter discusses a novel reinforcement learning-based
methodology to optimize smart grids in a decentralized manner.
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Figure 3.15: Kiviat diagrams comparing performances of the studied strategies: uncontrolled
(left), MILP (middle), and AMAS (right).
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Chapter 4

Decentralized multi-armed bandit for
smart charging under uncertainties

Such (easy to understand) are all truths, once they are found; but the difficulty lyeth in
finding them.

Galileo Galilei

Summary
In the preceding chapter, it was observed that a heuristic adaptive multi-agent system may

encounter performance degradation due to the absence of anticipative abilities in the decision-
making agents. It was deduced that incorporating reinforcement learning could enhance the
system’s performance, especially in dealing with uncertainties. This chapter progresses in that
direction by introducing a fully decentralized real-time smart grid control system, where agents
employ reinforcement learning to enhance solution quality under uncertainties. Specifically,
the agents in this developed system will utilize combinatorial multi-armed bandit learning.
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This chapter introduces the design of a reinforcement learning-based multi-agent
system for real-time smart grid control operations. It should be noted that the eventual
goal of this thesis is to develop a smart grid control system that integrates the principles
of adaptive multi-agent systems and reinforcement learning, specifically using combi-
natorial multi-armed bandit learning. However, a learning-based adaptive multi-agent
system differs significantly from a classical learning-based multi-agent system. In a
classical learning-based multi-agent system, each agent determines its estimated opti-
mal policy based on observed rewards from the environment. In contrast, in a learning-
based adaptive multi-agent system, each agent seeks its estimated optimal policy based
on the observed criticalities from its local environment, i.e., neighborhood. To ensure
clarity for readers from diverse backgrounds, we first present the design of a classi-
cal learning-based multi-agent system in this chapter to optimize the studied smart grid
problem. This system follows the well-established framework and terminologies com-
monly used in the literature related to the design of learning-basedmulti-agent systems.
Building upon the system proposed in this chapter, the final learning-based adaptive
multi-agent system will be introduced in the subsequent chapter. These two distinct
designs will also assist readers in distinguishing between a learning-based adaptive
multi-agent system and a classical learning-based multi-agent system.

This chapter begins with a discussion of the studied smart grid problem and its
mathematical formulation in Section 4.1. An introduction to the multi-armed bandit
problem is provided in Section 4.3, laying the groundwork for a comprehensive dis-
cussion of the proposed combinatorial multi-armed bandit-basedmulti-agent system in
Section 4.4. Finally, the conclusion of this chapter and motivation for the next chapter
are discussed in Section 4.5.

4.1 Studied smart grid problem
Multi-armed bandit is still a developing field, and the applicability of multi-armed
bandit for smart grid energy management has not been studied amply in the literature.
Thus, a relatively simpler (yet complex) smart grid optimization problem is studied in
this chapter compared to the grid balancing problem studied in the last two chapters.
Rather than directly applying multi-armed bandit to control electric vehicles (EVs) for
providing energy imbalance ancillary services (studied in Chapters 2 & 3), the problem
of smart charging of EVs is studied in this chapter. Hence, the basic idea is the same
i.e., control EV charging optimally. But, the objective function of each EV is different.
Here, the objective of each EV is to minimize its daily charging cost in the presence
of uncertain PV energy generation shared among all electric vehicles, and variable
electricity pricing.

Description
Smart charging can be defined as the process of intelligently controlling EV charging
to optimize its total energy consumption. In particular, EVs present in the distribution
grid can be utilized tomaintain the grid’s stability [103]. An aggregator can accumulate
the existing flexibility in the distribution grid and offer it to system operators and other
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Figure 4.1: Distribution grid operation with electric vehicles and aggregators.

electricity market agents, as shown in Figure 4.1. Aggregators can encourage EVs to
reduce their load demand during peak hours, and shift their charging to lower demand
periods. This control would ensure the distribution network’s stable operation [119].

The difference between smart charging and uncontrolled charging of EVs is de-
picted in Figure 4.2. The uncontrolled charging represents a worst-case scenario here
as it assumes that EVs charge at their rated powers as soon as their owners come back
home in the evening. It can be seen in Figure 4.2 that peak load demand occurs in
the case of an uncontrolled EV charging strategy. This would cause congestion in the

Figure 4.2: Difference between uncontrolled charging (top figure) and smart charging (bottom
figure) of EVs. These curves are obtained based on the electrical network described in Section
5.3.
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system. However, this peak demand may be avoided if a smart charging approach is
followed [99].

A relatively simpler way to encourage EVs is through dynamic electricity pricing
[96]. The stress on the electrical grid can be reflected through different price levels
throughout the day. A higher load demand would correspond to a higher offered elec-
tricity price during a particular period. Thus, each EV would be encouraged to shift its
charging hours to reduce its daily cost. This demand shift would lower stress on the
distribution grid during peak hours. This mechanism establishes a fair trade between
DSOs and EVs, with each aggregator acting as an intermediate party. However, this
more straightforward price-based strategy has drawbacks in a decentralized environ-
ment.

Dynamic price-based charging strategy

This is a rule-based charging strategy. The objective of each EV is to minimize its
daily charging cost. This can be performed easily by following Algorithm 4.1. The
algorithm executes in three steps:

• The algorithm starts with each EV receiving the daily dynamic electricity price
profile c(t).

• Then, each EV selects its best-charging instants I (charging instants with the
lowest prices). The number of selected instants ||I||1 should be equal to the
number of charging instants required to achieve the desired state of charge Ireq,
assuming charging at EV’s rated power.

• Finally, EV e charges at its rated power Pe,a,max during the selected instants.

Algorithm 4.1 Dynamic price-based charging (each EV)
Require: Received daily dynamic electricity pricing signal for each instant c(t)
Require: Total charging instants required to achieve the desired SoC Creq
Require: Rated charging power of EV Pe,a,max
1: tarrive := EV’s arrival time
2: tdepart := EV’s departure time
3: Find I = argmint c(t) s.t. ||I||1 = Creq & I ∈ [tarrive, tdepart)
4: Charge during the selected I instants

Indeed, this algorithm may work (satisfy all prosumers and DSOs) if not all EVs
receive the same dynamic electricity price signal [155]. However, to ensure fairness
among different EVs, the responsible aggregator must gather additional information
from EVs (such as their arrival times and departure times). This approach would form
a centralized model, which would suffer from the inherent drawbacks of centralization
[3]. In a decentralized setting, when each EV is observing the same dynamic electricity
price signal and trying to minimize its daily charging cost by executing Algorithm 4.1,
the desired grid stability is not guaranteed. It is because all EVs would start charging
during lower electricity price periods, which would simply shift the peak load demand
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Figure 4.3: Dynamic price-based charging of EVs. These curves are obtained based on the
electrical network described in Section 5.3.

to new instants during the day rather than eliminating it. This phenomenon is known as
the avalanche effect [45], and it is visible in Figure 4.3. Thus, compared to Algorithm
4.1, a more sophisticated decentralized algorithm is required.

Impact of PVs

The presence of photovoltaics (PVs) in modern electrical grids increases the degree
of challenges [146]. The penetration of PVs is growing in the form of modern photo-
voltaic power stations [165]. Electric vehicles can utilize the electrical energy gener-
ated from these PV stations without any monetary cost [25], [180], [195]. This could
reduce the stress on the grid and the operation of fossil fuel power stations. How-
ever, instantaneous energy generation from PVs depends on various technological and
environmental factors; thus, it is intermittent [73]. This intermittency increases the
complexity of the studied smart charging problem, as uncertainty in PV energy pro-
duction can not only increase the total daily charging costs of EVs, but also affect
the grid’s stability (in case of significant forecasting errors) [101]. Thus, EVs must
learn the uncertainty in this freely offered PV energy. In the following sub-section,
the studied smart charging problem is described mathematically.

Mathematical formulation
The studied smart charging problem can be descriptively summarized as follows:

• Objective: The objective is to minimize the daily charging cost of each EV in
the distribution grid. Indeed, this can be achieved by charging EVs at cheaper
electricity prices instant during the day. Furthermore, it is assumed in this study
that each EV can utilize the energy generated by PV power stations without
paying any cost. Thus, this freely available PV energy should be used to the
maximum extent.

• Constraints: A set of constraints must be satisfied in the studied smart charging
problem. First of all, the network should remain stable at all times to meet the
DSO constraints. These constraints include no electrical current congestion,
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and no voltage limit violation. Secondly, the constraints of prosumers must be
satisfied as well. These constraints include sufficient charging of each EV before
its departure. Some physical constraints (i.e., general load flow constraints, and
constraints related to the state of each EV’s battery) must also be followed.

Objective function modeling

There are E EVs in the studied distribution grid. Each day d, each EV makes the deci-
sion of charging (or not charging) from the grid at each instant t. Each instant t ∈ [0, n]
is associated with an instantaneous electricity price c(t). The charging power of EV
e, connected to bus a, at instant t, is represented by the variable Pe,a(t) ∈ [0,Pe,a,max],
where Pe,a,max is the rated charging power of EV e, which is connected to bus a. This
variable (i.e., Pe,a(t)) is the decision variable of the studied optimization problem. Fur-
thermore, Δt is the resolution (duration of each decision interval i.e., second, minute,
hour, etc.) of the optimization problem. The daily charging cost of EV e, connected
to bus a, is given by Ce,a(d) on the d-th day. The described objective function can be
written mathematically as stated in Equation (4.1):

min
Pe,a(t)

E∑
e=1

Ce,a(d) = min
Pe,a(t)

E∑
e=1

n∑
t=1

c(t)Pe,a(t)Δt

−
E∑

e′=1

E∑
e=e′+1

|Ce′,a,pu(d)− Ce,a,pu(d)|
(4.1)

Smart charging problem’s objective function

The right-hand side of the given objective function comprises two terms. The first
term depicts the total daily charging cost paid by each EV. The second term takes the
fairness among EVs into account, by making sure that the differences among per-unit
charging costs (cost per energy unit) of all EVs are minimized. The per-unit charging
cost Ce,a,pu(d) of EV e for day d is calculated as:

Ce,a,pu(d) =
∑n

t=1 c(t)Pe,a(t)Δt∑n
t=1 Pe,a(t)Δt

. (4.2)

It should be emphasized that incorporating this additional term to address fairness
within the objective function is but one of several available options, including lexico-
graphic optimization, Pareto optimization, and multi-objective optimization, among
others. Furthermore, the described minimization of differences among per-unit charg-
ing costs of all EVs is formulated as a soft constraint, and not as a hard constraint in
this smart charging problem. This is because per-unit charging costs depend on the ar-
rival and departure times of EVs. It is possible that an EV may not be connected to the
grid during cheaper electricity price instants, and thus its per-unit charging cost may
not be as low as other EVs, that were present in the network during cheaper electricity
price instants.
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Constraints’ modeling

The set of hard constraints comprises the physical constraints of the distribution net-
work, the constraints of DSOs, and the constraints of prosumers. It is required that
the power flows in any electrical distribution must obey Ohm’s law (i.e., voltage =
current ∗ resistance) [67]. These constraints are stated in Equations (4.3)-(4.7):

Pa(t) = Pa,gen(t)− Pa,dem(t) (4.3)

Qa(t) = Qa,gen(t)− Qa,dem(t) (4.4)

Pab(t) + iQab(t) = Va(t) (V∗
a(t)− V∗

b(t)) Y∗
ab (4.5)∑

b

Pab(t) = Pa(t) (4.6)∑
b

Qab(t) = Qa(t) (4.7)

Distribution network’s physical constraints

Instantaneous active power Pa(t) at bus a is equal to the difference between total
generated Pa,gen(t) and total demanded power Pa,dem(t). A similar equation can be
modeled for instantaneous reactive powers Qa(t) at each bus a. Equation (4.5) relates
voltages at bus a and bus b ( i.e., Va(t) and Vb(t) respectively) with admittance matrix
Y∗
ab of electrical line between bus a and bus b. Equations (4.6) and (4.7) make sure that
the inflow of powers is equal to the outflow of powers at each bus.

In a smart grid, distribution system operators (DSOs) are responsible for keeping
the grid stable by following its set of constraints [107], [153]. These constraints are
given in Equations (4.8)-(4.11):

Iab(t) ≤ Iab,max (4.8)

Va,min ≤ |Va(t)| ≤ Va,max (4.9)

Pa(t) ≤ Pa,max(t) (4.10)

Qa(t) ≤ Qa,max(t) (4.11)

Distribution network operator’s constraints

There should not be any congestion in a smart grid, as well as voltage magnitudes
should remain within a suitable range. The congestion constraint is given by Equation
(4.8), which states that the root-mean-square current flowing through the electrical line
between bus a and bus b should not be greater than its rated value. The magnitude of
the instantaneous root-mean-square voltage at each bus Va(t) is also bounded between
a maximum value Va,max, and a minimum value Va,min, Equation (4.9). Distribution
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system operators (DSOs) or energy providers must also limit the instantaneous power
drawn at each bus a in the network, Equations (4.10) & (4.11).

The state of charge (SoC) of a battery is the level of charge of an electric battery
relative to its capacity. It is generally expressed as a percentage. The satisfaction
of each prosumer is a constraint as well in this optimization problem. Each electric
vehicle (EV) e, connected to bus a, should have a pre-defined minimum state of charge
SoCe,adepart at its departure time te,a,depart. This constraint would allow each EV owner
to have a smooth journey. Additionally, to slow down battery degradation, there are
bounds placed on the state of charge (SoC) of each EV [55]. The SoC of each EV
SoCe,a(t) should be between a set maximum SoC value SoCe,amax, and a set minimum
SoC value SoCe,amin. The instantaneous SoC value of a battery depends on its past
instant’s SoC value, its capacity Ee,a,bat, its charging/discharging efficiency ηe,a, and its
instantaneous charging power Pe,a(t). The state of health (SoH) of an electric vehicle
SoHe,a(t) should also be a positive integer. The SoH variable of the battery aids in
determining how much it has degraded over time. Its range of values is 0 to 1. In this
formulation, the end-of-life of a battery is defined as a capacity fade of 20%. An EV
battery must be replaced when it reaches the end of its useful life. Term Ee,atp stands
for the energy throughput of an EV battery. It is defined as the total amount of energy
that batteries can store and discharge during their lifetime. The throughput of a battery
depends on its capacity, its efficiency, its cycle life, and its depth of discharge. These
prosumer constraints are listed as follows in Equations (4.12)-(4.14):

SoCe,amin ≤ SoCe,a(t) = SoCe,a(t− 1) +
Pe,a(t)ηe,aΔt

Ee,a,bat
≤ SoCe,amax (4.12)

SoHe,a(t) = SoHe,a(t− 1)− Pe,a(t)Δt
0.2Ee,a,tp

> 0 (4.13)

SoCe,a(te,a,depart) ≥ SoCe,adepart (4.14)

Prosumer’s constraints

Now that the targeted smart charging problem has been defined, different opti-
mization techniques can be applied to solve the stated problem. In the upcoming sub-
section, the concepts of multi-armed bandit are introduced.

4.2 Relevant research and scope
Related work

Electric vehicle control solutions have been extensively studied in recent years to pro-
vide support to the grid. A centralized control strategy to minimize the total charging
costs of electric vehicles is presented in [194]. Constraints of prosumers have been
considered in the mentioned study. However, no DSO constraints were considered.
In [127], the voltage stability constraint of the DSO has been considered. However,
limits on the electrical current in network lines have not been considered. Charging
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cost minimization of EVs has been achieved using stochastic mixed integer linear pro-
gramming in [149]. However, the architecture of the proposed solution is centralized.
The control solutions in [194], [127], and [149] may lack scalability in real-life due to
their centralized solution architecture.

In [100], a hierarchical MAS has been proposed to find optimal charging strategies
for electric vehicles. No distributed energy resources were considered in this study.
A hierarchical MAS is presented in [81] to control the EV charging while avoiding
congestion in the system. Hierarchical MAS based on heuristic control has also been
developed in [75] tominimize the cost of supporting amicro-grid using EVs. However,
no DSO constraints were considered in this study. In [142], a hierarchical agent-based
control system to coordinate the charging of EVs has been presented. A hierarchical
MAS based on quadratic optimization has also been studied in [126] to incorporate
demand response and coordinated charging of EVs in distribution networks. However,
these hierarchical solutions in [100], [81], [75], [142], and [126] may still suffer from
inherent drawbacks of centralization to some extent.

An internet-inspired scalable MAS has been proposed in [175] to optimize the
charging of EVs. However, the proposed system requires an accurate model of the
distribution system for its functioning. For a number of proposed decentralized MAS
solutions to work, an accurate distribution system model must be available. These
necessary models are frequently inaccurate or completely unknown, which makes it
difficult or impossible to use these methods in a real-world situation. To tackle this
issue, a model-free adaptive MAS based on reinforcement learning has been presented
in [207] for optimal charging of electric vehicles to maintain the grid’s stability. An
adaptive decentralized MAS has been developed in [57] by defining simplistic actions
for each EV agent. However, no DSO constraints have been considered in their study.
Multi-armed bandit-based systems have also been proposed to control the charging of
EVs in [117] and [199]. However, the architectures of both these systems are not fully
decentralized.

Scope

The scope of the studied smart charging problem is defined in Figure 4.4. The con-
tributions and limitations of the proposed solution become more apparent through the
proper definition of its scope.

More focus is given to architecture, scale, control’s temporal resolution, consid-
ered constraints, stochasticity, and comparison aspects in this dissertation, as shown in
Figure 4.4. To tackle the potential drawbacks of centralization, the architecture of the
proposed system is modeled to be decentralized. The designed decentralized system
should be able to optimize smart grids of large scale (>10,000 EVs). Additionally, it
should be able to perform this control in real-time to tackle instantaneous uncertain-
ties arising from DERs. The developed decentralized system should also consider grid
constraints and prosumer constraints while performing optimization. Furthermore,
full stochasticity (and not pseudo-stochasticity) is considered in daily PV energy pro-
duction. In this studied problem, the comparison between the proposed system and
other baseline strategies is made both in terms of optimality and scalability.

A comparatively lower focus is given to the DERs, evaluation, charging technol-
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Figure 4.4: Scope of the studied smart grid problem in this chapter.

ogy, and heterogeneity aspects in this study, as shown in Figure 4.4. Only the penetra-
tion of PVs asDERs is considered at the distribution level in this studied problem. For
evaluation, simulation case studies are performed. Only controlled grid-to-vehicle
(G2V) charging technology is considered here. It is a first-stage assumption as this
study is the first to propose a fully decentralized smart charging system that uses the
concepts of combinatorial multi-armed bandit, to the best of the author’s knowledge.
Thus, the goal here is also to evaluate the optimality of just using controlled G2V tech-
nology and the need for controlled V2G technology for decentralized smart charging.
Heterogeneity is related to the diversity of electric vehicles present in a smart grid. Hy-
brid EV models are considered in the simulation case studies here. Hybrid means that
EVs have heterogeneous characteristics (initial SoC, arrival time, departure time, and
battery capacity) as well as some homogeneous characteristics (charging efficiency,
desired final SoC, and rated charging power). However, the developed system is ex-
pected to work efficiently even if all EVs are fully heterogeneous.
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4.3 Introduction to multi-armed bandit
The multi-armed bandit problem is a subclass of reinforcement learning, that comes
under artificial intelligence’s umbrella. Artificial intelligence (AI) can be defined as
any technique that would enable computers to mimic human intelligence [6]. Machine
learning (ML) is a subset of AI, that utilizes data or statistics-based algorithms to
improve the system’s performance over time, by replicating how humans learn. It can
be further divided into three main categories [151]:

• Supervised machine learning

• Unsupervised machine learning

• Reinforcement machine learning

Supervised machine learning

Supervised learning is a process of inputting properly labeled data, along with the
correct outputs, to train the machine learning algorithm for proper classification of the
data, or to predict an outcome. The learning model adjusts its parameters, based on
the input data. The training process is finished when the fitting is complete i.e., no
significant change in the parameters is observed. This type of process can be used to
group a large quantity of data into different sets (classification), as well as to predict
an outcome by understanding the relationship between different variables (regression)
[132]. Some of the most commonly used supervised learning algorithms include k-
nearest neighbor, naïve Bayes, linear regression, logistic regression, random forest,
decision trees, and support vector machine (SVM) [34]. These learning algorithms
have found extensive applications in real-life problems such as, customer retention
[157], spam electronic-mail classification [152], weather forecasting [202], and fraud
detection [48].

Unsupervised machine learning

Unsupervised learning algorithms are used to learn hidden patterns by analyzing and
clustering unlabelled input data. Unlike supervised learning, the input data is not prop-
erly labeled, and does not consist of correctly mapped outputs. The learning algorithm
itself finds the differences and similarities among the input data. Commonly used un-
supervised machine learning algorithms include k-means clustering, association rules,
and probabilistic clustering [17]. These algorithms are being used in different practical
applications including data analysis [22], pattern recognition [33], image recognition
[191], and customer segmentation [173].

Reinforcement machine learning

Reinforcement machine learning algorithms are designed to imitate the learning abili-
ties of humans through experiences. Similar to a child learning the difference between
a bad action and a good action, and hence navigating through life with the goal of
making the most amount of good actions; a reinforcement learning algorithm learns to
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differentiate between a good action and a bad action through its interactions with its
environment [166]. Every good action results in a positive reward for the learning al-
gorithm, and the goal is tomaximize the running sum of these observed rewards. These
algorithms are now being deployed to tackle learning tasks such as, in self-driving cars
[104], in the navigation of robots [206], in playing games [185], or in making real-time
decisions [201].

Reinforcement learning algorithms are beneficial especially when sufficient
data is unavailable to reasonably carry out supervised or unsupervised learn-
ing (i.e., a perfect oracle is unknown), which is generally the case in smart grid
control.

Note 4.3.1

Reinforcement learning can be further divided into the following categories [161]:

• Standard reinforcement learning

• Multi-armed bandit learning

To understand the differences between standard reinforcement learning and multi-
armed bandit learning, some essential elements of any reinforcement learning problem
are defined below:

Definition 4.3.1 (Agent). An agent is a computer program that performs dif-
ferent tasks continuously and autonomously, on behalf of humans.

Definition 4.3.2 (Environment). The environment of an agent consists of ev-
erything that surrounds the agent and with which it interacts.

Definition 4.3.3 (Reinforcement learning agent). A reinforcement learning
agent is a computer program that interacts with the environment through its
actions, and it receives rewards based on its actions.

Definition 4.3.4 (State). The state of a reinforcement learning problem is de-
fined as all the observations that the learning agent receives from its environ-
ment at a given time.

Definition 4.3.5 (Action). The action of a reinforcement learning agent is the
mean through which it can interact with its environment.

Definition 4.3.6 (Reward). The reward in a reinforcement learning problem is
the signal that a learning agent receives from its environment based on its action
at a given time.

Reinforcement learning definitions
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Figure 4.5: Agent-environment interaction in standard reinforcement learning.

In both types of reinforcement learning, the basic idea is the same i.e., the learning
agent interacts with its environment through actions, and the goal of the agent is to
maximize its cumulative reward. However, the main difference exists in the frame-
work of both types. In standard reinforcement learning, the problem is formulated as
a Markov decision process (a problem that satisfies the Markov property) [166]. The
Markov property is the memory-less property for stochastic processes, which can be
simply defined as: the future is only dependent on the present and not the past. In
standard reinforcement learning, it is assumed that the action made by the agent can
transition the existing state of the environment. Thus, the learning agent holds the in-
formation regarding the current state of the environment, the action made by the agent,
the observed reward, and the next state of the environment, as shown in Figure 4.5.
This enables the agent to handle more complex problems such as, playing games [185],
navigation in real-world [104], and making complex decisions in real-time [201]. The
most commonly used standard reinforcement learning algorithms include Q-learning,
SARSA, policy gradient, deep Q-learning, and actor-critic algorithms [166].

In contrast, multi-armed bandit (MAB) learning is a simpler sub-class of reinforce-
ment learning [161]. The goal of a multi-armed bandit agent is the same i.e., to maxi-
mize its cumulative reward by finding the best possible action(s) through interactions
with its environment. However, in the simplest multi-armed bandit setting, it is as-
sumed that an environment holds only a single state, and an agent’s action does not
change the existing state of its environment. This is shown in Figure 4.6. Hence, multi-
armed bandit algorithms belong to a simpler subset of the Markov decision process,
resulting in a better theoretical understanding and convergence guarantees of existing
MAB algorithms than the current standard RL algorithms with function approxima-
tions.

k-armed bandit problem
The multi-armed bandit problem, also called the k-armed bandit problem, consists of
a learning agent repeatedly selecting an action a, from a set [A] of available k number
of actions. At a given time, the selected action generates a reward r ∈ R, which is
sampled from a stationary probability distribution associated with the selected action.
The goal of a learning agent is to maximize its cumulative reward by playing the best
available action. This is termed as exploitation. In the described setting, a learning
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It is important to keep in mind that, despite the fact that the most simplistic
multi-armed bandit scenario is shown here with only one environment state. It
is possible to model more advanced multi-armed bandit settings (i.e., switching
bandits, adversarial bandits, and non-stationary stochastic bandits) in which the
environment is allowed to have state transitions [70], [12], and [5]. Therefore,
it’s important to dispel the misconception that MAB can only have one state.

Note 4.3.2

Figure 4.6: Agent-environment interaction in multi-armed bandit learning.

algorithm observes the reward for its selected action only, and not for the actions that
were not selected. Therefore, a learning algorithm needs to go through an exploration
phase. During this exploration phase, a learning algorithm may try different actions
to learn the expected outcome (reward) of selecting each action. Thus, this learning
algorithm is faced by the exploration-exploitation dilemma: to continuously explore
by selecting different actions, but to exploit the already learned information as well by
selecting the expected best action [166]. The name, multi-armed bandit, comes from
the scenario faced by a gambler [183], shown in Figure 4.7. In Figure 4.7, there are k
slot machines available. Each slot machine follows a reward distribution unknown to
the player (gambler). Our player (gambler) can play any available slot machine and
receive a reward value. Thus, the goal of our player (gambler) is to find, as soon as
possible, the slot machine with the highest estimated reward value.

Generally, multi-armed bandit learning algorithms are expected to exhibit faster
convergence rates in comparison to other widely used reinforcement learning
algorithms that employ function approximations, like deepQ-learning. In prac-
tical smart grid control applications, where access to a perfect oracle is limited,
and agents must interact with their environment in an online manner to esti-
mate the best policy, this faster convergence becomes highly advantageous as
it directly translates to increased economic benefits.

Note 4.3.3

Multi-armed bandit algorithms can be sub-categorized depending on the choice
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Figure 4.7: Multi-armed bandit framework: exploration vs. exploitation dilemma.

of different design variables, such as the type of feedback from the environment, the
reward model, and the availability of any contextual information:

• Feedback: The feedback observed by a learning algorithm can be divided into
three main types: bandit feedback, when only the reward for the selected action
is observed by our learning algorithm; full feedback, when the rewards for all
available actions are observed; semi-bandit feedback, when some extra infor-
mation along with the reward for the selected action is revealed [161].

• Reward model: The reward (in stochastic bandit) is considered to be sampled
from a stationary probability distribution depending only on the selected action
i.e., i.i.d (independent and identically distributed) reward. The reward (in ad-
versarial bandit) can also come from an adversary trying to minimize the reward
of our learning algorithm i.e., adversarial reward [12].

• Contextual information: There may be additional information available be-
forehand that can assist a MAB learning algorithm in picking the best possible
action i.e., contextual bandit [120]. This approach is in contrast to the situations
when no extra information is available to improve the decision-making in bandit
i.e., non-contextual bandit.

Multi-armed bandit algorithms have found practical applications in different do-
mains. They can be used in training a robot to manage a variety of tasks such as, ad-
vertisement [114], recommendation system [31], Internet communication [44], [205],
[121], and smart grid optimization [94], [38]. To better understand the functionality of
different existingmulti-armed bandit algorithms, some critical definitions are required.
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Definition 4.3.7 (Expected reward). In stochastic bandit with i.i.d. rewards,
the reward is considered to be sampled from a stationary probability distribu-
tion. Thus, the expected reward Q(a) of selection action a is defined as:

q(a) = E[r|a] (4.15)

Definition 4.3.8 (Learning objective). The training in bandit is generally on-
line. During each round of play t = 1, 2, 3, ..., T, the learning algorithm selects
an action, and observes the corresponding reward r(t) for that round. The learn-
ing objective of the bandit algorithm is to maximize the cumulative reward i.e.,∑T

t=1 r(t).

Definition 4.3.9 (Optimal action). The optimal action a∗ is defined as the action
that would generate the maximum expected reward. It can be mathematically
written as:

a∗ = argmax
a∈A

q(a) = argmax
a∈A

E[r|a] (4.16)

Hence, the learning objective of a MAB algorithm is to find this optimal action
a∗.

Definition 4.3.10 (Optimal expected reward). The optimal (best) expected re-
ward for selecting the action a∗ during one round of play is given as:

q∗ = max
a∈A

q(a) = max
a∈A

E[r|a] (4.17)

Definition 4.3.11 (Optimal policy). The optimal policy π for any multi-armed
bandit problem is the policy that maximizes the learning agent’s cumulative
reward during T rounds of play.

Multi-armed bandit definitions
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Definition 4.3.12 (Expected pseudo-regret). The performance of any multi-
armed bandit algorithm can be evaluated based on the pseudo-regret of the al-
gorithm. The expected pseudo-regret R(T) is defined as the difference between
the cumulative expected reward q∗ of always selecting the optimal action a∗,
and the cumulative expected reward during T rounds of the algorithm’s learn-
ing. The term a(t) represents the action selected during round t. The expected
pseudo-regret can be written as:

E[R(T)] = max
a∈A

E

[
T∑

t=1

q(a)−
T∑

t=1

q(a(t))

]

= Tq∗ − E[
T∑

t=1

q(a(t))]

(4.18)

Generally, sub-linear regrets are expected from good multi-armed bandit al-
gorithms i.e., E[R(T)]/T −→ 0. The expected pseudo-regret will be null when
the optima action a∗ is selected during all T rounds of play by the learning algo-
rithm. The theoretical pseudo-regret lower bound of MAB algorithms is given
in [109].

Definition 4.3.13 (Expected precision). Another interesting metric to bench-
mark the performances of different multi-armed bandit algorithms is the ex-
pected precision of the algorithm. The expected precision is the expected num-
ber of times, the optimal action a∗ is selected. It is defined as:

E[P(T)] =
1
T E

[
T∑

t=1

11{a(t) = a∗}

]
(4.19)

The precision value ranges between 0 (optimal action is never selected) and 1
(optimal action is always selected).

Multi-armed bandit definitions (cont’d)

Frequentist bandit learning
There exists a wide variety ofmulti-armed bandit algorithms. The choice of a bandit al-
gorithm to tackle a problem depends on the problem itself, its constraints, and available
additional information. Frequentist bandit learning is a popular learning approach. In
frequentist learning, it is assumed that the repetitive sampling from a population would
help in finding the single true value of the parameter governing that population [134].
Some of the most commonly used frequentist bandit algorithms are explained as fol-
lows. In later sections, these algorithms will serve as the base for developing more
complex bandit algorithms for smart grid optimization.

119



Uniform exploration

This algorithm works on the philosophy of first exploration, then exploitation [161].
Uniform exploration bandit learning algorithm will try each action a, from the set of
all available actions [A], a fixed N number of times at the beginning of its learning
phase. After each action has been tried N number of times, our learning algorithm will
select the action with the highest expected reward in its remaining playing rounds.
The functionality of the uniform exploration algorithm is summarized in Algorithm
4.2. The algorithm goes through three main stages i.e, exploration phase, finding the
estimated optimal action, and the exploitation phase. TermsNt(a), andQt(a) represent
the number of times action a has been selected, and the estimated expected reward of
action a, at the end of round t. During the exploration phase, the algorithm selects
each action N number of times. The reward r(t) is observed for the selected action a,
in round t. Afterward, the estimated reward of the selected action is updated based on
the observed reward. The estimated reward is calculated by simply taking the average
of all observed rewards:

Qt(a) =
r(1) + r(2) + r(3) + ...+ r(Nt(a))

Nt(a)

=
1

Nt(a)

Nt(a)∑
t=1

r(t)
(4.20)

The drawback of this simplistic calculation in Equation 4.20 is that the history of past
observed rewards is required. This means that the memory and computational require-
ments are unbounded and will increase over time. However, this can be easily handled
through incremental updates: updateQt(a) after each round, and then use this updated
Qt(a) in the next round to calculate Q(t+1)(a) [166]. It is, in fact, derived using the
equation 4.20:

Qt(a) =
1

Nt(a)

Nt(a)∑
t=1

r(t)

=
1

Nt(a)

r(Nt(a)) +
Nt(a)−1∑
t=1

r(t)


= Q(t−1)(a) +

1
Nt(a)

(r(t)− Qt(a))

(4.21)

The uniform exploration multi-armed bandit algorithm holds regret bound
E[R(T)] ≤ T2/3O(k log T)(1/3), when N = T2/3O(k log T)(1/3) [161]. The O(.)
stands for the big O notation which studies the limiting behaviors of func-
tions/algorithms.

Note 4.3.4
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Algorithm 4.2 Uniform exploration
Require: Total number of arms (actions) k
Require: Number of times each action should be selected during exploration N
1: N(a) := 0
2: Q(a) := 0

▷ exploration phase
3: for t = 1, 2, 3, ..., (k ∗ N) do
4: for a = 1, 2, 3, ..., (k) do
5: if N(a) < N then
6: Select action a
7: Observe reward r(t)
8: N(a) := N(a) + 1
9: Q(a) := Q(a) + 1

N(a)(r(t)− Q(a))
10: end if
11: end for
12: end for

▷ Finding the estimated optimal action
13: Find the estimated optimal action â∗ := argmaxaQ(a) (arbitrary tie braking)

▷ exploitation phase
14: for t = (k ∗ N) + 1, (k ∗ N) + 2, (k ∗ N) + 3, ..., T do
15: Select action â∗
16: end for

Epsilon-greedy

The main drawback of the uniform exploration algorithm is that the length of the ex-
ploration phase is critical in determining the expected precision of the algorithm. A
fairly large value of N could decrease the cumulative reward of the learning algorithm.
This can be handled using the epsilon-greedy approach [166]. In computer sciences,
a greedy approach is an approach that selects the best short term option. Hence, in-
stead of forcing exploration only at the beginning of the learning, the algorithm is
encouraged to explore, with a fixed (but low) probability ε, throughout its duration
of operation. The ε-greedy algorithm is summarized in Algorithm 4.3. Initialization
of the ε-greedy algorithm is similar to the uniform exploration algorithm (Algorithm
4.2), but with an additional parameter ε. At the beginning of each round, the ε-greedy
algorithm samples a random value from a uniform distribution U(0, 1). If this sam-
pled random number is lower than the input ε, then an action is selected at random.
Otherwise, the action with the highest expected reward value is selected. At the end
of each round, a reward is observed for the selected action, and Q(a) is updated.

The presented epsilon-greedy multi-armed bandit algorithm achieves regret
bound E[R(t)] ≤ t2/3O(k log t)(1/3), when ε = t−1/3(K log t)1/3 [161].

Note 4.3.5
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Algorithm 4.3 Epsilon-greedy
Require: Total number of arms (actions) k
Require: Exploration probability ε
1: N(a) := 0
2: Q(a) := 0
3: for t = 1, 2, 3, ... do
4: α ∼ U(0, 1)
5: if α < ε then

▷ exploration phase
6: a(t) := Select a random action a
7: else

▷ exploitation phase
8: a(t) := Select the action argmaxaQ(a)
9: end if
10: Observe reward r(t)
11: N(a(t)) := N(a(t)) + 1
12: Q(a(t)) := Q(a(t)) + 1

N(a(t))(r(t)− Q(a(t)))
13: end for

Epsilon-decay

It is evident that the uniform exploration (Algorithm 4.2), and the ε-greedy algorithm
(Algorithm 4.3) do not achieve a sub-linear regret. This is due to continuous explo-
ration throughout the lifespan of this learning algorithm. This problem can be solved
by decreasing the ε-greedy algorithm’s learning rate as time progresses [166]. This is
achieved by decreasing the ε value with time. The functioning of the ε-decay algorithm
is presented in Algorithm 4.4. Compared to Algorithm 4.3, the main difference is that
the ε value is dependent on the time here. With time, estimations of our learning algo-
rithm regarding the return of each arm are expected to become more solid. Hence, the
exploration is desired to decrease. Here, the exploration is controlled using the learn-
ing parameter c. This parameter is directly proportional to the degree of exploration
of the presented ε-decay algorithm, Algorithm 4.4. If a higher value of c is given, then
the algorithm will perform more exploration, but the exploration cost of the algorithm
will increase as well. On the other hand, the exploration cost can be reduced through
a lower value of c, but this will reduce the degree of exploration as well.

Upper confidence bound

Upper confidence bound (UCB) is the most well-known multi-armed bandit algorithm
[11] . The philosophy behind this algorithm is: optimism in the face of uncertainty.
In UCB, the optimal action is selected according to the following rule, derived using
Hoeffding’s inequality [79]:

a(t) = argmax
a∈A

(
Q(a) + c

√
log t
N(a)

)
(4.22)
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Algorithm 4.4 Epsilon-decay
Require: Total number of arms (actions) k
Require: Exploration parameter c
1: N(a) := 0
2: Q(a) := 0
3: for t = 1, 2, 3, ... do
4: ε = c

c+t
5: α ∼ U(0, 1)
6: if α < ε then

▷ exploration phase
7: a(t) := Select a random action a
8: else

▷ exploitation phase
9: a(t) := Select the action argmaxaQ(a)
10: end if
11: Observe reward r(t)
12: N(a(t)) := N(a(t)) + 1
13: Q(a(t)) := Q(a(t)) + 1

N(a(t))(r(t)− Q(a(t)))
14: end for

The first part of Equation 4.22 encourages exploitation by utilizing the already ob-
tained knowledge of the environment. The action with the highest estimated return will
be selected, if only this part is followed. The second part of Equation 4.22 encourages
exploration. The value of this second term is directly related to the number of times a
specific action has been selected in the past. A low precision rate of an action would
correspond to a lower N(a) value, which would add a larger uncertainty in the said ac-
tion. Hence, the selection of this action will become more likely. As time progresses,
the denominator of this term will increase. As a result, this term will start shrinking,
and the algorithm will become more focused on the exploitation part. The illustration

Figure 4.8: Illustration of the UCB principle.
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of this UCB approach is shown in Figure 4.8. The UCB algorithm has estimated mean
rewards Q(a) for playing each arm a. The confidence interval shows the amount of
uncertainty in Q(a). The pseudo-code of UCB is presented in Algorithm 4.5.

Algorithm 4.5 Upper confidence bound
Require: Total number of arms (actions) k
Require: Exploration parameter c
1: N(a) := Number of times action a is selected
2: N(a)←− 0
3: Q(a) := Estimate of the expected reward of action a
4: r(t) := Observed reward in round t
5: for t = 1, 2, 3, ... do
6: a(t) := Select the action argmaxa

(
Q(a) + c

√
log t
N(a)

)
7: Observe reward r(t)
8: N(a(t))←− N(a(t)) + 1
9: Q(a(t))←− Q(a(t)) + 1

N(a(t))(r(t)− Q(a(t)))
10: end for

The degree of exploration is controlled using the exploration parameter i.e., c.
Similar to the ε-decay strategy (Algorithm 4.4), a higher value of c would result in
more exploration at the expense of a higher exploration cost. This exploration cost can
be controlled by reducing the value of c, but that would also discourage the explorative
nature of the algorithm. The UCB algorithm achieves a sub-linear regret.

The upper confidence bound algorithm’s regret, after T rounds of play, is
bounded by E[R(T)] ≤ const.

( k log T
Δ

)
, where Δ is the distance between a sub-

optimal arm and the optimal arm [13].

Note 4.3.6

Exponential-weight algorithm for exploration and exploitation

The exponential-weight algorithm for exploration and exploitation (Exp3) is a famous
adversarial bandit algorithm [12]. In adversarial bandit algorithms, it is considered that
the learning algorithm is competing against an adversary. The return for each action is
no longer sampled from a stationary probability distribution, instead the payoff struc-
ture for each action is selected by an adversary. Evidently, the philosophies followed
by the UCB class of bandit algorithms and that of the adversarial bandit algorithms are
quite opposite in nature. In UCB, optimism under uncertainty is encouraged. How-
ever, in adversarial bandit, the learning algorithm is modeled to compete against an
adversary. This gives birth to a more pessimistic sub-class of bandit algorithms. It can
be argued that payoffs in most real-life problems are not entirely adversarial. Thus,
this sub-class of bandit algorithms may perform better than their theoretical guaran-
tees, when applied to real-life applications. Nonetheless, adversarial bandit helpmodel
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competitive practical payoff scenarios e.g., trading, multi-player competitive games
etc.

In the Exp3 algorithm, a set of weightsw(a), one weight for each available action a
is maintained. The probability of an action getting selected p(a) is dependent on these
weights. These weights are increased (or decreased) based on the observed reward
r(t). To incorporate exploration, the algorithm selects an action at random (depending
on their weights) with probability 1− γ, and it performs uniform random exploration
with probability γ. Its working is presented in Algorithm 4.6.

Algorithm 4.6 Exponential-weight algorithm for exploration and exploitation
Require: Total number of arms (actions) k
Require: Exploration parameter γ
1: w(a) :=Weight for each action a
2: w(a)←− 1
3: r(t) := Observed reward in round t
4: for t = 1, 2, 3, ... do
5: for a = 1, 2, 3, ..., k do
6: p(a) := (1− γ) w(a)∑k

i=1 w(i)
+ γ 1k

7: end for
8: a(t) := Select an action randomly based on the probabilities p(a)
9: Observe reward r(t)
10: for a = 1, 2, 3, ..., k do
11: if a = a(t) then
12: r̂(a) := r(t)/p(a)
13: else
14: r̂(a) := 0
15: end if
16: w(a)←− w(a) exp(γr̂(a)/k)
17: end for
18: end for

The Exp3 algorithm also achieves a sub-linear regret, and is bounded by
E[R(T)] ≤ O

(√
kT log(k)

)
[12].

Note 4.3.7

Bayesian bandit learning
Contrary to the frequentist approach, in Bayesian learning the learning parameter is
not represented by a signal true value, rather it is represented by a probability dis-
tribution. This probability distribution captures the uncertainty present in the studied
unknown variable. Thompson sampling is the most commonly used Bayesian learning
algorithm.
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Thompson sampling

Thompson sampling (TS) is a natural randomized Bayesian algorithm to tackle the
exploration-exploitation dilemma in MAB problems. It was proposed initially by
Thompson in 1933 [171]. However, the application of Thompson sampling for re-
inforcement learning was proposed in 2000 [164]. In Thompson sampling, the his-
tory H of past observations (action and reward pairs i.e., (a(t), r(t))) is modeled by a
parametric likelihood function P(r|a, θ), parameterized by θ. This unknown param-
eter θ includes the uncertainty in the expected reward for any specific action. This
uncertainty is represented using a probability distribution P(θ), known as the prior
distribution. This probability distribution is the initial belief of the learning algorithm
regarding the unknown parameter θ. Once the algorithm observes new information
(history H is updated), the algorithm updates its initial belief regarding the unknown
parameter θ using the Bayes rule [97]:

P(θ|H) ∝ P(H|θ)P(θ) (4.23)

This updated belief is known as the posterior distribution. After the update, the
learning algorithm samples the θ̃ from the posterior distribution, and uses it to pick the
expected best action. The objective in each round is to maximize the observed reward,
based on the played action, which depends on the posterior belief i.e., E

[
r(t)|a(t), θ̃

]
.

Figure 4.9: Illustration of the differences betweenUCB (top) and Thompson sampling (bottom)
methodologies.
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In each round, the action a(t) is selected with the probability:

∫
θ
11{E[r(t)|a(t), θ] = max

a′
E[r(t)|a′, θ]}P(θ|H)dθ (4.24)

The key difference between the UCB algorithm and Thompson sampling is shown
in Figure 4.9. In the UCB approach, there is an upper confidence bound on our em-
pirical estimates of each unknown variable. Whereas, there exists a distribution in
Thompson sampling to estimate the mean reward of each arm.

The choices of both prior and posterior distributions depend on the studied prob-
lem. Gaussian, beta, and uniform distributions are among the most common choices
[188]. Thompson sampling algorithm with Gaussian prior and posterior distributions
is given in Algorithm 4.7. In the case of using Gaussian priors, the Gaussian posterior
for each action is calculated using Bayes law:

P(θ|H) = P(θ|(a(t), r(t))) ∝ e−
N(a(t))+2

2 (θ− μ̂(a(t))N(a(t))+r(t)
N(a(t))+2 )

2
(4.25)

where μ̂ is the current estimate of the likelihood of getting the maximum reward by
playing action a(t). The number of samples to form an estimate θ̃(a) is usually equal
to one. By taking only a single sample, exploration is promoted, as our estimate will
be noisy. On the other hand, the distribution is going to be peaked as the algorithm gets
more data (the variance term 1

N(a)+1 will decrease). Thus, our single sample estimate
will improve as the distribution’s variance decreases.

Algorithm 4.7 Thompson sampling
Require: Total number of arms (actions) k
1: N(a) := 0
2: μ̂(a) = 0
3: for t = 1, 2, 3, ... do
4: for a = 1, 2, 3, ..., k do
5: θ̃(a) ∼ N (μ̂(a), 1

N(a)+1)
6: end for
7: a(t) := Select the action argmaxa θ̃(a)
8: Observe reward r(t)
9: N(a(t)) := N(a(t)) + 1
10: μ̂(a(t)) := μ̂(a(t))N(a(t))+r(t)

N(a(t))+2
11: end for

The Thompson sampling algorithm with k arms, has the expected sub-linear
regret E[R(T)] ≤ O

(√
kT ln(k)

)
[1].

Note 4.3.8
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Combinatorial multi-armed bandit
Combinatorial multi-armed bandit (CMAB) has been proposed in the literature to han-
dle combinatorial optimization problems. ACombinatorial optimization problem con-
sists in finding the optimal object, among a finite set of objects, that satisfies a set of
constraints [141]. Some of the most common combinatorial optimization problems are
route planning [122], task scheduling [42], and knapsack problem [158]. In fact, the
studied problem of smart charging in electrical grids also falls under the umbrella of
combinatorial optimization problems. These problems may be solved using classical
mathematical optimization approaches such as, linear programming [23]. However,
these algorithms belong to the NP (nondeterministic polynomial time) class of opti-
mization problems. Thus the efficiency of such algorithms, in terms of the time taken
to obtain the optimal solution, is still an open question in theoretical computer science.
The traveling salesman problem is a famous NP-hard combinatorial optimization prob-
lem [7]. It states that: ”Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city exactly once and returns
to the origin city?” The complexity of this problem depends greatly on the number of
available cities ncities, as the number of possible routes is equal to ncities(ncities−1)

2 . This
complexity is illustrated in Figure 4.10. Each node in this figure represents a city,
whereas each edge depicts a route connecting two cities. It can be observed that the
density of these graphs increases drastically as the total number of cities are increased,
thus making solving a large-scale combinatorial optimization problem a complex task.

The NP (nondeterministic polynomial time) class of optimization problems are
the problems that can be solved by a nondeterministic Turing machine in poly-
nomial time. However, can a deterministic Turing machine solve these prob-
lems in polynomial time is still an unanswered question, i.e., P = NP? [16]

Note 4.3.9

Compared to brute-force methodologies, a combinatorial multi-armed bandit al-
gorithm can tackle combinatorial optimization problems by utilizing the feedback ob-
tained from its environment [37]. In combinatorial multi-armed bandit (CMAB), a
learning algorithm selects n actions from a set of m possible actions, corresponding
to
(m
n

)
possibilities. There are m number of total available actions, also known as

base arms. The set [m] = {1, 2, 3, ...,m} is the set of available m arms (actions).

Figure 4.10: Illustration of the traveling salesman problem. Here ncities = n.
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Each action in [m] is associated with a random variable Xi(t), where 1 ≤ i ≤ m and
t ≥ 1. Variable Xi(t) corresponds to the random outcome of the i-th arm, in its t-th
round of learning. This set of random variable [X(t)] = {X1(t),X2(t),X3(t), ...,Xm(t)}
is assumed to be independent and identically distributed according to some unknown
set of distributions [D] = {D1,D2,D3, ...,Dm} with the set of unknown expectations
[μ] = {μ1, μ2, μ3, ..., μm}.

In CMAB, our learning algorithm selects a subset of base arms, which is called
a super arm, S(t) ∈ S . The super arm selected by a CMAB algorithm in round t is
S(t). There is also a constraint S ⊆ 2[m], where 2[m] is the set of all possible subsets of
arms. The expected reward rμ(S(t)) of playing S(t) depends on the selected super arm
itself and on the expectation vector of all arms [μ]. In each round, a CMAB learning
algorithm picks one super arm. Then, its environment provides the feedback (rewards)
to our CMAB learning algorithm. This feedback depends on selected n ∈ S(t) base
arms in a given round, as well as on the type of feedback i.e., bandit feedback, semi-
bandit feedback, or full feedback. The observed reward can be an aggregated reward
based on the played super arm i.e., bandit feedback. A learning algorithm can also
observe rewards for each selected base arm i.e., semi-bandit feedback, or it can also
observe the outcomes of all possible actions (base arms) i.e., full feedback. Based on
this information the learning objective, the optimal super arm, and the pseudo-regret
can be defined as follows:

Definition 4.3.14 (Learning objective). The learning objective of a combina-
torial multi-armed bandit algorithm is to maximize its expected cumulative re-
ward i.e.,

∑T
t=1 rμ(S(t)).

Definition 4.3.15 (Optimal policy). The optimal policy π is a policy that, when
followed, gives themaximum expected cumulative reward. The goal of a learn-
ing agent is to find this policy.

Definition 4.3.16 (Optimal super arm). The optimal (best) super arm S∗ is the
combination of base arms that maximizes the expected reward. It is defined as:

S∗ = argmax
S∈S

E[rμ(S)] (4.26)

Definition 4.3.17 (Pseudo-regret). The goal of a CMAB algorithm is to mini-
mize its pseudo-regret:

E[R(T)] =
T∑

t=1
E
[
max
S∈S

rμ(S)
]
−

T∑
t=1

E [rμ(S(t))]

= TE [rμ(S∗)]−
T∑

t=1
E [rμ(S(t))]

(4.27)

Combinatorial multi-armed bandit definitions

In this CMAB formulation, if the number of selected base arms is equal to one (n =
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1), then it becomes the classical MAB problem. However, the time to evaluate all arms
may increase exponentially for larger values of total arms m. Also, the information
regarding the outcomes of underlying arms can be shared by different super arms,
which is not the case in the classical MAB framework [37]. The CMAB framework
allows any learning algorithm to select a collection of actions in each round, instead
of selecting just one action in each round. It is worth mentioning that the presented
CMAB formulation is not a specific bandit algorithm, but instead it is a framework
that can be integrated with other learning strategies. Thus, the bound on the pseudo-
regret of any CMAB algorithm depends on the choice of strategy that has been used to
learn the set of unknown random variables [X(t)]. The generalized CMAB framework
is presented in Algorithm 4.8.

Algorithm 4.8 Generalized combinatorial multi-armed bandit
Require: Total number of base arms m
Require: Required number of base arms in a super arm n
Require: Parameters corresponding to selected exploration− exploitation strategy
1: S(t) := Selected super arm in round t
2: rμ(S(t)) := Reward for play S(t) super arm in round t
3: for t = 1, 2, 3, ... do
4: Select S(t) = argmaxS∈S E[r(S)] s.t. the number of base arms in S(t) = n
5: Observe rμ(S(t))
6: Update parameters of the selected learning strategy
7: end for

Regret bounds of CMAB combined with different learning strategies are given in
Table 4.1. Terms nmax and Δmin stand for the maximum number of base arms in a super
arm and theminimum gap between the expected reward of the optimal solution and any
non-optimal solution, respectively. It can be seen that these algorithms also achieve
sub-linear regrets.

Learning strategy Regret

UCB [37] O
(

nmaxm
Δmin

log(T)
)

Exp3 [36] O
(√

m3nT log( nmaxm )
)

Thompson sampling [188] O
(

m
Δmin

log(nmax) log(T)
)

Table 4.1: Regret upper bounds for various learning strategies combined with the presented
CMAB formulation.

4.4 Proposed decentralizedmulti-armed bandit system
In this section, the proposed smart charging system, which integrates concepts of both
multi-agent systems and multi-armed bandit, is presented. At first, the mapping pro-
cess of physical elements in a distribution network to software agents in a multi-armed
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bandit learning framework is described. Moving forward, the communication frame-
work which is followed by the proposed system is highlighted. Finally, CMAB algo-
rithms are defined through which EV agents can charge smartly under uncertainties.

Multi-agent system mapping
The significant distribution grid elements, essential to optimize smart charging in the
proposed system, aremodeled as agents in the computerizedmulti-agent system. These
elements are as follows:

• Electrical line: Each electrical line present in the distribution grid is modeled
as a line agent. The goal of each line agent is to make sure that the electrical
current flowing through the electrical line is below its rated value. Line agent
can encourage this condition by controlling the reward that it communicates to
each EV in the distribution network.

• Electrical Bus: Similar to electrical lines, all electrical buses of the distribution
network are modeled as bus agents. Bus agents are designed to maintain the
instantaneous bus voltages withing a specified threshold. Again, this can be
encouraged in the network through the reward given by a bus agent to each EV.

• Photovoltaic sensor: A photovoltaic sensor that records the information of in-
stantaneous energy generation is modeled as a PV agent. This PV agent has
only one simple goal, which is to communicate the energy production values to
each EV. Through these values, EVs can learn the PV production trend and that
would help in minimizing their daily charging costs from the electrical grid.

• Electric vehicle: Each electric vehicle (EV) is modeled as an EV agent. Rein-
forcement learning abilities are implemented in each of these EV agents, which
makes each of them the most important part of the whole system. These EV
agents are continuously learning from the environment to minimize their daily
charging costs, while satisfying the set of constraints described in the previous
section.

The suggestedmappingmodel applied to an example distribution network is shown
in Figure 4.11.

Environment modeling
In a simple reinforcement learning system, a learning agent communicates (interac-
tions through actions and rewards) with the environment [166]. This methodology
also applies to the proposed smart charging system. Each EV agent is a learning agent
in the system. These EV agents interact with the environment, which consists of line
agents, bus agents, and PV agents. This model is also depicted in Figure 4.12. Each
agent type has its own objective, which can be encouraged by each agent type through
their instantaneous reward values to EV agents. In the proposed system, this commu-
nicated reward can have three possible values:
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• -1: In case an environment agent wants to encourage an EV to stop charging at
a given instant.

• 1: In case an environment agent wants to encourage an EV to start charging at
a given instant.

• 0: In case an environment agent is not concerned by an EV’s charging power at
a given instant (i.e., when its constraints are not violated).

The environment part of the system is dissected, and the detailed functionality of
each agent type is explained as follows.

Line agent

Congestion can occur when the magnitude of electrical current flowing through an
electrical line exceeds its rated value. This line congestion is highly undesirable in
a smart grid, as the network’s stability is compromised. A line agent is designed to
ensure that congestion does not happen in its distribution network. Peak load demand,
created due to the saturation of EVs charging simultaneously, can cause electrical cur-
rent congestion in distribution networks. A line agent can encourage several EVs to
shift their charging times to avoid congestion. A line agent can provide this encourage-
ment as a reward value to each EV agent, as the line agent belongs to the environment
of this reinforcement learning-based system.

Instantaneous line agent reward value rewe,l(t), given by line agent l, to EV e de-
pends on the instantaneous line current Iab(t), and the rated value of line current Iab,max.
If there is no electrical current congestion in the line, the line agent generates an instan-
taneous reward equal to zero. However, not all EVs get the maximum reward when
electrical current congestion occurs. Instead, only a certain number of EVs get the
maximum reward. These are the EVs that can charge simultaneously at instant t, with-
out causing electrical current congestion in the distribution network. All remaining

Figure 4.11: Example sub-section of a distribution network (left), and itsMASmapping (right).
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Figure 4.12: Reinforcement learning model of the proposed MAS.

EVs get the minimum possible reward value (i.e., -1). Electric vehicles (EVs) observ-
ing this lowest possible reward value would then try to find other instants to charge
during the day, resulting in better reward values. The instantaneous line agent’s reward
value is calculated using Equation (4.28):

rewe,l(t) =


0 if Iab(t) < Iab,max
0 if Iab(t) ≥ Iab,max & e ∈ [h] ∼ U(0, g)
−1 if Iab(t) ≥ Iab,max & e /∈ [h] ∼ U(0, g)

(4.28)

Line agent’s reward model

The selection of EVs (which get the best reward value) can be modeled in differ-
ent ways. One can consider EVs’ departure times and each EV’s remaining charging
requirements to form a priority list. Then, EVs (which will observe the best reward
value) can be selected on their priorities. However, such a system may not be viable
for maintaining fairness among all EV agents. That is why uniform random selection
(without replacement) has been utilized to select EVs randomly without any bias. Let
[g] = {1, 2, 3, ..., g} denote the set of g number of EVs charging at the same instant
and causing electrical current congestion. Then, the line agent will uniformly sample
h ∈ [h] ∼ U(0, g) number of agents that can charge simultaneously without causing
any congestion. Each EV in this uniformly sampled set of EVs [h] = {1, 2, 3, ..., h}
will receive the null reward value (i.e., 0). The remaining set of EVs [g] − [h] will
receive a reward value of -1. The line agent’s functioning is given in Algorithm 4.9.

In Algorithm 4.9, it can be seen that each line agent also communicates congl(t).
This congl(t) is a Boolean flag, that reflects the condition of the electrical line i.e.,
congested or not congested. If the electrical line is congested, then this flag is set to
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Algorithm 4.9 Line agent’s functionality (each line agent)
Require: Rated electrical line current Iab,max
1: t := t−th instant of the day
2: Iab(t) := Instantaneous electrical line current
3: rewe,l(t) := Reward sent to EV agent e at instant t
4: congl(t) := Boolean congestion flag of line agent l at instant t
5: Observe Iab(t)
6: Observe [E]
7: if Iab(t) < Iab,max then
8: rewe,l(t) := 0 ∀ e ∈ [E]
9: congl(t) := False
10: else
11: [h] ∼ U(0, g)
12: rewe,l(t) := 0 ∀ [h] ∩ [g]
13: rewe,l(t) := −1 ∀ [g]− [h]
14: congl(t) := True
15: end if
16: Forward (rewe,l(t), congl(t))

true, otherwise it is set to false. This additional variable becomes necessary as there
are multiple types of ”congestion management” agents in the environment (i.e., line
agents and bus agents). Hence, line agents use this variable congl(t) to cooperate with
bus agents. This cooperation mechanism is comprehensively discussed when the bus
agent’s functionality and communication framework are presented next.

Bus agent

Bus agents are responsible for keeping voltage magnitudes within a desired range. Let
us suppose the voltage magnitude at any electrical bus violates this condition; there
will be a voltage limit violation, which is also termed as a voltage congestion here.
Like current congestion, this voltage congestion can also lead to stability issues in a
smart grid and reduce the quality of supplied electricity. Thus, a bus agent is designed
to tackle this challenge. Each bus agent has to make sure that the instantaneous bus
voltage Vb(t) at bus b is within its specified limits i.e., Vb,min < Vb(t) < Vb,max. Bus
agents can encourage this behavior through reward values given to EVs, similar to line
agents. However, this would create two significant problems:

• If only one type of congestion management agent (i.e., line agents) were present
in the system, then the system’s modeling would have been relatively more
straightforward. Line agents would have communicated their reward values di-
rectly to EVs. However, there are also bus agents as part of the environment as
shown in Figure 4.12. Thus, both bus agents and line agents should cooperate.

• Furthermore, bus agents can encourage EVs to either charge (in case of over-
voltage) or not charge (in case of under-voltage). Hence, there can be an antag-
onistic scenario in the studied system, i.e., a line agent can encourage EVs to
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Figure 4.13: Cooperation between line agents and bus agents inside the RL environment.

stop charging (in case of electrical current congestion). In contrast, a bus agent
can simultaneously encourage EVs to continue charging (in case of congestion
due to bus over-voltage). This challenge further emphasizes the need for a co-
operation mechanism among line and bus agents.

To incorporate cooperation, each line agent does not communicate directly with
EV agents. As in a physical distribution network, each EV is electrically connected to
an electrical bus. Thus, line agents communicate with EVs through bus agents. This
cooperation scheme is shown in Figure 4.13.

A line agent is forwarding its instantaneous reward value rewe,l(t), and the state of
its congestion flag congl(t) to each bus in the system. Subsequently, each bus agent
would generate the aggregated reward, which would be given to the EV agent cor-
responding to the EV connected to that particular bus. This solves the first problem
mentioned above. To tackle the antagonistic scenario, a priority system is introduced.
Voltage congestion is local congestion here, as it can be managed, at first, by con-
trolling the connected EV’s charging power. In contrast, current congestion generally
impacts a more significant part of the distribution network, and managing this con-
gestion would require controlling the charging powers of several EVs in the network.
Thus, priority is given to the global congestion here, i.e., in case of simultaneous cur-
rent and voltage congestions, line congestion is tackled first. Following reward model
is used by bus agent b, to calculated its reward value rewe,b(t), for EV e, connected to
bus b, at instant t:

rewe,b(t) =


0 if Vb,min < Vb(t) < Vb,max

−1 if Vb(t) < Vb,min < Vb,max (under-voltage)
1 if Vb,min < Vb,max < Vb(t) (over-voltage)

(4.29)

Bus agent’s reward model
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This model in Equation (4.29) has three main parts. First, if there is no voltage
congestion in the system (i.e., Vb,min < Vb(t) < Vb,max), then the connected EV will get
a null reward. In case there is an under-voltage issue (i.e., Vb(t) < Vb,min < Vb,max),
then the connected EV will be encouraged to stop charging through a negative unity
reward. Finally, if there is an over-voltage issue (i.e., Vb,min < Vb,max < Vb(t)), then
the connected EV will be encouraged to charge through a positive unity reward. The
functioning of each bus agent is described in Algorithm 4.10.

Algorithm 4.10 Bus agent’s functionality (each bus agent)
Require: Maximum electrical bus voltage Vb,max
Require: Minimum electrical bus voltage Vb,min
1: t := t−th instant of the day
2: Vb(t) := Instantaneous electrical bus voltage
3: rewe,b(t) := Reward sent to EV agent e at instant t
4: Observe Vb(t)
5: Observe (rewe,l(t), congl(t)) from Algorithm 4.9
6: if Vb,min < Vb(t) < Vb,max then
7: rewe,b(t) = 0
8: end if
9: if Vb(t) < Vb,min < Vb,max then
10: rewe,b(t) = 1
11: end if
12: if Vb,min < Vb,max < Vb(t) then
13: rewe,b(t) = −1
14: end if
15: if (rewe,b(t) = 0 or congl(t) = True) then
16: Forward rewe,l(t) to the connected EV agent
17: else
18: Forward rewe,b(t) to the connected EV agent
19: end if

Each bus agent starts by observing its instantaneous voltage magnitude value and
by receiving a message(s) from line agent(s). Afterward, it calculates its instantaneous
reward value using the presented model in Equation (4.29). Finally, it sends the cal-
culated reward value to the connected EV’s agent. This reward value depends on the
received message(s). To give priority to current congestion, if a bus agent has received
a request from any line agent with congl(t) = True, then it directly passes that request
to the connected EV agent. Otherwise, if no line is congested, and the bus agent is con-
gested, then it will forward its own request to the connected EV agent. This priority-
based cooperation model makes sure that the proposed multi-agent multi-armed bandit
system functions smoothly even under antagonistic conditions.

Photovoltaic agent

PV agent has the most straightforward role in the proposed system. It aims to transmit
the instantaneous PV energy generation value to each EV agent in the system. This
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Although it is possible to manage bus voltages through reactive power con-
trol, only active power control has been considered in this study. A follow-
up work should include the possibility of combining both active and reactive
power control. Also, given that low-voltage distribution networks are signifi-
cantly resistive, controlling active power makes as much sense as controlling
reactive power. Finally, not using reactive power flows helps reduce the need
for costly volt-ampere reactive (VAR) compensation mechanisms.

Note 4.4.1

knowledge of PV energy production would enable EV agents to learn the trend of
daily PV production. As EV agents can use the energy produced by PV power stations
without any cost, thus it becomes essential for EVs to learn uncertainties in daily PV
energy production, to achieve a near-optimal (ideally optimal) solution. The execution
steps of each PV agent are presented in Algorithm 4.11.

Algorithm 4.11 PV agent’s functionality
1: t := t−th instant of the day
2: PPV(t) := Instantaneous PV production
3: Observe PPV(t)
4: Forward PPV(t) to all EV agents

Communication framework
There are two main communication channels in the proposed smart charging system:

• First, the communication link between each learning agent and the environment.

• Second channel is the communication linkwithin the environment. Both of these
communication types are shown in Figure 4.12 and Figure 4.13.

As described in the previous subsection, both types of congestion management
agents in the environment, i.e., line and bus agents, need a communication link. This
communication link establishes the path through which the environment, as a whole,
can communicate efficiently with an agent, leading to a smoother distribution grid op-
eration. A line agent initiates the communication by sending an ordered pair (rewe,l(t),
congl(t)) to each bus agent in the system. After receiving this message, each bus agent
performs its functionality as stated in Algorithm 4.10. Each EV learning agent receives
two messages from the environment. Firstly, it receives the reward value generated by
its bus agent (rewe,b(t)). Secondly, it gets the instantaneous value of PV energy gen-
eration PPV(t) from the PV agent. Both of these messages are singleton values. Each
EV learning agent uses these communicated values to optimize its daily charging cost
while satisfying the desired set of constraints. The communication is also directional
in the system proposed here. For example, if there is inflow line congestion then the
congested line agent will only be communicating with the EVs coming downstream.
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CMAB learning agent modeling
Combinatorial multi-armed bandit (CMAB) algorithms have found applications in
various domains, such as optimizing advertisement selection [37], playing real-time
strategy games [140], and optimizing modern communication networks [69]. Selfish
CMABmulti-agent systems, with excellent practical results, have been proposed to op-
timize communication in Internet of things (IoT) devices [28], [24]. But, applications
of multi-agent CMAB learning for smart grid control can not be found, according to
the best of the author’s knowledge. Electric vehicle learning agents are modeled here
using the previously stated CMAB framework.

Electric vehicle agent

In the proposed MAB system, each EV is acting as a learning agent. The learning
objective of each EV agent is to solve the optimization problem described in Section
4.1 by controlling its instantaneous charging. In simpler words, each EV has to select a
number of instants daily, to charge from the grid, such that its total daily charging cost
is minimized, while also satisfying constraints described in Section 4.1. To formulate
this as a combinatorial multi-armed bandit (CMAB) problem, each day d is divided
intom number of instants. The set of instants [m] = {1, 2, 3, ...,m} represents the base
arms of this CMAB formulation. Each instant i ∈ [m] is a base arm here, and each base
arm is associated with an unknown distributionDi with expectation μi. Each base arm
can be picked (or not picked) by an EV agent to charge from the grid (or to not charge
from the grid). Thus, the action set A of each EV agent for each base arm i ∈ [m]
consists of two values only i.e.,A = {0, 1}. This represents the binary decision made
by each EV agent regarding each base arm i ∈ [m]. If i-th base arm is selected (i.e.,
= 1), EV agent e will charge from the grid, at its rated power Pe,a,max. On the contrary,
if i-th base arm is not selected (i.e., = 0), EV agent e will not charge from the grid at
instant i during day d.

Figure 4.14: Working of the proposed decentralized CMAB algorithm.
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A visual representation of this decision making process is given in Figure 4.14.
Each EV has to make a binary decision of charging (at max power) or not charging
from the grid during each i ∈ [m] instant of the day. This binary decision is represented
by an on-off switch in the discussed figure. Here, each EV makes decisions for itself,
without doing any direct communication with other EVs. Thus, it is possible that the
majority of the EV agents “turn the charging switch on” during the same instances
when the electricity price is low, which may cause congestion in the system. Each EV
agent utilizes the combinatorial multi-armed bandit learning framework to optimize
its daily charging cost while maintaining the stability of the system. At this first stage,
a binary action space has been considered in this formulation. However, this can be
replaced with a discrete or continuous action space as well (i.e., the on-off switches in
the discussed figure will be replaced by variable resistors allowing each EV to charge
in the range [0,Pmax].

Assumption 4.4.1 (Mutually independent outcomes). The outcome of each
base arm in [m] is according to some unknown distribution. It is assumed that
these outcomes are mutually independent i.e., D = D1 · D2 · D3 · ... · Dm.

Assumption 4.4.2 (Monotonicity). It is assumed that the expected reward of
playing a super arm S(t) ∈ S is a monotonically non-decreasing function with
respect to the expectation vector, i.e., ∀ i, i′ ∈ [m], if μi ≤ μi′ , then rμ(S(t)) ≤
rμ′(S(t)) for all S(t) ∈ S .

Assumption 4.4.3 (Lipschitz-continuity). There exists a constant B such that
for every pair of expectations μ and μ′, |rμ(S(t))−rμ′(S(t))| ≤ B||μS(t)− μ′S(t)||1
is satisfied for all S(t) ∈ S . Here μS(t) stands for the projection of vector [μ] on
S(t).

Combinatorial multi-armed bandit general assumptions

As it is a combinatorial optimization problem, each EV agent would have to select
a combination of base arms i.e., the EV agent will have to select a combination of
instants to charge from the grid to minimize its daily charging cost. This combination
of selected instants to charge from the grid is also called a super arm in the CMAB
setting. Let Se(d) ∈ {0, 1}m indicates the super arm selected by EV agent e on day
d, where Se,i(d) = 1 shows that i-th instant, during day d, is selected by EV e, to
charge from the grid. Whereas, Se,i(d) = 0 means that instant i, during day d, has
not been selected by EV e to charge from the grid. After playing super arm Se(d), EV
agent e will observe rewards from its environment through semi-bandit feedback. The
daily reward of EV agent e is defined as the sum of rewards for each selected charging
instant i ∈ [m], during day d. This daily reward depends on the price of electricity
and the condition (congested or not congested) of the electrical network at all selected
instants (base arms). Each EV agent tries to maximize its expected reward rμ(Se(d)),
which depends on the selected super arm by EV agent e, on day d, and on the vector of
expectations of all base arms. For the studied smart charging problem, the following
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two additional CMAB assumptions are made:

Assumption 4.4.4 (Equally spaced base arms). If D([m]i) gives the duration
of i-th instant (base arm), then it is assumed that D([m]i) = D([m]i+1) ∀ 0 ≤
i ≤ m− 1, i.e., the duration of all instants are equal.

Assumption 4.4.5 (Linearly structured super arms). Let θe(d) ∈ Rm stand for
the vector of unknown learning parameters of EV agent e, on day d. It is as-
sumed here that super arm Se(d) ∈ S , played by each EV agent e, on day d,
follows a linear structure, i.e., E [rμ(Se(d))] = (Se(d))T · (θe(d)). This assump-
tion helps tackle the complexity of combinatorial optimization problems.

Combinatorial multi-armed bandit problem-specific assumptions

Here, each element of θe(d) ∈ Rm vector is a learning parameter (an unknown
random variable) associated with each base arm in [m]. The goal of an EV agent e is
to learn this unknown vector θe(d). An EV agent improves its estimation based on
its observed reward values after each interaction with its environment. This obtained
reward from the environment can guide an EV agent towards solutions that do not
cause any congestion in the distribution network. However, each EV agent also needs
to minimize its daily charging cost, which can be done by charging when the electricity
price is lowest during the day. Thus, before updating its estimate of the unknown
parameters vector θe(d), an EV agent applies the following reward model:

rewe,i(Se(d)) =

{
rewe,env,i(Se(d)) if rewe,env,i(Se(d)) ̸= 0
1− c(i) if rewe,env,i(Se(d)) = 0

(4.30)

EV learning agent’s reward model

Here, rewe,env,i(Se(d)) is the reward received by EV agent e from its environment,
corresponding to instant (base arm) i ∈ Se(d), on day d (i.e., rewe,env,i(Se(d)) is the
output of the Algorithm 4.10). Term rewe,i(Se(d)) represents the final reward observed
by EV agent e, for selecting base arm i ∈ Se(d), after playing super arm Se(d) on day
d. This final EV reward is directly used to update elements of the unknown learning
parameters vector. The idea is that, if an EV is receiving a non-zero value from its
environment, then the distribution grid is congested. Thus, the final reward of EV
agent e will be according to the received value from its environment i.e., an EV agent
will be helping the distribution grid in avoiding all congestion.

On the other hand, when the environment reward (i.e., the reward representing the
state of the distribution network) is null, each EV agent will calculate its final reward
(and thus update the unknown learning parameters vector) based on the instantaneous
normalized electricity price c(i)1. This way EV agent ewill be learning to differentiate

1The impact of this reward function’s part on the performance of the proposed system is discussed
in Appendix A
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between the cost of charging at each instant. Based on this information, each EV agent
can select its optimal policy i.e., it would select instants (base arms) that are expected
to minimize its daily charging cost (without causing any congestion in the distribution
network). Optimal policy πe of EV agent e can be defined as follows:

Definition 4.4.1 (Optima policy πe). The optimal policy πe can be obtained by
EV agent e when θe is completely known. According to this optimal policy,
EV agent e will play the following optimal arm S∗e :

S∗e = arg max
Se(d)∈{0,1}m

(Se(d))T · θe (4.31)

Linear CMAB optimal policy

Pseudo-regret of the learning EV agent based on the described optimal policy πe
can be calculated as follows:

Definition 4.4.2 (Pseudo-regret). The pseudo-regretE [Re(D)] observed by EV
agent e, after D days of learning is given as:

E [Re(D)] =
D∑

d=1

E [rμ(S∗e)]−
D∑

d=1

E [rμ(Se(d))]

= D · E [rμ(S∗e)]−
D∑

d=1

E [rμ(Se(d))]

(4.32)

Linear CMAB pseudo-regret

The learning goal of an EV learning agent is to minimize this regret value by learn-
ing the unknown vector θe(d). However, in the studied smart charging problem, learn-
ing this unknown vector θe(d) is not completely straightforward. Each EV has to learn
this unknown parameters vector under uncertainties. There can be three major sources
of uncertainties in the system here:

• PV uncertainty: Daily PV production is intermittent and variable [73]. It de-
pends on several technological and environmental factors. Thus, uncertainty is
involved in this daily PV production value from an EV agent’s perspective. This
uncertainty is crucial here as an EV can use the produced PV energy free of cost,
hence optimizing its daily charging cost. But, if an EV does not have an estima-
tion of this PV uncertainty, then the obtained solution (its daily charging cost)
can be far from optimal.

• Real-time uncertainty: In the formulation discussed so far, EV agent e is se-
lecting a super arm Se(d), i.e., it is picking the estimated best instants to charge
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from the grid, during day d. This selection is only made at the start of day d.
However, in practical life, there can be different uncertainties. Information used
by EV agent e, to select Se(d) can be changed during the day e.g., the EV owner
can change the desired value of SoCe,depart. Thus, it is desirable that the designed
system should be able to manage these real-time uncertainties.

• Opponents’ actions uncertainty: The proposed system is a multi-agent sys-
tem. Thus, there is also uncertainty in the choice of super arms of other agents,
from one EV agent’s point of view. As other agents are learning as well, this un-
certainty is a non-stationary random variable. Each intelligent EV agent should
also learn to perform optimization in the presence of this uncertainty.

To tackle the PV uncertainty, Bayesian learning is applied. Bayesian learning is a
great tool to find the true value of an unknown random variable by updating our initial
beliefs, based on the latest observed data [97]. This learning rule is defined in Equation
(4.23). Let φe(d) ∈ Rm be the vector of instantaneous PV energy production values
during m instants of day d, of EV agent e. This unknown vector has to be learned by
EV agent e through Bayesian learning. Each EV agent can use this information to learn
the trend of freely available PV energy production during each day, and then it can use
that information to calculate the remaining required number of charging instants from
the grid, to achieve its desired SoC SoCe,depart. Let ie,req(d) be the number of instants
required by EV e to charge from the grid, on day d. This value can be calculated by
each EV as follows:

ie,req(d) =

⌈
60Ebat(SoCe,depart − SoCe,ini)

||[m]i||1Pe,a,maxηe,chrg
−
∑tdepart

j=tarrive φe,j(d)
Pe,a,maxηe,chrg

⌉
(4.33)

PV uncertainty management model

In Equation (4.33), ⌈.⌉ is the ceiling function and SoCe,ini is the initial SoC value
of EV e, when it is plugged-in for charging. To calculate the number of instants an
EV needs to charge from the grid, it subtracts the total charging instants required to
achieve the desired SoC from the estimated number of PV charging instants (instants
during which PV energy production can be consumed by an EV free of cost). Based on
the information so far, a generalized EV optimal charging algorithm can be developed
to manage its day-ahead charging under the PV uncertainty. Algorithm 4.12 presents
this functionality.

In the presented Algorithm 4.12, φ̂e is the vector of estimated instantaneous PV
energy production, whereas φ̃e is the sampled instantaneous PV energy production
vector from a normal distribution with mean φ̃e. The estimation vector φ̃e is updated
after each day based on the observed PV energy production vector Pe,PV. Each element
of this vector Pe,PV represents the instantaneous PV energy production P′

PV(t). This
information is used by an EV agent to calculate its ie,req(d) value, which in turn is
necessary to decide the number of base arms in Se(d). Function ||.||1 represents the
L1 norm and returns the total number of selected base arms here. Terms Im,m, and 0m
stand for the m ∗ m identity matrix, and the null vector of length m, respectively.
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Algorithm 4.12 CMAB-based decentralized day-ahead smart grid optimization (each
EV)
Require: Total number of instants (base arms) m
Require: Learning rate β ∈ R+

1: e := EV agent index
2: d := Learning day index
3: Se(d) := Selected super arm on day d
4: ie,req(d) := Total number of required instants for grid charging on day d
5: rewe(Se(d)) := Reward vector for playing Se(d) super arm
6: Pe,PV := PV energy production vector
7: φ̂e := 0m; Y := Im,m; z := 0m
8: for d = 1, 2, 3, ... do
9: φ̃e ∼ N (φ̂e, β

2Y−1)
10: Calculate ie,req(d) using Equation (4.33)
11: Select Se(d) using a learning strategy s.t. ||Se(d)||1 = ie,req(d)
12: Observe rewe(Se(d)) using the reward model in Equation (4.30)
13: Observe Pe,PV from Algorithm 4.11
14: Update parameters of the selected learning strategy
15: Y := Y+ IkI

⊤
k ; z := z+ Pe,PV; φ̂e := Y−1z

16: end for

It should be noted that the main objective of this thesis is not to design a
novel PV forecaster, but to develop a decentralized system that would opti-
mize the energy flows in real-time by tackling the inherent uncertainties present
in any PV forecaster. Furthermore, one can also easily replace the utilized
Bayesian learning-based PV forecaster with amore sophisticated deep learning-
based forecaster in the proposed smart grid control algorithms, if desired. This
change would not require any changes in other parts of the proposed decentral-
ized smart grid control system.

Note 4.4.2

To deal with real-time uncertainties, the system should operate in real-time as well.
This can be done by enabling the learning agent to alter its base arms selection after
every instant during the day. In this way, if any system variable is changed intra-day,
the learning agent will be capable of adapting to these changes during the day as well.
It should be noted that an EV learning agent can modify only those base arms in Se(d),
which are yet to be played i.e., only the charging decisions of the future can be altered
but not of the past. If ie,req,t(d) are the number of future instants required by EV e
to charge from the grid at instant t, and ie,chrgd,t(d) are the total number of instants,
till instant t, at which EV e has charged from the electrical grid on day d. Then for
real-time operation, Equation 4.33 can be modified as follows:

143



ie,req,t(d) =

⌈
60Ebat(SoCe,depart − SoCe,ini)

||[m]i||1Pe,a,maxηe,chrg
−
∑tdepart

j=tarrive φe,j(d)
Pe,a,maxηe,chrg

⌉
− ie,chrgd,t(d)

(4.34)

Real-time PV uncertainty management model

The key idea is that an EV learning agent will re-evaluate Equation (4.34) after
each passing instant. Thus, if any of the system variable is updated, this will be re-
flected in Equation (4.34). Based on this modification, Algorithm 4.13 presents the
pseudo-code of a multi-armed combinatorial multi-armed bandit algorithm for smart
grids optimization in real-time.

Algorithm 4.13 CMAB-based decentralized real-time smart grid optimization (each
EV)
Require: Total number of instants (base arms) m
Require: Learning rate β ∈ R+

1: e := EV agent index
2: d := Learning day index
3: t := Intra-day time index
4: Se(d) := Selected super arm on day d
5: ie,req,t(d) := Total required instants for grid charging after instant t on day d
6: ie,chrgd,t(d) := Total instants already charged from the grid till instant t on day d
7: rewe(Se(d)) := Reward vector for playing Se(d) super arm
8: Pe,PV := PV energy production vector
9: φ̂e := 0m; Y := Im,m; z := 0m
10: for d = 1, 2, 3, ... do
11: φ̃e ∼ N (φ̂e, β

2Y−1)
12: ie,chrgd(d) := 0
13: for t = 1, 2, 3, ...,m do
14: Calculate ie,req,t(d) using Equation (4.34)
15: Select Se(d) using a learning strategy s.t.

∑
j>t Se,j(d) = ||Se(d)||1 =

ie,req,t(d)
16: Observe t-th element of rewe(Se(d)) using rewardmodel in Equation (4.30)
17: Observe t-th element of Pe,PV from Algorithm 4.11
18: ie,chrgd,t(d) := ie,chrgd,t(d) + 11[t ∈ Se(d)]
19: end for
20: Update parameters of the learning strategy
21: Y := Y+ IkI

⊤
k ; z := z+ Pe,PV; φ̂e := Y−1z

22: end for

The last main type of uncertainty is the opponents’ actions uncertainty i.e., uncer-
tainty in the choice of super arms of other agents from one agent’s perspective. This
uncertainty is directly linked to the choice of learning strategy in Algorithm 4.12 or
Algorithm 4.13. This learning strategy can be based on any methodology that handles
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Figure 4.15: Interaction between the proposed CMAB-based MAS algorithm and the selected
learning strategy, inside an EV agent.

the exploration-exploitation dilemma. Thus, the choice of learning strategy in the pro-
posed system is crucial as a learning strategy with subpar performance under this type
of uncertainty can lead to a higher regret. Interactions between the proposed Algorithm
4.13 and a learning strategy are shown in Figure 4.15. Most popular multi-armed ban-
dit learning strategies choices are Thompson sampling (TS), upper confidence bound
(UCB), and exponential-weight algorithm for exploration and exploitation (EXP3) etc.

Selfish Thompson sampling-based combinatorial multi-armed bandit algorithm
has been shown to outperform both UCB-based and EXP3-based combinatorial multi-
armed bandit strategies for IoT communication optimization [28]. However, as the
problem at hand is optimal energy management in smart grids, thus all three popular
learning strategies (i.e., Thompson sampling, UCB, and EXP3) are studied here. Each
learning strategy is divided into two main sections. The first section is used to select
the super arm to be played i.e., Se(d). Whereas, the second segment updates a set of
parameters local to a learning strategy. Thompson sampling-based learning strategy
is presented at first in Algorithm 4.14.

In the presented Thompson sampling-based learning strategy, κ is the learning pa-
rameter and θ̂e is the current estimate of the unknown parameters vector. Both prior
and posterior are modeled as Gaussian distributions here. Term θ̃e is the sampled vec-
tor of unknown parameters, which depends on θ̂e. The learning parameter κ is used
to control the Gaussian distribution’s variance, and thus the degree of exploration. A
higher value of variance in the estimate θ̂e corresponds to a higher degree of explo-
ration. In the action-selection segment, the estimated optimal super arm on day d is
picked for Algorithm 4.13. This super arm is played by the learning agent, and the
reward vector is observed. Based on the observed reward vector, the learning strategy
updates its estimate of θ̂e in the update segment. The learning strategy here can also
be based on the UCB multi-armed bandit algorithm, Algorithm 4.5. The UCB-based
learning strategy is given in Algorithm 4.15.

The presented UCB-based learning strategy comes from the CUCB algorithm [37].
Vector operations [.]◦−1 and [.]◦ [.] stand for the Hadamard (element-wise) inverse and
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Algorithm 4.14 Thompson sampling-based learning strategy
Require: Learning rate κ ∈ R+

Require: Total number of instants (base arms) from Algorithm 4.13 m
Require: Reward vector for the day from Algorithm 4.13 rewe(Se(d))
Require: Total required instants for grid charging from Algorithm 4.13 ie,req,t(d)
1: θ̂e := 0m
2: A := Im,m
3: b := 0m

▷ Action-selection segment
4: θ̃e ∼ N (θ̂e, κ2A−1)
5: Select Se(d) = arg max

S∈{0,1}m
ST · θ̃e s.t.

∑
j>t Se,j(d) = ||Se(d)||1 = ie,req,t(d)

▷ Update segment
6: A := A+ Se(d) · Se(d)⊤
7: b := b+ rewe(Se(d))
8: θ̂e := A−1b

Algorithm 4.15 UCB-based learning strategy
Require: Learning day index from Algorithm 4.13 d
Require: Intra-day time index from Algorithm 4.13 t
Require: Total number of instants (base arms) from Algorithm 4.13 m
Require: Reward vector for the day from Algorithm 4.13 rewe(Se(d))
Require: Total required instants for grid charging from Algorithm 4.13 ie,req,t(d)
1: θ̂e := 0m
2: N := Vector containing number of times each base arm has been selected
3: N := 0m

▷ Action-selection segment
4: Select Se(d) = arg max

S∈{0,1}m
ST · θ̂e +

√
3
2 ln(d)N◦−1

s.t.
∑

j>t Se,j(d) = ||Se(d)||1 = ie,req,t(d)
▷ Update segment

5: N := N+ Se(d)
6: b := b+ rewe(Se(d))
7: θ̂e := N◦−1 ◦ b
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the Hadamard (element-wise) product respectively [72]. The philosophy behind explo-
ration is the same as in the standard UCB algorithm. In the action-selection segment,
term

√
3
2 ln(d)N◦−1 is associated with the degree of uncertainty in the estimated un-

known parameters vector θ̂e(d). Thus, the super arm which maximizes the learning
agent’s expected reward, including this uncertainty term, is selected. In the update
segment, θ̂e is updated based on the played super arm Se(d) and observed set of re-
wards rewe(Se(d)).

Next comes the EXP3-based learning strategy, which is inspired by the COM-
BAND algorithm [36]. Unlike the COMBAND algorithm, the presented EXP3-based
learning strategy strives to maximize its reward instead of minimizing a loss function.
Here, the idea is similar to the EXP3 algorithm, Algorithm 4.6. In the action-selection
part, the learning strategy decides to perform exploration uniformlyU , with probability
γ. Exploitation is done here, with 1− γ probability, by calculating the probabilities of
each base arm and then selecting the super arm to be played Se(d) according to the cal-
culated probability vector p. In the update segment, the weights of each base arm are
updated based on the observed reward vector rewe(Se(d)). The studied EXP3-based
learning strategy’s execution steps are given in Algorithm 4.16.

Algorithm 4.16 EXP3-based learning strategy
Require: Total number of instants (base arms) from Algorithm 4.13 m
Require: Reward vector for the day from Algorithm 4.13 rewe(Se(d))
Require: Total required instants for grid charging from Algorithm 4.13 ie,req,t(d)
1: w := Im

▷ Action-selection segment
2: p := (1− γ)w+ γU
3: Select a super arm Se(d) according to p s.t.

∑
j>t Se,j(d) = ||Se(d)||1 = ie,req,t(d)

▷ Update segment
4: w := w exp

(
γ(rewe(Se(d)) [E [VVT]]

+ Se(d))
)
, where V has law p, and [E [VVT]]

+

denotes the pseudo-inverse of [E [VVT]]
+

This concludes the modeling of the EV learning agent. In this section, all three
main elements of the proposed reinforcement learning-based system are discussed in
detail, i.e., the environment, the communication framework, and the learning agent.
The designed system is completely decentralized because each network entity that runs
into a problem (such as a transformer with congestion or a node with under-voltage)
resolves it by sending messages to the flexible entities (in this case, the EVs), and each
EV optimizes its charging strategy. The proposed system is real-time, model-free (i.e.,
it does not require an accurate distribution network model for its functionality), and
scalable. The smart charging problem has been specifically studied in this chapter.
However, the developed multi-agent system is fully capable of optimizing the oper-
ation of other electrical network elements as well such as household appliances. In
the subsequent chapter, the transformation of this combinatorial multi-armed bandit
learning-based multi-agent system to a combinatorial multi-armed bandit learning-
based adaptive multi-agent system is presented to tackle the same optimization prob-
lem of smart charging under uncertainties. A detailed evaluation of the proposed sys-
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tem is also done in the coming chapter.

As each super arm holds a linear structure, the best super arm can be evaluated
by the algorithm in O(m) time. This calculation of the best super arm depends
only on the total number of base arms m and not on the total number of agents
in the decentralized system. This ensures that the computational time of each
agent in a decentralized multi-agent system based on the proposed algorithm
will remain the same (for a fixed m) irrespective of the number of agents in
the system, and hence the system is scalable. Additionally, a larger electrical
distribution network with a higher number of EV agents typically has a higher
congestion limit as well, which is also expected to aid the scalability of the
proposed decentralized smart grid optimization system.

Note 4.4.3

4.5 Conclusion
The major drawback of the adaptive multi-agent system presented in Chapter 2, i.e.,
performance degradation due to lack of anticipative abilities, was addressed in this
chapter. This was achieved through the amalgamation of themulti-agent system frame-
work with combinatorial multi-armed bandit learning. At first, a detailed introduction
to the multi-armed bandit class of reinforcement learning algorithms was provided.
This was followed by an in-depth design of a real-time control system to optimize
energy flows in a smart grid under uncertainties. The resulting system functioned in
a decentralized manner and utilized the concepts of combinatorial multi-armed ban-
dits to manage a number of stochasticities in the system. This system was designed
to solve the smart charging optimization problem in real-time. The goal was to con-
trol the instantaneous charging power of each electric vehicle in real-time to minimize
their daily charging cost while satisfying grid constraints, prosumer constraints, and
maintaining fairness among electric vehicles. The studied problem involved two un-
certainties, i.e., uncertainty in the daily PV energy production which can be utilized by
electric vehicles free of cost, and uncertainty in the action selected by each opponent
player from one electric vehicle agent’s perspective. In the next chapter, this combina-
torial multi-armed bandit multi-agent system will be transformed into a combinatorial
multi-armed bandit adaptive multi-agent system, benefiting from the advantages of
both combinatorial multi-armed bandit and adaptive multi-agent systems.
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Chapter 5

Adaptive multi-agent multi-armed
bandit system for smart charging
under uncertainties

Yesterday I was clever, so I wanted to change the world. Today I am wise, so I am
changing myself.

Rumi

Summary
This chapter integrates the decentralized control systems from Chapter 2 and Chapter 4, creat-
ing a hybrid system that combines the advantages of both approaches. The developed system
utilizes adaptive multi-agent system theory to maintain scalability and adaptability, while also
integrating combinatorial multi-armed bandit learning to enhance performance under uncer-
tainties by incorporating anticipative decision-making capabilities. The chapter also includes
a detailed evaluation of the developed system, comparing its performance with other base-
line electric vehicle charging strategies through simulation-based experiments under stochastic
conditions.
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This chapter begins with a detailed explanation of the design of the proposed adap-
tive multi-agent multi-armed system, developed to optimize the previously introduced
smart charging problem in Section 4.1. The distinctions between this system and the
multi-agent multi-armed bandit system presented in the previous chapter are also de-
tailed. Furthermore, three baseline electric vehicle charging strategies are discussed
in Section 5.2. These baseline strategies serve as benchmarks to evaluate the perfor-
mance of the system proposed in this chapter through simulation-based experiments
in Section 5.3. These experiments incorporate stochasticity in the energy generated by
solar photovoltaic panels, as described in Section 4.1. Finally, the chapter concludes
with a summary in Section 5.4.

5.1 Proposed adaptivemulti-agentmulti-armed bandit
system

In Chapter 2, it has been discussed how adaptability through self-organization of adap-
tive multi-agent systems can be more suitable to manage non-linear dynamic systems.
Furthermore, it has also been discussed in Chapter 4 that combinatorial multi-armed
bandit can help in tackling the uncertainties that may be encountered in real-life. This
section presents a decentralized smart grid control system that combines the concepts
of combinatorial multi-armed bandit with the framework of an adaptive multi-agent
system. The resultant decentralized system is expected to optimally control complex
electrical networks in the presence of real-life uncertainties. To formulate this system,
the designs of already presented systems in Section 2.4 and Section 4.4 will be utilized
here. Concisely, the proposed system here will follow the same adaptive multi-agent
design described earlier in Section 2.4 but instead of utilizing rule-based AMAS for de-
cision making, each EV will be using combinatorial multi-armed bandit for intelligent
decision making.

System modeling
The mapping of physical electrical grid elements to software agents in the designed
CMAB-based adaptive multi-agent system is the same as proposed earlier in Section
4.4. Each electrical line, electrical bus, electric vehicle and photovoltaic panel present
in a distribution grid is mapped as an individual line agent, bus agent, electric vehicle
agent, and photovoltaic agent. The objective of each agent type is also the same here
i.e., a line agent is designed to protect against electrical current congestion, a bus agent
is designed to prevent voltage limits violation, an electric vehicle agent is designed
to minimize its daily charging cost while also helping other agent types in satisfying
their constraints, and a photovoltaic agent is designed to communicate instantaneous
PV energy production data to electric vehicles. All line, bus and EV agents hold a
criticality value (between -1 and 1), and each of those agents tries to minimize its
absolute criticality and the absolute criticality values of its neighboring agents at all
instants. As the range of criticalities is between -1 and 1 here (and not between 0 and
1 as it was in Section 4.4), thus the comparison of criticalities principle is transformed
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to the comparison of absolute criticalities principle. This principle is described as
follows:

Definition 5.1.1 (Comparison of absolute criticalities principle). According to
this principle, an agent compares the absolute value of its instantaneous critical-
ity with the absolute instantaneous criticality values of its neighboring agents.
Then, the instantaneous action made by this agent is to help the agent with the
highest absolute instantaneous criticality.

Comparison of absolute criticalities principle

Each agent goes through three stages (perception, decision, and action) during its
single cycle while trying to achieve its own goal and helping its neighboring agents
in achieving their goal(s). Line and bus agents in the designed AMAS belong to the
collaborative class of agents, while each EV agent is an intelligent agent according to
the Nwana’s agent typology, shown in Figure 2.7. Detailed modeling of each agent
type is presented next.

Line agent

The objective of each line agent is to keep the electric current, flowing through its
corresponding physical electrical line, within its rated value. This can be achieved by
an adaptive line agent by keeping its criticality value as close to zero as possible. The
instantaneous line criticality value ranges between -1 (representing congestion due to
a large power outflow towards the grid) and 1 (representing congestion due to a large
power inflow from the grid). Thus, an instantaneous criticality value is calculated by
each line agent using the following model:

Crl,ab(t) =


0 if |Iab(t)| < Iab,th
Iab(t)
|Iab(t)|

· |Iab(t)|−Iab,th
Iab,max−Iab,th

if Imax ≥ |Iab(t)| ≥ Iab,th
Iab(t)
|Iab(t)|

if |Iab(t)| > Iab,max

(5.1)

Line agent’s criticality model

In Equation (2.18),Crl,ab(t) is the instantaneous criticality of line agent correspond-
ing to the electrical line connecting bus a and bus b, Iab(t) is the instantaneous electrical
current flowing from bus a to bus b (positive in case of inflow from the grid and neg-
ative in case of outflow to the grid), |Iab(t)| is the absolute value of this instantaneous
electrical current, Iab,max is the rated electrical current value through the electrical line
between bus a and bus b, and Iab,th is a threshold value on the electrical current between
bus a and bus b. The line criticality value Crl,ab(t) is zero when the instantaneous line
current is below the set threshold value, and it starts increasing linearly otherwise. The
absolute value of this line criticality is maximum (i.e., 1) when its instantaneous elec-
trical current is equal to or more than the rated value. This relationship between a line

151



Figure 5.1: Relationship between line agent’s criticality and electrical current’s magnitude.

agent’s criticality and its instantaneous electrical current is shown in Figure 5.1. The
negative signs in Figure 5.1 with electrical current values indicate that the electrical
current is flowing towards the grid. It can be verified that the line criticality is zero if
the instantaneous electrical current remains within its threshold values. The line crit-
icality starts increasing (or decreasing) linearly as soon as the instantaneous value of
the electrical current goes above the set threshold value.

Similar to the system described in Section 2.4, a line agent also communicates only
with its neighboring agents. This is one of the key differences between the system
earlier proposed in Section 4.4 and this system. This dissimilarity is shown in Figure
5.2. The multi-agent system in the middle of Figure 5.2 follows the design rules of a
”classical” multi-agent system proposed earlier in Section 4.4. It can be seen that each
line agent will communicate with all bus agents of the system. However, this is not the
case in the proposed adaptive multi-agent system in this section. As shown in Figure
5.2, the AMAS (on the right) only allows communication within the neighborhood

Figure 5.2: Section of a distribution network (left), its equivalent MAS (middle), and its equiv-
alent AMAS (right).
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of each line agent. The definition of the neighborhood of a line agent is the same
as its definition in Section 2.4 (i.e., the neighborhood of a line agent that connects
electrical bus a and electrical bus b consists of bus agents corresponding to electrical
buses a and b). Furthermore, similar to the system in Section 2.4, a line agent here
utilizes the comparison of absolute criticalities principle to decide if it should forward
its criticality message or instead it should forward the received criticality message of
one of its neighbors. For example, if line agent b in Figure 5.2 (right) is critical and
it has also received a criticality message from bus agent a then it will compare its
absolute criticality with the absolute criticality of the received request from bus agent
a to decide which request it should forward to bus agent b. The flow of information
here is also either upstream or downstream, i.e., the message received by line agent b
from bus agent a in Figure 5.2 (right) can only be forwarded to bus agent b (and not
back to bus agent a).

Unlike the system described in Section 2.4, a line agent does not send the same
criticality message to all EVs requesting cooperation. Instead, similar to the CMAB-
based MAS explained in Section 4.4, a line agent also uniformly samples a set of EV
agents from the [g] = 1, 2, 3, ..., g set of EVs which are charging at the same instant
and causing current congestion. The set of EVs that have not been sampled is denoted
by [h] = 1, 2, 3, ..., h. These EVs will not receive the line agent’s cooperation request
and thus they can charge simultaneously at their respective maximum power without
causing electrical current congestion in the system. The uniformly sampled EV agents
[x] = [g] − [h] will receive the line agent’s cooperation request. The criticality mes-
sage sent by a line agent consists of a dual pair. The first element of this dual pair
is the criticality value associated with the most critical agent determined through the
comparison of absolute criticalities principle while the second element represents the
set of EVs [h] (uniformly sampled from all EVs present in the distribution network),
picked by this most critical agent. The functionality of a line agent is described in
Algorithm 5.1.

In Algorithm 5.1, a line agent goes through three stages during each cycle. These
stages are perception, decision, and action. During the perception stage, a line agent
calculates its instantaneous criticality value which depends on the observed value of
its instantaneous current Iab(t). It also receives a set of messages from its neighboring
agents. If this line agent is critical then it will uniformly sample a set of EVs [x], which
will be requested to perform cooperative actions. During the decision stage, each line
agent is applying the comparison of absolute criticalities principle. If the criticality of
this line agent is greater than its neighboring criticality then the set of EVs uniformly
sampled by this line agent will be asked for cooperation. Otherwise, if a neighboring
agent has a higher criticality, then the set of EVs sampled by that agent with a higher
criticality is used for cooperation requests. FunctionsmaxCrR(t) and argmaxCrR(t)
returns the maximum criticality inR(t) and the argument holding the maximum criti-
cality in R(t) respectively. A line agent will decide to forward its criticality message
to its neighboring agents if it has the highest absolute criticality value compared to
all requests received inR(t). Otherwise, it will forward the message inR(t) with the
highest criticality. Finally, during the action stage, the selected criticality message is
forwarded to all neighboring agents.
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Algorithm 5.1 CMAB-based AMAS line agent’s functionality
Require: Electrical line’s rated current Iab,max
Require: Electrical line’s threshold current Iab,th

▷ Perception stage
1: Iab(t) := Perceived instantaneous line current from the sensor
2: Cr(t) := Line agent’s instantaneous criticality calculated using Equation (5.1)
3: R(t) := Set of requests received by line agent from its neighboring agents
4: [x] := Uniformly sampled set of EVs for requesting cooperative actions

▷ Decision stage
5: Crf := Criticality value to be forwarded
6: [x]f := Information regarding [x] to be forwarded
7: Crf := 0
8: [x]f := null
9: if (|maxCrR(t)| <= |Cr(t)|) then
10: Crf := Cr(t)
11: [x]f := [x]
12: else
13: Crf := maxCrR(t)
14: [x]f := Set [x] corresponding to argmaxCrR(t) request
15: end if

▷ Action stage
16: if (Crf ̸= 0 ) then
17: Forward (Crf, [x]f) to neighboring agents
18: end if
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Bus agent

The goal of each bus agent is to keep the magnitude of its instantaneous bus voltage
within the specified limits. Similar to a line agent, this goal is achieved by an adaptive
bus agent by keeping its criticality value as close to zero as possible. The instantaneous
bus criticality value also ranges between -1 (in case of an over-voltage issue) and 1
(in case of an under-voltage issue). The instantaneous criticality value is calculated
by each bus agent using the model presented in Equation (5.2). In Equation (5.2),
Crb,a(t) stands for the bus criticality of bus a and instant t. Terms V−

a,th, V
+
a,th, Va,min,

and Va,max stands for the negative voltage threshold, the positive voltage threshold,
the rated minimum voltage, and the rated maximum voltage at bus a, respectively. It
should be noted that here Va,min < V−

a,th < V+
a,th < Va,max. The value of Crb,a(t) is zero

if the instantaneous voltage at bus a remains between V−
a,th and V

+
a,th. If this condition

is violated then either an over-voltage issue or an under-voltage issue is present at the
electrical bus. The bus criticality is 1 in case of an under-voltage issue, -1 in case of
an over-voltage issue, and 0 in case of no issue.

Crb,a(t) =



0 if V−
a,th ≤ Va(t) ≤ V+

a,th
Va(t)−V−

a,th

Va,min−V−
a,th

if Va,min ≤ Va(t) < V−
a,th

− Va(t)−V+
a,th

Va,max−V+
a,th

if Va,max ≥ Va(t) > V+
a,th

1 if Va(t) < Va,min < V−
a,th

−1 if Va(t) > Va,max > V+
a,th

(5.2)

Bus agent’s criticality model

The relationship between a bus agent’s criticality and its instantaneous bus voltage
magnitude is plotted in Figure 5.3. The bus agent’s criticality value remains zero as
long as the instantaneous bus voltage is within its lower threshold value V−

a,th and its
upper threshold value V+

a,th. As soon as the voltage magnitude starts going below the
lower threshold V−

a,th, the bus criticality starts increasing linearly and becomes equal

Figure 5.3: Relationship between bus criticality and instantaneous electrical bus voltage.
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to 1 when the electrical bus starts facing an under-voltage issue. On the other hand,
it starts decreasing linearly when the voltage magnitude starts going above the upper
threshold value V+

a,th. The bus criticality value reaches -1 when an over-voltage issue
starts occurring at the electrical bus.

The functionality of a bus agent in this system is similar to that of a bus agent
proposed earlier in Section 2.4. A bus agent here also communicates only in its neigh-
borhood. For example, bus agent a in Figure 5.2 (right) can communicate only with
line agent a, line agent b, and EV agent a. It must be noted that the bus agent does
not always receive the criticality of the line. It only receives the line criticality when
the value is non-zero. Furthermore, the information flow is also only in one direction
here, i.e., bus agent a in Figure 5.2 (right) can forward the criticality message received
from line agent a to only line agent b and EV agent a. However, there are also some
similarities in the design of a bus agent here compared to that of a bus agent in Section
4.4. To give priority to the global line congestion in comparison to a local bus volt-
age limits violation, a bus agent will always forward the criticality message of a line
agent to its neighboring EV agent irrespective of its criticality. In case no line agent
criticality message has been received, a bus agent can forward its criticality message
to its neighboring EV agent if it is critical. Algorithm 5.2 presents the functionality of
a bus agent in this system.

Algorithm 5.2 CMAB-based AMAS bus agent’s functionality
Require: Electrical bus’ allowed minimum and maximum voltages Va,min, Va,max
Require: Electrical bus’ threshold voltages V−

a,th, V
+
a,th

▷ Perception stage
1: Va(t) := Perceived instantaneous bus voltage from the sensor
2: Cr(t) := Bus agent’s instantaneous criticality calculated using Equation (5.2)
3: R(t) := Set of requests received by line agent from its neighboring agents

▷ Decision stage
4: Crf := Criticality value to be forwarded
5: [x]f := Information regarding [x] to be forwarded
6: Crf := 0
7: [x]f := null
8: if (cooperation request due to line congestion is received) then
9: Crf := maxCrR(t)
10: [x]f := Set [x] corresponding to argmaxCrR(t) request
11: else
12: if (Cr(t) ̸= 0) then
13: Crf := Cr(t)
14: end if
15: end if

▷ Action stage
16: if (Crf ̸= 0 ) then
17: Forward (Crf, [x]f) to neighboring agent(s)
18: end if

During the perception stage in Algorithm 5.2, a bus agent is observing the instanta-
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neous value of its bus voltage and calculating its instantaneous criticality based on the
observed value. It is also receiving criticality message(s) from neighboring agents. It
is evident that during the decision stage priority is given to solving the line congestion
issue. This is because line congestion is expected to have a more global impact on a
distribution network compared to a local bus voltage limits violation. However, one
can easily design a system in which equal priority is given to both issues. A bus agent
in such a system would apply the comparison of absolute criticalities principle to de-
cide which criticality message should be forwarded instead of giving priority to solving
a line congestion issue. Finally, a bus agent communicates with its neighboring agents
in the action stage.

PV agent

The functionality of a PV agent is the same as it has been described in Algorithm 4.11,
i.e., a PV agent is communicating the magnitude of instantaneous energy generation
by its PV panel to all EV agents in the system. This communicated information is used
by each EV agent to learn the trend of daily PV energy generation through Bayesian
learning.

EV agent

Each EV agent is a learning agent here as well similar to the system in Section 4.4. It
is interacting with its environment. However, an EV agent’s interactions in this system
are slightly different compared to their interactions in the MAS of Section 4.4. This is
because line and bus agents are communicating their criticality values (and not reward
values) in this adaptive multi-agent system. Thus, the RL learning model in Figure
4.12 can be transformed into the RL learning model presented in Figure 5.4 for this
learning-based adaptive multi-agent system.

Due to this difference in agent’s interactions, the reward model given in Equation
(4.30) needs to be transformed into a reward model involving criticalities. This must
be done as an EV agent is a combinatorial multi-armed bandit-based learning agent in
the proposed system as well, and generally in such a learning system the concept of
reward is used to evaluate the optimality of an agent’s instantaneous action. Thus, the
criticality received from the environment should be transformed into a reward value
here. The following EV agent’s criticality-based rewardmodel is used for that purpose:

rewe,i(Se(d)) =

{
−Cre,env,i(Se(d)) if Cre,env,i(Se(d)) ̸= 0
1− c(i) if Cre,env,i(Se(d)) = 0

(5.3)

EV learning agent’s crticality-based reward model

In Equation (5.3), term Cre,env,i(Se(d)) stands for the criticality observed by EV
agent e, on day d, at instant i ∈ Se(d), from its environment (i.e., Cre,env,i(Se(d)) is the
criticality value received from Algorithm 5.2). Whereas, rewe,i(Se(d)) represents the
reward of EV agent e, on day d, at instant i ∈ Se(d). This reward is calculated based
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Figure 5.4: Reinforcement learning model of the proposed AMAS.

on the received criticality information and the instantaneous electricity price c(i). If
there is congestion in the environment (i.e., Cre,env,i(Se(d)) ̸= 0) then the observed
reward depends on the criticality value obtained from the environment. It must be
remembered that Se(d) stands for the super arm picked by EV agent e, on day d.

The rest of the internal working of an EV agent is the same as it was in Section
4.4, i.e., an EV agent utilizes combinatorial multi-armed bandit algorithm to minimize
its daily charging cost while also satisfying a set of grid and prosumers constraints.
Each day d is divided into [m] = 1, 2, 3, ...,m equally spaced instants (also known as
base arms). Each EV agent either selects an instant to charge from the grid or does
nothing at that instant, i.e., the action set of an EV agent consists of two values here
as well 0, 1. Each EV selects a set of base arms (i.e., a super arm) to charge during
the remainder of its connection time with the grid to achieve the desired SoC before
its departure time. This selected super arm can be updated in real-time to handle the
real-time uncertainties discussed earlier in Section 4.4 when the design of a CMAB-
based learning EV agent was presented in detail. The functionality of a CMAB-based
AMAS EV agent is given in Algorithm 5.3.

A CMAB-based EV agent also goes through three AMAS stages in Algorithm 5.3,
i.e., perception, decision, and action. First, an EV agent is selecting a super arm to play
using combinatorial multi-armed bandit learning during the decision stage. Informa-
tion regarding the number of instants already charged from the grid ie,chrgd,t(d) on day
d is used by an EV agent to calculate the number of instants required to charge from
the grid ie,req(d) using Equation (4.34). This ie,req(d) value is then used to calculate
the optimal super arm to be played. The methodology to calculate this optimal super
arm depends on the learning strategy utilized (Thompson Sampling, UCB, or EXP3
as discussed in the previous chapter). Each EV agent sets the instantaneous charging
power of its corresponding EV based on the selected super arm in the action stage. Fi-
nally, an EV agent will observe instantaneous criticality value from the environment
Cre(Se(d)) and it will calculate its instantaneous reward rewe(Se(d)) based on the ob-
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Algorithm 5.3 CMAB-based AMAS EV agent’s functionality
Require: Total number of instants (base arms) m
Require: Learning parameter β ∈ R+

1: e := EV agent index
2: d := Learning day index
3: Se(d) := Selected super arm on day d
4: ie,req(d) := Total number of required instants for grid charging on day d
5: ie,chrgd,t(d) := Total instants already charged from the grid till instant t on day d
6: rewe(Se(d)) := Reward vector for playing Se(d) super arm
7: Cre(Se(d)) := Instantaneous environment criticality
8: Pe,PV := PV energy production vector
9: φ̂e := 0m; Y := Im,m; z := 0m
10: for d = 1, 2, 3, ... do
11: φ̃e ∼ N (φ̂e, β

2Y−1)
12: ie,chrgd(d) := 0
13: for t = 1, 2, 3, ...,m do

▷ Decision stage
14: Calculate ie,req,t(d) using Equation (4.34)
15: Select Se(d) using a learning strategy s.t.

∑
j>t Se,j(d) = ||Se(d)||1 =

ie,req,t(d)
▷ Action stage

16: Set EV’s instantaneous charging power
▷ Perception stage

17: Perceive Cre(Se(d)) from the environment
18: Observe t-th element of rewe(Se(d)) using reward model in Equation (5.3)
19: Observe t-th element of Pe,PV from Algorithm 4.11
20: ie,chrgd,t(d) := ie,chrgd,t(d) + 11[t ∈ Se(d)]
21: end for
22: Update parameters of the learning strategy
23: Y := Y+ IkI

⊤
k ; z := z+ Pe,PV; φ̂e := Y−1z

24: end for
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served environment criticality. Each EV agent is also observing the instantaneous PV
energy production data from PV agent(s). Bayesian learning is used by EV agent e
to make its estimation of the instantaneous PV production φ̂e based on the observed
data. Also, learning parameters corresponding to PV energy generation estimation (Y,
z, and φ̂e) and the selected learning strategy are updated based on the observed Pe,PV,
at the end of each day d.

Two crucial points regarding the proposed system should be emphasized:

• The proposed system is designed to be theoretically scalable, as each
electric vehicle agent can evaluate its estimation of the best super arm in
O(m) time, where m represents the total number of available base arms.
This property is ensured because the super arms played by each elec-
tric vehicle agent are assumed to follow a linear structure, denoted as
E [rμ(Se(d))] = (Se(d))T · (θe(d)).

• The system design ensures that critical private data of each agent type
is not required to be shared with other agents in the system. Only in-
stantaneous criticality values need to be shared. Additionally, no direct
communication between electric vehicle agents is necessary for the pro-
posed system, eliminating the need to share sensitive information related
to electric vehicles (e.g., arrival time, departure time, desired state of
charge, etc.) with other vehicles in the system.

Note 5.1.1

This completes the modeling of the presented system which combines combinato-
rial multi-armed bandit learning with the framework of adaptive multi-agent systems.
The proposed system is fully decentralized, real-time, model-free, scalable as well as
adaptable. To evaluate the performance of this CMAB-based adaptive multi-agent
system simulation studies are performed with the assumptions that communications
among agents are synchronous as well as the speed of communication is much higher
(inmilliseconds) compared to the temporal resolution of decision-making in the system
(one minute). In the following sections, the simulation-based experiments conducted
to evaluate the performance of the proposed combinatorial multi-armed bandit-based
adaptive multi-agent system (CMAB-based AMAS) are presented. The objective is to
statistically demonstrate that the CMAB-based AMAS can effectively control large-
scale smart grids in real-time and yield near-optimal solutions even in the presence of
real-life uncertainties.

5.2 Baseline EV charging strategies
To evaluate the performance of the proposed adaptivemulti-agent combinatorial multi-
armed smart charging system, a number of baseline charging strategies are highlighted
in this section. The solutions obtained through these charging strategies will be used
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in quantifying the improvements made through multi-armed bandit learning in Section
5.3. The following charging strategies are selected as baselines:

• Uncontrolled charging strategy

• Centralized MILP charging strategy

• CMAB-based adaptive multi-agent charging strategy (no PV estimation)

Uncontrolled charging strategy:
Uncontrolled charging is one of the most commonly used practical EV charging strate-
gies [95]. This charging strategy has already been described in Algorithm 3.1. In an
uncontrolled charging strategy, EV e starts charging at its rated power Pe,a,max as soon
as it is plugged-in by the EV owner. Evidently, it is not an optimal charging strat-
egy. This is because EVs are charging as soon as they are connected to the electrical
grid. These EVs do not take into account the variability in daily electricity pricing.
Furthermore, the impact of each EV’s charging on the grid is not observed by an EV
either. Thus, all EVs will continue to be non-optimal and may compromise the electri-
cal grid’s stability due to peak load demands. This charging strategy does not handle
the PV energy production uncertainty (and thus does not benefit from freely available
PV energy), the real-time uncertainty, and the opponents’ actions uncertainty.

Centralized MILP charging strategy:
The centralized MILP optimization approach already discussed in Chapter 3 (in Sec-
tion 3.1) can be applied here as well to solve the smart charging optimization problem.
However, in the standard MILP formulation, the decision variable x belongs to the set
of non-negative integers Z+ (Equation (3.2)). Furthermore, in MILP it is assumed that
the objective function, Equation (3.1), and the problem constraints, Equation (3.2), are
linear. In the studied smart charging problem non-negative instantaneous EV charging
power is assumed i.e., Pe,a(t) ∈ [0,Pe,a,max]. However, the originally presented smart
charging problem belongs to the quadratic constrained programming (QCP) class of
optimization problems [4]. The objective function in Equation (4.1) involves an abso-
lute function term, which is not a linear function. Furthermore, there exists a product
of voltages in Equation (4.5), which again is not a linear function. Thus, to applyMILP
optimization, linearization of the mentioned equations must be performed.

Objective function linearization

Linearization of the original non-linear smart charging objective function, Equation
(4.1), is performed here. The non-linear absolute term is linearized by assuming the
absolute term equal to a normal variable Q, and then putting constraints on this as-
sumed variable. This is shown as follows:
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Objective function:

min
E∑

e=1

Ce(d) = min
E∑

e=1

n∑
t=1

c(t)Pe,a(t)Δt

−
E∑

e′=1

E∑
e=e′
|Ce′,pu(d)− Ce,pu(d)|

(5.4)

is equivalent to:

min
E∑

e=1

Ce(d) = min
E∑

e=1

n∑
t=1

c(t)Pe,a(t)Δt−
E∑

e′=1

E∑
e=e′

Q (5.5)

subject to the constraints:

(Ce′,pu(d)− Ce,pu(d)) ≤ Q (5.6)

(Ce,pu(d)− Ce′,pu(d)) ≤ Q (5.7)

Smart charging problem’s linearized objective function

Constraint linearization

Now that the objective function has been linearized, the non-linear constraint in Equa-
tion (4.5) can also be linearized. In fact, the linearization of this constraint has already
been described in Section 3.1 when the centralized MILP baseline has been discussed.
Thus, the original non-linear constraint in Equation (4.5) can be replaced with the fol-
lowing two separate linear power flow equations:

Pab(t) = Gab(t) (Va(t)− Vb(t)) + Bab(t) (ψa(t)− ψb(t)) (5.8)

Qab(t) = Bab(t) (Va(t)− Vb(t)) + Gab(t) (ψb(t)− ψa(t)) (5.9)

Linearized power flow costraints

A feasible set, given below, is formed to solve the smart charging problem as a
mixed integer linear programming (MILP) optimization problem.

The uncertainty in opponents’ actions does not apply here, as it is a centralized
optimization strategy. Real-time uncertainty can be tackled by centralized MILP op-
timization, if it would be able to perform optimization in real-time. However, it will
be shown in Section 5.3 that for a large-scale system, real-time solutions may not be
possible. Finally, the presented MILP formulation requires PV forecasts to perform
optimization. Thus, the uncertainty in PV energy production is not managed by this
smart charging strategy. An error in PV forecast input co-relates directly to the ob-
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Objective function in Equation (5.5)

DSOs constraints in Equations (4.8)-(4.11)

Prosumers constraints in Equations (4.12)-(4.14)

Objective function linearization constraints in Equations (5.6)-(5.7)

Network’s physical constraints in Equations (4.3)-(4.7) & (5.8)-(5.9)

Feasible set 5.1: linearized smart charging formulation

tained solution’s quality.

CMAB-based charging strategy (no PV estimation)
This charging strategy is a variation of the proposed adaptive multi-agent combinato-
rial multi-armed bandit smart charging presented in Section 5.1. In Algorithm 5.3, if
the estimated PV energy production vector φ̂e is assumed to be null at all instants, then
it will give the CMAB-based adaptive multi-agent smart charging strategy (no PV esti-
mation). Similar to Algorithm 5.3, this charging strategy satisfies all constraints of the
smart charging problem under study. However, unlike Algorithm 5.3, this charging
strategy does not try to learn any information related to daily PV energy production.
As a baseline strategy, this EV charging strategy is included to see the impact of learn-
ing the daily PV energy production trend on the total optimization cost (sum of daily
costs of all EVs). This will allow us to quantify the improvement (in terms of total
daily charging cost) made by Algorithm 5.3 through learning the mentioned PV pro-
duction trend. This charging strategy manages the real-time uncertainty as well as the
uncertainty in opponents’ actions, but it does not tackle the uncertainty in free-of-cost
PV energy production.

5.3 Stochastic simulation-based experimentation
Simulation studies are performed to evaluate the performance of our proposed adap-
tive multi-agent combinatorial multi-armed bandit-based smart charging system. The
details of each simulation study and its results are presented in this section. The pre-
sented results also include solutions obtained through all baseline charging strategies,
mentioned in Section 5.2.

Simulation-based experimentation settings
Each performed simulation study includes modeling of an electrical distribution grid,
careful selection of system variables (Pe,a,max,Ee,bat, SoCe,max, etc.), data engineering,
and software implementation of the earlier discussed charging strategies. Here, all
these aspects are presented in detail.
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Electrical distribution networks

Two simulation case studies are performed. The classification is made based on the
size of the electrical distribution network used in these studies:

• Small-scale case study

• Large-scale case study

The small-scale case study consists of 55 load buses. Each of these load buses has a
household and an EV attached to it. Thus, in total, the small-scale distribution network
has 55 households and 55 EVs. The single-line electrical diagram of the small-scale
network is shown in Figure 5.5. This distribution network comprises only a single dis-
trict, which is connected to the grid side through an 11/0.4 kV grid transformer. This
district consists of only one sub-district. This only sub-district is modeled as the IEEE
low voltage test feeder (IEEE LVTF) [159]. The grid side also includes PV power sta-
tions in the studied system. A relatively smaller-scale case study, with 55 EV agents,
is modeled here to conduct an in-depth optimality analysis of our proposed adaptive
multi-agent CMAB-based smart charging system. Centralized charging strategies can
provide an optimal solution, which can be used as the lower bound to study other
charging strategies. However, centralized charging strategies may not scale well. As
a result, the optimal solution will be unknown, and the optimality of different charg-
ing strategies cannot be studied. Thus, the main reason to perform this small-scale
case study is its capability to provide the optimal solution when the centralized MILP
optimization smart charging strategy is applied to it.

The aim of this thesis, however, is to actually design an optimal decentralized smart
charging system for large-scale smart grids. Thus, a second case study is performed
on a large-scale distribution network. This is termed as the large-scale case study

Figure 5.5: Distribution network used to perform the small-scale case study.
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Figure 5.6: Distribution network used to perform the large-scale case study.
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here. The single-line diagram of the studied large-scale distribution network is shown
in Figure 5.6. The large-scale distribution network consists of 37 districts, connected
to the grid side through 132/33 kV grid transformers. Each of these districts is further
divided into five sub-districts. Thus, there are 185 total sub-districts in the modeled
large-scale distribution network. These sub-districts are connected to their specific
district through 33/11 kV transformers. Similar to the small-scale case study, each sub-
district is modeled as the IEEE low voltage test feeder (IEEE LVTF) [159]. Each IEEE
LVTF sub-district includes 55 load buses. Thus, there are a total of 10,175 households
and 10,175 EVs in the studied electrical distribution network. The voltage magnitude
at the grid bus is fixed to 1 per-unit. However, the grid generator’s active and reactive
powers are not set to specific values. These active and reactive powers would depend
on the demanded (or generated) power by the connected distribution network.

Parameters

Each day is divided into 1440 equally spaced decision-making instants, i.e., each EV
has to determine its instantaneous charging power at each minute of the day. Each
EV’s battery’s minimum and maximum SoC values are set to 0.3 and 0.8, respectively.
Between 0.3 and 0.8 is the ideal SoC range to decelerate electrolyte degradation and
capacity loss in EV batteries [55]. The rated charging power of each EV Pe,a,max is set
to 7 kW. The charging/discharging efficiency ηe,a of 0.95 is considered for each EV.
To incorporate the heterogeneity introduced by different EV models in practical life,
the battery capacity of each EV is modeled to hold the value belonging to any one of
the following (Table 5.1) top-selling electric vehicles [98]:

EV model Battery capacity (kWh)

Tesla Model 3 57.5

Renault Zoe 52

Peugeot 208 EV 51

Table 5.1: Battery capacities of top-selling EV models in France (January - December 2021).

The maximum Va,max and minimum Va,min voltage magnitudes allowed at each bus
are 1.05 and 0.95, respectively. The rated current of each electrical line Iab,max depends
on the model of the electrical line in the IEEE LVTF network, which comes along with
the IEEE LVTF network model [159].

Datasets

Three datasets are used to model three main time-series elements of the system:

• Household loads data

• Photovoltaic irradiance data

• Electric vehicles data
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Figure 5.7: Sum of all load profiles in the IEEE LVTF dataset.

First, the load profile of each household load is provided alongwith the IEEELVTF
network model. The resolution of each household’s load profile is 1 minute. The bar
chart of the mean of all load profiles is presented in Figure 5.7. It can be seen that the
accumulated load profile has a peak during the later hours of the day. Whereas, during
the early hours of the day, this accumulated load is around its minimum value. This
accumulated load directly corresponds to the distribution network’s stress. The stress
is maximum in the evening and minimum during the early morning.

Second, the PV irradiance data is obtained by the National Renewable Energy
Laboratory (NREL) dataset [133]. The irradiance data utilized here corresponds to
the location with 39.78 latitude and -105.23 longitude values in the NREL database
for the year 2020. The resolution of this data is 1 minute as well. The heatmap of
this irradiance dataset is shown in Figure 5.8. This heatmap plots the irradiance values
during each day of the year against the irradiance values during each hour of the day. It
can be seen in the heatmap that there are uncertainties in this instantaneous PV irradi-
ance value. The direct impact of these uncertainties on the studied objective function
in Equation (4.1) encourages each EV to make its decisions based on its estimation
of the instantaneous PV production. The instantaneous PV energy production PPV is
linked to the instantaneous solar irradiance value Irr(t) as follows:

PPV = Irr(t)AηPV (5.10)

where A and ηPV represent the total area and the efficiency of PV panels, respectively.

Figure 5.8: Heatmap of the NREL PV irradiance dataset.
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Figure 5.9: Jointplot of the arrival time distribution, departure time distribution (left), and the
distribution of the initial SoC.

Third, the electric vehicles’ dataset is required to model the arrival time, the de-
parture time, and the initial state of charge of each electric vehicle. This dataset comes
from the ”TestanEV” project [41]. In this project, the mobility data of 185 electric
vehicles were recorded over a period of one year. This data is utilized to model EVs
in our experiments. The large-scale case study involves 10,175 EVs, whereas there
are only 185 EVs in the dataset. Hence, a distribution is fitted to each required data
variable (arrival time, departure time, and initial SoC) in the dataset. These distribu-
tions are shown in Figure 5.9. It can be seen that the arrival time’s distribution has
its peak around evening time. Around this time, the household load stress on the grid
is at maximum as well, as shown in Figure 5.7. Thus, a demand peak can be formed,
which can cause congestion in the network. It can also be seen that the departure time’s
distribution peaks in the morning hours, when people may leave for work, school etc.
The EV load demand can be shifted to early hours to avoid the earlier discussed peak
load demand. The initial state of charge distribution is also shown in Figure 5.9. Our
simulation-based experimentation uses these distributions to sample required arrival
times, departure times, and states of charge.

Implementation

All of the studied charging strategies are implemented in Python [181]. PandaPower is
a Python library that can be used tomodel any desired distribution network and execute
load flows [172]. This library is used by the uncontrolled EV charging Algorithm 3.1
to get the required power flow results. The centralized MILP optimization charging
strategy does not require PandaPower, as the load flow equations have been modeled
as hard constraints i.e., Equation (4.3)-(4.7). The CVXPY python-embeddedmodeling
language is also utilized here to solve the centralizedMILP optimization problem [51].

The working of combinatorial multi-armed bandit-based systems is shown in Fig-
ure 5.10. This system has two main components, i.e., the CMAB-based AMAS and
the simulator. This CMAB-based smart charging system consists of an environment
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Figure 5.10: Block diagram of CMAB-based EV charging strategies implementation in Python.

Figure 5.11: Expanded block diagram of CMAB-based EV charging strategies implementation
in Python.

and EV agents. The simulator in Figure 5.10 is the new element here. This simula-
tor is designed specifically to carry out simulation studies. The role of this simulator
is basically to model the studied distribution network, perform power flows, and up-
date the states of EVs (such as SoC and SoH). The expanded block diagram of system
implementation is given in Figure 5.11.

Computing machine’s specifications

All of the presented experiments are performed on a computing machine with the fol-
lowing specifications (Table 5.2):

Specification

Processor AMD Ryzen Threadripper 3970X (4.5 GHz)

Memory DDR4 (128 GB, 3200 MHz)

Storage SSD (1 TB, 560/530 MB/s)

Table 5.2: Specifications of the computing machine used to perform simulation-based experi-
ments.
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Evaluation metrics
In both of the described experiments, four key metrics are used to draw comparisons
among different studied charging strategies. These metrics include optimality, con-
straints satisfaction, fairness, and scalability. The aim would be to compare the pro-
posed CMAB-based adaptive multi-agent smart charging strategy with each of the
discussed baseline charging strategies, in Section 5.2, using these metrics. This com-
parison would allow a better understanding of each EV charging strategy in realistic
simulation scenarios.

Constraints satisfaction

The studied set of constraints i.e., Equation (4.3)-(4.14), must be satisfied as well.
Thus, different EV charging strategies can be compared depending on whether these
constraints are satisfied. Due to peak demand, one can expect the congestion con-
straints to be violated in uncontrolled EV charging. However, all optimization-based
smart charging algorithms must satisfy this set of constraints.

Optimality

Another important aspect of an optimization problem’s solution is its optimality. It is
desired that the solution obtained through any smart charging strategy minimizes (or
maximizes) the studied objective function. The objective here is to minimize electric
vehicles’ daily charging costs. The proposed CMAB-based adaptive multi-agent smart
charging strategy (or any other EV charging strategy) will provide a solution to mini-
mize this cost. However, whether this provided solution is optimal remains a question
if no comparisons are made. Hence, the centralized MILP smart charging strategy is
used to obtain optimal solutions. Then the evaluation of other EV charging strategies
is made based on the obtained centralized MILP solutions.

This centralized optimal solution is termed as the lower bound in this simulation-
based experimentation section. The studied EV charging strategies can match this
lower bound at best. The centralized MILP solution depends on the system’s temporal
resolution, i.e., the length of each decision instant in a day (hour, minute, second, etc.).
A relatively lower temporal resolution (e.g., hour) would mean fewer decision-making
instants, directly corresponding to a lower-quality solution. Furthermore, centralized
MILP optimization also requires PV energy production forecasts. This PV energy
production forecast error correlates inversely to the obtained solution’s quality. The
heatmap plotting the impact of these two variables (temporal resolution and PV energy
production forecast error) on the centralizedMILP optimization performance is shown
in Figure 5.12. The small-scale distribution network with earlier described datasets is
used to obtain this plot. The difference (%) is calculated in Figure 5.12 by taking the
point with null forecast error and 1-minute temporal resolution as the initial value.

It can be seen in Figure 5.12 that the optimization cost decreases as the temporal
resolution decreases. This decline in the optimization cost is sharp when the temporal
resolution is changed from hours to minutes. However, this reduction in the opti-
mization cost plateaus when the temporal resolution is below five minutes. Thus, the
centralized MILP optimization’s temporal resolution will be fixed to 1-minute in the

170



Figure 5.12: Impact of MILP’s temporal resolution and forecast error on the obtained solution.

experiments. Also, it is evident in Figure 5.12 that the optimal solution can only be
obtained when the PV energy production forecast is error-free. Hence, in the next sec-
tion, the centralized MILP optimization solution with a 1-minute temporal resolution
and error-free PV energy forecast will be used as the optimal solution (lower bound)
to evaluate the performance of other EV charging strategies.

Fairness

The studied objective function in Equation (4.1) consists of two terms. The second
term is included to minimize the per-unit charging cost paid by each electric vehicle.
This term enforces that fairness should be maintained among all EVs in the system. In
the presented experiments, fairness is measured by observing the percentage of EVs
that satisfy Equation (4.14), and by calculating a fairness index value. Let [C] be the
set of per-unit charging costs of each EV. Then, the fairness index F [C] of this set of
EVs is calculated as follows:

F [C] = 1

1+
(

σ[C]
[C]

)2 (5.11)

where σ[C] is the standard deviation of [C], and [C] represents the mean value of [C].
This fairness index value is in the range [0, 1]. If σ[C] = ∞, then the fairness index
will be zero i.e., the studied system would be completely unfair. On the other hand,
if σ[C] = 0, then the fairness index will be unity i.e., the studied system would be
completely fair.

Scalability

The desired smart charging algorithmmust operate in real-time, and it should be able to
handlemany electric vehicles. Thus, the applicability of each studied charging strategy
can be compared in terms of scalability. The lack of scalability is a significant draw-
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back, even if the smart charging strategy is optimal. This is because the optimization
time would increase drastically, and the algorithm may not be able to perform opti-
mization when applied to a large-scale smart grid.

Results
Small-scale case study

The small-scale case-study is performed using the distribution network shown in Fig-
ure 5.5. The discussed reinforcement learning-based charging strategies are allowed
to learn for 30 simulation days i.e., the learning phase. The mean rewards (mean of all
EVs’ average rewards) of the proposed baseline CMAB-based adaptive multi-agent
smart charging strategy without any PV estimation and the proposed CMAB-based
adaptive multi-agent smart charging strategy with PV estimation are shown in Figure
5.13 and Figure 5.14 respectively. Convergence can be observed within 30 simula-
tion days for any choice of learning strategy (Thompson sampling, UCB, or EXP3).
The mean reward rmean(t) of a learning strategy at instant t, with E number of learning
EV agents in the system, each observing an instantaneous reward re(t) and having an
average reward value ravg,e(t), is calculated as follows:

rmean(t) =
∑E

e=1 ravg,e(t− 1) + (re(t)− ravg,e(t− 1))
E

(5.12)

It can be seen in Figure 5.13 that the EXP3 learning strategy is performing the best
at the start of the learning phase. The adversarial EXP3 approach can be well suited
to handle the non-stationarity in the choice of super arms of other players (EVs) from
one player’s (EV’s) point of view. The mentioned non-stationarity is expected to be
at its highest level at the beginning of the simulation-based experimentation. Thus,
the EXP3 learning strategy shows this superior performance initially. However, as
each agent learns its respective optimal policy, the non-stationarity in the choice of
super arms of other EVs from one EV’s perspective decreases. Hence, the Thomp-
son sampling-based learning strategy starts performing better than the EXP3-based
learning strategy. The UCB-based learning strategy shows inferior performance in
this simulation-based experimentation comparatively, but it still converges to a near-

Figure 5.13: Average learning reward of the system when the CMAB-based learning strategy
is applied without any PV estimation.
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optimal policy. Furthermore, it can be observed in Figure 5.14 that when EV agents are
also learning the trend of the daily freely available PV energy production, all learning
strategies converge to the same average reward value. This is because EVs also utilize
the available PV energy production during the day. Hence, the competition during the
low electricity price instants is reduced. This reduced competition favors the UCB and
the EXP3 learning strategies, thus achieving the same average reward value in Figure
5.14. It must be noted that the curves shown in Figure 5.14 do not represent the objec-
tive function-based cost optimality results of the system. These average reward curves
are based on virtual reward values designed to assist the learning of each EV agent.
Thus, these curves signify the learning convergence of agents here. The calculation of
daily charging costs results to study optimality is made in the upcoming sub-section.

After the learning phase is complete, the next 30 simulation days are used for per-
formance evaluation i.e., the evaluation phase. Both the uncontrolled charging strat-
egy and the presented MILP optimization-based charging strategy are also evaluated
during this evaluation phase to draw comparisons.

Constraints satisfaction

The distributions of the voltage are the last bus of the distribution network, and the
electrical current (flowing through the electrical line connecting the sub-district SD1
with the district D1 in Figure 5.5), during the evaluation phase, is presented in Figure
5.15. These distributions are obtained when the MILP optimization charging strategy
is followed. It can be seen that the bus voltage remains within the desired limits of 0.95
pu and 1.05 pu. Additionally, it can be observed that there is no current constraint vi-
olation (i.e., no electrical current congestion) in the system if the MILP optimization
charging strategy is followed. The obtained results are intuitive, as both of these con-
gestion constraints are modeled as hard constraints in the presentedMILP formulation,
in Section 5.2.

However, the same cannot be said for the uncontrolled charging strategy. In Fig-
ure 5.16, the distributions of the bus voltage and the electrical line current during the
evaluation phase are shown, when the uncontrolled EV charging strategy is followed.
Both of the studied congestion constraints are violated here. There is an under-voltage
issue in the network as well as electrical line congestion. During the evaluation phase,
the distribution network suffers from the shown under-voltage issue for 6.11% of the

Figure 5.14: Average learning reward of the system when the CMAB-based learning strategy
is applied with the PV estimation.
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Figure 5.15: Distribution of the bus voltage (left) and the line current (right) obtained through
the MILP optimization.

total time (i.e., 30 days) when the uncontrolled charging strategy is followed. Ad-
ditionally, the distribution network is also congested (electrical line congestion) for
10.14% of the total evaluation phase, when EVs are charging without any control.
The charging policies of three of three randomly selected electric vehicles during one
of the evaluation days are given in Appendix B.

The surface plots of the bus voltages (at the last bus of the studied small-scale dis-
tribution network) obtained through the CMAB-based adaptive multi-agent charging
strategies (both with and without PV estimation) are shown in Figure 5.17. In both of
the shown surface plots, voltage constraint violations at the initial stage of the learn-
ing phase can be observed. As the learning phase progresses, EV agents try to prevent
this voltage congestion. Moreover, the magnitude of the under-voltage issue is higher
when EV agents are not learning the PV energy production trend compared to when
EV agents are learning the daily PV energy production trend. The distributions of the
voltage on the last bus of the distribution network, and the electrical current (flowing
through the electrical line connecting the sub-district SD1 with the district D1), during
the evaluation phase, are presented in Figure 5.18 and Figure 5.19.

These distributions are obtainedwhen the CMAB-based adaptivemulti-agent charg-
ing strategy is followed without any PV estimation, and with each of the mentioned

Figure 5.16: Distribution of the bus voltage (left) and the line current (right) obtained through
the uncontrolled EVs charging.
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Figure 5.17: Voltage at the last bus when the proposed CMAB-based adaptive multi-agent
charging strategy (with Thompson sampling) is followed without any PV estimation (top) and
with PV estimation (bottom).

learning strategies (Thompson sampling, UCB, and EXP3). It can be seen that both
congestion constraints (voltage and current) are satisfied by all of the learning strate-
gies. These constraints are also satisfied when EV agents follow the proposed CMAB-
based adaptive multi-agent smart charging with PV estimation. The resulting distri-
butions are shown in Figure 5.20 and Figure 5.21. Here, it can also be observed that
no constraints are violated when our proposed adaptive multi-agent charging strategy
is followed. Thus, in terms of constraint satisfaction, all of the studied EV charging
strategies are working as desired, except for the uncontrolled EV charging strategy.
This unsought functionality of the uncontrolled EV charging strategy is clearly visible
in Figure 5.22. In Figure 5.22, the bus voltage (at the last bus) and the line current
(through the electrical line connecting the sub-district SD1 with the district D1 in Fig-
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Figure 5.18: Distribution of the bus voltages (left) and the line currents (right) obtained through
the CMAB-based adaptive multi-agent charging strategy without any PV estimation (with
Thompson sampling).

Figure 5.19: Distribution of the bus voltages (left) and the line currents (right) obtained through
the CMAB-based adaptivemulti-agent charging strategywithout any PV estimation (withUCB
and EXP3).

ure 5.5) are shown, for all of the studied EV charging strategies. The shown curves
correspond to one of the days during the evaluation phase. A peak load demand in the
evening causes congestion in the studied electrical distribution network.

Other mentioned EV smart charging strategies manage this peak load demand, as
shown in Figure 5.22. The CMAB-based smart charging strategies (without any PV
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Figure 5.20: Distribution of the bus voltages (left) and the line currents (right) obtained through
the CMAB-based adaptive multi-agent charging strategy with the PV estimation (with Thomp-
son sampling).

Figure 5.21: Distribution of the bus voltages (left) and the line currents (right) obtained through
the CMAB-based adaptive multi-agent charging strategy with the PV estimation (with UCB
and EXP3).

estimation) manage the peak load demand by shifting the load during the early hours of
the day (when the electricity price is not expensive) while ensuring that the distribution
network does not get congested. This shift in EV load would benefit both prosumers
and DSOs. However, this mentioned strategy may not be optimal as it does not learn
and utilizes the freely available PV energy production. The MILP optimization smart
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Figure 5.22: Daily electricity price (top). Electrical line currents (middle) and voltages (bot-
tom) comparison during a single day.

charging strategy produces the optimal solution, as zero PV forecast error while per-
forming MILP optimization has been considered here. Thus, the MILP optimization
smart charging strategy will utilize all of this accurately known PV energy to minimize
the charging costs of each EV. On the other hand, our proposed CMAB-based adaptive
multi-agent system learns the trend of this daily PV energy production and does not re-
quire this time series data as an input. Yet, it manages to produce a near-optimal (close
to the optimal MILP solution) solution. This is a significant contribution of the pro-
posed adaptive multi-agent multi-armed bandit smart charging system as it produces
near-optimal solutions while considering real-life uncertainties.
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Figure 5.23: Optimality gap comparison compared to the centralized MILP lower bound.

Optimality

As discussed earlier, the MILP optimization strategy with no PV forecast error is con-
sidered the optimal charging strategy. Thus, the optimality of each charging strategy is
evaluated by calculating the percentage increase in the total daily charging cost com-
pared to the optimal MILP total daily charging cost. The obtained optimality results
are presented in Figure 5.23. The horizontal axis is considered the optimal MILP daily
charging cost, while the vertical axis represents the percentage increase compared to
the optimal horizontal axis. It can be seen in Figure 5.23, that the uncontrolled EV
charging strategy holds the highest optimality gap. The average percentage increase
when the uncontrolled EV charging strategy is followed during the evaluation phase
is 138.03%. This increment in the total daily charging cost is expected as the peak EV
load demand is in the evening when the electricity price is at its highest, as shown in
Figure 5.22.

The total daily charging cost can be reduced if the CMAB-based adaptive multi-
agent smart charging without any PV estimation is adapted. In this charging strategy,
each EV agent minimizes its daily charging cost by charging when the electricity price
is low, without causing any congestion in the distribution network. However, this
charging strategy may still be far from optimal as the freely available PV energy pro-
duction has not been utilized by EV agents during the day. This is evident in Figure
5.23. The average percentage increase, when this EV charging strategy is followed
during the evaluation phase, is 85.55%. The obtained average optimality gap results
for each learning strategy are summarized in Table 5.3, for both the CMAB-based
learning strategies with and without the PV estimation.

Finally, the proposed CMAB-based adaptive multi-agent smart charging strategy
with the PV estimation (with Thompson sampling learning strategy) is closest to the
optimal MILP optimization charging strategy, shown in Figure 5.23. As discussed
earlier in Figure 5.22, EVs make an estimate of the daily PV energy production and
utilize it to charge during the day without paying any cost. This strategy, as a result,
further minimizes the total daily charging cost of EVs. The average percentage in-
crease during the evaluation phase is 10.01%, if the proposed adaptive multi-agent
EV smart charging strategy is followed. The choice of learning strategy can have a
minor impact on this average percentage increment compared to the optimal MILP.
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CMAB-based smart charging (without any PV estimation)

Learning strategy Optimality gap (%)

Thompson sampling 85.55

UCB 109.62

EXP3 97.12

CMAB-based smart charging (with PV estimation)

Learning strategy Optimality gap (%)

Thompson sampling 10.02

UCB 10.02

EXP3 10.04

Table 5.3: Selected learning strategy impact on the optimality gap.

Centralized MILP optimization charging strategy

% of EVs with SoCe,depart Fairness index

100 1

CMAB-based smart charging (without PV estimation)

Learning strategy % of EVs with SoCe,depart Fairness index

Thompson sampling 100 0.99

UCB 100 0.99

EXP3 100 0.99

CMAB-based smart charging (with PV estimation)

Learning strategy % of EVs with SoCe,depart Fairness index

Thompson sampling 100 0.99

UCB 100 0.99

EXP3 100 0.99

Table 5.4: Fairness comparison for the small-scale case study.

This impact occurs because each learning strategy converges to the same mean reward
value, as shown in Figure 5.14. The impact of the selection of the learning strategy on
the optimality gap for the proposed smart charging strategy is also listed in Table 5.3.
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Fairness

Fairness should be maintained among all EV agents in an ideal decentralized system.
The fairness comparison between the MILP optimization charging strategy and the
CMAB-based adaptive multi-agent smart charging strategies is presented in Table 5.4.
The uncontrolled EV charging strategy has not been included in the comparison as it
is not an optimization-based charging strategy. In the case of MILP optimization, as it
is a centralized optimization approach with the fairness term included in the objective
function, it is entirely fair. All EVs attain their desired SoCe,depart at their respective
departure times. This constraint is also satisfied by both of the CMAB-based smart
charging strategies. The fairness index value of the MILP optimization strategy, cal-
culated using Equation (5.11), is equal to 1. Moreover, these values are sufficiently
close to 1 for the proposed CMAB-based charging strategies. It confirms that fair-
ness among all EV agents is taken into account by the proposed adaptive multi-agent
multi-armed bandit smart charging system.

Scalability

All of the studied EV charging strategies are scalable up to this point. The solutions
obtained through both the centralized MILP and the CMAB-based adaptive multi-
agent EV charging strategies have been discussed. However, there were only 55 EVs
in the studied small-scale distribution network. Thus, a large-scale case study with
10,175 EVs is proposed to evaluate this performance metric better. This large-scale
case study is discussed next.

Large-scale case study

The large-scale simulation study is performed using the electrical distribution network
model given in Figure 5.6. There are a total of 10,175 intelligent EV agents in the
studied large-scale system. The centralized MILP optimization algorithm is unable
to perform optimization here due to a large number of agents in the system (resulting
in extremely long computing times and memory requirements). However, proposed
CMAB-based adaptive multi-agent strategies still manage to converge. Convergence
is also observed within 30 simulation days of training, i.e., the learning phase. This
confirms statistically that the proposed CMAB-based adaptive multi-agent system is
scalable in terms of convergence to a good solution (as the convergence time has not
increased here compared to the small-scale study). The plots of mean rewards (moving
average of all EV’s mean reward values) of both CMAB-based strategies without and
with PV estimation are shown in Figure 5.24 and Figure 5.25. Similar performance
trends can be observed here as well compared to the small-scale studies, i.e., Thompson
sampling outperforms UCB and EXP3 when no PV estimation is done, and all learning
strategies are converging to approximately the same average reward value when PV
estimation is performed.

Once the learning phase is complete, the next 30 simulation days are used to eval-
uate the performance of the learning strategies, i.e., the evaluation phase. The per-
formance is evaluated here in terms of improvement compared to the uncontrolled
charging strategy (and not in terms of the optimality gap). This is because the cen-
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tralized MILP solution can not be obtained for the studied large-scale system and thus
the optimal solution is unknown here. Nonetheless, it has already been shown in the
small-scale simulation study section that the proposed CMAB-based adaptive multi-
agent smart charging system with PV estimation is capable of producing near-optimal
solutions.

Constraints satisfaction

Ideally, the deployed charging strategy should satisfy both grid and prosumer con-
straints. The voltage (at the last bus of the sub-district SD1 in Figure 5.6) distribution
and electrical current (flowing through the grid transformer line in Figure 5.6) distri-
bution, if uncontrolled charging strategy is followed, is shown in Figure 5.26. The
shown distributions are obtained based on the results during the evaluation phase.
It can be observed that both electrical current and voltage constraints are violated if
the uncontrolled charging strategy is followed. This is due to a large number of EVs
charging simultaneously without any control. The studied electrical distribution net-
work suffers from an under-voltage issue for 4.93% of the total evaluation period (30
simulation days). It is also suffering from electrical line congestion for 15.48% of the
total evaluation period when the uncontrolled charging strategy is applied.

The distribution results obtained when the CMAB-based smart charging strategy
(without PV estimation) is followed are shown in Figure 5.27 and Figure 5.28. These
distributions are obtained using all three of the aforementioned learning strategies
(Thompson sampling, UCB, and EXP3) combined with the CMAB-based adaptive
multi-agent charging strategy without the use of any PV estimation. It can be observed
that grid constraints are not violated in all of the studied learning strategies. The ob-
tained distributions when PV estimation is performed by the CMAB-based adaptive
multi-agent smart charging system combined with the Thompson Sampling learning
strategy are shown in Figure 5.29. It is evident that grid constraints are also satisfied
in this mentioned case. It should be noted that the shown voltage results are for the
voltage at the last bus of the sub-district SD1 in Figure 5.6, and the plotted line results
correspond to the electrical current flowing through the grid transformer line in Figure
5.6.

Figure 5.24: Average learning reward of the system when the CMAB-based learning strategy
is applied without any PV estimation.
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Figure 5.25: Average learning reward of the system when the CMAB-based learning strategy
is applied with the PV estimation.

Figure 5.26: Distribution of the bus voltage (left) and the line current (right) obtained through
the uncontrolled EVs charging.

Daily current and voltage profiles for the studied charging strategies during one of
the evaluation days are shown in Figure 5.30. It can be verified that a peak load de-
mand will occur during the evening if the uncontrolled charging strategy is followed.

Figure 5.27: Distribution of the bus voltages (left) and the line currents (right) obtained through
the CMAB-based adaptive multi-agent charging strategy without any PV estimation (with
Thompson sampling).
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Figure 5.28: Distribution of the bus voltages (left) and the line currents (right) obtained through
the CMAB-based adaptivemulti-agent charging strategywithout any PV estimation (withUCB
and EXP3).

This is due to a high number of EV owners returning home and plugging in their EVs
to charge. This peak load demand can be avoided if any of the proposed CMAB-based
adaptive multi-agent smart charging strategies are utilized. Furthermore, it can be ver-
ified in Figure 5.30 that EVs also utilize the freely available PV energy by charging

Figure 5.29: Distribution of the bus voltages (left) and the line currents (right) obtained through
the CMAB-based adaptive multi-agent charging strategy with the PV estimation (with Thomp-
son sampling).
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Figure 5.30: Daily electricity price (top). Electrical line currents (middle) and voltages (bot-
tom) comparison during a single day.

during the daytime when PV estimation is combined with the proposed CMAB learn-
ing algorithm. This will have a significant impact on the daily charging cost reduction
of each EV. It can be concluded that the uncontrolled charging strategy fails to satisfy
grid constraints when applied to a large-scale electrical distribution network. Whereas,
the proposed CMAB-based adaptive multi-agent strategy manages to satisfy grid con-
straints irrespective of the utilized learning strategy and whether the PV estimation is
made or not.

Cost reduction

The centralized MILP strategy is not able to perform optimization when applied to the
studied large-scale system. Thus, the theoretical optimal solution remains unknown
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Figure 5.31: Cost reduction comparison compared to the uncontrolled strategy upper bound.

here. However, the quality of any obtained solution can also be evaluated by compar-
ing it with the solution obtained through the uncontrolled strategy. The uncontrolled
charging strategy solution is considered as the upper bound here on the cost. Thus,
the comparison is made here in terms of cost reduction achieved by any given strat-
egy compared to the cost of the uncontrolled charging strategy. The obtained cost
reduction results during the evaluation phase are plotted in Figure 5.31.

It can be seen in Figure 5.31 that the proposed CMAB-based adaptive multi-agent
smart charging strategy is performing better than the uncontrolled charging strategy
(with Thompson Sampling) even without any PV estimation. An average cost reduc-
tion of 23.21% is observed compared to the uncontrolled charging strategy. However,
this daily charging cost can be further reduced if the CMAB-based adaptive multi-
agent system also utilizes an estimation regarding the instantaneous PV energy pro-
duction. This is also evident in Figure 5.31 as the average cost reduction achieved
by the CMAB-base smart charging strategy with PV estimation is 77.58%. Thus, it
can be deduced that although optimal solution (lower bound) remains unknown here.
However, the improvement can still be confirmed by comparing the solutions obtained
through the CMAB-based strategies with the basic charging strategy (upper bound).
The choice of learning strategy can have an impact on the performance of the CMAB-
based system as well. This impact on the daily charging cost is summarized in Table
5.5. It can be observed that the impact of the choice of the learning strategy is little
when no PV estimation is made, and it is insignificant when PV estimation is made by
the proposed adaptive multi-agent system.

Fairness

The fairness comparison is presented in Table 5.6. The fairness comparison param-
eters considered here are the same as they were in the small-scale study subsection,
i.e., the % of EVs with the desired SoC at their departure time, and the fairness index.
The fairness index remains undefined for the uncontrolled strategy here as well. This
is because the uncontrolled charging strategy is not an optimization methodology and
thus the EVs remain uncontrolled. The fairness index is calculated only for the opti-
mization control strategies here. The% of EVs managing to achieve the desired SoC is
100% for all the charging strategies compared in this section. The fairness index comes
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CMAB-based smart charging (without any PV estimation)

Learning strategy Cost reduction (%)

Thompson sampling 23.21

UCB 22.13

EXP3 22.10

CMAB-based smart charging (with PV estimation)

Learning strategy Cost reduction (%)

Thompson sampling 77.58

UCB 77.52

EXP3 77.51

Table 5.5: Selected learning strategy impact on the cost reduction.

out to be around 0.99 for the proposed CMAB-based smart charging strategy (for all
learning strategies, and with/without PV estimation). This confirms numerically that
the proposed CMAB-based is indeed taking fairness into account among different EV
agents, and thus the system is converging to a solution that maintains fairness in the
system.

Scalability

In the studied problem, scalability is an important factor as the control algorithm is
expected to optimize large-scale practical electrical distribution networks. The cen-
tralized MILP optimization does not manage to optimize the studied large-scale smart
grid due to its lack of scalability. As it belongs to the NP (non-deterministic polyno-
mial) class of problems, its optimization time increases significantly as the number of
agents is increased in the system. This has also been observed earlier in Figure 3.11.
On the other hand, the proposed CMAB-based adaptive multi-agent system can be
considered scalable as it managed to control the studied large-scale system efficiently.
As discussed earlier, the computation time of each agent (i.e., time to find the esti-
mated super arm to play) is independent of the total number of agents in the system.
Thus, the decentralization of decision-making in smart grids has evidently helped in
designing a scalable system that can operate on large-scale smart grids.

5.4 Conclusion
This chapter commenced by transforming the multi-agent multi-armed bandit system
for smart charging, as presented in the previous chapter, into an adaptive multi-agent
multi-armed bandit system. This transformation involved leveraging the concepts of
adaptive multi-agent system theory discussed in Chapter 2. The proposed system has
been compared with a number of baseline charging strategies for performance evalua-
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Uncontrolled charging strategy

% of EVs with SoCe,depart Fairness index

100 -

CMAB-based smart charging (without PV estimation)

Learning strategy % of EVs with SoCe,depart Fairness index

Thompson sampling 100 0.99

UCB 100 0.99

EXP3 100 0.99

CMAB-based smart charging (with PV estimation)

Learning strategy % of EVs with SoCe,depart Fairness index

Thompson sampling 100 0.99

UCB 100 0.99

EXP3 100 0.99

Table 5.6: Fairness comparison for the large-scale case study.

tion. These baseline strategies include the uncontrolled charging strategy, centralized
MILP optimization, and a variation of the proposed CMAB-based adaptivemulti-agent
strategy but without any PV estimation. The performance of each charging strategy
has been measured through case studies and in terms of optimality, scalability, and
constraint satisfaction.

Observing the results obtained in Section 5.3, it can be concluded that the uncon-
trolled charging strategies do not face any concern related to scalability. However, it
would result in a far-from-optimal solution along with constraint violations. On the
other hand, the centralized MILP optimization approach faces scalability challenges.
The proposed CMAB-based adaptive multi-agent system managed to tackle the scal-
ability challenges of the centralized MILP optimization through decentralization of
the system, and it managed the real-life uncertainties by using combinatorial multi-
armed bandit learning. This resulted in a system that is real-time, scalable, satisfies all
required constraints, and is near-optimal. It was also observed that if PV energy gen-
eration estimation is done in the proposed system then the optimality of the system is
improved significantly. This proposed system also maintains fairness among electric
vehicles in the system and ensures the data privacy of each EV owner’s personal data.
The proposed adaptive multi-agent multi-armed bandit system can also be adapted to
control other flexible entities of a smart grid to optimize its energy flows.
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Conclusions and perspectives

Work summary
This thesis primarily focused on the design of a smart grid control system aimed at
optimizing energy flows within smart grids. The introductory chapter (Chapter 1) pro-
vided a comprehensive overview of potential challenges arising from the integration
of novel technologies like renewable energy sources and distributed energy genera-
tion in power systems. These challenges, primarily linked to uncertainty, highlighted
the significance of smart grid control solutions in facilitating the seamless integration
of novel grid elements while maintaining grid stability. In this chapter, a number of
existing smart grid control solutions were presented and classified according to their
system architecture, namely centralized, hierarchical, and decentralized approaches.
The analysis emphasized the benefits of decentralization in terms of scalability and
real-time operational capabilities, which represent the core contributions of this re-
search work.

Chapters 2 and 3 presented the first of the two proposed decentralized smart grid
control systems, leveraging adaptive multi-agent system theory to maintain decentral-
ization and scalability. This system was designed to address the problem of real-time
grid balancing by controlling electric vehicle instantaneous charging and discharging.
Different smart grid elements were modeled as software agents, each with distinct
goals. These agents were collaboratively achieving system functionality. Electric ve-
hicle agents, the decision-making entities, employed a heuristic process for decision-
making. Through deterministic and pseudo-stochastic simulation-based experiments
(Chapter 3), the adaptive multi-agent system demonstrated real-time, scalable, and
near-optimal performance. Although it was concluded that anticipative capabilities
could further enhance its efficiency.

In Chapters 4 and 5, the focus shifted to incorporating anticipative capabilities
through combinatorial multi-armed bandit theory. A comprehensive introduction to
multi-armed bandit and combinatorial multi-armed bandit was presented in Chapter
4. Their faster convergence in comparison to conventional algorithms, like deep Q-
learning, rendered them a compelling reinforcement learning approach for integrating
anticipative capabilities into the system agents. A multi-agent multi-armed bandit sys-
tem was introduced in Chapter 4, addressing smart electric vehicle charging under un-
certainties in daily photovoltaic energy production. Building on this, the final adaptive
multi-agent multi-armed bandit system (Chapter 5) tackled the same smart charging
problem, exhibiting near-optimal performance, scalability, real-time responsiveness,
and fairness. Furthermore, it was argued that the proposed system’s adaptability allows
for its application to other flexible entities in smart grids as well.

Conclusions
This section presents the key findings of the research carried out in this thesismanuscript.
Conclusions presented here aim to verify the veracity of the hypotheses put forth in
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Chapter 1 based on the work presented in all of the earlier chapters. At the end of this
section, a comprehensive summary of the two decentralized smart grid control systems
proposed in this thesis, which constitute the primary contributions of this research, is
also provided. The very first hypothesis made in Chapter 1 is as follows:

The theory of adaptive multi-agent systems can serve as a valuable frame-
work for developing an effective real-time decentralized energy manage-
ment control system for large-scale active electrical distribution networks.

The study aimed to examine the feasibility of developing a decentralized control
system using adaptivemulti-agent systems (AMAS) tomanage a large-scale smart grid
in real-time. To test the above-mentioned hypothesis, an AMAS was designed and
evaluated in Chapters 2 and 3. The system’s objective was to optimize grid balanc-
ing by effectively utilizing flexible electric vehicles within the distribution network.
Simulation-based experiments compared the performance of the proposed AMASwith
two baseline strategies, namely the uncontrolled strategy and the centralized MILP
optimization strategy. Results from Section 3.2 indicated that the proposed system
achieved near-optimal solutions, demonstrating its efficient optimization capability.
Furthermore, as seen in Figure 3.11, the proposed adaptive multi-agent control system
is expected to be scalable when implemented in a real-world smart grid, as opposed to
a centralized system, which may experience bottlenecks due to its inability to scale.

This observation extended to the second system presented in Chapter 5, where
the adaptive multi-agent systems theory was combined with multi-armed bandit learn-
ing to optimize electric vehicle charging while adhering to the constraints of different
market actors. Simulation-based experiments in Section 5.3 confirmed that this system
achieved near-optimal solutions while maintaining its scalability and real-time capa-
bilities. A key takeaway from these studies is that the adaptive multi-agent systems
theory serves as a potent tool for designing scalable and real-time control systems capa-
ble of addressing various complex, large-scale, and real-time smart grid optimization
challenges. Nonetheless, it is important to emphasize that the optimality of an adap-
tive multi-agent system highly depends on the design of the decision-making agents
within the system. The lack of anticipative capabilities in the agents, as noticed in
the design of the reactive heuristic adaptive multi-agent system in this thesis, could
affect its efficiency, especially when dealing with uncertainties in smart grid optimiza-
tion problems. It may lead to challenges in satisfying various constraints required for
smooth grid operations. Finally, the cooperation mechanism in adaptive multi-agent
systems results in self-organization which makes such systems adaptable to changes.
The second hypothesis made in Chapter 1 is stated below:

The incorporation of multi-armed bandit class of reinforcement learning
algorithms into the aforementioned adaptive multi-agent system can en-
hance the system’s performance under real-life uncertainties, while simul-
taneously preserving its scalability and real-time operations capabilities.

Uncertainties play a crucial role in the efficient operation of smart optimal grid
control systems. These uncertainties can arise from various sources, such as fluctua-
tions in renewable energy sources’ instantaneous energy production. Additionally, in
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decentralizedmulti-agent systems, each agent’s actions can introduce uncertainty from
the perspective of other agents. Chapter 3 highlighted the significance of anticipative
(learning) capabilities in decision-making agents of adaptive multi-agent systems for
improved performance under uncertainties. To address these real-life uncertainties,
the second hypothesis proposed the use of multi-armed bandit learning algorithms. It
was conjectured that these algorithms could maintain the system’s scalability and real-
time operation capabilities. The validity of this hypothesis was confirmed through the
detailed design and simulation-based experiments of the combinatorial multi-armed
bandit learning-based adaptive multi-agent system in Chapter 5.

The simulation results depicted in Figure 5.22 showed that the proposed system
effectively considers uncertainty associated with other agents’ actions in the decen-
tralized system, ensuring compliance with grid stability constraints. Furthermore, as
shown in Figure 5.23, the proposed decentralized system substantially reduced the sys-
tem’s cost by employing PV energy generation estimations to manage uncertainty in
PV instantaneous energy data. The proposed system exhibits convergence to a solution
with an optimality gap of 10.04%, as evidenced by Table 5.3. It was suggested that this
optimality gap could potentially be further reduced by incorporating advanced photo-
voltaic forecasting techniques. Nevertheless, it is crucial to acknowledge that achiev-
ing a null optimality gap is unattainable for the studied smart grid problem due to the
inherent impossibility of obtaining an instantaneous photovoltaic energy generation
forecast without any error. Chapter 5 also established that the proposed combinatorial
multi-armed algorithm maintains the system’s scalability and real-time operation ca-
pabilities. The system is capable of finding its estimated optimal policy at any given
instant in O(m) where m is the total number of decision instants in the studied smart
grid combinatorial optimization problem.

The main lesson here is that the application of the multi-armed bandit class of rein-
forcement learning algorithms in smart grid control is a promising approach, particu-
larly for managing real-life uncertainties in a decentralized manner. These algorithms
exhibit lower computational time and memory requirements compared to other com-
monly used reinforcement learning algorithms like deep-Q learning, resulting in im-
proved scalability and faster convergence. The potential advantages of multi-armed
bandit algorithms can be harnessed to address various smart grid optimization chal-
lenges beyond those studied in this thesis.

To summarize, two adaptive multi-agent systems have been discussed in-depth in
this manuscript to optimize energy flows in smart grids. First, the system proposed in
Chapter 2 relies solely on heuristics to perform optimization. This system was shown
to have performance degradation under uncertainties due to a lack of anticipative abil-
ities in the system. Finally, combinatorial multi-armed bandit learning was utilized to
enable agents with anticipative capabilities in Chapter 4. Combinatorial multi-armed
bandit learning helped in tackling stochasticities in the system and thus made the sys-
tem more optimal under uncertain conditions. Faster convergence of these combi-
natorial multi-armed bandit learning algorithms compared to more commonly used
reinforcement learning algorithms like DQN learning is a significant advantage, es-
pecially for smart grid control applications when a perfect oracle is not available and
faster convergence can bring more economic advantage. The final proposed system in
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Section 5.1 is:

• Decentralized: It is fully decentralized. There is no central decision-making
entity, rather each agent in the system is making decisions for itself.

• Real-time: It is able to perform control operations in real-time (in seconds or
minutes).

• Scalable: It can scale and operate on large-scale smart grids.

• Near-optimal: It gives near-optimal solutions even under stochastic conditions.

• Tackling stochasticities: It takes into account different stochasticities that may
exist in a practical decentralized smart grid control system.

• Fair: It maintains fairness among different decision-making agents present in
the system.

• Model-free: It does not require any model of the electrical grid for its desired
operation.

• Adaptable: It can be used to control various flexible elements that might be
present in a smart grid and is adaptable to changes.

Perspectives
This section discusses several novel research avenues that have emerged as a result
of the work presented in this thesis. These research perspectives cover a range of
complexities, spanning from short-term to medium-term exploration.

Potential applications

It is still possible to use the developed control systems in this thesis manuscript for
real-time optimal control of other flexible grid components, even though they have
only been studied to control electric vehicles that are present on the distribution side.
The electrification of the heating industry has resulted in a significant increase in the
adoption of heat pumps, another new grid component. Sales in the EU reached a
record-high 2.2 million units in 2021, a 34% increase from the previous year [84].
In addition, the REPowerEU target calls for installing 10 million hydronic heat pumps
over the following five years [84]. Therefore, heat pumps can be envisioned as a key
component of future smart grids. An optimization problem with heat pumps as the
controlled elements can be modeled, similar to the optimization problems involving
electric vehicles investigated in this thesis manuscript. The goal can be to reduce oper-
ating expenses over any chosen time horizon while ensuring stable grid operations and
the satisfaction of heat pump owners. However, the objectives and goals pertaining
to the operation of heat pumps must be translated into criticality values to align them
with the adaptive multi-agent systems framework. This adjustment can be feasibly
accomplished within a short-term time frame.
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In the long-term, attention can be directed towards exploring the application of
multi-armed bandit and adaptive multi-agent system theory in the domain of electrical
transmission. The optimal transmission switching problem (OTSP) involves modi-
fying the topology of a power grid in order to improve performance by managing
the switching status of transmission lines. Increased computational requirements are
challenges for this optimization problem as well [115]. The philosophy of adaptive
multi-agent combined with machine learning may be applied to solve this problem
in a decentralized manner and thus better prepare the electrical transmission systems
to integrate increasing shares of grid energy storage systems and grid-connected dis-
tributed energy resources. The problem of security-constrained optimal power flow
(SCOPF) for large-scale systems may also be tackled through decentralization of the
control based on the methodologies studied in this manuscript [130].

Improvements in the system’s functionality

It is possible to manage bus voltages through reactive power control. However, in this
study, only active power control has been considered. The reasons are the fairly rel-
atively resistive nature of distribution networks, the high cost of volt-ampere reactive
(VAR) compensation mechanisms, and the fact that this is a preliminary study using
combinatorial multi-armed bandits for optimal smart grid control with a focus on de-
centralization and operations performance under stochasticity. In the future, reactive
power control can be integrated into the developed smart grid control system, espe-
cially for its application in the high voltage transmission side where reactive power
control can be viewed as a relatively more viable option. Furthermore, frequency con-
trol functionality may also be implemented to provide frequency ancillary services to
the electrical grid through vehicle-to-grid (V2G) technology. However, it must be
noted that in the proposed system the cost of battery degradation due to continuous
charging/discharging has not been penalized. The inclusion of this new penalization
term in smart grid optimization problems becomes even more crucial when V2G tech-
nology is considered in the system. These functional modifications can be imple-
mented within a relatively short to medium-term time frame.

Constraint optimization during exploration

During the exploration phase of reinforcement learning, the agent takes random or ex-
ploratory actions to learn about the environment and maximize its rewards. However,
such exploratory behavior may result in the violation of constraints. This is an unde-
sirable outcome for any system designed to control a smart grid in real-life as violating
constraints can have a detrimental impact on the grid itself. The unpredictability in-
troduced during the initial training phase of online reinforcement learning algorithms
poses challenges for their practical implementation in real-life scenarios. Thus, it is
crucial to also focus on the practical implementation of the proposed control system
to ensure that the stable operation of the grid remains ensured even during the initial
training phase of the learning agents.

To address the issue of constraint violations during exploration, novel method-
ologies such as safe reinforcement learning can be explored. In safe reinforcement
learning, the satisfaction of the desired set of constraints is tried to be ensured even
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during the exploration phase of the agents. This approach provides a means to miti-
gate the risk of violating critical constraints and maintains the stability and reliability
of the smart grid. However, the application of such algorithms to smart grid optimiza-
tion problems may not be straightforward. Given the complexity of this task, it can be
considered a long-term perspective.

Asynchronicity in communication

The communication among all agents is assumed to be synchronous during the simulation-
based experiments conducted in this manuscript. However, in reality, communica-
tion among different agents can be asynchronous, introducing potential challenges.
Asynchronicity can lead to communication delays, miscommunication, and reduced
collaboration among agents within the proposed adaptive multi-agent system. There-
fore, it is crucial to investigate the performance of the decentralized control system
in the presence of communication asynchronicity. If a significant negative impact on
the system’s performance is observed, it becomes necessary to enhance each agent’s
functionality to make it adaptable and resilient in the face of communication asyn-
chronicity. Achieving this objective would involve evaluating the performance of the
existing system and implementing significant modifications to various agent function-
alities, which could present a challenging task. Therefore, this undertaking falls under
the category of long-term perspectives.

Detailed economic viability studies

If the studied smart grid optimization problem requires the integration of vehicle-to-
grid (V2G) functionality within the proposed combinatorial multi-armed bandit-based
adaptive multi-agent smart grid control system, it becomes crucial to consider the cost
associated with battery degradation. This consideration stems from the fact that dis-
charging a battery can expedite its degradation, thereby exerting a notable impact on
the economic viability of the solution. Thus, incorporating the cost of battery degra-
dation becomes imperative when evaluating the economic feasibility of the proposed
system in such contexts. It would be imperative to conduct comprehensive economic
viability studies considering various scenarios encompassing the penetration of diverse
distributed energy resources, the rate of cost reduction for different technologies, and
the rate of efficiency improvement, among other factors. Undertaking such in-depth
studies is essential prior to the selection of a smart grid solution for practical implemen-
tation, as it necessitates a thorough comprehension of the various variables involved.
These thorough economic viability analyses can be completed in the medium to long-
term time frame.

Detailed system analysis

A detailed analysis of the proposed adaptive multi-agent combinatorial multi-armed
bandit system has been discussed in this manuscript in terms of its optimality, con-
straint satisfaction, fairness, and scalability. However, a number of sensitivity analy-
ses can further be performed. This includes studying the impact of changing the total
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number of daily decision instants or the length of the BRP’s imbalance settlement pe-
riod in the studied optimization problem on the optimality, constraints’ satisfaction,
and fairness of the system. Furthermore, the relationship between the choice of values
of different learning parameters and criticality scaling parameters present in the pro-
posed system can also be studied in detail. These studies can be performed in a short
to medium-term time frame.

To compare the performance of the proposed algorithm uncontrolled strategy and
MILP optimization strategy have been considered in this thesis manuscript. However,
a variety of new decentralized smart grid control algorithms are being proposed using
novel technologies such as reinforcement learning, peer-to-peer (P2P) trading, block-
chain, and alternating direction method of multipliers (ADMM). These decentralized
control algorithms can also be added to the mix of strategies that are being compared
with the proposed system. This can be done in a medium to long-term time frame.
This detailed comparative analysis will be an integral part of a future project named
the PEPR TASE ”TASTING” project (national project funded by the French National
Research Agency (ANR), coordinated by G2Elab, 2023-2027).
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Appendix A

Electric vehicle’s reward function

The instantaneous electricity price c(i) at instant i has a linear relationship with the
instantaneous reward of an electric vehicle learning agent in the proposed decentral-
ized optimal control system with combinatorial multi-armed bandit learning, as given
in Equations (4.30) and (5.3). However other types of relationships are also possible,
such as quadratic, exponential, etc. In this appendix, the impact of the modeled rela-
tionship between instantaneous electricity cost and EV’s instantaneous reward on the
system’s performance is discussed. Following three relationships are studied here:

• Linear relationship: The instantaneous electric vehicle reward (in case the en-
vironment reward/criticality is null) is equal to 1− c(i) at instant i.

• Quadratic relationship: The instantaneous electric vehicle reward (in case the
environment reward/criticality is null) is equal to 1− c(i)2 at instant i.

• Logistic relationship: The instantaneous electric vehicle reward (in case the
environment reward/criticality is null) is equal to 1

1+e−40(c(i)−0.5) at instant i.

All of the studied relationships are plotted in Figure A.1. It is evident that electric
vehicle agents in the proposed system will observe different reward values depending
on the selected relationship. Simulation experiments have been performed using the
settings described in Section 5.3 with Thompson Sampling as the learning strategy.

Figure A.1: Studied relationships between instantaneous electricity price and instantaneous
electric vehicle’s reward value.
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The mean reward curve for each of the studied relationships during the training phase
is shown in Figure A.2.

It can be observed in Figure A.2 that the system is converging to expected opti-
mal solution in the same time irrespective of the modeled relationship. Furthermore,
quadratic and logistic relationships are converging to a slightly higher average reward
values only because they have a higher reward values at low electricity price instants
compared to the linear relationship, as shown in Figure A.1. However, this does not
mean that linear relationship is under-performing. The reward observed by an electric
vehicle agent is only a ”virtual” price that guides the agent towards an expected opti-
mal policy. In practical life, the daily charging cost of each electric vehicle owner is
calculated using the electricity price and not this ”virtual” price. Here, the system con-
verges to the same expected optimal solution for all of the three studied relationships.
Thus, the system’s performance remains unaffected both in terms of the convergence
time and the quality of the solution. This is due to the fact that in each of the studied
relationship, a distinction between the observed reward for each electricity price value
can be made. This means the following general condition can be developed for any
type of relationship between the electricity price and the instantaneous electric vehicle
agent’s reward to not have an impact on system’s performance

Reward for c(x) > Reward for c(y) ∀ c(x) < c(y) (A.1)

No impact condition

If the above-stated condition is violated, i.e., the learning agent is not able to dif-
ferentiate between reward values corresponding to different electricity prices (i.e., c(x)
and c(y)) then a degradation in the system’s performance is expected. Thus, the sat-
isfaction of Equation (A.1) guarantees that the system’s performance remains near
optimal for any type of modeled relationship between the instantaneous electric ve-
hicle reward (in case the environment reward/criticality is null) and the instantaneous
electricity price.

Figure A.2: Average learning reward of the system for the studied linear, quadratic, and logistic
relationships.
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Appendix B

Electric vehicles’ charging policies

The daily charging policies picked by the three of the randomly selected decentralized
electric vehicle charging agents in the CMAB-based learning system are shown in
Figure B.1, Figure B.2, and Figure B.3.

Figure B.1: Charging policy of the first randomly picked electric vehicle during one of the
evaluation days.

Figure B.2: Charging policy of the second randomly picked electric vehicle during one of the
evaluation days.
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Figure B.3: Charging policy of the third randomly picked electric vehicle during one of the
evaluation days.
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Titre : Gestion optimisée d’un réseau de distribution actif par AMAS couplé à la méthode RL
des bandits

Mot clés : Contrôle décentralisé, AMAS, Bandit manchot, MARL, recharge intelligente des VE

Résumé : Les systèmes électriques mo-
dernes évoluent avec l’introduction des res-
sources énergétiques distribuées et des vé-
hicules électriques, promettant la durabilité.
Cependant, l’intégration non contrôlée de ces
technologies dans les réseaux électriques
existants peut entraîner des déséquilibres en
temps réel et des problèmes de le pic de
la demande. Le renforcement traditionnel du
réseau présente des inconvénients, notam-
ment des préoccupations liées au coût et au
temps de déploiement. Des solutions flexibles,
rendues possibles par la digitalisation du ré-
seau, offrent une alternative en contrôlant dy-
namiquement les éléments du réseau. Cepen-
dant, l’optimisation de ces solutions pour les
différents acteurs du marché est complexe,

et les approches centralisées peuvent avoir
du mal à gérer en temps réel de grands ré-
seaux intelligents. Cette thèse aborde ces dé-
fis en développant un système décentralisé
utilisant des systèmes multi-agents adapta-
tifs pour le contrôle en temps réel des en-
tités flexibles dans les réseaux de distribu-
tion. Des expériences de simulation valident
son efficacité pour surmonter les problèmes
de centralisation. De plus, l’intégration de l’ap-
prentissage combinatoire à bandit manchot
améliore les performances dans des environ-
nements stochastiques. Cette recherche pro-
pose une approche prometteuse pour l’opti-
misation de grands réseaux intelligents alors
qu’ils s’adaptent aux évolutions du paysage
énergétique.

Title: Optimized management of an active distribution network using AMAS combined with the
RL bandit method

Keywords: Decentralized control, AMAS, Multi-armed bandits, MARL, EVs smart charging

Abstract: Modern electrical power systems
are evolving with the introduction of dis-
tributed energy resources and electric vehi-
cles, promising sustainability. However, the
uncontrolled integration of these technologies
into legacy power grids can lead to real-time
imbalances and peak load issues. Traditional
grid reinforcement has drawbacks, including
cost and deployment time concerns. Flexible
solutions, enabled by grid digitization, offer
an alternative by dynamically controlling grid
elements. Yet, optimizing these solutions for
diverse market actors is complex, and cen-

tralized approaches may struggle to manage
large-scale smart grids in real-time. This the-
sis addresses these challenges by developing
a decentralized system using adaptive multi-
agent systems for real-time control of flexible
entities in distribution grids. Simulation experi-
ments validate its effectiveness in overcoming
centralization issues. Furthermore, integrat-
ing combinatorial multi-armed bandit learning
enhances performance in stochastic environ-
ments. This research offers a promising ap-
proach to optimizing large-scale smart grids
as they adapt to evolving energy landscapes.
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