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Notations

Notations of Chapter 1:

N = {a1, . . . , an} set of n agents
O = {o1, . . . , om} set of m objects
n number of agents
m number of objects
I add-MARA instance
u(i, j) utility that ai has for oj

≻i linear order of preferences of ai

L preference profile with n linear orders
πi share of agent ai in allocation π
I set of all add-MARA instances
A(I) set of all allocations for instance I
PROP Proportionality
MMS Max Min Fair Share
mMS min Max Fair Share
CEEI Competitive Equilibrium with Equal Incomes
EF Envy-free
PO Pareto-Optimal

Notations of Chapter 2:

µ sequence of transfers
S(I) the set of possible sequences for the instance I
s(I) defined by the fact that (−→σ , π) ∈ s(I) if and only if π can be generated

by sequence −→σ

Notations of Chapter 3:

≻i linear order of preferences of ai

L preference profile with n linear orders
ark average rank
mrk minimum rank
top(ai) top object of agent ai

Ck(π) set of all the improving deals of size
at most k that can be applied from π

Notations of Chapter 4:
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Ip Set of add-MARA instances with only two agents
Ib Set of add-MARA instances with binary utilities
OWA Ordered Weighted Average
MNW Max Nash Welfare

Notations of Chapter 5:
(K-app) EF K approval envy-free
(K-app) non-prop K approval non-proportionality
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Introduction

One of the biggest issues humanity has to face is the one of climate change. In order
to tackle this issue, the latest Intergovernmental Panel on Climate Change (IPCC) re-
port [IPCC, 2023] states that "Equity, inclusion, just transitions, broad and meaningful
participation of all relevant actors in decision making at all scales enable deeper societal
ambitions for accelerated mitigation, and climate action more broadly, and build social
trust, support transformative changes and an equitable sharing of benefits and burdens
(high confidence). Equity remains a central element in the UN climate regime, notwith-
standing shifts in differentiation between states over time and challenges in assessing fair
shares.". Not only do we see that there is a question of decision making with all (relevant)
actors but also the issue of equity which remains central and the need to assess fair shares.
These all are concepts that we will tackle in this thesis, in particular the notion of fairness
for which there is not one and only one formal definition. Moreover, the part referring to
decision making with actors sends back to the field that encapsulates the work presented
in this thesis.

Computational Social Choice (often referred to as Comsoc) is the field that is at the
intersection of Social Choice and Computer Science.

The Social Choice aspect is about creating and analysing methods for Collective Deci-
sion Making. Indeed, when you have a situation or a problem in which a lot of agents are
involved (agents can refer to people or robots for instance), anyone of them having pref-
erences over alternatives then, some procedure is needed to make a decision that satisfies
them as best as possible. For example, in voting theory the agents are the voters and
their preferences can be expressed via their votes. When we say that we want a decision
that satisfies the agents, we can easily see that the meaning is not very clear. First, we
can wonder which agents we want to satisfy. On the one hand, it could seem acceptable
not to care about one or two unhappy agents if the others are very happy, this is what we
usually call classical utilitarianism. On the other hand, we could be very careful about
every agent and for example be looking for a solution (the elected candidate in our voting
setting) for which the least happy voter is the happiest, this is usually called egalitarian-
ism. It is obvious that we can navigate between those two extremes and that the value
of a solution depends on how you aggregate the happiness of the agents. Moreover, we
can wonder what happiness means for an agent. The satisfaction of an agent is expressed
through preferences over alternatives. Usually, we can consider ordinal ones where the
agents simply express the fact that they prefer some candidate to another or some group
of candidates to another group of candidates. The other type of preferences is cardinal
and refers to the agents having some numerical function associating the candidates to
some utility. For example, imagine a voting setting with two voters (the agents) and
two candidates (the alternatives). If the preferences are ordinal both voters can express
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the fact that they prefer the first candidate over the second. However, if the preferences
are cardinal one voter could express her preference by associating utility of 1 to the first
candidate and 0 to the second while the other voter has utility 50 associated to the first
candidate and 1 to the second. This raises the issue of interpersonal comparisons of util-
ities. Moreover, even before comparing utilities between agents, it might also be difficult
to assess the meaning of numbers when they are supposed to reflect an agent’s preference:
for instance, why using 50, and not 100 or 1000? And finally, we can also see that if the
voters have to choose two candidates instead of only one arises the problem of how the
preferences add up.

Social Choice is about designing and studying procedures that return solutions re-
specting some desirable properties and/or in a similar way preventing the solutions to
have undesired properties. It can also deal with the properties of the procedures them-
selves. For example, in our voting problem, it would be extremely natural to look for a
procedure that always elects a candidate c1 which is better ranked by a majority of voters
considering successive duels between c1 and the other candidates (it is called a Condorcet
winner) [Condorcet, 1785]. Another very natural and common way to elect a candidate
would be to associate scores to the voters’ preferences and electing the candidate with the
maximum sum of scores. A very popular one is the Borda score, axiomatized by Young
[1974], expressing the number of candidates someone beats in the preferences of a voter
[Baumeister et al., 2014]. Therefore, Social Choice is about finding a compromise between
good and undesired properties about the solutions but also about the procedure itself.
Finally, it is also very common to just study and analyse the existence of solutions that
mix several desirable properties while potentially avoiding some bad ones. However, if
such a procedure is easily subject to manipulability (meaning that voters would have an
incentive to lie about their preferences and easy in the sense that the complexity of doing
so is reasonable enough) then this procedure may not be that desirable. This aspect is
within the scope of Computer Science.

Indeed, as we have talked about the Social Choice part of Computational Social Choice,
let us now transition to the Computer Science part. In fact, Social Choice theory does not
really care about the complexity of the procedures. Indeed, when the number of agents
and/or the number of alternatives is too high, some procedures can become inapplicable
because even a computer would take centuries to run them.

Hence, Computer Science (Algorithmic Theory and Artificial Intelligence) becomes
useful as they take into account the complexity of procedures. For example, in our voting
setting, even if a procedure is manipulable we could conclude that it is not that bad
because for a voter to know how to manipulate his ballot such that she gets a better
outcome is computationally hard. This notion of complexity of manipulation has been
introduced by Bartholdi et al. [1989]. But this is not the only thing Computer Science
deals with in this context.

Even if we will not list them all, a big aspect of it is the algorithmic and optimization
part. Indeed, as discussed before we have to design procedures and algorithms that can
return the desired solutions while it is also very useful to look at tools in order to optimize
them. Note that there are a lot of other areas of Computer Science such as automatic
proving in Social Choice [Geist and Peters, 2017; Ciná and Endriss, 2016; Grandi and
Endriss, 2013]. Preference Learning is also a field that has attracted a lot of attention in
recent years [Fürnkranz and Hüllermeier, 2010]. It refers to the induction of preference
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models from empirical data. The goal is to predict the preferences of an agent or a group
of agents.

So by combining these fields you obtain Computational Social Choice [Brandt et al.,
2016]. This field has been gaining importance over the last years as illustrated by the
many dedicated conferences.

As we have already discussed, voting theory is one of the main topics of Computational
Social Choice but another one in which we will be interested throughout this thesis is
Resource Allocation and more specifically Fair Division of Indivisible Goods. The problem
is about fairly and/or efficiently allocating a set of m resources to n agents. First note
that the resources can either be objects, goods, tasks or chores.

In the case where the objects are divisible, the problem is called the cake cutting
problem [Steinhaus, 1948; Brams and Taylor, 1996]. For instance, a common problem is
the land division problem where you have a piece of land of some size and you want to
divide it between n agents but you also want a solution (a division of the land between
the agents) such that you minimize the number of non-connex lands for each agent or
you want the pieces of lands to have specific geometric shapes [Segal-Halevi et al., 2020].
Obviously, you want to achieve that by also having other desirable properties on the
solution and on the procedure as discussed before.

When the objects are indivisible we face a problem of Fair Division of Indivisible
Goods. There are m indivisible objects that you want to efficiently and fairly share between
n agents. Efficiency in this context often refers to completeness and Pareto-Optimality
(PO). Completeness states that every solution should be such that all the objects are
allocated whereas Pareto-Optimality of a solution means that there is no other solution
such that all the agents are not worse-off and at least one agent is strictly better-off.

While efficiency is commonly defined by these two concepts in this context it is much
more complex for fairness as there are a lot of ways to express the fairness of a solution.
Under cardinal preferences there are several aggregators that can express the fairness of
a solution such that the Max Nash Welfare [Varian, 1974] which consists in the solution
maximizing the product of the utilities of the agents, or the max fair Ordered Weighted
Average (OWA) [Yager, 1998] which consists in the allocation maximizing some ordered
weighted sum of the utilities of the agents.

Another widely studied fairness criterion is envy-freeness (EF) [Tinbergen, 1953; Foley,
1967]. An allocation is said to be envy-free if all the agents are happy with their own
share/bundle, in the sense that there is no agent that prefers the bundle of another agent
to her own bundle. This is a very strong property for an allocation. Indeed, in the
indivisible setting such an allocation does not always exist. Think of the basic situation
where two objects have to be shared between two people but both of them prefer the same
object. Obviously, the one that gets this item will be envied by the other. This is why in
the literature, a lot of relaxations of envy-freeness have been proposed. One of the most
studied relaxations of envy-freeness is envy-freeness up to one good (EF1) [Lipton et al.,
2004; Budish, 2011] in which we relax envy-freeness by allowing the agents to "forget"
one object from the bundle of another agent. If by forgetting one object from the other
agent’s bundle she becomes not envious then, we will say that she is envy-free up to one
good towards that agent. Another recently heavily studied notion is envy-freeness up
to any good (EFX) [Caragiannis et al., 2016] which also consists in forgetting one item
but this time it can be any item from the other agent’s bundle and hence, in the worst
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case it can be the least valued item. In another manner, we can relax envy-freeness by
minimizing some degree of envy which could for example be the sum of the envies of the
agents. These are orthogonal approaches and we will deal with both of them in this work.

In the same way, proportionality (PROP) is also a very natural fairness notion reached
when all the agents have at least one nth of the utility of the whole set of objects [Stein-
haus, 1948]. While it is a weaker notion than EF (as if an EF allocation exists then
it is also proportional while the converse does not hold) we can still not guarantee the
existence of a PROP allocation and hence relaxations such as PROP1 have been proposed
and studied [Conitzer et al., 2017].

In light of what Computational Social Choice is about, we aim to build and analyze
procedures that satisfy some combination of properties. For example, Max Nash Welfare
satisfies Pareto-Optimality and EF1 [Caragiannis et al., 2016] so we can wonder whether
we can define a procedure returning PO and EFX allocations. Another preliminary issue
consists in determining if such an allocation always exists (note that in this case we do not
even know if an EFX allocation exists). Even if we have existing procedures returning such
allocations we could look for better procedures in terms of time complexity or strategy-
proofness. Another track is about proposing new fairness measures or relaxations and
find if there are links between them and other existing fairness measures.

Finally, an important question about the procedure is if it is centralized or decen-
tralized. A centralized procedure involves a coordinator which asks the agents for their
preferences. The coordinator then computes the outcome which is communicated to the
agents. On the other hand, in decentralized procedures, the agents directly interact with
each others to obtain the outcome in a distributed way. Such protocols are more often used
in real life and answer to the need of simplicity, anonymity and confidence issues as agents
do not have to communicate their preferences to some central authority. In this thesis
we will in particular study procedures based on exchange sequences and picking sequences.

As we have seen what Computer Social Choice deals with and what it encompasses
we will now give some real life problems where it is useful. Indeed, we have obviously
already seen that the notions of collective decision making and fairness are prevailing
topics nowadays at least via the IPCC example. But there are many others.

First, one that is widely discussed nowadays is the matching of the students to colleges
for their studies which is currently done by the Parcoursup platform. Indeed, after finish-
ing High School the students have to be matched to universities and schools. However,
each university and school has a fixed number of seats and they also have preferences
over the students. In the same way, each student can go to at most one facility and also
have preferences over them. Hence, and even if the number of seats is sufficient for all
the students, there will almost certainly be conflicts between students and also between
schools. This is why there is a need to design an algorithm that returns a matching that
is fair and efficient. As both parties have preferences on each other, one way to guarantee
fairness for both students and schools is stability (we do not want a couple student/school
not to be matched together while they prefer each other from what they get). But we
could also want to look for a matching for which the lowest rank of the school a student
gets is the highest possible. On the other hand, efficiency will obviously at least be to
guarantee that there remains no seat while a student has no school because it would be

14



a shame to waste a seat. Besides, this raises other questions of mechanism design, for
instance we want the algorithm that would do such a matching to be strategy-proof. It
means that we want the students and the schools not to be tempted to lie about their
preferences. A very similar problem called the roommates problem consists in a group of
people that each has preferences over the others and that we want to associate in pairs in
a stable way. Here it means that we want a partition so that we cannot find two people
such that they prefer each other over their partner in the current partition [Irving, 1985].
Also note that these problems historically come from the Hospital Residents problem (in
which you want to allocate residents to the hospitals that each have a certain acceptance
quota) and the Stable Marriage Problem (where the goal is to form n couples from n men
and n women that have preferences on each other). These two problems have been ad-
dressed by Gale and Shapley [1962] giving birth to the eponym algorithm that guarantees
stability of the returned marriage/allocation.

Another very interesting real-life application is about resource allocation for constel-
lations of satellites in order to observe Earth called the Orbit Slot Allocation Problem.
As space programs and sending satellites in space represent very expansive projects, they
are usually funded by several countries or companies. Hence when it comes to using these
satellites that are very often requested and usually it implies conflicts between those de-
mands, there has then to be a choice to know which requests are going to be prioritized.
The goal would then be to fairly respond to these demands but also in an efficient way.
Fairly in that case would be for example to take into account the importance of the re-
quest but also the one of the requestor as the level of funding is not necessarily the same.
Efficiency aims here not to sub-exploit the satellites as it would be a shame not to use
them while they are available. This problem has been widely presented and studied in
[Bensana et al., 1999; Verfaillie and Lemaître, 2001; Fargier et al., 2004; Bianchessi et al.,
2007; Picard, 2022; Roussel et al., 2023].

The House Allocation Problem (HAP) is also very widely studied [Abraham et al.,
2005; Gan et al., 2019; Beynier et al., 2019b]. In particular a variant of this problem
has recently gained importance in which are added diversity constraints [Gross-Humbert
et al., 2022; Gross–Humbert et al., 2023]. It also consists in a matching where you want to
allocate one and only one house to each agent. When considering diversity constraints we
identify different groups and try to fairly allocate houses to them in order to mix groups
in the neighbourhoods.

Finally, we will end up with more daily-life problems that can be helped by Comsoc
and fair division of indivisible goods. The course allocation and scheduling problem is a
prominent example, where courses have to be fairly allocated to students [Budish, 2011;
Othman et al., 2010; Pascual et al., 2018]. Contrary to the university allocation problem,
in this setting only students are assumed to have preferences over courses (what is usually
called “one-sided” problem). Divorce is another classical situation where Comsoc can
help two members of a couple splitting their belongings between them [Brams and Taylor,
1996]. In this situation, objects like furniture or houses are not divisible and that is where
the field of fair division of indivisible goods comes in play. In a similar context of a
household, a couple may find it challenging to fairly divide chores between themselves.
This matter is addressed by Igarashi and Yokoyama [2023], who design an application
based on fair division of chores.

These few examples of real-life problems show how important and modern this field is
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and why the work we will display in this manuscript can be applied in addition to being
theoretically interesting. Note that we obviously did not mention all the real-life problems
linked to that field such as all the voting problems, scheduling and also bidding problems
but only a few of them to show how our work can be anchored in our society.

In this thesis, we are looking at the fair division of indivisible goods and try to find fair
and efficient allocations. However, fairness has not only one but many definitions. One
that has received a lot of attention is EF but is not guaranteed to exist hence relaxations
have been proposed and studied recently. This is why we concentrate on new relaxations
of envy-freeness but also proportionality. Another focus is about designing, finding and
studying ways to obtain such allocations that have desirable properties called procedures.
We will mainly try to go towards more decentralized ones that do not rely on some central
authority to run and make the agents participate in building the final allocation.

We will now talk about the positioning of our different chapters throughout the thesis.
While Chapter 1 will formally introduce the model that we will be using throughout

this thesis, it will also anchor the subject within existing literature.
Chapter 2 is mostly centered around a very common procedure called sequences of sin-

cere choices or picking sequences. More precisely we will study the notion of sequenceable
allocations which are the ones that can be obtained through the aforementioned proce-
dure. We will also investigate distributed procedures based on local exchanges. This
chapter mainly studies connections between these procedures and other existing fairness
and efficiency criteria such as envy-freeness and Pareto-Optimality among others.

In Chapter 3, we will focus on a specific setting called housing market in which each
agent has initially one object and cannot get more or less objects. Moreover, we also
consider the domain restriction of single-peakedness. In this setting, a procedure called
Crawler satisfies the same three axioms as the Top Trading Cycle procedure (TTC) does
in the general setting. However, both procedures can involve long trading cycles so we
study how we could decompose them via the shortest possible cycles: swap-deals (cycles
of size 2) in addition to studying them in our specific setting.

Chapter 4 is about proposing a new relaxation of envy-freeness whose idea comes from
the domain of optimization. Indeed, a way to relax envy-freeness is by considering some
degree of envy. For example, we may decide to sum the degree of envy which occurs
among all the pairs of agents (which is clearly a relaxation of envy-freeness). However,
by minimizing the sum of the envies we could have an allocation such that one agent is
very envious while the others are not. Hence we encounter a problem of fairness: if there
has to be some envy in our society, then a legitimate objective could be to share this envy
as fairly as possible among agents which we try to achieve by computing a fair Ordered
Weighted Average (OWA) of the envies.

Chapter 5 is also about a relaxation of envy-freeness but that comes from a more col-
lective/voting setting. The idea comes from the work by Parijs [1997] and Guibet Lafaye
[2006] about unanimous envy that is described as the worst case of envy. An agent is
unanimously envious if she envies an agent and that everyone agrees that she should be
envious of this agent. This is quite a change of approach as the notion of preference is
intrinsically subjective but we break that by introducing objectivity into it and discuss
the various reasons why it is legitimate according to us. From that notion we propose
a scale of approval envy corresponding to the maximum number of agents that agree
on the envies of the agents and we try to minimize that number. In this chapter, after
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formally defining this notion we investigate its links with existing fairness measures and
other relaxations of EF. Besides, we introduce the same approval relaxation notion for
proportionality (PROP) and in addition to doing the same work as for approval envy we
investigate the relation between our two approval notions. This comparison is powered by
the fact that our approval envy notion implies the proportionality one but the converse
does not hold.

Finally, we conclude by summarizing our main contributions and proposing ideas for
future works.
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Chapter 1

State Of the Art

Summary of the chapter
In this chapter we will mainly formally introduce the fair division problem, then we will
formally see what desirable criteria and properties we are looking for in the solutions of
our problem. We will also see how we can reach such desirable solutions by introducing
some procedures and what we can be expecting from them.

Finally, we will see how this thesis is positioned on these fields and we will sum up
how this document is organized and the contributions and topics of our different chapters.
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1.1 Introduction
This thesis focuses on multiagent fair resource allocation which consists in fairly and
efficiently allocating a set of resources to a set of agents taking into account the agents’
preferences about these resources. Fair division is an ubiquituous problem in multiagent
systems or economics [Steinhaus, 1948; Moulin, 2003; Young, 1994], with applications
ranging from allocation of schools, courses or rooms to students [Abraham et al., 2005;
Othman et al., 2010], to division of goods in inheritance or divorce settlement [Brams and
Taylor, 1996].

1.2 The fair division problem
After listing in the Introduction many real life problems that fall in the spectrum of fair
division of indivisible goods, we use a simpler example in order to introduce the fair
division problem and its different aspects. It is a classical example inspired by Budish
[2011]:

Example 1.1. Imagine that two agents want to share a diamond and two rocks between
them. Both agents heavily prefer the diamond over the rocks such as they also prefer to
have the diamond instead of the two rocks. We obviously see that the agent that will get
the diamond (even if the other agent gets two rocks) will be better off. A solution could be
to throw away the diamond and only allocate the rocks as it would lead to a very desirable
solution (of one rock to each agent) in terms of fairness but it would really be a big waste
(we will see the notion of efficiency and completeness later on). Moreover, the problem
would also be very easy if we could divide the diamond in two parts but it is not possible
here.

There are two main fields in fair allocation: fair allocation of indivisible goods and fair
allocation of divisible goods. Divisible resources are such that you can give some portion of
it to one agent and some other portion to another or other agent(s). Obviously, indivisible
resources refer to the ones that cannot be split between two agents. The divisible case
allows some allocations that exhibit desirable properties that we could not obtain if items
are indivisible. Indeed, in Example 1.1 dividing the diamond in half would allow us to
reach a solution such that none of the agents envy the other one. As we will see throughout
this chapter and this thesis there is not one and only one way to define what fairness and
efficiency are. Moreover, the resources can be chores or tasks which the agents do not
want to be allocated while it can also be goods.

Note that we have focused in our work on the fair division problem of indivisible
goods. However we can see that some results and methods from the fair division problem
of divisible goods can be of great help and use in the indivisible setting.

This section will shortly introduce and talk about fair division of indivisible goods
from its origins to its applications. A formal introduction to the model will be given. As
mentioned in the beginning of this section, the fair and efficient allocation is made regard-
ing the preferences of the agents towards the resources hence we thoroughly introduce the
different kinds of preferences that can be encountered in the literature.
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1.2.1 Multiagent allocation of indivisible resources
Let us first formalize our problem. We consider MultiAgent Resource Allocation problems
(MARA) where we aim at fairly and efficiently dividing a set of indivisible goods (also
called items or objects) among a set of agents. A MARA instance I is defined as a finite
set of objects O = {o1, . . . , om}, a finite set of agents N = {a1, . . . , an} and a preference
profile P representing the interest of each agent ai ∈ N towards the objects oj ∈ O.

A solution of the problem is called an allocation π which is a function that maps each
agent ai to a subset πi of the objects O. In this thesis, πi will denote the set of objects
(the share) held by agent ai. An allocation is such that ∀ai,∀aj with i ̸= j : πi ∩ πj = ∅
(a given object cannot be allocated to more than one agent). We will denote by A(I) the
set of allocations for I.

We also formalize the House Allocation Problem (HAP) that we will consider in this
thesis which consists in the same problem but with some additional constraints. First,
n = m and we have an initial allocation denoted by π0 associating each agent with an
object. Moreover a solution of the problem is such that each agent obtains one and only
one object (also called house hence the name of the problem).

1.2.2 Preferences
As discussed at the beginning of this section, the preferences of the agents are of paramount
importance as they are the key to evaluate the satisfaction of the agents. We first in-
troduce the two main types of preferences that we can encounter: ordinal or cardinal
preferences. Finally, we will see that preferences can exhibit some structure that can be
useful in designing a good procedure. It can also have an impact on the complexity of a
procedure.

Ordinal preferences

Under ordinal preferences, agents are assumed to express their preferences over the re-
sources through orders. More precisely, we will assume that each agent ai is equipped
with a binary relation ≻i, where π ≻i π′ denotes the fact that ai strictly prefers bundle π
to bundle π′. Moreover, we will say that ai weakly prefers π to π′ (denoted by π ⪰i π′) if
and only if π ≻i π′ or π = π′.

Finally, a preference profile L = ⟨≻i| ai ∈ N⟩ is a vector of n orders, one for each
agent.

Notice that expressing preferences over the whole set of bundles is not feasible in
practice as there exists an exponential number of bundles [Bouveret et al., 2010] (keep
in mind that for m objects you have to express 2m preferences in order to relate the full
preferences of an agent). To overcome this issue, compact preference representations have
been investigated in the literature such as graphical representation or logical languages
[Chevaleyre et al., 2008b].

In this thesis, we will also consider the particular setting where individual preferences
are expressed as linear orders over single objects (and not over bundles). Notice that
in that case, lifting preferences on objects to a preference relation over bundles can be
challenging as discussed by Barberà et al. [2004].
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Let us now introduce some further notation in the specific case where the agents’
preferences are given as linear orders on objects. In that case we use top(≻) to denote
its top-ranked resource: ∀o ∈ O\{top(≻)}, top(≻) ≻ o. Similarly, snd(≻) refers to the
second most preferred resource in ≻. With a slight abuse of notation we will write top(ai)
and snd(ai) to refer to top(≻i) and snd(≻i). When it is not clear from the context we will
subscript these notations to specify the resource set. For instance topR(ai) is the most
preferred resource for agent ai among resources in R ⊆ O.

Given a resource r ∈ O and an agent ai ∈ N , we use rankai
(r) to refer to the rank of

r in ≻i. We have then rankai
(top(ai)) = m, rankai

(snd(ai)) = m− 1, etc...
With slight notation abuse, we will also denote by L the vector of linear orders over

objects, when the agents preferences are represented using this preference model.
Example 1.2. Let us consider the following instance with 2 agents and 3 objects which
is an echo of the Example 1.1. Let us assume that o1 represents the diamond while o2 and
o3 represent two rocks.

a1 : o1 ≻1 o2 ≻1 o3

a2 : o1 ≻2 o3 ≻2 o2

Here, top(a1) = top(a2) = o1, while snd(a1) = o2 and snd(a2) = o3. Under this
preference representation, it is not clear how to lift preferences over bundles of objects:
for instance, given only ≻1, it is not clear how {o1} and {o2, o3} compare with each other.

Cardinal preferences

On the other hand, cardinal preferences are such that the preferences of an agent ai over
bundles of objects are defined by a utility function ui : 2O → R measuring her satisfaction
ui(πi) when she obtains share πi. Note however that we will stay in Q+ in this thesis as
we will not consider chores (positive utilities). This will also allow for a more efficient use
of linear programming.

In this thesis we make the assumption that utility functions are additive i.e., the utility
of an agent ai for a share πi is defined as the sum of the utilities over the objects forming
πi:

ui(πi)
def=

∑
ok∈πi

u(i, k),

where u(i, k) is the utility given by agent ai to object ok. This assumption is commonly
considered in MARA [Lipton et al., 2004; Procaccia and Wang, 2014; Dickerson et al.,
2014; Caragiannis et al., 2016] as additive utility functions provide a compact but yet
expressive way to represent the preferences of the agents. MARA instances with additive
utility functions are called add-MARA instances for short.

Note that k−additive utility functions extend standard additive functions to represent
synergies between sets of resources of size at most k [Grabisch, 1997; Chevaleyre et al.,
2008a].

Moreover, in this thesis, we will only consider MARA instances with commensurable
preferences, that is, such that:

∃K ∈ N s.t ∀i ∈ J1, nK,
m∑

j=1
u(i, j) = K
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Example 1.3. Let us consider the following add-MARA instance with 2 agents and 3
objects which is an echo of the Example 1.1. Let us assume that o1 represents the diamond
while o2 and o3 represent two rocks.

o1 o2 o3
a1 97 2 1
a2 97 1 2

Note that contrary to the Example 1.2 with ordinal preferences there is no need to assume
anything more than the additivity of the utilities to conclude that both agents prefer the
diamond over the two rocks.

We say that the agents’ preferences are strict on objects if, for each agent and each
pair of objects, the agent necessarily strictly prefers one object over the other. Similarly,
we say that the agents’ preferences are strict on shares if, for each agent ai and each pair
of shares π ̸= π′, we have ui(π) ̸= ui(π′). Note that strict preferences on shares entail
strict preferences on objects; the converse is false.

1.2.3 Domain Restriction
However, in real life preference profiles often exhibit some underlying structure. This is
why it is common to consider some structures of preferences. We present here some of
them that are often encountered in the literature. They can also be referred to as domain
restrictions.

Single-peakedness

A widely studied one is the single-peakedness. Under single-peaked preferences, the agents
are assumed to share a common axis ◁ over the resources and individual rankings are
defined with respect to this axis.

This domain of preferences has been introduced by Black [1948] and Arrow [1951]. Ini-
tially motivated in voting contexts, it is now a well studied domain of preferences [Moulin,
1988; Elkind et al., 2017]. Numerous works have explored single-peaked preferences in
the context of fair division. Sprumont [1991] for instance characterized the uniform allo-
cation rule, the unique strategy-proof, efficient and anonymous allocation procedure with
single-peaked preferences and divisible objects. Kasajima [2013] investigated probabilistic
allocation of indivisible objects with single-peaked preferences. More recently, Hougaard
et al. [2014] extended this research area to indivisible objects and considered the problem
of assigning agents to a line under single-peaked preferences. On the empirical side, it
is not clear whether single-peaked preferences can be observed in real-life scenarios, as
mentioned by Puppe [2018]. On the one hand, Spector [2000]; DeMarzo et al. [2003];
List et al. [2013] argue that interactions between the agents lead towards single-peaked
preferences. On the other hand, Egan [2014] shows that political preferences might be
double-peaked (and not single-peaked) when it comes to some polarizing topics.
Definition 1.1. Let O be a set of resources and ◁ an axis (i.e. a linear order) over O.
We say that a linear order ≻ is single-peaked with respect to ◁ if we have:

∀(o1, o2) ∈ O2 s.t. o2 ◁ o1 ◁ top(≻),
or, top(≻) ◁ o1 ◁ o2

}
⇒ o1 ≻ o2.
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In words, ≻ is single-peaked with respect to ◁ if ≻ is decreasing on both the left and
the right sides of top(≻), where left and right are defined by ◁.

For a set of resources O, we denote by LO the set of all linear orders over O. Any
subset D ⊆ LO is then called a preference domain. For a given axis ◁, we call SP◁ the
set of all the linear orders on resources single-peaked with respect to ◁:

SP◁ = {≻ ∈ LO | ≻ is single-peaked w.r.t. ◁}.

A preference domain D is called single-peaked if and only if there exists an axis ◁
such that D ⊆ SP◁. An instance I is said to be single-peaked if it is defined over a
single-peaked preference domain.

Example 1.4. Consider the following four linear orders defined over 3 objects.

≻1: o1 ≻1 o2 ≻1 o3

≻2: o3 ≻2 o2 ≻2 o1

≻3: o2 ≻3 o1 ≻3 o3

≻4: o2 ≻4 o3 ≻4 o1

One can check that these linear orders represent a single-peaked preference profile with
respect to ◁ defined as: o1 ◁ o2 ◁ o3. In fact these orders exactly correspond to SP◁.

Observation 1.1. Let D be a preference domain single-peaked over ◁. For a subset of
objects O′ ⊆ O, the domain D′ defined as the restriction of D to O′ is a single-peaked
domain over ◁′, the restriction of ◁ to O′.

Ballester and Haeringer [2011] provided a characterization of single-peaked domains.
In particular, they gave a necessary condition for a domain to be single-peaked: it should
be worst-restricted [Sen, 1966].

Definition 1.2. An instance I = ⟨N ,O, L, π0⟩ is worst-restricted if for any triplet of
objects (ox, oy, oz) ∈ O3, one of them is never ranked last in the restriction of L to these
three objects.

Proposition 1.1 (Ballester and Haeringer, 2011). If an instance is single-peaked then it
is worst-restricted.

Let us illustrate the single-peaked domain with a simple example.

Example 1.5. Consider the following three linear orders defined over 3 objects that are
not single-peaked:

≻1: o1 ≻1 o2 ≻1 o3

≻2: o3 ≻2 o1 ≻2 o2

≻3: o2 ≻3 o3 ≻3 o1

It can be checked that there is no linear order ◁ over which these preferences are single-
peaked. Indeed, they are not worst-restricted: every object of the triplet (o1, o2, o3) is
ranked last at least once, which violates Proposition 1.1.

24



Binary preferences

Another common domain restriction, derived from approval voting, is the binary prefer-
ences in which agents have only two possible valuations the objects [Halpern et al., 2020].
We say that an instance has binary preferences if for every agent ai and every object
ok, the value of ai for ok is either 0 or 1, i.e. u(i, k) ∈ {0, 1}. This domain restriction
corresponds to settings where the agents just tell whether they like or dislike each object
[Aleksandrov et al., 2015a]. We will use this domain restriction in some complex problems
to derive some intuitions on the more global scale.

1.2.4 Preference cultures
When drawing experiments to test and validate the theory, one may have to automatically
generate preference profiles. In social choice, the probability distribution used to generate
preference profiles is called the culture. Impartial culture refers to the case where the
probability distribution is uniform [Garman and Kamien, 1968].

However, impartial culture may be considered as unrealistic since in real-world set-
ting agents may have similar or dependent preferences [Deemen, 2014]. In strict ordinal
settings, a classical way to capture correlated preferences is to use Mallows distributions
[Mallows, 1957] allowing us to measure the impact of the similarity of the preferences
between agents. This notion is conveyed by a parameter ϕ called dispersion: when ϕ = 0
all the agents have the same preferences while the bigger ϕ gets the more we tend towards
uniformly distributed preferences. For cardinal preferences, we can use a generalization of
the Mallows distribution to cardinal preferences presented by Durand et al. [2016] based
on Von Mises–Fisher distributions. Similarly to the dispersion parameter in Mallows
distributions, the similarity between the preferences of the agents is tuned by the concen-
tration parameter: when it is zero agents’ preferences are uniformly distributed, whereas
when it is infinite agents have the same preferences.

1.3 Desirable criteria and properties
Now that we have seen how the preferences of the agents can be expressed and that we
have seen what the fair division problem of indivisible goods is about, we can look at
what are the good properties that we can expect a solution (an allocation of the objects
to the agents) to have.

1.3.1 Classical fairness measures
We will first see that fairness does not mean one and only one thing but can be expressed
by a lot of criteria, fairness measures, some of which we describe here. A fairness measure
is a score (that can be boolean) that estimates how fair a solution is.

Max min fair Share (MMS): I cut, you choose

Max min fair share is inherited from the notion of "I cut you choose" in the problem of
cake cutting in the fair division problem of divisible goods. It has been built around the
idea of determining what is the maximum amount an agent can get if she divides (cuts)
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the objects in n bundles but chooses last her bundle. This notion was introduced by
Budish [2011] building on concepts introduced by Moulin [1990].

Definition 1.3. For a MARA instance I we define the max-min share (MMS) of agent
ai as follows:

uMMS
i = max

π∈A(I)
min
j∈N

ui(πj)

Besides, an allocation π is said max-min fair share if every agent gets at least her max-min
share; formally: ∀i, ui(πi) ≥ uMMS

i .

Example 1.6. Let us consider the following add-MARA instance with 3 agents and 6
objects:

o1 o2 o3 o4 o5 o6
a1 1 2 3 1 3 2
a2 2 0 7 2 1 0
a3 0 3 5 0 1 3

We can compute the max-min fair shares of each agent introduced in Definition 1.3:

uMMS
1 = 4

uMMS
2 = 2

uMMS
3 = 3

From that, we can easily see that the squared allocation is MMS as:

uMMS
1 = 4 ≤ 6 = 3 + 3 = u1(π1)

uMMS
2 = 2 ≤ 2 = 2 + 0 = u2(π2)

uMMS
3 = 3 ≤ 3 = 0 + 3 = u3(π3)

Complexity The problem of finding an MMS allocation is NP-Hard [Bouveret and
Lemaître, 2016a].

Proportionality

Proportionality is also a very natural notion reached when all the agents have at least 1
n

of the utility of the whole set of objects [Steinhaus, 1948].

Definition 1.4. For a MARA instance I we define the proportional share (Prop) of agent
ai as follows:

Propi = uPROP
i = ui(O)

n

Besides, we say that an allocation π is proportional if every agent gets at least her pro-
portional share; formally: ui(πi) ≥ uPROP

i .

Example 1.7. Let us consider the same instance as the one introduced in Example 1.6:

o1 o2 o3 o4 o5 o6
a1 1 2 3 1 3 2
a2 2 0 7 2 1 0
a3 0 3 5 0 1 3
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We can compute the proportional shares of each agent introduced in Definition 1.4:
uPROP

1 = 1+2+3+1+3+2
3 = 4

uPROP
2 = 2+0+7+2+1+0

3 = 4
uPROP

3 = 0+3+5+0+1+3
3 = 4

From that, we can easily see that the squared allocation is proportional as:
uPROP

1 = 4 ≤ 5 = 3 + 2 = u1(π1)
uPROP

2 = 4 ≤ 4 = 2 + 2 = u2(π2)
uPROP

3 = 4 ≤ 4 = 3 + 1 = u3(π3)

Complexity The problem of finding a Proportional allocation is NP-Complete [Bou-
veret and Lemaître, 2016a].

min Max Share (mMS): You cut, I choose

min Max fair Share is inherited from the notion of "You cut, I choose" in the problem of
cake cutting in the fair division problem of divisible goods:

Definition 1.5. For a MARA instance I we define the min-max share (mMS) of agent
ai as follows:

umMS
i = min

π∈A(I)
max
j∈N

ui(πj)

Besides, we say that an allocation π is min-max fair share if every agent gets at least her
min-max share; formally: ui(πi) ≥ umMS

i

Example 1.8. Let us consider the same instance than the one introduced in Example 1.6:

o1 o2 o3 o4 o5 o6
a1 1 2 3 1 3 2
a2 2 0 7 2 1 0
a3 0 3 5 0 1 3

By computing the min max fair shares we can see the squared allocation is mMS:
umMS

1 = 4 ≤ 4
umMS

2 = 7 ≤ 7
umMS

3 = 5 ≤ 6

Complexity The problem of finding an mMS allocation is NP-Hard [Bouveret and
Lemaître, 2016a].

Envy-freeness (EF)

Envy-freeness (EF), is one of the prominent notions studied in fair division [Foley, 1967;
Brams and Fishburn, 2002; Lipton et al., 2004; de Keijzer et al., 2009; Segal-Halevi and
Suksompong, 2019]. An allocation of items among a set of agents is said to be envy-free
if no agent prefers the share of another agent to her own share.
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Definition 1.6. An allocation π of an add-MARA instance is called envy-free if no agent
strictly prefers the bundle of another agent over hers. Formally:

∀ai ∈ N ,∄aj ∈ N ui(πi) < ui(πj)
Envy-freeness is a boolean criterion that can be refined to measure the degree of

pairwise envy.
Definition 1.7. We define the notion of pairwise envy of an allocation π pe(i, j, π) from
the point of view of agent i between her and agent j as the maximum between 0 and the
difference between the utility for agent i if she had agent j’s bundle and her actual utility
in the allocation π. It can be read as how much agent i envies agent j’s bundle. Formally:

pe(i, j, π) def= max{0, ui(πj)− ui(πi)}
Definition 1.8. From that notion of pairwise envy, we derive the notion of envy ei(π) of
an agent i as follows:

ei(π) def= max
j∈N

pe(i, j, π)

Definition 1.9. Finally, we define −→e (π) as the vector of every agent’s envy of an allo-
cation π:

−→e (π) def= (e1(π), ..., en(π))
Note that an allocation π is envy-free if and only if −→e (π) = (0, ..., 0).

Definition 1.10 (Degree of envy of the society). The degree of envy de(π) of the society
for an allocation π is defined as follows:

de(π) def=
∑

ai∈N

∑
aj∈N

pe(i, j, π).

Note that an allocation π is envy-free if and only if de(π) = 0. Moreover, keep in
mind that the degree of envy of the society can be defined differently as discussed by
Chevaleyre et al. [2017]. Indeed, the aggregation of the envies of the agents can be done
via a maximum. More than that, even pairwise envy could be defined as possibly negative
if we want a negative envy (measuring how much the agent is not envious and so happy)
to compensate for a positive envy. We will ourselves propose another definition of the
degree of envy of the society in Chapter 4.
Example 1.9. Let us consider the same instance as the one introduced in Example 1.6:

o1 o2 o3 o4 o5 o6
a1 1 2 3 1 3 2
a2 2 0 7 2 1 0
a3 0 3 5 0 1 3

We can first see that the squared allocation is not envy-free. Indeed, a1 envies a3 as
u1({o4, o5}) = 4 < 5 = u1({o1, o2, o6}). However, from the latter allocation, by simply
giving o1 to a1 we get this new allocation:

o1 o2 o3 o4 o5 o6
a1 1 2 3 1 3 2
a2 2 0 7 2 1 0
a3 0 3 5 0 1 3

This new allocation is envy-free.
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Complexity It its known that the problem of finding an envy-free allocation is NP-
Complete [Lipton et al., 2004].

Competitive Equilibrium with Equal Incomes (CEEI)

The notion of competitive equilibrium is an old and well-known concept in economics
[Walras, 1874; Fisher, 1892]. If equal incomes are imposed among the stakeholders, this
concept becomes the competitive equilibrium from equal incomes [Moulin, 2003], yielding a
very strong fairness concept that has been recently explored both in artificial intelligence
and in economics [Othman et al., 2010; Budish, 2011; Bouveret and Lemaître, 2016a].

Definition 1.11. Let I = (N ,O, w) be an add-MARA instance, π an allocation, and
−→p ∈ [0, 1]m a vector of prices. A pair (π,−→p ) is said to form a competitive equilibrium
with equal incomes (CEEI) if

∀ai ∈ N : πi ∈ argmaxπ⊆O

{
ui(π) :

∑
ok∈π

pk ≤ 1
}

In other words, πi is one of the maximal shares that ai can buy with a budget of 1,
given that the price of each object ok is pk.

We will say that allocation π is a CEEI if there exists a vector −→p such that (π,−→p )
forms a CEEI.

Example 1.10. Let us consider the same instance as the one introduced in Example 1.6
where we also consider a vector of prices −→p :

o1 o2 o3 o4 o5 o6
pj 0.2 0.5 1 0.2 0.6 0.5

1 a1 1 2 3 1 3 2
1 a2 2 0 7 2 1 0
1 a3 0 3 5 0 1 3

The squared allocation is CEEI: Competitive Equilibrium with Equal Incomes with
prices pj.

Complexity The CEEI test is known to be NP-Hard [Brânzei et al., 2015], and, to the
best of our knowledge, no practical method has been described before.

Link between fairness measures

Note that it has also been shown [Bouveret and Lemaître, 2016a] that when preferences
are additive CEEI =⇒ EF =⇒ mMS =⇒ PROP =⇒ MMS, where FM1 =⇒ FM2
means that an allocation satisfying FM1 necessarily satisfies FM2 and that we can find
instances for which an allocation satisfies FM2 but none that satisfy FM1.
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1.3.2 Relaxations of fairness measures
In recent literature a lot of relaxations of fairness notions have been introduced and
studied. Indeed, when it is not guaranteed to find an allocation satisfying a given fairness
criterion it seems interesting to study relaxations of it. Note that none of the classical
fairness measures introduced in Section 1.3.1 are guaranteed to exist. Indeed, for every
fairness introduced in Section 1.3.1 we can find an instance for which no allocation satisfies
the said fairness measure. It can be easily observed for Proportionality (which implies no
guarantee of existence of stronger). However, for MMS the problem remained open for a
while but it was settled by Procaccia and Wang [2014] that an MMS allocation may not
exist either. These measures are hence good candidates to investigate relaxations.

Envy-freeness relaxations

For example, to cope with the possible non-existence of an envy-free allocation, another
approach is to alleviate the requirements of the fairness notion. Several relaxations of
envy-freeness have been proposed such as envy-freeness up to one good (EF1) [Lipton
et al., 2004; Budish, 2011] or envy-freeness up to any good (EFX) [Caragiannis et al.,
2016]. An allocation is said to be envy-free up to one good (resp. up to any good) if no
agent ai envies the share πj of another agent aj after removing from πj one (resp. any)
item.

We give the formal definitions of these two relaxations here:

Definition 1.12. Let I = ⟨N ,O, w⟩ be an add-MARA instance and π be an allocation
of I. π is envy-free up to one good EF1 if and only if ∀ai, aj ∈ N , either ui(πi) ≥ ui(πj)
or ∃ok ∈ πj such that ui(πi) ≥ ui(πj\{ok}).

Definition 1.13. Let I = ⟨N ,O, w⟩ be an add-MARA instance and π be an allocation
of I. π is envy-free up to any (strictly positively valuated) good EFX if and only if
∀ai, aj ∈ N , either ui(πi) ≥ ui(πj) or ∀ok ∈ πj for which u(i, k) > 0, ui(πi) ≥ ui(πj\{ok}).

An even more demanding notion called EFX0 [Plaut and Roughgarden, 2018; Ky-
ropoulou et al., 2020] differs on the fact that an agent can forget any object even the ones
valued to 0:

Definition 1.14. Let I = ⟨N ,O, w⟩ be an add-MARA instance and π be an allocation
of I. π is envy-free up to any good if and only if ∀ai, aj ∈ N , either ui(πi) ≥ ui(πj) or
∀ok ∈ πj, ui(πi) ≥ ui(πj\{ok}).

Clearly, we have EF =⇒ EFX0 =⇒ EFX =⇒ EF1.
Existence for EF1 is guaranteed, but this is still to the best of our knowledge an open

question for EFX in the general case. However, the existence guarantee of an EFX solu-
tion has been proven for few agents (at most 3 agents) and specific utility functions. For
instance it has been proved that an EFX allocation always exists for instances with iden-
tical valuations and for instances involving two agents with general and possibly distinct
valuations [Plaut and Roughgarden, 2018], as well as for three agents with additive valu-
ations [Chaudhury et al., 2020]. When the objects have only two possible valuations and
with additive preferences, Amanatidis et al. [2020] proved that any allocation maximizing
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the Nash Social Welfare is EFX. This result provides a polynomial algorithm for com-
puting EFX allocations in the two-agent setting. More recently, Bu et al. [2023] proved
that an EFX allocation always exists under binary preferences even if not additive. An
important effort has also been dedicated to EFX approximations such as the notion of
α-EFX [Plaut and Roughgarden, 2018; Feldman et al., 2023] or partial EFX allocations
where some objects remain unallocated [Berger et al., 2022].

Amanatidis et al. [2018] studied four fairness notions – Envy-freeness up to one good
(EF1), envy-freeness up to any good (EFX), maximin share fairness (MMS), and pairwise
maximin share fairness (PMMS) – and investigated the relations between these notions
and their relaxations. Although PMMS is a stronger notion than EFX, Amanatidis et al.
[2018] proved that both notions provide the same worst-case guarantee for MMS. In the
same vein, they showed that EFX and EF1 both provide similar approximation for PMMS.

Proportionality relaxations

Another example of relaxations that can be encountered in the literature is the one of
proportionality. Even though proportionality is a less demanding fairness criterion than
envy-freeness [Bouveret and Lemaître, 2016a], the existence of a proportional allocation
is not guaranteed. For that reason, relaxations of this notion such as proportionality up
to one item (PROP1) has been proposed [Conitzer et al., 2017]. An allocation satisfies
PROP1 if every agent gets at least her proportional share when one item is added to
her current bundle. For example, Conitzer et al. [2017] proved the existence of PROP1
allocations for a public decision setting where a decision has to be made on several public
issues. Each issue has several possible alternatives and each agent has a utility for each
alternative. The decision problem consists in choosing one alternative for each issue.
Considering PROP1 allocations, Barman and Krishnamurthy [2019] presented a strongly
polynomial-time algorithm to find such allocations for positive utilities. Note that some
of these papers deal with fair division with chores [Brânzei and Sandomirskiy, 2019] or
with mixed utilities [Aziz et al., 2019, 2020]. It can be noticed that there is a similar kind
of link between EF1 and PROP1 as the one that exists between EF and proportionality.
Namely, any EF1 allocation is also PROP1 (which we could write EF1 =⇒ PROP1 for
short).

Another example of an approximation of a fairness measure is the one of CEAI (Com-
petitive Equilibrium with Almost equal Incomes) which consists in relaxing the fact that
every object has to have the same price for every agent [Budish, 2011; Segal-Halevi, 2020].

1.3.3 Efficiency
There exists an extensive literature investigating how to define efficiency requirements for
an allocation (see Chevaleyre et al., 2006; Thomson, 2016 for some surveys).

Completeness

The first and simplest way to express efficiency is through completeness. We do not want
any item to be wasted meaning we want all the objects from O to be allocated:⋃

ai∈N
πi = O
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It would indeed seem very inefficient to throw away one or multiple objects in order
to achieve fairness. Indeed, if we take the example of two agents that have to share two
rocks and one diamond, we could easily say that we do not allocate the diamond and give
one rock to each agent. However, one can sense that it is not an acceptable solution and
that is why we assume completeness throughout this document.

Pareto efficiency

Pareto efficiency is considered and known as the gold standard in terms of efficiency.
Definition 1.15 (Pareto-Optimality). Let π and π′ be two allocations. We say that π′

Pareto-dominates π if and only if:

∀ai ∈ N , π′
i ⪰i πi, and ∃aj ∈ N , π′

j ≻j πj.

An allocation π is then said to be Pareto-Optimal (PO) if there is no other allocation
π′ that Pareto-dominates π.
Example 1.11. Let us go back to this example with 2 agents and 3 objects :

o1 o2 o3

a1 97 ∗ 2∗ 1
a2 97 1 2∗

We can see that the squared allocation is Pareto dominated by the starred one (which
is a PO allocation). Moreover, note that to go from the squared allocation to the starred
one we make a Pareto improving exchange between two agents. This will be thoroughly
studied and used through this thesis. We can also notice that if we give o1 to a2 in the
starred allocation it is still a Pareto Optimal allocation.

We can also see how Pareto-Optimality similarly works for the HAP.
Example 1.12. Let us consider the following instance with 5 agents and 5 resources.
The preferences presented below are single-peaked with respect to o1 ◁ o2 ◁ o3 ◁ o4 ◁ o5.
The initial allocation π0 = ⟨o1, o2, o3, o4, o5⟩ is represented by the underlined resources.

a1 : o3 ≻1 o4 ≻1 o5 ≻1 o2 ≻1 o1

a2 : o3 ≻2 o4 ≻2 o5 ≻2 o2 ≻2 o1

a3 : o4 ≻3 o5 ≻3 o3 ≻3 o2 ≻3 o1

a4 : o3 ≻4 o4 ≻4 o5 ≻4 o2 ≻4 o1

a5 : o1 ≻5 o2 ≻5 o3 ≻5 o4 ≻5 o5

The allocation π0 is not Pareto-optimal as it is Pareto-dominated by the squared allo-
cation π = ⟨o2, o4, o5, o3, o1⟩.

1.4 Computing fair and efficient allocations
We have seen several desirable properties about the solution of our problems. However, we
have not yet seen the major issue consisting in finding allocation procedures that return
an allocation satisfying a mixture of desirable properties. An allocation procedure M is
a mapping taking as input an instance I and returning an allocation M(I).
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1.4.1 Desirable properties of a procedure

As we have seen in Section 1.3 there are desirable properties we aim an allocation to
have (such as Pareto-Optimality) but there are also for the procedures. As discussed
in Schmidtlein and Endriss [2023] in the context of voting, several axioms have been
identified in the literature such as anonymity (changing the names of the agents should
not change the outcome of the vote) and neutrality (changing the names of the objects
should not change the outcome of the vote). We will detail here two other desirable
properties of allocation procedures that are relevant in our context and throughout this
work: individual rationality and strategy-proofness.

Individual rationality

In the House Allocation Problem (HAP), given that the agents initially own the objects in
our setting, another very common efficiency requirement is that of individual rationality.
It stipulates that no agent should be worse-off in the final allocation.

Definition 1.16 (Individual rationality). A procedure M is said to be individually rational
if for every instance I = ⟨N ,O, L, π0⟩ and every agent ai ∈ N , we have:

M(I) ⪰i π0
ai

Strategy-proofness

We conclude by introducing another desirable property that is strategy-proofness. Infor-
mally, an allocation procedure is strategy-proof if no agent could get a strictly better
outcome by lying instead of revealing her true preferences.

Definition 1.17. Let L = ⟨≻j⟩aj∈N be a preference profile. For a given agent ai ∈ N ,
an i-variant L−i = ⟨≻′

j⟩aj∈N of L is a preference profile such that:

∀aj ∈ N\{ai},≻j=≻′
j and ≻i ̸=≻′

i .

An allocation procedure M is said to be strategy-proof if for every instance I =
⟨N ,O, L, π0⟩, every agent ai ∈ N , every i-variant L−i of L, we have:

M(⟨N ,O, L, π0⟩) ⪰i M(⟨N ,O, L−i, π0⟩).

1.4.2 Centralized procedures

In centralized procedures we often have a central coordinator that refers to some central
authority that runs the procedure. It basically runs the algorithm by communicating with
agents, by harvesting their preferences or the choices they make during the algorithm runs.
The central coordinator may be a real human being but it can just also be a computer or
a robot playing this role.
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Optimization of a collective utility function

There are a lot of known collective utility functions that we can seek to optimize in order
to express fairness in our problem. For example, the maximization of Max Nash Welfare
[Caragiannis et al., 2016] but also the maximization of the Ordered Weighted Average of
the utilities [Perny and Spanjaard, 2003]. They are indeed centralized procedures as we
can solve them via solving a Mixed Integer Linear Program.

We can also define collective functions if we deal with ordinal preferences and while
we have seen that efficiency can be evaluated by achieving Pareto-Optimality, efficiency
can also be evaluated via social welfare measures such as the average rank (ark) of the
objects held by the agents, defined in the context of the House Allocation Problem as:

ark(π) = 1
n
·
∑

ai∈N
rankai

(πai
).

Maximizing the average rank is of course equivalent to maximizing the sum of ranks, and
can also be interpreted as the utilitarian social welfare, under the assumption that agents
have Borda utilities.

However, maximizing the average rank or searching for Pareto-optimal solutions may
not be satisfactory as it can lead to particularly unfair allocations. For this reason, many
fairness criteria have been introduced. We will focus here on maximizing the minimum
rank (mrk) of the objects held by the agents, defined in the context of the House Allocation
Problem as:

mrk(π) = min
ai∈N

rankai
(πai

).

Again, if we were to interpret the rank as a cardinal utility function, the minimum
rank would be equivalent to the egalitarian welfare. Maximizing the minimum rank
follows Rawls’ principle of maximizing the welfare of the worst-off [Rawls, 1971]. It has
been introduced by Pazner and Schmeidler [1978] and is now a very common rule in fair
division [Thomson, 1983; Sprumont, 1996; Nguyen et al., 2014].

Example 1.13. Let us go back to Example 1.12 to see how we would compute these ranks.
We have ark( π ) = 2+4+4+5+5

5 = 4 and mrk( π ) = min(2, 4, 4, 5, 5) = 2.

Top Trading Cycle

Let us present the following procedure in the context of the House Allocation Problem
and when preferences on objects are distinct. The Top Trading Cycle (TTC) algorithm
[Shapley and Scarf, 1974] takes as input an instance I = ⟨N ,O, L, π0⟩ and proceeds as
follows. The algorithm maintains a set of available agents N and a set of available objects
O where initially O = O and N = N . At each step of the algorithm, a directed bipartite
graph G = ⟨V, E⟩, with V = N ∪ O, is defined. The nodes of G represent the agents in
N and the objects in O, and the set of edges E is such that:

• there is a directed edge (ai, oi) between ai and oi if and only if oi = topO(ai) i.e.,
agents are linked to their preferred object in O,

• there is a directed edge (oi, ai) between oi and ai if and only if oi = π0
ai

i.e., objects
are linked to their owner in π0.
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Algorithm 1.1: TTC algorithm
Input: An instance I = ⟨N ,O, L, π0⟩
Output: An allocation π

1 π ← empty allocation
2 O ← O: list of objects
3 N ← N : list of agents
4 while N ̸= ∅ do
5 E ← ∅
6 V ← N ∪O
7 for each agent a ∈ N do
8 Add a directed edge in E between a and topO(a)
9 end

10 for each object o ∈ O do
11 Add a directed edge in E between o and her owner in π0

12 end
13 Select a cycle µ from the graph G = ⟨V, E⟩
14 do(µ, π)
15 end
16 return π

Note that there always exists at least one cycle in G and that cycles correspond to im-
proving deals (even in the worst case where only one agent is involved and hence the deal
is weakly improving as she keeps her preferred object). The cycle-deals constructed can
be of size 1 if an agent already owns her top object in O. Note that the size of a cycle-deal
refers here to the number of agents involved so the size of the cycle in the TTC graph
would be the double. The TTC algorithm selects one of the cycles µ in G and performs a
reallocation of the objects following the cycle. The agents and objects involved in µ are
then removed from N and O. A new graph G′ is computed with the remaining agents
and objects. The process is iterated on the new graph G′ and π0[µ] until an empty graph
has been reached. Note that the outcome of TTC is unique (regardless of the possibly
different choices of cycles to implement during the process).

A formal description of TTC procedure is given in Algorithm 1.1. Note that we make
use of the sub-procedure do(µ, π) which simply implements the cycle-deal µ (reallocating
the objects to the agents following the arcs of the cycle) and adds the resulting allocation
(restricted to the agents involved in the deal) in the allocation π. It then removes the
agents and the objects involved in the deal µ from the lists of available agents and objects,
N and O respectively.
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Example 1.14. Let us consider the instance defined in Example 1.12 with π0 = ⟨o1, o2,
o3, o4, o5⟩ being the underlined allocation:

a1 : o3 ≻1 o4 ≻1 o5 ≻1 o2 ≻1 o1

a2 : o3 ≻2 o4 ≻2 o5 ≻2 o2 ≻2 o1

a3 : o4 ≻3 o5 ≻3 o3 ≻3 o2 ≻3 o1

a4 : o3 ≻4 o4 ≻4 o5 ≻4 o2 ≻4 o1

a5 : o1 ≻5 o2 ≻5 o3 ≻5 o4 ≻5 o5

The first graph used by the TTC algorithm is shown in Figure 1.1(a).

a1

a2

a3

a4

a5

o1

o2

o3

o4

o5

(a) The graph before the
first step of the TTC algo-
rithm.

a1

a2

a5

o1

o2

o5

(b) The graph between the
first and second steps of the
TTC algorithm.

a2 o2

(c) The graph after the sec-
ond step of the TTC algo-
rithm.

Figure 1.1: Evolution of the reallocation graph during the execution of the TTC algorithm on
Example 1.14.

The first cycle-deal that can be applied is then µ1 = ⟨a3, a4⟩ (highlighted in thick lines
in Figure 1.1(a)) which means that a3 gives her object to a4 and vice-versa. Which gives
us allocation π1 = ⟨o1, o2, o4, o3, o5⟩ with the resulting graph given in Figure 1.1(b).

This means that the next cycle-deal is µ2 = ⟨a1, a5⟩ (highlighted in thick lines in
Figure 1.1(b)) so a1 and a5 swap their objects giving us π2 = ⟨o5, o2, o4, o3, o1⟩. The next
TTC graph is given in Figure 1.1(c).

Finally, a2 remains with her initial object o2 which corresponds to the cycle µ3 =
⟨a2⟩. Algorithm is finished as there are no agents left. Hence TTC returns πT T C =
⟨o5, o2, o4, o3, o1⟩.

TTC algorithm which can be used without any domain restriction, is well known to
satisfy the three main desirable properties of an allocation procedure: Pareto-Optimality,
individual rationality and strategy-proofness.

1.4.3 Decentralized protocols
Even if for the sake of simplicity we have chosen to present centralized and distributed
procedures as two distinct groups, it would actually be more accurate to consider that
there is a continuum between the different kinds of protocols. Indeed, the most centralized
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procedures rely on a central authority to which the agents just give their preferences and
wait for the outcome. We move further towards decentralization by involving the agents
in the procedure even in the presence of a central authority and we go towards full
decentralization by getting rid of the central coordinator.

The use of a central coordinator induces a weak point in the system: the coordinator
causes a bottleneck whose default often leads to the failure of the whole allocation process.
The system may also be inherently distributed and the use of a central coordinator may
not be possible because of limitations in the communication infrastructure or because of
privacy requirements. In addition, centralized procedures may be perceived as less fair by
the agents who are not allowed to actively take part in the allocation process [Van den
Bos et al., 1997; Leventhal, 1980; Thibaut and Walker, 1975]. While TTC is presented as
a centralized procedure (i.e. a central authority computes each trading cycle that should
be implemented, and dictates it to the agents1), distributed procedures [Sandholm, 1998;
Chevaleyre et al., 2017] take a different perspective. Agents autonomously negotiate over
the objects and locally agree on deals, and the outcome of the object allocation problem
results from the sequence of such local deals. Such dynamics may achieve interesting
efficiency and fairness results [Chevaleyre et al., 2007; Endriss et al., 2006]. However, long
cycles still pose real challenges for these procedures [Rosenschein and Zlotkin, 1994] as
they involve distributed coordination among numerous agents.

Resource exchanges

As stated in the beginning of this section it would be interesting to design procedures
that rely more heavily on the agents rather than on a central authority. And the ones
relying on resource exchanges seem to be good candidates as the agents negotiate and
make deals themselves with one or more agents by exchanging one or several objects in
order to be more satisfied.

As discussed in the introduction of this manuscript and this section and motivated
by Damamme et al. [2015] resource exchanges are a very powerful tool to implement
decentralized procedures and even if they may induce a high efficiency loss. Indeed, that
loss is not that punishing under the assumption of individual rationality and that in
single-peaked domains PO can be guaranteed.

Improving deals

A deal is a vector of agents, usually denoted by µ = ⟨a1, . . . , ak⟩, where ai ∈ N ,∀i ∈
{1, . . . , k}. It represents an exchange where agent ai gives her object to agent ai+1 for
each i ∈ {1, . . . , k − 1} and agent ak gives her object to agent a1. With a slight abuse
of notations, given a deal µ = ⟨a1, . . . , ak⟩, agent ak+1 will refer to agent a1 and agent a0
(i.e. the agent before a1) to agent ak. For the particular case of deals involving only two
agents, i.e. k = 2, we will talk about swap-deals. Pareto-optimality can be thought as
a reallocation of objects among agents using improving deals [Shapley and Scarf, 1974;
Sandholm, 1998], Trading cycles or cycle deals constitute a sub-class of deals, which is
classical and used, e.g., by Varian [1974, page 79] and Lipton et al. [2004, Lemma 2.2]

1In principle, it is possible to distribute the execution of central procedures, by letting all agents
broadcast, compute locally their own version of the central algorithm, and coordinate. This might
however induce a significant cost.
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in the context of envy-freeness. Trying to link efficiency concepts with various notions of
deals is thus a natural idea.

Definition 1.18. Let ⟨N ,O, u⟩ be an add-MARA instance and π be an allocation of this
instance. A (N, M)-cycle deal of π is a sequence of transfers of items µ = ⟨(µ1,O1), . . . ,
(µN ,ON)⟩, where, for each j ∈ {1, . . . , N}, µj denotes the jth agent involved in the
sequence and µj ∈ N , Oj ⊆ πj, and |Oj| ≤ M . The allocation π[µ] resulting from the
application of µ to π is defined as follows:

• π[µ]µj
= πµj

\ Oj ∪ Oj−1 for j ∈ {2, . . . , N};

• π[µ]µ1 = πµ1 \ O1 ∪ ON ;

• π[µ]i = πi if ai ̸∈ {µ1, . . . , µN}.

A cycle deal ⟨(µ1,O1), . . . , (µN ,ON)⟩ will be written

µ1
O1−→ µ2 . . . µN−1

ON−1−→ µN
ON−→ µ1.

In other words, in a cycle deal (we omit N and M when they are not necessary to
understand the context), each agent gives a subset of at most M items from her share to
the next agent in the sequence and receives in return a subset from the previous agent.
(N, 1)-cycle deals will be denoted by N -cycle deals. 2-cycle deals will be called swap-deals.
Among these cycle deals, some are more interesting: those where each agent improves her
utility by trading objects. More formally, a deal d will be called weakly improving if
ui(π[← d]i) ≥ ui(πi) ∀i ∈ N with at least one of these inequalities being strict, and
strictly improving if all these inequalities are strict.

Intuitively, if it is possible to improve an allocation by applying an improving cycle
deal, then it means that this allocation is inefficient. Reallocating the items according to
the deal will make everyone better-off. It is thus natural to derive a concept of efficiency
from this notion of cycle-deal.

Definition 1.19. An allocation is said to be >-(N, M)-cycle optimal (resp. ≥-(N, M)-
cycle optimal) if it does not admit any strictly (resp. weakly) improving (K, M)-cycle deal
for any K ≤ N .

Picking sequences

Following the discussion made above about centralized versus decentralized protocols,
we notice that even if there is a central coordinator the agents communicate way fewer
preferences than with TTC for example. Besides, they are part of the procedure that
is running. This is why we consider it is, to a certain level, a decentralized procedure.
This very simple protocol works as follows. A central authority chooses a sequence of
agents before the protocol starts, having as many agents as the number of objects (some
agents may appear several times in the sequence). Then, each agent appearing in the
sequence is asked to choose in turn one object among those that remain. For instance,
according to the sequence ⟨a1, a2, a2, a1⟩, agent a1 will choose first, then agent a2 will pick
two objects in a row, and agent a1 will take the last object. This protocol, used in a lot
of everyday situations, has been studied for the first time by Kohler and Chandrasekaran
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[1971]. Later, Brams and Taylor [2000] have studied a particular version of this protocol,
namely alternating sequences, in which the sequence of agents is restricted to a balanced
(⟨1, 2, 2, 1...⟩) or strict (⟨a1, a2, a1, a2...⟩) alternation of agents. Bouveret and Lang [2011]
have further formalized this protocol, whose properties (especially related to game theo-
retic aspects) have later been characterized by Kalinowski et al. [2013a,b]. Finally, Aziz
et al. [2015b] have studied the complexity of problems related to finding whether a par-
ticular assignment (or bundle) is achievable by a particular class of picking sequences.
Picking sequences have also been considered by Brams and King [2005], that focus on a
situation where the agents have ordinal preferences. They make an interesting link be-
tween this protocol and Pareto-optimality, showing, among others, that picking sequences
always result in a Pareto-optimal allocation, but also that every Pareto-optimal allocation
can be obtained by a sequence of sincere choices.

Definition 1.20. Let I = ⟨N ,O, w⟩ be an add-MARA instance. A picking sequence or
sequence of sincere choices (or simply sequence when the context is clear) is a vector of
Nm. We will denote by S(I) the set of possible sequences for the instance I.

Let −→σ ∈ S(I) be a sequence of agents and let σt be the tth agent of the sequence. −→σ
is said to generate allocation π if and only if π can be obtained as a possible result of
the non-deterministic (the algorithm contains an instruction choose splitting the control
flow into several branches, building all the allocations generated by −→σ ) Algorithm 1.2 on
input I and −→σ .

Algorithm 1.2: Execution of a sequence
Input: an instance I = ⟨N ,O, w⟩ and a sequence −→σ ∈ S(I)
Output: an allocation π ∈ A(I)

1 π ← empty allocation (such that ∀i ∈ N : πi = ∅);
2 O1 ← O;
3 for t from 1 to m do
4 ai ← σt;
5 choose object ot ∈ best(Ot, i) ;
6 πi ← πi ∪ {ot} ;
7 Ot+1 ← Ot \ {ot}
8 end

Definition 1.21. An allocation π is said to be sequenceable if there exists a sequence −→σ
that generates π, and non-sequenceable otherwise. For a given instance I, we will write
s(I) the binary relation defined by (−→σ , π) ∈ s(I) if and only if π can be generated by −→σ .

Example 1.15. Let I be the following instance:
o1 o2 o3

a1 8 2 1
a2 5 1 5

For instance, sequence ⟨a2, a1, a2⟩ generates two possible allocations: ⟨o1, o2o3⟩ and ⟨o2,
o1o3⟩, depending on whether agent 2 chooses object o1 or o3 that she both prefers. Allo-
cation ⟨o1o2, o3⟩ can be generated by three sequences. Allocations ⟨o1o3, o2⟩ and ⟨o3, o1o2⟩
are non-sequenceable.
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For any instance I, |S(I)| = |A(I)| = nm. Also note that the number of objects
allocated to an agent by a sequence is the number of times the agent appears in the
sequence.

1.5 Thesis purpose
As we have seen throughout this chapter the problem of fair division of indivisible goods
consists in finding fair and/or efficient allocations. However, we do not know what fairness
really means as there are a lot of ways to express that notion. Among those fairness
notions that we have presented, the one of envy-freeness is very appealing but there are
cases where it cannot be found. Therefore literature has proposed relaxations of envy-
freeness and hence we propose two new relaxations of envy-freeness that we present and
thoroughly study.

Moreover, in order to obtain such allocations we need procedures that can be either
centralized or decentralized each having their strengths and weaknesses. In particular,
centralized procedures present problems of confidence, simplicity and elicitation of prefer-
ences. This is why we look at procedures that lead to a certain degree of decentralization
and allow agents to be involved in the construction of the allocation: exchange sequences
and picking sequences.

Finally, we have chosen to stay in the context of additive preferences meaning that the
utility of a bundle of objects is simply the sum of the utilities of the objects. Moreover,
we have sometimes considered domain restrictions such as single-peakedness or binary
utilities to see if procedures have desirable properties on those domain preferences.

1.6 Organization of the thesis
We have seen throughout this chapter a very large display of definitions of fairness and a
very large set of problems in which fairness and efficiency is studied. From that we show
how the thesis is built.

Through Chapters 2 and 3 we will mainly focus on decentralized procedures, their
design and their properties in different contexts.

We will then come back in Chapters 4 and 5 in a more centralized setting by proposing
new approximations of envy-freeness and proportionality. Chapter 4 will take inspiration
from classical multi-objective optimization to build a new approximation while Chapter 5
will be about a more collective way of thinking about envy-freeness and proportionality
which are classically personal visions.
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Chapter 2

Efficiency, Sequenceability and
Deal-Optimality

Summary of the chapter
In fair division of indivisible goods, using sequences of sincere choices (or picking se-
quences) is a natural way to allocate the objects. The idea is as follows: at each stage,
a designated agent picks one object among those that remain. Another intuitive way
to obtain an allocation is to give objects to agents in the first place, and to let agents
exchange them as long as such “deals” are beneficial. This chapter investigates these
procedures, when agents have additive preferences over objects, and unveils surprising
connections between them, and with other efficiency and fairness notions. In particular,
we show that an allocation is sequenceable if and only if it is optimal for a certain type
of deals, namely cycle deals involving a single object. Furthermore, any Pareto-optimal
allocation is sequenceable, but not the converse. Regarding fairness, we show that an
allocation can be envy-free and non-sequenceable, but that every competitive equilibrium
with equal incomes is sequenceable. To complete the picture, we show how some domain
restrictions may affect the relations between these notions. Finally, we experimentally
explore the links between the scales of efficiency and fairness.

This chapter is based in full on a paper published in the Autonomous Agents Multi
Agent Systems conference [Beynier et al., 2019a]. It is a joint work with the co-authors
of the papers.
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2.1 Introduction
In this chapter, we focus on a particular allocation protocol: sequences of sincere choices
(also known as picking sequences). We analyze the links between sequences, certain types
of deals among agents, and some efficiency and fairness properties, in a more general
model in which the agents have numerical additive preferences on the objects. Our main
contributions are the following. We give a formalization of the link between allocations and
sequences of sincere choices, with the notion of sequenceability, and highlighting a simple
characterization of the sequenceability of an allocation (Section 2.3). Then, we show that
in this slightly more general framework than the one by Brams and King [2005], Pareto-
optimality and sequenceability are not equivalent anymore (Section 2.4). By unveiling
the connection between sequenceability and cycle deals among agents (Section 2.5), we
obtain a rich “scale of efficiency” that allows us to characterize the degree of efficiency of
a given allocation. Interestingly, some domain restrictions have significant effects on this
hierarchy (Section 2.6). We also highlight (Section 2.7) a link between sequenceability and
another important economical concept: the competitive equilibrium from equal income
(CEEI). Another contribution is the experimental exploration of the links between the
scale of efficiency and fairness properties (Section 2.8).

2.2 Definitions
We will first give a definition that will be useful throughout this chapter for the notion of
sequenceability.

Definition 2.1. Given an agent ai and a set of objects O′, we will write best(O′, i) =
argmaxok∈O′ u(i, k) the objects from O′ having the highest weight for ai (they will be called
top objects of ai).

A (sub-)allocation π|O′ is said frustrating if no agent receives one of her top objects in
π|O′ (formally: best(O′, i) ∩ π

|O′

i = ∅ for each agent ai), and non-frustrating otherwise.

In the following, we will consider a particular way of allocating objects to agents:
sequences of sincere choices as presented in Algorithm 1.2. Informally the agents are asked
in turn, according to a predefined sequence, to choose and pick a top object among the
remaining ones. This is closely linked to the notion of sequenceable allocation described
in Definition 1.21.

The notion of frustrating allocation and sequenceability were already implicitly present
in the work by Brams and King [2005], and sequenceability has been extensively studied
by Aziz et al. [2015b] with a focus on sub-classes of sequences (e.g. alternating sequences).
However, a fundamental difference is that in our setting, the preferences might be non
strict on objects, which entails that the same sequence can yield different allocations (in
the worst case, an exponential number), as Example 1.15 shows.

2.3 Sequenceable allocations
We have seen in Example 1.15 that some allocations are non-sequenceable. We will now
formalize this and give a precise characterization of sequenceable allocations. That is, we
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will try to identify under which conditions an allocation is achievable by the execution
of a sequence of sincere choices. We first start by noticing that in every sequenceable
allocation, the first agent of the sequence gets a top object, so every frustrating allocation
is non-sequenceable. However, being non-frustrating is not a sufficient condition for an
allocation to be sequenceable, as the following example shows:

Example 2.1. Consider this instance:

o1 o2 o3 o4
a1 9 8 2 1
a2 2 5 1 4

In the squared allocation π = ⟨o1o4, o2o3⟩, each agent receives her top object. However,
after o1 and o2 have been allocated (they must be allocated first by all sequences generating
π), the dotted sub-allocation remains. This sub-allocation is obviously non-sequenceable
because it is frustrating. Hence π is not sequenceable either.

It was shown by Bouveret and Lemaître [2016b] that this property of containing a
frustrating sub-allocation exactly characterizes the set of non-sequenceable allocations:

Proposition 2.1 (Bouveret and Lemaître, 2016b). Let I = ⟨N ,O, u⟩ be an instance and
π be an allocation of this instance. The two following statements are equivalent:

(A) π is sequenceable.

(B) No sub-allocation of π is frustrating (in every sub-allocation, at least one agent
receives a top object).

Besides characterizing a sequenceable allocation, the proof of Proposition 2.1 gives
a practical way of checking if an allocation is sequenceable, and, if it is the case, of
computing a sequence that generates this allocation.

Proposition 2.2 (Bouveret and Lemaître, 2016b). Let I = ⟨N ,O, u⟩ be an instance and
π be an allocation of this instance. We can decide in time O(n×m2) if π is sequenceable.

The proof is based on the execution of Algorithm 2.1. This algorithm is similar in
spirit to the one proposed by Brams and King [2005] but is more general because (i) it can
involve non-strict preferences on objects, and (ii) it can conclude with non-sequenceability.

2.4 Pareto-optimality
When an allocation is generated from a sequence, in some sense, a weak form of efficiency
is applied to build the allocation: each successive (picking) choice is “locally” optimal.
This raises a natural question: is every sequenceable allocation Pareto-optimal?

This question has already been extensively discussed independently by Aziz et al.
[2016b] and Bouveret and Lemaître [2016b]. We complete the discussion here to give
more insights about the implications of the previous results in our framework.

Brams and King [2005, Proposition 1] prove the equivalence between sequenceability
and Pareto-optimality. However, they have a different notion of Pareto-optimality, be-
cause the agents’ preferences are given as linear orders over objects. To be able to compare
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Algorithm 2.1: Sequencing an allocation
Input: I = ⟨N ,O, u⟩ and π ∈ A(I)
Output: a sequence −→σ generating π or NonSeq

1 (−→σ ,O′)← (⟨⟩,O);
2 for t from 1 to m do
3 if ∃i such that best(O′, i) ∩ πi ̸= ∅ then
4 Append ai to −→σ ;
5 let ok ∈ best(O′, i) ∩ πi;
6 O′ ← O′ \ {ok};
7 end
8 else return NonSeq ;
9 end

10 return −→σ ;

bundles, these preferences are lifted on subsets using the responsive set extension ≻RS.
This extension leaves many bundles incomparable and leads to define possible and nec-
essary Pareto-optimality. Brams and King’s notion is possible Pareto-optimality. Aziz
et al. show that, given a linear order ≻ on objects and two bundles π and π′, π ≻RS π′

if and only if u(π) > u(π′) for all additive utility functions u compatible with ≻ (that is,
such that u(ok) > u(ol) if and only if ok ≻ ol). This characterization of responsive domi-
nance yields the following reinterpretation of Brams and King’s result: an allocation π is
sequenceable if and only if for each other allocation π′, there is a set u1, . . . , un of additive
utility functions, respectively compatible with ≻1, . . . ,≻n such that ui(πi) > ui(πi

′) for
at least one agent ai.

As noted by Bouveret and Lemaître [2016b], the latter notion of Pareto-optimality
is not very demanding, because it only requires to find one utility function that works.
They show that under our stronger notion, the equivalence between sequenceability and
Pareto-optimality no longer holds.1

Example 2.2 (Bouveret and Lemaître, 2016b). Let us consider the following instance:
o1 o2 o3

a1 5 4 2
a2 8 2 1

The sequence ⟨a1, a2, a2⟩ generates allocation π = ⟨o1, o2o3⟩ giving utilities ⟨5, 3⟩. π
is then sequenceable but it is dominated by π′ = ⟨o2o3, o1⟩, giving utilities ⟨6, 8⟩ (and
generated by ⟨a2, a1, a1⟩). Observe that, under ordinal linear preferences, π′ would not
dominate π, but they would be incomparable.

The last example shows that a sequence of sincere choices does not necessarily generate
a Pareto-optimal allocation. What about the converse? We can see, as a trivial corollary
of the reinterpretation of Brams and King’s result in our terminology, that the answer
is positive if the preferences are strict on shares. The following result is more general,
because it holds even without this assumption:

1Actually, since it is known [de Keijzer et al., 2009; Aziz et al., 2016a] that testing Pareto-optimality
with additive preferences in coNP-complete, and that testing sequenceability is in P (Proposition 2.2),
they cannot be equivalent unless P = coNP.

44



Proposition 2.3 (Aziz et al., 2016b; Bouveret and Lemaître, 2016b). Every Pareto-
optimal allocation is sequenceable.

As already noticed by Aziz et al. [2016b], the proof follows from an adaptation of
Brams and King’s Proposition 1 (necessity part of the proof) [Brams and King, 2005].
However, we find useful to give the proof, because it is more general than the previous
one, and will be reused in subsequent results of this chapter. Before giving this proof, we
illustrate it on a concrete example from Bouveret and Lemaître [2016b].

Example 2.3 (Bouveret and Lemaître, 2016b). Let us consider the following instance:

o1 o2 o3 o4 o5

a1 12 ∗ 15 11∗ 7 2
a2 2 12 7 15∗ 11 ∗

a3 15 20 ∗ 9 2 1

The squared allocation π is not sequenceable: indeed, every sequence that could generate
it should start with ⟨a3, a1, . . . ⟩, leaving the frustrating dotted sub-allocation −→ρ .

Let us consider a1 for instance. Since the suballocation is frustrating, she does not
receive o3 (which is her top object), but a2 does. This latter agent, however, does not get
her top object, o4, because a1 receives it. Obviously, if a1 gives o4 to a2 and receives o3 in
return, we have built a cycle in which each agent gives a regular object and receives a top
one. Doing this, we have built the starred allocation π′ strictly dominating π.

Corollary 2.1 (Bouveret and Lemaître, 2016b). No frustrating allocation can be Pareto-
optimal (equivalently, in every Pareto-optimal allocation, at least one agent receives a top
object).

Proposition 2.3 implies that there exists, for a given instance, three classes of alloca-
tions: (1) non-sequenceable (therefore non Pareto-optimal) allocations, (2) sequenceable
but non Pareto-optimal allocations, and (3) Pareto-optimal (hence sequenceable) alloca-
tions. These three classes define a “scale of efficiency” that can be used to characterize
the allocations. What is interesting and new here is the intermediate level. We will see
that this scale can be further refined.

2.5 Cycle deals-optimality
We have seen in Section 1.4.3 that Pareto-optimality can be thought as a reallocation
of objects among agents using improving deals so trying to link efficiency concepts with
various notions of deals strikes as a natural idea.

We begin with easy observations. First, ≥-cycle optimality implies >-cycle optimality,
and these two notions become equivalent when the preferences are strict on shares (like
in Chapter 3). Moreover, restricting the size of the cycles and the size of the bundles
exchanged yield less possible deals and hence lead to weaker optimality notions.

Note that for N ′ ≤ N and M ′ ≤M (at least one of these inequalities being strict), >-
(N, M)-cycle-optimality and ≥-(N ′, M ′)-cycle-optimality are incomparable. These obser-
vations show that cycle-deal optimality notions form a (non-linear) hierarchy of efficiency
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concepts of diverse strengths. The natural question is whether they can be related to se-
quenceability and Pareto-optimality. Obviously, Pareto-optimality implies both >-cycle-
optimality and ≥-cycle-optimality. An easy adaptation of the proof of Proposition 2.3
leads to the following stronger result:

Proposition 2.4. An allocation π is sequenceable if and only if it is >-n-cycle optimal
(with n = |N |).

Proof. Let π be a non-sequenceable allocation. Then by Proposition 2.1, there is at least
one frustrating sub-allocation in π. Using the same line of arguments as in the proof of
Proposition 2.3 we can build a strictly improving k-cycle. Hence π is not >-cycle optimal.
Conversely, suppose that π admits a strictly improving k-cycle deal. Then obviously this
cycle yields a sub-allocation that is frustrating.

The scale of efficiency introduced in Section 2.4 can then be refined with a hierarchy of
>-cycle optimality notions below sequenceable allocations: Pareto-optimal ⇒ sequence-
able ⇔ >-n-cycle optimal ⇒ >-(n− 1)-cycle optimal ⇒ ... ⇒ >-swap optimal.

As for ≥-cycle optimality, it forms a parallel hierarchy between Pareto-optimal and
non-sequenceable allocations. Note that sequenceability does not involve any ≥-n-cycle-
optimality. Thus, as soon as k < n, ≥-k-cycle optimality and sequenceability become
incomparable notions.

For instance, for 3 agents, there exist allocations which are ≥-swap optimal but not
sequenceable and the other way around:

o1 o2 o3 o4
a1 2 1∗ 2 3∗

a2 3 ∗ 3 1 2
a3 1 2 3∗ 1

Here the squared allocation is ≥-swap optimal, but not sequenceable: there exists a
strictly improving 3-cycle. At the same time, the starred allocation is sequenceable (by
⟨a2, a3, a1, a1⟩), but not even ≥-swap optimal, since a1 and a2 may agree on a weakly
improving deal.

The observations previously made in this section suggest that, in some situations, the
most complex cycle deals could be required to reach Pareto-optimal allocations. This is
indeed the case–we now make this claim more precise. Observe that to be involved in a
weakly improving cycle deal, each agent must pass at least one item, thus for a (n, k)-cycle
deal, we have that k ≤ m− (n− 1) (i.e. the “largest bundle" circulating in this cycle deal
can be at most m−n+1). The following generic example shows that it may be necessary
to implement a (n, m− n + 1)-cycle to reach a Pareto-optimal allocation.

α1 α2 . . . αn−1 β1 . . . βm−n+1
1 1 0 0 0 1/(m− n+ 1) 1/(m− n+ 1) 1/(m− n+ 1)
2 1 1 0 0 0 0 0
3 0 1 1 0 0 0 0
...

...
...

...
...

...
...

...
n 0 0 0 2 1/(m− n+ 1) 1/(m− n+ 1) 1/(m− n+ 1)

Initially, every agent ai for i = 1, . . . , n − 1 holds item αi, while agent n holds
β1, . . . , βm−n+1. Hence everyone enjoys utility 1. This allocation is dominated by the

46



allocation where each agent ai for i = 2, . . . , n holds αi−1 while a1 holds β1, . . . , βm−n+1.
In this allocation, the utilities of agents are instead ⟨1, 1, . . . , 2⟩. But to obtain αn−1,
an must get it from an−1 who would only release it if she gets αi−2, etc. In the end, a1
will only release α1 if she gets the full bundle β1, . . . , βm−n+1. Overall there are n agents
involved in the deal, exchanging up to m − n + 1 items. By construction, it is easy to
check that no simpler cycle deal (either in terms of number of items or number of agents)
would allow to reach this allocation. Furthermore, there is clearly no other allocation
Pareto-dominating the initial allocation.

However, it is important to note that cycle-deals may not be sufficient to reach Pareto-
optimal outcomes when there are more items than agents.

Example 2.4. Consider the following example:

o1 o2 o3 o4 o5 o6
a1 3 6 6∗ 0 6 4∗

a2 2∗ 0 6 3 7∗ 0
a3 0 5∗ 0 4∗ 6 3

Note that in the squared allocation, all agents enjoy the same utility, ⟨9, 9, 9⟩, and
that it is Pareto-dominated by the starred allocation which induces the vector of utilities
⟨10, 9, 9⟩. We leave it to the reader to check that no swap deal, nor 3-cycle, would be weakly
improving. In fact, the only way to reach the starred allocation from this initial allocation
would require to implement simultaneously two (3, 1)-cycle deals (a1

o1−→ a2
o3−→ a3

o6−→ a1
and a3

o5−→ a2
o4−→ a1

o2−→ a3).

Finally, a corollary of Propositions 2.2 and 2.4 is that checking whether an alloca-
tion is >-n-cycle optimal can be made in polynomial time (by checking whether it is
sequenceable).

More generally, we can observe that checking whether an allocation is (k, k′)-cycle
optimal can be done by iterating over all k-uples of agents2, and for each one iterating
over all possible transfers involving less than k′ objects. In total, there are k!

(
n
k

)
k-

uples of agents (which is upper-bounded by nk+1). For each k-uple, there are at most(∑k′

k′′=0

(
m
k′′

))k
possible transfers, which is again upper-bounded by (1 + m)kk′ . Hence, in

total, checking whether an allocation is (k, k′)-cycle optimal can be done in time O(nk+1×
(1 + m)kk′). This is polynomial in n and m if both k and k′ are bounded (as for swap
deals).

2.6 Restricted Domains
We now study the impact of several preference restrictions on the hierarchy of efficiency
notions introduced in Section 2.5.

2We do not need to also run through all cycles of strictly less than k agents: such a cycle can be
simulated just by appending at the end some agents whose role is just to pass the objects they receive to
the next agent.
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Strict preferences on objects Bouveret and Lemaître [2016b] studied the setting of
strict preferences on objects.

When the preferences are strict on objects, then obviously every sequence generates
exactly one allocation. They show that the converse is also true:

Proposition 2.5 (Bouveret and Lemaître, 2016b). Preferences are strict on objects iff
s(I) is a mapping from S(I) to A(I).

Same order preferences We say that the agents have same order preferences [Bou-
veret and Lemaître, 2016a] if there is a permutation η : O 7→ O such that for each agent
ai and each pair of objects ok and ol, if ok′ = η(ok) < η(ol) = ol′ then u(i, k′) ≥ u(i, l′).
Bouveret and Lemaître [2016b] also studied that setting.

Proposition 2.6 (Bouveret and Lemaître, 2016b). All the allocations of an instance with
same order preferences are sequenceable (and actually cycle-deal optimal). Conversely, if
all the allocations of an instance are sequenceable, then this instance has same order
preferences.

Let us now characterize the instances for which s(I) is a one-to-one correspondence.

Proposition 2.7 (Bouveret and Lemaître, 2016b). For a given instance I, the following
two statements are equivalent.

(A) Preferences are strict on objects and in the same order.

(B) The relation s(I) is a one-to-one correspondence.

The proof is a consequence of Propositions 2.5 and 2.6.

Single-peaked preferences Interestingly, when preferences are single-peaked, the hi-
erarchy of n-cycle optimality collapses at the second level. A similar result was proven by
Damamme et al. [2015]. We reformulate it more generally here:

Proposition 2.8. If the preferences are single-peaked and additive, then an allocation π
is ≥-n-cycle optimal iff it is swap-optimal.

Proof. First, note that ≥-n-cycle optimality trivially implies swap-stability. Let us now
show the converse.

Let us consider an allocation π that is ≥-2-cycle optimal but not ≥-n-cycle optimal.
Since π is not ≥-n-cycle optimal, there exists at least one improving deal in π. Let µ
be the smallest improving cycle-deal, i.e., which involves the smallest number of agents.
Assume without loss of generality that µ = ⟨a1, . . . , ak⟩, with 2 < k ≤ n.

Since µ is an improving deal, every agent in µ is happy to exchange with the agent
coming before her in µ:

πai−1 ≻i πai
,∀ai ∈ µ. (2.1)

Moreover, as there exists no improving swap-deal in π (π is ≥-2-cycle optimal) agents
do not want to exchange with the agent coming after them in µ:

πai
≻i πai+1 ,∀ai ∈ µ. (2.2)
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Indeed, because of (2.1), an improving swap-deal would otherwise exist in π.
We now show by induction on the size of µ, denoted by k, that such an improving

deal cannot exist.
If k = 3, consider without loss of generality that µ = ⟨a1, a2, a3⟩. From (2.1) and (2.2),

we obtain the following profile where underlined objects indicate the initial allocation:

a1 : πa3 ≻1 πa1 ≻1 πa2 ,

a2 : πa1 ≻2 πa2 ≻2 πa3 ,

a3 : πa2 ≻3 πa3 ≻3 πa1 .

The triplet of objects ⟨πa1 , πa2 , πa3⟩ is thus a witness of the violation of the worst-
restrictedness condition for a profile to be single-peaked (Proposition 1.1). Indeed, all
the three objects are ranked last by an agent when we restrict our attention to these
objects. The contradiction is thus established.

Suppose now that π is ≥-(k − 1)-cycle optimal We will show that no improving deal
of size k exists in π. From the induction hypothesis, we get that:

πai
≻i πaj

,∀ai, aj ∈ µ, aj ̸∈ {ai−1, ai}. (2.3)

Indeed there would otherwise exist two agents al and a′
l, that are not next to one another

in µ, such that πa′
l
≻l πal

. It would then have been possible to “cut” µ between those
two agents so that al receives πa′

l
. The new cycle-deal obtained would also have been

improving and then an improving deal of size strictly smaller than k would exist.
Because the profile is single-peaked, it is also worst-restricted (Proposition 1.1) and

there exist thus at most two objects ranked last by an agent among the ones appearing
in µ. Call πaw one such object holds by agent aw, and consider the triplet of objects
O = ⟨πaw−1 , πaw , πaw+1⟩. From (2.1), (2.2) and (2.3) we get:

aw : πaw−1 ≻w πaw ≻w πaw+1 ,
aw+1 : πaw ≻w+1 πaw+1 ≻w+1 πaw−1 .

Hence when restricting preferences to O, for every object in O, there exists an agent
ranking it last among the objects in O. This violates the worst-restrictedness condition
for the single-peaked profile and sets the contradiction.

Overall we have proved that no improving deal exists in π which entails that π is
≥-n-cycle optimal.

Together with Proposition 2.4, Proposition 2.8 gives another interpretation of se-
quenceability in this domain:

Corollary 2.2. If preferences are single-peaked (and additive), then an allocation π is
sequenceable if and only if it is swap-optimal.

Proposition 1 by Damamme et al. [2015] is much stronger than our Corollary 2.2, as
it shows that swap-optimality is actually equivalent to Pareto-efficiency when each agent
receives a single resource. Unfortunately, in our context where each agent can receive
several items, this is no longer the case, as the following example shows:
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Example 2.5. Consider this instance, single-peaked with respect to 1 ▷ · · · ▷ 6:

o1 o2 o3 o4 o5 o6

a1 1 ∗ 2 3 4 5 6∗

a2 1 3∗ 4 5 6∗ 2
a3 1 2 4∗ 5∗ 6 3

The squared allocation is swap-optimal, but Pareto-dominated by the starred allocation.

2.7 Envy-Freeness and CEEI

The use of sequences of sincere choices can also be motivated by the search for a fair
allocation protocol. Here, we will focus on two fairness properties and analyze their link
with sequenceability.

As Bouveret and Lemaître [2016a] and Brânzei et al. [2015] have shown, with ad-
ditive preferences, every CEEI allocation is envy-free. Bouveret and Lemaître [2016b]
investigated whether an envy-free or CEEI allocation is necessarily sequenceable. For
envy-freeness, they answered in the negative.

Proposition 2.9 (Bouveret and Lemaître, 2016b). There exist non-sequenceable envy-free
allocations, even if the agents’ preferences are strict on shares.

Proof. A counterexample with strict preferences on shares is given in Example 2.3 above,
for which we can check that the circled allocation π is envy-free and non-sequenceable.

Concerning CEEI, it is already well known that any CEEI allocation is Pareto-optimal
(hence sequenceable) if the preferences are strict on shares [Bouveret and Lemaître, 2016a].
This is also a consequence of the First Welfare Theorem introduced by Babaioff et al.
[2017] for indivisible goods.

However, surprisingly, this result does not hold anymore if the preferences are not
strict on shares, as the following example shows:

o1 o2 o3 o4

a1 2 ∗ 3∗ 3 2
a2 2 3 4 ∗ 1
a3 0 4 2 4∗

The squared allocation is CEEI (with prices 0.5, 1, 1, 0.5) but is ordinally necessary
(hence also additively) dominated by the starred allocation. In spite of this negative
result, a certain level of efficiency for CEEI allocations can still be guaranteed:

Proposition 2.10 (Bouveret and Lemaître, 2016b). Every CEEI allocation is sequence-
able.
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Figure 2.1: Distribution of the number of allocations by pair of (efficiency, fairness) criteria.

2.8 Experiments
We have exhibited in Sections 2.4 and 2.5 a “hierarchy of allocation efficiency” made
of several steps: Pareto-optimal (PO), sequenceable (Seq), {cycle-deal-optimal}, non-
sequenceable (NS). A natural question is to know, for a given instance, which proportion
of allocations are located at each level of the scale. We give a first answer by experimen-
tally studying the distribution of allocations between the different levels. For cycle-deal
optimality, we focus on the simplest type of deals, namely, >-swap-deals. We thus have
a linear scale of efficiency concepts, from the strongest to the weakest: PO → Seq →
Swap → NS. We also analyze the relation between efficiency and various notions of fair-
ness by linking this latter scale with the 6-level scale of fairness introduced by Bouveret
and Lemaître [2016a]: CEEI → Envy-Freeness (EF) → min-max share (mMS) → pro-
portionality (PROP) → max-min share (MMS) → NS. Our experimental protocol is the
following. We generate 50 add-MARA instances involving 3 agents-8 objects, using two
different models. For both models, a set of weights are uniformly drawn in the interval
J0, 100K and the instances are then normalized. For the second model, these weights are
reordered afterwards to make the preferences single-peaked. For each instance, we gen-
erate all 6561 allocations, and identify for each of them the highest level of fairness and
efficiency satisfied. The average number of allocations with min-max interval is plotted
as a box for each level on a logarithmic scale in Figure 2.1.

Note that some fairness and efficiency tests require to solve NP-hard or coNP-hard
problems (MMS, mMS, and PO tests). These tests are delegated to an external ILP
solver. This is especially interesting for the CEEI test which is known to be NP-hard
[Brânzei et al., 2015], and for which, to the best of our knowledge, no practical method
had been described before. The implementation is available as a fully documented and
tested Free Python library.3

We note several interesting facts. First, a majority of allocations do not have any
efficiency nor fairness property (first black bar on the left). Second, the distribution of
allocations on the efficiency scale seems to be related to the fairness criteria: a higher pro-
portion of swap-optimal or sequenceable allocations are found among envy-free allocations
than among allocations that do not satisfy any fairness property, and for CEEI allocations,

3Available at: https://gricad-gitlab.univ-grenoble-alpes.fr/bouveres/fairdiv.
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there are even more Pareto-optimal allocations than just sequenceable ones. Lastly, the
absence of vertical bar for swap-optimality in the experiments concerning single-peaked
preferences confirms the results of Corollary 2.2: in this context, no allocation can be
swap-optimal but not Sequenceable; hence, all the allocations that are swap-optimal are
contained in the bars concerning sequenceable or Pareto-optimal allocations. Similarly,
the absence of bars for swap-optimality and NS (non-sequenceable) in both graphs for the
CEEI case confirms the result of Proposition 2.10.

2.9 Conclusion
In this chapter, we have shown that picking sequences and cycle-deals can be reinterpreted
to form a rich hierarchy of efficiency concepts. Many interesting questions remain open,
such as the complexity of computing cycle-deals or the link between efficiency concepts
and social welfare. One could also think of further extending the efficiency hierarchy by
studying restrictions on possible sequences (e.g. alternating) or extending the types of
deals to non-cyclic ones.
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Chapter 3

Swap Dynamics in Single-Peaked
Housing Markets

Summary of the chapter
This chapter focuses on the problem of fairly and efficiently allocating objects to agents.
We consider a specific setting, usually referred to as a housing market, where each agent
must receive exactly one object (and initially owns one). In this framework, in the do-
main of linear preferences, the Top Trading Cycle (TTC) algorithm is the only procedure
satisfying Pareto-optimality, individual rationality and strategy-proofness. Under the re-
striction of single-peaked preferences, we will investigate another procedure called Crawler
that enjoys the same properties. These two centralized procedures might however involve
long trading cycles. In this chapter we focus instead on procedures involving the shortest
cycles: bilateral swap-deals. In such swap dynamics, the agents perform pairwise mu-
tually improving deals until reaching a swap-stable allocation (no improving swap-deal
is possible). We prove that in the single-peaked domain every swap-stable allocation is
Pareto-optimal, showing the efficiency of the swap dynamics. In fact, this domain turns
out to be maximal when it comes to guaranteeing this property. Besides, both the out-
come of TTC and Crawler can always be reached by sequences of swaps. However, some
Pareto-optimal allocations are not reachable through improving swap-deals. We further
analyze the outcome of swap dynamics through social welfare notions, in our context the
average or minimum rank of the objects obtained by agents in the final allocation. We
start by providing a worst-case analysis of these procedures. Finally, we present an ex-
tensive experimental study in which different versions of swap dynamics are compared to
other existing allocation procedures. We show that they exhibit good results on average
in this domain, under different cultures for generating synthetic data.

This chapter is based in full on a paper published at the Autonomous Agents and
MultiAgent Systems journal in 2021 [Beynier et al., 2021]. It is a joint work with the
co-authors of the papers.

3.1 Introduction
This chapter studies the problem of allocating fairly and efficiently a set of indivisible
objects to a set of agents. We consider the specific setting of housing market by moreover
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assuming that the preferences are single-peaked. Under this assumption, there exists a
common ordering of the objects such that the further you go from your most preferred
object—either going left or right according to the ordering—the less preferred the objects
are.

The design of object allocation procedures is primarily guided by the the properties we
want the final allocation, or the procedure itself, to satisfy. In single-peaked housing mar-
kets, the two prominent allocation procedures are Top Trading Cycle (TTC) [Shapley and
Scarf, 1974] and Crawler [Bade, 2019]. They both satisfy a set of key desirable properties:
Pareto-optimality, strategy-proofness and individual rationality [Roth, 1982; Shapley and
Scarf, 1974; Ma, 1994; Bade, 2019]. In fact, Crawler has an additional advantage over
TTC in terms of strategy-proofness, since it can be implemented in obviously dominant
strategies [Bade, 2019].

However, both TTC and Crawler require a significant amount of global coordination.
Indeed, they are both based on trading cycles—cyclic exchanges of objects between sev-
eral agents—which can potentially involve many agents. Such long cycles may not be
acceptable or even feasible in practice, for instance because of the risk of failure they
induce. As an example, kidney exchange programs usually restrict the size of the cycles
to two or three [Roth et al., 2005] because of time constraints.

Limiting the length of these cycles is thus a relevant agenda to reduce the coordina-
tion complexity and make procedures more robust. It is in particular a prerequisite to
the development of more decentralized approaches that rely on the agents autonomously
performing simple deals, without being hampered by a prohibitive coordination and com-
munication cost.

In this chapter, we pursue this line of research and focus on the simplest possible local
deals in the context of housing markets: swap-deals [Damamme et al., 2015]. Under a swap
dynamics, agents meet each other, in a pairwise fashion, and exchange their objects if they
both benefit from it. The process iterates until a stable state, an equilibrium, is reached.
Under this approach, once a trading cycle is selected, very little coordination is required.
Nevertheless, selecting which swap-deal (with which agent) to perform may still require
significant prior coordination, depending on the heuristic used. Hence this approach is best
described as a family of dynamics, with different degrees of decentralization depending
on the heuristics used to select the improving deals to be implemented. We shall study
several of them in this chapter.

We first establish that a large class of swap dynamics is vulnerable to manipulation,
unveiling a tension between efficiency and strategy-proofness for such decentralized pro-
cedures. On the positive side, we demonstrate that in housing markets with single-peaked
preferences, every allocation that is stable with respect to swap-deals is Pareto-optimal.
We also prove that the single-peaked domain is maximal in that respect: in other words,
any larger domain would fail to offer such a guarantee. Moreover, even though some
Pareto-optimal allocations may not be reached by a sequence of improving swap-deals,
we show that the allocations returned by TTC and Crawler are both reachable: there
exist sequences of swap-deals simulating these procedures, such that (potentially) long
trading cycles are not necessary any longer. We further investigate how swap dynamics
behave with respect to social welfare, taken as the average or minimum rank of the object
obtained by the agents. After a worst-case analysis, we explore experimentally the influ-
ence of different heuristics used to select deals. These experiments highlight that swap
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dynamics perform particularly well with respect to these objectives.
Section 3.2 describes the centralized allocation procedure Crawler discussed in this

chapter, while swap dynamics are introduced in Section 3.3. A formal analysis of these
procedures is presented in Section 3.4. Section 3.5 offers a comparison between swap
dynamics outcomes and social welfare optimization, in a “price of anarchy” perspective.
The experimental analysis is presented in Section 3.6. Section 3.7 concludes.

We recall that in this chapter we deal with the House Allocation Problem with single-
peaked preferences.

3.2 Centralized allocation procedures for housing
markets

This section deals with two centralized allocation procedures that will be used as references
in the chapter. The first one is the TTC algorithm that has already been introduced (see
Section 1.4.2) and which can be used without any domain restriction. We recall that it
satisfies the three main desirable properties of an allocation procedure: Pareto-optimality,
individual rationality and strategy-proofness. The second one, Crawler [Bade, 2019], is
specially designed for single-peaked domains. It satisfies the same properties as TTC.
Both of theses procedures are based on the notion of deals introduced in Section 1.4.3.

3.2.1 Crawler algorithm
In Crawler algorithm, agents are initially ordered along the single-peaked axis according
to the object they hold. The first agent is then the one holding the object on the left end
side of the axis. As in TTC, the list of available objects is denoted by O and is ordered
according to the single-peaked axis. A list of available agents N such that the ith agent
of the list is the one who holds the ith object in O is also maintained.

Considering agents sequentially from the first in N to the last in N , Crawler checks
for each agent ai where her top object, topR(ai), is on the axis.1

• If topR(ai) is on her right, the algorithm moves to the next agent.

• If ai holds her top object topR(ai), then topR(ai) is allocated to ai. Agent ai and
the object topR(ai) are removed from N and O. The algorithm starts again from
the agent on the left end of the axis.

• If topR(ai) is on the left of ai, the agent is allocated her top object topR(ai). We
denote by t∗ the index of topR(ai) and t the index of ai (we have t∗ < t). Then,
every agent between t∗ and t− 1 receives the object held by the agent on her right
(the objects “crawl” towards left). Once again, ai and topR(ai) are removed from
N and O and the algorithm restarts from the first agent.

Once all the objects have been allocated, the algorithm terminates.
A formal description of Crawler procedure is given in Algorithm 3.1. Note that we

make use of the sub-procedure pick(at∗ , o, N, O, π) which simply assigns the object o to
1Note that the algorithm can equivalently be executed from the last agent to the first one.
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Algorithm 3.1: Crawler algorithm
Input: An instance I = ⟨N ,O, L, π0⟩ single-peaked with respect to ◁
Output: An allocation π

1 π ← empty allocation
2 O ← O: list of objects sorted accordingly to ◁
3 N ← N : list of agents such that the ith agent is the one who initially holds the

ith object in O
4 while N ̸= ∅ do
5 t∗ ← |N |
6 for i = 0 to |N | − 1 do
7 if oi ≻i oi+1 then
8 t∗ ← i
9 Break

10 end
11 end
12 o← topR(at∗)
13 pick(at∗ , o, N, O, π)
14 end
15 return π

the given agent at∗ in the allocation π, and then removes the agent and the object from
the lists of available agents and objects, N and O respectively. Since the list of objects is
ordered following the single-peaked axis and the ith agent in N corresponds to the owner
of the ith object in O, the removal of o and at∗ is in fact equivalent to assigning r to agent
at∗ and crawling the objects from right to left.

Let us illustrate the execution of Crawler:

Example 3.1. On the instance of Example 1.12, agent a4 is the first agent whose top
object is not on her right, she thus receives her top object o3. The second step matches
agent a3 to o4. On the third step, agents a1 and a2 both have their top objects (among the
remaining objects) on the right but the last agent a5 has hers on her left. a5 is then matched
to o1. Object o2 crawls to agent a1 and object o5 crawls to agent a2. On the fourth step, a2
picks her current object o5. Finally, a1 is assigned object o2. The allocation returned by
Crawler is πC = ⟨o2, o5, o4, o3, o1⟩. At each step i of the procedure, an improving cycle-deal
µi is applied (with the last agent in the cycle picking her top object among the remaining
ones): µ1 = ⟨a3, a4⟩, µ2 = ⟨a3⟩, µ3 = ⟨a1, a2, a5⟩, µ4 = ⟨a2⟩, µ4 = ⟨a1⟩. One can observe
that on this example the allocation returned by Crawler is not the same as the one returned
by TTC. However, both procedures lead to the same minimum rank mrk and average rank
ark.

Interestingly, a variant of this procedure allows to check Pareto-optimality in single-
peaked domains in linear time [Beynier et al., 2020].
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3.3 Swap dynamics: a family of procedures based on
swap-deals

We will now focus on dynamics based on local exchanges between the agents as presented
in Section 1.4.3. We however reintroduce them as they may be simplified as we are in the
context of the House Allocation Problem.

Interestingly, it can be observed that in housing markets, any reallocation (permuta-
tion of objects) can be implemented as a collection of disjoint cycle-deals [Shapley and
Scarf, 1974]. This notion of deal is thus sufficient in this context. Let us first introduce
some additional definitions.

Let us first introduce the concept of improving deals in the context of House Allocation
Problem as each agent has one and only one item.

Definition 3.1. Let π be an allocation, and µ = ⟨a1, . . . , ak⟩ a deal involving k ≥ 1
agents. The allocation π[µ] obtained by applying the deal µ to π is defined by:π[µ]ai

= πai−1 if i ∈ {1, . . . , k},
π[µ]ai

= πai
otherwise.

A deal is said to be improving if π[µ] ≻i π for every agent ai involved in µ.

Observe that for a deal µ of length 1, we have π[µ] = π. This trivial case consists of an
agent giving her object to herself. In particular, when an agent already holds her top
object, she should also hold it in the final allocation because of individual rationality.

It is also straightforward to see that a procedure applying only improving deals trivially
satisfies individual rationality.

Given an allocation π, we denote by Ck(π), k ≥ 2, the set of all the improving deals
of size at most k that can be applied from π:

Ck(π) = {µ | µ is an improving deal and |µ| ≤ k}.

When investigating procedures based on improving exchanges, we will try to reach
allocations that are stable with respect to some deals.

Definition 3.2. For a given k ∈ {1, . . . , n}, an allocation π is said to be stable with
respect to Ck if Ck(π) = ∅.

We notice that this is equivalent to an allocation being >-(N, M)-cycle (or ≥-(N, M)-
cycle as preferences are strict here) optimal with M = 1 and N = n from Definition 1.19.
It is obvious from this definition that if an allocation is stable with respect to Ck for a
given k, it is also stable with respect to any k′ < k. Moreover, since we are considering
housing markets, it can be observed that an allocation is Pareto-optimal if and only if it
is stable with respect to Cn.

Dynamics based on local exchanges start from an initial allocation and let the agents
negotiate improving cycle-deals involving at most k agents until reaching an allocation
stable with respect to Ck.

Following this process, to each k ∈ {1, . . . , n} corresponds a family of allocation pro-
cedures based on Ck. Indeed, at each step, the improving deal to be implemented can
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Algorithm 3.2: Cycle-deals dynamics
Input: An instance I = ⟨N ,O, L, π0⟩,
a maximum size k for the deals,
a selection heuristic σ
Output: An allocation π stable with respect to Ck

1 π ← π0

2 while π is not stable with respect to Ck do
3 µ← σ(N , k, . . . )
4 if µ is successful then
5 do(µ, π)
6 end
7 end
8 return π

be selected in many different ways. We call selection heuristic a mapping giving the deal
to implement at a given step of the procedure. A dynamic based on local exchanges will
thus be defined by a given k and a specific selection heuristic. Depending on the selection
heuristic, it may be the case that the selected deal is not an improving one. Such a deal
could then be refused by the agents. We will say that a deal is successful if all agents
involved in it agree to exchange. The sequence of proposed deals, together with the fact
that they were successful or not will be called a history.

A general formal description of cycle-deals dynamics is given in Algorithm 3.2. The
do(µ, π) method is similar to the one described in Algorithm 1.1 and implements the deal
µ (as chosen by the selection heuristic σ) on the allocation π. Note that the selection
heuristic itself takes as input at least the set of agents N and the maximum size k of the
cycle-deals (but it may be more informed and take more parameters, as we shall discuss
later in this section). Unless stated otherwise we shall assume from now on that k = 2
and omit this parameter, as we will mainly be interested in deals of size 2. We will also
use swap-stability to refer to stability with respect to C2.

We say that the procedure has reached the allocation obtained upon termination.
Termination occurs when, for every possible swap-deal ⟨ax, ay⟩, there exists a latest un-
successful proposal, such that there was subsequently no successful swap-deal involving
ax nor ay. This guarantees in particular that the process cannot end as long as there
remains an improving deal that has not yet been proposed. To ensure termination, the
selection heuristic should not prevent some deals from happening. We will thus require
heuristics to satisfy a property of full coverage as defined below.

Definition 3.3. A selection heuristic σ has minimal (resp. full) coverage if for any
ax, ay ∈ N 2, there exists at least one round in the sequence (resp. after the latest successful
swap-deal involving ax or ay if there is one), when the swap-deal ⟨ax, ay⟩ is proposed.

M2 will denote the family of swap dynamics defined with respect to a selection heuris-
tic with full coverage. It is useful to make a further distinction between different types
of selection heuristics, depending on the information they take as input. In particular,
heuristics may require preferential information (e.g. which objects agents would be happy
to swap their current object with), or on the contrary, be solely based on observable
information (e.g. the history of deals). We will mostly focus on the latter in what follows.
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A history-based selection heuristic σ is a function taking as input the set of agents N ,
the history of deals h, and returning a deal σ(N , h) to be proposed. Swap dynamics which
rely on history-based selection heuristics will be called history-based swap dynamics.

A swap dynamics equipped with a given history-based selection heuristic σ on the
instance I = ⟨N ,O, L, π0⟩, proceeds iteratively as follows. The history h is initially
empty. At each round corresponding to an allocation π and a history h, the allocation is
updated to π′ defined as:

π′ =
π[σ(N , h)] if the agents in σ(N , h) agree on swapping

π otherwise.

The deal σ(N , h) together with its “success status” are then added to the history h.
We now give some examples of selection heuristics which will be studied in this chapter.

We start with round-robin heuristics, which simply specify a predefined way to order the
different pairs of agents (i.e. possible swaps), and repeat it until termination. There are
several ways to proceed, we give here two prominent examples:

• Round-Robin over the Agents (M2-RRA): agents are ordered and paired following
their name (⟨a1, . . . , an⟩) in a round-robin fashion. The first agent a1 is paired with
each other agent, the second agent a2 is paired with each other agent aj with j > 2
and so on. The agents then go over possible deals by iterating over the following
sequence:

(a1, a2), (a1, a3), . . . , (a1, an), (a2, a3), . . . , (an−1, an), (a1, a2), . . .

• Round-Robin over Pairs of agents (M2-RRP): agents are ordered and paired follow-
ing their name (⟨a1, . . . , an⟩) in a round-robin fashion. In this case, the first agent
is paired with the second agent, the second agent is paired with the third... Hence,
the agents go over possible deals by iterating over the following sequence:

(a1, a2), (a3, a4), . . . , (an−1, an), (a1, a3), (a2, a4), . . . , (a1, an), . . .

There is an obvious bias in the way deals are selected, it is thus natural to introduce
some stochasticity in the process. One way to do this is as follows:

• Randomized Round-Robin over deals (M2-RRR): the heuristic picks uniformly at
random a permutation among all the possible deals. This permutation defines a
round-robin order in which the deals are considered. The agents then go over pos-
sible deals by iterating over this permutation.

The three previous heuristics all guarantee by construction that all possible swap-deals
were proposed before a swap-deal gets proposed again. The following natural heuristic do
not have such guarantee.

• Uniform (M2-U): a pair of agents (i.e. a swap-deal) (ai, aj) is selected uniformly at
random among all possible pairs.
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• Random matchings (M2-RM): this heuristic proceeds in succession of matching steps
where at each step, every agent is matched to a unique other agent and all the
resulting swap-deals are proposed to the agents. This simulates a natural market
where agents are paired randomly and simultaneously try to perform bilateral deals.

Note that these selection heuristics do not all have the same degree of decentralization.
In particular, M2-U can be easily executed in a fully decentralized way. Round-robin
heuristics require a central entity to broadcast the sequence of pairs. Then, the agents
can meet in a distributed way. Finally, M2-RM can be implemented in a distributed way
using a protocol ensuring that an agent can not encounter several agents simultaneously.
Each agent ai then selects uniformly at random an agent aj to encounter and contact her.
If agent aj is already engaged in another encounter, ai selects another agent.

We conclude the section by a straightforward observation: different selection heuristics
can lead to different outcomes given the same initial allocation. Let us illustrate this with
a simple example.

Example 3.2. Consider the instance described in Example 1.12:

a1 : o3 ≻1 o4 ≻1 o5 ≻1 o2 ≻1 o1

a2 : o3 ≻2 o4 ≻2 o5 ≻2 o2 ≻2 o1

a3 : o4 ≻3 o5 ≻3 o3 ≻3 o2 ≻3 o1

a4 : o3 ≻4 o4 ≻4 o5 ≻4 o2 ≻4 o1

a5 : o1 ≻5 o2 ≻5 o3 ≻5 o4 ≻5 o5

We showed that Crawler and TTC return different allocations. In fact, these alloca-
tions can be reached by a sequence of swap-deals. Observe first that the cycle-deals applied
by TTC are at most of length 2 (Example 1.14). The allocation πT T C = ⟨o5, o2, o4, o3, o1⟩ is
obtained through two swap-deals: ⟨a3, a4⟩ and ⟨a1, a5⟩. The allocation πC = ⟨o2, o5, o4, o3,
o1⟩ returned by Crawler also is reachable by swap-deals. It is obtained by applying the
following sequence: ⟨a3, a4⟩, ⟨a2, a5⟩ and ⟨a5, a1⟩. Since these two allocations are Pareto-
optimal, they are swap-stable. This shows that the way swap-deals are selected may affect
the final stable allocation. Notice that these are not the only two swap-stable allocations
reachable from π0 of the instance: ⟨o3, o2, o5, o4, o1⟩ and ⟨o2, o3, o5, o4, o1⟩ are the two other
ones.

This example suggests that the allocations returned by Crawler and by TTC can
both be reached via swap-deals —a point we will make formal in the next section. More
generally, as TTC and Crawler both provide desirable guarantees, on Pareto-optimality,
individual rationality and strategy-proofness, it is natural to study whether swap dynam-
ics enjoy similar properties.

3.4 Properties of swap dynamics
We now investigate properties of swap dynamics. Recall first the easy observation made
in Section 3.2: swap dynamics, because they rely on improving deals, are individually
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rational. But what about strategy-proofness and Pareto-optimality? We first discuss
strategy-proofness, showing that such procedures are in general subject to manipulation.
We next prove that any allocation stable with respect to swap-deals is Pareto-optimal and
that both the allocation returned by TTC and Crawler can be reached via swap-deals.
Finally, we show that the single-peaked domain is a maximal domain when it comes to
guaranteeing Pareto-optimality.

3.4.1 Strategy-proofness
Although strategy-proofness is usually defined for centralized procedures, the question
is still relevant for swap dynamics. The basic definitions of single-peakedness have been
introduced in Section 1.2.3. Note that based on these definitions, it is straightforward
that restricting a single-peaked preference domain preserves its single-peakedness.

In a swap dynamic, an agent has the opportunity to behave strategically only when
she is asked to accept or reject a proposed deal. As usual, we assume here that a potential
manipulator has full knowledge of the preferences of the other agents and is aware of the
fact that the selection heuristics has minimal coverage. In other words, the manipulator
only needs to know whether she will ever have the opportunity to swap with some other
agent or not. A swap dynamic will be called strategy-proof when, for every instance, at
no point during the procedure an agent can be better off by accepting a non-improving
deal or by refusing an improving one. Otherwise, the procedure is manipulable.

Proposition 3.1. Any history-based swap dynamic with minimal coverage is manipulable.

Proof. We are given an arbitrary history of deals h starting with (ax, ay), as produced
by the selection heuristic. We are now going to show that we can build an instance
I = ⟨N ,O, L, π0⟩ such that agent ax will have an incentive to accept the first swap-deal
(ax, ay), even though this is not rational. The instance involves ax, ay, az, as well as
n− 3 other dummy agents, and assumes preferences to be single-peaked with respect to
o1 ◁ o2 ◁ o3 ◁ od1 ◁ · · ·◁ odn−3 .

ax : o2 ≻1 o3 ≻1 o1 ≻1 od1 . . .

ay : o2 ≻2 o3 ≻2 o1 ≻2 od1 . . .

az : o1 ≻3 o2 ≻3 o3 ≻3 od1 . . .

d1 : od1 ≻ . . .

...
dn−3 : odn−3 ≻ . . .

Observe first that all the dummy agents have their top object from the start, hence
they will not be involved in any deal. Now, consider the situation when ax is given the
opportunity to deal with ay. If ax is truthful (as all the other agents), no improving
swap-deal involving agent ax can occur, and she will end up with object o3. Now, suppose
instead that ax strategically accepts ⟨ax, ay⟩. This deal is improving for ay so if ax agrees
on it, it will be implemented. In that case, ay can no longer exchange with az, hence
the only improving swap-deal left is ⟨ax, az⟩. Because the selection heuristic has minimal

61



coverage, this opportunity will occur at some point in the future. In the final allocation,
agent ax would then hold her top object o2 (obtained from the swap-deal ⟨ax, az⟩).

Now, suppose that for a given selection heuristic, there exists a swap-deal ⟨ax, ay⟩
that will never be proposed. Consider then the instance where all the agents have their
top object, except for ax and ay who would be happy to perform a swap-deal—but will
never get a chance to. As no other swap-deal is possible, the outcome is certainly not
Pareto-optimal. This leads to the following observation.

Observation 3.1. Consider a history-based swap dynamic M2 defined with respect to a
selection heuristic σ. If M2 is Pareto-optimal, then σ has minimal coverage.

Together with Proposition 3.1, this tells us that there is a fundamental tension between
strategy-proofness and Pareto-optimality for history-based swap-deal procedure.

Proposition 3.2. No history-based swap dynamic can be both Pareto-optimal and strategy-
proof.

The reason why other types of dynamics may not be concerned by this result is that
they can potentially condition the selection of deals to the preferences.

3.4.2 Pareto-optimality of swap dynamics
We have already shown in Chapter 2 (Proposition 2.8) that swap-stability is equivalent
to Pareto-optimality in this setting, hence any allocation reached by swap dynamics is
Pareto-optimal.

This theorem states that the Ck-stability hierarchy collapses at the C2 level in single-
peaked housing markets. Remember that every Pareto-optimal allocation is stable with
respect to Cn. This result provides then a new characterization of Pareto-optimality in
our setting.

Corollary 3.1. In a single-peaked housing market, an allocation π is Pareto-optimal if
and only if it is stable with respect to C2.

Stating this result in terms of stability with respect to Cn and not just Pareto-
optimality gives us more flexibility. Indeed, in the more general setting where there
are more objects to allocate than the number of agents, the result of Proposition 2.8
from Chapter 2 still holds [Beynier et al., 2019a] but it is no longer the case that Pareto-
optimality implies Cn-stability.

As we have proven that the allocation reached by swap-deals is Pareto-optimal, a nat-
ural question is then whether every allocation that Pareto-dominates the initial allocation
can be reached by swap-deals. It is not the case.

Proposition 3.3. There exists an instance I = ⟨N ,O, L, π0⟩ for which there is an allo-
cation π that Pareto-dominates π0 and that can not be reached by a sequence of improving
swap-deals.
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Proof. Let us consider the following instance with three agents where the initial allocation
π0 = ⟨o3, o2, o1⟩ is the one underlined.

a1 : o1 ≻1 o2 ≻1 o3
a2 : o1 ≻2 o2 ≻2 o3
a3 : o2 ≻3 o3 ≻3 o1

The squared allocation π = ⟨o2, o1, o3⟩ is Pareto-optimal. However from π0 only two
deals are possible: µ1 = ⟨a1, a3⟩ that reaches allocation π′ = ⟨o1, o2, o3⟩, or µ2 = ⟨a2, a3⟩
that leads to π′′ = ⟨o3, o1, o2⟩. No sequence of improving swap-deals can thus reach π.

It is however interesting to note that both the allocation returned by TTC and by
Crawler can always be reached through improving swap-deals.

Proposition 3.4. Let I = ⟨N ,O, L, π0⟩ be an instance and let πT T C be the allocation
returned by the TTC algorithm on I. Then πT T C is reachable by swap-deals from π0.

Proof. We show that any cycle-deal applied by TTC can be implemented as a sequence of
improving swap-deals. For a given step of the algorithm, we consider O the set of objects
and N the set of agents remaining at this step and π the current partial allocation.

Let µ be the next cycle-deal to be applied, and let oµ and Nµ be respectively the set
of objects and the set of agents involved in µ. We must prove that the allocation π[µ] can
be reached by a sequence of swap-deals. When |oµ| = 2, µ is actually a swap-deal and the
claim is trivially true.

Assume then that |oµ| > 2, let us consider the instance I ′ obtained from I by restricting
O to oµ and N to Nµ. In this restricted instance, the allocation π∗ where each agent
receives her top object is feasible. Indeed, it is the allocation obtained by applying µ
(by definition of µ in TTC). This allocation is trivially Pareto-optimal as every agent has
her top objects and it thus Pareto-dominates every other allocation. It is then the only
Pareto-optimal allocation in I ′. Remember from Observation 1.1 that I ′ is single-peaked.
Then, by virtue of Proposition 2.8 from Chapter 2, this implies that π∗ must be reachable
by improving swap-deals in I ′. Overall, πµ is then reachable by improving swap-deals in
I.

The same argument can be stated for any step of the algorithm. By concatenating
the sequences of improving swap-deals for every step of the algorithm, we then obtain a
sequence of improving swap-deals leading to πT T C from π0.

Proposition 3.5. Let I = ⟨N ,O, L, π0⟩ be an instance and let πC be the allocation
returned by Crawler. Then πC is reachable by swap-deals from π0.

Proof. We show that every cycle-deal applied by Crawler can be implemented as a se-
quence of improving swap-deals. For clarity reasons and without loss of generality, we
assume that each agent aj currently holds object oj.

For a given iteration of the algorithm, consider agent ai who picks object ok currently
held by agent ak. From the definition of the procedure, ak is on the left of ai (with
respect to the single-peaked axis) and ak has already been considered at this step before
considering ai. In fact, all the agents between ak (included) and ai (excluded) on the
left of the single-peaked axis have already been considered at the current iteration before
reaching ai. Moreover, all these agents have passed their turn because their peak is on
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their right. In other words, each agent aj between ak (included) and ai (excluded) prefers
the object held by the agent aj+1 on her right, that is:

oj+1 ≻j oj,∀j ∈ {k, . . . i− 1}.

Let µ = ⟨ai, ai−1, · · · , ak+1, ak⟩ be the cycle-deal implemented by Crawler at the cur-
rent step. In this deal, ak gives her object ok to ai and all the other agents of the deal
give their object to the next agent in the sequence which is the agent on their left with
respect to the single-peaked axis. The decomposition of µ into a sequence of swap-deals
consists in using agent ai as a hub for the swap-deals. Agent ai first exchanges with ai−1
then, ai exchanges with ai−2 and so on until ai performs a swap-deal with ak. At the
end, ai holds ok and each other agent aj in µi holds the object initially held by aj+1. The
sequence of swap-deals is thus equivalent to µi.

We now show that all these swap-deals are improving. In the first deal ⟨ai, ai−1⟩, ai−1
receives the object oi held by ai that she prefers to her current object oi−1 (as shown
previously oi ≻i−1 oi−1). Simultaneously, agent ai receives the object oi−1 held by ai−1
that she prefers to her current object since her peak is on the left of ai−1 (it is held by
ak), that is:

oj ≻i oj+1,∀j ∈ {k, . . . , i− 1}.
The first deal is thus mutually improving. Concerning the next swap-deal ⟨ai, aj⟩ with
j ∈ {k, . . . , i−2}, ai exchanges oj+1 that she obtained from her previous swap-deal, against
oj held by aj. Agent aj receives the object oj+1 that she prefers to her current object oj

(as shown previously oj+1 ≻j oj). ai receives the object oj that she prefers to oj+1 (since
∀j ∈ {k, . . . , i− 1}, oj ≻i oj+1). All the swap-deals are thus mutually improving.

These two results show that both the outcome of TTC and Crawler could be imple-
mented as sequences of mutually beneficial swap-deals in single-peaked domains. This
attenuates a bit a critical feature of these procedures. However, even though these long
trading cycles can be broken down into swap-deals, they would still need to be pre-
computed, and carefully coordinated.

The proof of Proposition 3.5 shows how to compute the set of swap-deals that achieves
Crawler outcome: for each cycle-deals µ = ⟨ai, ai−1, · · · , ak+1, ak⟩ implemented, ai is used
as a hub to decompose the deal into mutually beneficial swap-deals. On the contrary, the
proof of Proposition 3.4 does not provide explicitly the corresponding sequence of deals.
We show now how to compute the set of swap-deals that achieves the TTC outcome using
Crawler. Note that for each cycle-deal selected by TTC, we can build a sub-instance of the
initial instance and apply Crawler on this sub-instance to obtain the set of swap-deals that
implements the cycle-deal. Since Crawler is Pareto-optimal, the following observation is
straightforward:

Observation 3.2. In a single-peaked housing market, if the allocation where each agent
has her top object is feasible (i.e. each agent has a different top object), then the allocation
is returned by Crawler.

We can now compute the set of swap-deals that achieves the TTC outcome using
Crawler. For each deal µ implemented by TTC:

• If |µ| ≤ 2, it is already a swap-deal and we are done.
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• If |µ| > 2, the deal has to be decomposed into a set of swap-deals. Let I ′ be the
sub-instance restricted to the agents and the objects involved in µ. This instance
is guaranteed to remain single-peaked (see Observation 3.1). By definition of TTC,
in I ′, each agent obtains her top object. By Observation 3.2, the Crawler outcome
will be the same as the outcome of µ when applying Crawler to I ′. The swap-deal
decomposition of µ is then obtained by applying Crawler on I ′ and decomposing
each cycle-deal µ′ of Crawler as explained above.

Again, it should be kept in mind that in practice, a coordination mechanism would
have to ensure that the agents indeed execute the correct sequence of swap-deals (and
thus the desired allocation would be obtained).

Figure 3.1 concludes this section by summarizing the different findings related the
properties of swap dynamics.

Allocations
Pareto-dominating π0

Swap-stable
allocations

reachable from π0

TTC
•

Crawler
•

Figure 3.1: Summary of the results of Proposition 2.8 from Chapter 2 and Propositions 3.3, 3.4
and 3.5 for a given initial allocation π0. Remember from Example 1.12 that TTC and Crawler
can return different allocations.

3.4.3 Maximality of the single-peaked domain
We now show that the single-peaked domain is maximal for the Pareto-optimality of swap
dynamics: For every preference domain D such that SP◁ is a proper subset of D (for a
given linear order ◁) there exists an instance such that no swap dynamics can reach a
Pareto-optimal allocation.

Before going through the proof, let us first start with a simple example. Consider the
following profile and let ◁ be the order o1 ◁ o2 ◁ o3.

a1 : o1 ≻1 o2 ≻1 o3

a2 : o3 ≻2 o1 ≻2 o2

a3 : o2 ≻3 o3 ≻3 o1

It is clear that the profile is not single-peaked with respect to ◁ (it actually is not for any
order) as it is clearly not worst-restricted. Note that the preferences of agents a1 and a3
are single-peaked with respect to ◁ but not those of agent a2.

Take the underlined objects to form the initial allocation. It has been constructed as
follows. Agents a1 and a3 receive their second best object (respectively o2 and o3). For
agent a2, the violation of single-peakedness comes from her ranking of objects o1 and o2.
She is thus allocated her most preferred object among these two, i.e. o1. It can easily
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be checked that this allocation is stable with respect to C2 but is Pareto-dominated by
⟨o1, o3, o2⟩.

This construction is generalized to an arbitrary number of agents below.

Theorem 3.1. Let O be a set of objects and ◁ a linear order over O. For every preference
domain D such that SP◁ ⊊ D, there exists an instance I = ⟨N ,O, L, π0⟩ defined over D
such that swap dynamics on I do not reach a Pareto-optimal allocation.

Proof. Let us construct an instance I = ⟨N ,O, L, π0⟩ defined over D such that swap
dynamics on I do not reach a Pareto-optimal allocation.

Without loss of generality and for the ease of the reader, let us assume that ◁ is such
that o1 ◁ o2 ◁ . . . ◁ on.

Since SP◁ ⊊ D, there exists a linear order ≻∗∈ D that is not single-peaked with
respect to ◁. There exist then two objects (os−1, os) ∈ O2 such that:

os ◁ os−1 ◁ top(≻∗),
or, top(≻∗) ◁ os−1 ◁ os

}
and os ≻∗

i os−1.

Without loss of generality, let us assume that top(≻∗) ◁ os−1 ◁ os. We will use index t to
refer to the top ranked object in ≻∗, i.e., ot = top(≻∗).

Moreover, as SP◁ ⊂ D, for every object oi ∈ O there exist in D two linear orders ≻1
i

and ≻2
i that are single-peaked with respect to ◁ such that:

top(≻1
i ) = top(≻2

i ) = oi and snd(≻2
i ) = oi−1.

Thus, in the preference order ≻1
i the top object is oi and the other objects are not con-

strained. For ≻2
i , the top object is oi and the second best must be oi−1.

We introduce the preference profile L = {≻
i
| ai ∈ N} defined as follows:

≻1=≻∗,

≻
i
=≻1

i−1, ∀ai ∈ N , i ∈ {2, . . . , t},
≻

i
=≻2

i , ∀ai ∈ N , i ∈ {t + 1, . . . , s},
≻

i
=≻1

i , ∀ai ∈ N , i ∈ {s + 1, . . . , n}.

The initial allocation π0 is then defined as:

π0
a1 = os,

π0
ai

= top(ai) = oi−1, ∀ai ∈ N , i ∈ {2, . . . , t},
π0

ai
= snd(ai) = oi−1, ∀ai ∈ N , i ∈ {t + 1, . . . , s},

π0
ai

= top(ai) = oi, ∀ai ∈ N , i ∈ {s + 1, . . . , n}.

To get a better understanding of the instance I = ⟨N ,O, L, π0⟩ constructed in this
proof, Figure 3.2 presents the preference profile L and the initial allocation π0.

We claim that π0 is stable with respect to C2 but not Pareto-optimal. Allocation π0 is
clearly not Pareto-optimal as the allocation in which every agent receives her top object
is feasible— because no two agents have the same top object—and this allocation clearly
Pareto-dominates π0. Let us now show that C2(π0) = ∅.
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o1 · · · ot−1 ot ot+1ot+2· · · os−1 os os+1· · · on

at

a1 at+1at+2
· · · · · ·

as

as+1
· · ·

a2 · · ·
an

Figure 3.2: The instance constructed in the proof of Theorem 3.1. The dotted lines represent
the trend of the utilities, dots fixed points and squares the object allocated to each agent.

First observe that every agent ai, i ∈ {2, . . . , t} ∪ {s + 1, . . . , n} owns her top object,
hence can not be involved in an improving swap-deal.

Consider now agent ai, i ∈ {t + 1, . . . , s − 1}. She owns her second most preferred
object which she would only trade against her top object that is owned by agent ai+1.
However, agent ai+1 is not interested in πai

, hence no improving swap-deal is possible.
Finally, let us consider agent as who owns her second most preferred object os−1 and

whose top object os is owned by agent a1. By the hypothesis that a1’s preferences are not
single-peaked, we have os ≻1 os−1. Once again, there is no improving swap-deal involving
agent as.

Overall, we have proved that C2(π0) = ∅, hence any swap dynamic returns π0 on I.
As π0 is Pareto-dominated, this concludes the proof.

This result is particularly interesting since it shows that the single-peaked domain
captures in a “tight” way the domain under which swap dynamics are Pareto-optimal (in
the vein of similar results obtained by Chevaleyre et al. [2010] in different settings).

Note that this is not a characterization result: there are some domains that are not
single-peaked but for which swap dynamics return Pareto-optimal allocations.

Example 3.3. Let us consider the following preference profile:

a1 : o1 ≻1 o2 ≻1 o3

a2 : o1 ≻2 o3 ≻2 o2

a3 : o3 ≻3 o2 ≻3 o1

This profile is not single-peaked over any linear order ◁: the triplet ⟨o1, o2, o3⟩ is a witness
of the violation of the worst-restrictedness condition (Proposition 1.1), however we can
show that for every initial allocation, swap dynamics return a Pareto-optimal allocation.
Let us consider the different initial allocations:

1. π0 = ⟨o1, o2, o3⟩: C2(π0) = ∅ and π0 is Pareto-optimal.
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2. π0 = ⟨o1, o3, o2⟩: C2(π0) = ∅ and π0 is Pareto-optimal.

3. π0 = ⟨o2, o1, o3⟩: C2(π0) = ∅ and π0 is Pareto-optimal.

4. π0 = ⟨o2, o3, o1⟩: two swap-deals are possible:

(a) ⟨a1, a3⟩ which leads to case 2.
(b) ⟨a2, a3⟩ which leads to case 3.

5. π0 = ⟨o3, o1, o2⟩: one swap-deal is possible: ⟨a1, a3⟩ which leads to case 3.

6. π0 = ⟨o3, o2, o1⟩: three swap-deals are possible:

(a) ⟨a1, a3⟩ which leads to case 1.
(b) ⟨a1, a2⟩ which leads to case 4.
(c) ⟨a2, a3⟩ which leads to case 5.

This example does not contradict Theorem 3.1: Swap dynamics are Pareto-optimal
on the domain D = {≻1 ,≻2 ,≻3} because D does not include every single-peaked linear
order over ◁. For instance take ◁ to be o1◁o2◁o3, extend D by adding the two following
linear orders: o2 ≻ o1 ≻ o3 and o2 ≻ o3 ≻ o1 so that SP◁ ⊂ D′ and Theorem 3.1 will
apply.

3.5 The “price of” swap dynamics
It is natural to now ask to what extent swap dynamics induce a cost in terms of social
welfare. In that perspective we will first discuss the “standard” price of anarchy (PoA)
[Koutsoupias and Papadimitriou, 1999; Anshelevich et al., 2013], that is, the (worst-case,
over all instances) ratio between the worst stable outcome and the social welfare optimum.
More formally, for an allocation procedure M :

PoAv(M) = max
I∈ID

max v(π)
minπ∈M(I) v(π) , with v ∈ {ark, mrk}.

with ark the average rank and mrk the minimum rank as introduced in Chapter 1.
But, as we have discussed, swap dynamics constitute a family of procedures. In that

context, a perhaps more relevant metric is the ratio between the best and worst stable
outcome which can be obtained by such procedures. In particular, this would tell us the
price to pay for not being guided by a central planner (in the selection of deals) towards
maximizing our social welfare notion. We call this notion the price of dynamics (PoD),
and for a family of dynamics M, we define it as follows:

PoDv(M) = max
I∈ID

M,M ′∈M

maxπ∈M ′(I) v(π)
minπ∈M(I) v(π) , with v ∈ {ark, mrk}.

Note that this notion is not specific to swap dynamics and can be applied to any family
of dynamics. Also, observe that an upper bound on the PoA also applies to the PoD.

These definitions are parametrized by the social welfare notion considered. In terms of
average rank, we recall that Damamme et al. [2015] established that the price of anarchy
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is 2 for swap dynamics in the general domain. While the upper bound remains valid in our
restricted domain, the instance exhibited to show this bound to be tight in [Damamme
et al., 2015] violates single-peakedness. We now show that this result still holds under
our domain restriction.

Proposition 3.6. For any M ∈M2, PoAark(M) is 2 in the single-peaked domain.

Proof. Let us consider the following single-peaked instance involving n agents, and assume
without loss of generality n to be odd. Take for now the shaded allocation as the initial
allocation.2

a1 : on−1 ≻ on ≻ on−2 ≻ on−3 · · · o3 ≻ o2 ≻ o1

a2 : o1 ≻ o2 ≻ o3 ≻ o4 · · · on−2 ≻ on−1 ≻ on

a3 : o2 ≻ o1 ≻ o3 ≻ o4 · · · on−2 ≻ on−1 ≻ on

... ... ... ... ... ... ... ... ... ... ... ...
an−2 : on−3 ≻ on−4 ≻ on−5 ≻ on−4 · · · on−2 ≻ on−1 ≻ on

an−1 : on−2 ≻ on−3 ≻ on−4 ≻ on−5 · · · on−1 ≻ on ≻ o1

an : o1 ≻ o2 ≻ o3 ≻ o4 · · · on−2 ≻ on−1 ≻ on

Let π be the shaded allocation, and π∗ be the squared allocation (a1 holds on−1 in
both cases). Observe that both π and π∗ are Pareto-optimal allocations. For π∗ this is
obvious as only an does not hold her top object. For π, notice that a2 would only wish
to swap for o1, which is held by an agent who ranks it first. Then a3 would only wish to
swap for o1 or o2, and so on until an−2. Finally, an−1 may swap with anyone but an, but
no one wants to swap with her.

We see that ark(π∗) = [(n − 1) · n + 1]/n, while ark(π) = [n · (n + 1)/2 + n − 1]/n,
thus this instance shows that (asymptotically) the PoA is at least 2. In Damamme et al.
[2015] it is shown that 2 is an upper bound for the PoA of any swap-deal procedure. We
thus conclude that the PoA is 2 here, as in the general domain.

Following Damamme et al. [2015], we can also make some further observations. In
fact, as both allocations are Pareto-optimal, this instance shows that the PoA of any
procedure satisfying individual rationality must be at least 2. Indeed, taking the shaded
allocation π as the initial allocation, any individually rational procedure would output π.
Furthermore, as any Pareto-optimal allocation is stable for swap-deals, our upper bound
remains valid.

Observation 3.3. For any individually rational allocation procedure M , PoAark(M) is
2 in the single-peaked domain. This holds in particular for TTC and Crawler.

To address the price of dynamics, we must now make use of a different initial allo-
cation, and show that both allocations are reachable by sequences of swaps. This would
demonstrate that this gap could also only be due to the selection heuristics.

Proposition 3.7. For the family of swap dynamics M2, PoDark(M2) is 2 in the single-
peaked domain.

2The underlined allocation will only be relevant in forthcoming proofs.
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Proof. Consider again the instance presented in the proof of Proposition 3.7. Take now
the initial allocation to be π0 = ⟨o2, o3, o4, · · · , on−1, o1, on⟩, the underlined allocation. We
first show that the shaded allocation π can be reached from π0 via improving swap-deals.
First the deal ⟨an, an−1⟩ is implemented. Then a1 acts as a hub, and the following sequence
is implemented ⟨a1, a2⟩ . . . ⟨a1, an−2⟩.

Now, the squared allocation π∗ can also be reached with swap-deals. Agent a1 will
act as a hub for odd agents, while an−1 will do the same for even agents. In other words,
the following sequence is implemented: ⟨a1, a3⟩, ⟨a1, a5⟩ . . . ⟨a1, an−2⟩ (note that an gets
her final object from the start), followed by the sequence of swaps ⟨an−1, a2⟩, ⟨an−1, a4⟩ . . .
⟨an−1, an−3⟩.

The result follows then from the computations of the average rank presented in Propo-
sition 3.7.

Finally, we turn our attention to the mininimum rank counterparts of the same notions.
Note that n is certainly an upper bound in that case, as this is highest possible ratio
between two allocations.

Proposition 3.8. For any M ∈M2, PoAmrk(M) is Θ(n) in the single-peaked domain.

Proof. Let us consider the following single-peaked instance involving n agents. Take the
shaded allocation as the initial allocation.3 Let π be the shaded allocation, and π∗ be the
squared allocation.

a1 : o1 ≻ o2 ≻ o3 ≻ o4 · · · on−1 ≻ on

a2 : o2 ≻ o3 ≻ o1 ≻ o4 · · · on−1 ≻ on

a3 : o3 ≻ o4 ≻ o2 ≻ o1 · · · on−1 ≻ on

a4 : o4 ≻ o5 ≻ o3 ≻ o2 · · · on−1 ≻ on

... ... ... ... ... ... ... ... ... ... ... ...
an : o2 ≻ o1 ≻ o3 ≻ o4 · · · on−1 ≻ on

It is easy to see that mrk(π∗) = n− 1, while mrk(π) = 1, thus PoA is Ω(n). Clearly,
the PoA cannot be worse, thus it is Θ(n).

Proposition 3.9. PoDmrk(M2) is Θ(n) in the single-peaked domain.

Proof. Let us consider the single-peaked instance of Proposition 3.8 and let us assume that
the initial allocation is now π0 = ⟨on−1, o1, o2, · · · , on−2, on⟩, the underlined allocation.

From this initial allocation π0, it is possible to reach the shaded allocation π =
⟨o1, o2, o3, · · · , on−1, on⟩ with improving swap deals. This allocation is reached by per-
forming n−2 swap-deals ⟨a1, ai⟩, ∀i ∈ {n−1, . . . , 2} starting with ⟨a1, an−1⟩ and finishing
with ⟨a1, a2⟩.

From π0, it is also possible to reach π∗ = ⟨o1, o3, o4, · · · , on, o2⟩ (the squared allocation)
which is both Pareto-optimal and optimal in terms of minimum rank. If n is even, we
perform the following sequence of couples of swap-deals ⟨ai−1, an⟩ and ⟨ai−2, a1⟩ ∀i ∈
{n, n − 2, . . . , 6, 4}. If n is odd, we perform the same sequence of couples of swap-deals
but ∀i ∈ {n, n− 2, . . . , 7, 5} and add two final swap-deals ⟨a2, an⟩ and ⟨a1, an⟩.

3Again, the underlined allocation will only be relevant in a later proof.
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The result follows from the previous computations of the minimum rank in these two
allocations.

These different theoretical results remain a worst-case analysis. To complete the pic-
ture, it would be valuable to know how well these swap dynamics do in practice. This is
what we investigate in the next section.

3.6 Experimental study
Our objective in this section is to get some insights about the empirical behaviour of
swap dynamics. Our study includes swap dynamics based on the different history-based
selection heuristics introduced in Section 3.3, as well as two other selection heuristics
added for comparison: one which takes as input more than the mere history of deals
(M2-PW), and another one which relaxes the constraint of using swaps only (M3-U). For
completeness, we also compare their performance to that of TTC and Crawler (keeping
in mind though that these two centralized procedures are not specifically designed to
optimize our social welfare measures).

We now give the full detail of our protocol by specifying (i) how deals are selected in
the swap dynamics, (ii) how preferences are generated, as well as (iii) the full specification
of the parameters used in the experiments.

3.6.1 Experimental protocol
Selection heuristics for swap dynamics

Concerning swap-deal procedures, our study includes the history-based selection heuristics
already introduced in Section 3.3: M2-RRA, M2-RRP, M2-RRR, M2-U and M2-RM.
We also include for comparison a preference-based heuristics (M2-PW) and a procedure
allowing cycles involving up to 3 agents (M3). More precisely:

• Priority to the worst-off agent (M2-PW): agents are ordered considering the rank of
the object they own from the one with the lowest rank to the one with the highest
rank. Agents are then paired in a round-robin fashion like M2-RRA does following
this ordering. Note that M2-PW is more demanding than history-based heuristics
as it requires some information about the agent’s current rank which can only be
collected via a central entity.

• Uniform up to three agents (M3-U): a deal is selected uniformly at random among
all possible deals involving 2 or 3 agents. If the deal is rational for all the agents
involved, it is implemented.

Generation of single-peaked preferences

Different methods can be envisioned to generate single-peaked preferences. We consider
impartial culture for single-peaked domain (IC-SP) and uniform peak for the single-peaked
domain (UP-SP).
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Single-peaked preferences under impartial culture (IC-SP) are drawn using the method
proposed by Walsh [2015]. Given an axis, single-peaked preferences are built recursively
from the end (i.e. the worst object of the agent) to the top object. At each iteration, the
next object in the preference order is randomly selected between the two extremes of the
axis. The selected object is then removed from the axis and so on until the axis is empty.

In the uniform peak culture (UP-SP), presented by Conitzer [2009], preferences are
constructed by first picking uniformly at random a object to be the peak. The second-
highest ranked object is chosen with equal probability from the two adjacent alternatives,
and so on until a full order is obtained.

As already mentioned by Walsh [2015], the probabilities of the preference orders sig-
nificantly differ from one method to another. Under IC-SP, each single-peaked preference
order has a uniform probability 1/2n−1 to be selected. On the contrary, under UP-SP,
probabilities over preference orders are not uniform. In fact, the peak is uniformly drawn
(with probability 1/n) and single-peaked preferences are then built from this peak. Since
there is only one preference order with its peak at one end of the axis, these orders are
more likely to be drawn than preference orders with a peak in the middle of the axis, for
instance.

Let us consider the case where n = 5 and the axis is o1 ◁ o2 ◁ o3 ◁ o4 ◁ o5. Preference
orders o1 ≻ o2 ≻ o3 ≻ o4 ≻ o5 and o5 ≻ o4 ≻ o3 ≻ o2 ≻ o1 both have a probability 1/5

to be generated whereas the probability to generate some preference order with the peak
o3 is 1/5, and there are 6 orders with this peak. Under IC-SP, the probability to generate
the preference order o1 ≻ o2 ≻ o3 ≻ o4 ≻ o5 is 1/16.

Closer inspection reveals that the frequency of each rank for a given object is more
evenly distributed with UP-SP than with IC-SP. For instance, under IC-SP, objects on
the end-sides of the single-peaked axis have a high probability to be ranked among the
top objects of an agent but they have a very low probability to be ranked in the second
half of the preference linear order. Under UP-SP, these objects have a high probability to
be selected as the top object of an agent but they also have a more uniform probability
distribution among all other possible ranks. A object on the end-side of the single-peaked
axis is thus more likely to obtain a low ranking under UP-SP.

This suggests that profiles under UP-SP are more diverse than under IC-SP. To quan-
tify this more precisely, we have computed two diversity indicies suggested by [Hashemi
and Endriss, 2014]: the sum of Kendall’s tau and the sum of Spearman distances.4 The
results confirm that UP-SP generates more diverse profiles on average compared to IC-
SP. Take for instance the case of seven objects (n = 7). We generated 10000 preference
profiles under both UP-SP and IC-SP. With respect to the Kendall’s tau index, profiles
under UP-SP achieved an average diversity score of 75% (normalized over the empirically
observed maximum) while this value reaches only 48% in the case of IC-SP. With the
Spearman distance, the numbers are still in favour of UC-SP: 85% versus 64%.

4The Kendall’s tau distance between two preference order ≻i and ≻i′ over O is the number of pairs
(r, r′) ∈ O2 such that ≻i and ≻i′ do not rank r and r′ in the same order. The Spearman distance between
two preference order ≻i and ≻i′ over O is defined as

∑
r∈O |rankai

(r) − rankai′ (r)|. In both cases, the
diversity index of a profile L is the sum of the distance between every pair of preference orders (≻i,≻i′)
of L.
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Experiments conducted

We conducted two types of experiments:

(i) A study of the average efficiency and fairness of swap dynamics. The efficiency
(respectively fairness) ratio is defined as the ratio between the average (respectively
minimum) rank realized by the procedure and the optimal average (respectively min)
rank achievable for the instance (disregarding the individual rationality constraint).
The optimal values are obtained using matching techniques [Garfinkel, 1971]. These
investigations can be viewed as the empirical counterpart of the worst-case analysis
of Section 3.5.
To isolate the influence of the individual rationality (IR) constraints alone, we also
include the rules “max ark IR” and “max mrk IR” which respectively returns the
allocation maximizing the average and the minimum ranks under the constraint of
being individually rational. We also study the performance of swap dynamics with
respect to TTC and Crawler.

(ii) A study of the number of swaps performed by swap dynamics with respect to the
number of cycles performed by TTC and Crawler. Of course this comparison needs
to acknowledge that the size of cycles may be very different in both approaches. We
thus also investigate the size of the cycles computed by TTC and Crawler.

Parameters of the experiments

For every experiment, we considered several number of objects, varying from n = 2 to
n = 60 and we randomly generated 1000 instances in each case. For a given instance,
the initial allocation is selected uniformly at random among all possible allocations. For
every instance, we ran the different procedures and report the results for a fixed number
of objects, averaged over the 1000 instances.

3.6.2 Analysis of the results
Efficiency and fairness of swap dynamics

Comparison among swap dynamics. Figure 3.3 presents the efficiency and fairness
ratio for each swap dynamic for preferences generated both under the IC-SP model (left
side) and under the UP-SP model (right side). Results for max mrk IR and max ark IR
are also presented for comparison purposes.

Regarding the minimum rank—Figures 3.3(a) and 3.3(b)—M2-PW reaches signifi-
cantly better allocations than other dynamics. This is expected: this heuristic favours
deals between agents holding low ranked objects and thus tends to improve the satis-
faction of the poorest agents. On the contrary, round-robin heuristics with their fixed
ordering tend to always favour the same agents and thus often leads to lower minimum
rank. However, notice that the randomized round-robin version (M2-RRR) slightly cor-
rects this.

Interestingly, the performance of M2-PW is highly sensitive to the culture considered.
This seems to be due to the way preferences are generated. Indeed, the results for max mrk
IR follow similar patterns, indicating that IC-SP (Figure 3.3(a)) is much more constrained
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Figure 3.3: Average efficiency and fairness ratios for each heuristic of the swap-deal procedure
and for each preference culture. For comparison baseline, the average maximum welfare achiev-
able under individual rationality (max mrk IR for the upper part and max ark IR for the lower
part) is also presented. The number of agents varies from 2 to 60.
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Figure 3.4: Average efficiency and fairness ratios for each procedure and for each preference
domain. Curves for “max welfare IR” correspond to max mrk IR for the upper part of the figure
and to max ark IR for the lower part. The number of agents varies from 2 to 60.

by the initial allocation than UP-SP (Figure 3.3(b)) is. Still, under UP-SP, M2-PW
returns close to optimal allocations, while other dynamics remain with a fairness ratio
of about 50%. Following this observation, as the allocation returned by M2-PW can be
taken as a witness of a good allocation reachable by swap dynamics, we see that the
empirical minimum rank price of dynamics for our studied family of dynamics is much
higher in UP-SP than in IC-SP.

Regarding the average rank of the outcomes—Figures 3.3(c) and 3.3(d)—all the heuris-
tics obtain very good results (above 90% under IC-SP (Figure 3.3(c)) and above 96% under
UP-SP (Figure 3.3(d))). It can be observed that all heuristics give very similar values.
Recall that our price of anarchy results informed us that in principle, swap dynamics can
return allocation with an efficiency ratio as low as 50%. Given these high performances,
it is not surprising that very little room is left to observe difference among selection
heuristics. Still, it is noteworthy that M2-PW provides, again, the best results (while
this selection heuristics doesn’t seem designed to optimize this measure of welfare at first
sight). Note that our remark about the relative performance of P2-PW under the two
cultures does not hold here: this suggests that only a few agents are left with low-ranked
objects with our swap dynamics, even under UP-SP.

Comparison with TTC and Crawler. We now compare swap dynamics to other
procedures. For the sake of readability, we only keep M2-PW (which offered the best
performance) and M2-U (the most decentralized selection heuristics, requiring hardly any
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communication between the agents). Results are presented in Figure 3.4.
Regarding the minimum rank—Figures 3.4(a) and 3.4(b)—a first observation is that

M2-U performs significantly better than TTC and Crawler algorithm (which give similar
results). The poor performances of these procedures, not designed for this purpose, are not
surprising: they typically leave some agents with very little opportunities to be involved in
a cycle-deal. For instance, by selecting top-trading cycles, TTC can remove all the agents
involved once a deal is implemented, thus significantly limiting the range of possible deals
for the remaining agents. On the other hand, as discussed, M2-PW favours low ranked
agents and gives more opportunities to these agents to exchange their initial objects.

Regarding the average rank of the outcomes obtained by the different procedures—
Figures 3.4(c) and 3.4(d)—swap dynamics slightly outperform TTC and Crawler under
both cultures.

Finally, it can also be observed that M3-U shows no significant difference with M2-U
under the same heuristics (uniform selection of the exchanges), either for the average or
minimum rank: slightly increasing the size of the deals leads raises complex coordination
issues with no evidence of improvements in terms of welfare.

These experiments promote the relevance of swap dynamics: besides being simple to
implement, they also provide very good results both in terms of average and minimum
rank, close to the optimal when individual rationality is enforced. For the minimum rank
and under UP-SP, we observed that our history-based swap dynamics may incur a signif-
icant cost, even though better allocations would be reachable by swaps (this was shown
by comparison to a more specifically designed, not history-based, selection heuristic).

Length of swap dynamics

Figure 3.5 represents the mean number of swap-deals performed (solid lines) when varying
the size of the instances. For the sake of readability, we only show some selection heuristics
(the other ones performed a number of swaps similar to either M2-RRA or M2-U). Dotted
lines represent the highest and the lowest numbers of swaps registered for an instance of
a given size (averaged over 1000 randomly generated instances).

It can be observed that the different selection heuristics are close in terms of the average
number of swaps. However, the number of swaps performed under UP-SP is significantly
higher than under IC-SP. This phenomenon is related to the method used to generate
single-peaked preferences. According to the discussion of Section 3.6.1, UP-SP offers a
greater diversity of profiles, which leads to more opportunities of exchanges. However,
even though we noted in previous experiments that the results in terms of welfare were
better in UP-SP than in IC-SP, note that the proportion is of a different order here: there
are on average three times more swap-deals performed under UP-SP.

The higher diversity of profiles under UP-SP can also explain the higher variance in
the number of swaps. Typically, when agents have completely opposite preference orders,
the number of deals can greatly vary depending on which agents are encountered. This
is much more likely to happen under UP-SP.

Comparison with TTC and Crawler. The number of deals performed by swap
dynamics can be compared with the number of deals induced by TTC or Crawler. To do
so we introduce the number of unit exchanges performed by a procedure. It corresponds
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Figure 3.5: Average number of swap-deals performed, the filled area represents the range, from
the minimum to the maximum. The number of agents varies from 2 to 60.

Figure 3.6: Average number of unit exchanges performed by some swap dynamics, TTC and
Crawler. A cycle-deal of length k counts for k unit exchanges. The number of agents varies
from 2 to 60.
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Figure 3.7: Average number of cycles performed by TTC and Crawler, the filled area represents
the range, from the minimum to the maximum. The number of agents varies from 2 to 60.

Figure 3.8: Average size of the cycles performed by TTC and Crawler, the filled area represents
the maximum. The minimum, not shown, is constantly equal to zero. The number of agents
varies from 2 to 60.
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TTC TTC Crawler Crawler
IC-SP UP-SP IC-SP UP-SP

β0 4.64 4.73 4.27 2.86
β1 0.15 0.36 0.20 0.56
O2 0.7872 0.9032 0.883 0.9862

Table 3.1: Linear regression of the maximum size of the deals over the number of agents. β0
and β1 are the coefficients of the regression: maxSize = β0 + β1 ∗ n where n is the number of
agents, O2 the coefficient of determination. The p-value is omitted as it is not meaningful for
simulations (see, e.g., [Lee et al., 2015]).

to the sum of the length of the cycle-deals applied. For a swap dynamics, it is twice the
number of swap-deals performed for instance. This measure allows us to compare all the
procedures even though they perform cycle-deals of different sizes. As shown in Figure
3.6, the procedure can be clustered in three distinct classes. The swap dynamics can be
grouped together, offering a middle way between TTC which performs particularly well
and Crawler which performs particularly badly in terms of number of unit exchanges.

The difference between Crawler and TTC can be explained by the fact that the former
performs much more deals on average than TTC. As shown in Figure 3.7, this can be
observed for any number of agents and the gap increases as the number of agents increases.
The size of the deals is also larger when implementing Crawler (Figure 3.8). Both of these
facts naturally lead to a higher number of unit exchanges.

The larger number of deals and the larger sizes of deals performed by Crawler are
related to the fact that agents are ordered with respect to the object they initially hold
and with respect to the order of these objects on the single-peaked axis. Based on this
order, Crawler only considers deals µ = ⟨a1, . . . , ak⟩ such that ai and ai+1 (with i ∈
{1, 2, · · · k − 1}) are owners of adjacent objects on the axis. Hence, TTC allows for
considering a larger range of cycle-deals than Crawler.

Putting aside the comparison between Crawler, and TTC, the size of the deals to
implement can be extremely large for both procedures as depicted in Figure 3.8. A cycle-
deal may involve more than half (respectively 35%) of the agents under UP-SP and a
fifth (respectively 15%) of the agents under IC-SP for Crawler (respectively TTC). The
linear regressions explaining these values are presented in Table 3.1. Overall, even though
TTC performs less unit exchanges than our swap dynamics, it can still need to perform
extremely large cycle-deals.

These experiments show that the number of swap-deals can be significant, especially
under UP-SP where long sequences of slightly improving steps are more likely to occur.
On the other hand, we show empirically that TTC and Crawler are indeed prone to require
the implementation of cycle-deals of large size. This illustrates the trade-off which occurs
between the coordination requirements and the length of the procedure.

3.7 Conclusion
This chapter studied the property of swap dynamics for the allocation of indivisible ob-
jects in the restricted setting of single-peaked housing markets. The basic principle of the
procedure is to let agents perform pairwise improving exchanges. We showed in particu-
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lar that the single-peaked domain happens to be maximal for guaranteeing convergence
to Pareto-optimal outcomes with such dynamics. We also showed that the outcomes of
TTC and of Crawler are reachable by swap-deal sequences. To refine our analysis, we
have studied two further notions: the average rank and the minimum rank of the objects
obtained by the agents. None of the procedures discussed in this chapter are specifically
designed for optimizing these ranks, even though these notions capture very natural cri-
teria of efficiency (for the average rank) and fairness (for the minimum rank). It thus
seems important to study how these allocation procedures behave on that respect. To
complement worst-case theoretical bounds on the loss of social welfare induced by swap
dynamics, we ran experiments which demonstrated that they actually provide good results
in practice.

Our focus on swap-deals is motivated by their minimal coordination requirements.
In the context of this chapter, our experimental results suggest that there is little gain
to expect when allowing deals involving three agents. A complementary relaxation is
to permit deals possibly not improving for some of the agents involved (but at least a
majority). This may unveil interesting connections with other notions: Kondratev and
Nesterov [2019] recently established for instance that an allocation is popular in a housing
market if and only if no (majority) improving exchanges between three agents exist.

To go further with the experiments, it would be interesting to use real data. Our
attempt to use data from Preflib [Mattei and Walsh, 2013] was not successful as there
is no dataset that is single-peaked when there are more than 5 agents. Getting such
preferences would be an interesting way to confirm our results. Regarding the model itself,
Bade [2019] extended Crawler to single-peaked domains with indifferences. Whether our
results with swap dynamics could be similarly generalized is an avenue for future research.
Overall, this chapter raises the exciting issue of giving a characterization of rules that are
efficient, individually rational and strategy-proof for the single-peaked domain. Such a
characterization would also provide more insights about the type of selection heuristic for
which the swap dynamics are strategy-proof. It would also be interesting to tackle the
characterization of the swap dynamics efficiency, that is, identifying the domain on which
the swap dynamics are Pareto-optimal. The maximality result is a significant step in this
sense, it would be nice to complete the picture.
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Chapter 4

Balancing envy among agents

Summary of the chapter
In this chapter, we mainly focus on a new relaxation of envy-freeness motivated by the fact
that if an envy-free allocation does not exist then we can focus on some sort of aggregation
of the envies of the agents and could focus on how envy is spread among agents. Indeed,
as it is common to consider in multi-objective problems, we would rather like envy to be
fairly spread among agents. But as you must know by now, fairness means a lot of things
so here by fairness we mean fair Ordered Weighted Average (OWA).

This chapter is based in full on a paper published at the Algorithmic Decision Theory
conference [Shams et al., 2021].
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4.1 Introduction
As we have already seen, envy-freeness is an attractive criterion: the fact that each agent
is better off with her own share than with any other share is a guarantee of social stability.
Besides, it does not rely on any interpersonal comparability. Unfortunately, envy-freeness
is also a demanding notion as soon as we require all goods to be allocated, and it is
well-known that in many situations, no such allocation exists (consider for instance the
situation where the number of items to allocate is strictly less than the number of agents
at stake). Hence several relaxations of envy-freeness have been studied in recent years.
Two orthogonal approaches have been considered as discussed in Section 1.3.2.

In this chapter, we elaborate on this idea of minimizing the degree of envy but seek to
offer a broader perspective. More precisely, we explore the possibility of finding allocations
where envy is “fairly balanced” amongst agents. For that purpose, we start from the
notion of individual degree of envy and use a fair Ordered Weighted Average operator
(by “fair”, we mean an OWA where weights are non-increasing.) to aggregate these
individual envies into a collective one, that we try to minimize. This family of operators
contains both the egalitarian and utilitarian operators mentioned previously. But doing
so also sometimes allows us to draw results valid for the whole family of fair operators.
Along our way, we shall for instance see that no algorithm fairly minimizing envy can be
guaranteed to return an envy-free allocation up to any good, even though such allocation
does exist. More generally, we provide several insights regarding the behaviour of such
fair minimizing operators, comparing their outcomes with alternative approaches, either
analytically or experimentally. Technically, this is made possible through to the use of
linearization techniques which alleviate the burden of computing these outcomes.

The remainder of this chapter is as follows. We first formally introduce our fairness
minOWA envy criterion (Section 4.2) and we show that OWA minimization problems
can be formulated as linear programs. We then investigate the link between minimizing
the OWA of the envy vector and other fairness notions (Section 4.3). We thus study
fairness guarantees of the minOWA solutions. Finally, we present some experimental
results investigating the fairness of min OWA solutions (Section 4.4).

4.2 MinOWA Envy
Our approach elaborates on minimizing the degree of envy of the agents while balancing
the envy among the agents as suggested by Lipton et al. [2004]. The general idea would
be to look for allocations that minimize this vector of envy in some sense: the lower
this vector is, the less envious the agents are. This corresponds to a multiobjective
optimization problem where each component of the envy vector is a different objective to
minimize.

4.2.1 Fair OWA
There are different ways to tackle this minimization problem, each approach conveying
a different definition of minimization. Our approach, guided by the egalitarian notion
of fairness [Rawls, 1971], is to ensure that, while being as low as possible, the envy is
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also distributed as equally as possible amongst agents. To this end, we use a prominent
aggregation operator that can convey fairness requirements: order weighted averages.

Ordered Weighted Averages (OWA) have been introduced by Yager [1988] with the
idea to build a family of aggregators that can weight the importance of objectives (or
agents) according to their relative utilities, instead of their identities. In this way, we
can explicitly choose to favour the poorest (or richest) agents, or to concentrate the
importance of the criterion on the middle-class agents. Formally, the OWA operator is
defined as follows:

Definition 4.1. Let −→α = ⟨α1, . . . , αn⟩ be a vector of weights. In the context of mini-
mization, the ordered weighted average parameterized by −→α is the function owa

−→α : x 7→∑n
i=1 αi × x↓

i , where x↓ denotes a permutation of x such that x↓
1 ≥ x↓

2 ≥ ... ≥ x↓
n.

Amongst all OWA, only those giving more weight to the unhappiest agents can be
considered fair in the egalitarian sense. This property can be formalized as follows. Let
x be a vector such that xj ≥ xi (ai is better off than aj) and let ε be such that 0 ≤
ε ≤ 2(xj − xi). Then, for any non-increasing vector −→α : owa

−→α (x) ≤ owa
−→α (⟨x1, . . . , xi +

ε, . . . , xj − ε, . . . , xn⟩).
In other words, such an OWA favours any transfer of wealth from a happier agent

to an unhappier agent. Such a transfer is called a Pigou-Dalton transfer, and the OWA
with non-increasing weight vectors −→α are called fair OWA. Moreover, we have considered
without loss of generality in this chapter that the weight vector sums to 1 so we will make
no difference between weights ⟨1, 1, 1⟩ and ⟨1

3 , 1
3 , 1

3⟩. Note that fair OWA is also referred
to as Generalized Gini Index [Weymark, 1981] in the literature. In matching problems
[Lesca et al., 2019] and multiagent allocation problems [Heinen et al., 2015], fair OWA
has been applied to the utility vector so as to maximize a global utility function while
reducing inequalities. However, we can note that maximizing the OWA of the utility
vector does not necessarily return an EF allocation even when such an allocation exists:

Example 4.1. Consider this add-MARA instance with 3 agents and 4 objects:

o1 o2 o3 o4

a1 1 2∗ 3 4∗

a2 2 2 5∗ 1
a3 4∗ 0 4 2

The squared allocation is the allocation that maximizes the value of the OWA of the
utility vector with weight ⟨1, 0, 0⟩. We can easily notice that this allocation is not envy
free as a1 envies a2. Moreover, the star allocation is obviously an EF one. Note that in
the context of maximization, a fair OWA is also defined with non-increasing weights but
by sorting the components by increasing value.

Since our motivation is to return an EF allocation when there is one and otherwise
minimize the envy while equally distributing it between the agents, we propose to minimize
the fair OWAs of the envy vector.

Definition 4.2. Let I = ⟨N ,O, w⟩ be an add-MARA instance and −→α be a non-increasing
vector. An allocation π̂ is an −→α -minOWA Envy allocation if:

π̂ ∈ argminπ∈A(I)(owa
−→α (−→e (π))).
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It is important to note that a major advantage of this solution is that it always exists
as it is the result of an optimization process. Moreover, this optimization problem can
be modeled as an Integer Linear Program, which will give a way to compute optimal
allocations. Keep also in mind that there can be several allocations with the same OWA
envy value.

Let us now see some helpful properties of fair OWA. Note that we will consider here
that we are in a minimization context.

Definition 4.3. By denoting v↓
k the kth biggest component of a given vector v, the Lorenz

vector −→L of v is defined as −→L (v) = ⟨v↓
1, v↓

1 + v↓
2, ...,

∑n
i=1 v↓

i ⟩.

Definition 4.4. Let x and y be two vectors of the same size and xi (respectively yi) be
the ith component of x (respectively y). We say that x Pareto dominates y iff for every
component xi ≤ yi and there is one component xj for which xj < yj and x strongly Pareto
dominates y iff for every component xi < yi.

Definition 4.5. We say x (strongly) Lorenz dominates y iff −→L (x) (strongly) Pareto dom-
inates −→L (y).

Theorem 4.1. Perny and Spanjaard 2003
If x Lorenz dominates y then for any non-increasing weight −→α : owa

−→α (x) ≤ owa
−→α (y). Sim-

ilarly if x strongly Lorenz dominates y then for any non-increasing weight −→α : owa
−→α (x) <

owa
−→α (y).

This helpful property is shown in [Perny and Spanjaard, 2003]. As (strong) Pareto
dominance implies (strong) Lorenz dominance, the same theorem holds with (strong)
Pareto dominance.

4.2.2 Linearization of OWA minimization
By using a linearization introduced by Ogryczak and Śliwiński [2003] we can model our
problem of minimizing the OWA of the envy vector as a linear program. This linearization
smartly uses the definition of OWA with its Lorenz components. Moreover we consider
decreasing OWA weights (fair OWA) so α1 ≥ α2.... ≥ αn and we denote by

−→
α′ = ⟨α1 −

α2, α2 − α3, ..., αn⟩. The OWA of a vector can be written with its Lorenz components:

owa(−→e (π)) =
n∑

k=1
αke↓

k

=
n∑

k=1
α′

kL↓
k(−→e )

It is known that L↓
k(−→e ) can be defined as the result of a LP [Ogryczak and Tamir,

2003]:

L↓
k(−→e ) = max

n∑
i=1

ck
i ei

s.t.


m∑

i=1
ck

i = k ∗rk

ck
i ∈ [0, 1] ∀i ∈ J1, nK ∗bk

i
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The difficulty here is that we cannot directly inject this LP in the previous definition
of owa(−→e (π)): this LP is defined as a maximization problem, whereas our goal is to
minimize owa(−→e (π)). To circumvent this problem, we will use the dual version of this
LP (with the dual variables shown in gray in the LP above):

L↓
k(−→e ) = min krk −

n∑
i=1

bk
i

s.t.
{

rk + bk
i ≥ ei ∀i ∈ J1, nK

bk
i ≥ 0 ∀i ∈ J1, nK

Now that we have a way express the OWA as a linear program, we need to encode
the part related to the fair division problem and the computation of the envy vector. For
that, we introduce a set of n × m Boolean variables zj

i : zj
i is 1 iff oj is allocated to ai.

The preemption constraint and completeness can be easily expressed as the constraint set∑n
i=1 zj

i = 1 ∀j ∈ J1, mK (just stating that each object should be allocated to exactly one
agent). The pairwise envy between ai and ah is simply computed as∑m

j=1 w(ai, oj)(zj
h−zj

i ).
The envy ei of an agent ai is just defined to be greater than or equal to pairwise envies
from ai to ah for all h. Since we are in a minimization problem, ei will exactly be equal
to the maximal pairwise envy in the returned solution.

Putting things together, we obtain the following MIP:

min owa(−→e (π)) = min
n∑

k=1
α′

k(krk +
n∑

i=1
bk

i )



rk + bk
i ≥ ei ∀i, k ∈ J1, nK

ei ≥
m∑

j=1
u(i, j)(zj

h − zj
i ) ∀i, h ∈ J1, nK

n∑
i=1

zj
i = 1 ∀j ∈ J1, mK

zj
i ∈ {0, 1} ∀j ∈ J1, mK ∀i ∈ J1, nK

bk
i ≥ 0, ei ≥ 0 ∀i, k ∈ J1, nK

4.3 Link with other fairness measures
We focus here on the possible links between the min OWA allocation and other fairness
measures. We recall that if an envy-free allocation exists, it will be returned by the min
OWA optimization. For any instance I, we denote by PROP(I) the set of allocations
satisfying PROP ∈ {EF1, EFX, EFX0, MMS}. We also denote by −→α -min OWA(I) the
set of all min OWA optimal allocation for the specific weight vector −→α , and by ∀-min
OWA(I) the set of −→α -min OWA, for all (fair) weight vectors −→α .

Moreover, in the following, we recall that we denote by I the set of all add-MARA
instances. Furthermore, different domain restrictions will be of interest: we denote by Ip

the set of add-MARA instances involving only two agents (pairwise instances), and by Ib

the set of add-MARA instances where agents have binary utilities.
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4.3.1 Warm-up: n = 2
In the special case where the allocation problem involves only two agents, we highlight
strong connections between min OWA allocations and other fairness measures (MMS,
EF1 and EFX).

Proposition 4.1. ∀I ∈ Ip : ∀-min OWA(I) ⊆MMS(I) ⊆ EFX(I)

Proof. For add-MARA instances where an envy-free allocation exists, our proof is straight-
forward as min OWA returns the EF allocation. It is thus also MMS, EF1 and EFX.

We now focus on add-MARA instances for which there is no EF allocation. In the
presence of only 2 agents any min OWA allocation π is such that only one of the two
agents is envious. Indeed, if no agent is envious then it means the add-MARA instance
has an envy-free allocation (which is a contradiction). Similarly, if both agents are envious
it means there is an envy-free allocation (which is again a contradiction) as the agents
would just have to exchange their bundles to obtain that allocation. Consequently, the
sorted envy vector will be of the form (e, 0). Suppose for the sake of contradiction that
such an allocation is not MMS. The agent that is envy-free (let us say w.l.o.g it is a2)
obviously has her max-min share. So, under the assumption that the allocation is not
MMS, a1 does not have her max-min share. It means that there is an allocation π′

such that min(u1(π′
1), u1(π′

2)) > u1(π1) and a2 is still not envious (if a2 is envious in π′,
just swap her share with a1’s). Obviously, a1’s pairwise envy for a2 has decreased in π′

compared to that of π, and a2’s envy is still 0. This contradicts the fact that π is the
optimal min-OWA envy allocation. Finally, it is known [Caragiannis et al., 2016] in the
two-agents setting that MMS implies EFX, which completes the proof.

However, even though an MMS allocation is EFX, this does not hold for EFX0 even
for 2 agents as we can see in Example 4.2.

Example 4.2. Consider this add-MARA instance with 2 agents and 3 objects:

o1 o2 o3
a1 1 0 2
a2 0 1 2

It is easy to see that the squared allocation is MMS as the max-min share of each agent
is 1. Moreover, we can see that this allocation is EFX (a1 can forget o3) whereas it is not
EFX0 (because a1 has to forget o2 which does not make here becoming envy-free).

However, we show that we can very easily build an EFX0 allocation from an arbitrary
min OWA envy one.

Proposition 4.2. For any instance I ∈ Ip and for any weight vector α⃗: −→α -minOWA(I)
∩EFX0(I) ̸= ∅. Furthermore, it can be obtained from an arbitrary −→α -min-OWA envy
optimal allocation in linear time.

Proof. Let us call π an arbitrary min OWA allocation. If π is envy-free then it is obviously
EFX0 and the proof concludes. Note that envy-freeness is checked in O(1) as we just have
to check the values of both variables e1 and e2. Otherwise, it means that one and exactly
one agent is envious, by using a same argument as in the proof of Proposition 4.1. W.l.o.g.
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we consider a1 is the envious agent. We start from π and transfer to a1 all the objects
that she values with utility zero. The resulting allocation is called π′. We show that
π′ is EFX0. a1 still envies a2 in π′ but is EFX by Proposition 4.1. By transferring all
zero-valued objects to her share, she becomes EFX0 in π′. Now consider a2. If a2 envies
a1 in π′ then by swapping their bundles, we can obtain an envy-free allocation. This
contradicts the fact that π is min-OWA envy optimal. Hence, a2 still does not envy a1
in π′, and thus is also EFX0 obviously. Since in π′ a2 is still envy-free and the pairwise
envy from a1 to a2 has not changed, π′ is still min-OWA envy optimal. The complexity
is linear in the number of objects since we have to implement the transfer of zero-valued
objects to a1’s bundle.

On Example 4.2, this means that a1 should receive o2. This adjustment is inefficient:
by construction, it returns an allocation which is Pareto-dominated by the original min
OWA envy optimal allocation. Intuitively, it can be seen as the price to pay to get EFX0:
by assigning those items that the agent does not value to her, the mechanism offers the
strongest possible fairness guarantees.

4.3.2 General case: n ≥ 3
We now turn to more general settings involving at least 3 agents. Since an EF1 allocation
is guaranteed to exist, we more specifically focus on the relation between min OWA and
EF1. Unfortunately, we notice that in the general case these two sets can be disjoint i.e.,
there are instances for which no allocation is both EF1 and min-OWA, for any weight
vector:

Proposition 4.3. ∃I ∈ I : EF1(I) ∩ ∀-min OWA(I) = ∅

Proof. Let us consider the add-MARA instance with 4 agents and 5 objects:

o1 o2 o3 o4 o5
a1 20 2 2 2 4
a2 20 2 2 2 4
a3 13 1 1 1 14
a4 0 0 0 0 30

In order to prove the proposition we will show that the squared allocation is the only
min OWA envy allocation (for any given weight vector) and that it is (obviously) not
EF1. First note that as a1 and a2 have similar preferences the allocation derived from the
squared allocation where we swap the bundles of these agents will be the same in terms
of Lorenz envy vector. The squared allocation has a vector of envy −→e = ⟨0, 14, 14, 0⟩ and
L(−→e ) = ⟨14, 28, 28, 28⟩. First consider the allocations in which a4 does not possess o5.
We have −→e1 = ⟨e1, e2, e3, 30⟩ and L(−→e1 ) = ⟨30, L2, L3, L4⟩ with L2, L3, L4 being greater
than or equal to 30. −→e1 is thus strongly Lorenz dominated by −→e . Let us now consider
the other possible allocations (in which a4 possesses o5): if a3 has o1 instead of a1 then
−→e2 = ⟨20, 14, 1, 0⟩ and L(−→e2 ) = ⟨20, 34, 35, 35⟩. −→e2 is thus strongly Lorenz dominated
by −→e . Finally, we focus on allocations in which a3 has one to three items from the
set of objects {o1, o2, o3}. If a3 has one of these items we have −→e3 = ⟨0, 16, 13, 0⟩ and
L(−→e3 ) = ⟨16, 29, 29, 29⟩. If a3 has two of these items we have −→e4 = ⟨0, 18, 12, 0⟩ and
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L(−→e4 ) = ⟨18, 30, 30, 30⟩. Finally if a3 has all these items we have −→e5 = ⟨0, 20, 11, 0⟩ and
L(−→e5 ) = ⟨20, 31, 31, 31⟩. All −→e3

−→e4 and −→e5 are strongly Lorenz dominated by −→e . As we
know that minimizing fair OWA of a vector is consistent with the Lorenz dominance (see
Theorem 4.1), it means that if a solution strongly Lorenz dominates another, then its
fair OWA value will be strictly lower (in a minimization problem such as ours) for any
non-creasing weight. We can then conclude that the squared allocation is indeed the only
min OWA envy one and it is not EF1.

However, a significant number of experiments actually suggest that for almost any
instance, some EF1 allocation is also min-OWA, either for the weight vector ⟨1, 0, . . . 0⟩,
or for the weight vector ⟨1, 1, . . . 1⟩. Moreover, we have a positive result in the restricted
domain where agents have binary utilities.

Proposition 4.4. ∀I ∈ Ib : EFX0(I) ∩ ∀-min OWA(I) ̸= ∅

Proof. First note that if the instance is EF then the min OWA envy allocation will be EF
and thus EF1 and the proof concludes. Hence we will consider instances that are not EF.
As we consider binary utilities, we know thanks to [Chaudhury et al., 2020] that an EFX0
allocation always exists. We can easily notice that any such allocation is such that the
envy of each agent is at most 1. Hence, as with the weight vector ⟨1, 0, . . . 0⟩ the OWA
envy value of an EFX0 allocation is 1 (as we supposed no EF allocation exists), it is the
minimum OWA envy value possible. It can thus be returned by minimizing the OWA
envy value.

4.4 Experimental results
We drew some experiments to compare the performances of the allocations obtained by
min OWA envy with the Maximization of Nash Welfare. More precisely we implemented
the linearization described in [Caragiannis et al., 2016] that returns an allocation approx-
imating MNW but closely enough to keep interesting properties such as EF1 and Pareto
Optimality. As we have seen through this chapter the range of possibilities offered by the
fact that OWA is parameterized is interesting. We will see how three different weights
−→α1 = ⟨1, 0 . . . 0⟩, −→α2 = ⟨1

2 , 1
4 , . . . 1

2n ⟩ and −→α3 = ⟨1, 1, . . . 1⟩ compare to each other. −→α1 and
−→α3 correspond to respectively minimize the max envy and the sum of the envies. −→α2 is
somewhere in the middle of those two extrema with a strictly decreasing weight vector.

All the tests presented in this section have been run on an Intel(R) Core(TM) i7-2600K
CPU with 16GB of RAM and using the Gurobi solver to solve Mixed Integer Programs.
We have tested our methods on two types of instances: Spliddit instances [Goldman
and Procaccia, 2015] and synthetic instances under uniformly distributed commensurable
preferences (that is, for each agent ai and object oj, utilities are drawn i.i.d. following the
uniform distribution on some interval [x, y] and such that the utilities of each agent sums
to 5m).

We evaluate the performances of the OWA envy minimization outcome for both types
of instances through the following criterion: EF, EFX0, EFX, EF1 and Pareto domi-
nance. Tables 4.1 and 4.2 present the percentage of min OWA envy outcomes that satisfy
each criterion. We also study how the vector of weights of the OWA influences the
characteristics of the outcomes. The computation time (in seconds) of each approach is
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Table 4.1: Performances for minimizing the OWA envy (with weights −→α1, −→α2, −→α3) or maximizing
the Nash Welfare on Spliddit instances

−→α1
−→α2

−→α3 MNW
%EF 65.4 65.4 65.4 57.2
%EFX0 90.0 93.0 92.7 90.9
%EFX 98.5 99.4 99.0 94.9
%EF1 99.4 99.8 99.3 100
%Pareto 77.1 78.7 79.2 100
%EF+PO 45.7 45.6 46.0 57.2
time(s) 3.5*10−3 5.7*10−7 6.9*10−7 1.1*10−6

also mentioned. We recall the strong connections between the 4 first fairness notions as
EF =⇒ EFX0 =⇒ EFX =⇒ EF1. As it can be checked in Tables 4.1 and 4.2,
the percentage of EF allocations should always be lower than or equal to the number of
EFX0 ones which should be lower than or equal to the number of EFX allocations and
so on.

The methodology to check whether an allocation is Pareto-Optimal or not thanks to
a particular MILP is described in Appendix A.

4.4.1 Spliddit instances

Our first set of experiments has been performed on real-world data from the fair division
website Spliddit [Goldman and Procaccia, 2015]. There is a total of 3535 instances from 2
agents to 15 agents and up to 93 items. Note that 1849 of these instances involve 3 agents
and 6 objects. By running the MIPs minimizing the OWA envy with the three different
weights’ vectors described above with a timeout of 1 minute (after this duration the best
current solution, if it exists, is returned) we were able to solve all the instances to optimal.
The results of these experiments are presented in Table 4.1. The first three columns
respectively correspond to the results of minimization of the OWA envy with respectively
−→α1, −→α2 and −→α3, while the fourth column presents the results of the optimization of MNW.

Minimizing the OWA envy provably returns an EF allocation if there exists one.
Hence, among the Spliddit instances 65.4 % are envy-free. Note that only 57.2 % of the
allocations returned by MNW are EF which means that for around 8.2 % of the Spliddit
instances, an envy-free allocation exists but MNW failed to return it. Moreover, without
any surprise as Pareto optimality (PO) of the MNW allocations is guaranteed, minimizing
OWA envy returns fewer PO allocations than MNW. However, around slightly less than
80% of the min OWA envy allocations are Pareto optimal. It is guaranteed that MNW
returns an EF1 solution. However, we can observe, for every weight, that more than 99%
of the allocations returned by min OWA envy are EF1. This balances the negative result
in Proposition 4.3. Moreover, it can be very interestingly observed that the percentage
of EFX0 is greater for −→α2 and −→α3 than for MNW. The same holds for the percentage
EFX but for the 3 weights’ vectors and by a more noticeable margin of around 5%.
However, MNW performs slightly better than min OWA when we consider EF alongside
with Pareto. Finally, we can see that all the optimization programs run very quickly in
average with a slightly bigger time for −→α1.
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4.4.2 Synthetic instances
For each couple (|N |,|O|) from (3, 4) to (10, 12), we generated 100 synthetic add-MARA
instances with uniformly distributed preferences. We then ran the four optimization
methods described above on the generated instances. We considered such couples of values
in order to produce settings where few EF allocations exist as suggested in [Dickerson
et al., 2014]. Although it is interesting to consider EF instances to compare with MNW,
minimizing OWA envy is even more relevant when no EF allocation exists. Due to lack
of space, Table 4.2 presents the results for only 4 couples (n, m) but similar trends can be
observed for the other couples of values. As witnessed for the Spliddit instances, MNW
often fails to return an EF allocation even when there exists one. As shown in Table
4.2, the number of EF allocations missed by MNW can be quite important as shown by
the gap between the percentage of EF allocations returned by min OWA envy and the
percentage for MNW. This is exemplified in Table 4.2 for 2 agents and 5 agents where
the gap is respectively of 16% and 31%. Even more significantly, it turns out that min
OWA outperforms MNW when we consider EF together with Pareto. Once again and
in an even stronger way than for the Spliddit instances, these results heavily balance the
result of Proposition 4.3: in practice the allocations returned by the min OWA envy were
always EF1. Concerning EFX0 and EFX we also obtained very positive results. Indeed,
min OWA envy returns around 10% more EFX0 and EFX instances than MNW. Note
that we confirm Proposition 4.1 as we have 100% of EFX allocations when n = 2. Note
that we did not adjust the allocation returned by the min OWA optimization to break
ties as discussed in the proof of Proposition 4.2. Thus, we get 97% of EFX0 but this
percentage could be even higher. However, these positive results about EF , EFX0 and
EFX come with a price on efficiency as we can see that PO is not guaranteed and the
percentage gets lower as the number of agents increases but is still above 60% for −→α2 and
−→α3. This highlights the inherent compromise and tension between efficiency and fairness.
Besides, as it was the case for the Spliddit instances we can see that the computation is
overall quite fast. We can notice that the MNW computation never surpasses 0.02 seconds
whereas for 10 agents, min OWA envy optimization is slightly faster than a second for
−→α1 and −→α3 and around 2 seconds for −→α2. Finally, we can see that the three different
weights considered here lead to quite similar performances. We can globally notice more
encouraging results for −→α3 except for EFX. However, keep in mind that the advantage
of using a parameterized function is its rich expressiveness so we could see our method as
a combination of the results of the 3 weights.

4.5 Conclusion
In this chapter, we introduced a new fairness concept following the idea of minimizing
envy. More particularly, we used an OWA to express fairness in the distribution of envy
between agents. This generalizes several approaches using various definitions of degree of
envies, which can be captured by adequate weight vector. In practice, we put a special
focus on the egalitarian variant (minimizing the highest envy), the utilitarian variant
(minimizing the sum of envies), and the compromise consisting of using the fair vector
of decreasing weights. After implementing a MIP to compute min OWA allocations, we
unveil several connections between the min OWA allocation and other famous fairness
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Table 4.2: Performances for minimizing the OWA envy (with weights −→α1, −→α2, −→α3) or maximizing
the Nash Welfare on synthetics instances (as a function of the number of agents and objects
(n, m) (ϵ ≤ 10−3)).

(2,3) (5,7) (8,10) (10,12)
−→α1

−→α2
−→α3 MNW −→α1

−→α2
−→α3 MNW −→α1

−→α2
−→α3 MNW −→α1

−→α2
−→α3 MNW

%EF 74 74 74 58 48 48 48 17 10 10 10 1 1 1 1 0
%EFX0 97 97 97 88 96 96 96 88 88 86 88 78 72 82 83 80
%EFX 100 100 100 92 97 97 98 91 98 96 93 85 87 95 92 84
%EF1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
%Pareto 100 100 100 100 73 76 72 100 64 66 67 100 51 62 64 100
%EF+PO 74 74 74 58 33 34 32 17 5 6 5 1 1 1 1 0
time(s) ϵ ϵ ϵ ϵ 0.02 0.02 0.02 0.01 0.1 0.4 0.1 0.04 0.5 2.5 0.7 0.07

measures.
In particular, we compare our approach with the alternative relaxations consisting

of seeking “envy-freeness up to some/any good”. Some of our conclusions show that
these approaches correspond to very different perspectives: we show in particular that no
algorithm minimizing a fair OWA can ever guarantee to return an EF1 (and thus nor EFX)
allocation. This is however balanced by the fact that it never occurred in our experiments.
Indeed, even in the very few cases for which the min OWA allocation was not EF1 we
easily found a weight for which it was the case. This raises the question of choosing the
appropriate weight vector for example by elicitating it. We left that question open for
now. Indeed, we also ran some experiments to test the performances of our method and
compared it with other allocation protocols. The results are extremely encouraging. Our
min OWA approaches do very well (in particular regarding the likelihood to return an
EFX allocation, which may be somewhat paradoxical given our previous remarks) in terms
of fairness, both on real Spliddit instances and randomly generated ones. In comparison,
Nash social welfare –despite its guarantee to return an EF1 allocation– is dominated on
that respect, as well as on the likelihood to return an EF and Pareto optimal allocation.

For future work, an interesting idea would be to look at the MILPs characterizing
the EFX and EF1 allocations. Indeed, by solving such MILPs we can obtain EFX or
EF1 allocations but what would be interesting is to use such MILPs to try and add
Pareto-Optimality (for instance) by using the Lagrangian relaxation method for Integer
Programming [Geoffrion, 1974; Fisher, 1981] which consists in relaxing an optimization
problem by moving some constraints as a penalty in the objective function. Note that
those MILPs have been presented by Kaczmarczyk [2021] and our modelization of the
EF1 and EFX are respectively thoroughly presented in Appendices B and C. We can
also, via Lagrangian relaxation, relax the constraints on EFX or EF1 if we want to mix
it with other desirable properties.

Moreover, such MILP could also be used to study these properties through the prism
of polyhedral approach such as presented by Edmonds [1965]. It consists in studying
the polytope of a problem and allows to obtain min-max relaxations or polynomial-time
algorithms.
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Chapter 5

Fair in the Eyes of Others

Summary of the chapter
In this chapter, we mainly focus on a new relaxation of envy-freeness motivated by the
fact that if an agent is envious then we would like to avoid, if possible, the worst situation
in which all the agents agree on the fact that this agent should be envious. From this
notion we also derive a similar notion for proportionality. This chapter is fully based on
a conference paper [Shams et al., 2020] and on a longer journal version of the same paper
[Shams et al., 2022].

5.1 Introduction
As we have seen in the state of the art and in the previous section, literature has proposed
a lot of relaxations of envy-freeness, such as for instance envy-freeness up to one good, EF1
[Budish, 2011], or envy-freeness up to any good, EFX [Gourvès et al., 2014; Caragiannis
et al., 2016]. When agents interact among a social network, local notions of fairness have
been investigated where an agent can only make comparisons with her neighbors in the
network. In the divisible setting, local envy-freeness and local proportionality have been
studied for instance by Abebe et al. [2017]; Bei et al. [2017]. In the indivisible setting,
similar notions have been studied by Aziz et al. [2018]; Chevaleyre et al. [2017], while
complexity issues related to local envy-freness have been investigated in oriented graphs
[Bredereck et al., 2018] and non-oriented graphs in house allocation problems [Beynier
et al., 2019b].

In this chapter, we propose a slightly different relaxation of envy. To illustrate the
notion we introduce, consider a given instance where no envy-free allocation exists. Now
suppose that in this instance there exist two allocations π and π′ that make a single agent
(say, ai) envious of some other agent aj (for simplicity). Furthermore, assume that in
allocation π, no agent but ai thinks that aj’s bundle is better than ai’s, while in allocation
π′ all the other agents concur with the assessment that ai envies aj. According to Parijs
[1997], π′ exhibits unanimous envy, and it seems difficult to justify that π′ should be
returned in place of π. Inspired by this notion, we define in this chapter the notion of K-
approval envy, as a way to introduce a continuum between envy-freeness and unanimous
envy. As may be clear from the name, the idea is simply to ask agents to express their own
view about envy relations expressed by other agents. The objective will thus be to seek
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allocations minimizing social support for the expressed envy relations i.e., minimizing the
number of agents K approving the envy. Of course, this approach may be controversial:
after all, the notion of preference is inherently subjective. Introducing this flavour of
objectivity may lead to undesirable consequences. At the extreme, one may simply replace
individual preferences by some unanimous “mean” profile, thus profoundly changing the
very nature of the notion. We believe though that there are several justifications to this
approach:

• First, note that we only seek the approval of other agents in the case the agent
herself explicitly expresses envy: absence of envy thus remains completely subjective.
While a symmetrical treatment may also be justifiable in some situations, there is
an obvious reason which motivates us to start with the proposed definition, namely
the fact that the notion would no longer be a relaxation of envy-freeness.

• Secondly, all other things being equal, we believe that an allocation minimizing K
is socially more desirable. We do not necessarily regard this notion as a compelling
choice, but we think this can enrich the picture of fallback allocations when no
envy-free allocation exists, as other relaxations do [Amanatidis et al., 2018]. In
particular, in repeated settings, the fact that agents perceive outcomes as globally
fair (not only for themselves, but also for others) may be important as an incentive
for participation.

• Finally, one further motivation of our work is that our approach can be seen as
providing guidance regarding agents and more specifically agents’ preferences, in
order to progress towards envy-freeness by helping them revise their utilities for
example. In particular, if we envision systems integrating deliberative phases in the
collective decision-making process, our model could be used to set the agenda of such
deliberations. If a vast majority of agents contradict an agent on her envy towards
another agent, it may indicate for instance that she lacks information regarding the
actual value of (some items of) her share. Initiating a discussion might help to solve
such “objectively unjustified” envies when they occur.

While envy-freeness is a widely studied notion in fair division of indivisible goods,
another prominent notion in the literature is proportionality. This notion is based on
the proportional share: the proportional share of an agent is equal to the nth of the
utility this agent gives to the whole set of objects (with n the number of agents). An
allocation is proportional if and only if each agent receives at least her proportional share.
Note that there are strong links between proportionality and envy-freeness, namely, any
envy-free allocation is also proportional, whereas, on the contrary, there are instances
for which a proportional allocation exists but no envy-free one [Bouveret and Lemaître,
2016a]. As is the case for envy-freeness, a proportional allocation is not guaranteed to
exist. As a result, there has been a lot of work in recent literature about a relaxation
of proportionality called proportionality up to one item (PROP1) [Conitzer et al., 2017].
In the same spirit as EF1, PROP1 requires each agent to get her proportional share by
obtaining the object of some other agent that she values the most. In light of these
remarks and given the strong relationships between envy-freeness and proportionality, we
also explore an approval version of this latter notion.
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The remainder of this chapter is as follows. Our notion of K-approval envy is pre-
sented in Section 5.2. Some properties of this notion are then studied in Section 5.3: it
is shown in particular, that if the hypothetical situation of allocation π described at the
beginning of the introduction occurs, then an EF allocation must also exist. We also show
that our notion inherits from the complexity of related problems. After introducing the
approval notion around proportionality in Section 5.4, some properties are put forward
in Section 5.5 and some links between our two approval notions are studied in Section
5.6. As we did for approval envy, we show that the problem inherits from the hardness of
the classical notion. This hardness results motivates the MIP formulations that we detail
in Section 5.7. We next turn to the house allocation setting and we show that if each
agent exactly holds a single item, then we can define an efficient algorithm returning an
allocation minimizing the value of K for both our approval notions. One caveat of our
notions is that (unlike other relaxations) it is not guaranteed to exist, as intuitively ob-
served in the case of unanimous envy and unanimous non-proportionality. In Section 5.9,
we provide empirical evidences showing that allocations with reasonable values of K exist
under synthetic cultures as well as in real datasets.

5.2 K-approval envy
The notion of envy being inherently subjective, it might be the case that an agent envies
another agent, but that she has no reason to do so from the point of view of the other
agents. The difficulty here is to define the notion of objectivity, since no ground-truth
can properly serve as a basis of this definition. In her book, Guibet Lafaye [2006] recalls
the notion of unanimous envy, that was initially discussed by Parijs [1997], and that can
be defined as follows: an agent ai unanimously envies another agent aj, if all the agents
think that ai indeed envies aj. Here, unanimity is used as a proxy for objectivity.

As we can easily imagine, looking for allocations that are free of unanimous envy will
be too weak to be interesting: as soon as one agent disagrees with the fact that ai envies
aj, this potential envy will not be taken into account. Here, we propose an intermediate
notion between envy-freeness and (unanimous envy)-freeness:

Definition 5.1 (K-approval envy). Let π be an allocation, ai, aj be two different agents,
and 1 ≤ K ≤ n be an integer. We say that ai K-approval envies (K-app envies for short)
aj if there is a subset NK of K agents including ai such that:

∀ak ∈ NK , uk(πi) < uk(πj).

In other words, at least K − 1 agents amongst N \{ai} agree with ai on the fact that she
should actually envy agent aj.

Example 5.1. Let us consider the following add-MARA instance with 3 agents and 6
objects:

o1 o2 o3 o4 o5 o6
a1 0 3 3 1 3 2
a2 2 0 7 2 1 0
a3 0 3 5 0 1 3
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Note that there is no envy-free allocation for this instance. In the squared allocation, a1
is not envious, a2 envies a3 and a3 envies a1. Concerning the envy of a2 towards a3,
a1 disagrees with a2 being envious of a3 whereas agent a3 agrees. Hence, agent a2 2-app
envies agent a3. Concerning the envy of a3 towards a1, agent a1 agrees with a3 being
envious of a1 whereas agent a2 does not. Hence, a3 2-app envies a1.

Note that in the definition, as soon as ai does not envy aj, then, ai does not K-app
envy aj, no matter what the value of K is or how many agents think that ai should actually
envy aj. Doing so, we ensure that our approval notion is a relaxation of envy-freeness.

Let us start with an easy observation:

Observation 5.1. Given an allocation π of an add-MARA instance, if ai K-app envies
aj in π, then ai (K−1)-app envies aj in π.

Moreover, if ai n-app envies aj, we will say that ai unanimously envies aj. Finally, we
can observe that ai 1-app envies aj if and only if ai envies aj.

We can naturally derive from Definition 5.1 the counterpart of envy-freeness:

Definition 5.2 ((K-approval envy)-free allocation). An allocation π is said to be (K-app
envy)-free if and only if ai does not K-app envy aj in π for all pairs of agents (ai, aj).

Definition 5.3 ((K-approval envy)-free instance). An add-MARA instance I is said to
be (K-app envy)-free if and only if it accepts a (K-app envy)-free allocation.

Example 5.2. Going back to Example 5.1, the squared allocation is (3-app envy)-free so
the instance is (3-app envy)-free.

A threshold of special interest is obviously ⌊n/2⌋+1, since it requires a strict majority
to approve the envy under inspection. A Strict Majority approval envy-free (SM-app-EF)
allocation is a (K-app envy)-free allocation such that K ≤ ⌈n/2⌉, translating the fact
that every time envy occurs, there is a strict majority of agents that do not agree with
that envy.

Going further, it is important to notice that (K-app envy)-freeness is not guaranteed
to exist. Indeed, for all number of agents n and all number of objects m, there exist
instances for which no (K-app envy)-free allocation exists, no matter what K is. Suppose
for instance that all the agents rank the same object (say o1) first, and that for all ai,
u(i, 1) >

∑m
k=2 u(i, k). Then obviously, everyone agrees that all the agents envy the one

that will receive o1. Such instances will be called unanimous envy instances:

Definition 5.4 (Unanimous envy instance). An add-MARA instance I is said to exhibit
unanimous envy if I is not (K-app envy)-free for any value of K.

Observe that for an allocation to be (K-app envy)-free, for all pairs of agents (ai, aj),
either ai or at least n−K + 1 agents have to think that ai does not envy aj. Notice that
it is different from requiring that at least K agents think that this allocation is envy-free.
This explains the parenthesis around (K-app envy): this notion means “free of K-app
envy”, which is different from “K-app-(envy-free)”.

A useful representation, for a given allocation, is the induced envy graph [Lipton et al.,
2004]: vertices are agents, and there is a directed edge from ai to aj if and only if ai envies
aj. An allocation is envy-free if and only if the envy graph has no arc. In our context, we
can define a weighted notion of the envy graph.
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Definition 5.5 (Weighted envy graph). The weighted envy graph of an allocation
π is defined as the weighted graph (N , E) where nodes are agents, such that there is an
edge (ai, aj) ∈ E if ai envies aj, with the weight w(ai, aj) corresponding to the number of
agents (including ai) approving this pairwise envy in π.

Example 5.3. The induced weighted envy graph of Example 5.1 is as follows:

a1 a2 a3

2

2

Our notion of K-approval envy can be interpreted as a vote on envy, that works as
follows. For each pair of agents (ai, aj), if ai declares to envy aj, we ask the rest of the
agents to vote on whether they think that ai indeed envies aj. Then, a voting procedure is
used to determine whether ai envies aj according to the society of agents. Several voting
procedures can be used. However, since there are only two candidates (yes / no), the
most reasonable voting rules are based on quotas: ai envies aj if and only if there is a
minimum quota of agents that think so.1 This makes a connection with a related work
of Segal-Halevi and Suksompong [2019] which uses voting to decide upon envy-freeness,
but in the context of fair division of resources jointly owned by groups of agents.

Finally, we want to emphasize that our notion of K-approval envy is based on pairwise
envy. Namely, if agent ai envies aj, we will try to evaluate how many other agents think
that this envy is justified. Another possibility2 would be, for each envious agent ai, to
evaluate how many other agents think that ai has indeed reasons to be envious, no matter
which agent ai envies. The difference is subtle. To illustrate this, suppose that ai envies
aj and another agent ak disagrees with this particular envy, but thinks that ai has indeed
reasons to envy al(̸= aj). With the first notion (our notion), ak’s opinion will be discarded,
whereas in the second one, it will be counted.

In practice, we believe that this alternative notion of approval envy will be much less
discriminating than ours. The intuition can be explained as follows. Suppose that for
some allocation π there is a bundle πi that is not the top one for any agent. In that case,
not only the agent ai receiving πi will envy another agent (since πi is not ai’s top bundle),
but every other agent will also agree that ai should be envious. Hence, π will exhibit
unanimous envy. Now suppose in the contrary that every bundle of π is the top one for
some agent. If preferences are strict on bundles, then by the pigeon hole principle, the top
bundle of each agent has to be a different bundle of π, meaning that there is an envy-free
allocation in that case. Said otherwise, if preferences are strict on bundles, an instance
can only either be envy-free or unanimous envy. The only edge case happens when agents
can have several tied top bundles, which does not happen very often in practice.

The experiments we run on the Spliddit instances (see Section 5.9) tend to confirm
this intuition. This is why we decided not to investigate further this alternative notion of
approval envy.

1More precisely, these rules exactly characterize the set of anonymous and monotonic voting rules
[Perry and Powers, 2010].

2We warmly thank an anonymous reviewer for pointing this alternative notion to us.
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5.3 Some properties of K-app envy
There are natural relations between the properties of (K-app envy)-freeness for different
values of K. The following observation is a direct consequence of Observation 5.1.

Observation 5.2. Let π be an allocation, and K ≤ N be an integer. If π is (K-app
envy)-free, then π is also ((K+1)-app envy)-free.

However, the converse does not hold. More precisely, the following proposition shows
that the implication stated in Observation 5.2 is strict.

Proposition 5.1. Let π be an allocation, and 3 ≤ K ≤ n be an integer. If π is (K-app
envy)-free, π is not necessarily ((K−1)-app envy)-free.

Proof. Let h ∈ {2, . . . , n−1} be an integer, and let us consider the instance with n agents
and n objects defined as follows:

• u(1, 1) = 1− (n− 1)ε;

• u(i, 1) = u(i, i) = 1−(n−2)ε
2 for i ∈ {2, . . . , h− 1};

• u(i, i) = 1− (n− 1)ε for i ∈ {h, n− 1};

• u(n, 1) = 2
n+1 and u(n, j) = 1

n+1 for j > 1;

and u(i, j) = ε for other pairs with ε < 1
n+1 .

This construction is illustrated in the general case in Figure 5.1. Moreover, one in-
stance with n = 4 agents, m = 4 objects and h = 3 is shown in Example 5.4.

o1 o2 o3 . . . oh . . . on

a1 1− (n− 1)ε ε ε . . . ε . . . ε

a2
1−(n−2)ε

2
1−(n−2)ε

2 ε . . . ε . . . ε

a3
1−(n−2)ε

2 ε 1−(n−2)ε
2 . . . ε . . . ε

...
ah ε ε ε . . . 1− (n− 1)ε . . . ε
...

an
2

n+1
1

n+1
1

n+1 . . . 1
n+1 . . . 1

n+1

Figure 5.1: Instance used in the proof of Proposition 5.1

Consider the allocation π where each agent ai gets item oi. Obviously, the only envy
in this allocation concerns an towards a1. Moreover, only a1, . . . , ah−1 agree on this envy.
Therefore, an h-app envies a1, but does not (h+1)-app envy her. Moreover, π is ((h+1)-app
envy)-free, but not (h-app envy)-free.

Example 5.4. In order to illustrate the previous proof, let us consider the following
instance with 4 agents, 4 objects (and h=3) and the squared allocation π:
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o1 o2 o3 o4
a1 1− 3ε ε ε ε

a2
1
2 − ε 1

2 − ε ε ε

a3 ε ε 1− 3ε ε

a4
2
5

1
5

1
5

1
5

In this allocation, the only envy concerns a4 towards a1. Moreover, only a1 and a2
agree with a4 on her envy. Hence, π is (4-app envy)-free but is obviously not (3-app
envy)-free as we can find 3 agents (a1, a2 and a4) agreeing on the envy of a4 towards a1
(in other words a4 3-app envies a1).

Proposition 5.2. For any K ≥ 3, there exist instances which are (K-app envy)-free but
not ((K−1)-app envy)-free.

Proof. Consider the same instance as in Proposition 5.1. We have already shown that
we have an allocation π that is ((h+1)-app envy)-free which means that the instance is
((h+1)-app envy)-free. We just have to show that there is no (h-app envy)-free allocation
in order to conclude. For that purpose, we first note that each agent has to get one and
exactly one object. Indeed, if it is not the case at least one agent ai will have no object
and will thus be envious of any agent aj that has an object. Moreover, as all agents value
the empty bundle with utility 0 and every object is valued with a strictly positive utility,
this envy will be unanimous. Hence, each agent has to get one and exactly one object in
order to minimize the (K-app envy)-freeness. Now consider objects oj for j ∈ {h, n}. The
agents aj that receive an object oj and that are envious will h-app envy the agent that
received o1. Indeed, agents ai for i ∈ {h, n− 1} value objects oj with a utility higher than
(or equal to) the one of o1 (and thus do not approve the envy) while it is the opposite
for the other agents who are exactly h hence the h-app envy. So if we want to avoid that
envy, we have to give the objects oj to agents so that they do not experience envy at all
but it is not possible as such agents are agents ap for p ∈ {h, n − 1}. It means that we
have n − 1 − h + 1 agents that have to receive the n − h + 1 objects which is obviously
impossible. This means that we cannot avoid h-app envy which implies that no allocation
can be (h-app envy)-free.

Proposition 5.2 proves that the hierarchy of (K-app) envy-free instances is strict for
K ≥ 3. Rather surprisingly, we will see that it is not the case for K = 2.

In order to show this result, we will resort to a tool that has been proved to be useful
and powerful in many contexts dealing with envy [Biswas and Barman, 2018; Amanatidis
et al., 2019; Beynier et al., 2019a]: the bundle reallocation cycle technique. This technique,
originating from the seminal work of Lipton et al. 2004, consists in performing a cyclic
reallocation of bundles so that every agent is strictly better in the new allocation. Thus,
such a reallocation corresponds to a cycle in the opposite direction of the edges in the
— weighted — envy graph introduced in Definition 5.5. It is known that performing a
reallocation cycle decreases the degree of envy [Lipton et al., 2004]. Unfortunately, our
first remark is that it does not necessarily decrease the level of K-app envy. Worse than
that, it can actually increase it:
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o1 o2 o3 o4 · · · oh+3 oh+4 · · · on

a1 ε 2ε 1− 3ε 0 · · · 0 0 · · · 0

a2 1− ε ε 0 0 · · · 0 0 · · · 0

a3 0 0 1 0 · · · 0 0 · · · 0
a4 ε 0 ε 1−2ε

n−3 · · · 1−2ε
n−3

1−2ε
n−3 · · · 1−2ε

n−3
... ... ... ... ... ... ... ... ... ...

ah+3 ε 0 ε 1−2ε
n−3 · · · 1−2ε

n−3
1−2ε
n−3 · · · 1−2ε

n−3

ah+4 0 ε 2ε 1−3ϵ
n−3 · · · 1−3ϵ

n−3
1−3ϵ
n−3 · · · 1−3ϵ

n−3
... ... ... ... ... ... ... ... ... ...

an 0 ε 2ε 1−3ϵ
n−3 · · · 1−3ϵ

n−3
1−3ϵ
n−3 · · · 1−3ϵ

n−3

Figure 5.2: The instance used in the proof of Proposition 5.3.

Proposition 5.3. Let π be a (K-app envy)-free allocation, for 3 ≤ K ≤ n − 1. After
performing an improving bundle reallocation cycle (even between two agents), there can
be an integer K ′ > K such that the resulting allocation is (K ′-app envy)-free (and not
(K-app envy)-free).

Proof. Let h ∈ {0, . . . , n−4} be an integer, and let us consider the instance with n agents
and n objects defined by the following utility functions:

• a1: u(1, 1) = ε, u(1, 2) = 2ε, u(1, 3) = 1− 3ε;

• a2: u(2, 1) = 1− ε, u(2, 2) = ε;

• a3: u(3, 3) = 1;

• al for l ∈ {4, h + 3}: u(l, 1) = u(l, 3) = ε, u(l, j) = 1−2ε
n−3 for j ≥ 4;

• am for m ∈ {h + 4, n}: u(m, 2) = ε, u(m, 3) = 2ε, u(m, i) = 1−3ϵ
n−3 for i ≥ 4;

and u(i, j) = 0 for other pairs. We assume in this construction that ε ≤ 1
2n−1 .

This construction is illustrated in Figure 5.2.
Consider the allocation π where each agent ai gets item oi (corresponding to the

squared allocation in Figure 5.2). Obviously, in this allocation, there is no envy, except:

• a1 envying a2 (agents ah+4 . . . an agree on that);

• a1 envying a3 (agents a3 and ah+4 . . . an agree on that);

• a2 envying a1 (agents a4 . . . ah+3 agree on that).

Hence the allocation is ((max{n−h, h+2})-app envy)-free. We now consider the allocation
π′ resulting from the improving bundle reallocation cycle between a1 and a2 (circled
allocation in Figure 5.2). Observe that the only envy in π′ is the one of a1 towards a3,
which is approved by everyone except a2. This allocation is thus (n-app envy)-free and
not ((n − 1)-app envy)-free. If h > 0, then max{n − h, h + 2}) < n, which proves the
proposition.
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Now consider a slight generalization of Lipton’s cycles, weakly improving cycles (WIC),
that correspond to a reallocation of bundles where all the agents in the cycle receive a
bundle they like at least as much as the one they held, with one agent at least being strictly
happier. Of course, our example of Proposition 5.3 still applies. On the other hand, this
notion suffices to guarantee the decrease of the degree of envy (note that identifying the
cycles themselves may not be easy any longer, but this is irrelevant for our purpose). The
proof follows directly from the arguments of Lipton et al. 2004 (proof of Lemma 2).
Observation 5.3. Let π be an allocation, and π′ the allocation obtained after performing
a weakly improving cycle. It holds that de(π′) < de(π).
Proof. Let us consider an allocation π′ obtained after performing a WIC on an allocation
π. First note that the envies agents who are not involved in the WIC stay unchanged.
By definition of a WIC, all the agents get at least as much in π′ as they had in π. Thus
basically de(π′) ≤ de(π). Moreover, at least one agent gets a strictly better bundle so her
envy strictly decreases. We finally get that de(π′) < de(π).

We now show that (2-app envy)-freeness exhibits a special behaviour: in contrast
with Proposition 5.3, improving cycles (in fact, even weakly improving cycles) enjoy the
property of preserving the (2-app envy)-freeness level of an allocation. We provide this
result for swaps (cycles involving two agents only) as this is sufficient to establish our
main result.
Lemma 5.1. Let π be a (2-app envy)-free allocation that is not EF. There always exists
a WIC (that we can identify) between two agents such that the resulting allocation is
(K ′-app envy)-free, with K ′ ≤ 2.
Proof. Let ai be an envious agent (there is at least one). We identify the agent that ai

envies the most and call her aj (if there are several agents that ai envies the most, we
can pick randomly one of them). As ai envies aj and aj necessarily does not agree on
this envy because otherwise it would contradict (2-app envy)-freeness of π, swapping the
bundle of ai and aj is a WIC. Let us call π′ this new allocation. We will now show that
π′ is a (K ′-app envy)-free allocation with K ′ ≤ 2.

In π′, all the agents except ai and aj have the same approval envy. Moreover, ai is
now EF in π′ as she has received her preferred bundle. Suppose for contradiction that
π′ is (K ′-app envy)-free with K ′ > 2. Then necessarily, this is due to aj 2-app envying
(at least) some other agent ah (that can obviously not be ai). For this to be the case, aj

has to envy ah and another agent al has to approve this envy: (1) uj(π′
j) < uj(π′

h), (2)
ul(π′

j) < ul(π′
h). However, as ai envies aj in π then (3) ui(πi) < ui(πj) and as π is (2-app

envy)-free and (3) holds, every agent al (except ai of course) verifies (4) ul(πi) ≥ ul(πj).
Besides, π′ is obtained after swapping the bundles of ai and aj in π so π′

j = πi, π′
i = πj

and π′
h = πh; and from (2) we get: (5) ul(πi) < ul(πh). By transitivity with (5) and (4),

we obtain: (6) ul(πj) < ul(πh). However, we know that aj has the same utility in π and
π′ so uj(π′

j) = uj(πj). The latter combined with (1) (and the fact that π′
h = πh) gives:

(7) uj(πj) < uj(πh). Finally, note that (6) and (7) translate the fact that aj 2-app envies
ah in π which contradicts the fact that π is (2-app envy)-free.

Putting Lemma 5.1 and Observation 5.3 together allows us to prove that (2-app envy)-
freeness is essentially a vacuous notion, in the sense that any instance enjoying an alloca-
tion with this property will have an EF allocation as well.
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Proposition 5.4. If an add-MARA instance is (2-app envy)-free then it is also envy-free.

Proof. Take π as being an arbitrary (2-app envy)-free allocation. First note that if there
is no envious agent in π then, by definition, π is envy-free and the proposition holds.
We perform a WIC leading to π′ that is still (2-app envy)-free (see Lemma 5.1). If π′

is envy-free then we are done. Otherwise, from Observation 5.3 we know the degree of
envy has strictly decreased and that the resulting allocation is still (2-app envy)-free by
Lemma 5.1. Hence we can repeat this process until the current allocation is EF. The
process is guaranteed to stop because the degree of envy of the society is bounded below
by zero and the degree of envy of the society strictly decreases at each step until it reaches
zero (which corresponds to an envy-free allocation).

Another consequence is that, for two agents, instances fall either in the envy-free or
unanimous envy category:

Corollary 5.1. Let I be an add-MARA instance with n = 2, if there is no envy-free
allocation in I then I is a unanimous envy instance.

Complexity We conclude this section with a few considerations on the computational
complexity of the problems mentioned so far. First of all, as envy-freeness is (1-app
envy)-freeness, the problem of finding the minimum K for which there exists a (K-app
envy)-free allocation is at least as hard as determining whether an envy-free allocation
exists.

One may also wonder how hard the problem is to determine whether a given instance
exhibits unanimous envy or not, i.e. whether a (K-app envy)-free allocation exists for
some value of K. For this question, instances where agents all have the same preferences
provide insights.

Proposition 5.5. For any add-MARA instance, if all the agents have the same prefer-
ences then the notions of (1-app envy)-freeness and (n-app envy)-freeness coincide.

Proof. We already know from Observation 5.2 that (1-app envy)-freeness implies (n-app
envy)-freeness for any add-MARA instance. So we just have to prove that if all the agents
have the same preferences then (n-app envy)-freeness implies (1-app envy)-freeness. If an
allocation π is (n-app envy)-free then it means that for any pair (ai, aj) of agents, ai does
not envy aj or there is at least one agent ah that disagrees on the envy of ai towards aj.
Obviously, if for every pair of agents (ai, aj) we have ai envy-free towards aj then the
allocation π is envy-free and the proof concludes. Besides, for every pair of envious/envied
agents there is at least one agent disagreeing on the envy. But all the agents have the
same preferences so it means that every agent should agree with each other. Hence, no
envied agent can exist and we have (1-app envy)-freeness of allocation π.

From Proposition 5.5 we get that the problem of deciding the existence of unanimous
envy is at least as hard as deciding the existence of an EF allocation when agents have
similar preferences which is known to be NP-hard [Lipton et al., 2004]. As membership
in NP is direct, we thus get as a corollary that:

Corollary 5.2. Deciding whether an instance exhibits unanimous envy is NP-Complete.
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5.4 K-approval non-proportionality
As there is a clear hierarchy in the notions of fairness deriving from envy-freeness, it can be
natural to consider how the different notions of this hierarchy would behave in an approval
setting as we studied in Sections 5.2 and 5.3. Indeed, let us recall that it has been shown
by Bouveret and Lemaître [2016a] that envy-freeness implies proportionality. Moreover,
some relaxations of proportionality have been studied such as PROP1 in very recent works
[Aziz et al., 2020; Barman and Krishnamurthy, 2019; Brânzei and Sandomirskiy, 2019;
Conitzer et al., 2017]. This motivates us to investigate how we can derive an approval
notion of proportionality.

In this section, we will introduce the approval version of proportionality. Observe first
that our approval version of envy-freeness was based on a pairwise notion that we do
not have in proportionality. This is why we slightly adapt the approval notion to this
property.

Definition 5.6 (K-approval non-proportionality). Let π be an allocation, ai be an agent,
and 1 ≤ K ≤ n be an integer. We say that πi is K-approval non-proportional (K-app
non-prop for short) in π if there is a subset NK of K agents including ai such that:

∀ak ∈ NK , uk(πi) < Propk.

In other words, at least K − 1 agents amongst N \ {ai} agree with ai on the fact
that she does not have her proportional share. We emphasize that we chose to focus on
non-proportionality rather than on proportionality, to be consistent with our definition
of K-app envy. The other related notions are defined accordingly as follows.

Definition 5.7 ((K-approval non-proportional)-free allocation). An allocation π is said
to be (K-app non-proportional)-free if and only if no πi is K-app non-proportional.

Once again, observe that the interpretation of this property is that an allocation is
free of K-app non-prop: each agent ai either thinks she receives a proportional share, or,
if it is not the case, no more than K − 2 agents agree with ai.

Definition 5.8 ((K-approval non-proportional)-free instance). An add-MARA instance
I is said to be (K-app non-proportional)-free if and only if it accepts a (K-app non-
proportional)-free allocation.

Definition 5.9 (Unanimous non-proportional allocation). An add-MARA allocation π is
said to exhibit unanimous non-proportionality if π is not (K-app non-proportional)-free
for any value of K.

Definition 5.10 (Unanimous non-proportional instance). An add-MARA instance I is
said to exhibit unanimous non-proportionality if I is not (K-app non-proportional)-free
for any value of K.

Example 5.5. Let us consider the add-MARA instance introduced in Example 5.1:

o1 o2 o3 o4 o5 o6

a1 0 3∗ 3 1 3 2 ∗

a2 2 ∗ 0 7 2∗ 1 ∗ 0
a3 0 3 5 ∗ 0 1 3
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It is easy to notice that the proportional share of all the agents is the same and is worth
4. In the squared allocation, π1 is not proportional as she values her bundle 3. Moreover
a2 and a3 agree on the non-proportionality of her bundle. Hence π1 is unanimous non-
proportional. Besides π2 is not proportional either. However neither a1 nor a3 agree on
this non-proportionality as they value a2’s bundle with respective utilities 6 and 4. So
π2 is 1-app non-prop. Finally, π3 is proportional. Consequently, we can say that the
squared allocation is unanimous non-prop because of a1. However, the instance itself is
not unanimous non-prop as we can easily notice that the star allocation is proportional
and hence (1-app non-prop)-free.

5.5 Properties of (K-app non-prop)-freeness
In this section, we will present some properties about the notion of (K-app non-prop)-
freeness for different values of K. We will also present some complexity results.

There are natural relationships between the different notions of (K-app envy)-freeness,
for different values of K. We start with an easy observation which is the counterpart for
(K-app non-prop)-freeness of Observation 5.2:

Observation 5.4. Given an allocation π of an add-MARA instance, if πi is K-app non-
proportional in π, then πi is (K−1)-app non-proportional in π.

The following observation is a direct consequence of Observation 5.4.

Observation 5.5. Let π be an allocation, and K ≤ N be an integer. If π is (K-app
non-prop)-free, then π is also ((K+1)-app non-prop)-free.

However, the converse does not hold. More precisely, the following proposition shows
that the implication stated in Observation 5.5 is strict.

Proposition 5.6. Let π be an allocation, and 3 ≤ K ≤ n be an integer. If π is (K-app
non-prop)-free, π is not necessarily ((K−1)-app non-prop)-free.

Proof. Let us consider the following instance with 3 agents and 3 objects and the squared
allocation π. Recall that Propi denotes the proportional share of ai as stated in Definition
1.4:

o1 o2 o3

a1 Prop1 + 1 Prop1 + 1 Prop1 − 2
a2 Prop2 − 1 Prop2 − 1 Prop2 + 2
a3 Prop3 − 1 Prop3 − 1 Prop3 + 2

In this allocation, the only agent that does not hold her proportional share is a2. Moreover,
we can easily see that a3 agrees with this non-proportionality whereas a1 does not. So
a2 experiences 2-app non-prop and thus π is a (3-app non-prop)-free allocation but not
(2-app non-prop)-free.

Proposition 5.7. For any K ≥ 3, there exists instances which are (K-app non-prop)-free
but not ((K−1)-app non-prop)-free.
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Proof. Consider the same instance as in Proposition 5.6. We have already shown that
we have an allocation π that is (3-app non-prop)-free which means that the instance
is (3-app non-prop)-free. We just have to show that there is no (2-app non-prop)-free
allocation in order to conclude. For that purpose, we first note that each agent has to
get one and exactly one object. Indeed, if it is not the case at least one agent ai will
have no object and will thus not obtain her proportional share. Moreover, as all agents
value the empty bundle with utility 0 this non-proportionality will be unanimous. Hence,
each agent has to get one and exactly one object in order to minimize the (K-app non-
prop)-freeness. Moreover, as a2 and a3 have the same preferences and only o3 fulfils their
proportional share then there is obviously no proportional allocation. Finally, this means
that one of them will get either o1 or o2, and the non-proportionality of their bundles
will be approved by the other, leading to a 2-app non-prop. Thus there is no (2-app
non-prop)-free allocation and so the instance is (3-app non-prop)-free and not (2-app
non-prop)-free.

Proposition 5.7 proves that the hierarchy of K-app non-prop instances is strict for
K ≥ 3. As it was the case for the approval notion derived from envy-freeness we will see
that it is not the case for K = 2 by show that (2-app non-prop)-freeness exhibits a special
behaviour. For that, we start with a simple result.

Lemma 5.2. Let π be an allocation. For each agent ai, there is at least one bundle πj

such that ui(πj) ≥ Propi.

Proof. Let us consider for the sake of contradiction that there exists one allocation π
in which an agent ai cannot find any bundle that fulfils her proportional share. This
means that every bundle is valued strictly less than Propi =

∑m

j=0 u(i,j)
n

. By adding all the
bundles (there are by definition n bundles in any allocation) we get that ai values all the
bundles strictly less than n × Propi = n ×

∑m

j=0 u(i,j)
n

= ∑m
j=0 u(i, j) which is an obvious

contradiction.

We now establish a result similar to Lemma 5.1:

Lemma 5.3. Let π be a (2-app non-prop)-free allocation that is not proportional. There
always exists a bundle exchange between two agents (swap), that is not necessarily im-
proving, such that the resulting allocation is (K ′-app non-prop)-free (with K ′ ≤ 2) and
such that the number of agents with a non-proportional bundle has strictly decreased.

Proof. Let π be a (2-app non-prop)-free allocation that is not proportional. Let ai be an
agent whose πi is non-proportional in π (there is at least one). According to Lemma 5.2,
there is (at least) one share πj such that ui(πj) ≥ Propi. Let π′ be the allocation resulting
from swapping ai’s and aj’s bundles in π. In π′, all the agents except ai and aj have bundles
with the same approval non-proportionality. Moreover, π′

i is now proportional in π′ by
definition of the swap we chose. Finally, π′

j is also proportional: suppose for contradiction
that it is not the case. Then it would mean that uj(π′

j) < Propj, which in turns implies
uj(πi) < Propj. In other words, in π, πi was not proportional and aj agreed, which
contradicts the fact that π was (2-app non-prop)-free. Hence, π′

j is proportional, and as a
result, π′ is still (2-app non-prop)-free, and the number of agents with a non-proportional
bundle has increased by at least 1 (ai is the new agent with a proportional bundle).
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Putting together Lemma 5.2 and Lemma 5.3 allows us to prove that (2-app non-prop)-
freeness is essentially a vacuous notion, in the same sense as it is for (2-app envy)-freeness
(Proposition 5.4):

Proposition 5.8. If an add-MARA instance is (2-app non-prop)-free then it is also pro-
portional.

Proof. Let π be an arbitrary (2-app non-prop)-free allocation. First note that if all the
agents have proportional bundles in π then, by definition, π is proportional and the
proposition holds. Otherwise, we perform a swap leading to π′ that is still (2-app non-
prop)-free (see Lemma 5.3). If π′ is proportional then we are done. Otherwise, thanks
to the second part of Lemma 5.3 we know the number of agents with a non-proportional
bundle has strictly decreased. We can repeat this process until the current allocation
is proportional. The process is guaranteed to stop because the number of agents with
a non-proportional bundle is bounded below by zero and decreases at each step until it
equals zero (which corresponds to a proportional allocation).

Another consequence is that, for two agents, instances are either proportional or unan-
imous non-proportional:

Corollary 5.3. Let I be an add-MARA instance with n = 2, if there is no proportional
allocation in I then I is an unanimous non-proportional instance.

Proof. For any add-MARA instance involving exactly 2 agents, we can (by definition) only
find (1-app non-prop)-free allocations or (2-app non-prop)-free allocations (as 1 ≤ K ≤ n
for any add-MARA instance). By the contraposition of Proposition 5.8 we conclude the
proof.

We also note that, as it was the case for K-app envy, performing a reallocation cycle
can increase the level of K-app non-prop:

Proposition 5.9. Let π be a (K-app non-prop)-free allocation, for 3 ≤ K ≤ n − 1.
After performing an improving bundle reallocation cycle (even between two agents), the
resulting allocation may be (K ′-app non-prop)-free (and not (K-app non-prop)-free) such
that K ′ > K.

Proof. Let us consider the following instance with 3 agents and 3 objects:

o1 o2 o3

a1 Prop1 − 1 Prop1 − 2 Prop1 + 3
a2 Prop2 Prop2 + 3 Prop2 − 3
a3 Prop3 − 1 Prop3 Prop3 + 1

First consider the squared allocation that is (2-app non-prop)-free as only a1 does not
hold her proportional share and that it is not approved by any other agent. Let us now
consider the underlined allocation π that is the result of the improving bundle reallocation
between a1 and a2. We can see that only a1 does not hold her proportional share and that
this time a3 approves it leading to a 2-app non-prop and thus a (3-app non-prop)-free
allocation.
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Complexity. We conclude this section with a few considerations on the computational
complexity of the problems mentioned so far around the approval notion of proportionality.
First of all, as proportionality is equivalent to (1-app non-prop)-freeness, the problem of
finding the minimum K for which there exists a (K-app non-prop)-free allocation is at
least as hard as determining whether a proportional allocation exists which is known to
be NP-complete.

One may also wonder how hard the problem of determining whether a given instance
exhibits unanimous non proportionality or not is, i.e. whether a (K-app non-prop)-free
allocation exists for some value of K. For this question, as in Proposition 5.5, instances
where agents all have the same preferences provide the answer.

Proposition 5.10. For any add-MARA instance, if all the agents have the same prefer-
ences then the notions of (1-app non-prop)-freeness and (n-app non-prop)-freeness coin-
cide.

Proof. We already know from Observation 5.5 that (1-app non-prop)-freeness implies (n-
app non-prop)-freeness for any add-MARA instance. So we just have to prove that if
all the agents have the same preferences then (n-app non-prop)-freeness implies (1-app
non-prop)-freeness. Let π be an (n-app non-prop)-free allocation. Then for any agent ai,
either ui(πi) ≥ Propi, or there exists an agent aj such that uj(πi) ≥ Propj. Since all the
agents have identical preferences, the last inequality reduces to ui(πi) ≥ Propi, showing
that ai receives her proportional share. Hence in this case, π is proportional.

From Proposition 5.10 we get that the problem of deciding the existence of a unanimous
non-proportional allocation is at least as hard as deciding the existence of a proportional
allocation when agents have similar preferences which is known to be NP-hard (see for
instance Bouveret and Lemaître, 2016a). As membership in NP is direct, we thus get as
a corollary that:

Corollary 5.4. Deciding whether an allocation exhibits unanimous non-prop is NP-
Complete.

5.6 Link between approval envy-freeness and
approval non-proportionality

After having introduced some properties of approval non-proportionality, we will now
investigate the relationships between this notion and approval envy-freeness introduced
earlier.

We first recall that envy-freeness implies proportionality and that this implication is
still valid for EF1 and PROP1. It is thus natural to wonder whether it is also the case
for our approval notions. As we will see, the answer is negative.

Proposition 5.11. A unanimous envy instance can be proportional.

Proof. Let us consider the following generic add-MARA instance (here, ε ≤ 1/n):
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o1 o2 . . . on−1 on

a1 1/n 1/n− ε . . . 1/n− ε 1/n + (n− 2)ε
a2 1/n− ε 1/n . . . 1/n− ε 1/n + (n− 2)ε
...

an−1 1/n− ε 1/n− ε . . . 1/n 1/n + (n− 2)ε
an 1/n− ε 1/n− ε . . . 1/n 1/n + (n− 2)ε

In this instance, the squared allocation is proportional (and so (1-app non-prop)-free)
whereas it is easy to see that the instance is a unanimous envy one as on is the top object
of every agent. Hence the agent that gets on will be envied and this envy will be approved
by everyone.

From this result, we can generalize the statement to any level of (K-app) envy and
any level of (L-app non-prop)-freeness. First of all, from Observation 5.5, it is clear that
the counter-example of Proposition 5.11 establishes that a unanimous envy-envy instance
can be (L-app non-prop)-free, for any L ≥ 1. But note also that if (counterfactually) it
was the case that proportionality (or indeed any level of (L-app non-prop)-freeness) would
imply some level of (K-app)-envy freeness, then by invoking Observation 5.2 this would
also imply (unanimous envy)-freeness, a contradiction with Proposition 5.11. Putting all
these remarks together allows us to state the following result.

Corollary 5.5. For any K ≥ 1 and any L ≥ 1, an allocation exhibiting (K-app) envy
can be (L-app non-prop)-free.

Since proportionality is a weaker notion than envy-freeness, the previous result may
not come as a surprise. It seems much more likely to obtain a positive result in the other
direction, that is, that some level of (K-app envy)-freeness actually implies some level of
(K-app non-pro)-freeness. It turns out that this is not the case.

Proposition 5.12. An instance that exhibits unanimous non-proportionality can be (3-
app envy)-free.

Proof. Let us consider the following add-MARA instance for which Propi = 1
n

for all i:

o1 o2 o3 . . . on−1 on

a1 ε ε ε . . . ε 1− (n− 1)ε
a2 ε ε ε . . . ε 1− (n− 1)ε
a3 ε ε 1− (n− 1)ε . . . ε ε
...

an ε ε ε . . . 1− (n− 1)ε ε

It is obvious that in any allocation the agent that gets o1 will not get her proportional
share and that this non-proportionality will be approved by everyone. However, the
squared allocation is (3-app envy)-free since the only envy in this allocation is a1’s towards
a2, and only a2 approves this envy.
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Again, this allows us to state a more general result. First of all, it is direct from
Observation 5.2 that the counter-example of Proposition 5.12 establishes that an unani-
mous non-proportional instance can be (K-app envy)-free, for any K ≥ 3. But note also
that if (counterfactually) it was the case that (3-app envy)-freeness (or indeed any level
L ≥ 3 of (L-app envy)-freeness) would imply some level of (K-app)-non-prop freeness,
then by invoking Observation 5.5 this would also imply (unanimous non-prop)-freeness, a
contradiction with Proposition 5.12. Putting all these remarks together allows us to state
the following result.

Corollary 5.6. For any K ≥ 3 and any L ≥ 1, a (K-app envy)-free instance can exhibit
(L-app) non-proportionality.

Note that this is the best we can do, since by Observation 5.2, Observation 5.5 and the
well-known implication between envy-freeness and proportionality, we have an implication
from (2-app envy)-freness and any level of (L-app non-prop)-freeness.

Now in principle, and even if counter-intuitive at first sight, it could still be that
exhibiting unanimous envy could imply proportionality; or that exhibiting unanimous
non-proportionality could imply (3-app)-envy-free. The following result shows that both
implications do not hold.

Proposition 5.13. An instance can be at the same time unanimous envy and unanimous
non-proportional.

Proof. Let us consider the following instance with n agents and commensurable utilities
(Propi = 1

n
for all i and we assume that ε < 1

n
) :

o1 o2 . . . on

a1 ε ε . . . 1− (n− 1)ε
a2 ε ε . . . 1− (n− 1)ε
...

an ε ε . . . 1− (n− 1)ε

It is obvious to see that any agent getting an object different from on (say w.l.o.g o1)
will not be proportional and will envy the agent receiving on. Moreover, since all the
agents have the same preferences, they will all agree with this non-proportionality and
envy.

We have summed up the relations between approval envy notions and approval non-
proportionality ones in Figure 5.3.

5.7 Computation
We have seen at the end of Section 5.3 (respectively Section 5.5) that the problem of de-
termining, for a given instance I, the minimal value of K such that a (K-app envy)-free
(respectively a (K-app non-prop)-free) allocation exists inherited from the high complex-
ity of determining whether an envy-free (respectively a proportional) allocation exists.

To address this problem, we present in this section two Mixed Integer linear Programs
that return, for a given add-MARA instance I, a (K-app envy)-free (respectively (K-app
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I (1-app envy)-free ⇔ I EF I (1-app NP)-
free ⇔ I Prop

I (2-app envy)-free I (2-app NP)-free

I (3-app envy)-free I (3-app NP)-free

... ...

I (unanimous envy)-free I ( unanimous NP)-free

[Bouveret and Lemaître, 2016a]

Obs. 5.2

Obs. 5.2

Obs. 5.2

Obs. 5.2 ∥ Prop. 5.2

∥ Prop. 5.2

∥ Prop. 5.2

Prop. 5.4 Obs. 5.5

Obs. 5.5

Obs. 5.5

Obs. 5.5 ∥ Prop. 5.7

∥ Prop. 5.7
∥ Prop. 5.7

Prop. 5.8

∥Prop. 5.11

∥Prop. 5.12

Figure 5.3: Hierarchy among instance properties. A simple edge denotes an implication relation.
A striked out edge has been drawn when we have found a counter-example showing that this
implication is not valid. Edges obtained by transitivity are not shown. All the remaining missing
arcs are non-implication edges which can be obtained thanks to Corollaries 5.5 and 5.6.
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non-prop)-free) allocation with the minimal K and no solution when I is an unanimous
envy (respectively non-prop) instance. We will first introduce and thoroughly explain
the MIP for K-app envy. Then, we will show how to adapt it to K-app non-prop.

In this section, we assume that all the utilities are integers. If they are not (recall
that they are assumed to be in Q+) we can transform the instance at stake into a new
one only involving integer utilities by multiplying them by the least common multiple of
their denominators.

5.7.1 A MILP formulation for K-app envy
In this MILP, we use n×m Boolean variables zj

i (we use bold letters to denote variables)
to encode an allocation: zj

i = 1 if and only if ai gets item oj. We also introduce n3

Boolean variables ekih such that ekih = 1 if and only if ai envies agent ah according
to ak’s preferences. We also need to add n2 Boolean variables xih used to linearize the
constraints on ekih. Finally, we use an integer variable K corresponding to the K-app
envy we seek to minimize.

We first need to write the constraints preventing an item from being allocated to
several agents:

n∑
i=1

zj
i = 1 ∀j ∈ J1, mK (5.1)

By adding these constraints we also guarantee completeness of the returned allocation
(all the items have to be allocated to an agent).

Secondly, we have to write the constraints that link the variables ekih with the allo-
cation variables zj

i:

m∑
j=1

u(k, j)(zj
h − zj

i) > 0 ⇐⇒ ekih = 1 ∀k, i, h ∈ J1, nK

As the utilities are integers, we can replace > 0 by ≥ 1. In order to linearize the
equivalence between the two constraints we introduce a number M that can be arbitrarily
chosen such that M > maxak∈N

∑m
j=1 u(k, j):

Mekih ≥
m∑

j=1
u(k, j)(zj

h − zj
i) ∀k, i, h ∈ J1, nK (5.2)

m∑
j=1

u(k, j)(zj
h − zj

i) ≥ 1−M(1− ekih) ∀k, i, h ∈ J1, nK (5.3)

Finally, we have to write the constraints that convey the fact that the allocation we
look for is (K-app envy)-free:

eiih = 0 ∨
n∑

k=1
ekih ≤ K− 1 ∀i, h ∈ J1, nK
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Since eiih are Boolean variables, we can replace eiih = 0 by eiih ≤ 0. Now, these
logical constraints are linearized as follows:

eiih ≤ xih ∀i, h ∈ J1, nK (5.4)
n∑

k=1
ekih ≤ K− 1 + n(1− xih) ∀i, h ∈ J1, nK (5.5)

We can now put things together. Let I be an instance. Then, we will denote byM1(I)
the MIP defined as:

minimize K
such that zj

i, ekih, xih ∈ {0, 1} ∀k, i, h ∈ J1, nK, j ∈ J1, mK
K ∈ J1, NK
+ Constraints (5.1, 5.2, 5.3, 5.4, 5.5)

Proposition 5.14. Let I be an add-MARA instance. Then, there is an optimal solution
with K = L toM1(I) if and only if I is an (L-app envy)-free instance and not an ((L−1)-
app envy)-free one. Moreover, M1(I) does not admit any solution if and only if I is an
unanimous envy instance.

The proof of this result can be found in Appendix D.

5.7.2 A MILP formulation for K-app non-prop
In the previous subsection, we have introduced a Mixed Integer Linear Program that
returns a (K-app envy)-free allocation with the minimal K and no solution when I is an
unanimous envy (respectively non-prop) instance. We will now explain how to adapt it
to K-app non-proportionality.

In this adapted MIP, we use the same Boolean variables zj
i. We also introduce n2

Boolean variables pki such that pki = 1 if and only if according to ak’s preferences ai’s
bundle is worth strictly less than the proportional share of ak. We also need to add n
Boolean variables xi used to linearize the constraints on pki. Finally, we use an integer
variable K corresponding to the K-app non-proportionality we seek to minimize.

Recall that we assume in this section that the utilities are integers. We will further
assume that Propk = ∑m

j=1 u(k, j)/n is also an integer for each k. If it is not the case,
they all the utilities can be multiplied by n without changing the result.

We first need Constraint (5.1) to ensure the correctness of the allocation.
Secondly, we have to write the constraints that link variables pki with the allocation

variables zj
i:

m∑
j=1

u(k, j) · zj
i <

∑m
j=1 u(k, j)

n
(= Propk) ⇐⇒ pki = 1 ∀k, i ∈ J1, nK

As the utilities are integers, we can replace > 0 by ≥ 1. In order to linearize the
equivalence between the two constraints we introduce a number M that can be once
again arbitrarily chosen such that M > maxak∈N

∑m
j=1 u(k, j):
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Mpki ≥ Propk −
m∑

j=1
u(k, j)zj

i ∀k, i ∈ J1, nK (5.6)

Propk −
m∑

j=1
u(k, j)zj

i ≥ 1−M(1− pki) ∀k, i ∈ J1, nK (5.7)

Finally, we have to write the constraints that convey the fact that the allocation we
look for is (K-app non-prop)-free:

pii = 0 ∨
n∑

k=1
pki ≤ K− 1 ∀i ∈ J1, nK

Since pii is a Boolean variable for each i, we can replace pii = 0 by pii ≤ 0. Now, this
logical constraint is linearized as follows:

pii ≤ xi ∀i ∈ J1, nK (5.8)
n∑

k=1
pki ≤ K− 1 + n(1− xi) ∀i ∈ J1, nK (5.9)

We can now put things together. Let I be an instance. Then, we will denote byM2(I)
the MIP defined as:

minimize K
such that zj

i, pki, xi ∈ {0, 1} ∀k, i ∈ J1, nK, j ∈ J1, mK
K ∈ J1, NK
+ Constraints (5.1, 5.6, 5.7, 5.8, 5.9)

Proposition 5.15. Let I be an instance. Then, there is an optimal solution with K = L
to M2(I) if and only if I is an (L-app non-prop)-free instance and not an ((L − 1)-app
non-prop)-free one. Moreover, M2(I) does not admit any solution if and only if I is an
unanimous non-proportional instance.

The proof of this result can be found in Appendix D.

5.8 House Allocation setting
We have seen in Corollaries 5.2 and 5.4 the problems of finding the minimal level K
for which there exists a (K-app envy)-free or a (K-app non-prop)-free allocation are
difficult in the general case. A natural way to tackle this difficulty is to look for particular
restrictions where these problems can be solved efficiently. In this section, we will deal
with the House Allocation setting.

As mentioned in Chapter 1, the House Allocation Problem (HAP for short) is a stan-
dard setting where there are exactly as many items as agents, and each agent receives
exactly one item. This setting is relevant in many situations and has been extensively
studied [Shapley and Scarf, 1974; Roth and Sotomayor, 1992; Abraham et al., 2005]. In
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House Allocation Problems, computing an envy-free allocation and a proportional alloca-
tion reduces to the problem of finding a matching in a bipartite graph, which can be done
in O(n3)[Gondran and Minoux, 1984]3. Indeed, an envy-free allocation exists if and only
if all the agents get (one of) their top item(s) and a proportional allocation exists if and
only if each agent ai gets an item whose value is greater than Propi. It is therefore natural
to wonder whether an allocation minimizing K-app envy or K-app non-proportionality
could also be computed efficiently.

Our first observation hints in that direction. Indeed, characterizing unanimous envy
becomes easy in house allocation problems.

Proposition 5.16. Let I be an instance of HAP. I is an unanimous envy instance if and
only if there exists at least one pair of items (oi, oj) such that all the agents unanimously
strictly prefer oi to oj.

Proof. (⇒) Suppose that for any pair of items (oi, oj), there are two agents (ak, al) such
that u(k, i) ≥ u(k, j) and u(l, i) ≤ u(l, j). Let π be an allocation, and suppose w.l.o.g
that πi = {oi}. Then for any pair of agents (ai, aj), either (i) u(i, i) ≥ u(i, j), in which
case ai does not envy aj, or (ii) u(i, i) < u(i, j), in which case ai envies aj, but there is
another agent ak such that u(k, i) ≥ u(k, j). In the latter case, ak disagrees with ai’s envy
towards aj. Hence ai does not unanimously envy aj. Therefore I is not an unanimous
envy instance.

(⇐) Suppose now that there is a pair of items (oi, oj) such that u(k, i) > u(k, j) for
all agents ak. In any allocation one agent (say ai) holds oi while another agent (say aj)
holds oj: aj envies ai and all the agents approve this envy. Therefore I is an unanimous
envy instance.

Incidentally, we get as a corollary:

Corollary 5.7. One can check in O(n3) whether an instance I of HAP is a unanimous
envy instance or not.

From this characterization we can also derive a result on the likelihood that unanimous
envy exists when the utilities are uniformly distributed (that is, for each agent ai and
object oj, utilities are drawn i.i.d. following the uniform distribution on some interval
[x, y]). The interested reader can find this result in Appendix D.

We will now investigate the case of approval non-proportionality in the context of HAP.
Interestingly, it is also possible to exactly characterize the set of unanimous non-prop
instances.

Proposition 5.17. Let I be an HAP instance. I is an unanimous non-prop instance if
and only if there exists at least an item op such that u(k, p) < Propk for all agents ak.

Proof. (⇒) Suppose no such item op exists. Let π be any allocation giving to each agent
ai an item (say oi w.l.o.g). Then either u(i, i) ≥ Propi, in which case ai receives her
proportional share, or u(i, i) < Propi, in which case there is another agent ak such that

3Slightly better complexities have since been proposed, for more details check [Lovász and Plummer,
2009]

114



u(k, i) > Propk. ak thus disagrees with πi being non-proportional. Hence the instance is
not unanimous non-prop.

(⇐) Now suppose that there is an item op such that u(k, p) < Propk for all agents
ak. In any allocation one agent (say ap) holds op. By definition, ap does not get her pro-
portional share, and all the agents agree with that. Therefore, the instance is unanimous
non-prop.

As for approval envy-freeness, this result yields an efficient way of checking whether
an instance is unanimous non-prop or not:

Corollary 5.8. One can check in O(n2) whether an instance I of HAP is an unanimous
non-prop instance or not.

Like in the approval envy case, we can derive from this characterization an upper bound
on the probability for an instance to be unanimous non-proportional (see Appendix D).

We will now show that finding an allocation minimizing (K-app envy)-freeness can be
done in polynomial time. Before introducing the idea, we need an additional notation. For
any pair of objects (oj, oj′), let #≺(oj, oj′) denote the number of agents strictly preferring
oj′ to oj. For any agent ai and object oj, we will also define maxEnvy(i, j) as follows:

maxEnvy(i, j) = max
oj′ s.t. u(i,j′)>u(i,j)

#≺(oj, o′
j)

In other words, maxEnvy(i, j) denotes the maximal value of #≺(oj, o′
j) among the objects

that are strictly preferred to oj by ai. As we can imagine, this will exactly be the value
of the K-app envy experienced by ai if she gets item oj (note that if oj is among ai’s top
objects, this value will be 0).

The key to the algorithm is to see that for a given K, determining whether a (K-
app envy)-free allocation exists can be done in polynomial time by solving a matching
problem. Namely, for each K, we build the following bipartite graph: N ∪O is the set of
nodes, and we add an edge (ai, oj) ∈ N × O if and only if maxEnvy(i, j) is lower than
or equal to K. We can observe that any perfect matching in this graph corresponds to a
((K +1)-app envy)-free allocation. More precisely, if there exists a perfect matching, that
means that the allocation π resulting from the perfect matching is ((K+1)-app envy)-free
but there could exist another allocation with lower (approval envy)-freeness. If there is no
perfect matching, then there could exist a (h-app envy)-free allocation with h > K + 1.
The only thing that remains to do is to run through all possible values of K, which can
be done by dichotomous search between 0 and n. This is formalized in Algorithm 5.1.

Proposition 5.18. For any HAP instance, we can find (one of) its optimal (K-app
envy)-free allocations in O(n3 log(n)).

Proof. First, the computation of the matrix maxEnvy runs in O(n3). Indeed, to compute
maxEnvy(i, j) we first need to compute #≺(oj, oj′) which already runs in O(n3) as we
have to ask for each couple of objects (n2 in total) the point of view of all the agents (n
in total). From that, since

maxEnvy(i, j) = max
oj′ s.t. u(i,j′)>u(i,j)

#≺(oj, oj′)
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Algorithm 5.1: Minimizing (K-app envy)-freeness in the HAP
input : I = ⟨N ,O, w⟩ a HAP instance
output: Allocation π and its level minimizing the (K-app envy)-freeness or None

if I is a unanimous envy instance
1 maxEnvy ← computeMaxEnvy();
2 res ← None;
3 low ← 0, high ← n;
4 while low≤ high do
5 K ← ⌊(low + high)/2⌋;
6 G← buildBipartiteGraph(maxEnvy, K);
7 π ← perfectMatching(G);
8 if π is not None then
9 res ← π, K + 1;

10 high ← K − 1;
11 end
12 else
13 low ← K + 1;
14 end
15 end
16 return res

we can compute maxEnvy(i, j) in O(n). As there are n2 different pairs (ai, oj) we have
the final O(n3) complexity of computing maxEnvy.

Due to the dichotomous search, the algorithm needs to solve log(n) perfect matching
problems, that can be solved in O(n3)[Gondran and Minoux, 1984]. The overall complex-
ity of Algorithm 5.1 is thus O(n3 log(n)).

Following the same idea, we can propose an algorithm that returns an allocation
minimizing (K-app non-prop)-freeness in polynomial time. For this case, we no longer
need the matrix maxEnvy, but we have to replace it by some vector #nonProp that
tells for each object oj how many agents think this object is not worth their proportional
share:

#nonProp(j) = |{ai s.t. u(i, j) < Propi}|

In Algorithm 5.1 we then replace Line 5.1 by an instruction computing #nonProp for
each oj. Then, we replace the bipartite graph computed at Line 5 by the graph defined
as follows: N ∪ O is still the set of nodes, and we add an edge (ai, oj) ∈ N × O if and
only if u(i, j) < Propi or #nonProp(j) is lower than or equal to K.

Proposition 5.19. For any HAP instance, we can find (one of) its optimal K-app non-
prop-free allocations in O(n3 log(n)).

Proof. We know from the proof of Proposition 5.18 that the algorithm runs in at least
O(n3 log(n)) due to the dichotomous search associated with the perfect matching problem
resolutions. But the complexity could be worse because of the computation of #nonProp
and the construction of the bipartite graph. To compute #nonProp, it is enough for
each object oj to run through all the agents and count how many of them think oj is not
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worth their proportional share. This can be done in O(n2) steps, provided that we have
pre-computed the values Propi first (which can be done in O(n) for each agent, that is,
O(n2) in total). Computing the bipartite graph does not take longer than before, since
we just have to check for each pair (ai, oj) whether u(i, j) < Propi or #nonProp(j) ≤ K
(which can be made in constant time if the values Propi and #nonProp(j) have been
pre-computed). Thus in total, the adaptation of the algorithm does not cause any added
complexity, so the global complexity is still O(n3 log(n)).

5.9 Experimental results
We conducted an experimental evaluation of our approval notions and solving methods.
These experiments serve two purposes: (i) evaluate the behaviour of the MIPs we pre-
sented in Section 5.7 and of the polynomial algorithms described in Section 5.8 for the
HAP setting, and (ii) observe the relevance of our two approval notions when varying the
number of agents, of items, and the type of preferences. All the tests presented in this
section have been run on an Intel(R) Core(TM) i7-2600K CPU with 16GB of RAM and
using the Gurobi solver to solve the Mixed Integer Program.

We have tested our methods on three types of instances: Spliddit instances [Goldman
and Procaccia, 2015], instances under uniformly distributed preferences and instances
under an adaptation of Mallows distributions to cardinal utilities [Durand et al., 2016].

5.9.1 Spliddit instances
We have first experimented our MIPs on real-world data from the fair division website
Spliddit [Goldman and Procaccia, 2015]. There is a total of 3535 instances from 2 agents
to 15 agents and up to 96 items. Note that 1849 of these instances involve 3 agents
and 6 objects. The program we ran for Spliddit instances proceeds as follows. It first
checks whether the instance is HAP. If it is the case, it runs Algorithm 5.1 to compute the
optimal level of approval envy. If this level is 1, it means that the instance is EF, and hence
proportional [Bouveret and Lemaître, 2016a]. We stop there in this case. Otherwise, we
run the adaptation of Algorithm 5.1 to compute the level of approval non-proportionality.
If the instance is not HAP, we proceed the same way, replacing Algorithm 5.1 and its
adaptation by MIPs M1 and M2.

Approval envy Concerning approval envy, by setting a timeout of 1 minute, the pro-
gram was able to solve all but 6 instances optimally. By extending the timeout to 10
minutes, we were able to solve 4 additional instances. We were however unable to solve
the last 2 remaining instances optimally within 5 hours. Those instances respectively
concern 6 agents and 15 objects, and 4 agents and 29 objects. However, by examining
this latter instance, we could notice that all the agents had the same preferences. Running
MIPM2 on this instance lead us to find an allocation that is proportional, meaning that
this allocation is also envy-free in that case. Hence, in the end, only one instance still
resists to our attempts. Among the 3534 instances that have been solved optimally, 63.8%
admit an EF allocation, while 24.6% exhibit unanimous envy. Moreover, 29% of the 83
instances with more than 5 agents are Strict Majority-app EF (SM-app EF).
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We have also implemented the alternative notion of (K-app envy)-freeness mentioned
at the end of Section 5.2 and computed the optimal K for the 3469 easiest Spliddit
instances (we removed those that timed out after 20 seconds). Among these instances,
only 47 were found to be neither EF nor unanimous-envy, that is, about 1.4%, which
confirms our intuition that this alternative notion is much less discriminating that the
notion of K-app envy we use in this chapter.

Approval non-prop Concerning approval non-proportionality, all Spliddit instances
have been solved optimally within 1 minute. 69.3% of the instances turn out to be pro-
portional, while 25.4% exhibit unanimous non-prop. Note that since we know [Bouveret
and Lemaître, 2016a] that envy-freeness implies proportionality, we knew from the pre-
vious experiments that the percentage of proportional instances would be greater than
63.8%. So we can notice that around 5.3% of the instances actually are neither propor-
tional nor unanimous non-prop against the 11.7% we had for the approval envy notion.

5.9.2 Uniformly distributed preferences: general setting
We also ran tests on instances under uniformly distributed preferences, with n varying
from 2 to 10 and m such that we produce appropriate settings to study our notions of
approval envy-freeness and approval non-proportionality. Under Impartial Culture, all
preference profiles are equally likely. It is a commonly studied in computational social
choice [Black et al., 1958; Gehrlein and Fishburn, 1976] as a limit case, also providing an
easy way to get syntactic instances without knowledge on preference characteristics from
a particular concrete problem.

Approval envy We first studied the notion of approval envy and thus considered set-
tings where few EF allocations exist [Dickerson et al., 2014]. More precisely we took
m almost equal to n, for example 2 agents with 3 objects, 5 agents with 7 objects and
10 agents with 13 objects. As shown by Dickerson et al. [2014], the percentage of EF
instances is tightly related to the ratio between the number of agents and the number
of objects. The probability of EF instances is small when the number of objects is not
much larger than the number of agents. For each couple (n, m), Table 5.1 reports the
percentage of envy-free instances obtained over 1000 randomly generated instances. It
can be noticed that the number of EF instances decreases as the numbers of agents and
objects increase. The worst-case in Table 5.1 is obtained for 9 agents and 11 objects where
only 90 over 1000 instances are envy-free. For each couple (n, m), we randomly picked 60
instances over the instances not EF that were randomly generated. Indeed, we wanted to
investigate the behavior of our notion when no EF allocation exists (we know that if an
EF allocation exists it will be returned by our methods). As we are in the general setting
we solved the instances via the MIP M1 with a timeout of 10 minutes. Experimental
results are depicted in Table 5.2.

The first three rows of Table 5.2 respectively report the percentage of instances that
have been solved to optimal (a solution has been returned before the timeout), the percent-
age of unanimous envy instances and the percentage of Strict Majority-app-EF instances
(SM-app-EF instances). The mean value of K/n gives a good insight on how many agents
agree on the fairness notion (in Table 5.2, on the envy of an agent). Moreover, as it is a
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(n, m) (2,3) (3,4) (4,5) (5,7) (6,8) (7,9) (8,10) (9,11) (10,13)
% EF 86 59 42 58 36 29 11 9 14

Table 5.1: Percentage of envy-free instances as a function of the number of (agents,objects).

n 2 3 4 5 6 7 8 9 10
% optimal 100 100 100 100 100 68.3 1.7 1.7 0
% UE I 100 21.7 5 0 0 0 0 0 0
% SM-app EF I 0 0 0 50 50 75 40 33.3 6.7
mean(K/n) - 1 0.85 0.72 0.61 0.57 0.59 0.63 0.66
time(s) ε 0.008 0.04 0.21 1.97 21.29 50.09 56.16 -

Table 5.2: Performances of MIP M1 on randomly generated no EF instances

normalised measure it allows us to compare the level of approval non-proportionality and
envy for instances with different number of agents. Finally, we store the mean computa-
tion time (in seconds) of the instances (solved to optimal).

First note that considering 2 agents is a special case as shown in Corollary 5.1. Indeed,
as we have removed the EF instances, all the remaining instances are unanimous envy
ones (denoted by - in the tables). Moreover, we observe that the percentage of SM-app-
EF allocations is zero for up to 4 agents, which can be easily explained. Indeed, for 3
or 4 agents, being SM-app-EF means that there exists a (K-app envy)-free allocation
with K ≤ 2, which comes down (by Proposition 5.4) to say that there exists an envy-free
allocation. Since all the EF instances have been removed, we cannot find an SM-app-EF
allocation for n ≤ 4.

Besides, without any surprise, the computation time rapidly increases while the per-
centage of instances solved to optimal (under a timeout of 10 minutes) starts decreasing
for 7 agents.

Finally, positive results can be pinpointed. The percentage of unanimous envy in-
stances is very low. This highlights the relevance of the K-approval envy-free notion.
Indeed, in most instances, there exists allocation where we can find a subset of the agents
supporting the absence of envy. Minimizing the number of agents approving the envy is
thus relevant in almost all instances. Moreover, the experiments show that the percent-
age of SM-app-EF instances is higher than 30% except for 10 agents. Such instances are
desirable as it means that the absence of envy is supported by more than half the agents:
from the point of view of the social acceptance, it is thus possible to find an allocation
where the fairness is supported by a majority of agents.

Approval non-prop First note that a proportional allocation is likely to exist as soon
as m ≥ n [Suksompong, 2016]. As we do not want to be in the House Allocation setting
yet, we considered instances for which m = n + 1. We have tested our MIPM2 described
in Section 5.7.2 on such instances with a timeout of 10 minutes. For each couple (n, m),
we generated 10 000 instances.

The first four rows of Table 5.3 respectively represent the percentage of instances
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n 2 3 4 5 6 7 8 9 10
% optimal 100 100 100 100 100 100 100 100 100
% proportional 86.94 83.77 98.41 99.98 99.76 99.95 100 100 100
% UNPI 100 79.2 69.8 100 70.8 100 - - -
mean(K/n) - 1.0 0.96 - 0.95 - - - -
time(s) 0.002 0.03 0.1 1.8 1.5 8.6 - - -

Table 5.3: Performances of MIP M2 on randomly generated instances.

that have been solved to optimal (a solution has been returned before the timeout),
the percentage of proportional instances, the percentage of unanimous non-proportional
instances (among the ones that are not proportional) and the mean value of K/n that gives
a insight on how many agents agree on the non-proportionality of an agent. Finally, we
store the mean computation time (in seconds) of the instances that are not proportional.

We can first notice that all the instances have been solved to optimal and the number
of proportional instances remains very high even if we considered a favourable context
with m = n + 1. Notably, for more than 8 agents, all the instances were proportional
leaving no space for our relaxation to be useful.

Note that considering 2 agents is a special case as shown in Corollary 5.3. Indeed, as we
do not consider the proportional instances, all the remaining instances are unanimous non-
proportional ones. For more than 2 agents, we can see that the percentage of unanimous
non-prop instances is almost 70% among non-proportional instances. Besides, we can
notice that when it is relevant to look at the mean K/n metric, it tells us that the
level of approval is very high. In light of these results, we could conclude that while
proportionality is a much less demanding notion, it turns out that when it is not satisfied
it is extremely often unanimously not satisfied.

5.9.3 Uniformly distributed preferences: house allocation prob-
lems

We have also tested our polynomial algorithms on HAP instances under uniformly dis-
tributed preferences. We have generated 20 instances for each number of agents from 5
to 100 agents (and objects) by steps of 5.

Approval envy Figure 5.4 shows the evolution of K/n as a function of the number of
agents n (and hence also as a function of m as n = m) when minimizing the K-approval
envy. First, note that we have only found 5 unanimous envy instances and all of them
involved 5 agents. Indeed the probability of unanimous envy instance can be shown to
quickly converge to 0 –see Proposition D.3 in Appendix. In HAP, agents are very likely to
be envious as an agent envies someone as soon as she does not obtain her most preferred
object. Let consider an agent aj that holds oj and that envies another agent ak holding
ok. This envy is approved by all the agents that rank ok over oj. This envy is likely to
be approved but it is also unlikely that all agents agree on this envy. In such contexts
where the agents are likely to have mixed opinions, the K-approval envy-free notion and
our related algorithm allow for computing allocations where the envy is supported by the
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Figure 5.4: Optimal K/n (envy) in the HAP as a function of n

Figure 5.5: Optimal K/n (non-proportionality) in the HAP as a function of n(= m)

smallest subset of agents. As shown in Figure 5.4, even if the optimal K/n value is high
for small problems, it slightly decreases as the size of the instances increases.

Note that the algorithm runs, without any surprise (in light of Proposition 5.18) much
faster than our MIP M1. Indeed, the mean runtime for 100 objects and agents is still
around 2 seconds whereas we already observed that our MIP cannot solve easier problems
within 10 minutes.

Approval non-prop We have also tested our polynomial algorithm to find an optimal
K-approval non-proportional-free allocation. Although the algorithm was running very
fast even for 100 agents and objects (confirming what we showed in Proposition 5.19), we
almost only obtained proportional instances. We thus decided to test other instances: by
using Borda utilities for each agent and randomly choosing one object per agent whose
utility has been multiplied by the number of agents, we built a instances where only one
object per agent fulfills the proportional share. We can see in Figure 5.5 that the value
of K/n is stabilising around 0.8 meaning that around 80% of the agents agree with (at
least) one agent’s non-proportionality.
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5.9.4 Correlated preferences

As Impartial Culture may not reflect realistic preference profiles, we also generated in-
stances where the preferences of the different agents may have similarities. In strict ordinal
settings, a classical way to capture correlated preferences is to use Mallows distributions
[Mallows, 1957] allowing us to measure the impact of the similarity of the preferences
between agents. In these experiments, we used a generalization of the Mallows distri-
bution to cardinal preferences based on Von Mises–Fisher distributions [Durand et al.,
2016]. Like the dispersion parameter in Mallows distributions, the similarity between the
preferences of the agents is tuned by a concentration parameter: when the concentration
is zero the agents’ preferences are uniformly distributed, whereas when the concentration
is infinite all the agents have the same preferences. The concentration can be viewed as
the degree of conflicts among the resources. High concentration values lead to similar
preferences among the agents for a given item.

We expected that the more similar the preferences between the agents are, the higher
the degrees of K-app envy and non-proportionality would get and the more likely unani-
mous envy and non proportionality would occur. The results of our experiments both in
the general setting and in HAP support this: the number of envy-free and proportional
instances is decreasing along with the concentration value, and from a given threshold,
all the instances exhibit unanimous envy and unanimous non-prop. We can see it for
example through Figure 5.6.

Figure 5.6: Optimal K/n (approval envy)-freeness in the HAP as a function of the value of
concentration for n = 30 and m = 30

Figure 5.7: Number of SM-app EF instances as a function of the value of concentration for n = 7
and m = 9
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Even though at the extreme (when all agents have the same preferences) all notions
become unanimous, one may still wonder whether some degree of correlation among pref-
erences may help to find large majorities of agents that contradict the envy of an agent.
We thus studied how the number of SM-app EF instances varies as a function of the con-
centration. We considered instances involving 7 agents and 9 objects as we had previously
noticed that under uniformly distributed preferences (which is equivalent to a value of
concentration of 0), it was very likely to find SM-app EF instances. We then varied the
concentration value. For each value, we generated 100 instances and counted the number
of SM-app EF instances. As shown in Figure 5.7, the higher the concentration (and hence
the more similar the preferences), the less SM-app EF instances are found, contradicting
our hypothesis that correlation might make large majorities of agents contradicting envy
more likely to occur.

5.10 Conclusion
In this chapter, we have introduced a new relaxation of envy-freeness and proportional-
ity. These relaxations use a consensus notion, approval envy or non-proportionality, as
a proxy for an idealized notion of envy between pairs of agents or proportionality of an
agent. We have proposed algorithms to compute an allocation minimizing the approval
envy or non-proportionality, and we have experimentally studied how these notions be-
have on real world data, as well as on instances with uniformly distributed or correlated
preferences; more particularly in situations where no envy-free allocation exists and where
no proportional allocation exists. We have shown that our notion of approval envy (less
so for approval non-proportionality) strikes an interesting balance allowing to discriminate
in practice among instances depending on the social support envy relations experience.
In comparison, using consensus to determine whether a given agent should be envious or
not in general proves to be of limited interest: except in rare cases, instances will either
be envy-free or unanimous envy.

This work also opens up to a more general study of consensus-based notions of envy.
One could for instance look for allocations that are judged envy-free by a given quota
of agents. Restrictions of the approval notions such as an underlying social graph con-
straining the agents that can approve or disapprove –those agents you deem legitimate to
express her view about a specific envy relation– could also be of interest for future work.
Other domain restrictions, beyond house allocation, could be studied. For instance, the
domain of binary additive preferences, with a cap on the number of items that an agent
can like, may offer other tractable cases for our problem. Besides, the approval notions
introduced in this article also call for a study of the manipulation that could arise from it.
Indeed, asking the opinion of the agents gives birth to new ways of manipulating. More
generally, an axiomatic study of the notions proposed here could nicely complement the
results obtained.

Besides, it could also be interesting to propose extensions to the case where some items
can be shared. Indeed, the approval concepts are a way to mix voting concepts with fair
division and shared items is another way of building a continuum between voting and fair
division. There may exist a potential link between both approaches. We leave the study
of these notions for future work.

It could also be interesting to look deeper in other approval notions derived from the
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notion of mMS and MMS as we did for PROP. If we consider that we have the mMS
share and the MMS share of each agent then our guess is that it can be computed as done
for the approval notion of PROP. However it can still be interesting to look for the links
between those different measures as we did for the other two measures.

Finally, one could also think about using those approval notions to build a new kind of
procedure based on picking sequences. The idea would be to have a picking order chosen
by an approval notion of the agents and try to obtain an allocation with good approval
or classical fairness and efficiency properties.
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Conclusion and future works

We will first sum up the main contributions that we have made in this thesis.
After having formally introduced the model and having settled our problem regarding

existing literature in Chapter 1, Chapter 2 focuses on the study of picking sequences and
more particularly procedures around it and around cycle deals and their connections with
Pareto-Optimality, envy-freeness but also CEEI in both the general setting and single-
peaked domains. Following with procedures around cycle deals, we focus on swap-deals
with single-peaked preferences for the House Allocation Problem in Chapter 3. We showed
in particular that the single-peaked domain is maximal for guaranteeing convergence
to Pareto-optimal outcomes with such dynamics. We also showed that the allocations
returned by TTC and Crawler are reachable by swap-deal sequences. We also refined the
analysis by studying two further notions: the average rank and the minimum rank of the
resources obtained by the agents. None of the procedures discussed in this chapter aim
to optimize these ranks, even though they respectively capture very natural criteria of
efficiency and fairness. Hence we studied how these allocation procedures behave on that
respect. Finally, to complement worst-case theoretical bounds on the loss of social welfare
induced by swap dynamics, our experiments exposed that they actually behave well in
practice.

After being focused on building and analyzing procedures that bring some level of
decentralization we focus on envy-freeness and more particularly new relaxations of envy-
freeness. Indeed, in Chapter 4, we proposed a way to relax envy-freeness by minimizing
some degree of envy while balancing envy (when it cannot be avoided) as fairly as pos-
sible among agents thanks to the OWA aggregator. Then we looked at the connection
between this new relaxation and other existing ones like EF1 and EFX and showed that
theoretically, no algorithm minimizing a fair OWA can ever guarantee to return an EF1
(and thus nor EFX) allocation. However, by implementing our method we saw that there
are very few cases for which the returned allocation was not EF1 and that for those few
cases we could easily find OWA weights for which it was the case. Not only that but
we also figured out that Max Nash Welfare is dominated by our method in regards of
returning an EFX, EF or Pareto-Optimal allocations.

Finally, in Chapter 5 following the idea of relaxing envy-freeness we proposed two
new relaxations of envy-freeness and proportionality based on the idea that when we
cannot guarantee envy-freeness or proportionality, we at least do not want to return an
allocation where everyone agrees on the envy or non-proportionality of an agent. We have
seen a scale of approval envy and proportionality but also the links with other fairness
measures and relaxations. We also show that our approval envy notion implies the one on
proportionality while the converse does not hold as it is the case for the classical notions.
Besides, implementing algorithms to compute allocations minimizing approval envy and

125



non-proportionality allow us to see how they behave and seem interesting in order to
discriminate between instances when EF or PROP cannot be found.

Now that we have summed up the main contributions of our work let us also talk about
what we could derive from it for future perspectives. Fair division is a very active and
quickly expanding field. Our ambition here is not to propose an exhaustive overview of
recent and emergent topics (for this we refer the reader to the recent surveys [Amanatidis
et al., 2023]), but instead to discuss how the questions and results presented in this thesis
could be expanded and connected to related notions.

Explainability and Interpretability
First, in Chapters 2 and 3 by using more decentralized procedures we go towards

some explainability as these procedures are more interpretable. Indeed, the fact that
agents are involved in the building of the solutions facilitates its explanation compared
to black-box algorithms. But we could also try to use our work in Chapter 5 to bring
a level of explainability as a procedure built around these approval notions could be
considered explainable by being constructed by the agents themselves. Indeed, we could
first explain the outcome with a contrastive explanation by highlighting that we chose
the returned allocation rather than other one (that some agent would have preferred)
because it minimises the approval envy or that its approval envy is lower than the one
the agent was suggesting. We could also explain the procedure itself with a contrastive
explanation by pinpointing that we chose this procedure over some other (than the agent
asking for an explanation would have preferred) for some desirable property or axiom that
it satisfies (such as individual rationality, strategy-proofness or anonymity among many)
while the other procedure fails to. However, it should be kept in mind that axioms are
not all equivalent in their simplicity, as illustrated for example by the distinction made
between strategy-proofness and obvious strategy proofness, as mentioned in Chapter 3.
This idea of building explanations based on axioms is discussed in the context of voting
by Boixel and Endriss [2020]; Boixel et al. [2022]; Schmidtlein and Endriss [2023] and
in approval-based sorting by [Belahcene et al., 2018]. Hence if some agent is unhappy
about the outcome of the procedure we can explain it by rewinding it using the agents’
perspectives as it is through their vote (approval) that the outcome was built. This way of
bringing explainability is discussed by Suryanarayana et al. [2022a]; Pozanco et al. [2022];
Suryanarayana et al. [2022b]; Zahedi et al. [2023] and differs from the XAI (eXplainable
Artificial Intelligence) whose goal is merely to explain black-box algorithms.

Adaptation to other problems or fields
Another possible extension of our work would be to look beyond the setting studied

in this thesis. For instance, a related but very different setting are two-sided markets,
meaning that not only agents have preferences over resources but the converse is also
true. Hence it is then interesting to try to look for fairness for both sides (“two-sided
fairness”). While when resources are objects it might not be natural to consider fairness,
for problems like allocating students to schedules/classes or in ranking problems it is the
case [Do et al., 2021; Freeman et al., 2021].

When referring to other related problems, another path of research would be to try
and apply the procedures or the new fairness relaxation measures that we have proposed
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to problems which exhibit specific structure. For instance, this has already been done in
the scheduling problem (in which you want to allocate tasks to one or several machines)
by using classical voting rules such as Kemeny or Condorcet [Pascual et al., 2018]. In
this particular problem, the agents would be the machines while the objects would be
the jobs that we have to schedule on the multiple machines. We could for example look
for envy-free allocations while trying to minimize the makespan. The difficulty resides
in the fact that not only we have to look at the classical fairness measures of the fair
division problem but also the constraints and objectives of a scheduling problem such
as minimizing the makespan or the fact that some job has to start before some time
and finish before some other time. Fair division under constraints has seen many recent
developments [Suksompong, 2021].

In the same context, data science involves the processing of massive quantities of data
requiring distributed file system and parallel programming which brings the problem of
task allocation and load balancing. Baert et al. [2021] address the practical problem where
the data required to execute a task are split between nodes that can themselves experience
execution hazards or communication lags. Hence, in order to execute a task it is necessary
to fetch data from several other nodes, resulting in an extra execution time of it. In this
class of problems, MapReduce is the most significant distributed data processing models.
However, several data skews in the MapReduce applications can induce an unbalanced
workload during the reduce phase and an unfair allocation can arise during the reduce
phase because of the heterogeneous performance of nodes. In order to face these problems,
Dean and Ghemawat [2008] formalize this as a multiagent task allocation problem and
propose a dynamic task reallocation process based on negotiations between agents. It
would then be interesting to see if we would apply our decentralized procedures in this
context of load balancing, specifically with our approval notion and our resource exchange
setting as negotiations seem to be relevant specially as Beauprez et al. [2022] have already
looked at swap-deals in this context.

More generally, it could be interesting to take an overview and walk outside of multi-
agent decision making and try to see what our notions and procedures could mean in
the multi-criteria decision field or decision under risk and uncertainty. Indeed, for ex-
ample in the domain of decision under risk and uncertainty we have first-order (SD1)
and second-order Stochastic Dominance (SD2) [Hadar and Russell, 1971]. In the multi-
criteria decision domain, if you consider that the different criteria are commensurable and
expressed on a common scale (a utility scale for example), then the pendant of SD2 is
the weighted Lorenz Dominance [Gonzales and Perny, 2020]. Hence using tools from our
field and adapting them to other fields could be interesting. Indeed, there are already
collective utility functions that are used in several fields such as Max Nash Welfare or
OWA of the utilities.

So in our case, would it make sense to say that a criterion envies another one or that a
scenario envies another scenario? If it is the case then one could also wonder if we could
also extend it to the relaxations we have studied. Our work could then help solve or bring
a new perspective to other problems from other fields.

Moreover, we could also think of making a bridge between decision under uncertainty
and fair division of indivisible goods in the context of online fair division [Aleksandrov
et al., 2015b; Aleksandrov and Walsh, 2020]. They consider the problem of food banks
that want to fairly (and efficiently) allocate food among different charities but without
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knowing how much food and when they will get. Hence the modelization of this problem
as an online one. By considering probabilities on the event of getting food (and how
much) we would switch to decision under uncertainty and could use the tools from this
field. It would then be interesting to see if we can for example achieve ex-ante and ex-post
envy-freeness at the same time as discussed (in the classical way) by Freeman et al. [2020].

Group Fairness
Finally, another widely studied subject that is very close to what we tackled in this

thesis is the fair division of indivisible goods but not among simple agents but among
groups [Conitzer et al., 2019; Benabbou et al., 2019; Aziz and Rey, 2020; Gross-Humbert
et al., 2022; Aziz et al., 2023; Scarlett et al., 2023; Gross-Humbert et al., 2023].

Hence it would be natural to try to use our work that is at the agent level and try to
adapt it to the group level. For example, the notion of EF, EFX and EF1 are redefined in
the context of groups and it would be interesting to see if our approval-based notions of
envy make sense in this context. For instance, in House Allocation Problems with groups
of agents, we could define in a straightforward way approval envy of a group if every
group agrees on the fact that she should be envious. We could also use approval-based
envy inside groups to decide whether a group is envious or not: for example a group is
envious if a certain number of agents agree on the fact that an agent (or a certain number)
is envious. This could give scales of approval fairness in this context as we did in ours.
However note that a big challenge regarding this adaptation is the fact that the groups
have different sizes. It is then necessary to think about how we could use OWA given the
difference in the number of agents involved in each group. Moreover this number disparity
implies a question about the approval notion. Is unanimous envy attained when all the
agents agree on it or when all groups agree? Even envy between groups can be defined in
several ways. For example, we could simply divide the utility of a group by its size but
Gross-Humbert et al. [2023] propose a sharper way in which envy depends on a subset of
objects of the bigger group.
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Appendix A

Determining if a solution is Pareto
Optimal

We will here explain how we managed to computationally check if some solution π of an
add-MARA instance I (we recall that a solution is an allocation of the objects to the
agents) is Pareto-Optimal or not.

The idea is that if π is nor Pareto-Optimal then it means that there is some other
allocation π′ Pareto dominating π which implies that for every agent ai ∈ N we have
ui(π′

i) ≥ ui(πi) and there exists one agent aj ∈ N such that uj(π′
j) > uj(πj). By relying

on this property we have simply used Mixed Integer Linear Programming looking for this
potential π′ (note that there can be several allocations Pareto dominating π but finding a
single one is enough to prove π is not PO). If such an allocation exists it will be returned
by the following MILP :

max
n∑

i=1

m∑
j=1

zj
i uj

i

m∑
j=1

zj
i uj

i ≥ ui(πi) ∀i ∈ [[1, n]]
n∑

i=1
zj

i = 1 ∀j ∈ [[1, m]]

zj
i ∈ {0, 1} ∀i ∈ [[1, n]] ∀j ∈ [[1, m]]

In this MILP, zj
i are boolean variables where zj

i = 1 of object oj is allocated to agent
ai and 0 otherwise.

Proposition A.1. If
n∑

i=1

m∑
j=1

zj
i uj

i =
n∑

i=1
ui(πi) then π is Pareto-Optimal, otherwise π is

not and the MILP returns an allocation π′ that Pareto dominates it.

Proof. Note that first constraint corresponds to the fact that the allocation π′ returned
by our MILP should be such that for every agent ai ∈ N we have ui(π′

i) ≥ ui(πi). So,
if we also have that there exists one agent aj ∈ N such that uj(π′

j) > uj(πj) then the
returned allocation indeed Pareto dominates π. For this part we consider two cases:

•
n∑

i=1

m∑
j=1

zj
i uj

i =
n∑

i=1
ui(πi)
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In this case, it means the MILP has returned an allocation that is either π itself or
another allocation but such that each agent gets exactly the same utility. Basically,
it means that π was indeed Pareto-Optimal.

•
n∑

i=1

m∑
j=1

zj
i uj

i >
n∑

i=1
ui(πi)

In this case, it means the MILP has returned an allocation π′ that is such that there
exists one agent aj ∈ N such that uj(π′

j) > uj(πj). Moreover, we had already shown
that for every agent ai ∈ N we have ui(π′

i) ≥ ui(πi). Hence, π is not Pareto-Optimal
and is Pareto dominated by π′.

Note that the case where
n∑

i=1

m∑
j=1

zj
i uj

i >
n∑

i=1
ui(πi) is not possible because it would contra-

dict the first set of constraints.
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Appendix B

MILP characterizing the EF1

Note that we do not need any objective function as the constraints themselves are enough
to characterize the set of EF1 allocations.

m∑
j=1

u(i, oj)(zj
i − zj

k + pj
ik) ≥ 0 ∀i, k ∈ [[1, n]]∑

j

pj
ik ≤ 1 ∀i, k ∈ [[1, n]]

n∑
i=1

zj
i = 1 ∀j ∈ [[1, m]]

pj
ik ≤ zj

k ∀i, k ∈ [[1, n]] ∀j ∈ [[1, m]]
zj

i ∈ {0, 1} ∀i ∈ [[1, n]] ∀j ∈ [[1, m]]
pj

ik ∈ [0, 1] ∀i, k ∈ [[1, n]] ∀j ∈ [[1, m]]

In this MIP, there are nm boolean variables zj
i from the classic modelization of the

MARA problem and n2m variables pj
ik. We first consider that these are boolean variables

in order to explain the modelization. The variables pj
ik equal 1 if agent ai “forgets" item

oj in order to be envy free towards agent k, 0 otherwise. The variables zj
i equal 1 if agent

ai possesses item oj. We explain hereafter each constraint of the MIP.
The first set of constraints starts linking the variables pj

ik with EF1. Indeed, it ensures
that the difference, from the point of view of agent ai (ie its preferences), between her
share and agent ak’s minus the items for which pj

ik = 1 is greater or equal than 0. We
write this constraint for every couple ai, ak of agents. We note that for the allocation to
be EF1 we need another constraint on the number of items for which pj

ik = 1.
The second set of constraints ensures that the returned allocation is envy free up to one
good (EF1) as for each couple ai, ak of agents, there is only one item needed for agent ai

not to envy agent ak. We note that is we replace 1 by zero we will obtain an envy free
allocation (if it exists).
The third set of constraints ensures that each item is affected to exactly one agent. There-
fore, it ensures both completeness of the allocation and the non sharing of an item.
The fourth set of constraints traduces the fact that agent ai can forget item oj from agent
ak’s bundle if and only if the latter possesses it.
This MILP is hence enough to characterize the set of EF1 allocations. However, there is
a large number of EF1 allocations and one could want to have control over the returned
one.
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Proposition B.1 (Continuous relaxation). We can relax the integrity constraints on the
pj

ik variables.

Proof. We explain here why we can relax the integrity constraint on the pj
ik variables. We

first note that the pj
ik variables do not affect the returned allocation as they are just here

to force envy freeness up to one good. So, we just have to proof that even with relaxing
their integrity we ensure EF1.
Besides, we also note that the pj

ik are not linked between them apart from the dimension
j. Indeed, for a certain couple of agents ai, ak the second set of constraints keeps the sum
of the pj

ik over the objects from exceeding 1.
We separate the three possible cases that could occur by the integrity relaxation. The
first case would be that every pj

ik stays an integer. Obviously, this keeps the EF1 property
as stated above.

The second case would be that for every couple of agents i, k there is only one pj
ik > 0.

It is rather natural that the returned allocation will still be EF1. In order to show that
we introduce P j

ik which equals 1 if pj
ik > 0 and 0 otherwise. We have:

m∑
j=1

u(i, oj)(zj
i − zj

k + P j
ik) ≥

m∑
j=1

u(i, oj)(zj
i − zj

k + pj
ik) (B.1)

And the first set of constraints ensures ∑m
j=1 u(i, oj)(zj

i − zj
k + pj

ik) ≥ 0. Finally by tran-
sitivity with equation B.1 we have ∑m

j=1 u(i, oj)(zj
i − zj

k + P j
ik) ≥ 0. The latter inequation

is the EF1 property showed above so the second case is not problematic either.

The third and final case would be that for some couple of agents i, k there are several
items oj for which pj

ik > 0. We prove EF1 by showing that the third case can be reduced
to the second. For a couple of agents ai, ak, we note O>0

i,k the set of items oj for which
pj

ik > 0. Let us consider among O>0
i,k the item with the highest utility for agent ai and we

note this item oJ . By transferring the values of the pj
ik for which pj

ik > 0 to pJ
ik we have

pJ
iku(i, oj) ≥

∑m
j=1 pJ

iku(i, oj). So, with the exact same reasoning that for the second case
we show EF1.
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Appendix C

MILP characterizing the EFX

From the polyhedron of the EF1 we write the polyhedron of the EFX allocations by simply
adding the constraint

zh
k = 1 =⇒

∑
j

pj
ikuj

i ≤ zh
k uh

i ∀i, k ∈ [[1, n]]∀h ∈ [[1, m]]

Indeed, this constraint means that if the total utility an agent ai has to forget in order
not to envy agent ak is lower or equal to the lowest utility (from the point of view of ai)
of the objects ak possesses. This constraint can be linearized as follows:∑

j

pj
ikuj

i − zh
k uh

i ≤M(1− zh
k )

with M = max
i∈N

m∑
j=1

uj
i

m∑
j=1

u(i, oj)(zj
i − zj

k + pj
ik) ≥ 0 ∀i, k ∈ [[1, n]]∑

j

pj
ik ≤ 1 ∀i, k ∈ [[1, n]]∑

j

pj
ikuj

i − zh
k uh

i ≤M(1− zh
k ) ∀i, k ∈ [[1, n]]

∀h ∈ [[1, m]]
n∑

i=1
zj

i = 1 ∀j ∈ [[1, m]]

pj
ik ≤ zj

k ∀i, k ∈ [[1, n]] ∀j ∈ [[1, m]]
zj

i ∈ {0, 1} ∀i ∈ [[1, n]] ∀j ∈ [[1, m]]
pj

ik ∈ [0, 1] ∀i, k ∈ [[1, n]] ∀j ∈ [[1, m]]
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Appendix D

Fair in the eyes of others

Proposition D.1. Let I be an add-MARA instance. Then, there is an optimal solution
with K = L toM1(I) if and only if I is an (L-app envy)-free instance and not an ((L−1)-
app envy)-free one. Moreover, M1(I) does not admit any solution if and only if I is an
unanimous envy instance.

Proof. To prove the proposition, we show that there is an (L-app envy)-free allocation in
I if and only if there is a solution to the MIP M1(I) such that K = L.

(⇒) Let I be an instance, and π be an (L-app envy)-free allocation. Then, consider
the partial instantiation of the variables such that zj

i = 1 if and only if oj ∈ πi. We prove
that this partial instantiation extends to a solution of M1(I) such that K = L.

First observe that Constraint 5.1 is directly satisfied.
Now, consider any triple of agents (ak, ai, ah). Suppose that agent ak thinks ai should

envy ah. Then in this case, we have ∑
j∈πh

u(k, j) >
∑

j∈πi
u(k, j). In other words,∑m

j=1 u(k, j)(zj
h− zj

i) > 0 which is in turn equivalent to ∑m
j=1 u(k, j)(zj

h− zj
i) ≥ 1 since all

utilities are integers. By Constraint 5.2, we thus have that ekih = 1 which implies that
Constraint 5.3 is satisfied as well.

Conversely, suppose that agent ak thinks ai should not envy ah. Then, we have∑
j∈πh

u(k, j) ≤ ∑
j∈πi

u(k, j). In other words, ∑m
j=1 u(k, j)(zj

h − zj
i) ≤ 0. By Con-

straint 5.3, we thus have that ekih = 0 in this case, which in turns implies that Con-
straint 5.2 is satisfied as well. Hence, we have that ekih = 1 if and only if ak thinks ai

should envy ah in π.
Finally, consider any pair of agents (ai, ah). If ai does not envy ah then eiih = 0. As a

consequence, xih can be null and still satisfy Constraints 5.4 and 5.5 (no matter the value
of K is).

Now suppose that ai does envy ah (hence eiih = 1). Then, we should have xih = 1 to
satisfy Constraint 5.4. Since π is (L-app envy)-free, then at most L− 1 agents (including
ai herself) think that ai should indeed envy ah, which means that ∑n

k=1 ekih ≤ L − 1.
Instantiating K to L is hence enough to satisfy Constraint 5.5.

(⇐) Now suppose that there is a solution to M1(I) such that K = L. Then we will
prove that the allocation π such that oj ∈ πi if and only if zij = 1 is a valid (L-app
envy)-free allocation.

First, according to Constraints 5.1, π is indeed a valid allocation.
Secondly, Constraint 5.2 ensures that if ekih = 0 then ∑m

j=1 u(k, j)(zj
h − zj

i) ≤ 0, in
turn meaning that agent ak thinks that ai should not envy ah. Conversely, Constraint 5.3
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ensures that if ekih = 1 then ∑m
j=1 u(k, j)(zj

h − zj
i) > 0, in turn meaning that agent ak

thinks that ai should envy ah. It also obviously implies that eiih = 1 if and only if ai

envies ah.
Now consider any pair of agents (ai, ah) such that ai envies ah. From what precedes,

eiih = 1. By Constraint 5.4, xih = 1. Hence, by Constraint 5.5, ∑h
k=1 ekih ≤ L− 1. This

implies that the total number of agents agreeing with the fact that ai envies ah is strictly
lower than L. In other words, π is (L-app envy)-free.

Proposition D.2. Let I be an instance. Then, there is an optimal solution with K = L
to M2(I) if and only if I is an (L-app non-prop)-free instance and not an ((L − 1)-app
non-prop)-free one. Moreover, M2(I) does not admit any solution if and only if I is an
unanimous non-proportional instance.

Proof. The key here is to show that there is a solution to the MIP M2(I) such that
K = L iff the corresponding allocation π such that zj

i = 1 if and only if oj ∈ πi is
(L-app non-prop)-free. However this is done in the proof of Proposition 5.14. We also
have to show that Constraints 5.6 and 5.7 are indeed a valid translation of the logical
equivalence, and that Constraints 5.8 and 5.9 correctly encode the logical OR. The same
type of linearization is also done in the proof of Proposition 5.14.

Proposition D.3. The probability for an instance being randomly generated under uni-
formly distributed preferences to exhibit unanimous envy is upper bounded by n(n−1)/2n.

Proof. The probability of the event oi is strictly preferred to oj by one agent is 1/2 if
preferences are strict. As preferences are not strict, this probability becomes an upper
bound (think for instance if the agent values all the objects the same then the probability
to have strict preference between two objects is zero). Hence, the probability of the event
oi is strictly preferred to oj by all agents is upper bounded by 1/2n−1 as the preferences
between the agents are independent. Assuming, for all pairs of items, these events to be
independent (which is not the case, hence an upper bound of the upper bound), we derive
our result by summing up over the n(n− 1)/2 possible pairs.

Note that this value quickly tends towards 0: for instance, for 10 agents, the probability
for an instance to exhibit unanimous envy is upper-bounded by 0.088.

Proposition D.4. The probability for an instance being randomly generated under uni-
formly distributed preferences to exhibit unanimous non-proportionality is upper bounded
by n/2n.

To prove this property, we will need a small lemma:1

Lemma D.1. Let U1, . . . , Un be n independent random variables having a uniform dis-
tribution over real interval [a, b], and let us denote by Ūn the empiric mean of U1, . . . , Un:
Ūn = 1

n

∑n
i=1 Ui.

Then we have:
P (U1 < Ūn) = 1

2 .

1We warmly thank Olivier François for this result.
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Proof. The probability we seek can be reformulated as follows:

P (U1 < Ūn) = P

(
U1 <

1
n

n∑
i=1

Ui

)
= P

(
U1 <

1
n− 1

n∑
i=2

Ui

)
= P (U1 < Ūn−1). (D.1)

We can notice that the two latter variables, U1 and Ūn−1 are independent. For any two
independent variables X and Y , we have that P (X < Y ) = E[FX(Y )], where FX is the
cumulative distribution function of X. To see this, we can consider the following steps:

P (X < Y ) =
∫

P (X < Y |Y = y)fY (y)dy =
∫

P (X < y)fY (y)dy

=
∫

FX(y)fY (y)dy

= E[FX(Y )], (D.2)

where the first step is obtained using the law of total probability, and the last step is
obtained using the law of unconscious statistician.

Putting Equations (D.1) and (D.2) together, we obtain:

P (U1 < Ūn) = E[FU1(Ūn−1)] = E
(

Ūn−1 − a

b− a

)
= E(Ūn−1)− a

b− a
(D.3)

Observing that Ūn−1 has the same (uniform) law as U1, we have that E(Ūn−1) = a+b
2 .

Injecting this to Equation (D.3) yields:

P (U1 < Ūn) = 1
2 (D.4)

as expected.

We are now ready to prove Proposition D.4.

Proof (Proposition D.4). Let I be a random instance generated under uniformly dis-
tributed preferences. According to Proposition 5.17, I is unanimous non-proportional
if and only if there exists at least an item op such that u(k, p) < Propk for all agents ak.
In what follows, we will denote by Uk,p the random variable corresponding to u(k, p).

For any item op and any agent ak, P (Uk,p < 1
n

∑n
j=1 Uk,j) = 1

2 by Lemma D.1. All the
variables Uk,p being independent, we have that:

P

 n⋂
k=1

Uk,p <
1
n

n∑
j=1

Uk,j

 = 1
2n

for all op.

The events Uk,p < 1
n

∑n
j=1 Uk,j not being independent, we can only derive an upper

bound on the probability for I to have at least one object ok such that u(k, p) < Propk

for all agents ak. Namely:

P

∃k ∈ J1, nK|
n⋂

k=1

Uk,p <
1
n

n∑
j=1

Uk,j

 ≤ n

2n
,

which concludes the proof.

Note that once again this value quickly tends towards 0: for instance, for 10 agents, the
probability for an instance to exhibit unanimous non-proportionality is upper-bounded
by 0.00977.
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Résumé
Cette thèse s’inscrit dans le contexte du Choix Social Computationnel. Il s’agit d’un
domaine à l’intersection du Choix Social, de l’Informatique et de l’Intelligence Artifi-
cielle. Nous nous intéressons plus particulièrement au problème partage équitable de
ressources indivisibles qui consiste à trouver une allocation équitable et efficace d’un
ensemble d’objets à un ensemble d’agents. Tandis que la notion d’efficacité est communé-
ment traduite par l’exigence minimale de complétude (tous les objets doivent être alloués
dans le but de ne gâcher aucun objet) ou la notion plus exigeante de Pareto-Optimalité
(une allocation est dite Pareto-Optimale s’il n’existe pas une autre allocation telle que
tous les agents sont au moins aussi contents et un agent est strictement plus content),
plusieurs notions ont été proposées pour définir l’équité. Une des mesures d’équité la plus
importante est l’absence d’envie. Une allocation est dite sans envie ou envy-free si aucun
agent n’aurait envie de changer ses objets contre ceux d’un autre agent. Cependant, il
n’existe pas forcément d’allocation envy-free quand on est dans le cadre de ressources indi-
visibles. Afin de surmonter cette limitation, des relaxations ont été récemment proposées
dans la littérature.

Dans cette thèse, nous étudions tout d’abord une famille de procédures décentralisées
basée sur des échanges d’objets entre agents. Nous analysons en particulier comment ces
procédures se comportent et les propriétés désirables qu’elles montrent. Plus précisément,
on étudie les séquences de choix sincères et les cycles d’échanges de ressources. Dans un
second temps, nous proposons de nouvelles relaxations de la notion d’absence d’envie
(et d’autres mesures d’équité) et les étudions en profondeur. La première relaxation a
pour but d’équilibrer l’envie entre les agents (quand elle ne peut être évitée) et se base
sur l’Ordered Weighted Average (OWA), un agrégateur habituellement utilisé dans le
domaine de l’optimisation multicritère pour traduire l’équité. La deuxième relaxation
se concentre sur l’approbation sociale de l’envie et se rapproche plus de la théorie du
vote étant donné que les agents votent sur l’envie des autres agents. Nous examinons
les aspects computationnels liés à ces nouvelles relaxations, leurs liens avec des notions
d’équité et d’efficacité existantes avant de les tester expérimentalement.

Mots clés. Partage équitable, Choix Social Computationnel, Décision multi-agents,
Intelligence Artificielle.
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Abstract
The work of this thesis is in the scope of Computational Social Choice. It is a field at the
intersection of Social Choice, Computer Science and Artificial Intelligence. In particular,
we study the problem of Fair Division of Indivisible Goods where the the objective is to
find a fair and efficient allocation of a set of (valuable) objects among a set of agents.
While efficiency is usually brought by the minimal requirement of completeness (all the
objects have to be allocated in order not to waste anything), or the more demanding notion
of Pareto-Optimality (an allocation is Pareto-Optimal if there is no allocation such that
all the agents are not worse off and one agent is strictly better off), several notions have
been proposed to define the fairness of an allocation. One of the most prominent fairness
measures is called envy-freeness. An allocation is said to be envy-free if no agent would
like to exchange her bundle of resources with another agent. However, envy-freeness is
not guaranteed to exist when considering indivisible goods so various relaxations have
been proposed recently in the literature to overcome this limitation.

In this thesis, we first thoroughly study a family of decentralized allocation procedures
related to exchanges of goods. We analyze how these procedures behave and the desirable
properties they exhibit. More specifically, we study sequence of sincere choices and cycle
exchanges of resources. We then propose new relaxations of the envy-freeness notion (and
also of other fairness measures) and thoroughly study them. Our first relaxation aims at
balancing the envy among the agents (when it cannot be avoided) and is based on the
Order Weighted Average (OWA) aggregator usually used in multi-criteria optimisation to
bring fairness. The second relaxation focuses on the social approval of the envy and is
more related to voting theory, as it lets agents vote about the envy of the other agents. We
investigate computational issues related to these new relaxations, their link with existing
fairness and efficiency notions and we experimentally test them.

Keywords. Fair division, Computational Social Choice, Multiagent decision, Artificial
Intelligence.
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