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Abstract

The interest in producing energy through renewable sources has been increasing in recent
years, particularly in using wind energy conversion systems. Nevertheless, as wind turbines
continue to advance, there is a growing demand to decrease the cost of wind energy. Wind
turbine operation and maintenance (O&M) represent a high cost for wind power projects of
the overall energy cost. One of the significant challenges associated with the cost of O&M is
related to the high failure rates in the transmission system and the need to detect and address
potential issues before they become serious problems that require costly repairs

The wind conditions can pose significant challenges to wind turbine transmission systems,
leading to vibration and damage. Dynamic loads from wind can also cause fatigue damage and
reduce reliability, increasing the need for maintenance. Therefore, implementing intelligent
control strategies can mitigate the effects of wind-induced vibration and reduce overall stress
on the transmission system, thereby reducing maintenance costs and improving operational
efficiency.

Pitch control is widely used to decrease damage from changes in wind conditions. However,
this strategy cannot be applied to variable speed-fixed pitch (VS-FP) wind turbines, where the
pitch is ideally zero, and any control action is made through the tip-speed ratio. In the case
of VS-FP wind turbines, a maximum power point tracking (MPPT) control law is commonly
used. The generator torque is the control torque and is estimated based on the rotor speed
and a control gain.

This thesis focuses on developing a control strategy to address the degradation of the drive-
train of wind turbines caused by non-optimal functioning in response to changes in wind
conditions, by using an indicator of degradation that can be estimated considering the torsional
dynamics of a flexible drive-train.

This work first presents a deterioration model for the drive-train of a wind turbine. The
model considers dissipated energy as an indicator of degradation caused by various physical
phenomena, such as fatigue, vibration, and others. Additionally, a gain scheduling control
strategy is presented to find a trade-off between generated and dissipated energy. The strategy
uses optimization to find suitable control gains depending on wind conditions.

Furthermore, a long-term methodology is proposed to evaluate deterioration under a control
strategy adapted to follow variations in wind conditions. The approach simulates degrada-
tion by learning an empirical relationship between Dissipated Energy and Time with random
effects.

Finally, a novel intelligent control strategy is presented to minimize the degradation of a wind
turbine drive-train when wind or set point changes occur. The proposed method enables the
turbine to operate under different conditions while maintaining energy generation without
accelerating the degradation process. To achieve this objective, a robust H-infinity control
strategy is implemented to adapt the theoretical control gain to an intelligent control gain

1



2 Abstract

that guarantees system stability in the presence of uncertainties and external disturbances,
such as changes in wind conditions.



Résumé

L’intérêt pour la production d’énergie à partir de sources renouvelables s’est accru ces dernières
années, en particulier pour l’énergie éolienne. Néanmoins, alors que la technologie éolienne
continue de progresser, il existe une demande croissante pour réduire son coût de production.
L’exploitation et la maintenance représentent une grande partie de dépenses des projets éoliens
par rapport au coût global de l’énergie.

L’un des principaux défis associés au coût de l’exploitation et de la maintenance est lié aux taux
élevés de défaillance du système de transmission. Il est primordial de détecter et de traiter les
problèmes potentiels avant qu’ils ne surviennent et ne nécessitent des réparations coûteuses.
Les conditions de vent peuvent provoquer des problèmes importants aux systèmes de trans-
mission, entraînant des vibrations et des dommages, ce qui a pour conséquence d’augmenter
la fatigue et réduire la fiabilité.

Par conséquent, la mise en œuvre d’une stratégie de contrôle intelligente peut atténuer les
effets des vibrations, et ainsi réduire les contraintes globales sur le système de transmission, ce
qui aura pour effet de diminuer les coûts de maintenance et améliorer l’efficacité opérationnelle.

Le contrôle du tangage est largement utilisé pour réduire les dommages causés par les change-
ments de conditions de vent. Cependant, cette stratégie ne peut pas être appliquée aux
éoliennes à vitesse variable et à pas fixe (VS-FP), où le pas est idéalement nul et où toute
action de contrôle se fait par le biais du rapport de vitesse en bout de pale. Dans le cas des
éoliennes VS-FP, une loi de commande de suivi du point de puissance maximale (MPPT) est
couramment utilisée. Le couple du générateur est le couple de commande et est estimé en
fonction de la vitesse du rotor et d’un gain de commande.

Cette thèse se concentre sur le développement d’une stratégie de contrôle pour traiter la dégra-
dation du groupe motopropulseur des éoliennes causée par un fonctionnement non optimal en
réponse aux changements des conditions de vent, en utilisant un indicateur de dégradation qui
peut être estimé en tenant compte de la dynamique de torsion d’un groupe motopropulseur
flexible.

Ce travail présente un modèle de détérioration pour la chaîne cinématique d’une éolienne. Le
modèle considère l’énergie dissipée comme un indicateur de la dégradation, causée par divers
phénomènes physiques, tels que la fatigue, les vibrations et autres. En outre, une stratégie de
contrôle de la planification des gains est présentée pour trouver un compromis entre l’énergie
générée et l’énergie dissipée. La stratégie utilise l’optimisation pour trouver des gains de
contrôle appropriés en fonction des conditions de vent.
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Chapter 1

Introduction

Contents
1.1 About this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Overview of wind energy generation . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Wind turbine Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Effect of the wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Deterioration in Wind turbines . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Control methods for Wind Turbine . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Scope & Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Organization of the document . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 About this thesis

This thesis was developed from October 2020 to September 2023 as part of the SAFE (Safe,
controlled and monitored systems) research team at the Gipsa Laboratory, which is a unit
of the École Doctorale Électronique, Électrotechnique, Automatique, Traitement du Signal
(EEATS) within the Institut Polytechnique de Grenoble (Grenoble INP), Université Grenoble
Alpes (UGA), and Centre National de la Recherche Scientifique (CNRS). The thesis was
supported by a doctoral contract provided by the Grenoble INP - UGA.

The major of the thesis is Automatic Control and Production Systems, which belongs to the
doctoral school EEATS of the Université Grenoble Alpes.

1.2 Overview of wind energy generation

The demand for sustainable energy sources has increased due to society’s numerous environ-
mental problems. As a consequence, new sources of energy are being developed to convert
reusable resources such as solar, biomass, geothermal water, and wind into electricity and
supply the global demand, positively impacting the current energy landscape.

The Energy Agency predicts that renewable energy sources will account for 98% of the new
2.518 TWh of electricity generation by 20255 [52]. Wind energy is among the most popular

7
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Figure 1.1: New installations of wind turbines outlook 2022-2026 (GW). Images from [52]

sources of renewable power due to its low water footprint compared to other forms of electricity
generation.

Another advantage of wind energy is that wind turbine operations do not produce greenhouse
gases. However, the construction of wind turbines is associated with CO2 emissions, typically
eliminated after a year of operation. In terms of materials, wind turbines are made with
concrete, steel, and composite materials for the blades. The cement used for turbine foun-
dations is a material that does not contaminate the soil. Concerning the blades, the wind
industry is working to create resource-efficient, sustainable materials, such as low-carbon steel
and recyclable composites.

On the other hand, wind turbines onshore farms are a considerate, versatile energy source that
can coexist with various agricultural activities or positively affect biodiversity by preserving
habitats and ecosystems. Bottom trawling and dredging at offshore wind farms are prohibited,
which helps conserve the seabed [128, 141].

As a result of the numerous advantages of implementing wind energy technologies, the global
wind turbine capacity has been increased. According to the Global Wind Energy Council [52],
during 2022, the new wind power capacity connected to the grid was in total 77.6 GW, resulting
in an increment of 9% on the total installed wind capacity compared to the previous year,
bringing it to 906 GW in 2022.

Furthermore, the wind energy sector is expected to add 136 GW per year until 2027, resulting
in 680 GW of new capacity for the next five years with Compound Annual Growth Rate
(CAGR) for the next five years of 15%., where 550 GW corresponds to the onshore wind
sector installed capacity, resulting in a 12% growth between 2023 and 2027. On the other
hand, for the offshore wind energy sector, the total new global installations are expected
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Figure 1.2: Major components of a wind turbine with the horizontal axis. Image from: [56]

to increase from 23% by 2027. In total, 130 GW of offshore wind is expected to be added
worldwide from 2023 to 2027; see Figure 1.1.

1.2.1 Wind turbine Generalities

Wind turbines are mechanical devices that convert the wind’s kinetic energy into mechanical
energy to produce electricity. Typically, the blades are set in motion to rotate the rotor, which
moves a drive-train connected to a generator to produce electricity [16].

Usually, the wind turbine has three key components: tower, blades, and transmission. The
tower is the structural part of the wind turbine; the blades are in charge of capturing the wind
energy, and the transmission is conformed by different parts such as the rotor, drive-train,
and generator, which together are in charge of the process that converts kinetic energy into
electricity [48].

The transmission of a wind turbine is a complex mechanical system with various configurations.
Depending on the rotor’s position, a wind turbine can be classified as either a vertical or
horizontal axis.

Wind turbines with vertical axes have rotors located almost at ground level, allowing them to
capture wind from any direction without additional devices. However, they are not often used
due to their high maintenance costs, the need for a considerable amount of land to function,
and their low energy production efficiency due to turbulent wind.

On the other hand, wind turbines with a horizontal axis are often used and connected to the
grids; this type of turbine has a rotor at the top of a tower, where the wind is less turbulent
and strong. Typically, the system includes a yaw that allows the turbine to rotate depending
on the wind direction, which increases efficiency [15].
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Most horizontal axis wind turbines use a transmission system illustrated in Figure 1.2. These
systems typically have two or three blades, with the rotor acting as the low-speed shaft. Its
rotation with an angular speed ωr creates the rotor torque τr and connects to the generator
through a gearbox. Also, the generator rotates with an angular speed of ωg, which creates the
torque τg. The shafts, gearbox, and generator are inside a nacelle cavity.

Moreover, the yaw drive can rotate the entire nacelle according to the wind direction. It
relies on a motor and controller that receive signals from an anemometer and wind vane. In
addition, the wind direction can be used to reduce the structural load on the rotor blades and
maintain a steady speed and power output by adjusting the pitch angle. However, some wind
turbines have a fixed pitch angle set to zero, so this feature would not be applicable.

1.2.2 Aerodynamics

According to different sources [16, 41, 48], wind turbines can be classified as fixed or variable
speed. Some wind turbines, known as fixed-speed wind turbines, can operate at maximum
efficiency for only one wind velocity. In contrast, variable-speed wind turbines can achieve
maximum efficiency over a wide range of wind speed magnitudes, at least up to the rated
power.

Variable-speed wind turbines are the most commonly used type, as they adjust the rotational
speed proportionately to the external wind speed to maintain optimal operation through a
parameter known as the tip-speed ratio (λ), which is the ratio between the tip speed of the
blade and the speed of the wind.

The efficiency of a wind turbine is commonly evaluated using the power coefficient, Cp, which
represents the ratio between the extracted power and the wind power. The maximum possible
value of Cp, known as the Maximum Power Coefficient, Cmax

p , is limited by the Betz limit to
0.593 for all types of wind turbines.

Due to the wind variability, there is no static description between power and wind speed
in dynamic conditions [56]. However, in the wind turbine industry, the value of Cmax

p is
provided by the turbine manufacturer; also, Cp can be estimated by various methods [8, 70,
93]. However, all these methods define Cp in terms of the pitch angle ψ and the tip-speed
ratio λ.

For the fixed-pitch wind turbines, Cp only varies with respect to λ, and for variable-pitch, the
Cmax
p with a value of ψ is very small, ideally zero, which implies that any variation in the

pitch angle results in a decrease in power capture [15]. Figure 1.3 shows a typical variation
of Cp with respect to λ for a wind turbine with fixed-pitch; note that the Cmax

p is located in
the maximum point of the curve.

1.2.3 Effect of the wind

Wind is the primary source of power for wind turbines, and it has been harnessed for electricity
generation for many years. However, the impact of wind on the functionality of this technology
can affect its efficiency and potentially cause damage to certain turbine components. The
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Figure 1.3: Curve of power coefficient Cp versus tip-speed ratio λ.

strength, variability, and direction of the wind play a significant role in this.

In situations where wind flows smoothly in a single direction and with organized layers, it is
referred to as laminar wind. Otherwise, when the wind becomes unpredictable and moves in
multiple directions, it is known as turbulent wind flow. Currently, the standards for designing
wind power curves only take into account the average wind speed and air density. However,
research has indicated that turbulence also affects the output of wind power [108].

Perturbations in the wind can be caused by changes in temperature, obstacles, or atmospheric
parameters and affect the direction and velocity of the flow. Usually, the mechanical com-
ponent of the blades or drive-train is designed considering data from laminar wind situations
[53]. In general, turbulent wind does not affect the annual energy capture; however, it im-
pacts aerodynamic load and power quality [16]. The changes in the direction, strength, or
variability of the wind can negatively impact the regular operation of a wind turbine because
the blades, tower, and drive-train are susceptible to excessive vibration and fatigue, creating
structural damage and decreasing efficiency.

As demonstrated by various researchers, turbulent wind affects wind turbines’ power perfor-
mance and fatigue loading [6, 27, 148]. The level of turbulence is typically measured by its
intensity which, although different ways to estimate wind variability have been developed, the
most common definition is the ratio of the standard deviation to the mean wind speed [26,
77, 108].

The tower can also experience increased stress and fatigue, resulting in cracks or even collapse.
On the other hand, the drive-train, which includes the gearbox and generator, can also be
affected by turbulent wind, leading to increased wear and tear and reduced lifespan. The
fluctuations in the wind conditions are important for the optimal function of the wind turbine,
some studies have demonstrated a decrease in the rate of aging of the transmission when the
wind is less turbulent [19], and others mentioned that loads increased at low wind speeds due
to turbulence [79].

In addition to physical damage, turbulent wind can also impact the power quality of the wind
turbine, leading to fluctuations in the electrical output, which can cause problems for the
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Figure 1.4: Number of failure by major components in wind turbines

electrical grid [131].

In conclusion, it is evident that turbulence in the wind plays a crucial role in the performance
and reliability of wind turbines. While traditional standards for designing wind power curves
primarily consider average wind speed and air density, it is increasingly clear that the effects of
turbulence must also be taken into account. In light of these findings, this work, will prioritize
the impact of turbulence to optimize the performance of wind turbines.

1.2.4 Deterioration in Wind turbines

Wind turbines are complex mechanical systems that are affected by cyclic loads due to changes
in atmospheric conditions such as dust, humidity, temperature, air pressure, and wind gusts.
These loads can significantly damage the transmission system due to excessive vibration,
particularly when high wind gusts strike the blades. Various sources indicate that wind turbine
drive-train systems have a relatively high failure rate, with maintenance being the leading
cause of downtime [10, 37, 63, 68, 101, 143], which generally increases with age: During the
first 4 years, the unavailability remains relatively low at around 3.2%. However, between ages
14 and 19 years, the unavailability can increase, ranging from 5% to 9% [94].

Li et al. [64] utilized numerous databases from different countries to analyze the frequency of
failures by components in wind turbines. They concluded that the parts related to the drive-
train (rotor, generator, and gearbox) represent 27% of the failures present in wind turbines (see
Figure 1.4). Additionally, 30% of shutdowns result from failures in one of the parts of the drive-
train. Furthermore, 80% of critical and highly critical failures in the principal components
of wind turbines occur in drive-train parts, of which 52.5% correspond to critical failures,
meaning they reduce availability and require timely maintenance, and 47.5% are extremely
critical, resulting in the stoppage of the wind turbine and requiring extended maintenance.

In wind turbines, the transmission can deteriorate and cause failures to occur within 2 to 11
years under poor working conditions; despite being designed to last for 20 years, it also can
lead to a decreased efficiency in the operating time due to high vibrations [142]. Some studies
evidenced that the drive-train contributes approximately a 30% share to the degradation [19].
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The deterioration can lead to other types of failures, such as planetary gear, high-speed shaft
bearing, planetary bearing, and intermediate shaft bearing failures. These failures can occur
due to wear, scuffing, plastic deformation, contact fatigue, cracking, fracture, and bending
fatigue [90].

The efforts to address these challenges have resulted in developing and implementing strate-
gies for optimizing maintenance, such as advanced condition monitoring techniques. These
techniques detect changes in vibration levels and other performance indicators that could in-
dicate potential problems [22]. By taking preventive action before severe damage occurs,
maintenance teams can reduce the overall cost of operation and maintenance (O&M) for the
transmission system.

Mathematical models have recently been developed to predict wind turbine degradation and
maintenance to understand the degradation process’s behavior better [44]. These models
include a probabilistic model that considers the stochastic nature of the failure and repair
processes, as well as Markov Chain analysis [65, 93], to study the level of degradation.
Additionally, a reliability-centered method has been implemented to demonstrate the effect of
different maintenance strategies based on the system’s reliability and the total maintenance
cost [63].

On the other hand, to mitigate the effects of wind-induced vibration and reduce the overall
stress on the transmission system, some wind power projects may implement intelligent control
strategies. One such strategy is pitch control, which adjusts the pitch angle on the blades to
maintain a stable output power when the wind speed exceeds the rated wind speed. However,
implementing this type of strategy is difficult due to the non-linearities of the system and the
uncertainty of the measurements [124]. However, this strategy does not apply to variable-
speed fixed-pitch (VS-FP) wind turbines, where the pitch is ideally zero, and any control
action is made through the tip-speed ratio [15, 56, 122].

Therefore, inappropriate control designs might accentuate the vibration modes, potentially
destroying some mechanical devices such as gearboxes or blades. The controller must provide
damping at the vibration modes whenever possible to mitigate high-frequency loads and reduce
the risk of fatigue breakdown. On the other hand, the control strategy must avoid operation
at points where those vibration modes that the controller cannot damp are likely to be excited
[16]

1.2.5 Control methods for Wind Turbine

The purpose of wind turbine controls is to ensure the safe and automatic operation of the
system, reduce operating costs, maximize energy capture, and prevent dynamic mechanical
loads caused by the intermittent and variable nature of wind. The capacity of a wind turbine
to produce energy, taking into consideration physical constraints, can be represented in a
power curve. This curve illustrates generated power vs. wind speed, as shown in Figure 1.5.
Under ideal conditions, a wind turbine will reach nominal power (Pnom) when a nominal wind
speed (Vnom) occurs, following the behavior of the curve presented in Figure 1.5. At this
point, the system is working at Cmax

p , allowing for a compromise between available energy
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and operational cost.

The operational range of wind turbines is typically delimited by the cut-in wind speed (Vmin)
and the cut-off wind speed (Vmax). Outside of these limits, the turbine remains stopped. The
turbine will not operate when the wind is below Vmin due to not compensating the cost of
operations, and if the wind speed is higher than Vmax, the system will shut down for structural
safety [75].

The power curve is typically divided into three zones. Region I occurs at low wind speeds,
where the available power is lower than the nominal power. In contrast, region III occurs at
wind speeds higher than the nominal power. The control system limits power generation in
this region by operating at a lower efficiency than Cmax

p to avoid overloading. Besides, Region
II is a zone of transition, where the control system will try to maintain the centrifugal forces
below the values that the rotor can tolerate.

Wind turbines are subject to static and dynamic loads during normal functioning. Static
loads result from wind speed and typically do not pose significant control problems. However,
dynamic loads cause variations in the aerodynamic torque, affecting the integrity of the drive-
train. These loads are usually caused by turbulence and wind gusts. Moreover, they are
typically found in regions II. Commonly, the wind speed has a higher magnitude than Vnom.
[16].

The design of a wind turbine’s control system can vary depending on its modes of operation.
Some configurations consider fixed speed or pitch, while others consider variable speed or pitch.
It is also common to design wind turbines with combinations of these objectives. Depending
on the desired objectives, the design can have either fixed or variable pitch for variable-speed
wind turbines.

The variable speed-variable pitch (VS-VP) wind turbines are programmed to operate with a
fixed pitch when the wind speed is lower than Vnom and with a variable pitch in region III.
In contrast, VS-FP wind turbines always operate with a fixed pitch and can work with either
passive or speed-assisted stall control strategies. The passive stall strategy aims to search for
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Cmax
p until region II is reached. Then, the control switches work with a fixed speed to capture

as much energy as possible without overloading or adding risk to the system. In contrast, the
speed-assisted stall control strategy always operates with Cmax

p ; the rotational speed increases
proportionally to wind speed until it reaches the nominal point and will operate with this
constant speed, creating some inevitable loads in region II [16].
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1.3 Scope & Objectives

Wind turbines play a role in the renewable energy sector to address the global energy demand
while mitigating environmental concerns. However, these complex systems are susceptible
to degradation over time due to the dynamic and unpredictable nature of wind conditions.
The degradation can affect the system in multiple ways, including reduced power quality and
structural damage to the drive-train components, ultimately reducing the overall efficiency
and lifespan of wind turbines.

Understanding and managing degradation is crucial for optimizing the performance and reli-
ability of wind turbines. However, a significant challenge is to develop an accurate dynamic
model of the drive-train that accounts for the deterioration process, especially when reso-
nance modes are present. Additionally, implementing control strategies significantly impacts
vibration modes and mechanical component damage, making it a critical aspect of turbine
operation. It is important to note that traditional control strategies primarily rely on adjust-
ing the pitch angle, which does not apply to fixed-pitch wind turbines. Therefore, there is a
strong need for developing a sophisticated control system aware of degradation and capable
of effectively optimizing wind turbine operation in variable-speed fixed-pitch configurations.

The primary objective of this research is to develop and evaluate a control strategy for variable-
speed fixed-pitch wind turbines that takes into account the degradation caused by the vari-
ability in wind conditions. This control strategy aims to minimize the negative impact of
degradation on the turbine’s drive-train. The ultimate goal is to achieve a balance between
energy dissipation and energy generation, maximizing turbine performance while reducing
degradation.

To accomplish this central objective, the following specific tasks and objectives will be pursued:

1. Deterioration Modeling: Develop an accurate deterioration model that describes
the influence of changes in the control, and system disturbances, on the degradation
process. This model will provide a theoretical foundation for understanding degradation
dynamics.

2. Control Strategy Development: Create a control strategy that integrates the degra-
dation model’s insights, effectively optimizing the trade-off between energy dissipation
and energy generation. The control strategy will be adaptable to fluctuations in wind
conditions, allowing for the mitigation of drive-train degradation.

3. Long-term Degradation Simulation: Establish an approach for simulating the long-
term deterioration of the wind turbine. This simulation will incorporate the developed
control strategy to ensure that it considers the trade-off between degradation and energy
generation.

4. Robust Control: Propose a robust control strategy capable of managing the rate
of degradation, ensuring that wind turbine performance remains consistent even when
confronted with sudden changes in wind conditions or set-points.
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1.4 Organization of the document

This thesis is organized into six chapters, organized as follows:

• Chapter 2: provides a literature review and background information on wind turbine
degradation and deterioration-aware control, which is necessary for understanding the
problem addressed in this thesis and the proposed solution. The chapter is divided into
three main sections: The first part explains the fundamental principles and equations for
modeling the dynamic of the drive-train in a wind turbine. On the other hand, the second
section mentions the principles of degradation modeling methods. The third section
covers different control strategies that utilize strategies such as prognostic or health
management information to control degradation. The chapter concludes by summarizing
the key findings of the literature review and highlighting the research gaps that the
proposed solutions aim to address.

• Chapter 3: This chapter introduces the proposed degradation model for a wind tur-
bine’s drive-train. The model is based on contact mechanics and estimates the dissipated
energy at the shaft for different wind conditions and control gains, both optimal and
sub-optimal. The second section validates the proposed model by using simulation sce-
narios and implementing a wind turbine prototype. The results illustrate the impact of
persistent variations in the shaft angle when the system is submitted to wind speed with
high variances and sub-optimal conditions.

• In Chapter 4 a gain-scheduling control strategy is proposed to optimize the efficiency
of a wind turbine under varying weather conditions. The proposed strategy aims to find
an optimal trade-off between generated energy and degradation due to dissipated energy
in the drive-train. The chapter is divided into two sections: The first section explains
the details of the proposed gain-scheduling control strategy, including the methodology
of selecting suitable control gains and the optimization process. The Results section
tests the proposed strategy using different wind speed scenarios to consider a wide range
of possible wind conditions affecting the turbine. The results demonstrate that the
gain-scheduling control strategy allows for maximizing generated energy and decreasing
dissipated energy by switching the control gains depending on the wind flow conditions.
This leads to a closer approximation to the theoretical optimal behavior.

• Chapter 5 presents a proposed methodology for estimating the long-term degradation
of a wind turbine’s drive-train using a gain-scheduling control strategy and consider-
ing the variation in wind conditions. The chapter is divided into two main sections:
implementation of the proposed methodology by steps, results, and discussions. The
first section describes the detailed process of implementing the methodology, including
acquiring wind speed data, simulating the dissipated energy in the drive-train, estimat-
ing the slope in the dissipated energy vs. time curve, and generating new slope data.
The second section presents the analysis results, including graphs of dissipated energy
for different periods and a comparison of the dissipated energy for the cases using the
suitable control gain and the theoretical control gain.
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• Chapter 6 proposes a strategy for managing the degradation rate of a wind turbine’s
drive-train while maintaining energy generation under varying conditions. The chapter
is divided into three main sections. The first section presents the definition of the
problem that can be solved with the proposed strategy. In the second section, the design
of the robust deterioration controller using H∞ method. The third section presents
the implementation of the degradation controller and evaluates its performance under
different scenarios, including changes in the set point and variations in disturbances.
The chapter concludes with suggestions for future research, including implementing the
proposed control strategy in an experimental system and integration with a remaining
useful lifetime control method.

The document finishes with a section where are presented the conclusions and perspectives of
this thesis.

1.5 Main Contributions

In this thesis, a new degradation model was developed for the drive-train in wind turbines.
This model considers the effects of wind turbulence that result from operation on sub-optimal
points. The results led to the development of a gain-scheduling control strategy that balances
degradation and energy generation. A methodology for estimating long-term energy dissipa-
tion considering suitable control gains depending on wind conditions was also developed.

Finally, the results obtained in the previous stages aided in developing a degradation-aware
control strategy that adjusts the maximum power point tracking control gain using a
robust H-infinity control strategy. This strategy ensures system stability in the presence of
uncertainties and external disturbances, such as changes in the wind.

Publications

As result of the work of this thesis, different articles and presentations were made:

• Romero, E.E., Martinez, J.J., and Berenguer, C. (2021)Degradation of a wind-
turbine drive-train under turbulent conditions: effect of the control
law, In Proc.5th International Conference on Control and Fault-Tolerant System
- SYSTOL 2021 2, Saint-Raphaël- France, September 29-October 1st 2021.

• Romero, E.E., Martinez, J.J., and Berenguer, C. (2022) Gain-scheduling wind-
turbine control to mitigate the effects of weather conditions on the
drive-train degradation., In Proc. 11th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes - SAFEPROCESS 2022, Pafos -
Cyprus, 8-10 June 2022.

• Romero, E.E., Martinez, J.J., and Berenguer, C. (2022) Long-term degra-
dation estimation of wind turbine drive-train under a gain-scheduling
control strategy according to the weather conditions., In Proc. 5th IFAC
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Workshop on Advanced Maintenance Engineering, Services and Technology -
AMEST 2022, Bogotá - Colombia, 26-29 July 2022.

• Submitted. Romero, E.E., Martinez, J.J., and Berenguer, C. (2023) Intelligent
robust control for the degradation rate of a wind turbine drive-train,
In Journal: Engineering Applications of Artificial Intelligence

Awards & recognition

As result of the work and presentations made at conferences, the following awards were
obtained:

• 5th IFAC Workshop on Advanced Maintenance Engineering, Services and Tech-
nology - AMEST 2022. Long-term degradation estimation of wind turbine drive-
train under a gain-scheduling control strategy according to the weather conditions.
Best Paper Award- Bogotá - Colombia, 26-29 July 2022.

• 5th IFAC Workshop on Advanced Maintenance Engineering, Services and Tech-
nology - AMEST 2022. Long-term degradation estimation of wind turbine drive-
train under a gain-scheduling control strategy according to the weather conditions.
Best Young Author Award - Bogotá - Colombia, 26-29 July 2022.

Additional Activities

• Presentation of Mini Variable-Speed Wind Turbine in 6èmes journées des Démon-
strateurs en Automatique. Angers - France, 21-22 June 2022..

• Presentation of "Evaluation and controlling of the degradation in a drive-train
wind-turbine considering the weather conditions" in the Universidad del Valle
(Project ECOS NORD). Cali - Colombia, 17-22 July 2022.

• Presentation of "Gain-scheduling wind-turbine control to mitigate the effects of
weather conditions on the drive-train degradation" in the Universidad del Valle
(Project ECOS NORD). Cali - Colombia, 17-22 July 2022.
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This chapter aims to provide the basis and fundamentals for identifying the existing
research gap in the literature concerning the study of deterioration on the drive-train
of a wind turbine considering the wind conditions and how operating the wind turbine
under sub-optimal conditions can affect the system’s health.

Chapter 2 presents the fundamental principles of aerodynamics and control in wind
turbines, along with various models and methods for simulating wind behavior. Sec-
tion III provides an overview of the advancements in studying the deterioration of wind
turbines, with a specific focus on drive-train degradation. Furthermore, the chapter dis-
cusses state-of-the-art methods that can be implemented as degradation-aware control
in wind turbines, and concludes with general remarks and the identified gaps.

2.1 Fundamentals of Wind Turbines

The primary objective of a wind turbine is to extract the maximum amount of power
from the wind to generate electricity. The power that can be obtained from the wind
when passing through the rotor area A can be determined using the general equation
of kinetic energy: Ekinetic = 1

2
ρAV 2 [16, 23, 56]. Therefore, the power that can be

obtained from the wind (Pw) can be expressed as:

Pw =
1

2
ρAV 3 (2.1)
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The efficiency of the wind turbine can be determined by Cp, which is the ratio between
the mechanical power from the rotor Pr and the wind power Pw. Thus, Cp can be
expressed as follows:

Cp =
Pr

Pw

(2.2)

Thus, the theoretical power output (Pr) that a wind turbine can extract from the wind
is given by the expression:

Pr = Cp(λ, ψ)
1

2
ρR2πV 3 (2.3)

where ρ is air density, R is the radius of the rotor swept area, V is the wind speed and
Cp(λ, ψ) is the power coefficient, which is dependent on λ and can also be dependent
on the pitch angle ψ in some operational modes. In addition, the aerodynamic torque
applied to the rotor by the wind τr can be calculated as follows:

τr =
1

2
ρπR3Cp(λ, ψ)

λ
V 2 (2.4)

As Section 1.2.2 mentions, Cmax
p represents the maximum achievable Cp. According

to the Betz limit, the maximum power that can be extracted from the wind is 0.59 or
16/27 of the total power in the wind. The value of Cp depends on the tip-speed ratio
λ, as illustrated in Figure 1.3. The optimal value of λ0 corresponds to the point where
Cmax

p is reached. For other operating points, λ can be computed as follows:

λ =
ωrR

V
(2.5)

The turbine design determines the Cmax
p , but λ is variable, making it difficult to es-

timate the actual Cp during operation. Since Cp is the most reliable indicator of the
system’s efficiency, various methods have been developed to estimate the power curves
of the turbines with accuracy. These methods include the theory of aerodynamics,
blade element momentum (BEM) theory, computational fluid dynamics (CFD), fuzzy
logic, and the generalized dynamic wake (GDW) model [1, 93, 100, 106, 138, 150]. How-
ever, a simple option to estimate the aerodynamic power coefficients is using numerical
approximations, as explored in [29, 59, 116]. Those type of models has the form:

Cp(λ, ψ) = c1

(
c2
λi

− c3
ψ

− c4λiψ − c5ψ
x − c6

)
e
− c7

λi + c8λ (2.6)



2.1. Fundamentals of Wind Turbines 23

The authors of the article presented in [116], proposed to optimize the equation (2.6),
the parameter λi and the different constants as:

λi
−1 = (λ+ c9ψ)

−1 − c10(ψ
3 + 1)−1 (2.7)

with c1 = 0.22; c2 = 120;c3 = 0.4; c4 = 0; c5 = 0; c6 = 5; c7 = 12.5 ; c8 = 0 ;
c9 = 0.08 ; c10 = 0.035 ; x = 0.

Note, for the case of VS-FP wind turbines, ψ is considered ideally zero. Thus, Cp will
just depend on λ.

2.1.1 Control in Wind Turbines

The VS-FP wind turbines require precise control strategies to achieve maximum perfor-
mance. One such strategy is integrating the Maximum Power Point Tracking (MPPT)
algorithm, which helps maintain the optimal point of operation by controlling the rotor
speed in response to the wind.

As previously mentioned, wind turbines reach their Maximum Power Point (MPP) at a
specific point denoted as Cmax

p . In variable-speed wind turbines, this is achieved at an
optimal tip-speed ratio, which can be maintained by the control algorithm that adjust
the rotational speed proportionally to the wind speed. This is critical for fully utilizing
the advantages of variable-speed operation [16].

To achieve this, an MPPT control algorithm for VS-FP wind turbines must consider
torque control, represented by τc, as a function of the rotor speed, as follows:

τc = Kopt
c (ωr)

2 (2.8)

here Kopt
c is the optimal feedback control gain, which is given by:

Kopt
c =

1

2
AR3

Cmax
p

λ0
3 (2.9)

Thus, the generator power will be:

Pg = τcωr (2.10)

and, as a consequence, the generated energy will be:

Eg =

∫ t

0

Pgdt (2.11)

When operating VS-FP wind turbines, finding a balance between the wind speed, rotor
speed, and power is essential. In addition, some control strategies aim to reduce energy
extraction to avoid areas where mechanical loads may occur. To address this concern,
a speed or torque control loop can help mitigate the cyclic loads that impact the drive-
train.
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Wind Turbine -
+

Figure 2.1: Speed control loop for variable speed operation

• Speed Control Loop

The speed control strategy is widely employed to ensure that a generator attains
the desired angular speed and generates the maximum energy. Figure 2.1 illus-
trates a speed control loop architecture, similar to that presented in [16]. The
wind turbine system receives the wind speed V , and ωz is used for controlling
torque provided by the generator, whereas ωg is the actual angular speed of the
generator ωg. This output value is compared with an angular speed reference ωref

to estimate an error. The controller C receives the error signal to generate the
signal ωz.

To estimate the reference, the MPPT control law for VS-FP wind turbines is
considered for Regions I and II of operation, as follows:

f = ωref =

{
λ0V
R

for Region I
ωnom for Region II

To obtain the maximum value of Cp, the angular speed nominal (ωnom) of the
wind turbine is used. However, measuring the rotor speed to estimate the error
(e) can be challenging. In such cases, ωg is often used to estimate low frequencies,
as pointed out in [16].

A simpler variation of this strategy is Tip Speed Ratio Control, where the principle
is to keep the λ constant at its optimal value (λ0) to extract maximum energy.
This strategy compares the actual tip speed ratio to the optimal one. It calculates
an error (e = λ0 − λ), which a controller then uses to adjust the rotational speed
and minimize the error [1].

• Torque Control Loop

Figure 2.2 illustrates a torque control loop, an alternative approach to controlling
the speed tracking error [16]. It operates on two levels of control loops and relies
on the generator speed to estimate the rotor speed. The wind turbine uses as
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Wind Turbine -
+

Figure 2.2: Torque control loop for variable speed operation

inputs the wind speed V and angular speed ωz; this input is used for controlling
the torque provided by the generator. The outputs are the real angular speed of
the rotor ωr (using ωg for estimation) and the generator torque τg.

The block g represents the MPPT control law presented in Equation 2.8. It
estimates the reference torque and then compares it to the output τg to compute
an error. This error serves as the input to the controller C. The controller then
adjusts the signal ωz that minimizes the error.

• Perturbation & Observation Control (P&O)

The Perturbation and Observation (P&O) method, or MPPT Peak Power Track-
ing or Hill-Climb Searching (HCS), is often used in VS-FP wind turbines to ad-
just the control variables during wind speed fluctuations [85]. It involves utilizing
mathematical optimization to identify the local optimal point in a function. The
method divides the graph Cp vs λ as shown in Figure 2.3 into three zones: These
zones are categorized as the positive slope (to the left of Cmax

p ), zero slopes (at
Cmax

p ), and negative slope (to the right of Cmax
p ). When the operating point falls

within the positive slope zone, the controller reduces the load current to increase
the rotational speed. On the other hand, if the operating point falls within the
negative slope zone, the controller takes the opposite action [85, 147].

The Perturbation and Observation method is commonly used because of its sim-
ple, sensorless, and flexible structure. However, in the P&O control method,
the direction of the next perturbation is determined based on whether the power
increased or decreased due to the previous perturbation. However, this control
method does not consider wind changes, which can be misleading. The sign of the
perturbation might be influenced by changes in wind rather than the applied per-
turbation. This incorrect decision leads to a failure in maintaining the maximum
power point (MPP), causing the P&O control to move in the wrong direction [1,
61].

On the other hand, a more significant step size improves convergence speed but
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Figure 2.3: Characterization of curve Cp vs λ for Perturbation and Observation method

decreases the efficiency of MPPT by amplifying oscillations around the MPP. On
the other hand, a smaller step size improves efficiency but slows the convergence
speed, which may make the controller unable to track the MPP under rapidly
changing conditions [1, 9, 61, 97].

Several wind turbine control strategies have been developed based on the earlier general
architectures. Some methods are designed to maximize power output in Region II of
operation, such as fuzzy logic-based MPPT algorithms.

Fuzzy logic control algorithms are applied to VS-FP wind turbine control with complex
nonlinear models and parameter variations. These algorithms use rotational speed and
an aerodynamic torque observer as inputs. This strategy uses a reference torque to limit
the output power and speed fluctuations, as presented in [89]. Although this strategy
has many advantages, it is only sometimes used due to its complicated implementation.
[89]. Also, Simani in [126] presented an approach of fuzzy modeling and identification
oriented to the design of a PI fuzzy controller for regulating both the pitch angle and
the reference torque of a wind turbine model, and in [125] was presented a data-driven
fuzzy wind turbine control method, where it is suggested to describe the system by a
collection of local affine systems of the type of Takagi-Sugeno (TS) fuzzy prototypes.

On the other hand, Jargalsaikhan et al. [55], presented a new control algorithm for
wind turbines in strong wind conditions and the proposition to create a new zone of
operation called Region 4. The algorithm uses rotational speed and pitch angle control
systems to regulate the generator’s output power in different regions. The proposed
control system reduces the active power and rotational speed in Region 4, whereas the
conventional control method shuts down the wind turbine. Additionally, the proposed
control system can reduce the pitch actuator action and high-aggressive aerodynamic
behavior of wind turbines. The wind turbines using the proposed control method can
generate power up to 35 m/s, beyond which they are automatically shut down.

Another method is the power signal feedback method, which uses the same loop archi-
tecture as the torque control method. However, instead of controlling the torque, it uses
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power as the variable for control. This method can employ PI controllers to regulate
the output power, and the control gains can be optimized using Particle Swarm Opti-
mization. Nevertheless, the most effective solution is to use robust control strategies,
such as H∞ techniques for linear parameter varying (LPV) systems [82].

In recent years, the H∞ method has been widely utilized in various areas of wind
turbine control. Several studies have been conducted, including a control strategy
presented in [81] to decrease wind turbine structural loads. Additionally, a pitch H∞
control strategy was introduced in [129] for VS-VP wind turbines, improving the rotor
standard deviation of the wind turbines under normal and extreme wind conditions.
To maintain wind turbine performance in bad weather conditions, such as snow or
rain droplets freezing on the turbine blades, a control technique using the H∞ method
was implemented [102]. Furthermore, Do et al. [34] developed a control strategy
that accommodates disturbances, using the H∞ approach and combining disturbance
observers and rejection controllers to handle unknown disturbance effects.

Existing control strategies often focus on optimizing power output and improving ef-
ficiency without accounting for the impact of deterioration on turbine performance.
Incorporating deterioration as a control variable could lead to more accurate and adap-
tive control strategies that can adjust turbine operation based on the health condition
of the components.

Additionally, there exists a limited consideration of turbulence intensity variation as
a factor to control in order to improve efficiency. By developing control algorithms
that can dynamically respond to changes in turbulence intensity, it may be possible to
optimize turbine operation and improve overall energy capture.

Exploring these research gaps and developing control strategies that consider deterio-
ration and wind conditions as control variables could lead to more robust and efficient
wind turbine systems.

2.1.2 Wind Modelling

Due to the geometry of the wind turbine, it is usual that the sensors do not accurately
measure the wind speed; also, depending on the position of the anemometer, the wind
speed gust will induce noise and error in the lectureof the sensor. In order to obtain
a better measurement, sometimes an array of anemometers is utilized to estimate the
wind speed field upstream of the turbine and then predict the wind speed at the turbine
site; however, it is a complex alternative. Therefore, it is not uncommon to utilize other
parameters that are easier to measure (such as temperature or pressure) to estimate
the effective wind speed.[16].

The probability density and cumulative functions are some resources that often use
recorded wind speed data to estimate effective wind speed. Due to the stochastic
nature of the wind speed, it is not recommended to use these statistical methods for a
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short time scale. However, for long-term time scales, wind shows patterns that allow
probabilistic distribution to determine the statistical characteristics of wind [25, 73].

The Weibull distribution is frequently utilized in wind engineering to model wind speed
distribution. In order to obtain acceptable prediction results, it is necessary to accu-
rately estimate at least two parameters (shape and scale); otherwise, it can result in
errors in wind power estimation, the power generation, and inaccurate wind load es-
timations that can affect the lifespan of the turbine. Although multiple studies have
developed methods for parameter estimation, there is not a universally accepted formal
method [58, 73].

To represent annual or seasonal periods, the Weibull distribution is typically used due
to its favorable estimations for long-term scale. However, since it is not time-dependent
but rather a static distribution, it is not recommended to represent the frequent short-
term wind speed fluctuations essential for trading and storing wind energy [57]. Other
distributions, such as the Gamma, Lognormal, Normal, Rayleigh, Joint-Gaussian, Burr,
Nakagami, or Extended Generalized Lindley, have been implemented to achieve a better
fit to data and predict wind speed with greater accuracy, and different research has
conducted comparative analyses among these distributions in an attempt to identify
the best one [3, 35, 67].

Another common way to reproduce wind speed is a time series model, often is imple-
mented to simulate historical wind speed data for a specific location due to a simple
structure and computational efficiency. However, their linear forms limit their useful-
ness, and the ability to predict accurately decreases as the time frame becomes longer
[76]. Two of the most known methods of this type of model are: Autoregressive Moving
average (ARMA) [38, 46] and Kalman Filter [2, 51, 149].

On the other hand, various models have been developed in the literature to reproduce
or predict wind speed. In the prognosis or prediction of Remaining Useful Life (RUL)
for wind turbines, short-term wind behavior forecasting is often employed to improve
turbine efficiency [68, 78], the estimation of the expected RUL is quite helpful to reduce
maintenance cost, safety hazards, and operational downtime [60].

Stochastic differential equations (SDE) are used to estimate the parameters of wind
speed’s underlying stochastic process. These models accurately represent the effect of
turbulence in short time scales by introducing fluctuations in wind speed. Moreover,
they enable the generation of long-term wind speed predictions that account for sea-
sonal variations in wind behavior. The Ornstein–Uhlenbeck (OU) and the Brownian
motion models are incorporated in SDE for reproducing wind speed and turbulence
intensity on a scale of seconds [5]. Also, other authors have introduced Markov Chain
methods to wind modeling, considering that the generation of wind does not need past
information to generate new wind data and allowing the times between transitions to
occur according to any distribution functions, which may depend on the current and
the next visited state [36, 77, 136].
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Figure 2.4: Scheme of wind speed generation model of two level Markov chain embedded with
Stochastic differential equations proposed in [77].

A flexible wind speed generation model was presented by Ma et al. on [77], bringing an
alternative method that allows generating continuous wind speed without time-length
limitations due to generating short and long-term. This method is based on a 2-level
Markov Chain with SDE, allowing the consideration of different levels of turbulence that
can be adjusted depending on the indices on the SDE, see Figure 2.4: The external
Markov Chain is used to model general wind speed trend such as average wind speed
for a timescale, The embedded SDE is used for model continuous wind speed, and
the inner Markov Chain randomly changes between the two classes of wind. Further
information on [76, 77].

2.2 Deterioration in Wind Turbine

Deterioration or degradation refers to the process of decreasing the performance and
reliability of assets. It is considered a health indicator of a system, as the maximum
level of degradation often coincides with a specified failure threshold. Therefore, it is
logical to conclude that degradation occurs earlier than failures, and valuable insights
can be gained from this phenomenon [44]. It does not exist any general indicator or
estimator of deterioration. However, various methods are available to assess the level
of degradation of different mechanisms [111].

A large number of different research on the degradation of wind turbines have been
developed during the last 15 years [119]. Some studies found that the wind turbines
lose 1.6± 0.2% of their output per year as a consequence of the degradation of the
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systems [130]. Other studies found that the capacity factor can decrease around 6%
during the lifetime of the system [42, 94], and the efficiency index of the turbine was
found to decline by 0.64% every year of its operation [19, 80].

2.2.1 State of art on deterioration modeling in wind turbines

Modeling the deterioration is essential for predicting remaining useful life (RUL), plan-
ning for maintenance, and managing the overall health of the systems [121]. Various
methods have been developed in the wind turbine industry, including some in discrete
space-state and others in continuous states-spaces. These techniques help to predict
and manage degradation accurately. The most common used for wind turbine degrada-
tion are: Markov Chain models, Data-driven or trend methods, Signal-based methods,
Models with increments, Hybrid methods.

Markov Chain Models

Sometimes, it is considered that certain physical degradation phenomena have a discrete
state-space, making Markov Chain a useful tool as a stochastic process with discrete
states [107, 140]. Some of the studies that implemented the Markov Chain methodology
to study the degradation of wind turbines are:

• A reliability assessment for the wind turbine bearing of 105 components was de-
veloped using a degradation model based on the Hidden Markov Chain in [65].

• A wind turbine component degradation maintenance model was developed using
the Markov Chain methodology [95]. The study assumes that the components of
a wind turbine degrade 90% of the lifetime in three stages: in maturity (50%),
aging (30%), and terminal (10%). A Monte Carlo simulation also determined the
transition probabilities between stages.

Data-driven or trend methods

A data-driven methodology was proposed in [86] to characterize the long-term and
short-term performance degradation associated with wind turbine aging considering
confounding factors, such as operative modes and environmental conditions.

Byrne et al. in [19] explored the performance degradation of a Vestas V52 wind turbine
caused by drive-train aging through a multivariate Support Vector Regression with
Gaussian Kernel. Another study was presented by Mathew et al. in [80] utilizing Deep
Neural Networks and data from 10 years to estimate an efficiency index for measuring
age-related performance degradation for a wind turbine.

A research conducted by Olauson et al. in [94] using regression analysis to examine the
aging of wind turbines. The study utilized two data sets, with some overlap, consisting
of 1,100 monthly and 1,300 hourly time series that spanned 5 to 25 years each.
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In a study conducted by Astolfi et al. in [7], the focus was on the impact of aging on
wind turbine performance. The study concluded that it is not accurate to assume that
performance decline occurs at a consistent rate year after year based on cumulative data.
Therefore, false expectations should not be made regarding wind turbine performance.

A data-driven methodology was proposed By Murgia et al. [86] to characterize the
long-term and short-term performance degradation associated with wind turbine aging
considering confounding factors, such as operative modes and environmental conditions.

To assess the age of wind turbines using SCADA data, various criteria for degradation
in control and other systems were developed by Dai et al. in [28].

On the other hand, some studies have used efficiency variation to indicate the system’s
degradation level. He. et al. [47] used a linear Wiener process to estimate the system
efficiency loss due to the degradation of some components.

Signal-based methods

When analyzing signals, signal-based methods are often used to monitor wind tur-
bines’ structural health efficiently. This approach requires additional sensors for signal
measurement, which can increase operational costs. In the research on the drive-train
deterioration, different studies have been made:

The deterioration in the drive-train has been analyzed in [30] using vibration-based
health-monitoring techniques, oil-debris analysis techniques, and wind turbine opera-
tional parameters combined to provide improved detection and decision-making capa-
bilities compared to using only individual diagnostic tools.

Some researchers affirm that there are gaps in predicting degradation caused by vi-
brations in the drive-train. This is due to cross-term interference and the inability of
conventional models to adapt to changes in probability distribution. Additionally, it is
challenging to obtain accurate fault information using a single sensor because of atten-
uation and interference caused by complex signal transmission paths [74]. However, a
multi-sensor learning strategy is proposed to solve the data distribution mismatch due
to the change in sensor locations and operating conditions [98, 99].

Models with increments

Models with increments are commonly used to represent degradation in a continuous
state space over a specific time interval [107]. These models are typically utilized when
it is feasible to monitor physical damages. Wind turbines have served as examples of
where this method has been applied.

A study by Sun et al. [135] has developed a dynamic reliability model for wind turbine
gear drives that considers stress deterioration and strength degradation. A Monte Carlo
method was used to determine the probability distribution of gear contact stress.
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Another method was presented in [103] to extract the degradation feature of a planetary
gearbox based on the alpha-stable distribution (or Levy process). The study used the
vibration signal at three different time points (0 h, 500 h, 1000 h) to estimate the
working time of the system since it is considered that the vibration amplitude of the
planetary gearbox is proportional to the working time.

Mixed methods

Model methods construct physical models representing the degradation of a wind tur-
bine or a specific system. However, building a precise physical model for the complex
interaction between different components and the influence of circumstances is chal-
lenging. Therefore, it is common to mix different types of methods. Mixed methods
are often implemented to study the degradation in wind turbines, as shown in the
following studies:

• Su et al. proposed a stochastic differential equation model of gearbox state tran-
sition to maximize the utilization of gearboxes on wind turbines. The model used
the Weibull distribution and polynomial approximation to construct the degrada-
tion model [133]. After a modification of the degradation model was developed to
describe the state change process of wind turbines, the Brownian motion is used
to describe the fluctuation process of wind turbine states affected by external
disturbance [132]. Another degradation model was developed on [134] based on
stochastic differential equations to describe the spatio-temporal evolution behav-
ior of wind turbine generators. The model uses a Weibull proportional hazards
function to represent the component’s failure rate, simulates random disturbance
with Brownian motion, and solves the stochastic differential equations model by
constructing a function transformation.

• Ghamlouch et al. [43] consider the deterioration process to be modeled using a
jump-diffusion process, which involves independent and time-dependent Gaussian
distributed increments with possible random jumps. This article discusses the
overall deterioration mechanism of a system, which is influenced by the health
condition of its components and various internal and external working conditions.
It is also important to consider that this process can be affected by several fac-
tors, both external and internal, as well as the instantaneous working conditions
and stress. The influence of environmental conditions is modeled by covariates
impacting the deterioration process parameters, as a Markov Chain model.

• Qin et al. [104] proposed to build a health indicator using a supervised multi-head
self-attention autoencoder (SMSAE) neural network for monitoring the degrada-
tion of rotating machinery. The author evaluated the exactitude of the proposed
method, implementing it in evaluating the degradation of a wind turbine gearbox
bearing. Another method for predicting degradation on wind turbines using an
artificial neural network was developed by Saidi et al.,[115] to predict remaining
useful life (RUL) in high-speed shaft bearings wind turbine systems.
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• The energy dissipated by a system has been used as an indicator of degradation.
The general idea of using the dissipated energy as a lifetime parameter was pro-
posed on [137]. The same assumption was considered by Rodriguez et al., [112],
where the dissipated energy could be considered an image of the heat and the
material worn at the contact level during traction. On the other hand, Gosar et
al. [45], use the dissipated energy to represent the energy that is released as a re-
sult of irreversible structural changes, such as dislocation movements and fatigue
damage, and it is assumed that is proportional to the fatigue damage.

In conclusion, various methods have been developed to model the deterioration of wind
turbines and to provide valuable insights into assessing their degradation. However,
the dynamic behavior of a flexible shaft is an essential factor in understanding the
degradation and performance of wind turbines. Further research is needed to develop
models that can accurately capture the effects of flexible shaft dynamics on deteriora-
tion, which will improve the prediction and management of wind turbine health in the
long-term, while taking into consideration external factors such as changes in control or
environmental conditions, for example, the impact of the level of turbulence intensity.

2.3 Deterioration-Aware Control in Wind Turbines

To manage the behavior and health of a system using Prognostic and Health Manage-
ment (PHM) information is necessary a closed-loop control system [91]. The objective
of the control system should consider not only the system’s dynamic behavior but also
its state of health (SoH), which includes factors such as accumulated damage, reli-
ability, and remaining useful life (RUL) [32]. In the context of health management
requirements, deterioration-aware control refers to adjusting control responses to mit-
igate stress on a system based on known parameters. This approach considers the
system’s deterioration state as part of the control objectives [39].

As was mentioned previously, it does not exist as a universal indicator of deterioration.
However, fatigue damage is one of the most widely used metrics to asses the degradation
or health status of wind turbines [32]. Fatigue damage control strategies are the most
common method of direct damage strategies. Several investigations have developed
control strategies to manage the degradation of wind turbines based on fatigue damage;
some of them are presented below:

• The article presented by Sanchez et al.in [118], describes the integration of MPC
with fatigue-based prognosis to minimize the damage to wind turbine components.
The proposed mechanism optimizes the trade-off between component life and
energy production. A linear fatigue damage model is established by utilizing the
slope of the accumulated damage vs. the time curve. This model establishes
a relation between a control signal, the angular rotor speed, and a disturbance
(wind speed) with the damage of the blade root moment.
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• An adaptive fixed-time terminal sliding mode controller was proposed by Yang et
al. in [145] to eliminate the chaotic oscillation in wind turbine drive-trains with
combined harmonic excitation.

• An MPC formulation of Rain Flow Counting (RFC) has been presented in [72] in
an application-focused manner, highlighting how it directly incorporates mechan-
ical fatigue in predictive wind turbine control.

• A fatigue damage reduction data-based MPC strategy was designed and imple-
mented on a non-linear model-based wind turbine in [13]. The main idea is to
control a wind turbine, reducing output power fluctuation and the incurred fa-
tigue. The MPC strategy utilizes a fatigue indicator based on the shaft torsion.

• Sanchez et al. [117] describes a method for controlling wind turbines to minimize
component damage. The method involves integrating MPC with fatigue-based
prognosis, which allows for predictions of blade degradation using a stiffness model
embedded in a prognostics algorithm. The controller objective is modified to
account for accumulated damage, which allows the turbine to operate safely while
optimizing the trade-off between component life and energy production.

• Moghadam et al. in [84] proposed a data-driven model to estimate drive-train
fatigue damage based on wind conditions adapted to the farm’s active power
control objective function. The model was developed through pre-analysis of
single-turbine simulations and degradation calculations, considering the increased
turbulence intensity due to the wind farm wake effect. Drive-train loads were
calculated using a fully-coupled turbine-power train dynamic model, which allows
for the reflection of fatigue damage of individual gears and bearings in the overall
power train life function. Unlike high-fidelity models, this model can be easily
adjusted for drive-train configurations.

• The study presented in [18] proposes a two-level control configuration. The up-
per level performs health management functions, while the lower level has a dual
purpose: controlling the turbine below-rated wind speeds and preventing a com-
plex optimization problem in the upper level due to bi-linearity resulting from
polynomial fitting.

On the other hand, the reliability adaptive/supervisory control schemes are control
strategies used in wind turbines to improve their reliability by using real-time infor-
mation about the system’s health. These strategies usually have two levels of control:
a primary control loop and an adaptive control loop. The adaptive loop modifies the
set-point of the primary loop based on feedback about the system’s health status to
improve the system’s overall reliability. The reliability adaptive/supervisory control
schemes can be classified as Fault tolerant control, Fault evasion control, or Lifetime
control [32].
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Fault-tolerant control (FTC) allows the system, in this case, a wind turbine, to with-
stand faults and maintain its performance at the desired level; as a consequence, the
need for maintenance actions and downtime decreases, and improves the reliability of
power generation [49]. Some examples of this type of strategy are:

• Palanimuthu et al. presented in [96] a fault-tolerant pitch control strategy for
large-scale wind turbines to acquire reliable power extraction under simultaneous
pitch actuator fault situations, using a non-singular terminal synergistic control
manifold.

• Liu et al. proposed in [71] a strategy for designing fault-tolerant wind turbine
systems using Bayesian optimization. The approach specifically aims to miti-
gate the impact of asymmetrical loads on the turbine’s rotor system, which are
caused by pitch actuator faults. The strategy involves using a Bayesian optimiza-
tion algorithm to identify the optimal proportional-integral (PI) pitch controller
coefficients. This improves the system’s robustness without requiring complex
modeling, which reduces rotor system fatigue and enhances sustainable opera-
tion.

• The study presented in [69] by Liu et al. describes a study in which a 4.8MW wind
turbine system was modeled using a Takagi-Sugeno fuzzy model. An augmented
unknown input observer was utilized to estimate actuator and sensor faults and
signal compensation techniques were used to minimize the effects of these faults on
the system dynamics and outputs. The study demonstrated that using existing
controllers and compensation techniques, the wind turbine system can tolerate
low-frequency actuator and sensor faults.

• Jain et al., describes an approach for designing a health-aware fault-tolerant con-
trol (HAFTC) system that generates the desired amount of power while taking
care of the turbine’s health according to the wind-power profile on [54]. Two
interconnected modules were developed for fault diagnosis and receding horizon
control to ensure the health of wind turbine systems. The HAFTC scheme is
achieved through an unknown input-observer-based residual generation for fault
detection and a specific estimation filter for extracting information about torque
bias faults.

On the other side, fault-evasion control strategies are control schemes that initiate
system reconfiguration before faults even appear. This approach relies on observing
health indicators that represent the system’s health status and provides RUL prognosis
[32]. Some examples of this type of strategy are presented below:

• Barradas et al. proposed in [12] an active damage reduction control strategy for
wind turbines based on the dissipation of a hysteresis operator through a model
predictive control (MPC) based strategy that incorporates the dissipated energy
as a proxy for damage in the cost functional.
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• The study conducted by Frost et al. [40] explored the use of condition monitoring
for wind turbine blades and contingency control to balance between maintaining
the health of the system and maximizing energy capture. The contingency con-
troller can modify the turbine’s operation when environmental or fault conditions
could lead to high cyclic or extreme loads on the turbine blades. The contin-
gency controller adjusts the generator set-point whenever environmental factors
or potential faults could result in excessive cyclic or extreme loads on the turbine
blades.

• The article presented by Requate and Meyer on [109] describes the process for
designing and implementing a reliability controller that uses a health index to
express degradation. The control loop includes the MPC-reliability controller and
the wind turbine model. A two-stage control setup is used to separate the turbine
controllers from the reliability control loop. The turbine controllers operate on
a fast time scale, while the reliability controller works on a slower time scale to
handle degradation processes.

The lifetime controller is a system that utilizes a Structural Health Monitoring and
Prognosis (SHMP) model to gather information about a structure’s accumulated and
predicted future damage. This information defines parameters and reference values for
the primary controller, which controls the load mitigation level. By continuously con-
trolling the load mitigation level, the lifetime controller can achieve an optimal balance
between power generation and load mitigation, allowing maximum power generation
while achieving the desired service lifetime for the structure. [32, 33]. Below are some
examples of this type of control strategy:

• The article presented by Yin et al. [146] describes a control strategy for wind
farms that aims to maximize power generation and reliability while minimizing
thrust force, reducing the maintenance cost, and maximizing the lifetime. This
strategy uses a high-fidelity wind farm model built using machine learning and
heuristic optimizations, specifically a relevance vector machine (RVM) trained on
data from the wind farm model.

• An adaptive lifetime controller is presented by Kipchirchir et al. in [62] to manage
structural loading in the rotor blades to ensure a predefined damage level at the
desired lifetime without compromising the speed regulation performance of the
wind turbine. The goal is to ensure a desired lifetime while also considering the
damage accumulation level in the tower. The proposed method uses an online
structural health monitoring system to adjust the lifetime controller gains based
on a state-of-health (SoH) measure, considering the desired lifetime at every time
step.

• A deterioration-aware control strategy was presented by Boutrous et al. in [17],
the strategy considers information about the system’s deterioration in the control
law. The objective is to extend the useful life of the wind turbine, especially
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the blades. The controller uses MPC based on an LPV model of wind turbine
dynamics. This study offers a solution to a multi-objective optimization problem,
balancing system health and performance.

• The study presented by Do et al.in [33] proposes a new strategy to control the
lifetime of wind turbines. The strategy integrates a system health monitoring and
prognosis model into the control loop, which provides information about the cur-
rent state of the system and its possible future lifetime. This information is used
to adjust the parameters and references of the primary load reduction control
loop. The trade-off between maximizing power production and reducing struc-
tural load is optimized by regulating the wind turbine lifetime to a predefined
design value. The part-load region is considered to emphasize this trade-off. A
robust observer-based controller (ROBC) is combined with the standard MPPT
controller to reduce unwanted structural load. The ROBC is an optimal stable
controller that minimizes the mixed-sensitivity H∞-norm of the transfer function
from the exogenous inputs to the exogenous outputs with given weighting func-
tions.

In conclusion, degradation-aware control strategies have become crucial for optimiz-
ing wind turbine performance. These strategies aim to balance power generation and
structural damage minimization, thus extending the operational lifespan and reliability
of wind turbines. Researchers have explored various control approaches, such as Model
Predictive Control (MPC) and fuzzy models, which adapt to fluctuating wind conditions
and incorporate real-time health monitoring data to enhance turbine performance. In-
tegrating Structural Health Monitoring (SHM) and prognosis models into control loops
has shown promise in making informed decisions about component health. Moreover,
fault-tolerant control (FTC), fault evasion control, and lifetime control strategies have
been developed to ensure continuous operation under fault conditions, predict and
mitigate potential issues, and optimize power generation while maintaining structural
integrity.

Despite significant progress in degradation-aware control for wind turbines, there are
still research gaps that require attention. One such gap is the adaptation of these
strategies considering the inherent variability of wind environments. Embracing intel-
ligent control techniques and understanding the effects of changing wind conditions on
degradation and control is an emerging but critical area.

2.4 Conclusions

This chapter comprehensively overviews wind turbine functioning, control strategies,
and wind modeling. It emphasized the primary objective of wind turbines, which is to
obtain maximum power from the wind to generate electricity, introducing aerodynamic
power as a critical indicator of system efficiency. The chapter explored various control
methods, including speed control, torque control, and Perturbation and Observation
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techniques, underscoring the significance of precise control systems for optimizing wind
turbine performance. The challenges of wind modeling were also discussed, highlighting
the importance of accurate wind speed measurement and various statistical and hybrid
models used for wind simulation.

Additionally, the chapter delved into the concept of deterioration or degradation of wind
turbines, signifying a decline in asset performance and reliability. It noted the absence
of a universal deterioration indicator and the potential insights offered by degrada-
tion monitoring. Several methods for assessing degradation were presented, including
Markov Chain Models, data-driven trends, signal-based approaches, and mixed meth-
ods. Furthermore, the chapter highlighted the importance of effective control strategies
in wind energy, emphasizing Prognostic and Health Management (PHM) information
and deterioration-aware control to optimize objectives considering the system’s health.
It also acknowledged research efforts in developing control strategies to manage wind
turbine degradation, focusing on fatigue damage and improving reliability through
adaptive/supervisory control schemes using real-time health information.

However, within this comprehensive overview, several research gaps in wind turbine
control and degradation management have been identified. Specifically, these gaps per-
tain to degradation modeling, degradation prediction, and control strategies considering
the dynamic nature of wind conditions. This research aims to address some of these
critical challenges. The contributions in this work will allow an accurate modeling and
prediction of degradation in the presence of varying wind conditions. Hence, it will de-
velop an exact dynamic deterioration model that considers various factors influencing
the degradation process.

The second contribution of this research will be developing an advanced control strat-
egy designed explicitly for variable-speed fixed-pitch wind turbines. This strategy will
optimize energy generation while considering the negative impact of degradation on
drive-train components. By adapting to variations in wind turbulence intensity, this
control system will effectively decrease the degradation effect due to changes in the
wind conditions. It will also introduce an approach for simulating long-term degrada-
tion that incorporates the developed control strategy. This simulation will ensure the
careful management of the trade-off between degradation and energy generation over
time. Furthermore, this research will focus on developing robust control strategies that
can effectively manage the degradation rate, ensuring consistent turbine performance
even in the face of abrupt changes in wind conditions or set-points.

This thesis will provide valuable insights and solutions to the challenges of degradation
modeling, prediction, and control in wind turbines operating under variable wind con-
ditions. By addressing these gaps, it will be possible to advance the field of wind energy
and contribute to more efficient, reliable, and sustainable wind turbine operations in
the renewable energy sector.
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This chapter presents a degradation model for variable-speed fixed-pitch wind turbines
to account for the drive-train deterioration produced by the system’s operation at points
below and above optimal feedback control, which corresponds to the first contribution
of this thesis.

As established in Chapter I, one of the objectives of this thesis is to study the dynamic
degradation caused by changes in control or wind conditions. Thus, the degradation
model has been evaluated under different wind and control conditions in simulated
scenarios and a real wind turbine prototype. The contributions presented in this chapter
have been published in the article "Degradation of a wind-turbine drive-train under
turbulent conditions: effect of the control law" and presented at the Control and Fault-
Tolerant System - SYSTOL 2021 conference.

The degradation model uses a mechanical contact principle to simulate transmission
damping. This approach estimates the power and energy dissipated at the shaft, which
serves as an indicator of damage in the drive-train. Additionally, a simplified represen-
tation of the drive-train is employed to simulate the dynamic system of the transmission.
This model consists of a two-mass model connected by a flexible shaft.
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Different case studies were designed to evaluate the model under various control and
wind conditions. Regarding the evaluation under different control conditions, it was an-
alyzed the degradation of the system caused by operating below and above the optimal
feedback control points. Additionally, different wind speeds and turbulence intensities
were considered to illustrate the degradation resulting from the random effect of wind
conditions. The proposed simulation is based on a wind speed model estimated from
real data measurements of laminar wind speed and two classes of turbulent wind speed
data obtained from stochastic differential equations.

Finally, an experimental validation was conducted to assess control variations’ effect
on the drive-train’s degradation. The experiments were done using a prototype of a
fixed-shaft wind turbine with a virtual flexible shaft. The purpose was to simulate the
impact of fatigue, vibrations, friction, and other aerodynamic factors that can accelerate
damage to the transmission.

3.1 Dynamic of a Wind Turbine Drive-Train

The drive-train of a horizontal axis wind turbine is a complex mechanical system con-
sisting of numerous devices. It is vulnerable to vibrations, flexibility, and other phe-
nomena that challenge modeling the dynamic behavior of the transmission. In order
to analyze the stability, faults, and reactive powers compensation, various studies have
designed simplified transmission models [88].

Among the simplified representations of devices, the six-mass drive-train model has
emerged as one of the most complete models. This model considers three blades, the
hub, the gearbox, and the generator connected by two shafts. Each body has its
inertia, angular positions, and velocities, and the three blades, the shaft connecting the
hub-gearbox, and the other shaft connecting the gearbox-generator are represented as
springs to consider elasticity and damping. This model is the most precise for modeling
the system’s dynamics, particularly in Region II of the turbine’s operation [87].

Although other models, such as the five or three-mass models, have been developed in
a more simplified manner than a six-mass model, it has been demonstrated that the
dynamics of the shaft can be accurately expressed using the two-mass model, as stated
by Muyeen et al. in [88]. The simplified drive-train representation of two-mass bodies
drive-train is shown in Figure 3.1, where two rigid bodies are linked by a flexible shaft
that deforms with an angle θs when the rotor speed ωr is slightly different from the
generator speed ωg. The rigid bodies represent all mechanical devices on each side of
the effective shaft. This representation of two rigid bodies allows us to include parts
and mechanical devices on each side of the shaft, such as the rotor inertia Ir, generator
inertia Ig, transmission damping Bs, and transmission stiffness Ks.

The dynamic behavior of in drive-train in a variable-speed wind turbine can be rep-
resented using the two-mass model with a nonlinear state-space format, allowing a
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Figure 3.1: Drive-train with a flexible shaft representation.

description of the resonance mode while disregarding the high-frequency dynamics as
model uncertainty [16, 123]. The system presented in Equation. 3.1 illustrates the
behavior of the drive-train

 θ̇s
ω̇r

ω̇g

 =

 0 1 −1
−Ks

Ir
−Bs

Ir
Bs

Ir
Ks

Ig
Bs

Ig
−Bs

Ig

θs
ωr

ωg

+

 0 0
1
Ir

0

0 − 1
Ig

(
τr
τc

)
(3.1)

3.2 Dissipated Energy & Degradation Modelling

As mentioned in Chapter 2.2, different methods for modeling deterioration in wind
turbines have already been developed, which often are complex options for modeling
degradation considering the dynamic of the torsional loads applied to the drive-train.

An approach presented by Rodriguez-Obando in [113] defines the friction force (Fc)
between two rotational devices as follows:

Fc = Γ(∆ω) (3.2)

Here, ∆ω represents the relative tangential speed that emerges from the contact between
the rotational devices, and Γ is a parameter that defines the quality of contact between
the devices.

In this context, Γ is a time-varying parameter used to analyze the degradation of a
system throughout its lifetime. In traditional friction component modeling, Γ represents
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the constant viscous friction coefficient. However, considering Γ as a time-varying
parameter provides additional insights into studying deterioration over the system’s
lifetime. Γ is utilized to characterize the contact quality between rotational devices,
considering factors such as inter-surface adhesion and surface roughness. Furthermore,
it can be assumed that the parameter Γ will gradually decrease over time to represent
the degradation of the friction drive, as presented in [113].

Fc can be used to define the contact power (Pc ) produced by a rotational device at
the contact level by considering the relative tangential speed between devices [112], as
follows:

Pc = Γ(∆ω)2 (3.3)

Dissipated Energy-based model

Previous studies [83, 112] have utilized dissipated energy from contact between rota-
tional systems to indicate deterioration. This is because the dissipated power represents
the heat and frictional fatigue damage that occurs at the contact level during regular
system operation.

As mentioned earlier, the parameter Γ defines the quality of contact between two ro-
tational devices and decreases over time while the contact deterioration increases [92,
111, 112]. Rodriguez et al. citeRodriguez2018, proposed that deterioration can be
quantified and calculated by estimating the dissipated energy. Thus, the degradation
rate (dD

dt
) can be defined as a function that increases with the dissipated energy. Let

us consider the case where dD
dt

= Pc as follows:

dD

dt
= Pc = Γ(∆ω)2 (3.4)

Consequently, the energy dissipated in the contact Ec between the rotational systems
can be defined as : .

Ec =

∫ t

0

Pcdt (3.5)

Wind turbines are subject to various phenomena that produce fatigue, such as vibra-
tion, friction, impacts, and cyclic torque fluctuations, which can potentially reduce the
useful life of the drive-train [15, 24, 105]. In this thesis, the approach proposed in [112,
113] is extrapolated to the drive-train system of wind turbines, considering that it is
common to model the flexible shaft as a spring and damper, as presented in the two
rotational masses mentioned before (Figure 3.1).
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3.3 Proposed Degradation Model for a Wind Turbine Drive-
Train

The purpose of this section is to introduce a model for the deterioration of the drive-
train of a wind turbine. This model considers the dissipated energy as an indicator
of degradation caused by various physical phenomena, such as fatigue, vibration, and
others.

This thesis considers a simplified representation of the two-mass model presented in
Section 3.1 to model the dynamics of the drive-train in a wind turbine. The two-mass
model consists of a low-speed mass of the turbine connected to the high-speed mass
of the generator through a flexible shaft, which is modeled as a spring and damper.
When the angular speed of the rotor ωr is slightly different from the angular speed of
the generator ωg, the flexible shaft will be deformed with an angle θs.

Since a flexible shaft is considered, a mass-spring model can be used, and the damping
coefficient Bs could be considered to be constant, denoted here Bc

s. In particular, for
control design, it will be used

Bc
s =

3

2
αKs (3.6)

where Ks is the constant stiffness of the transmission, and α is a constant parameter
that depends on the material.

This thesis proposes to introduce the damping coefficient as a non-linear function of
angular deformations in the drive-train, as it is often stated in contact mechanics,
where the torsion angles affect the damping coefficient [50]. This point is intended for
introducing a deterioration that depends of both: the amplitude of relative speed and
the amplitude of torsion angles. This allows for the definition of a variable damping
coefficient Bs as a function of the torsion angle θs, as follows:

Bs =
3

2
θsαKs (3.7)

This variable damping coefficient is considered into the all simulations presented in this
manuscript.

Additionally, considering the definition of the contact power Pc presented in Equation
3.3, the dissipated power Pd can be defined as follows:

Pd = Bs(ωg − ωr)
2 (3.8)

Consequently, the amount of energy that is dissipated up to time t by the drive-train
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will be:

Ed(t) =

∫ t

0

Pd(u)du (3.9)

which is considered here as an index of the drive-train deterioration, Remark that this
dissipated energy is a function of both the amplitude of the angular shaft torsion and
the square of the relative velocity (ωg − ωr).

3.4 Case Study Analysis

Wind turbines operate under variable conditions that can cause vibration and fatigue in
the transmission system, leading to accelerated deterioration of the drive-train. Chap-
ter 2 explains various control strategies commonly used in closed-loop systems. These
strategies involve implementing controllers to manage the torque or speed of the system
and maximize energy capture. However, they do not always consider system degrada-
tion.

This section demonstrates the performance of the deterioration model under different
wind conditions and compares the levels of dissipated energy at the turbine shaft to
the energy generated by optimal and sub-optimal control feedback gains. The objective
is to establish a relationship that describes how degradation can be influenced by the
selection of control gains and susceptibility to disturbances (wind conditions).

For the analysis and the evaluation of the degradation model, it will implement the
simplified representation for the VS-FP turbines, as shown in Figure 3.1, where the
whole transmission system is considered a system of two rigid bodies connected by a
flexible shaft. The considered a VS-FP turbine of 2 MW with a 100 m rotor diameter,
fixed gearbox, and horizontal axis.

First, the different scenarios considered for evaluating the model under different control
and wind conditions will be explained, followed by the results and respective discussions:

3.4.1 Evaluation of model under different control conditions

The normal operation of wind turbines is governed by a Maximum Power Point Tracking
(MPPT) control law, presented in Section 2.1.1. This control law estimates a control
torque (generator torque) by considering a constant optimal control gain Kopt

c and the
rotor angular speed ωr.

For the turbine in consideration, the power coefficient curve, Cp versus λ, is presented
in Figure 1.3, where the value of Cmax

p that can be obtained is 0.4615 at λ0 of 6.4.
Thus, the optimal feedback control gain can be estimated using Equation (2.9), and
take the value of Kc = 9.5065e5.

Nevertheless, one part of this work aims to illustrate the performance of the wind tur-
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bine sub-optimal control gains. For this reason, two additional scenarios were proposed
to complete the analysis:

• System controlled at 10% below the optimal Kc

• System controlled at 10% above the optimal Kc.

3.4.2 Evaluation of model under different wind conditions

To obtain a complete analysis of degradation in a wind turbine, it is necessary to
consider variations in wind speeds over time. These variations can affect the efficiency
and durability of the mechanical parts of the turbine. It is important to note that wind
can be present under different regimes, such as laminar, transitional, or turbulent, and
for each regime, it can be categorized according to the intensity of the variations. There
are different ways to simulate each wind condition. However, for the purpose of this
thesis, it is important to consider short-term dynamics that can impact the degradation
of the drive-train system.

Wind Speed Generation

This thesis implemented the model proposed by Ma et al. in [77], for generating wind
speed sequences of different intensities for the analysis of wind turbine degradation.

Considering the description of relative motion on fluids proposed by Reynolds [110],
equation (3.10) allows modeling the wind speed V (t), at any instant t, by taking into
account its mean value V (t) and its fluctuation v(t):

V (t) = V (t) + v(t) (3.10)

The term V (t) is often considered as an output of a simple low-pass filter corresponding
to the daily, monthly, season,al or annual mean behavior, and the fluctuation v(t) can
be considered as an output of a high-pass filter, see for instance [20].

In [77], it is considered that the wind speed dynamics can be modeled as a diffusion pro-
cess following a stochastic differential equation, defining a so-called Ornstein-Uhlenbeck
(OU) process:

dV (t) = a(V (t), t)dt+ b(V (t), t)dW (3.11)

where a(V (t), t) and b(V (t), t) are the drift and diffusion terms, while dW is the stan-
dard Wiener process (or standard Brownian motion, a continuous process whose incre-
ments are normally distributed).

Turbulence can be classified into three different classes, where the first two include 99%
of the wind speed sequences [20, 21]. The method presented in [77] allows generating
different classes of wind speed, by using the stochastic equation (3.12) as a particular
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Figure 3.2: Considered wind speed scenarios: (a) laminar wind, (b) turbulent wind with low
intensity, (c) turbulent wind with high intensity

case of model (3.11), by suitably choosing the model parameters â, b̂, and û.

dV (t) = −â(V (t)− û)dt+ b̂ dW (t) (3.12)

The wind speed simulation has thus been performed using parameters presented in [77]
providing the following models:

dV (t) = −0.0314(V (t)− 10.0245)dt+ 0.2517 dW (t) (3.13)

dV (t) = −(V (t)− 10.0245)dt+ 0.6459 dW (t) (3.14)
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For the evaluation of performance of the degradation process, it was considered different
wind speed scenarios with an air density of 1.1 kg/m3:

• Scenario I: The first scenario corresponds to laminar wind flow where real mea-
surements of wind speed were used to feed the model; see Figure 3.2a.

In addition, a turbulent regimen was also simulated, as it was mentioned before, with
two classes of turbulent wind:

• Scenario II: Equation 3.13 was used to generate wind flow with a low intensity,
see Figure 3.2b

• Scenario III: Equation 3.14 was used to generate wind flow with a high intensity,
see Figure 3.2c.

Using these three types of wind conditions makes it possible to complete the different
situations that a turbine may be subjected to in a more realistic environment.

3.4.3 Results and Discussion

The two-mass model with a non-linear state-space format presented in Equation 3.1
was utilized to simulate the dynamic behavior of the drive-train and describe the res-
onance mode of the transmission. This model allows for the estimation of variations
around the torsion angle and the angular rotor and generator speed. Besides, was an-
alyzed and compared the behavior of different parameters as the power coefficient Cp,
generated power Pg, and generated energy Eg. Furthermore, the degradation of the
system was estimated by calculating the dissipated energy (Ed). The simulations were
conducted for each previously presented scenario, providing a comprehensive analysis
of the system’s behavior. Three scenarios with different control gains were considered
for three wind speed cases.

The simulation was conducted to analyze the degradation process in the drive-train
over a short period of 5 hours (t = 18000s). The value of Ks was set to 1e8, and α was
chosen based on the suggested range in [50] with a value of 0.5. Table 3.1 provides a
summary of the characteristics of the wind turbine and drive-train.

Table 3.1: Parameters of the simulated wind turbine

Symbol Cmax
p λ0 Kopt

c α R Ks

Value 0.4615 6.4 9.5065e5 0.5 50 m 1e8 kg/s2

Analysis of the Results
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The obtained torsion angles are illustrated in Figure 3.3 for the different scenarios of
interest. It is possible to observe that the angles have small magnitudes (< 0.03 rad)
in all the scenarios, however, the frequency of fluctuations is more or less important
depending on the wind conditions, which can lead to fatigue damage in the long term.

Concerning the effect of using different Kc, it is possible to observe that θs always takes
superior values in cases with a bigger control gain, which means that a bigger control
gain leads to a bigger deformation.
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Figure 3.3: Obtained torsion shaft angle for different wind speed scenarios: (a) laminar wind,
(b) turbulent wind with low intensity, (c) turbulent wind with high intensity

A common alternative for analyzing the performance of wind turbines is to examine
the relationship between generated power and rotational speed. This analysis can be
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Figure 3.4: Generated power with respect to rotor speed produced by optimal and sub-optimal
torque controllers.

conducted using Figure 3.4, which displays the generated power for different angular
rotor speeds under various control scenarios. As expected, the generated power exhibits
a cubic relationship with the rotor speed. The graph indicates that, for a given rotor
speed, the case with a control gain of 1.1Kc yields higher power generation compared
to the cases with 0.9Kc and Kopt

c control gains.

The power coefficient Cp can be used as a parameter to analyze the effect of implement-
ing sub-optimal control conditions that may affect the efficiency of the wind turbine.
Figure 3.5 shows the Cp for the different wind scenarios, for the three cases of control
gain:

• In the cases of laminar wind, it can be observed in Figure 3.5a that Kopt
c leads to

the optimal Cmax
p value, as indicated by theory. However, it is interesting to note

that the difference with respect to 0.9Kc is higher than the case with 1.1Kc, and
in both cases, the difference with respect to the optimal value is extremely low
(0.26% for the case with 0.9Kc and 0.17% for the case with 1.1Kc).

• The performance of Cp in turbulent scenarios was analyzed by comparing sub-
optimal cases with the one using Kopt

c in Figures 3.5b and 3.5c. One observation
is that implementing a Kc lower than the optimal one leads to a lower Cp for the
low turbulence case. However, the difference is less noticeable in the case with
high variance. In the scenarios where 0.9Kc was implemented, the mean difference
of Cp is about 0.28% for both cases (low and high turbulence). On the other hand,
in the case with 1.1Kc the difference are 0.17% for low turbulence and 0.15% for
high turbulence.
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(c) Turbulent flow with high variance.

Figure 3.5: Comparison of the behavior of the Power Coefficient Cp for different wind speed
scenarios: (a) laminar wind, (b) turbulent wind with low intensity, (c) turbulent wind with
high intensity

Furthermore, this chapter aims to propose a deterioration model for the drive-train
of a wind turbine and evaluate it under optimal and sub-optimal control conditions.
To obtain a complete analysis, it is necessary to evaluate the deterioration indicator,
which in this thesis is the dissipated energy with respect to the optimal control scenario.
Additionally, to evaluate the effect of sub-optimal conditions on the system’s production
efficiency, it is necessary to analyze the behavior of the generated energy, under the
different wind scenarios:

• Concerning the dissipated energy, note that if the control gain is below the optimal
point (e.g. in the case of 0.9 Kc), the total dissipated energy is less than in the
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other two cases (e.g 1.1 Kc and Kopt
c ). Nevertheless, when the wind flow has a

more significant variance (turbulent), the dissipated energy increases notably for
a higher gain. It decreases considerably for a smaller gain; see Figure 3.6.

• Regarding the generated energy, as expected, the amount of generated energy is
lower than the optimal one in all cases of wind conditions. Nevertheless, a control
gain higher than the optimal one always leads to an energy production higher
than a control gain smaller than the optimal one. Note that the difference in the
energy production between the tuning 0.9Kc and 1.1Kc is reduced when the flow
is more turbulent; see Figure 3.7.

The simulation results demonstrate the impact of persistent variations in the shaft
angle when the system is exposed to high-variance wind speeds. Furthermore, if the
system operates under sub-optimal control conditions, the results indicate two possible
scenarios: either more energy generation with increased degradation, or less dissipated
energy (and thus less degradation) but with lower energy generation. In all cases, the
optimal control gain consistently provides maximum power generation with a "nominal"
level of degradation.
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Figure 3.6: Dissipated energy at the flexible shaft versus time for different wind speed sce-
narios: (a) laminar wind, (b) turbulent wind with low intensity, (c) turbulent wind with high
intensity
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(b) Turbulent flow with low variance.
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Figure 3.7: Generated energy at the flexible shaft versus time for different wind speed sce-
narios: (a) laminar wind, (b) turbulent wind with low intensity, (c) turbulent wind with high
intensity
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3.5 Experimental Validation in Prototype of Wind Turbine

Based on the obtained results, the purpose of this section is to present an experimental
analysis conducted on a real wind turbine prototype to observe how the deterioration
model performs under various wind conditions and the effect of work in sub-optimal
control conditions affect the deterioration. To achieve this, the proposed degradation
model was implemented in a wind turbine prototype with a fixed drive-train. A modi-
fication to the dynamic model was made to add a virtual flexible shaft that allows for
simulation of the dynamics of the torsional loads and damping effect.

The wind turbine prototype was designed and manufactured at Gipsa-Lab to test and
validate control laws for variable-speed wind turbines.

(a)

(b)

Figure 3.8: Prototype of wind turbine: a) Wind Turbine installation and b) Blades of wind
turbine
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Figure 3.9: Block diagram representing the functioning of the prototype of a wind turbine

3.5.1 Presentation of the Prototype

The prototype is a 1000 mW wind turbine with two blades (see Figure 3.8a) that is
driven by wind speed generated by a fan. A fan is attached to the back of the wind
turbine, causing it to move through a suction phenomenon. These two components are
located inside a cylindrical tube that promotes laminar flow with limited turbulence,
acting as a wind tunnel. The wind turbine is connected to a DC generator that can
be used to generate electrical energy. An electronic circuit allows for the control of the
generated current. Table 3.2 presents other parameters characterizing the wind turbine
model.

Table 3.2: Parameters of the prototype of wind turbine

Parameters Symbol Value Unity
Air density at 25 degrees ρ 1.184 Kg/m3

Length of the blade R 0.157 m

Electrical constant of the generator Ke 23.4e−3 NmA−2

Total inertia of the rotors I 8.08e−6 kgm2

Optimal blade angle ψopt 5 deg

The wind turbine prototype can operate in two specific control modes:

• Torque Control: By adjusting the electric current, it can extract the maximum
instantaneous power according to the wind speed.

• Speed Control: By adjusting the blade angle, it can maintain the generated
power constant around an admissible maximum.

The normal operation of the prototype is illustrated in Figure 3.9:

A voltage Uv is supplied to the fan that will generate the wind speed v, Uv can take
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values from 0V to 24V, producing wind speeds between 0 and 5m/s. The wind speed v
is the input of the aerodynamic system of the prototype, it will produce the movement
of the rotor with torque τr, and angular speed ωr.

The inputs of the system are the pitch angle (ψ) of the wind turbine blades (ranging
from 0 to 45 degrees), the desired electric current (ςref ) of the DC generator (ranging
from 0A to 1A), and the wind speed supplied by the fan (U ref

v ) controlled by a voltage
ranging from 0V to 24V, producing wind speeds between 0 and 5m/s.

To measure the speed of the wind passing through the turbine, a wire anemometer is
fixed inside the cylinder, and an incremental encoder is used to determine the value
of the angular speed of the wind turbine ω. On the other hand, the prototype has a
current sensor to provide the measure of the current generated ςg.

3.5.1.1 Model of transmission of the prototype

The wind turbine prototype used to validate the results presented earlier had a fixed
drive-train, meaning there was no sliding mode between the angular rotor and generator
speed.A modification to the system is necessary to implement the proposed deteriora-
tion model. This involves implementing a virtual flexible shaft as shown in Figure 3.10,
where the real part of the system is shown in blue, the simulated flexible shaft is in
green, and the connection between both systems is in red.

M

{ { {
Real RealSimulated

Figure 3.10: Integration of a virtual drive-train on the fixed-shaft wind turbine prototype

In Figure 3.10, the wind speed v causes the turbine rotor to move with angular speed
ωr and torque τr. The shaft is assumed to be connected to a flexible part, with a system
M separating the real system from the simulated one with a torque τm. Furthermore,
it is assumed that there is a generator at the other end of the flexible shaft, with an
angular speed of ωg and a torque of τg.

The integration between the real and simulated systems can be described by Equa-
tion 3.15, where Ir represents the rotor inertia, and ωr and τr are variables measured
on the real system. The input used for simulating the flexible shaft is denoted by τm.
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Irω̇r = τr − τm (3.15)

Considering the dynamic system presented in Equation 3.1, τm can be defined as:

τm = −Ks

Ir
θs −

Bs(θs)

Ir
ωr +

Bs(θs)

Ir
ωg (3.16)

Therefore, the dynamic behavior of the complete drive-train can be described using the
following system of equations:

• Variation in the torsion angle is a simulated variable:

θ̇s = ωr − ωg (3.17)

with ωr been a real variable, and ωg been a simulated variable.

• Rotor Speed is a real variable:

Irω̇r = −Ksθs −Bs(θs) ωr +Bs(θs) ωg + τr (3.18)

where Bs depends on θs and integrates real and simulated variables.

• Generator Speed is a simulated variable:

Igω̇g = Ksθs +Bs(θs) ωr −Bs(θs) ωg − τg (3.19)

where τg is real feedback to the system considering the Equation 2.8.

Note that the values for variables such as Ks are assumed. As a result, the magnitude
of the deterioration phenomenon will be more significant considering the size of the
actual system. However, this approach allows for analyzing the effect of functioning
under non-optimal conditions on deterioration.

3.5.2 Validation of Deterioration Model

The objective of the test is to validate the results obtained in the previous section using
the wind turbine prototype concerning the effect of control gain in the degradation. This
will be achieved by analyzing variables such as variation in torsion angle, generated
power, dissipated power, dissipated energy, and generated energy.

To validate the results, the prototype wind turbine was tested in two different wind
scenarios, where the wind speed can vary between 2.2 m/s and 3.2 m/s. Figure 3.11a
and 3.11b illustrate the cases of interest. Note that in both cases, the variations are
controller, and the wind is almost laminar; this is due to the large geometry of the wind
tunnel not allowing the separation of the layers on the flow of the wind.
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Additionally, the evaluation was conducted under different control conditions. The
control gain was varied in this case, as shown in Table 3.3, with K4

c being the optimal
control gain.

Table 3.3: Parameters of the prototype of wind turbine

Control Gains K1
c K2

c K3
c K4

c K5
c

Value 1.5e−8 2.5e−8 3.5e−8 4.5e−8 5.5e−8

As mentioned previously, the deformation in the drive-train will be simulated by modify-
ing the system presented in Equation 3.1, as described in Section 3.5.1.1. Consequently,
the simulation of torsion angle variation was performed using Equation 3.17.

The resulting θs values are presented in Figures 3.12a and 3.12b for different control
gains. It can be observed that, similar to the previous results, a larger control gain
leads to a greater deformation in θs, while K1

c causes a smaller variation compared to
the other cases due to its smaller control gain. Conversely, K5

c continuously varies close
to the optimal case, K4

c .

Moreover, the generated power is presented in Figures 3.13a and 3.13b for the cases of
interest.The optimal control gain K4

c leads to major production power, followed by the
other cases in descending order of the control gains.

In contrast, the dissipated power is shown in Figures 3.14a and 3.14b. It is observable
that a higher control gain does not lead to a more considerable dissipation of power.
For instance, while K5

c has the highest value, the dissipation level can sometimes be
lower than that of K1

c .

With respect to generated energy, consider Figures 3.15a and 3.15b, which show the
generated during the simulation process. Is interested to note that K5

c follows the
behavior of the optimal control gain concerning generated energy, where the difference
between the cases with K4

c and K5
c concerning generation is just around 3% in the first

scenario and 1.8% in the second.

Concerning dissipated energy is presented in Figures 3.16a and 3.16b The optimal
control gain K4

c is not the most efficient in dissipating less energy. K5
c produces less

dissipated energy than other cases, with a difference of up to -10.46% and -8.19%
concerning the optimal case.

It is possible to conclude that the results from the simulation are validated concerning
the existence of an important effect when the control system of the wind turbine is oper-
ated without considering the wind conditions. Additionally, the proposed degradation
model allows simulating the degradation of a drive-train wind turbine.
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Figure 3.11: Considered wind scenario a) Case I, b) Case II
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Figure 3.12: Obtained torsion shaft angle for different wind a) Wind Case I, b) Wind Case II
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Figure 3.13: Obtained generated power for a) Wind Case I, b) Wind Case II
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Figure 3.14: Obtained dissipated power for a) Wind Case I, b) Wind Case II
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Figure 3.15: Obtained generated energy for a) Wind Case I, b) Wind Case II
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Figure 3.16: Obtained dissipated energy for a) Wind Case I, b) Wind Case II



3.6 Conclusions

This chapter proposes a novel model of shaft degradation based on dissipated energy.
The proposed model is based on contact mechanics and allows us to estimate through
simulation the dissipated energy at the shaft for different wind conditions and different
control gains (optimal and sub-optimal).

The proposed model was tested through simulations using real data of wind speed
measurements concerning laminar flow, but also using simulated data of turbulent wind
conditions obtained from stochastic differential wind models. The presented simulation
provides a complete panoramic result about the possible situations affecting the turbine
degradation.

The findings reveal that during periods of intense turbulence, a significant amount of
energy can be rapidly dissipated, consequently accelerating system degradation and
raising the risk of transmission failure. Additionally, the choice of control gain with-
out due consideration of wind conditions can profoundly impact the rate of system
degradation.

The simulation results illustrate the impact of persistent variations in the shaft angle
when the system is submitted to wind speed with high variances. Additionally, when
operating under sub-optimal control conditions, two scenarios emerge: one leads to
greater energy generation but increases the degradation, while the other results in re-
duced energy dissipation but lower energy generation. Nevertheless, it is important to
emphasize that the optimal control gain consistently delivers maximum power genera-
tion with minimal degradation across all scenarios.

Besides, the validation of the results was made using a real prototype of a wind turbine,
where it was necessary to use a virtual flexible shaft to model the degradation in a real
fixed shaft. As a result, it is validated that there exist an important effect on the
degradation when the control system does not take into account the variations in the
wind conditions.

This work is a first step towards a degradation-aware control approach that would allow
to find dynamically the optimal trade-off between the generated energy and the turbine
degradation (dissipated energy), taking into account the actual wind conditions.
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This chapter aims to present a gain-scheduling wind-turbine control strategy that can
mitigate the effects of adverse weather conditions by choosing a suitable feedback con-
trol gain depending on the wind turbulence conditions. The approach allows for estab-
lishing a trade-off between generated and dissipated energy to maximize the efficiency
of a wind turbine by considering the actual wind conditions.

The contributions presented in this chapter, have been published in the article entitled
"Gain-scheduling wind-turbine control to mitigate the effects of weather conditions
on the drive-train degradation.", and presented in 11th IFAC Symposium on Fault
Detection, Supervision and Safety for Technical Processes - SAFEPROCESS 2022.

4.1 Introduction

The deterioration model presented in Chapter 3 allows to use of the dissipated energy
as an indicator of degradation on the drive-train of a wind turbine. Also, for the model,
the drive-train dynamics are implemented in an MPPT control law where the control
gain Kopt

c is estimated based on the theoretical maximum performance of the wind
turbine for a specific optimal wind condition.

However, the random nature of wind speed conditions represents a challenge in opti-
mizing the lifetime of wind turbines. In particular, if we consider that high wind speed
variations are one of the principal factors of increasing degradation rate. Uncontrolled
weather conditions (e.g., wind turbulence intensity) can deteriorate the mechanical
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transmission in a wind turbine. This could be due to persistent variations in the radial
and angular shaft deflections when the system is submitted to wind speed with high
variances. Besides, the shaft deterioration increases maintenance and energy costs.([16,
77, 114]).

Motivated by the benefits of improving this technology, numerous control approaches
to reduce the loads by the wind variation in the wind turbine have been proposed
in the literature ([66, 99]). Nevertheless, most of the research efforts are focused on
the deterioration of individual components of the turbine and do not consider changes
in the wind conditions and their interactions with the control system to analyze the
drive-train deterioration and control.

It is expected that wind turbines are operated under a poorly adapted control strategy
during significant periods, affecting the efficiency of the turbine. However, Chapter 3
demonstrated that the changes in the wind affect the deterioration, and the modification
of the control gain can benefit or accelerate degradation.

In this chapter, the assumption that it is possible to find a control gain that allows
managing degradation is considered by using an adequate control gain depending on
the type of wind. The proposed control strategy allows for finding a trade-off between
generated and dissipated energy using optimization to find suitable control gains.

4.2 Problem Statement

In a wind turbine, the control gain of the generator is usually adjusted without con-
sidering changes in the wind flow conditions. The MPPT control law for VS-FP wind
turbines in Equation 2.8 shows that the generated torque depends on optimal control
gain Kopt

c and rotor angular speed ωr. However, ωr varies depending on the wind and
is not controllable. On the other hand, Kopt

c is fixed and defined based on the value
of Cmax

p to maximize energy extraction. The MPPT control law does not account for
the type of wind or its variability, nor does it take into account the degradation of the
system.

Nevertheless, in Chapter 3, it has been shown that when the control system ignores wind
conditions, the efficiency and the degradation of the turbine are significantly affected.
As stated in Chapter 3, the four following observations can be made:

• The dissipated energy increases when the wind conditions are of high turbulence;

• The chosen control gain impacts the degradation (is considered here the dissipated
energy Ed to be an indicator of degradation level), for instance:

Ed =

{
Increases when Kc > Kopt

c

Decreases when Kc < Kopt
c
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where Kc stands for the chosen control gain and Kopt
c is the theoretical optimal

feedback control gain ;

• A control gain chosen higher than the optimal one leads to a greater energy
production than a control gain smaller than the optimal one, i.e consider two
possible control gain choices Ka

c and Kb
c , around the optimal one, such that

Ka
c < Kopt

c < Kb
c , (4.1)

then, choosing Kb
c leads to higher energy production than choosing Ka

c ;

• However, even if the choice of a higher gainKb
c leads to a higher energy production,

in the case of high turbulent flow, this increase in energy production is not that
significant.

Considering these observations, a trade-off can be found between the dissipated and the
generated energy by a proper choice of a control gain, and the problem is thus to design
a control strategy that allows the selection of a suitable control gain Ks

c according to
the wind conditions. In this chapter, it is assumed that those wind conditions are
identified, on-line, by a given algorithm that is outside the scope of this thesis.

4.3 Proposed Gain-Scheduling Control Strategy

This chapter proposes a gain-scheduling wind-turbine control strategy to manage the
degradation and to optimize the lifetime of the mechanical transmission components
while maintaining an acceptable efficiency of a wind turbine under varying weather
conditions. In the next section, the proposed control architecture will be presented.

4.3.1 Gain-Scheduling Control Architecture

On the proposed control strategy, we consider that it is necessary to make an adequate
selection of the control gain Kc, and the value of this parameter should vary considering
the level of dissipated energy and the type of wind.

The control parameter Kc is a degree of freedom for solving the problem: maximization
of the generated power while respecting a suitable rate of deterioration. A solution could
be a convex combination of optimal controllers associated with every class of wind. In
this thesis, it is assumed that there are different classes of wind and an optimal control
gain is available for each of them, e.g., for two classes we have:

Kc = γK1
c + (1− γ)K2

c (4.2)

To reach this objective, we propose a gain-scheduling control strategy, which architec-
ture is shown in Figure 4.1.
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Figure 4.1: Architecture of the proposed gain-scheduling control strategy.

On the proposed strategy, it is possible to use the same simplified model presented on
Equation 3.1 for simulate the dynamic on the drive-train. However, the MPPT control
law have been modified to use a suitable control gain instead of fixed value of Kopt

c

The straightforward way to select the adequate control gain is through the wind infor-
mation, which can be utilized for identifying the wind speed conditions δcw (i.e. laminar
or turbulent flow), as follows:

δcw =

{
1 if v corresponds to turbulent flow
0 if v corresponds to laminar flow

The index δcw can be considered as a gain-scheduling variable. Note that in this chapter,
an example with two conditions will be utilized. However, the strategy can be applied
to as many wind conditions as required.

On the other hand, the feedback gains Kc, are stored in a previously designed look-up
table, and will be selected according to the wind conditions δcw as it is illustrated in
Figure 4.2. The values of the control gain Kc can be obtained off-line by solving an
optimization problem as is explained in the next section.

Remark that the system presented in Equation 3.1, the varying parameter (Equa-
tion 3.7) and the MPPT control law (Equation 2.8), can be rewritten as a Linear
Parametric Varying (LPV) control system which is intrinsically stable for any positive
feedback gain in (2.8). In particular, the stability guarantees of the proposed control
architecture can be stated by using the available LPV and polytopic analysis tools, see
for instance [4].
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Figure 4.2: Example of gain-scheduling depending on two wind conditions.

4.3.2 Optimization for gain-scheduling control design

The interest of adopting a gain-scheduling control approach is the possibility of selecting
suitable control gains Ks

c for each wind condition, which allows to reach a trade-off
between dissipated and generated energy. Hence, those gains can be obtained as the
solution of an optimization problem.

To obtain the value of the control gains, it is necessary to implement off-line simulations
of the system as presented in Figure 4.3, for each type of wind (i.e.laminar or turbulent).

Feedback 

Control

Wind 

Condition 

Identification

Gain 

Optimization 

Process

Drive-train 

dynamics model 

+ deterioration 

model

Rotor

Aerodynamics 

Model

Figure 4.3: Scheme of the off-line optimization process for designing feedback control gains.

For each case (i.e.laminar or turbulent), the value of the gain is obtained as the one that
minimizes the ratio of the dissipated energy Ed over the generated energy Eg under the
considered wind conditions:
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Ks
c = arg minKc

(
Ed(Kc, wr)

Eg(Kc, wr)

)
(4.3)

All the gains obtained for each possible situation are stored in a look-up table. The
control system will recover these gains, online, to implement the control loop.

4.4 Evaluation of performance of proposed strategy

An experiment was conducted to evaluate the proposed gain-scheduling control strat-
egy that considered different control gains depending on the wind conditions. In this
work, we considered two scenarios of wind speed conditions (laminar and turbulent)
to validate the proposed Gain-scheduling control strategy. Each case was evaluated
separately, in order to obtain two possible suitable control gains, as shown below:

Ks
c =

{
KTurbulent

c optimal Kc for turbulent flow
KLaminar

c optimal Kc for laminar flow

The same scenario used in Chapter 3 was considered for performance evaluation, using
a VS-FP turbine with a horizontal axis and fixed gearbox. The turbine has a rated
power of 2 MW and a 100 m rotor diameter. The power coefficient curve, Cp versus λ,
has a value of 0.4615 at λ0 equal to 6.4. Therefore, using Equation 2.9, the theoretical
optimal feedback control gain is Kopt

c = 9.5065e5.

The dynamical system presented in Equation 3.1 was used to simulate the generated
energy and dissipated energy (i.e., degradation) in the transmission shaft by considering
the need to adapt the control gain depending on the variations in wind nature. The
drive-train system is represented by two rigid masses connected by a flexible shaft.

To evaluate the proposed strategy effectively and determine the appropriate control
gain, it is necessary to have a wind scenario with at least two different wind conditions.
To create this scenario, real data of laminar flow and a simulated scenario of turbulent
flow were used (the model presented in [77] was implemented throughout the simula-
tions, as explained in Chapter 2 and 3). The utilized laminar flow case is presented in
Figure 4.4a, and the turbulent flow in Figure 4.4b.

For each scenario, the strategy was implemented to find the optimal control gain, as
presented in Table 4.1. Subsequently, a carefully designed scenario with both types
of wind was created, as shown in Figure 4.5. In this figure, the green lines represent
periods with laminar flow, while the yellow lines represent periods with turbulent flow.
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Figure 4.4: Considered wind speed conditions: (a) laminar and (b) turbulent

4.4.1 Results & Discussions

The first step in designing the gain-scheduling control strategy is to find the optimal
values for KLaminar

c and KTurbulent
c . The optimization process presented in Section 4.3.2

was simulated offline separately for the laminar and turbulent cases, using the wind
data shown in Figure 4.4 as input.

The results presented thatKLaminar
c can take values until 11% aboveKopt

c andKTurbulent
c

can take values until 15% below Kopt
c . To simplify the analysis, this thesis considered

that KLaminar
c and KTurbulent

c take values around the ones presented in Table 4.1.

Table 4.1: Suitable control gains for laminar and turbulent wind conditions

KLaminar
c KTurbulent

c

1.0552e6 1.4260e5

The wind scenario presented in Figure 4.5 was designed to consider variations between
two different wind conditions: laminar and turbulent wind. The regions where laminar
wind is implemented are indicated in green, while those with turbulent wind are marked
in yellow. Dotted vertical lines were also included to indicate changes in wind conditions
across all Figures.
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Figure 4.5: Simulated scenario of wind speed with different wind conditions.

For validation of the proposed gain-scheduling control strategy, the same changing
wind condition scenario was used for testing and comparing four different choices of
the control gain:

• Case with the Proposed Ks
c Switching Scheme: during all the simulation, Kc is

switched between KLaminar
c and KTurbulent

c depending on the wind conditions;

• Case with the Theoretical Optimal Control Gain Kopt
c : during all the simulation,

Kc is set at the constant value of 9.5065e5

• Case with K laminar
c : during all the simulation, Kc is set at a constant value ob-

tained as optimal under laminar conditions

• Case with Kturbulent
c : during all the simulation, Kc is set at a constant value

obtained as optimal under turbulent conditions

To validate the gain-scheduling control strategy, the dynamical system presented in
Equation 3.1 was utilized:

Regarding the torsion angle θs, it has been observed that the angle varies depending
on the switches made in Kc under different wind conditions. Figure 4.6a illustrates
the comparison of θs behavior to the optimal case: The results demonstrate that wind
conditions have an impact on the variation of θs, which can be minimized by adjusting
the control gain appropriately. The case with KLaminar

c resulted in more variation in θs
compared to the optimal case, while KTurbulent

c consistently remained below the nominal
case. However, Ks

c can be adjusted based on wind conditions and directly influences
the variations in θs, bringing it closer to the theoretically optimal case.

Concerning the relative angular speed of the rotor ωr with respect to the optimal case,
the results show that KLaminar

c leads to a minor rotation, in contrast to KTurbulent
c ,

which leads to more significant values. Note that in the case where is implemented Ks
c ,
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ωr changes depending on the wind conditions but allows us to see that it is the closest
approximation to the theoretical optimal case.
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Figure 4.6: Comparison for different feedback gains: a) Relative torsion shaft angle θs, and
b) Relative angular speed ωr

To compare the efficiency of the evaluated cases, the power coefficient can be analyzed
in Figure 4.7, which shows the behavior of Cp. As expected, the highest Cp is obtained
by using Kopt

c . However, it is worth noting that the difference between the other cases
and the optimal case is not significant. The most noticeable difference is concerning
the case using KLaminar

c when the wind was turbulent.

Figure 4.8a shows the generated energy for different Kc: with Kopt
c it is possible to

generate more energy, followed by the case where KLaminar
c is used, because a greater

Kc leads to a higher generation of energy. Nevertheless, the gain-scheduling control
strategy allows for improving energy generation when the wind exhibits periods of
turbulent conditions.

Besides, Figure 4.8b illustrates the dissipated energy for the period of evaluation. The
case with KLaminar

c dissipated a higher amount of energy. Moreover, in the case of
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Figure 4.7: Comparison of the power coefficient Cp with respect to the theoretical optimal
case.
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Figure 4.8: a) Generated energy for different feedback gains Kc, and b) Dissipated energy for
different feedback gains Kc
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Figure 4.9: Comparison with respect to the optimal case from: a) Relative generated energy,
and b) Relative dissipated energy

KTurbulent
c , a Kc lower than the optimal leads to minor degradation. Nevertheless, it

can be seen that the gain-scheduling control strategy allows to follow the behavior of
the case with Kopt

c in terms of energy dissipation.

To further discuss these results, let’s consider the generated and dissipated energy and
compare them with the Kopt

c scenario:

• Generated energy: The optimal case always leads to a significant amount of gen-
erated energy, and a greater Kc increases the energy generation. However, if the
control gain is switched according to the wind conditions (Ks

c ), it is still possible
to increase the generation of energy almost at the level reached under laminar
ideal conditions, see Figure 4.9a.

• Dissipated energy: regarding the generated energy, a higher generation leads at
the same time to a significant level of dissipated energy, and hence degradation.
For this reason, the dissipated energy in the case with K laminar

c is above the
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optimal ones. However, the KTurbulent
c is below the other cases with a significant

difference, while the case with suitable control gain Ks
c allows to keep a low level

of dissipated energy, dissipating less energy than in the cases with KLaminar
c and

even with Kopt
c , see Figure 4.9b.

We can thus conclude that the proposed control adaptation strategy allows to increase
energy generation in turbulent cases and decreases dissipated energy in the drive-train
system (when compared to situation where Kc is higher than optimal). As a con-
sequence, the system can profit of both a higher generation of energy and a lower
dissipated energy.

4.5 Conclusions

This chapter proposes a gain-scheduling control strategy to optimize the efficiency of
a wind turbine under varying weather conditions, finding an optimal trade-off between
the generated energy and degradation (due to dissipated energy) in the drive-train. The
proposed strategy considers the variation of the wind conditions to alternate between
different suitable control gains, maximizing the generated energy and decreasing the
dissipated energy.

The proposed strategy was tested using different wind speed scenarios to consider a
more complete panorama about the possible wind conditions affecting the turbine.
Real data measurement was used to simulate the wind conditions for laminar flow,
while for turbulent wind conditions, a stochastic model was used to simulate it.

The results show that it is possible to maximize the generated energy and decrease the
dissipated energy by switching the control gains depending on wind flow conditions, de-
creasing the variations in the shaft angle, and getting closest to the theoretical optimal
behavior.

Stability conditions of the proposed control scheme can be obtained by expressing the
whole dynamical control system as a Linear Parametric Varying system and, by using
suitable available tools in this area.
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This chapter proposes a methodology to analyze the long-term degradation of a wind
turbine drive-train on which a gain-scheduling control strategy is implemented and
considering the variation in the wind conditions. The degradation in the transmission is
modeled through a simplified dynamical system based on contact mechanics, employing
the dissipated energy as an indicator of the degradation in the transmission system.
In addition, the gain-scheduling control strategy presented in 4 is considered to assign
a control gain according to the wind flow conditions. Numerical experiments were
considered to illustrate the proposed approach, assuming a 2 MW variable speed-fixed
pitch turbine with a horizontal axis and fixed gearbox.

The contributions presented in this chapter, have been published in the article entitled
"Long-term degradation estimation of wind turbine drive-train under a gain-scheduling
control strategy according to the weather conditions.", and presented in the 5th IFAC
Workshop on Advanced Maintenance Engineering, Services, and Technology - AMEST
2022.

5.1 Introduction

The maintenance strategies have to be able to consider deterioration in the long term
due to action in the short term. For this reason, multiple studies have investigated
the prediction of the remaining useful lifetime (RUL) using data-based methods, which
can require significant amounts of information and result in complex predictions that

81
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Figure 5.1: Dissipated Energy for different control feedback gains Kc.

can be difficult to implement computationally. Besides, do not consider the effect of
changes in wind conditions for the predictions in the long term. ([11, 31, 66, 68, 139,
144]).

The degradation of a wind turbine is significantly affected when the control system
is adjusted without considering the wind flow conditions. The analysis presented in
Chapter 3 demonstrated an accelerated degradation when the control gain is different
from the nominal gain (Kopt

c ). Besides, the changes in the wind flow nature (e.g.
laminar and turbulent wind) lead to an increment of dissipated energy.

The results in Chapter 4, as illustrated in Figure 5.1, shows the behavior of Ed for
the different cases of control gains. The figure demonstrates that turbulent wind leads
to accelerated degradation. However, it is possible to observe that implementing a
gain-scheduling control strategy can decrease the energy dissipated.

Note that the case with KLaminar
c always leads to a degradation greater than with

KTurbulent
c due to a greater Kc always leads to a more significant amount of dissipated

energy, as it is mentioned in Chapter 3. Nevertheless, using a suitable control gain, the
behavior can be approximated to the theoretical optimal control case.

This chapter proposes a methodology to simulate deterioration in the mechanical com-
ponents of the drive-train in a wind turbine for the extended term when subjected to a
control strategy adapted to follow the variations in the wind conditions. The approach
allows simulating degradation by learning an empirical relationship with random effect
between Dissipated Energy and Time and then generating new information using the
learned relation with the inferred probability law for the random variables.

Furthermore, the methodology is tested for different periods of the useful theoretical
lifetime of a wind turbine, considering the variation in the wind conditions changing
between laminar and turbulent flow, using a sequence generated by a Markov Chain.
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Figure 5.2: Diagram flow to represent the proposed methodology of long-term estimation of
deterioration.

Finally, the results allow knowing the percentage of degradation that can be reduced if
a gain-scheduling control approach is implemented, considering the wind conditions.

5.2 Methodology for Long-Term Estimation of Deterioration

This section presents an approach to evaluate the deterioration in the long-term of a
drive-train in a wind turbine by learning the curve of Dissipated energy vs. Time for
different wind conditions and using a Markov chain to estimate the transition between
each case of wind conditions.

The rate of change of the dissipated energy (i.e., degradation) depends on the control
gain Kc and the nature of the wind. This rate is also a random variable. If we denote
the rate as s, it can be said that s ∼ ℘(Kc, δ

c
w), where ℘ represents a probabilistic law,

and δcw describes the wind conditions.

The principle of long-term estimation is to learn the distribution of slopes as a function
of wind nature and control gain. Once this distribution is learned, it is possible to
simulate wind history (e.g. with a Markov Chain approach) and use the probabilistic
model ℘ to generate the slopes s and simulate the deterioration.

This probabilistic model ℘ can be seen as a surrogate probabilistic model for deterio-
ration, allowing the problem of long-term simulations under a given control strategy to



84 Chapter 5. Long-Term Estimation of Deterioration

be solved.

The process for simulating long-term deterioration is illustrated in the diagram pre-
sented in Figure 5.2, and comprises the following steps:

Steps (1) to (5) must be made for each wind condition separately. This work will
consider two wind conditions (i.e., laminar and turbulent).

Acquisition of Information

1. Acquisition of Wind Speed Data: Using historical or synthetic data to get
the wind speed information, consider separating the information for each wind
condition.

2. Simulation of the dissipated energy in the drive-train implementing
the gain-schedule control strategy: Use the deterioration model presented
in Chapter 3 for simulating the dissipated energy. Besides, following the process
explained in Chapter 4, estimate a suitable control gain depending on the wind
conditions (in this work, K laminar

c and Kturbulent
c ).

Learning Stage

3. Define ∆t for the discretization: Define a constant or discrete interval ∆t to
analyze dissipated energy information with a one-second sampling period. Con-
sider an example, where it will be use one day of simulation (86.400s), it is possible
to use a discretization of 10 minutes (∆t = 600s).

4. Estimate the slope in the Dissipated Energy VS time curve: Estimate
the slope of the Dissipated Energy VS time curve for each ∆t period. COnsidering
the example used in the point before, for the case of ∆t = 600s and one day of
simulation (86.400s), this leads to 144 data of slopes.

5. Fit a probability distribution function to slopes data: Find an appropriate
probability distribution and estimate the respective parameters that fit the data
of the slopes in each case of interest.

Simulating Stage

6. Simulation of a Markov Chain to establish the transition between wind
conditions: To simulate long-term wind conditions, it is necessary to establish
a sequence of changes between them; using a Markov chain allows modeling the
transition probability between each wind regimen and the probability of sojourn
in each flow regimen.

7. Generate new slope data: Considering a Markov Chain sequence, generate
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new slope data using the fitted probability distribution function.

8. Save the information for the analysis.

The procedure can be done with as many repetitions as desired to improve the exac-
titude of the analysis, as well as different wind conditions (e.g., considering different
turbulence levels).

5.3 Evaluation of Performance of the Proposed Methodology
for Long-Term Estimation of Deterioration

For the evaluation of the proposed methodology, this chapter will utilize the information
of a wind turbine with the same characteristics that the case used in Chapter 3 and 4:

A VS-FP wind turbine of 2 MW and 100 m of rotor diameter with horizontal-axis, with
Cmax

p = 0.4615 at λ0 = 6.4 and considering the Equation 2.9, Kopt
c = 9.5065e5.

The considered wind turbine drive-train degradation was simulated using the dynamic
system presented in Equation 3.1. In addition, the variability in the wind between lam-
inar and turbulent flow was taken into account to estimate the deterioration behavior
under realistic conditions.

5.3.1 Implementation of Proposed Methodology by Steps

Here, it is presented the process of implementing the proposed methodology by following
the sequence of steps presented in Figure 5.2:

1. Acquisition of Wind Speed Data: To observe the changes in slopes between
wind conditions, it was obtained laminar and turbulent with high-intensity wind
data for evaluating performance.

Figure 5.3 presents the wind profile used during the simulations. For laminar
wind conditions, it was used real measured data, and for turbulent flow, was
implemented one level of the wind generation model presented in Ma et al. [77]. In
both scenarios, it was assumed constant conditions for 5.5 hours (20,000 seconds).

2. Simulation of the Dissipated Energy in the Drive-Train Implementing
the Gain-Schedule Control Strategy: Using the deterioration model pre-
sented in Chapter 3, it was simulated the dissipated energy for each case of wind
condition (laminar and turbulent).

Furthermore, the results from evaluating the performance of the gain-scheduling
control strategy proposed in Chapter 4 were implemented to determine a suitable
control gain for each wind condition. The values of KLaminar

c and KTurbulent
c were:

• For laminar wind: KLaminar
c can take values up to 11% above Kopt

c .
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Figure 5.3: Considered wind speed conditions: (a) Laminar and (b) Turbulent

• For turbulent wind: KTurbulent
c can take values down to 15% below Kopt

c .

After simulating the deterioration of the system considering the suitable control
gains depending on the wind conditions, the cases of interest are illustrated in
Figure 5.4a for laminar case, and Figure 5.4b for turbulent case. Also was im-
plemented a reference case for laminar and turbulent wind conditions dissipated
energy. These simulations will be denominated as "nominal" cases and were ob-
tained using the same wind as input but with a constant control gain at Kopt

c .
The dissipated energy for the laminar and turbulent conditions is presented in
Figure 5.4c and 5.4d respectively.

3. Define ∆t for the discretization: In this work, the curve Dissipated Energy
vs. Time was discretized assuming that ∆t = 600s, due to the fact the transition
between wind conditions is not instantaneous and the record time in some systems
is usually 10 minutes (e.g., SCADA).

4. Estimation of the slope in the Dissipated Energy VS time: The slopes
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(a) Dissipated Energy with:Laminar wind with KLaminar
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(b) Dissipated Energy with:Turbulent wind with KTurbulent
c
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(c) Dissipated Energy with:Laminar wind with Knom
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(d) Dissipated Energy with:Turbulent wind with Knom
c

Figure 5.4: Dissipated Energy with: (a)Laminar wind with Knom
c and (b) Turbulent wind

with Knom
c
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were estimated considering the equation of the slope or gradient of a line, e.g., for
the case between two points x1 and x2, the slope of the curve of dissipated energy
will be:

s =
Ed(2)− Ed(1)

∆t

5. Fit probability distribution to slope data: Due to the variability in wind
levels under the same wind regime, the slopes of the "Dissipated Energy vs Time"
relationship can be considered as realizations of a random variable. In the pro-
posed methodology, the learning steps can involve understanding the distribution
of slopes under different wind regimes. This, in turn, will enable the prediction of
the long-term deterioration and the characterization of the associated uncertainty.
Such information can be useful for tasks like RUL prediction.

Probability distribution functions were fitted of slopes data in each case using the
Distribution Fitter app (Matlab Sofware). The results show that the better fit for
each case is:

• Slopes data from dissipated energy curve in laminar case: Beta distribution

• Slopes data from dissipated energy curve in turbulent case: Gamma distri-
bution

6. Simulation of a Markov Chain to establish the transition between wind
conditions: A Markov Chain with a transition matrix T was established to simu-
late the transition between laminar and turbulent flow. In this work, the transition
probability matrix controlling the change between turbulent and laminar is given
as follows:

T =

(
0.7 0.3
0.3 0.7

)
(5.1)

It means that at each time step of 600 s, there is a 70 % chance of staying in
turbulent flow and a 30 % chance of changing from turbulent to laminar flow.

7. Generate new slope data: Simulate synthetic slope data using the parameters
of the probability functions. This data will allow you to estimate the dissipated
energy between two points every ∆t moment. Select the appropriate probability
function based on the wind conditions.

8. Replicate: To obtain an image of the degradation during the useful lifetime of
the wind turbine, perform the analysis for different periods. This work consid-
ered using 100 replicates in each case to comprehensively understand the varied
sequences of changes between laminar and turbulent flow.
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5.3.2 Results & Discussions

To analyze the dissipated energy in each scenario, we can refer to Figure 5.4. These
graphs support the conclusions outlined in Chapter 4. Specifically, it is possible to
observe that the energy dissipation is lower during the analysis period when using lam-
inar flow and Kopt

c (Figure 5.4c) compared to using KLaminar
c (Figure 5.4a). However,

in the turbulent scenario, we observe more significant degradation with Kopt
c (Figure

5.4d) than with the suitable control gain KTurbulent
c .

For learning the behavior of the curve, the slopes were estimated every 10 minutes
(∆t = 600s), and each set of data was fit with a probability distribution function as
follows:

• Laminar Flow: The data in the case of Kopt
c and KTurbulent

c was fit with a Beta
distribution. Figure 5.6a shows the graphic of the density function for the data set
of slopes calculated from the curve of Dissipated Energy vs. Time with Laminar
flow and KLaminar

c . Similar results were obtained for the nominal case (Figure
5.6b).

• Turbulent Flow: In the case of the turbulent flow, the Gamma distribution shows
a better fitting to the data of slopes calculated from the curve of Dissipated Energy
vs. Time with turbulent flow and KTurbulent

c (Figure 5.7).

With fitted probability laws, it is possible to generate new slope data. Nevertheless,
this work aims to reproduce wind alternating between the laminar and turbulent flow.
The sequences of changes between both flow regimes were selected through a Markov
chain. They were implemented using the transition matrix in Equation 5.1, considering
using the suitable control gain depending on the wind condition. Also, the case was
simulated using Kopt

c to be used as a reference.

To obtain an image of the degradation during the useful lifetime of the wind turbine,
the analysis was performed for different periods with 100 replicates in each case. This
provided a big picture under varied sequences of changes between laminar and turbulent
flow. The process was carried out for different periods of 1 (Figure 5.5), 5 (Figure 5.8a),
10 (Figure 5.8b), 15 (Figure 5.8c), and 20 years (Figure 5.8d).

For example, let’s take the case of 1 year shown in Figure 5.5. The figure shows the
dissipated energy after one simulation year with 100 replicates. It is possible to observe
that the amount of energy dissipated by the case with the suitable control gain is always
smaller than that of the case with generated energy.

Table 5.1 summarizes the average energy dissipated for the case with Kopt
c and the

suitable control gain Ks
c . It also shows the percentage difference between the optimized

and nominal cases after the evaluation period and the average simulation time required
to obtain the results.
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Figure 5.5: Dissipated Energy in one year of simulation using a suitable control gain and
theoretical control gain for a period of: 1 Year

The results indicate a significantly greater energy dissipation when the Kc is not
switched when necessary and suitable to the wind conditions; in all the periods un-
der evaluation, the difference is more than 9%, which indicates a significant increase in
the deterioration when no suitable mechanism of the control gain is implemented. Be-
sides, table 5.1 shows the average time for running the simulation during the different
periods, demonstrating the short time necessary to obtain an image of deterioration for
long-term periods.

Table 5.1: Comparison of dissipated energy in different periods

Number of
years

Dissipated
Energy Ks

c

(Wh)

Dissipated
Energy
Kopt

c (Wh)

Difference
(%)

Average
time
(sec)

1 1.446e5 1.570e5 9.307 8.271
5 7.152e5 7.906e5 9.535 8.816
10 1.419e6 1.572e6 9.694 9.913
15 2.139e6 2.369e6 9.702 11.216
20 2.843e6 3.150e6 9.743 11.956

A t-test was performed to ensure the variability in the samples; in all the cases, the test
rejected the hypothesis that the means of the replicate-wise dissipated energy are equal
for both simulated scenarios (static vs suitable gain), and the p− value ≈: 0 indicates
there is robust evidence in favor of the alternative hypothesis.
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Figure 5.6: Density function of a Beta distribution using a data-set of slopes in a curve Dissipated
Energy VS Time. Case: a) Using the suitable KLaminar

c , and b) Using the Kopt
c .
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Figure 5.7: Density function of a Gamma distribution using a data-set of slopes in a curve Dissipated
Energy VS Time. Case: a) Using the suitable KTurbulent

c , and b) Using the nominal Kopt
c .
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(a)

(b)

(c)

(d)

Figure 5.8: Simulated Dissipated Energy using a suitable control gain and theoretical control
gain for the periods of: a) 5 years, b) 10 years, c) 15 years, and d) 20 years
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5.4 Conclusions

This chapter proposed a methodology to analyze the long-term degradation of a drive-
train wind turbine using a gain-scheduling control strategy and considering the variation
in the wind conditions.

Real measurements of laminar wind were implemented; the turbulent flow was sim-
ulated using a stochastic model based on a Markov chain. Moreover, the dissipated
energy was estimated employing a dynamic model based on contact mechanics for the
case of laminar and turbulent flow, considering the theoretical control gain and an
optimized control gain depending on the win conditions.

The dissipated energy rate for turbulent flow is more accelerated than in the laminar
case. As a result, the slope is more pronounced in the Dissipated Energy VS. Time
curve. It is possible to learn the slope of the curve to use this behavior in extrapolation
and keep the effect of the wind in a second-wise simulation.

Different probabilistic distribution functions were employed to generate new slope data
using the function parameters, and a Markov Chain was simulated to know the se-
quences of the transitions between the laminar and turbulent flow.

The proposed methodology was illustrated under different periods to know the degra-
dation behavior during the useful life of the wind turbine with an extrapolation of the
Dissipated Energy vs. Time curve. The results show that using the gain-scheduling
control strategy, it is possible to reduce by more than 9% the energy dissipation in the
drive-train compared with the nominal theoretical case.
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Control of the Rate of Deterioration
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This section presents an intelligent control strategy to minimize the degradation rate
of a drive-train wind turbine when a change in the wind or set point occurs. The pro-
posed method enables the turbine to adapt under different conditions while maintaining
as much as possible energy generation without accelerating to much the degradation
process. To achieve this objective, the proposed strategy consists of adjusting the
maximum power point tracking control gain using a robust H-infinity control strat-
egy considering a drive-train modeled through a simplified dynamical system based on
contact mechanics, employing the dissipated energy as an indicator of the degrada-
tion in the shaft. This strategy guarantees the system’s stability in the presence of
uncertainties and external disturbances, such as changes in wind conditions.

The contributions presented in this chapter, have been submitted in the Journal "En-
gineering Applications of Artificial Intelligence", under the article entitled Intelligent
robust control for the degradation rate of a wind turbine drive-train,

6.1 Introduction

The degradation of transmission in a VS-FP wind turbine was analyzed in Chapter
3 using the MPPT control law, finding that the performance of this type of system
is adversely affected when the control system is not adjusted according to the wind
flow conditions. Furthermore, the research establishes that a change in the control
gain from nominal conditions has an impact on energy dissipation, highlighting the
necessity of an adaptive control strategy that considers changes in the wind. However,

95
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in Chapter 4 a gain-scheduling control strategy was proposed, this strategy aims to
adapt the adaptation of the control gain depending on the wind conditions to optimize
the efficiency of mechanical transmission components, even when wind flow varies. This
approach can help reduce the cost of wind energy by improving reliability and reducing
the maintenance costs associated with wind turbine transmission systems.

Considering the importance of predicting and addressing long-term deterioration while
also considering short-term wind changes, in Chapter 5 was presented a methodology
that simulates the degradation of the transmission in a long-term under varying wind
conditions by learning an empirical relationship with random effect between Dissipated
Energy and Time. The results of this study show when is adapted the proposed gain
scheduling strategy, was obtained a decrease in degradation of more than 9% in all cases
evaluated and the possibility of obtaining a fast prediction of long-term degradation.

The present chapter is based on the preliminary work presented in the chapters before (
3, 4, and 5) and aims to develop a novel intelligent control strategy that minimizes the
degradation of a wind turbine drive-train when occurs wind or set point changes. The
proposed method enables the turbine to operate under different conditions while main-
taining as much as possible the energy generation without accelerating the degradation
process. To achieve this objective, a robust H-infinity control strategy is implemented
to adapt the theoretical control gain to an intelligent control gain that guarantees the
stability of the system and finds the optimal balance between degradation (dissipated
energy) and performance (generated energy) in the presence of uncertainties and ex-
ternal disturbances, such as changes in wind conditions.

6.2 Problem Statement

As it was mentioned, dissipated energy can be used as a measure of degradation. There-
fore, it is possible to use the instantaneous loss power or dissipated power Pd as an
instantaneous degradation measure and refer to this parameter as β.

Ḋ = Pd = β (6.1)

Considering the definition of Pd presented on Equation 3.8, β can be written as:

β = Bs(ωg − ωr)
2 (6.2)

The dynamics of wind energy are described using a simplified model based on Equa-
tion 3.1. This model incorporates torsional loads and resonance modes in the drive-
train, allowing for the definition of a torsional parameter ϑ, as:

ϑ = ωg − ωr (6.3)
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Therefore, β can be rewritten using Equation 6.3 as follows:

β1/2 =
√
Bsϑ (6.4)

On the other hand, as it has been demonstrated in Chapter 3 changes in the control
around may lead to accelerated degradation if the wind conditions are not considered.
Therefore, adjusting the control gain around Kopt

c considering the wind nature can
minimize the degradation when there is a change in either wind speed (v) or the set-
point. The amount of adjustment required is defined as ∆kc.

Kc = Kopt
c +∆kc (6.5)

Thus, the generated torque can be re-expressed as follows:

τc = (Kopt
c +∆kc)(ωr)

2 (6.6)

Besides, the dynamics in a drive-train of a VS-FP wind turbine can be described by
using the system presented in Equation 3.1 :

 θ̇s
ω̇r

ω̇g

 =

 0 1 −1
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Ir
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Ir
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Ir
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Ig
Bs
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0

0 − 1
Ig
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)

A modification of the system presented in Equation 3.1 can be made by considering
Equation 6.6 for introducing the ∆kc in the dynamic model of the drive-train. If the
system is evaluated around a specific region of operation as a reference, it is possible to
define a value of ωr for this point, and recalling that Bs can be estimated considering
the Equation 3.6. The new system is defined as:

 θ̇s
ω̇r

ω̇g

 =

 0 1 −1
−Ks

Ir
−Bs

Ir
Bs

Ir
Ks

Ig

Bs−Kopt
c w̄2

r

Ig
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ωr

ωg

+

 0 0
1
Ir

0

0 − w̄2
r

Ig

(
τr
∆kc

)
(6.7)

The system outlined in equation 6.7 enables the utilization of ∆kc to produce changes
in the indicator of deterioration β, across the states of torsion angle θs, rotor angular
speed wr, and generator angular speed wg.

6.3 Proposed Deterioration Control Strategy

This section presents a control strategy that allows the turbine to operate under variable
conditions while maintaining energy generation and preventing accelerated degradation.
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A degradation control strategy is proposed to address the problem of minimizing the
degradation of a wind turbine’s drive-train when there are changes in wind or set point.
By minimizing the error (e) that is produced by changes in an indicator of deterioration-
rate (β) with respect to a reference deterioration-rate (βr), that is e = β−βr. Besides,
the control action can be made by an intelligent modification to the control gain (∆kc),
considering that any change on theKc will impact the generation of energy. The general
architecture of the control strategy is illustrated in Figure 6.1.

MPPT Controlled 

Drive-Train 

System

C

Figure 6.1: Proposed control strategy for deterioration rate considering an intelligent modifi-
cation of the control gain ∆kc

One of the goals of this strategy is to maximize energy generation. To achieve this,
it is crucial to apply the MPPT control law outlined in Equation 6.6. Nonetheless, it
is also important to consider a trade-off between generation and degradation. There-
fore, a two-level composed control loop is considered the most straightforward way to
incorporate a degradation control strategy.

Figure 6.2 illustrated the proposed Intelligent Robust Control Strategy to achieve the
trade-off between generated energy and deterioration. The scheme presented in Fig-
ure 6.2 is a detailed version of Figure 6.1 where it is possible to appreciate the role of
the MPPT controller, and the role of the Deterioration controller as an additional input
to this MPPT system. Note that the variable β, is estimated by using the measurement
of the states: the torsion angle θs, rotor angular speed ωr, and generator angular speed
ωg, as stated in Equation (6.2).

The dynamics of the drive-train system can be simulated using Equation 3.1. This
equation estimates the torsion angle θs, rotor angular speed ωr, and generator angular
speed ωg using the rotor torque τr and generator torque τg as inputs. The wind vari-
ability can be considered using Equation 2.4, which uses wind speed as input. On the
other hand, τg is estimated using Equation 6.6, which presents a modification of the
MPPT control law.



6.3. Proposed Deterioration Control Strategy 99

Finally, the deterioration controller consists of a robust controller designed using H∞
theory, which guarantees system stability despite uncertainties and external distur-
bances.

MPPT

Deterioration

Controller

Drive-train

System

Figure 6.2: Proposed Intelligent Robust Control Strategy implementing a H∞ method

6.3.1 Design of Deterioration Controller

The purpose of this section is present the theory and guidelines necessary to design a
deterioration controller for drive-train wind turbines usingH∞ method. TheH∞ theory
allows to obtain an optimal stable controller even when changes in wind conditions are
presented.

The general H∞ theory considers the system presented in Figure 6.3, where the objec-
tive of this strategy is to find a controller (C ) for a plant (P) that generates a control
signal (u) based on the measured output (y). This signal must counteract the influence
of inputs (w) (disturbances (d) and the reference signal (r)) on the controller outputs
(z), thereby minimizing the H∞ norm of the closed-loop transfer function (Gzw) from
w to z [34, 120, 127], as follow:

Copt = argmin
C ∈ D

∥ Gzw (P,C) ∥∞ (6.8)

where C is the optimized controller, and D is a group of controller that stabilizes P.

In the traditional H∞ controller synthesis, it is common to consider a sensitivity func-
tion S for managing performance and a complementary sensitivity function T for man-
aging stability. Each sensitivity function has an associated weighted function that acts
as a low-pass and high-pass filter [14, 120]. Commonly, we is the weight function asso-
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-+
G

C

P

{
{

Figure 6.3: Standard scheme for H∞ control synthesis

ciated with the performance (measure) in the controller synthesis, penalizes the lower
frequencies of the error, and is defined in Equation 6.9.

1

we(s)
=

s+ wbϵ

s/Ms + wb

(6.9)

With ϵ ≈ 0, Ms < 2 (6 dB), and wb influencing closed-loop bandwidth (higher wb

leading to faster disturbance rejection, faster closed-loop tracking response, and better
robustness).

On the other hand, the wu is the robustness weight function (stability constraint) in
the controller synthesis, amplifies the higher frequencies of the control actions, which
can be estimated as:

1

wu(s)
=
ϵ1(s) + wbc

s+Muwbc

(6.10)

Mu is chosen based on the low-frequency behavior of the process. wbc influences the
closed-loop bandwidth. Lower wbc values provide better noise limitation and roll-off
starting from wbc to reduce the effects of modeling errors.

Based on the information presented before, the design of a deterioration controller for
a drive-train in a VS-FP wind turbine requires defining the system G, which takes the
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form described below:

G =

{
ẋ = Ax+Bu

y = Cx

Here, ẋ = Ax + Bu can be defined using the system presented in Equation 6.7, with
the disturbance τr and the controlled variable ∆kc as inputs, and β as the output.

To define P, consider it as the transfer function matrix from [w u]T to [z y]T , where w,
z, y, and u are defined as:

w =

{
d = τr
r = βr

}
u = ∆kc y = β

z =

{
z1
z2

}
z1 = wee z2 = wu∆kc

In addition, weighting functions can also be used to attenuate disturbances and refer-
ences. In this strategy, we consider implementing a weight function of disturbance (wd)
and another for the reference (wst):

τ ∗r = wdτr (6.11)

and,
βr∗ = wstβ

r (6.12)

Considering the error (e) as the difference between y and r, it can be defined as:

e = β − βref (6.13)

6.4 Performance Evaluation: Numerical Scenario & Results

This section presents the evaluation of the performance of the proposed degradation-
aware control strategy using the simulation framework that was utilized in the preceding
chapters, which is considered a simplified model for representing the transmission sys-
tem of a VS-FP wind turbine. This model considers the entire transmission system as
a combination of two rigid bodies connected by a flexible shaft ( See Figure. 3.1).

For the evaluation of the proposed strategy, recall that the wind turbine in consideration
have a 2 MW capacity and a rotor diameter of 100 m. The turbine operates on a
horizontal axis with a fixed gear. For this turbine, Cpmax takes a value of 0.4615 at
λ0 = 6.4. Therefore, the theoretical optimal feedback control gain will be Kopt

c =
9.5065e5.

The evaluation of the performance of the controller considered different scenarios:
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• Changes in the set-point (βref ): To analyze the controller performance to changes
in the set-point, steps were induced in the set-point and replicated in different
wind scenarios with low turbulence around a wind with a constant mean.

• Variations in the disturbance (τr): To evaluate the controller performance when
changes in wind speed occur, a series of steps were induced in addition to variations
in turbulence, and as a consequence, the magnitude of τr variated.

6.4.1 Design of Deterioration Controller

To design a robust deterioration controller using H∞ method, some steps must be taken
to implement it:

• Definition of process G : The system presented in Equation 6.7, requires defining
an operation area to obtain the value θ̄s, ω̄r, and ω̄g. Therefore, the dynamic of the
drive-train can be simulated, implementing the deterioration model, considering
a case with Kopt

c and a variable wind speed of around 8 m/s. The obtained mean
values of the states of the system for the range of operation selected are:

Table 6.1: Parameters for the estimation of system G

θ̄s w̄r w̄g

2.8e−2 rad 1.57 rad/s 1.6 rad/s

• Definition of the augmented plant P : The augmented plant is defined by consider-
ing the process G, and estimating the weight functions, which were used to analyze
the behavior of disturbances in the control system and design a robust controller
to handle these disturbances while maintaining stability. Table 6.2 shows the
parameters considered for this analysis.

Table 6.2: Parameters of the Sensitivity functions

Ms ωb ϵ Mu ωbc ϵ1
2 1 1e−3 1 20 1e−3

• Synthesis of the controller: The controller has been designed by using the available
function hinfsyn from the Robust control toolbox (Matlab). By considering the
proposed augmented plant, the function provides the parameters of controller gain,
closed-loop transfer function, and H∞ norm for synthesizing the controller for the
target performance level considering the architecture presented in Figure 6.3.

6.4.2 Evaluation of the performance of degradation control strategy

It is essential to analyze how the control system behaves under variations in distur-
bances and set point to evaluate the proposed degradation control strategy’s perfor-
mance. In order to obtain a complete analysis, the performance will be compared
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Figure 6.4: Estimated error of estimation of the controller

between two scenarios: one with theoretically optimal control characteristics and a
constant gain of Kopt

c , and the other with the proposed controller implementation.
This comparison will determine the effectiveness of the controller compared to a theo-
retically optimal control strategy that uses a constant gain and does not consider the
optimization of the system’s degradation.

6.4.2.1 Evaluation of performance: Changes on reference βr

The response of the controller to changes in the set point was evaluated considering that
the value of β can vary in a wide range between 2e6 and 11e8 due to the constraints con-
sidered for controller synthesis. To analyze the controller’s response to abrupt changes
in βr, steps were added as shown in Figure 6.5, where the dotted vertical lines indicate
when a step occurs.

Figure 6.5 presents the controller’s response when variations of the reference are made
abruptly for three different wind speeds: a) 6m/s (Figure 6.5a), b) 8 m/s (Figure 6.5b),
and c) 12 m/s (Figure 6.5c). In all the cases, it is noted that the controller closely
follows the set point, even when the steps occur. However, it is noted in Figure 6.5c
some variations in β that can be attributed to the effect of the variations in the wind
caused by turbulence.

The robustness of the controller and good response to changes in the reference are
observed from the comparison between β and βr. The variations on the error during
the process are shown in Figure 6.4, where the estimation errors of β with respect to
βref takes values of 6.4409 × 10−5%, 6.7225 × 10−7%, and 4.66 × 10−3% for the cases
with mean wind speeds of 6 m/s, 8 m/s, and 12 m/s, respectively.

The degradation of the drive-train system can be analyzed by examining Figure 6.6.
The analysis of the energy dissipated for the three scenarios is presented with a com-
parison with respect to a case where the controller is not implemented in Figure 6.6a
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for 6 m/s, Figure 6.6b for 8 m/s , and 12 m/s on Figure 6.6c.

In all three scenarios, the total energy dissipated is significantly lower than in the
reference case. The differences are as follows: a) 178.42% lower, b) 0.0619% lower,
and c) 18.3988% lower. This demonstrates that implementing the controller leads to a
decrease in the total dissipation of energy.

Regarding the generated energy, Figure 6.7 illustrates the difference in generated energy
between the two cases analyzed. For the three scenarios of interest (6 m/s, 8 m/s,
and 12 m/s), the scenario using the controller produced less energy, with differences
of 19.227%, 0.897%, and 0.9913%. Furthermore, in Figure 6.7a, it is possible to see
that the slope of the curve noticeably fluctuates each time a step in βref occurs, and
the energy generation difference remains constant before the first step. Therefore, the
divergence in energy generation results from the changes in βr.
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Figure 6.5: Comparison in the deterioration rate between a case with β and βref
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Figure 6.6: Comparison of Dissipated Energy between a scenario with controller and reference
scenario for wind of: a) 6m/s, b) 8 m/s, and c) 12 m/s



6.4. Performance Evaluation: Numerical Scenario & Results 107

0 1 2 3 4 5 6 7

Time(s) 10
5

0

1

2

3

4

5

G
en

er
at

ed
 E

n
er

g
y
 (

W
h
)

10
7

With Controller

Reference case

(a)

0 1 2 3 4 5

Time(s) 10
5

2

4

6

8

10

G
en

er
at

ed
 E

n
er

g
y
 (

W
h
)

10
7

With Controller

Reference case

(b)

0 1 2 3 4 5 6 7

Time(s) 10
5

0

1

2

3

4

G
en

er
at

ed
 E

n
er

g
y
 (

W
h
)

10
8

With Controller

Reference case

(c)

Figure 6.7: Comparison of Generated Energy between a scenario with controller and reference
scenario for wind of: a) 6m/s, b) 8 m/s, and c) 12 m/s
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6.4.2.2 Evaluation of performance: Disturbances

A wind scenario was created to assess the controller’s ability to maintain stability
while handling disturbances due to changes in the wind. The scenario considers a low
turbulence wind with a mean of 8 m/s and induced steps to change the mean of the
wind (See Figure 6.8). In this section, it is considered a low turbulence wind designed
to avoid abrupt variations that can induce additional noise, allowing for analysis of the
effects of controlled variations in the disturbances through the steps.
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Figure 6.8: Wind Speed Case considered for the evaluation of performance to disturbances.

In Figure 6.9, it can be seen that the controller effectively followed the set point even
during significant disturbances, managing perturbations while maintaining system sta-
bility with a mean error of 0.96%. The controller shows a peak when Step 2 occurs due
to the significant variation in wind speed. However, after a short period, the controller
reaches stability and continues following the reference.
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Figure 6.9: Comparison of β and βref under disturbances

On the other hand, to evaluate the performance of the controller, as in the previous
section, the case of interest was compared with a case where the controller was not
implemented, and the control gain was kept at a constant value of Kopt

c .



6.4. Performance Evaluation: Numerical Scenario & Results 109

Figure 6.10 illustrates that implementing the controller resulted in a variation in the
rate of system deterioration. Although the dissipation of energy from the case with the
controller was initially higher in a short period, the controller subsequently reduced the
rate of deterioration and maintained it below the rate of the case without the controller.
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Figure 6.10: Evaluation of performance of controller under disturbances in dissipated energy

Furthermore, Figure 6.11 shows the difference in dissipated power (Pd) between the
reference scenario and the case with the controller. The peaks in Pd caused by the
introduced steps in the simulation can be identified, allowing the analysis of the ef-
fect of each step on the dissipated energy. The controller decreases the effect of the
disturbance, reducing the value of Pd compared to the case without controller imple-
mentation.
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Figure 6.11: Evaluation of performance of controller under disturbances in dissipated power

Finally, in Figure 6.12, the behavior of the energy generation curve is affected by
changes in the set-point (βr). As a result, the slope of the curve changes each time a
step occurs. However, the changes in slope observed with the H∞ controller compared
to the theoretically optimal control gain are smoother, resulting in a lower energy
generation rate of -16.275%. The reduction in generated energy is a result of the
controller’s objective to strike a balance between degradation and performance
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Figure 6.12: Evaluation of performance of controller under disturbances in: Generated Energy

6.5 Conclusions

A novel control strategy for minimizing the degradation rate of a wind turbine’s drive-
train while maintaining energy generation under varying conditions was presented in
this section. The proposed approach consists of an intelligent control strategy of the
common MPPT control law used in VS-FP wind turbines, complemented by a robust
H∞ controller designed and implemented to ensure stability in the presence of uncer-
tainties and external disturbances, such as changes in wind conditions.

The simulation used a deterioration model that considers contact mechanics to estimate
the deterioration of the shaft and a simulated low-turbulent wind to obtain different
scenarios. The wind was generated using stochastic equations that generated different
classes of wind speeds by incorporating a drift and diffusion term. The low-level turbu-
lence used in the simulation replicated the wind study at speeds of 6 m/s, 8 m/s, and
12 m/s, for evaluating the performance of the proposed control strategy under different
wind scenarios.

The strategy developed utilizes the H∞ controller design methodology, which is suitable
for addressing uncertainties and disturbances in the system, considering an index of
deterioration and the necessary adjustment to find the trade-off between dissipated
energy and generated energy as a variable of control.

The proposed control strategy’s effectiveness was evaluated by analyzing the results un-
der two scenarios: disturbance variations and set-point changes. The comparison with
a theoretically optimal control strategy that uses a constant gain and does not consider
the optimization of the system’s degradation demonstrated that implementing the pro-
posed controller resulted in a significant decrease in the rate of system deterioration,
reducing the dissipated energy between 0.0619% and 178.42%.

In conclusion, the designed controller proved to be effective for managing degradation
in variable-speed wind turbines with fixed-pitch transmission. The simulation results
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showed significant improvements in energy dissipation and generation, and the con-
troller was shown to maintain system stability. The results also indicate that the con-
troller can handle disturbances and changes in the reference while maintaining system
stability. Overall, these results suggest that the designed controller can be a valu-
able tool for managing degradation in variable-speed wind turbines with fixed-pitch
transmission in industrial applications.

Future research should aim to implement the proposed control strategy in an experi-
mental system to demonstrate its effectiveness in real-world applications. Additionally,
it may be beneficial to integrate the proposed strategy with a remaining useful lifetime
control method, considering the previously made advancements in long-term degrada-
tion estimation for wind turbine drive-trains.
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Conclusions & Perspectives

This thesis focuses on modeling and controlling the degradation rate on the drive-train
on variable speed and fixed pitch wind turbines with a horizontal axis. The research
shows that changes in wind conditions and the use of non-optimized control can ac-
celerate the degradation of the system and affect efficiency. The thesis brings a novel
method for modeling deterioration in the wind turbine by using the dissipated energy as
an indicator. Besides, it proposes different approaches to minimize the system’s degra-
dation by implementing a control adequate to the wind conditions and a methodology
to estimate the deterioration of the system in the long term:

Chapter 2 provided an overview of wind turbines, including their functioning, deterio-
ration, and control strategies. The importance of precise control systems and accurate
wind modeling was emphasized in achieving maximum wind turbine performance. The
chapter also highlighted various methods for assessing the level of degradation, includ-
ing mixed methods, which are often implemented in wind turbine degradation studies.
Lastly, deterioration-aware control was introduced to manage wind turbine behavior
and health. Overall, the chapter provides insights into the theory and practice of wind
turbines and emphasizes the importance of effective control strategies in achieving op-
timized performance and reliability.

Chapter 3 proposed a model for drive train degradation based on dissipated energy,
which was tested using real and simulated data. The simulation results provided a
comprehensive analysis of the possible scenarios that can affect the degradation of the
wind turbine. One of the significant observations is the impact of wind speed variances
on the torsion angle and the resulting amount of dissipated energy, which can lead to
accelerated degradation of the system. Moreover, the results highlighted the possibility
of obtaining a trade-off between generated energy and turbine degradation under sub-
optimal control conditions. The proposed model allows us to estimate the dissipated
energy at the drive train for different wind conditions and control gains, providing a
view of the possible situations affecting turbine degradation.

Chapter 4 proposes a gain-scheduling control strategy for wind turbines, which aims
to optimize the efficiency of the wind turbine under varying wind conditions. The
approach considers the variation of the wind conditions to alternate between different
suitable control gains estimated using an optimization. The simulation was developed
to test the strategy using different wind speed scenarios and constant and variable
control gains. The proposed gain-scheduling control strategy is a promising approach
to optimize the efficiency of wind turbines, considering the variation of wind conditions.
By maximizing the generated energy and decreasing the dissipated energy, the proposed
strategy allows for a more sustainable and efficient use of wind energy.

In Chapter 5, a methodology was proposed to analyze the long-term degradation of
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a wind turbine’s drive train using a gain-scheduling control strategy and considering
variations in wind conditions. The dissipated energy rate for turbulent flow is more
accelerated than in the laminar case. As a result, the slope is more pronounced in
the Dissipated Energy VS. Time curve. It is possible to learn the slope of the curve
to use this behavior in extrapolation and keep the effect of the wind in a second-wise
simulation. The degradation in the drive train was simulated using a dynamic system,
and the variability in the wind between laminar and turbulent flow was considered to
understand the deterioration behavior under realistic conditions. Different probabilistic
distribution functions were employed to generate new slope data using the function
parameters, and a Markov Chain was simulated to know the sequences of the transitions
between the laminar and turbulent flow. The proposed methodology was tested under
different periods to know the degradation behavior during the useful life of the wind
turbine with an extrapolation of the Dissipated Energy vs. Time curve. The results
show that it is possible to reduce energy dissipation in the drive train by more than 9%
by using the gain-scheduling control strategy compared with the nominal theoretical
case.

In chapter 6, a control strategy was proposed for minimizing the degradation rate of
a wind turbine’s drive-train while maintaining energy generation under varying condi-
tions. The strategy consists of an intelligent control approach for the common MPPT
control law used in VS-FP wind turbines and implementing a robust H∞ controller
designed to ensure system stability in the presence of uncertainties and external dis-
turbances, such as wind conditions. The approach’s effectiveness was evaluated by an-
alyzing the results under two scenarios: disturbance variations and set-point changes.
The comparison with a theoretically optimal control strategy that uses a constant
gain and does not consider the optimization of the system’s degradation demonstrated
that implementing the proposed controller resulted in a significant decrease in the rate
of system deterioration, reducing the dissipated energy until -178.42%. The results
suggest the proposed control strategy can be valuable for managing degradation in
variable-speed wind turbines with fixed-pitch transmission in industrial applications.

This thesis has defined a solid foundation for further investigation into the optimization
of wind turbine efficiency and reliability. The perspectives for future research, building
on the contributions of this work, include:

• Stability and Adaptability: Enhancing the stability of the gain scheduling
control scheme through the use of Linear Parametric Varying (LPV) tools.

• RUL Estimation Integration: The methodology proposed for long-term es-
timation of deterioration provides a versatile framework that can be further re-
fined to improve the accuracy of Remaining Useful Life (RUL) estimations for
wind turbines. This advancement is crucial for optimizing predictive maintenance
strategies, and potentially improving the way wind turbines are managed and
maintained.
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• Energy Generation Prognosis: There is significant potential for the develop-
ment of an energy generation prognosis system, leveraging the long-term estima-
tion methodology introduced in this thesis.

• Pitch Angle Control: Future research could explore incorporating the pitch
angle as a second degree of freedom in control strategies. This inclusion could
enhance the dynamic response of wind turbines to environmental changes, further
optimizing energy capture and reducing mechanical stress.

• Industrial Application: The degradation rate controller outlined in this thesis
shows promising potential for industrial applications, particularly in wind turbine
management. Its practical implementation could lead to significant advancements
in turbine efficiency, reliability, and lifespan, marking a substantial contribution
to renewable energy technology.
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