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Résumé

Dans un monde de plus en plus connecté, nous générons dans nos vies quotidi-
ennes une quantité croissante d’informations de natures diverses, ce qui nécessite
des méthodes automatiques et adaptées pour la détection, la synthese et la
compréhension des phénomeénes qu’elles décrivent.

Au fil des années, I'apprentissage statistique a continuellement évolué, offrant
diverses techniques pour relever les défis posés par cette énorme quantité de
données. En particulier, I'apprentissage non supervisé joue un role essentiel dans la
découverte de motifs dans les données sans étiquettes préalablement définies. Une
méthode efficace pour résumer et visualiser des données de grande dimension est le
clustering, qui rassemble des observations similaires en fonction de caractéristiques
communes. En étendant le clustering pour grouper simultanément les observations
et les caractéristiques, approche connue sous le nom de co-clustering, il est possible
de mettre en évidence des relations complexes entre observations ou variables.

Cette these s’intéresse au co-clustering de données discretes dépendantes du
temps, une tache essentielle pour résumer les énormes quantités de données
générées dans divers domaines. Nous proposons ici trois modeles congus pour
relever ce défis. Tout d’abord, nous présentons le modele dynamique a blocs
latents (dLBM), une approche d’analyse rétrospective qui détecte les ruptures
temporelles au sein d’une séquence de matrices de données. En s’appuyant sur
des processus de Poisson non homogenes pour modéliser les interactions entre les
lignes et les colonnes, dLBM segmente des intervalles de temps continus, générant
une segmentation en lignes et colonnes pour chaque intervalle de temps.

En nous appuyant sur dLBM, nous présentons ensuite une extension qui offre
une plus grande une flexibilité dans la maniere dont les groupes en ligne et en
colonne évoluent dans le temps et qui tient compte de la grande parcimonie
des données. Ce modele étendu integre des systemes d’équations différentielles
ordinaires pour modéliser les changements abrupts a la fois dans ’appartenance
aux groupes et modéliser la parcimonie des données au cours du temps.

Enfin, nous proposons une évolution naturelle des modeles proposés, les ren-
dant aptes a fonctionner de maniere dynamique sur flux de données. Cette
nouvelle méthode d’inférence du modele ne requiert pas la connaissance a priori de

I’ensemble des données, rendant ’analyse en temps réel réalisable. En exploitant
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les réseaux neuronaux LSTM (Long Short-Term Memory), nous modélisons dy-
namiquement I’évolution des parametres du modele. Nous introduisons également
une méthode de détection de points de ruptures en ligne qui fournit des alertes
pour les changements brusques dans 1’évolution des données.

Les trois méthodes proposées ont été appliquées a la pharmacovigilance, un
discipline de santé publique dédiée a la surveillance et a I'évaluation de la sécurité
des produits médicaux. En pharmacovigilance, il est essentiel de détecter en
temps réel les changements dans les appartenances aux groupes de médicaments
et des effets indésirables afin d’assurer une identification et une réponse rapides

en matiere de santé publique.

Mots clés: Co-clustering, modele a blocs latents, distributions avec exces de

zéros, inférence variationnelle, données dépendant du temps.
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Abstract

In such a connected world, we generate an increasing quantity of information
of various kinds in our daily lives, which requires automatic and adapted methods
for the detection, synthesis and understanding of the phenomena they describe.

Over the years, statistical learning has continually evolved, offering various
techniques to address the challenges posed by this enormous amount of data. In
particular, unsupervised learning plays a critical role in discovering patterns in
data without previously defined labels. An effective method for summarizing
and visualizing high-dimensional data is clustering, which brings together similar
observations based on common characteristics. By extending clustering to simul-
taneously group observations and features, an approach known as co-clustering, it
is possible to highlight complex relationships between observations or variables.

This thesis focuses on the co-clustering of discrete time-dependent data, an
essential task for summarizing the enormous amounts of data generated in various
domains. Here we offer three models designed to meet this challenge. First, we
present the dynamic latent block model (dALBM), a retrospective analysis approach
that detects temporal breaks within a sequence of data matrices. Relying on
non-homogeneous Poisson processes to model interactions between rows and
columns, dLBM segments continuous time intervals, generating a row and column
segmentation for each time interval.

Building on dLBM, we then present an extension that provides greater flexibility
in how row and column groups evolve over time and accounts for high data sparsity.
This extended model incorporates systems of ordinary differential equations to
model abrupt changes in both group membership and model data sparsity over
time.

Finally, we propose a natural evolution of the proposed models, making them
able to operate dynamically on data flow. This new method of model inference
does not require a priori knowledge of all the data, making real-time analysis
feasible. By exploiting LSTM (Long Short-Term Memory) neural networks, we
dynamically model the evolution of model parameters. We also introduce an
online breakpoint detection method that provides alerts for abrupt changes in
data evolution.

The three proposed methods were applied to pharmacovigilance, a public

health discipline dedicated to monitoring and evaluating the safety of medical



products. In pharmacovigilance, it is essential to detect changes in drug group
memberships and adverse effects in real time to ensure rapid identification and

response in public health matters.

Keywords: Co-clustering, latent block model, zero-inflated distributions, vari-

ational inference, time-dependent data.
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The growing complexity and abundance of data have sparked the need for
advanced techniques to both uncover meaningful patterns and structures and
summarize the available information, for instance via unsupervised machine learn-
ing. Throughout this section, we will delve into the challenges and methodologies
involved in the clustering of high-dimensional data, a particular kind of data
whose feature dimension is of the same order of magnitude or even exceeds the
number of observations. In this context, traditional approaches may struggle to
produce meaningful results. In particular, we will introduce a powerful extension
of traditional clustering approaches known as co-clustering. This technique proves
particularly valuable making high-dimensional data more interpretable, as it has
the unique ability to simultaneously group both rows and columns of a data matrix.
Furthermore, this section explores time-dependent data, focusing on the challenge
of identifying patterns that evolve over time. The ability to effectively cluster and
analyze time-dependent data holds great promise in numerous applications, from

e-commerce companies to healthcare and beyond.



CHAPTER 1

1.1 Context

In the contemporary landscape of data, we are surrounded by a lot of information
that keeps growing. This big amount of data comes from many different sources,
and we need autonomous ways to detect important patterns, summarize and
visualize them.

To illustrate this idea, we can examine some real data examples. First, we can
think about online stores, like Amazon. Every second, lots of people visit the
website, look at products, and buy things. Every time they do something on the
site, new data are created. These data include what people like, what they click
on, what they buy, and when they buy it. The challenge here is figuring out how
to make sense of all this data to make better decisions for businesses, based on
the customers preferences. For example, based on how people shop and what is
popular, businesses can orient their selling policies and propose ad-hoc products

to the users.

As another example, consider the bike-sharing systems you might see in cities.
These systems let people rent bicycles using a phone app. Every time someone
takes a bike for a ride, data are generated. The data tell us where the ride starts,
where it ends, and how long it lasts. This information arrives quickly and it is
incredibly helpful for city planners who want to make transportation more efficient

for everyone.

Another example can be found in healthcare, particularly in the field of phar-
macovigilance. This central medical discipline is dedicated to ensuring the safety
of medical products by monitoring adverse effects both before and after they enter
the market. This process involves the detection, assessment, understanding, and
prevention of adverse effects or other drug-related problems. Pharmacovigilance
centers receive numerous reports of adverse drug reactions daily, originating from
diverse sources such as their websites, family doctors, and patients themselves.
Within this vast amount of data, there might be subtle patterns or signals that
indicate a medication is causing unexpected adverse reactions. These signals could
be early warnings of potential health risks associated with a particular drug. Early
detection is crucial because it allows healthcare authorities and pharmaceutical
companies to take prompt actions. If a medical product is found to have unforeseen
risks, it can be withdrawn from the market or its usage can be better controlled,
protecting the health and safety of patients. However, expert-driven identification

is resource-intensive, time consuming, and susceptible to human error.



INTRODUCTION

1.2 The challenges of high-dimensional data

The three examples we have previously explored, e-commerce platforms, bike-
sharing systems, and pharmacovigilance, are illustrative of a fundamental concept:
high-dimensional data. In statistics, high-dimensional data is a term used to
describe datasets where the number of variables or features (columns) is of the
same order of magnitude or even exceeds the number of observations (rows).
This phenomenon has become increasingly prevalent in our data-driven age, and
it presents unique challenges and opportunities for statistical analysis. Also,
high-dimensional data naturally exhibit sparsity, characterized by the presence
of numerous empty cells in the dataset. This phenomenon also poses significant
challenges for data analysis and it can be seen as one facet of the the curse of
dimensionality. This concept was initially introduced by Bellman (1957) within
the field of dynamic programming and it continues to be a challenge in nowadays
statistical methods. The curse of dimensionality refers to the exponential increase
in data volume as the number of dimensions grows. In high-dimensional spaces,
data points become increasingly distant from one another, that may lead to
a loss of information. Traditional clustering methods are not naturally suited
to address the complexities of sparse high-dimensional data. Distinguishing
meaningful patterns from random noise becomes especially challenging in this
context, leading to a deterioration in the performance of clustering models. This
issue arises because in high-dimensional spaces, the concept of distance loses its
conventional meaning, which can result in suboptimal outcomes (Steinbach et al.,
2004; Giraud, 2021). Moreover, working with high-dimensional data can lead to
computational challenges, as analyzing and processing such data demands more
significant computational resources and time. In general, extracting meaningful
insights and identifying patterns becomes more complex. We can consider our

earlier examples to have a better understanding of this concept.

e Amazon: In the context of Amazon e-commerce platform, each data point
may represent a user, and the attributes could include various aspects of
users behavior (e.g., products viewed, products purchased, time spent on the
platform, etc.). With millions of users and an extensive array of products,
the dataset can quickly become high-dimensional. An example can be seen

in Figure 1.1a representing the raw data of Amazon', where each colored

!The dataset used in this example can be found at https://snap.stanford.edu/data/
web-FineFoods.html.
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point represents an interaction between users (on the y-axis) and products

(on the x-axis).

o Bike sharing systems: Here, every bike ride represents a data point, and
attributes could includes information such as the starting station, ending
station, duration, and time of day. In a bustling city like London with
numerous stations and extensive riders, this dataset can easily become high-
dimensional. An example can be seen in Figure 1.1b, illustrating interactions
between departure stations (on the y-axis) and arrival stations (on the x-axis)

of the London bike sharing system?.

o Pharmacovigilance: With a multitude of medications and a wide range
of possible adverse effects, this dataset also qualifies as high-dimensional.
Figure 1.1c presents a pharmacovigilance dataset, where the y-axis represents
medical products, the x-axis denotes adverse effects and each data point
corresponds to a reported adverse drug reaction. The dataset used in this
example was obtained thanks to a fruitful collaboration with the Regional
Pharmacovigilance Center located in Nice (France) and will be analyzed

further in the next chapters.

In all of these situations, there is a common need: we need to understand and
summarize a massive amount of data. The data come in quickly, and we need
advanced statistical methods to help us summarizing them, finding important

patterns and make better decisions.

1.3 The role of unsupervised learning

Over the decades, statistical learning continuously evolved, presenting different
methods to address the challenges posed by high-dimensional data for under-
standing and extracting insights from complex datasets. Among the techniques
that have attracted significant attention are those falling under the umbrella of
unsupervised learning. Unsupervised learning is a branch of machine learning,
whose primary goal is to identify underlying patterns, structures, or relationships
within data, without the guidance of predefined outcomes or labels. Typically,
in this scenario, one common approach for tackling the challenges posed by

high-dimensional data is by simplifying and condensing complex datasets while

2The dataset used in this example can be found at https://cycling.data.tfl.gov.uk and
it will be analyzed further in the next chapters.

6


https://cycling.data.tfl.gov.uk

INTRODUCTION

Users

1200

1000

800

600

400

200

400 600
L L

Start stations

200
L

T T T T T T T T T T
100 200 300 400 500 600 700 200 400 600

Products End Stations

(a) Raw Amazon data. (b) Raw London bike sharing data.

Medical Products

200
1

T T T T T
100 200 300 400 500

Adversarial Effects

(c) Raw pharmacovigilance data.

Figure 1.1: Examples of raw high-dimensional data.



CHAPTER 1

retaining the most essential information.

One effective way to achieve this task is through clustering, a technique that
involves grouping similar observations based on shared characteristics. Clustering
allows for a summarization and interpretation of the data because it helps identi-
fying natural groupings or patterns within the dataset.

When we extend the concept of clustering to simultaneously group both the
observations (rows) and features (columns) in a dataset, this approach is known
as co-clustering. Co-clustering is particularly valuable in situations where we
aim to uncover complex relationships between rows and columns, allowing for a
more comprehensive understanding of the dataset. Indeed, it helps revealing how

certain observations relate to specific variables and vice versa.

1.4 Analysis of discrete data

The three datasets in Figure 1.1 are examples of discrete data matrices. Discrete
data is characterized by values that are distinct, countable, and typically restricted
to integers or a finite set of specific values. To illustrate this concept, consider
binary data as a straightforward example, consisting of only two possible values
encoded as 0 or 1. Also, another example are count data, which involve integers
representing the frequency of events occurring within a defined interval. Count
data will be extensively used in the following chapters.

Given that this thesis primarily focuses on co-clustering of discrete data, we can
now introduce the incidence matrix as a foundational tool for this task. The
incidence matrix serves as a concise representation of the relationships between
observations and features. In the case of binary data, the incidence matrix
contains Os and 1s, where 1 indicates the presence of a specific feature for a given
observation.

For example, Table 1.1 presents an incidence matrix of simulated binary data,
where rows and columns represent different populations (letters and numbers).
To enhance clarity, Figure 1.2a visually represents the same incidence matrix,
using colored squares to denote 1s and white squares to denote 0s. Furthermore,
Figure 1.2b showcases the results of applying co-clustering to this data. In this
figure, we observe a reorganized incidence matrix, where rows and columns have
been rearranged to group nearby rows and columns into clusters. These clusters
are delimited by red dashed lines, illustrating the outcome of the co-clustering

process. Also, the incidence matrix is a common tool in graph theory and network
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1 2 3 4 5 6 7
A1 001011
B o0o1o011T1FP®0
c 1101101
D 0101110
E 0010011
F 1011111
G 0001000
H O0OO0O1O0O0 11
I oo1 1001
Jo1.01 0 1 10
K 00110120
L1 011001
M 0 01 0 0 01
N O1 10100
O 1111111

Table 1.1: Incidence matrix of simulated binary data.

analysis, as it can be seen as a representation of a bipartite network. A bipartite
network is a type of network where the nodes can be divided into two distinct sets,
and edges only connect nodes from one set to nodes from the other set. Hence,
there are no connections within the same set of nodes. Considering the example
depicted in Figure 1.2, we can effectively illustrate the relationships between the
two distinct sets (letters and numbers) through a bipartite graph, as represented
in Figure 1.3. Here the left side corresponds to the set of numbers, while the
right side represents the set of letters. The connecting edges between them depict
the connections between letters and numbers, as defined by the entries within
the incidence matrix. To illustrate this further, consider the edge connecting the
letter "M" to both numbers 3 and 7. This connection is established because the
incidence matrix exhibits a value of 1 in the row corresponding to "M" and in the
columns corresponding to 3 and 7, thus indicating these specific associations. The
positions of letters and numbers in the bipartite network recalls the same clusters
we had in Figure 1.2b.
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Observation:
A B [ D E F G H 1 J K L M N O
L L L L
Row clusters
F o A E G H I J K L M B c D N
L L L L L L

Features Column clusters

(a) Incidence matrix (b) Reorganized incidence matrix

Figure 1.2: Example of binary data co-clustering.

Figure 1.3: Bipartite network on binary simulated data.
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Figure 1.4: Histograms of time dependent data.

1.5 Time dependent data

The exponential growth of technology and the increasingly frequent use of various
web platforms permeate every aspect of our daily lives, continuously generating
a massive stream of data. This gives rise to the need of extracting information
dynamically and automatically. Such analyses are not only crucial for informed
decision-making but also offer a deep understanding of the underlying processes
governing various real-world phenomena. As a result, the ability to summarize

vast amounts of time-dependent data has become of paramount significance.

To illustrate this further, we can recall the examples we explored earlier
regarding e-commerce platforms, bike-sharing systems, and pharmacovigilance.
For instance, Figure 1.4a provides a representation of the frequency of purchases on
Amazon between 2006 and 2012, categorized by months, revealing clear patterns
over time. Additionally, Figure 1.4b represents the number of bikes used in
the London sharing system at every hour, in a cumulative day, over the whole
month of June 2022. These histograms demonstrate the existence of patterns
that are time-dependent, highlighting the critical role of time-sensitive analysis
in extracting meaningful insights. Regarding pharmacovigilance data, we can
refer to Figure 1.5. This figure represents the data structure of a large-scale

dataset made of the notifications of adverse drug reactions (ADRs) gathered
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between 2015 to 2022 by the Regional Center of Pharmacovigilance (RCPV) of
Nice (France). Each upper panel shows the interactions between few adverse drug
reactions (ADRs), on the x-axis, and a sample of molecules, on the y-axis, for three
selected periods (highlighted in dark blue in the lower panel). The histograms
shows the distribution of ADR notifications received by the RCPV during the
whole time period. In such a context, the need for an automated, scalable, and
efficient approach to analyze the data becomes apparent. This is precisely where
dynamic co-clustering methods could come into play. The idea is to apply these
techniques to ease the transition from labor-intensive manual signal detection to
an automated, data-driven approach. Dynamic co-clustering could be a valuable
tool in identifying clusters of drugs and adversarial effects, as well as temporal
patterns, within the datasets helping medical authorities discovering possible
atypical patterns or abrupt changes in the progress of declarations. Looking
at Figure 1.5, it can easily be noticed that, during the years 2017 and 2021,
there is an extremely uncommon behavior in the progress of notifications to the
pharmacovigilance center. This departure from the usual patterns highlights the
challenges of dealing with data that display signals of very different magnitudes.
Indeed, behind those very visible effects, there might be other less visible signals

that need to be detected for obvious public health reasons.

1.6 Motivations and contributions of the thesis

This thesis is structured to provide a systematic exploration of the topic of
dynamic co-clustering. Our primary goal is, in fact, the development of dynamic
co-clustering methods capable of handling high-dimensional sparse data. The
motivation behind this research arises from the growing prevalence of such complex
datasets in various fields, often characterized by time-dependency, sparsity and
high dimensionality. In this Chapter 1, we introduced the overall scope of the
thesis, delineating the central theme, challenges to be addressed, methodologies to
be employed and some examples of the broad application domains. This chapter
lays the foundation for the subsequent detailed discussions. Chapter 2 presents a
more formal exploration of the related state of the art. Specifically, the chapter
focus is on the details of co-clustering problems in a general context and then
highlights the specifics of Latent Block Models (LBM) and various inference
methods. This chapter sets the stage for the original contributions of this thesis,

which will be detailed in the following chapters.

12



INTRODUCTION

£ g3
8 £ g
T e o o @ @
8
v T
: H o
3 L4 “o,
. (=3
Y %
g - & y
ODI\
. . ! “%
. 6,
] L 2N ] "a(
(') O,
L ' ‘ aoe
°- ) o,
H °e N o,
° *0 Qs
° -0 o
. M “o.
N s o “%s
8 L LN )
. ; .' ) (QO/
o
® ' (N ] Qs
‘e [
' ° @,
. g
? ? 8 o‘?oa
é &
“o,
¢ . “o,,
° o Qs
.o
. 4
. L 2,
Q:
LI} [ ] ' 2N
' LR 0
. .
N .ot S""e

Time Periods

Adversarial Effects

0-:0(8: 0 DIOED O @D - GPECW a -
<
S
®

0,
<,
@

2,
0,
.

s6ug wnoo

Figure 1.5: Notifications of adverse drug reactions (ADRs) received by Regional
Center of Pharmacovigilance (RCPV) of Nice (France), in 3 different trimesters,
highlighted in dark blue.

13



CHAPTER 1

o Chapter 3 introduces a first contribution of the thesis — the dynamic Latent
Block Model (dLBM). Here, we presents the formalization of this novel
method, by leveraging the non-homogeneous Poisson process (NHPP) for
the data modeling and the Stochastic EM-Gibbs algorithm for the inference

process.

o Chapter 4 extends the previous model by incorporating sparsity modeling via
Zero-Inflated distributions. Additionally, the integration of dynamic systems
for cluster membership modeling with neural networks further enriches the

model functionality.

o Chapter 5, the model scope expands further by introducing online capabili-
ties. The logical progression is to allow the model to run in real-time, by
enabling it to continually operate as new observations come, by keeping it

computationally efficient.

Chapter 6 first explores the ongoing work within this thesis, providing an overview
of the current research landscape. Then, we delve into potential future directions,
offering insights for further studies in this domain. Finally, the chapter ends by
drawing comprehensive conclusions based on the work accomplished throughout
the thesis.
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In this chapter, we recall the theoretical foundations for the methodologies
that will be presented in the following chapters. Section 2.1 introduces clustering
for high-dimensional data, then Section 2.2 focuses on problem the co-clustering
problem, considering both metric-based and model-based approaches. Then,
Section 2.3 gives an insight of Latent Block Models (LBMs). Dynamic models
emerge as a central theme in Section 2.4, with a special focus of their application to
both SBM and LBM. Shifting towards inference methods, the chapter introduces
three pivotal algorithms: the EM algorithm, the Stochastic EM algorithm, and the
Variational EM algorithm (Section 2.5). Deep learning extensions of the models

and of the inference process are then presented in Section 2.6.
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2.1 Clustering of high-dimensional data

In the contemporary landscape of data, we are surrounded by a lot of information
that keeps growing. This big amount of data comes from many different sources,
and we really need autonomous ways to find important patterns and to summarize
them. That is where clustering comes into play. Operating in an unsupervised
context, clustering algorithm involve grouping similar data points together based
on shared attributes. This unsupervised nature allows us to explore the natural
structure within the data without relying on predefined labels or classes. Also,
when the dimension of a dataset is big, as it usually happens, the analysis of a

restricted number of clusters is easier than exploring the whole dataset.

One notable distinction within clustering algorithms lies in their underlying
approach: discriminative and generative. Discriminative methods are based on
aiming to assign data points to clusters by identifying decision boundaries between
them. Hence, these methods seek to discern observations that share similarities
through quantifying the proximity or likeness of their attributes.

One popular way to accomplish this task is the k-means algorithm (MacQueen
et al., 1967). Most commonly, the k-means algorithm aims to identify compact and
well-separated clusters of data points relying to the Euclidean distance between
them. However, any other distance can be employed depending on the geometry
of the space where the observations live in. Due to the highly complex and non-
convex nature of the related optimization problem, the k-means algorithm employs
an iterative, heuristic approach that explores potential partitions. The process
begins with an initial partition of the data into K clusters and iteratively executes
two steps until convergence: first, it computes the K barycenters corresponding to
the current partition, and subsequently, it updates the partition by assigning each
data point to the cluster represented by its nearest barycenter. Other prevalent
clustering methodologies construct a weighted affinity graph based on similarity
scores between the observations, thereby reflecting local connections between
objects. Spectral clustering (Von Luxburg, 2007) is a branch of unsupervised
machine learning that focuses on how to build affinity (or similarity) graphs from
the data and exploit eigen-decompositionn in order to obtain expressive clusters.
Those methods are useful for uncovering heterogeneous clusters, possibly non
linearly separable configurations.

On the other hand, probabilistic approaches directly model the probability distri-

bution the data are supposed to come from. Since a generative model is usually

17



CHAPTER 2

employed, they can be referred as model-based approaches. In the clustering
context and built upon statistical principles, these methods propose a proba-
bilistic model that is assumed to have generated the data based on a hidden
partition. Typically, this is a discrete latent random variable and the goal is to
find the partition that best labels one observation membership to a cluster. A
well-acknowledged example of this approach can be seen in finite mixture models
(McLachlan et al., 2019). Here, every cluster is defined by a specific parametric
distribution known as a mixture component. In this setup, it is assumed that
objects in the same cluster come from the same component and they are assumed
independent and identically distributed (i.i.d). The advantage of these methods
it that, being the partition treated as a random variable, one can compute (or
estimate) the probabilities of observations belonging to each cluster. Furthermore,
mixture models serve as the foundation for various other model-based techniques,
including block modeling for co-clustering and graph clustering (Govaert and
Nadif, 2003; Daudin et al.; 2008). Specifically considering the scope of this thesis,
it is important to emphasize that we do indeed utilize model-based co-clustering as
a fundamental building block. Model-based approaches facilitate the measurement
of uncertainty in the outcomes through a probabilistic understanding of the parti-
tion. Furthermore, numerous criteria rooted in similarity-based methods can be
viewed as particular cases of model-based approaches, with the latter presenting
increased adaptability and transparency in modeling. For instance, the k-means
algorithm corresponds to a particular Gaussian mixture model, assuming identical
and proportionally scaled covariance matrices across clusters, and equal mixture

proportions.

However, traditional clustering techniques might be not sufficient to provide a
synthetic view of the data in situations where the number of covariates (M), is
higher than the count of observations (IV): N < M or N < M. This phenomenon
generally characterizes the concept of high-dimensional data (Bouveyron and
Brunet-Saumard, 2014). In this scenario, a common approach to tackle the
challenge is by employing data reduction techniques. To be more precise, the
original dataset X, sized N x M, can be effectively summarized into a new
dataset sized ) x L. In this context, L(< M) clusters efficiently capture the
essence of the M variables, mirroring the idea that K (< N) clusters encapsulate
the N individuals (Biernacki et al., 2023). The simultaneous clustering of both
individuals and variables is referred to as co-clustering and it constitutes the

central focus of this thesis.
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In addition, traditional clustering methods may suffer from computational
inefficiency when dealing with high-dimensional data, as memory requirements
can become prohibitive. Several strategies have been put forth to address these
challenges. One method, proposed by Guyon and Elisseeff (2003), involves variable
selection. This approach seeks to select and retain only the most pertinent variables
within the dataset, reducing its dimensionality. In the context of clustering, Witten
and Tibshirani (2010) introduced a novel framework allowing for data sparsity,
it relies on similarities among data points within a sparse context, offering an
alternative perspective for clustering. Additionally, Raftery and Dean (2006);
Maugis et al. (2009) have proposed model-based approaches to feature selection.
An alternative way of addressing the curse of dimensionality is through dimension
reduction, where the data is assumed to exist within lower-dimensional subspaces.
Principal Component Analysis (PCA), proposed by Jolliffe (2002) identifies these
lower-dimensional subspaces, capturing the data variance while simplifying the
dataset representation. Moreover, probabilistic variations of PCA have been
introduced by Tipping and Bishop (1999) and Chiquet et al. (2018).

2.2 The co-clustering problem

Back in 1965, Good (1965) introduced an extension of a clustering algorithm
proposing to achieve a joint classification of rows and columns in a table. The aim
of this analysis is to uncover any underlying structure consisting of homogeneous
blocks that might exist between the two sets; this is referred to as co-clustering.
Since then, other significant contributions have laid the groundwork for the
development of co-clustering (Bock, 1979; Govaert, 1983; Dhillon et al., 2003b).
Subsequently, co-clustering has evolved into various forms, and its significance
has grown considerably in recent years with the emergence of diverse applications.
These include gene expression analysis (Cheng et al., 2008; Hanisch et al., 2002;
Jagalur et al.; 2007), text mining and topic modeling (Bergé et al., 2019; Dhillon
et al., 2003a; Wang et al., 2009), recommending systems and collaborative filtering
(George and Merugu, 2005; Deodhar and Ghosh, 2010; Xu et al., 2012; Shan
and Banerjee, 2008) and political data, having been studied to identify groups of
politicians and political issues (Wyse and Friel, 2012a; Hartigan, 1975).

This section sets the stage for the co-clustering problem, offering an overview
of its formulation. Furthermore, it explores the distinction between the metric-

based approach and the model-based approach, describing in detail the two main
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Figure 2.1: Example of co-clustering of binary simulated data. We see on the left
side the raw interaction pattern and on the right side the reorganized incidence
matrix. The black dashed lines identify the block-clusters.

conceptual paths.

2.2.1 Definition of co-clustering

Block-wise co-clustering involves the simultaneous clustering of rows and columns,
using two partitions. The goal is to identify the structure comprising ) homoge-
neous row clusters and L homogeneous column clusters, as depicted in Figure 2.1.
This illustration shows a co-clustering algorithm applied to some simulated data,
with the incidence matrix of raw data on the left and the reorganized incidence
matrix on the right. This matrix is built such that rows (columns) are permuted
in a way that nearby rows (columns) belong to the same cluster. The dashed lines
identify the block-clusters. This type of co-clustering can be applied to binary
data, continuous data, or contingency tables. Drawing from the earlier notations,
the identification of homogeneous blocks in matrix X can be accomplished by
partitioning rows into () classes and columns into L classes. The objective is to
uncover the partitions for N observations into () classes, indicated by the latent
variable Z and the partitions for M variables into L classes, indicated by the
latent variable 1¥. As mentioned earlier, to accomplish this task different methods
have been proposed over the years. In the following some major approaches are

formalized.
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2.2.2 Co-clustering of discrete data

Co-clustering stands out as a powerful technique in machine learning, with a
distinct approach for uncovering hidden patterns within complex datasets. As
we mentioned in the previous section, unlike traditional clustering methods that
focus solely on grouping rows (columns), co-clustering "simultaneously’ clusters
both dimensions. With this respect, it is important to emphasize the conceptual
distinction between co-clustering and bi-clustering. Bi-clustering (Madeira and
Oliveira, 2004) methods permit the existence of clusters that overlap and also
allow for some observations to remain unclustered. In contrast, in co-clustering
each individual or feature entry belongs exclusively to a single cluster; the option

of leaving entries unassigned is not feasible within the co-clustering framework.

Similar to traditional clustering, co-clustering methods can be classified into
two main categories: discriminative and generative. Discriminative methods
determine boundaries that differentiate clusters, while generative methods employ
probabilistic models to explain data generation within clusters. Further details on
these methods can be found in Section 2.2.3 and 2.2.4.

In this thesis, we mainly apply co-clustering to discrete data. These data
consists of categorical or binary attributes, like presence or absence of features.
By applying co-clustering to such data we aim at finding consistent associations
between subsets of items, revealing connections that may not be readily apparent
through traditional analysis methods. In the specific context of this thesis, the
key focus is on count data.

Count data refers to a specific type of discrete data where observations are repre-
sented as non-negative integer numbers, indicating the frequency or occurrences
of certain events. Count data possesses peculiar characteristics as their unique
nature, often resulting in sparse matrices with numerous zeros, poses challenges

for traditional analysis methods.

However, co-clustering techniques proved to be a valuable tool also in summa-
rizing these data by detecting intricate patterns within sparse matrices (Ailem
et al., 2017a). Indeed, despite count data frequently results in many infrequent
occurrences of certain events, co-clustering identifies latent relationships by con-
sidering both rows and columns simultaneously, that might be neglected through
singular row or column clustering. Also, in scenarios involving large interaction

datasets, such as online user engagement or network activities, co-clustering ef-
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ficiently summarizes complex patterns. By grouping similar entities based on
their interaction profiles, it simplifies the interpretation of intricate interactions,

making the data more manageable and insightful.

2.2.3 Metric-based approaches

Among the co-clustering methods not involving generative models, we mention the
following metric based approches such as: non-negative matrix tri-factorization
(NMTF) (Labiod and Nadif, 2011b; Ding et al., 2006), spectral co-clustering
(Dhillon, 2001) and information theory (Dhillon et al., 2003b). In the following

we give an insight of these approaches.

Non-negative matrix tri-factorization The non-negative matrix tri-factorization
(NMF, Lee and Seung, 2000) was first introduced for dimensionality reduction and
feature extraction purposes and then extended as an algorithm for co-clustering
(Labiod and Nadif, 2011b; Ding et al., 2006). When presented with a non-negative
data matrix X, NMF-based co-clustering algorithms aim to achieve a three-factor
decomposition ZSW7T of X, where Z and W can be seen as latent variables
accounting for the rows and columns clustering and .S is a non-negative reduced
form of X due to co-clustering. The task of minimizing the distance between the
data matrix X and the non-negative decomposition, is achieved by solving:
Z>o,¥9rl>i(€}w>0 X — 25w

where || - || is the Frobenius norm. The minimization can be addressed through
an iterative process of alternating least-squares optimization. In cases where
the matrix X is not necessarily non negative, various algorithms based on dual

k-means approach have been proposed to minimize the criterion (Rocci and Vichi,
2008).

Spectral co-clustering One of the most popular papers introducing the spectral
co-clustering is the one from Dhillon (2001). The algorithm presented in that
paper focuses on a bipartite graph model for a document-word collection. The
authors proposed to find an optimal partitioning of the document-word bipartite
graph, dividing it into ) row and column clusters, the first representing documents

the second representing words. This partitioning is achieved through a spectral
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relaxation approach of the minimum cut graph partitioning problem. In the
context of bipartite graph, each row and column within a dataset are represented
as a distinct vertex. These vertices are partitioned into two separate sets, each
connected by a collection of undirected edges. Given the data matrix X, the

adjacency matrix of the related bipartite graph assumes the structure:

0 X
A= (XT O)' (2.1)

Built on this graph representation, co-clustering strives to identify @) clusters
composed of closely interconnected nodes. This is achieved by minimizing the
cumulative edge weights between clusters and simultaneously maximizing the
cumulative edge weights within clusters. The objective is to uncover coherent
substructures in the dataset by emphasizing strong interconnectivity within clusters
while minimizing the connections between them.

Then, Labiod and Nadif (2011a) introduced a normalized generalized version of
the modularity measure, frequently employed in network analysis. Modularity in a
graph quantifies the quality of the community structure, evaluating how well nodes
are grouped into clusters. They further developed a spectral co-clustering algorithm
that maximizes this proposed criterion, aimed at simultaneously clustering binary
and categorical data. Their research highlighted the algorithm effectiveness in
text document clustering and explored determining the number of co-clusters
using their criterion. A more recent study by Ailem et al. (2015) presented a
co-clustering algorithm designed to maximize the graph modularity. Notably, the
authors devised an efficient k-means-like alternating optimization scheme that
directly optimizes graph modularity, eliminating the computationally intensive
eigenvector computation. Also, in that paper, the authors demonstrated how the

modularity measure can be leveraged for assessing the number of clusters.

Information theory Dhillon et al. (2003b) employ concepts from information
theory to formulate the co-clustering problem theoretically. The paper proposes to
perform the co-clustering via the maximization of the mutual information between
the clustered random variables. Hence, the optimal co-clustering is essentially the
arrangement of clusters that results in the highest mutual information between
the grouped random variables. Alternatively, the authors suggest that the op-
timal co-clustering also minimizes the difference (referred to as "loss") between
the mutual information among the original random variables I(Z, W) and the

mutual information among the clustered random variables [ (Z , W), such that the
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clustering should retain as much information as possible.
The quality of the resulting co-clustering is evaluated based on the loss of mutual

information, a lower loss indicates a higher-quality co-clustering.

2.2.4 Model-based approaches

As mentioned in the previous section, model-based co-clustering methods assume
that the data matrix is generated by an underlying probabilistic model. This
models captures the latent structure within the data, allowing for the identifi-
cation of clusters that exhibit shared characteristics. Among the advantages of
model-based co-clustering, we mention its sound statistical foundations and its
flexibility in terms of data complexities such as missing values, heterogeneous
dimensions and sparsity, enhancing their robustness and accuracy. A first model
was introduced by Rooth (1995) who proposed a probabilistic model for block-wise
classification of contingency data with a distinctive diagonal structure. The model
includes an algorithm that employed formulas similar to the Baum-Welch esti-
mation equations used in hidden Markov models. In a separate study, Hartigan
(2000) investigated the co-clustering of votes within the United States Congress.
In this context, senators were divided into distinct blocks, and legislative measures
were categorized into various types. To accomplish this, Hartigan proposed a
probabilistic model aimed at performing co-clustering of binary data. Notably,
the probabilities associated with each block and type in the final partition were
estimated using a Monte Carlo method leveraging Markov chains. The much
popular Latent Block Model (LBM) (Govaert and Nadif, 2003) was introduced
for the co-clustering of binary data matrices, based on the assumption that rows
and columns are grouped in hidden clusters and that observations within a block
(intersection of a row cluster and a column cluster) are independent and identically
distributed. This model is the milestone of this thesis and it will be presented in
detail in Section 2.3.

In the context of Bayesian model-based co-clustering, Kemp et al. (2006) intro-
duced an Infinite Relational Model (IRM) aimed at revealing stochastic structures
in relational data, particularly binary observations. Also Banerjee et al. (2004)
advanced the field with the generalized Bregman co-clustering algorithm, tackling
the co-clustering problem as a matrix approximation task. Building on this foun-
dation, Shan and Banerjee (2008) introduced the Bayesian Co-Clustering (BCC)

models. These innovative models introduced the concept of mixed membership
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within both row and column clusters, allowing observations and features to belong
to more then one cluster. The BCC models use distinct Dirichlet priors for
rows and columns. Here, each observation is assumed to be generated through
an exponential family distribution that corresponds to its respective row and
column clusters. The model design allows for sparse matrices, as its inference
process operates exclusively based on non-missing entries. Beyond the discovery of
co-cluster structures within observations, the BCC model yields a low-dimensional

co-embedding.

2.3 The Latent Block Models

This section offers an introduction to the Latent Block Model (LBM), a seminal
framework in the domain of model-based co-clustering. The first part revisits the
most important aspects of the original binary LBM, followed by an exploration of
the extensions that have emerged over the decades.

Within this framework, the dataset takes the form of a random matrix X =
{Xi;}iz1...~j=1,. v with dimensions N x M. This structure assumes that both
the rows and columns of X are partitioned into distinct clusters, with ) clusters
for rows and L clusters for columns. This clustering design assumes that data

belonging to the same block are independent and identically distributed.

2.3.1 The binary Latent Block Model

The original binary Latent Block Model that we recall in this section was first
introduced by Govaert and Nadif (2003). The random binary matrix X, represents
the data and the entry (¢,j) can be X;; = 1, signifying a connection between
row ¢ and column j, or X;; = 0 that implies the absence of a connection. Here,
the latent structure of rows and columns of X is identified by the following latent
variables:

o Z := {zig}ie1,. Nge1,. o represents the clustering of rows into ) groups:

Aj, ..., Ag. The row i belongs to cluster A, iff z;, = 1;

o W:=A{wji}jer,. myuer,. 1 represents the clustering of columns into L groups:

Bi, ..., Br. The column j belongs to cluster By iff wj, = 1.
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Figure 2.2: Graphical representation of LBM.

In other words, the elements z;, (resp. w;,) of this matrix are equal to 1 if row 4
(resp. j) belongs to cluster ¢ (resp. £) and 0 otherwise. Moreover, Z and W are
assumed to be independent and distributed according to multinomial distributions:

p(Zla) = H a'Aq p(W|B) = H p'Bél
Q L
where oy = P(zig = 1), pe=P(wje =1), Y 7,=1,> pe =1, and |A4,] and |B;|
q=1 /=1

respectively represent the number of rows in cluster A, and the number of columns
in cluster B,. A graphical representation of LBM can be seen in Figure 2.2, where
the data matrix X is displayed in green because it is the only observed variable and
the two latent variables, Z and W are identified by the circles. Also, the number
of independent samples of X, 7 and W are specified in the respective plates, as
long as the dependence from the related parameters. The LBM model further
assumes the entries X;; are independent, conditionally to Z and W, and their
distribution ¢(.,d) belongs to the same parametric family, where the parameter &
only depends on the given block. In particular, since here we are considering the
original binary formulation, we assume that the data are distributed following a
Bernoulli distribution, hence:

Xij | Zik’u}jg =1~ B(X”, 5 ) (22)
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Where 6,4 is the block-dependent parameter of the Bernoulli distribution, thus: 6, =
P(X;; = 1|zjqwje = 1). With these assumptions the complete data likelihood can

be written as:

p(X, 2, W10) = p(Z]|a)p(W|F)p(X|Z, W, )

N M
= H 7(IIAqI El‘[ plg&l H H 52% (1 - 5Zin)(1—Xij)'

qg=1 =1 i=17=1

(2.3)

2.3.2 Extensions of the Latent Block model

Whereas the original formulation of the model dealt with binary data, in the last
two decades the model has been extended to handle several data types (Biernacki
et al., 2023).

Govaert and Nadif (2010) extended the Latent Block Model to handle count data,
where the data can take non-negative integer values, X;; € N. In this extension,
Poisson-distributed latent variables allow the LBM to model the counts within

co-clustered groups. Thus, Eq. (2.4) becomes:
Xij|ziqwjé =1~ P(Xij7 Mivj)\qz)- (2.4)

In this paper, the Poisson parameter is deconstructed into three components:
(; for the size effect of row 7, v, for the size effect of column j, and Ay for the
effect of block (g, ¢). However, this parameterization lacks identifiability, making
the simultaneous estimation of p;, v;, and Ay unfeasible without additional
constraints. To address this, the authors introduced a set of constraints for
all g and £: X, = Y05 = (X, Oéq)\qg)il = (> 6@)\%)71 = >, E(Xi;). This
constraint ensures that F(3; X;;) = p; and E(Y; Xj;) = v;.

Also, Lomet (2012) and Nadif and Govaert (2010) proposed an extension
for continuous data, with the data matrix having values X;; € N. In this
context, ¢(+;d4) is assumed to be the probability density function of the Gaussian
distribution N (jie, 07) with parameter 6o = (fige, 02;), denoting the mean and

the variance respectively.

In the case of categorical data, for h = 1,..., k, with k levels, the extension
has been proposed by Keribin et al. (2015). In this context, the generic data
element X;; = (X}5), € {0, 1}*, with ¥F_, X;; = 1. Here, the probability
distribution used to model the data is the multinomial distribution: M(1,d4),
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Other extensions include LBM for ordinal data: Jacques and Biernacki (2018)
use a recent distribution for ordinal data called Binary Ordinal Search (BOS)
by Biernacki and Jacques (2016). Also, Corneli et al. (2020) proposed to take
advantage of the binary formulation of LBM to manage missing data possibly not
missing at random, solving the scalability issues related with the inference of the

first paper.

LBM has also been extended to deal with textual data, in particular a recent
work by Bergé et al. (2019) introduces the Latent Topic Block Model (LTBM). This
model is designed to capture the inherent structures within textual interaction
data, which involves simultaneously clustering of the non-null entries of the
incidence matrix, that represent a corpora of documents. The primary objective
of this approach is to discern and estimate the latent topics governing the textual
interactions encapsulated within the incidence matrix, thereby facilitating a more
profound comprehension of the co-clustering dynamics. Instead, Wang et al. (2009)
use a Bayesian framework to simultaneously cluster documents and words of a
document-term matrix, in such a way that topic proportions are no longer specific
to each document but to each cluster of documents. More recently, Kumar et al.
(2016) generalized this approach introducing statistical dependence between row
and column clusters of a document-term matrix, enriching the model capability

to capture intricate relationships between documents and words.

In contrast to the frequentist perspective, the Bayesian approach operates under
the premise that the model parameters are treated as random variables, governed
by prior distributions. To simplify computational aspects, many researchers
opt for conjugate priors (Raiffa et al., 1961) for the parameter set § (Shan and
Banerjee, 2008; van Dijk et al., 2009; Wyse and Friel, 2012a; Keribin et al.,
2015). For instance, in the work of Brault and Mariadassou (2015), this translates
into adopting a Dirichlet distribution for the cluster proportions a and 3. For
simplicity, Dirichlet priors are often centered around uniform proportions with
dispersion parameters denoted as a; and ay (frequently set to a3 = ay = a).
Wyse and Friel (2012a) employ a = 1, whereas Keribin et al. (2015) set a = 4
to mitigate the occurrence of empty classes. Both authors model all Z; (and
likewise W;) to be sampled from M(1;«) (and M(1; 5)) distributions. However,
divergent formulations also emerge among different authors. For instance, Shan
and Banerjee (2008) introduce an another layer for sampling Z and W, where
distinct mixing parameters «; are drawn for each row, hence they use these values

to sample Z; from M(1; ;), the same procedure for columns. While this approach
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significantly expands the dimension of the sampling space, it fosters more intricate
modeling capabilities. Furthermore, variations arise in the treatment of () and
L, representing the numbers of classes. Keribin et al. (2015) treat them as fixed
model parameters, while Wyse and Friel (2012a); van Dijk et al. (2009) consider
them as random variables and impose a truncated Poisson distribution, using
as a prior the mean A. These distinct approaches lead to differences in their
selection methods for @) and L. The former method involves estimating the model
parameters for each pair (Q; L) and subsequently selecting the optimal pair using
a model selection criterion. In contrast, the latter method employs a single run to
estimate a posterior distribution encompassing all parameters, including (Q; L).
However, this singular run often requires a longer convergence time, and estimating

the marginal posterior distribution for the pair (@); L) can pose challenges.

Concerning co-clustering applications to pharmacovigilance, a seminal article
was proposed by Robert et al. (2015). In that paper, the authors introduced the
Multiple Latent Block Model (MLBM) by extending the Latent Block Model
(Govaert and Nadif, 2008) through the construction of one row partition and two
columns partitions that respectively rely on two binary matrices containing the
relation between the individual and the medical product and the relation between
the individual and the ADR.

2.3.3 Identifiability of LBM

As most mixture models, the LBM parameters are only identifiable up to block
relabeling. Addressing this challenge, Keribin et al. (2015) analyzed the identi-
fiability of binary LBM for N > 2L — 1 and M > 2(Q) — 1, provided that two

conditions are satisfied:

e Cy: Forall 1 < ¢ <@, a; > 0, and all the coordinates of vector 63 are

distinct.

e Cy: Foralll < ¢ < L, B, >0, and all the coordinates of vector § a are

distinct.

Remarkably, these conditions are not overly restrictive. Conditions C; and Cs
dictate that the probabilities P(X;; = 1|z, = 1) and P(X;; = 1|wj, = 1), indicating
the likelihood of an event in a cell of a row of class ¢ or a column of class ¢, can be

arranged in a strictly ascending order. Also, C; and Cs can be seen as extensions
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of the conditions for the identifiability of Stochastic Block Model introduced by
Celisse et al. (2012). Keribin et al. (2015) also extends the condition set to the

categorical case with k levels:

o Cy: Forall 1 < ¢ <@, a, >0, and all the coordinates of vector 6" are

distinct,

e Cy: Foralll < ¢ <L, B >0, and all the coordinates of vector 6 "o are

distinct,

with h = 17 ce k—1 and (5h = {&?[}q:l,...,@;é:l,...,L‘

2.3.4 Model selection

In the domain of clustering, the quest to find the most suitable number of clusters
is a core concern. Likewise, within the framework of co-clustering, determining the
optimal values for the number of row clusters (@) and column clusters (L) takes
center stage. The model-based approach allows us to see this decision as a model
selection task. However, using conventional criteria in the co-clustering context
may not be directly applicable. Indeed, the use of asymptotic criteria, such as BIC
(Schwarz, 1978), can be precarious given the dual asymptotic nature introduced
by both quantities, N and M. Also, the BIC criterion relies on the integrated
likelihood, however, when used for selecting a mixture model in a model-based
clustering context, the BIC criterion may overestimate the appropriate model size.
Hence, to avoid those issues the exact Integrated Complete Likelihood (ICL) has
been proposed by Biernacki et al. (2000). Then, Keribin et al. (2015) proposed an
approximation to a allow for a closed-form expression. For co-clustering methods,
as the dimensions N and M go to infinity, we can write this ICL approximation,

as follows:

Q-1 L-1 QL(r—1)
5 log N— 5 log M — NI

ICL(Q, L) =log p(z, Z, W|0)— log(N M),

(2.5)
where r is the number of free parameter of the model. The pair (Q, [A/) that leads
to the highest value of the ICL is considered as the most meaningful number
of clusters for those data. Keribin et al. (2015) also suggest that BIC and ICL
showed asymptotic equivalence, sharing the same asymptotic behavior. If BIC
is consistent for the Latent Block Model as in the simple mixture case, it is

plausible that ICL also demonstrates consistency in selecting both ) and L for
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co-clustering. This contrasts with simple clustering, where ICL consistency holds

only for well-separated clusters (Baudry, 2015).

Also, exploring the entire set of potential values for (@, L) in co-clustering is a
more complex task than in traditional clustering because it involves considering
two dimensions. With @ € [0, Qae] and L € [0, Lyes], the total number of
possible models, Q42 Limaz: can become quite large. Robert (2017) proposes to use
greedy search, which focuses on exploring a pertinent subset of combinations. In
this method, the algorithm begins by calculating the model selection criterion for
models created by adding one cluster at a time, in rows or columns. This process
continues until the model selection criterion no longer improves, the solution with
the highest criterion is retained. In a Bayesian variation of the Latent Block Model,
Wyse and Friel (2012b) simultaneously estimate both partitions and the number
of clusters using a Markov Chain Monte Carlo (MCMC) algorithm. Wyse et al.
(2017) replace the MCMC approach with a greedy search, optimizing the ICL
criterion directly. This alternative approach offers scalability benefits, particularly

in larger settings.

2.3.5 Links with the Stochastic Block Model

This section is divided into two parts. In the first part, we provide an overview
of the Stochastic Block Model (SBM), a fundamental tool for analyzing network
structures. The second part delves into the connections and similarities that exist
between the Stochastic Block Model and the Latent Block Model.

The Stochastic Block Model

The Stochastic Block Model (SBM), introduced by Nowicki and Snijders (2001);
Holland et al. (1983); Wang and Wong (1987) is a probabilistic clustering method
mainly used to model community structures within networks. In SBM, nodes are
partitioned into different blocks, and the goal is to describe how nodes within the
same block are connected. More formally, let us consider a graph G = (N, £) where
N is the node set of size N := |N| and & the list of edges of size F := |£|. We call
a pair of nodes a dyad, and consider the existence or absence of an edge for the
dyad (i, 7), using the N x N adjacency matrix, denoted by Y = {¥;;} € RV*N_If
G is undirected, Y;; = Yj; = 1 if ¢ and j connect, 0 otherwise. By construction, for

an undirected graph, Y. If G is directed, Y;; = 1(0) represents an edge (non-edge)
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(a) Graph with 3 communities. (b) Reorganized adjacency matrix.

Figure 2.3: Example of node clustering using SBM on simulated binary data with
3 communities.

and is independent of Yj;, hence Y will not be symmetric. Also, here we assume
Y;; = 0, that is, self loops are not allowed.
Figure 2.3 gives an example on how SBM works. Here, we simulate a binary
symmetric adjacency matrix, representing a network with 45 nodes and 315 edges.
As we see from Figure 2.3a, the nodes are divided into 3 groups depicted with
different colors, representing the communities, with groups 1, 2 and 3 containing
10, 20 and 15 nodes, respectively. The nodes within the same group are more
closely connected to each other, than with nodes in another group. Also, an
example of adjacency matrix is shown in Figure 2.3b where the colored and white
squares represent 1 and 0, respectively, indicating the presence or the absence of
a connection.

In SBM, each node belongs to one of the Q(< N) groups, () = 3 in the example.
Each node 7 is associated with a random variable Z;, such that Z; = ¢ if and only
if 1 € q. More formally, the cluster memberships of nodes are identified by the

latent vector Z, following a multinomial distribution, parameterized by «:
iid
Zi~ M1, a:= (o, ...,aq)), (2.6)

where Z; is the i-th row of Z and M(1,-) denotes the multinomial probability
Q

mass function and o = P{z;, = 1}, with Y o, = 1.
q=1
Thus Z := {zig}ie1,. ,Nger,...@ represents the clustering of N rows into @ clusters.

Then, in the original model formulation, conditionally on Z, Y;; is assumed to be
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independently drawn from a Bernoulli distribution:
Y;]'"Ziqzje: 1 NB<Y;]';7TQ€)7 vcbge {L?Q} (27)

whose parameter 7 only depends on the block memberships of (i, j), respectively.
This implies that if node i belongs to cluster A, and node j to cluster A, the
probability that one edge between them occurs is my,. A possible variant of
the SBM focuses on weighted graphs in which Y;; represents the number of
interactions between ¢ and j. In this context conditionally on Z, Y;; follows a
Poisson distribution, P(-),with:

}/ij|ziqzj€ =1~ P()/lﬁ )\q[), Vq,f - {1, “ e, Q} (28)

where A = {A\}q0e1...0 denotes the parameters of the Poisson distributions,
representing the expected number of interactions between any node in cluster ¢
and any node in cluster ¢. Therefore, following Eq. (2.6) and Eq. (2.8), we can
finally write the joint probability distribution of one edge as follows:

Q
p(Yij, Zi, Zi|A o) = T (P(Yig; Age)agare) o7, (2.9)
q,=1
A graphical representation of SBM can be seen in Figure 2.4, where the adjacency
matrix Y is displayed in green because is the only observed variable and the
latent variables Z; and Z; are identified by the circles. Also, the dimensions of
the variables (latent and observed) are specified in the respective plates, as well

as the dependence from the related parameters.

Links between LBM and SBM

The Latent Block Model (LBM) and the Stochastic Block Model (SBM), are
fundamental tools in co-clustering and node clustering in graphs, respectively.
SBM is typically used for community detection and it can be seen as a special case
of LBM, which does not need the data matrices to be square and/or symmetrical.
Although they exhibit distinct characteristics that make each model suitable for
different scenarios, they share also relevant similarities. Both LBM and SBM
operate based on the core principle of clustering. They aim to group entities, such
as rows and columns in a matrix, into coherent blocks or communities. These
blocks capture latent structures within the data that facilitate meaningful insights.

From the perspective of matrix decomposition, both models can be understood
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Figure 2.4: Graphical representation of SBM.

as performing matrix factorization and dimension reduction. For instance, SBM
factorizes E(Y) = ZTAZ, while LBM factorizes E(X) = ZTAW. Moreover,
both LBM and SBM involve a generative process that defines how the data are
generated from underlying latent structures, where the type of generated data

depends on the model assumptions.

2.4 Dynamic extensions of Latent Block Models

Whereas there is a decade-long literature about static model-based clustering and
co-clustering methods, dynamic models are more recent. It is worth noting that

much more work has been made in the context of networks, in particular, for the
Stochastic Block Model (SBM, Nowicki and Snijders, 2001) than for LBM.

2.4.1 Dynamic models for SBM

In the context of model-based dynamic network analysis, various extensions of the
Stochastic Block Model (SBM) have been proposed to capture evolving patterns
in connectivity and cluster memberships. In the context of discrete time modeling,
Yang et al. (2011) introduced a dynamic variant of the SBM, which introduces a

temporal aspect by enabling nodes to switch clusters at time ¢ + 1 based on their
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current state at time ¢. This dynamic behavior is framed within a Markovian
framework, where the transition probabilities are organized into a transition
matrix.

Then, in a seminal paper, Matias and Miele (2017) highlighted a crucial limitation
in dynamic SBMs: it’s not feasible to simultaneously vary both the connectivity
parameters and cluster memberships over time without encountering identifiability
issues. This observation highlights the intricate challenges involved in modeling
evolving networks. Also, Matias and Miele (2017) introduced a dynamic Stochastic
Block Model that addresses label switching concerns, guaranteeing consistent
labels for the same cluster throughout all time instances. This model is rooted
in the Stochastic Block Model (SBM), with each time point being treated as
an independent SBM. Here, the connection probabilities depends only on the
latent clusters at a specific time point. The connections among time points are
established by making the cluster probabilities for each time point dependent on
the cluster memberships from the preceding time point. To effectively address
label-switching challenges, the authors adopt a strategy that looks for groups
exhibiting consistent within-group connectivity behavior. This is achieved through
constraining the connectivity parameters of the diagonal blocks to remain constant
across different time points. For continuous-time dynamic network modeling, an
innovative approach involving the non-homogeneous Poisson processes (NHPPs)
was put forth by several authors (DuBois et al., 2013; Corneli et al., 2016; Matias
et al., 2018).

To define a non-homogeneous Poisson process, let us consider {V(t)};>¢ being
an increasing, right continuous integer-valued process starting from 0. Let A(-)
be a strictly positive integrable function. Then {V (¢)};> is a non homogeneous

Poisson process (NHPP) if it has independent increments and for all s < ¢:

V() = V(s) ~ P(/St)\(u)du). (2.10)

When A(u) is not a time-dependent function, {V'(¢)}:>0 becomes an homogeneous
Poisson process, with stationary increments (Norris, 1998). For further details on
NHPPs see Corneli (2017).

In particular, Corneli et al. (2016) focus on the clustering of nodes and time
intervals in dynamic networks. In this model, the nodes remain fixed, and directed
interactions between these nodes occur at specific instances. This results in
examining a directed multigraph, allowing multiple edges between nodes, with
each edge carrying a time label to denote its occurrence. The count of interactions

between any two nodes is modeled using a non-homogeneous Poisson counting
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process. Therefore, the temporal aspect is introduced through the non-homogeneity
property of the counting processes, where the intensity parameter only depends
on the cluster memberships of the nodes. Then, to make the inference process
tractable, a time interval segmentation strategy is introduced within the study
period. This segmentation facilitates the aggregation of interactions within sub-
intervals of the partition, allowing for more manageable analysis. Also Matias
et al. (2018) proposed a closely related framework where an extension is proposed
for recurrent interaction events in continuous time. Here, every node belongs to
a latent group and conditional interactions between two individuals follow an
non-homogeneous Poisson process with intensity driven by the respective latent
groups of the individuals. In this setup, the nodes are assumed to retain their
cluster memberships throughout time, offering an alternative perspective on the

temporal dimension of the network evolution.

2.4.2 Dynamic models for LBM

In recent years, co-clustering techniques have seen advancements that encompass
dynamic and multi-dimensional data structures. One of the first methods consider-
ing the temporal aspect of a co-clustering model is Green et al. (2011). This paper
introduced the Evolutionary Spectral Co-Clustering (ESCC) method, which offers
two distinct strategies to incorporate historical relationships between instances
and features: Respect to Current (RTC) and Respect to Historical (RTH). RTC
emphasizes the present by considering only the previous time-step, whereas RTH
incorporates information from all previous time-steps. The dynamic extensions of
LBMs are, however, more recent. The exploration of probabilistic co-clustering
techniques for time-dependent data has been pursued by Bouveyron et al. (2018),
who have extended the application of co-clustering to functional data settings. In
their work, the primary objective is to handle data that evolves over time, such
as functional data represented by curves. To achieve this, they employ a novel
parametric approach by mapping the original curves into a transformed space,
which is spanned by the coefficients of a basis expansion. This transformation
allows for the representation of functional data in a structured manner that is
amenable to co-clustering analysis. This approach involves a dimension reduction
stage, where functional PCA projections (Ramsay and Silverman, 2005) of the
time series are employed. This paper has been recently extended in Bouveyron

et al. (2022) to deal also with multivariate functional curves and by Goffinet et al.
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(2022) who proposed a non-parametric approach to tackle the problem. In this
paper, the authors introduced a novel Bayesian non-parametric approach for latent
block modeling in the context of multivariate time series. Called the Functional
Non-Parametric LBM (FunNPLBM), this methodology simultaneously partitions
both observations and temporal variables. This is achieved by utilizing latent mul-
tivariate Gaussian block distributions, wherein a bi-dimensional Dirichlet Process
serves as the prior for the block distribution parameters and block proportions. An
interesting feature of this approach, owing to its Bayesian non-parametric nature,
is its incorporation of model selection throughout the entire process. Recently,
Casa et al. (2021) proposed a notable contribution by extending the Latent Block
Model to accommodate longitudinal data. They employed the Shape Invariant
Model (Lindstrom, 1995) as a foundation to handle temporal complexities in evolv-
ing datasets. Unlike traditional methods that rely on basis expansion coefficients,
such that their approach directly models the observed data, enhancing the natural
representation of temporal evolution and cluster interpretation. The central idea is
that individual curves within a cluster can be understood as transformations of a
common shape function. This approach handles both functional and longitudinal
data, irrespective of their dimensions. The model’s flexibility allows for diverse
cluster definitions, catering to subject-specific considerations. By integrating
temporal dynamics into co-clustering, this work enhances the analysis of complex
time-dependent datasets, providing valuable insights into dynamic co-occurrence
patterns. Another extension has been proposed by Boutalbi et al. (2020) who
introduced the Tensor Latent Block Model (TLBM) for co-clustering, whose aim
is to simultaneously cluster rows and columns of a 3D matrix, where covariates
represent, the third dimension. TLBM was also implemented for different types of
datasets: continuous data (Gaussian TLBM), binary data (Bernoulli TLBM) and
contingency tables (Poisson TLBM). Then, this method has been extended by
the same authors in Boutalbi et al. (2021). In this paper the authors developed
a model-based co-clustering method for sparse three-way data, where the third
dimension can be seen as a discrete temporal one. Here, the sparsity is handled
following the same assumption as in Ailem et al. (2017b) that all blocks outside

the main diagonal share the same parameter.
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2.5 Inference methods for latent and dynamic models

In the context of model-based clustering and co-clustering, one of the significant
challenges is parameter estimation. However, it’s worth noting that numerous
intricate inference problems are often approached by framing exact inference as
an optimization problem. As a result, approximate inference algorithms come
into play, offering a means to effectively approximate these optimization tasks
(LeCun et al., 2015, Chap. 19). The Expectation-Maximization algorithm (EM) is
widely recognized as one of the most popular methods for latent model inference
(Dempster et al., 1977). However, despite its foundational role in the algorithms
discussed in the subsequent chapters, the original formulation of EM cannot be
directly applied for parameter estimation in Latent Block Models (LBMs). The
reason lies in the algorithm’s inability to compute the joint conditional distribution
of the latent variables, p(Z, W|X,#), due to the complex interdependent double
missing structure. As a consequence, various alternative inference procedures have
been introduced to address the challenges posed by latent block models. These
include likelihood-based methods (Govaert and Nadif, 2008), variational inference
(Keribin et al., 2012), Bayesian inference (Keribin et al., 2012; Wyse and Friel,
2012a), and greedy search approaches (Wyse et al., 2017). In the subsequent
section, we will provide an overview of the traditional EM algorithm, followed by
an exploration of two extensions that will be employed in the upcoming chapters:
the Stochastic EM (SEM) algorithm and the Variational EM (VEM) algorithm.

2.5.1 The EM algorithm

In the context of parametric statistics, maximum likelihood estimation is the
general way to go for the estimation of model parameters in the frequentist
approach. MLE seeks to find the most likely parameters configuration that aligns
with the observed data points, in order to capture their underlying distributional
characteristics. This process involves finding the parameter values that maximize
the log-likelihood function. Given a parameter set ©, the maximum likelihood
estimator (MLE) is defined as:

0 := argmax log p(X|0) (2.11)
e

where log p(X |#) represents the data log-likelihood. However, solving this problem

is not an easy task when dealing with latent variable models. For example, in
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finite mixture models there is no closed form solution for the MLE. Even though in
this case the maximum likelihood estimate (MLE) of the mixture parameters can
be derived using standard optimization techniques in simple cases, the complexity
of the required calculation grows rapidly with the dimension of variables and
the number of components. This makes the numerical optimization techniques
(i.e. Newton-Raphson) computationally expensive and they do not guarantee an
improved likelihood is obtained at each iteration (Fruhwirth-Schnatter et al., 2019,
Chap. 2). In contrast, the EM (Expectation-Maximization) algorithm, introduced
by Dempster et al. (1977) is widely regarded as the most popular approach for
obtaining the ML estimates in latent variable models. The basic intuition is that,
when the computation of the log-likelihood, log p(X|0), is not feasible, we can
compute a lower bound £(q;0) on that quantity. More formally, let us consider a
latent variable Z and an arbitrary probability distribution, ¢(-) over Z, we can

then write!
logp(X0) =log > p(X, Z|0)
Z

= 1ogXZ:p(X,Z!9)ZE§; (2.12)
p(X, Z|9)].

~loeban| =)

Then, by making use of the Jensen inequality we can write:

(X, Z10) p(X, Z10)
log £ } > [ log ] 2.13
(2| 4(2) a(2) «(2) (2.13)
This allows us to define the lower bound as:
£(4:0) = Eyz|log p(X. Z16)| — Euzllog a(2) -
2.14

= Eyz) {logp(X, Z]@)} + H(q),

where H(q) is the entropy term. L(g;#) is called evidence lower bound (ELBO)
or it can be sometimes referred to as negative variational free energy. Also, the
difference between the log-likelihood and the ELBO can be shown to be equal to
the Kullback-Leibler (KL) divergence. We can then write:

log p(X10) = L(q;0) + KL(¢(Z| X)||p(Z]X,0)). (2.15)

'Tn this thesis, our primary emphasis is on discrete variables, leading us to employ summations
instead of integrals. Nevertheless, the analysis remains unchanged in the case of continuous
variables, by substituting summations with integrals.
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The KL divergence is always non-negative, hence the lower bound £(q;6) can be
at most equal to the log-likelihood log p(X|#). This derivation has an essential
implication, the better ¢(Z) approximate p(Z|X), the tighter the lower bound
L(q;0) will be to the log-likelihood. Hence, when ¢(Z) = p(Z|X,0), L(q;0)
perfectly approximates log p(X|0). The EM is an iterative algorithm that starts
with some initial values for the parameters (°) and, then, each iteration involves
the execution of two steps, expectation (E) and maximization (M). Hence, a

generic iteration h of the algorithm is composed by:

« E-Step: the algorithm maximizes the lower bound £(g;#) (e.g. minimize

the KL divergence) with respect to g(-) for a given value of %, obtaining
(h+1) _ %
q =q .

o M-Step: the algorithm maximizes £(q;6) over 6, keeping ¢* fixed, in order
to obtain an updated version of the parameter, #"+Y. The update here

depends on the chosen generative model.

The E-Step requires the posterior distribution p(Z|X, ) to be tractable. In fact,
when ¢ = p(Z|X, 0), the KL divergence is equal to zero.

Interestingly, the work conducted by Wu (1983) delved into the convergence
characteristics of the EM algorithm. Wu identified specific conditions, applicable
to exponential family distributions, which ensure the convergence of {6},
towards either stationary points or local maxima of the likelihood function. In
practical applications, most implementations of the EM algorithm conclude either
when a user-defined iteration limit is attained or if the absolute difference between
consecutive ELBO values falls below a predetermined threshold set by the user.
Furthermore, the performance of the EM algorithm is notably influenced by its
initial values. It is in fact recommended to experiment with various starting
choices for 9 and select the outcome that yields to the highest value of the lower
bound.

In the context of LBMs, the complete data log-likelihood can be derived from
Eq. (2.9) and it writes as follows:

N Q M L
logp(X, Z,W10) = >3 ziglogag + > > wjelog B+
i=1 g=1 j=10=1

0 1 (2.16)

N M
XD zigwielog p(Xij; 0ge).-

i=1j=1q=1¢=1
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So, at the h-th interation, during the E-step, the expected value of the complete
data log-likelihood, according to the posterior distribution with respect to Z and
W, writes as follows:

Ellogp(X, Z,W[0)] = 33 P(z, = 11X,0M) loga, + Y Y P(wje = 1|1X,0™) log B+
: < <

7 q j
333 Plaigwe = 11X, 607) log o(Xij: 6ge),
9 i q ¢

(2.17)

where ¥, =N, ¥, =M, ¥, =52 S =L,

Looking at this E-Step we can easily notice that challenges emerge owing to the
intricate interdependencies within the model, rendering the computation of terms
like P(z;,w;e = 1|1X, ™) not tractable. In response, various extensions of the EM
algorithm have been introduced over the years, aimed at mitigating this issue.
The subsequent sections delve into some of these extensions, shedding light on

their specifics.

2.5.2 The Stochastic EM algorithm

Celeux (1985) introduced a modification to tackle the sensitivity of the EM
algorithm to its initialization, denoted as 6(°). The deterministic nature of EM
often results in convergence towards suboptimal local maxima within the likelihood
landscape. To address this, the Stochastic EM (SEM) was proposed, injecting
randomness into the process. SEM incorporates an S-step after the E-step,

(M) is drawn by sampling from the posterior distribution

where a partition Z
¢ (Z) = p(Z | X,0), which is approximated by making use of a Gibbs sampler.
This shifts the sequence of updates {#("}, to rely on complete data likelihood

rather than its expectation.

It’s important to note that while point-wise convergence is not guaranteed,
under general assumptions, the sequence of parameters {G(h)} generated by SEM
forms an ergodic Markov chain, thus converging to a unique stationary distribution
(for more details, see Celeux and Diebolt (1992)). Hence, SEM update §"*1) even
when L(q, 0"*V) < L£(gq,0™). This ability allows SEM to circumvent insignificant
local optima and even saddle points. This characteristic often allows SEM to
provide superior solutions compared to EM.

In the context of LBMs, in the S-step, random pairs (Z, W) are drawn based on the

posterior distributions of labels, conditional on the given data X: although these
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distributions are intractable for certain models, they can be efficiently sampled
using a two-step Gibbs algorithm: first simulating Z|X, W; 6 and then simulating
WX, Z; 6. This particular version of SEM, named SEM-Gibbs Keribin et al. (2012,
2010), employs a Gibbs S-step, ensuring exact distributions without resorting
to numerical approximations. While SEM-Gibbs does not guarantee an increase
in likelihood at each iteration as well, it generates an irreducible Markov chain
with a unique stationary distribution, centered around the maximum likelihood
parameter estimate.

The estimator 6 is derived from averaging a sequence of #") values obtained after
a burn-in period. In SEM-Gibbs, once 0 is obtained, a new Gibbs algorithm
should be utilized to simulate pairs (Z, W)|X;0. The final partitions (Z, W) are
then estimated using the empirical mode from the sample data. It is worth noting
that the SEM-Gibbs algorithm might encounter the label switching problem,
particularly pronounced in co-clustering scenarios, as it might manifest in both
row and column partitions Stephens (2000). Given infinite resources this method
produce exact results, however in the context of high dimensions, the resampling

can be highly computationally demanding.

2.5.3 The Variational EM algorithm

As discussed in Section 2.5.1, the conventional EM algorithm faces limitations
when applied to parameter estimation in LBMs due to their unique structural
characteristics. As a remedy, the variational EM algorithm (VEM) emerges as a
valid alternative. The fundamental concept behind VEM involves the optimization
of a lower bound or the minimization of the Kullback-Liebler divergence within a
defined family of distributions denoted as q(-).

This concept mirrors the formalization of the EM algorithm, extending to the
domain of VEM. Building upon the equation given in Eq. (2.15), the likelihood

decomposition for LBMs is expressed as follows:
log p(X10) = L(q;0) + KL(q(Z, W|X)|[p(Z, W|X,0)). (2.18)

Here, L represents a lower bound defined by:

_ o P2 W0)
R L T A 219)

= Eyzw)llog(p(X, Z,W10)] — Eyzw)llog(q(Z, W))],
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and KL denotes the Kullback-Liebler divergence, between the actual and approxi-

mated posterior:

p(Z,W|X,0)
KLU, 0) = =X S a2 W)los ™7

Our objective concerns the search for a distribution ¢(-) that optimizes the lower
bound L(q, #). To make the effective optimization of £(q, ) feasible, we introduce
the assumption that the joint distribution q(Z, W) factorizes as follows:

@ Z W) =q(Z)qW) =TIl a(Z)g(W.

i=1j=1

This factorized form of variational inference corresponds to an approximation
commonly known in physics as the mean field approximation (Parisi and Shankar,
1988). With this factorization in place, the VEM algorithm unfolds as an iterative
process, alternating between maximizing the lower bound in Eq. (2.19) with
respect to the variational distribution ¢(-) and updating the model parameters 6,
continuing until convergence is achieved. The mean field approximation allows us
to rewrite the lower bound in Eq. (2.19) in terms of the variational parameters,

with respect to ¢(-):

L£(q,0)=> > mglogag+ > > njelog B+
7 q J l

+ DD Tighjel Xijlog dge + (1 — Xij) log(1 — 040)] — Y 7iglog 7ig — D mjelog mye,
4,q gl i,q gt
(2.20)
where the quantities 7;,, = E(z;,) and nj, = E(wj,) represents the variational

parameter and the last two member refers to the entropy terms.

2.5.4 Other EM-like extensions

Empirically, the VEM algorithm has demonstrated its ability to provide accurate
estimates. Furthermore, there have been notable studies on the convergence of
the VEM, as in works Celisse et al. (2012) and Mariadassou and Matias (2015),
these estimates heavily rely on an appropriate initialization and tend to generate
empty clusters frequently (Brault, 2014; Biernacki et al., 2023). To address the
issue of class degeneracy, alternative algorithms based on the EM algorithm have
been proposed for estimating the parameters of the latent block models. One

such approach involves a Bayesian regularization of the VEM algorithm known
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as VBayes, as proposed by (Brault, 2014; Keribin et al., 2012, 2015) to handle
binary and contingency data. The VBayes technique employs a Dirichlet prior on
the mixture parameters, effectively mitigating the problem of empty clusters. In
the original papers, this algorithm adopts an initialization strategy involving a

Gibbs sampler to estimate the mode of the posterior probability.

Additionally, supplementary algorithms like CEM (Classification Expectation
Maximization) have been developed by Celeux and Govaert (1992) with the aim
of maximizing the classification likelihood. Notably, CEM inserts an additional
C-step between the E and M-steps, wherein a partition ARET computed based
on the current MAP estimate 7
in the M-step is substituted with the classification log-likelihood log p(X, Z™|0).
Computationally, this modification involves straightforwardly replacing Tl-(qh) with
21(5 ) in the M-step.

The CEM algorithm is sometimes characterized as a hard-clustering estimate

. Subsequently, the conditional expectation

of the conditional expectation, allocating all weight to the maximum posterior
(MAP) estimate, in contrast to the soft-clustering version characteristic of the
conventional EM algorithm. In practice, this version of the algorithm converges

more rapidly than standard EM.

2.6 Extending the modeling with deep learning ap-
proaches

In the last few decades, deep learning emerged as a successful subfield of machine
learning able to tackle intricate challenges of very different nature. This section
delves into two main topics: the use of deep learning techniques for mixture

models and dynamic systems.

2.6.1 Deep learning for mixture models

The use of deep neural networks in the context of model-based clustering has
become a subject only very recently. With a broaden look, the first method who
combine deep learning with latent variable models was proposed by Tang et al.
(2012) for multiple factor analysis (MFA).

Certainly the introduction of variational auto encoders (VAE) from Kingma and
Welling (2013) opened the way to the use of deep neural networks (DNN) for
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clustering. VAEs can be viewed as parametric functions to encode data into a latent
representation. In the article, the authors introduce a reparameterization for the
variational lower bound, yielding a differentiable stochastic gradient variational
bayes estimator. Particularly, the Auto-Encoding VB (AEVB) algorithm is
proposed for cases with i.i.d. datasets and continuous latent variables per data
point. This approach efficiently learns model parameters without costly iterative
inference methods. The learned inference model holds potential for various tasks,
and when coupled with a neural network, it forms the basis of the variational
auto-encoder (VAE). In practice, VAE can be seen as non-linear extension of
the well-known probabilistic PCA (Tipping and Bishop, 1999). The two neural
networks used in the VAE are denoted as encoder and decoder, respectively. The
role of the encoder, is to project the input variable to a latent space. This enables
the encoder to generate distinct samples, from the same distribution.Conversely,
the decoder performs the inverse operation, mapping from the latent space back
to the input space. Since their introduction, the VAEs have been greatly used
and extended, in particular, recently, Mehta et al. (2019) presented an extension
of the overlapping Stochastic Block Model (Latouche et al.,; 2011), encoding the
node embeddings with a neural networks. Then, Van den Oord and Schrauwen
(2014) and Viroli and McLachlan (2019) defined Deep Gaussian Mixture Models
(DGMMs). The architecture in the latter includes dimensionality reduction at
each layer of the network and provides an EM algorithm for the inference of
the parameters. Then, Selosse et al. (2020) showed that is a challenging task
to fit those kind of models because some clusters tend to be under represented
and the model converge to very different local maxima at every run, leading to
different partitions. Recently, Kock et al. (2022) proposed to ease the task with
a Bayesian approach accounting for sparsity and variational inference. However,
the implementation of both co-clustering and deep learning techniques remains
largely under explored in the literature, with only one instance standing out (to
the best of our knowledge). Specifically, the work of Xu et al. (2019) pioneers this
territory by introducing the concept of deep co-clustering (DeepCC). The core of
DeepCC concerns the utilization of a deep autoencoder for effective dimension
reduction, coupled with the application of a specialized variant of the Gaussian
Mixture Model (GMM) for clustering. Notably, this integration is helped by the
incorporation of a mutual information loss mechanism, facilitating the bridge
between the optimization of autoencoder and mixture model parameters. This
dual-optimization strategy plays a pivotal role in enhancing the convergence of

the autoencoder and allows the mixture model to overcome the limitations of the
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Expectation-Maximization (EM) algorithm.

It is worth acknowledging that despite the efforts made by Xu et al. (2019),
there remains a notable gap in the literature concerning dynamic co-clustering
models that exploits the potential of deep learning techniques. Recognizing this
gap in the existing scientific literature opens up an exciting avenue for future
exploration. In this thesis, we try to fill this gap by using deep learning techniques
in our proposed co-clustering approach. Our main goal is to create a model that
not only handles dynamic co-clustering but also captures how mixing parameter

change over time. Chapters 4 and 5 will dive into the details of this approach.

2.6.2 Deep learning for dynamic systems

The task of estimating hidden states in dynamic systems from real-time data,
has been tackled by Kalman thanks to the introduction of the Kalman filter
(KF) Kalman (1960). This method introduced a minimum mean-squared error
estimator tailored for systems with linear state space models, which has become a
cornerstone in discrete-time state estimation. However, the hardest challenge lies
in the model-based filters reliance on precise domain comprehension and model
assumptions, especially in scenarios marked by uncertainty or non-linearity.

In the context of latent variable models, the state space models, along with the
extended Kalman filter (EKF) for parameter estimation was proposed by Xu and
Hero (2014) and Zreik et al. (2017). The former introduced a dynamic extension
of the Stochastic Block Model (SBM) for social network analysis, considering time-
varying edge probabilities. The latter introduced the dynamic random subgraph
model (DRSM) building upon the random subgraph model (RSM) Jernite et al.
(2014), uncovering clusters within pre-defined subgraphs.

To deal with the challenges coming from long and irregular time series, the
state space models have been recently extended using deep learning tools. For
instance, Rangapuram et al. (2018) proposed a probabilistic time series forecasting
method that jointly make use of a linear state space model and recurrent neural
networks and Krishnan et al. (2017) proposed the Deep Markov Model (DMM)
where in the Gaussian transition dynamics the mean and covariance matrix are

modeled through fully connected neural networks.

In a departure from traditional methods, the rise of deep neural networks

introduces a shift towards data-driven approaches for state estimation (LeCun
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et al., 2015, Chap. 10). In fact, it has been shown that architectures such as
recurrent neural networks (RNNs), and in particular long short-term memory
(LSTM, Hochreiter and Schmidhuber, 1997) and gated recurrent units (GRUs,
Chung et al., 2014), have demonstrated their power in capturing intricate processes
without necessitating explicit domain understanding.

This is showcased by several papers focusing on learning differential equations
from data using fully connected or recurrent neural networks (Raissi, 2018; Raissi
et al., 2018; Guo et al., 2017). In particular, LSTM has been extensively expanded
and applied in the context of dynamic systems, the interested reader can find a
survey in Smagulova and James (2019).

We finally cite Kidger (2022) as a new but already standard reference on neural
differential equations (NDE). In that PhD thesis, the author explores the links
existing between (ordinary, controlled and stochastic) differential equations and
several neural network architectures (e.g. residual neural network or recurrent
neural network) which are nothing but discretizations of the former. This parallel
makes NDEs, which basically are neural networks with continuous depth and an
infinite number of layers, particularly suitable to tackle dynamic systems and time

series.
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This chapter introduces the dynamic latent block model (dLBM), a novel
co-clustering approach for retrospective analysis in pharmacovigilance. The model
detects temporal breaks in adverse drug reaction (ADR) data matrices, using
a non-homogeneous Poisson process to capture interactions between rows and
columns. By segmenting continuous time, the dLBM generates static matrices for
each interval, we employ the SEM-Gibbs for the inference algorithm (Section 2.5.2)
and the ICL criterion (Section 2.3.4) for model selection. The dLBM effectively
summarizes extensive datasets with an high sparsity rate. Notably, the model
identifies expected clusters and uncovers hidden patterns. Therefore, dLBM
offers a powerful tool for retrospective analysis and insightful signal detection in

pharmacovigilance.

This chapter presents the results of two research studies:

o G. Marchello, A. Fresse, M. Corneli, C. Bouveyron (2022). Co-clustering of

evolving count matrices with the dynamic latent block model: application to

50



CO-CLUSTERING OF EVOLVING COUNT MATRICES WITH THE DYNAMIC LATENT
BLOCK MODEL

pharmacovigilance. Statistics and Computing, 32(3):1-22;

o A. Destere, Giulia Marchello, D. Merino, N. Ben Othman, A. O. Gérard,
T.Lavrut, D. Viard, F. Rocher, M. Corneli, C. Bouveyron, M. D. Drici
(2023). An artificial intelligence algorithm for co-clustering to help in Phar-
macovigilance with a focus on COVID-19 vaccines. Accepted for publication
in the British Journal of Clinical Pharmacology.
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3.1 Introduction

In Chapters 1 and 2 we discussed the lack of methods to perform dynamic co-
clustering.

While some noteworthy approaches have been introduced, particularly in the
context of metric-based models such as the dynamic spectral co-clustering method
by Green et al. (2011) and co-clustering techniques designed for handling data
streams based on non-negative matrix factorization as explored by Sang and Sun
(2014), there remains a need for model-based dynamic co-clustering methods.
Also the increasing need to effectively handle count data, such as interaction
data, has become more pronounced in various domains, including healthcare and
pharmacovigilance. For instance, in pharmacovigilance, the collection of adverse
drug reaction (ADR) reports is a prime example of count data. Healthcare systems
and regulatory agencies continually receive reports of adverse events associated
with medications. These reports represent counts of specific adverse reactions
linked to particular drugs. Analyzing this count data is crucial to identify trends,
unusual patterns, or potential safety concerns associated with medications. By
quantifying and analyzing these occurrences, pharmacovigilance professionals
can make informed decisions about drug safety, regulatory actions, and public
health. In the context of applying co-clustering methods to pharmacovigilance, an
important contribution was proposed by Robert et al. (2015). In this particular
research, the authors introduced a significant advancement known as the multiple
latent block model (MLBM). They extended the latent block model (Govaert and
Nadif, 2008) by creating a row partition and two separate column partitions. These
partitions were constructed based on two binary matrices: one representing the
relationships between individuals and medical products, and the other capturing

the relationships between individuals and ADRs.

3.1.1 Contributions of this work

This work introduces a generative co-clustering model, named the dynamic latent
block model (dLBM), allowing in turn the detection of temporal breaks in the
signals, as a retrospective tool for pharmacovigilance. We consider ADR count
data matrices evolving over a time period [0,7], whose number of rows and
columns are fixed. We assume that the number of interactions occurring in

time between rows and columns follows a non-homogeneous Poisson process
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(NHPP) (Corneli et al., 2016; Matias et al., 2018). To handle the dynamic
framework, we led a segmentation over the continuous time such that we obtain as
many static matrices as the number of the identified time intervals. As inference
procedure, we use the SEM-Gibbs algorithm (Section 2.5.2) while the ICL criterion
(Section 2.3.4) is adopted for selecting the optimal number of clusters. Thus,
dLBM provides a meaningful summary of massive datasets, possibly with a large
number of missing data. To demonstrate the interest in pharmacovigilance, we
run a large-scale retrospective experiment on an 10-year ADRs dataset from
Regional Center of Pharmacovigilance (RCPV), located in the University Hospital
of Nice (France). The interest of this application lies not only in summarizing the
massive amount of drug adverse reactions (ADRs) data but also in identifying
possible unexpected phenomena, such as atypical side effects of certain types of
drugs. Indeed, dLBM was not only able to identify clusters that are coherent with

® crises, but also to

retrospective knowledge, such as the Lévothyrox® and Mirena
detect an under-notification of bleeding ADRs during the Lévothyrox® crisis, the

health professionals were unaware of.

3.1.2 Organization of the chapter

This chapter is organized as follows. Section 3.2 introduce the generative model of
dLBM. In Section 3.3, the inference procedure is detailed and the model selection
criterion is discussed. Section 3.4 presents various experiments on simulated
data to test and evaluate the model performances. In Section 3.5, an application
on a real ADRs dataset is presented to illustrate the potential of dLBM in

pharmacovigilance. Section 3.6 provides some concluding remarks.

3.2 The dynamic latent block model

In this section, we introduce the dynamic latent block model (dLBM). For a
review of the original LBM please refer to Section 2.3.1. The main goal of this
time-dependent extension is the simultaneous clustering of rows and columns of
high-dimensional sparse matrices in a dynamic time framework. The data we
consider are organized such that the rows (drugs in pharmacovigilance application)
are indexed by ¢ = 1,... N and the columns (adversarial effects) by j =1,..., M.
Moreover, we consider a fixed time period [0, 7] during which the total number of
rows, N, and columns, M, is fixed. We indicate as X (t) the N x M matrix that
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contains the number of interactions occurring between the individual ¢ and the
item j at time ¢ € [0, T7.

3.2.1 Modeling the dynamic framework

Let us consider the time dimension such that Xj; is time dependent. Thus,
X;;(t), t € [0,T], represents the cumulative number of interactions at time ¢
between 7 and j.

A possible approach for the dynamic modeling of such data relies on non-
homogeneous Poisson processes (NHPPs), thus assuming that {Xj;(.)};; are

independent point processes, with instantaneous intensity functions A;;(¢):

XMﬂNP(EAMmm>, (3.1)

where P(A) denotes the Poisson probability mass function of parameter A. With
the notation adopted so far, we thus assume the existence of N x M independent
Poisson processes.

In order to cluster both the rows and the columns, we further assume that the
intensity function A;;(¢) only depends on the respective clusters of row ¢ and

column j:
t
,mﬁﬂawwzle(AAMme.
For further use, let us introduce the following time varying parameter A :=
(Age(t)) g<0ue<r- Given the above assumptions, the conditional distribution of the

number of interactions between i and j, over the time interval [s,t], where 0 <
s<t<T,is:

¢ ) ) Xis (D=5 (s) ¢
p(Xi;(t) — Xij(s) | ziqwje = 1,A) = Us (A)g'f-((t))d—))(ij(s))! exp <—/S Aqg(v)dv) :
(3.2)

A discrete time version

In order to ease the understanding of the dynamic model and to make the
inference tractable and computationally efficient, we also operate clustering over
the time dimension. Let us first introduce a discretization of the considered time
interval [0, T]. Thus, without loss of generality the following partition of [0, 7] is
introduced:

O=to<ti <---<ty=T, (3.3)
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Figure 3.1: Time clusters.

where the T intervals, I, = [t,_1,t,[, will also be clustered. The number of
interactions between ¢ and j on the time interval I,, can be therefore summarized
by Xiju:

Xiju = Xy (ty) — Xij(tu1), (i, j,u),

where we recall that &;;(t,) represents the cumulative number of interactions at
time t,, between i and j. Hence, we introduce the tensor X := {Xij“}iel,...,N,jel,...,M,uel,...T’
with dimensions N x M x T, that contains the number of interactions between
any observation and feature pair at any given time interval. We can also see X as

a time series (along the third dimension) of incidence matrices.

Since our goal is to perform clustering over the time dimension as well, each
time interval Iy,..., Iy is also assumed to be assigned to a hidden time clus-
ter Dy, ..., D.. To model the membership to time clusters, a new latent variable .S
is introduced, such that s, = c if the time interval I,, belongs to the time cluster D.,.
As it is shown in Figure 3.1, it is worth noticing that a specific time cluster can
occur more than once in the temporal line when a similar interactivity pattern
is repeated in time. Furthermore, as for Z and W, we assume that S follows a

multinomial distribution:

C
(s 1) =11 Pl (3.4)

c
where v, = P{sy. = 1}; Z% = 1 and | D, | represents the number of time
c=1
intervals in the cluster D,.
Once these additional assumptions have been made, we can rewrite Eq. (3.1)
considering that the intensity functions are stepwise constant on each time clus-
ter D.. Thus:

Xiju|Ziqwj€Suc =1~ P<Aq€cAu>7 (35)

where A, indicates the length of the interval I,,. Henceforth, in order to simplify
the exposition, we assume that A, is constant, A, = A. We can finally set A =1
without loss of generality. A graphical representation of dLBM can be seen in
Figure 3.2.
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Figure 3.2: Graphical representation of dLBM.

From Egs. (3.1)-(3.5), it holds that:

Agee
p(XzJu ’ RiqW3itSuc = 17 Aqéc) = (% €xp (_AQZC)> . (36)
iju

Therefore, we can introduce the ) x L x C tensor A, whose elements are denoted
by Aqgc.

It is now possible to write the complete data likelihood of the model:
p(X, Z,W, S|, 8,7, A) = p(Z]a)p(W[B)p(S|7)p(X|Z, W, 5, A), (3.7)

where p(Z|a), p(W|B) and p(S|y) were defined in the previous section. The
conditional distribution of X, given Z, W, and S, can be easily obtained from

Eq. (3.6) by independence:

A c Rq[c
pXIZW,50) = T] ((q;i,iexm— A BN 8] 69
ql,c qtc
N M T M T
where Ry = ZZ Z ZiqWjeSucXiju and Py = H H H (ZiqWjeSucXiju)!. De-
i=1j=1u=1 i=1j=1u=1
noting by 6 the set of all model parameters, 0§ = (« ﬁ ,\), the log-likelihood
can be finally written as:
=> > > logp(X,Z,W,S|0). (3.9)
Z W S

3.2.2 Link with related models

At this point, dLBM can be related with the following models:

o6



CO-CLUSTERING OF EVOLVING COUNT MATRICES WITH THE DYNAMIC LATENT
BLOCK MODEL

o If we do not take into account the time dependency, assuming that the
time period is restricted to a single time point ¢y, dLBM coincides with the
Poisson LBM.

o dLBM reduces to dSBM (Corneli et al., 2016) if the row individuals are
the same as the column. In that case, in fact, Z would be equal to W and,
consequently, @ = L. Therefore, X. ., passes from an incidence matrix to

an adjacency matrix.

o If C =T, dLBM corresponds to TensorLBM (Boutalbi et al., 2020), where
the third dimension is considered but the slices are not clustered. In fact,
when the counting contingency table case is analyzed, the authors consider
a Poisson TensorLBM, where for each slice a, the entries are distributed
according to a P(Af;).

3.3 Inference algorithm and model selection

3.3.1 Inference

For the co-clustering model based approach outlined in the previous section, as
well as for standard mixture models, a direct maximization of the log-likelihood

with respect to the model parameters is not feasible (see discussion in Chapter 2.5).

Moreover, in the context of the present work the joint posterior distribu-
tion p(Z, W, S | X,0) is not computationally tractable as well. To go through
this limitation, we propose to approximate it through a Gibbs sampler within the
E-step. Such an approach was proposed by Keribin et al. (2010) and exploited,
for instance, by Bouveyron et al. (2018) for the functional latent block model
(funLBM). The resulting SEM-Gibbs algorithm (see Chapter 2.5.2), starts with
some initial values of the parameter (¥, the column clusters W and the time
clusters S(©. In this way, at the A" iteration the algorithm alternates the following
SE step and M step:

SE step: a partition for Z, W and S is drawn according to ¢*(Z,W,S) =
p(Z, W, S | X,0), which is approximated by making use of a Gibbs sampler, using
the current values of the parameter set #. In this way, the unknown labels are
simulated from their posterior distribution, given the observed data and the

parameter set. It consists in executing a small number of iterations (usually 5 is
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enough) of the following three steps:

1 Generate the row partition LD z-(hﬂ), e (1) X, W®_ SM accordin
% i1 zQ g

to z ~ M(1,Zq,..., %), forall 1 <i < N and 1 < ¢ < Q, where:
Of(h Jo(Xi | W, s, g0)

Ziq Zig =1 X, W gh. g :
p( q | ) ZOéh)fq (X|W S(h,@(h)

wi (M)
where X; = (Xyja)ju and fo(X; | W®, S0 00) = [T [T, p(Xijui Oh) "7 .

qlc
2) Generate the column partition w](-hH) = (wj(-}fﬂ), . h+1 )|X Zh+1) gk
according to w§h+1) ~ M(1,Wj,...,w;), for all 1 S j § Mand 1 </¢<L,
where:

6éh)f£(Xj yz(h-s-l)’ S(h); 9(h))

. o (h+1) g(h). g(h)y _
Wje = plwse = 1] X, 277, ST 07) = S Be fo (X1 201, S 6R))°
Z/

where X; = (Xjju)u and fo(X;|Z0D 5™ 00)) =TT, [T, p(X; 9(h))255+1)8g2)

y Vgle

3) Generate the time cluster partition s{"*1) = (sgﬁﬂ), e U}LC+1))|X 741y (ht)
according to s ~ M(1,53,1,...,8.c) , forall 1 <u <Tand 1 <c<C,
where:

A (X, | 204D, W g0

2w for (Xul 20D, WD, §0)

Sue = p(suc — 1\X, Z(h“), W(h-i—l); Q(h)) _

2D (kD)

Where Xu == (leu)l] and fc(Xu|Z(h+1)7 W(h+1); 9(/7,)) H'Lq H]Zp( l]lu Q(EZLC)

M step: in this step, £(g*(Z, W, S); 0")) is maximized with respect to #, where:

X, Z,W,S | 0)
% Z Q(h) ~ Z X e(h) 1 p( )y ’
W 85070 = o P ST 0008 7 4w 5 X, )

~ Bllog(p(X, 200, Wk 041 | g)) | X, 0] 1 ¢,

where ¢ is a constant term related to #". This conditional expectation of the

complete data log-likelihood can be written in a developed form as follows:

Ellog(p(X, 2D i+ g+ gy | X M)] ZN“ log g + > wly ™ log B+
jl

+Zs 0 log e + Do 2l Tl Y s g (p( Xz | Ogec)).

g j,t uC

(3.10)
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The last term of the previous equation can be further developed as:

ZZZ o h+1 h+1 log( (Xiju | Ogec)) =

i,q j,€ UsC
( (h) Xiju
ZZZ (h+1) h+1 uié+1) log L'exp(—AéIZ) = (3.11)
ik X@]u
ZZZ (ht1), h+1 UIZH [XW 10g(Aq€C) log(Xiju!) — Aqec] :
i,q j,€ UsC

Thanks to the previous equation, the parameter set 8"+ can be estimated. The

mixture proportions are updated as follows (proof in Appendix A.1):

1 1
A1) (h+1) (h+1) _ Z (h+1) h+1 Z (h+1)
51 ) N .Ziq ’ ¢ M ,wﬂ ) )= 5 ’
? J

Moreover, the ML estimator of Ay, is as follows (proof in Appendix A.2):

R(h—H)

A(h+1): qlc v E’.
= Asmp 04

Since assessing the convergence in stochastic inference algorithms is a challeng-
ing task, the algorithm runs for a certain number of iterations of the two steps and,
to assess that convergence has been reached, we check both that the log-likelihood
reached a plateau and that the values assumed by the model parameter values
are stabilized during the iterations of the algorithm. We can obtain the final
estimation of the parameter set 0 by computing the mean from the sampled
distribution, after the burn-in period.Finally, the optimal values for Z, W and S

are estimated by the mode of their sampled distributions.

3.3.2 Model selection

Up to now, we have assumed that the number of row clusters (@), column
clusters (L) and time clusters (C') was known. However, for real datasets, this
assumption is of course unrealistic. For this reason, our purpose in this section is
to define a model selection criterion that can automatically identify the optimal
number of clusters that are appropriate for the data at hand. The model selection
approach is considered. We propose to rely on ICL (Integrated Completed
Likelihood, (Biernacki et al., 2000)) to approximate the complete-data integrated
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log-likelihood. Hence, we derived the formulation of the ICL criterion for the

model proposed above:

A A A A - 1
ICL(Q, L,C) = log p(X, 2,17, 8:0) - @=L 1og N+
2 (3.12)

L—1 C—-1 LC
log M — logT — ¢ log(NPT)

The triplet (Q, L, C’) that leads to the highest value for the ICL is considered
as the most likely for those data. Alternative approaches may rely on greedy
searches (Come and Latouche, 2015; Keribin et al., 2017) which can be seen as
less computationally expensive, but which operate sequentially and, therefore,

cannot be parallelized.

3.4 Numerical experiments

The main purpose of this section is to highlight the most important features of
dLBM over simulated datasets. We aim at demonstrating the validity of the
inference algorithm and model selection criterion, presented in the previous sections.
Regarding the initialization of the algorithm, in all the reported experiments the
partitions of rows, columns and slices were initialized with a k-means applied
to the rows, columns or slices of the proper unfolding of tensor X. The first
experiment consists in applying dLBM to an easy scenario to explain its main
outputs. Then, the second example shows a model selection application on 25
simulated datesets. In the third experiment, we compare the performances of
dLBM with some state-of-the-art methods in three simulated scenarios. In the
fourth experiment, we compare the performances of dLBM with the same state-
of-the-art methods of the previous experiment, on a simulation setup that differs

from our model assumptions.

3.4.1 Introductory example

As a first example, we simulate a dataset with ) = 3 groups of rows, L = 2
groups of columns and C = 2 groups of time clusters, with a level of sparsity
7 =0.97. Table 3.1 shows the main features of this dataset.

We fit dLBM to the simulated dataset with the actual values for @), L and C

to show the ability of the model to fully recover the model parameters. Figure 3.3
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N | M| T T |Q|L|C a 6] ¥
200 | 200 | 150 | 0.97 | 3 | 2 | 2 | (0.15, 0.35, 0.55) | (0.2, 0.8) | (0.6, 0.4)

Table 3.1: Parameter values for the first simulated dataset.

shows the evolution of the complete data log-likelihood. As we can see the
convergence is reached in less than 10 iterations. Figure 3.4 shows the evolution
of the estimated mixture parameters &, B and 4 along the iterations of the SEM-
Gibbs algorithm. Comparing the values reached by each line with the actual
values of the model parameters showed in Table 3.1, we can observe that dLBM
fully recovers the original values in few iterations. Moreover, Figure 3.5 shows
a bar plot of the number of interactions between rows and columns of the array
X for each time period, where the two different time clusters are identified by
different colors. We can easily deduce that dLBM selects the two time clusters in
a meaningful way in terms of level of counted interactions in each time cluster.
Figure 3.6 shows the value of the estimated intensity parameter A for each cluster
of rows and columns where different colors represent different time clusters. For
instance, the algorithm detects that, in the first cluster of rows and the first
cluster of columns (Block(1,1)), there is an high intensity of interactions in both
of the time clusters. Figure 3.7 and Figure 3.8, display the data structure before
running dLBM and the reorganized incidence matrices one for each time cluster.
To this end, rows and columns of the incidence matrix are permuted, thanks to
the estimates Z and W, in such a way that nearby rows (columns) belong to the
same cluster of rows (columns). The blocks are also delimited by black dashed
lines.

Finally, to evaluate the performance of the model in identifying the correct rows,
columns and times partitions, we use the adjusted Rand index (ARI) (Rand, 1971)
for all of the three variables. The adjusted Rand index, from a mathematical point
of view, is closely related to the accuracy measure, however it is a commonly used
method for evaluating clustering problems since it can be applied for measuring
the similarity between two partitions even with different number of clusters and it
is invariant to label switching. The closer the index is to 1, the more two label
vectors are similar to each other. We compared the original matrices Z, W and S,
with the estimates Z, W and S given by the output of the dLBM. The model
obtained an ARI index of 1 for rows, columns and times partitions. Thus, we can
conclude that our algorithm perfectly identifies the composition of the original

clusters.
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Figure 3.3: Complete data log-likelihood over the iterations of the SEM-Gibbs
algorithm.
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Figure 3.4: Estimates of the mixture parameters in the first simulated dataset.
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Figure 3.5: Time periods representation of the first simulated dataset, where
different colors correspond to different time clusters.
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Figure 3.6: Estimated A values for each cluster of rows and columns.
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Rows

Figure 3.7:
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Figure 3.8: Reorganized incidence matrices, one for each time cluster, according
to the estimates Z and W. Nearby rows (columns) belong to the same cluster of
rows (columns). The blocks are also delimited by black dashed lines.
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3.4.2 Model selection experiment

In the previous experiment, we assumed to know the value of @), L and C'. In this
section we aim at validating the ICL criterion for model selection. To do that, 25
independent datasets are generated with the setup indicated in Table 3.2. dLBM
is applied on those simulated datasets for values of ), L and C ranging from 1
to 6. The results are sorted according to the ICL values. Table 4.3 shows the
percentage of selections by ICL criterion on 25 simulated datasets. The highlighted
cell corresponds to the actual value of ), L and C. ICL succeeds 64% of the time
to identify the correct model. It is worth to notice that, when ICL does not select
the right combination of (), L and C, the wrongly selected models are close to
the simulated one. In particular, 28% of the selections only differ from the actual

model by one cluster, on one of the three cluster dimensions.

N M| T, ™ |Q|L|C o s 2l

200 | 200 | 200 [ 0.97 | 4 | 3| 3 | (0.2,0.4,0.1,0.3) | (0.4,0.3,0.3) | (0.25,0.3,0.45)

Table 3.2: Parameter values for the second simulated dataset.

C=3 C=4
(Q/Lif2] 3 |4[5[6) [QL[L[2][3]4]5]6]
1 [[ofo]oTJo]olo 1 [fo[oJofo]oTo
2 [fofo] o fofolo] [ 2 fofolofo]o]o
3 [olof[ o fofolo] [ 3 Jfojolofo]o]o
4 [olo]e4slolo| | 4 [[o]ols|o]o]o
5 olo[12]of4]o] [ 5 [fofolo][4]o]0
6 |olo] o fojolo] [ 6 [fojolofo]o]o

Table 3.3: Model selection. Percentage of selections by ICL criterion on 25
simulated datasets. The highlighted cell corresponds to the actual value of @), L
and C'.
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[ seo | N[M|T ]| 7 [Q|L[C] a E v [ A
A - Easy Aa
: 312 210.150.35,0.55 0.2,0.8 0.6,0.4
B - Medium 250 | 250 | 100 | 0.97 ’ ’ ’ Ap
C - Hard 413302040103 ]| 04,0.3,03 |0.250.3,045 | A¢
D - Row_LBM | 100 | 150 | 50 1 11312 1 0.33,0.33,0.33 0.5,0.5 Ap

Table 3.4: Parameter values for the four simulation senarios (see Appendix A.3
for details about A4, Ap, Ac and Ap).

3.4.3 Benchmark study

The goal of this third experiment is to compare dLBM with some state-of-the-art
methods in terms of recovering the data structure. dLBM is compared with
TensorLBM (Boutalbi et al., 2020) where, in absence of the original code, we set
the number of time clusters of dLBM equal to the number of time intervals, C' =T,
and with the Poisson LBM by making use of the bikm1 package (Robert et al.,
2020). Since LBM supports only two dimensions, we shrink the third dimension
summing up alternatively on rows, columns and slices, obtaining respectively
the Row LBM, Col LBM and Slice  LBM methods.

We chose to evaluate the results with the ARI index by comparing the resulting
cluster partitions with the simulated ones. To make this comparison more complete,
we defined four simulation scenarios ("Easy", "Medium', "Hard" and "Row_ LBM" ),
detailed in Table 3.4. In particular, in the "Easy", "Medium" and "Hard" scenarios,
the data are simulated according to the dLBM model using different parameters
to gradually increase the difficulty. In order to also add a fair comparison with
competitors, the "Row__LBM" scenario generates data from the Poisson LBM
model (Robert et al., 2020) using the R package bikm1 of the authors. As detailed
in Table 3.4, the simulation parameters for this additional simulation scenario are

the ones used in the default example of the R package bikml.

Table 3.5 displays the results of this comparison, in terms of average ARI
values, reported with standard deviations. The dash indicates that no value is
reported because the calculation is not allowed by the model.

In the "Easy" situation, dLBM works perfectly. Also TensorLBM provides ex-
cellent results, even though calculated only on rows and columns. Row_LBM
and Col_LBM only give good results on one dimension, while Slice  LBM pro-
duces extremely low results.

In "Medium" and "Hard" situations, dLBM continues to obtain excellent results,

although not perfect, due to the increasing complexity of the proposed situations.
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Table 3.5: Co-clustering results for dLBM, TensorLBM, and LBM applied respec-

) and the

) on 25 simulated data according to the four scenarios. Average

Col _LBM

tively by summing up the rows (Row_ LBM), the columns (

Slice. LBM
ARI values are reported with standard deviations.

slices (
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The three other LBM models perform poorly, while TensorLBM obtains rather
high ARI values. Specifically, in the "Hard" situation the ARI value of TensorLBM
on the columns is slightly higher than that of dLBM, even if the one calculated
on the rows partitions is lower.

Finally, regarding the "Row_LBM" scenario, we can first observe that the results
of Row_LBM are perfect, as expected, but dLBM demonstrates also to have
very good performances in this less favorable simulation, conversely to the other

competitors.

3.4.4 Robustness to model assumptions

The goal of this fourth experiment on simulated data is to test the performance of
dLBM and compare it to its competitors when data are not simulated according
to the model assumptions. Specifically, we decided to simulate the data from a
negative binomial distribution. The negative binomial distribution is a discrete
probability distribution that models the number of successes in a series of iid
Bernoulli trials before a given number of failures, . The probability mass function

of the negative binomial is given by:

k+r—1 I'(k+r)

f%mm%=< L )-O—pY4f=MNM(1—M%ﬁ (3.13)

where k is the number of successes and p is the probability of success. When
modeling counts data the negative binomial distribution is often a valid alter-
native to Poisson, because it allows the mean and the variance to be different:
Mean: A = -2 : Variance: = S L}
1—p (1—p) "

A particular property of the negative binomial distribution is that it converges
to the Poisson distribution, with expected value p, when r — oc.

To accurately evaluate the performance of dLBM in comparison with its com-
petitors we simulate from the negative binomial distribution 25 datasets for each
value of r equal to 0.05, 0.1, 0.5, 0.8, 1, 5 and 10, while keeping the values of A
unchanged to the ones of Scenario A in Section 3.4.3.

Figures 3.9, 3.10 and 3.11 report the results of the experiment, depicting line
plots of the values taken by the ARI index in the partitions of rows, columns,
and slices, respectively. The x-axis depicts the values of r based on which the
data were simulated, and each color represents a different model. The models
considered are the same as those described in Section 3.4.3: Row LBM, ColLBM,
SliceLBM, and TensorLBM. The ARI values shown in these graphs refer to the
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Figure 3.11: Evolution of the slice ARI as a function of r for the different methods.
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average values reached by the index during the 25 simulations performed for each
r value. Looking at these results we can observe that for values of r very close
to zero, all models have difficulties in finding the correct cluster partition. This
is due to the fact that when 7 is small (e.g. 7 = 0.05,0.1), a negative binomial
distribution is more spread than a Poisson distribution with the same mean and
therefore the different clusters are extremely difficult to distinguish. For slightly
higher values of r (e.g. 7 = 0.5,0.8) dLBM outperforms its competitors, achieving
excellent ARI values. Whereas, for sufficiently large values of r (e.g. r = 5,10),
the block distributions start to be enough different and dLBM managed to find
the correct cluster partitions, with an ARI very close to 1 in all the dimensions.
In this case, in fact, the results tend to be very similar to those of Scenario A
in Section 3.4.3. It may be of interest to notice that also TensorLBM managed
to have high values of ARI, for row and column partitions, although it needs
a higher value of r to perform well. However, looking at the partition of slices
we can see that the performance is poor, due to the fact that the assumption
TensorLBM relies on is that the number of slice clusters is equal to the number of

slices themselves, i.e. C' =T.

3.5 Analysis of the adverse drug reaction dataset

This section focuses on the application of dLBM to a large-scale pharmacovigilance

dataset, with the aim of illustrating the potential of the tool for such studies.

3.5.1 Protocol and data

This section considers a large dataset consisting of ADR data collected by the
Regional Center of Pharmacovigilance (RCPV), located in the University Hospital
of Nice (France). The center covers an area of over 2.3 million inhabitants and
receives notifications about ADRs from different channels: a website! form, phone
calls, emails, medical visits at the hospital units, etc. A time horizon of 10
years is considered, from January 1%, 2010 to September 30", 2020, the unity
measure for time intervals is a month (A, = A = 1 month). The overall dataset
is made of by 44,269 declarations, for which the market name of the drug, the
notified ADR, the channel used for the declaration and its origin, as well as an

identification number and the reception date are reported. To prevent the same

https://signalement.social-sante.gouv.fr
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medicine from being considered more than once if reported under slightly different
names, we decided to use the international nonproprietary name (INN) of the
drug (to simplify the comprehension, the INNs would be referred as drugs for the
rest of the study). Moreover, we only considered molecules and ADRs that were
notified more than 10 times over the 10 years. The resulting dataset contains 542
drugs, 586 ADRs and 129 months with 13,363 non-zero entries.

In fact, in that year an unexpected rise of reports for ADRs happened concern-
ing two specific drugs: Mirena® and Lévothyrox®. Mirena® has been available
in Europe since 1995. This birth control product contains a hormone called
levonorgestrel. In 2017, concerns regarding ADRs associated with the use of
levonorgestrel releasing intra-uterine device (IUD) started to grown with a media
coverage peak occurred in May 2017, which resulted in a massive wave of ADRs
reports from patients to French RCPVs (Langlade et al., 2019).

Also, Lévothyrox® has been marketed in France for about 40 years as a treatment
for hypothyroidism and, in 2017, a new formula was introduced on the market.
The Lévothyrox® case had an extremely high media coverage in France: the
RCPVs received 18,241 reports of Lévothyrox® ADRs in 2017 only. Lévothyrox®
spontaneous reports represent almost the 90% of all the spontaneous notifications
that the Nice center received from patients in 2017. This phenomenon has been
fully described in a recent article of Viard et al. (2019).

From Figure 3.12, one can understand the difficulty to work with such data which
contain signals of very different amplitude. Indeed, behind those very visible
effects, many ADR signals need to be detected for obvious public health reasons.
In particular, those data also contain ADR reports regarding Médiator®, which is
here far less visible than Lévothyrox® and Mirena®, but also led to many avoidable
serious cardiovascular diseases. This is why, we expect dLBM to be a useful tool

to reveal such hidden signals.

3.5.2 Summary of the results

Remembering that our aim is to find an underling latent structure in our dataset
by applying co-clustering on the three dimensions of the array X with dimen-
sion 542 x 586 x 129, we have run dLBM for different values of ), L and C.
Specifically, we tested rows (here drugs), columns (here ADRs) and times groups
ranging from 1 to 12. The ICL criterion identified the optimal values for the
triplet (Q, L, é) as: Q =7, L =10, C' = 6, with a running time of about 6 hours.
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Figure 3.12: Notifications of adverse drug reactions (ADRs) reported to the
Regional Center of Pharmacovigilance (RCPV) of Nice (France) in 3 different
trimesters, highlighted in dark blue.
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The process has been parallelized on 8 cores on a MacBook Pro, 2020, with a
processor of 2,3 GHz Quad-Core Intel Core i7 and 16 GB of RAM.

Figure 3.13 shows the frequency of the declarations received by the RCPV
from 2010 to 2020, sorted by month, where the colors represent the identified time
clusters. Figure 3.14 displays the estimated intensity functions representation. In
particular, this figure is very helpful for giving an overview of the relationships
between drug clusters and ADR clusters and how they evolve over time. The
colors refer to different time clusters and the brighter the color, the stronger the
relation (i.e. the expected number of notifications in the time unit) between drug
cluster and ADR cluster. Finally, Figure 3.15 shows more specifically the evolution
of the relationship between drug clusters and ADR clusters over time. In fact,
each panel represents a cluster of drugs and within them each line identifies a

cluster of ADRs and its intensity changes over time.

Time clusters Starting from the analysis of the time clusters, one can easily
notice in Figure 3.13 that the segmentation proposed by the algorithm confirms
our knowledge about the previous mentioned health scandals while revealing a
time structure more complex than expected. In fact, while cluster 1 and cluster 2
include various time intervals, cluster 3 clearly refers to the health crisis due to
the Mirena® scandal while cluster 4 relates to the peak period in the Lévothyox®
crisis. Time clusters 5 and 6 refer to the final stage of the Lévothyrox® crisis, when
generics were introduced to the market. It is worth noticing that without the
dLBM application it would have been impossible to detect the presence of other
health scandal just before the one of Lévothyrox®. In fact, looking at Figure 3.13,
one can see that the increase of declarations during the Mirena® health crisis are

completely masked by the Lévothyrox® ones.

Drug clusters The clusters of drugs identified by the algorithm are also coherent
with retrospective knowledge and adequately represent the variety of drugs present
in the dataset. In particular, cluster 1, cluster 6 and cluster 7 are very specific,
with one element only: they correspond respectively to lévothyroxine (Lévothyrox®
and generics), benfluorex (Médiator®) and lévonorgestrel (Mirena®). Tt is worth
noticing that Médiator® 2 was involved (like Lévothyrox® and Mirena®) in an

important health scandal in 2009-2010. Moreover, cluster 2 contains the five

2https://www.ansm.sante.fr/Dossiers/Mediator-R/Mediator-R-et-accompagnement-des-personnes/
(offset)/0
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most frequently reported drugs and cluster 5 contains other common drugs, while
cluster 4 is very large and heterogeneous, with drugs that are rarely reported and

finally cluster 3 contains drugs that cause bleeding.

ADR clusters Concerning the clusters of ADRs, cluster 3 (e.g. coma, confusion,
hepatic cytolysis, etc) and cluster 8 (e.g. agitation, agranulocytosis, arthralgia,
etc.) contain the most frequently notified ADRs. Cluster 1 contains recurring
ADRs (e.g. sweats, transient ischemic accident, lactic acidosis, etc.) but less than
the other two previously mentioned. Cluster 2 (e.g. anemia, hemorrhagic stroke)
and cluster 4 (e.g. hemorrhagic schock, deglobulisation, etc.) respectively include
the most and the less frequent bleeding related ADRs. Cluster 7 is composed of
ADRs clearly related to Lévothyrox® and Mirena® (e.g hair loss, cramps, insomnia,
etc.). In cluster 10 there are general ADRs, although it contains some ADRs
specifically related to Lévothyrox® and Médiator® (e.g. respectively abnomral
TSH, valvular disease, etc.). Finally, cluster 5, 6 and 9 contain more general and
nonspecific ADRs.
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Figure 3.13: Number of declarations received by the pharmacovigilance center
from 2010 to 2020, sorted by month, where the colors represent the time clusters.
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Figure 3.14: Evolution of the relation between each drug cluster and the all ADR
clusters over time. Each color corresponds to a different cluster of adverse drug
reactions.

3.5.3 Detailed results

Time clusters Figure 3.14 is a graphical representation of the estimated intensity

functions. It gives a clear idea about the relationships between clusters of molecules
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Figure 3.15: Evolution of the relation between each drug cluster and the all ADR

clusters over time. Each color corresponds to a different cluster of adverse drug

reaction.
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and clusters of ADRs, with respect to time clusters. In particular:

o Time cluster 1: here one can notice the presence of all the drug clusters, with
different levels of intensity. The peculiarity of this cluster lies in the strong
presence of cluster 6 of drugs which gradually disappears in subsequent
temporal clusters. In fact, it contains the drug benfluorex (Médiator®)
which in 2010 was involved in a major health scandal and it has strong
interactions with clusters 5, 6 and 10 of ADRs. It is worth noticing that
dLBM managed to highlight this peculiarity that cannot be detected by
simply looking at Figure 3.12. In the first time cluster it can also be noticed
a strong relation between the cluster 3 of drugs (drugs that causes bleeding)
and clusters 2 and 4 of ADRs which is coherent.

« Time cluster 2: the presence of Médiator® decreases while the interactions
between the drugs that cause bleeding (cluster 3) and clusters 2 and 4 of
ADRs is still strong. That cluster represent the actual profile of notifications
received by RCPV. Similarly, the second cluster of drugs (the most frequently
used) appears to have ADRs in almost all clusters, especially the third. We
also notice the presence of Lévothyrox® (cluster 1) with ADRs especially in

clusters 6 and 7.

o Time cluster 3: this cluster includes two months only: 05-06/2017. This
period refers to the Mirena® scandal (cluster 7) with ADRs in clusters 5, 6, 7
and 9. They are not very specific but it may suggest a hormonal cause.
In this matrix all the drug clusters are present (even though with a lower
intensity with respect to Mirena®), with the exception of Médiator® which

is not reappearing subsequently.

o Time cluster 4: it refers to the Lévothyrox® peak going from August to
October 2017. Unlike previous clusters where most drugs clusters were
present, this cluster only recognizes 2 drugs: Lévothyrox® (mainly) and
Mirena® (weakly). Consequently, the interactions that stand out are those
of Lévothyrox® with ADRs in clusters 6, 7 and 9. They are not very specific
but coherent with the statements received by RCPV.

o Time cluster 5: it refers to 11-12/2017 and it is characterized by a reduction
of Lévothyrox® declarations. Compared to the previous cluster, we note

a reappearance of other drug clusters even if the intensities remain low
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compared to time cluster 1 and 2. The drugs/ADRs combinations remain

those of the previous time cluster.

o Time cluster 6: it refers to the 1% semester 2018, which corresponds to end
of Lévothyrox® crisis. Globally it is similar to the two previous time clusters

with some small variations on the intensities of the drug/ADRs pairs.

Drug clusters For a more in-depth analysis regarding the evolution of drug
clusters over time and their interactions with the clusters of ADRs, we can refer

to Figure 3.15. The following remarks derive:

« Drug cluster 1: this cluster refers to Lévothyrox® and its generics. There
are almost no declared effects during the first three time clusters, from the
fourth time cluster we observe a peak of declarations which corresponds to
the start of the Lévothyrox® crisis, especially for ADRs in cluster 6, 7 and 9
and to a lesser extent on 5. These four clusters recognized by dLBM, include
all of the ADRs described during Lévothyrox® crisis, namely hormonal ADRs
(weight gain), general ADRs (fatigue, cramps) and neuro-psychic ADRs
(anxiety, irritability, sleep disturbances). Time cluster 5 marks a decrease
in Lévothyrox® reports in terms of numbers but the ADRs profile remains
similar to the previous time cluster. It should be noticed that generics of
Lévothyrox® began to be available from mid-October 2017, which could
explain this decrease in the number of reports: patients started to have
therapeutic alternatives. Finally, time cluster 6 represents the end of the

Lévothyrox® crisis with a clear decrease in the number of reports.

o Drug cluster 2: this cluster includes drugs that are very frequently prescribed,
the ADRs profile is globally constant over time with a predominance of
clusters 3, 6 and 8, with variations in terms of proportions according to
the time clusters. Cluster 3 of ADRs corresponds to frequent and generally
serious ADRs. Cluster 8 also includes ADRs that are generally serious but
a little less often reported than cluster 3. Cluster 6 corresponds to general

ADRSs that can be found with many other drugs (especially Lévothyrox®).

o Drug cluster 3: this cluster includes coagulation drugs whose main ADRs
are bleeding, hence the predominance of cluster 2 and 4. The application of
dLBM led us to identify, from the temporal point of view, 3 interesting events:

the increase in ADRs between time clusters 1 and 2, a significant decrease
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® crisis) and

in the number of declared ADRs in time cluster 4 (Lévothyrox
a marked regression of cluster 2 in time cluster 6 (late Lévothyrox®) but

without cluster 4 being affected.

e Drug cluster 4: this cluster includes a fairly large set of drugs declared
relatively frequently and commonly prescribed, but disparate in terms
of their therapeutic uses or their ADRs profile. However, we observe a
predominance of ADRs of cluster 3 and 6 (general ADRs). At the temporal
level, we observe an overall decrease in ADRs in time cluster 4 (Lévothyrox®

crisis).

o Drug cluster 5: as for drug cluster 4, this cluster includes many heterogeneous
drugs. The ADRs profile is similar to that of drug cluster 4, which is coherent

with the fact that these two clusters are similar.

« Drug cluster 6: this is the Médiator® cluster, the ADRs are concentrated
in time clusters 1 and 2 with a decrease in the number of ADRs in the
second one. This is coherent with the history of the drug (Médiator® scandal
happened in 2009 with withdrawal of the market). Regarding the profile of

ADRs, we can notice a predominance of clusters 6, 5, and 10.

« Drug cluster 7: this is the Mirena® cluster, ADRs declarations predominate
in time cluster 3 (Mirena® crisis) then drop drastically. At the level of ADRs

profile, cluster 6 predominates (general ADRs), then come cluster 5, 7 and 9.

3.5.4 Discussion

In this application to pharmacovigilance, dLBM proved to be a very useful tool
for identifying phenomena that would have been difficult to detect otherwise, even
by an expert eye. In fact, dLBM revealed that in addition to Lévothyrox® health
crisis, which was the one with the widest media coverage, two other major events
have occurred. The first one concerning Médiator®, which took place in 2009-2010,
and the second one concerning Mirena®, which took place in the first half of 2017.
In addition, dLBM was also able to put in light some unexpected variations
of notifications such as an under-notification of bleeding related ADRs during
Lévothyrox® crisis. Bleeding related ADRs were expected to be constant over
time because of the follow-up made the RCPV to monitor ADRs of direct oral

anticoagulants (DOAs), a recent class of anticoagulant. However, the Lévothyrox®
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crisis has caused such an overload of work that the DOAs follow-up have been
temporarily interrupted. Another thing that dLBM has highlighted is the existence
of 3 different phases during the Lévothyrox® crisis corresponding to the reporting
peak, the marketing period of generics and the end of the crisis, respectively.
Those phases were not noticed by the RCPV staff during the Lévothyrox® crisis.
In general, we can conclude that dLBM could be extremly useful as a routine tool
for signal detection, since it might help health professionals to identify structural
changes or patterns of interest and, perhaps, prevent some of the consequences a

health crisis can lead to.

3.6 Conclusion

This work is born out of the need to analyze and summarize observations and
features of a dynamic count matrix in a simultaneous way. We have proposed a
dynamic co-clustering technique, with the purpose of simultaneously performing
clustering of rows, columns and slices (time dimension). We consider a dynamic
framework because it is of great interest to look for structural changes in the way
clusters interact with each other along the time. To this end, we have introduced a
generative model, named dynamic latent block model (dLBM). The dynamic time
modeling relies on non-homogeneous Poisson processes, with a latent partition
of time intervals. Inference is done using a SEM-Gibbs algorithm and the ICL
criterion is used for model selection. The performance of dLBM was evaluated
through applications to several simulated data scenarios and compared with that
of competing methods. Then, dLBM was fit to a large-scale dataset supplied by
the Regional Center of Pharmacovigilance of Nice (France). In this context, dLBM
provided meaningful segmentations of drugs, adverse drug reactions and time. Its
potential use by medical authorities for identifying meaningful pharmacovigilance

patterns looks very promising.
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In Chapter 3 we proposed a dynamic extension of LBM. A different extension

is proposed in this chapter, allowing one to obtain results at a different granularity

and better taking into account the number of zero entries in the data. To detect

abrupt changes in the dynamics of both cluster memberships and data sparsity,

the mixing and sparsity proportions are modeled through systems of ordinary

differential equations. The inference relies on an original variational procedure

whose maximization step trains fully connected neural networks in order to solve

the dynamical systems. Numerical experiments on simulated and real world data

sets demonstrate the effectiveness of the proposed methodology in the context of

count data.
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This chapter presents the results of two research studies:

o G. Marchello, M. Corneli, C. Bouveyron (2023). A Deep Dynamic Latent
Block Model for the Co-clustering of Zero-Inflated Data Matrices. European

Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD);

o G. Marchello, M. Corneli, C. Bouveyron (2023). A Deep Dynamic Latent
Block Model for Co-clustering of Zero-Inflated Data Matrices. Accepted for

publication in the Journal of Computational Graphical Statistics.
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4.1 Introduction

The challenge of high dimensionality often coincides with the issue of sparsity, po-
tentially resulting in uninformative cluster outcomes and increased computational
complexity (Raftery and Dean, 2006; Maugis et al., 2009).

In Chapter 3 we proposed an extension of LBM allowing one to perform the
simultaneous clustering of rows, columns and time intervals of a three dimensional
counting tensor. Although being a first attempt to extend LBM to the dynamic
case, this model has at least two limitations: i) of not allowing cluster switches
of rows/columns. Consequently, this model offers a limited level of granularity
in its results, primarily supporting macroscopic and retrospective analyses; ii)it
might not be suited to account for data sparsity due to the choice of the Poisson

distribution.

4.1.1 Contribution of this work

In this chapter, we introduce a co-clustering method to deal with time evolving
data matrices, potentially very sparse. In order to model the evolving generating
process behind the data and simultaneously account for the data sparsity, we
assume that the observations follow a time and block dependent mixture of zero-
inflated distributions. Since we co-cluster the rows and columns of the data
matrices, we introduce two evolving latent random variables that model the group
memberships of observations and features, respectively. Moreover, the parameters
of the random variables and the data sparsity proportion arise from three systems
of ordinary differential equations that model the dynamics. Capturing the data
dynamics is crucial in order to detect atypical phenomena that affected the
generative process. For instance, if at a given time ¢, the value of some features
suddenly increases for just one observation in a group, that observation will be
very likely switched to another cluster, from t;, on, when fitting our model to
the data. This example suggests an interpretation of the results which is quite
intuitive: a change in the affiliation of the observations/features to the clusters
means that a change point has been detected, leaving space for further analysis to
inspect the causes. Thus, we develop a highly interpretable co-clustering method
allowing practitioners to obtain a faster visualization of the results in order to
automate the data analysis. The proposed model can be used both as a tool for

retrospective analysis and, above all, as a tool for near real-time and analysis
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of the data progression. The code is publicly available on GitHub at the link:
https://github.com/giuliamar95/Zip-dLBM.

4.1.2 Organization of the chapter

This chapter is organized as follows. Section 4.2 introduces the proposed generative
model. In Section 4.3, the inference procedure is detailed. Section 4.4 presents
various experiments on simulated data to test and evaluate the model performances.
In Section 4.5, an application to a real world dataset is presented. The London Bike
sharing dataset is analyzed in order to illustrate the potential of the proposed model.
Then, Section 4.6 details the results of applying the model to pharmacovigilance

data. Finally, Section 4.7 provides some concluding remarks.

4.2 A Zero-Inflated dynamic LBM

In this section we introduce the Zero-Inflated Dynamic Latent Block model
(Zero-Inflated dLBM).

Notation. The observed data are assumed to be collected into time evolving
matrices, over the interval [0, T]. We work in discrete time! and assume that we

have a time partition of equally spaced points:
O=to<ti <t, <ty=T.

Now up to rescaling, we can assume without loss of generality, that t,.; —t, = 1.
Moreover, to simplify the exposition we omit the subscript u and, with a slight
abuse of notation, we denote by ¢ the generic time point ¢, and by 7" the number
of time points U. Thus, at (discretized) time ¢, we introduce the incidence matrix
X (t) € NV*M whose entry X;;(t) represents its generic element and it contains
the observations and features that took place between t and ¢ — 1. The rows of
X(t) are indexed by i = 1,..., N and the columns by j =1, ..., M.

IThis assumption is needed to make the inference tractable. As such, we could describe the
generative model in continuous time and move to discrete time in Section 4.3. However, in order
to keep the exposition as simple as possible, we decided to introduce this assumption now.
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4.2.1 A Zero-Inflated Dynamic Latent Block Model

For readers not familiar with the subject, it is advisable to begin by reading
Section 2.3.1 of this manuscript, where the Latent Block Model is comprehensively
explained. Our goal in this section is to simultaneously cluster the rows and

columns of the collection of data matrices { X (¢)}; evolving along the time.

Clusters modeling

The rows (i.e. observations) and columns (i.e. features) of X (t) are clustered
into Q and L groups, respectively. Although @) and L are assumed fixed over time,
each row/column is nevertheless allowed to change cluster membership, in [0, 7.
More formally, the cluster memberships of the rows and columns of X are identified
by two evolving multinomial distributions, respectively parameterized by «(t)
and [3(t):
Zi(t) " M(1,a(t) == (ay(t),.. ., ag(t))),
where Z;(t) is the i-th row of Z(t), M(1,-) denotes the multinomial probability
mass function and «o,(t) = P{z,(t) = 1}, with ZQ: a,(t) = 1, at time t €
=1

{0,...,T}.
Thus Z(t) := {2i4(t) }ic1,. Nwge1...o represents the clustering of N rows into @
groups at a given time point ¢. In a similar fashion, for the column clusters, we

Wi(t) % M(L,B(t) == (Bi(t),- ... Br(t))),
where W;(t) is the j-th row of W(t), B,(t) = P{wj(t) =1} and Y_ S,(t) = 1.

=1
The two random arrays Z and W are further assumed to be independent.

Sparsity modeling

In order to model a potential extreme sparsity, the observed data are assumed
to be modeled by a mixture of block-conditional Zero-Inflated (ZI) distributions,

where the entries X;;(t) are conditionally independent?®:

Xig (D] 2:(6), Wi(t) ~ Z1(Cz,.w, 5 7(1) (4.1)

2When no confusion arises we adopt in Eq. (4.1) a quite common convention in the clustering
literature: Z;(t) denotes both the i-th row of Z(¢) and a random variable whose value is ¢ if row

i is in the ¢-th row cluster at time ¢, the same convention stands for for W;(t).
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where ( is a @ x L block-dependent parameter set of the distribution and 7 () is
a vector of length T' that controls the proportion of data sparsity at any given
time period. In more detail, being a mixture between a chosen distribution ¢(-;-)
and a Dirac mass at zero, the Zero-Inflated distribution is used to account for a

high sparsity in the data and can be formally written as:
Xij ()] Zi(t), W;(t) ~ do(Xi5(t)) with probability () (12)
Xij ()] Zi(t), W;(t) ~ o(Xu;(t); Cz,w,))  With probability 1 — 7 (t).

where d¢(+) is the Dirac mass function in 0.

Then, to model time-evolving sparsity, we rewrite Eq. (4.2) by introducing a

hidden random matrix, A € {0, 1}V*M where:
Aij(t) ~ B(m (1)),

with B(-) denoting the Bernoulli probability mass function of parameter 7(¢) and
such that

Aij(t) = 1= Xi;(t)| Zi(t), W;(t) ~ d0(Xi;(t))
Aij(t) = 0 = Xi;(8)| Zi(t), W;(t) ~ o(Xi(1); Cziey.w; ) -

Among the possible choices of ¢(-), one of the most widely used is the Poisson

(4.3)

distribution (Zero-Inflated Poisson, Lambert, 1992) for count data, or the log-

normal and the Gamma distributions for continuous data.

Modeling the temporal evolution of the parameters

The last assumption concerns the modeling of clusters proportions and sparsity
over time. In fact, the mixing parameters a(t) and £(t) as well as the sparsity
proportions 7(t) are assumed to be driven by systems of ordinary differential
equations (ODEs). In this way, we are able to capture the temporal evolution of
both the clusters composition and the (excess of) sparsity. In continuous time,
the three dynamic systems read as:

Lalt) = faat), T = fwl(D),  Set) = falelt),  (44)
wheret € [0,T], fz : R® — R?, fyr : RL — REand f4 : R — R are three unknown
continuous functions and a : [0,7] — R?, b:[0,7] — RF and ¢: [0,T] — R are
three continuously differentiable functions such that

eaq(t)
Oéq(t) = SOftmaX(aq(t)) = m,
q0= q0
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Figure 4.1: Graphical representation of the Zero-Inflated dLBM model.
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Then, since (as stated at beginning of Section 4.2) we work in discrete time, the

Be(t) = softmax(by(t))

above dynamic systems reduce to their Euler schemes. For instance, the first

equation of Eq. (4.4) reduces to:
a(t+1) = a(t) + fz(a(t)).

Remark that, if we want to relax the condition of equally spaced points, we can

introduce a parameter A; such that:
a(t+ Ay) = a(t) + fz(a(t)) - A

where A, indicates the length of the considered time interval. Henceforth, in
order to simplify the exposition, we assume that A; is constant, denoted as A.
Furthermore, for convenience, we set A = 1 without loss of generality. A graphical
representation of the model described so far, and named Zero-Inflated dLBM, can

be seen in Figure 4.1.

4.2.2 The joint distribution

The model described so far can be adapted to any zero-inflated distribution. The
first as well as the most well-known Zero-Inflated distribution is the Zero-Inflated
Poisson, from an article by Lambert (1992). However, other distributions such as
Zero-Inflated Negative Binomial (Ridout et al., 2001), Zero-Inflated Beta (Ospina
and Ferrari, 2012), Zero-Inflated log-normal (Li et al., 2011) could be coupled
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with the present modeling.

In the following, to ease the readability of the inference procedure we make use
of the Zero-Inflated Poisson (ZIP) formulation to illustrate our approach. Hence,
we can write X;;(t)[Z;(t), Wj(t) ~ ZIP(Az,wyw,); ©(t)) and develop Eq. (4.2) as

follows:

X (0 Zi(t), W;(t) =0 with probability 7(t)
where A is a () X L matrix, denoting the block-dependent Poisson parameter and
7(t) represents the sparsity at any given time period, with t =0,...,T.

The model described so far has a set of parameters denoted by 6 = (A, a, 3, 7)

and a set of latent variables: {Z, W, A}, where Z = {Z(t)}4=1..7, W =
W) =1,.ms A={A{#) }i=1,.. 7 and X = {X(t) }i=1, 1
As a first move, we can compute the likelihood of the complete data:

p(X, Z, W, Al0) = p(X|Z, W, A, A, m)p(A | m)p(Z|a)p(W|B), (4.5)

where:

N M T Xij(t) (1-445(1))
A(0) Aziow,
p(X|A, Z,W, A7) =[] TT 11 L X (1! exp(—Az,yw;(t) ,
4 ()]

4.3 The inference algorithm

Regarding the parameters estimation, the traditional procedure for such a model
would be to maximize the log-likelihood p(X|#). However, in our case, neither the
direct maximization nor the classical EM algorithm (Dempster et al., 1977) are
feasible because of the impossibility to compute the joint conditional distribution
of the latent variables, p(Z, WX, ), due to their interdependent double missing
structure. For details on this, please refer to Section 2.5.1. An additional difficulty
is also the link that «, § and 7 have with their respective systems of differential

equations, which do not allow the formulation of a closed updating formula. This is
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why, we rely on the Variational-EM algorithm combined with Stochastic Gradient
Descent (SGD). We recall that variational inference is usually applied to complex
models involving missing values or relying on latent structures (Jaakkola and
Jordan, 1997; Jordan et al., 1998). The VEM algorithm has been shown to make
relevant estimates of mixture models in different configurations (Govaert and
Nadif, 2008).

4.3.1 Variational inference

Since we cannot compute the posterior distribution, p(A, Z, W|X, 0), we rely on a
variational procedure which optimizes a lower bound of the likelihood. Let us thus
introduce a variational distribution ¢(.) in order to decompose the log-likelihood

as follows:
log p(X10) = L(g,0) + KL(q(.)||p(.| X, ),

where £ denotes a lower bound and is defined as:

B p(X, A, Z, W10)
=> > q(Z,W, A)log JZWA)

Z W A
wAZW) q(A, Z,W)
a4,z log(p(X, A, Z, WI0)] — Eqa,zm)[log(a(A, Z, W))],
and KL denotes the Kullaback-Liebler divergence between the true and the

approximate posterior:

Now, the objective is to find a tractable distribution ¢(.) that maximizes the
lower bound £(q, ). In order to allow the optimization of L£(q,#), we further
assume that q(A, Z, W) factorizes as follows:

q(Z, W, A) = q(A)q(Z)q(W) = l:[ ]:[1 ]:[lqvlm l:[ l:[lq t)) l:[1 UIQ(W t

4.3.2 Variational E-Step

The VE-step of the VEM algorithm aims at maximizing the lower bound in
Eq. (4.6) with respect to the variational distribution ¢(-) while keeping 6 fixed.
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Following (Ch.10, Bishop, 2006), we derive the update equations for the factors
q(A), ¢(Z), and q(W), such that the log of the optimized factors are given by:

log ¢"(A) = Eqw,z)llogp(X, A, Z,W | )], (4.7)
log ¢*(Z2) = Eyaw)llogp(X, A, Z, W | 0)], (4.8)
log ¢*(W) = Eya.z)[logp(X, A, Z,W | 0)]. (4.9)

Optimization of the factor q(A)

Let us consider the derivation of the update equation for the factor g(A). The
sequential update for the factor ¢(A) can be computed through the log of the
optimized factor, where all the terms that do not depend on A are absorbed in

the constant term.

Proposition 1. Denoting by 6;;(t) :== q(A;;(t) = 1) the variational success proba-
bility for A;j(t), the optimal update of q(A) is:

5@']’ (t) o eXp<Rij (t))

s exp(Ry (1) (410

with:
Q L
Rij(t) = log(m(t)1ix,;m=0y) + D D { — Eyw.2)[Zig(0)| Eqow, 2)[Wie ()] Xi; () log Age+

+ By Zia0) By [Wie () g | +1og Xi(0)! ~ log(1 = (1),
(4.11)

The proof is provided in Appendix B.1. Note that, formally, when X;;(¢) # 0,
R;j(t) = —oo and d;;(t) = 0, which makes sense: non-null observations in X come

from a Poisson distribution with probability one (see Eq. (4.3)).

Optimization of the factor q(Z)

Let us now consider the derivation of the update equation for the factor ¢(Z).
The sequential update for the factor ¢(Z) can be computed through the log of the
optimized factor, where all the terms that do not depend on Z are absorbed in

the constant term.
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Proposition 2. Denoting by 7,,(t) :== q(Z;y(t) = 1) the variational probability for
Ziy(t), the optimal update of q(Z) is:

Tiq t
Tig(t) = Z(%_l(rizo(t)’ (4.12)

with ri4(t) is denoted by:

M=

> { (A [Ai ()]) [Eq<A,W) [Wie(#)] Xij () log(Age)+

7iq(t) o< exp (
16=1

J

—@mmmw@m4}+mg%@0.
(4.13)

The proof is provided in Appendix B.2.

Optimization of the factor q(W)

Let us now consider the derivation of the update equation for the factor ¢(WW).
The sequential update for the factor ¢(W) can be computed through the log of
the optimized factor, where all the terms that do not depend on W are absorbed

in the constant term.

Proposition 3. Similarly for the latent variable W, denoting by 1;(t) := ( Wie(t) =
1) the variational probability for W(t), the optimal update of (W) is

sje(t)
LA o) ey

—@mmwmmm4}+mamw0.
(4.15)

The proof is symmetrical to the one developed for 7;,(¢) in Proposition 2.
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4.3.3 Variational M-Step

In order to obtain the updating of the parameter set 6, the objective of the M-Step
is the maximization of the lower bound L(q, ) with respect to 6§ = (A, a, 8, 7),
while holding the variational distribution ¢(-) fixed.

Proposition 4. By developing the Eq. (4.6), the variational lower bound L(q, 6)
can be written as:

L) =33 {6@-@) o8R0, 0-00) + (1= 35(0) g1 = (1) +
Q L
#3300 08 A = O
q=1/¢=1

(4.16)

The proof is provided in Appendix B.3.

Update of A

Here our goal is to derive the update of the Zero-inflated Poisson intensity
parameter, A. The variational distribution ¢(A, Z, W) is kept fixed, while the
lower bound is maximized with respect to A, to obtain its update, A. However,
in case other zero-inflated distributions are chosen, this step must obviously be
adapted to the new distribution, although the procedure of the derivation does

not change.

Proposition 5. The updating formula of A is obtained by mazimizing L(q,0) with
respect to the parameter and it can be written as follows:

S SIS O (X (1) — 850X 0))
A = : (4.17)
ity Zj]\/il i Tig(t)n;e(t) (1 — 0 (t)>

The proof is provided in Appendix B.4.
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Update of o, § and 7

The mixture proportions, «(t) and (t), and the sparsity parameter, m(t), are
driven by three systems of differential equations, in Eq. (4.4), respectively. As
we assumed that the functions f4, fir and f; are continuous, we propose here to
parametrize them using three fully connected neural networks (Gent and Sheppard,
1992). Thus, optimizing the lower bound in Eq. (4.16) with respect to «(t), 5(t)
and m(t), reduces to maximize it with respect to the parameters of the neural
networks, wa,wz and wyy, as well as to the initial values a(0),b(0) and ¢(0). In
particular, we denote with w(h) the set of weights of the neural network settled for
the updating of the related parameter at iteration h. The initial set of weights is
randomly sampled, w(0) = {w(0)},, and along the iterations they are updated
as follows:
wi(h) = wi(h — 1) =YV Ly, ),

where 7 is the learning rate, in the experiments they are v4, 7z, yw = le —4. The
maximization is implemented in PyTorch via automatic differentiation (Paszke
et al., 2017) and relies on stochastic optimisation (ADAM, Kingma and Ba,
2014). For further details on other technical points see Appendix B.5. Thanks to
back-propagation the updated networks provide us with estimates of a, 3 and .

The inference procedure is summarized in Algorithm 3.

4.3.4 Initialization and model selection

When dealing with clustering methods based on the EM algorithm, the initial-
ization and the selection of the appropriate numbers of clusters (for rows and
columns here) are two issues which deserve an appropriate treatment. The issues
related to these two points are slightly complicated here by the use of deep neural
networks for modeling the dynamics of cluster and sparsity proportions. Despite
this apparent difficulty due to the intrinsic complexity of these networks, they
will nevertheless offer some unexpected flexibility that we may use to lower the
computational cost of the whole algorithm. Indeed, and as it will be illustrated in
the following numerical experiments (Section 4.4), the use of deep neural networks
for modeling the row and column cluster proportions will allow our algorithm to

work with some empty clusters.

Therefore, with the objective to avoid the usual computationally demanding

procedure of testing all pairs of row and column cluster numbers, we propose the
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Algorithm 1 VEM-SGD algorithm (for the Zero-Inflated Poisson distribution)
Require: X, Q, L, max.iter, o, 3,7, A from Initialization.
Initialization of 7(¢) and n(¢): sampling from M(«a(t)) and M(S(t)), respec-
tively;
Initialization of 6(¢): matrix of 1, then setting 6(¢) = 0 when X > 0;
for it = 1 to max.iter do
VE-Step:
for p =1 to p_max do
for t =1to T do

Update §(t), 7(t), n(t) foralli =1,... ,N;j=1,..., M:
o exp(Ri;(t)
%50 = T exp(Ry (0))
where:
Q L _
Rij(t) =log(m(t)1(x,;(t)=0}) + Z Z — Tiq(£)nje(t) X5 (t) log Age + Tiq(t)njé(t)AqZ:| + log X;; (t)! — log(1 — 7(t)).
g=1 ¢=1

M L )
alt) = 5o e (Z {0 8500 [mie® X, O 05(A0) = mie®se) } + 1og<aq(t>>> .

j=1 ¢=1

N Q _
n50(t) = L exp (1= 6:5(t)) | Tig(t) X5 (t) log(Age) — Tig () Age | ¢ +1og(Be(t)) |-
D,

i=1 ¢q=1

with Dy and D, normalizing constants.

end for
end for
M-Step:
Update 0 = (A, 7, a, ).
i e ) Tia(Dnje() | Xig (1) =845 (1) X5 (1)
i Zm,t{ t)n t(X t)—8;;(t)X t)}

o = th {Tiq(t)njg(t)<1—5ij<t))}
for epoch = 1 to Epochs do

A

Update &, 3, 7
Loss Evaluation;

Algorithm backpropagation;
Numerical optimization with SGD.
end for
end for
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following strategy for both initialization and model selection.

« First, we select a single specific slice of the data X;, ., and apply on it a static
version of our Zip-dLBM algorithm for a list of pairs of cluster numbers; i.e.
(q,0) forq=2,...,Qmaz and £ =2, ... Lya,. We then use the ICL criterion
(Integrated Completed Likelihood, (Biernacki et al., 2000)) to select the
most appropriate row and column cluster numbers for this specific slice of
data. Let us remind that ICL aims at approximating the complete-data
integrated log-likelihood and can be derived for the Zip-dLBM model as
follows:

A Al A -1
ICL(Q,L) =logp(X,Z,W;0) — ?

L-1
2

log N+

L 1
log M — Q2 log(NM) — - 1og(N M),

The pair (Q, ﬁ) that leads to the highest value for the ICL is considered
as the most likely cluster numbers for the considered slice of data X, ,,.

Remark that, unless a further specific notice, the slice X;, ., considered for

this step in our experiments will be the first slice of the data, i.e. X3,.

« Second, in order to initialize our VEM-SGD algorithm (see Algorithm 3)
with useful initial values for model parameters, we initiate a cascade process
as follows in order to propagate the parameter estimates obtained on the
slice X3, ,, to the following slices. Fixing for the moment the numbers of row
and column clusters to (Q, ﬁ), we run the static version of our Zip-dLBM
algorithm on the next slice X, .,+1 with the parameters étm“ as initial values.
Then, the estimated parameters ;, ., are used as initialization of the static
Zip-dLBM on the slice Xy, ,+2, and so on for the following slices. This
strategy allows to provide initial values for all model parameters é(t), for
t=1,...,T.

o Finally, as we expect that the choice of Q row and L column cluster com-
ponents could not be the best for all slices of the dataset, the VEM-SGD
algorithm (see Algorithm 3) will be then run with more components than
considered in the initialization. Indeed, we run the VEM-SGD algorithm
with Qe > Q and L,,qr > L cluster components. Then, part of the model
parameters are initialized with é(t) obtained via the initialization procedure
described above (see Algorithm 2) and the remaining parameters, corre-

sponding to the additional row and column clusters are set to zero. Thus,
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we aim at exploiting the potential "blessing" of the use of deep neural net-
works allowing our VEM-SGD algorithm to start with some empty clusters.
These empty clusters will have the possibility to be activated later in the
inference process, if needed. Therefore, we avoid the usual computationally
demanding procedure of running the whole algorithm with all pairs of row
and column cluster numbers for the whole dataset. This strategy allows our
approach to scale to massive datasets in a reasonable computation time and
with satisfying results, as it will be illustrated in the next section. Similar
solutions in a Bayesian framework have been proposed by Malsiner-Walli
et al. (2016) in their work on model-based clustering based on sparse finite
Gaussian mixtures and by Forbes et al. (2019) where two strategies are
proposed for selecting the number of components in non-Gaussian mixture
models.

Algorithm 2 Initialization algorithm

Step 1: Static model selection
Require: X, Qin, Qmazs Limin, Lmaz, max__iter, n.sim.

for Q :Qmina to Q:Qmax do

for L =L,,in, to L=L,,,, do

Initialize randomly «, 5, 7, A;

Run a static version of Zip-dLBM(Q), L) on t = 1, computing the ICL;
end for

end for
Obtain Q* and L* that gives the highest ICL value.
Step 2: Cascade Process
Require: X |, Q*, L*, max_iter.
fort =1to T do

if t =1 then

Initialize randomly a(t = 1), 8(t = 1), 7(t = 1), A;
Run a static version of Zip-dLBM(Q*, L*) on t = 1;
Store the results a(t =1),5(t =1),7(t = 1), A.
else

Initialize a(t — 1), B(t — 1), 7(t — 1), A;

Run a static version of Zip-dLBM(Q*, L*) on t;
Store the results a(t), 8(t), 7(t), A.

end if

end for
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4.4 Numerical experiments

The main purpose of this section is to highlight the most important features of our
zero-inflated dLBM algorithm over simulated datasets in the Poisson scenario. We
aim at demonstrating the validity of the inference algorithm and model selection
criterion presented in the previous sections. The first experiment consists into
applying Zip-dLBM to a specific dataset with evolving block pattern and sparsity
to show that it recovers the data structure. The second experiment shows that Zip-
dLBM is able to uncover clusters being initially empty, filling up over time, then
emptying again. The third experiment shows the robustness of Zip-dLBM when
the initial number of clusters is not the actual one, thus testing the performance
of the model in case of poor initialization. The fourth experiment demonstrates
the model selection procedure on 50 simulated date sets. All the experiments on
simulated data were realized on datasets with N = 600 rows, M = 400 columns
and T = 50 time instants. Then, in Appendix B.6, other experiments on simulated
data are proposed, namely a benchmark study and an experiment to asses the

robustness model assumption.

4.4.1 Introductory example

As a first example, we simulate a dataset with dimension 600 x 400 x 50 and
with ) = 3 groups of rows, L = 2 groups of columns. The level of sparsity ranges
from 80% to 90% in the time period. The values of the other simulated parameters

in this experiment are shown in Table 4.1.

Cluster « 16
1 0.2 to 0.8 | 0.1 to 0.99 6 4
2 0.18 to 0.14 | 0.99 to 0.1 A=1|1 2
3 0.6 to 0.06 - 7 3

Table 4.1: Mixing proportion and A values.

We apply Zip-dLBM to the simulated dataset with the actual values of )
and L to show the ability of the model to fully recover the model parameters.
The running time for this experiment is 23.5 minutes on CPU (see Appendix B.5
for details).

Figure 4.2 shows the evolution of the the lower bound, expressed in Eq. (4.16),
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that Zip-dLBM aims to maximize. We notice that the convergence is reached in
less than 10 iterations. It is worth noticing that each iteration of the algorithm
involves the optimization through gradient descent of the loss for 2000 epochs, for
each parameter. Figure 4.3, displays the reorganized incidence matrices at time
instants t = 10 and ¢ = 30, respectively: the rows and columns of the incidence
matrix are permuted according to the estimates of the latent variables Z and W,
in such a way that nearby rows (columns) belong to the same cluster of rows
(columns). The blocks are also delimited by black dashed lines. The density of
points within each block is determined by the intensity function of the Poisson
distribution, represented by the parameter matrix A. The estimated values of A

are as follows:

3.001 7.001
A = 12.000 1.004
3.990 5.998

In this example Figure 4.4 shows the evolution of the estimated mixture parame-
ters &, B and 7 along the time period, represented on the x-axes. These parameters
are estimated via stochastic gradient descent, linked with ODEs integration. By
looking at these figures, we see the true parameters on the left column, the out-
put of the initialization procedure in the middle and the results the Zip-dLBM
estimates on the right. The comparison between the simulated and estimated
parameter evolution shows that the model fully recovers the actual values over
time, modulo the switched labels for the mixture proportions.

As expected, our algorithm succeeds to recover the simulated pattern. The simi-
larity between the estimated and simulated values validates the accuracy of our
modeling approach in capturing the underlying patterns and characteristics of the
data, modulo the switched orders. Furthermore, to evaluate the quality of the
clustering, we use a measure called CARI, recently introduced by Robert et al.
(2020). This new criterion is based on the Adjusted Rand Index (Rand, 1971)
and it was developed especially for being applied to co-clustering methods. The
closer the index is to 1, the more both the row and column partitions are close to
the actual ones, whereas the closer the value is to 0, the greater the difference
between the true and estimated labels. In this experiment we obtained a CARI
index of 1. From these results we can clearly see that our algorithm perfectly
identifies the composition of the original clusters and it recovers the evolution of

the mixing proportion over time.
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Lower Bound
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Figure 4.2: Lower bound maximization throughout the iterations of the Zip-dLBM
algorithm.

Time instant t = 10 Time instant t = 30
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Clusters of columns Clusters of columns

Figure 4.3: Reorganized incidence matrices at time instants ¢ = 10 and ¢ = 30
according to the estimates of the cluster memberships. Nearby rows (columns)
belong to the same cluster of rows (columns). The blocks are also delimited by
black dashed lines.

4.4.2 Robustness of the initialization procedure

In this section we perform two experiments to test the robustness of the model
to initialization. In the first experiment, we initialize parameters with a wrong

number of clusters, while in the second experiment the data are simulated with
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Figure 4.4: Evolution of the true (left), initialized (center) and estimated (right)
proportions of the parameters «,  and 7, respectively. Each curve represents the
evolution of a column (row) cluster proportion.

101



CHAPTER 4

particularly complex dynamics. In fact, we test the model’s ability to identify
a cluster that is empty at the beginning of the period, which fills up and then
empties again. As for the first experiment, in order to test the robustness of
our initialization strategy, Zip-dLBM was intentionally initialized with a higher
than the optimal number of clusters. In fact, although the data were simulated
with @ = 3 and L = 2, both the initialization process and Zip-dLBM were run
with @ =5 and L = 4. Figure 4.5 shows on the left column the evolution of the
simulated mixture proportions and the sparsity parameter, in the middle column
their initialization, and on the right column the results of the estimates provided
by Zip-dLBM. We can see that the initialization of « in Figure 4.5b is rather
poor. Nevertheless, Zip-dLBM finds the right trend of the mixture proportions

over time, effectively emptying the two superfluous clusters.

In this experiment a CARI index value was calculated for each time instant;
the obtained CARI index is 0.98.

Now, as for the second experiment of testing the robustness of the model
to initialization, we simulate the data in such a way that in the clusters in line
there is one that is empty at the beginning of the period under consideration,
then fills up towards the middle of the period, and then empties again at the
end, Figure 4.6a shows this dynamic. Through this experiment we want to show
how Zip-dLBM is able to find the right evolution of mixture proportions despite
the complex dynamics. Figure 4.6 depicts the simulated parameters on the left,
the initial estimates in the middle, and the final estimates on the right. Looking
at the middle part, in Figure 4.6b, we can see that the initialization process
is not particularly helpful to the model because of the switched labels and a
poor parameters estimation. Despite the initialization, we see in Figure 4.6¢ that
Zip-dLBM is perfectly able to recognize the initially empty cluster which then
gradually fills up and empties again. In this experiment, the CARI index, obtained

by averaging the indexes over time, is 0.95.

4.4.3 Model selection experiment

The previous experiments have allowed us to attest that the initialization strategy
is globally robust and that the application of Zip-dLBM allows us to correct for poor
initializations with respect to the number of clusters in rows or columns. Therefore,
in this experiment we test the global capability in choosing the optimal number of

clusters in rows and columns over a larger number of simulated datasets through
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the combination of the initialization procedure and the application of the Zip-
dLBM algorithm. Let us recall that, as mentioned in Section 4.3, the ICL criterion
identifies the optimal number of clusters only at one time instant in order to initial-
ize the parameters optimally. Subsequently, Zip-dLBM is run with a higher number
of clusters than those identified by ICL. Hence, to validate the performances on the
component activation, 50 independent datasets are generated with the setup ex-
plained in Section 4.4.1, with () = 3 row clusters and L = 2 column clusters, a level

of sparsity varying between 80% and 90% and the other model parameters equal to:

Cluster « 15}
1 0.2 t0 0.8 | 0.1 to 0.99 6 4
2 0.18 to 0.14 | 0.99 to 0.1 A=|1 2
3 0.6 to 0.06 - 73

Table 4.2: Mixing proportion and A values.

Then, Zip-dLBM is applied on those simulated datasets using values of () and
L equal to 10. Table 4.3 shows the percentage of selections. The highlighted
cell corresponds to the actual value of @ and L. Zip-dLBM succeeds 86% of
the time to identify the correct model. Specifically, to evaluate the results of
this experiment, we averaged the membership probability of the two estimated
mixing parameters, a and ; exceeding clusters having an average membership
probability of less than le-3 were considered to be off. Among the results of the
50 simulated datasets, we report in Figure 4.7, as an illustrative example, one of
the component activation results. We see that not only the unnecessary clusters
remained empty, but also the estimates of the o and § are good, as Zip-dLBM
manages to identify the evolution of the two mixing parameters over time, despite

the number of clusters given as input is not the optimal one.

4.5 London bike sharing

This section focuses on the application of Zip-dLBM to a large-scale bike-sharing
dataset in London, with the aim of illustrating the potential of our tool on a real

dataset.
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Table 4.3: Model selection. Percentage of activated components on 50 simulated
datasets. The highlighted cell corresponds to the actual value of Q and L.
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Figure 4.7: View of a model selection result: the useful clusters are activated
while the useless ones lie empty on the basis of the figure.

4.5.1 Protocol and data

The data are collected and publicly distributed by Transport for London®. We
focus on one-month, specifically June 2022, as it represents in our view a neutral
choice for the use of shared bikes, both regarding the end of Covid pandemic
and the weather conditions. The objective of this application is to analyze how
inbound (Arrival) and outbound (Departure) bike rental stations take on different

roles, and, consequently, different cluster memberships, depending on the hour

3https://cycling.data.tfl.gov.uk, also available on GitHub at: https://github.com/
giuliamar95/Zip-dLBM
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of the day. To analyze the data, we summed up the hourly interactions on the
working days of the month, in order to order to obtain a "cumulative" day that
we consider from 6 am to 10 pm. So, the time unity measure is one hour and
the overall dataset is made of by 776,270 observations, for which we consider
the departure station name, the arrival station name and the start time date.
Moreover, we only consider stations (arrival and departure) that were rented more
than 50 times over the month of June 2022. The resulting dataset contains 791
departure stations, 791 arrival stations and 16 hours corresponding to 475,586
non-zero entries in the incidence matrix. Figure 4.8 represents the number of
bikes in use in the London sharing system at every hour over the whole month of
June. It can be clearly noticed that there are two peaks at the rush hours when

people go to or from work (7-8 am and 5-6 pm).

London bikes - June 2022

06 08 10 12 14 16 18 20

Hours

40000 60000 80000
L L )

20000
L

Figure 4.8: Barplot of the number of bikes taken from the London bike sharing
system, from 6 am to 10 pm, in a cumulative day, corresponding to June 2022.

4.5.2 Summary of the results

We fit Zip-dLBM to the data with a running time of 22.3 minutes on CPU (see
Appendix B.5 for details). For the initialization, as explained in Section 4.3.4,
we computed the ICL criterion on one data slice, corresponding on the hour
9 am - 10 am, where the optimal number of clusters identified by the model
selection criterion are Q = 6 and L = 6. Then, we initiated the model parameters

through the cascade process described in Algorithm 2 and we ran Zip-dLBM with
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@ = 10 and L = 10 to allow the model to fill or empty clusters as needed.

Figure 4.9 represents the estimated Poisson intensities A for Zip-dLBM. This
figure only focuses on the 6 groups of departure stations, denoted by the letter
D, and the 6 groups of arrival stations, denoted by the letter A, that have been
activated in the inference. Each color refers to a departure (rows) or arrival
(columns) cluster and the higher is the value in each block, the strongest is
the relationship (i.e the expected number of bikes exchanged in the time unit)

between the related pair of clusters. Looking at this figure, it can be seen that
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Figure 4.9: Estimated Poisson intensity parameter, each color represents a different
departure (arrival) cluster.

some clusters are strongly related whereas others are not at all. For example,
cluster D1 (light blue) of the departure stations is highly related with clusters A4
and A6 of arrival stations. Also, cluster D5 of departure stations shows the same
behavior but with lower intensity levels. Hence, one may think that the arrival
clusters A4 and A6 are located in the city center or in highly busy areas. In
fact, looking at the coordinate belonging to cluster D1 of the departure stations,
they are mostly concentrated at central locations and, more specifically, at the
stations emitting the highest number of bikes, such as Hyde Park, King’s Cross,
and Queen Elizabeth Olympic Park. We also noted that during the month of
June 2022 in Hyde Park and Queen Elizabeth Olympic Park several major events
were held, such as the Rolling Stones concert (Hyde Park) and the Red Hot Chili
Peppers concert (Queen Elizabeth Olympic Park). This suggests that this cluster
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includes stations that are subject to a higher-than-normal load. Also, we can
see a particular behavior of cluster D2 (green) of outgoing bikes. This cluster
is characterized by bikes leaving the suburbs during the morning peak hours
(7 am-9 am) and then concentrating more in the city center during the day and
especially in the evening rush hours (4 pm-6 pm). In addition, this cluster has
a strong relationship with clusters A2, A4 and A6 of arrival stations. Among
them, clusters A4 and A6 represent mostly central stations, while cluster A2 is
concentrated in the city center in the morning rush hours and in the suburbs in
the evening rush hours. We might infer that this dynamic is typical of workers
who decide to bike to their workplaces. On the contrary, clusters D3 and D6
of departure stations have a very low intensity of interactions with the arrival
clusters, however they are really spread all over the city. In particular, cluster
D3 has the highest level of interactions with cluster A6 of arrival stations, while
cluster D6 has the highest intensity level with cluster A2 and cluster A4 of arrival
stations. The main difference between clusters D3 and D6 concerns their location.
In fact, all over the day, there are really few points belonging to cluster D3 and
they are mainly concentrated in the Greenwich peninsula and, only at the end of
the day, in the city center. Cluster D6, on the contrary, concentrates in the city
center and in some specific areas, such as Greenwich peninsula, Wandworth and
Sheperd’s Bush early in the morning, then it spreads all over the city. Therefore,
from the large initial data matrix, Zip-dLBM was able to identify consistent and

relevant clusters of the London sharing bike stations.

4.5.3 Interpretation of the estimated parameters

To better understand the results, we now focus on the estimates of the other
model parameters. Figure 4.10 shows the estimated evolution of the sparsity
parameter over time. We see that, at the beginning of the day, 6 am, the sparsity
is at 95%, then as we approach the morning peak, the number of borrowed sharing
bikes increases and consequently the sparsity decreases, reaching 86% at 8 am.
Between 9 am and 2 pm, it again increases slightly (90%) and then decreases as
we approach the peak at the end of the day, when workers leave work. In fact,
at 6 pm the sparsity level reaches its daily minimum at a level of 80%.

Figures 4.11a and 4.11b show the estimation of the mixing parameters a and f.
From Figure 4.11a, we see how cluster D2 has a precise evolution, corresponding to

the daily work rhythm. Cluster D4 and Cluster D6 on the contrary, have exactly
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the opposite behavior, filling up in the non-rush hours of the day, starting at 10
am, then emptying out in the rush hour of the afternoon and filling up again in
the evening. We might infer that the outbound bikes in these clusters are mostly
rented by tourists. Cluster D1, on the other hand, as mentioned earlier, is very
peculiar because it contains a few stations that emit a lot of bikes, probably when
there are special events that mobilize a large number of people. (e.g concerts,
football matches, etc.)

Looking at Figure 4.11b instead, we see estimates of the mixing proportions of
the arrival bike clusters. Cluster A2 again has the typical workday evolution,
thus including those bike stations taken to get to the workplace and back home
at the end of the day. Another particular group is cluster A3. Its proportions
increase from 10 am reaching a peak between 2 pm and 3 pm, and while all other
clusters tend to empty out in the evening, this one increases. Cluster A5 fills in
mid-morning and then remains stable during the rest of the day. Clusters A4
and A6, on the other hand, are very small in terms of proportions. As we saw
earlier, they in fact include few but very central stations with a very high density

of interactions.

Estimated Ti(t)

0.95
|

0.90
|

0.85
|

Figure 4.10: Evolution of 7.

4.5.4 Insights into the evolution of two departure and arrival
clusters

For pedagogical purposes, in this section we choose two clusters, specifically the

departure bike cluster D2 and the arrival bike cluster A2, by analyzing the results
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Figure 4.11: Evolution of the estimates & and B . Each color represents a different
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in detail. Figure 4.12 depicts cluster D2 of the departing stations and its evolution
in 3 time instants: 7 am, 1 pm and 6 pm. As mentioned, given its specific
dynamics, this cluster is likely to be populated by bicycle stations used mostly by
workers. In fact, in Figure 4.12a we see that at 7 am there are many points, mostly
distributed outside the city center. Thereafter, around 1 pm (Figure 4.12b) the
volume of points decreases. Then, toward the afternoon rush hour, in Figure 4.12c,
the density of points increases again. Indeed, in Figure 4.12¢ we see that most of
the points are now located in the center. This behavior is typically due to the
workers from the suburbs going to work in the city center while at the end of the
day taking the shared bikes back to leave the city center.

Similarly, Figure 4.13 shows the cluster A2 of the arrival stations and its evo-
lution in 3 time instants: 7 am, 1 pm and 6 pm. Here we note how at 7 am
cluster A2 contains arrival stations all located in the city center. In contrast, in
Figure 4.13b, the number of bikes belonging to this cluster decreases and the
locations are more scattered. Whereas, in Figure 4.13c, we note how at the end
of the workday, most of the arrival stations in this cluster are no longer located
in the center but in the suburbs. Thus, from the comparison of Figure 4.12 and
Figure 4.13 we notice a complementary trend, dictated by the fact that the arrival
and departure stations in the two selected clusters are both characteristic of the

daily work schedules.
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(a) Cluster D2 - 7am.  (b) Cluster D2 - 1 pm.  (c) Cluster D2 - 6 pm.

Figure 4.12: Snapshots of the evolution of the departure cluster D2 at three
different times in the day: 7 am, 1 pm, 6 pm.
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(a) Cluster A2 -7am.  (b) Cluster A2-1pm. (c) Cluster A2 - 6 pm.

Figure 4.13: Snapshots of the evolution of the arrival cluster A2 at three different
times in the day: 7 am, 1 pm, 6 pm.

4.6 Analysis of the adverse drug reaction dataset

This section focuses on the application of Zip-dLBM to a large-scale pharmacovig-
ilance dataset, similar to the one considered in 3, with the aim of illustrating the
potential of the tool.

4.6.1 Protocol and data

We recall that the dataset consists of adverse drug reaction (ADR) declarations,
collected by the Regional Center of Pharmacovigilance (RCPV), located in the
University Hospital of Nice (France). A time horizon of 7 years is considered,
from January 1%, 2015 to March 3", 2022, the unity measure for the time interval
is a trimester. The overall dataset is made of 27,754 declarations, for which the
market name of the drug, the notified ADR and the reception date are considered.
Moreover, we only considered drugs and ADRs that were notified more than 20
times over the 7 years. The resulting dataset contains 236 drugs, 324 ADRs
and 29 time intervals with 12,336 non-zero entries. Looking at Figure 4.14, it can

be clearly noticed that there are two peaks, one in 2017 and the other in 2021.
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Figure 4.14: Number of declarations received by the pharmacovigilance center
from 2015 to 2022, sorted by trimester.

In 2017, an unexpected rise of reports for ADRs happened concerning a specific
drug called Lévothyrox®. This has been marketed in France for about 40 years as
a treatment for hypothyroidism and, in 2017, a new formula was introduced on the
market. The Lévothyrox® case had a huge media coverage in France: Lévothyrox®
spontaneous reports represent the 90% of all the spontaneous notifications that
the RCPV received in 2017 (Viard et al., 2019). In addition, since the end of
the year 2020, vaccinations against Covid-19 have been introduced. At that time,
three vaccines are licensed in Europe, Comirnaty® was the first Covid-19 vaccine
available in France in December 2020, followed by Moderna® in January 2021
and Vaxzevria® in February 2021. From Figure 4.14, one can understand the
difficulty to work with such data which contain signals of very different amplitude.
Indeed, behind those very visible effects, many ADR signals need to be detected
for obvious public health reasons. In particular, those data also contain ADR
reports regarding another health scandal happened in 2017, involving Mirena®,
which is here far less visible than Lévothyrox®, but also led to many avoidable

serious health issues.

4.6.2 Summary of the results

To the initialize the algorithm, as explained in Section 4.3.4, we computed the ICL
criterion on one data slice, corresponding to the first trimester, where the optimal
numbers of clusters identified by the model selection criterion are Q=4and L = 4.
Then, we initiated the model parameters through the cascade process described
in Algorithm 2 and we ran Zip-dLBM with Q = 7 and L = 7 to allow the model
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to fill or empty clusters as needed. Figure 4.17 depicts the estimated Poisson
intensities A for Zip-dLBM, focusing on 4 drug clusters (D) and 4 ADR clusters
(A) that are activated during the inference. Each color represents a drug or ADR
cluster, with higher values indicating stronger relationships (i.e., expected number
of declarations received per time unit) between the respective clusters. The figure
reveals varying degrees of association, for example, cluster D3 of the drug clusters
is highly related with cluster A1 of ADR clusters. Figures 4.15, 4.16 and 4.18 show
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the estimates of the model parameters @&, 3 and #, respectively. Figure 4.15 shows
the estimation of the mixing parameter a. Cross-referencing the information from
these results, we note that the clusters that have the highest intensity are also
the less populated. For example, cluster D3 of drugs has a very high intensity of
interactions with cluster A1 of adversarial effects, yet cluster D3 turns out to be
very small in Figure 4.15. This is due to the fact that this cluster contains drugs
that are declared with an an unusually high intensity. In fact, this cluster contains
the drugs that are the causes of the major health crises that occurred during the
reporting period: Mirena® in the first half of 2017, Lévothyrox® in the second
part of 2017, and Covid-19 vaccines throughout 2021. Similarly, by analyzing the
composition of cluster A1, it is possible to identify which ADRs were the most
reported in each of the aforementioned crises. For instance, the most reported side
effects during the Mirena® health crisis are mostly hormonal ones, such as anxiety,
heat shock, and aggressive behavior. Then, looking at Figure 4.16, during the
Lévothyrox® health crisis we notice a peak in the A1 cluster of adversarial effects,
probably because the great media coverage that the scandal had in those years
made people declare the most disparate side effects. Also, we see that in 2021 there
is another peak, corresponding to the period of the Covid-19 vaccination. Here,
the adversarial effects found in cluster A1 are mostly linked to problems related
to the vaccination site (e.g. arm pain, arm inflammation, skin reaction) and flu
syndrome as a result of the vaccine. Cluster D2, on the other hand, contains
a few but very common and, consequently, much-reported drugs, for example,
paracetamol and some of the most popular anticoagulants. From Figure 4.17 we

note that this cluster has a stronger intensity of interactions with cluster A1 and
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A2 of undesirable effects. Looking at Figure 4.16, we note that cluster A2 is thinly
populated and seems to follow the trend of health crises discussed above less closely.
In fact, this cluster contains less severe and more common adversarial effects,
which can occur even with the more frequent medications (e.g., itching, headache,
weight gain, etc.). Clusters D1 and D4, on the other hand, are characterized
by very low interaction intensities and are densely populated by all other drugs.
Then, looking at Figures 4.17 and 4.16, we see that the behavior of cluster A3 of
adversarial effects is very peculiar. It is characterized by almost zero interaction
intensity with drug clusters D1 and D4. After the Lévothyrox® crisis, the number
of reported adversarial effects significantly decreased, indicating a turning point
in pharmacovigilance as people became more aware of its importance and started
reporting side effects more frequently. Moreover, analysing its composition, it was
noticed that at the beginning of the period it also contained all the specific side
effects of Covid-19 vaccines, which were not yet known. Later, in 2021, those side
effects, changed clusters moving to cluster Al as previously described. On the
other hand, Figure 4.18 shows the estimated evolution of the sparsity parameter
over time. We see that, at the beginning of the period, in 2015, the sparsity is
at 98%, then as we approach the 2017 peak, the number of declarations increases
and consequently the sparsity decreases. In 2019, it again increases slightly (97%)
and then decreases as we approach the peak due to the Covid-19 vaccines. In
fact, at the beginning of 2021 the sparsity level reaches its minimum at a level
of 90%. Therefore, from the large initial data matrix, Zip-dLBM was able to

identify meaningful clusters of such data.

4.6.3 Benchmark on real data

This section focuses on comparing Zip-dLBM with state of the art models on
real-world data. We therefore carried out such an experiment by comparing
Zip-dLBM with Zip-dLBM()—o and dLBM discussed in Appendix B.6. We also
included in the comparison two models that do not consider the dynamic aspect:
Poisson LBM, by making use of the bikml R package (Robert et al., 2020),
baseline for model-based co-clustering methods, and k-means (MacQueen, 1967),
applied on rows and columns separately. As we are in an unsupervised context,
the model performances are evaluated by the silhouette score using cosine distance
on rows and columns. Table 4.4 displays the results of this comparison, in terms

of average silhouette scores, reported with standard deviations. From the reported
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Zip-dLBM  Zip-dLBM()—¢ dLBM kmeans LBM
Silhouette Score - Rows | 0.37 £+ 0.12 0.31 + 0.12 -0.46 £ 0.25 | 0.21 £ 0.36  0.33 £ 0.12
Silhouette Score - Cols | 0.36 + 0.23 0.31 +0.25 -0.15 £ 0.06 | 0.31 +£0.3 0.29 + 0.23

Table 4.4: Results of Zip-dLBM, Zip-dLBMy(—o, dLBM, LBM and k-means
on pharmacovigilance data. Average silhouette scores are reported with standard
deviations.

results, one sees that Zip-dLBM outperforms its competitors. Also, it is worth
noticing that unlike Zip-dLBM, LBM and k-means, being independently applied
at each time instant, suffer from label switching, which is not penalized in the
silhouette score. This should make the interpretation of these results even more
in favor for Zip-dLBM.

4.7 Conclusion

In this chapter we have proposed a dynamic co-clustering technique, with the
purpose of simultaneously performing clustering of rows and columns along the
time dimensions. Since observations and features are allowed to change their
cluster memberships in time, it is of great interest to look for structural changes
in the way clusters interact with each other along the considered time period.
We have introduced a generative zero-inflated dynamic latent block model, that
can be further adapted to several zero-inflated probability distributions. For ease
of reading the mathematical and experimental part, in this chapter we used the
Zero-Inflated Poisson distribution, thus introducing the Zero-Inflated Poisson
Dynamic Latent Block model (Zip-dLBM). The time modeling relies on three
systems of ordinary differential equations. Inference is done using a Variational
EM algorithm together with stochastic optimization for the parameters of the
dynamic systems. The performance of our approach, called Zip-dLBM in the
Poisson case, is evaluated through applications to several simulated data scenarios
and compared with competing methods. Then, Zip-dLBM was fitted to two large-
scale real datasets, the London sharing bikes and a pharmacovigilance dataset. In

this context, Zip-dLBM provided meaningful and interpretable results.
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In Chapters 3 and 4 of this thesis, our focus was primarily on dynamic co-

clustering approaches that required the entire dataset to be readily available. Here,
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we introduce the logical evolution of the model. We modify the model inference to
enable it to operate in an online mode, eliminating the need for the complete dataset
upfront. To achieve this, we make use of LSTM neural networks, which enable
us to model the evolution of the model parameters dynamically. Additionally,
we add an online change point detection method, facilitating real-time alerts for
evolving patterns in the data. As a demonstration of the model effectiveness and
real-world applicability, we show its application to real pharmacovigilance data.
This chapter presents the results of two research studies:

o G. Marchello, M. Corneli, C. Bouveyron (2023). Deep dynamic co-clustering
of streams of count data: a new online Zip-dLBM. Proceedings of the 31th

European Symposium on Artificial Neural Networks;

« G. Marchello, M. Corneli, C. Bouveyron (2023). Deep dynamic co-clustering
of count data streams: application to pharmacovigilance. Submitted in a

more detailed version to an international journal.
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DEEP DYNAMIC CO-CLUSTERING OF COUNT DATA STREAMS: APPLICATION TO
PHARMACOVIGILANCE

5.1 Introduction

In this chapter we mainly focus on the pharmacovigilance dataset described in
Chapter 4. As said in the previous chapters, the detection of safety signals heavily
relies on manual expert analysis, leading to potential incompleteness due to the
workload involved and the need for substantial data before critical events can
be detected. Such methods would enable pharmacovigilance experts to focus
on searching for ADRs in all the digital documents and reports generated by
healthcare establishments. Consequently, there is a pressing need to develop
automated methods for safety signal detection in pharmacovigilance. Clustering
techniques can help in this task to effectively summarize data to detect safety
signals along the time and online change point detection algorithms can detect
when the data generating process has changed and trigger further investigations.
In this chapter, we address this challenge by exploring the development of an online
model-based co-clustering tool for real-time safety signal detection. By treating
adverse drug reaction (ADR) notifications as count data observed over time, our
approach allows for the identification of temporal breaks in the safety signals.
This facilitates the creation of alerts and provides room for further investigation
by medical authorities. The primary objective of this research is to showcase the

potential of our proposed method as a routine tool in pharmacovigilance.

To identify temporal breaks in the notifications progress, we rely on change
point detection approaches. Change points refer to sudden changes in the under-
lying process generating the observed data points. Several change point detection
algorithms have been proposed in the literature (e.g. Basseville et al. (1993);
Cheng and Thaga (2005); Van den Burg and Williams (2020); Montgomery (2020)).
A possible classification of these algorithms is into two types: online and offline.
Online algorithms are designed to operate in real-time, with upcoming time series
data. In contrast, offline algorithms are intended to run after the entire dataset
has been collected. Regarding online change point detection algorithms, recent
studies have shown that among the most effective methods there are the likelihood
and probabilistic approaches (Kondratev et al., 2022; Kavitha and Punithavalli,
2010). On this subject, a seminal paper was proposed by Adams and MacKay
(2007) introducing the Bayesian Online Change Point Detection (BOCD). The
idea of BOCD is to identify change points using the so-called run lengths or
segment. Whenever a new data point becomes available, the algorithm determines

the likelihood of the corresponding run length increasing by one. If the probability
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of change is higher than that of growth, the run length resets to zero, and a
change point is identified. Alternatively, another approach has been proposed
by Kawahara and Sugiyama (2009), introducing subspace identification for change
point detection. Here, the change points are detected by estimating a state-space

model behind time series.

5.1.1 Our contribution

This chapter proposes an online extension of Zip-dLBM, introduced in Chapter4,
a co-clustering technique designed to handle time-evolving data matrices that may
contain many empty entries. We aim to introduce three novelties in this regard.
The first is the ability of the estimation algorithm to work online, with streams of
data. The second is the addition of an online change point detection method. By
capturing the data dynamic behavior, the method can identify abrupt events that
affect the generative process. To detect these changes we make use of the Bayesian
Online Change Point Detection (BOCD, Adams and MacKay, 2007) that runs on
the estimated model parameters in real time. The algorithm iteratively updates
the posterior probabilities of the change points, based on the data observed so
far. The third novelty relies on a different modeling choice for the time evolving
parameter. In fact fully connected neural networks are substituted with LSTMs,
as their structure is deemed more appropriate for the purpose. Therefore, this
model introduces a new approach by incorporating an online inference method for

Zip-dLBM and online changing point detection.

5.1.2 Organization of the chapter

The chapter is organized as follows. Section 5.2 introduces the proposed online
inference for stream data. Section 5.3 presents various experiments on simulated
data to test and evaluate the model performances. In Section 5.4, an application on
the real ADRs dataset is presented to illustrate the potential of Stream Zip-dLBM

in pharmacovigilance. Section 5.5 provides some concluding remarks.

5.2 Stream Zip-dLBM

Being the generative model Zip-dLBM, we kindly ask the reader to refer to

Section 4.2.1 for a detailed description of the model assumptions. In that Section,
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the model has been proposed in a general way for any Zero-Inflated distribution.
However, here we focus on the Zero-Inflated Poisson (ZIP) distribution. The set of
the model parameters is denoted by 6 = (A, «, 5, 7) and the latent variables used
so far are Z, W, and A, where we denote o = {a(t)};, 8= {B(t)}s, # = {7(t)}s.
Thus, the likelihood of the complete data reads:

p(X, Z, W, Al0) = p(X|Z, W, A, A, m)p(A | m)p(Z|a)p(W]B). (5.1)

The terms on the right hand side of the above equation can be further developed,

for details see Section 4.2.2.

5.2.1 Online inference for stream data

In this section, we present the online extension of the Zip-dLBM method, called
Stream Zip-dLBM. The objective is to perform co-clustering of rows and columns
in real-time as new data become available. To prevent memory overload, we have
revisited the original inference algorithm of Zip-dLBM, enabling the data to be
processed without the need to store it in memory. To allow the algorithm to
update the parameter estimates continuously as a new data is incorporated, we use
a moving window, G4(t), of size d. In more detail, at time ¢, we keep in memory
only the data in the interval [t — d,t], namely X (¢t —d), X(t —d+1),..., X (t),
that will be used for the estimation of the model parameters. The data outside
the interval can be discarded to prevent memory overloads and maintain the
algorithm’s functionality. Once a time point ¢ quits the time window (after
passing through it) the parameter estimates at that point become fixed, and the

"past" data can be discarded by the inference procedure.

5.2.2 Variational inference

As we saw in the previous chapter, we use a combination of Variational-EM infer-
ence and Stochastic Gradient Descent (SGD) to estimate the model parameters.
We recall that a variational distribution ¢(.), is introduced over (A, Z, W), in

order to decompose the observed data log-likelihood as follows:

log p(X[0) = L(q,0) + KL(q()[lp(-]X,0)),
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where £ denotes a lower bound of p(X|0) and is defined as:

p(X, A, Z,W|0)
= q(Z, W, A)log
Ez:%v:%: ( ) q(Z, W, A)

p(X, A, Z,W16) (5.2)
q(A, Z, W)
aa.zw)[log(p(X, A, Z, W|0)] — Eqa,zw)llog(q(A, 2, W))],
and KL indicates the Kullaback-Liebler divergence between the true and the

approximate posterior ¢(-):

a(A,zw) | log

p(A, Z, ,0
KL(O)IpC1X,0) = = 23 a(A, 2, W)lo (qé%)v())

The mean-field assumption is still employed:

q(A(1), Z(t), W (1)) = q(A(1))q(Z(t))g(W (1)) = l:[ ]:[1 q(Ai;(t)) l:[ q(Zi(t)) l:[ q(W;(¢)).
(5.3)

5.2.3 Variational E-Step

As shown in Section 4.3.2, denoting by 0;;(t) := ¢(A;;(t) = 1) the variational
probability of success for A;;(t), the optimal variational update is:

exp(R;;(t))
1 + exp(Ry;(t))’

9i;(t) = (5.4)
with:

Q L
Rij(t) = log(m(t)1ix,;m=0y) + 2D { aw,2)| Zig ()] Eqw,2) [Wje(£)] X5 (1) log Aget

g=1/=1

+ By Zag0) By Wi )| +108 X (0! log(1 = (1)),

Regarding ¢(Z), let us denote by 7,,(t) := ¢(Zi,(t) = 1) the variational

probability of success of Z;,(t). The optimal update can be written as:

_ Tig(t)
Tiq(t) - Z%ﬂ Tiq()(t)’ (5~5)

with 7,(t) is denoted by:

Tig(t) o< exp (Z PRA { aaw)[Aij (t)]) [Eq(Aw) [(W;e()] X5 (t) log(Age)+
— Eqaw) [I/ij(t)}Aqé} } + log(aq(t))) :
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Similarly for the latent variable W, denoting by n;(t) := q(W;,(t) = 1) the
variational probability for Wj,(t), the optimal update of ¢(WV) is

sje(t)

W) = —252
i) -1 556, (L)

(5.6)

where :

We recall that the proofs of Egs. (5.4), (5.5) and (5.6) are provided in Appendix B.1
and B.2. Here, it is worth noting that these update equations can be executed
step by step as new data come, allowing for incremental updates of the variational
parameters. Also, note that the update in these equations can be computed

independently for any pair (7, j), at any time point t.

5.2.4 Online variational M-Step

While the updates in the E-step for 7(t), n(t), and 6(¢) depend solely on the
current time instant ¢, the same cannot be said for the updates in the M-step.
The M-step involves updating the model parameters, 6 = (A, a, 8, 7), based
on the current estimates obtained in the E-step. In order to obtain the updates
of the parameter set 6, the objective of the M-Step is the maximization of the
lower bound L(q,#) with respect to 8 = (A, «, 5, w), while holding the variational
distribution ¢(-) fixed. Denoting t as the current time instant, we develop Eq.(5.2)
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such that the variational lower bound L(g, ) can be written as:

= Z:l; Z:l { i (w) log(m(u )1{xij(u):o}) + (1 —6;5(u)) [log(l — m(u))+
Q L

20 {Tzq w)je(u) Xij(u) log Age — Tzq(u)w(u)/\qe}Lr
g=1¢=1

N

t Q
— (1 = 045(u)) log(X }+Z > Tig(u) log(arg(u))+

u=1i=1¢=1

t
ngz log ﬁz Z

+
M-~
™M=
Mm

u) log(7iq(u))+

Mz
||Eﬂ©

—g;;nmmw 1;;(& u) Log (53 (w))+
+ (1= 85(w) log(1 — 6 (w) ).

Update of A

Here our goal is to derive the online update of the Zero-inflated Poisson intensity
parameter, A. The variational distribution ¢(A, Z, W) is kept fixed, while the
lower bound is maximized with respect to A at every time instant ¢, to obtain its

update, A. In Section 4.3.3 we derived the optimal update as:

R S 0 e Tig(w)mje(u) (Xz‘j (w) = 055 (u) Xy (U))
Ay = : (5.8)

S I S ) e() (1 - 81y(w) )

Although the update of A, sums over all the past observations (X;;(1), ..., Xi;(t)),
we can develop Eq. (5.8) as follows:

S S S i) (X (0) = b0 X)) + D S im0 X (1) — 05 (01,0

S 5 S mwmew) (1= b)) + £ S mmn(t) (1- 6,00
Nt + N N N

- Dﬁjfzd+D§? - D;éd"!‘DéZ) Dold+D(f)

ql

Ay =

(5.9)
By splitting A in two different parts, we can distinguish between a part known
at time ¢ — 1, namely N9 and D, and the current updates at time ¢, N, (g and

Dg?. Then, we divide and multiply the first term for Dgéd, such that, denoting
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old

ql
- old’
qu

AOld we obtain the final online update:

A A Dold N®

Ay = Ao + ® (5.10)
g at Dgéd‘i‘ D(t) Dgéd—Q—D((]?

Hence, when a new observation comes A can be updated thanks to Eq.(5.10),

along with the update of DOld

Update of o, 5 and 7 through deep neural networks

As mentioned in Section 4.2.1, the mixture proportions « and (3, as well as
the sparsity parameter m are driven by three systems of differential equations,
respectively. Hence, the update process for these parameters in the online inference
algorithm poses a challenge because they lack closed-form updating formulas. As
a result, the decomposition strategy used for updating A cannot be applied. To
address this issue, we introduce an approximation technique that leverages a
moving window Gy(t) of size d, allowing us to update the parameters based on
the most recent d observations. In addition to its role in parameter updates,
the moving window Gy(t) serves another purpose as it is the input for a deep
neural network. As we assumed that the functions f4, fy and fz are continuous,
we propose to parametrize them with three LSTM networks (Hochreiter and
Schmidhuber, 1997). LSTM is a type of recurrent neural network that operates
on sequences of a specific length and produces a sequence of the same length,
shifted one time step ahead. For instance, let’s consider the current time ¢ and the
time window G(t) with a length of d. The input for the LSTM networks consists
of a series of values ranging from ¢t — 1 — d to t — 1, representing the historical
observations within the window. The LSTM networks then predict a sequence of
values from t — d to t, which correspond to the updated parameter values for «, f3,
and 7. Also in this case, optimizing the lower bound in Eq.(5.7) with respect to «,
£, and 7 reduces to maximize it with respect to the parameters of the respective
neural networks. Here, instead of summing over the entire time period, we sum
only over the moving window Gg4(t) of length d. For example, the loss function

for o can be expressed as follows:

Z ZZTW u) log ag(u), (5.11)

ueGq(t) 1= 1g¢=1
The loss functions of § and 7 can be similarly derived using their respective

distribution-specific equations. In the experiments, this update is implemented in
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PyTorch via automatic differentiation (Paszke et al., 2017) and relies on stochastic
optimisation (ADAM, Kingma and Ba, 2014). Once the neural nets are trained
via back-propagation (SGD) they provide us with the current ML estimates of «(t),

S(t) and 7(t). The whole inference procedure is summarized in Algorithm 3.

5.2.5 Initialization and model selection

In this section, modifications to the initialization method presented in 4.3.4 are
proposed to make the algorithm adaptable to run online. First, we select the first
slice of the data X;, and apply on it a static LBM algorithm for a list of pairs of
cluster numbers, i.e. (¢,¢) for ¢ =2,...,Qmar and £ =2,. .., L,4,. Subsequently,
we employ the ICL criterion (for more details see Section 2.3.4) to determine the
optimal number of row and column clusters for this particular subset of data. The
ICL criterion approximates the integrated log-likelihood of the complete dataset

and can be derived as follows for our model:

A A A —1 L_]_ L
ICL(Q,L) =logp(X,Z,W;0) — QQlogN— TlogM— Q210g(NM)+
1
—§log(NM).

(5.12)

The pair (Q, [A/) that leads to the highest value for the ICL is considered as the
most likely cluster numbers for the considered slice of data X,;,. However, as
we expect that the choice of Q row and L column cluster components could
not be the best for all the future time instants, the VEM-SGD algorithm (see
Algorithm 3) will be then run with more components than the ones found by the
ICL. Indeed, we run the VEM-SGD algorithm with Q.. > Q and L,,q. > L
cluster components. Then, every time there is a new data entry, part of the model
parameters are initialized with é(t) obtained via a static run of LBM and the
remaining parameters, corresponding to the additional row and column clusters

are set to zero.

Therefore, our objective is to leverage the advantage of using deep neural
networks, which enables our VEM-SGD algorithm to initialize with empty clusters.
These empty clusters can potentially be activated in the future, if required. As a
result, we can avoid the typically computationally intensive task of running the
entire algorithm with all possible combinations of row and column cluster numbers

for the complete dataset. This strategy enables our approach to handle large-scale
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datasets within a reasonable computation time while achieving satisfactory results,
as demonstrated in the forthcoming section.

Also, at the initial stage of the algorithm (i.e. the first d time points), the
parameters a(t), f(t) and 7(t) are modeled via a two-layer fully connected neural
networks, following the approach of Zip-dLBM until ¢ = d. Then, as explained in
Section 5.2.4, at t = d 4 1, the estimates from the previous time step, obtained
via fully connected networks, serve as input to LSTM, which is used for online

parameter estimation from this point on.

Algorithm 3 VEM-SGD Algorithm for Stream Zip-dLBM

Require: X, Q, L, Qmazs Limaz, max.iter, G4(t).
while New observations X () come: do
Initialization of a(t), 3(t), n(t), A with LBM; % with Q, and L
> Add Qumer — Q columns of zeros to a(t);
» Add L,ur — L columns of zeros to B(t);
» Add Qe — Q rows and L., — L columns of zeros to A,
for it = 1 to max.iter do
VE-Step:
for p = 1 to Fixed.Point do
alternatively update 6(t), 7(¢), n(t); % fix point egqs

end for
M-Step:
Update 0 = (A, 7(t), a(t), 5(t)).
o= g DN

Dot + D\ potd 4 pY)°
Update «a(t), B(t), n(t) HLSTM on the moving window t € Gy(t)

end for

Discard all the observation before G4(t)

end while

5.2.6 Bayesian online change point detection

As previously stated, one of the aims of Stream Zip-dLLBM is to perform multi-
variate online change point detection. To accomplish this task, we combine the
Bayesian Online Change Point Detection (BOCD) method, proposed in a seminal
paper by Adams and MacKay (2007), with our strategy. BOCD detects change
points based on the estimation of the posterior distribution over the current "run

length", or time segment since the last change point, given the data observed
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so far, using a simple message-passing algorithm. Essentially, the run length is
used to determine if a new data point belongs to the current partition based on
previous observations. If the new data point belongs to the current partition, the
run length will increase by 1 at the next time step, otherwise it will reset to 0.
This process is continuously repeated at each time step. It is worth noticing that
the BOCD algorithm is typically implemented in an online fashion, analyzing
the data as it streams in. However, in our case, we directly apply the algorithm
to detect change points on the estimates of a(t), 5(t), and 7(t) obtained via
the integration of the dynamic systems once the LSTM are trained. To prevent
detecting change points on parameters that will be recalculated in future time
steps, we run the BOCD algorithm only on time points "behind" G4(t). Stated

differently, at time ¢, BOCD operates on parameter values at time instances t — d.

5.3 Numerical experiments

The main purpose of this section is to highlight the most important features of
Stream Zip-dLBM over simulated datasets and to demonstrate the validity of
the inference algorithm presented in the previous sections. The first experiment
consists in applying Stream Zip-dLBM to a specific dataset with evolving block
pattern and sparsity to show that it recovers the data structure in real-time. While
the second experiment demonstrates the model selection procedure on a simulated

dataset.

5.3.1 Introductory example

A simulated dataset with dimension 350 x 300 x 150 has been generated according
to our model to perform this experiment. The simulated dynamics of o, § and
7w can be seen on the left-hand side of Figure 5.2. Concretely, a, § and 7 are
three time series independently fluctuating around constant trends. Fluctuations
are obtained at each time by means of independent Gaussian distributions with
constant variance. The mean levels change when a change point occurs. The
levels of the simulated change points and the values of the simulated parameter A
are indicated in Table 5.1.

Based on the mixture proportions «, (3, the values of the latent variables were

then simulated through their distributions. Next, we used the sparsity proportions,
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Figure 5.1: Simulated time instants for change points of «, # and 7 and simulated
values of A.

7, and the intensity parameter, A, to simulate the three-dimensional tensor X as
Zero-Inflated Poisson variables. We then applied the Stream Zip-dLBM inference
algorithm to the simulated dataset, using the actual values of () = 3 and L = 2 to
demonstrate the model’s ability to recover the parameters. Figure 5.2 displays
the true mixture proportions on the left side and the online estimates on the right
side. The red dashed lines depict the simulated and estimated change points,
respectively. From these results we see that Stream Zip-dLBM perfectly recovers
the evolution of the mixing proportion and the sparsity parameter over time,

including the change points.

5.3.2 Model selection experiment

In this experiment, we assess the ability of Stream Zip-dLBM to determine the
optimal number of clusters for rows and columns. Initially, we utilize the Integrated
Completed Likelihood (ICL) criterion to compute the optimal number of clusters
on the first slice. This ensures that the algorithm is initialized reasonably. Once
initialized, the algorithm maintains consistent results without making alterations,
thus retaining the selected number of clusters. To evaluate the effectiveness of
the algorithm and verify if it activates new clusters, we generate a dataset based
on the configuration described in Section 5.3.1. The dataset consists of 3 row
clusters (Q=3) and 2 column clusters (L=2). We then apply Stream Zip-dLBM
to this dataset, with maximum values of Q.. = 7 and L., = 7. Figure 5.3
provides an illustrative demonstration of the algorithm’s behavior, specifically
regarding the activation of clusters. It is clear from the figure that the unnecessary
clusters remain empty and that the estimates of the «, [, and m parameters are

also accurate. Finally, it is worth noticing that Stream Zip-dLBM successfully
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identifies the changing points in «, 4 and 7 over time, despite not using the optimal
number of input clusters. Finally, to evaluate the performance of the model in
identifying the correct rows and columns partitions, we use the adjusted Rand
index (ARI) (Rand, 1971). The adjusted Rand index, from a mathematical point
of view, is closely related to the accuracy measure, however it is a commonly used
method for evaluating clustering problems since it can be applied for measuring
the similarity between two partitions even with different number of clusters and
it is invariant to label switching. We also use a measure called CARI, recently
introduced by Robert et al. (2020). This new criterion is based on the Adjusted
Rand Index (Rand, 1971) and it was developed especially for being applied to
co-clustering methods. The closer these indexes are to 1, the more two label
vectors are similar to each other. We compared the original matrices Z and W,
with the estimates 7 and 1 given by the output of Stream Zip-dLBM. We evaluate

the performance indexes at each time step, obtaining the following results:

ARI rows ARI columns | CARI
099+0.03|1+0 0.99 +0.02

Thus, we can conclude that our algorithm satisfyingly identifies the composition

of the original clusters in time.
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Figure 5.2: Evolution of the true (left) and estimated (right) proportions of the

parameters «, $ and 7, respectively.
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Figure 5.3: Evolution of the true (left) and estimated (right) proportions of the
parameters «,  and 7, respectively. In Figures (b) and (d), we observe how the
excess clusters remain empty, depicted by the lines of the mixture proportions
that stay at zero throughout the entire time period.
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5.4 Analysis of the adverse drug reaction dataset

This section focuses on the online application of Stream Zip-dLBM to a large-scale
pharmacovigilance dataset, with the aim of illustrating the potential of the tool

for such studies.

5.4.1 Protocol and data

This section considers a large dataset consisting of an adverse drug reaction
(ADR) dataset, collected by the Regional Center of Pharmacovigilance (RCPV),
located in the University Hospital of Nice (France). The RCPV survey an area of
three departments totalling 2.3 millions inhabitants.A time horizon of 7 years
is considered, from January 1%, 2015 to March 374, 2022. Since the data are
very sparse, we aggregate them summing up along the time dimension, such
that one time instant corresponds to one month. The overall dataset is made
of 39,267 declarations, for which the market name of the drug, the notified ADR
and the reception date are considered. Moreover, we only considered drugs and
ADRs that were notified more than 10 times over the 7 years. The resulting
dataset contains 419 drugs, 614 ADRs and 87 time intervals with 23,264 non-zero
entries. Figure 5.4 shows the frequency of declarations arrived at the RCPV in
the considered period, sorted by month. For more details on this dataset please
refer to the data description in Section 4.6.1.

It is important to highlight that the data being used exhibit extreme sparsity,
ranging from a minimum of 99.25% to a maximum of 99.98% per month. To avoid
encountering numerical issues, the LSTM network was not employed for inferring

the parameter 7. Instead, point estimates of 7were used in the inference process.

5.4.2 Summary of the results

To initialize the algorithm, as explained in Section 5.2.5, we computed the ICL
criterion on one data slice, corresponding to the first month, where the optimal
numbers of clusters identified by the model selection criterion are Q = 3 and
L = 3. Then, we run Stream Zip-dLBM and every time a new entry is added in
the tensor X. We initiate the model parameters through the process described in
Section 5.2.5. Also, we ran Stream Zip-dLBM with Q.. = 7 and L,,.. = 7 to

allow the model to fill or empty clusters as needed. The process takes a running
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Figure 5.4: Number of declarations received by the pharmacovigilance center
from 2015 to 2022, sorted by month.

time of about one hour on a MacBook Pro, 2020, with a processor of 2,3 GHz
Quad-Core Intel Core i7 and 16 GB of RAM. It’s important to emphasize that
once new data arrives at a new time instant, the time required to fit the model
and obtain updated results is around 12 seconds. When we compare this result
to the time it takes to obtain retrospective results using the model presented in
Chapter 4, we can see that this new version is more time-efficient.

In Figure 5.5a, the frequency of declarations received by the RCPV from 2015
to 2022 is depicted, organized by month. Here, the identified change points are
represented by dashed lines. Specifically, the green dashed lines indicate the
change points detected in the evolution of drug clusters, while the blue dashed
lines indicate the change points detected in the evolution of ADR clusters.
Figure 5.5b displays the estimated Poisson intensity parameter, A. This figure
only focuses on the 3 groups of drug clusters, denoted by the letter D, and the 3
groups of ADR clusters, denoted by the letter A, that have been activated in the
inference. This representation provides valuable insights for model interpretation
as it gives an overview of the relationships between drug clusters and ADR
clusters and how they evolve over time. Each color refers to a drug (rows) or

ADR (columns) cluster and the higher is the value in each block, the strongest

136



DEEP DYNAMIC CO-CLUSTERING OF COUNT DATA STREAMS: APPLICATION TO
PHARMACOVIGILANCE

000

Change point

- drugs
== ADRs

D2 @

(a) Histogram of declarations over time,
with change points.

06

A3

(b) Estimated Poisson intensity parameter.

(c) Evolution of drug clusters proportions. (d) Evolution of ADR clusters proportions.

Figure 5.5: Histogram of declarations over time, with the change points detected
for the drugs and ADRs (top left) and estimated Poisson intensities, each color
represents a different drug (ADR) cluster (top right); evolution of the estimates

of & (bottom left); evolution of the estimates of 3 (bottom right).

is the relationship (i.e the expected number of declarations received in the time

unit) between the related pair of clusters. Looking at this figure, it can be seen

that some clusters are strongly related whereas others are not at all.

Figures 5.5¢ and 5.5d display the estimated mixture proportions of drug clusters

(&) and ADR clusters () respectively. The dashed lines in the figures represent

the change points identified by the BOCD algorithm.
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Figure 5.6 illustrates the estimated sparsity parameter, with the y-axis scale
ranging from 0.99 to 1. It is worth noting that no change points have been
detected in 7 because the values did not exhibit sufficient variability.

By examining the information provided in Figures 5.5b, 5.5¢, and 5.5d, we can
observe an interesting pattern. The clusters with the highest intensity are also the
least populated. For instance, cluster D3 (drug cluster) demonstrates a remarkably
high intensity of interactions with clusters A1 and A2 (ADR clusters). Despite
its high intensity, cluster D3 appears to be relatively small in Figure 5.5c. This
phenomenon is attributed to the presence of drugs associated with significant
health crises that happened during the reporting period. Notably, Mirena® in the
first half of 2017, Lévothyrox® in the latter part of 2017, and Covid-19 vaccines
throughout 2021 were the primary drivers of these crises. Interestingly, each crisis
period is marked by a detected change point in both the drug cluster proportions
(Figure 5.5¢) and ADR cluster proportions (Figure 5.5d).

Similarly, by analyzing the composition of clusters A1 and A2, it is possible to
identify which ADRs were the most reported in each of the aforementioned crises.
For instance, from the composition of cluster A2 we notice that the most reported
side effects during the Mirena® health crisis are mostly hormonal ones, such as
anxiety, heat shock, and aggressive behavior. Then, looking at Figure 5.5d, during
the Lévothyrox® health crisis we notice a peak in the A3 cluster of adversarial
effects, probably because the great media coverage that the scandal had in those
years made people declare the most disparate side effects. Also, we see that in 2021
there is another peak, corresponding to the period of the Covid-19 vaccination.
Here, the adversarial effects found in cluster A1l are mostly linked to problems
related to the vaccination site (e.g. arm pain, arm inflammation, skin reaction)
and flu syndrome as a result of the vaccine. Cluster D2 presents an interesting
contrast as it remains empty until August 2017. Subsequently, it contains a
few but widely used drugs that are frequently reported, such as paracetamol,
amoxicillin, and some popular antidepressants. The evolution of cluster D2’s
proportion, as shown in Figure 5.5¢, aligns with the change points identified by
the algorithm. This cluster begins to populate after the Lévothyrox® health crisis,
with a peak in the early stages of the Covid-19 crisis, before the introduction of the
vaccines. From Figure 5.5b, it can be observed that the intensity of interactions
with clusters of undesirable effects does not differ significantly for cluster D2.
Cluster D1, on the other hand, exhibits remarkably low interaction intensities
and is densely populated by all other drugs. Initially, from the beginning of the

analysis until 2017, it contains all drugs. However, after 2017, it includes only
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Figure 5.6: Evolution of the estimates 7.

drugs with a low frequency of reports. From Figure 5.5¢, we see that the evolution
of Cluster D1 over time aligns with the change points identified by the algorithm.
Upon examining Figures 5.5b and 5.5d, a distinct behavior is observed in the
clusters of adverse effects. Initially, until June 2017, cluster Al contains all
adverse effects. However, it gradually empties over time. Specifically, during the

Mirena®

crisis, only the adverse effects not associated with that particular health
scandal remain in cluster Al. Subsequently, a significant change in the cluster
membership occurs following the change point identified in October 2017. From
this point onward, the number of ADRs in cluster A1 decreases significantly, and
they are specifically related to Lévothyrox® (e.g. hair loss, cramps, insomnia,
etc.). After the Lévothyrox® crisis, cluster A1 becomes empty until the subsequent
change point detected in January 2021. From this moment until the peak of
Covid-19 vaccine reports in February 2022, cluster A1l includes the main adverse
effects reported for Covid-19 vaccines (e.g. pain at the vaccination site, skin rash,
pericarditis, etc.).

Also, from Figure 5.5d we clearly notice as the Lévothyrox® crisis marked a
turning point in the history of pharmacovigilance, probably because from this
moment on people realized its importance and began to declare side effects of
drugs and vaccines much more frequently.

Lastly, Figure 5.6 provides the estimated evolution of the sparsity parameter over

time. The y-axis scale is set from 0.99 to 1 in order to visualize the changes
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over time. Notably, no change points were detected in the estimated parameter
7 due to insufficient variability in the values. Initially, in 2015, the sparsity is
recorded at 99.83%. As we approach the peak in 2017, the number of declarations
increases, leading to a decrease in sparsity, reaching a local minimum of 99.38%.
Subsequently, as we approach the peak related to Covid-19 vaccines, the sparsity
level reaches its global minimum at 99.25% in March 2021.

As a summary, Stream Zip-dLBM method successfully identified meaningful
clusters within the extensive initial data matrix of ADR reports. This provides
a proof of concept of the possible use of this algorithm to detect public safety

events from streams of ADR data.

5.5 Conclusions

This work is born out of the need to analyze and summarize observations and
features of a dynamic matrix in an online setting for an application to pharma-
covigilance. We have proposed an online dynamic co-clustering technique that
enables simultaneous clustering of rows and columns along the time dimensions.
As observations and features can change their cluster memberships over time,
detecting structural changes in cluster interactions throughout the time period
becomes crucial. We have introduced a generative zero-inflated dynamic latent
block model as online extension of Zip-dLBM. The time modeling approach relies
on three systems of ordinary differential equations. Inference is conducted using
a Variational EM algorithm, combined with stochastic optimization of LSTM
network parameters for the dynamic systems. Also, we added an online change
points detection method to the process such that Stream Zip-dLBM is able to
detect abrupt changes and create alerts in real time. The performance of our
approach is evaluated through applications to some simulated data scenarios.
Then, Stream Zip-dLBM was fit to a large-scale dataset supplied by the Regional
Center of Pharmacovigilance of Nice (France). In this context, the model provided
meaningful online segmentation of drugs and adverse drug reaction. Its potential
use by medical authorities for identifying meaningful pharmacovigilance patterns
looks very promising. The online inference algorithm, combined with change
point detection, allows Stream Zip-dLBM to operate in real-time, continuously
analyzing the flow of ADR declarations and triggering alerts as soon as a change
point is detected. This provides an opportunity for further investigation and

intervention by medical authorities.
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6.1 Omn going work: SBM for point clouds registration

6.1.1 Introduction

Registration of point clouds is crucial in various computer vision applications,
playing a pivotal role in tasks such as 3D image retrieval, segmentation, and
shape recognition. The main goal of point set registration consists in establishing
correspondences between two sets of points and determining transformations
that maps one point set onto another. Point set registration is a challenging
task due to several factors, such as the presence of an unknown nonrigid spatial
transformation, the high dimensionality of point sets, potential noise, and the
existence of outliers. The transformation considered in point set registration
typically falls in two categories: rigid or nonrigid. A rigid transformation is
constrained to translation, rotation, and scaling. On the other hand, nonrigid
transformations encompass a broader range of alterations, such as stretching and
skewing. Figure 6.1 shows an example of point set registration with a 2D toy
example. In this picture, the second image is visibly rotated by 90 degrees and it
and contains an additional point denoted by a question mark compared to the
first image. This discrepancy adds complexity to the matching task. Extending
this concept to more intricate scenarios involving high-dimensional data, noise,
outliers, and 3D images, it becomes evident that point sets registration can quickly

become a challenging task.

Regarding the pairwise point set registration, depending on the modeling
assumptions, several approaches have been proposed in the literature. They can
be classified into distance-based methods (Zhang, 1994; Zhou and De la Torre,
2015), filter-based methods (Zhu et al., 2018; Li et al., 2016) and probability-based
methods (Myronenko and Song, 2010; Zhou et al., 2014). It has been observed that
probability-based methods tend to outperform other approaches. However, it is
worth noting that the probability-based methods come at a higher computational
cost in contrast to distance-based and filter-based methods (Zhu et al., 2019).

This section aims to formulate a probability-based point set registration
method, designed to effectively address rigid transformations in the context of 3D

point clouds.

In our application, we have multiple matrices representing a sub-sampling of

points from distinct 3D images of the astragalus (a small bone in the ankle) of
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Figure 6.1: A toy example of the point set registration problem.

some specific animal species: sheep, goats, muflon and chamois. The ultimate
objective is to perform species identification based on these images. This research
is conducted within the framework of the chiar in AI dor History and Archaeology

of my advisor, Marco Corneli, in collaboration with another PhD student, Davide
Adamo.

The point clouds are obtained via a 3D scan of bones in a modern collection,
being part of the PhD thesis of Vuillien (2020) in archaeo-zoology. The scanned
images must undergo rigid transformations (rotation and symmetries) in order to
be aligned. Since point clouds are invariant with respect to points permutation,
the registration task is not trivial. It remains nonetheless necessary since, due
to the small number of 3D images in our collection (around 40), recent state of
the art methods (i.e. PointNet (Qi et al., 2017)) that would allow us to avoid

registration are not exploitable.

Each point cloud is represented by a matrix, featuring rows corresponding
to the points within the cloud and three columns designating each dimension
to identify the spatial location of the point. These matrices exhibit disparate
dimensions, implying that the number of points varies across images. For instance,
considering just two matrices, one might have dimensions P x 3, and the other
N x 3, where P # N.
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Moreover, the rows of these matrices lack of alignment. For instance, the point
identified by the first row of one matrix is in no way associated with the point
identified by the first row of another matrix. Figure 6.2 shows an example of two
point clouds representing two astragalus, where the second one is slightly rotated
compared to the first one. Also, the red dots represent the first elements of the
representation matrices, respectively. Our objective is to establish a meaningful
correspondence between the rows of the two matrices, even in presence of rigid
transformations, as it shown, for instance in Figure 6.3. Here, the second point
cloud (in orange) has been rotated such that the two images overlap: Coherent
Point Drift (CPD) method, as proposed by Myronenko and Song (2010) was used
to register the two point clouds. In this probabilistic approach, the alignment of
two point sets is treated as a probability density estimation. The authors employ
Gaussian Mixture Model (GMM) centroids, representing the first point set, fitted to
the data representing the second point set by maximizing the likelihood. However,
despite its effectiveness in cases of slight misalignments, the algorithm exhibits
limitations when dealing with mirrored images or more substantial rotations, as
we see in Figure 6.4. This is attributed to the algorithm sensitivity to converging

to local minima, particularly when the initialization is random.

Figure 6.2: 3D point cloud representation of two bones, with different orientation.
The red dot identifies the first row of the respective representation matrices.
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Figure 6.3: 3D point cloud representation of two astragalus after the point
set registration with CPD. The orange point cloud represents the second cloud
overlapping the first one in blue.

6.1.2 Our contribution

Our approach would be to use a probabilistic method as well. Specifically, we plan
on making use of the Stochastic Block Model instead of Gaussian Mixture Models
(GMMs) in order to model the points of a source cloud with those of a target
cloud. In more detail, we represent a point cloud with N points via a graph with
N nodes, thus leading to a (weighted) adjacency N x N matrix, denoted by D.
The way the nodes are connected to each other and hence the nature of the graph
is of course crucial and several approaches are possible: a k-nearest neighbors
graph or an e-neighborhood graph where D;; being either the Euclidean distance
between to neighbor nodes or zero is an option. Otherwise a fully connected graph,
with D;; being the geodesic distance between points ¢ and j might be considered.

This list of options is of course not exhaustive.

For simplicity we focus on two point clouds X and Y represented by two
matrices of dimension N x 3 and P x 3, respectively, with N > P. We compute

their "distance" adjacency matrices denoted as D* and DY, respectively.

Now, let Z be a latent matrix such that: Z := {z;,}ie1,. npe1,..p- This matrix
represents the clustering of point of A into P groups, where point ¢ belongs to

cluster p if z;, = 1, 0 otherwise. Moreover, the rows of Z are assumed to be
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Figure 6.4: 3D point cloud representation of two astragalus after the point set
registration with CPD in a more difficult setting. The orange point cloud represents
the second cloud overlapping the first one in blue.

independently distributed according to a multinomial distributions:

p(Zla) =TT 1] 57,

i=1p=1

P
where o, = P{z;, = 1} and >  «a, = 1. We further assume that, conditionally to
p=1
7, D* follows a log-normal distribution, such that:

log D1 Zi, Zj ~ N(DY, 5.5 0%,5.)- (6.1)
Hence we can write:
N
,J
j>i

and taking the logarithm:

N

7>

6.3
SRR S (63)
=) ——exp| —=- .
J>i ,/27‘(0‘%1,2], 2 U%iZj

The model described so far has a set of parameters denoted by 6 = (o, «), and

one latent variable: Z. Then, we can write the log-likelihood of the complete data
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as follows:

logp(D*, Z|0) = log p(D*|Z, DY, o) + log p(Z|a)
N 1 1 Dgc —Dy_ . 2 N
IZ-eXp(—‘ S > 2, )+Zlogazi
2 02:7; i=1

SRty ool )

i=1 j>i p=1¢=1

N P
+3°) zplogay,.

i=1p=1

(6.4)

Therefore, our goal is to leverage the posterior estimates of Z along with
the model parameters, 0 and «, to rearrange the rows of D*. and so to find
correspondences between the points in X and those of ). The objective is to
ensure that, after permutation, in D* nearby rows, assigned to the same clusters,
correspond to the same point of ). To achieve this, we plan to employ a Variational
EM (VEM) algorithm for the inference process, possibly coupled with numerical

optimization in the M-step, in order to estimate o2.

6.2 Overview of the contributions

This thesis is born out of the need to tackle the multifaceted challenges posed by
high-dimensional, time-dependent and discrete data. It was driven by the aim
to develop autonomous methodologies capable of detecting meaningful patterns,

summarizing vast information, and aiding in effective data visualization.

To this end, in Chapter 3 we proposed the Dynamic Latent Block Model
(dLBM) as a first versatile approach for co-clustering of evolving count matrices.
We demonstrated its ability to uncover temporal patterns within a sequence of
data matrices first with several experiments on simulated dataset, and then with a
real dataset. The Dynamic Latent Block Model (dALBM) was in fact applied to an
extensive dataset provided by the Regional Center of Pharmacovigilance (RCPV)
in Nice, France. In this application, dLBM exhibited its ability to generate
valuable partitions of drugs, adverse drug reactions and temporal patterns. The
potential adoption of dLBM by medical authorities, with the aim of discerning
significant pharmacovigilance patterns, appears to hold considerable promise.
The potential of dLBM as a regular tool for detecting safety signals is further
substantiated by additional studies conducted by the RCPV. These studies have
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led to the redaction of a another paper that provides an in-depth analysis of the

medical results and implications obtained through this application.

Then, Chapter 4 introduced the Zero-Inflated Dynamic Latent Block Model.
Here, both observations and features have the flexibility to change their cluster
membership over time, allowing one to explore structural changes in the inter-
actions between clusters throughout the observed time period. Also, this model
can be eventually adapted to various zero-inflated probability distributions. The
temporal aspect of the model is captured through the utilization of three distinct
systems of ordinary differential equations. The inference process relies on an
innovative variational method. In fact, the maximization step involves training

fully connected neural networks to solve the underlying dynamical systems.

Finally, in Chapter 5 we proposed the Stream Zip-dLBM, tailored for online
applications. Notably, its application to pharmacovigilance data underscored the

potential of these methodologies in addressing real-world healthcare challenges.

The innovative models presented in this thesis provide one with multiple
solutions for uncovering hidden patterns in high-dimensional dynamic discrete
datasets. These methodologies hold the potential to facilitate early detection and

timely responses to safety signal detection of medical products.

6.3 Perspectives

During this research, several promising avenues for future exploration and devel-

opment have emerged:

o Development of a web platform: We are actively engaged in the creation of
a dedicated software application based on the Stream Zip-dLBM model. This
application is intended for use by the Regional Center of Pharmacovigilance
in Nice, France. Once implemented, the application will resularly analyze
daily or weekly time series, on a machine at the pharmacovigilance center.
Its primary function is to automatically fit the model to incoming data.
Leveraging the online change point detection method within the model, the
application will promptly identify structural changes in the data and send
automatic email notifications containing concise reports of the results. The
software’s effectiveness will be evaluated over a 6-month period, with the

aim of eventually offering it on a national scale.
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« Block-dependent sparsity parameter: In Chapter 4, we introduced a time-
dependent sparsity parameter, denoted as m. However, this parameter is
not currently block-dependent, unlike the Poisson parameter A. A future
research direction involves investigating the feasibility of making the sparsity
parameter block-dependent. Hence, we would write: X;;(t)|Z;(t), W;(t) ~
ZIP(Az,yw,); Tz,(yw; (1)), such that:

Xij (0)|Zi(t), W;(t) ~ do(Xi5(t)) with probability 7z, «yw; )
Xii(0)]Zi(t), Wi(t) ~ P(Az,wyw,ry))  with probability 1 — 7z, wyw;

where dy(+) is the Dirac mass function in 0, A is a @ x L matrix, denoting
the block-dependent Poisson parameter and 7z, )w; () represents the block
dependent sparsity parameter. However, this extension would require careful

identifiability studies to assess its practicality and effectiveness.

e Model selection: In Chapters 4 and 5, we employed the Integrated Classifi-
cation Likelihood (ICL) criterion for model selection. While this criterion
serves its purpose, it does not necessarily account for the presence of a large
number of zero entries in interaction datasets. Future work may involve
developing a model selection criterion that specifically deals with only non-
zero entries, thus improving computational efficiency. Additionally, adapting
a model selection criterion to account for the temporal evolution of the data
would be a major contribution to this research area. Such criteria would
enable more accurate and context-aware model selection, enhancing the

overall performance of the proposed models.

e Choice of the deep architecture: The models presented in this thesis offer
an innovative approach to co-clustering of discrete data in temporal contexts.
However, the adoption of deep learning highlights a crucial challenge: the
choice of deep architecture. Unlike supervised tasks where performance
metrics often guide this choice, the selection of the neural network archi-
tecture poses a significant open problem in an unsupervised framework. In
fact, managing the complexities of finding the right balance between model
complexity, generalization capacity, and understanding latent structures can
be quite challenging. Progress in this direction has the potential to not only
improve the capabilities of dynamic latent block models but also provide
valuable insights into the interaction between unsupervised learning and

deep architectures.
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These perspectives highlight the ongoing and evolving nature of research in

the field of dynamic co-clustering and dynamic latent block models.
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A Appendix Chapter 3

A.1 Estimation of the mixture proportions

The proof about how to obtain the updated mixture proportions is only shown
for the estimation of parameter agh“) because for the estimation of the other

parameters, 5 and -, the procedure is similar:

p(Z|a) = ~ NI H s

i=1q= 1’Zlq

N
o 20 — log (g 20) = log (N'HH o )—

i=1g¢=1 Zigq

logN'—l—ZZthrl log ay — ZZlogzh+1.

i=1¢g=1 i=1¢g=1

For a constrained maximization of this quantity we employ the Lagrange

Multipliers, taking into account the constraint Z o = 1.

Q
L(ag; A) = (o JH)) +A1-> a
q=1

OL(agi N)  9l(ag 20™) . N1 -, a,)

= =0
Oay Oay Oay
O, S ng Mlogay 0¥ 0
_ =0
0% Oay,
N _(h+1)
Zz:l iq A= 0
Qq
(h41) N _(h+1)
- i=1%ig
z; =ANo, = —7—F— =«
P q q A q
Since A is equal to N:
z(h+1) h+1)
Z D AR Zq 10 = & Z N 2 iq = 1; we can conclude that

the estlmatlon of altis the followmg.
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ahtD) 1 i (h+1)
- Z;
‘1 N =1 "

A.2 Maximum likelihood estimator of A,

The maximum likelihood estimator of Ay, is obtained through the following

process:
L C
log LIAIX, Z, W, 8) =3 (Ryeelog Agee — | Ag||Be| [De|Agec + €)
q=1/=1c=1
where ¢ is a constant that includes all the terms that does not depend on A.

Olog LIAIX, Z,W,S) Ry
O A

N Ry,
—AIBD] = 0 = Ry = 0
Jte ’ q|| f|| ’ ql |AqHB£||Dc|

A.3 Intensity functions in the three scenarios

From Table 3.4, the scenarios "Easy' and "Medium" may look the same. However,
the main difference between the two scenarios is the value assumed by the intensity

function A. The values of this parameter in the three different scenarios are:

e Scenario A - Easy: A = Ay

50 18 50 50
Aal,, 1] =11 11];A4},20= |18 1
1 50 1 18
e Scenario B - Medium: A = Ap
1 1 20 20
AB[,,]_]: 1 7 ;AB[,,Q]: 7 1
720 1 7
e Scenario C - Hard: A = A¢
70 12 1 35 70 12 12 70 35
35 1 35 70 70 70 35 12 70
A 771 == 7A 772 == 7A 773 ==
by =11 7 i teb =11 1 gsli b3 =100 5 1o
12 35 70 1 70 1 12 1 35
e Scenario D - Row LBM: A = Ap
Apl,,1)=[1 6 4]; Ap[.2)=[1 7 1]
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A.4 Data structure representation

Fig. 1 shows a representation of the interactivity patterns between all the drugs and
adversarial effects at any given time interval. Each panel represents a time interval
and the size and the color of the points depend on the number of declarations

received.

Count (log)

* 0.7357589
i * 1.0000000
2.0000000
27182818
5.4365637

Figure 1: Representation of the interactivity patterns between drugs and adver-
sarial effects at any given time interval. A small sample of the whole data set is
considered.
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B Appendix Chapter 4

B.1 Proof: Optimization of the factor q(A)

Starting from Eq. 4.7, we use the decomposition in Eq. 5.1, and then we substitute
the conditional distributions on the right-hand side. We denote by const those
terms in the lower bound not depending on A;;(¢).

log(q*(A)) = Eqw,z)llog(p(X, Z, W, A|#)] 4 const;
= Eyw,z)[log(p(X|Z, W, A, A, )] + Eyw,z)[log(A|m)] + const

N M T

|
=>>> {Aij(t)[log 1ix,m=0y] + {Z DN Eaw,2)| Zig(0) Egow,z) [Wie (£)) Xi5(t) log Age

i=1j=1t=1 g=10=1

= Eyw,2)[Zig(8)) Egw.2) [‘W(t)]/\qe] — log X;;(t)!

+ A;j(t) logm(t) + (1 — Ay;(t)) log(1 — 7 (t ))} + const

N M T Q L

=333 {Aij(t) log ()L x, =0y + (1 = Ay (1) | D23 [ Egw.z) [ Zig (8)] Eqow,z) [We()] X (t) log Age
i=1j=11=1 g=1¢=1

— Eq(I/V,Z) [Ziq(t)]Eq(VV,Z) [LVﬂ(t)]Aqg] - lOg Xij (t)' + log(l - W(t)) } + const
N M T Q L )

=>>> {Az‘j(t) log m(t)1ix,, =0 + Ay(t) {Z > [ = Eqw.2)Zig(0)] Eqw,z) [Wie(£)] Xi;(t) log Age
i=1j=11t=1 q=1¢=1

+ Eqw,2)[ Zia ()1 Eqow,2) [Wie(t )}Aq[] +log Xy (#)! — log(1 — 7(t)) } + const

L

Q L
log 7()1¢x,,(5-0} ZZ{ aw,2) [Zig ()] Eq(w,2) [Wie(£)) X5 (t) log Age

q=10=1

> {Az‘j(t)

+ Eyw,2) [ Zig(O)) Eqew,z) [Wie(t )]Aqé] + log X;;(t)! — log(1 — = (t)) } + const.

We can then recognize the functional form of the Bernoulli distribution by indi-
cating:

™=
B
M=

log ¢"(A) o | Aij(t) log 655 (t) + (1 — Ay;(t)) log (1 — 65(1)),

log 52‘]‘ (t)
1 —log d;;(?)
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—
.
Il
—
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—
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is (t)
where 6;;(t) is defined as:

exp(R;;(t))
1+ exp(Ri;(t))’

dij(t) =

with R;;(t) defined as:

Q L
Ri;(t) = log(m(t)1ix,;m=0y) + DD { — Eyw,2)[Ziq()| Eqw,z)[We(1)] Xij () log Aget

q=1/¢=1

+ Eqw,2)[Zig(1)) Eqw,2) [M/]Z(t>]Aq€:| + log X;;(t)! — log(1 — 7 (1)).
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B.2 Proof: Optimization of the factor q(Z)

Starting from Eq. 4.8, we use the decomposition in Eq. 5.1, and then we substitute
the conditional distributions on the right-hand side. We denote by const those

terms in the lower bound not depending on Z;,(%).
lOg q*(Z"g) - Eq(A,W) [logp(X7 A7 Z7 W | 9)]
= Eyawllog(p(X | A, Z, W, A, ) +1ogp(Z | a)]

= Eyaw) [Z > {(1 — Ay () > {Ziq(t)ng(t)Xij(t) log(Age) — Zz‘q(t)ij(t)Aqf}

i=1j=1t=1

N Q
— (1 —A;(1)) log(Xij(t)!)} + Z > Ziy(t) log(ay(t)) + const,

N M Q L
=33 (1= B 450 | 3 {qu@)Eq(A ) [TV56(4)] () log (A +
N Q
— Ziy(t) Eyam) [Wﬂ(t)]Aqe} £33 Zi(#)log( (1)) + const

We can then recognize the functional form of the multinomial distribution. Thus,

we can write:
log ¢*(Z|0) = Z Z Z Zig(t)log 154y + const. (1)

Taking the exponential on the two sides, we obtain:

T Q
= H H Tiq(t)Ziq(t)v

t=1q=1

where 7,(t) is denoted by:
rilt) o exp (zz{ By (A ()| By 73] Xy 1) o)+

— Eqaw) [I/ij(t)}Aqé} } + log(aq(t))) :
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However, this distribution needs to be normalized because the matrix Z(t) is a
binary matrix and the elements sum to 1 over the values of ). We can then

obtain:

e
=T T 7(®)” ©

t=1qg=1

where
T'iq (t)

Tig(t _—
q( ) Zqo 17“qu( )

B.3 Derivation of the lower bound

Starting from Eq. 4.6 we obtain the final expression of the variational lower

bound L(q,#) by developing the expression:
p(X[A, Z, W, N)p(A | 7)p(Z|a)p(W|B)
q(A, Z, W)

P(XIA, Z,W, A)p(A | m)p(Zle)p(W|5)
valn 1Ht 1 q(Ai(t ))Hivlnt 1 q(Zi(t ))ijlnt 1 q(W5())
= Eya,zm)log p(X[A, Z, W, A)| + Eya) [10gp(A | )] + Eyz)[log p(Z]a) |+
+ By llog p(W8))] = Eyz)llog [T a(Z

— Eyow)[log H q(Wj)] — Eqa)llog H H q(Aij)]-

L(q,0) = Z q(A, Z,W)log

AZW

= Eqa,zw) |log

Then we substitute the results obtained in the VE-Step, denoting Eqa,z,w)[A:;(t)] =
055 (1), Eqa,zw) | Ziq(t)] = Tiq(t) and Eyea zw)[Wje(t)] = nje(t), in order to obtain
the final expression of the lower bound that can be written as follows:

;; Zl { t)log(m (1) 11x,;(=03) + (1 = di;(t)) [log(l —7(t)+
Q L
+Z;%qw S (0108 8y (O]
T N Q
— (1 -0;()) log(X,-j(t)!)} + 2_:1; 2_:17 q(t) log(ay(t))+
T M T N Q
—i-;z_:l;n ) log(Be(t)) — 2227 4(t) log 7, (t)+
=323l oa((0) = 3573 (5,0 1oa(8,0) + (1= 8,(0) (1 = 5,(0) ).



CHAPTER

B.4 Proof: Update of A

To find the optimal update expression of A we compute the derivative of the lower

bound L(q,#) in Eq. 5.7 with respect to A and set it equal to zero, as follows:

; > _1(1 - 5zg(t))[Tiq(t)nje(t)X”(t) Tig()750() Aqé} —0
; z_:l ;(1 6ij () Tig()nje(t) Age = ; z_:l ; Tig(0)N;0(t) [Xl(t) Xi;(t)6; (t)]

XS ST mOmse®)(Xis(8) = 05 (0 X5 (0))

XS S e (1 - 05(0)

—>
=)
~

|

B.5 Algorithmic Consideration

In this section, we provide detailed technical specifications of the neural networks
used in the M-Step of the inference algorithm. We employed fully connected neural
networks with two hidden layers, each consisting of 200 neurons. The choice of two
hidden layers allows for capturing complex patterns and relationships within the
data. We did not used mini-batch training, opting for a full-batch approach where
the entire training dataset was used in each iteration. In co-clustering, the clusters
formed by rows and columns are interconnected. Any updates made to a subset
of rows may impact the clustering of the corresponding columns and vice versa.
This interdependency makes it challenging to update mini-batches independently,
as changes in one batch may affect the quality and coherence of the clustering
solution. Within the VEM algorithm, each iteration involved the optimization of
the lower bound. For this purpose, we performed 2000 epochs, where an epoch
represents a complete pass through the entire dataset. It is worth noting that
our results have demonstrated robustness to the choices we made regarding the
size of the neural network. Our experiments and evaluations have shown that the
approach remains effective and yields reliable results across a range of network
sizes. All the experiments in Section 4.4 run on CPU on a MacBook Pro, 2020,
with a processor of 2,3 GHz Quad-Core Intel Core i7 and 16 GB of RAM
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B.6 Other experiment on simulated data

In this section, we present two experiments conducted on simulated data. The first
experiment constitutes a benchmark study in which we compare the performance
of our model with other state-of-the-art methods. In the second experiment, we
simulate datasets that deviate from the assumptions of the original model. This
enables us to assess the robustness of our model’s assumptions and evaluate its

performance under varying scenarios.

Benchmark study

The goal of this experiment is to compare Zip-dLBM with two state-of-the-art
methods to recover the data structure. First, Zip-dLBM is compared with a model
based on the same assumptions but which does not take into account the sparsity
modeling over time. Denoted by Zip-dLBMj()—o, the model does not take into
account the excess of zeros in the data and it is obtained by setting the sparsity
parameter 7(t), with ¢ in [0, 7], equal to zero. The other model Zip-dLBM is
compared with is dLBM, proposed in Chapter 3, where not only the sparsity is not
taken into account but the cluster memberships Z and W are not time-dependent,
i.e. cluster switches are not allowed. However, the expected number of interactions
between co-clusters (the parameter A) changes in time in dLBM.

We also included in the comparison two models that do not consider the dynamic
aspect: LBM (Govaert and Nadif, 2008), baseline for model-based co-clustering
methods, and k-means (MacQueen, 1967), applied on rows and columns separately.
Since the two models do not consider the time aspect, they have been applied
at each time instant separately. We chose to evaluate the results with the CARI
index. In order to consider the dynamic aspects of the dataset and account for
possible switched cluster labels across consecutive time instants, we store the
row and column cluster membership results in a unified vector that includes all
clustering outcomes over time. This results in vectors with sizes of N - T for row
memberships and M - T for column memberships, where N and M represent the
number of rows and columns, respectively, and T denotes the total number of
time instants. In particular, in order to compare the affectations to the clusters
over time, the cluster labels in dLBM were repeated as many times as the number
of time instants, and then compared to the affectations of the simulated data
using the CARI index. To make this comparison more complete, we defined two

simulation scenarios. In Scenario A, the data are simulated as described in Section
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4.4.1 but with a constant sparsity level of 80%, fixed in time. In Scenario B the
sparsity evolves in time from 80% to 90% . Table 1 displays the results of this
comparison, in terms of average CARI values, reported with standard deviations.
In Scenario A, Zip-dLBM performs well reaching a CARI value of 0.93, on the
other hand Zip-dLBM ()¢ suffers from the excessive number of zeros, whose
treatment is not considered, probably affecting the clustering performance. Even
worse for dLBM, LBM and kmeans whose CARI index is around 0. For dLBM
this is certainly due to the fact that the two latent clustering variables, Z and
W, do not evolve over time. LBM and k-means are penalized by the switching
clustering labels across different time instants since they are applied independently
at each time instant.

In scenario B, Zip-dLBM performs comparably with the previous scenario, with
an average CARI index of 0.94 and a smaller standard deviation. Thus, we
see that an increasing level of sparsity does not degrade the performance of the
model since it is able to distinguish structural zeros from those coming from the
Poisson process. This could even help in improving clustering performance. On
the contrary, Zip-dLBM;)—o performs worse than the results obtained in the

scenario A probably due to the increased sparsity in the data.

Zip-dLBM  Zip-dLBMy()—¢ dLBM | kmeans LBM
Scenario A | 0.93 +£0.13 0.27+0.1 00 0010 0.01£0.1
Scenario B | 0.94 £ 0.03 0.16 £0.11 0+001| 0£0 0.01£0.1

Table 1: Co-clustering results for Zip-dLBM, Zip-dLBMy(.)—o, dLBM, LBM and
kmeans on 50 simulated data according to the two scenarios. Average CARI values
are reported with standard deviations.

Robustness to model assumptions

The goal of this experiment on simulated data is to test the performance of
Zip-dLBM when data are not simulated according to the model assumptions.
Specifically, we decided to simulate the data from a Zero-Inflated negative bino-
mial distribution. The negative binomial distribution is a discrete probability
distribution that models the number of successes in a series of iid Bernoulli trials
before a given number of failures, r. Following the notation of Section 4.2, being

a mixture between the negative binomial distribution and a Dirac mass at zero,
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the Zero-Inflated negative binomial distribution can be formally written as:

X (O Zi(t), W;(t) =0 with probability ()
X (| Zi(t), W;(t) ~ NB(X;;(t);r,p) with probability 1 — ().

The probability mass function of the negative binomial is given by:

Fhrp) = <k+]:—1> opy k:F(k—i-”f’)(

—p)pF,

EIL(r)
where k is the number of successes and p is the probability of success. When
modeling counts data the negative binomial distribution is often a valid alternative
to the Poisson one, because it allows the mean and the variance to be different:

r r
Mean: A = -2 ; Variance: = S + %Az. A particular property of

1—p (1—p)?
the negative binomial distribution is that it converges to the Poisson distribution,
with expected value A, when r — oo.

To accurately evaluate the performance of Zip-dLBM we simulate with the

1000-1000)

— (1500-1500)
1 (2000-2000)

Figure 2: Evolution of the CARI (on the y-axis) according to  (on the x-axis),
where each line represent a different data size.

negative binomial distribution data sets for each value of r equal to 0.05, 0.1,
0.5, 1, 5, 10, 20, while keeping the values of A unchanged to the ones of the
introductory example in Section 4.4.1. Also, to evaluate the robustness of the
model to data size we simulate data sets with different size for each value of
r. The datasets have been simulated with (row-column) size 100-100, 250-250,
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%/é

Figure 3: Evolution of the average running time (on the y-axis), displayed with
the standard deviation, according to different data sizes (on the x-axis).

500-500, 1000-1000, 1500-1500, 2000-2000, respectively. Figure 2, reports the
results of the experiment, depicting the evolution of the values taken by the CARI
index (on the y-axis) across different values of the parameter r (on the x-axis)
and for different data sizes. Looking at these results we can observe that for
values of r very close to zero, all models have difficulties in identifying the correct
cluster partition. However, as r increases, models with larger data sizes achieve an
average CARI value close to 1, indicating improved clustering performance. Also,
we see that the method becomes increasingly robust as the data size increases. In
the same experiment, we also evaluate the average running time for each simulated
dataset across different r values. Figure 3 presents these results, with the x-axis
representing the data size and the y-axis indicating the running time in minutes.
Each point on the graph corresponds to the average running time, accompanied by
its standard deviation. Notably, we observe that the running time demonstrates
a relatively linear relationship with the data size, suggesting scalability of the

algorithm.
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